Power Systems Analysis

Chapter 5 Bus injection models

Outline

- 1. Component models
- 2. Network model: VI relation
- 3. Network model: Vs relation
- 4. Computation methods

Outline

- 1. Component models
 - Sources, impedance
 - Line
 - Transformer
- 2. Network model: VI relation
- 3. Network model: Vs relation
- 4. Computation methods

Overview

single-phase or 3-phase

- 1. Single-terminal device j
 - Voltage source (E_j, z_j) , current source (J_j, y_j) , power source (σ_j, z_j) , impedance z_j
 - Terminal variables $\left(V_{j}, I_{j}, s_{j}\right)$
 - External model: relation between $\left(V_{j}, I_{j}\right)$ or $\left(V_{j}, s_{j}\right)$
- 2. Two-terminal device (j, k)
 - Line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$, transformer $\left(n_{jk}, y_{jk}^{s}, y_{jk}^{m}\right)$
 - Terminal variables $\left(V_{j}, I_{jk}, S_{jk}\right)$ and $\left(V_{k}, I_{kj}, S_{kj}\right)$
 - External model: relation between $(V_j, V_k, I_{jk}, I_{kj})$ or $(V_j, V_k, S_{jk}, S_{kj})$

- 1. Voltage source (E_j, z_j)
 - Constant internal voltage E_i with series impedance z_i
 - Models for Thevenin equivalent circuit of a balanced synchronous machine, secondary side of transformer, gridforming inverter
 - External model: $V_j = E_j z_j I_j$
 - External model: $s_j = V_j I_j^H = y_j^H V_j \left(E_j V_j\right)^H$

- 2. Current source (J_j, y_j)
 - Constant internal current J_i with shunt admittance y_i
 - Models for Norton equivalent circuit of a synchronous generator, load (e.g. electric vehicle charger), grid-following inverter
 - External model: $I_j = J_j y_j V_j$
 - External model: $s_j = V_j I_j^H = V_j \left(J_j y_j V_j\right)^H$

- 3. Power source $\left(\sigma_{j}, z_{j}\right)$
 - Constant internal power σ_j in series with impedance z_j
 - Models for load, generator, secondary side of transformer

• External model:
$$\sigma_j = \left(V_j - z_j I_j\right) I_j^{+}$$

• External model:
$$s_j = V_j I_j^H = \sigma_j + z_j I_j I_j^H$$

- 4. Impedance z_j
 - Constant impedance *z*
 - Models for load
 - External model: $V_j = z_j I_j$

• External model:
$$s_j = V_j I_j^{\mathsf{H}} = \frac{\left|V_j\right|^2}{z_j^{\mathsf{H}}}$$

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$

VI relation: Π circuit and admittance matrix Y_{line}

 $I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j},$

 $I_{kj} = y_{jk}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k}$

admittance matrix Y_{line} :

- complex symmetric
- $[Y]_{jk} = -$ series admittance

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$

VI relation: Π circuit and admittance matrix Y_{line}

$$I_{jk} - y_{jk}(v_j - v_k) + y_{jk}v_j,$$

$$I_{kj} = y_{jk}^s(V_k - V_j) + y_{kj}^m V_k$$

Their sum is total line current loss

$$I_{jk} + I_{kj} = y_{jk}^m V_j + y_{kj}^m V_k \neq 0$$

If $y_{jk}^m = y_{kj}^m = 0$, then $I_{jk} = -I_{kj}$

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ *Vs* relation

quadratic equations

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ *Vs* relation

Line loss

$$S_{jk} + S_{kj} = \left(y_{jk}^{s}\right)^{H} \left|V_{j} - V_{k}\right|^{2} + \left(y_{jk}^{m}\right)^{H} \left|V_{j}\right|^{2} + \left(y_{kj}^{m}\right)^{H} \left|V_{k}\right|^{2}$$
series loss shunt loss

Single-phase transformer $\left(K\left(n_{jk}\right), y_{jk}^{s}, y_{jk}^{m}\right)$ Real $K\left(n_{jk}\right) = n_{jk}$

