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Power Systems Analysis
Chapter 1   Basic concepts



Outline

1. Phasor representation


2. KCL, KVL, Ohm’s law, Tellegen’s theorem


3. Balanced three-phase systems


4. Complex power
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• Single-phase devices
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Physical quantities

1. Voltage, current, power, energy


2. All are sinusoidal functions of time


3. Steady state:


• Frequencies at all points are nominal:  Hz in US, 50 Hz in China, 
Europe


• Reasonable model at timescales of minutes and up

ω = 60
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Power system analysis

physical system

v(t), i(t), p(t)
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physical laws

KC/VL, Ohm’s

in time domain

analysis/sim

in time domain

results

in time domain

physical laws

KC/VL, Ohm’s


in phasor domain

analysis

in phasor domain

results

in phasor domain

phasor represent

V, I, S



Voltage phasor

1. Voltage:      


•  : nominal system frequency


•  : amplitude 


•  : phase (angle)


2. Phasor:      


3. Relationship:    

v(t) = Vmax cos(ωt + θV) = Re {VmaxeiθV ⋅ eiωt}
ω

Vmax

θV

V :=
Vmax

2
eiθV volt (V)

v(t) = Re{ 2V ⋅ eiωt}
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Current phasor

1. Current:      


2. Phasor:        


3. Relationship:    

i(t) = Imax cos(ωt + θI) = Re {ImaxeiθI ⋅ eiωt}
I :=

Imax

2
eiθI ampere (A)

i(t) = Re{ 2I ⋅ eiωt}
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Single-phase devices

1. Impedance 


2. Voltage source 


3. Current source 


4. Transmission/distribution line (Chapter 2)


5. Transformer (Chapter 3)

Z

(E, Z)

(J, Y)

Steven Low     EE/CS/EST 135    Caltech



Impedance
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Impedance
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Impedance
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Impedance

In general, impedance 

•  : resistance 


•  : reactance 


Admittance 

•  : conductance 


•  : susceptance 

Z = R + iX
R Ω
X Ω

Y := Z−1 =: G + iB
G Ω−1

B Ω−1
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Voltage source

Voltage source 

•  : internal voltage


•  : internal impedance

• Internal model


External model

•  : terminal voltage


•  : terminal current


• Relation between  :  


(E, Z)
E
Z

V
I

(V, I) V = E − ZI

Steven Low     EE/CS/EST 135    Caltech

Draft: EE 135 Notes September 19, 2022 15

Instead of impedance Z, sometimes it is convenient to use its inverse, called the admittance Y := Z�1. The
voltage V across an impedance Z (or admittance Y ) and the current I through it are related in the phasor
domain by

V = ZI and I = YV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor R and an inductor L in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = Ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = L d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = Ri(t) + L
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get
p

2V eiwt = R
p

2I eiwt + L
⇣

iw
p

2I eiwt
⌘

V = (R + iwL) I

Voltage source (E,Z). A voltage source is a circuit model with a constant open-circuit internal voltage E
in series with an impedance Z, as shown in Figure (a). Its external behavior is described by the relationship

 

(a) Voltage source

 

(b) Current source

Figure 1.3: A voltage source (E,Z) and a current source (J,Y ). An ideal voltage source has Z = 0 and an
ideal current source has Y = 0.

between its terminal voltage and terminal (V, I):

V = E � ZI

We often adopt an ideal voltage source with Z = 0. In this case V = E.



Current source

Current source 

•  : internal current


•  : internal admittance

• Internal model


External model

•  : terminal voltage


•  : terminal current


• Relation between  :  


(J, Y)
J
Y

V
I

(V, I) I = J − YV
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Instead of impedance Z, sometimes it is convenient to use its inverse, called the admittance Y := Z�1. The
voltage V across an impedance Z (or admittance Y ) and the current I through it are related in the phasor
domain by

V = ZI and I = YV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor R and an inductor L in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = Ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = L d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = Ri(t) + L
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get
p

2V eiwt = R
p

2I eiwt + L
⇣

iw
p

2I eiwt
⌘

V = (R + iwL) I

Voltage source (E,Z). A voltage source is a circuit model with a constant open-circuit internal voltage E
in series with an impedance Z, as shown in Figure (a). Its external behavior is described by the relationship

 

(a) Voltage source

 

(b) Current source

Figure 1.3: A voltage source (E,Z) and a current source (J,Y ). An ideal voltage source has Z = 0 and an
ideal current source has Y = 0.

between its terminal voltage and terminal (V, I):

V = E � ZI

We often adopt an ideal voltage source with Z = 0. In this case V = E.



Equivalent source

A nonideal voltage source  and current source  are equivalent if


• 


• They have the same external model


(E, Z) (J, Y)
J =

E
Z

, Y = Z−1
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Instead of impedance Z, sometimes it is convenient to use its inverse, called the admittance Y := Z�1. The
voltage V across an impedance Z (or admittance Y ) and the current I through it are related in the phasor
domain by

V = ZI and I = YV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor R and an inductor L in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = Ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = L d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = Ri(t) + L
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get
p

2V eiwt = R
p

2I eiwt + L
⇣

iw
p

2I eiwt
⌘

V = (R + iwL) I

Voltage source (E,Z). A voltage source is a circuit model with a constant open-circuit internal voltage E
in series with an impedance Z, as shown in Figure (a). Its external behavior is described by the relationship

 

(a) Voltage source

 

(b) Current source

Figure 1.3: A voltage source (E,Z) and a current source (J,Y ). An ideal voltage source has Z = 0 and an
ideal current source has Y = 0.

between its terminal voltage and terminal (V, I):

V = E � ZI

We often adopt an ideal voltage source with Z = 0. In this case V = E.

Draft: EE 135 Notes September 19, 2022 15

Instead of impedance Z, sometimes it is convenient to use its inverse, called the admittance Y := Z�1. The
voltage V across an impedance Z (or admittance Y ) and the current I through it are related in the phasor
domain by

V = ZI and I = YV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor R and an inductor L in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = Ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = L d
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Voltage source (E,Z). A voltage source is a circuit model with a constant open-circuit internal voltage E
in series with an impedance Z, as shown in Figure (a). Its external behavior is described by the relationship

 

(a) Voltage source

 

(b) Current source

Figure 1.3: A voltage source (E,Z) and a current source (J,Y ). An ideal voltage source has Z = 0 and an
ideal current source has Y = 0.

between its terminal voltage and terminal (V, I):

V = E � ZI

We often adopt an ideal voltage source with Z = 0. In this case V = E.



Circuit models

These are circuit models of physical devices
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Current source (J,Y ). A current source is a circuit model with a constant closed-circuit internal current
J in parallel with an admittance Y , as shown in Figure (b). Its external behavior is described by the
relationship between its terminal voltage and current (V, I):

I = J � YV

We often adopt an ideal current source with Y = 0. In this case I = J.

Remark 1.1. 1. A nonideal voltage source (E,Z) and a current source (J,Y ) are equivalent, i.e., have
the same terminal voltage and current relationship if their parameters satisfy

J =
E
Z

(closed-circuit equivalent)

Y := Z�1 (open-circuit equivalent)

2. Ideal voltage or current sources are reasonable models as their series impedances or shunt admit-
tances can be combined with the series impedance and shunt admittances of a transmission or dis-
tribution line to which they are connected, as we will see in Chapter 2. We will therefore often use
ideal voltage and current sources in this book with series series impedances and shunt admittances.

Single-phase devices. Basic devices in a power system are generators, loads, transmission and distribu-
tion lines, and transformers. A generator can be modeled by a voltage source or current source. A load can
be modeled by an impedance (or admittance), a voltage source, or a current source. A line can be modeled
by a series impedance, possibly with a shunt admittance at each end of the line; the details are described
in Chapter 2. A transformer can be modeled by a series impedance and a shunt admittance followed by
voltage and current gains; the details are described in Chapter 3. These are summarized in Table 1.1. This

Device Circuit model
Generator Voltage source, current source
Load Impedance, voltage source, current course
Line Impedance (Chapter 2)
Transformer Impedance, voltage/current gain (Chapter 3)

Table 1.1: Circuit elements commonly used for modeling generators, loads, lines, and transformers.

book develop techniques for analyzing power system models constructed from these circuit elements.

