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Power Systems Analysis
Chapter 5  Bus injection models
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Steven Low    Caltech    Overview

device models

line/transformer 

models

nodal

current/power


balance
network models

single-phase or 3-phase



Single-phase devices

1. Single-terminal device 


• Voltage source , current source , power source , impedance 


• Terminal variables 


• External model: relation between  or 


2. Two-terminal device 


• Line , transformer 


• Terminal variables  and  


• External model: relation between  or 

j

(Ej, zj) (Jj, yj) (σj, zj) zj

(Vj, Ij, sj)
(Vj, Ij) (Vj, sj)

(j, k)
(ys

jk, ym
jk , ym

kj) (njk, ys
jk, ym

jk)
(Vj, Ijk, Sjk) (Vk, Ikj, Skj)

(Vj, Vk, Ijk, Ikj) (Vj, Vk, Sjk, Skj)
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Single-phase devices

1. Voltage source 

• Constant internal voltage  with series impedance 

• Models for Thevenin equivalent circuit of a balanced 

synchronous machine, secondary side of transformer, grid-
forming inverter


• External model: 


• External model: 

(Ej, zj)
Ej zj

Vj = Ej − zjIj

sj = VjI𝖧
j = y𝖧

j Vj (Ej − Vj)
𝖧
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Chapter 4

Other devices

This chapter is now a random collection of devices often encountered in power flow models. Needs major
revision later.

4.1 Generator

A circuit model of a round-rotor generator is shown in Figure 4.1 (upper panel). It models a generator as
a voltage source with a constant open-circuit internal voltage Ea in series with an impedance zs = r + ix

network#Ea
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−

Ia

Va

+

−

zs

network#Is

Ia

Va

+

−

ys

equiv#generator#model#

z#
z#

Figure 4.1: Per-phase circuit model of a round-rotor generator with an open-circuit internal voltage Ea
and series impedance zs (upper panel). The generator as a voltage source can be equivalently modeled as
a current source Is i n parallel with a shunt admittance ys (lower panel).

consisting of a winding resistance r and a synchronous reactance x. Given a generator (Ea,zs), its terminal
voltage and current (Va, Ia) are related by

Va = Ea � zsIa
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Single-phase devices

2. Current source 

• Constant internal current  with shunt admittance 


• Models for Norton equivalent circuit of a synchronous 
generator, load (e.g. electric vehicle charger), grid-following 
inverter


• External model: 


• External model: 

(Jj, yj)
Jj yj

Ij = Jj − yjVj

sj = VjI𝖧
j = Vj (Jj − yjVj)

𝖧
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Single-phase devices

3. Power source 


• Constant internal power  in series with impedance 


• Models for load, generator, secondary side of transformer


• External model: 


• External model: 

(σj, zj)
σj zj

σj = (Vj − zjIj) I𝖧
j

sj = VjI𝖧
j = σj + zjIjI𝖧

j
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Single-phase devices

4. Impedance 

• Constant impedance 

• Models for load


• External model: 


• External model: 

zj
z

Vj = zjIj

sj = VjI𝖧
j =

Vj
2

z𝖧
j
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Single-phase line (ys
jk, ym

jk , ym
kj)

 relation:  circuit and admittance matrix VI Π Yline

Ijk = ys
jk(Vj − Vk) + ym

jk Vj,
Ikj = ys

jk(Vk − Vj) + ym
kj Vk
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[
Ijk

Ikj] = [
ys

jk + ym
jk −ys

jk

−ys
jk ys

jk + ym
kj]

Yline

[
Vj

Vk]

admittance matrix  : 

• complex symmetric

•  series admittance

Yline

[Y]jk = −
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from the terminal to the reference point; see Figure 5.1. Such a single-terminal device is characterized by
relations between the terminal variables (Vj, I j,s j).

1. Voltage source
�
E j,z j

�
. This is a device with a constant internal voltage E j in series with an

impedance z j as shown in Figure 1.1.2(a). Its external model is the relation Vj = E j � z jI j be-
tween its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
E j �Vj

�H
/zHj

between the terminal variables
�
Vj,s j

�
.

2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.1.2(b). Its external model is the relation I j = Jj � y jVj between
its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between
the terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z jI jIHj .

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

5.1.2 Single-phase line

In Chapter 2 we describe the P circuit model of a single-phase line. It is also a per-phase model of balanced
three-phase lines. A line has two terminals ( j,k) and is specified by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where
ys

jk = ys
k j is the series admittance of the line, ym

jk is the shunt admittance of the line at terminal j, and ym
k j is

the shunt admittance of the line at terminal k; see Figure 5.1. Recall that if ( j,k) represents a transmission
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Figure 5.1: P circuit model of a single-phase line.

line then (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k), and

the currents through these shunt admittances model the current supplied to the line capacitance called the
charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2 C

3. Unlike in Chapter 2.2.2 we have



Single-phase line (ys
jk, ym

jk , ym
kj)

 relation:  circuit and admittance matrix VI Π Yline

Ijk = ys
jk(Vj − Vk) + ym

jk Vj,
Ikj = ys

jk(Vk − Vj) + ym
kj Vk
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from the terminal to the reference point; see Figure 5.1. Such a single-terminal device is characterized by
relations between the terminal variables (Vj, I j,s j).

1. Voltage source
�
E j,z j

�
. This is a device with a constant internal voltage E j in series with an

impedance z j as shown in Figure 1.1.2(a). Its external model is the relation Vj = E j � z jI j be-
tween its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
E j �Vj

�H
/zHj

between the terminal variables
�
Vj,s j

�
.

2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.1.2(b). Its external model is the relation I j = Jj � y jVj between
its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between
the terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z jI jIHj .

