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Chapter 10  Unbalanced network: BFM
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Review: single-phase BFM
1. Network 


•  : buses/nodes


•  : lines/links/edges


2. Each line  is parameterized by 

•  : series admittance


•  : shunt admittances, generally different

G := (N, E)
N := {0} ∪ N := {0} ∪ {1,…, N}
E ⊆ N × N

( j, k) (ys
jk, ym

jk , ym
kj)

ys
jk

ym
jk , ym

kj

Steven Low     Caltech    General network

EE 135 Notes October 18, 2021 167

where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.
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and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
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Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

jk(Vk − Vj) + ym
kj Vk,

Bus injection model: relate nodal variables  and 
s V

sj = ∑
k:j∼k

(ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jj )

H
|Vj |

2
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In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Branch flow model: includes branch vars as well

• Branch currents  , branch power 


• Adopt directed graph 


• Assume 

Ijk Sjk

(Ikj = − Ijk, Skj = − (Sjk − zjk Ijk
2))

ym
jk = ym

kj = 0

This model is equivalent to single-phase BIM

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zijℓij) + sj

Vj − Vk = zjkIjk

Sjk = Vj I𝖧
jk

ℓjk = | Ijk |2



Three-phase BFM

Steven Low     Caltech    General network

EE 135 Notes October 18, 2021 167

where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.
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at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
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and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

zjk := (ys
jk)

−1
∈ ℂ3×3, Vj, sj, Ijk ∈ ℂ3Assumption: 


Often assume ym
jk = ym

kj = 0

Assumption: 

3-phase  circuit representation 


Applicable: 

• Transmission or distribution lines

• Transformers in  and  config. 


(not  or ) 

Π (ys
jk = ys

kj)

YY ΔΔ
ΔY YΔ
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j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Branch vars are outer products (rank-1 matrices)


• Branch current matrix:   


• Branch power matrix:   

Ijk := IjkI𝖧
jk ∈ ℂ3×3

Sjk := VjkI𝖧
jk ∈ ℂ3×3

Unbalanced 3-phase BFM (general network)


 

∑
k:j→k

diag(Sjk) = ∑
i:i→j

diag (Sij − zijℓij) + sj, j ∈ N

Vj − Vk = zjkIjk, j → k ∈ E

Sjk = Vj I𝖧
jk, j → k ∈ E

ℓjk = IjkI𝖧
jk, j → k ∈ E

zjk := (ys
jk)

−1
∈ ℂ3×3, Vj, sj, Ijk ∈ ℂ3

direct extension of single-phase BIM
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Recall 3-phase BIM (Ch 8)


𝕍 := (s, V) ∈ ℂ6(N+1) sj = ∑
k:j∼k

diag (Vj(Vj − Vk)H(ys
jk)

H
+ VjVH

j (ym
jk)

H),  given V0

3-phase BFM (general network)


�̃� := { x̃ := (s, V, I, ℓ, S) ∈ ℂ6(N+1)+21M x̃ satisfies BFM, given V0 }

Theorem (equivalence) 

𝕍 ≡ �̃�
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6.2.2 Without shunt admittances

Consider a radial network where lines have zero shunt admittances. A consequence of substituting ym
jk =

ym
k j = 0 into (6.4) for all lines ( j,k) 2 E is the relation between the sending-end power flows S jk and Sk j

(see Exercise 6.4):

S jk + Sk j = zs
jk` jk = zs

jk`k j (6.6)

It says that the sum of sending-end power flows is equal to the complex line loss across the series
impedance zs

jk. We can use this relation to express `k j = ` jk and Sk j = zs
jk` jk � S jk in terms of (` jk,S jk)

and eliminate branch variables (`k j,Sk j) in the opposite direction from (6.4). This leads to a simpler set of
equations based on a directed, rather than undirected, graph G, as we now explain.