Single-phase transformer $(K(n_{jk}), y_{jk}^s, y_{jk}^m)$ Complex $K(n_{jk})$

Outline

- 1. Component models
- 2. Network model: VI relation
 - Examples
 - *VI* relation (admittance matrix *Y*)
 - Kron reduction
 - Invertibility of Y
- 3. Network model: Vs relation
- 4. Computation methods

Network model

single-phase or 3-phase

Example

Example

Step 1: transformer + line

Nodal current balance (KCL):

$$I_{1} = I_{13}$$

$$I_{3} = I_{31} + I_{32} = 0$$

$$I_{2} = I_{23}$$

Example

Step 1: transformer + line

1:n

- *Y*₁ : complex symmetric
- Hence: admittance matrix with $\boldsymbol{\Pi}$ circuit
- Unequal shunt elements

ls

Example Step 2: overall system

IS

generator/load

Example Step 2: overall system

IS

generator/load

General network model

- 1. Network $G := (\overline{N}, E)$
 - $\overline{N} := \{0\} \cup N := \{0\} \cup \{1, \dots, N\}$: buses/nodes/terminals
 - $E \subseteq \overline{N} \times \overline{N}$: lines/branches/links/edges
- 2. Each line (j, k) is parameterized by $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$
 - y_{ik}^s : series admittance
 - y_{ik}^m , y_{ki}^m : shunt admittances, generally different

General network model

Branch currents

Sending-end currents

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j}, \qquad I_{kj} = y_{jk}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k},$$

VI relation Nodal current balance

$$I_j = \sum_{k:j\sim k} I_{jk}$$

VI relation Nodal current balance

Steven Low

$$I_{j} = \sum_{k:j\sim k} I_{jk} = \left(\sum_{k:j\sim k} y_{jk}^{s} + y_{jj}^{m}\right) V_{j} - \sum_{k:j\sim k} y_{jk}^{s} V_{k}$$

total shunt admittance: $y_{jj}^{m} := \sum_{k:j\sim k} y_{jk}^{m}$
EE/CS/EST 135 Caltech

VI relation Admittance matrix *Y*

$$I_{j} = \sum_{k:j \sim k} I_{jk} = \left(\sum_{k:j \sim k} y_{jk}^{s} + y_{jj}^{m}\right) V_{j} - \sum_{k:j \sim k} y_{jk}^{s} V_{k}$$

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

VI relation Admittance matrix Y

Y can be written down by inspection of network graph

- Off-diagonal entry: series admittance
- Diagonal entry: \sum series admittances + total shunt admittance

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

VI relation Admittance matrix *Y*

A matrix Y is an admittance matrix iff it is complex symmetric

• Can be interpreted as a Π circuit

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

-

total shunt admittance: $y_{jj}^m := \sum_{k:j \sim k} y_{jk}^m$

Admittance matrix *Y* In terms of incidence matrix *C*

bus-by-line incidence matrix

$$C_{jl} = \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \\ 0 & \text{otherwise} \end{cases}$$

Admittance matrix *Y* In terms of incidence matrix *C*

bus-by-line incidence matrix

$$C_{jl} = \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \\ 0 & \text{otherwise} \end{cases}$$

$$Y = CY^{s}C^{T} + Y^{m}$$

where $Y^{s} := \operatorname{diag}\left(y_{jk}^{s}\right), Y^{m} := \operatorname{diag}\left(y_{jj}^{m}\right)$

Y is a complex Laplacian matrix when $Y^m = 0$

• See later for its properties

Outline

1. Component models

2. Network model: VI relation

- Examples
- *VI* relation (admittance matrix *Y*)
- Kron reduction
- Invertibility of Y
- 3. Network model: Vs relation
- 4. Computation methods

Kron reduction

- $N_{\text{red}} \subseteq \overline{N}$: buses of interest, e.g., terminal buses
- Want to relate current injections and voltages at buses in $N_{\rm red}$

