# **Power Systems Analysis**

Chapter 1 Basic concepts

# Outline

- 1. Phasor representation
- 2. KCL, KVL, Ohm's law, Tellegen's theorem
- 3. Balanced three-phase systems
- 4. Complex power

# Outline

- 1. Phasor representation
  - Voltage & current phasors
  - Single-phase devices
- 2. KCL, KVL, Ohm's law, Tellegen's theorem
- 3. Balanced three-phase systems
- 4. Complex power

# **Physical quantities**

- 1. Voltage, current, power, energy
- 2. All are sinusoidal functions of time
- 3. Steady state:
  - Frequencies at all points are nominal:  $\omega=60~{\rm Hz}$  in US, 50 Hz in China, Europe
  - Reasonable model at timescales of minutes and up

# **Power system analysis**



# **Voltage phasor**

1. Voltage: 
$$v(t) = V_{\max} \cos(\omega t + \theta_V) = \operatorname{Re} \left\{ V_{\max} e^{i\theta_V} \cdot e^{i\omega t} \right\}$$

- $\omega$  : nominal system frequency
- $V_{\text{max}}$  : amplitude
- $\theta_V$ : phase (angle)

2. Phasor: 
$$V := \frac{V_{\text{max}}}{\sqrt{2}} e^{i\theta_V}$$
 volt (V)

3. Relationship:  $v(t) = \operatorname{Re}\{\sqrt{2}V \cdot e^{i\omega t}\}$ 

## **Current phasor**

1. Current: 
$$i(t) = I_{\max} \cos(\omega t + \theta_I) = \operatorname{Re} \left\{ I_{\max} e^{i\theta_I} \cdot e^{i\omega t} \right\}$$

2. Phasor:  $I := \frac{I_{\text{max}}}{\sqrt{2}} e^{i\theta_I}$  ampere (A)

3. Relationship:  $i(t) = \operatorname{Re}\{\sqrt{2}I \cdot e^{i\omega t}\}$ 

# **Single-phase devices**

- 1. Impedance Z
- 2. Voltage source (E, Z)
- 3. Current source (J, Y)
- 4. Transmission/distribution line (Chapter 2)
- 5. Transformer (Chapter 3)

$$v(t) = R \cdot i(t)$$



$$v(t) = L \cdot \frac{di}{dt}(t)$$



$$i(t) = C \cdot \frac{dv}{dt}(t)$$



these are main circuit elements to model the grid

$$v(t) = R \cdot i(t)$$
$$V = R \cdot I$$



$$v(t) = L \cdot \frac{di}{dt}(t)$$
$$V = j\omega L \cdot I$$



$$i(t) = C \cdot \frac{dv}{dt}(t)$$
$$V = (j\omega C)^{-1} \cdot I$$



In general, impedance Z = R + iX

- R : resistance  $\Omega$
- X : reactance  $\Omega$

Admittance  $Y := Z^{-1} =: G + iB$ 

- G : conductance  $\Omega^{-1}$
- B : susceptance  $\Omega^{-1}$

# **Voltage source**

Nov 17, 2021

#### Voltage source (E, Z)

- *E* : internal voltage
- Z: internal impedance
- Internal model

#### External model

- *V* : terminal voltage
- I : terminal current
- Relation between (V, I) : V = E ZI







Т

2

#### Current source (J, Y)

- J: internal current
- Y : internal admittance
- Internal model

#### External model

- V: terminal voltage
- I : terminal current
- Relation between (V, I) : I = J YV

+



## **Equivalent source**

A nonideal voltage source (E, Z) and current source (J, Y) are equivalent if

- $J = \frac{E}{Z_0}, \quad Y = Z^{-1}$  They have the same external model



# **Circuit models**

These are circuit models of physical devices

| Device      | Circuit model                               |
|-------------|---------------------------------------------|
| Generator   | Voltage source, current source              |
| Load        | Impedance, voltage source, current course   |
| Line        | Impedance (Chapter 2)                       |
| Transformer | Impedance, voltage/current gain (Chapter 3) |

# Outline

#### 1. Phasor representation

- 2. Linear circuit analysis
  - KCL, KVL, Ohm's law, Tellegen's theorem
- 3. Balanced three-phase systems
- 4. Complex power

