Power Systems Analysis Chapter 2 Transmission line models

Outline

- 1. Line characteristics
- 2. Line models

Outline

1. Line characteristics

- Resistance *r* and conductance *g*
- Series inductance *l*
- Shunt capacitance *c*
- Balanced 3ϕ lines

2. Line models

3*\phi* line

Alternating currents in conductors line interact electromagnetically Interactions couple voltages & currents across phases In balanced operation, phases behave as if they are decoupled In each phase, line is characterized by

- series impedance / meter
- Ω^{-1}/m • shunt admittance / meter to neutral $y := g + i\omega c$

- Ω/m $z := r + i\omega l$

Assumption

Currents and charges sum to zero across all *n* conductors:

- $i_1(t) + \cdots + i_p$
- $q_1(t) + \dots + q_n(t)$

$$f_n(t) = 0$$
 for all t

$$q_n(t) = 0$$
 for all t

- 1. Series inductance *l*
 - total flux linkages λ_k of conductor k depends on all currents $i_{k'}$

$$h_k = \left(\frac{\mu_0}{2\pi} \ln \frac{1}{r'_k}\right) i_k +$$

self inductance henrys/m

 $\sum_{\substack{k' \neq k}} \left(\frac{\mu_0}{2\pi} \ln \frac{1}{d_{kk'}} \right) i_{k'}$

mutual inductances henrys/m

1. Series inductance *l*

• total flux linkages λ_k of conductor k depends on all currents $i_{k'}$

$$\lambda_k = \left(\frac{\mu_0}{2\pi} \ln \frac{1}{r'_k}\right) i_k +$$

• in vector form: $\lambda = Li$

• Faraday's law:
$$v(t) = \frac{d}{dt}\lambda(t)$$

voltage drop along conductor

EE/CS/EST 135 Steven Low Caltech

$$\sum_{\substack{k'\neq k}} \left(\frac{\mu_0}{2\pi} \ln \frac{1}{d_{kk'}} \right) i_{k'}$$

$$= L \frac{d}{dt}i(t)$$

- 2. Shunt capacitance *c*
 - voltage on surface of conductor k relative to reference:

$$v_k = \left(\frac{1}{2\pi\epsilon}\ln\frac{1}{r_k}\right)q_k +$$

- in vector form: v = Fq

$$\sum_{\substack{k'\neq k}} \left(\frac{1}{2\pi\epsilon} \ln \frac{1}{d_{kk'}} \right) q_{k'}$$

• let $C := F^{-1}$. C_{kk} : self capacitance/m, $C_{kk'}$: mutual capacitance/m

- 2. Shunt capacitance *c*
 - voltage on surface of conductor k relative to reference:

$$v_k = \left(\frac{1}{2\pi\epsilon}\ln\frac{1}{r_k}\right)q_k +$$

• in vector form: v = Fq

$$\frac{d}{dt}v(t) = Fi(t)$$

Balanced 3*\phi* line

Assumptions:

- 1. Conductors equally spaced at D with equal radii r
- 2. $i_1(t) + \cdots + i_n(t) = 0$ for all t
- 3. $q_1(t) + \dots + q_n(t) = 0$ for all t

Phases are decoupled

Phases are decoupled

$$v_k = \left(\frac{1}{2\pi\epsilon} \ln \frac{D}{r}\right) q_k$$

 $(\cdot)^{-1}$: capacitance c (F/m)

Outline

1. Line characteristics

- 2. Line models
 - Transmission matrix
 - In circuit model
 - Real and reactive line losses
 - Lossless line
 - Short line

Balanced 3*\phi* line

Assumptions:

- 1. Conductors equally spaced at D with equal radii r
- 2. $i_1(t) + \dots + i_n(t) = 0$ for all t
- 3. $q_1(t) + \dots + q_n(t) = 0$ for all t

Per-phase line characteristics:

series impedance / meter

 $z := r + i\omega l$ Ω/m Ω^{-1}/m shunt admittance / meter to neutral $y := g + i\omega c$

EE/CS/EST 135 Steven Low Caltech

Transmission matrix

Steven Low EE/CS/EST 135 Caltech

ODE: $\begin{bmatrix} \frac{dV}{dx} \\ \frac{dI}{dI} \end{bmatrix} = \begin{bmatrix} 0 & z \\ y & 0 \end{bmatrix} \begin{bmatrix} V \\ I \end{bmatrix}$ dx

boundary cond:

