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Ideal transformer

Voltage & current gains


v2(t)
v1(t)

= n
i2(t)
i1(t)
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It is represented schematically in Figure 3.1. The ratio n and a are satisfied by the voltages and currents at

v1

+

−

v2

+

−

i2i1

N2N1

n := N2

N1

          a := N1

N2

Figure 3.1: Single-phase ideal transformer.

all times in the time domain. Our analysis will however be carried out mostly in the phasor domain where
we have

V2

V1
= n and

I2

I1
= a

We define the transmission matrix Tideal for an ideal transformer as

V1
I1

�
=


a 0
0 n

�

| {z }
Tideal


V2
I2

�
(3.1)

Hence an ideal transformer is a linear (and invertible) transformation Tideal that maps (V2, I2) to (V1, I1).
Since the determinant of Tideal 6= 0, an ideal transformer does not have a P equivalent circuit model (see
Exercise 2.3). A non-ideal transformer does have a P equivalent circuit model as we will see later. The
ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤
2

V1I⇤
1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Equivalent circuit

A real transformer has power losses due to resistance in windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. A more realistic
transformer model includes a series resistance to model the power losses, a series inductance to model the
leakage fluxes, and a shunt admittance to model the finite permeability of the magnetic core, in both the
primary circuit (Zp,Ym) and the secondary circuit (Zs), as shown in Figure 3.2(a). This circuit is simplified
by referring the impedance Zs on the secondary side to the primary side of the ideal transformer (on the
right of the shunt admittance Ym) to obtain a so-called T equivalent circuit on the primary side. In practice

voltage gain n :=
N2

N1

turns ratio a :=
N1

N2
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all times in the time domain. Our analysis will however be carried out mostly in the phasor domain where
we have
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Hence an ideal transformer is a linear (and invertible) transformation Tideal that maps (V2, I2) to (V1, I1).
Since the determinant of Tideal 6= 0, an ideal transformer does not have a P equivalent circuit model (see
Exercise 2.3). A non-ideal transformer does have a P equivalent circuit model as we will see later. The
ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤
2

V1I⇤
1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Equivalent circuit

A real transformer has power losses due to resistance in windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. A more realistic
transformer model includes a series resistance to model the power losses, a series inductance to model the
leakage fluxes, and a shunt admittance to model the finite permeability of the magnetic core, in both the
primary circuit (Zp,Ym) and the secondary circuit (Zs), as shown in Figure 3.2(a). This circuit is simplified
by referring the impedance Zs on the secondary side to the primary side of the ideal transformer (on the
right of the shunt admittance Ym) to obtain a so-called T equivalent circuit on the primary side. In practice

voltage gain n :=
N2

N1

turns ratio a :=
N1

N2
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Power transfer





i.e., deal transformer incurs no 
power loss


−S21

S12
:=

V2I*2
V1I*1

= n ⋅ a = 1
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all times in the time domain. Our analysis will however be carried out mostly in the phasor domain where
we have

V2

V1
= n and

I2

I1
= a

We define the transmission matrix Tideal for an ideal transformer as

V1
I1

�
=


a 0
0 n

�

| {z }
Tideal


V2
I2

�
(3.1)

Hence an ideal transformer is a linear (and invertible) transformation Tideal that maps (V2, I2) to (V1, I1).
Since the determinant of Tideal 6= 0, an ideal transformer does not have a P equivalent circuit model (see
Exercise 2.3). A non-ideal transformer does have a P equivalent circuit model as we will see later. The
ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤
2

V1I⇤
1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Equivalent circuit

A real transformer has power losses due to resistance in windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. A more realistic
transformer model includes a series resistance to model the power losses, a series inductance to model the
leakage fluxes, and a shunt admittance to model the finite permeability of the magnetic core, in both the
primary circuit (Zp,Ym) and the secondary circuit (Zs), as shown in Figure 3.2(a). This circuit is simplified
by referring the impedance Zs on the secondary side to the primary side of the ideal transformer (on the
right of the shunt admittance Ym) to obtain a so-called T equivalent circuit on the primary side. In practice

voltage gain n :=
N2

N1

turns ratio a :=
N1

N2



Nonideal transformer

Nonideal behavior

• Power losses (coil resistances, eddy currents, 

hysteresis losses)

• Leakage magnetic fluxes 

• Finite permeability of magnetic cores 
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1ii and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1ii and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current

Voltages





Total flux linkages





Total magnetomotive force


v1 = r1i1 +
dλ1

dt
, v2 = r2i′ 2 +

dλ2

dt

λ1 = N1Φm + λl1, λ2 = N2Φm + λ21

λl1 = Ll1 i1, λl2 = Ll2 i′ 2

F = N1i1 + N2i′ 2 = RΦm

Mutual flux:  
Leakage fluxes: 

Φm
λl1, λl2
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1ii and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current

Voltages





Total flux linkages





Total magnetomotive force


v1 = r1i1 +
dλ1

dt
, v2 = r2i′ 2 +

dλ2

dt

λ1 = N1Φm + λl1, λ2 = N2Φm + λ21

λl1 = Ll1 i1, λl2 = Ll2 i′ 2

F = N1i1 + N2i′ 2 = RΦm

Ideal transformer

• Zero power losses: 


• Zero leakage flux linkages: 


• Infinite permeability:  

r1 = r2 = 0
Ll1 = Ll2 = 0

R = 0
⟹ v1 = N1

dΦm

dt
, v2 = N2

dΦm

dt
, 0 = N1i1 + N2i′ 2
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1ii and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current

Voltages





Primary magnetizing current  


• primary current when secondary circuit is open 


•  : let  and 





v1 = r1i1 + Ll1
di1
dt

+ N1
dΦm

dt

v2 = r2i′ 2 + Ll2
di′ 2

dt
+ N2

dΦm

dt

̂im

i′ 2 := 0

N1
̂im = RΦm Lm := N2

1 /R

̂u1 := N1
dΦm

dt
= Lm

d ̂im

dt

̂u2 := N2
dΦm

dt
=

N2

N1
̂u1 ideal transformer
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1ii and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current

Nonideal elements





Ideal transformer





v1 = r1i1 + Ll1
di1
dt

+ ̂u1, ̂u1 = Lm
d ̂im

dt

v2 = − r2i2 − Ll2
di2
dt

+ ̂u2

̂u2 =
N2

N1
̂u1, i2 =

N1

N2
(i1 − ̂im)
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(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current

Nonideal elements (phasor domain)





Ideal transformer (phasor domain)


V1 = zpI1 + Û1, ̂Im = ymÛ1

Û2 = zsI2 + V2

Û2 =
N2

N1
Û1, I2 =

N1

N2
(I1 − ̂Im)
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(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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and satisfies N1îm = RFm from (3.3).1 Define

û1 := N1
dFm

dt
= Lm

dîm
dt

, û2 := N2
dFm

dt
=

N2

N1
û1

where Lm := N2
1/R. Substituting into (3.2) yields, denoting i2 := �i02, we have

Nonideal elements: v1 = r1i1 +Ll1
di1
dt

+ û1, û1 = Lm
dîm
dt

, v2 = �r2i2 �Ll2
di2
dt

+ û2

Ideal transformer: û2 =
N2

N1
û1, i2 =

N1

N2

�
i1 � îm

�

where the last equality follows from substituting RFm = N1îm into (3.3). This set of equations in the
phasor domain is

Nonideal elements: V1 = zpI1 +Û1, Îm = ymÛ1, Û2 = zsI2 +V2 (3.4a)

Ideal transformer: Û2 =
N2

N1
Û1, I2 =

N1

N2

�
I1 � Îm

�
(3.4b)

where the series impedances zp := r1 +wLl1 and zs := r2 +wLl2 model the core losses and leakage fluxes
in the primary and secondary circuits respectively, and the shunt admittance ym := 1/(wLm) = R/(wN2

1 )
models the finite permeability of the core. The model (3.4) can be interpreted as the circuit in Figure
3.2(b). Variables with hats denote internal variables.

In the following we present three circuit models derived from that in Figure 3.2(b). Their relation is
shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a T equivalent circuit (Chapter 3.1.3). The












































































































Figure 3.3: Relation between different circuit models of transformers.

T equivalent circuit can be approximated by a simplified model whose parameters can be determined by
short-circuit and open-circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
a circuit consisting of two ideal transformers connected by a unitary voltage network (Chapter 3.1.5). The

1Instead of im := (R/N1)Fm, we can define i0m := (R/N2)Fm as the secondary magnetizing current when the primary circuit
is open i1 = 0. In this case the shunt admittance ym in Figure 3.4(a) will be in the secondary circuit. (Comments: Exercise:
work out the details; be careful with sign of i0m.)
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⟶ T

[V1
I1 ] = a (1 + zpym) azs(1 + zpym) + nzp

aym n + azsym
[V2

I2 ]

n := N2/N1, a := 1/n
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

(Comments: Admittance matrix has not been introduced until Chapter 5, or below in Chapter 3.1.5.
Probably OK since the description is self-contained below.)

3.1.3 T equivalent circuit












































































































Figure 3.4: T equivalent circuit.

We can refer series impedance zs in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the
transformer. It is equivalent in the sense that the transmission matrices that map (V2, I2) to (V1, I1) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix T of the T equivalent circuit is
given by (Exercise 3.1)


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.5)

where n := N2/N1 and a := N1/N2.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables Û1 and Û2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

“Equivalent model” means 

• Same end-to-end behavior, e.g., transmission matrix, or 

admittance matrix;

• Internal variables may be different
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

(Comments: Admittance matrix has not been introduced until Chapter 5, or below in Chapter 3.1.5.
Probably OK since the description is self-contained below.)

3.1.3 T equivalent circuit












































































































Figure 3.4: T equivalent circuit.

We can refer series impedance zs in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the
transformer. It is equivalent in the sense that the transmission matrices that map (V2, I2) to (V1, I1) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix T of the T equivalent circuit is
given by (Exercise 3.1)


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.5)

where n := N2/N1 and a := N1/N2.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables Û1 and Û2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

Model parameters  cannot be uniquely 
determined from just short-circuit & open-circuit tests

• Additional tests are needed

(zp, zs, ym)
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(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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and satisfies N1îm = RFm from (3.3).1 Define

û1 := N1
dFm

dt
= Lm

dîm
dt

, û2 := N2
dFm

dt
=

N2

N1
û1

where Lm := N2
1/R. Substituting into (3.2) yields, denoting i2 := �i02, we have

Nonideal elements: v1 = r1i1 +Ll1
di1
dt

+ û1, û1 = Lm
dîm
dt

, v2 = �r2i2 �Ll2
di2
dt

+ û2

Ideal transformer: û2 =
N2

N1
û1, i2 =

N1

N2

�
i1 � îm

�

where the last equality follows from substituting RFm = N1îm into (3.3). This set of equations in the
phasor domain is

Nonideal elements: V1 = zpI1 +Û1, Îm = ymÛ1, Û2 = zsI2 +V2 (3.4a)

Ideal transformer: Û2 =
N2

N1
Û1, I2 =

N1

N2

�
I1 � Îm

�
(3.4b)

where the series impedances zp := r1 +wLl1 and zs := r2 +wLl2 model the core losses and leakage fluxes
in the primary and secondary circuits respectively, and the shunt admittance ym := 1/(wLm) = R/(wN2

1 )
models the finite permeability of the core. The model (3.4) can be interpreted as the circuit in Figure
3.2(b). Variables with hats denote internal variables.

In the following we present three circuit models derived from that in Figure 3.2(b). Their relation is
shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a T equivalent circuit (Chapter 3.1.3). The












































































































Figure 3.3: Relation between different circuit models of transformers.