# **Circuit analysis: review**

A brief review of circuit analysis for EE students

Mathematical background required

• Basic algebraic graph theory (Chapter 26.2 of Draft Notes)

# Notation

Directed graph G := (N, E)

- Arbitrary orientation
- Link (j, k) or  $j \to k$  in E
- Reference node 0 with  $V_0:=0$  by definition

#### Variables

- Nodal voltage  $V_j$  at node j wrt reference node 0
- Branch voltage  $U_{jk} := V_j V_k$  across link (j, k)
- Branch current  $I_{jk}$  across link  $j \rightarrow k$



# KCL, KVL

KCL: incident currents at any node j sum to zero

$$-\sum_{i:i\to j\in E}I_{ij} + \sum_{k:j\to k\in E}I_{jk} = 0$$

KVL: voltage drops around any cycle c sum to zero

$$\sum_{l \in c} U_l - \sum_{-l \in c} U_l = 0$$



## KCL, KVL Incident matrix C

 $|N| \times |E|$  incident matrix

 $C_{jl} := \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \text{ , } j \in N, l \in E \\ 0 & \text{otherwise} \end{cases}$   $+ \quad u_{1_2} = + \quad u_{z_3} = u_{1_2} = \frac{2}{3^{-1}} = \frac{3^{-1}}{1_{z_2}} =$ 

## KCL, KVL Vector form

KCL: incident currents at any node j sum to zero

CI = 0

KVL: there exists nodal voltages  $V \in \mathbb{C}^{|N|}$  s.t.

 $U = C^{\mathsf{T}} V$ 



|N| + |E| equations in |N| + 2|E| variables (V, U, I)

- *C* has rank N 1,  $V_0 := 0$
- |N| + |E| 1 linearly independent equations in |N| + 2|E| 1 variables  $(V_{-0}, U, I)$

Need another |E| equations

# **Device specification**

Across each link (j, k) is exactly one device

- 1. Impedance with given  $z_{jk}$ :  $U_{jk} = z_{jk}I_{jk}$
- 2. Voltage source with given  $v_{jk}$ :  $U_{jk} = v_{jk}$
- 3. Current source with given  $i_{jk}$ :  $I_{jk} = i_{jk}$

These device specifications provide additional |E| equations



# **Circuit analysis**

Solve for (V, U, I)

- Impedance:  $U_{jk} = z_{jk} I_{jk}$
- Voltage source:  $U_{jk} = v_{jk}$
- Current source:  $I_{jk} = i_{jk}$
- KCL: CI = 0
- KVL:  $U = C^{\mathsf{T}} V$
- Reference voltage:  $V_0 := 0$



# **Tellegen's theorem**

Tellegen's theorem is consequence of 3 facts

- $C^{|E|} = \operatorname{null}(C) \oplus \operatorname{range}(C^{\mathsf{T}})$  is direct sum
- KCL: CI = 0, i.e.,  $I \in \text{null}(C)$
- KVL:  $U = C^{\mathsf{T}}V$ , i.e.,  $U \in \operatorname{range}(C^{\mathsf{T}})$

Therefore branch currents I and branch voltages U are orthogonal:

•  $I^{H}U = 0$  (Tellegen's theorem)

I and U can be from different networks as long as they have the same incidence matrix C!

# Outline

- 1. Phasor representation
- 2. Linear circuit analysis
- 3. Balanced three-phase systems
  - Y and  $\Delta$  configuration
  - Balanced vectors and conversion matrices
  - Balanced systems in Y and  $\Delta$  configurations
  - $\Delta$ -Y transformation
  - Per-phase analysis
- 4. Complex power

## **Balanced 3-phase system**

3 single-phase system:

single 3-phase system:



## Y configuration Internal variables

Each single-phase device can be arbitrary

• Voltage source, current source, impedance, ideal or not

Internal voltages and currents across single-phase devices:

$$V^{Y} := \begin{bmatrix} V^{an} \\ V^{bn} \\ V^{cn} \end{bmatrix}, \quad I^{Y} := \begin{bmatrix} I^{an} \\ I^{bn} \\ I^{cn} \end{bmatrix}$$

neutral voltage (wrt common reference pt)  $V^n \in \mathbb{C}$ neutral current (away from neutral)  $I^n \in \mathbb{C}$ 