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

5.1.2 Single-phase line

In Chapter 2 we describe the P circuit model of a single-phase line. It is also a per-phase model of balanced
three-phase lines. A line has two terminals ( j,k) and is specified by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where
ys

jk = ys
k j is the series admittance of the line, ym

jk is the shunt admittance of the line at terminal j, and ym
k j is

the shunt admittance of the line at terminal k; see Figure 5.1. Recall that if ( j,k) represents a transmission
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Figure 5.1: P circuit model of a single-phase line.

line then (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k), and

the currents through these shunt admittances model the current supplied to the line capacitance called the
charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2 C

3. Unlike in Chapter 2.2.2 we have

Their sum is total line current loss





If , then 

Ijk + Ikj = ym
jkVj + ym

kjVk ≠ 0

ym
jk = ym

kj = 0 Ijk = − Ikj



Single-phase line (ys
jk, ym

jk , ym
kj)

 relationVs

Sjk := VjIH
jk = (ys

jk)
H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Skj := VkIH
kj = (ys

jk)
H

( |Vk |2 − VkVH
j ) + (ym

kj)
H

|Vk |2
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from the terminal to the reference point; see Figure 5.1. Such a single-terminal device is characterized by
relations between the terminal variables (Vj, I j,s j).

1. Voltage source
�
E j,z j

�
. This is a device with a constant internal voltage E j in series with an

impedance z j as shown in Figure 1.1.2(a). Its external model is the relation Vj = E j � z jI j be-
tween its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
E j �Vj

�H
/zHj

between the terminal variables
�
Vj,s j

�
.

2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.1.2(b). Its external model is the relation I j = Jj � y jVj between
its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between
the terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z jI jIHj .

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

5.1.2 Single-phase line

In Chapter 2 we describe the P circuit model of a single-phase line. It is also a per-phase model of balanced
three-phase lines. A line has two terminals ( j,k) and is specified by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where
ys

jk = ys
k j is the series admittance of the line, ym

jk is the shunt admittance of the line at terminal j, and ym
k j is
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Figure 5.1: P circuit model of a single-phase line.

line then (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k), and

the currents through these shunt admittances model the current supplied to the line capacitance called the
charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2 C

3. Unlike in Chapter 2.2.2 we have

quadratic equations



Single-phase line (ys
jk, ym

jk , ym
kj)

 relationVs
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1. Voltage source
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impedance z j as shown in Figure 1.1.2(a). Its external model is the relation Vj = E j � z jI j be-
tween its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
E j �Vj

�H
/zHj

between the terminal variables
�
Vj,s j

�
.

2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.1.2(b). Its external model is the relation I j = Jj � y jVj between
its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between
the terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z jI jIHj .

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
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/zHj .

5.1.2 Single-phase line
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3 where
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line then (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k), and

the currents through these shunt admittances model the current supplied to the line capacitance called the
charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2 C

3. Unlike in Chapter 2.2.2 we have

Line loss


Sjk + Skj = (ys
jk)

H
Vj − Vk

2
+ (ym

jk)
H

|Vj |
2 + (ym

kj)
H

|Vk |2

series loss shunt loss



Single-phase transformer (K (njk), ys
jk, ym

jk)
Real K (njk) = njk

Ijk = ys
jk (Vj − ajkVk)

Ijk = ym
jk ajkVk + njk(−Ikj)
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The first term on the right-hand side is loss due to series impedance and the last two terms are losses due
to shunt admittances of the line. Thermal limits on branch power flows should be imposed on both |S jk|
and |Sk j|:

|S jk| =

����
⇣

ys
jk

⌘H �
|Vj|2 �VjV H

k
�

+
⇣

ym
jk

⌘H
|Vj|2

����  Smax
jk

|Sk j| =

����
⇣

ys
jk

⌘H �
|Vk|2 �VkV H

j
�

+
⇣

ym
k j

⌘H
|Vk|2

����  Smax
k j

not just on
����
⇣

ys
jk

⌘H �
|Vj|2 �VjV H

k
����� and

����
⇣

ys
jk

⌘H ⇣
|Vk|2 �VkV H

j

⌘���� unless the shunt admittances are zero.

If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (5.3) and (5.1a) we have

S jk +Sk j = zs
jk ·

���ys
jk

���
2 ��Vj �Vk

��2
= zs

jk
��I jk

��2

because I jk = ys
jk(Vj �Vk) = �Ik j when the shunt elements are zero. This is not the case otherwise.

5.1.3 Single-phase transformer

In Chapter 3 we describe circuit models of a single-phase transformer. They are also per-phase models of
balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its voltage
gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the per-
phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ys

jk and shunt admittance ym
jk

in the primary circuit, as shown in Figure 5.2(a).
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Figure 5.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

[
Ijk

Ikj] =
ys

jk −ajk ys
jk

−ajk ys
jk a2

jk (ys
jk + ym

jk)
Ytransformer

[
Vj

Vk]

 : complex symmetric

Hence: admittance matrix with equivalent  circuit
Ytransformer

Π
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The first term on the right-hand side is loss due to series impedance and the last two terms are losses due
to shunt admittances of the line. Thermal limits on branch power flows should be imposed on both |S jk|
and |Sk j|:

|S jk| =

����
⇣
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jk

⌘H �
|Vj|2 �VjV H

k
�

+
⇣

ym
jk

⌘H
|Vj|2

����  Smax
jk

|Sk j| =

����
⇣
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⌘H �
|Vk|2 �VkV H
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�
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⇣
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k j
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k j

not just on
����
⇣
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jk

⌘H �
|Vj|2 �VjV H

k
����� and

����
⇣

ys
jk

⌘H ⇣
|Vk|2 �VkV H

j

⌘���� unless the shunt admittances are zero.

If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (5.3) and (5.1a) we have
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because I jk = ys
jk(Vj �Vk) = �Ik j when the shunt elements are zero. This is not the case otherwise.

5.1.3 Single-phase transformer

In Chapter 3 we describe circuit models of a single-phase transformer. They are also per-phase models of
balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its voltage
gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the per-
phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ys

jk and shunt admittance ym
jk

in the primary circuit, as shown in Figure 5.2(a).
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Figure 5.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

ỹs
jk := ajk ys

jk

ỹm
jk := (1 − ajk)ys

jk

ỹm
kj := ajk(ajk − 1)ys

jk + a2
jk ym

jk

ỹm
jk ≠ ỹm

kj

Single-phase transformer (K (njk), ys
jk, ym

jk)
Real K (njk) = njk
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The first term on the right-hand side is loss due to series impedance and the last two terms are losses due
to shunt admittances of the line. Thermal limits on branch power flows should be imposed on both |S jk|
and |Sk j|:
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⌘���� unless the shunt admittances are zero.

