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Outline of second part:

1. Performance in feedback loops: tracking, disturbance
rejection, transient response. Integral control.

2. Fundamental design tradeoffs. The role of delay. Bode
Integral formula

3. Extensions to multivariable control.



Performance of feedback loops

—»?—»K(S)—»P(S) >

 Stability and its robustness are essential properties;
however, they are only half of the story.

* The closed loop system must also satisfy some notion of

performance:
— Steady-state considerations (e.g. tracking errors).

— Disturbance rejection.
— Speed of response (transients, bandwidth of tracking).

* Performance and stability/robustness are often at odds.

* For single input-output systems, frequency domain tools
(Nyquist, Bode) are well suited for handling this tradeoft.




Performance specs 1: Steady-state tracking

L»?i.K(S)—u»P(S) > )

e(t) =r(t) - y(?)

Error between reference signal » and output y.

Tracking means this error 1s kept small.

Suppose that »(¢) = r,,constant, and that the system 1s

stable. Then as t — o, e(t) > e(»), steady-state error.

Ideally, we would like the steady-state error to be zero.



Tracking, sensitivity and loop gain

y  The mapping from 7(¢) to e(¢) has

4 €, (s) . 1
— transfer function S(s) = :
1+ L(s)

That 1s, R(s) = S(s)E(s) 1n Laplace.

S(s) 1s called the sensitivity function of the system.

Under stability, S(s) has no poles in Re[s] > 0.

1

Then for »(¢) =r,, we have e(0)=S5(0)z7, = v
(1) =1, (0) =5(0)7, 1+ 2(0)"

Good steady-state tracking <> S(0) small <> L(0) large.




Integral control
Suppose L(s) has a pole at s =0.

L,?L,L(S) Y, 1
_ Then S(0)= = 0.
1+ L(0)

Zero steady-state error!

Example: L(s) = % V()y=K(r-y).

Loop 1s stable for K >0, and has a pole at s =0.
Therefore, 1t has zero steady-state tracking error.

In the time domain: for v(¢) =7, |y(@)=r, (1 —e Mo,

w




Simple congestion control example

Single link/source, no delays for now. y

y: Transmission rate (pkts/sec) Source |
c : Capacity of the link (pkts/sec)
g : Queue size; assume 1t 1s fed back to source.

Ic

Suppose source control 1s y = f(g), where f 1s a decreasing function.

Model: |g=y—c= f(q)—c| Equilibriumforc=c,: f(q,)=y,=c,.
Linearize around it: c=¢, +0c, y =y, +0y, ¢=q,+0q.

oy =—Kdq, K=—gi(%)>0. e SR L Ky
5¢=35y—de. ! ? )

Integral Control = Perfect steady-state tracking for constant oc.




Performance specs 2: tracking of
low-frequency reference signals.

v ¢ JL(s) Y, Transfer function from r(¢) to e(t)
] 1s the sensitivity S(s) = : :
1+ L(s)

Let S(jow)=|S(jw) | e/%(®) be the polar decomposition.

Assume the system 1s stable: then the steady-state

response to a sinuoidal reference r(¢) = 7, cos(w,t) 1s

e(t) =r, | S(jw,) | cos(w,t + @ (@,)).

Good steady-state tracking <> [S(j@,)|small «—=— |L(jw,)| large.
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in frequency range of interest.

Tracking <> Large |[L(jw) | <> Small |S(jw) |




Example 2: tracking of variable references
—oc 1| og —0y y
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Variations 1n capacity (e.g. Available Bit Rate)
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Performance specs 3: disturbance rejection.

-y =175

d Input disturbance:
O K () = OP(S) )V P(s)

fl’é Output disturbance:

L%Km —[P(s) - 1
g T _
>y =T

To reject disturbances, we need attenuation in the

frequency range of interest = Large |L(jw) |.




Example 3: disturbance rejection
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Performance specs 4: speed of response

L.QL»L(S) Y,

 Superimposed to the steady-state solutions discussed before,
. —s.t
we have transient terms of the form ZQe "', Here the

modes s; are the roots of 14+ L(s) = O.i

» For fast response, Re[s, | must be as negative as possible.

Example: L(s) = 5 1+ L(s)=0 s, =—K.
S

The higher K, the faster our transient response.

