Power System Analysis

Chapter 12 Optimal power flow

Steven Low EE/CS/EST 135 Caltech

Outline

- 1. Bus injection model
- 2. Branch flow model
- 3. OPF applications
- 4. Optimization algorithms

Outline

- 1. Bus injection model
 - Single-phase devices
 - Single-phase OPF
 - OPF as QCQP
 - Three-phase devices
 - Three-phase OPF
 - Three-phase OPF as QCQP
- 2. Branch flow model
- 3. OPF applications
- 4. Optimization algorithms

Single-phase devices

Voltage source *j*

- *Ideal* voltage source: terminal voltage V_i = internal voltage
- V_i is variable if the source is controllable, or given otherwise

Current source *j*

- *Ideal* current source: terminal voltage I_i = internal voltage
- I_i is variable if the source is controllable, or given otherwise

Power source j

- *Ideal* power source: terminal power s_j = internal power
- s_j is variable if the source is controllable, or given otherwise

Impedance j

• Impedance z_j : constrains its terminal voltage & current $V_j = -z_j I_j$

Single-phase OPF Assumptions

Assume WLOG

- Single-phase devices: voltage sources and power sources only
- Each bus has a single device with $\left(V_{j}, s_{j}\right)$

Formulate the simplest OPF to study general computational properties

Optimization variable: $(V, s) := (V_j, s_j, j \in \overline{N})$

• Represents voltage sources V_j and power sources s_j only

Cost function $C_0(V, s)$

• Fuel cost :
$$C_0(V,s) := \sum_{j:\text{gens}} c_j \operatorname{Re}(s_j)$$

• Total real power loss:
$$C_0(V, s) := \sum_i \operatorname{Re}(s_j)$$

Power flow equations in BIM

• Equality constraints on (*V*, *s*)

$$s_{j} = \sum_{k:j\sim k} S_{jk}(V) := \sum_{k:j\sim k} \left(y_{jk}^{s} \right)^{\mathsf{H}} \left(|V_{j}|^{2} - V_{j}V_{k}^{\mathsf{H}} \right) + \left(y_{jj}^{m} \right)^{\mathsf{H}} |V_{j}|^{2}, \qquad j \in \overline{N}$$

• Derivation:

$$I_{jk}(V) := y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j}$$

$$S_{jk}(V) := V_{j}I_{jk}^{H}(V) := \left(y_{jk}^{s}\right)^{H}\left(|V_{j}|^{2} - V_{j}V_{k}^{H}\right) + \left(y_{jk}^{m}\right)^{H}|V_{j}|^{2}$$

- Can also use polar form and Cartesian form
- Nonlinear and global equality constraints, resulting in nonconvexity of OPF

Operational constraints

- Injection limits (e.g. gen. or load capacity limits): $s_j^{\min} \leq s_j \leq s_j^{\max}$
- Voltage limits: $v_j^{\min} \leq |V_j|^2 \leq v_j^{\max}$
- Line limits: $|I_{jk}(V)|^2 \le I_{jk}^{\max}$, $|I_{kj}(V)|^2 \le I_{kj}^{\max}$

$$\left| \begin{array}{l} y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j} \right|^{2} \leq I_{jk}^{\max}, \quad (j,k) \in E \\ \left| \begin{array}{l} y_{kj}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k} \right|^{2} \leq I_{kj}^{\max}, \quad (j,k) \in E \end{array} \right|$$

Line limits can also be on line powers $(S_{jk}(V), S_{kj}(V))$ or apparent powers $(|S_{jk}(V)|, |S_{kj}(V)|)$

OPF in BIM

 $\begin{array}{ll} \min_{(V,s)} & C_0(V,s) \\ \mbox{subject to} & f(V,s) = 0 & \mbox{power flow equations} \\ & g(V,s) \leq 0 & \mbox{operational constraints} \end{array}$

- Does not need assumption $y_{jk}^s = y_{kj}^s$
- Can accommodate single-phase transformers with complex turns ratios

Single-phase OPF

- 1. Other devices
 - Can include other devices such as current sources, impedances, capacity taps
 - Allow multiple devices connected to same bus
- 2. Can formulate OPF in terms of V only
 - Use power flow equations to express injections $s_j(V)$ as functions of V
 - Eliminate s_j and power flow equations (equality constraints)

Next: explain each in turn

Single-phase OPF Including other devices

Examples

- Current source (controllable): variable I_j with local constraints $|I_j|^2 \le I_j^{\text{max}}$, $s_j = V_j I_j^{\text{H}}$
- Impedance z_j : imposes additional constraint $s_j = |V_j|^2 / z_j^H$
- Capacitor tap (controllable): variable y_j with local constraints $y_j^{\min} \le y_j \le y_j^{\max}$, $s_j = y_j^{\mathsf{H}} |V_j|^2$ • Multiple devices: injection variables s_{jk} with local constraints $s_{jk}^{\min} \le s_{jk} \le s_{jk}^{\max}$, $s_j = \sum_{jk} s_{jk}$

Including other devices at bus j imposes additional local constraints

- Additional optimization var u_i may be introduced
- Equality constraints relating (V_j, s_j) and u_j (if present) : $f_j(V_j, s_j, u_j) = 0$
- Inequality (operational) constraints (e.g., capacity limits): $g_i(u_i) \le 0$

Single-phase OPF In terms of V only

Equality constraints (BIM in complex form)

$$s_{j}(V) = \sum_{k:j \sim k} S_{jk}(V) := \sum_{k:j \sim k} \left(y_{jk}^{s} \right)^{\mathsf{H}} \left(|V_{j}|^{2} - V_{j}V_{k}^{\mathsf{H}} \right) + \left(y_{jj}^{m} \right)^{\mathsf{H}} |V_{j}|^{2}, \qquad j \in \overline{N}$$

• Expresses s_j in terms of voltages V

 $\operatorname{Cost} C_0(V) := C_0(V, s(V)) \text{ expressed as function of } V$

• Fuel cost:

$$C_0(V) := \sum_{j:\text{gens}} c_j \operatorname{Re}(s_j(V)) = \sum_{j:\text{gens}} c_j \operatorname{Re}\left(\sum_{k:j\sim k} \left(y_{jk}^s\right)^{\mathsf{H}} \left(|V_j|^2 - V_j V_k^{\mathsf{H}}\right) + \left(y_{jj}^m\right)^{\mathsf{H}} |V_j|^2\right)$$