If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (5.3) and (5.1a) we have
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because I jk = ys
jk(Vj �Vk) = �Ik j when the shunt elements are zero. This is not the case otherwise.

5.1.3 Single-phase transformer

In Chapter 3 we describe circuit models of a single-phase transformer. They are also per-phase models of
balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its voltage
gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the per-
phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ys

jk and shunt admittance ym
jk

in the primary circuit, as shown in Figure 5.2(a).
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Figure 5.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

Ijk = ys
jk (Vj − ajkVk)

Ijk = ym
jk ajkVk + njk(−Ikj)
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•  : not complex symmetric

• Has no equivalent  circuit


• Use transmission matrix for analysis

Ytransformer
Π
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The first term on the right-hand side is loss due to series impedance and the last two terms are losses due
to shunt admittances of the line. Thermal limits on branch power flows should be imposed on both |S jk|
and |Sk j|:
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If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (5.3) and (5.1a) we have
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because I jk = ys
jk(Vj �Vk) = �Ik j when the shunt elements are zero. This is not the case otherwise.

5.1.3 Single-phase transformer

In Chapter 3 we describe circuit models of a single-phase transformer. They are also per-phase models of
balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its voltage
gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the per-
phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ys

jk and shunt admittance ym
jk

in the primary circuit, as shown in Figure 5.2(a).
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Figure 5.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

Single-phase transformer (K (njk), ys
jk, ym

jk)
Complex K (njk)

[
Ijk

Ikj] =
ys

jk −ys
jk /Kjk(n)

−ys
jk /K𝖧

jk(n) (ys
jk + ym

jk)/ |Kjk(n) |2

Ytransformer

[
Vj

Vk]
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Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.
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(a) One-line diagram
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(1− n)y
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(b) Equivalent P circuit model

Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by


aI1
I2

�
=


y �y

�y y

�
nV1
V2

�

Since


aI1
I2

�
=


a 0
0 1

�
I1
I2

�
,


nV1
V2

�
=


n 0
0 1

�
V1
V2

�

the terminal model of the subsystem in Figure 5.5(a) is


I1
I2

�
=


n 0
0 1

�
y �y

�y y

�
n 0
0 1

�
V1
V2

�
=


n2y �ny
�ny y

�

| {z }
Y1


V1
V2

�

We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.

System 
• Generator: current source 

• Transformer 

• Transmission line with series admittance 

• Load: current source 

(I1, y1)
(n, yl, ym)

y
(I2, y2)

Derive 
• Derive network model (admittance matrix )Y

Derive  in 2 stepsY
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Figure 5.4: A non-ideal transformer in series with a transmission line.

Kirchhoff’s current law at each node gives:

I1 = I13, 0 = I3 = I31 + I32, I2 = I23

where I3 = 0 because node 3 is internal to the non-ideal transformer. Eliminating branch currents relates
nodal currents (I1, I2, I3) to nodal voltages (V1,V2,V3) through matrix Y1:

2

4
I1
I2
I3

3

5 =

2

4
yl 0 �ayl

0 y �y
�ayl �y y+a2 �

yl + ym�

3

5

| {z }
Y1

2

4
V1
V2
V3

3

5 (5.6)

The matrix Y1 is complex symmetric and is therefore an admittance matrix that can be represented as a P
circuit as shown in Figure 5.5 where ỹs

13 := ayl , ỹm
13 := (1�a)yl and ỹm

31 := a(a�1)yl +a2ym.












































































































Figure 5.5: P circuit model of the system in Figure 5.4.

Example 5.2 (Overall system). Finally the circuit model of the overall system that includes the two current
sources that model the generator and the load is shown in Figure 5.6(a). (SL: ys

1 ! y1 and ys
2 ! y2 in

Figure 5.6(a).) The only changes to the admittance matrix, compared with the admittance matrix Y1 in
(5.6), are the additional shunt admittances y1,y2 at nodes 1 and 2 respectively. They should be added to
the first two diagonal entries of Y1. The overall network can therefore be modeled by an admittance matrix

[I13
I31] = [

yl −a yl

−a yl a2 (yl + ym)] [V1
V3]

[I32
I23] = [ y −y

−y y ] [V3
V2]

Nodal current balance (KCL): 


I1 = I13

I3 = I31 + I32 = 0
I2 = I23

relate branch currents with

nodal voltages
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Figure 5.4: A non-ideal transformer in series with a transmission line.

Kirchhoff’s current law at each node gives:

I1 = I13, 0 = I3 = I31 + I32, I2 = I23

where I3 = 0 because node 3 is internal to the non-ideal transformer. Eliminating branch currents relates
nodal currents (I1, I2, I3) to nodal voltages (V1,V2,V3) through matrix Y1:
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5 (5.6)

The matrix Y1 is complex symmetric and is therefore an admittance matrix that can be represented as a P
circuit as shown in Figure 5.5 where ỹs

13 := ayl , ỹm
13 := (1�a)yl and ỹm

31 := a(a�1)yl +a2ym.












































































































Figure 5.5: P circuit model of the system in Figure 5.4.

Example 5.2 (Overall system). Finally the circuit model of the overall system that includes the two current
sources that model the generator and the load is shown in Figure 5.6(a). (SL: ys

1 ! y1 and ys
2 ! y2 in

Figure 5.6(a).) The only changes to the admittance matrix, compared with the admittance matrix Y1 in
(5.6), are the additional shunt admittances y1,y2 at nodes 1 and 2 respectively. They should be added to
the first two diagonal entries of Y1. The overall network can therefore be modeled by an admittance matrix

Eliminate branch currents:

I1
I2
I3

=
yl 0 −ayl

0 y −y
−ayl −y y + a2 (yl + ym)

Y1

V1
V2
V3

•  : complex symmetric

• Hence: admittance matrix with  circuit

• Unequal shunt elements

Y1
Π
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Figure 5.4: A non-ideal transformer in series with a transmission line.

Kirchhoff’s current law at each node gives:

I1 = I13, 0 = I3 = I31 + I32, I2 = I23

where I3 = 0 because node 3 is internal to the non-ideal transformer. Eliminating branch currents relates
nodal currents (I1, I2, I3) to nodal voltages (V1,V2,V3) through matrix Y1:
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5 (5.6)

The matrix Y1 is complex symmetric and is therefore an admittance matrix that can be represented as a P
circuit as shown in Figure 5.5 where ỹs

13 := ayl , ỹm
13 := (1�a)yl and ỹm

31 := a(a�1)yl +a2ym.












































































































Figure 5.5: P circuit model of the system in Figure 5.4.

