Power System Analysis

Chapter 12 Optimal power flow

Outline

1. Bus injection model
2. Branch flow model
3. OPF applications
4. Optimization algorithms

Outline

1. Bus injection model

- Single-phase devices
- Single-phase OPF
- OPF as QCQP
- Three-phase devices
- Three-phase OPF
- Three-phase OPF as QCQP

2. Branch flow model
3. OPF applications
4. Optimization algorithms

Single-phase devices

Voltage source j

- Ideal voltage source: terminal voltage $V_{j}=$ internal voltage
- V_{j} is variable if the source is controllable, or given otherwise

Current source j

- Ideal current source: terminal voltage $I_{j}=$ internal voltage
- I_{j} is variable if the source is controllable, or given otherwise

Power source j

- Ideal power source: terminal power $s_{j}=$ internal power
- s_{j} is variable if the source is controllable, or given otherwise

Impedance j

- Impedance z_{j} : constrains its terminal voltage \& current $V_{j}=-z_{j} I_{j}$

Single-phase OPF
 Assumptions

Assume WLOG

- Single-phase devices: voltage sources and power sources only
- Each bus has a single device with $\left(V_{j}, s_{j}\right)$

Formulate the simplest OPF to study general computational properties

Single-phase OPF

Simplest formulation

Optimization variable: $(V, s):=\left(V_{j}, s_{j}, j \in \bar{N}\right)$

- Represents voltage sources V_{j} and power sources s_{j} only

Cost function $C_{0}(V, s)$

- Fuel cost : $C_{0}(V, s):=\sum_{j: g e n s} c_{j} \operatorname{Re}\left(s_{j}\right)$
- Total real power loss: $C_{0}(V, s):=\sum_{j} \operatorname{Re}\left(s_{j}\right)$

Single-phase OPF

Simplest formulation

Power flow equations in BIM

- Equality constraints on (V, s)

$$
s_{j}=\sum_{k: j \sim k} S_{j k}(V):=\sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{\mathrm{H}}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{\mathrm{H}}\right)+\left(y_{j j}^{m}\right)^{\mathrm{H}}\left|V_{j}\right|^{2}, \quad j \in \bar{N}
$$

- Derivation:

$$
\begin{aligned}
& I_{j k}(V):=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j} \\
& S_{j k}(V):=V_{j} I_{j k}^{\mathrm{H}}(V):=\left(y_{j k}^{s}\right)^{\mathrm{H}}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{\mathrm{H}}\right)+\left(y_{j k}^{m}\right)^{\mathrm{H}}\left|V_{j}\right|^{2}
\end{aligned}
$$

- Can also use polar form and Cartesian form
- Nonlinear and global equality constraints, resulting in nonconvexity of OPF

Single-phase OPF

Simplest formulation

Operational constraints

- Injection limits (e.g. gen. or load capacity limits): $s_{j}^{\min } \leq s_{j} \leq s_{j}^{\max }$
- Voltage limits: $v_{j}^{\min } \leq\left|V_{j}\right|^{2} \leq v_{j}^{\max }$
- Line limits: $\left|I_{j k}(V)\right|^{2} \leq I_{j k}^{\max },\left|I_{k j}(V)\right|^{2} \leq I_{k j}^{\max }$

$$
\begin{array}{ll}
\left|y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}\right|^{2} \leq I_{j k}^{\max }, & (j, k) \in E \\
\left|y_{k j}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}\right|^{2} \leq I_{k j}^{\max }, & (j, k) \in E
\end{array}
$$

Line limits can also be on line powers $\left(S_{j k}(V), S_{k j}(V)\right)$ or apparent powers $\left(\left|S_{j k}(V)\right|,\left|S_{k j}(V)\right|\right)$

Single-phase OPF

Simplest formulation

OPF in BIM

$$
\begin{array}{rll}
\min _{(V, s)} & C_{0}(V, s) & \\
\text { subject to } & f(V, s)=0 & \text { power flow equations } \\
& g(V, s) \leq 0 & \text { operational constraints }
\end{array}
$$

- Does not need assumption $y_{j k}^{s}=y_{k j}^{s}$
- Can accommodate single-phase transformers with complex turns ratios

Single-phase OPF

1. Other devices

- Can include other devices such as current sources, impedances, capacity taps
- Allow multiple devices connected to same bus

2. Can formulate OPF in terms of V only

- Use power flow equations to express injections $s_{j}(V)$ as functions of V
- Eliminate s_{j} and power flow equations (equality constraints)

Next: explain each in turn

Single-phase OPF

Including other devices

Examples

- Current source (controllable): variable I_{j} with local constraints $\left|I_{j}\right|^{2} \leq I_{j}^{\max }, s_{j}=V_{j} I_{j}^{\mathrm{H}}$
- Impedance z_{j} : imposes additional constraint $s_{j}=\left|V_{j}\right|^{2} / z_{j}^{\mathrm{H}}$
- Capacitor tap (controllable): variable y_{j} with local constraints $y_{j}^{\min } \leq y_{j} \leq y_{j}^{\max }, \quad s_{j}=y_{j}^{\mathrm{H}}\left|V_{j}\right|^{2}$
- Multiple devices: injection variables $s_{j k}$ with local constraints $s_{j k}^{\min } \leq s_{j k} \leq s_{j k}^{\max }, s_{j}=\sum_{k} s_{j k}$

Including other devices at bus j imposes additional local constraints

- Additional optimization var u_{j} may be introduced
- Equality constraints relating $\left(V_{j}, s_{j}\right)$ and u_{j} (if present): $f_{j}\left(V_{j}, s_{j}, u_{j}\right)=0$
- Inequality (operational) constraints (e.g., capacity limits): $g_{j}\left(u_{j}\right) \leq 0$

Single-phase OPF

In terms of V only

Equality constraints (BIM in complex form)

$$
s_{j}(V)=\sum_{k: j \sim k} S_{j k}(V):=\sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{\mathrm{H}}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{\mathrm{H}}\right)+\left(y_{j j}^{m}\right)^{\mathrm{H}}\left|V_{j}\right|^{2}, \quad j \in \bar{N}
$$

- Expresses s_{j} in terms of voltages V

Cost $C_{0}(V):=C_{0}(V, s(V))$ expressed as function of V

- Fuel cost:

$$
C_{0}(V):=\sum_{j: \text { gens }} c_{j} \operatorname{Re}\left(s_{j}(V)\right)=\sum_{j: \text { gens }} c_{j} \operatorname{Re}\left(\sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{\mathrm{H}}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{\mathrm{H}}\right)+\left(y_{j j}^{m}\right)^{\mathrm{H}}\left|V_{j}\right|^{2}\right)
$$

