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Power System Analysis
Chapter 11  Power System Operation
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Overview
Central challenge
Balance supply & demand second-by-second


• While satisfying operational constraints, e.g. injection/voltage/line limits

• Unlike usual commodities, electricity cannot (yet) be stored in large quantity
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Overview
Traditional approach
Bulk generators generate 80% of electricity in US (2020)


• Fossil (gas, coal): 60%, nuclear: 20%


They are fully dispatchable and centrally controlled

• ISO determines in advance how much each generates when & where


They mostly determine dynamics and stability of entire network

• System frequency, voltages, prices
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Overview
Traditional approach
Challenges


• Large startup/shutdown time and cost

• Uncertainty in future demand (depends mostly on weather)

• Contingency events such as generator/transmission outages


Elaborate electricity markets and hierarchical control

• Schedule generators and determine wholesale prices

• Day-ahead (12-36 hrs in advance): unit commitment

• Real-time (5-15 mins in advance): economic dispatch

• Ancillary services (secs - hours): frequency control, reserves
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Overview
Future challenges
Sharply increased uncertainty makes balancing more difficult


• Renewable sources such as wind and solar

• Random large frequent fluctuations in net load, e.g., Duck Curve due to PV

• Contingency events such as generator/transmission outages

• Response: real-time feedback control, better monitoring & forecast, stochastic OPF


Low-inertia system

• Bulk generators have large inertia that is bedrock of stability

• They will be replaced by inverter-based resources with low or zero inertia, e.g., PV

• Response: dynamics and stability need to be re-thought 


Indispatchable renewable generation resources

• Response: More active dynamic feedback control of flexible loads to match fluctuating supply  
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Overview
Optimal power flow
Unit commitment and economic dispatch can be formulated as OPF


• OPF underlies many (other) power system applications 

• State estimation, stability and security analysis, volt/var control, demand response 


Constrained optimization





• Optimization vars: control , network state 


• Cost function:  


• Constraint functions:  

• They depend on the application under study


min
u,x

c(u, x)  s.t.  f(u, x) = 0, g(u, x) ≤ 0

u x
c(u, x)

f(u, x), g(u, x)
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Unit commitment

Solved by ISO in day-ahead market 12-36 hrs in advance

• Determine which generators will be on (commitment) and their output levels (dispatch)

• For each hour (or half hour) over 24-hour period 

• Commitment decisions are binding

• Dispatch decisions may be binding or advisory


Two-stage optimization

• Determine commitment, based on assumption that dispatch will be optimized


Steven Low     EE/CS/EST 135    Caltech



Unit commitment
Problem formulation
Model


• Network: graph 


• Time horizon: , e.g., 1 hour, 


Optimization vars

• Control: 


• Commitment: on/off status ,  


• Dispatch: real & reactive power injections 


• Network state: 


• Voltages 


• Line flows 

G = (N, E)
T := {1,2,…, T} t = T = 24

κ(t) := (κj(t), j ∈ N) κj(t) ∈ {0,1}

u(t) := (uj(t), j ∈ N)

V(t) := (Vj(t), j ∈ N)

S(t) := (Sjk(t), Skj(t), ( j, k) ∈ E)
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Unit commitment
Problem formulation
Capacity limits: injection is bounded if it is turned on





Startup and shutdown incur costs regardless of injection level





UC problems in practice includes other features

• Once turned on/off, bulk generator stays in same state for minimum period

uj(t)κj(t) ≤ uj(t) ≤ uj(t)κj(t)

djt(κj(t − 1), κj(t)) =

startup cost  if  κj(t) − κj(t − 1) = 1
shutdown cost  if  κj(t) − κj(t − 1) = − 1
0  if  κj(t) − κj(t − 1) = 0
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Unit commitment
Problem formulation
Two-stage optimization





where  is optimal dispatch cost over entire horizon :





• Each time  constraint includes injection limits


•  can include ramp rate limits

min
κ∈{0,1}(N+1)T ∑

t
∑

j

djt (κj(t − 1), κj(t)) + c*(κ)

c*(κ) T

c*(κ) := min
(u,x) ∑

t

ct(u(t), x(t); κ(t))

 s.t.  ft(u(t), x(t); κ(t)) = 0, gt(u(t), x(t); κ(t)) ≤ 0, t ∈ T
f̃(u, x) = 0, g̃(u, x) ≤ 0

t
f̃(u, x) = 0, g̃(u, x) ≤ 0
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Unit commitment
Problem formulation
UC in practice

• Binary variable makes UC computationally difficult for large networks

• Typically use linear model, e.g., DC power flow, and solve mixed integer linear program


Serious effort underway in R&D community to scale UC solution with AC model 

• e.g., ARPA-E Grid Optimization Competition Challenge 2
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Optimal dispatch

Solved by ISO in real-time market every 5-15 mins

• Determine injection levels of those units that are online

• Adjustment to dispatch from day-ahead market (unit commitment)
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Optimal dispatch
Problem formulation
Model

• Network: graph 


Optimization vars

• Control: 


• Dispatch: real & reactive power injections 


• Network state: 


• Voltages 


• Line flows 

G = (N, E)

u := (uj, j ∈ N)

V := (Vj, j ∈ N)