T equivalent circuit can be approximated by a simplified model whose parameters can be determined by
short-circuit and open-circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
a circuit consisting of two ideal transformers connected by a unitary voltage network (Chapter 3.1.5). The

1Instead of im := (R/N1)Fm, we can define i0m := (R/N2)Fm as the secondary magnetizing current when the primary circuit
is open i1 = 0. In this case the shunt admittance ym in Figure 3.4(a) will be in the secondary circuit. (Comments: Exercise:
work out the details; be careful with sign of i0m.)
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where 

a2zs ym zp
zl := zp + a2zs

[V1
I1 ] = [a (1 + zlym) nzl

aym n ] [V2
I2 ]

n := N2/N1, a := 1/n
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unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

(Comments: Admittance matrix has not been introduced until Chapter 5, or below in Chapter 3.1.5.
Probably OK since the description is self-contained below.)

3.1.3 T equivalent circuit












































































































Figure 3.4: T equivalent circuit.

We can refer series impedance zs in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the
transformer. It is equivalent in the sense that the transmission matrices that map (V2, I2) to (V1, I1) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix T of the T equivalent circuit is
given by (Exercise 3.1)


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.5)

where n := N2/N1 and a := N1/N2.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables Û1 and Û2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

(Comments: Admittance matrix has not been introduced until Chapter 5, or below in Chapter 3.1.5.
Probably OK since the description is self-contained below.)

3.1.3 T equivalent circuit












































































































Figure 3.4: T equivalent circuit.

We can refer series impedance zs in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the
transformer. It is equivalent in the sense that the transmission matrices that map (V2, I2) to (V1, I1) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix T of the T equivalent circuit is
given by (Exercise 3.1)


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.5)

where n := N2/N1 and a := N1/N2.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables Û1 and Û2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

Good approximation of  equivalent circuit when 





 : transmission matrix of simplified model

 : transmission matrix of simplified model


T |ym | ≪ 1/ |a2zs |
∥M − T∥

∥T∥
< |ϵ | ≪ 1

M
T
ϵ := a2zsym
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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where 

a2zs ym zp
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[V1
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unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

(Comments: Admittance matrix has not been introduced until Chapter 5, or below in Chapter 3.1.5.
Probably OK since the description is self-contained below.)

3.1.3 T equivalent circuit












































































































Figure 3.4: T equivalent circuit.

We can refer series impedance zs in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the
transformer. It is equivalent in the sense that the transmission matrices that map (V2, I2) to (V1, I1) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix T of the T equivalent circuit is
given by (Exercise 3.1)


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.5)

where n := N2/N1 and a := N1/N2.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables Û1 and Û2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

Good approximation when 





If  :  equivalent circuit and simplified model are 
equivalent, 

|ym | ≪ 1/ |a2zs |
∥M − T∥

∥T∥
< |ϵ | ≪ 1

ym = 0 T
M = T
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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Short & open-circuit tests
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Parameters  can be determined from open 
and short-circuit tests

• Short-circuit test  : 





• Open-circuit test  : 


(zl, ym)

(V2 := 0)

zl =
Vsc

Isc

(I2 := 0)
1
ym

=
Voc

Ioc
−

Vsc

Isc
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:

Most popular model 

(at least for transmission systems)
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Zero shunt admittance ym = 0
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When , parameter  can be determined 
from standard 3-phase transformer ratings:


• Rated primary line-to-line voltage  


• Rated primary line current 


• Impedance voltage  on the primary side, per phase, 
as % of rated primary voltage

ym = 0 zl

Vpri

Ipri

β
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:

 : voltage needed on the primary side to produce rated primary 
current across each single-phase transformer is rated primary 
voltage

β
β ×
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|



Parameter determination
Zero shunt admittance ym = 0
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For both  and  configurations





•  config:





•  config:


Y Δ

zl =
Vsc

Isc

Δ
|Vsc | = |Vab | = β |Vpri |

| Isc | = | Iab | =
Ipri

3
eiπ/6

Y

|Vsc | = |Van | = β
Vpri

3 eiπ/6

| Isc | = | Ian | = | Ipri |
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|



Parameter determination
Zero shunt admittance ym = 0
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For both  and  configurations





•  config:





•  config:


Y Δ

zl =
Vsc

Isc

Δ

|zl | =
3β |Vpri |

| Ipri |
Y

|zl | =
β |Vpri |

3 | Ipri |

112 Draft: EE 135 Notes July 5, 2023












































































































(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|

 denotes line-to-line voltage even for  configuration


• Otherwise,   for   configuration if  is line-to-neutral

Vpri Y

|zl | =
β |Vpri |

| Ipri |
Y Vpri



Parameter determination
Zero shunt admittance ym = 0
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Sometimes  instead of  is specified:


• Rated primary line-to-line voltage  


• Rated 3-phase power 


• Impedance voltage  on the primary side, per phase, 
as % of rated primary voltage

S3ϕ Ipri

Vpri

S3ϕ

β
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|
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•  config:





•  config:


Δ
|S3ϕ | = 3 |Sϕ | = 3 |Vab | | Iab |

|Vsc | = |Vab | = β |Vpri |

| Isc | = | Iab | =
|S3ϕ |

3 |Vpri |
Y

|S3ϕ | = 3 |Sϕ | = 3 |Van | | Ian |

|Vsc | = |Van | = β
Vpri

3 eiπ/6

| Isc | = | Ian | =
|S3ϕ |

3
Vpri
3 eiπ/6

=
|S3ϕ |

3 |Vpri |
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:

Draft: EE 135 Notes July 5, 2023 115

Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|



Parameter determination
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For both  and  configurations





•  config:





•  config:


Y Δ

zl =
Vsc

Isc

Δ

|zl | =
3β |Vpri |

2

|S3ϕ |
Y

|zl | =
β |Vpri |

2

|S3ϕ |
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(a) Simplified model












































































































(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Hence the transmission matrix M is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

M �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The series impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e| ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 28.1.7.4 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|

 denotes line-to-line voltage even for  configuration


• Otherwise,   for   configuration if  is line-to-neutral

Vpri Y

|zl | =
3β |Vpri |

2

| Ipri |
Y Vpri
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Primary in  configuration:




Since ,  we have





Hence 





Verify: 


• 


•

Δ
|S3ϕ | = 3 |Sab | = 3 |Vab Īab | = 3 |Vpri | | Iab |

Ia = Iab − Ica = Iab ⋅ 3 e−iπ/6

| Ipri | = 3 | Iab |

|S3ϕ | = 3 |Vpri | | Ipri |

3 |Vpri | | Ipri | = 3 ⋅ 480 ⋅ 180 = 149.65 kVA = |S3ϕ |

|zl | =
3β |Vpri |

| Ipri |
=

3 ⋅ 5.45% ⋅ 480
180

= 0.2517Ω
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|

3-phase transformer ratings (primary):


• Rated 3-phase power  = 150 kVA


• Rated primary line-to-line voltage  = 480 V


• Rated primary line current  = 180 A


• Impedance voltage  = 5.45% on primary side

S3ϕ

Vpri

Ipri

β
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Secondary in  configuration:





Hence 





Verify: 


• 


Y

|S3ϕ | = 3 |San | = 3 |Van Īan | = 3
Vsec

3eiπ/6
| Isec |

|S3ϕ | = 3 |Vsec | | Isec |

3 |Vsec | | Isec | = 3 ⋅ 208 ⋅ 416 = 149.87 kVA = |S3ϕ |
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|

3-phase transformer ratings (secondary):


• Rated 3-phase power  = 150 kVA


• Rated secondary line-to-line voltage  V


• Rated secondary line current  A

S3ϕ

Vsec = 208

Isec = 416
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Distribution system transformers. In the US, single-phase or three-phase stepdown transformers are
typical in the distribution system. The most common three-phase system voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude) and hence the
line-to-neutral voltage is |Van| = 12.47/

p
3 = 7.2kV. A typical primary side current rating is |Ian| = 400A.

Hence the total (three-phase) rated power (magnitude) is |S3f | = 3|Van||Ian| = (3)(7.2)(400) = 8.6MVA.
Other common distribution system voltages and their total power at 400A are shown in Table 3.1. The

line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|Vab| |Van| |S3f |
4.8 2.8 3.3

12.47 7.2 8.6
22.9 13.2 15.9
34.5 19.9 23.9

Table 3.1: Typical distribution system voltages (line-to-line) and their total (three-phase) power rating at
400A current.

advantages of a higher-voltage system include:

• It can carry more power for a given ampacity.

• It has a smaller voltage drop for a given level of power flow, requiring fewer voltage regulators and
capacitor banks for voltage support (see Exercise 2.5.5).

• It has a smaller line loss for a given level of power flow (see Exercise 2.5).

• It can cover a larger service area since it has a smaller voltage drop and a smaller line loss. Roughly,
for the same load density, the area covered increases linearly with voltage.

• It requires fewer substations since it covers a larger service area, which can be a big cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.

• Crew safety is a bigger concern with a higher voltage.

• Higher voltage equipment costs more, from transformers to cables to voltage regulators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary phases and
the other end connects to the transformer case which is connected to the neutral wire of the three-phase
system and also earth ground. On the secondary side, the 240V is center-tapped and the center neutral
wire is grounded, making the two ends “hot” with respect to the center tap. These three wires run down
the service drop to the meter and electric panel of a house. This is shown in Figure 3.4. Connecting a
load between either hot wire and the neutral gives 120V while connecting it between both hot wires gives
240V. Note that the transformer is single-phase. This is the split-phase 120/240 V system typical in the
US.
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a b c n 

120V

120V

240V

+

−

Figure 3.3: A common single-phase distribution transformer in the US.
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b 

c 

n 

a 

n 

b 

c 

Ia Ia

(a) Primary winding in Y configuration

a’ 

b’ 

c’ 

a’ 

b’ 

c’ 

Ia ' Ia '

(b) Secondary winding in D configuration

Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.

Common deployment in US

• Single phase

• Split-phase 120/240 V
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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and satisfies N1îm = RFm from (3.3).1 Define

û1 := N1
dFm

dt
= Lm

dîm
dt

, û2 := N2
dFm

dt
=

N2

N1
û1

where Lm := N2
1/R. Substituting into (3.2) yields, denoting i2 := �i02, we have

Nonideal elements: v1 = r1i1 +Ll1
di1
dt

+ û1, û1 = Lm
dîm
dt

, v2 = �r2i2 �Ll2
di2
dt

+ û2

Ideal transformer: û2 =
N2

N1
û1, i2 =

N1

N2

�
i1 � îm

�

where the last equality follows from substituting RFm = N1îm into (3.3). This set of equations in the
phasor domain is

Nonideal elements: V1 = zpI1 +Û1, Îm = ymÛ1, Û2 = zsI2 +V2 (3.4a)

Ideal transformer: Û2 =
N2

N1
Û1, I2 =

N1

N2

�
I1 � Îm

�
(3.4b)

where the series impedances zp := r1 +wLl1 and zs := r2 +wLl2 model the core losses and leakage fluxes
in the primary and secondary circuits respectively, and the shunt admittance ym := 1/(wLm) = R/(wN2

1 )
models the finite permeability of the core. The model (3.4) can be interpreted as the circuit in Figure
3.2(b). Variables with hats denote internal variables.

In the following we present three circuit models derived from that in Figure 3.2(b). Their relation is
shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a T equivalent circuit (Chapter 3.1.3). The












































































































Figure 3.3: Relation between different circuit models of transformers.