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \longleftarrow N_{\text{red}}$$

$$\overline{N} \setminus N_{\text{red}}$$

- Eliminate $V_2 = -Y_{22}^{-1}Y_{21}V_1 + Y_{22}^{-1}I_2$
- Obtain: $(Y_{11} Y_{12}Y_{22}^{-1}Y_{21}) V_1 = I_1 Y_{12}Y_{22}^{-1}I_2$ Schur complement

Kron reduction

If internal injections $I_2 = 0$:

$$\left(Y_{11} - Y_{12}Y_{22}^{-1}Y_{21}\right)V_1 = I_1$$

Schur complement

• Describes effective connectivity and line admittances of reduced network

Example:

2

reduced network

Invertibility of YZero shunt $Y^m = 0$

Admittance matrix $Y = CY^{s}C$ where $Y^{s} := \text{diag}\left(y_{jk}^{s}\right)$

When Y is real, it is called a real Laplacian matrix

- $(N+1) \times (N+1)$ real symmetric matrix
- Row sum = column sum = 0
- rank(Y) = N, null(Y) = span(1)
- Any principal submatrix is invertible

When Y is a complex symmetric, but not Hermitian, these properties may not hold

Invertibility of YZero shunt $Y^m = 0$

Admittance matrix
$$Y = CY^{s}C$$
 where $Y^{s} := \text{diag}\left(y_{jk}^{s}\right)$

Theorem (Singular value decomposition)

Suppose $Y^m = 0$. Then $Y = W \Sigma W^T$ where

- Unitary W: columns are orthonormal eigenvectors of $Y\overline{Y}$ (\overline{Y} : elementwise complex conjugate of Y)
- $\Sigma := \operatorname{diag}\left(\sigma_{j}\right) : 0 = \sigma_{0} \le \sigma_{1} \le \cdots \le \sigma_{N}$ are nonnegative roots of eigenvalues of $Y\overline{Y}$

Pseudo-inverse Y^{\dagger} := $\overline{W}\Sigma^{\dagger}W^{H}$

• \overline{W} , W^H : elementwise complex conjugate and Hermitian transpose respectively of W

•
$$\Sigma^{\dagger}:= \mathrm{diag}\left(1/\sigma_{j}, j=1,\ldots,N\right)$$
 where $1/\sigma_{j}:=0$ if $\sigma_{j}=0$

Admittance matrix $Y = CY^{s}C + Y^{m}$ where $Y^{s} := \text{diag}\left(y_{jk}^{s}\right)$, $Y^{m} := \text{diag}\left(y_{jj}^{m}\right)$

I.

If Y^s , Y^m are real symmetric such that

• Y_{jk}^{s} , Y_{jj}^{m} are all of the same sign (e.g. for DC power flow model) then

Y is strictly diagonally dominant: $|Y_{jj}| =$

$$\left|\sum_{k:j\sim k} y_{jk}^s + y_{jj}^m\right| > \sum_{k:j\sim k} |y_{jk}^s|, \forall j$$

L

• *Y* is therefore invertible and positive definite

Sufficient (not necessary) condition for Y^{-1} to exist is

 $\alpha^H Y \alpha \neq 0$ for all $\alpha \in C^{N+1}$

Proof:

If *Y* is not invertible then it has an eigenvector α with zero eigenvalue. Hence $\alpha^H Y \alpha = 0$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$\alpha^{H}Y\alpha \neq 0 \text{ for all } \alpha \in C^{N+1}$$
$$\alpha^{H}Y\alpha = \sum_{j} \left(\left(\sum_{k:k\sim j} y_{jk}^{s} + y_{jj}^{m} \right) |\alpha_{j}|^{2} - \sum_{k:k\sim j} y_{jk}^{s} \alpha_{j}^{*} \alpha_{k} \right)$$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$\begin{aligned} \alpha^{H} Y \alpha &\neq 0 \text{ for all } \alpha \in C^{N+1} \\ \alpha^{H} Y \alpha &= \sum_{j} \left(\left(\sum_{k:k \sim j} y_{jk}^{s} + y_{jj}^{m} \right) |\alpha_{j}|^{2} - \sum_{k:k \sim j} y_{jk}^{s} \alpha_{j}^{*} \alpha_{k} \right) \\ &= \sum_{(j,k) \in E} y_{jk}^{s} \left(|\alpha_{j}|^{2} - \alpha_{j}^{*} \alpha_{k} - \alpha_{j} \alpha_{k}^{*} + |\alpha_{k}|^{2} \right) + \sum_{j \in \overline{N}} y_{jj}^{m} |\alpha_{j}|^{2} \end{aligned}$$