- Neutral line may or may not be present
- Device may or may not be grounded
- Neutral impedance  $z^n$  may or may not be zero

For single-phase models, we sometimes assume  $V^n = 0$ 



## Y configuration Terminal variables

Terminal voltages and currents:

$$V := \begin{bmatrix} V^a \\ V^b \\ V^c \end{bmatrix}, \quad I := \begin{bmatrix} I^a \\ I^b \\ I^c \end{bmatrix}$$

- V is with respect to common reference, e.g. ground
- *I* is in direction out of device

Conversion from internal to terminal variables

$$V = V^Y + v^n \mathbf{1}, \quad I = -I^Y$$

•  $V = V^{Y}$  if  $V^{n} = 0$ , i.e., if neutral is directly grounded and ground is the reference



## $\Delta$ configuration Internal variables, 17, 2021

Each single-phase device can be arbitrary

• Voltage source, current source, impedance, ideal or not

Internal voltages and currents across single-phase devices:





I<sup>a</sup> V<sup>a</sup>

## $\Delta$ configuration Terminal variables (7, 202)





Conversion between internal and terminal variables



## **Conversion matrices**

**Conversion matrices** 



Spectral properties of  $(\Gamma, \Gamma^{\mathsf{T}})$  underlie much of three-phase (**balanced** or unbalanced) systems

## **Balanced systems** Balanced vector

#### Definition

A vector  $x := (x_1, x_2, x_3)$  with  $x_j = |x_j| e^{i\theta_j} \in \mathbb{C}$  is called balanced if

• 
$$|x_1| = |x_2| = |x_3|$$

• Either 
$$\theta_2 - \theta_1 = -\frac{2\pi}{3}$$
 and  $\theta_3 - \theta_1 = \frac{2\pi}{3}$  (positive sequence)  
or  $\theta_2 - \theta_1 = \frac{2\pi}{3}$  and  $\theta_3 - \theta_1 = -\frac{2\pi}{3}$  (negative sequence)

## **Balanced systems** Standard balanced vectors

Let  $\alpha := e^{-i2\pi/3}$ Standard positive-sequence vector  $\alpha_{+} := \begin{bmatrix} 1 \\ \alpha \\ \alpha^{2} \end{bmatrix}$ Standard negative-sequence vector  $\alpha_{-} := \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix}$ 

All balanced positive-seq vectors are in span $(lpha_+)$ 

All balanced negative-seq vectors are in span( $\alpha_{-}$ )

A **balanced system** is one in which all voltages and currents are in span( $\alpha_+$ ) (WLOG)

# **Balanced systems**

#### Transformation by $(\Gamma, \Gamma^{\mathsf{T}})$

Theorem (Transformation of balanced vectors by  $(\Gamma, \Gamma^{T})$ )

- 1. Eigenvalues and eigenvectors of  $\boldsymbol{\Gamma}$  are
  - $\Gamma 1 = 0, \qquad \Gamma \alpha_+ = (1 \alpha)\alpha_+, \qquad \Gamma \alpha_- = (1 \alpha^2)\alpha_-$
- 2. Eigenvalues and eigenvectors of  $\Gamma^{\mathsf{T}}$  are

 $\Gamma^{\mathsf{T}}\mathbf{1} = 0, \qquad \Gamma^{\mathsf{T}}\alpha_{+} = (1 - \alpha^{2})\alpha_{+}, \qquad \Gamma^{\mathsf{T}}\alpha_{-} = (1 - \alpha)\alpha_{-}$ 



These properties will be used repeatedly, for both balanced and unbalanced systems

# **Balanced systems**

#### Transformation by $(\Gamma, \Gamma^{\mathsf{T}})$

Theorem (Transformation of balanced vectors by  $(\Gamma, \Gamma^T)$ )

1. Eigenvalues and eigenvectors of  $\boldsymbol{\Gamma}$  are

 $\Gamma 1 = 0, \qquad \Gamma \alpha_+ = (1 - \alpha)\alpha_+, \qquad \Gamma \alpha_- = (1 - \alpha^2)\alpha_-$ 

2. Eigenvalues and eigenvectors of  $\Gamma^{\mathsf{T}}$  are

 $\Gamma^{\mathsf{T}}\mathbf{1} = 0, \qquad \Gamma^{\mathsf{T}}\alpha_{+} = (1 - \alpha^{2})\alpha_{+}, \qquad \Gamma^{\mathsf{T}}\alpha_{-} = (1 - \alpha)\alpha_{-}$ 



Application to balanced systems have the following implications ....