1.1.3 KVL, KCL, Ohm’s Law, Tellegen’s theorem

Consider a circuit consisting of an interconnection of resisters, inductors, capacitors, and voltage and
current sources. An ideal voltage source between two points enforces a given voltage between these two
points. An ideal current source between two points enforces a given current between them. We now
describe KVL, KCL, Ohm’s law for a general network and derive a result called Tellegen’s theorem.



Outline

1. Phasor representation


2. Linear circuit analysis

• KCL, KVL, Ohm’s law, Tellegen’s theorem


3. Balanced three-phase systems


4. Complex power
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Circuit analysis: review

A brief review of circuit analysis for EE students


Mathematical background required

• Basic algebraic graph theory (Chapter 26.2 of Draft Notes)
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Notation

Directed graph 

• Arbitrary orientation


• Link  or  in 


• Reference node 0 with  by definition


Variables 


• Nodal voltage  at node wrt reference node 0


• Branch voltage  across link 


• Branch current  across link 


G := (N, E)

( j, k) j → k E
V0 := 0

Vj j

Ujk := Vj − Vk ( j, k)

Ijk j → k
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We represent the network by a connected directed graph G := (N,E) with an arbitrary orientation
where N is a set of nodes and E ✓ N ⇥N is a set of links. We denote a link l 2 E that points from node j to
node k interchangeably by l = ( j,k) or l = j ! k. Node 0 2 N is the reference point for all voltages. Let
Vj denote the nodal voltage of node j with respect to the reference node 0. Therefore V0 := 0 by definition.
For any two nodes j and k, not necessarily adjacent (i.e., ( j,k) may or may not be in E), the voltage drop
across nodes j and k is denoted Ujk and is equal to Ujk = Vj �Vk. For each link j ! k 2 E, let I jk denote
the branch current on that link from j to k, i.e, I jk � 0 if it flows from j to k and negative otherwise, as
illustrated in Figure 1.4.

A link represents either an impedance, a voltage source, or a current source. If link j ! k represents
an impedance then its value z jk is given, if it represents a voltage source then Ujk = v jk is given, and if it
represents a current source then I jk = j jk is given.












































































































Figure 1.4: A circuit represented as a directed graph where each link j ! k is either an impedance z jk,
a voltage source Ujk, or a current source I jk. The voltage source U40 = v and current source I30 = j are
given. Its incidence matrix C is partitioned into C1 corresponding to the impedances, C2 corresponding to
the voltage source, and C3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero,
i.e.,

� Â
i:i! j2E

Ii j + Â
k: j!k2E

Ijk = 0 (1.3a)

For the example in Figure 1.4 this means �I12 + I20 + I24 = 0 at node 2. Kirchhoff’s voltage law (KVL)
states that the voltages across those links that form a cycle sum to zero. Consider a cycle c in the graph
with an arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is
denoted by l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states
that for any cycle c

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4 we have U12 +U20 �U10 = 0. We can represent (1.3) compactly
in vector notation. Let U :=

�
Ujk,( j,k) 2 E

�
and I :=

�
I jk,( j,k) 2 E

�
denote the vectors of voltages and



KCL, KVL

KCL: incident currents at any node  sum to zero





KVL: voltage drops around any cycle  sum to zero


j

− ∑
i:i→j∈E

Iij + ∑
k:j→k∈E

Ijk = 0

c

∑
l∈c

Ul − ∑
−l∈c

Ul = 0

Steven Low     EE/CS/EST 135    Caltech

Draft: EE 135 Notes September 19, 2022 17

We represent the network by a connected directed graph G := (N,E) with an arbitrary orientation
where N is a set of nodes and E ✓ N ⇥N is a set of links. We denote a link l 2 E that points from node j to
node k interchangeably by l = ( j,k) or l = j ! k. Node 0 2 N is the reference point for all voltages. Let
Vj denote the nodal voltage of node j with respect to the reference node 0. Therefore V0 := 0 by definition.
For any two nodes j and k, not necessarily adjacent (i.e., ( j,k) may or may not be in E), the voltage drop
across nodes j and k is denoted Ujk and is equal to Ujk = Vj �Vk. For each link j ! k 2 E, let I jk denote
the branch current on that link from j to k, i.e, I jk � 0 if it flows from j to k and negative otherwise, as
illustrated in Figure 1.4.

A link represents either an impedance, a voltage source, or a current source. If link j ! k represents
an impedance then its value z jk is given, if it represents a voltage source then Ujk = v jk is given, and if it
represents a current source then I jk = j jk is given.












































































































Figure 1.4: A circuit represented as a directed graph where each link j ! k is either an impedance z jk,
a voltage source Ujk, or a current source I jk. The voltage source U40 = v and current source I30 = j are
given. Its incidence matrix C is partitioned into C1 corresponding to the impedances, C2 corresponding to
the voltage source, and C3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero,
i.e.,

� Â
i:i! j2E

Ii j + Â
k: j!k2E

Ijk = 0 (1.3a)

For the example in Figure 1.4 this means �I12 + I20 + I24 = 0 at node 2. Kirchhoff’s voltage law (KVL)
states that the voltages across those links that form a cycle sum to zero. Consider a cycle c in the graph
with an arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is
denoted by l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states
that for any cycle c

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4 we have U12 +U20 �U10 = 0. We can represent (1.3) compactly
in vector notation. Let U :=

�
Ujk,( j,k) 2 E

�
and I :=

�
I jk,( j,k) 2 E

�
denote the vectors of voltages and



KCL, KVL
Incident matrix C

incident matrix





|N | × |E |

Cjl :=
1  if l = j → k for some bus k

−1  if l = i → j for some bus i
0  otherwise

, j ∈ N, l ∈ E
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We represent the network by a connected directed graph G := (N,E) with an arbitrary orientation
where N is a set of nodes and E ✓ N ⇥N is a set of links. We denote a link l 2 E that points from node j to
node k interchangeably by l = ( j,k) or l = j ! k. Node 0 2 N is the reference point for all voltages. Let
Vj denote the nodal voltage of node j with respect to the reference node 0. Therefore V0 := 0 by definition.
For any two nodes j and k, not necessarily adjacent (i.e., ( j,k) may or may not be in E), the voltage drop
across nodes j and k is denoted Ujk and is equal to Ujk = Vj �Vk. For each link j ! k 2 E, let I jk denote
the branch current on that link from j to k, i.e, I jk � 0 if it flows from j to k and negative otherwise, as
illustrated in Figure 1.4.