Sufficient (not necessary) condition for Y^{-1} to exist is

$$\begin{aligned} \alpha^{H}Y\alpha &\neq 0 \text{ for all } \alpha \in C^{N+1} \\ \alpha^{H}Y\alpha &= \sum_{j} \left(\left(\sum_{k:k\sim j} y_{jk}^{s} + y_{jj}^{m} \right) |\alpha_{j}|^{2} - \sum_{k:k\sim j} y_{jk}^{s} \alpha_{j}^{*} \alpha_{k} \right) \\ &= \sum_{(j,k)\in E} y_{jk}^{s} \left(|\alpha_{j}|^{2} - \alpha_{j}^{*}\alpha_{k} - \alpha_{j}\alpha_{k}^{*} + |\alpha_{k}|^{2} \right) + \sum_{j\in\overline{N}} y_{jj}^{m} |\alpha_{j}|^{2} \\ &= \sum_{(j,k)\in E} y_{jk}^{s} \left| \alpha_{j} - \alpha_{k} \right|^{2} + \sum_{j\in\overline{N}} y_{jj}^{m} |\alpha_{j}|^{2} \end{aligned}$$

Write
$$y_{jk}^{s} =: g_{jk}^{s} + ib_{jk}^{s}, y_{jj}^{m} =: g_{jj}^{m} + ib_{jj}^{m}$$

$$\alpha^{H}Y\alpha = \left(\sum_{(j,k)\in E} g_{jk}^{s} \left|\alpha_{j} - \alpha_{k}\right|^{2} + \sum_{j\in\overline{N}} g_{jj}^{m} \left|\alpha_{j}\right|^{2}\right) + i\left(\sum_{(j,k)\in E} b_{jk}^{s} \left|\alpha_{j} - \alpha_{k}\right|^{2} + \sum_{j\in\overline{N}} b_{jj}^{m} \left|\alpha_{j}\right|^{2}\right)$$

Therefore Y is invertible if

- 1. At least one shunt admittance $y_{jj}^m \neq 0$. All nonzero g_{jj}^m (or b_{jj}^m) have same sign
- 2. All nonzero g_{jk}^{s} (or b_{jk}^{s}) have same sign
- 3. All $g_{jk}^s \neq 0$. All nonzero g_{ji}^m have the same sign as g_{jk}^s

$$\alpha^{H}Y\alpha = \left(\sum_{(j,k)\in E} g_{jk}^{s} \left|\alpha_{j} - \alpha_{k}\right|^{2} + \sum_{j\in\overline{N}} g_{jj}^{m} \left|\alpha_{j}\right|^{2}\right) + i\left(\sum_{(j,k)\in E} b_{jk}^{s} \left|\alpha_{j} - \alpha_{k}\right|^{2} + \sum_{j\in\overline{N}} b_{jj}^{m} \left|\alpha_{j}\right|^{2}\right)$$

$$\neq 0$$

If (j, k) models a transmission line, then these sufficient conditions are satisfied Steven Low EE/CS/EST 135 Caltech

Therefore Y is invertible if

- 1. At least one shunt admittance $y_{jj}^m \neq 0$. All nonzero g_{jj}^m (or b_{jj}^m) have same sign
- 2. All nonzero g_{jk}^{s} (or b_{jk}^{s}) have same sign
- 3. All $g_{jk}^s \neq 0$. All nonzero g_{jj}^m have the same sign as g_{jk}^s

