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Power System Analysis
Chapter 12  Optimal power flow
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3. OPF applications
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Single-phase devices

Voltage source 

• Ideal voltage source: terminal voltage  = internal voltage 


•  is variable if the source is controllable, or given otherwise


Current source 

• Ideal current source: terminal voltage  = internal voltage


•  is variable if the source is controllable, or given otherwise


Power source 

• Ideal power source: terminal power  = internal power


•  is variable if the source is controllable, or given otherwise


Impedance 

• Impedance : constrains its terminal voltage & current 

j
Vj

Vj

j
Ij

Ij

j
sj

sj

j
zj Vj = − zjIj
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Single-phase OPF
Assumptions 
Assume WLOG


• Single-phase devices: voltage sources and power sources only


• Each bus has a single device with 


Formulate the simplest OPF to study general computational properties

(Vj, sj)
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Single-phase OPF
Simplest formulation 
Optimization variable: 


• Represents voltage sources   and power sources  only


Cost function 


• Fuel cost :   


• Total real power loss:   

(V, s) := (Vj, sj, j ∈ N)
Vj sj

C0(V, s)
C0(V, s) := ∑

j:gens
cj Re(sj)

C0(V, s) := ∑
j

Re(sj)
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Single-phase OPF
Simplest formulation 
Power flow equations in BIM


• Equality constraints on 





• Derivation: 





• Can also use polar form and Cartesian form

• Nonlinear and global equality constraints, resulting in nonconvexity of OPF

(V, s)

sj = ∑
k:j∼k

Sjk(V) := ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2 , j ∈ N

Ijk(V) := ys
jk(Vj − Vk) + ym

jk Vj

Sjk(V) := VjI𝖧
jk(V) := (ys

jk)
𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jk)

𝖧
|Vj |

2
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Single-phase OPF
Simplest formulation 
Operational constraints


• Injection limits (e.g. gen. or load capacity limits):   


• Voltage limits:   


• Line limits:  





Line limits can also be on line powers  or apparent powers 

smin
j ≤ sj ≤ smax

j

vmin
j ≤ |Vj |

2 ≤ vmax
j

| Ijk(V ) |2 ≤ Imax
jk , | Ikj(V ) |2 ≤ Imax

kj

ys
jk(Vj − Vk) + ym

jk Vj

2
≤ Imax

jk , ( j, k) ∈ E

ys
kj(Vk − Vj) + ym

kj Vk

2
≤ Imax

kj , ( j, k) ∈ E

(Sjk(V ), Skj(V )) ( Sjk(V ) , Skj(V ) )
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Single-phase OPF
Simplest formulation 
OPF in BIM





• Does not need assumption  

• Can accommodate single-phase transformers with complex turns ratios

min
(V,s)

C0(V, s)

subject to f(V, s) = 0
g(V, s) ≤ 0

ys
jk = ys

kj
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power flow equations

operational  constraints



Single-phase OPF
1.  Other devices


• Can include other devices such as current sources, impedances, capacity taps

• Allow multiple devices connected to same bus


2.  Can formulate OPF in terms of  only

• Use power flow equations to express injections  as functions of 


• Eliminate  and power flow equations (equality constraints)

V
sj(V) V

sj
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Single-phase OPF
Including other devices
Examples


• Current source (controllable): variable  with local constraints  


• Impedance : imposes additional constraint   


• Capacitor tap (controllable): variable  with local constraints  


• Multiple devices: injection variables  with local constraints  


Including other devices at bus  imposes additional local constraints 


• Additional optimization var  may be introduced


• Equality constraints relating  and  (if present) :    


• Inequality (operational) constraints (e.g., capacity limits):   

Ij | Ij |
2 ≤ Imax

j , sj = VjI𝖧
j

zj sj = |Vj |
2 /z𝖧

j

yj ymin
j ≤ yj ≤ ymax

j , sj = y𝖧
j |Vj |

2

sjk smin
jk ≤ sjk ≤ smax

jk , sj = ∑
k

sjk

j
uj

(Vj, sj) uj fj (Vj, sj, uj) = 0

gj(uj) ≤ 0
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Single-phase OPF
In terms of  onlyV
Equality constraints (BIM in complex form)





• Expresses  in terms of voltages 


Cost  expressed as function of 

• Fuel cost: 





• Total real power loss: 


sj(V) = ∑
k:j∼k

Sjk(V) := ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2 , j ∈ N

sj V

C0(V) := C0(V, s(V)) V

C0(V) := ∑
j:gens

cj Re(sj(V)) = ∑
j:gens

cj Re ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

C0(V) := ∑
j

Re(sj(V))
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Single-phase OPF
Operational constraints
Injection limits (e.g. generation or load capacity limits)   :





