Power System Analysis

Chapter 8 Unbalanced network: component models

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models
4. Three-phase line models
5. Three-phase transformer models

Outline

1. Overview

- Internal \& terminal variables
- 3-phase device models
- 3-phase line \& transformer models
- 3-phase network models

2. Mathematical properties
3. Three-phase device models
4. Three-phase line models
5. Three-phase transformer models

Overview

single-phase or 3-phase

Example

Single-phase system

System model $=$ device model + network model

1. Device model: $V_{1}=\frac{V_{\text {gen }}}{\sqrt{3} e^{i \pi / 6}}, V_{\text {load }}=Z_{\text {load }} I_{\text {load }}$

2. Transformer model: $\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=Y_{\text {transformer }}\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$
3. Line model: $\left[\begin{array}{c}I_{2} \\ I_{\text {load }}\end{array}\right]=Y_{\text {line }}\left[\begin{array}{c}V_{2} \\ V_{\text {load }}\end{array}\right]$

4. Nodal (current) balance are implicitly taken into account
5. 6 (linear) equations in 6 unknowns $\left(V_{1}, V_{2}, V_{\text {load }}\right),\left(I_{1}, I_{2}, I_{\text {load }}\right)$ each in \mathbb{C}

Example
 Three-phase unbalanced system

System model = device model + network model

1. Device model: Y / Δ-configured devices are a key difference
2. Transformer model: Y / Δ-configured transformers are a key difference
3. Line model: 3-phase lines have straightforward extension
4. Nodal (current) balance are the same as for 1-phase network
5. 6 (linear) equations in 6 unknowns $\left(V_{1}, V_{2}, V_{\text {load }}\right),\left(I_{1}, I_{2}, I_{\text {load }}\right)$
 each in \mathbb{C}^{3}

Overview

single-phase or 3-phase

Key question

How to derive external models of 3-phase devices

1. Voltage/current/power sources, impedances
2. ... in Y / Δ configurations
(1-phase device: internal models)
(conversion rules: int \rightarrow ext)
3. ... with or without neutral lines, grounded or ungrounded, zero or nonzero grounding impedances
similar principle to derive external models of 3-phase transformers (but different details)

Internal variables

Y configuration

Internal voltage, current, power across single-phase devices:

$$
V^{Y}:=\left[\begin{array}{l}
V^{a n} \\
V^{b n} \\
V^{c n}
\end{array}\right], I^{Y}:=\left[\begin{array}{l}
I^{a n} \\
I^{b n} \\
I^{c n}
\end{array}\right], s^{Y}:=\left[\begin{array}{l}
s^{a n} \\
s^{b n} \\
s^{c n}
\end{array}\right]:=\left[\begin{array}{l}
V^{a n} \bar{I}^{a n} \\
V^{b n \bar{I}} \bar{I}^{b n} \\
V^{c n} \bar{I}^{c n}
\end{array}\right]
$$

neutral voltage (wrt common reference pt) $V^{n} \in \mathbb{C}$
neutral current (away from neutral) $I^{n} \in \mathbb{C}$

- Neutral line may or may not be present
- Device may or may not be grounded
- Neutral impedance z^{n} may or may not be zero

Internal variables

Δ configuration

Internal voltage, current, power across single-phase devices:

$$
V^{\Delta}:=\left[\begin{array}{l}
V^{a b} \\
V^{b c} \\
V^{c a}
\end{array}\right], I^{\Delta}:=\left[\begin{array}{c}
I^{a b} \\
I^{b c} \\
I^{c a}
\end{array}\right], s^{\Delta}:=\left[\begin{array}{c}
s^{a b} \\
s^{b c} \\
s^{c a}
\end{array}\right]:=\left[\begin{array}{c}
V^{a b} \bar{I}^{a b} \\
V^{b c} \bar{I}^{b c} \\
V^{c a} \bar{I}^{c a}
\end{array}\right]
$$

Terminal variables

Terminal voltage, current, power (for both Y and Δ) to reference:

$$
V:=\left[\begin{array}{l}
V^{a} \\
V^{b} \\
V^{c}
\end{array}\right], I:=\left[\begin{array}{l}
I^{a} \\
I^{b} \\
I^{c}
\end{array}\right], s:=\left[\begin{array}{l}
s^{a} \\
s^{b} \\
s^{c}
\end{array}\right]:=\left[\begin{array}{c}
V^{a} \bar{I}^{a} \\
V^{b} \bar{I}^{b} \\
V^{c} \bar{I}^{c}
\end{array}\right]
$$

- V is with respect to an arbitrary common reference point, e.g. the ground
- I and s are in the direction out of the device

Internal vs terminal power

1. Internal power:

- Across each single-phase device: $s^{Y / \Delta}:=\operatorname{diag}\left(V^{Y / \Delta} I^{Y / \Delta H}\right)$
- Across neutral conductor: $s^{n}:=V^{n} \bar{I}^{n}$

2. Terminal power:

- Power injected from device to network: $s:=\operatorname{diag}\left(V I^{\mathrm{H}}\right)$

Summary: variables

	Voltage	Current	Power	Neutral line
Internal variable	$V^{Y / \Delta}$	$I^{Y / \Delta}$	$s^{Y / \Delta}$	$\left(V^{n}, I^{n}, s^{n}\right)$
External variable	V	I	s	$\left(V^{n^{\prime}}, I^{n^{\prime}}, s^{n^{\prime}}\right)$

- Neutral line may or may not be present
- Device may or may not be grounded
- Neutral impedance z^{n} may or may not be zero

Device models

Internal model

1. Relation between internal vars: $f^{\mathrm{int}}\left(V^{Y / \Delta}, I^{Y / \Delta}\right)=0, \quad \operatorname{diag}\left(V^{Y / \Delta} I^{Y / \Delta H}\right)=s^{Y / \Delta}$
2. Examples
ideal voltage source: $\quad V^{Y / \Delta}=E^{Y / \Delta}, \quad s^{Y / \Delta}=\operatorname{diag}\left(E^{Y / \Delta}\left(I^{Y / \Delta}\right)^{\mathrm{H}}\right)$
impedance: $\quad V^{Y / \Delta}=z^{Y / \Delta} I^{Y / \Delta}, \quad s^{Y / \Delta}=\operatorname{diag}\left(V^{Y / \Delta}\left(I^{Y / \Delta}\right)^{\mathrm{H}}\right)$

Device models

Internal model

1. Relation between internal vars: $f^{\mathrm{int}}\left(V^{Y / \Delta}, I^{Y / \Delta}\right)=0, \quad \operatorname{diag}\left(V^{Y / \Delta} I^{Y / \Delta H}\right)=s^{Y / \Delta}$
2. Examples

$$
\begin{array}{lll}
\text { ideal voltage source: } & V^{Y / \Delta}=E^{Y / \Delta}, & s^{Y / \Delta}=\operatorname{diag}\left(E^{Y / \Delta}\left(I^{Y / \Delta}\right)^{\mathrm{H}}\right) \\
\text { impedance: } & V^{Y / \Delta}=z^{Y / \Delta} I^{Y / \Delta}, & s^{Y / \Delta}=\operatorname{diag}\left(V^{Y / \Delta}\left(I^{Y / \Delta}\right)^{\mathrm{H}}\right)
\end{array}
$$

3. Internal model

- Independent of Y or Δ configuration
- Depends only on behavior of single-phase devices
- Voltage/current/power source, impedance

Device model

External model

1. External model = Internal model + Conversion rule

- External model: relation between (V, I, s)

$$
f^{\mathrm{ext}}(V, I)=0, \quad s=\operatorname{diag}\left(V I^{\mathrm{H}}\right)
$$

- Devices interact over network only through their terminal vars

2. Internal model : relation between $\left(V^{Y / \Delta}, I^{Y / \Delta}, s^{Y / \Delta}\right)$

- Independent of Y or Δ configuration
- Depends only on behavior of single-phase devices

3. Conversion rule : converts between internal and terminal vars

- Depends only on Y or Δ configuration
- Independent of type of single-phase devices

Line or transformer model

1. A line or transformer has two terminals j and k

- Each terminal may have 3 wires (ports) or 4 wires (ports) if neutral line present

2. Terminal variables (3-wired)

- Terminal voltages: $V_{j}:=\left(V_{j}^{a}, V_{j}^{b}, V_{j}^{c}\right) \in \mathbb{C}^{3}, V_{k}:=\left(V_{k}^{a}, V_{k}^{b}, V_{k}^{c}\right) \in \mathbb{C}^{3}$
. Sending-end currents: $I_{j k}:=\left(I_{j k}^{a}, I_{j k}^{b}, I_{j k}^{c}\right) \in \mathbb{C}^{3}, I_{k j}:=\left(I_{k j}^{a}, I_{k j}^{b}, I_{k j}^{c}\right) \in \mathbb{C}^{3}$
. Sending-end powers: $S_{j k}:=\left(S_{j k}^{a}, S_{j k}^{b}, S_{j k}^{c}\right) \in \mathbb{C}^{3}, S_{k j}:=\left(S_{k j}^{a}, S_{k j}^{b}, S_{k j}^{c}\right) \in \mathbb{C}^{3}$

3. Model in terms of 3×3 admittance matrices:

- IV relation: $g\left(V_{j}, V_{k}, I_{j k}, I_{k j}\right)=0$
. sV relation: $S_{j k}^{\phi}:=V_{j}^{\phi}\left(I_{j k}^{\phi}\right)^{H}$ or in vector form $S_{j k}:=\operatorname{diag}\left(V_{j} I_{j k}^{H}\right), S_{k j}:=\operatorname{diag}\left(V_{k} I_{k j}^{H}\right)$

