Power System Analysis

Chapter 3 Transformer models

Outline

1. Single-phase transformer
2. Three-phase transformer
3. Equivalent impedance
4. Per-phase analysis
5. Per-unit normalization

Outline

1. Single-phase transformer

- Ideal transformer
- Nonideal transformer
- Circuit models: T eq circuit, simplified circuit, UVN

2. Three-phase transformer
3. Equivalent impedance
4. Per-phase analysis
5. Per-unit normalization

Ideal transformer

Voltage \& current gains

$$
\frac{v_{2}(t)}{v_{1}(t)}=n \quad \frac{i_{2}(t)}{i_{1}(t)}=a
$$

voltage gain $n:=\frac{N_{2}}{N_{1}}$ turns ratio $a:=\frac{N_{1}}{N_{2}}$

Ideal transformer

$\begin{aligned} & \text { voltage gain } n:=\frac{N_{2}}{N_{1}} \\ & \text { turns ratio } a:=\frac{N_{1}}{N_{2}}\end{aligned}$

Voltage \& current gains

$$
\frac{V_{2}}{V_{1}}=n \quad \frac{I_{2}}{I_{1}}=a
$$

Transmission matrix

$$
\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & n
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]
$$

Ideal transformer

Nonideal transformer

Nonideal behavior

- Power losses (coil resistances, eddy currents, hysteresis losses)
- Leakage magnetic fluxes
- Finite permeability of magnetic cores

Nonideal transformer

Voltages

$$
v_{1}=r_{1} i_{1}+\frac{d \lambda_{1}}{d t}, \quad v_{2}=r_{2} i_{2}^{\prime}+\frac{d \lambda_{2}}{d t}
$$

Total flux linkages

$$
\begin{aligned}
\lambda_{1} & =N_{1} \Phi_{m}+\lambda_{l 1}, & & \lambda_{2}
\end{aligned}=N_{2} \Phi_{m}+\lambda_{21}, ~=\lambda_{l 2}=L_{l 2} i_{2}^{\prime} .
$$

Total magnetomotive force

$$
F=N_{1} i_{1}+N_{2} i_{2}^{\prime}=R \Phi_{m}
$$

[^0]
Nonideal transformer

Voltages

$$
v_{1}=r_{1} i_{1}+\frac{d \lambda_{1}}{d t}, \quad v_{2}=r_{2} i_{2}^{\prime}+\frac{d \lambda_{2}}{d t}
$$

Total flux linkages

$$
\begin{array}{ll}
\lambda_{1}=N_{1} \Phi_{m}+\lambda_{l 1}, & \lambda_{2}=N_{2} \Phi_{m}+\lambda_{21} \\
\lambda_{l 1}=L_{l 1} i_{1}, & \lambda_{l 2}=L_{l 2} i_{2}^{\prime}
\end{array}
$$

Total magnetomotive force

$$
F=N_{1} i_{1}+N_{2} i_{2}^{\prime}=R \Phi_{m}
$$

Ideal transformer

- Zero power losses: $r_{1}=r_{2}=0$
- Zero leakage flux linkages: $L_{l 1}=L_{l 2}=0 \quad \Longrightarrow \quad v_{1}=N_{1} \frac{d \Phi_{m}}{d t}, \quad v_{2}=N_{2} \frac{d \Phi_{m}}{d t}, \quad 0=N_{1} i_{1}+N_{2} i_{2}^{\prime}$
- Infinite permeability: $R=0$

Nonideal transformer

Voltages

$$
\begin{aligned}
& v_{1}=r_{1} i_{1}+L_{l l} \frac{d i_{1}}{d t}+N_{1} \frac{d \Phi_{m}}{d t} \\
& v_{2}=r_{2} i_{2}^{\prime}+L_{l 2} \frac{d i_{2}^{\prime}}{d t}+N_{2} \frac{d \Phi_{m}}{d t}
\end{aligned}
$$

Primary magnetizing current \hat{i}_{m}

- primary current when secondary circuit is open $i_{2}^{\prime}:=0$
- $N_{1} \hat{i}_{m}=R \Phi_{m}$: let $L_{m}:=N_{1}^{2} / R$ and

$$
\begin{array}{ll}
\hat{u}_{1}:=N_{1} \frac{d \Phi_{m}}{d t}=L_{m} \frac{d \hat{i}_{m}}{d t} \\
\hat{u}_{2}:=N_{2} \frac{d \Phi_{m}}{d t}=\frac{N_{2}}{N_{1}} \hat{u}_{1} \quad \text { ideal transformer }
\end{array}
$$

Nonideal transformer

Nonideal elements

$$
\begin{aligned}
& v_{1}=r_{1} i_{1}+L_{l 1} \frac{d i_{1}}{d t}+\hat{u}_{1}, \quad \hat{u}_{1}=L_{m} \frac{d \hat{i}_{m}}{d t} \\
& v_{2}=-r_{2} i_{2}-L_{l 2} \frac{d i_{2}}{d t}+\hat{u}_{2}
\end{aligned}
$$

Ideal transformer

$$
\hat{u}_{2}=\frac{N_{2}}{N_{1}} \hat{u}_{1}, \quad i_{2}=\frac{N_{1}}{N_{2}}\left(i_{1}-\hat{i}_{m}\right)
$$

Nonideal transformer

Circuit model

Nonideal elements (phasor domain)

$$
\begin{aligned}
& V_{1}=z_{p} I_{1}+\hat{U}_{1}, \quad \hat{I}_{m}=y_{m} \hat{U}_{1} \\
& \hat{U}_{2}=z_{s} I_{2}+V_{2}
\end{aligned}
$$

Ideal transformer (phasor domain)

$$
\hat{U}_{2}=\frac{N_{2}}{N_{1}} \hat{U}_{1}, \quad I_{2}=\frac{N_{1}}{N_{2}}\left(I_{1}-\hat{I}_{m}\right)
$$

Nonideal transformer

Circuit models

$$
\text { Tee. circuit } \equiv \text { unitary voltage uk }
$$

SS
Simplified model

T equivalent circuit

Refer series impedance z_{s} to the primary side $\longrightarrow T$ equivalent circuit

$$
\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
a\left(1+z_{p} y_{m}\right) & a z_{s}\left(1+z_{p} y_{m}\right)+n z_{p} \\
a y_{m} & n+a z_{s} y_{m}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

where $n:=N_{2} / N_{1}, a:=1 / n$
"Equivalent model" means

- Same end-to-end behavior, e.g., transmission matrix, or admittance matrix;
- Internal variables may be different

T equivalent circuit

Refer series impedance z_{s} to the primary side $\longrightarrow T$ equivalent circuit

$$
\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
a\left(1+z_{p} y_{m}\right) & a z_{s}\left(1+z_{p} y_{m}\right)+n z_{p} \\
a y_{m} & n+a z_{s} y_{m}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

where $n:=N_{2} / N_{1}, a:=1 / n$

Model parameters $\left(z_{p}, z_{s}, y_{m}\right)$ cannot be uniquely determined from just short-circuit \& open-circuit tests

- Additional tests are needed

Nonideal transformer

Circuit models

$$
\text { Tee. circuit } \equiv \text { unitary voltage uk }
$$

SS
Simplified model

Simplified circuit

Interchange $a^{2} z_{s}$ and y_{m} and combine with z_{p} : $z_{l}:=z_{p}+a^{2} z_{s}$

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
a\left(1+z_{l} y_{m}\right) & n z_{l} \\
a y_{m} & n
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]
$$

where $n:=N_{2} / N_{1}, a:=1 / n$

Simplified circuit

Approximation to T eq circuit

Interchange $a^{2} z_{s}$ and y_{m} and combine with z_{p} : $z_{l}:=z_{p}+a^{2} z_{s}$