T equivalent circuit can be approximated by a simplified model whose parameters can be determined by
short-circuit and open-circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
a circuit consisting of two ideal transformers connected by a unitary voltage network (Chapter 3.1.5). The

1Instead of im := (R/N1)Fm, we can define i0m := (R/N2)Fm as the secondary magnetizing current when the primary circuit
is open i1 = 0. In this case the shunt admittance ym in Figure 3.4(a) will be in the secondary circuit. (Comments: Exercise:
work out the details; be careful with sign of i0m.)
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(a) Nonideal transformer












































































































(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2.

primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
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(a) Equivalent model












































































































(b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

on both sides of the (nonideal) transformer is used as the voltage base for per unit normalization. Note
that no nodes in the transformer models may be grounded. The main advantage of modeling a nonideal
transformer this way is that the unitary voltage network can be generalized from the simple network in
Figure 3.8(b) to a more general network that can be used to model nonstandard transformers with multiple
windings; see below.

We now derive the admittance matrix that maps (V1,V2) to (I1,�I2). (Comments: Unify the use of
transmission matrices vs admittance matrices in this chapter?) First focus on the unitary voltage network,
shown in Figure 3.9, where y1 := 1/z1, y2 := 1/z2. Variables with hats denote internal variables.2 The












































































































Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).

variables (Û0,Û1,Û2) are defined as voltage drops as shown in the figure and (Ĵ0, Ĵ1, Ĵ2) are the current
injections at these nodes with Ĵ0 := 0. Then

Ĵ1 = y1(Û1 �Û0), Ĵ2 = y2(Û2 �Û0), Ĵ0 + Ĵ1 + Ĵ2 = y0Û0 (3.9)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 5)
2

4
Ĵ0
Ĵ1
Ĵ2

3

5 =

2

4
y0 + y1 + y2 �y1 �y2

�y1 y1 0
�y2 0 y2

3

5

2

4
Û0
Û1
Û2

3

5

Since Ĵ0 = 0 we can eliminate Û0 and derive the Kron-reduced admittance matrix Yuvn that maps (Û1,Û2)
to (Ĵ1, Ĵ2). Let Ĵ := (Ĵ1, Ĵ2) and Û := (Û1,Û2). Then Ĵ = YuvnÛ where Yuvn is the Schur complement of

2The explicit separation of internal variables (e.g., Ûi, Ĵi) and terminal variables (e.g., Vi, Ii) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapter 8.

equivalent to 2 ideal 
transformers in series
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(a) Equivalent model












































































































(b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

on both sides of the (nonideal) transformer is used as the voltage base for per unit normalization. Note
that no nodes in the transformer models may be grounded. The main advantage of modeling a nonideal
transformer this way is that the unitary voltage network can be generalized from the simple network in
Figure 3.8(b) to a more general network that can be used to model nonstandard transformers with multiple
windings; see below.

We now derive the admittance matrix that maps (V1,V2) to (I1,�I2). (Comments: Unify the use of
transmission matrices vs admittance matrices in this chapter?) First focus on the unitary voltage network,
shown in Figure 3.9, where y1 := 1/z1, y2 := 1/z2. Variables with hats denote internal variables.2 The












































































































Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).

variables (Û0,Û1,Û2) are defined as voltage drops as shown in the figure and (Ĵ0, Ĵ1, Ĵ2) are the current
injections at these nodes with Ĵ0 := 0. Then

Ĵ1 = y1(Û1 �Û0), Ĵ2 = y2(Û2 �Û0), Ĵ0 + Ĵ1 + Ĵ2 = y0Û0 (3.9)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 5)
2

4
Ĵ0
Ĵ1
Ĵ2

3

5 =

2

4
y0 + y1 + y2 �y1 �y2

�y1 y1 0
�y2 0 y2

3

5

2

4
Û0
Û1
Û2

3

5

Since Ĵ0 = 0 we can eliminate Û0 and derive the Kron-reduced admittance matrix Yuvn that maps (Û1,Û2)
to (Ĵ1, Ĵ2). Let Ĵ := (Ĵ1, Ĵ2) and Û := (Û1,Û2). Then Ĵ = YuvnÛ where Yuvn is the Schur complement of

2The explicit separation of internal variables (e.g., Ûi, Ĵi) and terminal variables (e.g., Vi, Ii) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapter 8.

reference imp & adm 
across ideal transformers

UVN-based model

• Unitary voltage network (UVN) 

connecting 2 ideal transformers


• Equivalent to  equivalent circuit

• Simplified model is an approximation 


Advantages

• UVN can be generalized to 

incorporate multiple windings, e.g., 
split-phase transformers


• Ideal transformers on both ends can 
be connected in various ways, e.g., 
3-phase transformers in  
configurations, non-standard 
transformers

T

Y/Δ
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̂J1 = y1(Û1 − Û0), ̂J2 = y2(Û2 − Û0)

y0Û0 = ̂J0 + ̂J1 + ̂J2
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(a) Equivalent model












































































































(b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

on both sides of the (nonideal) transformer is used as the voltage base for per unit normalization. Note
that no nodes in the transformer models may be grounded. The main advantage of modeling a nonideal
transformer this way is that the unitary voltage network can be generalized from the simple network in
Figure 3.8(b) to a more general network that can be used to model nonstandard transformers with multiple
windings; see below.

We now derive the admittance matrix that maps (V1,V2) to (I1,�I2). (Comments: Unify the use of
transmission matrices vs admittance matrices in this chapter?) First focus on the unitary voltage network,
shown in Figure 3.9, where y1 := 1/z1, y2 := 1/z2. Variables with hats denote internal variables.2 The












































































































Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).

variables (Û0,Û1,Û2) are defined as voltage drops as shown in the figure and (Ĵ0, Ĵ1, Ĵ2) are the current
injections at these nodes with Ĵ0 := 0. Then

Ĵ1 = y1(Û1 �Û0), Ĵ2 = y2(Û2 �Û0), Ĵ0 + Ĵ1 + Ĵ2 = y0Û0 (3.9)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 5)
2

4
Ĵ0
Ĵ1
Ĵ2

3

5 =

2

4
y0 + y1 + y2 �y1 �y2

�y1 y1 0
�y2 0 y2

3

5

2

4
Û0
Û1
Û2

3

5

Since Ĵ0 = 0 we can eliminate Û0 and derive the Kron-reduced admittance matrix Yuvn that maps (Û1,Û2)
to (Ĵ1, Ĵ2). Let Ĵ := (Ĵ1, Ĵ2) and Û := (Û1,Û2). Then Ĵ = YuvnÛ where Yuvn is the Schur complement of

2The explicit separation of internal variables (e.g., Ûi, Ĵi) and terminal variables (e.g., Vi, Ii) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapter 8.

Admittance matrix 


̂J0

̂J1
̂J2

=
y0 + y1 + y2 −y1 −y2

−y1 y1 0
−y2 0 y2

Û0

Û1

Û2

Since , can eliminate  to obtain Kron 
reduced admittance matrix


̂J0 = 0 Û0

[
̂J1
̂J2] =

1
∑i yi [y1(y0 + y2) −y1y2

−y1y2 y2(y0 + y1)]
Yuvn

[Û1

Û2]
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[
̂J1
̂J2] =

1
∑i yi [y1(y0 + y2) −y1y2

−y1y2 y2(y0 + y1)]
Yuvn

[Û1

Û2]

Let



I := [ I1
−I2], V := [V1

V2]
M := [1/N1 0

0 1/N2]
Conversion between internal vars & terminal vars 
across ideal transformers


Û = MV, ̂J = M−1I
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(a) Equivalent model












































































































(b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

on both sides of the (nonideal) transformer is used as the voltage base for per unit normalization. Note
that no nodes in the transformer models may be grounded. The main advantage of modeling a nonideal
transformer this way is that the unitary voltage network can be generalized from the simple network in
Figure 3.8(b) to a more general network that can be used to model nonstandard transformers with multiple
windings; see below.

We now derive the admittance matrix that maps (V1,V2) to (I1,�I2). (Comments: Unify the use of
transmission matrices vs admittance matrices in this chapter?) First focus on the unitary voltage network,
shown in Figure 3.9, where y1 := 1/z1, y2 := 1/z2. Variables with hats denote internal variables.2 The












































































































Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).

variables (Û0,Û1,Û2) are defined as voltage drops as shown in the figure and (Ĵ0, Ĵ1, Ĵ2) are the current
injections at these nodes with Ĵ0 := 0. Then

Ĵ1 = y1(Û1 �Û0), Ĵ2 = y2(Û2 �Û0), Ĵ0 + Ĵ1 + Ĵ2 = y0Û0 (3.9)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 5)
2

4
Ĵ0
Ĵ1
Ĵ2

3

5 =

2

4
y0 + y1 + y2 �y1 �y2

�y1 y1 0
�y2 0 y2

3

5

2

4
Û0
Û1
Û2

3

5

Since Ĵ0 = 0 we can eliminate Û0 and derive the Kron-reduced admittance matrix Yuvn that maps (Û1,Û2)
to (Ĵ1, Ĵ2). Let Ĵ := (Ĵ1, Ĵ2) and Û := (Û1,Û2). Then Ĵ = YuvnÛ where Yuvn is the Schur complement of

2The explicit separation of internal variables (e.g., Ûi, Ĵi) and terminal variables (e.g., Vi, Ii) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapter 8.

Hence, external model:


I = (MYuvnM) V
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Yuvn := 𝕀2 ⊗ (
2

∑
i=0

yi)
−1

[
yj(y0 + yk) −yjyk

−yjyk yk(y0 + yj)]
Let



I := [ Iabc
1

−Iabc
2 ] ∈ ℂ6, V := [Vabc

1

Vabc
2 ] ∈ ℂ6

M := [1/Nabc
1 0

0 1/Nabc
2 ] ∈ ℂ6×6

External model:





where  are neutral voltages in  
configuration, and 


I = D𝖳(MYuvnM)D (V − γ)
γ := (Vn

11, Vn
21) ∈ ℂ6 YY

YY config:  D := [ 𝕀 0
0 𝕀 ]

ΔΔ config:  D := [Γ 0
0 Γ]

ΔY config:  D := [Γ 0
0 𝕀 ]

YΔ config:  D := [ 𝕀 0
0 Γ]
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Figure 8.26: Unitary voltage network in each phase f of a three-phase transformer.