- Total real power loss:

$$
C_{0}(V):=\sum_{j} \operatorname{Re}\left(s_{j}(V)\right)
$$

Single-phase OPF

Operational constraints

Injection limits (e.g. generation or load capacity limits) $s_{j}^{\min } \leq s_{j}(V) \leq s_{j}^{\text {max }}$:

$$
\underline{s}_{j} \leq \sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{\mathrm{H}}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{\mathrm{H}}\right)+\left(y_{j j}^{m}\right)^{\mathrm{H}}\left|V_{j}\right|^{2} \leq \bar{s}_{j}, \quad j \in \bar{N}
$$

- Polar form:

$$
\begin{aligned}
& \underline{p}_{j} \leq\left(\sum_{k=0}^{N} g_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \cos \theta_{j k}-b_{j k} \sin \theta_{j k}\right) \leq \bar{p}_{j} \\
& \underline{p}_{j} \leq\left(\sum_{k=0}^{N} b_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(b_{j k} \cos \theta_{j k}+g_{j k} \sin \theta_{j k}\right) \leq \bar{q}_{j}
\end{aligned}
$$

Single-phase OPF

Operational constraints

Voltage limits (same as before):

$$
v_{j}^{\min } \leq\left|V_{j}\right|^{2} \leq v_{j}^{\max }, \quad j \in \bar{N}
$$

Line limits (same as before):

$$
\begin{array}{ll}
\left|y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}\right|^{2} \leq I_{j k}^{\max }, & (j, k) \in E \\
\left|y_{k j}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}\right|^{2} \leq I_{k j}^{\max }, & (j, k) \in E
\end{array}
$$

- Line limits can also be on line powers $\left(S_{j k}(V), S_{k j}(V)\right)$ or apparent powers $\left(\left|S_{j k}(V)\right|,\left|S_{k j}(V)\right|\right)$

Single-phase OPF

In terms of V only

Feasible set

$$
\mathbb{V}:=\left\{V \in \mathbb{C}^{N+1} \mid V \text { satisfies operational constraints }\right\}
$$

OPF in BIM

$$
\min _{V=N} C_{0}(V)
$$

$V \in \mathbb{V}$

- Does not need assumption $y_{j k}^{s}=y_{k j}^{s}$
- Can accommodate single-phase transformers with complex turns ratios

Single-phase OPF

In terms of V only

Feasible set

$$
\mathbb{V}:=\left\{V \in \mathbb{C}^{N+1} \mid V \text { satisfies operational constraints }\right\}
$$

OPF in BIM

$$
\min _{V} C_{0}(V)
$$

$V \in \mathbb{V}$

We will mostly study this simple OPF
Can express it as a QCQP

Outline

1. Bus injection model

- Single-phase devices
- Single-phase OPF
- OPF as QCQP
- Three-phase devices
- Three-phase OPF
- Three-phase OPF as QCQP

2. Branch flow model
3. Optimization algorithms

OPF as QCQP

QCQP

Quadratically constrained quadratic program:

$$
\begin{aligned}
\min _{x \in \mathbb{C}^{n}} & x^{\mathrm{H}} C_{0} x \\
\text { s.t. } & x^{\mathrm{H}} C_{l} x \leq b_{l}, \quad l=1, \ldots, L
\end{aligned}
$$

- $C_{l}: n \times n$ Hermitian matrix
- $b_{l} \in \mathbb{R}$
- Homogeneous QCQP : all monomials are of degree 2

OPF as QCQP

QCQP

Inhomogeneous QCQP

$$
\begin{aligned}
\min _{x \in \mathbb{C}^{n}} & x^{\mathrm{H}} C_{0} x+\left(c_{0}^{\mathrm{H}} x+x^{\mathrm{H}} c_{0}\right) \\
\text { s.t. } & x^{\mathrm{H}} C_{l} x+\left(c_{l}^{\mathrm{H}} x+x^{\mathrm{H}} c_{l}\right) \leq b_{l}, \quad l=1, \ldots, L
\end{aligned}
$$

Homogenization:

- Idea: $|x|^{2}+\left(c^{H} x+x^{H} c\right) \leq b \Longleftrightarrow|x+c t|^{2}-|c|^{2}|t|^{2} \leq b, \quad|t|^{2}=1$
- If $\left(x, t=e^{i \theta}\right)$ satisfies 2nd inequality, then $x t=x e^{i \theta}$ satisfies 1 st inequality

OPF as QCQP

QCQP

Equivalent homogeneous QCQP

$$
\begin{aligned}
\min _{x \in \mathbb{C}^{n}, t \in \mathbb{C}} & {\left[\begin{array}{ll}
x^{\mathrm{H}} & t^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{ll}
C_{0} & c_{0} \\
c_{0}^{\mathrm{H}} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
t
\end{array}\right] } \\
\text { s.t. } & {\left[\begin{array}{ll}
x^{\mathrm{H}} & t^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{ll}
C_{l} & c_{l} \\
c_{l}^{\mathrm{H}} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
t
\end{array}\right] \leq b_{l}, \quad l=1, \ldots, L } \\
& {\left[\begin{array}{ll}
x^{\mathrm{H}} & t^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
t
\end{array}\right]=1 }
\end{aligned}
$$

Homogenization:

- Idea: $|x|^{2}+\left(c^{\mathrm{H}} x+x^{\mathrm{H}} c\right) \leq b \Longleftrightarrow|x+c t|^{2}-|c|^{2}|t|^{2} \leq b, \quad|t|^{2}=1$
- If $\left(x, t=e^{i \theta}\right)$ satisfies 2 nd inequality, then $x t=x e^{i \theta}$ satisfies 1st inequality

OPF as QCQP

To write OPF as QCQP:

- Assume cost function $C_{0}(V)=V^{\mathrm{H}} C_{0} V$ can be written as a quadratic form
- Need to rewrite operational constraints in terms of quadratic forms

OPF as QCQP

Injection limits $s_{j}^{\min } \leq s_{j}(V) \leq s_{j}^{\max }$

$$
\begin{aligned}
& s_{j}(V)=V_{j} I_{j}^{\mathrm{H}}=\left(e_{j}^{\mathrm{H}} V\right)\left(e_{j}^{\mathrm{H}} I\right)^{\mathrm{H}}=e_{j}^{\mathrm{H}} V V^{\mathrm{H}} Y^{\mathrm{H}} e_{j} \\
& s_{j}(V)=\operatorname{tr}\left(e_{j}^{\mathrm{H}} V V^{\mathrm{H}} Y^{\mathrm{H}} e_{j}\right)=\operatorname{tr}\left(\left(Y^{\mathrm{H}} e_{j} e_{j}^{\mathrm{H}}\right) V V^{\mathrm{H}}\right)=: V^{\mathrm{H}} Y_{j}^{\mathrm{H}} V
\end{aligned}
$$