• Polar form: 


smin
j ≤ sj(V) ≤ smax

j

sj ≤ ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2 ≤ sj, j ∈ N

p
j

≤ (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk − bjk sin θjk) ≤ pj

p
j

≤ (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(bjk cos θjk + gjk sin θjk) ≤ qj
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Single-phase OPF
Operational constraints
Voltage limits (same as before):





Line limits (same as before):





• Line limits can also be on line powers  or apparent powers 

vmin
j ≤ |Vj |

2 ≤ vmax
j , j ∈ N

ys
jk(Vj − Vk) + ym

jk Vj

2
≤ Imax

jk , ( j, k) ∈ E

ys
kj(Vk − Vj) + ym

kj Vk

2
≤ Imax

kj , ( j, k) ∈ E

(Sjk(V), Skj(V)) ( Sjk(V) , Skj(V) )
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Single-phase OPF
In terms of  onlyV
Feasible set





OPF in BIM





• Does not need assumption  

• Can accommodate single-phase transformers with complex turns ratios

𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}

min
V∈𝕍

C0(V)

ys
jk = ys

kj
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Single-phase OPF
In terms of  onlyV
Feasible set





OPF in BIM


𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}

min
V∈𝕍

C0(V)
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We will mostly study this simple OPF

Can express it as a QCQP



Outline
1. Bus injection model


• Single-phase devices

• Single-phase OPF

• OPF as QCQP

• Three-phase devices

• Three-phase OPF

• Three-phase OPF as QCQP


2. Branch flow model


3. Optimization algorithms
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OPF as QCQP
QCQP
Quadratically constrained quadratic program:





•  :  Hermitian matrix 

• 

• Homogeneous QCQP : all monomials are of degree 2

min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

Cl n × n
bl ∈ ℝ
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OPF as QCQP
QCQP
Inhomogeneous QCQP





Homogenization:


• Idea:   


• If  satisfies 2nd inequality, then  satisfies 1st inequality

min
x∈ℂn

x𝖧C0x + (c𝖧
0 x + x𝖧c0)

s.t. x𝖧Clx + (c𝖧
l x + x𝖧cl) ≤ bl, l = 1,…, L

|x |2 + (c𝖧x + x𝖧c) ≤ b ⟺ |x + ct |2 − |c |2 | t |2 ≤ b, | t |2 = 1
(x, t = eiθ) xt = xeiθ
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OPF as QCQP
QCQP
Equivalent homogeneous QCQP





Homogenization:


• Idea:   


• If  satisfies 2nd inequality, then  satisfies 1st inequality

min
x∈ℂn, t∈ℂ

[x𝖧 t𝖧] [
C0 c0

c𝖧
0 0 ] [x

t]

s.t. [x𝖧 t𝖧] [
Cl cl

c𝖧
l 0] [x

t] ≤ bl, l = 1,…, L

[x𝖧 t𝖧] [0 0
0 1] [x

t] = 1

|x |2 + (c𝖧x + x𝖧c) ≤ b ⟺ |x + ct |2 − |c |2 | t |2 ≤ b, | t |2 = 1
(x, t = eiθ) xt = xeiθ
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OPF as QCQP
To write OPF as QCQP:  


• Assume cost function  can be written as a quadratic form 

• Need to rewrite operational constraints in terms of quadratic forms

C0(V) = V𝖧C0V
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OPF as QCQP
Injection limits  smin

j ≤ sj(V) ≤ smax
j



sj(V) = Vj I𝖧

j = (e𝖧
j V) (e𝖧

j I)
𝖧

= e𝖧
j VV𝖧Y𝖧ej

sj(V) = tr (e𝖧
j VV𝖧Y𝖧ej) = tr ((Y𝖧eje𝖧

j ) VV𝖧) =: V𝖧Y𝖧
j V
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OPF as QCQP
Injection limits  smin

j ≤ sj(V) ≤ smax
j




•   is not Hermitian so   is generally complex


• Define     


• Then      


Hence    is equivalent to:   


sj(V) = Vj I𝖧
j = (e𝖧

j V) (e𝖧
j I)

𝖧
= e𝖧

j VV𝖧Y𝖧ej

sj(V) = tr (e𝖧
j VV𝖧Y𝖧ej) = tr ((Y𝖧eje𝖧

j ) VV𝖧) =: V𝖧Y𝖧
j V

Yj V𝖧Y𝖧
j V

Φj :=
1
2 (Y𝖧

j + Yj), Ψj :=
1
2i (Y𝖧

j − Yj)
Re(sj) = V𝖧ΦjV, Im(sj) = V𝖧ΨjV

smin
j ≤ sj(V) ≤ smax

j

pmin
j ≤ V𝖧ΦjV ≤ pmax

j , qmin
j ≤ V𝖧ΨjV ≤ qmax

j
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OPF as QCQP
Voltage limits
Voltage magnitude is:     where    


