Power Systems Analysis

Chapter 2 Transmission line models

Outline

1. Line characteristics
2. Line models

Outline

1. Line characteristics

- Resistance r and conductance g
- Series inductance l
- Shunt capacitance c
- Balanced 3ϕ lines

2. Line models

3ϕ line

Alternating currents in conductors line interact electromagnetically
Interactions couple voltages \& currents across phases
In balanced operation, phases behave as if they are decoupled
In each phase, line is characterized by

- series impedance / meter

$$
z:=r+i \omega l
$$

Ω / m

- shunt admittance / meter to neutral $y:=g+i \omega c \quad \Omega^{-1} / \mathrm{m}$

Assumption

Currents and charges sum to zero across all n conductors:

$$
\begin{aligned}
& i_{1}(t)+\cdots+i_{n}(t)=0 \text { for all } t \\
& q_{1}(t)+\cdots+q_{n}(t)=0 \text { for all } t
\end{aligned}
$$

Line characteristics

1. Series inductance l

- total flux linkages λ_{k} of conductor k depends on all currents $i_{k^{\prime}}$

$$
\lambda_{k}=\left(\frac{\mu_{0}}{2 \pi} \ln \frac{1}{r_{k}^{\prime}}\right) i_{k}+\sum_{\substack{\text { self inductance } \\ \text { henrys } / \mathrm{m}}}^{\left(k^{\prime} \neq k\right.} \underset{\substack{\text { mutual inductances } \\ \text { henrys } / \mathrm{m}}}{ }\left(\frac{\mu_{0}}{2 \pi} \ln \frac{1}{d_{k k^{\prime}}}\right) i_{k^{\prime}}
$$

Line characteristics

1. Series inductance l

- total flux linkages λ_{k} of conductor k depends on all currents $i_{k^{\prime}}$

$$
\lambda_{k}=\left(\frac{\mu_{0}}{2 \pi} \ln \frac{1}{r_{k}^{\prime}}\right) i_{k}+\sum_{k^{\prime} \neq k}\left(\frac{\mu_{0}}{2 \pi} \ln \frac{1}{d_{k k^{\prime}}}\right) i_{k^{\prime}}
$$

- in vector form: $\lambda=L i$
. Faraday's law: $v(t)=\frac{d}{d t} \lambda(t)=L \frac{d}{d t} i(t)$ voltage drop along conductor

Line characteristics

2. Shunt capacitance c

- voltage on surface of conductor k relative to reference:

$$
v_{k}=\left(\frac{1}{2 \pi \epsilon} \ln \frac{1}{r_{k}}\right) q_{k}+\sum_{k^{\prime} \neq k}\left(\frac{1}{2 \pi \epsilon} \ln \frac{1}{d_{k k^{\prime}}}\right) q_{k^{\prime}}
$$

- in vector form: $\quad v=F q$
- let $C:=F^{-1}$. $\quad C_{k k}$: self capacitance $/ \mathrm{m}, C_{k k^{\prime}}$: mutual capacitance $/ \mathrm{m}$

Line characteristics

2. Shunt capacitance c

- voltage on surface of conductor k relative to reference:

$$
v_{k}=\left(\frac{1}{2 \pi \epsilon} \ln \frac{1}{r_{k}}\right) q_{k}+\sum_{k^{\prime} \neq k}\left(\frac{1}{2 \pi \epsilon} \ln \frac{1}{d_{k k^{\prime}}}\right) q_{k^{\prime}}
$$

- in vector form: $\quad v=F q$
. therefore: $\frac{d}{d t} v(t)=F i(t)$

Balanced 3ϕ line

Assumptions:

1. Conductors equally spaced at D with equal radii r
2. $i_{1}(t)+\cdots+i_{n}(t)=0$ for all t
3. $q_{1}(t)+\cdots+q_{n}(t)=0$ for all t

Balanced 3ϕ line

Phases are decoupled

$$
\lambda_{k}=\underbrace{\left(\frac{\mu_{0}}{2 \pi} \ln \frac{D}{r^{\prime}}\right)}_{\text {inductance } l(\mathrm{H} / \mathrm{m})} i_{k}
$$

