Power System Analysis

Chapter 14 Semidefinite relaxations: BFM
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Outline

1. Single-phase OPF
* SOCP relaxation
* Equivalence
e Exactness condition: inactive injection lower bounds
* Exactness condition: inactive voltage upper bounds
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Assumptions
Both single-phase & 3-phase OPF

Radial network
 BFM most useful for modeling distribution systems

S S

— i S — 1,8
Zyy = g, orequivalently y, =y

« Does not include 3-phase transformers in AY or YA configuration (or single-phase transformers with
complex gains)

Yie =Y =0

« Reasonable assumption for distribution line where |y]?}z |, |y,’;?| < |yj§€|

Includes only voltage sources and power sources

« Optimization variables are voltages (squared magnitudes) V; and power injections S; respectively

* A current source or an impedance will introduce additional var and constraint.
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Single-phase OPF

Power flow equations
» All lines point towards bus 0 (root)

ii—j
2 :
vjfjk = |S]~k|, j—o>keE
Operational constraints

Sjmln < 5 < gmax

J J . honconvex constraint
vjmin <y < vaax (other constraints are linear in x)
max
ik < ik
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Single-phase OPF

Feasible set

T:= {x =(s,v,20,5) € [RON+3 | x satisfies PF equations & operational constraints}

OPF in BFM
min  C(x)
xel
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SOCP relaxation

Power flow equations
» All lines point towards bus 0 (root)

Sp = X (S,j—zijf,-J-) + S JEN
ii—j
2 .
VimVe = 2Re<zj|2%k) - |ij| fjk, j—>keE
Vil 2 |S/’k|2a j—okeE
Operational constraints |

Sjmln < 5 < Sjmax

- / ™~ second-order cone
Ly, <
vJ < V< vJ
max
Ci < Oy
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SOCP relaxation

Feasible set

T = {x =(s,v,70,5) € RON+3 | x satisfies vjfjk > |Sjk |2 & operational constraints}

SOCP relaxation in BFM
min  C(x)

xeTt
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Exactness

Definition (Strong exactness)

SOCP relaxation is exact if every optimal solution xPP of SOCP relaxation attains equality:
2
yOPtLOPt — I gOPt) i ke E
ok Jk

« Convenient because any algorithm that solves an exact relaxation produces an optimal
solution for original OFP

* Not necessary: under sufficient conditions for radial network, can always recover an optimal
solution of OPF from any solution of SOCP relaxation, even when SOCP relaxation is not
exact
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* Equivalence
e Exactness condition: inactive injection lower bounds
* Exactness condition: inactive voltage upper bounds

2. Three-phase OPF
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OPF in BIM

min  VAC,V
VECN+1

s.t. pjmin < tr(

qjmin < tr(
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Feasible set in BIM

Given V € CN*1, define partial matrix W, by
[(Wel; == 1ViI°, jEN
Wl = VVi' = Welyp  GHEE

Constraints in terms of W,
s w(ow) <

yin < g ( J WG) < ymax WY = { W, | W,; satisfies constraints }
tr <YJkWG> S I‘;’]?ax
tr (ijWG> <
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Equivalence
SOCP relaxation in BFM

min C(x) st xeTh:= {x | x satisfies V£’ > |SJ-k|2 & operational constraints}
X

SOCP relaxation in BIM
min Cy(W;) st W;e WL = {WG | W, satisfies constraints}

G

Theorem
T = Wt Implication: The two problems are equivalent in the sense that 3 bijection
- 6 g: W, — T" sit. ngt is optimal in BIM iff xPt:= g (ngt> is
optimal in BFM
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Outline

1. Single-phase OPF

e Exactness condition: inactive injection lower bounds
* Exactness condition: inactive voltage upper bounds

2. Three-phase OPF
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Exactness: injection lower bounds

Assume:

1. Cost function C(x) is strictly increasing in £, nondecreasing in s, and independent of S

2. No injection lower bounds: SJ-mm = — 00— I00

Theorem

Suppose network graph G is tree and Assumptions 1 and 2 hold. Then SOCP relaxation is
exact, i.e., every optimal solution xOpt of SOCP relaxation is optimal for OPF

Remark: Even when the SOCP relaxation is not exact, under these conditions, an optimal solution of OPF
can always be recovered from any solution of SOCP relaxation
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Exactness: voltage upper bounds

Example: geometric insight

given v, V1
Power flow solution x := (py, ¢y, V1, £) satisfies: (Pov ) | 4 | o
Po— Tt = —p;
do — X = — q
2 2 _
Pyt =7 ¢ {=py+4
— V= 2 — (r? 4
V| —Vy = rpy + xq, (r<+ x°)
po-rl=-p
%‘x£=_%
9o
high
Po

power flow solutions (feasible set) : { 2 intersection points }
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Exactness: voltage upper bounds

Example: geometric insight

given v,

4 given

Feasible set (without voltage constraints) (Podo)
» OPF : { 2 intersection points }, nonconvex
» SOCP relaxation : line segment, convex

:I —- |< (plfCh)

Cost function c(x) increasing in £

opt

« Optimal solution x has high v,

 SOCP relaxation is exact
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Exactness: voltage upper bounds

Example: geometric insight

given v, V1
. £ given
Voltage constraints (Podo) I ! I )
1 1 :
__ y,max __ 4,min
o 2(“ Vl)sfﬁ 2(“ Vl)
|z |z
« .. " leads to upper bound on ¢ and will not
affect exactness
14 !

v{nax leads to lower bound on Z and can
affect exactness when it binds

optimal solution of SOCP
(infeasible for OPF)

Do Do

49

4

(a) Voltage constraint not binding (b) Voltage constraint binding
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Exactness: voltage upper bounds

Assume:

1. Cost function C(x) := Z Ci(p;) with Cy(py) strictly increasing in p,. There is no constraint on s,
J

2. fijl-in(s) < vjmax, JEN

3. Technical condition: small change in a line power affects all upstream line powers in the same direction

Theorem

Suppose network graph G is tree and Assumptions 1-3 hold. Then SOCP relaxation is
exact, i.e., every optimal solution xOpt of SOCP relaxation is optimal for OPF

Remark: Even when the SOCP relaxation is not exact, under these conditions, an optimal solution of OPF
can always be recovered from any solution of SOCP relaxation
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Exactness implies uniqueness

Theorem

Suppose network graph G is tree, CJ are convex functions and injection regions are convex
sets. If SOCP relaxation is exact, then its optimal solution is unique
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Outline

1. Single-phase OPF
2. Three-phase OPF

e Reformulation
* Semidefinite relaxation
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