Hence voltage limits are:   

|Vj |
2 = V𝖧JjV Jj := eje𝖳

j

vmin
j ≤ V𝖧JjV ≤ vmax

j
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OPF as QCQP
Line limits
Write  in terms of voltage vector :    


  


Hence current limit is:      where


Ijk V

Ijk = ys
jk(Vj − Vk) + ym

jkVj = (ys
jk(ej − ek)𝖳 + ym

jk e𝖳
j ) V

| Ijk |2 = V𝖧 ̂YjkV ≤ Imax
jk

̂Yjk := (ys
jk(ej − ek)𝖳 + ym

jk e𝖳
j )

𝖧

(ys
jk(ej − ek)𝖳 + ym

jk e𝖳
j )
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OPF as QCQP
Simplest formulation

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ V𝖧ΦjV ≤ pmax

j , j ∈ N

qmin
j ≤ V𝖧ΨjV ≤ qmax

j , j ∈ N

vmin
j ≤ V𝖧JjV ≤ vmax

j , j ∈ N

V𝖧 ̂YjkV ≤ Imax
jk , ( j, k) ∈ E

V𝖧 ̂YkjV ≤ Imax
kj , ( j, k) ∈ E
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Outline
1. Bus injection model


• Single-phase devices

• Single-phase OPF

• OPF as QCQP

• Three-phase devices

• Three-phase OPF

• Three-phase OPF as QCQP


2. Branch flow model


3. Optimization algorithms
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Recall: overall 3-phase BIM
Device + network
1. Device model for each 3-phase device 


• Internal model on  + conversion rules


• External model on  


• Either can be used

• Power source models are nonlinear; other devices are linear


2. Network model relates terminal vars 


• Nodal current balance (linear): 


• Nodal power balance (nonlinear): 


• Either can be used

(VY/Δ
j , IY/Δ

j , sY/Δ
j )

(Vj, Ij, sj)

(V, I, s)
I = YV

sj = ∑
k:j∼k

diag (Vj(Vj − Vk)𝖧ys𝖧
jk + VjV𝖧

j ym𝖧
jk )

Steven Low     Caltech    Network models

Our perspective:


• Internal vars  are controllable, depending on types of device


• External vars  are not directly controllable


  use internal model + conversion rules 

(VY/Δ
j , IY/Δ

j , sY/Δ
j )

(Vj, Ij, sj)
∴



Recall: overall 3-phase BIM
Device + network

2. Network model relates terminal vars 


• Nodal current balance (linear): 

• Nodal power balance (nonlinear): 





• Either can be used

(V, I, s)
I = YV

sj = ∑
k:j∼k

diag (Vj(Vj − Vk)𝖧ys𝖧
jk + VjV𝖧

j ym𝖧
jk )

Steven Low     Caltech    Network models

For OPF, our formulation uses : 

• Relate  through power flow equations


• Power sources lead to nonlinear analysis, even if we use  as network equation


• Need to relate internal optimization vars to  using conversion rules

(V, s)
(V, s)

I = YV

(Vj, sj)



Three-phase devices
Voltage source 


• Internal optimization variable    (  assumed given)


• Local constraints that relate internal vars to 


VY/Δ
j

uj := VY/Δ
j γY

j

(Vj, sj)
Y : Vj = VY

j + γY
j 1

Δ : ΓVj = VΔ
j
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Note:


• Choosing  does not uniquely determine 


• Optimization over  implicitly chooses an optimal 


• If  is given, then   should be replaced by 

VΔ
j Vj

Vj γΔ
j :=

1
3

1𝖳Vj

γΔ
j ΓVj = VΔ

j Vj = Γ†VΔ
j + γΔ

j 1



Three-phase devices
Current source 


• Internal optimization variable   


• Local constraints that relate internal vars and 


IY/Δ
j

uj := IY/Δ
j

(Vj, sj)
Y : sj = − diag (VjIY𝖧

j )
Δ : sj = − diag (VjIΔ𝖧

j Γ)
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Note:


• Optimization over  implicitly chooses an optimal  


• If  is given, it imposes an additional constraint   (and express  in terms of 

IΔ
j βΔ

j :=
1
3

1𝖳IΔ
j

βΔ
j IΔ

j = −
1
3

ΓIj + βΔ
j 1 Ij (Vj, sj)



Three-phase devices
Power source 


• Internal optimization variable    (assume )


• Local constraints that relate internal vars and 





Impedance  

• Given parameter:    (assume ) 


• Local constraints on terminal vars 


(sY/Δ
j , IY/Δ

j )
uj := (sY/Δ

j , IY/Δ
j ) γY

j := Vn
j = 0

(Vj, sj)
Y : sj = − sY

j

Δ : sj = − diag (VjIΔ𝖧
j Γ), sΔ

j = diag (ΓVjIΔ𝖧
j )

zY/Δ
j

zY/Δ
j γY

j := Vn
j = 0

(Vj, sj)
Y : sj = − diag (VjV𝖧

j yY𝖧
j )