In this subsection we assume G = (N,E) is directed. We denote a line in E from bus j to bus k either
by ( j,k) 2 E or j ! k 2 E. Associated with each line j ! k 2 E are branch variables (` jk,S jk). It is
important to remember that, unlike models in the previous sections, (`k j,Sk j) in the opposite direction are
not defined in the models in this subsection, unless otherwise specified. Let (s,v) := (si,vi, i 2 N) and
(`,S) := (` jk,S jk, j ! k 2 E). Let x := (s,v,`,S) in R

3(N+1+M) with M = N since G is a tree. Without loss
of generality we take bus 0 as the root of the tree. Even though the graph orientation can be arbitrary we
discuss two particularly convenient graph orientations: one where every line points away from bus 0 and
the other where every line points towards bus 0; see Figure 6.2. For every bus j there is a unique node i

0

i

j

k

0

i

j

k

(a) All lines point away from bus 0 (b) All lines point towards bus 0

Figure 6.2: Notation for BFM for radial networks.

that is adjacent to j on the path from bus 0 to bus j. We present two sets of power flow equations, one for
each graph orientation. These two models are equivalent in the sense that there is a bijection F that maps
x to x̂ = F(x) such that x is a solution to the first set of equations if and only if x̂ is a solution to the second
set of equations. Given a power flow solution x in either model, the voltage and current phasors can be
obtained using (6.5) with a jk = 1 in the definition of b jk(x). To simplify notation we omit the superscript

and write z jk = (r jk,x jk) =
⇣

ys
jk

⌘�1
as the series impedance of line ( j,k).

DistFlow equations [Baran-Wu 1989] (radial network)


  

∑
k:j→k

Sjk = Sij − zijℓij + sj

vj − vk = 2 Re (zH
jk Sjk) − |zjk |2 ℓjk

vjℓjk = |Sjk |2

power balance

Ohm’s law, KCL (magnitude)

branch power magnitude
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BFM vars (radial network)


 


•  :  complex (Hermitian) positive definite matrices

sj ∈ ℂ3, vj ∈ 𝕊3
+, j ∈ N

ℓjk ∈ 𝕊3
+, Sjk ∈ ℂ3×3, j → k ∈ E

𝕊n
+ ⊆ ℂn×n n × n

same set of vars but scalars 
in single-phase BFM
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Three-phase BFM (radial network)


 

∑
k:j→k

diag(Sjk) = diag (Sij − zijℓij) + sj

vj − vk = (zjk S𝖧
jk + Sjkz𝖧

jk) − zjk ℓjk z𝖧
jk

[
vjSjk

S𝖧
jkℓjk] ≥ 0

rank [
vjSjk

S𝖧
jkℓjk] = 1

∑
k:j→k

Sjk = Sij − zijℓij + sj

vj − vk = 2 Re (zH
jk Sjk) − |zjk |2 ℓjk

vjℓjk = |Sjk |2

Single-phase BFM (DistFlow)



Three-phase BFM

Steven Low     Caltech    Radial network

Three-phase BFM (radial network)


 

∑
k:j→k

diag(Sjk) = diag (Sij − zijℓij) + sj

vj − vk = (zjk S𝖧
jk + Sjkz𝖧

jk) − zjk ℓjk z𝖧
jk

[
vjSjk

S𝖧
jkℓjk] ≥ 0

rank [
vjSjk

S𝖧
jkℓjk] = 1

Remark 
1. BFM vars do not contain 


2. psd rank-1 condition ensures  s.t.





3. Given ,  is unique up to a ref angle

Vj, Ijk ∈ ℂ3

∃(Vj, Ijk)
vj = VjV𝖧

j , ℓjk = IjkI𝖧
jk, Sjk = VjI𝖧

jk

(vj, ℓjk, Sjk) (Vj, Ijk)
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3-phase BFM (radial network)


𝕏 := { x := (s, v, ℓ, S) ∈ ℂ12(n+1)+18M x satisfies radial BFM, given V0 }

Theorem (equivalence) 

If  is a tree, then G 𝕍 ≡ �̃� ≡ 𝕏

3-phase BFM (general network)


�̃� := { x̃ := (s, V, I, ℓ, S) ∈ ℂ6(N+1)+21M x̃ satisfies BFM, given V0 }
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Overall model
Device + network
1. Device model for each 3-phase device (same for BIM)


• Internal model on  + conversion rules


• External model on  


• Either can be used

• Power source models are nonlinear; other devices are linear


2. Network model


• BFM for radial networks on 


• BFM for general networks on 

• Both are nonlinear models

• BFM is most useful for radial networks

(VY/Δ
j , IY/Δ

j , sY/Δ
j )

(Vj, Ij, sj)

x := (s, v, ℓ, S)
x̃ := (s, V, I, ℓ, S)

Steven Low     Caltech    Overall network



Overall model
Device + network
Overall model is nonlinear whether or not power sources are present


• Network models are nonlinear for both radial or general networks


• Power sources, if present, are nonlinear

Steven Low     Caltech    Overall network
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2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (8.29) and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Tables 8.3 and 8.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 8.2 and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Table 8.2 when only terminal quantities are needed.