For instance for r(f) =r;, solution is y(¢) =7, (1 _ e—Kt)



Heuristic look based on Fourier:

F (-l L(s) |
— frequencies where | L(jw) << 1

cannot occur (filtered out). So

the speed of response 1s roughly
the bandwidth where |L(jw)|>1.

Transient decays in a

time of the order of 1
a)C
K . .
For L(s) =— (e.g. our congestion control with queue feedback)
S

. 1
o, = K — decays in the order of = seconds.

For faster response, increase the open loop bandwidth.



Performance specifications: recap

* Tracking of constant, or varying reference signals.
* Daisturbance rejection.

* Transient response.

Rule of thumb for all: increase
the gain or bandwidth of the 0 o

H HE | H HE N H HE
10 10° 10 10
Frequency (radians/sec)

loop transfer function L(jw).

What stops us from arbitrarily
good performance?
Answer: stability/robustness.




Example: loop with integrator and delay.

V(@) =K(r()- Y(t—1)) Example:
r EL S 4

'? | € q

Source |+
) Ke ™ (arises if we consider
(5) = G round- trip delay) lc
—Tjw
L(jow) = Ke. — ‘L(ja))‘ = ﬁ (independent of delay!)
jo @

Our earlier rule says: increase K for performance.

Stability? 1+ L(s)=0<>s+Ke * =0.

Transcendental equation. However, use Nyquist.



Stability analysis via Nyquist:

y Ky m—=—F Nyquist plot of L(jw):
% 1€ 1 2K
> ——
Loop function L(s) = ke .
s

K

L(jo) =7, $(w)= ~Z_or.
o 2

To avoid encirclements, impose Stable for
T
‘L(ja)o) <1 at o, where ¢(w,)=—-x K <;

Not much harder than analysis without delay!
Much simpler than other alternatives
(transcendental equations, Lyapunov functionals,...)



Stablhty in the Bode plot

1

L(jo)|= ‘ ¢(60)————wf 0

log | L(jo) |

0 T —

Impose ‘L(ja)o)‘ <1

10
at w,: ¢(w,)=-7 o

-180F

Increasing K moves

the top plot upwards.

— Constraint on K
for stability.

10" 10" @, 10"

Conclusion: delay limits the achievable performance.
Also, other dynamics of the plant (known or uncertain)

produce a similar effect. H?_, K(s)— P(s)——




The performance/robustness tradeoff

—»?—»K(S)—»P(S) >

As we have seen, we can improve performance by increasing
the gain and bandwidth of the loop transfer function L(jw).

L(s) can be designed through K(s). By canceling off P(s),
one could think Z(s) would be arbitrarily chosen. However:

— Unstable dynamics cannot be canceled.
— Delay cannot be canceled (othewise K(s) would not be causal).
— Cancellation 1s not robust to variations in P(s).

Therefore, the given plant poses essential limits to the
performance that can be achieved through feedback.

Good designs address this basic tradeoff. For single I-O
systems, “loopshaping” the Bode plot 1s an effective method.




The Bode Integral formula

r e 71 (s) Y, Recall: the mapping from 7»(¢) to e(?)
) has transfer function S(s) = :

1+ L(s)

For tracking, we want the sensitivity [S(j@) | to be small,

for as large a frequency range as possible. How large can it be?

n(s)

(s)

Theorem (Bode): Suppose L(s) = , a rational function

with deg(d(s))—deg(n(s)) > 2.
Let {pi} be the set of poles of L(s) in Re[s]> 0. Then

jlog‘S(ja))‘da) = ﬂlog(e)ZRe[pi]




The Bode Integral formula.

log [S(j@) |

jlog‘S(ja))‘da) =
0

log(e) > Re[p;]

The unstable poles p, that come from the
plant P(s) cannot be eliminated by K(s)
— Integral of sensitivity 1s a conserved

quantity over all stabilizing feedbacks.

K(s)

P(s)

Small sensitvity at low frequencies must be “paid” by a

larger than 1 sensitivity at some higher frequencies.




But all this 1s only linear!

The above tradeoff 1s of course present in nonlinear
systems, but harder to characterize, due to the lack
of a frequency domain (partial extensions exist).

So most successful designs are linear based,
followed up by nonlinear analysis or stmulation.

9

Beware of claims of superiority of “truly nonlinear’
designs. They rarely address this tradeoff, so may
have poor performance or poor robustness (or both).

A basic test: linearized around equilibrium, the
nonlinear controller should not be worse than a
linear design.