## **Balanced systems** Implications

- 1. Informally, a balanced system is one in which all voltages and currents are in span $(\alpha_+)$  (WLOG)
- 2. Balanced voltage and current sources are in span( $\alpha_+$ )
- 3. Voltages and currents at every point in a network can be written as linear combination of transformed source voltages and source currents, transformed by  $(\Gamma, \Gamma^{\mathsf{T}})$
- 4. But  $\alpha_+$  are eigenvectors of  $(\Gamma, \Gamma^T) \implies$  transformation by  $(\Gamma, \Gamma^T)$  reduces to scaling by  $1 \alpha$  and  $1 \alpha^2$  respectively (provided impedances & lines are balanced)
- 5.  $\implies$  all voltages and currents remain in span $(\alpha_+)$

Formal statement and proof need to wait till Part II where we study unbalanced systems

## Y configuration Balanced system



## Y configuration Balanced system



 $E_{an}, E_{bn}, E_{cn}$ : line-to-neutral or phase voltages  $E^Y$  $E_{ab}, E_{bc}, E_{ca}$ : line-to-line or line voltages  $E^{\text{line}}$ 

## Y configuration Balanced system



Voltage source is balanced (in positive-seq set) if  $E^Y \in \text{span}(\alpha_+)$ :

$$E_{an} = 1 \angle \theta$$
,  $E_{bn} = 1 \angle \theta - 120^\circ$ ,  $E_{cn} = 1 \angle \theta + 120^\circ$ 

## Y configuration Implications of Theorem



- 1. Sum to zero:  $E_{an} + E_{bn} + E_{cn} = 0$ 
  - $\mathbf{1}^{\mathsf{T}} E^{Y} = \mathbf{1}^{\mathsf{T}} \alpha_{+} = 0$
- Line voltages are balanced positive sequence
   V<sup>line</sup> = ΓE<sup>Y</sup> = (1 α)α<sub>+</sub>
- 3. Phases are decoupled



(a) Phase voltages

(b) Phase and line voltages

## Y configuration Phase decoupling

#### Example



One line diagram:

EE/CS/EST 135

Steven Low



Caltech

Show:

1. 
$$V_{n_0n_1} = V_{n_1n_2} = 0$$

2. All currents and voltages are balanced positive sequence sets

$$E_{a_0n_0} = V_{a_0a_1} + V_{a_1n_1}$$
$$V_{a_1n_1} = V_{a_1a_2} + V_{a_2n_2}$$

## Y configuration Phase decoupling

#### Example



One line diagram:



Show:

1. 
$$V_{n_0n_1} = V_{n_1n_2} = 0$$

#### Implications:

- Zero currents on neutral lines even if present ⇒ can assume neutrals are connected or not for analysis
- No physical wires necessary for return currents, saving materials

## Y configuration Per-phase circuit

#### Example



One line diagram:



Steven Low EE/CS/EST 135 Caltech

Per-phase equivalent circuit:



### $\Delta$ configuration Balanced system



 $3\phi$  voltage source

 $3\phi$  impedance

# $\Delta$ configuration Balanced system



# $\Delta$ configuration Implications of Theorem



- 1. Sum to zero:  $E_{ab} + E_{bc} + E_{ca} = 0$ •  $1^{\mathsf{T}}E^{\Delta} = 1^{\mathsf{T}}\alpha_{+} = \mathbf{Q}$
- *Y* equivalent voltage source is balanced
   Phases are decoupled Z



# $\Delta$ and Y transformation

- 1. They are equivalent if they have the same external behavior
- 2. Given  $(V^{\Delta}, I^{\Delta})$ , the internal  $(V^{Y}, I^{Y})$  of the *Y* equivalent must satisfy  $\Gamma V^{Y} = V^{\Delta}, \quad I^{Y} = \Gamma^{\mathsf{T}}I^{\Delta}$
- 3. If  $(V^{\Delta}, I^{\Delta})$  are balanced vectors then

$$V^{Y} = \frac{1}{1-\alpha} V^{\Delta} = \frac{1}{\sqrt{3} e^{i\pi/6}} V^{\Delta}$$
$$I^{Y} = (1-\alpha^{2}) I^{\Delta} = \frac{\sqrt{3}}{e^{i\pi/6}} I^{\Delta}$$





