Power System Analysis

Chapter 14 Semidefinite relaxations: BFM

Steven Low EE/CS/EST 135 Caltech

- 1. Single-phase OPF
- 2. Three-phase OPF

- 1. Single-phase OPF
 - SOCP relaxation
 - Equivalence
 - Exactness condition: inactive injection lower bounds
 - Exactness condition: inactive voltage upper bounds
- 2. Three-phase OPF

Assumptions Both single-phase & 3-phase OPF

Radial network

• BFM most useful for modeling distribution systems

$$z_{jk}^s = z_{kj}^s$$
 or equivalently $y_{jk}^s = y_{kj}^s$

• Does not include 3-phase transformers in ΔY or $Y\Delta$ configuration (or single-phase transformers with complex gains)

 $y_{jk}^m = y_{kj}^m = 0$

• Reasonable assumption for distribution line where $|y_{jk}^m|, |y_{kj}^m| \ll |y_{ik}^s|$

Includes only voltage sources and power sources

- Optimization variables are voltages (squared magnitudes) v_j and power injections s_j respectively
- A current source or an impedance will introduce additional var and constraint.

Single-phase OPF

Power flow equations

• All lines point towards bus 0 (root)

Single-phase OPF

Feasible set

 $\mathbb{T} := \left\{ x := (s, v, \ell, S) \in \mathbb{R}^{6N+3} \mid x \text{ satisfies PF equations & operational constraints} \right\}$

OPF in BFM

 $\min_{x \in \mathbb{T}} C(x)$

SOCP relaxation

Power flow equations

• All lines point towards bus 0 (root)

Steven Low SDR Single-phase OPF

SOCP relaxation

Feasible set

$$\mathbb{T}^+ := \left\{ x := (s, v, \ell, S) \in \mathbb{R}^{6N+3} \mid x \text{ satisfies } v_j \ell_{jk} \ge |S_{jk}|^2 \text{ & operational constraints} \right\}$$

SOCP relaxation in BFM

 $\min_{x \in \mathbb{T}^+} \quad C(x)$

Exactness

Definition (Strong exactness)

SOCP relaxation is exact if every optimal solution x^{opt} of SOCP relaxation attains equality:

$$v_j^{\text{opt}} \mathscr{C}_{jk}^{\text{opt}} = \left| S_{jk}^{\text{opt}} \right|^2, \quad j \to k \in E$$

- Convenient because any algorithm that solves an exact relaxation produces an optimal solution for original OFP
- Not necessary: under sufficient conditions for radial network, can always recover an optimal solution of OPF from any solution of SOCP relaxation, even when SOCP relaxation is not exact

1. Single-phase OPF

- SOCP relaxation
- Equivalence
- Exactness condition: inactive injection lower bounds
- Exactness condition: inactive voltage upper bounds
- 2. Three-phase OPF

OPF in **BIM**

$$\begin{split} \min_{V \in \mathbb{C}^{N+1}} & V^{\mathsf{H}} C_0 V \\ \text{s.t.} & p_j^{\min} \leq \operatorname{tr} \left(\Phi_j V V^{\mathsf{H}} \right) \leq p_j^{\max}, \qquad j \in \overline{N} \\ & q_j^{\min} \leq \operatorname{tr} \left(\Psi_j V V^{\mathsf{H}} \right) \leq q_j^{\max}, \qquad j \in \overline{N} \\ & v_j^{\min} \leq \operatorname{tr} \left(J_j V V^{\mathsf{H}} \right) \leq v_j^{\max}, \qquad j \in \overline{N} \\ & \operatorname{tr} \left(\hat{Y}_{jk} V V^{\mathsf{H}} \right) \leq \overline{I}_{jk}^{\max}, \qquad (j,k) \in E \\ & \operatorname{tr} \left(\hat{Y}_{kj} V V^{\mathsf{H}} \right) \leq \overline{I}_{kj}^{\max}, \qquad (j,k) \in E \end{split}$$

Feasible set in BIM

Given $V \in \mathbb{C}^{N+1|}$, define partial matrix W_G by

$$\begin{split} & [W_G]_{jj} := |V_j|^2, \qquad j \in \overline{N} \\ & \left[W_G\right]_{jk} := V_j V_k^{\mathsf{H}} =: [W_G]_{kj}^{\mathsf{H}}, \qquad (j,k) \in E \end{split}$$

Constraints in terms of W_G

$$\begin{array}{rcl} p_{j}^{\min} \leq & \mathrm{tr}\left(\Phi_{j}W_{G}\right) & \leq & p_{j}^{\max} \\ q_{j}^{\min} \leq & \mathrm{tr}\left(\Psi_{j}W_{G}\right) & \leq & q_{j}^{\max} \\ v_{j}^{\min} \leq & \mathrm{tr}\left(J_{j}W_{G}\right) & \leq & v_{j}^{\max} \\ & \mathrm{tr}\left(\hat{Y}_{jk}W_{G}\right) & \leq & I_{jk}^{\max} \\ & \mathrm{tr}\left(\hat{Y}_{kj}W_{G}\right) & \leq & I_{kj}^{\max} \end{array}$$