• Total real power loss:

$$C_0(V) := \sum_j \operatorname{Re}(s_j(V))$$

Single-phase OPF Operational constraints

Injection limits (e.g. generation or load capacity limits) $s_j^{\min} \leq s_j(V) \leq s_j^{\max}$:

$$\underline{s}_{j} \leq \sum_{k:j\sim k} \left(y_{jk}^{s} \right)^{\mathsf{H}} \left(|V_{j}|^{2} - V_{j}V_{k}^{\mathsf{H}} \right) + \left(y_{jj}^{m} \right)^{\mathsf{H}} |V_{j}|^{2} \leq \overline{s}_{j}, \qquad j \in \overline{N}$$

• Polar form:

$$\underline{p}_{j} \leq \left(\sum_{k=0}^{N} g_{jk}\right) |V_{j}|^{2} - \sum_{k \neq j} |V_{j}| |V_{k}| \left(g_{jk} \cos \theta_{jk} - b_{jk} \sin \theta_{jk}\right) \leq \overline{p}_{j}$$
$$\underline{p}_{j} \leq \left(\sum_{k=0}^{N} b_{jk}\right) |V_{j}|^{2} - \sum_{k \neq j} |V_{j}| |V_{k}| \left(b_{jk} \cos \theta_{jk} + g_{jk} \sin \theta_{jk}\right) \leq \overline{q}_{j}$$

Single-phase OPF Operational constraints

Voltage limits (same as before):

$$v_j^{\min} \leq |V_j|^2 \leq v_j^{\max}, \quad j \in \overline{N}$$

Line limits (same as before):

$$\left| y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m} V_{j} \right|^{2} \leq I_{jk}^{\max}, \qquad (j,k) \in E$$

$$\left| y_{kj}^{s}(V_{k} - V_{j}) + y_{kj}^{m} V_{k} \right|^{2} \leq I_{kj}^{\max}, \qquad (j,k) \in E$$

• Line limits can also be on line powers $\left(S_{jk}(V), S_{kj}(V)\right)$ or apparent powers $\left(\left|S_{jk}(V)\right|, \left|S_{kj}(V)\right|\right)$

Single-phase OPF In terms of V only

Feasible set

 $\mathbb{V} := \left\{ V \in \mathbb{C}^{N+1} \mid V \text{ satisfies operational constraints} \right\}$

OPF in BIM

 $\min_{V \in \mathbb{V}} \quad C_0(V)$

- Does not need assumption $y_{jk}^s = y_{kj}^s$
- Can accommodate single-phase transformers with complex turns ratios

Single-phase OPF In terms of V only

Feasible set

 $\mathbb{V} := \left\{ V \in \mathbb{C}^{N+1} \mid V \text{ satisfies operational constraints} \right\}$

OPF in BIM

 $\min_{V \in \mathbb{V}} \quad C_0(V)$

We will mostly study this simple OPF Can express it as a QCQP

Outline

1. Bus injection model

- Single-phase devices
- Single-phase OPF
- OPF as QCQP
- Three-phase devices
- Three-phase OPF
- Three-phase OPF as QCQP
- 2. Branch flow model
- 3. Optimization algorithms

Quadratically constrained quadratic program:

 $\min_{x \in \mathbb{C}^n} \quad x^{\mathsf{H}} C_0 x$

- s.t. $x^{\mathsf{H}}C_{l}x \leq b_{l}, \qquad l = 1, ..., L$
- $C_l: n \times n$ Hermitian matrix
- $b_l \in \mathbb{R}$
- Homogeneous QCQP : all monomials are of degree 2

Inhomogeneous QCQP

$$\min_{x \in \mathbb{C}^n} \quad x^{\mathsf{H}} C_0 x + \left(c_0^{\mathsf{H}} x + x^{\mathsf{H}} c_0 \right)$$

s.t.
$$x^{\mathsf{H}} C_l x + \left(c_l^{\mathsf{H}} x + x^{\mathsf{H}} c_l \right) \leq b_l, \qquad l = 1, \dots, L$$

Homogenization:

• Idea:
$$|x|^2 + (c^H x + x^H c) \le b \iff |x + ct|^2 - |c|^2 |t|^2 \le b, |t|^2 = 1$$

• If $(x, t = e^{i\theta})$ satisfies 2nd inequality, then $xt = xe^{i\theta}$ satisfies 1st inequality

Equivalent homogeneous QCQP

$$\min_{x \in \mathbb{C}^{n}, t \in \mathbb{C}} \left[x^{\mathsf{H}} t^{\mathsf{H}} \right] \left[\begin{matrix} C_{0} & c_{0} \\ c_{0}^{\mathsf{H}} & 0 \end{matrix} \right] \left[\begin{matrix} x \\ t \end{matrix} \right]$$
s.t.
$$\left[x^{\mathsf{H}} t^{\mathsf{H}} \right] \left[\begin{matrix} C_{l} & c_{l} \\ c_{l}^{\mathsf{H}} & 0 \end{matrix} \right] \left[\begin{matrix} x \\ t \end{matrix} \right] \le b_{l}, \qquad l = 1, \dots, L$$

$$\left[x^{\mathsf{H}} t^{\mathsf{H}} \right] \left[\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix} \right] \left[\begin{matrix} x \\ t \end{matrix} \right] = 1$$

Homogenization:

• Idea:
$$|x|^2 + (c^H x + x^H c) \le b \iff |x + ct|^2 - |c|^2 |t|^2 \le b, |t|^2 = 1$$

• If
$$(x, t = e^{i\theta})$$
 satisfies 2nd inequality, then $xt = xe^{i\theta}$ satisfies 1st inequality

To write OPF as QCQP:

- Assume cost function $C_0(V) = V^{\mathsf{H}}C_0V$ can be written as a quadratic form
- Need to rewrite operational constraints in terms of quadratic forms