S := (Sjk, Skj, ( j, k) ∈ E)
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Optimal dispatch
Problem formulation
Parameters


• Uncontrollable injections 


Generation cost is quadratic in real power 





σ := (σj, j ∈ N)

c(u, x) = ∑
generators j

(aj (Re(uj))
2

+ bj Re(uj))
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Optimal dispatch
Constraints

Power flow equations: 


• Complex form:  


• Polar form:     





Power balance: 

S = S(V)

Sjk(V) = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Pjk(V) = (gs
jk + gm

jk) |Vj |
2 − |Vj | |Vj |(gs

jk cos(θj − θk) − bs
jk sin(θj − θk))

Qjk(V) = (bs
jk + bm

jk) |Vj |
2 − |Vj | |Vk |(bs

jk cos(θj − θk) + gs
jk sin(θj − θk))

uj + σj = ∑
k:j∼k

Sjk(V)

Steven Low     EE/CS/EST 135    Caltech



Optimal dispatch
Constraints

Injection limits:   


Voltage limits:   


Line limits:   

uj ≤ uj ≤ uj

vj ≤ |Vj |
2 ≤ vj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj
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Optimal dispatch

  


 : optimal dispatch driven by 

min
u,x

c(u, x)

s.t. uj + σj = ∑
k:j∼k

Sjk(V)

uj ≤ uj ≤ uj

vj ≤ |Vj |
2 ≤ vj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj

uopt(σ) σ
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Optimal dispatch

Interpretation


• ISO dispatches  to unit  as generation setpoint (needs incentive compatibility)


• Resulting network state  satisfies operational constraints


Economic dispatch in practice

• Real-time market use linear approximation, e.g., DC power flow, instead of AC (nonlinear) power 

flow equations

• ISO solves linear program for dispatch and wholesale prices

• AC power flow equations are used to verify that operational constraints are satisfied if dispatched

• If not, DC OPF is modified and procedure repeated


uopt
j j

xopt
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Optimal dispatch
Imbalance

In theory, power is balanced at all points of network, since  satisfies 





Imbalance, however, arises due to 

• Random error 


• Discretization error 


• Prediction error 


(uopt, xopt)
uj + σj = ∑

k:j∼k

Sjk(V)

Δ1(ξ, t)
Δ2(t)

Δ3(ξ, t)
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Optimal dispatch
Error model

Uncontrollable injections  : continuous-time stochastic process


• Mean process 


 : actual injections that can maintain power balance over network


Imbalance:   





•  : random, continuous


•  : fixed for th interval, based on estimate  of 

σ := (σ(t), t ∈ ℝ+)
m(t) := Eσ(t)

u (σ(ξ, t))

Δu(ξ, t) := u (σ(ξ, t)) − uopt (m̂(n)), t ∈ [nδ, (n + 1)δ), n = 0,1,…

u (σ(ξ, t))
uopt (m̂(n)) n m̂(n) σ
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injection

at time t

dispatch on

th control

interval

n



Optimal dispatch
Error model
Random error 


• Dispatch driven by mean process, at all (continuous) time 


Discretization error ,  


• Dispatch driven by time-average over th interval  


Prediction error ,  


• Dispatch driven by estimate  of  before beginning of th interval


•  generally depends on  and is random, e.g., avg injection in st interval 


Δ1(ξ, t) := u(σ(ξ, t)) − uopt(m(t))
t

Δ2(t) := uopt(m(t)) − uopt(m̄(n)) t ∈ [nδ, (n + 1)δ)

n m̄(n) :=
1
δ ∫

(n+1)δ

nδ
m(t) dt

Δ3(ξ, t) := uopt (m̄(n)) − uopt (m̂(n)) t ∈ [nδ, (n + 1)δ)
m̂(n) m̄(n) n

m̂(n) ξ n − 1

m̂(ξ, n) :=
1
δ ∫

nδ

(n−1)δ
σ(ξ, t) dt
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Optimal dispatch
Error model
Imbalance:   





• Random error  : tends to have zero mean


• Discretization error  : time avg over control interval tends to be small


• Prediction error  : tends to be small if  is slow-varying

Δu(ξ, t) = Δ1(ξ, t) + Δ2(t) + Δ3(ξ, t)

Δ1(ξ, t)
Δ2(t)

Δ3(ξ, t) σ(t)
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3. Optimal dispatch
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• Model and assumptions

• Primary frequency control

• Secondary frequency control


5. System security
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Frequency control
Overview
Power delivered by thermal generator is determined by mechanical output of turbine 

• Mechanical output of turbine controlled by opening or closing of valves that regulate steam 

or water flow

• If load increases, valves will be opened wider to generate more power to balance


Power imbalance   frequency deviates from nominal

• Excess supply: rotating machines speed up  frequency rises


• Shortage: rotating machines slow down  frequency drops

• If power is not re-imbalanced, frequency excursion will continue and may disconnect 

generators to protect them from damage

• Can lead to load shedding (blackout) or even system collapse

⟹
⇒

⇒

Steven Low     EE/CS/EST 135    Caltech



Frequency control
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Frequency control
Overview
Frequency deviation is global control signal for participating generators and loads 


Automatic generation control (AGC) : hierarchical control

• Primary (droop) control: stabilize frequency in ~30 secs


• Uses governor to adjust valve position and control mechanical output of turbine 