8.6.1 Unitary voltage network per phase

The internal variables on the unitary voltage network in each phase f are defined in Figure 8.26. These
variables satisfy (3.9) for each phase f :

Ĵf
j = yf

j (Û
f
j �Ûf

0 ), Ĵf
k = yf

k (Ûf
k �Ûf

0 ), Ĵf
0 + Ĵf

j + Ĵf
k = yf

0Ûf
0 , f 2 {a,b,c} (8.56)

Let

Ĵi :=

2

4
Ĵa

i
Ĵb

i
Ĵc

i

3

5 , Ûi :=

2

4
Ûa

i
Ûb

i
Ûc

i

3

5 , yi := diag
⇣

ya
i ,y

b
i ,y

c
i

⌘
i = 0,1,2

Then (8.56) is in vector form

Ĵ j = y j(Û j �Û0), Ĵk = yk(Ûk �Û0), Ĵ0 + Ĵ j + Ĵk = y0Û0

or in terms of an 9⇥9 admittance matrix
2

4
Ĵ0
Ĵ j
Ĵk

3

5 =

2

4
Âi yi �y j �yk
�y j y j 0
�yk 0 yk

3

5

2

4
Û0
Û j
Ûk

3

5 (8.57)

where Âi yi = y0 + y j + yk. Since Ĵ0 = 0 2 C
3 we can eliminate Û0 and derive the 6 ⇥ 6 Kron-reduced

admittance matrix Yuvn that maps Û := (Û j,Ûk) 2 C
6 to Ĵ := (Ĵ j, Ĵk) 2 C

6 (Exercise 8.24):

Ĵ = YuvnÛ where Yuvn :=

0

@I2 ⌦
 

Â
i

yi

!�1
1

A


y j(y0 + yk) �y jyk
�y jyk yk(y0 + y j)

�
(8.58)

and Ik is the identity matrix of size 2. Note that the phases of these internal variables are decoupled in
(8.58) since the admittance matrices yi 2 C

3⇥3 are diagonal. The phases will be coupled in the terminal
variables (Vj,Vk) and (I j, Ik) through Y or D configuration, as we now explain.
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UVN: Kron-reduced admittance matrix


̂J1
̂J2
̂J3

=
1

∑i yi

y1(y0 + y2 + y3) −y1y2 −y1y3

−y2y1 y2(y0 + y1 + y3) −y2y3

−y3y1 −y3y2 y3(y0 + y1 + y2)

Yuvn

Û1

Û2

Û3
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g :=
⇣

V n
j 1,V n

k 1
⌘

2C
6 are neutral voltages for Y configuration, and D is a 6⇥6 block diagonal matrix that

depends on configuration:

YY configuration: D :=

I 0
0 I

�

DD configuration: D :=


G 0
0 G

�

DY configuration: D :=


G 0
0 I

�

Y D configuration: D :=

I 0
0 G

�

The model (3.11) generalizes the single-phase model (3.10) in three ways. First the 6 ⇥ 6 admittance
matrix MYuvnM in (3.11) has the same structure as the 2 ⇥ 2 matrix in (3.10). Second the neutrals of the
three-phase transformer in Y configuration may not be grounded, i.e., V n

1 ,V n
2 may be nonzero whereas

V in (3.10) is assumed to be the voltage drop across the windings. Finally the admittance matrix of a
three-phase transformer in YY configuration is MYunvM, and a D configuration in either the primary or the
secondary circuit is represented by conversion matrices GT and G.

Multi-winding transformers. Second, the unitary voltage network can be generalized to model non-
standard transformers with more than two windings. As an illustration we now use this approach to model
a split-phase transformer. (Comments: Verify the following derivation is correct.)

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages (Û0,Û1,Û2,Û3) and











































































































Figure 3.10: Single-phase split-phase transformer.

currents (Ĵ0, Ĵ1, Ĵ2, Ĵ3) on the unitary voltage network are defined in the figure. The admittance matrix that
maps these voltages to currents is given by:

2

664

Ĵ0
Ĵ1
Ĵ2
Ĵ3

3

775 =

2

664

Â3
i=0 �y1 �y2 �y3

�y1 y1 0 0
�y2 0 y2 0
�y3 0 0 y3

3

775

2

664

Û0
Û1
Û2
Û3

3

775
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Figure 3.3: A common single-phase distribution transformer in the US.
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(b) Secondary winding in D configuration

Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.

̂J0

̂J1
̂J2
̂J3

=

∑3
i=0 −y1−y2−y3

−y1y1 0 0
−y20 y2 0
−y30 0 y3

Û0

Û1

Û2

Û3
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g :=
⇣

V n
j 1,V n

k 1
⌘

2C
6 are neutral voltages for Y configuration, and D is a 6⇥6 block diagonal matrix that

depends on configuration:

YY configuration: D :=

I 0
0 I

�

DD configuration: D :=


G 0
0 G

�

DY configuration: D :=


G 0
0 I

�

Y D configuration: D :=

I 0
0 G

�

The model (3.11) generalizes the single-phase model (3.10) in three ways. First the 6 ⇥ 6 admittance
matrix MYuvnM in (3.11) has the same structure as the 2 ⇥ 2 matrix in (3.10). Second the neutrals of the
three-phase transformer in Y configuration may not be grounded, i.e., V n

1 ,V n
2 may be nonzero whereas

V in (3.10) is assumed to be the voltage drop across the windings. Finally the admittance matrix of a
three-phase transformer in YY configuration is MYunvM, and a D configuration in either the primary or the
secondary circuit is represented by conversion matrices GT and G.

Multi-winding transformers. Second, the unitary voltage network can be generalized to model non-
standard transformers with more than two windings. As an illustration we now use this approach to model
a split-phase transformer. (Comments: Verify the following derivation is correct.)

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages (Û0,Û1,Û2,Û3) and











































































































Figure 3.10: Single-phase split-phase transformer.

currents (Ĵ0, Ĵ1, Ĵ2, Ĵ3) on the unitary voltage network are defined in the figure. The admittance matrix that
maps these voltages to currents is given by:
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Figure 3.3: A common single-phase distribution transformer in the US.
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(b) Secondary winding in D configuration

Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.

Let



I :=
I1

−I2
−I3

, V :=
V1
V2
V3

M :=
1/N1 0 0

0 1/N2 0
0 0 1/N3

Conversion between internal vars & terminal vars across ideal 
transformers:    and 


    where  

Û = MV

̂J = M−1
I1

−I2
−I2 − I3

=: M−1AI A := [
1 0 0
0 1 0
0 1 1]
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g :=
⇣

V n
j 1,V n

k 1
⌘

2C
6 are neutral voltages for Y configuration, and D is a 6⇥6 block diagonal matrix that

depends on configuration:

YY configuration: D :=

I 0
0 I

�

DD configuration: D :=


G 0
0 G

�

DY configuration: D :=


G 0
0 I

�

Y D configuration: D :=

I 0
0 G

�

The model (3.11) generalizes the single-phase model (3.10) in three ways. First the 6 ⇥ 6 admittance
matrix MYuvnM in (3.11) has the same structure as the 2 ⇥ 2 matrix in (3.10). Second the neutrals of the
three-phase transformer in Y configuration may not be grounded, i.e., V n

1 ,V n
2 may be nonzero whereas

V in (3.10) is assumed to be the voltage drop across the windings. Finally the admittance matrix of a
three-phase transformer in YY configuration is MYunvM, and a D configuration in either the primary or the
secondary circuit is represented by conversion matrices GT and G.

Multi-winding transformers. Second, the unitary voltage network can be generalized to model non-
standard transformers with more than two windings. As an illustration we now use this approach to model
a split-phase transformer. (Comments: Verify the following derivation is correct.)

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages (Û0,Û1,Û2,Û3) and











































































































Figure 3.10: Single-phase split-phase transformer.

currents (Ĵ0, Ĵ1, Ĵ2, Ĵ3) on the unitary voltage network are defined in the figure. The admittance matrix that
maps these voltages to currents is given by:
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Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.

Let



I :=
I1

−I2
−I3

, V :=
V1
V2
V3

M :=
1/N1 0 0

0 1/N2 0
0 0 1/N3

Eliminate internal vars  from





External model:


   

( ̂J, Û)
Û = Yuvn ̂J, Û = MV, ̂J = M−1AI

I = A−1 (MYuvnM) V
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Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.



Ideal transformer
Connectivity

Steven Low     EE/CS/EST 135    Caltech

82 EE 135 Notes October 6, 2021

a b c n 

120V

120V

240V

+

−

Figure 3.3: A common single-phase distribution transformer in the US.

a 

b 

c 

n 

a 

n 

b 

c 

Ia Ia

(a) Primary winding in Y configuration

a’ 

b’ 

c’ 

a’ 

b’ 

c’ 

Ia ' Ia '

(b) Secondary winding in D configuration

Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is

a 

b 

c 

n 

a’ 

n’ 

b’ 

c’ 

n 

a 

b 
c 

n’ 

a’ 

b’ 
c’ 

Ia '

Ia 'Ia

Ia

(a) YY configuration

a 

b 

c 

a’ 

b’ 

c’ 

a 

b 
c 

a’ 

b’ 
c’ 

Ia '

Ia 'Ia

Ia

(b) DD configuration

Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.

characterized by the following voltage and current gains:

Va0n0

Van
= n,

Ia0

Ia
=

�Ia0n0

Ian
=

1
n

ΔΔ
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.

characterized by the following voltage and current gains:

Va0n0

Van
= n,

Ia0

Ia
=

�Ia0n0

Ian
=

1
n

ΔΔ
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Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:

Va0n0

Vab
= n,

�Ia0n0

Iab
=

1
n

To obtain the terminal behavior we have (assuming balanced positive sequence)

Va0b0

Vab
=

p
3e jp/6Va0n0

Vab
=

p
3e jp/6n =: KDY (n)

where the complex voltage gain

KDY (n) :=
p

3n e jp/6

boosts the voltage gain by
p

3 and shifts the phase by 30�. The line current gain is (using (3.2b))

Ia0

Ia
=

�Ia0n0p
3e� jp/6 Iab

=
1p

3e� jp/6 n
=

1
K⇤

DY (n)

Similarly on other lines.

Equivalent YY configuration. We have on the primary side VY
an =

⇣p
3e jp/6

⌘�1
VY

ab =
⇣p

3e jp/6
⌘�1

Vab

since VY
ab = Vab by definition of Y equivalence. Hence

Va0n0

VY
an

=
Va0n0

�p
3e jp/6

��1 Vab

=
p

3e jp/6 Va0n0

Vab
= KDY (n)

1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.
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Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:

Va0n0

Vab
= n,

�Ia0n0

Iab
=

1
n

To obtain the terminal behavior we have (assuming balanced positive sequence)

Va0b0

Vab
=

p
3e jp/6Va0n0

Vab
=

p
3e jp/6n =: KDY (n)

where the complex voltage gain

KDY (n) :=
p

3n e jp/6

boosts the voltage gain by
p

3 and shifts the phase by 30�. The line current gain is (using (3.2b))

Ia0

Ia
=

�Ia0n0p
3e� jp/6 Iab

=
1p

3e� jp/6 n
=

1
K⇤

DY (n)

Similarly on other lines.

Equivalent YY configuration. We have on the primary side VY
an =

⇣p
3e jp/6

⌘�1
VY

ab =
⇣p

3e jp/6
⌘�1

Vab

since VY
ab = Vab by definition of Y equivalence. Hence

Va0n0

VY
an

=
Va0n0

�p
3e jp/6

��1 Vab

=
p

3e jp/6 Va0n0

Vab
= KDY (n)

1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.

characterized by the following voltage and current gains:
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.
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ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-neutral voltage gain for YY configuration and
line-to-line voltage gain for other configurations, as well as the line current gains in these configurations.
We then derive the line-to-neutral voltage and current gains of their YY equivalent models, which yields
their per-phase circuits. We will see that, as expected, the terminal behavior of a three-phase transformer
has the same gains as those in its per-phase circuit. The derivation proceeds in three steps:

1. Derive voltage and current gains for each single-phase transformer.

2. Derive line voltage and current gains for the three-phase transformer.

3. Derive phase voltage and line current gains for the single-phase equivalent circuit.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. In per-phase analysis later, we will
convert each D configuration into an equivalent Y configuration.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.5(a). The parallel lines in the schematic diagram indicate corresponding pri-
mary and secondary windings in the single-phase transformers. From the figure, the YY configuration is
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Figure 3.5: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings.
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Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:
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To obtain the terminal behavior we have (assuming balanced positive sequence)
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p
3e jp/6n =: KDY (n)

where the complex voltage gain

KDY (n) :=
p

3n e jp/6

boosts the voltage gain by
p

3 and shifts the phase by 30�. The line current gain is (using (3.2b))
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1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.