Network model

Network balance equations relate terminal vars
. Nodal current balance: $I_{j}=\sum_{k: j \sim k} I_{j k}$

. Nodal power balance: $s_{j}=\sum_{k: j \sim k} S_{j k}$

Overall model

Device + network

1. Device model for each 3-phase device

- Internal model on $\left(V_{j}^{Y / \Delta}, I_{j}^{Y / \Delta}, s_{j}^{Y / \Delta}\right)+$ conversion rules
- External model on $\left(V_{j}, I_{j}, s_{j}\right)$
- Either can be used
- Power source models are nonlinear; other devices are linear

2. Network model relates terminal vars (V, I, s)

- Nodal current balance equation: linear
- Nodal power balance equation: nonlinear
- Either can be used

Outline

1. Overview
2. Mathematical properties

- Conversion matrices Γ, Γ^{\top}
- Sequence variables

3. Three-phase device models
4. Three-phase line models
5. Three-phase transformer models

Conversion matrices

$$
\Gamma:=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right], \quad \Gamma^{\top}:=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Incidence matrices for:

Conversion matrices

Convert between internal vars and external vars

$$
\left[\begin{array}{c}
V_{a b} \\
V_{b c} \\
V_{c a}
\end{array}\right]=\underbrace{\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]}_{\Gamma}\left[\begin{array}{c}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right], \quad\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=-\underbrace{\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
I_{a b} \\
I_{b c} \\
I_{c a}
\end{array}\right], ~}_{\Gamma^{\top}}
$$

Conversion matrices

Convert between internal vars and external vars

$$
\left[\begin{array}{c}
V_{a b} \\
V_{b c} \\
V_{c a}
\end{array}\right]=\underbrace{\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]}_{\Gamma}\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right], \quad\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\underbrace{\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]}_{\Gamma^{\top}}\left[\begin{array}{c}
I_{a b} \\
I_{b c} \\
I_{c a}
\end{array}\right]
$$

In vector form

Conversion matrices

Lemma

Let $M \in \mathbb{C}^{n \times n}$ be a normal matrix, i.e., $M M^{\mathrm{H}}=M^{\mathrm{H}} M$.

1. Decomposition: $M=U \Lambda U^{\mathrm{H}}$ where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are eigenvalues and columns of U are eigenvectors of M.
2. Pseudo-inverse: $M^{\dagger}=U \Lambda^{\dagger} U^{H}$ where $\Lambda^{\dagger}:=\operatorname{diag}\left(\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}\right)$ with $\lambda_{j}^{-1}:=0$ if $\lambda_{j}=0$.
3. Solution of $M x=b$: A solution x exists if and only if b is orthogonal to null $\left(M^{\mathrm{H}}\right)$ in which case

$$
x=M^{\dagger} b+w, \quad w \in \operatorname{null}(M)
$$

Conversion matrices

Spectral decomposition

Spectral decomposition:

$$
\Gamma=F \Lambda \bar{F}, \quad \Gamma^{\top}=\bar{F} \Lambda F
$$

where

$$
\Lambda:=\left[\begin{array}{lll}
0 & & \\
& 1-\alpha & \\
& & 1-\alpha^{2}
\end{array}\right],
$$

and $\alpha:=e^{-\mathrm{i} 2 \pi / 3}$

Conversion matrices

Theorem

1. The null spaces of Γ and Γ^{\top} are both span(1).
2. Γ is normal. Moreover, $\Gamma \Gamma^{\dagger}=\Gamma^{\dagger} \Gamma=\frac{1}{3} \Gamma \Gamma^{\top}=\frac{1}{3} \Gamma^{\top} \Gamma=\mathbb{\square}-\frac{1}{3} 11^{\top}$
3. Their pseudo-inverses are: $\quad \Gamma^{\dagger}=\frac{1}{3} \Gamma^{\top}, \quad \Gamma^{\top \dagger}=\frac{1}{3} \Gamma$
4. Consider $\Gamma x=b$. Solutions x exist if and only if $1^{\top} b=0$, in which case

$$
x=\frac{1}{3} \Gamma^{\top} b+\gamma 1, \quad \gamma \in \mathbb{C}
$$

5. Consider $\Gamma^{\top} x=b$. Solutions x exist if and only if $1^{\top} b=0$, in which case

$$
x=\frac{1}{3} \Gamma b+\beta 1, \quad \beta \in \mathbb{C}
$$

Sequence variables

Fortescue matrix F

1. F is unitary and complex symmetric (recall $\Gamma=F \Lambda \bar{F}$)
2. Its inverse is:

$$
F^{-1}=F^{\mathrm{H}}=\bar{F}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
1 & \bar{\alpha}_{+} & \bar{\alpha}_{-}
\end{array}\right]
$$

3. F defines a similarity transformation:

$$
x=F \tilde{x}, \quad \tilde{x}:=F^{-1} x=\bar{F} x
$$

4. \tilde{x} is called the sequence variable of x. Its components are

$$
\tilde{x}_{0}:=\frac{1}{\sqrt{3}} 1^{\mathrm{H}} x, \quad \tilde{x}_{+}:=\frac{1}{\sqrt{3}} \alpha_{+}^{\mathrm{H}} x, \quad \tilde{x}_{-}:=\frac{1}{\sqrt{3}} \alpha_{-}^{\mathrm{H}_{-}^{\mathrm{H}}} x
$$

Sequence variables

Sequence voltage, current, power

1. Sequence voltage and current:

$$
\tilde{V}=\bar{F} V, \quad \tilde{I}=\bar{F} I
$$

2. Powers in phase and sequence coordinates:

$$
s:=\operatorname{diag}\left(V I^{H}\right), \quad \tilde{s}:=\operatorname{diag}\left(\tilde{V} \tilde{I}^{H}\right)
$$

3. The total powers are equal $1^{\top} \tilde{s}=1^{\top} S$:

$$
\begin{aligned}
& \quad 1^{\top} \tilde{s}=\tilde{I}^{\mathrm{H}} \tilde{V}=\left(I^{\mathrm{H}} \bar{F}^{\mathrm{H}}\right)(\bar{F} V)=I^{\mathrm{H}} V=1^{\top} s \\
& \text { since } \bar{F}^{\mathrm{H}} \bar{F}=F \bar{F}=\mathbb{1}
\end{aligned}
$$

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models

- Conversion rules
- Devices in Y configuration
- Devices in Δ configuration
- $Y-\Delta$ transformation (ideal devices)

4. Three-phase line models
5. Three-phase transformer models

How to derive external models

Recall

1. External model = Internal model + Conversion rule

- External model: relation between (V, I, s)
- Devices interact over network only through their terminal vars

2. Internal model : relation between $\left(V^{Y / \Delta}, I^{Y / \Delta}, s^{Y / \Delta}\right)$

- Independent of Y or Δ configuration

- Depends only on behavior of single-phase devices
- Voltage/current/power source, impedance

3. Conversion rule : converts between internal and terminal vars

- Depends only on Y or Δ configuration
- Independent of type of single-phase devices

Conversion rule

Y configuration

1. Converts between internal and terminal variables

$$
V=V^{Y}+V^{n_{1}}, \quad I=-I^{Y}, \quad s=-\left(s^{Y}+V^{n} \bar{I}^{Y}\right)
$$

$$
1^{\top} I=-1^{\top} I^{Y}=-I^{n}
$$

2. Negative signs in I, s due to directions of currents and powers

- (I, s) : current \& power injection from 3-phase device to rest of network
- $\left(I^{Y}, s^{Y}\right)$: current \& power delivered to the single-phase devices

3. If there is no neutral line, then $z^{n}:=\infty, I^{n}:=0$

- $1^{\top} I=-1^{\top} I^{Y}=0, V^{n}$ determined by network interaction

Conversion rule

Y configuration: assumption C8.1

1. Assumption C8.1

- All voltages are defined wrt the ground
- All neutrals are grounded through z^{n} (which may be zero)

2. If Assumption C8.1 holds

- $V^{n}=-z^{n}\left(1^{\top} I\right)$
- $V^{n}=0$ if $z^{n}=0$

3. If neutrals are ungrounded but connected to neutrals of other devices through 4-wire lines

- $\left(V^{n}, I^{n}\right)$ determined by network interaction

Conversion rule

Δ configuration: voltage conversion

1. Converts between internal and terminal voltages \& currents

$$
V^{\Delta}=\Gamma V \quad I=-\Gamma^{\top} I^{\Delta}
$$

2. Given V^{Δ}, solution V exists iff $1^{\top} V^{\Delta}=0$, i.e.

- $V^{a b}+V^{b c}+V^{c a}=0$ (Kirchhoff's Voltage Law)

3. Solution: terminal voltage $V=\frac{1}{3} \Gamma^{\top} V^{\Delta}+\gamma 1, \quad \gamma \in \mathbb{C}$
4. $\gamma:=\frac{1}{3} 1^{T} V:$ (scaled) zero-sequence terminal voltage

- A given reference voltage, e.g., $V_{0}:=\alpha_{+}$, fixes γ for every Δ-configured device

Conversion rule

Δ configuration: current conversion

1. Converts between internal and terminal voltages \& currents

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

2. Given I, solution I^{Δ} exists iff $1^{\top} I=0$, i.e.

- $I^{a}+I^{b}+I^{c}=0$ (Kirchhoff's Current Law)