Similar argument leads to sufficient conditions on invertibility of Y_{22} for Kron reduction

Outline

- 1. Component models
- 2. Network model: VI relation
- 3. Network model: Vs relation
 - Complex form
 - Polar form
 - Cartesian form
 - Types of buses
- 4. Computation methods

General network

Branch currents

Sending-end currents

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j}, \qquad I_{kj} = y_{jk}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k},$$

Power flow models Complex form

Using
$$S_{jk} := V_j I_{jk}^H$$
:
 $S_{jk} = \left(y_{jk}^s \right)^H \left(|V_j|^2 - V_j V_k^H \right) + \left(y_{jk}^m \right)^H |V_j|^2$
 $S_{kj} = \left(y_{jk}^s \right)^H \left(|V_k|^2 - V_k V_j^H \right) + \left(y_{kj}^m \right)^H |V_k|^2$

Power flow models Complex form

Bus injection model
$$s_j = \sum_{k:j \sim k} S_{jk}$$
:

$$s_j = \sum_{k:j \sim k} \left(y_{jk}^s \right)^H \left(|V_j|^2 - V_j V_k^H \right) + \left(y_{jj}^m \right)^H |V_j|^2$$

In terms of admittance matrix Y

$$s_j = \sum_{k=1}^{N+1} Y_{jk}^H V_j V_k^H$$

N + 1 complex equations in 2(N + 1) complex variables $\left(s_{j}, V_{j}, j \in \overline{N}\right)$ Steven Low EE/CS/EST 135 Caltech

Power flow models Polar form

Write
$$s_j =: p_j + iq_j$$
 and $V_j =: |V_j| e^{i\theta_j}$ with $y_{jk}^s =: g_{jk}^s + ib_{jk}^s$, $y_{jk}^m =: g_{jk}^m + ib_{jk}^m$:
 $p_j = \left(\sum_{k=0}^N g_{jk}\right) |V_j|^2 - \sum_{k \neq j} |V_j| |V_k| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk}\right)$
 $q_j = -\left(\sum_{k=0}^N b_{jk}\right) |V_j|^2 - \sum_{k \neq j} |V_j| |V_k| \left(g_{jk} \sin \theta_{jk} - b_{jk} \cos \theta_{jk}\right)$
where $g_{jk} := \begin{cases} g_{jj}^m & \text{if } j = k \\ 0 & \text{if } j \neq k, (j,k) \notin E \end{cases}$ $b_{jk} := \begin{cases} b_{jj}^m & \text{if } j = k \\ 0 & \text{if } j \neq k, (j,k) \notin E \end{cases}$

Power flow models Polar form

Write
$$s_j =: p_j + iq_j$$
 and $V_j =: |V_j| e^{i\phi}$ with $y_{jk}^s =: g_{jk}^s + ib_{jk}^s$, $y_{jk}^m =: g_{jk}^m + ib_{jk}^m$:
 $p_j = \left(\sum_{k=0}^N g_{jk}\right) |V_j|^2 - \sum_{k \neq j} |V_j| |V_k| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk}\right)$
 $q_j = -\left(\sum_{k=0}^N b_{jk}\right) |V_j|^2 - \sum_{k \neq j} |V_j| |V_k| \left(g_{jk} \sin \theta_{jk} - b_{jk} \cos \theta_{jk}\right)$

2(N+1) real equations in 4(N+1) real variables $\left(p_j, q_j, |V_j|, \theta_j, j \in \overline{N}\right)$ Steven Low EE/CS/EST 135 Caltech