Δ : sj = − diag (VjV𝖧
j YΔ𝖧

j )
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YΔ
j := Γ𝖳yΔΓ



Three-phase OPF
Variables:


• Terminal variables 


• Internal variables  depending on devices (discussed above)


Cost function: 


Equality constraints:

1. Power flow equations on  (global constraint):  





2. Conversion rules relating internal optimization var  to  (local constraint, discussed above)


(Vj, sj)
uj

C0 (V, s, u)

(V, s) f(V, s) = 0

sj = ∑
k:j∼k

diag (Vj(Vj − Vk)H(ys
jk)

H
+ VjVH

j (ym
jk)

H), j ∈ N

uj (Vj, sj)
fY/Δ
j (Vj, sj, uj) = 0, j ∈ N
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Three-phase OPF
Inequality constraints:


1. Operational constraints on external vars:  





Same constraints as single-phase OPF, but on single-phase equivalent circuit

g(V, s) ≤ 0

injection limits: sϕ min
j ≤ sϕ

j ≤ sϕ max
j , ϕ ∈ {a, b, c}, j ∈ N

voltage limits: vϕ min
j ≤ Vϕ

j

2
≤ vϕ max

j , ϕ ∈ {a, b, c}, j ∈ N

line limits: Iϕ
jk(V)

2
≤ Iϕ max

jk , Iϕ
kj(V)

2
≤ Iϕ max

kj , ϕ ∈ {a, b, c}, ( j, k) ∈ E
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Three-phase OPF
Inequality constraints:


2. Operational constraints on internal vars:  


for 





Local constraints at each bus 

gY/Δ
j (uj) ≤ 0

ϕn ∈ {an, bn, cn}, ϕφ ∈ {ab, bc, ca}

voltage source: vϕn min
j ≤ Vϕn

j

2
≤ vϕn max

j , vϕφ min
j ≤ Vϕφ

j

2
≤ vϕφ max

j

current source: Iϕn
j

2
≤ Imax

j , Iϕφ
j

2
≤ Imax

j

power source: sϕn min
j ≤ sϕn

j ≤ sϕn max
j , Iϕn

j

2
≤ Iϕn max

j

sϕφ min
j ≤ sϕφ

j ≤ sϕφ max
j , Iϕφ

j

2
≤ Iϕφ max

j

j
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Three-phase OPF
Constraints summary
1. Constraints on terminal variables:   


• Power flow equation and operational constraints (terminal power injection limits, voltage limits, line 
limits)


• Global constraints

• Extension of single-phase constraints to 3-phase setting, using single-phase equivalent


2. Conversion rules relating  and :    


• Local equality constraint for each device 


3. Operational constraints on internal variables:     


• Depending on type of device (voltage and capacity limits)

• Local constraints for each device 

f(V, s) = 0, g(V, s) ≤ 0

uj (Vj, sj) fY/Δ
j (uj, Vj, sj) = 0

j

gY/Δ
j (uj) ≤ 0

j

Steven Low     OPF      Bus injection model



Three-phase OPF
Simplest formulation 

OPF in BIM

min

(V,s,u)
C0(V, s, u)

f(V, s) = 0, g(V, s) ≤ 0
fY/Δ
j (Vj, sj, uj) = 0, gY/Δ

j (uj) ≤ 0, j ∈ N
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Global constraints on terminal vars

Local constraints at each bus j



Three-phase OPF
As QCQP
1.  Can formulate OPF in terms of  only


• Use power flow equations to express    and eliminate  and 


• Same idea as before applied to single-phase equivalent


2.  Can formulate OPF as QCQP

• Express operational constraints  in terms of quadratic forms in  (same idea applied 

to single-phase equivalent)


• Express conversion rules    in terms of quadratic forms in 

(V, u)
sj(V) = V𝖧 (Yϕ𝖧

j ) V sj f(V, s) = 0

g(V, s(V)) ≤ 0 V

fY/Δ
j (Vj, sj(V), uj) = 0 (V, uj)

Steven Low     OPF      Bus injection model

For details: see Lecture Notes



Outline
1. Bus injection model


2. Branch flow model

• Single-phase OPF

• Three-phase OPF


3. OPF applications


4. Optimization algorithms
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Overview

Steven Low     OPF      Branch flow model

device models

line/transformer 

models

nodal

current/power


balance
network models

BFM and BIM differ only in power flow equations

single-phase or 3-phase

BFM & BIM use

same device models



Assumptions
Both single-phase & 3-phase OPF
Radial network


• BFM most useful for modeling distribution systems


  or equivalently  

• Does not include 3-phase transformers in  or  configuration (or single-phase transformers with 

complex gains)


  


• Reasonable assumption for distribution line where 


Includes only voltage sources and power sources 

• Optimization variables are voltages (squared magnitudes)  and power injections  respectively