A link represents either an impedance, a voltage source, or a current source. If link j ! k represents
an impedance then its value z jk is given, if it represents a voltage source then Ujk = v jk is given, and if it
represents a current source then I jk = j jk is given.












































































































Figure 1.4: A circuit represented as a directed graph where each link j ! k is either an impedance z jk,
a voltage source Ujk, or a current source I jk. The voltage source U40 = v and current source I30 = j are
given. Its incidence matrix C is partitioned into C1 corresponding to the impedances, C2 corresponding to
the voltage source, and C3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero,
i.e.,

� Â
i:i! j2E

Ii j + Â
k: j!k2E

Ijk = 0 (1.3a)

For the example in Figure 1.4 this means �I12 + I20 + I23 = 0 at node 2. Kirchhoff’s voltage law (KVL)
states that voltage drops around any cycle c sum to zero. Consider a cycle c in the graph with an arbitrary
orientation, say, clockwise. A link l in the cycle that is in the same direction as c is denoted by l 2 c and a
link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states that for any cycle c

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4 we have U12 +U20 �U10 = 0. We can represent (1.3) compactly
in vector notation. Let U :=

�
Ujk,( j,k) 2 E

�
and I :=

�
I jk,( j,k) 2 E

�
denote the vectors of voltages and

currents respectively across these lines. Let C 2 {�1,0,1}|N|⇥|E| be the node-by-link incidence matrix



KCL, KVL
Vector form

KCL: incident currents at any node  sum to zero





KVL: there exists nodal voltages   s.t.


j

C I = 0

V ∈ ℂ|N|

U = C𝖳V
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We represent the network by a connected directed graph G := (N,E) with an arbitrary orientation
where N is a set of nodes and E ✓ N ⇥N is a set of links. We denote a link l 2 E that points from node j to
node k interchangeably by l = ( j,k) or l = j ! k. Node 0 2 N is the reference point for all voltages. Let
Vj denote the nodal voltage of node j with respect to the reference node 0. Therefore V0 := 0 by definition.
For any two nodes j and k, not necessarily adjacent (i.e., ( j,k) may or may not be in E), the voltage drop
across nodes j and k is denoted Ujk and is equal to Ujk = Vj �Vk. For each link j ! k 2 E, let I jk denote
the branch current on that link from j to k, i.e, I jk � 0 if it flows from j to k and negative otherwise, as
illustrated in Figure 1.4.

A link represents either an impedance, a voltage source, or a current source. If link j ! k represents
an impedance then its value z jk is given, if it represents a voltage source then Ujk = v jk is given, and if it
represents a current source then I jk = j jk is given.












































































































Figure 1.4: A circuit represented as a directed graph where each link j ! k is either an impedance z jk,
a voltage source Ujk, or a current source I jk. The voltage source U40 = v and current source I30 = j are
given. Its incidence matrix C is partitioned into C1 corresponding to the impedances, C2 corresponding to
the voltage source, and C3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero,
i.e.,

� Â
i:i! j2E

Ii j + Â
k: j!k2E

Ijk = 0 (1.3a)

For the example in Figure 1.4 this means �I12 + I20 + I24 = 0 at node 2. Kirchhoff’s voltage law (KVL)
states that the voltages across those links that form a cycle sum to zero. Consider a cycle c in the graph
with an arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is
denoted by l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states
that for any cycle c

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4 we have U12 +U20 �U10 = 0. We can represent (1.3) compactly
in vector notation. Let U :=

�
Ujk,( j,k) 2 E

�
and I :=

�
I jk,( j,k) 2 E

�
denote the vectors of voltages and

equations in  variables 


•  has rank , 


•  linearly independent equations in  variables 

|N | + |E | |N | + 2 |E | (V, U, I)
C N − 1 V0 := 0

|N | + |E | − 1 |N | + 2 |E | − 1 (V−0, U, I)

Need another  equations|E |



Device specification

Across each link  is exactly one device


1. Impedance with given  :  


2. Voltage source with given  :  


3. Current source with given  :  


( j, k)

zjk Ujk = zjk Ijk

vjk Ujk = vjk

ijk Ijk = ijk
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We represent the network by a connected directed graph G := (N,E) with an arbitrary orientation
where N is a set of nodes and E ✓ N ⇥N is a set of links. We denote a link l 2 E that points from node j to
node k interchangeably by l = ( j,k) or l = j ! k. Node 0 2 N is the reference point for all voltages. Let
Vj denote the nodal voltage of node j with respect to the reference node 0. Therefore V0 := 0 by definition.
For any two nodes j and k, not necessarily adjacent (i.e., ( j,k) may or may not be in E), the voltage drop
across nodes j and k is denoted Ujk and is equal to Ujk = Vj �Vk. For each link j ! k 2 E, let I jk denote
the branch current on that link from j to k, i.e, I jk � 0 if it flows from j to k and negative otherwise, as
illustrated in Figure 1.4.

A link represents either an impedance, a voltage source, or a current source. If link j ! k represents
an impedance then its value z jk is given, if it represents a voltage source then Ujk = v jk is given, and if it
represents a current source then I jk = j jk is given.












































































































Figure 1.4: A circuit represented as a directed graph where each link j ! k is either an impedance z jk,
a voltage source Ujk, or a current source I jk. The voltage source U40 = v and current source I30 = j are
given. Its incidence matrix C is partitioned into C1 corresponding to the impedances, C2 corresponding to
the voltage source, and C3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero,
i.e.,

� Â
i:i! j2E

Ii j + Â
k: j!k2E

Ijk = 0 (1.3a)

For the example in Figure 1.4 this means �I12 + I20 + I24 = 0 at node 2. Kirchhoff’s voltage law (KVL)
states that the voltages across those links that form a cycle sum to zero. Consider a cycle c in the graph
with an arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is
denoted by l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states
that for any cycle c

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4 we have U12 +U20 �U10 = 0. We can represent (1.3) compactly
in vector notation. Let U :=

�
Ujk,( j,k) 2 E

�
and I :=

�
I jk,( j,k) 2 E

�
denote the vectors of voltages and

These device specifications provide additional  equations |E |



Circuit analysis

Solve for 


• Impedance:  


• Voltage source:  


• Current source:  


• KCL: 


• KVL: 


• Reference voltage: 

(V, U, I)
Ujk = zjk Ijk

Ujk = vjk

Ijk = ijk

CI = 0

U = C𝖳V

V0 := 0
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We represent the network by a connected directed graph G := (N,E) with an arbitrary orientation
where N is a set of nodes and E ✓ N ⇥N is a set of links. We denote a link l 2 E that points from node j to
node k interchangeably by l = ( j,k) or l = j ! k. Node 0 2 N is the reference point for all voltages. Let
Vj denote the nodal voltage of node j with respect to the reference node 0. Therefore V0 := 0 by definition.
For any two nodes j and k, not necessarily adjacent (i.e., ( j,k) may or may not be in E), the voltage drop
across nodes j and k is denoted Ujk and is equal to Ujk = Vj �Vk. For each link j ! k 2 E, let I jk denote
the branch current on that link from j to k, i.e, I jk � 0 if it flows from j to k and negative otherwise, as
illustrated in Figure 1.4.

A link represents either an impedance, a voltage source, or a current source. If link j ! k represents
an impedance then its value z jk is given, if it represents a voltage source then Ujk = v jk is given, and if it
represents a current source then I jk = j jk is given.












































































































Figure 1.4: A circuit represented as a directed graph where each link j ! k is either an impedance z jk,
a voltage source Ujk, or a current source I jk. The voltage source U40 = v and current source I30 = j are
given. Its incidence matrix C is partitioned into C1 corresponding to the impedances, C2 corresponding to
the voltage source, and C3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero,
i.e.,

� Â
i:i! j2E

Ii j + Â
k: j!k2E

Ijk = 0 (1.3a)

For the example in Figure 1.4 this means �I12 + I20 + I24 = 0 at node 2. Kirchhoff’s voltage law (KVL)
states that the voltages across those links that form a cycle sum to zero. Consider a cycle c in the graph
with an arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is
denoted by l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states
that for any cycle c

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4 we have U12 +U20 �U10 = 0. We can represent (1.3) compactly
in vector notation. Let U :=

�
Ujk,( j,k) 2 E

�
and I :=

�
I jk,( j,k) 2 E

�
denote the vectors of voltages and



Tellegen’s theorem

Tellegen’s theorem is consequence of 3 facts


•  is direct sum


• KCL:  , i.e., 


• KVL:  , i.e., 


Therefore branch currents  and branch voltages  are orthogonal:


•     (Tellegen’s theorem)


C|E| = null(C) ⊕ range (C𝖳)
CI = 0 I ∈ null(C)

U = C𝖳V U ∈ range (C𝖳)
I U

I𝖧U = 0
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 and  can be from different networks as long as they have the same incidence matrix  !I U C



Outline

1. Phasor representation


2. Linear circuit analysis


3. Balanced three-phase systems

• Y and  configuration

• Balanced vectors and conversion matrices 


• Balanced systems in  and  configurations


• -Y transformation

• Per-phase analysis


4. Complex power

Δ

Y Δ
Δ
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Balanced 3-phase system
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Internal variables
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(b) Balanced three-phase system

Figure 1.5: A single-phase system and a balanced three-phase system that transfer power from generators
through transmission lines to loads.

balanced system in Y configuration (Chapter 1.2.3) and D configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part II of this book.