Example 5.2 (Overall system). Finally the circuit model of the overall system that includes the two current
sources that model the generator and the load is shown in Figure 5.6(a). (SL: ys

1 ! y1 and ys
2 ! y2 in

Figure 5.6(a).) The only changes to the admittance matrix, compared with the admittance matrix Y1 in
(5.6), are the additional shunt admittances y1,y2 at nodes 1 and 2 respectively. They should be added to
the first two diagonal entries of Y1. The overall network can therefore be modeled by an admittance matrix
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Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.
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(a) One-line diagram
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(b) Equivalent P circuit model

Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by


aI1
I2

�
=


y �y

�y y

�
nV1
V2

�

Since


aI1
I2

�
=


a 0
0 1

�
I1
I2

�
,


nV1
V2

�
=


n 0
0 1

�
V1
V2

�

the terminal model of the subsystem in Figure 5.5(a) is


I1
I2

�
=


n 0
0 1

�
y �y

�y y

�
n 0
0 1

�
V1
V2

�
=


n2y �ny
�ny y

�

| {z }
Y1


V1
V2

�

We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.
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(a) One-line diagram












































































































(b) Equivalent circuit model

Figure 5.6: Generator, transformer, transmission line and load.

Y that relates nodal current injections and nodal voltages (setting I3 = 0):
2

4
I1
I2
0

3

5 =

2

4
yl + y1 0 �ayl

0 y+ y2 �y
�ayl �y y+a2 �

yl + ym�

3

5

| {z }
Y1

2

4
V1
V2
V3

3

5

The terminal behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 5.2.3.

5.2.2 Admittance matrix Y

Notation. In general we model a power network by a connected undirected graph G = (N,E) where
N := {0}[ N, N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge
( j,k) in E may represent a transmission or distribution line or transformer. We also write j ⇠ k instead of
( j,k) 2 E. We use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.

Associated with each line ( j,k) 2 E are series and shunt admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
2 C

3 that define a P
equivalent circuit. We assume that both a transmission line and a transformer can be modeled by a P circuit
(as derived in Chapters 5.1.2 and 5.1.3) and will refer both as a “line” in the graph model G. Moreover,
as we have seen in Examples 5.1 and 5.2, a line ( j,k) in the graph G may represent a combination of
a transmission line, a transformer, as well as generator and load impedances. A consequence is that the
shunt admittances ym

jk and ym
k j are generally different.

In bus injection models we are interested in nodal variables (Vj, I j,s j) 2 C
3, j 2 N, where Vj is the

complex voltage at bus j with respect to an arbitrary but fixed common reference point, e.g., the ground.
Here I j and s j are the complex nodal current and power injections respectively into the network at bus j.
As mentioned above they can be interpreted as flowing from terminal j to the common reference point in
the circuit model. Bus 0 is the slack bus. Its voltage is fixed and we sometimes assume that V0 = 1\0�

per unit (pu), i.e., the voltage drop between bus 0 and the reference point is 1\0�. A bus j 2 N can
have a generator, a load, both or neither and

�
I j,s j

�
are the net current and power injections (generation
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Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.
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(a) One-line diagram
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(b) Equivalent P circuit model

Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by


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=


y �y

�y y
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Since

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=
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a 0
0 1
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,


nV1
V2

�
=
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n 0
0 1
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�

the terminal model of the subsystem in Figure 5.5(a) is


I1
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=


n 0
0 1
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=


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
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�

We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.
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−ayl −y y + a2 (yl + ym)
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generator/load

admittances

• Overall network model: ideal current sources 
connected by network


• Network: admittance matrix  

•  includes admittances of non-ideal current 

sources

Y
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Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.
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Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by
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the terminal model of the subsystem in Figure 5.5(a) is
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We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.












































































































I1
I2
I3

=
yl + y1 0 −ayl

0 y + y2 −y
−ayl −y y + a2 (yl + ym)
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generator/load

admittances

Kron reduction (see below) 
• Internal bus has zero injection 

• Can eliminate  

• External behavior: relation between  and 

I3 = 0
(V3, I3)

(I1, I2)
(V1, V2)



General network model
1. Network 


•  : buses/nodes/terminals

•  : lines/branches/links/edges


2. Each line  is parameterized by 

•  : series admittance

•  : shunt admittances, generally different

G := (N, E)
N := {0} ∪ N := {0} ∪ {1,…, N}
E ⊆ N × N

( j, k) (ys
jk, ym

jk , ym
kj)

ys
jk

ym
jk , ym

kj
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where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.
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Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

jk(Vk − Vj) + ym
kj Vk,
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Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

total shunt admittance: ym
jj := ∑k:j∼k ym

jk
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elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
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Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

total shunt admittance: ym
jj := ∑k:j∼k ym

jk
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Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:
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  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:

 can be written down by inspection of network graph

• Off-diagonal entry:  series admittance


• Diagonal entry: series admittances  +  total shunt admittance

Y
−

∑
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  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:

A matrix  is an admittance matrix iff it is complex symmetric

• Can be interpreted as a  circuit

Y
Π



 relationVI
Example
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where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (5.5b)

In vector form, this is I = YV where the admittance matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(5.5c)

Equation (5.5c) prescribes a way to write down the admittance matrix Y by inspection of the network
connectivity and line admittances: its off-diagonal entry is the negative of the series admittance on the
corresponding line while its diagonal entry is the sum of series and shunt admittances incident on the
corresponding bus. Clearly Y is symmetric, but not Hermitian unless Y is a real matrix.

