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Power Systems Analysis
Chapter 2  Transmission line models
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• Resistance  and conductance 


• Series inductance 
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3  lineϕ

Alternating currents in conductors line interact electromagnetically 


Interactions couple voltages & currents across phases


In balanced operation, phases behave as if they are decoupled


In each phase, line is characterized by


• series impedance / meter                   


• shunt admittance / meter to neutral   

z := r + iωl Ω/m

y := g + iωc Ω−1/m
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Assumption

Currents and charges sum to zero across all  conductors:


   for all 


  for all 

n

i1(t) + ⋯ + in(t) = 0 t

q1(t) + ⋯ + qn(t) = 0 t
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Line characteristics

1. Series inductance 


• total flux linkages  of conductor  depends on all currents 


        

l
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Line characteristics

1. Series inductance 


• total flux linkages  of conductor  depends on all currents 


        


• in vector form:  


• Faraday’s law:  

l
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λ = L i

v(t) =
d
dt

λ(t) = L
d
dt

i(t)
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voltage drop along conductor



Line characteristics

2. Shunt capacitance 


• voltage on surface of conductor  relative to reference:      


         


• in vector form:     


• let  .      : self capacitance/m,  : mutual capacitance/m

c
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v = F q

C := F−1 Ckk Ckk′ 

Steven Low     EE/CS/EST 135    Caltech



Line characteristics

2. Shunt capacitance 


• voltage on surface of conductor  relative to reference:      


         


• in vector form:     


• therefore:     

c
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v = F q
d
dt

v(t) = F i(t)
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Balanced 3  lineϕ

Assumptions: 

1. Conductors equally spaced at  with equal radii 


2.    for all 


3.   for all 

D r

i1(t) + ⋯ + in(t) = 0 t

q1(t) + ⋯ + qn(t) = 0 t
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1. the conductors are equally spaced at D and have equal radii r;1

2. ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. qa(t)+qb(t)+qc(t) = 0 at all times t.

D

D D

r

Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0 H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.



Balanced 3  lineϕ

Phases are decoupled
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It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0 H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.

inductance   (H/m)l
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If the voltage V is balanced and za = zb = zc then In will indeed be zero and the phases will be decoupled.
In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has nonzero
off-diagonal entries that couple voltages and currents in different phases whether or not za = zb = zc.
As we explain in Chapter 9.4 when the load impedances are indeed identical za = zb = zc a transformed
impedance matrix will always be diagonal, leading to simpler analysis.

9.1.4 Impedance loads in D configuration

Consider a three-wire three-phase impedance load in D configuration as shown in Figure 9.3. The load
impedances (za,zb,zc) are not necessarily identical. Again the external behavior is defined by the relation
V = ZDI between the terminal voltages V := (Va,Vb,Vc) and the terminal currents I := (Ia, Ib, Ic). Here

Scanned with CamScanner

Figure 9.3: Sequence components of unbalanced phase currents.

the voltages V are in reference to an arbitrary point, e.g., the ground, not line-to-line voltages. This is the
same as deriving the Y -equivalent of the D-load.

To derive the phase impedance matrix ZD that relates V and I, we start with the load voltages Vload and
the load currents Iload that satisfy the Ohm’s law:

Vload :=

2

4
Vab
Vbc
Vca

3

5 =

2

4
za 0 0
0 zb 0
0 0 zc

3

5

| {z }
Zload

2

4
Iab
Ibc
Ica

3

5 =: Zload Iload (9.2a)

Express (Vload, Iload) in terms of terminal voltages and currents (V, I)

Vload = G1V and I = G2 Iload (9.2b)

where

G1 :=

2

4
1 �1 0
0 1 �1

�1 0 1

3

5 and G2 :=

2

4
1 0 �1

�1 1 0
0 �1 1

3

5 (9.2c)

: capacitance   (F/m)( ⋅ )−1 c
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It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:
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Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
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Balanced 3  lineϕ
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q1(t) + ⋯ + qn(t) = 0 t
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Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
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It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0 H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.