Ideal transformer
 configurationΔY

Steven Low     EE/CS/EST 135    Caltech

• Single-phase gains





• Complex voltage gain


Va′ n′ 

Vab
= n,

−Ia′ n′ 

Iab
=

1
n

KΔY(n) := 3eiπ/6n

EE 135 Notes October 6, 2021 85

a 

b 

c 

a 

b 
c 

a’ 

a’ 

n’ 

b’ 

c’ 

n’ 

b’ 
c’ 

Ia '

Ia 'Ia

Ia

(a) DY configuration

c 

b 

a 

a’ 

c’ 
n 

b’ 

a’ 

b’ 
c’ Ia '

Ia '

Ia

n 

a 

b 
c 

Ia

(b) Y D configuration

Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:
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To obtain the terminal behavior we have (assuming balanced positive sequence)
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=

p
3e jp/6n =: KDY (n)

where the complex voltage gain

KDY (n) :=
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boosts the voltage gain by
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3 and shifts the phase by 30�. The line current gain is (using (3.2b))
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1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.
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Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:
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To obtain the terminal behavior we have (assuming balanced positive sequence)
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=

p
3e jp/6n =: KDY (n)

where the complex voltage gain
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3 and shifts the phase by 30�. The line current gain is (using (3.2b))
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1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.
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Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:
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To obtain the terminal behavior we have (assuming balanced positive sequence)
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where the complex voltage gain
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1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.
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• Single-phase gains





• External model
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3e−iπ/6Van
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=
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Ian
=

3 eiπ/6

n
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Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:

Va0n0

Vab
= n,

�Ia0n0

Iab
=

1
n

To obtain the terminal behavior we have (assuming balanced positive sequence)

Va0b0
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p
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Vab
=

p
3e jp/6n =: KDY (n)

where the complex voltage gain

KDY (n) :=
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3n e jp/6

boosts the voltage gain by
p

3 and shifts the phase by 30�. The line current gain is (using (3.2b))
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=
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Similarly on other lines.

Equivalent YY configuration. We have on the primary side VY
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Vab

since VY
ab = Vab by definition of Y equivalence. Hence

Va0n0

VY
an

=
Va0n0

�p
3e jp/6
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Vab
= KDY (n)

1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
phase equivalent circuit of a balanced three-phase system. We will sometimes write VY

an and IY
an to emphasize that they denote

quantities in a per-phase equivalent circuit. Similarly for Vbn,Vcn and Ibn, Icn.



Ideal transformer
 configurationYΔ

Steven Low     EE/CS/EST 135    Caltech

• Single-phase gains





• Complex voltage gain





• External mdoel


Va′ c′ 

Van
= n,

Ic′ a′ 

Ian
=

1
n

KYΔ(n) :=
n

3
eiπ/6

Va′ b′ 
= KYΔ(n) Vab

Ia′ 
= K*YΔ(n) Ia

EE 135 Notes October 6, 2021 85

a 

b 

c 

a 

b 
c 

a’ 

a’ 

n’ 

b’ 

c’ 

n’ 

b’ 
c’ 

Ia '

Ia 'Ia

Ia

(a) DY configuration

c 

b 

a 

a’ 

c’ 
n 

b’ 

a’ 

b’ 
c’ Ia '

Ia '

Ia

n 

a 

b 
c 

Ia

(b) Y D configuration

Figure 3.6: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the schematic
diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D configuration.

DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.6(a). It is characterized by the following voltage and current gains in the
single-phase transformer:
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1In general Van and Ian denote the phase a line-to-neutral voltage and current either in a single-phase system or in the per-
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an to emphasize that they denote
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Equivalent YY configuration. To obtain the Y equivalent VY
a0n0 of the D configuration we have

Va0c0 = VY
a0c0 = VY

a0n0 �VY
c0n0 = VY

a0n0(1� ei2p/3) =
p

3e�ip/6 VY
a0n0

Hence

VY
a0n0

Van
=

⇣p
3e�ip/6

⌘�1
Va0c0

Van
=

⇣p
3e�ip/6

⌘�1
n = KY D(n)

Similar to (3.2b), we relate the line and phase currents on the secondary side, �IY
a0n0 = Ia0 =

p
3eip/6 Ic0a0 .

Hence

�IY
a0n0

Ian
=

p
3eip/6 Ic0a0

Ian
=

p
3eip/6

n
=

1
K⇤

Y D(n)

This also implies Ia = K⇤
Y D(n) Ia0 . As expected the line voltage and current gains in the Y D configuration

are the same as those in their YY equivalent. Hence the phase voltages and currents on the secondary and
primary sides of the YY equivalent configuration are related as:

VY
a0n0

Van
=

VY
b0n0

Vbn
=

VY
c0n0

Vcn
= KY D(n)

Ia0

Ia
=

Ib0

Ib
=

Ic0

Ic
=

1
K⇤

Y D(n)

Property Gain
Voltage gain K(n)
Current gain 1

K⇤(n)

Power gain 1
Sec Zl referred to pri Zl

|K(n)|2

Configuration Gain
YY KYY (n) := n
DD KDD(n) := n
DY KDY (n) :=

p
3n eip/6

Y D KY D(n) := np
3

eip/6

Table 3.2: Ideal complex transformer properties.

Summary. These properties of an ideal three-phase transformer in balanced operation are summarized
in Table 3.2. For each configuration, K(n) denotes the complex voltage gain of an ideal three-phase
transformer:

voltage gain
Vsec

Vpri
= K(n)

current gain
Isec

Ipri
=

1
K⇤(n)

As we have shown, these gains apply to both phase voltages/currents and line voltages/currents in both the
original transformer and its YY equivalent. Hence the complex power gain is 1 for ideal transformers:

�S0

S
:=

VY
a0n0(�IY

a0n0)⇤

VY
an (IY

an)
⇤ = K(n)

1
K(n)

= 1
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Figure 3.8: Model of three-phase transformers in YY configuration and its per-phase equivalent circuit.
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Figure 3.9: Model of three-phase transformers in DD configuration and its per-phase equivalent circuit.
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the secondary open-circuit equivalent and the secondary short-circuit equivalent of the original DD circuit.
Figure 3.10 shows a model of balanced three-phase transformers in DY configuration and its per-phase
equivalent circuit. Finally Figure 3.11 shows the model for Y D configuration and its per-phase circuit.
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Figure 3.10: Model of three-phase transformers in DY configuration and its per-phase equivalent circuit.
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Figure 3.11: Model of three-phase transformers in Y D configuration and its per-phase equivalent circuit.

Hence balanced three-phase transformers in YY , DD, DY and Y D configurations all have the same per-
phase equivalent circuit, with appropriate values for their series leakage impedance and shunt reactance
and the corresponding (complex) transformer gains K(n).
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Short cut in analyzing circuits containing transformers


• Thevenin equivalent of impedances in series and in parallel

• Equivalent impedances in primary or secondary circuits
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Figure 3.19: Example 3.5.
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• referring  in secondary to primary
Zs

Zp =
Zs

|K(n) |2

“It is equivalent to replace  in the secondary circuit by  in the primary circuit”Zs Zp

• referring  in primary to secondary
Zp
Zs = |K(n) |2 Zp

“It is equivalent to replace  in the primary circuit by  in the secondary circuit”Zp Zs



Equivalent admittances
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“It is equivalent to replace  in the secondary circuit by  in the primary circuit”Ys Yp

• referring  in primary to secondary
Yp

Ys =
Yp

|K(n) |2

“It is equivalent to replace  in the primary circuit by  in the secondary circuit”Yp Ys

• referring  in secondary to primary
Ys
Yp = |K(n) |2 Ys
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What is equivalence ?


• Same transmission matrices


• Same driving-point impedance


This is a simple consequence of Kirchhoff’s and Ohm’s laws



Transmission matrix
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External models (transmission matrices) of 2 circuits are equal

if and only if Zp =

Zs

|K(n) |2

≡
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(a) Series impedance Zs in the secondary circuit.
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ideal
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I1

(b) Series impedance Zp in the primary circuit.

Figure 3.12: Referring series impedance in the secondary to the primary.

Then

V1
I1

�
=


K�1(n) 0

0 K⇤(n)

�
1 Zs
0 1

�
V2
I2

�
=


K�1(n) K�1(n)Zs

0 K⇤(n)

�

| {z }
Ts


V2
I2

�

Similarly, for the circuit in Figure 3.12(b), we have

V1
I1

�
=


1 Zp
0 1

�
K�1(n) 0

0 K⇤(n)

�
V2
I2

�
=


K�1(n) K⇤(n)Zp

0 K⇤(n)

�

| {z }
Tp


V2
I2

�

Hence Ts = Tp if and only if (3.3a) holds.

The relation (3.3b) between shunt admittances Yp and Ys ensures that the transmission matrix for the
circuit in Figure 3.13(a) is the same as that in Figure 3.13(b). This is left as Exercise 3.3.
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(a) Shunt admittance Ys in the secondary circuit.
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(b) Shunt admittance Yp in the primary circuit.

Figure 3.13: Referring shunt admittance in the secondary to the primary.

The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.
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The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.

[V
I] = [1 Zs

0 1 ] [V2
I2]

[V1
I1] = [K−1(n) 0

0 K*(n)] [V
I]
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The relation (3.3b) between shunt admittances Yp and Ys ensures that the transmission matrix for the
circuit in Figure 3.13(a) is the same as that in Figure 3.13(b). This is left as Exercise 3.3.

V1

+

−

V2

+

−

I2

ideal
transformer

K(n) Ys

I1

(a) Shunt admittance Ys in the secondary circuit.

V1

+

−

V2

+

−

I2I1

ideal
transformer

K(n)Yp

(b) Shunt admittance Yp in the primary circuit.

Figure 3.13: Referring shunt admittance in the secondary to the primary.

The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.

[V1
I1] = [K−1(n) K−1(n)Zs

0 K*(n) ] [V2
I2] [V1

I1] = [K−1(n) K*(n)Zp

0 K*(n) ] [V2
I2]

External models (transmission matrices) of 2 circuits are equal

if and only if Zp =

Zs

|K(n) |2
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V1

+

−

V2

+

−

I2Zs

ideal
transformer

K(n)

I1

(a) Series impedance Zs in the secondary circuit.

V1

+

−

V2

+

−

I2

ideal
transformer

K(n)

Zp

I1

(b) Series impedance Zp in the primary circuit.

Figure 3.12: Referring series impedance in the secondary to the primary.

Then

V1
I1

�
=


K�1(n) 0

0 K⇤(n)

�
1 Zs
0 1

�
V2
I2

�
=


K�1(n) K�1(n)Zs

0 K⇤(n)

�

| {z }
Ts


V2
I2

�

Similarly, for the circuit in Figure 3.12(b), we have

V1
I1

�
=


1 Zp
0 1

�
K�1(n) 0

0 K⇤(n)

�
V2
I2

�
=


K�1(n) K⇤(n)Zp

0 K⇤(n)

�

| {z }
Tp


V2
I2

�

Hence Ts = Tp if and only if (3.3a) holds.

The relation (3.3b) between shunt admittances Yp and Ys ensures that the transmission matrix for the
circuit in Figure 3.13(a) is the same as that in Figure 3.13(b). This is left as Exercise 3.3.

V1

+

−

V2

+

−

I2

ideal
transformer

K(n) Ys

I1

(a) Shunt admittance Ys in the secondary circuit.

V1

+

−

V2

+

−

I2I1

ideal
transformer

K(n)Yp

(b) Shunt admittance Yp in the primary circuit.

Figure 3.13: Referring shunt admittance in the secondary to the primary.

The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.