Example 5.4. Consider the three-bus network shown in Figure 5.8. Each line ( j,k) is modeled by a P

V1 V2

I2I1

y12
s , y12

m , y21
m( )

y13
s , y13

m, y31
m( )

V3

I3

y23
s , y23

m , y32
m( )

I12

I13

I21

Figure 5.8: Three-bus network of Example 5.4.

circuit with a series admittance ys
jk and shunt admittances ym

jk and ym
k j (not necessarily equal) at two ends

of the line. The sending-end branch current from bus j to bus k is I jk and that from bus k to bus j is Ik j.
Applying Kirchhoff’s current law and Ohm’s law at bus 1 gives

I12 = ys
12(V1 �V2) + ym

12V1

I13 = ys
13(V1 �V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

I1
I2
I3

=
ys

12 + ys
13 + ym

11 −ys
12 −ys

13

−ys
12 ys

12 + ys
23 + ym

22 −ys
23

−ys
13 −ys

23 ys
13 + ys

23 + ym
33

V1
V2
V3

total shunt admittance: ym
jj := ∑k:j∼k ym

jk
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where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (5.5b)

In vector form, this is I = YV where the admittance matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(5.5c)

Equation (5.5c) prescribes a way to write down the admittance matrix Y by inspection of the network
connectivity and line admittances: its off-diagonal entry is the negative of the series admittance on the
corresponding line while its diagonal entry is the sum of series and shunt admittances incident on the
corresponding bus. Clearly Y is symmetric, but not Hermitian unless Y is a real matrix.

Example 5.4. Consider the three-bus network shown in Figure 5.8. Each line ( j,k) is modeled by a P

V1 V2

I2I1

y12
s , y12

m , y21
m( )

y13
s , y13

m, y31
m( )

V3

I3

y23
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m , y32
m( )

I12

I13

I21

Figure 5.8: Three-bus network of Example 5.4.

circuit with a series admittance ys
jk and shunt admittances ym

jk and ym
k j (not necessarily equal) at two ends

of the line. The sending-end branch current from bus j to bus k is I jk and that from bus k to bus j is Ik j.
Applying Kirchhoff’s current law and Ohm’s law at bus 1 gives

I12 = ys
12(V1 �V2) + ym

12V1

I13 = ys
13(V1 �V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

example:


C = [
1 0 −1

−1 1 0
0 −1 1]

bus-by-line incidence matrix


Cjl =
1  if l = j → k for some bus k
−1  if l = i → j for some bus i
0  otherwise
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bus-by-line incidence matrix


Cjl =
1  if l = j → k for some bus k
−1  if l = i → j for some bus i
0  otherwise




where  ,  

Y = CYsCT + Ym

Ys := diag (ys
jk) Ym := diag (ym

jj )
 is a complex Laplacian matrix when  

• See later for its properties

Y Ym = 0
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~
transmission#line##transformer#generator#

load#

Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.

y

1:n

V1 V2
I2I1 aI1

nV1

(a) One-line diagram

V1

+

−

V2

+

−

n(n−1)y

I2I1

(1− n)y

ny

(b) Equivalent P circuit model

Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by


aI1
I2

�
=


y �y

�y y

�
nV1
V2

�

Since


aI1
I2

�
=


a 0
0 1

�
I1
I2

�
,


nV1
V2

�
=


n 0
0 1

�
V1
V2

�

the terminal model of the subsystem in Figure 5.5(a) is


I1
I2

�
=


n 0
0 1

�
y �y

�y y

�
n 0
0 1

�
V1
V2

�
=


n2y �ny
�ny y

�

| {z }
Y1


V1
V2

�

We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.












































































































I1
I2
I3

=
yl + y1 0 −ayl

0 y + y2 −y
−ayl −y y + a2 (yl + ym)

Y

V1
V2
V3

generator/load

admittances

Kron reduction  
• Internal bus has zero injection 

• External model relates  and 

• Kron reduction: eliminate  

I3 = 0
(I1, I2) (V1, V2)

(V3, I3)
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•  : buses of interest, e.g., terminal buses


• Want to relate current injections and voltages at buses in 

Nred ⊆ N

Nred

 [I1
I2] = [Y11 Y12

Y21 Y22]
Y

[V1
V2]

 Nred
 N∖Nred

• Eliminate   


• Obtain:  

V2 = − Y−1
22 Y21V1 + Y−1

22 I2

(Y11 − Y12Y−1
22 Y21) V1 = I1 − Y12Y−1

22 I2
Schur complement



Kron reduction

Steven Low     EE/CS/EST 135    Caltech

If internal injections  :
I2 = 0

(Y11 − Y12Y−1
22 Y21) V1 = I1

Schur complement

•  Describes effective connectivity and line admittances of reduced network
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If Y22 is invertible then we can eliminate V2 by substituting V2 = �Y �1
22 Y21V1 +Y �1

22 I2 to obtain
�
Y11 �Y12Y �1

22 Y21
�

V1 = I1 � Y12Y �1
22 I2 (5.7)

The Nred ⇥ Nred matrix Y/Y22 := Y11 �Y12Y �1
22 Y21 is called the Schur complement of Y22 of matrix Y (see

Appendix 24.1.1 for its properties). Since Y is complex symmetric, the Schur complement Y/Y22 is also
complex symmetric and hence can be interpreted as the admittance matrix of a reduced network consisting
only of buses in Nred. It describes the effective connectivity and line admittances of the reduced network
and I1 �Y12Y �1

22 I2 describes the effective current injections at these buses. This is called a Kron reduction
of network G.

Example 5.5 (Kron reduction). Consider the network shown in Figure 5.9(a). Its admittance matrix Y is

(a) Original net-
work

(b) Kron reduced network

Figure 5.9: Kron reduction: Nred := {1,2,4} with internal bus 4. While the original network is a tree, the
Kron reduced network is fully connected.

(0 and symmetric entries are omitted for simplicity)

Y :=

2

664

ys
14 + ym

11 �ys
14

ys
24 + ym

22 �ys
24

ys
34 + ym

33 �ys
34

Â j ys
j4 + ym

44

3

775

with Y22 := Â j ys
j4 + ym

44. The Schur complement Y/Y22 of Y22 is

Y11 � Y12Y �1
22 Y21

=

2

4
ys

14 + ym
11

ys
24 + ym

22
ys

34 + ym
33

3

5 � 1
Y22

2

4
�ys

14
�ys

24
�ys

34

3

5⇥
�ys

14 �ys
24 �ys

34
⇤

=

2

6664

ys
14

Y22

�
ys

24 + ys
34

�
+

⇣
ym

11 +
ys

14ym
44

Y22

⌘
�ys

14ys
24

Y22

�ys
14ys

34
Y22

ys
24

Y22

�
ys

14 + ys
34

�
+

⇣
ym

22 +
ys

24ym
44

Y22

⌘
�ys

24ys
34

Y22
ys

34
Y22

�
ys

14 + ys
24

�
+

⇣
ym

33 +
ys

34ym
44

Y22

⌘

3

7775

The Kron reduced network corresponding to Y/Y22 is fully connected as shown in Figure 5.9(b).