Steven Low EE/CS/EST 135 Caltech

 $E_{c_0a_0}$ 

# $\Delta$ and Y transformation

- 1. They are equivalent if they have the same external behavior
- 2. Given  $(V^{\Delta}, I^{\Delta})$ , the internal  $(V^{Y}, I^{Y})$  of the *Y* equivalent must satisfy  $\Gamma V^{Y} = V^{\Delta}, \quad I^{Y} = \Gamma^{\mathsf{T}}I^{\Delta}$
- 3. If  $\left(V^{\Delta}, I^{\Delta}\right)$  are balanced vectors then

$$V^{Y} = \frac{1}{1-\alpha} V^{\Delta} = \frac{1}{\sqrt{3} e^{i\pi/6}} V^{\Delta}$$
$$I^{Y} = (1-\alpha^{2}) I^{\Delta} = \frac{\sqrt{3}}{e^{i\pi/6}} I^{\Delta}$$

Assume  $V^n = 0$  (neutral is common reference node)







# $\Delta$ and Y transformation



They are equivalent if they have the same external behavior: When the same line voltages are applied to both configuration, they have the same line currents

- 1. Convert all sources and loads in  $\Delta$  configuration into equivalent Y config.
- 2. Solve for phase *a* variables using per-phase circuit
- 3. For positive sequence, phase *b* or phase *c* variables are determined by subtracting  $120^{\circ}$  and  $240^{\circ}$  from corresponding phase *a* variables
- 4. For variables in the internal of  $\Delta$  configuration, derive them from original circuit



#### Example 1.3



#### Solution:

1. Using per-phase circuit, solve for  $V_{a_1n_1}$  and  $V_{a_2n_2}$ 2.  $v_2(t) = \sqrt{2} V_2 \int_{-\infty}^{T_2} \cos(\omega t) + \angle V_2$ 3.  $i_1(t) = \sqrt{2} J_1 I_{a_1c_1} \cos(\omega t) + \angle I_{a_1c_1}$ 4. To calculate  $I_{a_1c_1}$ , obtain  $V_{a_1b_1} = \sqrt{3} e^{i\pi/6} V_{a_1n_1}$ 5. Obtain  $I_{a_1b_1} = L_1 V_{a_1b_1} = \sqrt{3} L_1 e^{i\pi/6} V_{a_1n_1}$ 6. Obtain  $I_{a_1c_1} = -I_{a_1b_1} e^{i2\pi/3} = 3\sqrt{3} e^{-i\pi/6} L_1 V_{a_1n_1}$ 

- 1. Convert all sources and loads in  $\Delta$  configuration into equivalent Y config.
- 2. Solve for phase *a* variables using per-phase circuit
- 3. For positive sequence, phase *b* or phase *c* variables are determined by subtracting  $120^{\circ}$  and  $240^{\circ}$  from corresponding phase *a* variables
- 4. For variables in the internal of  $\Delta$  configuration, derive them from original circuit

Can this approach be extended, and justified, for general networks ? Yes, see Ch 9.3 on Unbalanced Multiphase Networks

# Outline

- 1. Phasor representation
- 2. Linear circuit analysis
- 3. Balanced three-phase systems
- 4. Complex power
  - Single-phase power
  - Three-phase power
  - Advantages of  $3\phi$  power

## **Single-phase power**

Instantaneous power:

$$p(t) := v(t)i(t)$$
  
=  $\frac{V_{\text{max}}I_{\text{max}}}{2} \left(\cos(\theta_V - \theta_I) + \cos(2\omega t + \theta_V + \theta_I)\right)$ 

Average power

$$\frac{1}{T} \int_0^T p(t) dt = \frac{V \max I \max}{2} \cos(\theta_V - \theta_I)$$
$$\phi := \theta_V - \theta_I : \text{ power factor angle}$$

## **Single-phase power**

Complex power:

$$S := VI^* = \frac{V \max I \max}{2} e^{i(\theta_V - \theta_I)} = |V| |I| e^{i\phi}$$