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
a\left(1+z_{l} y_{m}\right) & n z_{l} \\
a y_{m} & n
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]
$$

where $n:=N_{2} / N_{1}, a:=1 / n$
Good approximation of T equivalent circuit when $\left|y_{m}\right| \ll 1 /\left|a^{2} z_{s}\right|$

$$
\frac{\|M-T\|}{\|T\|}<|\epsilon| \ll 1
$$

M : transmission matrix of simplified model
T : transmission matrix of simplified model
$\epsilon:=a^{2} z_{s} y_{m}$

Simplified circuit

Approximation to T eq circuit

Interchange $a^{2} z_{s}$ and y_{m} and combine with z_{p} : $z_{l}:=z_{p}+a^{2} z_{s}$

$$
\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
a\left(1+z_{l} y_{m}\right) & n z_{l} \\
a y_{m} & n
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]
$$

where $n:=N_{2} / N_{1}, a:=1 / n$

Good approximation when $\left|y_{m}\right| \ll 1 /\left|a^{2} z_{s}\right|$

$$
\frac{\|M-T\|}{\|T\|}<|\epsilon| \ll 1
$$

If $y_{m}=0: T$ equivalent circuit and simplified model are equivalent, $M=T$

Parameter determination

Short \& open-circuit tests

Most popular model
(at least for transmission systems)

Parameters $\left(z_{l}, y_{m}\right)$ can be determined from open and short-circuit tests

- Short-circuit test $\left(V_{2}:=0\right)$:

$$
z_{l}=\frac{V_{s c}}{I_{s c}}
$$

- Open-circuit test $\left(I_{2}:=0\right)$:

$$
\frac{1}{y_{m}}=\frac{V_{o c}}{I_{o c}}-\frac{V_{s c}}{I_{s c}}
$$

Parameter determination

Zero shunt admittance $y_{m}=0$

When $y_{m}=0$, parameter z_{l} can be determined from standard 3-phase transformer ratings:

- Rated primary line-to-line voltage $\left|V_{\text {pri }}\right|$
- Rated primary line current $\left|I_{\text {pri }}\right|$
- Impedance voltage β on the primary side, per phase, as \% of rated primary voltage
β : voltage needed on the primary side to produce rated primary current across each single-phase transformer is $\beta \times$ rated primary voltage

Parameter determination

Zero shunt admittance $y_{m}=0$

For both Y and Δ configurations

$$
z_{l}=\frac{V_{s c}}{I_{s c}}
$$

- Δ config:

$$
\begin{aligned}
\left|V_{s c}\right|=\left|V_{a b}\right| & =\beta\left|V_{\text {pri }}\right| \\
\left|I_{s c}\right|=\left|I_{a b}\right| & =\left|\frac{I_{\mathrm{pri}}}{\sqrt{3}} e^{i \pi / 6}\right|
\end{aligned}
$$

- Y config:

$$
\begin{aligned}
& \left|V_{s c}\right|=\left|V_{a n}\right|=\beta\left|\frac{V_{\mathrm{pri}}}{\sqrt{3} e^{i \pi / 6}}\right| \\
& \left|I_{s c}\right|=\left|I_{a n}\right|=\left|I_{\mathrm{pri}}\right|
\end{aligned}
$$

Parameter determination

Zero shunt admittance $y_{m}=0$

For both Y and Δ configurations

$$
z_{l}=\frac{V_{s c}}{I_{s c}}
$$

- Δ config:

$$
\left|z_{l}\right|=\frac{\sqrt{3} \beta\left|V_{\mathrm{pri}}\right|}{\left|I_{\mathrm{pri}}\right|}
$$

- Y config:

$$
\left|z_{l}\right|=\frac{\beta\left|V_{\mathrm{pri}}\right|}{\sqrt{3}\left|I_{\mathrm{pri}}\right|}
$$

$V_{\text {pri }}$ denotes line-to-line voltage even for Y configuration
. Otherwise, $\left|z_{l}\right|=\frac{\beta\left|V_{\text {pri }}\right|}{\left|I_{\text {pri }}\right|}$ for Y configuration if $V_{\text {pri }}$ is line-to-neutral

Parameter determination

Zero shunt admittance $y_{m}=0$

Sometimes $\left|S_{3 \phi}\right|$ instead of $\left|I_{\text {pri }}\right|$ is specified:

- Rated primary line-to-line voltage $\left|V_{\text {pri }}\right|$
- Rated 3-phase power $\left|S_{3 \phi}\right|$
- Impedance voltage β on the primary side, per phase, as \% of rated primary voltage

Parameter determination

Zero shunt admittance $y_{m}=0$

- Δ config:

$$
\begin{aligned}
&\left|S_{3 \phi}\right|=3\left|S_{\phi}\right|=3\left|V_{a b}\right|\left|I_{a b}\right| \\
&\left|V_{s c}\right|=\left|V_{a b}\right|=\beta\left|V_{\text {pri }}\right| \\
&\left|I_{s c}\right|=\left|I_{a b}\right|=\frac{\left|S_{3 \phi}\right|}{3\left|V_{\text {pri }}\right|}
\end{aligned}
$$

- Y config:

$$
\begin{aligned}
& \left|S_{3 \phi}\right|=3\left|S_{\phi}\right|=3\left|V_{a n}\right|\left|I_{a n}\right| \\
& \left|V_{s c}\right|=\left|V_{a n}\right|=\beta\left|\frac{V_{\mathrm{pri}}}{\sqrt{3} e^{i \pi / 6}}\right| \\
& \left|I_{s c}\right|=\left|I_{a n}\right|=\frac{\left|S_{3 \phi}\right|}{3\left|\frac{V_{\mathrm{pri}}}{\sqrt{3} e^{i \pi / 6}}\right|}=\frac{\left|S_{3 \phi}\right|}{\sqrt{3}\left|V_{\mathrm{pri}}\right|}
\end{aligned}
$$

Parameter determination

Zero shunt admittance $y_{m}=0$

For both Y and Δ configurations

$$
z_{l}=\frac{V_{s c}}{I_{s c}}
$$

- Δ config:

$$
\left|z_{l}\right|=\frac{3 \beta\left|V_{\mathrm{pri}}\right|^{2}}{\left|S_{3 \phi}\right|}
$$

- Y config:

$$
\left|z_{l}\right|=\frac{\beta\left|V_{\mathrm{pri}}\right|^{2}}{\left|S_{3 \phi}\right|}
$$

$V_{\text {pri }}$ denotes line-to-line voltage even for Y configuration
. Otherwise, $\left|z_{l}\right|=\frac{3 \beta\left|V_{\text {pri }}\right|^{2}}{\left|I_{\text {pri }}\right|}$ for Y configuration if $V_{\text {pri }}$ is line-to-neutral

Parameter determination

Example

3-phase transformer ratings (primary):
-Rated 3-phase power $\left|S_{3 \phi}\right|=150 \mathrm{kVA}$

- Rated primary line-to-line voltage $\left|V_{\text {pri }}\right|=480 \mathrm{~V}$
- Rated primary line current $\left|I_{\mathrm{pri}}\right|=180 \mathrm{~A}$
- Impedance voltage $\beta=5.45 \%$ on primary side

Primary in Δ configuration:

$$
\left|S_{3 \phi}\right|=3\left|S_{a b}\right|=3\left|V_{a b} \bar{I}_{a b}\right|=3\left|V_{\mathrm{pri}}\right|\left|I_{a b}\right|
$$

Since $I_{a}=I_{a b}-I_{c a}=I_{a b} \cdot \sqrt{3} e^{-i \pi / 6}$, we have

$$
\left|I_{\mathrm{pri}}\right|=\sqrt{3}\left|I_{a b}\right|
$$

Hence

$$
\left|S_{3 \phi}\right|=\sqrt{3}\left|V_{\mathrm{pri}}\right|\left|I_{\mathrm{pri}}\right|
$$