Power flow models Cartesian form

Write
$$s_j =: p_j + iq_j$$
 and $V_j =: e_j + if_j$:

$$p_j = \left(\sum_k g_{jk}\right) \left(e_j^2 + f_j^2\right) - \sum_{k \neq j} \left(g_{jk}(e_j e_k + f_j f_k) + b_{jk}(f_j e_k - e_j f_k)\right)$$

$$q_j = -\left(\sum_k b_{jk}\right) \left(e_j^2 + f_j^2\right) - \sum_{k \neq j} \left(g_{jk}(f_j e_k - e_j f_k) - b_{jk}(e_j e_k + f_j f_k)\right)$$

2(N+1) real equations in 4(N+1) real variables $\left(p_j, q_j, e_j, f_j, j \in \overline{N}\right)$ Steven Low EE/CS/EST 135 Caltech

Power flow models Types of buses

Power flow equations specify 2(N+1) real equations in 4(N+1) real variables

• Power flow (load flow) problem: given 2(N+1) values, determine remaining vars

Types of buses

- PV buses : $(p_j, |V_j|)$ specified, determine (q_j, θ_j) , e.g. generator PQ buses : (p_j, q_j) specified, determine V_j , e.g. load Slack bus 0 : $V_0 := 1 \angle 0^\circ$ pu specified, determine (p_j, p_j)

Outline

- 1. Component models
- 2. Network model: VI relation
- 3. Network model: Vs relation
- 4. Computation methods
 - Gauss-Seidel algorithm
 - Newton-Raphson algorithm
 - Fast decoupled algorithm

Case 1: given V_0 and (s_1, \ldots, s_N) , determine s_0 and (V_1, \ldots, V_N)

Power flow equations

$$s_0 = \sum_{k} Y_{0k}^H V_0 V_k^H$$

$$s_j = \sum_{k} Y_{jk}^H V_j V_k^H, \qquad j \in N$$

- First compute (V_1, \ldots, V_N)
- Then compute *s*₀

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$

Rearrange 2nd equation:

$$\frac{s_{j}^{H}}{V_{j}^{H}} = Y_{jj}V_{j} + \sum_{\substack{k=0\\k\neq j}}^{N} Y_{jk}V_{k}, \quad j \in N$$
$$V_{j} = \frac{1}{Y_{jj}} \left(\frac{s_{j}^{H}}{V_{j}^{H}} - \sum_{\substack{k=0\\k\neq j}}^{N} Y_{jk}V_{k} \right) =: f_{j}(V_{1}, ..., V_{N}), \quad j \in N$$

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$ 2nd power flow equation:

$$V = f(V)$$
 where $V := \left(V_j, j \in N\right), f := \left(f_j, j \in N\right)$

Gauss algorithm is the fixed point iteration

V(t+1) = f(V(t))

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$ Gauss algorithm:

$$\begin{split} V_1(t+1) &= f_1\left(V_1(t), \dots, V_N(t)\right) \\ V_2(t+1) &= f_2\left(V_1(t), \dots, V_N(t)\right) \\ &\vdots \\ V_N(t+1) &= f_N\left(V_1(t), \dots, V_{N-1}(t), V_N(t)\right) \end{split}$$

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$ Gauss-Seidel algorithm:

$$\begin{split} V_1(t+1) &= f_1\left(V_1(t), \dots, V_N(t)\right) \\ V_2(t+1) &= f_2\left(V_1(t+1), \dots, V_N(t)\right) \\ &\vdots \\ V_N(t+1) &= f_N\left(V_1(t+1), \dots, V_{N-1}(t+1), V_N(t)\right) \end{split}$$

Case 2: given $(V_0, ..., V_m)$ and $(s_{m+1}, ..., s_N)$, determine $(s_j, j \le m)$ and $(V_j, j > m)$

Power flow equations

$$s_{j} = \sum_{k} Y_{jk}^{H} V_{j} V_{k}^{H}, \qquad j \le m$$
$$s_{j} = \sum_{k} Y_{jk}^{H} V_{j} V_{k}^{H}, \qquad j > m$$

• First compute $(V_{m+1}, ..., V_N)$ from 2nd set of equations using the same algorithm

