Power Systems Analysis

Chapter 5 Bus injection models

Outline

1. Component models
2. Network model: VI relation
3. Network model: Vs relation
4. Computation methods

Outline

1. Component models

- Sources, impedance
- Line
- Transformer

2. Network model: VI relation
3. Network model: Vs relation
4. Computation methods

Overview

single-phase or 3-phase

Single-phase devices

1. Single-terminal device j

- Voltage source $\left(E_{j}, z_{j}\right)$, current source $\left(J_{j}, y_{j}\right)$, power source $\left(\sigma_{j}, z_{j}\right)$, impedance z_{j}
- Terminal variables $\left(V_{j}, I_{j}, s_{j}\right)$
- External model: relation between $\left(V_{j}, I_{j}\right)$ or $\left(V_{j}, s_{j}\right)$

2. Two-terminal device (j, k)

- Line $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$, transformer $\left(n_{j k}, y_{j k}^{s}, y_{j k}^{m}\right)$
- Terminal variables $\left(V_{j}, I_{j k}, S_{j k}\right)$ and $\left(V_{k}, I_{k j}, S_{k j}\right)$
- External model: relation between $\left(V_{j}, V_{k}, I_{j k}, I_{k j}\right)$ or $\left(V_{j}, V_{k}, S_{j k}, S_{k j}\right)$

Single-phase devices

1. Voltage source $\left(E_{j}, z_{j}\right)$

- Constant internal voltage E_{j} with series impedance z_{j}

- Models for Thevenin equivalent circuit of a balanced synchronous machine, secondary side of transformer, gridforming inverter
- External model: $V_{j}=E_{j}-z_{j} I_{j}$
- External model: $s_{j}=V_{j} I_{j}^{\mathrm{H}}=y_{j}^{\mathrm{H}} V_{j}\left(E_{j}-V_{j}\right)^{\mathrm{H}}$

Single-phase devices

2. Current source $\left(J_{j}, y_{j}\right)$

- Constant internal current J_{j} with shunt admittance y_{j}
- Models for Norton equivalent circuit of a synchronous
 generator, load (e.g. electric vehicle charger), grid-following inverter
- External model: $I_{j}=J_{j}-y_{j} V_{j}$
- External model: $s_{j}=V_{j} I_{j}^{\mathrm{H}}=V_{j}\left(J_{j}-y_{j} V_{j}\right)^{\mathrm{H}}$

Single-phase devices

3. Power source $\left(\sigma_{j}, z_{j}\right)$

- Constant internal power σ_{j} in series with impedance z_{j}
- Models for load, generator, secondary side of transformer
- External model: $\sigma_{j}=\left(V_{j}-z_{j} I_{j}\right) I_{j}^{\mathrm{H}}$
- External model: $s_{j}=V_{j} I_{j}^{\mathrm{H}}=\sigma_{j}+z_{j} I_{j} I_{j}^{\mathrm{H}}$

Single-phase devices

4. Impedance z_{j}

- Constant impedance z
- Models for load
- External model: $V_{j}=z_{j} I_{j}$
. External model: $s_{j}=V_{j} I_{j}^{\mathrm{H}}=\frac{\left|V_{j}\right|^{2}}{z_{j}^{\mathrm{H}}}$

Single-phase line $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

VI relation: Π circuit and admittance matrix $Y_{\text {line }}$

$$
\left[\begin{array}{c}
I_{j k} \\
I_{k j}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y_{j k}^{s}+y_{j k}^{m} & -y_{j k}^{s} \\
-y_{j k}^{s} & y_{j k}^{s}+y_{k j}^{m}
\end{array}\right]}_{Y_{\text {line }}}\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

$$
\begin{aligned}
& I_{j k}=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}, \\
& I_{k j}=y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}
\end{aligned}
$$

admittance matrix $Y_{\text {line }}$:

- complex symmetric
- $[Y]_{j k}=-$ series admittance

Single-phase line $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

VI relation: Π circuit and admittance matrix $Y_{\text {line }}$

$$
\begin{aligned}
& I_{j k}=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}, \\
& I_{k j}=y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}
\end{aligned}
$$

Their sum is total line current loss

$$
\begin{aligned}
& \quad I_{j k}+I_{k j}=y_{j k}^{m} V_{j}+y_{k j}^{m} V_{k} \neq 0 \\
& \text { If } y_{j k}^{m}=y_{k j}^{m}=0 \text {, then } I_{j k}=-I_{k j}
\end{aligned}
$$

Single-phase line $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

V_{s} relation

$$
\begin{aligned}
& S_{j k}:=V_{j} I_{j k}^{H}=\left(y_{j k}^{s}\right)^{H}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{H}\right)+\left(y_{j k}^{m}\right)^{H}\left|V_{j}\right|^{2} \\
& S_{k j}:=V_{k} I_{k j}^{H}=\left(y_{j k}^{s}\right)^{H}\left(\left|V_{k}\right|^{2}-V_{k} V_{j}^{H}\right)+\left(y_{k j}^{m}\right)^{H}\left|V_{k}\right|^{2}
\end{aligned}
$$

Single-phase line $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

Vs relation

Line loss

$$
S_{j k}+S_{k j}=\left(y_{j k}^{s}\right)^{H}\left|V_{j}-V_{k}\right|^{2}+\left(y_{j k}^{m}\right)^{H}\left|V_{j}\right|^{2}+\left(y_{k j}^{m}\right)^{H}\left|V_{k}\right|^{2}
$$