Injection limits $s_j^{\min} \le s_j(V) \le s_j^{\max}$

$$s_{j}(V) = V_{j}I_{j}^{\mathsf{H}} = \left(e_{j}^{\mathsf{H}}V\right)\left(e_{j}^{\mathsf{H}}I\right)^{\mathsf{H}} = e_{j}^{\mathsf{H}}VV^{\mathsf{H}}Y^{\mathsf{H}}e_{j}$$
$$s_{j}(V) = \operatorname{tr}\left(e_{j}^{\mathsf{H}}VV^{\mathsf{H}}Y^{\mathsf{H}}e_{j}\right) = \operatorname{tr}\left(\left(Y^{\mathsf{H}}e_{j}e_{j}^{\mathsf{H}}\right)VV^{\mathsf{H}}\right) =: V^{\mathsf{H}}Y_{j}^{\mathsf{H}}V$$

Injection limits $s_j^{\min} \le s_j(V) \le s_j^{\max}$

$$s_{j}(V) = V_{j}I_{j}^{\mathsf{H}} = \left(e_{j}^{\mathsf{H}}V\right)\left(e_{j}^{\mathsf{H}}I\right)^{\mathsf{H}} = e_{j}^{\mathsf{H}}VV^{\mathsf{H}}Y^{\mathsf{H}}e_{j}$$
$$s_{j}(V) = \operatorname{tr}\left(e_{j}^{\mathsf{H}}VV^{\mathsf{H}}Y^{\mathsf{H}}e_{j}\right) = \operatorname{tr}\left(\left(Y^{\mathsf{H}}e_{j}e_{j}^{\mathsf{H}}\right)VV^{\mathsf{H}}\right) =: V^{\mathsf{H}}Y_{j}^{\mathsf{H}}V$$

- Y_j is not Hermitian so $V^{\mathsf{H}}Y_j^{\mathsf{H}}V$ is generally complex
- Define $\Phi_j := \frac{1}{2} \left(Y_j^{\mathsf{H}} + Y_j \right), \qquad \Psi_j := \frac{1}{2i} \left(Y_j^{\mathsf{H}} Y_j \right)$

• Then
$$\operatorname{Re}(s_j) = V^{\mathsf{H}} \Phi_j V$$
, $\operatorname{Im}(s_j) = V^{\mathsf{H}} \Psi_j V$

Hence
$$s_j^{\min} \le s_j(V) \le s_j^{\max}$$
 is equivalent to:
 $p_j^{\min} \le V^{\mathsf{H}} \Phi_j V \le p_j^{\max}, \quad q_j^{\min} \le V^{\mathsf{H}} \Psi_j V \le q_j^{\max}$

OPF as QCQP Voltage limits

Voltage magnitude is: $|V_j|^2 = V^H J_j V$ where $J_j := e_j e_j^T$

Hence voltage limits are: $v_j^{\min} \leq V^{\mathsf{H}} J_j V \leq v_j^{\max}$

OPF as QCQP Line limits

Write I_{jk} in terms of voltage vector V:

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j} = \left(y_{jk}^{s}(e_{j} - e_{k})^{\mathsf{T}} + y_{jk}^{m}e_{j}^{\mathsf{T}}\right)V$$

Hence current limit is: $|I_{jk}|^2 = V^{\mathsf{H}} \hat{Y}_{jk} V \leq I_{jk}^{\max}$ where

$$\hat{Y}_{jk} := \left(y_{jk}^{s} (e_{j} - e_{k})^{\mathsf{T}} + y_{jk}^{m} e_{j}^{\mathsf{T}} \right)^{\mathsf{H}} \left(y_{jk}^{s} (e_{j} - e_{k})^{\mathsf{T}} + y_{jk}^{m} e_{j}^{\mathsf{T}} \right)$$

OPF as QCQP Simplest formulation

$$\begin{split} \min_{V \in \mathbb{C}^{N+1}} & V^{\mathsf{H}} C_0 V \\ \text{s.t.} & p_j^{\min} \leq V^{\mathsf{H}} \Phi_j V \leq p_j^{\max}, \qquad j \in \overline{N} \\ & q_j^{\min} \leq V^{\mathsf{H}} \Psi_j V \leq q_j^{\max}, \qquad j \in \overline{N} \\ & v_j^{\min} \leq V^{\mathsf{H}} J_j V \leq v_j^{\max}, \qquad j \in \overline{N} \\ & V^{\mathsf{H}} \hat{Y}_{jk} V \leq \bar{I}_{jk}^{\max}, \qquad (j,k) \in E \\ & V^{\mathsf{H}} \hat{Y}_{kj} V \leq \bar{I}_{kj}^{\max}, \qquad (j,k) \in E \end{split}$$

Outline

1. Bus injection model

- Single-phase devices
- Single-phase OPF
- OPF as QCQP
- Three-phase devices
- Three-phase OPF
- Three-phase OPF as QCQP
- 2. Branch flow model
- 3. Optimization algorithms

Recall: overall 3-phase BIM Device + network

- 1. Device model for each 3-phase device
 - Internal model on $\left(V_{j}^{Y/\Delta}, I_{j}^{Y/\Delta}, s_{j}^{Y/\Delta}\right)$ + conversion rules
 - External model on $\left(V_j, I_j, s_j\right)$
 - Either can be used
 - Power source models are nonlinear; other devices are linear

Our perspective:

- Internal vars $\left(V_{j}^{Y/\Delta}, I_{j}^{Y/\Delta}, s_{j}^{Y/\Delta}\right)$ are controllable, depending on types of device
- External vars (V_j, I_j, s_j) are not directly controllable
- :. use internal model + conversion rules

Steven Low Caltech Network models

Recall: overall 3-phase BIM Device + network

- 2. Network model relates terminal vars (V, I, s)
 - Nodal current balance (linear): I = YV
 - Nodal power balance (nonlinear):

$$s_j = \sum_{k:j \sim k} \operatorname{diag} \left(V_j (V_j - V_k)^{\mathsf{H}} y_{jk}^{s\mathsf{H}} + V_j V_j^{\mathsf{H}} y_{jk}^{m\mathsf{H}} \right)$$

• Either can be used

For OPF, our formulation uses (V, s):

- Relate (*V*, *s*) through power flow equations
- Power sources lead to nonlinear analysis, even if we use I = YV as network equation
- Need to relate internal optimization vars to (V_j, s_j) using conversion rules