As remarked in Chapter 9.1.3, if only linear devices (voltage sources, current sources, impedances) are
involved then the overall model is linear, consisting of nodal current balance equations (9.1)(9.2) and
linear device models. If power sources are also involved then, even though (9.1)(9.2) can still be used as
the network model, the overall model will be nonlinear because of nonlinear power source models.

10.3.2 Examples

A typical three-phase analysis problem can be specified and analyzed the same way as described in Chapter
9.2 for BIM. We illustrate with examples how to specify a three-phase model.

Example 10.1 (Constant-power source in Y configuration). Consider the system in Figure 10.1 where a
constant-power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in
Y configuration. For simplicity we assume that both neutrals are directly grounded and all voltages are
defined with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the

following are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 10.1: Example 10.1.

Solution. The system is specified by:

Given:

• Constant-power source  with 


• Impedance load 


• Line parameters 


• Assumption C8.1 with 

σY
j ∠Va

j := 0∘

zY
k

(zjk, ym
jk = ym

kj = 0)
γj = Vn

j = γk = Vn
k = 0

Calculate:  (sY
k , vk, ℓjk, Sjk)

Network model (BFM radial):




diag(Sjk) = sj, diag (Sjk − zjkℓjk) = − sk

vj − vk = (zjk S𝖧
jk + Sjkz𝖧

jk) − zjk ℓjk z𝖧
jk

[
vj Sjk

S𝖧
jk ℓjk] ≥ 0, rank [

vj Sjk

S𝖧
jk ℓjk] = 1

Device model (internal model + conversion rule):


vk = zY
k ℓjk zY𝖧

k , sY
k = diag (zY

k ℓjk)
sj = − σY

j , sk = − sY
k

Solve numerically for (sY
k , vk, ℓjk, Sjk)
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2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (8.29) and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Tables 8.3 and 8.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 8.2 and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Table 8.2 when only terminal quantities are needed.

As remarked in Chapter 9.1.3, if only linear devices (voltage sources, current sources, impedances) are
involved then the overall model is linear, consisting of nodal current balance equations (9.1)(9.2) and
linear device models. If power sources are also involved then, even though (9.1)(9.2) can still be used as
the network model, the overall model will be nonlinear because of nonlinear power source models.

10.3.2 Examples

A typical three-phase analysis problem can be specified and analyzed the same way as described in Chapter
9.2 for BIM. We illustrate with examples how to specify a three-phase model.

Example 10.1 (Constant-power source in Y configuration). Consider the system in Figure 10.1 where a
constant-power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in
Y configuration. For simplicity we assume that both neutrals are directly grounded and all voltages are
defined with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the

following are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 10.1: Example 10.1.

Solution. The system is specified by:

Calculate:  (sY
k , vk, ℓjk, Sjk)

Simplification:


Combining  and   reduces equations to:
sj = − σY
j , sk = − sY

k = − diag (zY
k ℓjk) sj = diag(Sjk), diag (Sjk − zjkℓjk) = − sk

−σY
j = diag ((zY

k + zjk) ℓjk) = diag

Zaa
k Zab

k Zac
k

Zba
k Zbb

k Zbc
k

Zca
k Zcb

k Zcc
k

Ia
jk

Ib
jk

Ic
jk

[Ia𝖧
jk Ib𝖧

jk Ic𝖧
jk ]

Given:

• Constant-power source  with 


• Impedance load 


• Line parameters 


• Assumption C8.1 with 

σY
j ∠Va

j := 0∘

zY
k

(zjk, ym
jk = ym

kj = 0)
γj = Vn

j = γk = Vn
k = 0

1. 3 quadratic equations in 3 
unknowns 


2. psd rank-1 cond ensures 

3. arbitrary reference angle of  

is fixed by given 

Ijk ∈ ℂ3

∃Ijk
Ijk

∠Va
j = 0∘
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2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (8.29) and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Tables 8.3 and 8.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 8.2 and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Table 8.2 when only terminal quantities are needed.

As remarked in Chapter 9.1.3, if only linear devices (voltage sources, current sources, impedances) are
involved then the overall model is linear, consisting of nodal current balance equations (9.1)(9.2) and
linear device models. If power sources are also involved then, even though (9.1)(9.2) can still be used as
the network model, the overall model will be nonlinear because of nonlinear power source models.