Verify:

- $\sqrt{3}\left|V_{\text {pri }}\right|\left|I_{\text {pri }}\right|=\sqrt{3} \cdot 480 \cdot 180=149.65 \mathrm{kVA}=\left|S_{3 \phi}\right|$
. $\left|z_{l}\right|=\frac{\sqrt{3} \beta\left|V_{\mathrm{pri}}\right|}{\left|I_{\mathrm{pri}}\right|}=\frac{\sqrt{3} \cdot 5.45 \% \cdot 480}{180}=0.2517 \Omega$

Parameter determination

Example

3-phase transformer ratings (secondary):

- Rated 3-phase power $\left|S_{3 \phi}\right|=150 \mathrm{kVA}$
- Rated secondary line-to-line voltage $\left|V_{\mathrm{sec}}\right|=208 \mathrm{~V}$
- Rated secondary line current $\left|I_{\mathrm{sec}}\right|=416 \mathrm{~A}$

Secondary in Y configuration:

$$
\left|S_{3 \phi}\right|=3\left|S_{a n}\right|=3\left|V_{a n} \bar{I}_{a n}\right|=3\left|\frac{V_{\mathrm{sec}}}{\sqrt{3} e^{i \pi / 6}}\right|\left|I_{\mathrm{sec}}\right|
$$

Hence

$$
\left|S_{3 \phi}\right|=\sqrt{3}\left|V_{\mathrm{sec}}\right|\left|I_{\mathrm{sec}}\right|
$$

Verify:

$$
\cdot \sqrt{3}\left|V_{\mathrm{sec}}\right|\left|I_{\mathrm{sec}}\right|=\sqrt{3} \cdot 208 \cdot 416=149.87 \mathrm{kVA}=\left|S_{3 \phi}\right|
$$

Distribution transformer

Examples

line-to-line voltage (kV) $\left\|V_{a b}\right\|$	phase voltage (kV) $\left\|V_{a n}\right\|$	total power (MVA) $\left\|S_{3 \phi}\right\|$
4.8	2.8	3.3
12.47	7.2	8.6
22.9	13.2	15.9
34.5	19.9	23.9

Distribution transformer

Examples

Common deployment in US

- Single phase
- Split-phase 120/240 V

Nonideal transformer

Circuit models

$$
\text { Tee. circuit } \equiv \text { unitary voltage uk }
$$

SS
Simplified model

Unitary voltage network

Single-phase 2-winding transformer

reference imp \& adm across ideal transformers

UVN-based model

- Unitary voltage network (UVN) connecting 2 ideal transformers
- Equivalent to T equivalent circuit
- Simplified model is an approximation

Advantages

- UVN can be generalized to incorporate multiple windings, e.g., split-phase transformers
- Ideal transformers on both ends can be connected in various ways, e.g., 3-phase transformers in Y / Δ configurations, non-standard transformers

Single-phase transformer

Unitary voltage network

$$
\begin{aligned}
\hat{J}_{1} & =y_{1}\left(\hat{U}_{1}-\hat{U}_{0}\right), \quad \hat{J}_{2}=y_{2}\left(\hat{U}_{2}-\hat{U}_{0}\right) \\
y_{0} \hat{U}_{0} & =\hat{J}_{0}+\hat{J}_{1}+\hat{J}_{2}
\end{aligned}
$$

Admittance matrix

$$
\left[\begin{array}{l}
\hat{J}_{0} \\
\hat{J}_{1} \\
\hat{J}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
y_{0}+y_{1}+y_{2} & -y_{1} & -y_{2} \\
-y_{1} & y_{1} & 0 \\
-y_{2} & 0 & y_{2}
\end{array}\right]\left[\begin{array}{c}
\hat{U}_{0} \\
\hat{U}_{1} \\
\hat{U}_{2}
\end{array}\right]
$$

Since $\hat{J}_{0}=0$, can eliminate \hat{U}_{0} to obtain Kron reduced admittance matrix

$$
\left[\begin{array}{l}
\hat{J}_{1} \\
\hat{J}_{2}
\end{array}\right]=\underbrace{\frac{1}{\sum_{i} y_{i}}\left[\begin{array}{cc}
y_{1}\left(y_{0}+y_{2}\right) & -y_{1} y_{2} \\
-y_{1} y_{2} & y_{2}\left(y_{0}+y_{1}\right)
\end{array}\right]}_{Y_{\mathrm{uvn}}}\left[\begin{array}{l}
\hat{U}_{1} \\
\hat{U}_{2}
\end{array}\right]
$$

Single-phase transformer

External model: admittance matrix

Let

$$
\begin{aligned}
I & :=\left[\begin{array}{c}
I_{1} \\
-I_{2}
\end{array}\right], \quad V:=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \\
M & :=\left[\begin{array}{cc}
1 / N_{1} & 0 \\
0 & 1 / N_{2}
\end{array}\right]
\end{aligned}
$$

Conversion between internal vars \& terminal vars across ideal transformers

$$
\hat{U}=M V, \quad \hat{J}=M^{-1} I
$$

Hence, external model:

$$
I=\left(M Y_{\mathrm{uvn}} M\right) V
$$

Three-phase transformers

Standard configurations

$Y_{\mathrm{uvn}}:=\left(\mathbb{a}_{2} \otimes\left(\sum_{i=0}^{2} y_{i}\right)^{-1}\right)\left[\begin{array}{cc}y_{j}\left(y_{0}+y_{k}\right) & -y_{j} y_{k} \\ -y_{j} y_{k} & y_{k}\left(y_{0}+y_{j}\right)\end{array}\right]$

Let

$$
\begin{aligned}
I & :=\left[\begin{array}{c}
I_{1}^{a b c} \\
-I_{2}^{a b c}
\end{array}\right] \in \mathbb{C}^{6}, \quad V:=\left[\begin{array}{c}
V_{1}^{a b c} \\
V_{2}^{a b c}
\end{array}\right] \in \mathbb{C}^{6} \\
M & :=\left[\begin{array}{cc}
1 / N_{1}^{a b c} & 0 \\
0 & 1 / N_{2}^{a b c}
\end{array}\right] \in \mathbb{C}^{6 \times 6}
\end{aligned}
$$

External model:

$$
I=D^{\top}\left(M Y_{\mathrm{uvn}} M\right) D(V-\gamma)
$$

where $\gamma:=\left(V_{1}^{n_{1}}, V_{2}^{n_{1}}\right) \in \mathbb{C}^{6}$ are neutral voltages in $Y Y$ configuration, and
$Y Y$ config: $\quad D:=\left[\begin{array}{ll}\rrbracket & 0 \\ 0 & \mathbb{1}\end{array}\right]$
$\Delta \Delta$ config: $\quad D:=\left[\begin{array}{cc}\Gamma & 0 \\ 0 & \Gamma\end{array}\right]$
ΔY config: $\quad D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & \rrbracket\end{array}\right]$
$Y \Delta$ config
$D:=\left[\begin{array}{ll}\rrbracket & 0 \\ 0 & \Gamma\end{array}\right]$

Multi-winding transformers

Example: split-phase transformer

$$
\left[\begin{array}{l}
\hat{J}_{0} \\
\hat{J}_{1} \\
\hat{J}_{2} \\
\hat{J}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\sum_{i=0}^{3}-y_{1}-y_{2}-y_{3} \\
-y_{1} y_{1} & 0 & 0 \\
-y_{2} 0 & y_{2} & 0 \\
-y_{3} 0 & 0 & y_{3}
\end{array}\right]\left[\begin{array}{l}
\hat{U}_{0} \\
\hat{U}_{1} \\
\hat{U}_{2} \\
\hat{U}_{3}
\end{array}\right]
$$