3. Solution: internal current $I^{\Delta}=-\frac{1}{3} \Gamma I+\beta 1, \quad \beta \in \mathbb{C}$
4. $\beta:=\frac{1}{3} 1^{T} I^{\Delta}:$ (scaled) zero-sequence internal current

- Zero-sequence internal current does not affect terminal current I

Conversion rule

Δ configuration: power conversion

1. Relation between s and s^{Δ} is indirect, through $\left(V^{\Delta}, I^{\Delta}\right)$, through (V, I), or through $\left(V, I^{\Delta}\right)$

- Follows from voltage and current conversions

2. Given $\left(V^{\Delta}, I^{\Delta}\right)$ with $1^{\top} V^{\Delta}=0, s^{\Delta}:=\operatorname{diag}\left(V^{\Delta} I^{\Delta \mathrm{H}}\right)$ and terminal power is

$$
s:=\operatorname{diag}\left(V I^{H}\right)=-\operatorname{diag}\left(\Gamma^{\dagger}\left(V^{\Delta} I^{\Delta H}\right) \Gamma\right)+\gamma \bar{I}
$$

3. Given (V, I) with $1^{\top} I=0, s:=\operatorname{diag}\left(V I^{\mathrm{H}}\right)$ and internal power is

$$
s^{\Delta}:=\operatorname{diag}\left(V^{\Delta} I^{\Delta H}\right)=-\operatorname{diag}\left(\Gamma\left(V I^{H}\right) \Gamma^{\dagger}\right)+\bar{\beta} V^{\Delta}
$$

4. Zero-sequence voltage γ and current β may be determined by spec or network interaction
5. Total powers $1^{\top} s$ and $1^{\top} s^{\Delta}$ are independent of (γ, β)

- Because $1^{\top} I=0$ and $1^{\top} V^{\Delta}=0$

Conversion rule

Δ configuration: power conversion

6. Relation between s and s^{Δ} through $\left(V, I^{\Delta}\right)$:

- no direct relation between s and s^{Δ}
$s=-\operatorname{diag}\left(V I^{\Delta \mathrm{H}} \Gamma\right), \quad s^{\Delta}=\operatorname{diag}\left(\Gamma V I^{\Delta \mathrm{H}}\right)$
- follows from voltage \& current conversions
- The parameterization $\left(V, I^{\Delta}\right)$ implicitly contains $\gamma:=\frac{1}{3} 1^{\top} V$ and $\beta:=\frac{1}{3} 1^{\top} I^{\Delta}$ and is more convenient computationally

Three-phase devices

We next specify internal models and derive external models of 3-phase devices:

1. External model = Internal model + Conversion rule

- Internal model: relation between $\left(V^{Y / \Delta}, I^{Y / \Delta}, s^{Y / \Delta}\right)$
- External model: relation between (V, I, s)

2. ... for devices

- Voltage source

- Current source
- Power source
- Impedance

3. ... in Y and Δ configurations

Voltage source $\left(E^{Y}, z^{Y}, z^{n}\right)$: Y configuration Internal model

1. Internal voltages and currents

$$
V^{Y}=E^{Y}+z^{Y} I^{Y}, \quad I^{n}=1^{\top} I^{Y}, \quad V^{n}=z^{n}\left(1^{\top} I^{Y}\right)
$$

2. Internal powers:

- Across each single-phase device: $s^{Y}:=\operatorname{diag}\left(V^{Y} I^{Y \mathrm{H}}\right)$
- Across neutral conductor: $s^{n}:=V^{n} \bar{I}^{n}$

$$
s^{Y}=\operatorname{diag}\left(E^{Y} I^{Y \mathrm{H}}\right)+\operatorname{diag}\left(z^{Y} I^{Y} I^{Y \mathrm{H}}\right)=\underbrace{\left[\begin{array}{c}
E^{a n} I^{a n \mathrm{H}} \\
E^{b n} I^{b n \mathrm{H}} \\
E^{c n} I^{c n \mathrm{H}}
\end{array}\right]}_{s_{\text {ideal }}^{Y}}+\underbrace{\left[\begin{array}{l}
z^{a n}\left|I^{a n}\right|^{2} \\
z^{b n}\left|I^{b n}\right|^{2} \\
z^{c n}\left|I^{c n}\right|^{2}
\end{array}\right]}_{s_{\mathrm{imp}}}
$$

$$
s^{n}=z^{n}\left|1^{\top} I^{Y}\right|^{2}
$$

Voltage source $\left(E^{Y}, z^{Y}, z^{n}\right)$: Y configuration External model

1. Internal model

$$
V^{Y}=E^{Y}+z^{Y} I^{Y}
$$

2. Conversion rule for Y configuration

$$
V=V^{Y}+V^{n_{1}}, \quad I=-I^{Y}
$$

3. \Longrightarrow External model (under Assumption C8.1 $\Rightarrow V^{n}=-z^{n}\left(1^{\top} I\right)$)

$$
\begin{aligned}
& V=E^{Y}-\underbrace{\left(z^{Y}+z^{n} 11^{\top}\right) I \quad \text { neutral conductor } z^{n} \text { couples the phases }}_{Z^{Y}} \\
& s=\operatorname{diag}\left(V\left(E^{Y}-V\right)^{\mathrm{H}}\left(\left(Z^{Y}\right)^{-1}\right)^{\mathrm{H}}\right)
\end{aligned}
$$

Voltage source $\left(E^{Y}, z^{Y}, z^{n}\right)$: Y configuration External model

4. Comparison

Single-phase: $V=E-z I \in \mathbb{C}$

$$
\text { Three-phase : } \begin{aligned}
V & =E^{Y}-Z^{Y} I \in \mathbb{C}^{3} \\
& Z^{Y}:=\left[\begin{array}{ccc}
z^{a n}+z^{n} & z^{n} & z^{n} \\
z^{n} & z^{b n}+z^{n} & z^{n} \\
z^{n} & z^{n} & z^{c n}+z^{n}
\end{array}\right]
\end{aligned}
$$

Voltage source $\left(E^{Y}, z^{Y}, z^{n}\right)$: Y configuration Ideal source

1. Assumptions

- $z^{Y}=0$
- Assumption C8.1 with $z^{n}=0: V^{n}=0$

2. Internal model

$$
V^{Y}=E^{Y}
$$

3. Conversion rule for Y configuration

$$
V=V^{Y}, \quad I=-I^{Y}
$$

4. \Longrightarrow External model

$$
\begin{aligned}
V & =E^{Y} \\
s & =\operatorname{diag}\left(E^{Y} I^{H}\right)
\end{aligned}
$$

Current source $\left(J^{Y}, y^{Y}, z^{n}\right)$: Y configuration Internal model

1. Internal voltages and currents

$$
I^{Y}=J^{Y}+y^{Y} V^{Y}
$$

2. Internal powers:

$$
\begin{aligned}
& s^{Y}:= \operatorname{diag}\left(V^{Y} I^{Y \mathrm{H}}\right)=\operatorname{diag}\left(V^{Y} J^{Y \mathrm{H}}\right)+\operatorname{diag}\left(V^{Y} V^{Y \mathrm{H}} y^{Y \mathrm{H}}\right) \\
&=\underbrace{\left[\begin{array}{l}
V^{a n} J^{a n \mathrm{H}} \\
V^{b n} J^{b n \mathrm{H}} \\
V^{c n} J^{c n \mathrm{H}}
\end{array}\right]}_{s_{\text {ideal }}^{Y}}+\underbrace{\left[\begin{array}{l}
y^{a n \mathrm{H}}\left|V^{a n}\right|^{2} \\
y^{b n \mathrm{H}}\left|V^{b n}\right|^{2} \\
y^{c n \mathrm{H}}\left|V^{c n}\right|^{2}
\end{array}\right]}_{s^{\text {adm }}} \\
& s^{n}:=V^{n} I^{n \mathrm{H}}=z^{n}\left|1^{\top} J^{Y}+\operatorname{diag}\left(y^{Y}\right)^{\top} V^{Y}\right|^{2}
\end{aligned}
$$

Current source $\left(J^{Y}, y^{Y}, z^{n}\right)$: Y configuration

External model

1. Internal model

$$
I^{Y}=J^{Y}+y^{Y} V^{Y}
$$

2. Conversion rule

$$
V=V^{Y}+V^{n_{1}}, \quad I=-I^{Y}
$$

3. \Longrightarrow External model (under Assumption C8.1 $\Rightarrow V^{n}=-z^{n}\left(1^{\top} I\right)$)

$$
\begin{aligned}
& I=-A\left(J^{Y}+y^{Y} V\right) \quad \text { where } A:=\mathbb{\square}-\frac{z^{n}}{1+z^{n}\left(1^{\top} y^{Y} 1\right)} y^{Y_{11}} 1^{\top} \\
& s=-\operatorname{diag}\left(V\left(J^{Y \mathrm{H}}+V^{\mathrm{H}} y^{Y \mathrm{H}}\right) A^{\mathrm{H}}\right)
\end{aligned}
$$

Current source $\left(J^{Y}, y^{Y}, z^{n}\right)$: Y configuration

 External model4. Comparison

Single-phase: $I=J-y V$
Three-phase: $I=A\left(-J^{Y}-y^{Y} V\right)$

$$
\begin{aligned}
& A:=\mathbb{\square}-\frac{z^{n}}{1+z^{n}\left(1^{\top} y^{Y} 1\right)} y^{Y_{11}} 1^{\top} \\
& A=\mathbb{\text { if }} z^{n}=0
\end{aligned}
$$