Single-phase transformer $\left(K\left(n_{j k}\right), y_{j k}^{s}, y_{j k}^{m}\right)$
Real $K\left(n_{j k}\right)=n_{j k}$

$Y_{\text {transformer }}$: complex symmetric
Hence: admittance matrix with equivalent Π circuit

$$
\begin{aligned}
& I_{j k}=y_{j k}^{s}\left(V_{j}-a_{j k} V_{k}\right) \\
& I_{j k}=y_{j k}^{m} a_{j k} V_{k}+n_{j k}\left(-I_{k j}\right)
\end{aligned}
$$

$$
\left[\begin{array}{c}
I_{j k} \\
I_{k j}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y_{j k}^{s} & -a_{j k} y_{j k}^{s} \\
-a_{j k} y_{j k}^{s} & a_{j k}^{2}\left(y_{j k}^{s}+y_{j k}^{m}\right)
\end{array}\right]}_{Y_{\text {transformer }}}\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

Single-phase transformer $\left(K\left(n_{j k}\right), y_{j k}^{s}, y_{j k}^{m}\right)$
Real $K\left(n_{j k}\right)=n_{j k}$

$$
\begin{aligned}
& I_{j k}=y_{j k}^{s}\left(V_{j}-a_{j k} V_{k}\right) \\
& I_{j k}=y_{j k}^{m} a_{j k} V_{k}+n_{j k}\left(-I_{k j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{y}_{j k}^{s}:=a_{j k} y_{j k}^{s} \\
& \tilde{y}_{j k}^{m}:=\left(1-a_{j k} y_{j k}^{s}\right. \\
& \tilde{y}_{k j}^{m}:=a_{j k}\left(a_{j k}-1\right) y_{j k}^{s}+a_{j k}^{2} y_{j k}^{m}
\end{aligned}
$$

Single-phase transformer $\left(K\left(n_{j k}\right), y_{j k}^{s}, y_{j k}^{m}\right)$

Complex $K\left(n_{j k}\right)$

$\left[\begin{array}{c}I_{j k} \\ I_{k j}\end{array}\right]=\underbrace{\left[\begin{array}{cc}y_{j k}^{s} & -y_{j k}^{s} / K_{j k}(n) \\ -y_{j k}^{s} / K_{j k}^{\mathrm{H}}(n) & \left(y_{j k}^{s}+y_{j k}^{m}\right) /\left|K_{j k}(n)\right|^{2}\end{array}\right]}_{\text {transformer }}\left[\begin{array}{c}V_{j} \\ V_{k}\end{array}\right]$

- $Y_{\text {transformer }}$: not complex symmetric
- Has no equivalent Π circuit
- Use transmission matrix for analysis

Outline

1. Component models
2. Network model: VI relation

- Examples
- VI relation (admittance matrix Y)
- Kron reduction
- Invertibility of Y

3. Network model: Vs relation
4. Computation methods

Network model

single-phase or 3-phase

Example

System

- Generator: current source $\left(I_{1}, y_{1}\right)$
- Transformer (n, y^{l}, y^{m})
- Transmission line with series admittance y
- Load: current source $\left(I_{2}, y_{2}\right)$

Derive

- Derive network model (admittance matrix Y)

Derive Y in 2 steps

Example

Step 1: transformer + line

Nodal current balance (KCL):

$$
\begin{aligned}
& I_{1}=I_{13} \\
& I_{3}=I_{31}+I_{32}=0 \\
& I_{2}=I_{23}
\end{aligned}
$$

Example

Step 1: transformer + line

Eliminate branch currents:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
y^{l} & 0 & -a y^{l} \\
0 & y & -y \\
-a y^{l} & -y & y+a^{2}\left(y^{l}+y^{m}\right)
\end{array}\right]}_{Y_{1}}\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

- Y_{1} : complex symmetric
- Hence: admittance matrix with Π circuit
- Unequal shunt elements

Example
 Step 2: overall system

Example
 Step 2: overall system

- Overall network model: ideal current sources connected by network
- Network: admittance matrix Y
- Y includes admittances of non-ideal current sources
generator/load
admittances

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
y^{l}+y_{1} & 0 & -a y^{l} \\
0 & y+y_{2} & -y \\
-a y^{l} & -y & y+a^{2}\left(y^{l}+y^{m}\right)
\end{array}\right]}_{Y}\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

Example

Step 2: overall system

Kron reduction (see below)

- Internal bus has zero injection $I_{3}=0$
- Can eliminate $\left(V_{3}, I_{3}\right)$
- External behavior: relation between $\left(I_{1}, I_{2}\right)$ and $\left(V_{1}, V_{2}\right)$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y^{l}+y_{1} & 0 \\
0 & y+y_{2} \\
-a y^{l} & -y \\
\text { admittances } \\
-a y^{l} \\
-y+a^{2}\left(y^{l}+y^{m}\right)
\end{array}\right]}_{Y}\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

General network model

1. Network $G:=(\bar{N}, E)$

- $\bar{N}:=\{0\} \cup N:=\{0\} \cup\{1, \ldots, N\}$: buses/nodes/terminals
- $E \subseteq \bar{N} \times \bar{N}$: lines/branches/links/edges