10.3.2 Examples

A typical three-phase analysis problem can be specified and analyzed the same way as described in Chapter
9.2 for BIM. We illustrate with examples how to specify a three-phase model.

Example 10.1 (Constant-power source in Y configuration). Consider the system in Figure 10.1 where a
constant-power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in
Y configuration. For simplicity we assume that both neutrals are directly grounded and all voltages are
defined with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the

following are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 10.1: Example 10.1.

Solution. The system is specified by:

Calculate:  (sY
k , vk, ℓjk, Sjk)

Simplification:


Combining  and   reduces equations to:
sj = − σY
j , sk = − sY

k = − diag (zY
k ℓjk) sj = diag(Sjk), diag (Sjk − zjkℓjk) = − sk

−σY
j = diag ((zY

k + zjk) ℓjk) = diag

Zaa
k Zab

k Zac
k

Zba
k Zbb

k Zbc
k

Zca
k Zcb

k Zcc
k

Ia
jk

Ib
jk

Ic
jk

[Ia𝖧
jk Ib𝖧

jk Ic𝖧
jk ] 1. Solve for  numerically


2. Derive analytically all other vars
Ijk

Given:

• Constant-power source  with 


• Impedance load 


• Line parameters 


• Assumption C8.1 with 

σY
j ∠Va

j := 0∘

zY
k

(zjk, ym
jk = ym

kj = 0)
γj = Vn

j = γk = Vn
k = 0
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2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (8.29) and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Tables 8.3 and 8.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 8.2 and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Table 8.2 when only terminal quantities are needed.

As remarked in Chapter 9.1.3, if only linear devices (voltage sources, current sources, impedances) are
involved then the overall model is linear, consisting of nodal current balance equations (9.1)(9.2) and
linear device models. If power sources are also involved then, even though (9.1)(9.2) can still be used as
the network model, the overall model will be nonlinear because of nonlinear power source models.

10.3.2 Examples

A typical three-phase analysis problem can be specified and analyzed the same way as described in Chapter
9.2 for BIM. We illustrate with examples how to specify a three-phase model.

Example 10.1 (Constant-power source in Y configuration). Consider the system in Figure 10.1 where a
constant-power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in
Y configuration. For simplicity we assume that both neutrals are directly grounded and all voltages are
defined with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the

following are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 10.1: Example 10.1.

Solution. The system is specified by:

Given:


• Constant-power source  with 


• Impedance load 


• Line parameters 

(σΔ
j , γj) ∠Vab

j := 0∘

(zΔ
k , βk)

(zjk, ym
jk = ym

kj = 0)
Calculate:  (sY

k , vk, ℓjk, Sjk)
Device model:


sj := diag (VjI𝖧
j ), σΔ

j = diag (ΓVjIΔ𝖧
j )

sk := diag (VkI𝖧
k ), Vk = − ZΔIk + γk1

1𝖳Ik = 0

Solve numerically for (sY
k , vk, ℓjk, Sjk)

Network model (same as previous example):




diag(Sjk) = sj, diag (Sjk − zjkℓjk) = − sk

vj − vk = (zjk S𝖧
jk + Sjkz𝖧

jk) − zjk ℓjk z𝖧
jk

[
vj Sjk

S𝖧
jk ℓjk] ≥ 0, rank [

vj Sjk

S𝖧
jk ℓjk] = 1
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2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (8.29) and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Tables 8.3 and 8.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 8.2 and the conversion rules (8.8) and (8.9)(8.10); or
• Its external model summarized in Table 8.2 when only terminal quantities are needed.

As remarked in Chapter 9.1.3, if only linear devices (voltage sources, current sources, impedances) are
involved then the overall model is linear, consisting of nodal current balance equations (9.1)(9.2) and
linear device models. If power sources are also involved then, even though (9.1)(9.2) can still be used as
the network model, the overall model will be nonlinear because of nonlinear power source models.

10.3.2 Examples

A typical three-phase analysis problem can be specified and analyzed the same way as described in Chapter
9.2 for BIM. We illustrate with examples how to specify a three-phase model.

Example 10.1 (Constant-power source in Y configuration). Consider the system in Figure 10.1 where a
constant-power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in
Y configuration. For simplicity we assume that both neutrals are directly grounded and all voltages are
defined with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the

following are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 10.1: Example 10.1.