• Control proportional to local frequency deviation

• Decentralized
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Frequency control
Overview
Frequency deviation is global control signal for participating generators and loads 


Automatic generation control (AGC) : hierarchical control

• Secondary control: restore nominal frequency within a few mins 


• Adjust generator setpoints around dispatch values 

• Interconnected system: also restore scheduled tie-line flows between areas (need 

non-local info of tie-line flow deviations)

• Each area is controlled centrally by an operator
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Frequency control
Overview
Frequency deviation is global control signal for participating generators and loads 


Automatic generation control (AGC) : hierarchical control

• Tertiary control: real-time optimal dispatch every 5-15 mins


• Determine generator setpoints and schedule inter-area tie-line flows 

• Optimize across areas for economic efficiency

• Restore reserve capacities of primary & secondary control so that they are available 

for contingency response 
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Frequency control
Model
Primary and secondary control model

• Fix control interval 


• Fix random realization  of 


Assumptions (DC power flow)


• Lossless lines 


• Fixed voltage magnitudes (voltage control operates at faster timescale)


• Small angle difference 


 Linearized dynamic model on 

• How real power control voltage angles & local frequencies (derivatives)

n
ξ σ(t)

ys
jk = ibjk

sin (θjk) ≈ θjk

⟹
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Frequency control
Model
Linearized around operating point, defined by



u0
j + σ0

j = ∑
k:j∼k

P0
jk
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• a j(t) denotes the valve position of the turbine-governor at bus j. Let a0
j denote its value associated

with the operating point
⇣

u0
j ,q 0

j ,w0,P0
jk,s

0
j , j 2 N, ( j,k) 2 E

⌘
and Da j(t) := a j(t)�a0

j .

We will remark on
⇣

a0
j , pM0

j

⌘
below when we describe the turbine-governor model. A common model of

the instantaneous line flow Pjk(t) as a function of voltage angles q(t) :=
�
q j(t), j 2 N

�
is (cf. the polar

form power flow equation (5.21a)):

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin

�
q j(t)�qk(t)

�
, ( j,k) 2 E

where
�
�b jk

�
> 0. We will adopt its linearization around the operating point as our model:

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin

�
q 0

j �q 0
k
�

| {z }
P0

jk

+ Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E

where Tjk := |Vj||Vk|
�
�b jk

�
cos

⇣
q 0

j �q 0
k

⌘
are called stiffness coefficients. Hence

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (9.9)

The coefficient Tjk measures power exchange over line ( j,k) with respect to changes in phase angles.

The model has three components (see Figure 9.1): (i) a turbine-governor that produces the mechan-
ical power pM

j (t) based on the setpoint u j(t); (ii) a power generator that converts the mechanical power
output pM

i (t) of the turbine-governor into electric power that serves the local load �s j(t) and injects
power Âk Pjk(t) into the transmission system; and (iii) two feedback control mechanisms for primary and
secondary frequency control. It describes the dynamics of the incremental variables Dq j, Dw j, etc.

Figure 9.1: A schematic diagram of generating unit j, its setpoint u j(t), local injection s j(t), and line
power Pjk(t) to the transmission system.

9.4.2 Primary control

Turbine-governor model. A second-order model of the turbine-governor with droop control is:

Tg j ȧ j = �a j(t) + u j(t)�
Dw j(t)

R j
, j 2 N

Tt j ṗM
j = �pM

j (t) + a j(t), j 2 N



Primary frequency control
Turbine-governor model
2nd order model with droop control





where

•  : valve position of turbine-governor


•  : mechanical power output of turbine


•  : generator setpoint (operating point  is from tertiary control)


•  : frequency deviation from operating-point frequency 

Tgj
·aj = − aj(t) + uj(t) −

Δωj(t)
Rj

Ttj
·pM

j = − pM
j (t) + aj(t)

aj(t)

pM
j (t)

uj(t) u0
j

Δωj(t) = Δ ·θj(t) ω0
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Primary frequency control
Turbine-governor model
Linearized around operating point





incremental vars:


•  : deviation of valve position of turbine-governor


•  : deviation of mechanical power output of turbine


•  : adjustment to dispatched setpoint

Tgj Δ ·aj = − Δaj(t) + Δuj(t) −
Δωj(t)

Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

Δaj(t) := aj(t) − a0
j

ΔpM
j (t) := pM

j (t) − PM0
j

Δuj(t) := uj(t) − u0
j
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Primary frequency control
Turbine-governor model
Linearized around operating point




Tgj Δ ·aj = − Δaj(t) + Δuj(t) −

Δωj(t)
Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)
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where the states a j(t) and PM
j (t) are the valve position and mechanical power output of the turbine respec-

tively. The constant R j is called a regulation constant or a droop constant. The term �w j(t)/R j increases
the valve position when the frequency drops below w0 and decreases it otherwise. This is referred to as
the droop control or the primary frequency control. This model makes several simplifying assumptions,
e.g., it ignores the saturation of the valve position a j(t), but is reasonable when the frequency deviation
Dw j(t) is small.