Steven Low Caltech Network models

Three-phase devices

Voltage source $V_i^{Y/\Delta}$

- Internal optimization variable $u_j := V_j^{Y/\Delta}$ (γ_j^Y assumed given)
- Local constraints that relate internal vars to (V_j, s_j)

$$Y: V_j = V_j^Y + \gamma_j^Y \mathbf{1}$$

$$\Delta: \Gamma V_j = V_j^{\Delta}$$

Note:

- Choosing V_j^{Δ} does not uniquely determine V_j
- Optimization over V_j implicitly chooses an optimal $\gamma_j^{\Delta} := \frac{1}{3} \mathbf{1}^{\mathsf{T}} V_j$
- If γ_j^Δ is given, then $\Gamma V_j = V_j^\Delta$ should be replaced by $V_j = \Gamma^\dagger V_j^\Delta + \gamma_j^\Delta$ 1

Three-phase devices

Current source $I_i^{Y/\Delta}$

- Internal optimization variable $u_j := I_j^{Y/\Delta}$
- Local constraints that relate internal vars and $\left(V_{j}, s_{j}\right)$

$$\begin{array}{lll}Y: & s_{j} &= -\operatorname{diag}\left(V_{j}I_{j}^{Y\mathsf{H}}\right)\\ \Delta: & s_{j} &= -\operatorname{diag}\left(V_{j}I_{j}^{\Delta\mathsf{H}}\Gamma\right)\end{array}$$

Note:

- Optimization over I_j^{Δ} implicitly chooses an optimal $\beta_j^{\Delta} := \frac{1}{3} \mathbf{1}^T I_j^{\Delta}$
- If β_j^{Δ} is given, it imposes an additional constraint $I_j^{\Delta} = -\frac{1}{3}\Gamma I_j + \beta_j^{\Delta} 1$ (and express I_j in terms of (V_j, s_j)

Three-phase devices

Power source $\left(s_{j}^{Y/\Delta}, I_{j}^{Y/\Delta}\right)$

• Internal optimization variable $u_j := \left(s_j^{Y/\Delta}, I_j^{Y/\Delta}\right)$ (assume $\gamma_j^Y := V_j^n = 0$)

• Local constraints that relate internal vars and (V_j, s_j)

$$\begin{split} Y: & s_j = -s_j^Y \\ \Delta: & s_j = -\operatorname{diag}\left(V_j I_j^{\Delta \mathsf{H}} \Gamma\right), \qquad s_j^{\Delta} = \operatorname{diag}\left(\Gamma V_j I_j^{\Delta \mathsf{H}}\right) \end{split}$$

Impedance $z_i^{Y/\Delta}$

- Given parameter: $z_j^{Y/\Delta}$ (assume $\gamma_j^Y := V_j^n = 0$)
- Local constraints on terminal vars (V_j, s_j)

Three-phase OPF

Variables:

- Terminal variables $\left(V_{j}, s_{j}\right)$
- Internal variables u_i depending on devices (discussed above)

Cost function: $C_0(V, s, u)$

Equality constraints:

1. Power flow equations on (V, s) (global constraint): f(V, s) = 0

$$s_j = \sum_{k:j \sim k} \operatorname{diag}\left(V_j(V_j - V_k)^H \left(y_{jk}^s\right)^H + V_j V_j^H \left(y_{jk}^m\right)^H\right), \quad j \in \overline{N}$$

2. Conversion rules relating internal optimization var u_j to (V_j, s_j) (local constraint, discussed above)

$$f_j^{Y/\Delta}\left(V_j, s_j, u_j\right) = 0, \qquad j \in \overline{N}$$

Three-phase OPF

Inequality constraints:

1. Operational constraints on external vars: $g(V, s) \le 0$

injection limits:
$$s_j^{\phi \min} \leq s_j^{\phi} \leq s_j^{\phi \max}$$
, $\phi \in \{a, b, c\}$, $j \in \overline{N}$ voltage limits: $v_j^{\phi \min} \leq \left| V_j^{\phi} \right|^2 \leq v_j^{\phi \max}$, $\phi \in \{a, b, c\}$, $j \in \overline{N}$ line limits: $\left| I_{jk}^{\phi}(V) \right|^2 \leq I_{jk}^{\phi \max}$, $\left| I_{kj}^{\phi}(V) \right|^2 \leq I_{kj}^{\phi \max}$, $\phi \in \{a, b, c\}$, $(j, k) \in E$

Same constraints as single-phase OPF, but on single-phase equivalent circuit

Three-phase OPF

Inequality constraints:

2. Operational constraints on internal vars: $g_j^{Y/\Delta}(u_j) \le 0$ for $\phi n \in \{an, bn, cn\}$, $\phi \varphi \in \{ab, bc, ca\}$ voltage source: $v_j^{\phi n \min} \le |V_j^{\phi n}|^2 \le v_j^{\phi n \max}$, $v_j^{\phi \varphi \min} \le |V_j^{\phi \varphi}|^2 \le v_j^{\phi \varphi \max}$ current source: $|I_j^{\phi n}|^2 \le I_j^{\max}$, $|I_j^{\phi \varphi}|^2 \le I_j^{\max}$ power source: $s_j^{\phi n \min} \le s_j^{\phi n} \le s_j^{\phi n \max}$, $|I_j^{\phi \varphi}|^2 \le I_j^{\phi n \max}$ $s_j^{\phi \varphi \min} \le s_j^{\phi \varphi} \le s_j^{\phi \varphi \max}$, $|I_j^{\phi \varphi}|^2 \le I_j^{\phi \varphi \max}$

Local constraints at each bus j

Three-phase OPF Constraints summary

1. Constraints on terminal variables: f(V, s) = 0, $g(V, s) \le 0$

- Power flow equation and operational constraints (terminal power injection limits, voltage limits, line limits)
- Global constraints
- Extension of single-phase constraints to 3-phase setting, using single-phase equivalent
- 2. Conversion rules relating u_j and $\left(V_j, s_j\right)$: $f_j^{Y/\Delta}\left(u_j, V_j, s_j\right) = 0$
 - Local equality constraint for each device j
- 3. Operational constraints on internal variables: $g_j^{Y/\Delta}(u_j) \le 0$
 - Depending on type of device (voltage and capacity limits)
 - Local constraints for each device *j*
Three-phase OPF Simplest formulation