 $\mathbb{W}_{G}^{+} := \left\{ W_{G} \mid W_{G} \text{ satisfies constraints} \right\}$

Steven Low SDR Application to OPF

Equivalence

SOCP relaxation in BFM

$$\min_{x} C(x) \quad \text{s.t.} \quad x \in \mathbb{T}^+ := \left\{ x \mid x \text{ satisfies } v_j \mathcal{C}_{jk} \ge |S_{jk}|^2 \text{ & operational constraints} \right\}$$

SOCP relaxation in BIM

$$\min_{W_G} C_0(W_G) \quad \text{s.t.} \quad W_G \in \mathbb{W}_G^+ := \left\{ W_G \mid W_G \text{ satisfies constraints} \right\}$$

Theorem

Implication: The two problems are equivalent in the sense that \exists bijection $g: \mathbb{W}_{G}^{+} \longrightarrow \mathbb{T}^{+}$ s.t. W_{G}^{opt} is optimal in BIM iff $x^{\text{opt}} := g\left(W_{G}^{\text{opt}}\right)$ is optimal in BFM

Steven Low SDR Single-phase OPF

 $\mathbb{T}^+ \equiv \mathbb{W}^+_G$

1. Single-phase OPF

- SOCP relaxation
- Equivalence
- Exactness condition: inactive injection lower bounds
- Exactness condition: inactive voltage upper bounds
- 2. Three-phase OPF

Exactness: injection lower bounds

Assume:

- 1. Cost function C(x) is strictly increasing in ℓ , nondecreasing in s, and independent of S
- 2. No injection lower bounds: $s_i^{\min} = -\infty i\infty$

Theorem

Suppose network graph *G* is tree and Assumptions 1 and 2 hold. Then SOCP relaxation is exact, i.e., every optimal solution x^{opt} of SOCP relaxation is optimal for OPF

Remark: Even when the SOCP relaxation is not exact, under these conditions, an optimal solution of OPF can always be recovered from any solution of SOCP relaxation

Steven Low SDR Single-phase OPF

Example: geometric insight

Power flow solution
$$x := (p_0, q_0, v_1, \ell)$$
 satisfies:
 $p_0 - r\ell = -p_1$
 $q_0 - x\ell = -q_1$
 $p_0^2 + q_0^2 = \ell$
 $v_1 - v_0 = 2(rp_1 + xq_1) - (r^2 + x^2)\ell$

given v_0

 $(p_0, q_0) \longrightarrow \ell$

 v_1

given (p_1, q_1)

power flow solutions (feasible set) : { 2 intersection points }

Example: geometric insight

Feasible set (without voltage constraints)

- OPF : { 2 intersection points }, nonconvex
- SOCP relaxation : line segment, convex

Cost function c(x) increasing in ℓ

- Optimal solution x^{opt} has high v_1
- SOCP relaxation is exact

Exactness: voltage upper bounds Example: geometric insight

Voltage constraints

•
$$\frac{1}{|z|^2} (a - v_1^{\max}) \le \ell \le \frac{1}{|z|^2} (a - v_1^{\min})$$

• $\therefore v_1^{\min}$ leads to upper bound on ℓ and will not affect exactness

• v_1^{\max} leads to lower bound on ℓ and can affect exactness when it binds

given v_0

 $(p_0, q_0) \longrightarrow$

l ------

 v_1

given

Steven Low SDR Single-phase OPF

Exactness: voltage upper bounds

Assume:

- 1. Cost function $C(x) := \sum_{j} C_j(p_j)$ with $C_0(p_0)$ strictly increasing in p_0 . There is no constraint on s_0
- 2. $\hat{v}_j^{\text{lin}}(s) \le v_j^{\text{max}}, \ j \in N$
- 3. Technical condition: small change in a line power affects all upstream line powers in the same direction

Theorem

Suppose network graph *G* is tree and Assumptions 1-3 hold. Then SOCP relaxation is exact, i.e., every optimal solution x^{opt} of SOCP relaxation is optimal for OPF

Remark: Even when the SOCP relaxation is not exact, under these conditions, an optimal solution of OPF can always be recovered from any solution of SOCP relaxation

Steven Low SDR Single-phase OPF

Exactness implies uniqueness

Theorem

Suppose network graph G is tree, C_j are convex functions and injection regions are convex sets. If SOCP relaxation is exact, then its optimal solution is unique

- 1. Single-phase OPF
- 2. Three-phase OPF
 - Reformulation
 - Semidefinite relaxation