Current source $\left(J^{Y}, y^{Y}, z^{n}\right)$: Y configuration Ideal source

1. Assumptions

- $y^{Y}=0$
- Assumption C8.1 with $z^{n}=0: V^{n}=0$

2. \Longrightarrow External model

$$
\begin{aligned}
& I=-J^{Y} \\
& s=-\operatorname{diag}\left(V J^{Y \mathrm{H}}\right)
\end{aligned}
$$

Power source $\left(\sigma^{Y}, z^{n}\right)$: Y configuration Internal model

1. Internal powers

$$
s^{Y}=\sigma^{Y}, \quad s^{n}:=V^{n} I^{n^{H}}=z^{n}\left|1^{\top} I^{Y}\right|^{2}
$$

Power source $\left(\sigma^{Y}, z^{n}\right)$: Y configuration

External model

1. Internal model

$$
s^{Y}=\sigma^{Y}
$$

2. Conversion rule

$$
V=V^{Y}+V^{n_{1}}, \quad I=-I^{Y}
$$

3. \Longrightarrow External model (under Assumption C8.1 $\Rightarrow V^{n}=-z^{n}\left(1^{\top} I\right)$)

$I V$ relation: $V=-\operatorname{diag}\left(I^{\mathrm{H}}\right)^{-1} \sigma^{Y}-z^{n}\left(11^{\top}\right) I$
Is relation: $s=-\left(\sigma^{Y}+z^{n}\left(\bar{I} I^{\top}\right) 1\right)$

Power source $\left(\sigma^{Y}, z^{n}\right)$: Y configuration

 External model4. Comparison

Single-phase: $s=\sigma$
Three-phase : $s=-\left(\sigma^{Y}+z^{n}\left(\bar{I} I^{\top}\right) 1\right) 1$
Total power (3-phase) :

$$
-1^{\top} \sigma^{Y}=1^{\top} s+\underbrace{z^{n}\left(1^{\top} I^{Y}\right)}_{-V^{n}} \underbrace{\left(1^{\top} \bar{I}^{Y}\right)}_{-I^{n H}}=1^{\top} s+s^{n}
$$

1-phase device

Power source $\left(\sigma^{Y}, z^{n}\right)$: Y configuration Ideal source

1. Assumption

- Assumption C8.1 with $z^{n}=0: V^{n}=0$

2. \Longrightarrow External model

$$
s=-\sigma^{Y}
$$

Impedance $\left(z^{Y}, z^{n}\right)$: Y configuration Internal model

1. Internal voltage and current:

$$
V^{Y}=z^{Y} I^{Y}
$$

2. Internal power:

$$
\begin{aligned}
& s^{Y}:=\operatorname{diag}\left(V^{Y} I^{Y \mathrm{H}}\right)=\operatorname{diag}\left(V^{Y} V^{Y \mathrm{H}}\left(y^{Y}\right)^{\mathrm{H}}\right) \\
& s^{n}:=V^{n} I^{n \mathrm{H}}=z^{n}\left|1^{\top} I^{Y}\right|^{2}
\end{aligned}
$$

Impedance $\left(z^{Y}, z^{n}\right)$: Y configuration

 External model1. Internal model

$$
V^{Y}=z^{Y} I^{Y}
$$

2. Conversion rule for Y configuration

$$
V=V^{Y}+V^{n}, \quad I=-I^{Y}
$$

3. \Longrightarrow External model (under Assumption $\mathrm{C} 8.1 \Rightarrow V^{n}=-z^{n}\left(1^{\top} I\right)$)

$$
\begin{aligned}
& V=-Z^{Y} I=\left(z^{Y}+z^{n} 11^{\top}\right) I \\
& s=-\operatorname{diag}\left(V V^{H}\left(\left(Z^{Y}\right)^{-1}\right)^{H}\right)
\end{aligned}
$$

Impedance $\left(z^{Y}, z^{n}\right)$: Y configuration

 External model4. Comparison

$$
\begin{aligned}
\text { Single-phase : } V & =-z I \in \mathbb{C} \\
\text { Three-phase }: V & =-Z^{Y} I \in \mathbb{C}^{3} \\
Z^{Y} & :=\left[\begin{array}{ccc}
z^{a n}+z^{n} & z^{n} & z^{n} \\
z^{n} & z^{b n}+z^{n} & z^{n} \\
z^{n} & z^{n} & z^{c n}+z^{n}
\end{array}\right]
\end{aligned}
$$

1-phase device

Impedance $\left(z^{Y}, z^{n}\right): Y$ configuration Ideal impedance

1. Assumption

- Assumption C8.1 with $z^{n}=0: V^{n}=0$

2. \Longrightarrow External model

$$
Z^{Y}=z^{Y}, \quad V=z^{Y} I
$$

phases are decoupled

Balanced impedance
When $z^{n} \neq 0$ but z^{Y} is balanced, i.e., $z^{a n}=z^{b n}=z^{c n}$, then similarity
transformation using F produces a sequence impedance that is decoupled in the sequence coordinate

$$
\tilde{Z}^{Y}=\left[\begin{array}{ccc}
z^{a n}+3 z^{n} & 0 & 0 \\
0 & z^{a n} & 0 \\
0 & 0 & z^{a n}
\end{array}\right]
$$

Recap: external models
 Y-configured devices (ideal)

Device	Y configuration	
Voltage source	$V=E^{Y}+\gamma \mathbf{1}$	$s=\operatorname{diag}\left(E^{Y} I^{\mathrm{H}}\right)+\gamma \bar{I}$
Current source	$I=-J^{Y}$	$s=-\operatorname{diag}\left(V J^{Y \mathrm{H}}\right)$
Power source	$\operatorname{diag}\left(I^{\mathrm{H}}\right)(V-\gamma \mathbf{1})=-\sigma$	$s=-\sigma^{Y}+\gamma \bar{I}$
Impedance	$V=-z^{Y} I+\gamma \mathbf{1}$	$s=-\operatorname{diag}\left(V(V-\gamma \mathbf{1})^{\mathrm{H}} y^{Y \mathrm{H}}\right)$

1. $\gamma:=V^{n}$ is neutral voltage
2. Negative signs are only due to directions of I and s (out of device)
3. total terminal power $1^{\top} S=$ total internal power $1^{\top} s^{Y}+$ power delivered across neutral

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models

- Conversion rules
- Devices in Y configuration
- Devices in Δ configuration
- Y - Δ transformation

4. Three-phase line models
5. Three-phase transformer models

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration Internal model

1. Internal voltages and currents

$$
V^{\Delta}=E^{\Delta}+z^{\Delta} I^{\Delta} \quad \text { independent of } Y / \Delta \text { config }
$$

2. Internal powers:

$$
s^{\Delta}:=\operatorname{diag}\left(V^{\Delta} I^{\Delta H}\right)=\operatorname{diag}\left(E^{\Delta} I^{\Delta H}\right)+\operatorname{diag}\left(z^{\Delta} I^{\Delta} I^{\Delta \mathrm{H}}\right)
$$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right)$: Δ configuration External model

1. Internal model

$$
V^{\Delta}=E^{\Delta}+z^{\Delta} I^{\Delta}
$$

2. Conversion rule for Δ configuration

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration External model

1. Internal model

$$
V^{\Delta}=E^{\Delta}+z^{\Delta} I^{\Delta}
$$

2. Conversion rule for Δ configuration

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

3. Two (asymmetric) relations between terminal vars (V, I)

- Given V, 1st relation uniquely determines I (hence $\left(V^{\Delta}, I^{\Delta}\right)$ as well)
- Given I, 2nd relation determines V up to zero-sequence voltage γ

Asymmetry is because V contains more info (γ) than I does (which contains no info about zero-sequence current $\beta:=\frac{1}{3} 1^{\top} I^{\Delta}$)

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration

 External model4. Given V,

$$
\begin{aligned}
& I=\left(\Gamma^{\top} y^{\Delta}\right) E^{\Delta}-Y^{\Delta} V \\
& Y^{\Delta}:=\Gamma^{\top} y^{\Delta} \Gamma=\left[\begin{array}{ccc}
y^{a b}+y^{c a} & -y^{a b} & -y^{c a} \\
-y^{a b} & y^{a b}+y^{b c} & -y^{b c} \\
-y^{c a} & -y^{b c} & y^{c a}+y^{b c}
\end{array}\right], \quad y^{\Delta}:=\left(z^{\Delta}\right)^{-1}
\end{aligned}
$$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration

 External model4. Given V,

$$
\begin{aligned}
& I=\left(\Gamma^{\top} y^{\Delta}\right) E^{\Delta}-Y^{\Delta} V \\
& Y^{\Delta}:=\Gamma^{\top} y^{\Delta} \Gamma=\left[\begin{array}{ccc}
y^{a b}+y^{c a} & -y^{a b} & -y^{c a} \\
-y^{a b} & y^{a b}+y^{b c} & -y^{b c} \\
-y^{c a} & -y^{b c} & y^{c a}+y^{b c}
\end{array}\right], \quad y^{\Delta}:=\left(z^{\Delta}\right)^{-1}
\end{aligned}
$$

5. Given I with $1^{\top} I=0$,

$$
\begin{array}{ll}
V=\hat{\Gamma} E^{\Delta}-Z^{\Delta} I+\gamma 1, & 1^{\top} I=0 \\
\hat{\Gamma}:=\frac{1}{3} \Gamma^{\top}\left(\square-\frac{1}{\zeta} \tilde{z}^{\Delta} 1^{\top}\right), & Z^{\Delta}:=\frac{1}{9} \Gamma^{\top} z^{\Delta}\left(\square-\frac{1}{\zeta} 1 \tilde{z}^{\Delta \top}\right) \Gamma
\end{array}
$$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration External model