Per-phase line characteristics: 
series impedance / meter                   


shunt admittance / meter to neutral   

z := r + iωl Ω/m
y := g + iωc Ω−1/m



Transmission matrix

dV = zI(x) dx
dI = (V(x) + dV)y dx ≈ yV(x) dx
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where the per-meter resistance r > 0 and conductance g > 0 depend on the material and size of the line,
and the per-meter inductance l > 0 and parameter c > 0 of the line can be calculated as in Chapters 2.1.2–
2.1.4. In this section we derive two equivalent models of a balanced three-phase transmission line. The
first model represents the terminal behavior, i.e., the mapping of the voltage and current between one end
of the line and those at the other end, by a transmission matrix in (2.9) below. The second model represents
the terminal behavior of the line by a linear circuit with series impedance and shunt admittances given in
(2.11) below.

2.2.1 Transmission matrix

We start by deriving the V -I relations between two ends of a transmission line. Figure 2.4 shows a per-
phase model of a balanced three-phase line of length `. The voltages are phase (line-to-neutral) voltages
as illustrated in Figure 2.3. We will call the left end the sending end and the right end the receiving end.
When we apply a voltage V1, with respect to neutral, at the sending end driving a current I1 towards the
receiving end, the voltage drops and the current leaks from the sending end to the receiving end so that the
voltage V (x) and current I(x) at each point x of the line vary. We will derive a relation between the sending
end (V1, I1) and the receiving end (V2, I2) by solving for (V (x), I(x)) in terms of (V2, I2) for all 0  x  `.

V1

+

−

V2

+

−

y dx

z dx

xdx


V (x)

+

−

I(x) I2I1

V (x)+ dV

+

−

dI

Figure 2.4: Per-phase model of a balanced three-phase line of length ` with impedance parameters z,y.

To this end consider the infinitesimal segment of length dx at a distance x from the receiving end.
This segment is modeled by the circuit with series impedance zdx and shunt admittance ydx to neutral as
shown in Figure 2.4. Let the voltage and current at point x be V := V (x) and I := I(x) respectively. Let
the corresponding quantities at point x+dx be V (x)+dV and I(x)+dI. Applying Kirchhoff’s laws to the
segment, we have

dV = zI(x) dx
dI = (V (x)+dV )y dx ⇡ yV (x) dx

ODE:





boundary cond:   

 

dV
dx
dI
dx

= [0 z
y 0] [V

I]

V(0) = V2, I(0) = I2



Transmission matrix

[V(x)
I(x)] = U [eγx 0

0 e−γx] U−1 [V2
I2]
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U := [Zc −Zc

1 1 ], U−1 :=
1

2Zc [ 1 Zc

−1 Zc]

characteristic impedance  Zc := z
y Ω/m propagation constant  γ := zy m−1
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To this end consider the infinitesimal segment of length dx at a distance x from the receiving end.
This segment is modeled by the circuit with series impedance zdx and shunt admittance ydx to neutral as
shown in Figure 2.4. Let the voltage and current at point x be V := V (x) and I := I(x) respectively. Let
the corresponding quantities at point x+dx be V (x)+dV and I(x)+dI. Applying Kirchhoff’s laws to the
segment, we have

dV = zI(x) dx
dI = (V (x)+dV )y dx ⇡ yV (x) dx



Transmission matrix

[V1
I1] = [

cosh(γℓ) Zc sinh(γℓ)
Z−1

c sinh(γℓ) cosh(γℓ)] [V2
I2]
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characteristic impedance  Zc := z
y Ω/m

propagation constant  γ := zy m−1

Transmission matrix maps receiving-end  to sending-end (V2, I2) (V1, I1)



 circuit modelΠ
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Kirchhoff’s laws:


 
I1 =

Y′ 

2
V1 +

Y′ 

2
V2 + I2

V1 − V2 = Z′ ( Y′ 

2
V2 + I2)
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V1

+

−

V2

+

−

Y '
2

Z ' I2I1

Y '
2

Figure 2.5: Lumped-circuit P model of a transmission line.

where Z := z` is the total series impedance of the line and Y := y` is the total shunt admittance to neutral
of the line.