We define
⇣

a0
j ,P

M0
j

⌘
to be the equilibrium point, defined by ȧ j = ṗM

j = 0, when frequency deviations

Dw j(t) = 0 and setpoint u j(t) = u0
j is the optimal dispatch, i.e.,

pM0 = a0
j = u0

j , j 2 N

Then the incremental variable
⇣

Da j,DPM
j

⌘
:=

⇣
a j �a0

j , PM
j �PM0

j

⌘
satisfies the same equations:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (9.10a)

Tt j D ṗM
j = �DpM

j (t) + Da j(t), j 2 N (9.10b)

This incremental model is what we will use. The block diagram representation of (9.10) is in Figure 9.2.

Figure 9.2: Block diagram in Laplace domain of the turbine-governor dynamic (9.10).

As we will see in Chapter 9.4.3 the setpoint adjustment Du j(t) is changed by the secondary control
at a much slower timescale (several minutes) than that of the primary control (approximately 30 secs).
(SL: 4) Hence a quasi steady-state of (9.10) is defined by a constant value of the setpoint adjustment
Du j(t) = Du j. In this steady state, the frequency deviation Dw⇤

j is generally nonzero and the incremental
mechanical power output DpM⇤

j is related to the frequency deviation by

DpM⇤
j = Da⇤

j = Du j � 1
R j

Dw⇤
j , j 2 N

Remark 9.5. The time constants Tgi,Tti characterize the responsiveness of the governor and turbine re-
spectively to a change in their input. Typical value of Tgi and Tti are approximately 0.1 second and 0.5

4Rigorous justification is perturbation analysis.
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Tgj Δ ·aj = − Δaj(t) + Δuj(t) −

Δωj(t)
Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)
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For primary control,  is constant

•  is adjusted by secondary control on a slower timescale

Δuj(t) = Δuj
Δuj(t)

310 EE 135 Notes November 7, 2021
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As we will see in Chapter 9.4.3 the setpoint adjustment Du j(t) is changed by the secondary control
at a much slower timescale (several minutes) than that of the primary control (approximately 30 secs).
(SL: 4) Hence a quasi steady-state of (9.10) is defined by a constant value of the setpoint adjustment
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spectively to a change in their input. Typical value of Tgi and Tti are approximately 0.1 second and 0.5

4Rigorous justification is perturbation analysis.
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Equilibrium of turbine-governor (primary control):




Therefore 

Δ ·aj(t) = Δ ·pM

j = 0

ΔpM*
j = Δa*j = Δuj −

1
Rj

Δω*j ,
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where the states a j(t) and PM
j (t) are the valve position and mechanical power output of the turbine respec-

tively. The constant R j is called a regulation constant or a droop constant. The term �w j(t)/R j increases
the valve position when the frequency drops below w0 and decreases it otherwise. This is referred to as
the droop control or the primary frequency control. This model makes several simplifying assumptions,
e.g., it ignores the saturation of the valve position a j(t), but is reasonable when the frequency deviation
Dw j(t) is small.

We define
⇣

a0
j ,P

M0
j

⌘
to be the equilibrium point, defined by ȧ j = ṗM

j = 0, when frequency deviations

Dw j(t) = 0 and setpoint u j(t) = u0
j is the optimal dispatch, i.e.,

pM0 = a0
j = u0

j , j 2 N

Then the incremental variable
⇣

Da j,DPM
j

⌘
:=

⇣
a j �a0

j , PM
j �PM0

j

⌘
satisfies the same equations:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (9.10a)

Tt j D ṗM
j = �DpM

j (t) + Da j(t), j 2 N (9.10b)

This incremental model is what we will use. The block diagram representation of (9.10) is in Figure 9.2.

Figure 9.2: Block diagram in Laplace domain of the turbine-governor dynamic (9.10).

As we will see in Chapter 9.4.3 the setpoint adjustment Du j(t) is changed by the secondary control
at a much slower timescale (several minutes) than that of the primary control (approximately 30 secs).
(SL: 4) Hence a quasi steady-state of (9.10) is defined by a constant value of the setpoint adjustment
Du j(t) = Du j. In this steady state, the frequency deviation Dw⇤

j is generally nonzero and the incremental
mechanical power output DpM⇤

j is related to the frequency deviation by

DpM⇤
j = Da⇤

j = Du j � 1
R j

Dw⇤
j , j 2 N

Remark 9.5. The time constants Tgi,Tti characterize the responsiveness of the governor and turbine re-
spectively to a change in their input. Typical value of Tgi and Tti are approximately 0.1 second and 0.5

4Rigorous justification is perturbation analysis.



Primary frequency control
Turbine-governor model
Linearized around operating point




Tgj Δ ·aj = − Δaj(t) + Δuj(t) −

Δωj(t)
Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)
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j (t) are the valve position and mechanical power output of the turbine respec-

tively. The constant R j is called a regulation constant or a droop constant. The term �w j(t)/R j increases
the valve position when the frequency drops below w0 and decreases it otherwise. This is referred to as
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This incremental model is what we will use. The block diagram representation of (9.10) is in Figure 9.2.

Figure 9.2: Block diagram in Laplace domain of the turbine-governor dynamic (9.10).