 $V(0) = V_2, I(0) = I_2$

Transmission matrix

 m^{-1} characteristic impedance $Z_c := \sqrt{\frac{z}{y}} \Omega/m$ propagation constant $\gamma := \sqrt{zy}$

$$\begin{bmatrix} V(x) \\ I(x) \end{bmatrix} = U \begin{bmatrix} e^{\gamma x} & 0 \\ 0 & e^{-\gamma x} \end{bmatrix} U^{-1} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$
$$U := \begin{bmatrix} Z_c & -Z_c \\ 1 & 1 \end{bmatrix}, \quad U^{-1} := \frac{1}{2Z_c} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Transmission matrix

Transmission matrix maps receiving-end (V_2, I_2) to sending-end (V_1, I_1)

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \cosh(\gamma \ell) \\ Z_c^{-1} \sinh(\gamma \ell) \end{bmatrix}$$

characteristic impedance Z_c

propagation constant γ

$\begin{array}{c} \operatorname{rd} \left(V_{2}, I_{2} \right) \text{ to sending-end } \left(V_{1}, I_{1} \right) \\ Z_{c} \sinh(\gamma \ell) \\ \cosh(\gamma \ell) \end{array} \begin{bmatrix} V_{2} \\ I_{2} \end{bmatrix}$

$$:= \sqrt{\frac{z}{y}} \quad \Omega/m$$
$$:= \sqrt{zy} \quad m^{-1}$$

П circuit model

$$Z' = Z_c \sinh(\gamma \ell) = \sqrt{\frac{z}{y}} \sinh(\gamma \ell) = Z \frac{\sinh(\gamma \ell)}{\gamma \ell}$$
$$\frac{Y'}{2} = \frac{1}{Z_c} \frac{\cosh(\gamma \ell) - 1}{\sinh(\gamma \ell)} = \frac{1}{Z_c} \frac{\sinh(\gamma \ell/2)}{\cosh(\gamma \ell/2)} = \frac{Y}{2} \frac{\tanh(\gamma \ell)}{Z_c}$$

EE/CS/EST 135 Steven Low Caltech Kirchhoff's laws:

$$I_{1} = \frac{Y'}{2}V_{1} + \frac{Y'}{2}V_{2} + I_{2}$$
$$V_{1} - V_{2} = Z'\left(\frac{Y'}{2}V_{2} + I_{2}\right)$$

 $h(\gamma \ell/2)$ $\gamma \ell/2$

 $Z := z\ell, \ Y := y\ell$

П circuit model

Long line ($\ell > 150$ miles) :

Medium line (50 < ℓ < 150 miles): use $Z = z\ell$ and $Y = i\omega C$

Short line ($\ell < 50$ miles) :

Steven Low EE/CS/EST 135 Caltech

use Z' and Y'use $Z = z\ell$ and $Y = i\omega 0$ use $Z = z\ell$ and Y = 0

Line loss

Sending-end current

$$I_{12} = \frac{1}{Z'}(V_1 - V_2) + \frac{Y'}{2}V_1$$
$$I_{21} = \frac{1}{Z'}(V_2 - V_1) + \frac{Y'}{2}V_2$$

Real and reactive line losses

$$I_{12} + I_{21} = (Y'/2)^H \left(|V_1|^2 + |V_1|^2 \right)^H \left(|V_1|^2$$

If Y' = 0 then $I_{12} = -I_{21}$ sending current = receiving current

Steven Low EE/CS/EST 135 Caltech

$(I_{12} = I_1, I_{21} = -I_2)$

 $V_2|^2$)

Line loss

Sending-end line power

$$S_{12} := V_1 I_{12}^H = \left(\frac{1}{Z'}\right)^H \left(|V_1|^2 - V_1 V_2^H\right) + \left(\frac{Y'}{2}\right)^H |V_1|^2$$
$$S_{21} := V_2 (I_{21})^H = \left(\frac{1}{Z'}\right)^H \left(|V_2|^2 - V_2 V_1^H\right) + \left(\frac{Y'}{2}\right)^H |V_2|^2$$

Real and reactive line losses

$$S_{12} + S_{21} = Z' |I_{12}^s|^2 + \left(\frac{Y'}{2}\right)$$

$${}^{H}\left(|V_1|^2 + |V_2|^2 \right)$$

Lossless line: r = g = 0

Characteristic impedance is real

$$Z_c = \sqrt{\frac{z}{y}} = \sqrt{\frac{i\omega l}{i\omega c}}$$

Propagation constant is imaginary

$$\gamma = \sqrt{zy} = \sqrt{(i\omega l)(i\omega d)}$$

 Π circuit model: both series impedance and shunt admittance are reactive:

$$Z' = i Z_c \sin(\beta \ell) \quad \Omega,$$

Steven Low EE/CS/EST 135 Caltech

 $= \sqrt{\frac{l}{c}} \Omega$ $\overline{pc} = i\omega\sqrt{lc} m^{-1}$

$$\frac{Y'}{2} = i \frac{\omega c\ell}{2} \frac{\tan(\beta \ell/2)}{\beta \ell/2} \Omega^{-1}$$