• A current source or an impedance will introduce additional var and constraint.

zs
jk = zs

kj ys
jk = ys

kj
ΔY YΔ

ym
jk = ym

kj = 0
|ym

jk | , |ym
kj | ≪ |ys

jk |

vj sj

Steven Low     OPF      Branch flow model



Single-phase OPF
Power flow equations


• All lines point away from bus 0 (root)





Operational constraints


∑
k:j→k

Sjk = Sij − zijℓij + sj, j ∈ N

vj − vk = 2 Re (z𝖧
jkSjk) − |zjk |2 ℓjk, j → k ∈ E

vjℓjk = |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j

vmin
j ≤ vj ≤ vmax

j

ℓjk ≤ Imax
jk
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Single-phase OPF

Steven Low     OPF      Branch flow model

Feasible set





OPF in BFM


𝕋0 := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies PF equations & operational constraints}

min
x∈𝕋0

C(x)



Single-phase OPF
Equivalence
Recall for BIM:


• Feasible set:   


• OPF:  


OPF in BFM is equivalent to OPF in BIM:

• Feasible sets  and  are equivalent (Ch 6)


• … provided cost functions  and  are the same

𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}
min
V∈𝕍

C0(V)

𝕋0 𝕍
C(x) C0(V)
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Three-phase OPF
Variables :


1. Directly generalizes vars in single-phase OPF (  : complex psd matrices)





To write conversion rule for power sources, introduce phasors as additional vars





Let 


(x, u)
𝕊n

+

sj ∈ ℂ3, vj ∈ 𝕊3
+, j ∈ N

ℓjk ∈ 𝕊3
+, Sjk ∈ ℂ3×3, j → k ∈ E

(Vj, j ∈ N), (Ĩjk, j → k ∈ E)
x := (s, v, ℓ, V, Ĩ, S)
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Three-phase OPF
Variables :


2. Internal variables  of 3-phase devices





(x, u)
u := (uj, j ∈ N)

voltage source : uj := VY/Δ
j ∈ ℂ3

power source : uj := (uj1, uj2) = (sY/Δ
j , IY/Δ

j ) ∈ ℂ6
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Three-phase OPF
Equality constraints


1. Power flow equations (from Ch 10):





∑
k:j→k

diag(Sjk) = diag (Sij − zijℓij) + sj, j ∈ N

vj − vk = (zjk S𝖧
jk + Sjkz𝖧

jk) − zjk ℓjk z𝖧
jk, j → k ∈ E

[
vjSjk

S𝖧
jkℓjk] ≥ 0, j → k ∈ E

rank [
vjSjk

S𝖧
jkℓjk] = 1, j → k ∈ E

vj = VjV𝖧
j , ℓjk = ĨjkĨ𝖧

jk, Sjk = VjĨ𝖧
jk, j → k ∈ E
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additional equations



Three-phase OPF
Equality constraints


1. Power flow equations (from Ch 10):





∑
k:j→k

diag(Sjk) = diag (Sij − zijℓij) + sj, j ∈ N

vj − vk = (zjk S𝖧
jk + Sjkz𝖧

jk) − zjk ℓjk z𝖧
jk, j → k ∈ E

[
vjSjk

S𝖧
jkℓjk] ≥ 0, j → k ∈ E

rank [
vjSjk

S𝖧
jkℓjk] = 1, j → k ∈ E

vj = VjV𝖧
j , ℓjk = ĨjkĨ𝖧

jk, Sjk = VjĨ𝖧
jk, j → k ∈ E
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redundant constraints kept

for semidefinite relaxation (later)



Three-phase OPF
Equality constraints


2. Conversion rules for voltage & power sources (assume )








γY
j := Vn

j = 0

voltage source : Y : vj = VY
j VY𝖧

j = uju𝖧
j

Δ : ΓvjΓ𝖳 = VΔ
j VΔ𝖧

j = uju𝖧
j

power source : Y : sj = − diag (Vj u𝖧
j2), sj = − uj1

Δ : sj = − diag (Vj u𝖧
j2 Γ), uj1 = diag (ΓVj u𝖧

j2)
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Three-phase OPF
Inequality constraints


1. Operational constraints on :





x

injection limits: smin
j ≤ sj ≤ smax

j , j ∈ N

voltage limits: vmin
j ≤ diag (vj) ≤ vmax

j , j ∈ N

line limits: diag (ℓjk) ≤ Imax
jk , ( j, k) ∈ E
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Three-phase OPF
Inequality constraints


2. Operational constraints on internal vars :





uj

voltage source: vϕn min
j ≤ Vϕn

j

2
≤ vϕn max

j , vϕφ min
j ≤ Vϕφ

j

2
≤ vϕφ max

j

power source: sY min
j ≤ sY

j ≤ sY max
j , Iϕn

j

2
≤ Iϕn max

j

sΔ min
j ≤ sΔ

j ≤ sΔ max
j , Iϕφ

j

2
≤ Iϕφ max

j
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Three-phase OPF
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Feasible set