External models (transmission matrices) of 2 circuits are equal

if and only if Yp = |K(n) |2 Ys
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Example 3.2. A combination of a series impedance Zs and a shunt admittance Ys in the secondary circuit,
as shown in Figure 3.14(a), can be referred to the primary one element at a time, starting from the element
that is closest to the ideal transformer. The transformer gain is K(n) = n = 1/a. Referring the series

V1

+

−

V2

+

−

I2I1

Ys

N2N1

Zs

ideal$
transformer$

(a) (Zs,Ys) in the secondary circuit.

V1

+

−

V2

+

−

I2I1

Ys

N2N1

a2Zs

ideal$
transformer$

(b) Refer Zs to the primary.

V1

+

−

V2

+

−

I2I1

n2Ys

N2N1
ideal$

transformer$

a2Zs

(c) Refer Ys to the primary.

Figure 3.14: Referring (Zs,Ys) in the secondary to the primary.

impedance Zs to the primary yields the equivalent circuit in Figure 3.14(b) with an equivalent primary
impedance a2Zs. Referring then the shunt admittance Ys to the primary yields the equivalent circuit in
Figure 3.14(c) with an equivalent shunt admittance n2Ys.

3.3.2 Driving-point impedance

In the second case the terminal behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current I flows between
these two terminals through the network. The ratio V/I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.15. For two impedances Z1,Z2 in series depicted in Figure 3.15(a), the Thévenin equiv-

V

+

−

I

Z1

Z2

V

+

−

I

Zeq = Z1 + Z2

(a) Impedances in series

V

+

−

I

Z2Z1 V

+

−

I

Zeq =
1
Z1
+
1
Z2

!

"
#

$

%
&

−1

(b) Impedances in parallel

Figure 3.15: (a) Thévenin equivalent Zeq of two impedances Z1,Z2 in series. (b) Thévenin equivalent Zeq
of two impedances Z1,Z2 in parallel.
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Example 3.2. A combination of a series impedance Zs and a shunt admittance Ys in the secondary circuit,
as shown in Figure 3.14(a), can be referred to the primary one element at a time, starting from the element
that is closest to the ideal transformer. The transformer gain is K(n) = n = 1/a. Referring the series

V1

+
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+

−

I2I1

Ys

N2N1

Zs

ideal$
transformer$

(a) (Zs,Ys) in the secondary circuit.

V1

+

−

V2

+

−

I2I1
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N2N1

a2Zs

ideal$
transformer$

(b) Refer Zs to the primary.

V1

+

−

V2

+

−

I2I1

n2Ys

N2N1
ideal$

transformer$

a2Zs

(c) Refer Ys to the primary.

Figure 3.14: Referring (Zs,Ys) in the secondary to the primary.

impedance Zs to the primary yields the equivalent circuit in Figure 3.14(b) with an equivalent primary
impedance a2Zs. Referring then the shunt admittance Ys to the primary yields the equivalent circuit in
Figure 3.14(c) with an equivalent shunt admittance n2Ys.

3.3.2 Driving-point impedance

In the second case the terminal behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current I flows between
these two terminals through the network. The ratio V/I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.15. For two impedances Z1,Z2 in series depicted in Figure 3.15(a), the Thévenin equiv-

V

+

−

I

Z1

Z2

V

+

−

I

Zeq = Z1 + Z2

(a) Impedances in series

V

+

−

I

Z2Z1 V

+

−

I

Zeq =
1
Z1
+
1
Z2

!

"
#

$

%
&

−1

(b) Impedances in parallel

Figure 3.15: (a) Thévenin equivalent Zeq of two impedances Z1,Z2 in series. (b) Thévenin equivalent Zeq
of two impedances Z1,Z2 in parallel.Thevenin equivalent is a short cut in analyzing circuits with impedances only 



Driving-point impedance
Thevenin equivalent

Steven Low     EE/CS/EST 135    Caltech

What if circuits contain both impedance and transformers ?

98 EE 135 Notes October 7, 2021

Zline

Zload
Δ Y ΔY

Vline

(a) One-line diagram

V1

+

−

V2

+

−

I2I1

1: 3n

Zl

e jπ /6 V3

+

−

I3

1: 3n

Zl

e jπ /6 Zload

Zline

transformer#T1 transmission#
line##

z#

transformer#T2 

z#
3n :1

(b) Per-phase circuit

Figure 3.19: Example 3.5.
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alent impedance Zeq is defined such that the two networks in Figure 3.15(a) have the same driving-point
impedance:

V
I

= Z1 +Z2 =: Zeq (3.4a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted in Figure 3.15(b) is
defined to be:

V
I

=

✓
1
Z1

+
1
Z2

◆�1
=: Zeq (3.4b)

These are simple consequences of Kirchhoff’s and Ohm’s laws. Repeated application of (3.4) reduces a
cascade of impedances in parallel and series into a single equivalent impedance that preserves the driving-
point impedance.

When such a network contains not just impedances, but also transformers, the relation (3.3) allows us
to reduce it to a single Thévenin equivalent impedance with the same driving-point impedance. As we
explain below, the key element of this procedure is the driving-point impedance seen from two terminals
of one side of a single-phase transformer when the other side is connected to an impedance Zeq that may
be the Thévenin equivalent of a network of impedances. This yields an equivalent network where the
transformer and Zeq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.3) and (3.4) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance Z2,eq as shown in Figure 3.16(a), the transformer and the impedance
Z2,eq can be replaced by the Thévenin equivalent impedance Z2,eq/|K(n)|2 in the sense that the driving-
point impedance V1/I1 on the primary side is the same in both circuits in Figure 3.16(a). This is the same
operation that refers Z2,eq in the secondary to the primary expressed in (3.3a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.5. Similarly when the primary side is connected

V1

+

−

I1

ideal
transformer

K(n) Z2, eq V1

+

−

I1

1
K(n) 2 Z2, eq

(a) V1/I1 on the primary side

V2

+

−

I2

ideal
transformer

K(n)Z1, eq V2

+

−

I2

K(n) 2 Z1, eq

(b) V2/I2 on the secondary side

Figure 3.16: Driving-point impedances

to an impedance Z1,eq as shown in Figure 3.16(b), the transformer and the impedance Z1,eq can be replaced
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alent impedance Zeq is defined such that the two networks in Figure 3.15(a) have the same driving-point
impedance:

V
I

= Z1 +Z2 =: Zeq (3.4a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted in Figure 3.15(b) is
defined to be:

V
I

=

✓
1
Z1

+
1
Z2

◆�1
=: Zeq (3.4b)

These are simple consequences of Kirchhoff’s and Ohm’s laws. Repeated application of (3.4) reduces a
cascade of impedances in parallel and series into a single equivalent impedance that preserves the driving-
point impedance.

When such a network contains not just impedances, but also transformers, the relation (3.3) allows us
to reduce it to a single Thévenin equivalent impedance with the same driving-point impedance. As we
explain below, the key element of this procedure is the driving-point impedance seen from two terminals
of one side of a single-phase transformer when the other side is connected to an impedance Zeq that may
be the Thévenin equivalent of a network of impedances. This yields an equivalent network where the
transformer and Zeq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.3) and (3.4) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance Z2,eq as shown in Figure 3.16(a), the transformer and the impedance
Z2,eq can be replaced by the Thévenin equivalent impedance Z2,eq/|K(n)|2 in the sense that the driving-
point impedance V1/I1 on the primary side is the same in both circuits in Figure 3.16(a). This is the same
operation that refers Z2,eq in the secondary to the primary expressed in (3.3a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.5. Similarly when the primary side is connected

V1

+

−

I1

ideal
transformer

K(n) Z2, eq V1

+

−

I1

1
K(n) 2 Z2, eq

(a) V1/I1 on the primary side

V2

+

−

I2

ideal
transformer

K(n)Z1, eq V2

+

−

I2

K(n) 2 Z1, eq

(b) V2/I2 on the secondary side

Figure 3.16: Driving-point impedances

to an impedance Z1,eq as shown in Figure 3.16(b), the transformer and the impedance Z1,eq can be replaced
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by the Thévenin equivalent impedance |K(n)|2 Z1,eq in the sense that the driving-point impedance V2/I2
on the secondary side is the same in both circuits in Figure 3.16(b). This is the same operation that refers
Z1,eq in the primary to the secondary expressed in (3.3a) (see Exercise 3.5).

We caution that the shortcut (3.3) and (3.4) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.6 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.3 (V1/I1 on the primary side.). Consider the network in Figure 3.17(a) where the secondary
side is connected to a network whose Thévenin equivalent is Z2,eq. What is the driving-point impedance
V1/I1? We first derive the driving-point impedance directly using Kirchhoff’s and Ohm’s laws. We then

V1

+

−

I1

ideal$
transformer$

K(n)V1 '

+

−

I1 '

V2 '

+

−

I2 '

Z2, eq

Z1, eq

Y1,eq

(a) Transformer circuit

V1

+

−

I1 Z1, eq

1
K(n) 2 Z2, eqY1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.17: Driving-point impedance V1/I1 on the primary side.

use the result to verify the shortcut expressed in (3.3) and (3.4).

Circuit analysis. We have for the primary circuit


V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
V 0

1
I0
1

�

Hence

V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
K�1(n) 0

0 K⇤(n)

�
V 0

2
I0
2

�

Substituting

V 0
2 = Z2,eq I0

2



Driving-point impedance
Example

Steven Low     EE/CS/EST 135    Caltech

V1

I1
= Z1,eq + Y1,eq +

1
Z2,eq/ |K(n) |2

−1

EE 135 Notes October 7, 2021 95

by the Thévenin equivalent impedance |K(n)|2 Z1,eq in the sense that the driving-point impedance V2/I2
on the secondary side is the same in both circuits in Figure 3.16(b). This is the same operation that refers
Z1,eq in the primary to the secondary expressed in (3.3a) (see Exercise 3.5).

We caution that the shortcut (3.3) and (3.4) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.6 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.3 (V1/I1 on the primary side.). Consider the network in Figure 3.17(a) where the secondary
side is connected to a network whose Thévenin equivalent is Z2,eq. What is the driving-point impedance
V1/I1? We first derive the driving-point impedance directly using Kirchhoff’s and Ohm’s laws. We then
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ideal$
transformer$

K(n)V1 '

+
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I1 '

V2 '

+

−

I2 '

Z2, eq

Z1, eq
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(a) Transformer circuit

V1

+

−

I1 Z1, eq

1
K(n) 2 Z2, eqY1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.17: Driving-point impedance V1/I1 on the primary side.

use the result to verify the shortcut expressed in (3.3) and (3.4).

Circuit analysis. We have for the primary circuit


V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
V 0

1
I0
1

�

Hence

V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
K�1(n) 0

0 K⇤(n)

�
V 0

2
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2

�

Substituting

V 0
2 = Z2,eq I0

2
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we have 
V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
|K(n)|�2 0

0 1

�
Z2,eq

1

�
K⇤(n) I0

2

=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
Z2,eq/|K(n)|2

1

�
K⇤(n) I0

2

Hence the driving-point impedance is

V1

I1
=

(1+Z1,eqY1,eq)
�
Z2,eq/|K(n)|2

�
+ Z1,eq

Y1,eq
�
Z2,eq/|K(n)|2

�
+ 1

or equivalently

V1

I1
= Z1,eq +

✓
Y1,eq +

1
Z2,eq/|K(n)|2

◆�1
(3.5)

It is the Thévenin equivalent on the primary side of a network consisting of impedances, admittances, as
well as an ideal transformer. The Thévenin equivalent (3.5) has a simple interpretation, as we now explain.