OPF in BIM

$$\begin{array}{ll} \min_{(V,s,u)} & C_0(V,s,u) \\ f(V,s) = 0, & g(V,s) \leq 0 \\ f_j^{Y/\Delta}(V_j,s_j,u_j) = 0, & g_j^{Y/\Delta}(u_j) \leq 0, & j \in \overline{N} \end{array} \begin{array}{ll} \mbox{Global constraints on terminal vars} \\ \mbox{Local constraints at each bus } j \end{array}$$

Three-phase OPF As QCQP

- 1. Can formulate OPF in terms of (V, u) only
 - Use power flow equations to express $s_j(V) = V^H \left(Y_j^{\phi H} \right) V$ and eliminate s_j and f(V, s) = 0
 - Same idea as before applied to single-phase equivalent
- 2. Can formulate OPF as QCQP
 - Express operational constraints $g(V, s(V)) \le 0$ in terms of quadratic forms in V (same idea applied to single-phase equivalent)
 - Express conversion rules $f_j^{Y/\Delta}(V_j, s_j(V), u_j) = 0$ in terms of quadratic forms in (V, u_j)

For details: see Lecture Notes

Outline

- 1. Bus injection model
- 2. Branch flow model
 - Single-phase OPF
 - Three-phase OPF
- 3. OPF applications
- 4. Optimization algorithms

Overview

Assumptions Both single-phase & 3-phase OPF

Radial network

• BFM most useful for modeling distribution systems

$$z_{jk}^s = z_{kj}^s$$
 or equivalently $y_{jk}^s = y_{kj}^s$

• Does not include 3-phase transformers in ΔY or $Y\Delta$ configuration (or single-phase transformers with complex gains)

 $y_{jk}^m = y_{kj}^m = 0$

• Reasonable assumption for distribution line where $|y_{ik}^m|, |y_{kj}^m| \ll |y_{ik}^s|$

Includes only voltage sources and power sources

- Optimization variables are voltages (squared magnitudes) v_i and power injections s_i respectively
- A current source or an impedance will introduce additional var and constraint.

Single-phase OPF

Power flow equations

• All lines point away from bus 0 (root)

$$\sum_{k:j \to k} S_{jk} = S_{ij} - z_{ij} \ell_{ij} + s_j, \quad j \in \overline{N}$$
$$v_j - v_k = 2 \operatorname{Re} \left(z_{jk}^{\mathsf{H}} S_{jk} \right) - |z_{jk}|^2 \ell_{jk}, \quad j \to k \in E$$
$$v_j \ell_{jk} = |S_{jk}|^2, \quad j \to k \in E$$

Operational constraints

$$s_{j}^{\min} \leq s_{j} \leq s_{j}^{\max}$$
$$v_{j}^{\min} \leq v_{j} \leq v_{j}^{\max}$$
$$\ell_{jk} \leq I_{jk}^{\max}$$

Steven Low OPF Branch flow model

Single-phase OPF

Feasible set

 $\mathbb{T}_0 := \left\{ x := (s, v, \ell, S) \in \mathbb{R}^{6N+3} \mid x \text{ satisfies PF equations & operational constraints} \right\}$

OPF in BFM

 $\min_{x \in \mathbb{T}_0} \quad C(x)$

Steven Low OPF Branch flow model

Single-phase OPF Equivalence

Recall for BIM:

- Feasible set: $\mathbb{V} := \{ V \in \mathbb{C}^{N+1} \mid V \text{ satisfies operational constraints} \}$
- $\bullet \ \ {\rm OPF:} \ \min_{V \in \mathbb{V}} \quad C_0(V)$

OPF in BFM is equivalent to OPF in BIM:

- Feasible sets \mathbb{T}_0 and $\mathbb V$ are equivalent (Ch 6)
- ... provided cost functions C(x) and $C_0(V)$ are the same

Variables (x, u):

1. Directly generalizes vars in single-phase OPF (\mathbb{S}^n_+ : complex psd matrices)

$$s_{j} \in \mathbb{C}^{3}, \qquad v_{j} \in \mathbb{S}^{3}_{+}, \qquad j \in \overline{N}$$
$$\ell_{jk} \in \mathbb{S}^{3}_{+}, \qquad S_{jk} \in \mathbb{C}^{3 \times 3}, \qquad j \to k \in E$$

To write conversion rule for power sources, introduce phasors as additional vars

$$\left(V_{j}, j \in \overline{N}\right), \qquad \left(\tilde{I}_{jk}, j \to k \in E\right)$$

Let $x := (s, v, \ell, V, \tilde{I}, S)$

Variables (x, u):

2. Internal variables $u := (u_j, j \in \overline{N})$ of 3-phase devices

voltage source :

power source :

Equality constraints

1. Power flow equations (from Ch 10):

$$\begin{split} \sum_{k:j \to k} \operatorname{diag}(S_{jk}) &= \operatorname{diag}\left(S_{ij} - z_{ij}\ell_{ij}\right) + s_j, \qquad j \in \overline{N} \\ v_j - v_k &= \left(z_{jk} S_{jk}^{\mathsf{H}} + S_{jk} z_{jk}^{\mathsf{H}}\right) - z_{jk} \ell_{jk} z_{jk}^{\mathsf{H}}, \qquad j \to k \in E \\ \begin{bmatrix} v_j S_{jk} \\ S_{jk}^{\mathsf{H}} \ell_{jk} \end{bmatrix} \geq 0, \qquad j \to k \in E \\ \operatorname{rank} \begin{bmatrix} v_j S_{jk} \\ S_{jk}^{\mathsf{H}} \ell_{jk} \end{bmatrix} = 1, \qquad j \to k \in E \\ v_j &= V_j V_j^{\mathsf{H}}, \quad \ell_{jk} = \tilde{I}_{jk} \tilde{I}_{jk}^{\mathsf{H}}, \quad S_{jk} = V_j \tilde{I}_{jk}^{\mathsf{H}}, \qquad j \to k \in E \end{split}$$
 additional equations