The effective current injections in the Kron reduced network are
2

4
I1
I2
I3

3

5 � Y12Y �1
22 I3 =

2

4
I1
I2
I3

3

5 +

2

4
ys

14
ys

24
ys

34

3

5 I3

Y22

Example:

original network reduced network
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Admittance matrix   where 


When  is real, it is called a real Laplacian matrix


•  real symmetric matrix 


• Row sum = column sum = 0


• ,  


• Any principal submatrix is invertible

Y = CYsC Ys := diag (ys
jk)

Y
(N + 1) × (N + 1)

rank(Y) = N null(Y) = span(1)

When  is a complex symmetric, but not Hermitian, these properties may not hold Y
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Theorem (Singular value decomposition) 
Suppose .  Then  where


• Unitary  : columns are orthonormal eigenvectors of   (  : elementwise complex conjugate of )


•  :  are nonnegative roots of eigenvalues of 

Ym = 0 Y = WΣWT

W YY Y Y

Σ := diag (σj) 0 = σ0 ≤ σ1 ≤ ⋯ ≤ σN YY

Admittance matrix   where Y = CYsC Ys := diag (ys
jk)

Pseudo-inverse 


•  : elementwise complex conjugate and Hermitian transpose respectively of 


•   where  if 

Y† := WΣ†WH

W, WH W

Σ† := diag (1/σj, j = 1,…, N) 1/σj := 0 σj = 0
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If  are real symmetric such that


•  are all of the same sign (e.g. for DC power flow model)

then


•
 is strictly diagonally dominant: , 


•  is therefore invertible and positive definite


Ys, Ym

Ys
jk, Ym

jj

Y |Yjj | = ∑
k:j∼k

ys
jk + ym

jj > ∑
k:j∼k

|ys
jk | ∀j

Y

Admittance matrix   where , Y = CYsC + Ym Ys := diag (ys
jk) Ym := diag (ym

jj )
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Sufficient (not necessary) condition for  to exist is


 for all 

Proof:


If  is not invertible then it has an eigenvector  with zero eigenvalue.

Hence 

Y−1

αHYα ≠ 0 α ∈ CN+1

Y α
αHYα = 0



Invertibility of Y
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Sufficient (not necessary) condition for  to exist is


 for all 

Y−1

αHYα ≠ 0 α ∈ CN+1

αHYα = ∑
j

∑
k:k∼j

ys
jk + ym

jj |αj |
2 − ∑

k:k∼j

ys
jk α*j αk

= ∑
( j,k)∈E

ys
jk ( |αj |

2 − α*j αk − αjα*k + |αk |2 ) + ∑
j∈N

ym
jj |αj |

2

= ∑
( j,k)∈E

ys
jk αj − αk

2
+ ∑

j∈N

ym
jj |αj |

2
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Sufficient (not necessary) condition for  to exist is


 for all 

Y−1

αHYα ≠ 0 α ∈ CN+1

αHYα = ∑
j

∑
k:k∼j

ys
jk + ym

jj |αj |
2 − ∑

k:k∼j

ys
jk α*j αk

= ∑
( j,k)∈E

ys
jk ( |αj |

2 − α*j αk − αjα*k + |αk |2 ) + ∑
j∈N

ym
jj |αj |

2

= ∑
( j,k)∈E

ys
jk αj − αk

2
+ ∑

j∈N

ym
jj |αj |

2
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Sufficient (not necessary) condition for  to exist is


 for all 

Y−1

αHYα ≠ 0 α ∈ CN+1

αHYα = ∑
j

∑
k:k∼j

ys
jk + ym

jj |αj |
2 − ∑

k:k∼j

ys
jk α*j αk

= ∑
( j,k)∈E

ys
jk ( |αj |

2 − α*j αk − αjα*k + |αk |2 ) + ∑
j∈N

ym
jj |αj |

2

= ∑
( j,k)∈E

ys
jk αj − αk

2
+ ∑

j∈N

ym
jj |αj |

2
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Write   ys
jk =: gs

jk + ibs
jk, ym

jj =: gm
jj + ibm

jj

αHYα = ∑
( j,k)∈E

gs
jk αj − αk

2
+ ∑

j∈N

gm
jj |αj |

2 +

i ∑
( j,k)∈E

bs
jk αj − αk

2
+ ∑

j∈N

bm
jj |αj |

2



Invertibility of Y
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Therefore   is invertible if


1. At least one shunt admittance .  All nonzero  (or ) have same sign

2. All nonzero  (or ) have same sign

3. All .  All nonzero  have the same sign as 

Y
ym

jj ≠ 0 gm
jj bm

jj
gs

jk bs
jk

gs
jk ≠ 0 gm

jj gs
jk

αHYα = ∑
( j,k)∈E

gs
jk αj − αk

2
+ ∑

j∈N

gm
jj |αj |

2 + i ∑
( j,k)∈E

bs
jk αj − αk

2
+ ∑

j∈N

bm
jj |αj |

2

≠ 0

If  models a transmission line, then these sufficient conditions are satisfied( j, k)
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Similar argument leads to sufficient conditions on invertibility of  for Kron reduction Y22

Therefore   is invertible if


1. At least one shunt admittance .  All nonzero  (or ) have same sign

2. All nonzero  (or ) have same sign

3. All .  All nonzero  have the same sign as 

Y
ym

jj ≠ 0 gm
jj bm

jj
gs

jk bs
jk

gs
jk ≠ 0 gm

jj gs
jk
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General network
Branch currents
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where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

jk(Vk − Vj) + ym
kj Vk,



Power flow models
Complex form
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Using  :
Sjk := VjIH
jk

Sjk = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Skj = (ys
jk)

H

( |Vk |2 − VkVH
j ) + (ym

kj)
H

|Vk |2



Power flow models
Complex form
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Bus injection model  :





In terms of admittance matrix 


sj = ∑k:j∼k Sjk

sj = ∑
k:j∼k

(ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jj )