Shortcut.. Use (3.3a) to refer Z2,eq in the secondary to the primary, we can replace the ideal transformer
and Z2,eq by the equivalent impedance Z2,eq/|K(n)|2 and arrive at the equivalent circuit in Figure 3.17(b)
seen from the primary side. The application of (3.4) then yields the driving-point impedance (3.5).
Example 3.4 (V2/I2 on the secondary side.). Consider the circuit in Figure 3.18(a) where the primary
side is connected to the impedance Z1,eq. Use (3.3a) to refer Z1,eq in the primary to the secondary, we

V2

+

−

I2

ideal$
transformer$

K(n)V1 '

+

−

I1 '

V2 '

+

−

I2 '

Z1, eq

Z2, eq

Y2,eq

(a) Transformer circuit

V2

+

−

I2Z2, eq

K(n) 2 Z1, eq Y2,eq

(b) Equivalent circuit seen on the secondary side

Figure 3.18: Driving-point impedance V2/I2 on the secondary side.

can replace the ideal transformer and Z1,eq by the equivalent impedance |K(n)|2 Z2,eq and arrive at the
equivalent circuit in Figure 3.18(b) seen from the secondary side. The application of (3.4) then yields the
driving-point impedance:

V2

I2
=

✓
Y2,eq +

1
Z2,eq + |K(n)|2 ·Z1,eq

◆�1
(3.6)
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we have 
V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
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0 1
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Hence the driving-point impedance is

V1
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�
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�
+ Z1,eq
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�
Z2,eq/|K(n)|2

�
+ 1

or equivalently

V1

I1
= Z1,eq +

✓
Y1,eq +

1
Z2,eq/|K(n)|2

◆�1
(3.5)

It is the Thévenin equivalent on the primary side of a network consisting of impedances, admittances, as
well as an ideal transformer. The Thévenin equivalent (3.5) has a simple interpretation, as we now explain.

Shortcut.. Use (3.3a) to refer Z2,eq in the secondary to the primary, we can replace the ideal transformer
and Z2,eq by the equivalent impedance Z2,eq/|K(n)|2 and arrive at the equivalent circuit in Figure 3.17(b)
seen from the primary side. The application of (3.4) then yields the driving-point impedance (3.5).
Example 3.4 (V2/I2 on the secondary side.). Consider the circuit in Figure 3.18(a) where the primary
side is connected to the impedance Z1,eq. Use (3.3a) to refer Z1,eq in the primary to the secondary, we
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ideal$
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Z1, eq
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(a) Transformer circuit
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I2Z2, eq
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(b) Equivalent circuit seen on the secondary side

Figure 3.18: Driving-point impedance V2/I2 on the secondary side.

can replace the ideal transformer and Z1,eq by the equivalent impedance |K(n)|2 Z2,eq and arrive at the
equivalent circuit in Figure 3.18(b) seen from the secondary side. The application of (3.4) then yields the
driving-point impedance:

V2

I2
=

✓
Y2,eq +

1
Z2,eq + |K(n)|2 ·Z1,eq

◆�1
(3.6)

V2

I2
= Y2,eq +

1
Z2,eq + |K(n) |2 ⋅ Z1,eq

−1
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Reference from one circuit to the other is not always applicable


• Example: circuits containing parallel paths (see example later)


• Generally applicable in a radial network without parallel paths  


• Can always analyze original circuit using Kirchhoff’s and Ohm’s laws



Outline

1. Single-phase transformer


2. Three-phase transformer


3. Equivalent impedance


4. Per-phase analysis

• Example

• Normal systems


5. Per-unit normalization
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1. Convert all sources and loads in  configurations into their  equivalents


2. Convert all ideal transformers in  configurations into their  equivalents


3. Obtain phase  equivalent circuit by connecting all neutrals


4. Solve for desired phase-  variables

• Use Thevenin equivalent of series impedances and shunt admittances in networks 

containing transformers whenever applicable, e.g., for a radial network


5. Obtain variables for phases  and  by subtracting  and  from 
phase  variables (positive sequence sources)


• If variables in the internal of  configurations are desired, derive them from 
original circuits

Δ Y
Δ Y

a
a

b c 120∘ 240∘

a
Δ
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Δ Y ΔY
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(a) One-line diagram
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Figure 3.19: Example 3.5.

Balanced 3  system 
• Generator with line voltage 


• Step-up  transformer

• Transmission line with series 

impedance 


• Step-down  transformer 
(primary on right) 


• Load with impedance 

• Single-phase transformer with 

voltage gain  and series 
impedance  on primary side

ϕ
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• Transmission line with series 

impedance 
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• Load with impedance 

• Single-phase transformer with 
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 on primary side

ϕ
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Calculate 
• Generator current 

• Transmission line current 

• Load current 

• Load voltage 

• Power delivered to load: 

I1
I2

I3
V3

V3I*3
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Solution strategy 
• Refer all impedances to 

primary side of step-up 
transformer


• Derive driving-point 
impedance 


• Derive generator current 

• Propagate calculation 

towards load 

V1/I1
I1
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|K(n) |2 (Zload + Zl)

transformer gains on  is canceledZload

1
|K(n) |2 ⋅ (Zline + |K(n) |2 (Zload + Zl))

V1

I1
= 2 Zl +

Zline
|K(n) |2 + Zload
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I1 =
Vline/( 3eiπ/6)

2 Zl +
Zline
|K(n) |2

+ Zload

I2 = I1

K*(n)

I3 = K*(n) I2 = I1
V3 = Zload I3 = Zload I1
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I1 =
Vline/( 3eiπ/6)

2 Zl +
Zline
|K(n) |2

+ Zload

I3 = I1
V3 = Zload I1

• External behavior does not depend on 
connection-induced phase shift 


• Only internal variables  does
eiπ/6

Iline
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(b) Equivalent circuit without connection-induced phase
shift

Figure 3.20: P-model of transmission line in place of the series impedance Zline model in Figure 3.19(b).

3.4.2 Normal systems

A system is called normal if, in the per-phase equivalent circuit, the product of the complex ideal trans-
former gains around every loop is 1. Equivalently, on each parallel path,

1. the product of ideal transformer gain magnitudes is the same, and

2. the sum of ideal transformer phase shifts is the same.

Normal systems have a normalization that greatly simplifies analysis which we will discuss in Chapter
3.5. The following example motivates such a system.

Example 3.6 (Loop flows). Consider a generator and a load connected by two three-phase transformer
banks in parallel forming a loop as shown in Figure 3.21(a). The transformer in the upper path is charac-
terized by a series impedance and a complex gain K1. The transformer in the lower path is characterized
by the same series impedance and a possibly different complex gain K2. Suppose line-to-neutral voltage
of the generator bus is Vgen, the series impedance Zl of the transformer and the load impedance Zload in the
per-phase equivalent circuit are given, as shown in Figure 3.21(b). Derive the currents Iload, I0

1, I
0
2 in terms

of Vgen,Zl,Zload. Discuss the implications when

1. K2 = K1. This is the case if both transformer banks are YY -configured.

2. K2 = K1 e jq . This is the case if the upper transformer bank is YY -configure with a turns ratio of n
but the lower transformer bank is DY -configured with a turns ratio of n/

p
3 and q = p/6.

3. K2 = k · K1, k > 0. This is the case if both transformer banks are YY -configured but with different
turns ratios.

Terminal behavior does not depend on 

• The simplified model has the same transmission matrix

eiπ/6
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A system is normal if, in its per-phase circuit, the product of complex ideal 
transformer gains around every loop is 1


Equivalently, on each parallel path,

1. Product of ideal transformer gain magnitudes is the same, and

2. Sum of ideal transformer phase shifts is the same



Normal systems

Steven Low     EE/CS/EST 135    Caltech

Example
102 EE 135 Notes October 7, 2021

1:K1

1:K2

load
Zl '

Zl '

gen

(a) Transmission line P-model

Vload

+

−

I1
Zl

Zload

K1

Zl

K2

I2

I1 '

I2 '

I load+
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(b) Equivalent circuit without connection-induced phase
shift

Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are

Iload = I0
1 + I0

2

Zload Iload = K1 ·
�
Vgen � Zl I1

�

Zload Iload = K2 ·
�
Vgen � Zl I2

�

I0
j =

I j

K⇤
j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0

1, I
0
2 we have

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K1 ·

�
Vgen � Zl I1

�

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K2 ·

�
Vgen � Zl I2

�

or


Zl +Zload|K1|�2 Zload(K1 K⇤
2 )�1

Zload(K⇤
1 K2)�1 Zl +Zload|K1|�2

�
·


I1
I2

�
=


Vgen
Vgen

�

Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2
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Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are
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Generator & load connected by two 3  
transformers in parallel (forming a loop)

ϕ Per-phase circuit 
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Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
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2, I1, I2. The five equations that relate them are
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where the first equation expresses KCL, the second and third equations express the load voltage seen on
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Per-phase circuit 

Calculate 
• Load current 


• Line currents 

in terms of 


Implications when

•  (normal system)

• 

•

Iload
I′ 1, I′ 2

Vgen, Zl, Zload

K2 = K1
K2 = K1 eiθ

K2 = k ⋅ K1
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Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
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2, I1, I2. The five equations that relate them are
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where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0
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=
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Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are
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where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0
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2 we have
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Per-phase circuit 

 :


• 


• ,   

K2 = K1 eiθ

I′ 1 ≠ I′ 2

Iload
| I′ 1 |

=
1 + eiθ

|α1 |

Iload
| I′ 2 |

=
1 + eiθ

|α2 |

Example:  :


• ,   

K2 = K1 eiπ/6

Iload
| I′ 1 |

= 20.6 %
Iload

| I′ 2 |
= 17.1 %

Most current loops between transformers 
without entering load
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Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are
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where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0
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Example:  :


• ,     MVA

K2 = K1 eiπ/6

Sgen = 183 ∠71∘ Sload = 60 ∠0∘

Most current loops between transformers 
without entering load



Normal systems

Steven Low     EE/CS/EST 135    Caltech

Example

102 EE 135 Notes October 7, 2021

1:K1

1:K2

load
Zl '

Zl '

gen

(a) Transmission line P-model

Vload

+

−

I1
Zl

Zload

K1

Zl

K2

I2

I1 '

I2 '

I load+

−

Vgen

(b) Equivalent circuit without connection-induced phase
shift

Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are

Iload = I0
1 + I0

2

Zload Iload = K1 ·
�
Vgen � Zl I1

�

Zload Iload = K2 ·
�
Vgen � Zl I2

�

I0
j =

I j

K⇤
j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0

1, I
0
2 we have

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K1 ·

�
Vgen � Zl I1

�

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K2 ·

�
Vgen � Zl I2

�

or


Zl +Zload|K1|�2 Zload(K1 K⇤
2 )�1

Zload(K⇤
1 K2)�1 Zl +Zload|K1|�2

�
·


I1
I2

�
=


Vgen
Vgen

�

Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2

Per-phase circuit 

 :


• 


• ,   

K2 = k ⋅ K1

I′ 1 ≠ I′ 2

Iload
| I′ 1 |

= 1 + k−1

|α1 |

Iload
| I′ 2 |

= 1 + k
|α2 |

Example:  :


• ,   

K2 = 2K1

Iload
| I′ 1 |

= 29.4 %
Iload

| I′ 2 |
= 29.9 %

Most current loops between transformers 
without entering load



Outline

1. Single-phase transformer


2. Three-phase transformer


3. Equivalent impedance


4. Per-phase analysis


5. Per-unit normalization

• Kirchhoff’s and Ohm’s laws

• Across ideal transformer

• 3  quantities

• Per-unit per-phase analysis

ϕ
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Per-unit normalization
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• Quantities of interest: voltages , currents , power , impedances 


• 


• Base values 

• Real positive values

• Same units as actual quantities


• Choose base values to satisfy same physical laws

• Kirchhoff’s and Ohm’s laws

• Across ideal transformer


• Relationship between 3  and 1  quantities

V I S Z

quantity in p.u. =
actual quantity

base value of quantity

ϕ ϕ



Per-unit normalization
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General procedure 

1. Choose voltage base value  for (say) area 1


2. Choose power base value  for entire network

3. Calculate all other base values from physical laws


Example: Choose

1.   =  nominal voltage magnitude of area 1


2.     =  rated apparent power of a transformer in area 1

V1B

SB

V1B

SB

How to calculate the other base values ?