• Then compute $(s_j, j \le m)$ from 1st set of equations

Steven Low

If algorithm converges, the limit is a fixed point and a power flow solution

Algorithm converges linearly to unique fixed point if f is a contraction mapping

• Contraction is sufficient, but not necessary, for convergence

In general, algorithm may or may not convergence depending on initial point

To solve f(x) = 0where $f : \mathbb{R}^n \to \mathbb{R}^n$, e.g. $\nabla F(x) = 0$ for unconstrained optimization

<u>ldea</u>:

Linear approximation

 $\hat{f}(x(t+1)) = f(x(t)) + J(x(t)) \Delta x(t)$

• Choose $\Delta x(t)$ such that $\hat{f}(x(t+1)) = 0$, i.e., solve

$$J(x(t))\Delta x(t) = -f(x(t))$$

• Next iterate $x(t+1) := x(t) + \Delta x(t)$
$$J(x) := \frac{\partial f}{\partial x}(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{bmatrix}$$

To solve f(x) = 0

where $f : \mathbb{R}^n \to \mathbb{R}^n$, e.g. $\nabla F(x) = 0$ for unconstrained optimization

Kantorovic Theorem

Consider $f: D \to \mathbb{R}^n$ where $D \subseteq \mathbb{R}^n$ is an open convex set. Suppose

- *f* is differentiable and ∇f is Lipschitz on *D*, i.e., $\|\nabla f(y) \nabla f(x)\| \leq L \|y x\|$
- $x_0 \in D$ and $\nabla f(x_0)$ is invertible

Let
$$\beta \ge \left\| \left(\nabla f(x_0) \right)^{-1} \right\|, \quad \eta \ge \left\| \left(\nabla f(x_0) \right)^{-1} f(x_0) \right\|$$
 and
 $h := \beta \eta L, \quad r := \frac{1 - \sqrt{1 - 2h}}{h} \eta$

Kantorovic Theorem

Consider $f: D \to \mathbb{R}^n$ where $D \subseteq \mathbb{R}^n$ is an open convex set. Suppose

- *f* is differentiable and ∇f is Lipschitz on *D*, i.e., $\|\nabla f(y) \nabla f(x)\| \leq L \|y x\|$
- $x_0 \in D$ and $\nabla f(x_0)$ is invertible

If the closed ball $B_r(x_0) \subseteq D$ and $h \leq 1/2$, then Newton iteration $x(t+1) := x(t) - (\nabla f(x(t)))^{-1} f(x(t))$ converges to a solution $x^* \in B_r(x_0)$ of f(x) = 0

Newton-Raphson converges if it starts close to a solution, often quadratically Steven Low EE/CS/EST 135 Caltech

Apply to power flow equations in polar form:

$$p_{j}(\theta, |V|) = p_{j}, \qquad j \in N$$
$$q_{j}(\theta, |V|) = q_{j}, \qquad j \in N_{pq}$$

where

$$p_{j}(\theta, |V|) := \left(\sum_{k=0}^{N} g_{jk}\right) |V_{j}|^{2} - \sum_{k \neq j} |V_{j}| |V_{k}| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk}\right)$$
$$q_{j}(\theta, |V|) := -\left(\sum_{k=0}^{N} b_{jk}\right) |V_{j}|^{2} - \sum_{k \neq j} |V_{j}| |V_{k}| \left(g_{jk} \sin \theta_{jk} - b_{jk} \cos \theta_{jk}\right)$$

Define
$$f : \mathbb{R}^{N+N_{qp}} \to \mathbb{R}^{N+N_{qp}}$$

$$f(\theta, |V|) := \begin{bmatrix} \Delta p(\theta, |V|) \\ \Delta q(\theta, |V|) \end{bmatrix} := \begin{bmatrix} p(\theta, |V|) - p \\ q(\theta, |V|) - q \end{bmatrix}$$

with

$$J(\theta, |V|) := \begin{bmatrix} \frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial |V|} \\ \frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial |V|} \end{bmatrix}$$

- 1. Initialization: choose $(\theta(0), |V(0)|)$
- 2. Iterate until stopping criteria