H
|Vj |

2

Y

sj =
N+1

∑
k=1

YH
jk Vj VH

k

 complex equations in  complex variables N + 1 2(N + 1) (sj, Vj, j ∈ N)



Power flow models
Polar form
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Write   and  with  :





where              

sj =: pj + iqj Vj =: |Vj | eiθj ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk

pj = (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk + bjk sin θjk)

qj = − (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk sin θjk − bjk cos θjk)

gjk :=

gm
jj  if  j = k

gs
jk  if  j ≠ k, ( j, k) ∈ E

0  if  j ≠ k, ( j, k) ∉ E
bjk :=

bm
jj  if  j = k

bs
jk  if  j ≠ k, ( j, k) ∈ E

0  if  j ≠ k, ( j, k) ∉ E



Power flow models
Polar form
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Write   and  with  :


           

sj =: pj + iqj Vj =: |Vj | eiϕ ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk

pj = (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk + bjk sin θjk)

qj = − (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk sin θjk − bjk cos θjk)

 real equations in  real variables 2(N + 1) 4(N + 1) (pj, qj, |Vj | , θj, j ∈ N)



Power flow models
Cartesian form
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Write   and  :
sj =: pj + iqj Vj =: ej + ifj

pj = (∑
k

gjk) (e2
j + f2

j ) − ∑
k≠j

(gjk(ejek + fj fk) + bjk( fjek − ej fk))

qj = − (∑
k

bjk) (e2
j + f2

j ) − ∑
k≠j

(gjk( fjek − ej fk) − bjk(ejek + fj fk))

 real equations in  real variables 2(N + 1) 4(N + 1) (pj, qj, ej, fj, j ∈ N)
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Power flow equations  specify  real equations in  real variables

• Power flow (load flow) problem: given  values, determine remaining vars 

2(N + 1) 4(N + 1)
2(N + 1)

Types of buses


•  buses :   specified, determine , e.g. generator


•  buses :   specified, determine , e.g. load


• Slack bus  :   pu specified, determine 

PV (pj, |Vj |) (qj, θj)
PQ (pj, qj) Vj

0 V0 := 1∠0∘ (pj, pj)
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Computation methods
Gauss-Seidel algorithm
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Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Power flow equations





• First compute  

• Then compute 

s0 = ∑
k

YH
0k V0 VH

k

sj = ∑
k

YH
jk Vj VH

k , j ∈ N

(V1, …, VN)
s0



Gauss-Seidel algorithm
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Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Rearrange 2nd equation: 


sH
j

VH
j

= YjjVj +
N

∑
k = 0
k ≠ j

YjkVk, j ∈ N

Vj =
1
Yjj

sH
j

VH
j

−
N

∑
k = 0
k ≠ j

YjkVk =: fj (V1, …, VN), j ∈ N

Computation methods



Gauss-Seidel algorithm
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Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

2nd power flow equation: 





where 

V = f(V)

V := (Vj, j ∈ N), f := (fj, j ∈ N)
Gauss algorithm is the fixed point iteration


V(t + 1) = f(V(t))

Computation methods



Gauss-Seidel algorithm
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Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Gauss algorithm:


V1(t + 1) = f1 (V1(t), …, VN(t))
V2(t + 1) = f2 (V1(t), …, VN(t))

⋮
VN(t + 1) = fN (V1(t), …, VN−1(t), VN(t))

Computation methods



Gauss-Seidel algorithm
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Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Gauss-Seidel algorithm:


V1(t + 1) = f1 (V1(t), …, VN(t))
V2(t + 1) = f2 (V1(t + 1), …, VN(t))

⋮
VN(t + 1) = fN (V1(t + 1), …, VN−1(t + 1), VN(t))

Computation methods



Gauss-Seidel algorithm
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Case 2: given  and , determine  and (V0, …, Vm) (sm+1, …, sN) (sj, j ≤ m) (Vj, j > m)

Power flow equations





• First compute  from 2nd set of equations using the same algorithm


• Then compute  from 1st set of equations

sj = ∑
k

YH
jk Vj VH

k , j ≤ m

sj = ∑
k

YH
jk Vj VH

k , j > m

(Vm+1, …, VN)
(sj, j ≤ m)

Computation methods



Gauss-Seidel algorithm

Steven Low     EE/CS/EST 135    Caltech

If algorithm converges, the limit is a fixed point and a power flow solution


Algorithm converges linearly to unique fixed point if  is a contraction mapping 

• Contraction is sufficient, but not necessary, for convergence


In general, algorithm may or may not convergence depending on initial point

f

EE 135 Notes October 19, 2021 191

x

f (x) = x2

y = x

x0x1x2x* = 0

(a) Convergence

x0
x

f (x) = x2

y = x

x1 x2

(b) Divergence

Figure 5.10: The fixed point iteration x(t + 1) = f (x(t)) := x2(t) is not a contraction mapping and its
convergence depends on the initial point x(0) = x0.

5.4.2 Newton-Raphson algorithm

The Newton-Raphson algorithm is popular for iteratively solving the equation

f (x) = 0

where x 2 R
n and f is a vector-valued function f : R

n ! R
n. The iteration is motivated by the Taylor

series expansion of f . Suppose we have computed x(t) and wish to determine the next iterate x(t +1) =:
x(t)+Dx(t). The Taylor series of f around x(t) is

f (x(t)+Dx(t)) = f (x(t)) + J(x(t))Dx(t) + higher-order terms

where J(x(t)) is the Jacobian of f evaluated at x(t):

J(x) :=
∂ f
∂x

(x) =

2

664

∂ f1
∂x1

(x) · · · ∂ f1
∂xn

(x)
...

...
...

∂ fn
∂x1

(x) · · · ∂ fn
∂xn

(x)

3

775

If we ignore the higher-order terms in the Taylor expansion and set f (x(t +1)) = 0 then we have

J(x(t))Dx(t) = � f (x(t)) (5.24)

This is illustrated in Figure 5.11. If J(x(t)) is invertible then Dx(t) = �J�1(x(t)) f (x(t)), yielding the
Newton-Raphson iteration:

x(t +1) = x(t) � J�1(x(t)) f (x(t)) (5.25)

In practice we usually do not evaluate the inverse J�1(x(t)) except for very small systems. Instead we
solve the linear equation (5.24) for Dx(t). The next iterate is then x(t +1) = x(t)+Dx(t).