OPF as QCQP

Injection limits $s_{j}^{\min } \leq s_{j}(V) \leq s_{j}^{\max }$

$$
\begin{aligned}
& s_{j}(V)=V_{j} I_{j}^{\mathrm{H}}=\left(e_{j}^{\mathrm{H}} V\right)\left(e_{j}^{\mathrm{H}} I\right)^{\mathrm{H}}=e_{j}^{\mathrm{H}} V V^{\mathrm{H}} Y^{\mathrm{H}} e_{j} \\
& s_{j}(V)=\operatorname{tr}\left(e_{j}^{\mathrm{H}} V V^{\mathrm{H}} Y^{\mathrm{H}} e_{j}\right)=\operatorname{tr}\left(\left(Y^{\mathrm{H}} e_{j} e_{j}^{\mathrm{H}}\right) V V^{\mathrm{H}}\right)=: V^{\mathrm{H}} Y_{j}^{\mathrm{H}} V
\end{aligned}
$$

- Y_{j} is not Hermitian so $V^{H} Y_{j}^{H} V$ is generally complex
- Define $\Phi_{j}:=\frac{1}{2}\left(Y_{j}^{H}+Y_{j}\right), \quad \Psi_{j}:=\frac{1}{2 i}\left(Y_{j}^{H}-Y_{j}\right)$
- Then $\operatorname{Re}\left(s_{j}\right)=V^{H} \Phi_{j} V, \quad \operatorname{Im}\left(s_{j}\right)=V^{H} \Psi_{j} V$

Hence $s_{j}^{\min } \leq s_{j}(V) \leq s_{j}^{\max }$ is equivalent to:

$$
p_{j}^{\min } \leq V^{H} \Phi_{j} V \leq p_{j}^{\max }, \quad q_{j}^{\min } \leq V^{H} \Psi_{j} V \leq q_{j}^{\max }
$$

OPF as QCQP

Voltage limits

Voltage magnitude is: $\left|V_{j}\right|^{2}=V^{\mathrm{H}} J_{j} V$ where $J_{j}:=e_{j} e_{j}^{\top}$

Hence voltage limits are: $v_{j}^{\min } \leq V^{\mathrm{H}} J_{j} V \leq v_{j}^{\max }$

OPF as QCQP

Line limits

Write $I_{j k}$ in terms of voltage vector V :

$$
I_{j k}=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}=\left(y_{j k}^{s}\left(e_{j}-e_{k}\right)^{\top}+y_{j k}^{m} e_{j}^{\top}\right) V
$$

Hence current limit is: $\left|I_{j k}\right|^{2}=V^{\mathrm{H}} \hat{Y}_{j k} V \leq I_{j k}^{\max }$ where

$$
\hat{Y}_{j k}:=\left(y_{j k}^{s}\left(e_{j}-e_{k}\right)^{\top}+y_{j k}^{m} e_{j}^{\top}\right)^{\mathrm{H}}\left(y_{j k}^{s}\left(e_{j}-e_{k}\right)^{\top}+y_{j k}^{m} e_{j}^{\top}\right)
$$

OPF as QCQP

Simplest formulation

$$
\begin{array}{rlr}
\min _{V \in \mathbb{C}^{N+1}} & V^{\mathrm{H}} C_{0} V & \\
\text { s.t. } & p_{j}^{\min } \leq V^{\mathrm{H}} \Phi_{j} V \leq p_{j}^{\max }, & j \in \bar{N} \\
& q_{j}^{\min } \leq V^{\mathrm{H}} \Psi_{j} V \leq q_{j}^{\max }, & j \in \bar{N} \\
& v_{j}^{\min } \leq V^{\mathrm{H}} J_{j} V \leq v_{j}^{\max }, & j \in \bar{N} \\
& V^{\mathrm{H}} \hat{Y}_{j k} V \leq \bar{I}_{j k}^{\max }, & (j, k) \in E \\
& V^{\mathrm{H}} \hat{Y}_{k j} V \leq \bar{I}_{k j}^{\max }, & (j, k) \in E
\end{array}
$$

Outline

1. Bus injection model

- Single-phase devices
- Single-phase OPF
- OPF as QCOP
- Three-phase devices
- Three-phase OPF
- Three-phase OPF as QCQP

2. Branch flow model
3. Optimization algorithms

Recall: overall 3-phase BIM

Device + network

1. Device model for each 3-phase device

- Internal model on $\left(V_{j}^{Y / \Delta}, I_{j}^{Y / \Delta}, s_{j}^{Y / \Delta}\right)+$ conversion rules
- External model on $\left(V_{j}, I_{j}, s_{j}\right)$
- Either can be used
- Power source models are nonlinear; other devices are linear

Our perspective:

- Internal vars $\left(V_{j}^{Y / \Delta}, I_{j}^{Y / \Delta}, s_{j}^{Y / \Delta}\right)$ are controllable, depending on types of device
- External vars $\left(V_{j}, I_{j}, s_{j}\right)$ are not directly controllable
\therefore use internal model + conversion rules

Recall: overall 3-phase BIM

Device + network

2. Network model relates terminal vars (V, I, s)

- Nodal current balance (linear): $I=Y V$
- Nodal power balance (nonlinear):

$$
s_{j}=\sum_{k: j \sim k} \operatorname{diag}\left(V_{j}\left(V_{j}-V_{k}\right)^{\mathrm{H}} y_{j k}^{s \mathrm{H}}+V_{j} V_{j}^{\mathrm{H}} y_{j k}^{m \mathrm{H}}\right)
$$

- Either can be used

For OPF, our formulation uses (V, s) :

- Relate (V, s) through power flow equations
- Power sources lead to nonlinear analysis, even if we use $I=Y V$ as network equation
- Need to relate internal optimization vars to $\left(V_{j}, s_{j}\right)$ using conversion rules

Three-phase devices

Voltage source $V_{j}^{Y / \Delta}$

- Internal optimization variable $u_{j}:=V_{j}^{Y / \Delta} \quad\left(\gamma_{j}^{Y}\right.$ assumed given)
- Local constraints that relate internal vars to $\left(V_{j}, s_{j}\right)$

$$
\begin{aligned}
Y: & & V_{j} & =V_{j}^{Y}+\gamma_{j}^{Y} 1 \\
\Delta: & & \Gamma V_{j} & =V_{j}^{\Delta}
\end{aligned}
$$

Note:

- Choosing V_{j}^{Δ} does not uniquely determine V_{j}
- Optimization over V_{j} implicitly chooses an optimal $\gamma_{j}^{\Delta}:=\frac{1}{3} 1^{\top} V_{j}$
- If γ_{j}^{Δ} is given, then $\Gamma V_{j}=V_{j}^{\Delta}$ should be replaced by $V_{j}=\Gamma^{\dagger} V_{j}^{\Delta}+\gamma_{j}^{\Delta} 1$

Three-phase devices

Current source $I_{j}^{Y / \Delta}$

- Internal optimization variable $u_{j}:=I_{j}^{Y / \Delta}$
- Local constraints that relate internal vars and $\left(V_{j}, s_{j}\right)$

$$
\begin{array}{ll}
Y: & s_{j}=-\operatorname{diag}\left(V_{j} I_{j}^{Y \mathrm{H}}\right) \\
\Delta: & s_{j}=-\operatorname{diag}\left(V_{j} I_{j}^{\Delta \mathrm{H}} \Gamma\right)
\end{array}
$$

Note:

- Optimization over I_{j}^{Δ} implicitly chooses an optimal $\beta_{j}^{\Delta}:=\frac{1}{3} 1^{\top} I_{j}^{\Delta}$
- If β_{j}^{Δ} is given, it imposes an additional constraint $I_{j}^{\Delta}=-\frac{1}{3} \Gamma I_{j}+\beta_{j}^{\Delta} 1$ (and express I_{j} in terms of $\left(V_{j}, s_{j}\right)$

Three-phase devices

Power source $\left(s_{j}^{Y / \Delta}, I_{j}^{Y / \Delta}\right)$

- Internal optimization variable $u_{j}:=\left(s_{j}^{Y / \Delta}, I_{j}^{Y / \Delta}\right)$ (assume $\gamma_{j}^{Y}:=V_{j}^{n}=0$)
- Local constraints that relate internal vars and $\left(V_{j}, s_{j}\right)$

$$
\begin{array}{ll}
Y: & s_{j}=-s_{j}^{Y} \\
\Delta: & s_{j}=-\operatorname{diag}\left(V_{j} I_{j}^{\Delta \mathrm{H}} \Gamma\right), \quad s_{j}^{\Delta}=\operatorname{diag}\left(\Gamma V_{j} I_{j}^{\Delta \mathrm{H}}\right)
\end{array}
$$

Impedance $z_{j}^{Y / \Delta}$

- Given parameter: $z_{j}^{Y / \Delta}$ (assume $\gamma_{j}^{Y}:=V_{j}^{n}=0$)
- Local constraints on terminal vars $\left(V_{j}, s_{j}\right)$

$$
\begin{array}{ll}
Y: & s_{j}=-\operatorname{diag}\left(V_{j} V_{j}^{\mathrm{H}} y_{j}^{Y \mathrm{H}}\right) \\
\Delta: & s_{j}=-\operatorname{diag}\left(V_{j} V_{j}^{\mathrm{H}} Y_{j}^{\Delta \mathrm{H}}\right)
\end{array} \quad Y_{j}^{\Delta}:=\Gamma^{\top} y^{\Delta} \Gamma
$$

Three-phase OPF

Variables:

- Terminal variables $\left(V_{j}, s_{j}\right)$
- Internal variables u_{j} depending on devices (discussed above)

Cost function: $C_{0}(V, s, u)$
Equality constraints:

1. Power flow equations on (V, s) (global constraint): $f(V, s)=0$

$$
s_{j}=\sum_{k: j \sim k} \operatorname{diag}\left(V_{j}\left(V_{j}-V_{k}\right)^{H}\left(y_{j k}^{s}\right)^{H}+V_{j} V_{j}^{H}\left(y_{j k}^{m}\right)^{H}\right), \quad j \in \bar{N}
$$

2. Conversion rules relating internal optimization var u_{j} to $\left(V_{j}, s_{j}\right)$ (local constraint, discussed above)

$$
f_{j}^{Y / \Delta}\left(V_{j}, s_{j}, u_{j}\right)=0, \quad j \in \bar{N}
$$

Three-phase OPF

Inequality constraints:

1. Operational constraints on external vars: $g(V, s) \leq 0$
injection limits: $\quad s_{j}^{\phi \text { min }} \leq s_{j}^{\phi} \leq s_{j}^{\phi \text { max }}, \quad \phi \in\{a, b, c\}, j \in \bar{N}$
voltage limits: $\quad v_{j}^{\phi \text { min }} \leq\left|V_{j}^{\phi}\right|^{2} \leq v_{j}^{\phi \max }, \quad \phi \in\{a, b, c\}, j \in \bar{N}$
line limits: $\quad\left|I_{j k}^{\phi}(V)\right|^{2} \leq I_{j k}^{\phi \max }, \quad\left|I_{k j}^{\phi}(V)\right|^{2} \leq I_{k j}^{\phi \max }, \quad \phi \in\{a, b, c\}, \quad(j, k) \in E$

Same constraints as single-phase OPF, but on single-phase equivalent circuit

Three-phase OPF

Inequality constraints:
2. Operational constraints on internal vars: $g_{j}^{Y / \Delta}\left(u_{j}\right) \leq 0$ for $\phi n \in\{a n, b n, c n\}, \phi \varphi \in\{a b, b c, c a\}$
voltage source: $\quad v_{j}^{\phi n \min } \leq\left|V_{j}^{\phi n}\right|^{2} \leq v_{j}^{\phi n \max }, \quad v_{j}^{\phi \varphi \min } \leq\left|V_{j}^{\phi \varphi}\right|^{2} \leq v_{j}^{\phi \varphi \max }$
current source:
$\left|I_{j}^{\phi n}\right|^{2} \leq I_{j}^{\max }$,
$\left|I_{j}^{\phi \varphi}\right|^{2} \leq I_{j}^{\max }$
$\left|I_{j}^{\phi n}\right|^{2} \leq I_{j}^{\phi n \max }$
$s_{j}^{\phi \varphi \min } \leq s_{j}^{\phi \varphi} \leq s_{j}^{\phi \varphi \max }$,
$\left|I_{j}^{\phi \varphi}\right|^{2} \leq I_{j}^{\phi \varphi \max }$

Local constraints at each bus j

Three-phase OPF

Constraints summary

1. Constraints on terminal variables: $f(V, s)=0, g(V, s) \leq 0$

- Power flow equation and operational constraints (terminal power injection limits, voltage limits, line limits)
- Global constraints
- Extension of single-phase constraints to 3-phase setting, using single-phase equivalent