Steven Low OPF Branch flow model

Equality constraints

1. Power flow equations (from Ch 10):

$$\begin{split} \sum_{k:j \to k} \operatorname{diag}(S_{jk}) &= \operatorname{diag}\left(S_{ij} - z_{ij} \ell_{ij}\right) + s_j, \quad j \in \overline{N} \\ v_j - v_k &= \left(z_{jk} S_{jk}^{\mathsf{H}} + S_{jk} z_{jk}^{\mathsf{H}}\right) - z_{jk} \ell_{jk} z_{jk}^{\mathsf{H}}, \quad j \to k \in E \\ \begin{bmatrix} v_j S_{jk} \\ S_{jk}^{\mathsf{H}} \ell_{jk} \end{bmatrix} \geq 0, \quad j \to k \in E \\ \operatorname{redundant\ constraints\ kept\ for\ semidefinite\ relaxation\ (later)} \\ \operatorname{rank} \begin{bmatrix} v_j S_{jk} \\ S_{jk}^{\mathsf{H}} \ell_{jk} \end{bmatrix} = 1, \quad j \to k \in E \\ v_j &= V_j V_j^{\mathsf{H}}, \quad \ell_{jk} = \tilde{I}_{jk} \tilde{I}_{jk}^{\mathsf{H}}, \quad S_{jk} = V_j \tilde{I}_{jk}^{\mathsf{H}}, \quad j \to k \in E \end{split}$$

Equality constraints

2. Conversion rules for voltage & power sources (assume $\gamma_j^Y := V_j^n = 0$)

voltage source :
$$Y$$
: $v_j = V_j^Y V_j^{YH} = u_j u_j^H$
 Δ : $\Gamma v_j \Gamma^T = V_j^\Delta V_j^{\Delta H} = u_j u_j^H$

power source :
$$Y$$
: $s_j = -\operatorname{diag}\left(V_j u_{j2}^{\mathsf{H}}\right), \qquad s_j = -u_{j1}$
 Δ : $s_j = -\operatorname{diag}\left(V_j u_{j2}^{\mathsf{H}}\Gamma\right), \qquad u_{j1} = \operatorname{diag}\left(\Gamma V_j u_{j2}^{\mathsf{H}}\right)$

Inequality constraints

1. Operational constraints on *x*:

injection limits: $s_j^{\min} \leq s_j \leq s_j^{\max}$, $j \in \overline{N}$ voltage limits: $v_j^{\min} \leq \text{diag}\left(v_j\right) \leq v_j^{\max}$, $j \in \overline{N}$ line limits: $\text{diag}\left(\ell_{jk}\right) \leq I_{jk}^{\max}$, $(j,k) \in E$

Inequality constraints

2. Operational constraints on internal vars u_j :

$$\begin{array}{ll} \text{voltage source:} & v_j^{\phi n \min} \leq \left| V_j^{\phi n} \right|^2 \leq v_j^{\phi n \max}, & v_j^{\phi \varphi \min} \leq \left| V_j^{\phi \varphi} \right|^2 \leq v_j^{\phi \varphi \max} \\ \text{power source:} & s_j^{Y \min} \leq s_j^Y \leq s_j^{Y \max}, & \left| I_j^{\phi n} \right|^2 \leq I_j^{\phi n \max} \\ & s_j^{\Delta \min} \leq s_j^{\Delta} \leq s_j^{\Delta \max}, & \left| I_j^{\phi \varphi} \right|^2 \leq I_j^{\phi \varphi \max} \end{array}$$

Feasible set

$$\mathbb{T}_{3p} := \left\{ (x, u) := (s, v, \ell, V, \tilde{I}, S, u) \mid (x, u) \text{ satisfies all constraints} \right\}$$

OPF in BFM

 $\min_{(x,u)\in\mathbb{T}_{3p}} \quad C(x,u)$

Three-phase OPF in BFM is equivalent to three-phase OPF in BIM:

- Their feasible sets are equivalent (Ch 10)
- ... provided their cost functions are equivalent

Outline

- 1. Bus injection model
- 2. Branch flow model
- 3. OPF applications
 - Voltage control (distribution grid)
- 4. Optimization algorithms

Voltage control Distribution system

Voltage instability: magnitudes fluctuate outside their limits

- PVs may push magnitudes above upper limits
- EVs may push magnitudes below lower limits

Traditional solution

• Infrastructure upgrade: more/larger transformers, wires, etc

Non-wire solution

- Distributed energy resources (DER) optimization
- e.g. batteries, smart inverters, demand response
- Can formulate as an OPF

Optimal battery operation

$$\min_{u,V, b} \sum_{t} \sum_{j} \left(|V_{j}(t)|^{2} - v_{j}^{\mathsf{ref}}(t) \right)^{2}$$
 deviation from nominal voltages
s.t. $u_{j}(t) + \sigma_{j}(t) = \sum_{k:j \sim k} S_{jk}(V(t)), \quad \underline{v}_{j} \leq |V_{j}(t)|^{2} \leq \overline{v}_{j}$
 $|S_{jk}(V(t))| \leq \overline{S}_{jk}, \quad |S_{kj}(V(t))| \leq \overline{S}_{kj}$

Optimal battery operation

$$\min_{u,V, b} \sum_{t} \sum_{j} \left(|V_{j}(t)|^{2} - v_{j}^{\text{ref}}(t) \right)^{2}$$
 deviation from nominal voltages
s.t. $u_{j}(t) + \sigma_{j}(t) = \sum_{k:j \sim k} S_{jk}(V(t)), \quad \underline{v}_{j} \leq |V_{j}(t)|^{2} \leq \overline{v}_{j}$
 $|S_{jk}(V(t))| \leq \overline{S}_{jk}, \quad |S_{kj}(V(t))| \leq \overline{S}_{kj}$
 $b_{j}(t+1) = b_{j}(t) - \operatorname{Re}\left(u_{j}(t)\right)$ charging/discharging (100% efficiency)