Multivariable control

4 _e K (s) P (s) y

Signals are now vector-valued (many inputs and outputs).
Transfer functions are matrix-valued.

_J/1(S)_ _Pll(S)
)= = |=| :

U _
y(s) = P(s)K(s)e(s)
e(s) =r(s) = y(s)

)] | Bals)

B, (s) [[u,(s)
: = P(s)u(s)

P, () || u,(s)

e [[ -+ L(S)] e(s)=r(s)




A _e K (5) —pP(s) y

e(s) = [[ + LY(S)]_i r(s) y(s) = L(s)[ I+ L(s)] r(s)
S(s)

Stability: poles of |7 + L(S)]_l (i.e., roots of det| I + L(s)| = 0)

must have negative real part.

Multivariable Nyquist criterion: study encirclements of
the origin of det[/ + L(jw)] = | (1+ 4 (j)),

where A (jw) are the eigenvalues of L(jw).



Performance of multivariable loops

A _e K (s) P (5) y

e(jo) = S(jo)r(jo) =1+ L(jo)] r(jo)

The tracking error will depend on frequency, but also
on the direction of the vector 7( jw). The worst-case
direction 1s captured by the maximum singular value:

o(S(jw)) = max{| S(jw)v|:veC",|v|=1}.




Network congestion control example
L communication links shared by S source-destination pairs.

Routing matrix:

- {1 if link / serves source i

0 otherwise
x,: Rate of i —th source (pkts/sec) y = Rx
V= Z x, : Total rate of / — th link (pkts/sec)
1uses | dbl
¢, : Capacity of the / — th link (pkts/sec) — =(y,—¢)

b, : Backlog of the / —th link (pkts)
T
q,= Z b, : Total backlog for i — th source (pkts) q = R b

1uses 1

Suppose sources receive g, by feedback, and set |x; = f.(g,)




Linearized multivariable model, around equilibrium.

Oy =Rox

V. aggregate
flows per link

X . source
rates

backlog per source
5qg=R"5b
ob

b: link backlogs

—oc

0q OX oy




Now: L(s) = L RR” is easily diagonalized.|

S
20 0 % 0 0
RKR' =V'|0 . 0V, A 20=L(s)=V"| 0 0
0 0 4 S A
S

» Modes: roots of det(/ + L(s))=0 — s= —/1;, [=1,...,L.
Therefore: stable if RKR" is full rank. Transient response

dominated by slowest mode, A_. (RKR").
- Singular values of S(jw) = (I + L(jw)) 'are

-1

12 |2 S 5 (S(w) = .
jw A+ jo A+ jo

Q

Performance analysis reduces to the scalar case.




Now, consider stability in the presence of delay. For
simplicity, use a common delay (RTT) for all loops.

) 10

RKR'

L(s)=Z

Diagonalize and apply

IO F-Ye) D ————
Nyquist: Stable for \
(RKR' )<— N

max -1 1]
or 10 10 10

1

Summary' performance defined by A_. (RKR"), delay robustness
(RKR"). Tradeoff is harder for ill-conditioned RKR" !

max



More generally, eigenvalues don’t tell the full story.

A _e K (s) | P(5) Y

 Performance: for transfer functions which are not selt-adjoint,

E(S (jw)) can be much larger-than the maximum eigenvalue.

« Robust stability: consider a ball of plants P(s) = £ (s) + A(s),
E(A( jw)) < %((a))' Nyquist not very useful to establish stability

for all A, since det(/ + KP) depends on 1t in a complicated way.

However, 1t can be shown that the condition
o(S(jo)K(jo)a(w)) <1 Vo gives robust stability.

Singular values are more important than eigenvalues.



Summary

A well designed feedback will respond as quickly as possible to
regulate, track references or reject disturbances.

The fundamental limit to the above features is the potential for
instability, and its sensitivity to errors in the model. A good design
must balance this tradeoff (robust performance).

In SISO, linear case, tradeoff is well understood by frequency domain
methods. This explains their prevalence in design.

Nonlinear aspects usually handled a posteriori. Nonlinear control can
potentially (but not necessarily) do better. A basic test: linearization
around any operating point should match up with linear designs.

In multivariable systems, frequency domain tools extend with some
complications (ill conditioning, singular values versus eigenvalues,...

g

All of this 1s relevant to network flow control: performance vs
delay/robustness, 1ll-conditioning,... Nonlinearity seems mild.