2. Conversion rules relating u_{j} and $\left(V_{j}, s_{j}\right): f_{j}^{Y / \Delta}\left(u_{j}, V_{j}, s_{j}\right)=0$

- Local equality constraint for each device j

3. Operational constraints on internal variables: $g_{j}^{Y / \Delta}\left(u_{j}\right) \leq 0$

- Depending on type of device (voltage and capacity limits)
- Local constraints for each device j

Three-phase OPF

Simplest formulation

OPF in BIM

$$
\min
$$

(V, s, u)

$$
\begin{array}{llll}
f(V, s)=0, & g(V, s) \leq 0 & & \text { Global constraints on terminal va } \\
f_{j}^{Y / \Delta}\left(V_{j}, s_{j}, u_{j}\right)=0, & g_{j}^{Y / \Delta}\left(u_{j}\right) \leq 0, & j \in \bar{N} & \text { Local constraints at each bus } j
\end{array}
$$

Three-phase OPF
 As QCQP

1. Can formulate OPF in terms of (V, u) only

- Use power flow equations to express $s_{j}(V)=V^{\mathrm{H}}\left(Y_{j}^{\phi \mathrm{H}}\right) V$ and eliminate s_{j} and $f(V, s)=0$
- Same idea as before applied to single-phase equivalent

2. Can formulate OPF as QCQP

- Express operational constraints $g(V, s(V)) \leq 0$ in terms of quadratic forms in V (same idea applied to single-phase equivalent)
- Express conversion rules $f_{j}^{Y / \Delta}\left(V_{j}, s_{j}(V), u_{j}\right)=0$ in terms of quadratic forms in $\left(V, u_{j}\right)$

Outline

1. Bus injection model
2. Branch flow model

- Single-phase OPF
- Three-phase OPF

3. OPF applications
4. Optimization algorithms

Overview

Assumptions

Both single-phase \& 3-phase OPF

Radial network

- BFM most useful for modeling distribution systems
$z_{j k}^{s}=z_{k j}^{s}$ or equivalently $y_{j k}^{s}=y_{k j}^{s}$
- Does not include 3-phase transformers in ΔY or $Y \Delta$ configuration (or single-phase transformers with complex gains)
$y_{j k}^{m}=y_{k j}^{m}=0$
- Reasonable assumption for distribution line where $\left|y_{j k}^{m}\right|,\left|y_{k j}^{m}\right| \ll\left|y_{j k}^{s}\right|$

Includes only voltage sources and power sources

- Optimization variables are voltages (squared magnitudes) v_{j} and power injections s_{j} respectively
- A current source or an impedance will introduce additional var and constraint.

Single-phase OPF

Power flow equations

- All lines point away from bus 0 (root)

$$
\begin{aligned}
\sum_{k ; j \rightarrow k} S_{j k} & =S_{i j}-z_{i j} \ell_{i j}+s_{j}, \quad j \in \bar{N} \\
v_{j}-v_{k} & =2 \operatorname{Re}\left(z_{j k}^{H} S_{j k}\right)-\left|z_{j k}\right|^{2} \ell_{j k}, \quad j \rightarrow k \in E \\
v_{j} \ell_{j k} & =\left|S_{j k}\right|^{2}, \quad j \rightarrow k \in E
\end{aligned}
$$

Operational constraints

$$
\begin{aligned}
s_{j}^{\min } \leq s_{j} & \leq s_{j}^{\max } \\
v_{j}^{\min } \leq v_{j} & \leq v_{j}^{\max } \\
\ell_{j k} & \leq I_{j k}^{\max }
\end{aligned}
$$

Single-phase OPF

Feasible set

$$
\mathbb{T}_{0}:=\left\{x:=(s, v, \ell, S) \in \mathbb{R}^{6 N+3} \mid x \text { satisfies PF equations \& operational constraints }\right\}
$$

OPF in BFM

```
min
C(x)
x\in\mathbb{T}
```


Single-phase OPF

Equivalence

Recall for BIM:

- Feasible set: $\mathbb{V}:=\left\{V \in \mathbb{C}^{N+1} \mid V\right.$ satisfies operational constraints $\}$
- OPF: $\min _{V \in \mathbb{V}} C_{0}(V)$

OPF in BFM is equivalent to OPF in BIM:

- Feasible sets \mathbb{T}_{0} and \mathbb{V} are equivalent (Ch 6)
- ... provided cost functions $C(x)$ and $C_{0}(V)$ are the same

Three-phase OPF

Variables (x, u) :

1. Directly generalizes vars in single-phase OPF (\mathbb{S}_{+}^{n} : complex psd matrices)

$$
\begin{array}{rlr}
s_{j} \in \mathbb{C}^{3}, & v_{j} \in \mathbb{S}_{+}^{3}, & j \in \bar{N} \\
\ell_{j k} \in \mathbb{S}_{+}^{3}, & S_{j k} \in \mathbb{C}^{3 \times 3}, & j \rightarrow k \in E
\end{array}
$$

To write conversion rule for power sources, introduce phasors as additional vars

$$
\left(V_{j}, j \in \bar{N}\right), \quad\left(\tilde{I}_{j k}, j \rightarrow k \in E\right)
$$

Let $x:=(s, v, \ell, V, \tilde{I}, S)$

Three-phase OPF

Variables (x, u):
2. Internal variables $u:=\left(u_{j}, j \in \bar{N}\right)$ of 3-phase devices
voltage source : $\quad u_{j}:=V_{j}^{Y / \Delta} \in \mathbb{C}^{3}$
power source : $\quad u_{j}:=\left(u_{j 1}, u_{j 2}\right)=\left(s_{j}^{Y / \Delta}, I_{j}^{Y / \Delta}\right) \in \mathbb{C}^{6}$

Three-phase OPF

Equality constraints

1. Power flow equations (from Ch 10):

$$
\begin{aligned}
& \sum_{k: j \rightarrow k} \operatorname{diag}\left(S_{j k}\right)=\operatorname{diag}\left(S_{i j}-z_{i j} \ell_{i j}\right)+s_{j}, \quad j \in \bar{N} \\
& v_{j}-v_{k}=\left(z_{j k} S_{j k}^{\mathrm{H}}+S_{j k} z_{j k}^{\mathrm{H}}\right)-z_{j k} \ell_{j k} z_{j k}^{\mathrm{H}}, \quad j \rightarrow k \in E \\
& {\left[\begin{array}{c}
v_{j} S_{j k} \\
S_{j k}^{\mathrm{H}} \ell_{j k}
\end{array}\right] } \geq 0, \quad j \rightarrow k \in E \\
& \operatorname{rank}\left[\begin{array}{c}
v_{j} S_{j k} \\
S_{j k}^{\mathrm{H}} \ell_{j k}
\end{array}\right]=1, \quad j \rightarrow k \in E \\
& v_{j}=V_{j} V_{j}^{\mathrm{H}}, \quad \ell_{j k}=\tilde{I}_{j k} \tilde{I}_{j k}^{\mathrm{H}}, \quad S_{j k}=V_{j} \tilde{I}_{j k}^{\mathrm{H}}, \quad j \rightarrow k \in E
\end{aligned}
$$