(a) Determine $\left(\Delta\theta(t), \Delta | V|(t)\right)$ from

$$J\left(\theta(t), |V|(t)\right) \begin{bmatrix} \Delta\theta(t) \\ \Delta |V|(t) \end{bmatrix} = -\begin{bmatrix} \Delta p(\theta(t), |V|(t)) \\ \Delta q(\theta(t), |V|(t)) \end{bmatrix}$$

(b) Set

$$\begin{bmatrix} \theta(t+1) \\ |V|(t+1) \end{bmatrix} := \begin{bmatrix} \theta(t) \\ |V|(t) \end{bmatrix} + \begin{bmatrix} \Delta \theta(t) \\ \Delta |V|(t) \end{bmatrix}$$

Computational methods Fast Decoupled algorithm

Key observation: the Jacobian is roughly block-diagonal

$$J(\theta, |V|) := \begin{bmatrix} \frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial |V|} \\ \frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial |V|} \end{bmatrix} \approx \begin{bmatrix} \frac{\partial p}{\partial \theta} & 0 \\ 0 & \frac{\partial q}{\partial |V|} \end{bmatrix}$$

i.e., decoupling between p and $\left\| V \right\|$, and between q and θ
Computational methods Fast Decoupled algorithm

Key observation: the Jacobian is roughly block-diagonal

$$J(\theta, |V|) := \begin{bmatrix} \frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial |V|} \\ \frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial |V|} \end{bmatrix} \approx \begin{bmatrix} \frac{\partial p}{\partial \theta} & 0 \\ 0 & \frac{\partial q}{\partial |V|} \end{bmatrix}$$

i.e., decoupling between p and $\left| \, V \right|$, and between q and θ

This simplifies the computation of $\Delta x(t)$

$$\frac{\partial p}{\partial \theta}(\theta(t), |V|(t)) \ \Delta \theta(t) = -\Delta p(\theta(t), |V|(t))$$
$$\frac{\partial q}{\partial |V|}(\theta(t), |V|(t)) \ \Delta |V|(t) = -\Delta q(\theta(t), |V|(t))$$

Steven Low EE/CS/EST 135 Caltech

Computational methods Fast Decoupled algorithm

$$\begin{array}{l} \underline{\text{Decoupling assumption:}} \quad g_{jk} = 0, \, \sin \theta_{jk} = 0\\ \\ \frac{\partial p_j}{\partial |V_k|} = \begin{cases} -|V_j| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk} \right), & j \neq k\\ \\ \frac{p_j(\theta, |V|)}{|V_j|} + \left(\sum_i g_{ji} \right) |V_j|, & j = k \end{cases}\\ \\ g_{jk} = 0, \, \sin \theta_{jk} = 0, \, p_j(\theta, |V|) = 0 \quad \Rightarrow \quad \frac{\partial p}{\partial |V|} = 0 \end{array}$$

Computational methods Fast Decoupled algorithm

$$\begin{array}{l} \underline{\text{Decoupling assumption:}} \quad g_{jk} = 0, \, \sin \theta_{jk} = 0 \\ \\ \frac{\partial q_j}{\partial \theta_k} = \begin{cases} |V_j| \, |V_k| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk} \right), & j \neq k \\ \\ p_j(\theta, |V|) - \left(\sum_i g_{ji} \right) |V_j|^2, & j = k \end{cases} \\ \\ g_{jk} = 0, \, \sin \theta_{jk} = 0, \, p_j(\theta, |V|) = 0 \quad \Rightarrow \quad \frac{\partial q}{\partial \theta} = 0 \end{cases} \end{array}$$

Summary

- 1. Component models
 - Single-phase devices, line, transformer
- 2. Network models
 - *VI* relation (admittance matrix *Y*), *Vs* relation (power flow models)
- 3. Computation methods
 - Gauss-Seidel algorithm, Newton-Raphson algorithm, Fast decoupled algorithm