1.2.1 Y and D configurations

Three single-phase devices can be arranged in either an Y or a D configuration as shown in Figure 1.6. They










































































































(a) Y configuration












































































































(b) D configuration

Figure 1.6: Three-phase systems, not necessarily balanced, in Y and D configurations.

Each single-phase device can be arbitrary

• Voltage source, current source, impedance, ideal or not


Internal voltages and currents across single-phase devices:


,   


neutral voltage (wrt common reference pt) 

neutral current (away from neutral) 

VY :=
Van

Vbn

Vcn
IY :=

Ian

Ibn

Icn

Vn ∈ ℂ
In ∈ ℂ

For single-phase models, we sometimes assume Vn = 0

• Neutral line may or may not be present

• Device may or may not be grounded

• Neutral impedance  may or may not be zerozn



 configurationY
Terminal variables
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Figure 1.5: A single-phase system and a balanced three-phase system that transfer power from generators
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balanced system in Y configuration (Chapter 1.2.3) and D configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part II of this book.

1.2.1 Y and D configurations

Three single-phase devices can be arranged in either an Y or a D configuration as shown in Figure 1.6. They










































































































(a) Y configuration












































































































(b) D configuration

Figure 1.6: Three-phase systems, not necessarily balanced, in Y and D configurations.

Terminal voltages and currents:


,   


•  is with respect to common reference, e.g. ground


•  is in direction out of device


Conversion from internal to terminal variables


,   


•  if , i.e., if neutral is directly grounded and ground is the reference

V :=
Va

Vb

Vc
I :=

Ia

Ib

Ic

V
I

V = VY + vn1 I = − IY

V = VY Vn = 0



 configurationΔ
Internal variables
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Each single-phase device can be arbitrary

• Voltage source, current source, impedance, ideal or not


Internal voltages and currents across single-phase devices:


,   
VΔ :=
Vab

Vbc

Vca
IΔ :=

Iab

Ibc

Ica
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balanced system in Y configuration (Chapter 1.2.3) and D configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part II of this book.

1.2.1 Y and D configurations

Three single-phase devices can be arranged in either an Y or a D configuration as shown in Figure 1.6. They










































































































(a) Y configuration












































































































(b) D configuration

Figure 1.6: Three-phase systems, not necessarily balanced, in Y and D configurations.



 configurationΔ
Terminal variables
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Terminal voltages and currents:


,   


• Same for  configured devices


Conversion between internal and terminal variables





• In vector form:  

V :=
Va

Vb

Vc
I :=

Ia

Ib

Ic

Y

[
1 −1 0
0 1 −1

−1 0 1 ]
Γ

Va

Vb

Vc
=

Vab

Vbc

Vca
,

Ia

Ib

Ic
= − [

1 0 −1
−1 1 0
0 −1 1 ]

Γ𝖳

Iab

Ibc

Ica

ΓV = VΔ, I = − Γ𝖳IΔ
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balanced system in Y configuration (Chapter 1.2.3) and D configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part II of this book.

1.2.1 Y and D configurations

Three single-phase devices can be arranged in either an Y or a D configuration as shown in Figure 1.6. They










































































































(a) Y configuration












































































































(b) D configuration

Figure 1.6: Three-phase systems, not necessarily balanced, in Y and D configurations.



Conversion matrices
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Conversion matrices


Γ := [
1 −1 0
0 1 −1

−1 0 1 ], Γ𝖳 := [
1 0 −1

−1 1 0
0 −1 1 ]
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can be three voltage sources, three current sources, or three impedances and they may not be identical,
e.g., the three impedances may have different values.

Y configuration. For the Y configuration, the internal voltage (vector) is VY := (Van,Vbn,Vcn). These
voltages are called phase-to-neutral or phase voltages. The internal current (vector) IY := (Ian, Ibn, Icn)
is defined to flow from each terminal to the neutral as shown in Figure 1.6(a). The external behavior of
a three-phase device is described by what is measurable on the terminal of the device. The terminal (or
nodal or bus) voltage V := (Va,Vb,Vc) are voltages with respect to an arbitrary but common point, and the
terminal (or line) current I := (Ia, Ib, Ic) is defined to be the current coming out of the device as shown in
the figure. If the common reference point is taken to be the neutral of this device then V = VY , i.e., the
terminal voltage is the same as the phase voltage for Y configuration. As we will see in Chapters 1.2.3 and
1.2.4, for a balanced systems, the neutrals of all Y -configured devices are at the same voltage and therefore
can serve as the common reference point. This is not necessarily the case for an unbalanced system, which
we will study in Part II of this book.

Hence, for Y configuration, the terminal voltage and current (V, I) are determined by the internal
voltage and current

�
VY , IY �

according to (when the common reference point for V is the neutral):

V = VY , I = �IY (1.7)

Instead of the terminal voltage V it is also common to describe the behavior of the three-phase device
in terms of its line-to-line or line voltage V line := (Vab,Vbc,Vca). To relate V line to V , define the matrices G
and its transpose GT:

G :=

2

4
1 �1 0
0 1 �1

�1 0 1

3

5 , GT :=

2

4
1 0 �1

�1 1 0
0 �1 1

3

5 (1.8)

We call G and GT conversion matrices. They can be interpreted as the bus-by-line incidence matrices
of the directed graphs shown in Figure 1.7 (properties of general incidence matrices are summarized in

(a) G (b) GT

Figure 1.7: Directed graphs of which G and GT are incidence matrices.

Appendix 26.2). Then
2

4
Vab
Vbc
Vca

3

5 =

2

4
1 �1 0
0 1 �1

�1 0 1

3

5

| {z }
G

2

4
Va
Vb
Vc

3

5

Spectral properties of  underlie much of three-phase (balanced or unbalanced) systems(Γ, Γ𝖳)



Balanced systems
Balanced vector
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Definition 

A vector  with  is called balanced if 


• 


• Either                  (positive sequence)     

or                       (negative sequence)

x := (x1, x2, x3) xj = |xj |eiθj ∈ ℂ

|x1 | = |x2 | = |x3 |

θ2 − θ1 = −
2π
3

 and  θ3 − θ1 =
2π
3

θ2 − θ1 =
2π
3

 and  θ3 − θ1 = −
2π
3



Balanced systems
Standard balanced vectors
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Let   


Standard positive-sequence vector    


Standard negative-sequence vector    


All balanced positive-seq vectors are in span 


All balanced negative-seq vectors are in span

α := e−i2π/3

α+ := [
1
α
α2]

α− := [
1
α2

α ]

(α+)
(α−)

24 Draft: EE 135 Notes September 20, 2022

and either

q2 �q1 = �2p
3

and q3 �q1 =
2p
3

(positive sequence) (1.12a)

or

q2 �q1 =
2p
3

and q3 �q1 = �2p
3

(negative sequence) (1.12b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part II of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 8.1), i.e., we will call x̂ a (generalized) balanced vector if it is of the form x̂ = x + g1 and x is
balanced according to Definition 1.1, for some possibly nonzero g 2 C. The bias g may models a common
reference voltage or the internal loop flow in a D configuration. We assume g = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.12a) and in a negative sequence
set if x satisfies (1.12b). Let

a := e�i2p/3

Clearly a2 = ei2p/3, a3 = 1; see Figure 1.8. (Also see Exercise 1.4 for more properties of a .) Define the

3

30!