Three-phase OPF

Equality constraints

1. Power flow equations (from Ch 10):

$$
\begin{aligned}
& \sum_{k: j \rightarrow k} \operatorname{diag}\left(S_{j k}\right)=\operatorname{diag}\left(S_{i j}-z_{i j} \ell_{i j}\right)+s_{j}, \quad j \in \bar{N} \\
& v_{j}-v_{k}=\left(z_{j k} S_{j k}^{\mathrm{H}}+S_{j k} z_{j k}^{\mathrm{H}}\right)-z_{j k} \ell_{j k} z_{j k}^{\mathrm{H}}, \quad j \rightarrow k \in E \\
& {\left[\begin{array}{c}
v_{j} S_{j k} \\
S_{j k}^{\mathrm{H}} \ell_{j k}
\end{array}\right] } \geq 0, \quad j \rightarrow k \in E \quad \leftarrow \\
& \operatorname{rank}\left[\begin{array}{c}
v_{j} S_{j k} \\
S_{j k}^{\mathrm{H}} \ell_{j k}
\end{array}\right]=1, \quad j \rightarrow k \in E \quad \longleftarrow \\
& v_{j}=\begin{array}{r}
V_{j} V_{j}^{\mathrm{H}}, \quad \ell_{j k}=\tilde{I}_{j k} \tilde{I}_{j k}^{\mathrm{H}}, \quad S_{j k}=V_{j} \tilde{I}_{j k}^{\mathrm{H}}, \quad j \rightarrow k \in E
\end{array}
\end{aligned}
$$

Three-phase OPF

Equality constraints

2. Conversion rules for voltage \& power sources (assume $\gamma_{j}^{Y}:=V_{j}^{n}=0$)

$$
\begin{array}{lcc}
\text { voltage source : } & Y: & v_{j}=V_{j}^{Y} V_{j}^{Y \mathrm{H}}=u_{j} u_{j}^{\mathrm{H}} \\
& \Delta: \quad \Gamma v_{j} \Gamma^{\top}=V_{j}^{\Delta} V_{j}^{\Delta \mathrm{H}}=u_{j} u_{j}^{\mathrm{H}} \\
\text { power source : } & Y: & s_{j}=-\operatorname{diag}\left(V_{j} u_{j 2}^{\mathrm{H}}\right),
\end{array} s_{j}=-u_{j 1} .
$$

Three-phase OPF

Inequality constraints

1. Operational constraints on x :
injection limits
$s_{j}^{\min } \leq s_{j} \leq s_{j}^{\max }$,
voltage limits: $\quad v_{j}^{\min } \leq \operatorname{diag}\left(v_{j}\right) \leq v_{j}^{\max }$,
$j \in \bar{N}$
$j \in \bar{N}$
line limits:
$\operatorname{diag}\left(\ell_{j k}\right) \leq I_{j k}^{\max }$,
$(j, k) \in E$

Three-phase OPF

Inequality constraints
2. Operational constraints on internal vars u_{j} :

$$
\begin{array}{lll}
\text { voltage source: } & v_{j}^{\phi n \min } \leq\left|V_{j}^{\phi n}\right|^{2} \leq v_{j}^{\phi n \max }, & v_{j}^{\phi \varphi \min } \leq\left|V_{j}^{\phi \varphi}\right|^{2} \leq v_{j}^{\phi \varphi \max } \\
\text { power source: } & s_{j}^{Y \min } \leq s_{j}^{Y} \leq s_{j}^{Y \max }, & \left|I_{j}^{\phi n}\right|^{2} \leq I_{j}^{\phi n \max } \\
& s_{j}^{\Delta \min } \leq s_{j}^{\Delta} \leq s_{j}^{\Delta \max }, & \left|I_{j}^{\phi \varphi}\right|^{2} \leq I_{j}^{\phi \varphi \max }
\end{array}
$$

Three-phase OPF

Feasible set

$$
\mathbb{T}_{3 p}:=\{(x, u):=(s, v, \ell, V, \tilde{I}, S, u) \mid(x, u) \text { satisfies all constraints }\}
$$

OPF in BFM

$$
\min _{(x, u) \in \mathbb{T}_{3 p}} C(x, u)
$$

Three-phase OPF in BFM is equivalent to three-phase OPF in BIM:

- Their feasible sets are equivalent (Ch 10)
- ... provided their cost functions are equivalent

Outline

1. Bus injection model
2. Branch flow model
3. OPF applications

- Voltage control (distribution grid)

4. Optimization algorithms

Voltage control Distribution system

Voltage instability: magnitudes fluctuate outside their limits

- PVs may push magnitudes above upper limits
- EVs may push magnitudes below lower limits

Traditional solution

- Infrastructure upgrade: more/larger transformers, wires, etc

Non-wire solution

- Distributed energy resources (DER) optimization
- e.g. batteries, smart inverters, demand response
- Can formulate as an OPF

Voltage control

Optimal battery operation

$$
\begin{aligned}
\min _{u, V, b} & \sum_{t} \sum_{j}\left(\left|V_{j}(t)\right|^{2}-v_{j}^{\text {ref }}(t)\right)^{2} \\
\text { s.t. } & u_{j}(t)+\sigma_{j}(t)=\sum_{k: j \sim k} S_{j k}(V(t)), \quad \underline{v}_{j} \leq\left|V_{j}(t)\right|^{2} \leq \bar{v}_{j} \\
& \left|S_{j k}(V(t))\right| \leq \bar{S}_{j k}, \quad\left|S_{k j}(V(t))\right| \leq \bar{S}_{k j}
\end{aligned}
$$

Voltage control

Optimal battery operation

$$
\begin{aligned}
\min _{u, V, b} & \sum_{t} \sum_{j}\left(\left|V_{j}(t)\right|^{2}-v_{j}^{\text {ref }}(t)\right)^{2} \\
\text { s.t. } & u_{j}(t)+\sigma_{j}(t)=\sum_{k: j \sim k} S_{j k}(V(t)), \quad \underline{v}_{j} \leq\left|V_{j}(t)\right|^{2} \leq \bar{v}_{j} \\
& \left|S_{j k}(V(t))\right| \leq \bar{S}_{j k}, \quad\left|S_{k j}(V(t))\right| \leq \bar{S}_{k j} \\
& b_{j}(t+1)=b_{j}(t)-\operatorname{Re}\left(u_{j}(t)\right) \quad \text { charging/discharging (100\% efficiency) }
\end{aligned}
$$