Lossless line: r = g = 0

Voltage along the line

Steven Low EE/CS/EST 135 Caltech

 $\beta := \omega \sqrt{lc}$

Generally voltage drops along the line towards load

Short line: Y = 0

Sending-end power from *i* to *j*:

$$S_{ij} = V_i I_{ij}^* = V_i \frac{V_i^* - V_j^*}{Z^*}$$

 $\stackrel{*}{-} = \frac{1}{Z^*} \left(|V_i|^2 - V_i V_j^* \right)$

Short line: Y = 0Load voltage solution and collapse

Receiving-end load power at bus 2:

$$-S_{21} = -V_2 I_{21}^* = -\frac{1}{Z^*} \left(|V_2|^2 - V_2 V_1^* \right)$$

Load power: $P + iQ := -S_{21}$

Express $-S_{21}$ in terms of load power P to relate load voltage $|V_2|$ to P

$$-S_{21} = P(1 + i \tan \phi)$$

 $\phi := \theta_{V_2} - \theta_{-I_{21}}$: load power factor angle $\mathbf{Z}\mathbf{I}$

Short line: Y = 0Load voltage solution and collapse

How does load voltage $|V_2|$ depend on active load power P? $P(1 + i \tan \phi) = -\frac{1}{Z^*} \left(|V_2| \right)$

Assume: $V_1 := |V_1| \angle 0^\circ \Rightarrow \theta_{21} := \theta_2 - \theta_1 = \theta_2$

- 2 real equations in $|V_2|$ and θ_{21} with P as parameter
- Solve for load voltage $|V_2|$ given any P
- As load power P increases, solutions $|V_2|$ trace out a nose curve
- If P increases further, no real solutions for $|V_2|$ exists voltage collapse

$$V_2|^2 - |V_2||V_1|e^{i\theta_{21}}$$

Short & lossless line: R = 0, Y = 0

Sending-end power from i to j:

$$S_{ij} = \frac{i}{X} \left(|V_i|^2 - V_i V_j^* \right)$$

Hence

$$P_{12} = \frac{|V_1| |V_2|}{X} \sin \theta_{12}$$
$$Q_{12} = \frac{1}{X} \left(|V_1|^2 - |V_1| |V_2| \cos \theta_{12} \right)$$
$$Q_{21} = \frac{1}{X} \left(|V_2|^2 - |V_1| |V_2| \cos \theta_{12} \right)$$

 $\operatorname{os} \theta_{12}$

bs θ_{12}

Short & lossless line: R = 0, Y = 0

1. DC power flow model: R = 0, fixed $|V_i|$, $\sin \theta_{12} \approx \theta_{12}$, ignore Q_{ij} $P_{ij} = \frac{|V_1| |V_2|}{X} \theta_{12}$

2. Decoupling: $\frac{\partial P_{12}}{\partial |V_i|} = \frac{|V_j|}{X} \sin \theta_{12} \approx 0$ $\frac{\partial P_{12}}{\partial \theta_{12}} = \frac{|V_1| |V_2|}{X} \cos \theta_{12}$

Steven Low EE/CS/EST 135 Caltech

 $\frac{\partial P_{12}}{\partial |V_i|} = \frac{|V_j|}{X} \sin \theta_{12} \approx 0 \qquad \frac{\partial Q_{ij}}{\partial \theta_{12}} = \frac{|V_1| |V_2|}{X} \sin \theta_{12} \approx 0$

 $\cos \theta_{12} \approx \frac{|V_1||V_2|}{X}$

Short & lossless line: R = 0, Y = 0

3. Voltage regulation

$$\frac{\partial Q_{12}}{\partial |V_2|} = -\frac{|V_1|}{X} \cos \theta_{12} < 0$$

$$\frac{\partial Q_{21}}{\partial |V_2|} = \frac{1}{X} (2|V_2| - |V_1| \cos \theta_{12})$$

Voltage regulation: maintain high $|V_2|$:

- decrease Q_{12}
- increase Q_{21}

Steven Low EE/CS/EST 135 Caltech

 $(\theta_{12}) > 0$