As we will see in Chapter 9.4.3 the setpoint adjustment Du j(t) is changed by the secondary control
at a much slower timescale (several minutes) than that of the primary control (approximately 30 secs).
(SL: 4) Hence a quasi steady-state of (9.10) is defined by a constant value of the setpoint adjustment
Du j(t) = Du j. In this steady state, the frequency deviation Dw⇤

j is generally nonzero and the incremental
mechanical power output DpM⇤

j is related to the frequency deviation by

DpM⇤
j = Da⇤

j = Du j � 1
R j

Dw⇤
j , j 2 N

Remark 9.5. The time constants Tgi,Tti characterize the responsiveness of the governor and turbine re-
spectively to a change in their input. Typical value of Tgi and Tti are approximately 0.1 second and 0.5

4Rigorous justification is perturbation analysis.

Equilibrium of turbine-governor (primary control):

• Frequency deviation 


• Incremental mechanical power  depends on  

Δω*j ≠ 0
ΔpM*

j Δω*j



Primary frequency control
Generator model




where


•  : incremental angle relative to rotating frame of 


•  : deviation of uncontrollable injection from its forecast 


•  : line flow deviation

Δ ·θj = Δωj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

Δθj(t) := θj(t) − θ0
j ω0

Δσj(t) σ0
j

ΔPjk(t) := Pjk(t) − P0
jk
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• a j(t) denotes the valve position of the turbine-governor at bus j. Let a0
j denote its value associated

with the operating point
⇣

u0
j ,q 0

j ,w0,P0
jk,s

0
j , j 2 N, ( j,k) 2 E

⌘
and Da j(t) := a j(t)�a0

j .

We will remark on
⇣

a0
j , pM0

j

⌘
below when we describe the turbine-governor model. A common model of

the instantaneous line flow Pjk(t) as a function of voltage angles q(t) :=
�
q j(t), j 2 N

�
is (cf. the polar

form power flow equation (5.21a)):

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin

�
q j(t)�qk(t)

�
, ( j,k) 2 E

where
�
�b jk

�
> 0. We will adopt its linearization around the operating point as our model:

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin

�
q 0

j �q 0
k
�

| {z }
P0

jk

+ Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E

where Tjk := |Vj||Vk|
�
�b jk

�
cos

⇣
q 0

j �q 0
k

⌘
are called stiffness coefficients. Hence

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (9.9)

The coefficient Tjk measures power exchange over line ( j,k) with respect to changes in phase angles.

The model has three components (see Figure 9.1): (i) a turbine-governor that produces the mechan-
ical power pM

j (t) based on the setpoint u j(t); (ii) a power generator that converts the mechanical power
output pM

i (t) of the turbine-governor into electric power that serves the local load �s j(t) and injects
power Âk Pjk(t) into the transmission system; and (iii) two feedback control mechanisms for primary and
secondary frequency control. It describes the dynamics of the incremental variables Dq j, Dw j, etc.

Figure 9.1: A schematic diagram of generating unit j, its setpoint u j(t), local injection s j(t), and line
power Pjk(t) to the transmission system.

9.4.2 Primary control

Turbine-governor model. A second-order model of the turbine-governor with droop control is:

Tg j ȧ j = �a j(t) + u j(t)�
Dw j(t)

R j
, j 2 N

Tt j ṗM
j = �pM

j (t) + a j(t), j 2 N



Primary frequency control
Generator model




where

•  : inertia constant of synchronous machine


•  : damping and frequency-sensitive load 

Δ ·θj = Δωj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

Mj

Dj
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⌘
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DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)
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, ( j,k) 2 E (9.9)

The coefficient Tjk measures power exchange over line ( j,k) with respect to changes in phase angles.

The model has three components (see Figure 9.1): (i) a turbine-governor that produces the mechan-
ical power pM

j (t) based on the setpoint u j(t); (ii) a power generator that converts the mechanical power
output pM

i (t) of the turbine-governor into electric power that serves the local load �s j(t) and injects
power Âk Pjk(t) into the transmission system; and (iii) two feedback control mechanisms for primary and
secondary frequency control. It describes the dynamics of the incremental variables Dq j, Dw j, etc.

Figure 9.1: A schematic diagram of generating unit j, its setpoint u j(t), local injection s j(t), and line
power Pjk(t) to the transmission system.

9.4.2 Primary control

Turbine-governor model. A second-order model of the turbine-governor with droop control is:

Tg j ȧ j = �a j(t) + u j(t)�
Dw j(t)

R j
, j 2 N

Tt j ṗM
j = �pM

j (t) + a j(t), j 2 N



Primary frequency control
Generator model
Model for instantaneous line flow





Linear approximation





Linearized model





where 

Pjk(t) = |Vj | |Vk |(−bjk) sin (θj(t) − θk(t))

Pjk(t) = |Vj | |Vk |(−bjk) sin (θ0
j − θ0

k )
P0

jk

+ Tjk (Δθj(t) − Δθk(t))

ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
Tjk := |Vj | |Vk |(−bjk) cos (θ0

j − θ0
k )
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Primary frequency control
Generator model
Model for instantaneous line flow





Linear approximation





Linearized model
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ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
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Primary frequency control
Generator model
Model for instantaneous line flow





Linear approximation





Linearized model





where 
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j − θ0

k )
P0

jk
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Tjk := |Vj | |Vk |(−bjk) cos (θ0

j − θ0
k )