Voltage control

Optimal battery operation

$$
\begin{array}{ll}
\min _{u, V, b} & \sum_{t} \sum_{j}\left(\left|V_{j}(t)\right|^{2}-v_{j}^{\text {ref }}(t)\right)^{2} \\
\text { s.t. } & u_{j}(t)+\sigma_{j}(t)=\sum_{k: j \sim k} S_{j k}(V(t)), \quad \underline{v}_{j} \leq\left|V_{j}(t)\right|^{2} \leq \bar{v}_{j} \\
& \left|S_{j k}(V(t))\right| \leq \bar{S}_{j k}, \quad\left|S_{k j}(V(t))\right| \leq \bar{S}_{k j} \\
& b_{j}(t+1)=b_{j}(t)-\operatorname{Re}\left(u_{j}(t)\right) \quad \text { charging/discharging (100\% efficiency) } \\
& \underline{u}_{j} \leq \operatorname{Re}\left(u_{j}(t)\right) \leq \bar{u}_{j}, \quad 0 \leq b_{j}(t) \leq B_{j} \\
& \text { powerlimit }
\end{array}
$$

Voltage control

Optimal battery placement

$$
\begin{aligned}
\min _{u, V, b, B} & \sum_{t} \sum_{j}\left(\left|V_{j}(t)\right|^{2}-v_{j}^{\mathrm{ref}}(t)\right)^{2}+\sum_{j} c_{j} B_{j} \\
\text { s.t. } & u_{j}(t)+\sigma_{j}(t)=\sum_{k: j \sim k} S_{j k}(V(t)), \quad v_{j} \leq\left|V_{j}(t)\right|^{2} \leq \bar{v}_{j} \\
& \left|S_{j k}(V(t))\right| \leq \bar{S}_{j k}, \quad\left|S_{k j}(V(t))\right| \leq \bar{S}_{k j} \\
& b_{j}(t+1)=b_{j}(t)-\operatorname{Re}\left(u_{j}(t)\right) \\
& \underline{u}_{j} \leq \operatorname{Re}\left(u_{j}(t)\right) \leq \bar{u}_{j}, \quad 0 \leq b_{j}(t) \leq B_{j} \\
& B_{j}^{\text {opt }>0: \text { place battery at bus } j}
\end{aligned}
$$

Outline

1. Bus injection model
2. Branch flow model
3. Optimization algorithms

- Newton-Raphson algorithm
- Interior-point algorithm

Complex formulation

Even though OPF is often formulated in \mathbb{C}, it is converted to \mathbb{R} before being solved iteratively

Example: QCQP

$$
\begin{aligned}
\min _{x \in \mathbb{C}^{n}} & x^{\mathrm{H}} C_{0} x \\
\text { s.t. } & x^{\mathrm{H}} C_{l} x \leq b_{l}, \quad l=1, \ldots, L
\end{aligned}
$$

- $C_{l}: n \times n$ Hermitian matrix
- $b_{l} \in \mathbb{R}$

Equivalent to:

$$
\begin{aligned}
\min _{\left(x_{r} x_{i}\right) \in \mathbb{R}^{2 n}} & {\left[\begin{array}{l}
x_{r} \\
x_{i}
\end{array}\right]^{\top}\left[\begin{array}{ll}
C_{0 r} & -C_{0 i} \\
C_{0 i} & C_{0 r}
\end{array}\right]\left[\begin{array}{l}
x_{r} \\
x_{i}
\end{array}\right] } \\
\text { s.t. } & {\left[\begin{array}{l}
x_{r} \\
x_{i}
\end{array}\right]^{\top}\left[\begin{array}{ll}
C_{l r} & -C_{l i} \\
C_{l i} & C_{l r}
\end{array}\right]\left[\begin{array}{l}
x_{r} \\
x_{i}
\end{array}\right] \leq b_{l}, \quad l=1, \ldots, L }
\end{aligned}
$$

- $2 n \times 2 n$ symmetric matrices

Algorithms for OPF

Popular algorithms

Newton-Raphson algorithm

- 2nd order algorithm
- Interior-point algorithm

Interior-point algorithm

- Based on barrier functions
- Uses of Newton-Raphson algorithm for subproblems

Newton-Raphson algorithm

NR is algorithm for solving

$$
F(x)=0, \quad F: \mathbb{R}^{n} \rightarrow R^{n}
$$

Iteratively:

$$
\begin{aligned}
& x(t+1)=y(t)+\Delta x(t) \\
& J(y(t)) \Delta x(t)=-F(x(t)) \\
& \text { where } J(x):=\frac{\partial F}{\partial x}(x) \text { is Facobian of } F
\end{aligned}
$$

Application to optimization problems:

- $F(x)=0$ is KKT condition
- If NR converges, it computes a KKT point $x^{\text {opt }}$
- x^{opt} is a global optimal if the problem is convex (feasible otherwise)

Newton-Raphson algorithm

Describe NR progressively for solving

- Linear equality constrained problems
- Nonlinear equality constrained problems
- Inequality constrained problems

Newton-Raphson algorithm

Linear equality constraint

Consider
$\min _{x \in \mathbb{R}^{n}} f(x) \quad$ s.t. $\quad A x=b$
where

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable
- $A \in \mathbb{R}^{m \times n}$

Newton-Raphson algorithm

Linear equality constraint

Consider

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad A x=b
$$

Lagrangian:

$$
L(x, \lambda):=f(x)+\lambda^{\top}(A x-b)
$$

Jacobian of $L(x, \lambda)$:

$$
F(x, \lambda):=\left[\begin{array}{c}
\nabla_{x} L(x, \lambda) \\
\nabla_{\lambda} L(x, \lambda)
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)+A^{\top} \lambda \\
A x-b
\end{array}\right]
$$

KKT condition to be solved by NR algorithm:

$$
F(x, \lambda)=0
$$

Newton-Raphson algorithm

Linear equality constraint

Consider

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad A x=b
$$

Jacobian of $F(x, \lambda)$:

$$
J(x, \lambda)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(x) & A^{\top} \\
A & 0
\end{array}\right] \quad \begin{aligned}
& \text { - KKT matrix } \\
& \text { - Independent of } \lambda
\end{aligned}
$$

