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Power System Analysis
Chapter 14  Semidefinite relaxations: BFM
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• SOCP relaxation

• Equivalence

• Exactness condition: inactive injection lower bounds

• Exactness condition: inactive voltage upper bounds
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Assumptions
Both single-phase & 3-phase OPF
Radial network


• BFM most useful for modeling distribution systems


  or equivalently  

• Does not include 3-phase transformers in  or  configuration (or single-phase transformers with 

complex gains)


  


• Reasonable assumption for distribution line where 


Includes only voltage sources and power sources 

• Optimization variables are voltages (squared magnitudes)  and power injections  respectively

• A current source or an impedance will introduce additional var and constraint.
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Single-phase OPF
Power flow equations


• All lines point towards bus 0 (root)





Operational constraints


Sjk = ∑
i:i→j

(Sij − zijℓij) + sj, j ∈ N

vj − vk = 2 Re (z𝖧
jkSjk) − |zjk |2 ℓjk, j → k ∈ E

vjℓjk = |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j

vmin
j ≤ vj ≤ vmax

j

ℓjk ≤ ℓmax
jk
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nonconvex constraint

(other constraints are linear in )x



Single-phase OPF
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Feasible set





OPF in BFM


𝕋 := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies PF equations & operational constraints}

min
x∈𝕋

C(x)



SOCP relaxation
Power flow equations


• All lines point towards bus 0 (root)





Operational constraints


Sjk = ∑
i:i→j

(Sij − zijℓij) + sj, j ∈ N

vj − vk = 2 Re (z𝖧
jkSjk) − |zjk |2 ℓjk, j → k ∈ E

vjℓjk ≥ |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j

vmin
j ≤ vj ≤ vmax

j

ℓjk ≤ ℓmax
jk
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second-order cone



SOCP relaxation

Steven Low     SDR      Single-phase OPF

Feasible set





SOCP relaxation in BFM


𝕋+ := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies vjℓjk ≥ |Sjk |2  & operational constraints}

min
x∈𝕋+

C(x)



Exactness
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Definition (Strong exactness) 

SOCP relaxation is exact if every optimal solution  of SOCP relaxation attains equality:
xopt

vopt
j ℓopt

jk = Sopt
jk

2
, j → k ∈ E

• Convenient because any algorithm that solves an exact relaxation produces an optimal 
solution for original OFP


• Not necessary: under sufficient conditions for radial network, can always recover an optimal 
solution of OPF from any solution of SOCP relaxation, even when SOCP relaxation is not 
exact



Outline
1. Single-phase OPF


• SOCP relaxation

• Equivalence

• Exactness condition: inactive injection lower bounds

• Exactness condition: inactive voltage upper bounds


2. Three-phase OPF
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OPF in BIM

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ tr (ΦjVV𝖧) ≤ pmax

j , j ∈ N

qmin
j ≤ tr (ΨjVV𝖧) ≤ qmax

j , j ∈ N

vmin
j ≤ tr (JjVV𝖧) ≤ vmax

j , j ∈ N

tr ( ̂YjkVV𝖧) ≤ Imax
jk , ( j, k) ∈ E

tr ( ̂YkjVV𝖧) ≤ Imax
kj , ( j, k) ∈ E
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Feasible set in BIM
Given , define partial matrix  by





Constraints in terms of 


V ∈ ℂN+1| WG

[WG]jj := |Vj |
2 , j ∈ N

[WG]jk
:= VjV𝖧

k =: [WG]𝖧
kj, ( j, k) ∈ E

WG

pmin
j ≤ tr (ΦjWG) ≤ pmax

j

qmin
j ≤ tr (ΨjWG) ≤ qmax

j

vmin
j ≤ tr (JjWG) ≤ vmax

j

tr ( ̂YjkWG) ≤ Imax
jk

tr ( ̂YkjWG) ≤ Imax
kj
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𝕎+
G := {WG | WG satisfies constraints}



Equivalence

Steven Low     SDR      Single-phase OPF

SOCP relaxation in BFM





SOCP relaxation in BIM


min
x

C(x) s.t. x ∈ 𝕋+ := {x | x satisfies vjℓjk ≥ |Sjk |2  & operational constraints}

min
WG

C0(WG) s.t. WG ∈ 𝕎+
G := {WG | WG satisfies constraints}

Theorem 

𝕋+ ≡ 𝕎+
G

Implication: The two problems are equivalent in the sense that  bijection

  s.t.    is optimal in BIM  iff    is 


optimal in BFM

∃
g : 𝕎+

G ⟶ 𝕋+ Wopt
G xopt := g (Wopt

G )
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• Equivalence
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Exactness: injection lower bounds
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Assume:


1. Cost function  is strictly increasing in , nondecreasing in , and independent of 


2. No injection lower bounds: 

C(x) ℓ s S

smin
j = − ∞ − i∞

Theorem 

Suppose network graph  is tree and Assumptions 1 and 2 hold.  Then SOCP relaxation is 
exact, i.e., every optimal solution  of SOCP relaxation is optimal for OPF

G
xopt

Remark: Even when the SOCP relaxation is not exact, under these conditions, an optimal solution of OPF 

can always be recovered from any solution of SOCP relaxation



Exactness: voltage upper bounds
Example: geometric insight
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given v0