Solution. The system is specified by:

Given:


• Constant-power source  with 


• Impedance load 


• Line parameters 

(σΔ
j , γj) ∠Vab

j := 0∘

(zΔ
k , βk)

(zjk, ym
jk = ym

kj = 0)
Calculate:  (sY

k , vk, ℓjk, Sjk)
Simplification:


1. psd rank-1 condition ensures  s. t.


    and     


2. Substitute into :


∃(Vj, Vk, Ijk)
Vj = (ZΔ

k + zs
jk) Ijk + γk1 Ijk = Ij = − Γ𝖳IΔ

j

σΔ
j = diag (ΓVIΔ𝖧)

σΔ
j := − diag ((Γ ̂ZΔ

k Γ𝖳) IΔ
j IΔ𝖧

j )

1. 3 quadratic equations in 3 unknowns 

2. Solve for  numerically

3. Derive analytically all other vars

IΔ
jk ∈ ℂ3

IjkΔ
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Efficient solution method for power flow equations (1 or 3-phase networks)

• Applicable to radial networks


Partition solution  into two groups of variables  and 


• Typically,  are branch variables (e.g. line currents) and  are nodal variables (bus voltages)


Each round of spatial iteration consists of a backward sweep and a forward sweep


• Given , compute each component  iteratively from leafs to root (backward)


• Given , compute each component  iteratively from root to leaves (forward)


Iterate until stopping criterion


Different BFS methods differ in how to partition variables into  and  and the associated power 
flow equations

(x, y) x y
x y

y xj

x yj

x y
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Figure 6.1: Notation for BFM complex form.

The branch flow model (BFM) in the complex form is defined by the following power flow equations
in the variables (s,V, I,S) 2 C

2(N+1)+4M (from (5.4)(5.17)):

s j = Â
k: j⇠k

S jk, j 2 N (6.1a)

S jk = Vj IH
jk, Sk j = Vk IH

k j, ( j,k) 2 E (6.1b)
I jk = ys

jk(Vj �Vk) + ym
jkVj, ( j,k) 2 E (6.1c)

Ik j = ys
k j(Vk �Vj) + ym

k jVk, ( j,k) 2 E (6.1d)

where (6.1a) imposes power balance at each bus, (6.1b) defines branch power in terms of the associated
voltage and current, and (6.1c)(6.1d) describes Kirchhoff’s and Ohm’s laws. For convenience we include
V0 in the vector variable V := (Vj, j 2 N) with the understanding that V0 := 1\0� is fixed.

As we will see in Chapter 6.3 this model serves as a bridge between the bus injection model of Chapter
5 in complex form and the branch flow models in real domain in the rest of this chapter.

Real form. A branch flow model, called the DistFlow equations, is proposed in [20, 21] for radial
networks. Its key feature is that it does not involve phase angles of voltage and current phasors. For each
bus j let

• si := (pi,qi) and si := (pi + iqi) represent the real and reactive power injections at bus j;2

• vi represent the squared voltage magnitude at bus j.

For each line ( j,k) let

• S jk = (Pjk,Q jk) and S jk = Pjk + iQ jk represent the sending-end real and reactive branch power flow
from bus j to bus k, and Sk j represent the sending-end power from k to j;

2We abuse notation and use s to denote both the complex power injection s = (p+ iq) and the real pair s = (p,q), depending
on the context. Similarly for S = (P+ iQ) and S = (P,Q), and for z = (r + ix) and z = (r,x).
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(SL: Summary of 3-phase BFS?)

Recall that we assume C10.1 holds throughout this chapter.

10.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
bus j 2 N, the internal power sY/D

j 2 C
3 of the power source is given.4 At bus 0, V0 2 C

3 is given and the

current injection I0 and the internal power injection sY/D
0 are to be determined. We assume for simplicity

that C8.1 with zn
j = 0 holds at every bus j 2 N that has a Y -configured power source so that V n

j = 0 (see

Remark 10.3 on the case when zn
j 6= 0 so that V n

j = �zn
j

⇣
1TI j

⌘
).

Let
�
Vj, I j, j 2 N

�
be the terminal voltages and currents at non-root buses. As for the single-phase

BFS, let
⇣

Is
jk, j ! k 2 E

⌘
be the branch currents through the series admittance matrices ys

jk 2 C
3⇥3 (see

Exercise 10.3 for a BFS algorithm that computes the sending-end current I jk instead). The receiving
current at bus j from its parent i is

⇣
Is
i j � ym

jiVj

⌘
2 C

3 (see Figure 10.2). The current balance equation is












































































































Figure 10.2: Linear solution of branch flow model for unbalanced three-phase radial networks.