When |g`| ⌧ 1 then sinh(g`)/(g`) ⇡ 1 and tanh(g`/2)/(g`/2) ⇡ 1, in which case the P model in
Figure 2.5 can be approximated by the total series impedance Z and total shunt admittance Y to neutral of
the line.

In summary each phase of a balanced three-phase transmission line can be modeled as follows:

• Long line (` > 150 miles approximately): Use either (2.9) or the P circuit model with Z0 and Y 0

given by (2.11).

• Medium line (50 < ` < 150 miles approximately): Use the P circuit model with Z := z` and Y := y`
instead of Z0 and Y 0. Here Z = R+ iwL is the total series impedance of the line and Y = iwC is the
total shunt admittance to neutral of the line. In particular, for medium lines, the shunt resistance is
negligible.

• short line (` < 50 miles approximately): Use the P circuit model with Z only and neglect Y .

2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1 are derived in Chapter
6.2.1 to be respectively (see (6.15)):

S12 := V1IH
1 =

✓
1
Z0

◆H �
|V1|2 �V1V H

2
�

+

✓
Y 0

2

◆H
|V1|2

S21 := V2(�I2)
H =

✓
1
Z0

◆H �
|V2|2 �V2V H

1
�

+

✓
Y 0

2

◆H
|V2|2

 
Z′ = Zc sinh(γℓ) =

z
y

sinh(γℓ) = Z
sinh(γℓ)

γℓ
Y′ 

2
=

1
Zc

cosh(γℓ) − 1
sinh(γℓ)

=
1
Zc

sinh(γℓ/2)
cosh(γℓ/2)

=
Y
2

tanh(γℓ/2)
γℓ/2 Z := zℓ, Y := yℓ



Long line (  miles) :                  use    and 


Medium line (  miles) :   use    and  


Short line (  miles) :                   use    and  

ℓ > 150 Z′ Y′ 

50 < ℓ < 150 Z = zℓ Y = iωC

ℓ < 50 Z = zℓ Y = 0

 circuit modelΠ
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Sending-end current 


I12 =
1
Z′ 

(V1 − V2) +
Y′ 

2
V1

I21 =
1
Z′ 

(V2 − V1) +
Y′ 

2
V2

Line loss
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Real and reactive line losses





If   then    sending current = receiving current

I12 + I21 = (Y′ /2)H ( |V1 |2 + |V2 |2 )
Y′ = 0 I12 = − I21

(I12 = I1, I21 = − I2)



Sending-end line power  


S12 := V1IH
12 = ( 1

Z′ 
)

H

( |V1 |2 − V1VH
2 ) + ( Y′ 

2 )
H

|V1 |2

S21 := V2(I21)H = ( 1
Z′ 

)
H

( |V2 |2 − V2VH
1 ) + ( Y′ 

2 )
H

|V2 |2

Line loss
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Real and reactive line losses


S12 + S21 = Z′ | Is
12 |2 + ( Y′ 

2 )
H

( |V1 |2 + |V2 |2 )



Characteristic impedance is real





Propagation constant is imaginary 





 circuit model: both series impedance and shunt admittance are reactive:


,          

Zc =
z
y

=
iωl
iωc

=
l
c

Ω

γ = zy = (iωl)(iωc) = iω lc m−1

Π

Z′ = i Zc sin(βℓ) Ω Y′ 

2 = i ωcℓ
2

tan(βℓ/2)
βℓ/2 Ω−1

Lossless line: r = g = 0
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Voltage along the line



V(x) = V2 cos(βx) + i Zc I2 sin(βx)

Lossless line: r = g = 0
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2. Surge impedance load Zload = Zc: The voltage magnitude |V (x)| is constant; see below.