2. Each line (j, k) is parameterized by $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

- $y_{j k}^{s}$: series admittance
- $y_{j k}^{m}, y_{k j}^{m}$: shunt admittances, generally different

General network model

Branch currents

Sending-end currents

$$
I_{j k}=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}, \quad I_{k j}=y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k},
$$

VI relation

Nodal current balance

$$
I_{j}=\sum_{k: j \sim k} I_{j k}
$$

VI relation

Nodal current balance

$$
\begin{aligned}
I_{j}=\sum_{k: j \sim k} I_{j k}= & \left(\sum_{k: j \sim k} y_{j k}^{s}+\underset{\uparrow}{y_{j j}^{m}}\right) V_{j}-\sum_{k: j \sim k} y_{j k}^{s} V_{k} \\
& \text { total shunt admittance: } y_{j j}^{m}:=\sum_{k: j \sim k} y_{j k}^{m}
\end{aligned}
$$

VI relation

Admittance matrix Y

$$
I_{j}=\sum_{k ; j \sim k} I_{j k}=\left(\sum_{k j \sim k} y_{j k}^{s}+y_{j j}^{m}\right) V_{j}-\sum_{k ; j \sim k} y_{j k}^{s} V_{k}
$$

In vector form:

$$
I=Y V \text { where } Y_{j k}= \begin{cases}-y_{j k}^{s}, & j \sim k(j \neq k) \\ \sum_{l: j \sim l} y_{j l}^{s}+y_{j j}^{m}, & j=k \\ 0 & \text { otherwise }\end{cases}
$$

VI relation

Admittance matrix Y

Y can be written down by inspection of network graph

- Off-diagonal entry: - series admittance
- Diagonal entry: \sum series admittances + total shunt admittance

In vector form:

$$
I=Y V \text { where } Y_{j k}= \begin{cases}-y_{j k}^{s}, & j \sim k(j \neq k) \\ \sum_{l: j \sim l} y_{j l}^{s}+y_{j j}^{m}, & j=k \\ 0 & \text { otherwise }\end{cases}
$$

VI relation
 Admittance matrix Y

A matrix Y is an admittance matrix iff it is complex symmetric

- Can be interpreted as a Π circuit

In vector form:

$$
I=Y V \text { where } Y_{j k}= \begin{cases}-y_{j k}^{s}, & j \sim k(j \neq k) \\ \sum_{l: j \sim l} y_{j l}^{s}+y_{j j}^{m}, & j=k \\ 0 & \text { otherwise }\end{cases}
$$

VI relation

Example

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{ccc}
y_{12}^{s}+y_{13}^{s}+y_{11}^{m} & -y_{12}^{s} & -y_{13}^{s} \\
-y_{12}^{s} & y_{12}^{s}+y_{23}^{s}+y_{22}^{m} & -y_{23}^{s} \\
-y_{13}^{s} & -y_{23}^{s} & y_{13}^{s}+y_{23}^{s}+y_{33}^{m}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

total shunt admittance: $y_{j j}^{m}:=\sum_{k: j \sim k} y_{j k}^{m}$

Admittance matrix Y

In terms of incidence matrix C

bus-by-line incidence matrix

$$
C_{j l}= \begin{cases}1 & \text { if } l=j \rightarrow k \text { for some bus } k \\ -1 & \text { if } l=i \rightarrow j \text { for some bus } i \\ 0 & \text { otherwise }\end{cases}
$$

example:

$$
C=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Admittance matrix Y

In terms of incidence matrix C

bus-by-line incidence matrix

$$
\begin{aligned}
& \quad C_{j l}= \begin{cases}1 & \text { if } l=j \rightarrow k \text { for some bus } k \\
-1 & \text { if } l=i \rightarrow j \text { for some bus } i \\
0 & \text { otherwise }\end{cases} \\
& Y=C Y^{s} C^{T}+Y^{m} \\
& \text { where } Y^{s}:=\operatorname{diag}\left(y_{j k}^{s}\right), Y^{m}:=\operatorname{diag}\left(y_{j j}^{m}\right)
\end{aligned}
$$

Y is a complex Laplacian matrix when $Y^{m}=0$

- See later for its properties

Outline

1. Component models
2. Network model: VI relation

- Examples
- VI relation (admittance matrix Y)
- Kron reduction
- Invertibility of Y

3. Network model: Vs relation
4. Computation methods

Kron reduction

Example

Kron reduction

- Internal bus has zero injection $I_{3}=0$
- External model relates $\left(I_{1}, I_{2}\right)$ and $\left(V_{1}, V_{2}\right)$
- Kron reduction: eliminate $\left(V_{3}, I_{3}\right)$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y^{l}+y_{1} & 0 \\
0 & y+y_{2} \\
-a y^{l} & -y \\
\text { admittances } \\
-a y^{l} \\
-y+a^{2}\left(y^{l}+y^{m}\right)
\end{array}\right]}_{Y}\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

Kron reduction

- $N_{\text {red }} \subseteq \bar{N}$: buses of interest, e.g., terminal buses
- Want to relate current injections and voltages at buses in $N_{\text {red }}$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]}_{Y}\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \longleftarrow N_{\text {red }}
$$

- Eliminate $V_{2}=-Y_{22}^{-1} Y_{21} V_{1}+Y_{22}^{-1} I_{2}$
- Obtain: $\left(Y_{11}-Y_{12} Y_{22}^{-1} Y_{21}\right) V_{1}=I_{1}-Y_{12} Y_{22}^{-1} I_{2}$