UVN: Kron-reduced admittance matrix

$$
\left[\begin{array}{l}
\hat{J}_{1} \\
\hat{J}_{2} \\
\hat{J}_{3}
\end{array}\right]=\underbrace{\frac{1}{\sum_{i} y_{i}}\left[\begin{array}{ccc}
y_{1}\left(y_{0}+y_{2}+y_{3}\right) & -y_{1} y_{2} & -y_{1} y_{3} \\
-y_{2} y_{1} & y_{2}\left(y_{0}+y_{1}+y_{3}\right) & -y_{2} y_{3} \\
-y_{3} y_{1} & -y_{3} y_{2} & y_{3}\left(y_{0}+y_{1}+y_{2}\right)
\end{array}\right]}_{Y_{\text {uvn }}}\left[\begin{array}{l}
\hat{U}_{1} \\
\hat{U}_{2} \\
\hat{U}_{3}
\end{array}\right]
$$

Multi-winding transformers

Example: split-phase transformer

Let

$$
\begin{aligned}
I & :=\left[\begin{array}{c}
I_{1} \\
-I_{2} \\
-I_{3}
\end{array}\right], \quad V:=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right] \\
M & :=\left[\begin{array}{ccc}
1 / N_{1} & 0 & 0 \\
0 & 1 / N_{2} & 0 \\
0 & 0 & 1 / N_{3}
\end{array}\right]
\end{aligned}
$$

Conversion between internal vars \& terminal vars across ideal transformers: $\hat{U}=M V$ and

$$
\hat{J}=M^{-1}\left[\begin{array}{c}
I_{1} \\
-I_{2} \\
-I_{2}-I_{3}
\end{array}\right]=: M^{-1} A I \quad \text { where } A:=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Multi-winding transformers

Example: split-phase transformer

Let

$$
\begin{aligned}
I & :=\left[\begin{array}{c}
I_{1} \\
-I_{2} \\
-I_{3}
\end{array}\right], \quad V:=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right] \\
M & :=\left[\begin{array}{ccc}
1 / N_{1} & 0 & 0 \\
0 & 1 / N_{2} & 0 \\
0 & 0 & 1 / N_{3}
\end{array}\right]
\end{aligned}
$$

Eliminate internal vars (\hat{J}, \hat{U}) from

$$
\hat{U}=Y_{\mathrm{uv}} \hat{J}, \quad \hat{U}=M V, \quad \hat{J}=M^{-1} A I
$$

External model:

$$
I=A^{-1}\left(M Y_{\mathrm{uvn}} M\right) V
$$

Outline

1. Single-phase transformer
2. Three-phase transformer

- Ideal transformer
- Equivalent circuit

3. Equivalent impedance
4. Per-phase analysis
5. Per-unit normalization

Ideal transformer

Connectivity

(a) Primary winding in Y configuration

Ideal transformer

Connectivity

(a) Primary winding in Y configuration

(b) Secondary winding in Δ configuration

Ideal transformer

Configurations

YY

Ideal transformer

Configurations

YY

$\Delta \Delta$

Ideal transformer

Configurations

ΔY

Ideal transformer

Configurations

ΔY
$Y \Delta$

Ideal transformer

Configurations

What is external model?

- Line-to-line voltage gain $\frac{V_{a^{\prime} b^{\prime}}}{V_{a b}}$
- Line current gain $\frac{I_{a^{\prime}}}{I_{a}}$

What is $Y Y$ equivalent circuit?

- Yields per-phase circuit

Ideal transformer

Configurations

Derivation

- Single-phase voltage \& current gains
- Derive external model
- Derive $Y Y$ equivalent circuit

Use conversion between phase \& line vars

- $V_{a b}=\sqrt{3} e^{i \pi / 6} V_{a n}, \quad V_{a^{\prime} b^{\prime}}=\sqrt{3} e^{i \pi / 6} V_{a^{\prime} n^{\prime}}$
- $I_{a}=\sqrt{3} e^{-i \pi / 6} I_{a b}, \quad I_{a^{\prime}}=-\sqrt{3} e^{-i \pi / 6} I_{a^{\prime} b^{\prime}}$

Ideal transformer

YY configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} n^{\prime}}}{V_{a n}}=n, \quad \frac{I_{a^{\prime}}}{I_{a}}=\frac{1}{n}
$$

- External model

$$
\frac{V_{a^{\prime} b^{\prime}}}{V_{a b}}=n, \quad \frac{I_{a^{\prime}}}{I_{a}}=\frac{1}{n}
$$

external model $=$ internal model

Ideal transformer

$\Delta \Delta$ configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} b^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} b^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- External model

$$
\frac{I_{a^{\prime}}}{I_{a}}=\frac{\sqrt{3} e^{-i \pi / 6} I_{a^{\prime} b^{\prime}}}{\sqrt{3} e^{-i \pi / 6} I_{a b}}=\frac{1}{n}
$$

external model $=$ internal model

Ideal transformer

$\Delta \Delta$ configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} b^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} b^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- Equivalent $Y Y$ circuit

$$
\begin{aligned}
& \frac{V_{a^{\prime} n^{\prime}}^{Y}}{V_{a n}^{Y}}=\frac{\left(\sqrt{3} e^{i \pi / 6}\right)^{-1} V_{a^{\prime} b^{\prime}}^{Y}}{\left(\sqrt{3} e^{i \pi / 6}\right)^{-1} V_{a b}^{Y}}=n \\
& \frac{-I_{a^{\prime} n^{\prime}}^{Y}}{I_{a n}^{Y}}=\frac{I_{a^{\prime}}}{I_{a}}=\frac{1}{n}
\end{aligned}
$$

Ideal transformer

$\Delta \Delta$ configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} b^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} b^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- Equivalent $Y Y$ circuit

$$
\begin{aligned}
& \frac{V_{a^{\prime} b^{\prime}}}{V_{a b}}=\frac{V_{a^{\prime} n^{\prime}}^{Y}}{V_{a n}^{Y}}=n \\
& \frac{I_{a^{\prime}}}{I_{a}}=\frac{-I_{a^{\prime} n^{\prime}}^{Y}}{I_{a n}^{Y}}=\frac{1}{n}
\end{aligned}
$$

external model $=Y Y$ equivalent $=$ internal model

Ideal transformer

ΔY configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} n^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} n^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- External model

$$
\begin{aligned}
\frac{V_{a^{\prime} b^{\prime}}}{V_{a b}} & =\frac{\sqrt{3} e^{i \pi / 6} V_{a^{\prime} n^{\prime}}}{V_{a b}}=\sqrt{3} e^{i \pi / 6} n \\
\frac{I_{a^{\prime}}}{I_{a}} & =\frac{-I_{a^{\prime} n^{\prime}}}{\sqrt{3} e^{-i \pi / 6} I_{a b}}=\frac{1}{\sqrt{3} e^{-i \pi / 6} n}
\end{aligned}
$$

Ideal transformer

ΔY configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} n^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} n^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- Complex voltage gain

$$
K_{\Delta Y}(n):=\sqrt{3} e^{i \pi / 6} n
$$

Ideal transformer

ΔY configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} n^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} n^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- Complex voltage gain

$$
K_{\Delta Y}(n):=\sqrt{3} e^{i \pi / 6} n
$$

- External model

$$
\begin{aligned}
V_{a^{\prime} b^{\prime}} & =K_{\Delta Y}(n) V_{a b} \\
I_{a^{\prime}} & =\frac{I_{a}}{K_{\Delta Y}^{*}(n)}
\end{aligned}
$$

Ideal transformer

ΔY configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} n^{\prime}}}{V_{a b}}=n, \quad \frac{-I_{a^{\prime} n^{\prime}}}{I_{a b}}=\frac{1}{n}
$$