α 2

α

1

Im#

Re#

3

3

Figure 1.8: Phase shift a := e�i2p/3 in Theorem 1.1.

vectors

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5 (1.13a)

Then a+ is a balanced vector in a positive sequence and a� is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span(a+) and the set of all balanced negative-
sequence vectors is span(a�), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

x = x1a+, y = y1a�, x1, y1 2 C (1.13b)

A balanced system is one in which all voltages 
and currents are in span   (WLOG)(α+)



Balanced systems
Transformation by (Γ, Γ𝖳)
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and either
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q2 �q1 =
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and q3 �q1 = �2p
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(negative sequence) (1.12b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part II of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 8.1), i.e., we will call x̂ a (generalized) balanced vector if it is of the form x̂ = x + g1 and x is
balanced according to Definition 1.1, for some possibly nonzero g 2 C. The bias g may models a common
reference voltage or the internal loop flow in a D configuration. We assume g = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.12a) and in a negative sequence
set if x satisfies (1.12b). Let

a := e�i2p/3

Clearly a2 = ei2p/3, a3 = 1; see Figure 1.8. (Also see Exercise 1.4 for more properties of a .) Define the
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vectors

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5 (1.13a)

Then a+ is a balanced vector in a positive sequence and a� is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span(a+) and the set of all balanced negative-
sequence vectors is span(a�), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

x = x1a+, y = y1a�, x1, y1 2 C (1.13b)

Theorem (Transformation of balanced vectors by ) 

1. Eigenvalues and eigenvectors of  are 





2. Eigenvalues and eigenvectors of  are 


(Γ, Γ𝖳)

Γ
Γ1 = 0, Γα+ = (1 − α)α+, Γα− = (1 − α2)α−

Γ𝖳

Γ𝖳1 = 0, Γ𝖳α+ = (1 − α2)α+, Γ𝖳α− = (1 − α)α−

These properties will be used repeatedly, for both balanced and unbalanced systems



Balanced systems
Transformation by (Γ, Γ𝖳)
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and either

q2 �q1 = �2p
3

and q3 �q1 =
2p
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(positive sequence) (1.12a)

or

q2 �q1 =
2p
3

and q3 �q1 = �2p
3

(negative sequence) (1.12b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part II of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 8.1), i.e., we will call x̂ a (generalized) balanced vector if it is of the form x̂ = x + g1 and x is
balanced according to Definition 1.1, for some possibly nonzero g 2 C. The bias g may models a common
reference voltage or the internal loop flow in a D configuration. We assume g = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.12a) and in a negative sequence
set if x satisfies (1.12b). Let

a := e�i2p/3

Clearly a2 = ei2p/3, a3 = 1; see Figure 1.8. (Also see Exercise 1.4 for more properties of a .) Define the
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vectors

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5 (1.13a)

Then a+ is a balanced vector in a positive sequence and a� is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span(a+) and the set of all balanced negative-
sequence vectors is span(a�), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

x = x1a+, y = y1a�, x1, y1 2 C (1.13b)

Theorem (Transformation of balanced vectors by ) 

1. Eigenvalues and eigenvectors of  are 





2. Eigenvalues and eigenvectors of  are 


(Γ, Γ𝖳)

Γ
Γ1 = 0, Γα+ = (1 − α)α+, Γα− = (1 − α2)α−

Γ𝖳

Γ𝖳1 = 0, Γ𝖳α+ = (1 − α2)α+, Γ𝖳α− = (1 − α)α−

Application to balanced systems have the following implications ….



Balanced systems
Implications
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1. Informally, a balanced system is one in which all voltages and currents are in span   (WLOG)


2. Balanced voltage and current sources are in span 


3. Voltages and currents at every point in a network can be written as linear combination of 
transformed source voltages and source currents, transformed by 


4. But  are eigenvectors of      transformation by  reduces to scaling by 
 and  respectively (provided impedances & lines are balanced)


5.   all voltages and currents remain in span

(α+)
(α+)

(Γ, Γ𝖳)
α+ (Γ, Γ𝖳) ⟹ (Γ, Γ𝖳)

1 − α 1 − α2

⟹ (α+)

Formal statement and proof need to wait till Part II where we study unbalanced systems
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Steven Low     EE/CS/EST 135    Caltech

3  voltage sourceϕ 3  impedanceϕ



 configurationY
Balanced system
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  : line-to-neutral or phase voltages 

  : line-to-line or line voltages 

Ean, Ebn, Ecn EY

Eab, Ebc, Eca Eline



 configurationY
Balanced system
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Voltage source is balanced (in positive-seq set) if 
: 





EY ∈ span (α+)
Ean = 1∠θ, Ebn = 1∠θ − 120∘, Ecn = 1∠θ + 120∘



 configurationY
Implications of Theorem
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1. Sum to zero:  

•  


2. Line voltages are balanced positive sequence

•  


3. Phases are decoupled

Ean + Ebn + Ecn = 0
1𝖳EY = 1𝖳α+ = 0

Vline = ΓEY = (1 − α)α+

14 EE 135 Notes September 27, 2021

voltages Ean,Ebn,Ecn in the phasor domain between the terminals a,b,c and the neutral n respectively. It
is called balanced if these voltages have the same magnitude and their phases differ by 120�, i.e.,

Ean = 1\q , Ebn = 1\q �120�, Ecn = 1\q +120� (1.3a)

or

Ean = 1\q , Ebn = 1\q +120�, Ecn = 1\q �120� (1.3b)

where their magnitudes are normalized to 1. See Figure 1.3(a) where q = 0. With balanced sources as in

Ecn

Ebn

Ean

Im#

Re#

(a) Phase voltages

3

30!
Eab

Ecn

Ebn

Ean

Im

Re

Eca

Ebc

(b) Phase and line voltages

Figure 1.3: A balanced three-phase source in Y configuration. (a) Their phase voltages Ean,Ebn,Ecn
differ by 120�. (b) Their line voltages are related to phase voltages by a complex scaling factor, Eab =p

3eip/6 Ean, etc. Both phase voltages and line voltages sum to zero across the three phases a,b,c.

(1.3a), the instantaneous voltages in the time domain reach their maximum values in the order abc. We call
abc that satisfies (1.3a) a positive sequence and the voltages (Ean,Ebn,Ecn) a (balanced) positive-sequence
set. If the balanced sources satisfy (1.3b) instead, their voltages are a negative-sequence set. This depends
only on how one labels the wires. Therefore, unless otherwise specified, we will always consider abc to be
a positive sequence. If there are multiple three-phase sources connected to the same network their phase
sequences must be the same. The voltages Ean,Ebn,Ecn between the terminals and the neutral are called
line-to-neutral or phase voltages. The voltages Eab,Ebc,Eca between two terminals are called line-to-line
or line voltages.

We now describe three properties of balanced voltage sources.

1.2.1.1 Sum to zero

An equivalent definition of balanced voltages Ean,Ebn,Ecn is that they have the same magnitude and satisfy

Ean +Ebn +Ecn = 0

This can be easily seen from Figure 1.3(a) where the sum of the three vectors Ean,Ebn,Ecn in the complex
plane is the origin. Indeed this holds for any balanced sequence, not just voltage sources. For ease of
reference in the future, we state this property formally as a lemma (Exercise 1.1).
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i.e., the line voltages (Va0b0 ,Vb0c0 ,Vc0a0) are a balanced positive-sequence set. This completes the proof of
these two properties.

These two properties have the following important implications:

• Since Vnn0 = 0, even if n and n0 are connected, the current on that wire will be zero. We can therefore
either assume n and n0 are connected or disconnected in our analysis, whichever is more convenient.

• Since the currents are balanced, Ia + Ib + Ic = 0 or ia(t)+ ib(t)+ ic(t) = 0 at all times t, the currents
flow from and return to the sources only via the wires connecting the sources to the loads, and no
additional physical wires are necessary for return currents. This halves the amount of required wire
compared with three separate single-phase circuits; see Chapter 1.3.3.