Optimal battery operation

$$\min_{u,V, b} \sum_{t} \sum_{j} \left(|V_{j}(t)|^{2} - v_{j}^{\text{ref}}(t) \right)^{2}$$
 deviation from nominal voltages
s.t. $u_{j}(t) + \sigma_{j}(t) = \sum_{k:j \sim k} S_{jk}(V(t)), \quad \underline{v}_{j} \leq |V_{j}(t)|^{2} \leq \overline{v}_{j}$
 $|S_{jk}(V(t))| \leq \overline{S}_{jk}, \quad |S_{kj}(V(t))| \leq \overline{S}_{kj}$
 $b_{j}(t+1) = b_{j}(t) - \operatorname{Re}\left(u_{j}(t)\right)$ charging/discharging (100% efficiency)
 $\underline{u}_{j} \leq \operatorname{Re}\left(u_{j}(t)\right) \leq \overline{u}_{j}, \quad 0 \leq b_{j}(t) \leq B_{j}$
power limit energy limit

Steven Low Caltech Example applications

Optimal battery placement

$$\begin{split} \min_{u,V, b, B} & \sum_{t} \sum_{j} \left(|V_{j}(t)|^{2} - v_{j}^{\mathsf{ref}}(t) \right)^{2} + \sum_{j} c_{j}B_{j} \\ \text{s.t.} & u_{j}(t) + \sigma_{j}(t) = \sum_{k:j \sim k} S_{jk}(V(t)), \quad \underline{v}_{j} \leq |V_{j}(t)|^{2} \leq \overline{v}_{j} \\ & |S_{jk}(V(t))| \leq \overline{S}_{jk}, \quad |S_{kj}(V(t))| \leq \overline{S}_{kj} \\ & b_{j}(t+1) = b_{j}(t) - \operatorname{Re}\left(u_{j}(t)\right) \\ & \underline{u}_{j} \leq \operatorname{Re}\left(u_{j}(t)\right) \leq \overline{u}_{j}, \quad 0 \leq b_{j}(t) \leq B_{j} \\ & B_{j}^{\mathsf{opt}} > 0 : \mathsf{place battery at bus } j \end{split}$$

Steven Low Caltech Example applications

Outline

- 1. Bus injection model
- 2. Branch flow model
- 3. Optimization algorithms
 - Newton-Raphson algorithm
 - Interior-point algorithm

Complex formulation

Even though OPF is often formulated in \mathbb{C} , it is converted to \mathbb{R} before being solved iteratively

Example: QCQP

- $\min_{x \in \mathbb{C}^n} x^{\mathsf{H}} C_0 x$ s.t. $x^{\mathsf{H}} C_l x \leq b_l, \qquad l = 1, \dots, L$
- $C_l: n \times n$ Hermitian matrix
- $b_l \in \mathbb{R}$

Equivalent to:

$$\min_{\substack{(x_r,x_i)\in\mathbb{R}^{2n}\\ \text{s.t.}}} \begin{bmatrix} x_r\\x_i \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} C_{0r} & -C_{0i}\\ C_{0i} & C_{0r} \end{bmatrix} \begin{bmatrix} x_r\\x_i \end{bmatrix}$$
$$s.t. \begin{bmatrix} x_r\\x_i \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} C_{lr} & -C_{li}\\ C_{li} & C_{lr} \end{bmatrix} \begin{bmatrix} x_r\\x_i \end{bmatrix} \le b_l, \quad l = 1, \dots, L$$

• $2n \times 2n$ symmetric matrices

Algorithms for OPF Popular algorithms

Newton-Raphson algorithm

- 2nd order algorithm
- Interior-point algorithm

Interior-point algorithm

- Based on barrier functions
- Uses of Newton-Raphson algorithm for subproblems

Newton-Raphson algorithm

NR is algorithm for solving

$$F(x) = 0, \qquad F: \mathbb{R}^n \to R^n$$

Iteratively:

$$x(t+1) = y(t) + \Delta x(t)$$
$$J(y(t)) \Delta x(t) = -F(x(t))$$
where $J(x) := \frac{\partial F}{\partial x}(x)$ is Facobian of F

Application to optimization problems:

- F(x) = 0 is KKT condition
- If NR converges, it computes a KKT point x^{opt}
- *x*^{opt} is a global optimal if the problem is convex (feasible otherwise)

Newton-Raphson algorithm

Describe NR progressively for solving

- Linear equality constrained problems
- Nonlinear equality constrained problems
- Inequality constrained problems

Newton-Raphson algorithm Linear equality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad Ax = b$

where

- $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable
- $A \in \mathbb{R}^{m \times n}$

Newton-Raphson algorithm Linear equality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad Ax = b$

Lagrangian:

$$L(x,\lambda) := f(x) + \lambda^{\mathsf{T}}(Ax - b)$$

Jacobian of $L(x, \lambda)$:

$$F(x,\lambda) := \begin{bmatrix} \nabla_x L(x,\lambda) \\ \nabla_\lambda L(x,\lambda) \end{bmatrix} = \begin{bmatrix} \nabla f(x) + A^{\mathsf{T}}\lambda \\ Ax - b \end{bmatrix}$$

KKT condition to be solved by NR algorithm:

 $F(x,\lambda)=0$

Newton-Raphson algorithm Linear equality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad Ax = b$

Jacobian of $F(x, \lambda)$:

$$J(x,\lambda) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x) & A^{\mathsf{T}} \\ A & 0 \end{bmatrix}$$
 • KKT matrix
• Independent of λ

NR iteration:

$$\begin{bmatrix} x(t+1)\\\lambda(t+1) \end{bmatrix} = \begin{bmatrix} x(t)\\\lambda(t) \end{bmatrix} + \begin{bmatrix} \Delta x(t)\\\Delta\lambda(t) \end{bmatrix} \text{ where } \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x(t)) & A^{\mathsf{T}}\\A & 0 \end{bmatrix} \begin{bmatrix} \Delta x(t)\\\Delta\lambda(t) \end{bmatrix} = -\begin{bmatrix} \nabla f(x(t)) + A^{\mathsf{T}}\lambda(t)\\Ax(t) - b \end{bmatrix}$$

Newton-Raphson algorithm Nonlinear equality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \qquad \text{s.t.} \qquad g(x) = 0$

where

• $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable

Follow the same procedure as for linear equality constrained problems

Newton-Raphson algorithm Nonlinear equality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \qquad \text{s.t.} \qquad g(x) = 0$