Balanced 3ϕ line

Phases are decoupled

$$
\begin{aligned}
& \lambda_{k}=\underbrace{\left(\frac{\mu_{0}}{2 \pi} \ln \frac{D}{r^{\prime}}\right)}_{\text {inductance } l(\mathrm{H} / \mathrm{m})} i_{k} \\
& v_{k}=\underbrace{\left(\frac{1}{2 \pi \epsilon} \ln \frac{D}{r}\right)} q_{k}
\end{aligned}
$$

Outline

1. Line characteristics

2. Line models

- Transmission matrix
- Π circuit model
- Real and reactive line losses
- Lossless line
- Short line

Balanced 3ϕ line

Assumptions:

1. Conductors equally spaced at D with equal radii r
2. $i_{1}(t)+\cdots+i_{n}(t)=0$ for all t
3. $q_{1}(t)+\cdots+q_{n}(t)=0$ for all t

Per-phase line characteristics:
series impedance / meter

$$
z:=r+i \omega l
$$

Ω / m
shunt admittance / meter to neutral $y:=g+i \omega c$
$\Omega^{-1 / m}$

Transmission matrix

$$
\begin{aligned}
d V & =z I(x) d x \\
d I & =(V(x)+d V) y d x \approx y V(x) d x
\end{aligned}
$$

ODE:

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
\frac{d V}{d x} \\
\frac{d I}{d x}
\end{array}\right]=\left[\begin{array}{ll}
0 & z \\
y & 0
\end{array}\right]\left[\begin{array}{c}
V \\
I
\end{array}\right] \\
& \text { boundary cond: }
\end{aligned}
$$

$$
V(0)=V_{2}, I(0)=I_{2}
$$

Transmission matrix

$$
\left[\begin{array}{c}
V(x) \\
I(x)
\end{array}\right]=U\left[\begin{array}{rl}
e^{\gamma x} & 0 \\
0 & e^{-\gamma x}
\end{array}\right] U^{-1}\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]
$$

$$
U:=\left[\begin{array}{cc}
Z_{c} & -Z_{c} \\
1 & 1
\end{array}\right], \quad U^{-1}:=\frac{1}{2 Z_{c}}\left[\begin{array}{rr}
1 & Z_{c} \\
-1 & Z_{c}
\end{array}\right]
$$

characteristic impedance $Z_{c}:=\sqrt{\frac{z}{y}} \Omega / m \quad$ propagation constant $\gamma:=\sqrt{z y} \quad m^{-1}$

Transmission matrix

Transmission matrix maps receiving-end $\left(V_{2}, I_{2}\right)$ to sending-end $\left(V_{1}, I_{1}\right)$

$$
\begin{aligned}
& \qquad\left[\begin{array}{r}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{rr}
\cosh (\gamma \ell) & Z_{c} \sinh (\gamma \ell) \\
Z_{c}^{-1} \sinh (\gamma \ell) & \cosh (\gamma \ell)
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right] \\
& \text { characteristic impedance } Z_{c}:=\sqrt{\frac{z}{y}} \Omega / m \\
& \text { propagation constant } \gamma:=\sqrt{z y} \quad m^{-1}
\end{aligned}
$$

Π circuit model

Kirchhoff's laws:

$$
\begin{aligned}
I_{1} & =\frac{Y^{\prime}}{2} V_{1}+\frac{Y^{\prime}}{2} V_{2}+I_{2} \\
V_{1}-V_{2} & =Z^{\prime}\left(\frac{Y^{\prime}}{2} V_{2}+I_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z^{\prime}=Z_{c} \sinh (\gamma \ell)=\sqrt{\frac{z}{y}} \sinh (\gamma \ell)=Z \frac{\sinh (\gamma \ell)}{\gamma \ell} \\
& \frac{Y^{\prime}}{2}=\frac{1}{Z_{c}} \frac{\cosh (\gamma \ell)-1}{\sinh (\gamma \ell)}=\frac{1}{Z_{c}} \frac{\sinh (\gamma \ell / 2)}{\cosh (\gamma \ell / 2)}=\frac{Y}{2} \frac{\tanh (\gamma \ell / 2)}{\gamma \ell / 2}
\end{aligned}
$$