- Equivalent $Y Y$ circuit

$$
\begin{aligned}
\frac{V_{a^{\prime} n^{\prime}}}{V_{a n}^{Y}} & =\frac{V_{a^{\prime} n^{\prime}}}{\left(\sqrt{3} e^{i \pi / 6}\right)^{-1} V_{a b}}=K_{\Delta Y}(n) \\
\frac{I_{a^{\prime}}}{I_{a}} & =\frac{-I_{a^{\prime} n^{\prime}}}{\sqrt{3} e^{-i \pi / 6} I_{a b}}=\frac{1}{K_{\Delta Y}^{*}(n)}
\end{aligned}
$$

terminal behavior $=Y Y$ equivalent

Ideal transformer

$Y \Delta$ configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} c^{\prime}}}{V_{a n}}=n, \quad \frac{I_{c^{\prime} a^{\prime}}}{I_{a n}}=\frac{1}{n}
$$

- External model

$$
\begin{aligned}
\frac{V_{a^{\prime} c^{\prime}}}{V_{a c}} & =\frac{V_{a^{\prime} c^{\prime}}}{\sqrt{3} e^{-i \pi / 6} V_{a n}}=\frac{n}{\sqrt{3}} e^{i \pi / 6} \\
\frac{I_{a^{\prime}}}{I_{a}} & =\frac{\sqrt{3} e^{i \pi / 6} I_{c^{\prime} a^{\prime}}}{I_{a n}}=\frac{\sqrt{3} e^{i \pi / 6}}{n}
\end{aligned}
$$

Ideal transformer

$Y \Delta$ configuration

- Single-phase gains

$$
\frac{V_{a^{\prime} c^{\prime}}}{V_{a n}}=n, \quad \frac{I_{c^{\prime} a^{\prime}}}{I_{a n}}=\frac{1}{n}
$$

- Complex voltage gain

$$
K_{Y \Delta}(n):=\frac{n}{\sqrt{3}} e^{i \pi / 6}
$$

- External mdoel

$$
\begin{aligned}
V_{a^{\prime} \prime^{\prime}} & =K_{Y \Delta}(n) V_{a b} \\
I_{a^{\prime}} & =K_{Y \Delta}^{*}(n) I_{a}
\end{aligned}
$$

Ideal transformer

Summary

Property	Gain
Voltage gain	$K(n)$
Current gain	$\frac{1}{K^{*}(n)}$
Power gain	1
Sec Z_{l} referred to pri	$\frac{Z_{l}}{\|K(n)\|^{2}}$

Configuration	Gain
$Y Y$	$K_{Y Y}(n):=n$
$\Delta \Delta$	$K_{\Delta \Delta}(n):=n$
ΔY	$K_{\Delta Y}(n):=\sqrt{3} n e^{\mathbf{i} \pi / 6}$
$Y \Delta$	$K_{Y \Delta}(n):=\frac{n}{\sqrt{3}} e^{\mathbf{i} \pi / 6}$

Equivalent circuit

$Y Y$ configuration

equivalent circuit

per-phase circuit

Equivalent circuit

$\Delta \Delta$ configuration

equivalent circuit

per-phase circuit

Equivalent circuit

ΔY configuration

equivalent circuit

per-phase circuit

Equivalent circuit

$Y \Delta$ configuration

equivalent circuit

per-phase circuit

Outline

1. Single-phase transformer
2. Three-phase transformer
3. Equivalent impedance

- Equivalence
- Transmission matrix
- Driving-point impedance

4. Per-phase analysis
5. Per-unit normalization

Motivation

Short cut in analyzing circuits containing transformers

- Thevenin equivalent of impedances in series and in parallel
- Equivalent impedances in primary or secondary circuits

Equivalent impedances

- referring Z_{s} in secondary to primary

$$
Z_{p}=\frac{Z_{s}}{|K(n)|^{2}}
$$

"It is equivalent to replace Z_{s} in the secondary circuit by Z_{p} in the primary circuit"

- referring Z_{p} in primary to secondary

$$
Z_{s}=|K(n)|^{2} Z_{p}
$$

"It is equivalent to replace Z_{p} in the primary circuit by Z_{s} in the secondary circuit"

Equivalent admittances

- referring Y_{s} in secondary to primary

$$
Y_{p}=|K(n)|^{2} Y_{s}
$$

"It is equivalent to replace Y_{s} in the secondary circuit by Y_{p} in the primary circuit"

- referring Y_{p} in primary to secondary

$$
Y_{s}=\frac{Y_{p}}{|K(n)|^{2}}
$$

"It is equivalent to replace Y_{p} in the primary circuit by Y_{s} in the secondary circuit"

Equivalent impedances

What is equivalence?

- Same transmission matrices
- Same driving-point impedance

This is a simple consequence of Kirchhoff's and Ohm's laws

Transmission matrix

External models (transmission matrices) of 2 circuits are equal if and only if $Z_{p}=\frac{Z_{s}}{|K(n)|^{2}}$

Transmission matrix

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
V \\
I
\end{array}\right]} & =\left[\begin{array}{ll}
1 & Z_{s} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right] \\
{\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]} & =\left[\begin{array}{rl}
K^{-1}(n) & 0 \\
& 0
\end{array} K^{*}(n)\right.
\end{array}\right]\left[\begin{array}{c}
V \\
I
\end{array}\right] .
$$

Transmission matrix

$\left[\begin{array}{r}V_{1} \\ I_{1}\end{array}\right]=\left[\begin{array}{rl}K^{-1}(n) & K^{-1}(n) Z_{s} \\ 0 & K^{*}(n)\end{array}\right]\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right]$
$\left[\begin{array}{r}V_{1} \\ I_{1}\end{array}\right]=\left[\begin{array}{rl}K^{-1}(n) & K^{*}(n) Z_{p} \\ 0 & K^{*}(n)\end{array}\right]\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right]$

External models (transmission matrices) of 2 circuits are equal if and only if $Z_{p}=\frac{Z_{s}}{|K(n)|^{2}}$

Transmission matrix

External models (transmission matrices) of 2 circuits are equal if and only if $Y_{p}=|K(n)|^{2} Y_{s}$

Transmission matrix

Example

(a) $\left(Z_{s}, Y_{s}\right)$ in the secondary circuit.

(b) Refer Z_{s} to the primary.

(c) Refer Y_{s} to the primary.

Driving-point impedance

Thevenin equivalent

(a) Impedances in series

(b) Impedances in parallel

Thevenin equivalent is a short cut in analyzing circuits with impedances only

Driving-point impedance

Thevenin equivalent

What if circuits contain both impedance and transformers ?

Driving-point impedance

Referring impedance from secondary to primary

Both circuits have same driving-point impedance V_{1} / I_{1} on primary side

- Can verify using Kirchhoff's and Ohm's laws

Driving-point impedance

Referring impedance from primary to secondary

Both circuits have same driving-point impedance V_{2} / I_{2} on secondary side

- Can verify using Kirchhoff's and Ohm's laws

Driving-point impedance

Example

To find V_{1} / I_{1}, can analyze using Kirchhoff's and Ohm's laws

Driving-point impedance

Example

$$
\frac{V_{1}}{I_{1}}=Z_{1, \mathrm{eq}}+\left(Y_{1, \mathrm{eq}}+\frac{1}{Z_{2, \mathrm{eq}} /|K(n)|^{2}}\right)^{-1}
$$

Driving-point impedance

Example

To find V_{2} / I_{2}, can analyze using Kirchhoff's and Ohm's laws

Driving-point impedance

Example

$$
\frac{V_{2}}{I_{2}}=\left(Y_{2, \mathrm{eq}}+\frac{1}{Z_{2, \mathrm{eq}}+|K(n)|^{2} \cdot Z_{1, \mathrm{eq}}}\right)^{-1}
$$