Schur complement

Kron reduction

If internal injections $I_{2}=0$:
$\left(Y_{11}-Y_{12} Y_{22}^{-1} Y_{21}\right) V_{1}=I_{1}$
Schur complement

- Describes effective connectivity and line admittances of reduced network

Example:

reduced network

Invertibility of Y

Zero shunt $Y^{m}=0$
Admittance matrix $Y=C Y^{s} C$ where $Y^{s}:=\operatorname{diag}\left(y_{j k}^{s}\right)$
When Y is real, it is called a real Laplacian matrix

- $(N+1) \times(N+1)$ real symmetric matrix
- Row sum = column sum =0
- $\operatorname{rank}(Y)=N, \operatorname{null}(Y)=\operatorname{span}(1)$
- Any principal submatrix is invertible

When Y is a complex symmetric, but not Hermitian, these properties may not hold

Invertibility of Y

Zero shunt $Y^{m}=0$
Admittance matrix $Y=C Y^{s} C$ where $Y^{s}:=\operatorname{diag}\left(y_{j k}^{s}\right)$
Theorem (Singular value decomposition)
Suppose $Y^{m}=0$. Then $Y=W \Sigma W^{T}$ where

- Unitary W : columns are orthonormal eigenvectors of $Y \bar{Y}$ (\bar{Y} : elementwise complex conjugate of $Y)$
- $\Sigma:=\operatorname{diag}\left(\sigma_{j}\right): 0=\sigma_{0} \leq \sigma_{1} \leq \cdots \leq \sigma_{N}$ are nonnegative roots of eigenvalues of $Y \bar{Y}$

Pseudo-inverse $Y^{\dagger}:=\bar{W} \Sigma^{\dagger} W^{H}$

- \bar{W}, W^{H} : elementwise complex conjugate and Hermitian transpose respectively of W
. $\Sigma^{\dagger}:=\operatorname{diag}\left(1 / \sigma_{j}, j=1, \ldots, N\right)$ where $1 / \sigma_{j}:=0$ if $\sigma_{j}=0$

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Admittance matrix $Y=C Y^{s} C+Y^{m}$ where $Y^{s}:=\operatorname{diag}\left(y_{j k}^{s}\right), Y^{m}:=\operatorname{diag}\left(y_{j j}^{m}\right)$
If Y^{s}, Y^{m} are real symmetric such that

- $Y_{j k}^{s}, Y_{j j}^{m}$ are all of the same sign (e.g. for DC power flow model) then
- Y is strictly diagonally dominant: $\left|Y_{j j}\right|=\left|\sum_{k: j \sim k} y_{j k}^{s}+y_{j j}^{m}\right|>\sum_{k: j \sim k}\left|y_{j k}^{s}\right|, \forall j$
- Y is therefore invertible and positive definite

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$
\alpha^{H} Y \alpha \neq 0 \text { for all } \alpha \in C^{N+1}
$$

Proof:
If Y is not invertible then it has an eigenvector α with zero eigenvalue.
Hence $\alpha^{H} Y \alpha=0$

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$
\begin{aligned}
& \alpha^{H} Y \alpha \neq 0 \text { for all } \alpha \in C^{N+1} \\
& \alpha^{H} Y \alpha=\sum_{j}\left(\left(\sum_{k: k \sim j} y_{j k}^{s}+y_{j j}^{m}\right)\left|\alpha_{j}\right|^{2}-\sum_{k: k \sim j} y_{j k}^{s} \alpha_{j}^{*} \alpha_{k}\right)
\end{aligned}
$$

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$
\begin{aligned}
\alpha^{H} Y \alpha & \neq 0 \text { for all } \alpha \in C^{N+1} \\
\alpha^{H} Y \alpha & =\sum_{j}\left(\left(\sum_{k: k \sim j} y_{j k}^{s}+y_{j j}^{m}\right)\left|\alpha_{j}\right|^{2}-\sum_{k: k \sim j} y_{j k}^{s} \alpha_{j}^{*} \alpha_{k}\right) \\
& =\sum_{(j, k) \in E} y_{j k}^{s}\left(\left|\alpha_{j}\right|^{2}-\alpha_{j}^{*} \alpha_{k}-\alpha_{j} \alpha_{k}^{*}+\left|\alpha_{k}\right|^{2}\right)+\sum_{j \in \bar{N}} y_{j j}^{m}\left|\alpha_{j}\right|^{2}
\end{aligned}
$$

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$
\begin{aligned}
\alpha^{H} Y \alpha & \neq 0 \text { for all } \alpha \in C^{N+1} \\
\alpha^{H} Y \alpha & =\sum_{j}\left(\left(\sum_{k: k \sim j} y_{j k}^{s}+y_{j j}^{\prime m}\right)\left|\alpha_{j}\right|^{2}-\sum_{k: k \sim j} y_{j k}^{s} \alpha_{j}^{*} \alpha_{k}\right) \\
& =\sum_{(j, k) \in E} y_{j k}^{s}\left(\left|\alpha_{j}\right|^{2}-\alpha_{j}^{*} \alpha_{k}-\alpha_{j} \alpha_{k}^{*}+\left|\alpha_{k}\right|^{2}\right)+\sum_{j \in N} y_{j j}^{m}\left|\alpha_{j}\right|^{2} \\
& =\sum_{(j, k) \in E} y_{j k}^{s}\left|\alpha_{j}-\alpha_{k}\right|^{2}+\sum_{j \in N} y_{j j}^{m}\left|\alpha_{j}\right|^{2}
\end{aligned}
$$