Lagrangian:

$$L(x,\lambda) := f(x) + \lambda^{\mathsf{T}} g(x)$$

Jacobian of $L(x, \lambda)$:

$$F(x,\lambda) := \begin{bmatrix} \nabla_x L(x,\lambda) \\ \nabla_\lambda L(x,\lambda) \end{bmatrix} = \begin{bmatrix} \nabla f(x) + \frac{\partial g}{\partial x}(x)^{\mathsf{T}} \lambda \\ g(x) \end{bmatrix}$$

KKT condition to be solved by NR algorithm:

 $F(x,\lambda) = 0$

Steven Low OPF Optimization algorithms

Newton-Raphson algorithm Nonlinear equality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \qquad \text{s.t.} \qquad g(x) = 0$

Jacobian of $F(x, \lambda)$:

$$J(x,\lambda) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x) + \sum_k \frac{\partial^2 g_k}{\partial x^2} \lambda_k & \frac{\partial g}{\partial x}(x)^\mathsf{T} \\ \frac{\partial g}{\partial x}(x) & 0 \end{bmatrix}$$

NR iteration:

$$\begin{bmatrix} x(t+1) \\ \lambda(t+1) \end{bmatrix} = \begin{bmatrix} x(t) \\ \lambda(t) \end{bmatrix} + \begin{bmatrix} \Delta x(t) \\ \Delta \lambda(t) \end{bmatrix} \text{ where } J(x,\lambda) \begin{bmatrix} \Delta x(t) \\ \Delta \lambda(t) \end{bmatrix} = - \begin{bmatrix} \nabla f(x(t)) + \frac{\partial g}{\partial x}(x(t))^{\mathsf{T}} \lambda(t) \\ g(x(t)) \end{bmatrix}$$

Newton-Raphson algorithm Inequality constraint

Consider

 $\min_{x \in \mathbb{R}^n} f(x) \qquad \text{s.t.} \qquad g(x) \le 0$

where

• $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable

Two common solution approaches

1. Introduce slack var $z \ge 0$ to reduce the inequality into a simple inequality constraint:

 $\min_{(x,z)\in\mathbb{R}^{n+m}} f(x) \qquad \text{s.t.} \qquad g(x)+z = 0, \quad z \ge 0$

2. Replace constraint by a penalty term and reduce to unconstrained problem:

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \frac{1}{t}\phi(x)$$

This is the approach of interior-point algorithms !

Steven Low OPF Optimization algorithms

Interior-point algorithm Basic idea

Consider

 $\min_{x \in \mathbb{R}^n} f_0(x) \qquad \text{s.t.} \qquad f(x) \le 0, \quad g(x) = 0$

where

• $f_0: \mathbb{R}^n \to \mathbb{R}, f: \mathbb{R}^n \to \mathbb{R}^m, g: \mathbb{R}^n \to \mathbb{R}^p$ are twice continuously differentiable

Basic idea:

- Approximate problem by equality constrained problem by replacing $f(x) \le 0$ by a barrier function
- Solve the approximate problem by Newton-Raphson methods

Interior-point algorithm Log barrier function

Log barrier function
$$\phi : \mathbb{R}^n \to \mathbb{R}$$
 is
 $\phi(x) := -\sum_{i=1}^m \log(-f_i(x))$
over $\operatorname{dom} \phi := \{x \in \mathbb{R}^n : f_i(x) < 0, i = 1, ..., m\}$

Properties:

•
$$\phi(x) \to \infty \text{ as } f_i(x) \to 0 \text{ for any } i$$

• $\nabla \phi(x) = \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x)$
• $\frac{\partial^2 \phi}{\partial x^2}(x) = \sum_i \frac{1}{f_i^2(x)} \nabla f_i(x) \nabla f_i^{\mathsf{T}}(x) + \sum_i \frac{1}{-f_i(x)} \frac{\partial^2 f_i}{\partial x^2}(x)$

Steven Low OPF Optimization algorithms
Interior-point algorithm Approximate problem

Consider

 $\min_{x \in \mathbb{R}^n} f_0(x) \quad \text{s.t.} \quad f(x) \le 0, \quad g(x) = 0$

Approximate problem

$$\min_{x \in \mathbb{R}^n} f_0(x) + \frac{1}{t}\phi(x) \qquad \text{s.t.} \qquad g(x) = 0$$

or

Problem(t) :

$$\min_{x \in \mathbb{R}^n} tf_0(x) + \phi(x) \qquad \text{s.t.} \qquad g(x) = 0$$

• Larger $t > 0 \implies$ more accurate approximation

Steven Low OPF Optimization algorithms

Barrier method

A popular interior-point method

Basic idea

- Solve Problem(*t*) for an increasing sequence of t > 0 until solution is accurate enough
- For each *t*, solve Problem(*t*) using Newton-Raphson algorithm

<u>Questions</u>

- How to choose the sequence of *t*?
- When to terminate?

Answer these question for convex problems

Barrier method Assumptions

- 1. Original problem is convex, i.e., f_0, f_1, \ldots, f_m are convex and g(x) = Ax b
- 2. For each t > 0, Newton-Raphson algorithm converges to the unique optimal solution x(t) of the approximate problem
- Central point : optimal solution *x*(*t*)
- Central path : set $\{x(t) : t > 0\}$ of central points

Barrier method Central point *x*(*t*)

- 1. Original problem is convex, i.e., f_0, f_1, \dots, f_m are convex and g(x) = Ax b
- 2. For each t > 0, Newton-Raphson algorithm converges to the unique optimal solution x(t) of the approximate problem

Theorem

For each t > 0

- 1. x(t) is feasible for original problem
- 2. Objective value is at most m/t away from optimal value, i.e., $f_0(x(t)) f_0^{\text{opt}} \leq \frac{m}{t}$ In particular $f_0(x(t)) \to f_0^{\text{opt}}$ as $t \to \infty$

Barrier method

Input: *strictly* feasible *x*, initial $t := t_0$, scaling factor $\gamma > 1$, tolerance ε . **Output:** an approximate solution *x*

- 1. while $t \leq \frac{m}{\epsilon}$ do
 - (a) Solve Problem(t) to compute x(t) using the Newton-Raphson algorithm starting from x.
 (b) x ← x(t).
 (c) t ← γt.
- 2. **Return**: *x*.

In principle, one can solve Problem(t) with $t := m/\epsilon$ instead of solving a sequence of Problem(t). In practice, barrier method works better.

Steven Low OPF Optimization algorithms