Driving-point impedance

Reference from one circuit to the other is not always applicable

- Example: circuits containing parallel paths (see example later)
- Generally applicable in a radial network without parallel paths
- Can always analyze original circuit using Kirchhoff's and Ohm's laws

Outline

1. Single-phase transformer

2. Three-phase transformer
3. Equivalent impedance
4. Per-phase analysis

- Example
- Normal systems

5. Per-unit normalization

Per-phase analysis

Procedure

1. Convert all sources and loads in Δ configurations into their Y equivalents
2. Convert all ideal transformers in Δ configurations into their Y equivalents
3. Obtain phase a equivalent circuit by connecting all neutrals
4. Solve for desired phase- a variables

- Use Thevenin equivalent of series impedances and shunt admittances in networks containing transformers whenever applicable, e.g., for a radial network

5. Obtain variables for phases b and c by subtracting 120° and 240° from phase a variables (positive sequence sources)

- If variables in the internal of Δ configurations are desired, derive them from original circuits

Per-phase analysis

Example

Balanced 3ϕ system

- Generator with line voltage $V_{\text {line }}$
- Step-up ΔY transformer
- Transmission line with series impedance $Z_{\text {line }}$
- Step-down ΔY transformer (primary on right)
- Load with impedance $Z_{\text {load }}$
- Single-phase transformer with voltage gain n and series impedance $3 Z_{l}$ on primary side

Per-phase analysis

 Example

Balanced 3ϕ system

- Generator with line voltage $V_{\text {line }}$
- Step-up ΔY transformer
- Transmission line with series impedance $Z_{\text {line }}$
- Step-down ΔY transformer (primary on right)
- Load with impedance $Z_{\text {load }}$
- Single-phase transformer with turns ratio n and series impedance $3 Z_{l}$ on primary side

$$
V_{1}=\frac{V_{\text {line }}}{\sqrt{3} e^{i \pi / 6}} \quad Z^{Y}=Z_{l}
$$

Per-phase analysis

Example

Calculate

- Generator current I_{1}
- Transmission line current I_{2}
- Load current I_{3}
- Load voltage V_{3}
- Power delivered to load: $V_{3} I_{3}^{*}$
$V_{1}=\frac{V_{\text {line }}}{\sqrt{3} e^{i \pi / 6}} \quad Z^{Y}=Z_{l}$

Per-phase analysis

Example

Solution strategy

- Refer all impedances to primary side of step-up transformer
- Derive driving-point impedance V_{1} / I_{1}
- Derive generator current I_{1}
- Propagate calculation towards load

$$
V_{1}=\frac{V_{\text {line }}}{\sqrt{3} e^{i \pi l / 6}} \quad Z^{Y}=Z_{l}
$$

Per-phase analysis

Example

$\frac{V_{1}}{I_{1}}=2 Z_{l}+\frac{Z_{\text {line }}}{|K(n)|^{2}}+Z_{\text {load }} \quad$ transformer gains on $Z_{\text {load }}$ is canceled

Per-phase analysis

Example

$I_{1}=\frac{V_{\text {line }} /\left(\sqrt{3} e^{i \pi / 6}\right)}{2 Z_{l}+\frac{z_{\text {line }}}{|K(n)|^{2}}+Z_{\text {load }}}$

$$
2 Z_{l}+\frac{z_{\text {line }}}{|K(n)|^{2}}+Z_{\text {load }}
$$

$$
\begin{aligned}
I_{3} & =K^{*}(n) I_{2}=I_{1} \\
V_{3} & =Z_{\mathrm{load}} I_{3}=Z_{\mathrm{load}} I_{1}
\end{aligned}
$$

$$
I_{2}=\frac{I_{1}}{K^{*}(n)}
$$

Per-phase analysis

Example

$I_{1}=\frac{V_{\text {line }} /\left(\sqrt{3} e^{i \pi / 6}\right)}{2 Z_{l}+\frac{z_{\text {line }}}{|K(n)|^{2}}+Z_{\text {load }}}$
$I_{3}=I_{1}$
$V_{3}=Z_{\text {load }} I_{1}$

- External behavior does not depend on connection-induced phase shift $e^{i \pi / 6}$
- Only internal variables $I_{\text {line }}$ does

Simplified model for terminal behavior

Terminal behavior does not depend on $e^{i \pi / 6}$

- The simplified model has the same transmission matrix

Normal systems

A system is normal if, in its per-phase circuit, the product of complex ideal transformer gains around every loop is 1

Equivalently, on each parallel path,

1. Product of ideal transformer gain magnitudes is the same, and
2. Sum of ideal transformer phase shifts is the same

Normal systems

Example

Generator \& load connected by two 3ϕ transformers in parallel (forming a loop)

Per-phase circuit

Normal systems

Example

Calculate

- Load current $I_{\text {load }}$
- Line currents $I_{1}^{\prime}, I_{2}^{\prime}$
in terms of $V_{\text {gen }}, Z_{l}, Z_{\text {load }}$

Implications when

- $K_{2}=K_{1}$ (normal system)
- $K_{2}=K_{1} e^{i \theta}$
- $K_{2}=k \cdot K_{1}$

Per-phase circuit

Normal systems

Example

$K_{2}=K_{1}$ (normal system):

- $I_{1}^{\prime}=I_{2}^{\prime}$
- $\frac{I_{\text {load }}}{I_{1}^{\prime}}=\frac{I_{\text {load }}}{I_{2}^{\prime}}=2$

Per-phase circuit

Normal systems

Example

$K_{2}=K_{1} e^{i \theta}:$

- $I_{1}^{\prime} \neq I_{2}^{\prime}$
- $\frac{\left|I_{\text {load }}\right|}{\left|I_{1}^{\prime}\right|}=\frac{\left|1+e^{i \theta}\right|}{\left|\alpha_{1}\right|}, \frac{\left|I_{\text {load }}\right|}{\left|I_{2}^{\prime}\right|}=\frac{\left|1+e^{i \theta}\right|}{\left|\alpha_{2}\right|}$

Example: $K_{2}=K_{1} e^{i \pi / 6}$:

- $\frac{\left|I_{\text {load }}\right|}{\left|I_{1}^{\prime}\right|}=20.6 \%, \frac{\left|I_{\text {load }}\right|}{\left|I_{2}^{\prime}\right|}=17.1 \%$

Most current loops between transformers

Per-phase circuit without entering load

Normal systems

Example

$K_{2}=K_{1} e^{i \theta}:$

- $I_{1}^{\prime} \neq I_{2}^{\prime}$
- $\frac{\left|I_{\text {load }}\right|}{\left|I_{1}^{\prime}\right|}=\frac{\left|1+e^{i \theta}\right|}{\left|\alpha_{1}\right|}, \frac{\left|I_{\text {load }}\right|}{\left|I_{2}\right|}=\frac{\left|1+e^{i \theta}\right|}{\left|\alpha_{2}\right|}$

Example: $K_{2}=K_{1} e^{i \pi / 6}$:

- $S_{\text {gen }}=183 \angle 71^{\circ}, S_{\text {load }}=60 \angle 0^{\circ} \mathrm{MVA}$

Most current loops between transformers

Per-phase circuit without entering load

Normal systems

Example

$K_{2}=k \cdot K_{1}:$

- $I_{1}^{\prime} \neq I_{2}^{\prime}$
$\frac{\left|I_{\text {load }}\right|}{\left|I_{1}^{\prime}\right|}=\frac{1+k^{-1}}{\left|\alpha_{1}\right|}, \frac{\left|I_{\text {load }}\right|}{\left|I_{2}^{\prime}\right|}=\frac{1+k}{\left|\alpha_{2}\right|}$
Example: $K_{2}=2 K_{1}$:
- $\frac{\left|I_{\text {load }}\right|}{\left|I_{1}\right|}=29.4 \%, \frac{\left|I_{\text {load }}\right|}{\left|I_{2}^{\prime}\right|}=29.9 \%$