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Write $y_{j k}^{s}=: g_{j k}^{s}+i b_{j k}^{s}, \quad y_{j j}^{m}=: g_{j j}^{m}+i b_{j j}^{m}$

$$
\begin{aligned}
\alpha^{H} Y \alpha= & \left(\sum_{(j, k) \in E} g_{j k}^{s}\left|\alpha_{j}-\alpha_{k}\right|^{2}+\sum_{j \in \bar{N}} g_{j j}^{m}\left|\alpha_{j}\right|^{2}\right)+ \\
& i\left(\sum_{(j, k) \in E} b_{j k}^{s}\left|\alpha_{j}-\alpha_{k}\right|^{2}+\sum_{j \in \bar{N}} b_{j j}^{m}\left|\alpha_{j}\right|^{2}\right)
\end{aligned}
$$

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Therefore Y is invertible if

1. At least one shunt admittance $y_{j j}^{m} \neq 0$. All nonzero $g_{j j}^{m}$ (or $b_{j j}^{m}$) have same sign
2. All nonzero $g_{j k}^{S}$ (or $b_{j k}^{S}$) have same sign
3. All $g_{j k}^{S} \neq 0$. All nonzero $g_{j j}^{m}$ have the same sign as $g_{j k}^{s}$

$$
\begin{aligned}
\alpha^{H} Y \alpha & =\left(\sum_{(j, k) \in E} g_{j k}^{s}\left|\alpha_{j}-\alpha_{k}\right|^{2}+\sum_{j \in \bar{N}} g_{j j}^{m}\left|\alpha_{j}\right|^{2}\right)+i\left(\sum_{(j, k) \in E} b_{j k}^{s}\left|\alpha_{j}-\alpha_{k}\right|^{2}+\sum_{j \in \bar{N}} b_{j j}^{m}\left|\alpha_{j}\right|^{2}\right) \\
& \neq 0
\end{aligned}
$$

If (j, k) models a transmission line, then these sufficient conditions are satisfied

Invertibility of Y
 Nonzero shunt $Y^{m} \neq 0$

Therefore Y is invertible if

1. At least one shunt admittance $y_{j j}^{m} \neq 0$. All nonzero $g_{j j}^{m}$ (or $b_{j j}^{m}$) have same sign
2. All nonzero $g_{j k}^{S}$ (or $b_{j k}^{S}$) have same sign
3. All $g_{j k}^{S} \neq 0$. All nonzero $g_{j j}^{m}$ have the same sign as $g_{j k}^{s}$

Similar argument leads to sufficient conditions on invertibility of Y_{22} for Kron reduction

Outline

1. Component models
2. Network model: VI relation
3. Network model: Vs relation

- Complex form
- Polar form
- Cartesian form
- Types of buses

4. Computation methods

General network

Branch currents

Sending-end currents

$$
I_{j k}=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}, \quad I_{k j}=y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k},
$$

Power flow models

Complex form

Using $S_{j k}:=V_{j} I_{j k}^{H}:$

$$
\begin{aligned}
S_{j k} & =\left(y_{j k}^{s}\right)^{H}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{H}\right)+\left(y_{j k}^{m}\right)^{H}\left|V_{j}\right|^{2} \\
S_{k j} & =\left(y_{j k}^{s}\right)^{H}\left(\left|V_{k}\right|^{2}-V_{k} V_{j}^{H}\right)+\left(y_{k j}^{m}\right)^{H}\left|V_{k}\right|^{2}
\end{aligned}
$$

Power flow models

Complex form

Bus injection model $s_{j}=\sum_{k: j \sim k} S_{j k}$:

$$
s_{j}=\sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{H}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{H}\right)+\left(y_{j j}^{m}\right)^{H}\left|V_{j}\right|^{2}
$$

In terms of admittance matrix Y

$$
s_{j}=\sum_{k=1}^{N+1} Y_{j k}^{H} V_{j} V_{k}^{H}
$$

$N+1$ complex equations in $2(N+1)$ complex variables $\left(s_{j}, V_{j}, j \in \bar{N}\right)$

Power flow models

Polar form

 Write $s_{j}=: p_{j}+i q_{j}$ and $V_{j}=:\left|V_{j}\right| e^{i \theta_{j}}$ with $y_{j k}^{s}=: g_{j k}^{s}+i b_{j k}^{s}, y_{j k}^{m}=: g_{j k}^{m}+i b_{j k}^{m}$:$$
\begin{aligned}
p_{j} & =\left(\sum_{k=0}^{N} g_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \cos \theta_{j k}+b_{j k} \sin \theta_{j k}\right) \\
q_{j} & =-\left(\sum_{k=0}^{N} b_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \sin \theta_{j k}-b_{j k} \cos \theta_{j k}\right) \\
\text { where } g_{j k}: & :\left\{\begin{array}{lll}
g_{j m}^{m} & \text { if } j=k \\
g_{j k} & \text { if } j \neq k,(j, k, k \in E \\
0 & \text { if } j \neq k,(j, k) \notin E
\end{array} \quad b_{j k}:= \begin{cases}b_{j k}^{m} & \text { if } j=k \\
b_{j k} & \text { if } j j k,(j, k) \in E \\
0 & \text { if } j \neq k,(j, k) \notin E\end{cases} \right.
\end{aligned}
$$