6. Terminal power in terms of V or I :

$$
\begin{aligned}
& s=\operatorname{diag}\left(V I^{\mathrm{H}}\right)=\operatorname{diag}\left(V\left(\Gamma^{\top} y^{\Delta} E^{\Delta}-Y^{\Delta} V\right)^{\mathrm{H}}\right) \\
& s=\operatorname{diag}\left(V I^{\mathrm{H}}\right)=\operatorname{diag}\left(\left(\hat{\Gamma} E^{\Delta}-Z^{\Delta} I\right) I^{\mathrm{H}}\right)+\gamma \bar{I}
\end{aligned}
$$

Power due to zero-sequence voltage γ
Total power $1^{\top} s$ is independent of γ because $\gamma 1^{\top} \bar{I}=0$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right)$: Δ configuration External model

7. Comparison

Single-phase: $V=E-z I$
Three-phase: $V=\hat{\Gamma} E^{\Delta}-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration Ideal source

1. Assumption

- $z^{\Delta}=0$

2. $\Longrightarrow \hat{\Gamma}=\frac{1}{3} \Gamma^{\top}, \quad Z^{\Delta}=0$
3. \Longrightarrow External model

$$
\begin{aligned}
V & =\frac{1}{3} \Gamma^{\top} E^{\Delta}+\gamma 1, \quad 1^{\top} I=0 \\
s & =\frac{1}{3} \operatorname{diag}\left(\Gamma^{\top} E^{\Delta} I^{H}\right)+\gamma \bar{I}
\end{aligned}
$$

Voltage source $\left(E^{\Delta}, z^{\Delta}\right): \Delta$ configuration

Voltage source specifies E^{Δ} which does not uniquely determine terminal voltage V

- Because the zero-sequence voltage $\gamma:=\frac{1}{3} 1^{\top} V$ is arbitrary
- γ needs to be specified, e.g., fixed by a reference voltage or grounding

- ... for both ideal or non-ideal voltage sources

Current source $\left(J^{\Delta}, y^{\Delta}\right): \Delta$ configuration

 Internal model1. Internal voltages and currents

$$
I^{\Delta}=J^{\Delta}+y^{\Delta} V^{\Delta}
$$

2. Internal powers:

$$
\begin{aligned}
s^{\Delta} & :=\operatorname{diag}\left(V^{\Delta} I^{\Delta H}\right) \\
& =\operatorname{diag}\left(V^{\Delta} J^{\Delta H}\right)+\operatorname{diag}\left(V^{\Delta} V^{\Delta H} y^{\Delta H}\right)
\end{aligned}
$$

Current source $\left(J^{\Delta}, y^{\Delta}\right)$: Δ configuration

External model

1. Internal model

$$
I^{\Delta}=J^{\Delta}+y^{\Delta} V^{\Delta}
$$

2. Conversion rule

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

3. \Longrightarrow External model

$$
\begin{aligned}
& I=-\left(\Gamma^{\top} J^{\Delta}+Y^{\Delta} V\right) \\
& \text { where (as before): } Y^{\Delta}:=\Gamma^{\top} y^{\Delta} \Gamma=\left[\begin{array}{ccc}
y^{a b}+y^{c a} & -y^{a b} & -y^{c a} \\
-y^{a b} & y^{a b}+y^{b c} & -y^{b c} \\
-y^{c a} & -y^{b c} & y^{c a}+y^{b c}
\end{array}\right]
\end{aligned}
$$

Current source $\left(J^{\Delta}, y^{\Delta}\right): \Delta$ configuration

External model

1. Internal model

$$
I^{\Delta}=J^{\Delta}+y^{\Delta} V^{\Delta}
$$

2. Conversion rule

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

3. \Longrightarrow External model

$$
\begin{aligned}
& I=-\left(\Gamma^{\top} J^{\Delta}+Y^{\Delta} V\right) \\
& s=\operatorname{diag}\left(V I^{\mathrm{H}}\right)=-\operatorname{diag}\left(V J^{\Delta \mathrm{H}} \Gamma+V V^{\mathrm{H}} Y^{\Delta \mathrm{H}}\right)
\end{aligned}
$$

Current source $\left(J^{\Delta}, y^{\Delta}\right): \Delta$ configuration External model
4. Comparison

$$
\begin{aligned}
\text { Single-phase : } I & =J-y V \\
\text { Three-phase : } I & =-\Gamma^{\top} J^{\Delta}-Y^{\Delta} V \\
\qquad Y^{\Delta} & :=\Gamma^{\top} y^{\Delta} \Gamma
\end{aligned}
$$

Current source $\left(J^{\Delta}, y^{\Delta}\right): \Delta$ configuration

Ideal source

1. Assumption

- $y^{\Delta}=0$

2. \Longrightarrow External model

$$
\begin{aligned}
& I=-\Gamma^{\top} J^{\Delta} \\
& s=-\operatorname{diag}\left(V J^{\Delta H} \Gamma\right)
\end{aligned}
$$

Voltage \& current sources: comparison

1. Voltage source specifies E^{Δ} which does not uniquely determine terminal voltage V

- $V=\hat{\Gamma} E^{\Delta}-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0$
- due to arbitrary zero-sequence voltage $\gamma:=\frac{1}{3} 1^{\top} V$

2. Current source specifies J^{Δ} which uniquely determines terminal current I

- $I=-\left(\Gamma^{\top} J^{\Delta}+Y^{\Delta} V\right)$
. J^{Δ} contains its zero-sequence current $\beta:=\frac{1}{3} 1^{\top} J^{\Delta}$

Power source $\sigma^{\Delta}: \Delta$ configuration

 Internal model1. Internal powers

$$
s^{\Delta}:=\operatorname{diag}\left(V^{\Delta} I^{\Delta \mathrm{H}}\right)=\sigma^{\Delta}
$$

Power source $\sigma^{\Delta}: \Delta$ configuration

External model

1. Internal model

$$
s^{\Delta}=\sigma^{\Delta}
$$

2. Conversion rule

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

3. \Longrightarrow External model

$$
\begin{gathered}
I V \text { relation: } \sigma^{\Delta}=-\frac{1}{3} \operatorname{diag}\left(\Gamma\left(V I^{\mathrm{H}}\right) \Gamma^{\top}\right)+\bar{\beta} \Gamma V, \quad 1^{\top} I=0 \\
7 \text { complex vars }(V, I, \beta), 4 \text { quadratic equations }
\end{gathered}
$$

Power source $\sigma^{\Delta}: \Delta$ configuration

External model

1. Internal model

$$
s^{\Delta}=\sigma^{\Delta}
$$

2. Conversion rule

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

3. \Longrightarrow External model

$$
I V \text { relation: } \sigma^{\Delta}=-\frac{1}{3} \operatorname{diag}\left(\Gamma\left(V I^{\mathrm{H}}\right) \Gamma^{\top}\right)+\bar{\beta} \Gamma V, \quad 1^{\top} I=0
$$

Equivalent model: $\sigma^{\Delta}=\operatorname{diag}\left(\Gamma V I^{\Delta H}\right)$

Power source $\sigma^{\Delta}: \Delta$ configuration

External model

4. Comparison

Single-phase: $s=\sigma$
Three-phase: $s=-\operatorname{diag}\left(V I^{\Delta H} \Gamma\right)$

$$
\sigma^{\Delta}=\operatorname{diag}\left(\Gamma V I^{\Delta \mathrm{H}}\right)=\left[\begin{array}{l}
\left(V_{a}-V_{b}\right) \bar{I}^{a b} \\
\left(V_{b}-V_{c}\right) \bar{I}^{b c} \\
\left(V_{c}-V_{a}\right) \bar{I}^{c a}
\end{array}\right]
$$

Given V (and σ^{Δ}), I^{Δ} and hence s are uniquely determined Given I^{Δ} (and σ^{Δ}), only ΓV is uniquely determined, not V nor s

1-phase device

Power source $\sigma^{\Delta}: \Delta$ configuration

 Ideal source1. Assumption

- Assumption C8.1 with $z^{n}=0: V^{n}=0$

2. \Longrightarrow External model

$$
s=-\sigma^{Y}
$$

Impedance $z^{\Delta}: \Delta$ configuration

 Internal model1. Internal voltage and current:

$$
V^{\Delta}=z^{\Delta} I^{\Delta}
$$

2. Internal power:

$$
s^{\Delta}=\operatorname{diag}\left(V^{\Delta} I^{\Delta \mathrm{H}}\right):=\operatorname{diag}\left(z^{\Delta} I^{\Delta} I^{\Delta \mathrm{H}}\right)
$$

Impedance $z^{\Delta}: \Delta$ configuration

 External model1. Internal model

$$
V^{\Delta}=z^{\Delta} I^{\Delta}
$$

2. Conversion rule

$$
V^{\Delta}=\Gamma V, \quad I=-\Gamma^{\top} I^{\Delta}
$$

3. \Longrightarrow External model

$$
\begin{aligned}
& \text { Given } V, I=-Y^{\Delta} V:=-\left(\Gamma^{\top} y^{\Delta} \Gamma\right) V \\
& \text { Given } I, V=-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0 \\
& \\
& Z^{\Delta}:=\frac{1}{9} \Gamma^{\top} z^{\Delta}\left(\mathbb{\square}-\frac{1}{\zeta} 1 \tilde{z}^{\Delta \top}\right) \Gamma
\end{aligned}
$$