• Consider single-phase or per-phase circuit of balanced 3  system
(ViB, IiB, ZiB)

ϕ



Kirchhoff’s and Ohm’s laws
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Given base values , within area 1:





Then: physical laws are satisfied by both the base values and p.u. quantities





Can perform circuit analysis using pu quantities instead of actual quantities

(V1B, SB)
I1B := SB

V1B
A, Z1B := V2

1B

SB
Ω

V1B = Z1B I1B, V1pu = Z1pu I1pu
SB = V1B I1B, S1pu = V1pu I1pu



Kirchhoff’s and Ohm’s laws
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These quantities  serve as base values for other quantities 
within area 1, with appropriate units


•  is base value for real power in W, reactive power in var





•  is base value for resistances & reactances in 





•  in is base value for conductances, susceptances, & admittances


(V1B, SB, I1B, Z1B)
SB

P1pu := P1

SB
, Q1pu := Q1

SB
, S1pu = P1pu + iQ1pu

Z1B Ω

R1pu := R1

Z1B
, X1pu := X1

Z1B
, Z1pu = R1pu + iX1pu

Y1B := 1/Z1B Ω−1

G1pu := G1

Y1B
, B1pu := B1

Y1B
, Y1pu = G1pu + iB1pu = 1

Z1pu

Other quantities



Across ideal transformer

Steven Low     EE/CS/EST 135    Caltech

Choose  according to





Base values remain real positive


 remains base value for power

(V2B, I2B, Z2B)
V2B := |K(n) | V1B V

I2B :=
I1B

|K(n) |
A

Z2B := |K(n) |2 Z1B Ω

SB
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(a) In standard unit

!V1pu =V2pu

+

−

!I1pu = I2pu
Zlpu

YmpuV1pu

+

−

I1pu

(b) In per unit

Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

area 1 area 2



Across ideal transformer
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External behavior


Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)
|K(n) |

V2B
= V2pu e−j∠K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K*(n)I2

|K(n) | I2B
= I2pu e−j∠K(n)

If  then
∠K(n) = 0
Ṽ1pu = V2pu, Ĩ1pu = I2pu
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(a) In standard unit

!V1pu =V2pu

+

−

!I1pu = I2pu
Zlpu

YmpuV1pu

+

−

I1pu

(b) In per unit

Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

area 1 area 2



Across ideal transformer
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(a) In standard unit

!V1pu =V2pu

+

−

!I1pu = I2pu
Zlpu

YmpuV1pu

+

−

I1pu

(b) In per unit

Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

area 1 area 2

Ideal transformer has disappeared !

If  then
∠K(n) = 0
Ṽ1pu = V2pu, Ĩ1pu = I2pu

EE 135 Notes October 8, 2021 107

(a) In standard unit

!V1pu =V2pu

+

−

!I1pu = I2pu
Zlpu

YmpuV1pu

+

−

I1pu

(b) In per unit

Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

per-unit circuit
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 if


• 1  or balanced 3  in  or 


• Normal systems where connection-
induced phase shifts can be ignored

∠K(n) = 0
ϕ ϕ YY ΔΔ
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(a) In standard unit

!V1pu =V2pu

+

−

!I1pu = I2pu
Zlpu

YmpuV1pu

+

−

I1pu

(b) In per unit

Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

area 1 area 2
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(a) In standard unit
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Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

per-unit circuit



Across ideal transformer

Steven Low     EE/CS/EST 135    Caltech

Otherwise

• pu circuit contains an off-nominal 

phase-shifting transformer
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(a) In standard unit
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Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

per-unit circuit

e∠K(n)
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Figure 3.22: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for the other side of the
transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.9)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.22(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤
1pu = V2puI⇤

2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.22(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for terminal behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.8.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area

area 1 area 2

Ĩ1pu

Ṽ1pu



Across ideal transformer

Steven Low     EE/CS/EST 135    Caltech

Example

108 EE 135 Notes October 8, 2021

satisfy the Kirchhoff’s laws, as long as the per-unit quantities in area 1 satisfy the Kirchhoff’s laws and
those in other areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer gain magnitudes is the
same, and (ii) the sum of ideal transformer phase shifts is the same. As discussed above these properties
prevent loop flows between transformers, as illustrated in Example 3.6. Note that in Figure 3.21(b) of that
example, the secondary-side voltages of the two ideal transformers are the same but their primary-side
voltages are different when K2 = K1e jq with q 6= 0. The first property also ensures that the calculation
(3.9) of base values across areas is consistent, i.e., does not depend on the order in which the areas are
chosen for calculation; see Exercise 3.8.

Example 3.7 (Single-phase system). Consider the single-phase system in Figure 3.23 where the voltage
source has a nameplate rated voltage magnitude of v V and a nameplate rated power of s VA. Calculate

V1

+

−

V2

+

−

I2I1

1: 3n

Zl

e jπ /6
+

−

!"#$ V3

+

−

I3

1: 3n

Zl

e jπ /6 Zload

Zline

%

1: () (*: 1

area		1 area		2 area		3

Figure 3.23: Single-phase system for Example 3.7 with a rated voltage magnitude of v in V and a rated
apparent power of s in VA.

the base values for the system.

Solution. Let the base value for power be SB := s in VA for the entire system and the base value for voltage
in area 1 (where the voltage source is) be V1B := v in V . Then the base values for currents and impedances
in area 1 are respectively:

I1B :=
s
v

A and Z1B :=
v2

s
W

The base values in area 2 connected by the first transformer with a turns ratio n1 are:

V2B := n1V1B = n1 v V

I2B :=
I1B

n1
=

1
n1

s
v

A

Z2B := n2
1 Z1B = n2

1
v2

s
W, Y2B :=

1
Z2B

=
1
n2

1

s
v2 W�1

Given nameplate rating 

of generator


• Voltage  V

• Apparent power  VA


Calculate base values

v
s

Voltage base ,  power base 


• Area 1:  ,   


• Area 2:  ,  ,  ,  


• Area 3:  ,  ,  ,  

V1B := v SB := s
I1B := s/v Z1B := v2/s
V2B := n1v I2B := s/(n1v) Z2B := (n1v)2/s Y2B := s/(v1v)2

V3B := n1v/n2 I3B := n2s/(n1v) Z3B := (n1v)2/(n2
2s) Y3B := (n2

2s)/(v1v)2



3  quantitiesϕ
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Given 1  devices (generators, lines, loads) with 


• with 1  quantities  


• and their base values


Construct balanced 3  devices from these 1  devices


• What are 3  quantities of interest? 


• What are base values so that 3  quantities equal to 1  quantities in p.u.?


ϕ
ϕ (S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

ϕ ϕ
ϕ

ϕ ϕ

Base values should satisfy the same 3  relationships as actual quantities

Values depend on the configuration,  or 

ϕ
Y Δ
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 configurationY

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Ian = I1ϕ, I3ϕ
B = I1ϕ

B

Vln = V1ϕ, Vln
B = V1ϕ

B

Z3ϕ = Z1ϕ, Z3ϕ
B = Z1ϕ

B
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 configurationY

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Ian = I1ϕ, I3ϕ
B = I1ϕ

B

Vln = V1ϕ, Vln
B = V1ϕ

B

Z3ϕ = Z1ϕ, Z3ϕ
B = Z1ϕ

B

Calculation 
Base values satisfy 
the same relationship
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 configurationΔ
In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Iab − Ica = 3 e−iπ/6 I1ϕ, I3ϕ
B = 3 I1ϕ

B

Vln = ( 3 eiπ/6)
−1

V1ϕ, Vln
B = ( 3)−1V1ϕ

B

Z3ϕ = Z1ϕ/3, Z3ϕ
B = Z1ϕ

B /3

Note: 

 are voltage 
and & impedance in 

 equivalent circuit

Vln, Z3ϕ

Y
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 configurationΔ
• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Iab − Ica = 3 e−iπ/6 I1ϕ, I3ϕ
B = 3 I1ϕ

B

Vln = ( 3 eiπ/6)
−1

V1ϕ, Vln
B = ( 3)−1V1ϕ

B

Z3ϕ = Z1ϕ/3, Z3ϕ
B = Z1ϕ

B /3

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

Note: 

 are voltage 
and & impedance in 

 equivalent circuit

Vln, Z3ϕ

Y
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Per-unit quantities satisfy


S3ϕ
pu = S1ϕ

pu, Vll
pu = Vln

pu, Z3ϕ
pu = Z1ϕ

pu

Vln
pu = V1ϕ

pu , I3ϕ
pu = I1ϕ

pu

• 3  quantities equal 1  quantities in p.u.

• modulo phase shifts in  configuration:


ϕ ϕ
Δ

Vln
pu :=

Vln

Vln
B

=
( 3eiπ/6)

−1
V1ϕ

( 3)
−1

V1ϕ
B

= e−iπ/6 V1ϕ
pu
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1. For single-phase system, pick power base  for entire system and voltage base 
 in area 1, e.g., induced by nameplate ratings of transformer


2. For balanced 3  system, pick 3  power base  and line-to-line voltage base  
induced by nameplate ratings of 3  transformer.  Then choose power & voltage 
bases for per-phase equivalent circuit:





  will be power base for entire per-phase circuit.

3. Calculate current and impedance bases in that area:


S1ϕ
B

V1ϕ
1B

ϕ ϕ S3ϕ
B Vll

B
ϕ

S1ϕ
B := S3ϕ

B / 3, V1ϕ
1B := Vll

1B / 3

S1ϕ
1B

I1B :=
S1ϕ

B

V1ϕ
1B

, Z1B :=
(V1ϕ

1B )
2

S1ϕ
B
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4. Calculate base values for voltages, currents, and impedances in areas  connected 
to area 1 using the magnitude  of transformer gains (assume area 1 is primary):





Continue this process to calculate the voltage, current, and impedance base values 
for all areas

i
ni

V1ϕ
iB := ni V1ϕ

1B , Vll
iB := ni Vll

1B, IiB :=
1
ni

I1B, ZiB := n2
i Z1B



Per-unit per-phase analysis
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5. For real, reactive, apparent power in entire system, use  as base value.  


For resistances and reactances, use  as base value in area .


For admittances, conductances, and susceptancesq, use  as base 
value in area 


6. Draw impedance diagram of entire system, and solve for desired per-unit quantities


7. Convert back to actual quantities if desired

S1ϕ
B

ZiB i
YiB := 1/ZiB

i



Summary
1. Single-phase transformer


• Ideal transformer gain , equivalent circuit


2. Three-phase transformer

• : external behavior,  equivalent


3. Equivalent impedance

• Short cut for analyzing circuits containing transformers

• Transmission matrix, driving-point impedance


4. Per-phase analysis


5. Per-unit normalization

• Physical laws, across transformer, 3  quantities, per-unit per-phase analysis

n

YY, ΔΔ, ΔY, YΔ YY

ϕ
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