Power flow models

Polar form

Write $s_{j}=: p_{j}+i q_{j}$ and $V_{j}=:\left|V_{j}\right| e^{i \phi}$ with $y_{j k}^{s}=: g_{j k}^{s}+i b_{j k}^{s}, y_{j k}^{m}=: g_{j k}^{m}+i b_{j k}^{m}:$

$$
\begin{aligned}
p_{j} & =\left(\sum_{k=0}^{N} g_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \cos \theta_{j k}+b_{j k} \sin \theta_{j k}\right) \\
q_{j} & =-\left(\sum_{k=0}^{N} b_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \sin \theta_{j k}-b_{j k} \cos \theta_{j k}\right)
\end{aligned}
$$

$2(N+1)$ real equations in $4(N+1)$ real variables $\left(p_{j}, q_{j},\left|V_{j}\right|, \theta_{j}, j \in \bar{N}\right)$

Power flow models

Cartesian form

Write $s_{j}=: p_{j}+i q_{j}$ and $V_{j}=: e_{j}+i f_{j}:$

$$
\begin{aligned}
p_{j} & =\left(\sum_{k} g_{j k}\right)\left(e_{j}^{2}+f_{j}^{2}\right)-\sum_{k \neq j}\left(g_{j k}\left(e_{j} e_{k}+f_{j} f_{k}\right)+b_{j k}\left(f_{j} e_{k}-e_{j} f_{k}\right)\right) \\
q_{j} & =-\left(\sum_{k} b_{j k}\right)\left(e_{j}^{2}+f_{j}^{2}\right)-\sum_{k \neq j}\left(g_{j k}\left(f_{j} e_{k}-e_{j} f_{k}\right)-b_{j k}\left(e_{j} e_{k}+f_{j} f_{k}\right)\right)
\end{aligned}
$$

$2(N+1)$ real equations in $4(N+1)$ real variables $\left(p_{j}, q_{j}, e_{j}, f_{j}, j \in \bar{N}\right)$

Power flow models

Types of buses

Power flow equations specify $2(N+1)$ real equations in $4(N+1)$ real variables

- Power flow (load flow) problem: given $2(N+1)$ values, determine remaining vars

Types of buses

- $P V$ buses : $\left(p_{j},\left|V_{j}\right|\right)$ specified, determine $\left(q_{j}, \theta_{j}\right)$, e.g. generator
- $P Q$ buses : $\left(p_{j}, q_{j}\right)$ specified, determine V_{j}, e.g. load
- Slack bus $0: V_{0}:=1 \angle 0^{\circ}$ pu specified, determine $\left(p_{j}, p_{j}\right)$

Outline

1. Component models
2. Network model: VI relation
3. Network model: Vs relation
4. Computation methods

- Gauss-Seidel algorithm
- Newton-Raphson algorithm
- Fast decoupled algorithm

Computation methods

Gauss-Seidel algorithm

Case 1: given V_{0} and $\left(s_{1}, \ldots, s_{N}\right)$, determine s_{0} and $\left(V_{1}, \ldots, V_{N}\right)$

Power flow equations

$$
\begin{aligned}
s_{0} & =\sum_{k} Y_{0 k}^{H} V_{0} V_{k}^{H} \\
s_{j} & =\sum_{k} Y_{j k}^{H} V_{j} V_{k}^{H}, \quad j \in N
\end{aligned}
$$

- First compute $\left(V_{1}, \ldots, V_{N}\right)$
- Then compute s_{0}

Computation methods

Gauss-Seidel algorithm

Case 1: given V_{0} and $\left(s_{1}, \ldots, s_{N}\right)$, determine s_{0} and $\left(V_{1}, \ldots, V_{N}\right)$
Rearrange 2nd equation:

$$
\begin{aligned}
\frac{s_{j}^{H}}{V_{j}^{H}} & =Y_{j j} V_{j}+\sum_{\substack{k=0 \\
k \neq j}}^{N} Y_{j k} V_{k}, \quad j \in N \\
V_{j} & =\frac{1}{Y_{j j}}\left(\frac{s_{j}^{H}}{V_{j}^{H}}-\sum_{\substack{k=0 \\
k \neq j}}^{N} Y_{j k} V_{k}\right)=: f_{j}\left(V_{1}, \ldots, V_{N}\right), \quad j \in N
\end{aligned}
$$

Computation methods

Gauss-Seidel algorithm

Case 1: given V_{0} and $\left(s_{1}, \ldots, s_{N}\right)$, determine s_{0} and $\left(V_{1}, \ldots, V_{N}\right)$
2nd power flow equation:

$$
V=f(V)
$$

where $V:=\left(V_{j}, j \in N\right), f:=\left(f_{j}, j \in N\right)$

Gauss algorithm is the fixed point iteration

$$
V(t+1)=f(V(t))
$$

Computation methods

Gauss-Seidel algorithm

Case 1: given V_{0} and $\left(s_{1}, \ldots, s_{N}\right)$, determine s_{0} and $\left(V_{1}, \ldots, V_{N}\right)$
Gauss algorithm:

$$
\begin{aligned}
V_{1}(t+1) & =f_{1}\left(V_{1}(t), \ldots, V_{N}(t)\right) \\
V_{2}(t+1) & =f_{2}\left(V_{1}(t), \ldots, V_{N}(t)\right) \\
\vdots & \\
V_{N}(t+1) & =f_{N}\left(V_{1}(t), \ldots, V_{N-1}(t), V_{N}(t)\right)
\end{aligned}
$$