Most current loops between transformers

Per-phase circuit without entering load

Outline

1. Single-phase transformer
2. Three-phase transformer
3. Equivalent impedance
4. Per-phase analysis
5. Per-unit normalization

- Kirchhoff's and Ohm's laws
- Across ideal transformer
- 3ϕ quantities
- Per-unit per-phase analysis

Per-unit normalization

- Quantities of interest: voltages V, currents I, power S, impedances Z
- quantity in p.u. $=\frac{\text { actual quantity }}{\text { base value of quantity }}$
- Base values
- Real positive values
- Same units as actual quantities
- Choose base values to satisfy same physical laws
- Kirchhoff's and Ohm's laws
- Across ideal transformer
- Relationship between 3ϕ and 1ϕ quantities

Per-unit normalization

General procedure

1. Choose voltage base value $V_{1 B}$ for (say) area 1
2. Choose power base value S_{B} for entire network
3. Calculate all other base values from physical laws

Example: Choose

1. $V_{1 B}=$ nominal voltage magnitude of area 1
2. $S_{B}=$ rated apparent power of a transformer in area 1

How to calculate the other base values $\left(V_{i B}, I_{i B}, Z_{i B}\right)$?

- Consider single-phase or per-phase circuit of balanced 3ϕ system

Kirchhoff's and Ohm's laws

Given base values $\left(V_{1 B}, S_{B}\right)$, within area 1:

$$
I_{1 B}:=\frac{S_{B}}{V_{1 B}} A, \quad Z_{1 B}:=\frac{V_{1 B}^{2}}{S_{B}} \Omega
$$

Then: physical laws are satisfied by both the base values and p.u. quantities

$$
\begin{array}{rll}
V_{1 B} & =Z_{1 B} I_{1 B}, & V_{1 \mathrm{pu}}=Z_{1 \mathrm{pu}} I_{1 \mathrm{pu}} \\
S_{B} & =V_{1 B} I_{1 B}, & S_{1 \mathrm{pu}}=V_{1 \mathrm{pu}} I_{1 \mathrm{pu}}
\end{array}
$$

Can perform circuit analysis using pu quantities instead of actual quantities

Kirchhoff's and Ohm's laws

Other quantities

These quantities $\left(V_{1 B}, S_{B}, I_{1 B}, Z_{1 B}\right)$ serve as base values for other quantities within area 1, with appropriate units

- S_{B} is base value for real power in W, reactive power in var

$$
P_{1 \mathrm{pu}}:=\frac{P_{1}}{S_{B}}, \quad Q_{1 \mathrm{pu}}:=\frac{Q_{1}}{S_{B}}, \quad S_{1 \mathrm{pu}}=P_{1 \mathrm{pu}}+i Q_{1 \mathrm{pu}}
$$

- $Z_{1 B}$ is base value for resistances \& reactances in Ω

$$
R_{1 \mathrm{pu}}:=\frac{R_{1}}{Z_{1 B}}, \quad X_{1 \mathrm{pu}}:=\frac{X_{1}}{Z_{1 B}}, \quad Z_{1 \mathrm{pu}}=R_{1 \mathrm{pu}}+i X_{1 \mathrm{pu}}
$$

- $Y_{1 B}:=1 / Z_{1 B}$ in Ω^{-1} is base value for conductances, susceptances, \& admittances

$$
G_{1 \mathrm{pu}}:=\frac{G_{1}}{Y_{1 B}}, \quad B_{1 \mathrm{pu}}:=\frac{B_{1}}{Y_{1 B}}, \quad Y_{1 \mathrm{pu}}=G_{1 \mathrm{pu}}+i B_{1 \mathrm{pu}}=\frac{1}{Z_{1} \mathrm{pu}}
$$

Across ideal transformer

Choose $\left(V_{2 B}, I_{2 B}, Z_{2 B}\right)$ according to

$$
V_{2 B}:=|K(n)| V_{1 B} \quad V
$$

$$
I_{2 B}:=\frac{I_{1 B}}{|K(n)|} \quad A
$$

$$
Z_{2 B}:=|K(n)|^{2} Z_{1 B} \Omega
$$

Base values remain real positive
S_{B} remains base value for power

Across ideal transformer

External behavior

$$
\begin{aligned}
& \tilde{V}_{1 \mathrm{pu}}=\frac{\tilde{V}_{1}}{V_{1 B}}=\frac{V_{2}}{K(n)} \frac{|K(n)|}{V_{2 B}}=V_{2 \mathrm{pu}} e^{-\mathrm{j} \angle K(n)} \\
& \tilde{I}_{1 \mathrm{pu}}=\frac{\tilde{I}_{1}}{\tilde{I}_{1 B}}=\frac{K^{*}(n) I_{2}}{|K(n)| I_{2 B}}=I_{2 \mathrm{pu}} e^{-j \angle K(n)}
\end{aligned}
$$

$$
\text { If } \angle K(n)=0 \text { then }
$$

$$
\tilde{V}_{1 \mathrm{pu}}=V_{2 \mathrm{pu}}, \quad \tilde{I}_{1 \mathrm{pu}}=I_{2 \mathrm{pu}}
$$

Across ideal transformer

$$
\begin{aligned}
& \text { If } \angle K(n)=0 \text { then } \\
& \qquad \tilde{V}_{1 \mathrm{pu}}=V_{2 \mathrm{pu}}, \quad \tilde{I}_{1 \mathrm{pu}}=I_{2 \mathrm{pu}}
\end{aligned}
$$

Ideal transformer has disappeared!

Across ideal transformer

$\angle K(n)=0$ if

- 1ϕ or balanced 3ϕ in $Y Y$ or $\Delta \Delta$
- Normal systems where connectioninduced phase shifts can be ignored

Across ideal transformer

Otherwise

- pu circuit contains an off-nominal phase-shifting transformer

Across ideal transformer

Example

Given nameplate rating of generator

- Voltage v V
- Apparent power s VA

Calculate base values

Voltage base $V_{1 B}:=v$, power base $S_{B}:=s$

- Area 1: $I_{1 B}:=s / v, Z_{1 B}:=v^{2} / s$
- Area 2: $V_{2 B}:=n_{1} v, I_{2 B}:=s /\left(n_{1} v\right), Z_{2 B}:=\left(n_{1} v\right)^{2} / s, Y_{2 B}:=s /\left(v_{1} v\right)^{2}$
- Area 3: $V_{3 B}:=n_{1} v / n_{2}, I_{3 B}:=n_{2} s /\left(n_{1} v\right), Z_{3 B}:=\left(n_{1} v\right)^{2} /\left(n_{2}^{2} s\right), Y_{3 B}:=\left(n_{2}^{2} s\right) /\left(v_{1} v\right)^{2}$

3ϕ quantities

Given 1ϕ devices (generators, lines, loads) with

- with 1ϕ quantities $\left(S^{1 \phi}, V^{1 \phi}, I^{1 \phi}, Z^{1 \phi}\right)$
- and their base values

Construct balanced 3ϕ devices from these 1ϕ devices

- What are 3ϕ quantities of interest?
- What are base values so that 3ϕ quantities equal to 1ϕ quantities in p.u.?