• The current in each phase is decoupled, i.e., the variables in each phase depends on quantities only
in that phase: Ia = Ean/Z, Ib = Ebn/Z, Ic = Ecn/Z.

As a consequence, each phase of the balanced system is decoupled and equivalent to the circuit in Figure
1.5(b). We can therefore analyze the phase a equivalent circuit; see Chapter 1.2.4. The voltages and
currents in phase b and phase c circuits will be the corresponding phase a quantities shifted by �120� and
120� respectively, assuming the three-phase source is of positive sequence.

These conclusions hold for more general circuits than that in Figure 1.5(a), as Example 1.1 shows.

Example 1.1 (Balanced three-phase system in Y configuration). Figure 1.6 shows a balanced three-
phase source of positive sequence supplies two sets of balanced three-phase loads in parallel through
balanced transmission lines. The transmission lines have a common admittance T and all loads have a
constant admittance L, as shown in the figure. Suppose the neutrals are connected by lines with a com-
mon admittance Y . Denote the voltages and currents in stage k = 1,2, by Ṽk := (Vaknk ,Vbknk ,Vcknk) and
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Figure 1.6: Balanced three-phase system in Y configuration (Example 1.1).

Show:

1. 


2. All currents and voltages are balanced 
positive sequence sets


3. Phases are decoupled, i.e.,


                

Vn0n1
= Vn1n2

= 0

Ea0n0
= Va0a1

+ Va1n1

Va1n1
= Va1a2

+ Va2n2

Example
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in that phase: Ia = Ean/Z, Ib = Ebn/Z, Ic = Ecn/Z.
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1.5(b). We can therefore analyze the phase a equivalent circuit; see Chapter 1.2.4. The voltages and
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These conclusions hold for more general circuits than that in Figure 1.5(a), as Example 1.1 shows.
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Show:
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2. All currents and voltages are balanced 
positive sequence sets


3. Phases are decoupled, i.e.,
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= 0
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= Va0a1
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= Va1a2

+ Va2n2

Implications: 
• Zero currents on neutral lines even if 

present   can assume neutrals are 
connected or not for analysis


• No physical wires necessary for return 
currents, saving materials

⇒
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these two properties.

These two properties have the following important implications:

• Since Vnn0 = 0, even if n and n0 are connected, the current on that wire will be zero. We can therefore
either assume n and n0 are connected or disconnected in our analysis, whichever is more convenient.

• Since the currents are balanced, Ia + Ib + Ic = 0 or ia(t)+ ib(t)+ ic(t) = 0 at all times t, the currents
flow from and return to the sources only via the wires connecting the sources to the loads, and no
additional physical wires are necessary for return currents. This halves the amount of required wire
compared with three separate single-phase circuits; see Chapter 1.3.3.

• The current in each phase is decoupled, i.e., the variables in each phase depends on quantities only
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As a consequence, each phase of the balanced system is decoupled and equivalent to the circuit in Figure
1.5(b). We can therefore analyze the phase a equivalent circuit; see Chapter 1.2.4. The voltages and
currents in phase b and phase c circuits will be the corresponding phase a quantities shifted by �120� and
120� respectively, assuming the three-phase source is of positive sequence.

These conclusions hold for more general circuits than that in Figure 1.5(a), as Example 1.1 shows.
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phase source of positive sequence supplies two sets of balanced three-phase loads in parallel through
balanced transmission lines. The transmission lines have a common admittance T and all loads have a
constant admittance L, as shown in the figure. Suppose the neutrals are connected by lines with a com-
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Figure 1.6: Balanced three-phase system in Y configuration (Example 1.1).

Per-phase equivalent circuit:
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Ĩk := (Iaknk , Ibknk , Icknk) respectively. Denote the voltages and currents from stage k �1 to stage k, k = 1,2,
by Ũk := (Vak�1ak ,Vbk�1bk ,Vck�1ck) and J̃k := (Iak�1ak , Ibk�1bk , Ick�1ck) respectively.

Suppose Y 6= 0, T = Y/µ , and L = Y/µ2 for some real number µ 6= 0. Prove that

1. Vn0n1 = Vn1n2 = 0.

2. For k = 1,2, all voltages and currents Ṽk,Ũk, Ĩk, J̃k are balanced positive-sequence sets.

3. The phases are decoupled, i.e.,

Ẽ0 = Ũ1 + Ṽ1

Ṽ1 = Ũ2 + Ṽ2

where Ẽ0 := (Ea0n0 ,Eb0n0 ,Ec0n0).

This implies that the three phases of the balanced system in Figure 1.6 are decoupled and can be studied
by analyzing the per-phase circuit shown in Figure 1.7 where the line admittances connecting the neutrals
are set to zero.

a0

n0

Ean

+

−
n1 n2

a1 a2
! !

""

Figure 1.7: The per-phase equivalent circuit of the balanced system in Figure 1.6 in Y configuration.

Solution:

1. We will apply Ohm’s law and Kirchhoff’s current and voltage laws (KCL and KVL) to derive two
linear equations in (Vn0n1 ,Vn1n2) and show that Vn0n1 = Vn1n2 = 0 is the only solution to these equa-
tions. By Ohm’s law across each admittance, the currents are in terms of voltages:

Ĩk = LṼk, J̃k = TŨk, k = 1,2 (1.5)

This allows us to eliminate currents Ĩk, J̃k and express KCL and KVL in the following in terms only
of voltages Ṽk,Ũk.

Making use of (1.5), apply KCL at node (a1,b1,c1) to obtain

TVa0a1 = LVa1n1 +TVa1a2 , TVb0b1 = LVb1n1 +TVb1b2 , TVc0c1 = LVc1n1 +TVc1c2

and similarly for KCL at nodes (a2,b2,c2). This in vector form is

TŨ1 = LṼ1 + TŨ2 (1.6a)
TŨ2 = LṼ2 (1.6b)

Example
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Figure 1.8: A balanced three-phase (a) voltage source and (b) impedance load in D configuration. Eab is
the line voltage between terminals a and b.

The three-phase voltages and currents in a balanced system in D configuration driven by a balanced three-
phase positive-sequence source are balanced positive sequences. Moreover the phases are decoupled. We
illustrate this in the next example.

Example 1.2 (Balanced three-phase system in D conffiguration). Figure 1.9 shows a balanced three-phase
source connected to a balanced three-phase load through balanced transmission lines in D configuration.
The transmission lines have identical admittance T 6= 0 and the loads are of constant admittance L 6= 0.
Suppose the sources Ẽ := (Eab,Ebc,Eca) are a positive sequence. Denote the phase current vector by
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Figure 1.9: Example 1.2

J̃ := (Ia0a1 , Ib0b1 , Ic0c1), the phase voltage vector by Ũ := (Va0a1 ,Vb0b1 ,Vc0c1), and the line voltage vector by
Ṽ := (Va1b1 ,Vb1c1 ,Vc1a1). We will show that J̃,Ũ ,Ṽ are balanced positive sequences, provided the ratio

µ :=
T
L

6= �3

Solution: Apply KCL at node a1,b1,c1 to get

TVa0a1 = Ia0a1 = LVa1b1 �LVc1a1 , TVb0b1 = Ib0b1 = LVb1c1 �LVa1b1 , TVc0c1 = Ic0c1 = LVc1a1 �LVb1c1
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Voltage source is balanced (in positive-seq set) if 
: 





EΔ ∈ span (α+)
Ebc = e−i2π/3 Eab, Eca = ei2π/3 Eab
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Ṽ := (Va1b1 ,Vb1c1 ,Vc1a1). We will show that J̃,Ũ ,Ṽ are balanced positive sequences, provided the ratio

µ :=
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Solution: Apply KCL at node a1,b1,c1 to get

TVa0a1 = Ia0a1 = LVa1b1 �LVc1a1 , TVb0b1 = Ib0b1 = LVb1c1 �LVa1b1 , TVc0c1 = Ic0c1 = LVc1a1 �LVb1c1
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The three-phase voltages and currents in a balanced system in D configuration driven by a balanced three-
phase positive-sequence source are balanced positive sequences. Moreover the phases are decoupled. We
illustrate this in the next example.