Steven Low     EE/CS/EST 135    Caltech



Primary frequency control
Generator model



Δ ·θj = Δωj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)
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second respectively. Since the governor responds much faster than the turbine the model is sometimes
simplified to a first-order model

Tt j DṗM
j = �DpM

j (t) + Du j(t)�
Dw j(t)

R j
, j 2 N

Generator model. The frequency deviation Dw j(t) is determined by the rotating speed of a generator
driven by the mechanical power output pM

j (t) of the turbine. A dynamic model of the generator in terms
of the incremental variables is:

Dq̇ j = Dw j(t), j 2 N (9.11a)

MjDẇ j + D jDw j(t) = DpM
j (t) + Ds j(t) � Â

k: j⇠k
DPjk(t), j 2 N (9.11b)

where Ds j(t) is the deviation of the uncontrollable injection from its prediction s0
j and DPjk(t) are the

incremental line flows given by (9.9). The block diagram representation of (9.11) is in Figure 9.3. Here

Figure 9.3: Block diagram in Laplace domain of the generator dynamic (9.11). Buses adjacent to bus j
are labeled 1, . . . ,n j.

Mj is the inertia constant of generator j, and D j is the sum of damping constant of generator j and the
frequency sensitivity of motor-type injection at bus j, as we now explain.

If s j(t) < 0 represents a load, a common model consists of both frequency sensitive load s1 j

⇣
w0

j +w j(t)
⌘

such as a motor and frequency insensitive load s2 j(t) due to the switching on or off of an electrical device
that draws a specified amount of power. Approximate the frequency sensitive load by its linear approx-
imation s1 j

�
w0�+

∂s1 j
∂w j

�
w0�Dw j(t) and write the frequency insensitive load as s2 j(t) = s0

2 j + Ds2 j(t).

Then the deviation ∂s1 j
∂w j

�
w0�Dw j(t) of the frequency sensitive load is absorbed into D jDw j(t) in (9.11b).



Primary frequency control
Turbine-governor-generator model




Tgj Δ ·aj = − Δaj(t) + Δuj(t) −
Δωj(t)

Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
Δ ·θj = Δωj(t)
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Primary frequency control
Turbine-governor-generator model
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The uncontrollable load s j(t) is then the sum of the remaining terms:

s j(t) =
⇣

s1 j
�
w0�+s0

2 j

⌘

| {z }
s0

j

+ Ds2 j(t)| {z }
Ds j(t)

In summary the primary frequency control is modeled by (9.9) (9.10) (9.11) reproduced here:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (9.12a)

Tt j D ṗM
j = �DpM

j (t) + Da j(t), j 2 N (9.12b)

MjDẇ j + D jDw j(t) = DpM
j (t) + Ds j(t) � Â

k: j⇠k
DPjk(t), j 2 N (9.12c)

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (9.12d)

Dq̇ j = Dw j(t), j 2 N (9.12e)

This closes the droop control loop. The block diagram representation combines those in Figures 9.2 and
9.3. It is shown in Figure 9.4. The input to the system are external disturbance Ds j(t) at each each

Figure 9.4: Block diagram of primary frequency control (9.12). Buses adjacent to bus j are labeled
1, . . . ,n j.

generator j and the adjustment Du j(t) to the dispatch setpoint. Since the secondary control that updates
the setpoint operates at a much slower timescale than the primary frequency control timescale, we can
understand the behavior of the (quasi) steady state of the primary control by assuming a constant setpoint
adjustment Du j(t) = Du j.

Consider then a step disturbance in the uncontrollable injection where Ds j(t) changes at time t = 0
from 0 to a constant value Ds j. We say that x⇤ :=

�
Dw⇤,DP⇤,Dq ⇤,Da⇤,DpM⇤� is an equilibrium point of

(9.12) driven by the step change Ds and constant setpoint Du j if, at x⇤,

Dẇ j = Dȧ j = DṗM
j = 0, j 2 N

Input: 

•  : uncontrollable injection


•  : setpoint adjusted by secondary control


•  : line flows to other areas

Δσj(t)
Δuj(t)
ΔPjk(t)



Primary frequency control
Turbine-governor-generator model




Tgj Δ ·aj = − Δaj(t) + Δuj(t) −
Δωj(t)

Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
Δ ·θj = Δωj(t)
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Equilibrium of primary control:    (does not require )Δ ·ωj = Δ ·aj = Δ ·pM
j = 0 Δ ·θ = 0



Primary frequency control
Equilibrium
Bus-by-line incidence matrix  :





Stiffness matrix: 


Laplacian matrix:   and its pseudo-inverse 


C

Cjl :=
1  if  l = j → k for some bus k

−1  if  l = i → j for some bus i
0  otherwise

T := diag(Tjk, ( j, k) ∈ E)

L := CTCT L†
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Primary frequency control
Equilibrium
Theorem 

Let  be an equilibrium driven by step change 
 and constant setpoint 

1. Local frequency deviations converge to





2. Line flow deviations converge to





  where 

x* := (Δω*, ΔP*, Δθ*, Δa*, ΔpM*)
Δσ Δu

Δω*j = Δω* :=
∑k (Δuk + Δσk)
∑k (Dk + 1/Rk)