As for voltage source, the asymmetry is because V contains more info (γ) than I does

Impedance $z^{\Delta}: \Delta$ configuration

 External model4. Terminal power s can be related to V or to I :

$$
\begin{aligned}
& \text { Given } V, s=\operatorname{diag}\left(V I^{\mathrm{H}}\right)=-\operatorname{diag}\left(V V^{\mathrm{H}} Y^{\Delta \mathrm{H}}\right) \\
& \text { Given } I, s=\operatorname{diag}\left(V I^{\mathrm{H}}\right)=-\operatorname{diag}\left(Z^{\Delta} I I^{\mathrm{H}}\right)+\gamma \bar{I}
\end{aligned}
$$

As for voltage source, the asymmetry is because V contains more info (γ) than I does

Impedance $z^{\Delta}: \Delta$ configuration

External model

5. Comparison

Single-phase : $I=-y Z$ or $V=-z I \in \mathbb{C}$ Three-phase:

$$
\begin{aligned}
I & =-Y^{\Delta} V \in \mathbb{C}^{3} \\
V & =-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0
\end{aligned}
$$

Impedance $z^{\Delta}: \Delta$ configuration

Balanced impedance

1. Assumption

- $z^{a b}=z^{b c}=z^{c a}$

2. External model

$$
\begin{aligned}
& V=-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0 \\
& Z^{\Delta}=\frac{z^{a b}}{3}\left(\square-\frac{1}{3} 11^{\top}\right) \quad \text { phases are coupled }\left(Z^{\Delta}\right. \text { is not diagonal) }
\end{aligned}
$$

Impedance $z^{\Delta}: \Delta$ configuration

Balanced impedance

1. Assumption

- $z^{a b}=z^{b c}=z^{c a}$

2. External model

$$
\begin{aligned}
& V=-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0 \\
& Z^{\Delta}=\frac{z^{a b}}{3}\left(\square-\frac{1}{3} 11^{\top}\right) \quad \text { phases are coupled }\left(Z^{\Delta}\right. \text { is not diagonal) }
\end{aligned}
$$

3. Sequence impedance \tilde{Z}^{Δ} is decoupled in sequence coordinate

$$
\tilde{Z}^{\Delta}=\frac{z^{a b}}{3}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { zero-sequence component (first row \& col) is zero because } I^{a}+I^{b}+I^{c}=0
$$

Recap: external models

Δ-configured devices (ideal)

Device	Δ configuration	
Voltage source	$V=\frac{1}{3} \Gamma^{\top} E^{\Delta}+\gamma \mathbf{1}, \mathbf{1}^{\top} I=0$	$s=\frac{1}{3} \operatorname{diag}\left(\Gamma^{\top} E^{\Delta} I^{\mathrm{H}}\right)+\gamma \bar{I}$
Current source	$I=-\Gamma^{\top} J^{\Delta}$	$s=-\operatorname{diag}\left(V J^{\Delta \mathrm{H}} \Gamma\right)$
Power source	$\sigma^{\Delta}=\operatorname{diag}\left(\Gamma V I^{\Delta \mathrm{H}}\right)$	
Impedance	$I=-Y^{\Delta} V$	$s=-\operatorname{diag}\left(V V^{\mathrm{H}} Y^{\Delta \mathrm{H}}\right)$

1. $\gamma:=\frac{1}{3} 1^{\top} V$ is zero-seq terminal voltage
2. total terminal power $1^{\top} s$ is independent of γ because $1^{\top} \bar{I}=0$

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models

- Conversion rules
- Devices in Y configuration
- Devices in Δ configuration
- Y - Δ transformation

4. Three-phase line models
5. Three-phase transformer models

$\Delta-Y$ transformation

Ideal voltage source $\left(E^{\Delta}, \gamma\right)$

1. External model

$$
V=\frac{1}{3} \Gamma^{\top} E^{\Delta}+\gamma 1, \quad 1^{\top} I=0
$$

2. Y equivalent

- Ideal voltage source $V=E^{Y}+V^{n} 1,1^{\top} I=-I^{n}$ with

$$
E^{Y}:=\frac{1}{3} \Gamma^{\top} E^{\Delta}, \quad V^{n}:=\gamma, \quad \text { no neutral line so that } I^{n}=0
$$

- Not necessarily balanced

$\Delta-Y$ transformation

Ideal voltage source $\left(E^{\Delta}, \gamma\right)$

3. If E^{Δ} is balanced then

$$
\begin{aligned}
& \Gamma^{\top} E^{\Delta}=\left(1-\alpha^{2}\right) E^{\Delta}=\sqrt{3} e^{-\mathrm{i} \pi / 6} E^{\Delta} \\
& V=\frac{1}{\sqrt{3}} e^{-\mathrm{i} \pi / 6} E^{\Delta}+\gamma 1, \quad 1^{\top} I=0
\end{aligned}
$$

Y equivalent:

$$
E^{Y}=\frac{1}{\sqrt{3} e^{\mathrm{i} \pi / 6}} E^{\Delta}, \quad V^{n}:=\gamma, \quad \text { no neutral line so that } I^{n}=0
$$

$\Delta-Y$ transformation

Non-ideal voltage source ($\left.E^{\Delta}, z^{\Delta}, \gamma\right)$

1. External model

$$
\begin{aligned}
& V=\hat{\Gamma} E^{\Delta}-Z^{\Delta} I+\gamma 1, \quad 1^{\top} I=0 \\
& \text { where } \hat{\Gamma}:=\frac{1}{3} \Gamma^{\top}\left(\square-\frac{1}{\zeta} \tilde{z}^{\Delta} 1^{\top}\right), \quad Z^{\Delta}:=\frac{1}{9} \Gamma^{\top} z^{\Delta}\left(\square-\frac{1}{\zeta} 1 \tilde{z}^{\Delta T}\right) \Gamma
\end{aligned}
$$

2. There is no Y equivalent

- Y equivalent has no neutral line so that $1^{\top} I=0$
- External model: $V=E^{Y}-z^{Y} I+V^{n}{ }_{1}$
- Z^{Δ} is generally not diagonal (even if $z^{\Delta}=z^{a b} \mathbb{D}$), but z^{Y} is diagonal

$\Delta-Y$ transformation

Ideal current source J^{Δ}

1. External model

$$
I=-\Gamma^{\top} J^{\Delta}
$$

2. Y equivalent

- Ideal current source $I=-J^{Y}, 1^{\top} I=-I^{n}$ with

$$
J^{Y}:=\Gamma^{\top} J^{\Delta}, \quad \text { no neutral line }\left(1^{\top} I=0\right)
$$

3. If J^{Δ} is balanced then

$$
J^{Y}=\left(1-\alpha^{2}\right) J^{\Delta}=\frac{\sqrt{3}}{e^{i \pi / 6}} J^{\Delta}
$$

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models
4. Three-phase line models

- 4-wire model
- 3-wire model

5. Three-phase transformer models

4-wire line model

Series impedance matrix $\hat{\gtrless}_{j k}^{f}$

1. Single-phase line: $V_{j}-V_{k}=z_{j k}^{s} I_{j k}$
2. Three-phase line: $\hat{V}_{j}-\hat{V}_{k}=\hat{z}_{j k}^{s} I_{j k}$

$$
\left[\begin{array}{c}
V_{j}^{a} \\
V_{j}^{b} \\
V_{j}^{c} \\
V_{j}^{n}
\end{array}\right]-\left[\begin{array}{c}
V_{k}^{a} \\
V_{k}^{b} \\
V_{k}^{c} \\
V_{k}^{n}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
\hat{z}_{j k}^{a a} & \hat{z}_{j k}^{a b} & \hat{z}_{j k}^{a c} & \hat{z}_{j k}^{a n} \\
\hat{z}_{j k}^{b a} & \hat{z}_{j k}^{b b} & \hat{z}_{j k}^{b c} & \hat{z}_{j k}^{b n} \\
\hat{z}_{j k}^{c a} & \hat{z}_{j k}^{c b} & \hat{z}_{j k}^{c c} & \hat{z}_{j k}^{c n} \\
\hat{z}_{j k}^{n a} & \hat{z}_{j k}^{n b} & \hat{z}_{j k}^{n c} & \hat{z}_{j k}^{n n}
\end{array}\right]}_{\text {impedance matrix } \hat{z}_{j k}^{s}}\left[\begin{array}{c}
I_{j k}^{a} \\
I_{j k}^{b} \\
I_{j k}^{c} \\
I_{j k}^{n}
\end{array}\right]
$$

3. Impedance matrix $\hat{z}_{j k}^{s}$ depends on

- wire materials, lengths, distances between wires, frequency, earth resistivity

4-wire line model

Interpretation

Complete circuit a only

$$
\left[\begin{array}{c}
V_{j}^{a} \\
V_{j}^{b} \\
V_{j}^{c} \\
V_{j}^{n}
\end{array}\right]-\left[\begin{array}{c}
V_{k}^{a} \\
V_{k}^{b} \\
V_{k}^{c} \\
V_{k}^{n}
\end{array}\right]=\left[\begin{array}{cccc}
\hat{z}_{j k}^{a a} & \hat{z}_{j k}^{a b} & \hat{z}_{j k}^{a c} & \hat{z}_{j k}^{a n} \\
\hat{z}_{j k}^{b a} & \hat{z}_{j k}^{b b} & \hat{z}_{j k}^{b c} & \hat{z}_{j k}^{b n} \\
\hat{z}_{j k}^{c a} & \hat{z}_{j k}^{c b} & \hat{z}_{j k}^{c c} & \hat{z}_{j k}^{c n} \\
\hat{z}_{j k}^{n a} & \hat{z}_{j k}^{n b} & \hat{z}_{j k}^{n c} & \hat{z}_{j k}^{n n}
\end{array}\right]\left[\begin{array}{c}
I_{j k}^{a} \\
0 \\
0 \\
0
\end{array}\right]
$$

self impedance:
$\hat{z}_{j k}^{a a}=\frac{V_{j}^{a}-V_{k}^{a}}{I_{j k}^{a}} \quad \hat{z}_{j k}^{b a}=\frac{V_{j}^{b}-V_{k}^{b}}{I_{j k}^{a}}$