4 (SL: It is intriguing that neither g j nor b j need to be specified for D-configured power sources. Both can be computed.)

Notation:
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Figure 6.1: Notation for BFM complex form.

The branch flow model (BFM) in the complex form is defined by the following power flow equations
in the variables (s,V, I,S) 2 C

2(N+1)+4M (from (5.4)(5.17)):

s j = Â
k: j⇠k

S jk, j 2 N (6.1a)

S jk = Vj IH
jk, Sk j = Vk IH

k j, ( j,k) 2 E (6.1b)
I jk = ys

jk(Vj �Vk) + ym
jkVj, ( j,k) 2 E (6.1c)

Ik j = ys
k j(Vk �Vj) + ym

k jVk, ( j,k) 2 E (6.1d)

where (6.1a) imposes power balance at each bus, (6.1b) defines branch power in terms of the associated
voltage and current, and (6.1c)(6.1d) describes Kirchhoff’s and Ohm’s laws. For convenience we include
V0 in the vector variable V := (Vj, j 2 N) with the understanding that V0 := 1\0� is fixed.

As we will see in Chapter 6.3 this model serves as a bridge between the bus injection model of Chapter
5 in complex form and the branch flow models in real domain in the rest of this chapter.

Real form. A branch flow model, called the DistFlow equations, is proposed in [20, 21] for radial
networks. Its key feature is that it does not involve phase angles of voltage and current phasors. For each
bus j let

• si := (pi,qi) and si := (pi + iqi) represent the real and reactive power injections at bus j;2

• vi represent the squared voltage magnitude at bus j.

For each line ( j,k) let

• S jk = (Pjk,Q jk) and S jk = Pjk + iQ jk represent the sending-end real and reactive branch power flow
from bus j to bus k, and Sk j represent the sending-end power from k to j;

2We abuse notation and use s to denote both the complex power injection s = (p+ iq) and the real pair s = (p,q), depending
on the context. Similarly for S = (P+ iQ) and S = (P,Q), and for z = (r + ix) and z = (r,x).

Given:  and 


Compute:  and currents  through series impedance


• All other variables  ,  can then be computed


• Advantage:  

V0 s := (sj, j ∈ N)
V := (Vj, j ∈ N) Is := (Is

jk, ( j, k) ∈ E)
Ijk = Is

jk + ym
jkVj Ikj, Sjk, Skj

Is
jk = − Is

kj

Draft: EE 135 Notes December 3, 2022 463

(SL: Summary of 3-phase BFS?)

Recall that we assume C10.1 holds throughout this chapter.

10.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
bus j 2 N, the internal power sY/D

j 2 C
3 of the power source is given.4 At bus 0, V0 2 C

3 is given and the

current injection I0 and the internal power injection sY/D
0 are to be determined. We assume for simplicity

that C8.1 with zn
j = 0 holds at every bus j 2 N that has a Y -configured power source so that V n

j = 0 (see

Remark 10.3 on the case when zn
j 6= 0 so that V n

j = �zn
j

⇣
1TI j

⌘
).

Let
�
Vj, I j, j 2 N

�
be the terminal voltages and currents at non-root buses. As for the single-phase

BFS, let
⇣

Is
jk, j ! k 2 E

⌘
be the branch currents through the series admittance matrices ys

jk 2 C
3⇥3 (see

Exercise 10.3 for a BFS algorithm that computes the sending-end current I jk instead). The receiving
current at bus j from its parent i is

⇣
Is
i j � ym

jiVj

⌘
2 C

3 (see Figure 10.2). The current balance equation is












































































































Figure 10.2: Linear solution of branch flow model for unbalanced three-phase radial networks.

4 (SL: It is intriguing that neither g j nor b j need to be specified for D-configured power sources. Both can be computed.)

Notation:



Example 1
Complex form BFM

Steven Low     EE/CS/EST 135    Caltech

Network equations 




where 

Is
ij = ∑

k:j→k

Is
jk − (Ij − ym

jj Vj), j ∈ N

Vj = Vi − zs
ijI

s
ij, j ∈ N

ym
jj := ∑k ym

jk

Device models 

Y configuration: σY
j = − diag (VjI𝖧

j )
Δ configuration: σΔ

j = diag (ΓVjIΔ𝖧
j ), Ij = − Γ𝖳IΔ

j
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(SL: Summary of 3-phase BFS?)

Recall that we assume C10.1 holds throughout this chapter.