Active and reactive power

 $P := |V| |I| \cos \phi$  kW  $Q := |V| |I| \sin \phi$  var

Apparent power

$$|S| = |V||I| = \sqrt{P^2 + Q^2}$$
 VA

## Instantaneous and complex power

Relationship:

$$p(t) = P + P \cos 2(\omega t + \theta_I) - Q \sin 2(\omega t + \theta_I)$$

Average power

$$P = \frac{1}{T} \int_0^T p(t) dt$$

# **Power delivered to impedance**

Voltage and current across impedance are related

V = ZI

Complex power

$$S = |Z| |I| e^{i\phi}, \qquad \phi := \angle Z = \theta_V - \theta_I$$

|                                           | Z                   | $\phi = \angle Z$ | P         | Q                        |
|-------------------------------------------|---------------------|-------------------|-----------|--------------------------|
| Resistor $Z = R$                          | R                   | 0                 | $ R I ^2$ | 0                        |
| Inductor $Z = \mathbf{i}\omega L$         | ωL                  | $\pi/2$           | 0         | $\omega L I ^2$          |
| Capacitor $Z = (\mathbf{i}\omega C)^{-1}$ | $ (\omega C)^{-1} $ | $-\pi/2$          | 0         | $ -(\omega C)^{-1} I ^2$ |

# **Power delivered to impedance**

Instantaneous power delivered to

resistor R: 
$$p(t) = P\left(1 + \cos 2\left(\omega t + \theta_I\right)\right)$$
  
inductor  $i\omega L$ :  $p(t) = -Q\sin 2\left(\omega t + \theta_I\right)$   
capacitor  $(i\omega C)^{-1}$ :  $p(t) = Q\sin 2\left(\omega t + \theta_V\right)$ 

## **Three-phase power**

Per-phase power:  $S := V_{an}I_{an}^*$ 

Three-phase power:  $S_{3\phi} := V_{an}I_{an}^* + V_{bn}I_{bn}^* + V_{cn}I_{cn}^* = 3S$ 

because 
$$V_{bn} = e^{-2\pi/3} V_{an}$$
,  $I_{bn} = e^{-2\pi/3} I_{an} \Rightarrow V_{bn} I_{bn}^* = S$ 

## **Three-phase power**

Instantaneous 3 $\phi$  power is constant

$$p_{3\phi}(t) := v_a(t)i_a(t) + v_b(t)i_b(t) + v_c(t)i_c(t) = 3P$$

A 3 $\phi$  motor receives constant torque

Instantaneous 1 $\phi$  power is sinusoidal

$$p(t) = P + P \cos 2(\omega t + \theta_I) - Q \sin 2(\omega t + \theta_I)$$

# **Three-phase power**

Instantaneous 3\$\phi\$ power is constant  

$$p_{3\phi}(t) := v_{a}(t)i_{a}(t) + v_{b}(t)i_{b}(t) + v_{c}(t)i_{c}(t)$$

$$= |V_{a}||I_{a}|(\cos \phi + \cos(2\omega t + \theta_{V} + \theta_{I}))$$

$$+ |V_{a}||I_{a}|(\cos \phi + \cos(2\omega t + (\theta_{V} - 2\pi/3) + (\theta_{I} - 2\pi/3)))$$

$$+ |V_{a}||I_{a}|(\cos \phi + \cos(2\omega t + (\theta_{V} + 2\pi/3) + (\theta_{I} + 2\pi/3)))$$

$$= 3|V_{a}||I_{a}|\cos \phi + |V_{a}||I_{a}|(\cos \theta(t) + \cos(\theta(t) - 4\pi/3) + \cos(\theta(t) + 4\pi/3))$$

$$= 3P$$

# Savings from $3\phi$ system

#### Example



Spec:

- Supply load with power |S| at voltage |V|
- Distance between generator & load: *d*
- Line impedance z = r + ix ohm/meter
- Resistance / unit length  $r = \frac{\rho}{\text{area}}$
- Line current  $\leq \delta$  area

#### Savings:

• Material required:  $m_{3\phi} = \frac{1}{2}m_{1\phi}$ 

• Active power loss: 
$$l_{3\phi} = \frac{1}{2}l_{1\phi}$$