$$
Z:=z \ell, Y:=y \ell
$$

П circuit model

Long line ($\ell>150$ miles) :
Medium line ($50<\ell<150$ miles) : use $Z=z \ell$ and $Y=i \omega C$
Short line ($\ell<50$ miles) :
use Z^{\prime} and Y^{\prime} use $Z=z \ell$ and $Y=0$

Line loss

Sending-end current

$$
\begin{aligned}
& I_{12}=\frac{1}{Z^{\prime}}\left(V_{1}-V_{2}\right)+\frac{Y^{\prime}}{2} V_{1} \\
& I_{21}=\frac{1}{Z^{\prime}}\left(V_{2}-V_{1}\right)+\frac{Y^{\prime}}{2} V_{2}
\end{aligned}
$$

$$
\left(I_{12}=I_{1}, I_{21}=-I_{2}\right)
$$

Real and reactive line losses

$$
I_{12}+I_{21}=\left(Y^{\prime} / 2\right)^{H}\left(\left|V_{1}\right|^{2}+\left|V_{2}\right|^{2}\right)
$$

If $Y^{\prime}=0$ then $I_{12}=-I_{21}$ sending current $=$ receiving current

Line loss

Sending-end line power

$$
\begin{aligned}
& S_{12}:=V_{1} I_{12}^{H}=\left(\frac{1}{Z^{\prime}}\right)^{H}\left(\left|V_{1}\right|^{2}-V_{1} V_{2}^{H}\right)+\left(\frac{Y^{\prime}}{2}\right)^{H}\left|V_{1}\right|^{2} \\
& S_{21}:=V_{2}\left(I_{21}\right)^{H}=\left(\frac{1}{Z^{\prime}}\right)^{H}\left(\left|V_{2}\right|^{2}-V_{2} V_{1}^{H}\right)+\left(\frac{Y^{\prime}}{2}\right)^{H}\left|V_{2}\right|^{2}
\end{aligned}
$$

Real and reactive line losses

$$
S_{12}+S_{21}=Z^{\prime}\left|I_{12}^{S}\right|^{2}+\left(\frac{Y^{\prime}}{2}\right)^{H}\left(\left|V_{1}\right|^{2}+\left|V_{2}\right|^{2}\right)
$$

Lossless line: $r=g=0$

Characteristic impedance is real

$$
Z_{c}=\sqrt{\frac{z}{y}}=\sqrt{\frac{i \omega l}{i \omega c}}=\sqrt{\frac{l}{c}} \Omega
$$

Propagation constant is imaginary

$$
\gamma=\sqrt{z y}=\sqrt{(i \omega l)(i \omega c)}=i \omega \sqrt{l c} m^{-1}
$$

Π circuit model: both series impedance and shunt admittance are reactive:

$$
Z^{\prime}=i Z_{c} \sin (\beta \ell) \Omega, \quad \frac{Y^{\prime}}{2}=i \frac{\omega c \ell}{2} \frac{\tan (\beta \ell / 2)}{\beta \ell / 2} \Omega^{-1}
$$

Lossless line: $r=g=0$

Voltage along the line

$$
V(x)=V_{2} \cos (\beta x)+i Z_{c} I_{2} \sin (\beta x)
$$

$$
\beta:=\omega \sqrt{l c}
$$

Generally voltage drops along the line towards load

Short line: $Y=0$

Sending-end power from i to j :

$$
S_{i j}=V_{i} I_{i j}^{*}=V_{i} \frac{V_{i}^{*}-V_{j}^{*}}{Z^{*}}=\frac{1}{Z^{*}}\left(\left|V_{i}\right|^{2}-V_{i} V_{j}^{*}\right)
$$