10.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices

⇣
ys
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⌘
. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
bus j 2 N, the internal power sY/D

j 2 C
3 of the power source is given.4 At bus 0, V0 2 C

3 is given and the

current injection I0 and the internal power injection sY/D
0 are to be determined. We assume for simplicity

that C8.1 with zn
j = 0 holds at every bus j 2 N that has a Y -configured power source so that V n

j = 0 (see

Remark 10.3 on the case when zn
j 6= 0 so that V n

j = �zn
j

⇣
1TI j

⌘
).

Let
�
Vj, I j, j 2 N

�
be the terminal voltages and currents at non-root buses. As for the single-phase

BFS, let
⇣

Is
jk, j ! k 2 E

⌘
be the branch currents through the series admittance matrices ys

jk 2 C
3⇥3 (see

Exercise 10.3 for a BFS algorithm that computes the sending-end current I jk instead). The receiving
current at bus j from its parent i is

⇣
Is
i j � ym

jiVj

⌘
2 C

3 (see Figure 10.2). The current balance equation is












































































































Figure 10.2: Linear solution of branch flow model for unbalanced three-phase radial networks.

4 (SL: It is intriguing that neither g j nor b j need to be specified for D-configured power sources. Both can be computed.)
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BFS variables 

x := (Is
ij, j ∈ N), y := (Vj, Ij, IΔ

j j ∈ N)
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(SL: Summary of 3-phase BFS?)

Recall that we assume C10.1 holds throughout this chapter.

10.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices
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. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
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3 of the power source is given.4 At bus 0, V0 2 C

3 is given and the
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0 are to be determined. We assume for simplicity

that C8.1 with zn
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j 6= 0 so that V n

j = �zn
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⌘
).

Let
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Vj, I j, j 2 N

�
be the terminal voltages and currents at non-root buses. As for the single-phase

BFS, let
⇣
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jk, j ! k 2 E

⌘
be the branch currents through the series admittance matrices ys

jk 2 C
3⇥3 (see

Exercise 10.3 for a BFS algorithm that computes the sending-end current I jk instead). The receiving
current at bus j from its parent i is

⇣
Is
i j � ym

jiVj

⌘
2 C

3 (see Figure 10.2). The current balance equation is












































































































Figure 10.2: Linear solution of branch flow model for unbalanced three-phase radial networks.

4 (SL: It is intriguing that neither g j nor b j need to be specified for D-configured power sources. Both can be computed.)
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Backward sweep: start from leaf nodes and iterate towards root bus 0 

Is
ij(t) ← ∑

k:j→k

Is
jk(t) − (Ij(t − 1) − ym

jj Vj(t − 1)), i → j ∈ E
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(SL: Summary of 3-phase BFS?)

Recall that we assume C10.1 holds throughout this chapter.

10.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
bus j 2 N, the internal power sY/D

j 2 C
3 of the power source is given.4 At bus 0, V0 2 C

3 is given and the

current injection I0 and the internal power injection sY/D
0 are to be determined. We assume for simplicity

that C8.1 with zn
j = 0 holds at every bus j 2 N that has a Y -configured power source so that V n

j = 0 (see

Remark 10.3 on the case when zn
j 6= 0 so that V n

j = �zn
j

⇣
1TI j

⌘
).

Let
�
Vj, I j, j 2 N

�
be the terminal voltages and currents at non-root buses. As for the single-phase

BFS, let
⇣

Is
jk, j ! k 2 E

⌘
be the branch currents through the series admittance matrices ys

jk 2 C
3⇥3 (see

Exercise 10.3 for a BFS algorithm that computes the sending-end current I jk instead). The receiving
current at bus j from its parent i is

⇣
Is
i j � ym

jiVj

⌘
2 C

3 (see Figure 10.2). The current balance equation is












































































































Figure 10.2: Linear solution of branch flow model for unbalanced three-phase radial networks.

4 (SL: It is intriguing that neither g j nor b j need to be specified for D-configured power sources. Both can be computed.)

Forward sweep: start from bus 0 and iterate towards leaf nodes 
Vj(t) ← Vi(t) − zs

ij Is
ij(t)

Y : Ij(t) ← − (diag Vj(t))
−1

σY
j

Δ : IΔ
j (t) ← (diag (ΓVj(t)))

−1

σΔ
j , Ij(t) ← − Γ𝖳IΔ

j (t)



Example 2
3-phase DistFlow model
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Implicit description 

[
vj Sjk

S𝖧
jk ℓjk] ≥ 0, rank [

vj Sjk

S𝖧
jk ℓjk] = 1

Implies:  s. t. 