Computation methods

Gauss-Seidel algorithm

Case 1: given V_{0} and $\left(s_{1}, \ldots, s_{N}\right)$, determine s_{0} and $\left(V_{1}, \ldots, V_{N}\right)$
Gauss-Seidel algorithm:

$$
\begin{aligned}
V_{1}(t+1) & =f_{1}\left(V_{1}(t), \ldots, V_{N}(t)\right) \\
V_{2}(t+1) & =f_{2}\left(V_{1}(t+1), \ldots, V_{N}(t)\right) \\
\quad \vdots & \\
V_{N}(t+1) & =f_{N}\left(V_{1}(t+1), \ldots, V_{N-1}(t+1), V_{N}(t)\right)
\end{aligned}
$$

Computation methods

Gauss-Seidel algorithm

Case 2: given $\left(V_{0}, \ldots, V_{m}\right)$ and $\left(s_{m+1}, \ldots, s_{N}\right)$, determine $\left(s_{j}, j \leq m\right)$ and $\left(V_{j}, j>m\right)$
Power flow equations

$$
\begin{array}{ll}
s_{j}=\sum_{k} Y_{j k}^{H} V_{j} V_{k}^{H}, & j \leq m \\
s_{j}=\sum_{k} Y_{j k}^{H} V_{j} V_{k}^{H}, & j>m
\end{array}
$$

- First compute $\left(V_{m+1}, \ldots, V_{N}\right)$ from 2 nd set of equations using the same algorithm
- Then compute $\left(s_{j}, j \leq m\right)$ from 1 st set of equations

Computation methods

Gauss-Seidel algorithm

If algorithm converges, the limit is a fixed point and a power flow solution
Algorithm converges linearly to unique fixed point if f is a contraction mapping

- Contraction is sufficient, but not necessary, for convergence

In general, algorithm may or may not convergence depending on initial point

(a) Convergence

(b) Divergence

Computational methods

Newton-Raphson algorithm

To solve

$$
f(x)=0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, e.g. $\nabla F(x)=0$ for unconstrained optimization

Idea:

- Linear approximation

$$
\hat{f}(x(t+1))=f(x(t))+J(x(t)) \Delta x(t)
$$

- Choose $\Delta x(t)$ such that $\hat{f}(x(t+1))=0$, i.e., solve

$$
J(x(t)) \Delta x(t)=-f(x(t))
$$

- Next iterate $x(t+1):=x(t)+\Delta x(t)$

$$
J(x):=\frac{\partial f}{\partial x}(x)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}}(x) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(x)
\end{array}\right]
$$

Computational methods

Newton-Raphson algorithm

To solve

$$
f(x)=0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, e.g. $\nabla F(x)=0$ for unconstrained optimization

$$
x(t+1):=x(t)-(J(x(t)))^{-1} f(x(t))
$$

Computational methods

Newton-Raphson algorithm

Kantorovic Theorem

Consider $f: D \rightarrow \mathbb{R}^{n}$ where $D \subseteq \mathbb{R}^{n}$ is an open convex set. Suppose

- f is differentiable and ∇f is Lipschitz on D, i.e., $\|\nabla f(y)-\nabla f(x)\| \leq L\|y-x\|$
- $x_{0} \in D$ and $\nabla f\left(x_{0}\right)$ is invertible

$$
\begin{gathered}
\text { Let } \beta \geq\left\|\left(\nabla f\left(x_{0}\right)\right)^{-1}\right\|, \eta \geq\left\|\left(\nabla f\left(x_{0}\right)\right)^{-1} f\left(x_{0}\right)\right\| \text { and } \\
h:=\beta \eta L, \quad r:=\frac{1-\sqrt{1-2 h}}{h} \eta
\end{gathered}
$$

Computational methods

Newton-Raphson algorithm

Kantorovic Theorem

Consider $f: D \rightarrow \mathbb{R}^{n}$ where $D \subseteq \mathbb{R}^{n}$ is an open convex set. Suppose

- f is differentiable and ∇f is Lipschitz on D, i.e., $\|\nabla f(y)-\nabla f(x)\| \leq L\|y-x\|$
- $x_{0} \in D$ and $\nabla f\left(x_{0}\right)$ is invertible

If the closed ball $B_{r}\left(x_{0}\right) \subseteq D$ and $h \leq 1 / 2$, then Newton iteration

$$
x(t+1):=x(t)-(\nabla f(x(t)))^{-1} f(x(t))
$$

converges to a solution $x^{*} \in B_{r}\left(x_{0}\right)$ of $f(x)=0$
Newton-Raphson converges if it starts close to a solution, often quadratically