3. Full load: Since I2 = V2/Zload we have

V (x) =

✓
cos(bx) + i Zc

Zload
sin(bx)

◆
V2

=

✓
cos(bx)+

ZcXload

|Zload|2
sin(bx) + i ZcRload

|Zload|2
sin(bx)

◆
V2 (2.15)

In Exercise 2.4 we derive for special cases sufficient conditions under which the voltage magnitude
|V (x)| decreases from the source at x = ` to the load Zload at x = 0.

4. Short circuit V2 = 0: V (x) = iZc I2 sin(bx). Hence the voltage magnitude |V (x)| decreases from the
source at x = ` to the load at x = 0 as long as b` < p/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude towards the load (case

!(#)

!(#)

!(#)

# = ℓ # = 0

No	load	() = 0

SIL	*load = */

Full	 load

Short	circuit	!) = 0

Figure 2.7: Voltage magnitude |V (x)| on a lossless line.

3 above) can be problematic because loads are generally designed to work with specific voltages. As
mentioned above low load voltage also increases line loss in the network. Voltages are regulated tightly
around their nominal values through various voltage compensation devices in generating units and inside
the network.

Surge impedance loading (SIL). Suppose the receiving end is connected to an impedance load that is
equal to the surge impedance Zc =

p
l/c W. The power delivered by a lossless line to the resistive load Zc

is called the surge impedance loading (SIL). To calculate SIL we have from (2.12)

V (x) = V2 cos(bx) + iZcI2 sin(bx) = eibxV2

since V2 = ZcI2. This means

|V (x)| = |V2|, x 2 [0,`]

β := ω lc

Generally voltage drops along 

the line towards load



Sending-end power from  to :
i j

Sij = ViI*ij = Vi
V*i − V*j

Z*
=

1
Z* ( |Vi |

2 − ViV*j )

Short line: Y = 0
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Receiving-end load power at bus 2:





Load power: 


Express  in terms of load power  to relate load voltage  to 




 : load power factor angle

−S21 = − V2I*21 = −
1

Z* ( |V2 |2 − V2V*1 )
P + iQ := − S21

−S21 P |V2 | P
−S21 = P(1 + i tan ϕ)

ϕ := θV2
− θ−I21

Short line: Y = 0
Load voltage solution and collapse
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How does load voltage  depend on active load power  ?





Assume:     


• 2 real equations in  and  with  as parameter 


• Solve for load voltage  given any 


• As load power  increases, solutions  trace out a nose curve


• If  increases further, no real solutions for  exists - voltage collapse

|V2 | P

P(1 + i tan ϕ) = −
1

Z* ( |V2 |2 − |V2 | |V1 | eiθ21)
V1 := |V1 |∠0∘ ⇒ θ21 := θ2 − θ1 = θ2

|V2 | θ21 P

|V2 | P

P |V2 |

P |V2 |

Short line: Y = 0
Load voltage solution and collapse
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Sending-end power from  to :





Hence


i j

Sij =
i
X ( |Vi |

2 − ViV*j )

P12 =
|V1 | |V2 |

X
sin θ12

Q12 =
1
X ( |V1 |2 − |V1 | |V2 |cos θ12)

Q21 =
1
X ( |V2 |2 − |V1 | |V2 |cos θ12)

Short & lossless line: R = 0, Y = 0
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1. DC power flow model: , fixed , , ignore 





2.   Decoupling: 


R = 0 |Vi | sin θ12 ≈ θ12 Qij

Pij =
|V1 | |V2 |

X
θ12

∂P12

∂ |Vi |
=

|Vj |

X
sin θ12 ≈ 0

∂Qij

∂θ12
=

|V1 | |V2 |
X

sin θ12 ≈ 0

Short & lossless line: R = 0, Y = 0
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∂P12

∂θ12
=

|V1 | |V2 |
X

cos θ12 ≈
|V1 | |V2 |

X



3. Voltage regulation

∂Q12

∂ |V2 |
= −

|V1 |
X

cos θ12 < 0

∂Q21

∂ |V2 |
=

1
X (2 |V2 | − |V1 |cos θ12) > 0

Short & lossless line: R = 0, Y = 0
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Voltage regulation: maintain high :


• decrease  


• increase 

|V2 |

Q12

Q21