Computation methods
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To solve                           


where  ,  e.g.  for unconstrained optimization

f(x) = 0
f : ℝn → ℝn ∇F(x) = 0

Idea: 

• Linear approximation





• Choose  such that  , i.e., solve





• Next iterate  

̂f(x(t + 1)) = f(x(t)) + J(x(t)) Δx(t)

Δx(t) ̂f(x(t + 1)) = 0

J(x(t))Δx(t) = − f(x(t))

x(t + 1) := x(t) + Δx(t)
J(x) :=

∂f
∂x

(x) =

∂f1
∂x1

(x) ⋯ ∂f1
∂xn

(x)

⋮ ⋮ ⋮
∂fn
∂x1

(x) ⋯
∂fn
∂xn

(x)
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!" # = " # % + '(# % )(# − # % )

!

"(#)

#(%)#(% + 1)#(% + 2)

Figure 5.11: Newton-Raphson algorithm: The next iterate x(t + 1) is obtained by approximating f by its
linear approximation at x(t) and setting the linear approximation f̂ (x) = 0.

x(t + 1) := x(t) − (J(x(t)))−1 f(x(t))

To solve                           


where  ,  e.g.  for unconstrained optimization

f(x) = 0
f : ℝn → ℝn ∇F(x) = 0
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Kantorovic Theorem 


Consider    where  is an open convex set.  Suppose


•  is differentiable and  is Lipschitz on , i.e., 


•  and  is invertible

f : D → ℝn D ⊆ ℝn

f ∇f D ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥
x0 ∈ D ∇f(x0)

Let   and 
β ≥ (∇f(x0))−1 , η ≥ (∇f(x0))−1 f(x0)

h := βηL, r :=
1 − 1 − 2h

h η



Computational methods
Newton-Raphson algorithm
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If the closed ball  and , then Newton iteration 





converges to a solution  of 

Br(x0) ⊆ D h ≤ 1/2
x(t + 1) := x(t) − (∇f(x(t)))−1 f(x(t))

x* ∈ Br (x0) f(x) = 0

Kantorovic Theorem 


Consider    where  is an open convex set.  Suppose


•  is differentiable and  is Lipschitz on , i.e., 


•  and  is invertible

f : D → ℝn D ⊆ ℝn

f ∇f D ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥
x0 ∈ D ∇f(x0)

Newton-Raphson converges if it starts close to a solution, often quadratically



Computational methods
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Apply to power flow equations in polar form:                         


 


where


pj(θ, |V | ) = pj, j ∈ N
qj(θ, |V | ) = qj, j ∈ Npq

pj(θ, |V | ) := (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk + bjk sin θjk)

qj(θ, |V | ) := − (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk sin θjk − bjk cos θjk)



Computational methods
Newton-Raphson algorithm
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Define 


 


with


f : ℝN+Nqp → ℝN+Nqp

f(θ, |V | ) := [Δp(θ, |V | )
Δq(θ, |V | )] := [p(θ, |V | ) − p

q(θ, |V | ) − q]

J(θ, |V | ) :=

∂p
∂θ

∂p
∂ |V |

∂q
∂θ

∂q
∂ |V |



Computational methods
Newton-Raphson algorithm
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1. Initialization: choose  


2. Iterate until stopping criteria


(a) Determine  from 





(b) Set


(θ(0), |V(0) |)

(Δθ(t), Δ |V | (t))
J (θ(t), |V | (t)) [ Δθ(t)

Δ |V | (t)] = − [Δp(θ(t), |V | (t))
Δq(θ(t), |V | (t))]

[ θ(t + 1)
|V | (t + 1)] := [ θ(t)

|V | (t)] + [ Δθ(t)
Δ |V | (t)]



Computational methods
Fast Decoupled algorithm
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Key observation: the Jacobian is roughly block-diagonal





i.e., decoupling between  and , and between  and 


This simplifies the computation of 


J(θ, |V | ) :=

∂p
∂θ

∂p
∂ |V |

∂q
∂θ

∂q
∂ |V |

≈

∂p
∂θ 0

0 ∂q
∂ |V |

p |V | q θ
Δx(t)

∂p
∂θ

(θ(t), |V | (t)) Δθ(t) = − Δp(θ(t), |V | (t))

∂q
∂ |V |

(θ(t), |V | (t)) Δ |V | (t) = − Δq(θ(t), |V | (t))
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Key observation: the Jacobian is roughly block-diagonal





i.e., decoupling between  and , and between  and 


This simplifies the computation of 


J(θ, |V | ) :=

∂p
∂θ

∂p
∂ |V |

∂q
∂θ

∂q
∂ |V |

≈

∂p
∂θ 0

0 ∂q
∂ |V |

p |V | q θ
Δx(t)

∂p
∂θ

(θ(t), |V | (t)) Δθ(t) = − Δp(θ(t), |V | (t))

∂q
∂ |V |

(θ(t), |V | (t)) Δ |V | (t) = − Δq(θ(t), |V | (t))



Computational methods
Fast Decoupled algorithm
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Decoupling assumption:  , 





gjk = 0 sin θjk = 0

∂pj

∂ |Vk |
=

− |Vj |(gjk cos θjk + bjk sin θjk), j ≠ k

pj(θ, |V | )
|Vj |

+ (∑
i

gji) |Vj | , j = k

gjk = 0, sin θjk = 0, pj(θ, |V | ) = 0 ⇒ ∂p
∂ |V |

= 0



Computational methods
Fast Decoupled algorithm
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Decoupling assumption:  , 





gjk = 0 sin θjk = 0

∂qj

∂θk
=

|Vj | |Vk |(gjk cos θjk + bjk sin θjk), j ≠ k

pj(θ, |V | ) − (∑
i

gji) |Vj |
2 , j = k

gjk = 0, sin θjk = 0, pj(θ, |V | ) = 0 ⇒ ∂q
∂θ = 0



Summary

1. Component models

• Single-phase devices, line, transformer


2. Network models

•  relation (admittance matrix ),  relation (power flow models)


3. Computation methods

• Gauss-Seidel algorithm, Newton-Raphson algorithm, Fast decoupled algorithm

VI Y Vs
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