Computational methods

Newton-Raphson algorithm
Apply to power flow equations in polar form:

$$
\begin{aligned}
p_{j}(\theta,|V|) & =p_{j}, & & j \in N \\
q_{j}(\theta,|V|) & =q_{j}, & & j \in N_{p q}
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{j}(\theta,|V|):=\left(\sum_{k=0}^{N} g_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \cos \theta_{j k}+b_{j k} \sin \theta_{j k}\right) \\
& q_{j}(\theta,|V|):=-\left(\sum_{k=0}^{N} b_{j k}\right)\left|V_{j}\right|^{2}-\sum_{k \neq j}\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \sin \theta_{j k}-b_{j k} \cos \theta_{j k}\right)
\end{aligned}
$$

Computational methods

Newton-Raphson algorithm
Define $f: \mathbb{R}^{N+N_{q p}} \rightarrow \mathbb{R}^{N+N_{q p}}$

$$
f(\theta,|V|):=\left[\begin{array}{l}
\Delta p(\theta,|V|) \\
\Delta q(\theta,|V|)
\end{array}\right]:=\left[\begin{array}{l}
p(\theta,|V|)-p \\
q(\theta,|V|)-q
\end{array}\right]
$$

with

$$
J(\theta,|V|):=\left[\begin{array}{ll}
\frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial|V|} \\
\frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial|V|}
\end{array}\right]
$$

Computational methods

Newton-Raphson algorithm

1. Initialization: choose $(\theta(0),|V(0)|)$
2. Iterate until stopping criteria
(a) Determine $(\Delta \theta(t), \Delta|V|(t))$ from

$$
J(\theta(t),|V|(t))\left[\begin{array}{r}
\Delta \theta(t) \\
\Delta|V|(t)
\end{array}\right]=-\left[\begin{array}{r}
\Delta p(\theta(t),|V|(t)) \\
\Delta q(\theta(t),|V|(t))
\end{array}\right]
$$

(b) Set

$$
\left[\begin{array}{r}
\theta(t+1) \\
|V|(t+1)
\end{array}\right]:=\left[\begin{array}{r}
\theta(t) \\
|V|(t)
\end{array}\right]+\left[\begin{array}{r}
\Delta \theta(t) \\
\Delta|V|(t)
\end{array}\right]
$$

Computational methods

Fast Decoupled algorithm

Key observation: the Jacobian is roughly block-diagonal

$$
J(\theta,|V|):=\left[\begin{array}{ll}
\frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial|V|} \\
\frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial|V|}
\end{array}\right] \approx\left[\begin{array}{cc}
\frac{\partial p}{\partial \theta} & 0 \\
0 & \frac{\partial q}{\partial|V|}
\end{array}\right]
$$

i.e., decoupling between p and $|V|$, and between q and θ

Computational methods

Fast Decoupled algorithm

Key observation: the Jacobian is roughly block-diagonal

$$
J(\theta,|V|):=\left[\begin{array}{ll}
\frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial|V|} \\
\frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial|V|}
\end{array}\right] \approx\left[\begin{array}{cc}
\frac{\partial p}{\partial \theta} & 0 \\
0 & \frac{\partial q}{\partial|V|}
\end{array}\right]
$$

i.e., decoupling between p and $|V|$, and between q and θ

This simplifies the computation of $\Delta x(t)$

$$
\begin{aligned}
\frac{\partial p}{\partial \theta}(\theta(t),|V|(t)) \Delta \theta(t) & =-\Delta p(\theta(t),|V|(t)) \\
\frac{\partial q}{\partial|V|}(\theta(t),|V|(t)) \Delta|V|(t) & =-\Delta q(\theta(t),|V|(t))
\end{aligned}
$$

Computational methods

Fast Decoupled algorithm

Decoupling assumption: $g_{j k}=0, \sin \theta_{j k}=0$

$$
\begin{aligned}
& \frac{\partial p_{j}}{\partial\left|V_{k}\right|}= \begin{cases}-\left|V_{j}\right|\left(g_{j k} \cos \theta_{j k}+b_{j k} \sin \theta_{j k}\right), & j \neq k \\
\frac{p_{j}(\theta,|V|)}{\left|V_{j}\right|}+\left(\sum_{i} g_{j i}\right)\left|V_{j}\right|, & j=k\end{cases} \\
& g_{j k}=0, \sin \theta_{j k}=0, p_{j}(\theta,|V|)=0 \Rightarrow \frac{\partial p}{\partial|V|}=0
\end{aligned}
$$

Computational methods

Fast Decoupled algorithm

Decoupling assumption: $g_{j k}=0, \sin \theta_{j k}=0$

$$
\frac{\partial q_{j}}{\partial \theta_{k}}=\left\{\begin{array}{ll}
\left|V_{j}\right|\left|V_{k}\right|\left(g_{j k} \cos \theta_{j k}+b_{j k} \sin \theta_{j k}\right), & j \neq k \\
p_{j}(\theta,|V|)-\left(\sum_{i} g_{j i}\right)\left|V_{j}\right|^{2}, & j=k
\end{array}\right\} \begin{aligned}
& g_{j k}=0, \sin \theta_{j k}=0, p_{j}(\theta,|V|)=0 \Rightarrow \frac{\partial q}{\partial \theta}=0
\end{aligned}
$$

Summary

1. Component models

- Single-phase devices, line, transformer

2. Network models

- VI relation (admittance matrix Y), Vs relation (power flow models)

3. Computation methods

- Gauss-Seidel algorithm, Newton-Raphson algorithm, Fast decoupled algorithm