Base values should satisfy the same 3ϕ relationships as actual quantities Values depend on the configuration, Y or Δ

3ϕ quantities

Y configuration

In terms of
$\left(S^{1 \phi}, V^{1 \phi}, I^{1 \phi}, Z^{1 \phi}\right)$
and their base values

- 3ϕ power (total power to/from 31ϕ devices):

$$
S^{3 \phi}=3 S^{1 \phi}
$$

- Line-to-line voltage

$$
V^{\prime \prime}=\sqrt{3} e^{i \pi / 6} V^{\mathrm{ln}}
$$

- Line current

$$
I^{3 \phi}=I_{a n}=I^{1 \phi}
$$

- Line-to-neutral voltage

$$
V^{\mathrm{ln}}=V^{1 \phi}
$$

- Impedance

$$
Z^{3 \phi}=Z^{1 \phi}
$$

3ϕ quantities

Y configuration

In terms of
$\left(S^{1 \phi}, V^{1 \phi}, I^{1 \phi}, Z^{1 \phi}\right)$
and their base values

- 3ϕ power (total power to/from 31ϕ devices):

$$
S^{3 \phi}=3 S^{1 \phi}, \quad S_{B}^{3 \phi}=3 S_{B}^{1 \phi}
$$

- Line-to-line voltage

$$
V^{\prime \prime}=\sqrt{3} e^{i \pi / 6} V^{\mathrm{ln}}, \quad V_{B}^{\mathrm{I}}=\sqrt{3} V_{B}^{\mathrm{ln}}
$$

- Line current

$$
I^{3 \phi}=I_{a n}=I^{1 \phi}, \quad I_{B}^{3 \phi}=I_{B}^{1 \phi}
$$

- Line-to-neutral voltage

$$
V^{\mathrm{In}}=V^{1 \phi}, \quad V_{B}^{\mathrm{ln}}=V_{B}^{1 \phi}
$$

- Impedance

$$
Z^{3 \phi}=Z^{1 \phi}
$$

$$
Z_{B}^{3 \phi}=Z_{B}^{1 \phi}
$$

Calculation

Base values satisfy the same relationship

3ϕ quantities

Δ configuration

```
In terms of
(S
```

and their base values

- 3ϕ power (total power to/from 31ϕ devices):

$$
S^{3 \phi}=3 S^{1 \phi}
$$

- Line-to-line voltage

$$
V^{\prime \prime}=\sqrt{3} e^{i \pi / 6} V^{\ln },
$$

- Line current

$$
I^{3 \phi}=I_{a b}-I_{c a}=\sqrt{3} e^{-i \pi / 6} I^{1 \phi}
$$

- Line-to-neutral voltage

$$
V^{\mathrm{ln}}=\left(\sqrt{3} e^{i \pi / 6}\right)^{-1} V^{1 \phi}
$$

- Impedance

$$
Z^{3 \phi}=Z^{1 \phi} / 3
$$

3ϕ quantities

Δ configuration

In terms of $\left(S^{1 \phi}, V^{1 \phi}, I^{1 \phi}, Z^{1 \phi}\right)$

and their base values

- 3ϕ power (total power to/from 31ϕ devices):

$$
S^{3 \phi}=3 S^{1 \phi}, \quad S_{B}^{3 \phi}=3 S_{B}^{1 \phi}
$$

- Line-to-line voltage

$$
V^{\prime \prime}=\sqrt{3} e^{i \pi / 6} V^{\mathrm{ln}}
$$

$$
V_{B}^{\|}=\sqrt{3} V_{B}^{\mathrm{ln}}
$$

- Line current

$$
I^{3 \phi}=I_{a b}-I_{c a}=\sqrt{3} e^{-i \pi / 6} I^{1 \phi}, \quad I_{B}^{3 \phi}=\sqrt{3} I_{B}^{1 \phi}
$$

- Line-to-neutral voltage

$$
V^{\mathrm{nn}}=\left(\sqrt{3} e^{i \pi / 6}\right)^{-1} V^{1 \phi}, \quad V_{B}^{\mathrm{nn}}=(\sqrt{3})^{-1} V_{B}^{1 \phi}
$$

- Impedance

$$
Z^{3 \phi}=Z^{1 \phi} / 3, \quad Z_{B}^{3 \phi}=Z_{B}^{1 \phi} / 3
$$

Per-unit quantities

Per-unit quantities satisfy

$$
\begin{aligned}
S_{\mathrm{pu}}^{3 \phi} & =S_{\mathrm{pu}}^{1 \phi}, & V_{\mathrm{pu}}^{\mathrm{I}}=V_{\mathrm{pu}}^{\mathrm{n}}, & Z_{\mathrm{pu}}^{3 \phi}=Z_{\mathrm{pu}}^{1 \phi} \\
\left|V_{\mathrm{pu}}^{\mathrm{n}}\right| & =\left|V_{\mathrm{pu}}^{1 \phi}\right|, & \left|I_{\mathrm{pu}}^{3 \phi}\right| & =\left|I_{\mathrm{pu}}^{1 \phi}\right|
\end{aligned}
$$

- 3ϕ quantities equal 1ϕ quantities in p.u.
- modulo phase shifts in Δ configuration:

$$
V_{\mathrm{pu}}^{\mathrm{n}}:=\frac{V^{\mathrm{ln}}}{V_{B}^{\ln }}=\frac{\left(\sqrt{3} e^{i \pi / 6}\right)^{-1} V^{1 \phi}}{(\sqrt{3})^{-1} V_{B}^{1 \phi}}=e^{-i \pi / 6} V_{\mathrm{pu}}^{1 \phi}
$$

Per-unit per-phase analysis

1. For single-phase system, pick power base $S_{B}^{1 \phi}$ for entire system and voltage base $V_{1 B}^{1 \phi}$ in area 1, e.g., induced by nameplate ratings of transformer
2. For balanced 3ϕ system, pick 3ϕ power base $S_{B}^{3 \phi}$ and line-to-line voltage base $V_{B}^{\|}$ induced by nameplate ratings of 3ϕ transformer. Then choose power \& voltage bases for per-phase equivalent circuit:

$$
S_{B}^{1 \phi}:=S_{B}^{3 \phi} / 3, \quad V_{1 B}^{1 \phi}:=V_{1 B}^{\|} / \sqrt{3}
$$

$S_{1 B}^{1 \phi}$ will be power base for entire per-phase circuit.
3. Calculate current and impedance bases in that area:

$$
I_{1 B}:=\frac{S_{B}^{1 \phi}}{V_{1 B}^{1 \phi}}, \quad Z_{1 B}:=\frac{\left(V_{1 B}^{1 \phi}\right)^{2}}{S_{B}^{1 \phi}}
$$

Per-unit per-phase analysis

4. Calculate base values for voltages, currents, and impedances in areas i connected to area 1 using the magnitude n_{i} of transformer gains (assume area 1 is primary):

$$
V_{i B}^{1 \phi}:=n_{i} V_{1 B}^{1 \phi}, \quad V_{i B}^{\|}:=n_{i} V_{1 B}^{\|}, \quad I_{i B}:=\frac{1}{n_{i}} I_{1 B}, \quad Z_{i B}:=n_{i}^{2} Z_{1 B}
$$

Continue this process to calculate the voltage, current, and impedance base values for all areas

Per-unit per-phase analysis

5. For real, reactive, apparent power in entire system, use $S_{B}^{1 \phi}$ as base value.

For resistances and reactances, use $Z_{i B}$ as base value in area i.
For admittances, conductances, and susceptancesq, use $Y_{i B}:=1 / Z_{i B}$ as base value in area i
6. Draw impedance diagram of entire system, and solve for desired per-unit quantities
7. Convert back to actual quantities if desired

Summary

1. Single-phase transformer

- Ideal transformer gain n, equivalent circuit

2. Three-phase transformer

- $Y Y, \Delta \Delta, \Delta Y, Y \Delta$: external behavior, $Y Y$ equivalent

3. Equivalent impedance

- Short cut for analyzing circuits containing transformers
- Transmission matrix, driving-point impedance

4. Per-phase analysis
5. Per-unit normalization

- Physical laws, across transformer, 3ϕ quantities, per-unit per-phase analysis

[^0]: Mutual flux: Φ_{m}
 Leakage fluxes: $\lambda_{l 1}, \lambda_{l 2}$