Example 1.2 (Balanced three-phase system in D conffiguration). Figure 1.9 shows a balanced three-phase
source connected to a balanced three-phase load through balanced transmission lines in D configuration.
The transmission lines have identical admittance T 6= 0 and the loads are of constant admittance L 6= 0.
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J̃ := (Ia0a1 , Ib0b1 , Ic0c1), the phase voltage vector by Ũ := (Va0a1 ,Vb0b1 ,Vc0c1), and the line voltage vector by
Ṽ := (Va1b1 ,Vb1c1 ,Vc1a1). We will show that J̃,Ũ ,Ṽ are balanced positive sequences, provided the ratio

µ :=
T
L

6= �3

Solution: Apply KCL at node a1,b1,c1 to get

TVa0a1 = Ia0a1 = LVa1b1 �LVc1a1 , TVb0b1 = Ib0b1 = LVb1c1 �LVa1b1 , TVc0c1 = Ic0c1 = LVc1a1 �LVb1c1

1. Sum to zero:  

•  


2.  equivalent voltage source is balanced


3. Phases are decoupled

Eab + Ebc + Eca = 0
1𝖳EΔ = 1𝖳α+ = 0

Y
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1. They are equivalent if they have the same external behavior   


2. Given , the internal  of the  equivalent must satisfy





3. If  are balanced vectors then


(VΔ, IΔ) (VY, IY) Y

Γ VY = VΔ, IY = Γ𝖳IΔ

(VΔ, IΔ)
VY =

1
1 − α

VΔ =
1

3 eiπ/6
VΔ

IY = (1 − α2) IΔ =
3

eiπ/6
IΔ
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The three-phase voltages and currents in a balanced system in D configuration driven by a balanced three-
phase positive-sequence source are balanced positive sequences. Moreover the phases are decoupled. We
illustrate this in the next example.

Example 1.2 (Balanced three-phase system in D conffiguration). Figure 1.9 shows a balanced three-phase
source connected to a balanced three-phase load through balanced transmission lines in D configuration.
The transmission lines have identical admittance T 6= 0 and the loads are of constant admittance L 6= 0.
Suppose the sources Ẽ := (Eab,Ebc,Eca) are a positive sequence. Denote the phase current vector by
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J̃ := (Ia0a1 , Ib0b1 , Ic0c1), the phase voltage vector by Ũ := (Va0a1 ,Vb0b1 ,Vc0c1), and the line voltage vector by
Ṽ := (Va1b1 ,Vb1c1 ,Vc1a1). We will show that J̃,Ũ ,Ṽ are balanced positive sequences, provided the ratio

µ :=
T
L

6= �3

Solution: Apply KCL at node a1,b1,c1 to get

TVa0a1 = Ia0a1 = LVa1b1 �LVc1a1 , TVb0b1 = Ib0b1 = LVb1c1 �LVa1b1 , TVc0c1 = Ic0c1 = LVc1a1 �LVb1c1

Assume  (neutral is common reference node)Vn = 0
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They are equivalent if they have the same external behavior:    

When the same line voltages are applied to both configuration, they 
have the same line currents
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Figure 1.10: D-Y transformation of balanced loads: ZY = ZD/3.

where (VY
an,VY

bn,V
Y
cn) are the phase voltages in the Y configuration that are related to the given line voltages

(Vab,Vbc,Vca) by

Vab =
p

3eip/6VY
an, Vbc =

p
3eip/6VY

bn, Vca =
p

3eip/6VY
cn

Hence4

Vab �Vca =
p

3eip/6 �
VY

an �VY
cn

�
=

p
3eip/6

⇣
1� ei2p/3

⌘
VY

an = 3VY
an

Since IY
a = ID

a , (1.16)(1.17) then imply

ZY =
ZD

3
(1.18)

This implies the admittances are related as YY = 3Y D.

1.2.4 Per-phase analysis

A balanced three-phase system consists of balanced three-phase sources and loads connected by balanced
(identical) transmission lines. Given a balanced three-phase system with all sources and loads in Y config-
uration, assuming there is no mutual inductance between phases, then

• all the neutrals are at the same potential;

• all phases are decoupled;

• all corresponding network variables are in balanced sets of the same sequence as the sources.

These properties lead to equivalent per-phase circuits, as explained in Chapter 1.2.1. Even though we have
only illustrated these properties for simple systems, they hold more generally. They allow us to study such
a system by analyzing a single phase, say, phase a. The corresponding variables in phases b and c lags

4Another way to see this is: Vab �Vca = Van �Vbn �Vcn +Van = 2Van � (Vbn +Vcn). Since Ia + Ib + Ic = 0 by KCL, (1.17)
implies Van +Vbn +Vcn = 0. Hence Vab �Vca = 3Van.

IΔ
a =

Vab − Vca

ZΔ IY
a =

VY
an

ZY ⇒= ZY = ZΔ

3
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1. Convert all sources and loads in  configuration into equivalent Y config.


2. Solve for phase  variables using per-phase circuit


3. For positive sequence, phase  or phase  variables are determined by


subtracting  and  from corresponding phase  variables


4.  For variables in the internal of  configuration, derive them from original circuit

Δ

a

b c
120∘ 240∘ a

Δ
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Figure 1.11: Balanced three-phase system and its per-phase equivalent circuit. The balanced three-phase
loads have admittances L1 and L2, and the transmission lines have admittances T1 and T2.

By assumption, the determinant

D := �(3L1L2 +3L1T2 +L2(T1 +T2)+T1T2)

is nonzero. Hence

V1
V2

�
=

1
D


�(L2 +T2) T2

�T2 3L1 +T1 +T2

�
T1Ean

0

�
=

�T1Ean

D


L2 +T2

T2

�
(1.19)

Since Va2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.19). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.20)

we use (1.15) to first get

Va1b1 =
p

3eip/6V1

where V1 is given by (1.19). Hence

Ia1b1 = L1Va1b1 =
p

3L1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ic1a1 = �Ia1b1 ei2p/3 = �
p

3ei5p/6 3L1V1 = 3
p

3e�ip/6 L1V1

where V1 is given by (1.19). Substituting Ia1c1 into (1.20) yields i1(t).
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By assumption, the determinant

D := �(3L1L2 +3L1T2 +L2(T1 +T2)+T1T2)

is nonzero. Hence

V1
V2

�
=

1
D


�(L2 +T2) T2

�T2 3L1 +T1 +T2

�
T1Ean

0

�
=

�T1Ean

D


L2 +T2

T2

�
(1.19)

Since Va2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.19). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.20)

we use (1.15) to first get

Va1b1 =
p

3eip/6V1

where V1 is given by (1.19). Hence

Ia1b1 = L1Va1b1 =
p

3L1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ic1a1 = �Ia1b1 ei2p/3 = �
p

3ei5p/6 3L1V1 = 3
p

3e�ip/6 L1V1

where V1 is given by (1.19). Substituting Ia1c1 into (1.20) yields i1(t).
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Since Va2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.19). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.20)

we use (1.15) to first get

Va1b1 =
p

3eip/6V1

where V1 is given by (1.19). Hence

Ia1b1 = L1Va1b1 =
p

3L1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ic1a1 = �Ia1b1 ei2p/3 = �
p

3ei5p/6 3L1V1 = 3
p

3e�ip/6 L1V1

where V1 is given by (1.19). Substituting Ia1c1 into (1.20) yields i1(t).

Solution:


1. Using per-phase circuit, solve for  and 


2. 


3. 