OPF in BFM





Three-phase OPF in BFM is equivalent to three-phase OPF in BIM:

• Their feasible sets are equivalent (Ch 10)

• … provided their cost functions are equivalent

𝕋3p := {(x, u) := (s, v, ℓ, V, Ĩ, S, u) | (x, u) satisfies all constraints}

min
(x,u)∈𝕋3p

C(x, u)



Outline
1. Bus injection model


2. Branch flow model


3. OPF applications

• Voltage control (distribution grid)


4. Optimization algorithms
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Voltage control
Distribution system
Voltage instability: magnitudes fluctuate outside their limits

• PVs may push magnitudes above upper limits


• EVs may push magnitudes below lower limits


Traditional solution

• Infrastructure upgrade: more/larger transformers, wires, etc 


Non-wire solution

• Distributed energy resources (DER) optimization


• e.g. batteries, smart inverters, demand response


• Can formulate as an OPF

Steven Low    Caltech    Example applications



Voltage control
Optimal battery operation

min
u,V, b ∑

t
∑

j
( |Vj(t) |2 − vref

j (t))
2

s.t. uj(t) + σj(t) = ∑
k:j∼k

Sjk(V(t)), vj ≤ |Vj(t) |2 ≤ vj

|Sjk(V(t)) | ≤ Sjk, |Skj(V(t)) | ≤ Skj

bj(t + 1) = bj(t) − Re (uj(t))
uj ≤ Re (uj(t)) ≤ uj, 0 ≤ bj(t) ≤ Bj
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deviation from nominal voltages

charging/discharging (100% efficiency)

power limit energy limit



Voltage control
Optimal battery operation

min
u,V, b ∑

t
∑

j
( |Vj(t) |2 − vref

j (t))
2

s.t. uj(t) + σj(t) = ∑
k:j∼k

Sjk(V(t)), vj ≤ |Vj(t) |2 ≤ vj

|Sjk(V(t)) | ≤ Sjk, |Skj(V(t)) | ≤ Skj

bj(t + 1) = bj(t) − Re (uj(t))
uj ≤ Re (uj(t)) ≤ uj, 0 ≤ bj(t) ≤ Bj

Steven Low    Caltech    Example applications

deviation from nominal voltages

charging/discharging (100% efficiency)

power limit energy limit



Voltage control
Optimal battery operation

min
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k:j∼k

Sjk(V(t)), vj ≤ |Vj(t) |2 ≤ vj

|Sjk(V(t)) | ≤ Sjk, |Skj(V(t)) | ≤ Skj

bj(t + 1) = bj(t) − Re (uj(t))
uj ≤ Re (uj(t)) ≤ uj, 0 ≤ bj(t) ≤ Bj

Steven Low    Caltech    Example applications

deviation from nominal voltages

charging/discharging (100% efficiency)

power limit energy limit



Voltage control
Optimal battery placement

min
u,V, b, B ∑

t
∑

j
( |Vj(t) |2 − vref

j (t))
2

+ ∑
j

cjBj

s.t. uj(t) + σj(t) = ∑
k:j∼k

Sjk(V(t)), vj ≤ |Vj(t) |2 ≤ vj

|Sjk(V(t)) | ≤ Sjk, |Skj(V(t)) | ≤ Skj

bj(t + 1) = bj(t) − Re (uj(t))
uj ≤ Re (uj(t)) ≤ uj, 0 ≤ bj(t) ≤ Bj

Steven Low    Caltech    Example applications

 : place battery at bus  Bopt
j > 0 j



Outline
1. Bus injection model


2. Branch flow model


3. Optimization algorithms

• Newton-Raphson algorithm

• Interior-point algorithm
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Complex formulation
Even though OPF is often formulated in , it is converted to  before being solved iteratively
ℂ ℝ

Steven Low     OPF      Optimization algorithms

Example: QCQP 




•  :  Hermitian matrix 

• 


min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

Cl n × n
bl ∈ ℝ

Equivalent to: 




•  symmetric matrices


min
(xr,xi)∈ℝ2n [xr

xi]
𝖳

[C0r −C0i

C0i C0r ] [xr
xi]

s.t. [xr
xi]

𝖳

[Clr −Cli

Cli Clr ] [xr
xi] ≤ bl, l = 1,…, L

2n × 2n



Algorithms for OPF
Newton-Raphson algorithm


• 2nd order algorithm 

• Interior-point algorithm 


Interior-point algorithm

• Based on barrier functions

• Uses of Newton-Raphson algorithm for subproblems
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Popular algorithms



Newton-Raphson algorithm
NR is algorithm for solving 




Iteratively: 





where  is Facobian of 


Application to optimization problems:

•  is KKT condition


• If NR converges, it computes a KKT point 


•  is a global optimal if the problem is convex (feasible otherwise)

F(x) = 0, F : ℝn → Rn

x(t + 1) = y(t) + Δx(t)
J(y(t)) Δx(t) = − F(x(t))

J(x) :=
∂F
∂x

(x) F

F(x) = 0
xopt

xopt
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Newton-Raphson algorithm
Describe NR progressively for solving


• Linear equality constrained problems

• Nonlinear equality constrained problems

• Inequality constrained problems
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Newton-Raphson algorithm
Linear equality constraint
Consider





where 

•  is twice continuously differentiable


•  

min
x∈ℝn

f(x) s.t. Ax = b

f : ℝn → ℝ
A ∈ ℝm×n
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Newton-Raphson algorithm
Linear equality constraint
Consider


min
x∈ℝn

f(x) s.t. Ax = b

Steven Low     OPF      Optimization algorithms

Lagrangian: 

 


Jacobian of : 





KKT condition to be solved by NR algorithm:

 

L(x, λ) := f(x) + λ𝖳(Ax − b)

L(x, λ)

F(x, λ) := [∇x L(x, λ)
∇λ L(x, λ)] = [∇f(x) + A𝖳λ

Ax − b ]
F(x, λ) = 0



Newton-Raphson algorithm
Linear equality constraint
Consider


min
x∈ℝn

f(x) s.t. Ax = b

Steven Low     OPF      Optimization algorithms

Jacobian of : 


 


NR iteration:


     where     

F(x, λ)

J(x, λ) = [
∂2f
∂x2 (x) A𝖳

A 0 ]

[x(t + 1)
λ(t + 1)] = [x(t)

λ(t)] + [Δx(t)
Δλ(t)] [

∂2f
∂x2 (x(t)) A𝖳

A 0 ] [Δx(t)
Δλ(t)] = − [∇f(x(t)) + A𝖳λ(t)

Ax(t) − b ]

• KKT matrix

• Independent of λ



Newton-Raphson algorithm
Nonlinear equality constraint
Consider





where 

•  and   are twice continuously differentiable

min
x∈ℝn

f(x) s.t. g(x) = 0

f : ℝn → ℝ g : ℝn → ℝm

Steven Low     OPF      Optimization algorithms

Follow the same procedure as for linear equality constrained problems



Newton-Raphson algorithm
Nonlinear equality constraint
Consider


min
x∈ℝn

f(x) s.t. g(x) = 0

Steven Low     OPF      Optimization algorithms

Lagrangian: 

 


Jacobian of : 





KKT condition to be solved by NR algorithm:

 

L(x, λ) := f(x) + λ𝖳g(x)

L(x, λ)

F(x, λ) := [∇x L(x, λ)
∇λ L(x, λ)] = [∇f(x)+ ∂g

∂x (x)𝖳λ

g(x) ]
F(x, λ) = 0



Newton-Raphson algorithm
Nonlinear equality constraint
Consider


min
x∈ℝn

f(x) s.t. g(x) = 0
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Jacobian of : 


 


NR iteration:


     where     

F(x, λ)

J(x, λ) =
∂2f
∂x2 (x)+ ∑k

∂2gk

∂x2 λk
∂g
∂x (x)𝖳

∂g
∂x (x) 0

[x(t + 1)
λ(t + 1)] = [x(t)

λ(t)] + [Δx(t)
Δλ(t)] J(x, λ)[Δx(t)

Δλ(t)] = − [∇f(x(t))+ ∂g
∂x (x(t))𝖳λ(t)

g(x(t)) ]



Newton-Raphson algorithm
Inequality constraint
Consider





where 

•  and   are twice continuously differentiable


Two common solution approaches 

1. Introduce slack var  to reduce the inequality into a simple inequality constraint:





2. Replace constraint by a penalty term and reduce to unconstrained problem:


min
x∈ℝn

f(x) s.t. g(x) ≤ 0

f : ℝn → ℝ g : ℝn → ℝm

z ≥ 0
min

(x,z)∈ℝn+m
f(x) s.t. g(x) + z = 0, z ≥ 0

min
x∈ℝn

f(x) +
1
t

ϕ(x)
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This is the approach of interior-point algorithms !