4-wire line model

With shunt admittances

Each line is characterized by

- Series admittance $\hat{y}_{j k}^{s}:=\left(\hat{z}_{j k}^{s}\right)^{-1}$
- Shunt admittances $\left(\hat{y}_{j k}^{m}, \hat{y}_{k j}^{m}\right)$

Terminal voltages $\left(\hat{V}_{j}, \hat{V}_{k}\right)$ and terminal currents $\left(\hat{I}_{j k}, \hat{I}_{k j}\right)$ satisfy

$$
\begin{aligned}
& \hat{I}_{j k}=\hat{y}_{j k}^{s}\left(\hat{V}_{j}-\hat{V}_{k}\right)+\hat{y}_{j k}^{m} \hat{V}_{j} \\
& \hat{I}_{k j}=\hat{y}_{j k}^{s}\left(\hat{V}_{k}-\hat{V}_{j}\right)+\hat{y}_{k j}^{m} \hat{V}_{k}
\end{aligned}
$$

3-wire line model

Series impedance matrix $z_{j k}^{s}$

$$
\left[\begin{array}{c}
V_{j}^{a} \\
V_{j}^{b} \\
V_{j}^{c} \\
V_{j}^{n}
\end{array}\right]-\left[\begin{array}{c}
V_{k}^{a} \\
V_{k}^{b} \\
V_{k}^{c} \\
V_{k}^{n}
\end{array}\right]=\left[\begin{array}{cccc}
\hat{z}_{j k}^{a a} & \hat{z}_{j k}^{a b} & \hat{z}_{j k}^{a c} & \hat{z}_{j k}^{a n} \\
\hat{z}_{j k}^{b a} & \hat{z}_{j k}^{b b} & \hat{z}_{j k}^{b c} & \hat{z}_{j k}^{b n} \\
\hat{z}_{j k}^{c a} & \hat{z}_{j k}^{c b} & \hat{z}_{j k}^{c c} & \hat{z}_{j k}^{c n} \\
\hat{z}_{j k}^{n a} & \hat{z}_{j k}^{n b} & \hat{z}_{j k}^{n c} & \hat{z}_{j k}^{n n}
\end{array}\right]\left[\begin{array}{c}
I_{j k}^{a} \\
I_{j k}^{b} \\
I_{j k}^{c} \\
I_{j k}^{n}
\end{array}\right]
$$

1. $I_{j k}^{n}=0$: can eliminate last column and row of $\hat{z}_{j k}^{s}$

- There is no neutral line, e.g., Δ-configured device

2. $V_{j}^{n}=V_{k}^{n}$: can eliminate $I_{j k}^{n}=-\frac{1}{\hat{z}_{j k}^{n n}}\left(\hat{z}_{j k}^{n a} I_{j k}^{a}+\hat{z}_{j k}^{n b} I_{j k}^{b}+\hat{z}_{j k}^{n c} I_{j k}^{c}\right)$

- Neutrals at both ends are grounded with $z_{j}^{n}=z_{k}^{n}=0$

3-wire line model

Series impedance matrix $z_{j k}^{s}$

Both cases can be modeled by 3×3 impedance matrix

$$
\left[\begin{array}{c}
V_{j}^{a} \\
V_{j}^{b} \\
V_{j}^{c}
\end{array}\right]-\left[\begin{array}{c}
V_{k}^{a} \\
V_{k}^{b} \\
V_{k}^{c}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
z_{j k}^{a a} & z_{j k}^{a b} & z_{j k}^{a c} \\
z_{j k}^{b a} & z_{j k}^{b b} & z_{j k}^{b c} \\
z_{j k}^{c a} & z_{j k}^{c b} & z_{j k}^{c c}
\end{array}\right]}_{z_{j k}}\left[\begin{array}{c}
I_{j k}^{a} \\
I_{j k}^{b} \\
I_{j k}^{c}
\end{array}\right]
$$

Three-phase line: $\quad V_{j}-V_{k}=z_{j k}^{s} I_{j k}$

3-wire line model

With shunt admittances

Each line is characterized by

- Series admittance $y_{j k}^{s}:=\left(z_{j k}^{s}\right)^{-1}$
- Shunt admittances $\left(y_{j k}^{m}, y_{k j}^{m}\right)$

Terminal voltages $\left(V_{j}, V_{k}\right)$ and terminal currents $\left(I_{j k}, I_{k j}\right)$ satisfy

$$
\begin{aligned}
I_{j k} & =y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j} \\
I_{k j} & =y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}
\end{aligned}
$$

3-wire line model

With shunt admittances

Each line is characterized by

- Series admittance $y_{j k}^{s}:=\left(z_{j k}^{s}\right)^{-1}$
- Shunt admittances $\left(y_{j k}^{m}, y_{k j}^{m}\right)$

Terminal voltages $\left(V_{j}, V_{k}\right)$ and line power matrices $\left(S_{j k}, S_{k j}\right) \in \mathbb{C}^{6 \times 6}$ satisfy

$$
\begin{aligned}
& S_{j k}:=V_{j}\left(I_{j k}\right)^{\mathrm{H}}=V_{j}\left(V_{j}-V_{k}\right)^{\mathrm{H}}\left(y_{j k}^{s}\right)^{\mathrm{H}}+V_{j} V_{j}^{\mathrm{H}}\left(y_{j k}^{m}\right)^{\mathrm{H}} \\
& S_{k j}:=V_{k}\left(I_{k j}\right)^{\mathrm{H}}=V_{k}\left(V_{k}-V_{j}\right)^{\mathrm{H}}\left(y_{j k}^{s}\right)^{\mathrm{H}}+V_{k} V_{k}^{\mathrm{H}}\left(y_{k j}^{m}\right)^{\mathrm{H}} \quad \text { line flows are diag }\left(S_{j k}\right) \text {, diag }\left(S_{k j}\right)
\end{aligned}
$$

Comparison

$I V$ relation

$$
\begin{aligned}
& I_{j k}\left(V_{j}, V_{k}\right)=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j} \\
& I_{k j}\left(V_{j}, V_{k}\right)=y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}
\end{aligned}
$$

$S V$ relation

$$
\begin{aligned}
& S_{j k}\left(V_{j}, V_{k}\right)=V_{j}\left(V_{j}-V_{k}\right)^{\mathrm{H}}\left(y_{j k}^{s}\right)^{\mathrm{H}}+V_{j} V_{j}^{\mathrm{H}}\left(y_{j k}^{m}\right)^{\mathrm{H}} \\
& S_{k j}\left(V_{j}, V_{k}\right)=V_{k}\left(V_{k}-V_{j}\right)^{\mathrm{H}}\left(y_{j k}^{s}\right)^{\mathrm{H}}+V_{k} V_{k}^{\mathrm{H}}\left(y_{k j}^{m}\right)^{\mathrm{H}}
\end{aligned}
$$

same expressions for 1 or 3 phases !

	1-phase	3-phase (4-wire)	3-phase (3-wire)
admittances $y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}$	\mathbb{C}	$\mathbb{C}^{4 \times 4}$	$\mathbb{C}^{3 \times 3}$
voltages V_{j}, V_{k}	\mathbb{C}	\mathbb{C}^{4}	\mathbb{C}^{3}
currents $I_{j k}, I_{k j}$	\mathbb{C}	\mathbb{C}^{4}	\mathbb{C}^{3}
line powers $S_{j k}, S_{k j}$	\mathbb{C}	$\mathbb{C}^{4 \times 4}$	$\mathbb{C}^{3 \times 3}$

3-wire line model

Example

- Line model relates terminal voltages and currents at both ends of the line, regardless of device Y / Δ configuration

3-wire line model

Example

Terminal vars $\left(V_{j}, I_{j}, s_{j}\right)$ at bus j satisfy external device model and line model (that relate $\left(V_{j}, I_{j}, s_{j}\right)$ to V_{k})
. Device j model: $0=f_{j}^{\mathrm{ext}}\left(V_{j}, I_{j}\right), \quad s_{j}=\operatorname{diag}\left(V_{j} I_{j}^{\mathrm{H}}\right)$
. Line (j, k) model: $\quad I_{j}=I_{j k}\left(V_{j}, V_{k}\right), \quad s_{j}=\operatorname{diag}\left(S_{j k}\left(V_{j}, V_{k}\right)\right)$

3-wire line model

Properties

1. Properties of admittance matrices $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

- They are typically complex symmetric (not Hermitian)
- $y_{j k}^{S}$ is typically invertible

Complex symmetry of $y_{j k}^{s}$ leads to single-phase equivalent of 3 -phase networks (see later)

3-wire line model

Properties

1. Properties of admittance matrices $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

- They are typically complex symmetric (not Hermitian)
- $y_{j k}^{s}$ is typically invertible