(p0, q0)
given 


(p1, q1)

v1

ℓ
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Example 14.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with impedance z :=
r + ix. Without loss of generality, let the direction of the line be from bus 1 to bus 0. Let ` be the sending-
end squared current magnitude from buses 1 to 0 (recall that S01 := 0 in (14.1a)). Suppose also without
loss of generality that v0 = 1 pu. The model in (14.1) reduces to (Exercise 14.1):

p0 � r` = �p1, q0 � x` = �q1, p2
0 +q2

0 = ` (14.16a)
v1 � v0 = 2(rp1 + xq1) � (r2 + x2)` (14.16b)

Suppose s1 is given (e.g., a constant power load). Then the variables are w := (p0,q0,v1,`) and the
feasible set consists of solutions of (14.16). subject to additional constraints on w. The case without any

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 14.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over
the SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact. No
constraint on ` or (p0,q0) will destroy exactness as long as the resulting feasible set contains c.

constraint is instructive and shown in Figure 14.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (14.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:

1
|z|2 (2rp1 +2xq1 +1� vmax

1 )  `  1
|z|2

⇣
2rp1 +2xq1 +1� vmin

1

⌘

Power flow solution  satisfies:


  

x := (p0, q0, v1, ℓ)
p0 − rℓ = − p1

q0 − xℓ = − q1

p2
0 + q2

0 = ℓ

v1 − v0 = 2 (rp1 + xq1) − (r2 + x2)ℓ

power flow solutions (feasible set) : { 2 intersection points }



Exactness: voltage upper bounds
Example: geometric insight
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Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (14.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:

1
|z|2 (2rp1 +2xq1 +1� vmax

1 )  `  1
|z|2

⇣
2rp1 +2xq1 +1� vmin

1

⌘

Feasible set (without voltage constraints)

• OPF : { 2 intersection points }, nonconvex

• SOCP relaxation : line segment, convex


Cost function  increasing in 


• Optimal solution   has high 

• SOCP relaxation is exact

c(x) ℓ
xopt v1



Exactness: voltage upper bounds
Example: geometric insight
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given v0

(p0, q0)
given 


(p1, q1)

v1

ℓVoltage constraints


• 


•     leads to upper bound on  and will not 
affect exactness


•       leads to lower bound on  and can 
affect exactness when it binds

1
|z |2 (a − vmax

1 ) ≤ ℓ ≤
1

|z |2 (a − vmin
1 )

∴ vmin
1 ℓ

vmax
1 ℓ
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Figure 14.1 shows that the lower bound vmin
1 (corresponding to an upper bound on `) does not affect the

exactness of SOCP relaxation. The effect of upper bound vmax
1 (corresponding to a lower bound on `) is

illustrated in Figure 14.2. As explained in the caption of the figure SOCP relaxation is exact if the upper
bound vmax

1 does not exclude the high-voltage solution c and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Figure 14.2: Impact of voltage upper bound vmax
1 on exactness. (a) When vmax

1 (corresponding to a lower
bound on `) is not binding, the power flow solution c is in the feasible set of SOCP and hence the relaxation
is exact. (b) When vmax

1 excludes c from the feasible set of SOCP, the optimal solution is infeasible for
OPF and the relaxation is not exact.

See Exercises 14.2 and 14.3 for details of feasibility and exactness of OPF-socp.

To state the exactness condition for a general radial network, recall the linear approximation of BFM
studied in Chapter 6.5.1, obtained by setting ` jk = 0 in (14.1). Given v0 and the injections ŝ := (p̂, q̂) :=
(p j,q j, j 2 N) at non-root buses, the line flow vector Slin(s) :=

⇣
Slin

jk ,( j,k) 2 E
⌘

and the voltage vector

v̂lin(s) := (vlin
j , j 2 N) at non-root buses in the linearized model are explicitly given by (from Theorem

6.3):

Slin(s) = Ĉ�1ŝ, v̂lin(s) = v0 1 + 2(Rp̂ + Xq̂) (14.17)

for some given invertible matrices Ĉ, R and X . The key property we will use is, from Corollary 6.4:

S jk  Slin
jk (s) and v j  vlin

j (s), j 2 N (14.18)

Define the 2⇥2 matrix function

A jk(S jk,v j) := I2 � 2
v j

z jk
�
S jk

�T (14.19)

where I2 is the identity matrix of size 2, z jk := [r jk x jk]
T is the column vector of line impedance and

S jk := [Pjk Q jk]
T is the column vector of branch power flows, so that z jk

�
S jk

�T is a 2 ⇥ 2 matrix with
rank less or equal to 1. The matrices A jk(S jk,v j) describe how changes in branch power flows propagate



Exactness: voltage upper bounds
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Assume:


1. Cost function   with    strictly increasing in .  There is no constraint on 


2. 


3. Technical condition: small change in a line power affects all upstream line powers in the same direction

C(x) := ∑
j

Cj(pj) C0(p0) p0 s0

̂vlin
j (s) ≤ vmax

j , j ∈ N

Theorem 

Suppose network graph  is tree and Assumptions 1-3 hold.  Then SOCP relaxation is 
exact, i.e., every optimal solution  of SOCP relaxation is optimal for OPF

G
xopt

Remark: Even when the SOCP relaxation is not exact, under these conditions, an optimal solution of OPF 

can always be recovered from any solution of SOCP relaxation



Exactness implies uniqueness
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Theorem 

Suppose network graph  is tree,   are convex functions and injection regions are convex 
sets.  If SOCP relaxation is exact, then its optimal solution is unique

G Cj



Outline
1. Single-phase OPF


2. Three-phase OPF

• Reformulation 

• Semidefinite relaxation 
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