Interior-point algorithm
Basic idea
Consider





where 

•   are twice continuously differentiable

min
x∈ℝn

f0(x) s.t. f(x) ≤ 0, g(x) = 0

f0 : ℝn → ℝ, f : ℝn → ℝm, g : ℝn → ℝp
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Basic idea:  
• Approximate problem by equality constrained problem by replacing  by a barrier function

• Solve the approximate problem by Newton-Raphson methods

f(x) ≤ 0



Interior-point algorithm
Log barrier function
Log barrier function   is


      


over   


Properties:

•  as  for any 


• 


•

ϕ : ℝn → ℝ

ϕ(x) := −
m

∑
i=1

log(−fi(x))

domϕ := {x ∈ ℝn : fi(x) < 0,i = 1,…, m}

ϕ(x) → ∞ fi(x) → 0 i

∇ϕ(x) =
m

∑
i=1

1
−fi(x)

∇fi(x)

∂2ϕ
∂x2

(x) = ∑
i

1
f 2
i (x)

∇fi(x)∇f𝖳
i (x) + ∑

i

1
−fi(x)

∂2fi
∂x2

(x)
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Interior-point algorithm
Approximate problem
Consider



min
x∈ℝn

f0(x) s.t. f(x) ≤ 0, g(x) = 0

Steven Low     OPF      Optimization algorithms

Approximate problem 




or




• Larger      more accurate approximation

min
x∈ℝn

f0(x) +
1
t

ϕ(x) s.t. g(x) = 0

Problem(t) : min
x∈ℝn

tf0(x) + ϕ(x) s.t. g(x) = 0

t > 0 ⟹



Barrier method
A popular interior-point method
Basic idea


• Solve Problem  for an increasing sequence of  until solution is accurate enough


• For each , solve Problem  using Newton-Raphson algorithm 


Questions


• How to choose the sequence of ?


• When to terminate?

(t) t > 0

t (t)

t
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Answer these question for convex problems



Barrier method
Assumptions

1. Original problem is convex, i.e.,  are convex and 


2. For each , Newton-Raphson algorithm converges to the unique optimal solution  of 
the approximate problem


• Central point : optimal solution 


• Central path : set  of central points

f0, f1, …, fm g(x) = Ax − b

t > 0 x(t)

x(t)
{x(t) : t > 0}
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Barrier method
Central point x(t)

1. Original problem is convex, i.e.,  are convex and 


2. For each , Newton-Raphson algorithm converges to the unique optimal solution  of 
the approximate problem


Theorem 

For each 


1.  is feasible for original problem


2. Objective value is at most  away from optimal value, i.e.,                      

In particular    as   

f0, f1, …, fm g(x) = Ax − b

t > 0 x(t)

t > 0

x(t)

m/t f0(x(t)) − f opt
0 ≤

m
t

f0(x(t)) → f opt
0 t → ∞
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Barrier method
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The barrier method. Theorem 12.1 says that, when (12.45) is convex, the central point x(t) computed
by the Newton-Raphson algorithm is feasible for the original problem (12.45) and its objective value
f0(x(t)) is at most m/t away from the optimal value f ⇤0 . This motivates the barrier method, also known as
the path-following method, that solves Problem(t) in (12.47) to compute a central point x(t), sequentially
for increasing t > 0.

Specifically the barrier method solves a sequence of the approximate problems (12.47) with increasing
t > 0, using the solution of the previous problem as the initial point for the current problem, as follows. Fix
a parameter g > 1 and solve Problem(t) in (12.47) with parameter t using the Newton-Raphson algorithm.
Geometrically increase the parameter t by multiplying it by g > 1 and solve (12.47) again starting from
the solution of the previous problem. Repeat until t is sufficiently large so that the solution produced by
Newton-Raphson is an accurate enough solution to the original problem (12.45). This method is described
more precisely as Algorithm 3. Even though optimality of the barrier method is guaranteed only when

Algorithm 3: Barrier method
Input: strictly feasible x, initial t := t0, scaling factor g > 1, tolerance e .
Output: an approximate solution x for (12.45).

1. while t  m
e do

(a) Solve Problem(t) in (12.47) to compute x(t) using the Newton-Raphson algorithm starting
from x.

(b) x x(t).

(c) t gt.

2. Return: x.

the problem is convex and the Newton-Raphson converges for each t > 0 (assumptions C12.1 and C12.2),
the method is also widely applied to problems that do not satisfy these conditions.

In principle one can solve Problem(t) in (12.47) with parameter t := m/e instead of solving a sequence
of (12.47) with increasing t as in Algorithm 3. In practice this method does not work well unless the
problem is small, the required accuracy e is moderate and a good starting point is available. Therefore the
barrier method is usually preferred.

Strictly feasible initial point. Algorithm 3 requires an initial point x that is strictly feasible for the
original problem (12.45), i.e. x satisfies

f (x) < 0, g(x) = 0

There are various methods to produce a strictly feasible point and we explain a simplest one (see [106,
Chapter 11.4] for others). When necessary, such a method can be used to compute a strictly feasible x
before the barrier method is executed. Starting from such an initial point, all subsequent iterates, across
Problem(t) for different t, will remain strictly feasible because of the log barrier f .

In principle, one can solve Problem  with  instead of solving a sequence of Problem .

In practice, barrier method works better.

(t) t := m/ϵ (t)