Hence: design BFS based on  instead of original 3-phase DistFlow equations

∃(V, Ĩ)

vj = VjV𝖧
j , ℓjk = IjkI𝖧

jk, Sjk = VjI𝖧
jk

(V, v, Ĩ, S)
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Network equations 
Sjk = Vj Ĩ𝖧

jk

Vj − Vk = zjk Ĩjk, vj = VjV𝖧
j , Ĩjk =

1
tr vj

SH
jkVj

Device models (same as in Example 1)


Y configuration: σY
j = − diag (VjI𝖧

j )
Δ configuration: σΔ

j = diag (ΓVjIΔ𝖧
j ), Ij = − Γ𝖳IΔ

j

BFS variables 

x := (Sjk, j → k ∈ E), y := (Vj, vj, Ĩij, Ij, IΔ
j , j ∈ N)



Example 2
3-phase DistFlow model
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Forward sweep: start from bus 0 and iterate towards leaf nodes 

Ĩij(t) ←
1

tr vi(t)
SH

ij (t − 1)Vi(t)

Vj(t) ← Vi(t) − zij Ĩij(t), vj(t) ← Vj(t)Vj(t)𝖧

Y : Ij(t) ← − (diag Vj(t))
−1

σY
j

Δ : IΔ
j (t) ← (diag (ΓVj(t)))

−1

σΔ
j , Ij(t) ← − Γ𝖳IΔ

j (t)

Backward sweep:      Sjk(t) ← Vj(t) Ĩ𝖧
jk(t)



Outline

1. General network


2. Radial network


3. Overall network


4. Backward-forward sweep


5. Linear network

• Assumptions

• Network equations

• Linear solution

Steven Low     Caltech    Linear network



Assumptions
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1. Negligible line loss  


• Small line loss relative to line flow:  


2. Balanced voltages  


ℓjk = 0

zjkℓjk ≪ Sjk

Va
j

Vb
j

=
Vb

j

Vc
j

=
Vc

j

Va
j

= ei2π/3



Network equations
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Define       where γ :=
1 α2 α
α 1 α2

α2 α 1
α := e−i2π/3

Linear 3-phase DistFlow model are linear equations in :


      


(  are diagonal entries of  )

(v, s, λ, S)

∑
k:j→k

λjk = λij + sj, j ∈ N

Sjk = γ diag (λjk), j → k ∈ E

vj − vk = zjk S𝖧
jk + Sjk z𝖧

jk, j → k ∈ E

λjk Sjk

this uses balanced voltage assumption to 
determine off-diagonal entries of Sjk

nodal injections determine diag(Sjk) =: λjk



Linear solution
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Given , can determine  and  :


      


where  


•  : subtree rooted at bus , including 


•  : set of lines on the unique path from bus 0 to bus 

(v0, sj, j ∈ N) (s0, vj, j ∈ N) (λjk, Sjk, j → k ∈ E)
s0 = − ∑

j∈N

sj

λij = − ∑
k∈Tj

sk, Sij = γ diag (λij), i → j ∈ E

vj = v0 − ∑
(i,k)∈Pj

(zik S𝖧
ik + Sjk z𝖧

ik), j ∈ N

Tj j j

Pk k
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Figure 10.3: Linear solution of branch flow model for unbalanced three-phase radial networks.

10.6 Bibliographical notes

(SL: Read last chapter of [2] on distribution systems. See [71, Ch 11] on three-phase power flow methods.
)

For backward forward sweep methods for radial networks, both single-phase and three-phase networks,
see bibliographical notes in Chapter 6.6.

Chapter 10.1.

Exercise 10.1. Derive the three-phase BFM (10.1) for general networks without line charging from the
BFM (6.1) with line charging.

Solution 10.1.

Chapter 10.2.

Exercise 10.2. Show that (Ab)⌦ I = (A⌦ I)(b⌦ I) where A 2 C
n⇥n, b 2 C

n, and I is the identity matrix
of size 3. (Hint: Use Lemma 9.1.)

Solution 10.2. We have from Lemma 9.1 (A0B0)⌦(C0D0) = (A0⌦C0)(B0⌦D0) for any matrices A0,B0,C0,D0

such that A0C0 and B0D0 are valid matrix products. Let A0 = A, B0 = b, C0 = D0 = I yields the desired
equality.

Chapter 10.3.