ΔP* = TCTL† (Δu + Δσ − Δω*d)
d := (Dj + 1/Rj, j ∈ N)
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Primary frequency control
Equilibrium
Theorem 

Let  be an equilibrium driven by step change 
 and constant setpoint 

1. Local frequency deviations converge to





2. Line flow deviations converge to





  where 

x* := (Δω*, ΔP*, Δθ*, Δa*, ΔpM*)
Δσ Δu

Δω*j = Δω* :=
∑k (Δuk + Δσk)
∑k (Dk + 1/Rk)

ΔP* = TCTL† (Δu + Δσ − Δω*d)
d := (Dj + 1/Rj, j ∈ N)
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Secondary control: 
• Adjusting  to drive 

  and  to 0
Δu

Δω*j ΔP*jk



Primary frequency control
Example: interconnected system
Model

•  areas each modeled as a bus


•  for all 


• Step change: at time 0,  changes from 0 to a constant value 


• Suppose  are iid random variables with mean  and variance 


Compare the mean & variance of equilibrium frequency deviation  :


• Case 1: the areas (buses) are not connected and operate independently.


• Case 2: the areas (buses) are connected into a network

N + 1
Δuj = 0 j

σj(t) Δσj

Δσj Δσ̄j v2
j

Δω*j
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Primary frequency control
Example: interconnected system
Case 1: independent operation 

       where 


with        ,     var        


Case 2: interconnected system 

             where 


with         ,       var        where  are avgerages

Δω*j =
Δσj

dj
dj := Dj + 1/Rj

EΔω*j =
Δσ̄j

dj
(Δω*j ) =

v2
j

d2
j

Δω* =
∑j Δσj

∑j dj
=

1
N + 1 ∑

j

Δσj

̂d
̂dj :=

1
N + 1 ∑

j

dj

EΔω* =
Δ ̂σ

̂d
(Δω*) =

1
N + 1

̂v2

̂d2
Δ ̂σ, ̂v2
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Frequency control
Model
Linearized around operating point, defined by





Incremental variables (full list)


•  : adjustment to dispatched setpoint


•  : incremental angle relative to rotating frame of 


•  : frequency deviation from operating-point frequency 


•  : line flow deviation


•  : deviation of mechanical power output of turbine


•  : deviation of valve position of turbine-governor

u0
j + σ0

j = ∑
k:j∼k

P0
jk

Δuj(t) := uj(t) − u0
j

Δθj(t) := θj(t) − θ0
j ω0

Δωj(t) = Δ ·θj(t) ω0

ΔPjk(t) := Pjk(t) − P0
jk

ΔpM
j (t) := pM

j (t) − PM0
j

Δaj(t) := aj(t) − a0
j
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Outline

1. Overview


2. Unit commitment


3. Optimal dispatch


4. Frequency control

• Model and assumptions

• Primary frequency control

• Secondary frequency control


5. System security
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Secondary frequency control
Objectives
1. Restore frequency to nominal value

• Drive 


2.  Restore tie-line flows to scheduled values (scheduled by tertiary control)

• Drive   (each bus represents a control area)

Δω* = 0

ΔP* = 0
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Secondary frequency control
Objectives 
At equilibrium of primary control : 








Δω*j = Δω* :=
∑k (Δuk + Δσk)
∑k (Dk + 1/Rk)

ΔP* = TCTL† (Δu + Δσ − Δω*d)

Steven Low     EE/CS/EST 135    Caltech

Therefore, need to adjust setpoints  


•  if  


•  if  

Δu(t)

Δω*j = 0 ∑
k

(Δuk + Δσk) = 0

ΔP*jk = 0 Δuj + Δσj = 0



Secondary frequency control
Area control error (ACE) 





Setpoint adjustment





Implementation


• Real-time measurements of  with neighboring areas  are sent to system operator


• System operator centrally computes  and dispatch setpoint adjustments  to 
participating generators  in areal  (   with  are called participation factors)

ACEj(t) := ∑
k:j∼k

ΔPjk(t) + βjΔωj(t)

Δ ·uj = − γj ∑
k:j∼k

ΔPjk(t) + βjΔωj(t)

Pjk(t) k

Δ ·uj αjiΔuj(t)
i j αji ≥ 0 ∑

i

αji = 1
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Secondary frequency control
Overall (primary & secondary) model 




Tg Δ ·a = − Δa(t) + Δu(t) − R−1Δω(t)

Tt Δ ·pM = − ΔpM(t) + Δa(t) }
MΔ ·ω + DΔω(t) = ΔpM(t) + Δσ(t) − CΔP(t)

ΔP(t) = TCTΔθ(t)
Δ ·θ = Δω(t)
Δ ·u = − Γ (CΔP(t) + BΔω(t))
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turbine-

governor

generator

Equilibrium of secondary control:    

(does not req )

Δ ·u = Δ ·ω = Δ ·a = Δ ·pM = 0
Δ ·θ = 0



Secondary frequency control
Overall (primary & secondary) model 
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Theorem 9.1 suggests that the objectives of the secondary control can only be achieved by adjusting
the setpoints u(t) of the generators to cancel the disturbances (see Remark 9.6). Suppose each bus j in
(9.12) represents an area and the setpoint adjustment Du j(t) represents an aggregate adjustment that will
then be shared by all generators in area j that participate in the secondary control. The adjustment is based
on the area control error (ACE) which is a weighted sum of frequency and line flow deviations:

ACE j(t) := Â
k: j⇠k

DPjk(t) + b jDw j(t), j 2 N

where b j > 0 is called a frequency bias setting. The setpoint adjustment Du j(t) integrates ACE j in order
to drive it to zero:

Du̇ j = �g j

 

Â
k: j⇠k

DPjk(t) + b jDw j(t)

!
, j 2 N (9.13)

The computation (9.13) requires real-time measurement of tie-line flow deviations DPjk(t) with all neigh-
boring areas k. This information is sent to area j’s system operator which centrally computes the aggre-
gate adjustment Du j(t) for the entire area using (9.13). It then dispatches in real time setpoint adjustments
a jiDu j(t) with a ji � 0 and Âi a ji = 1 to participating generators i in area j. The weights a ji are called
participation factors.

In summary the primary and secondary frequency control in area j is modeled by the system (9.12)
(9.13). It is driven by the uncontrollable injection Ds j(t) and consists of two feedback control mech-
anisms, the droop control with regulation parameter R j and setpoint adjustment based on ACE j(t). Its
block diagram is shown in Figure 9.5.

Figure 9.5: Block diagram of primary and secondary frequency control (9.12) (9.13) in area j.

To understand the behavior of the entire interconnected system it is convenient to write (9.12) (9.13)

generator

primary

control

secondary

control

tie-line flow



Secondary frequency control
Equilibrium
Theorem 

Let  be an equilibrium driven by step 
change 


1. Frequencies are restored to  : 


2. Line flow are restored to  : 

3. Disturbances are compensated for locally at each bus (i.e., in each area) : 

x* := (Δu*, Δω*, ΔP*, Δθ*, Δa*, ΔpM*)
Δσ

ω0 Δω* = 0
P0 ΔP* = 0

Δu*j + Δσj = 0
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Outline

1. Overview


2. Unit commitment


3. Optimal dispatch


4. Frequency control


5. System security
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System security

• System security refers to ability to withstand contingency events


• A contingency event is an outage of a generator, transmission line, or transformer


• Contingency events are rare, but can be catastrophic 


• NERC’s (North America Electricity Reliability Council)  rule the outage of a 
single piece of equipment should not result in violation of voltage or line limits

N − 1
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System security

Secure operation


• Analyze credible contingencies that may lead to voltage or line limit violations


• Account for these contingencies in optimal commitment and dispatch schedules 
(security constrained UC/ED)


• Monitor system state in real time and take corrective actions when contingency 
arises
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Optimal dispatch

Recall: OPF without security constraints (base case):





where


•  : dispatch in base case


•  : network state in base case


•  : power flow equations, etc.


•  : operational constraints

min
(u0,x0)

c0 (u0, x0)
 s.t. f0 (u0, x0) = 0, g0 (u0, x0) ≤ 0

u0

x0

f0 (u0, x0)
g0 (u0, x0)
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Security constrained OPF
Preventive approach

Basic idea 

• Augment optimal dispatch (OPF) with additional constraints …


• … so that the (new) network state under optimal dispatch  will satisfy 
operational constraints after contingency events


• Dispatch remains unchanged until next update period, even if a contingency 
occurs in the middle of control interval 

uopt
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Security constrained OPF
Preventive approach
Security constrained OPF (SCOPF)





where


•  : new state under same dispatch  after contingency 


•  : power flow equations for post-contingency network


•  : (more relaxed) emergency operational constraints after contingency  

min
(u0,x0, x̃k, k≥1)

c0 (u0, x0)
 s.t. f0 (u0, x0) = 0, g0 (u0, x0) ≤ 0

f̃k (u0, x̃k) = 0, g̃k (u0, x̃k) ≤ 0

x̃k u0 k

f̃0 (u0, x̃0)
g̃0 (u0, x̃0) k
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Security constrained OPF
Corrective approach

Basic idea 

• Compute optimal dispatch not only for base case, but also for each contingency 


• System operator can dispatch a response immediately after contingency without 
waiting till next dispatch period  

k
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Security constrained OPF
Corrective approach
Security constrained OPF (SCOPF)





where


•  : dispatch & state in base case  and after contingency 


•  : power flow equations & operational constraints for 


•  : ramp rate limits

min
(uk,xk, k≥0) ∑

k≥0

wk ck (uk, xk)

 s.t. fk (uk, xk) = 0, gk (uk, xk) ≤ 0, k ≥ 0
∥uk − u0∥ ≤ ρk, k ≥ 1

(uk, xk) k = 0 k ≥ 1

(fk, gk) k ≥ 0

∥uk − u0∥
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ramp rate limits



Conclusion
Central challenge: balance supply & demand second-by-second


• While satisfying operational constraints, e.g. injection/voltage/line limits

• Unlike usual commodities, electricity cannot (yet) be stored in large quantity


This is achieved through a complex set of mechanisms that operate in concert across 
multiple timescales


• Slow timescale mechanisms (minutes and up) can be formulated as OPF problems

• Fast timescales (seconds to minutes) can be formulated as feedback control problems


Part III of text: OPF

• Mathematical formulations, computational properties, convex relaxations, stochastic 

optimization
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