NR iteration:

$$
\left[\begin{array}{l}
x(t+1) \\
\lambda(t+1)
\end{array}\right]=\left[\begin{array}{l}
x(t) \\
\lambda(t)
\end{array}\right]+\left[\begin{array}{l}
\Delta x(t) \\
\Delta \lambda(t)
\end{array}\right] \quad \text { where } \quad\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(x(t)) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x(t) \\
\Delta \lambda(t)
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x(t))+A^{\top} \lambda(t) \\
A x(t)-b
\end{array}\right]
$$

Newton-Raphson algorithm

Nonlinear equality constraint

Consider

```
\(\min _{x \in \mathbb{R}^{n}} f(x) \quad\) s.t. \(\quad g(x)=0\)
```

where

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are twice continuously differentiable

Follow the same procedure as for linear equality constrained problems

Newton-Raphson algorithm
 Nonlinear equality constraint

Consider

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad g(x)=0
$$

Lagrangian:

$$
L(x, \lambda):=f(x)+\lambda^{\top} g(x)
$$

Jacobian of $L(x, \lambda)$:

$$
F(x, \lambda):=\left[\begin{array}{c}
\nabla_{x} L(x, \lambda) \\
\nabla_{\lambda} L(x, \lambda)
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)+\frac{\partial g}{\partial x}(x)^{\top} \lambda \\
g(x)
\end{array}\right]
$$

KKT condition to be solved by NR algorithm:

$$
F(x, \lambda)=0
$$

Newton-Raphson algorithm

Nonlinear equality constraint

Consider

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad g(x)=0
$$

Jacobian of $F(x, \lambda)$:

$$
J(x, \lambda)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(x)+\sum_{k} \frac{\partial^{2} g_{k}}{\partial x^{2}} \lambda_{k} & \frac{\partial g}{\partial x}(x)^{\top} \\
\frac{\partial g}{\partial x}(x) & 0
\end{array}\right]
$$

NR iteration:

$$
\left[\begin{array}{l}
x(t+1) \\
\lambda(t+1)
\end{array}\right]=\left[\begin{array}{l}
x(t) \\
\lambda(t)
\end{array}\right]+\left[\begin{array}{l}
\Delta x(t) \\
\Delta \lambda(t)
\end{array}\right] \quad \text { where } \quad J(x, \lambda)\left[\begin{array}{l}
\Delta x(t) \\
\Delta \lambda(t)
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x(t))+\frac{\partial g}{\partial x}(x(t))^{\top} \lambda(t) \\
g(x(t))
\end{array}\right]
$$

Newton-Raphson algorithm

Inequality constraint

Consider

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad g(x) \leq 0
$$

where

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are twice continuously differentiable

Two common solution approaches

1. Introduce slack var $z \geq 0$ to reduce the inequality into a simple inequality constraint:

$$
\min _{(x, z) \in \mathbb{R}^{n+m}} f(x) \quad \text { s.t. } \quad g(x)+z=0, \quad z \geq 0
$$

2. Replace constraint by a penalty term and reduce to unconstrained problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x)+\frac{1}{t} \phi(x) \quad \text { This is the approach of interior-point algorithms ! }
$$

Interior-point algorithm

Basic idea

Consider

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x) \quad \text { s.t. } \quad f(x) \leq 0, \quad g(x)=0
$$

where

- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are twice continuously differentiable

Basic idea:

- Approximate problem by equality constrained problem by replacing $f(x) \leq 0$ by a barrier function
- Solve the approximate problem by Newton-Raphson methods

Interior-point algorithm

Log barrier function

Log barrier function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

$$
\phi(x):=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

over $\operatorname{dom} \phi:=\left\{x \in \mathbb{R}^{n}: f_{i}(x)<0, i=1, \ldots, m\right\}$
Properties:

- $\phi(x) \rightarrow \infty$ as $f_{i}(x) \rightarrow 0$ for any i
- $\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x)$
- $\frac{\partial^{2} \phi}{\partial x^{2}}(x)=\sum_{i} \frac{1}{f_{i}^{2}(x)} \nabla f_{i}(x) \nabla f_{i}^{\top}(x)+\sum_{i} \frac{1}{-f_{i}(x)} \frac{\partial^{2} f_{i}}{\partial x^{2}}(x)$

Interior-point algorithm

Approximate problem

Consider

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x) \quad \text { s.t. } \quad f(x) \leq 0, \quad g(x)=0
$$

Approximate problem

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)+\frac{1}{t} \phi(x) \quad \text { s.t. } \quad g(x)=0
$$

or
$\operatorname{Problem}(\mathrm{t}): \quad \min _{x \in \mathbb{R}^{n}} \quad t f_{0}(x)+\phi(x) \quad$ s.t. $\quad g(x)=0$

- Larger $t>0 \Longrightarrow$ more accurate approximation

Barrier method

A popular interior-point method

Basic idea

- Solve $\operatorname{Problem}(t)$ for an increasing sequence of $t>0$ until solution is accurate enough
- For each t, solve $\operatorname{Problem}(t)$ using Newton-Raphson algorithm

Questions

- How to choose the sequence of t ?
- When to terminate?

Answer these question for convex problems

Barrier method

Assumptions

1. Original problem is convex, i.e., $f_{0}, f_{1}, \ldots, f_{m}$ are convex and $g(x)=A x-b$
2. For each $t>0$, Newton-Raphson algorithm converges to the unique optimal solution $x(t)$ of the approximate problem

- Central point : optimal solution $x(t)$
- Central path : set $\{x(t): t>0\}$ of central points

Barrier method

Central point $x(t)$

1. Original problem is convex, i.e., $f_{0}, f_{1}, \ldots, f_{m}$ are convex and $g(x)=A x-b$
2. For each $t>0$, Newton-Raphson algorithm converges to the unique optimal solution $x(t)$ of the approximate problem

Theorem

For each $t>0$

1. $x(t)$ is feasible for original problem
2. Objective value is at most m / t away from optimal value, i.e., $f_{0}(x(t))-f_{0}^{\mathrm{opt}} \leq \frac{m}{t}$ In particular $f_{0}(x(t)) \rightarrow f_{0}^{\mathrm{Opt}}$ as $t \rightarrow \infty$

Barrier method

Input: strictly feasible x, initial $t:=t_{0}$, scaling factor $\gamma>1$, tolerance ε.
Output: an approximate solution x

1. while $t \leq \frac{m}{\varepsilon}$ do
(a) Solve $\operatorname{Problem}(t)$ to compute $x(t)$ using the Newton-Raphson algorithm starting from x.
(b) $x \leftarrow x(t)$.
(c) $t \leftarrow \gamma t$.
2. Return: x.

In principle, one can solve $\operatorname{Problem}(t)$ with $t:=m / \epsilon$ instead of solving a sequence of $\operatorname{Problem}(t)$. In practice, barrier method works better.