4. To calculate , obtain 


5. Obtain 


6. Obtain 

Va1n1
Va2n2

v2(t) = 2 V2 cos (ωt + ∠V2)
i1(t) = 2 Ia1c1

cos (ωt + ∠Ia1c1)
Ia1c1

Va1b1
= 3 eiπ/6 Va1n1

Ia1b1
= L1Va1b1

= 3 L1 eiπ/6 Va1n1

Ia1c1
= − Ia1b1

ei2π/3 = 3 3 e−iπ/6 L1Va1n1



Per-phase analysis

Steven Low     EE/CS/EST 135    Caltech

1. Convert all sources and loads in  configuration into equivalent Y config.


2. Solve for phase  variables using per-phase circuit


3. For positive sequence, phase  or phase  variables are determined by


subtracting  and  from corresponding phase  variables


4.  For variables in the internal of  configuration, derive them from original circuit

Δ

a

b c
120∘ 240∘ a

Δ

Can this approach be extended, and justified, for general networks ?
Yes, see Ch 9.3 on Unbalanced Multiphase Networks
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Instantaneous power:


 
p(t) := v(t)i(t)

=
VmaxImax

2 (cos(θV − θI) + cos(2ωt + θV + θI))

Average power


 1
T ∫ T

0
p(t)dt =

VmaxImax
2 cos(θV − θI)

ϕ := θV − θI : power factor angle



Single-phase power

Steven Low     EE/CS/EST 135    Caltech

Complex power:


 S := VI* =
VmaxImax

2 ei(θV−θI) = |V | | I |eiϕ

Active and reactive power


 P := |V | | I |cos ϕ kW Q := |V | | I |sin ϕ var

Apparent power


 |S | = |V | | I | = P2 + Q2 VA



Instantaneous and complex power
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Relationship:


 p(t) = P + P cos 2(ωt + θI) − Q sin 2(ωt + θI)

Average power


 P = 1
T ∫ T

0
p(t)dt



Power delivered to impedance
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Voltage and current across impedance are related


 V = ZI

Complex power 


 S = |Z | | I | eiϕ, ϕ := ∠Z = θV − θI36 EE 135 Notes September 28, 2021

|Z| f = \Z P Q
Resistor Z = R R 0 R|I|2 0
Inductor Z = iwL wL p/2 0 wL|I|2
Capacitor Z = (iwC)�1 (wC)�1 �p/2 0 �(wC)�1|I|2

Table 1.1: Power delivered to RLC elements.

The active and reactive power for the three passive elements are given in Table 1.1.

Therefore the power delivered to a resistor is active (Q = 0). The instantaneous power p(t) := v(t)i(t)
is

p(t) := Ri2(t) = RI2
max cos2 (wt +qI) = P(1+ cos2(wt +qI))

which is (1.32). Table 1.1 also implies that the complex power delivered to an inductor or a capacitor is
reactive. Substituting into (1.32), the instantaneous power p(t) to a purely reactive load depends only on
the reactive power Q:

p(t) =

⇢
�Qsin2(wt +qI) for inductor Z = jwL

Qsin2(wt +qV ) for capacitor Z = ( jwC)�1

i.e., the net (average) power delivered to the load is zero and the instantaneous power is sinusoidal with
twice the frequency and has an amplitude Q.

Example 1.4. Suppose Z = jwL (inductance) or Z = ( jwC)�1 (capacitance). Prove directly in time
domain that the average delivered power is 0 and the amplitude of the instantaneous power is Q.

Solution: Suppose power is delivered to an inductor Z = jwL. Let the current be i(t) = Imax cos(wt +qI).
Then the voltage v(t) across the inductor is given by

v(t) = L
di
dt

(t) = �wL Imax sin(wt +qI)

and therefore

p(t) = v(t)i(t) = �wL I2
max sin(wt +qI)cos(wt +qI)

= �wL
I2
max
2

sin2(wt +qI) = �wL |I|2 sin2(wt +qI)

= �Q sin2(wt +qI)

where the last equality follows from Q = |Z||I|2 sin\Z = wL|I|2 since \Z = p
2 . Moreover the average

power delivered is

P =
1
T

Z T

0
p(t)dt = 0

The case of capacitor load Z = ( jwC)�1 is similar and omitted (see Exercise 1.5).
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Instantaneous power delivered to


resistor  :                  


inductor  :             


capacitor  :     

R p(t) = P (1 + cos 2 (ωt + θI))
iωL p(t) = − Q sin 2 (ωt + θI)
(iωC)−1 p(t) = Q sin 2 (ωt + θV)



Three-phase power
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Per-phase power:         S := VanI*an

Three-phase power:   


because 

S3ϕ := VanI*an + VbnI*bn + VcnI*cn = 3S

Vbn = e−2π/3 Van, Ibn = e−2π/3 Ian ⇒ VbnI*bn = S



Three-phase power
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Instantaneous 3  power is constant    


   


A 3  motor receives constant torque


Instantaneous 1  power is sinusoidal 


ϕ
p3ϕ(t) := va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t) = 3P

ϕ

ϕ

p(t) = P + P cos 2(ωt + θI) − Q sin 2(ωt + θI)



Three-phase power
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Instantaneous 3  power is constant    





ϕ
p3ϕ(t) := va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t)

= |Va | | Ia |(cos ϕ + cos(2ωt + θV + θI))
+ |Va | | Ia |(cos ϕ + cos(2ωt + (θV − 2π/3) + (θI − 2π/3)))
+ |Va | | Ia |(cos ϕ + cos(2ωt + (θV + 2π/3) + (θI + 2π/3)))

= 3 |Va | | Ia |cos ϕ + |Va | | Ia |(cos θ(t) + cos(θ(t) − 4π/3) + cos(θ(t) + 4π/3))
= 0

= 3P
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Example 
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neutral line carries unbalanced current during asymmetrical conditions, e.g., due to line faults, and reduces
voltage transients during line switching or lightning events. Since the unbalanced current is much smaller
than the phase currents, the neutral line is typically much smaller in size and ampacity and therefore much
cheaper.

The following example illustrates the savings of a balanced three-phase system in materials and ther-
mal loss. Unlike in the case above the single-phase system in Example 1.5 consists of a single circuit
instead of three subcircuits. This example also explains why high voltages are used in the grid to reduce
thermal loss.

Example 1.5 (Single-phase vs three-phase systems). Consider two systems that deliver a specified ap-
parent power |S| at a specified voltage magnitude |V | to a constant power load, as shown in Figure 1.18.
The distance between the generation and the load is d. The first system is single-phased and the second
system is balanced three-phased. Compare the required amount of wire and thermal loss in the line in
these systems.

The line has an impedance z := r+ jx per unit length where the resistance r per unit length is inversely
proportional to the area of the line with proportionality constant r . The current density limit of the line is
d in ampere per unit area.

+

−

,
+

−

-

. = / + 12

.3 = .	or	0

!

Figure 1.18: A system that delivers power |S| to a load at voltage |V |. The distance between the generation
and the load is d. The line has an impedance z := r + jx per unit length.

Solution. A single-phase system requires two cables, one for return current, each carrying a current of
magnitude |I1f | = |S|/|V |. This is illustrated in Figure 1.18 with z0 = z. A balanced three-phase sys-
tem requires three cables, each carrying a per-phase apparent power of |S|/3 and a per-phase current of
magnitude |I3f | = |S|/(3|V |). The per-phase equivalent circuit is illustrated in Figure 1.18 with z0 = 0.

For the single-phase system the required cross-sectional area of the cable is

A1f :=
|I1f |

d
=

|S|
d |V |

Hence the amount of material (volume of the cable) required is

m1f := 2A1f d = 2
d|S|
d |V |

Spec:

• Supply load with power  at voltage 

• Distance between generator & load: 

• Line impedance    ohm/meter  

• Resistance / unit length  


• Line current 

|S | |V |
d

z = r + ix
r = ρ

area
≤ δ area

Savings:

• Material required:    


• Active power loss:     

m3ϕ = 1
2 m1ϕ

l3ϕ = 1
2 l1ϕ