Short line: $Y=0$

Load voltage solution and collapse

Receiving-end load power at bus 2:

$$
-S_{21}=-V_{2} I_{21}^{*}=-\frac{1}{Z^{*}}\left(\left|V_{2}\right|^{2}-V_{2} V_{1}^{*}\right)
$$

Load power: $P+i Q:=-S_{21}$
Express $-S_{21}$ in terms of load power P to relate load voltage $\left|V_{2}\right|$ to P

$$
-S_{21}=P(1+i \tan \phi)
$$

$\phi:=\theta_{V_{2}}-\theta_{-I_{21}}$: load power factor angle

Short line: $Y=0$

Load voltage solution and collapse

How does load voltage $\left|V_{2}\right|$ depend on active load power P ?

$$
P(1+i \tan \phi)=-\frac{1}{Z^{*}}\left(\left|V_{2}\right|^{2}-\left|V_{2}\right|\left|V_{1}\right| e^{i \theta_{21}}\right)
$$

Assume: $V_{1}:=\left|V_{1}\right| \angle 0^{\circ} \Rightarrow \theta_{21}:=\theta_{2}-\theta_{1}=\theta_{2}$

- 2 real equations in $\left|V_{2}\right|$ and θ_{21} with P as parameter
- Solve for load voltage $\left|V_{2}\right|$ given any P
- As load power P increases, solutions $\left|V_{2}\right|$ trace out a nose curve
- If P increases further, no real solutions for $\left|V_{2}\right|$ exists - voltage collapse

Short \& lossless line: $R=0, Y=0$

Sending-end power from i to j :

$$
S_{i j}=\frac{i}{X}\left(\left|V_{i}\right|^{2}-V_{i} V_{j}^{*}\right)
$$

Hence

$$
\begin{aligned}
& P_{12}=\frac{\left|V_{1}\right|\left|V_{2}\right|}{X} \sin \theta_{12} \\
& Q_{12}=\frac{1}{X}\left(\left|V_{1}\right|^{2}-\left|V_{1}\right|\left|V_{2}\right| \cos \theta_{12}\right) \\
& Q_{21}=\frac{1}{X}\left(\left|V_{2}\right|^{2}-\left|V_{1}\right|\left|V_{2}\right| \cos \theta_{12}\right)
\end{aligned}
$$

Short \& lossless line: $R=0, Y=0$

1. DC power flow model: $R=0$, fixed $\left|V_{i}\right|, \sin \theta_{12} \approx \theta_{12}$, ignore $Q_{i j}$

$$
P_{i j}=\frac{\left|V_{1}\right|\left|V_{2}\right|}{X} \theta_{12}
$$

2. Decoupling:

$$
\begin{aligned}
& \frac{\partial P_{12}}{\partial\left|V_{i}\right|}=\frac{\left|V_{j}\right|}{X} \sin \theta_{12} \approx 0 \quad \frac{\partial Q_{i j}}{\partial \theta_{12}}=\frac{\left|V_{1}\right|\left|V_{2}\right|}{X} \sin \theta_{12} \approx 0 \\
& \frac{\partial P_{12}}{\partial \theta_{12}}=\frac{\left|V_{1}\right|\left|V_{2}\right|}{X} \cos \theta_{12} \approx \frac{\left|V_{1}\right|\left|V_{2}\right|}{X}
\end{aligned}
$$

Short \& lossless line: $R=0, Y=0$

3. Voltage regulation

$$
\begin{aligned}
& \frac{\partial Q_{12}}{\partial\left|V_{2}\right|}=-\frac{\left|V_{1}\right|}{X} \cos \theta_{12}<0 \\
& \frac{\partial Q_{21}}{\partial\left|V_{2}\right|}=\frac{1}{X}\left(2\left|V_{2}\right|-\left|V_{1}\right| \cos \theta_{12}\right)>0
\end{aligned}
$$

Voltage regulation: maintain high $\left|V_{2}\right|$:

- decrease Q_{12}
- increase Q_{21}