2. Symmetric line, e.g., through transpose and symmetric line geometry

$$
z_{j k}^{s}=\left[\begin{array}{ccc}
z_{j k}^{1} & z_{j k}^{2} & z_{j k}^{2} \\
z_{j k}^{2} & z_{j k}^{1} & z_{j k}^{2} \\
z_{j k}^{2} & z_{j k}^{2} & z_{j k}^{1}
\end{array}\right], \quad y_{j k}^{s}=\left[\begin{array}{ccc}
y_{j k}^{1} & y_{j k}^{2} & y_{j k}^{2} \\
y_{j k}^{2} & y_{j k}^{1} & y_{j k}^{2} \\
y_{j k}^{2} & y_{j k}^{2} & y_{j k}^{1}
\end{array}\right]
$$

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models
4. Three-phase line models
5. Three-phase transformer models

- General derivation method
- $Y Y, \Delta \Delta, \Delta Y, Y \Delta$ configurations
- UVN-based model

Review: single-phase transformer

1. Internal and terminal vars

- Internal vars: $\left(\hat{V}_{j}, \hat{I}_{j}\right)$ and $\left(\hat{V}_{k}, \hat{I}_{k}\right)$
- Terminal vars: $\left(V_{j}, V_{j}^{n}, I_{j}\right)$ and $\left(V_{k}, V_{k}^{n}, I_{k}\right)$

2. Internal model on internal vars between primary \& secondary sides

- (Ideal) transformer gains: $\hat{V}_{k}=n \hat{V}_{j}, \quad \hat{I}_{k}=a \hat{I}_{j}$

3. Conversion between internal \& terminal vars on each side

$$
\begin{array}{rlrl}
V_{j} & =y^{-1} \hat{I}_{j}+\hat{V}_{j}+V_{j}^{n}, & & I_{j}=\hat{I}_{j} \\
V_{k} & =\hat{V}_{k}+V_{k}^{n}, & I_{k}=-\hat{I}_{k}
\end{array}
$$

Review: single-phase transformer

4. External model on external vars across pri \& sec sides

- Eliminate internal vars from internal model and conversion

$$
\left[\begin{array}{l}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]\left(\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]-\left[\begin{array}{c}
V_{j}^{n} \\
V_{k}^{n}
\end{array}\right]\right)
$$

5. If neutrals are grounded with zero grounding impedance so that $V_{j}^{n}=V_{k}^{n}=0$ (often assumed)

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

- Reduces to a Π circuit

Three-phase transformers

1. Three-phase transformers consists of 3 single-phase transformers in Y / Δ configuration
2. External models can be derived following the same procedure

General method

Primary side

1. Internal vars (defined across individual windings)
2. Terminal vars (voltages wrt common reference, e.g., ground)

$$
V_{j}:=\left[\begin{array}{c}
V_{j}^{a} \\
V_{j}^{b} \\
\hat{V}_{j}^{c}
\end{array}\right], \quad I_{j}:=\left[\begin{array}{c}
I_{j}^{a} \\
I_{j}^{b} \\
\hat{I}_{j}^{c}
\end{array}\right], \quad \text { for } Y \text { configuration: }\left(V_{j}^{n}, I_{j}^{n}\right)
$$

3. Leakage admittance matrix $y:=\operatorname{diag}\left(y^{a}, y^{b}, y^{c}\right)$

General method

Primary side

4. Conversion between internal and terminal vars

- Y configuration

$$
I_{j}=y\left(V_{j}-V_{j}^{n} 1-\hat{V}_{j}^{Y}\right), \quad I_{j}=\hat{I}_{j}^{Y}, \quad I_{j}^{n}=-1^{\top} \hat{I}_{j}^{Y}
$$

- Δ configuration

$$
\hat{I}_{j}^{\Delta}=y\left(\Gamma V_{j}-\hat{V}_{j}^{\Delta}\right), \quad I_{j}=\Gamma^{\top} \hat{I}_{j}^{\Delta}
$$

General method

Secondary side

1. Internal vars (defined across individual windings)

$$
\hat{V}_{k}^{Y}:=\left[\begin{array}{c}
\hat{V}_{k}^{a n} \\
\hat{V}_{k}^{b n} \\
\hat{V}_{k}^{c n}
\end{array}\right], \quad \hat{I}_{k}^{Y}:=-\left[\begin{array}{c}
\hat{I}_{k}^{a n} \\
\hat{I}_{k}^{b n} \\
\hat{I}_{k}^{c n}
\end{array}\right], \quad \hat{V}_{k}^{\Delta}:=\left[\begin{array}{c}
\hat{V}_{k}^{a b} \\
\hat{V}_{k}^{b c} \\
\hat{V}_{k}^{c a}
\end{array}\right], \hat{I}_{k}^{\Delta}:=-\left[\begin{array}{c}
\hat{I}_{k}^{a b} \\
\hat{I}_{k}^{b c} \\
\hat{I}_{k}^{c a}
\end{array}\right]
$$

2. Terminal vars (voltages defined wrt common reference, e.g., ground)

$$
V_{k}:=\left[\begin{array}{c}
V_{k}^{a} \\
V_{k}^{b} \\
\hat{V}_{k}^{c}
\end{array}\right], \quad I_{k}:=\left[\begin{array}{c}
I_{k}^{a} \\
I_{k}^{b} \\
\hat{I}_{k}^{c}
\end{array}\right], \quad \text { for } Y \text { configuration: }\left(V_{k}^{n}, I_{k}^{n}\right)
$$

3. Admittances in secondary side assumed to have been referred to primary

General method

Secondary side

4. Conversion between internal and terminal vars

- Y configuration

$$
V_{k}=\hat{V}_{k}^{Y}+V_{k}^{n} 1, \quad I_{k}=-\hat{I}_{k}^{Y}, \quad I_{k}^{n}=1^{\top} \hat{I}_{k}^{Y}
$$

- Δ configuration

$$
\hat{V}_{k}^{\Delta}=\Gamma V_{k}, \quad I_{k}=-\Gamma^{\top} \hat{I}_{k}^{\Delta}
$$

General method

Internal model

1. Voltage gain (real) $n:=\operatorname{diag}\left(n^{a}, n^{b}, n^{c}\right) \in \mathbb{R}^{3 \times 3}$, turns ratio $a:=n^{-1} \in \mathbb{R}^{3 \times 3}$

- Voltage gains (or turns ratios) may be different across phases a, b, c

2. Transformer gains on internal vars across primary and secondary sides
YY configuration: $\quad \hat{V}_{k}^{Y}=n \hat{V}_{j}^{Y}, \quad \hat{I}_{k}^{Y}=a \hat{I}_{j}^{Y}$
$\Delta \Delta$ configuration: $\quad \hat{V}_{k}^{\Delta}=n \hat{V}_{j}^{\Delta}, \quad \hat{I}_{k}^{\Delta}=a \hat{I}_{j}^{\Delta}$
ΔY configuration: $\quad \hat{V}_{k}^{Y}=n \hat{V}_{j}^{\Delta}, \quad \hat{I}_{k}^{Y}=a \hat{I}_{j}^{\Delta}$
$Y \Delta$ configuration: $\quad \hat{V}_{k}^{\Delta}=n \hat{V}_{j}^{Y}, \quad \hat{I}_{k}^{\Delta}=a \hat{I}_{j}^{Y}$
Voltage and current gains follow the same gains as those for single-phase transformers, regardless of 3-phase configuration

General method

External model: summary

1. Couple internal vars $\left(\hat{V}_{j}^{Y / \Delta}, \hat{I}_{j}^{Y / \Delta}\right),\left(\hat{V}_{k}^{Y / \Delta}, \hat{I}_{k}^{Y / \Delta}\right)$ across pri and sec sides through transformer gains, the same way as in single-phase transformers
2. Relate terminal vars $\left(V_{j}, V_{j}^{n}, I_{j}\right),\left(V_{k}, V_{k}^{n}, I_{k}\right)$ to internal vars $\left(\hat{V}_{j}^{Y / \Delta}, \hat{I}_{j}^{Y / \Delta}\right),\left(\hat{V}_{k}^{Y / \Delta}, \hat{I}_{k}^{Y / \Delta}\right)$ on each of primary and secondary sides
3. Eliminate internal vars from equations in Steps 1 and 2 (in previous slides) to obtain an external model relating only terminal vars $\left(V_{j}, V_{j}^{n}, I_{j}\right),\left(V_{k}, V_{k}^{n}, I_{k}\right)$

The method is modular with respect to $Y Y, \Delta \Delta, \Delta Y, Y \Delta$ configurations, as we will see

3-phase transformers

Overview

- Let $V:=\left(V_{j}, V_{k}\right) \in \mathbb{C}^{6}$ and $I:=\left(I_{j}, I_{k}\right) \in \mathbb{C}^{6}$
- Define 6×6 admittance matrix $Y_{Y Y}$ and column vector

$$
Y_{Y Y}:=\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right], \quad \gamma:=\left(V_{j}^{n_{1}}, V_{k}^{n_{1}}\right)
$$

where $a:=\operatorname{diag}\left(a^{a}, a^{b}, a^{c}\right), \quad y:=\operatorname{diag}\left(y^{a}, y^{b}, y^{c}\right)$
External models: $I=D^{\top} Y_{Y Y} D(V-\gamma)$ where
$Y Y: D:=\left[\begin{array}{ll}\square & 0 \\ 0 & \mathbb{\square}\end{array}\right], \Delta \Delta: D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & \Gamma\end{array}\right], \quad \Delta Y: D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & \rrbracket\end{array}\right], \quad Y \Delta: D:=\left[\begin{array}{ll}\square & 0 \\ 0 & \Gamma\end{array}\right]$

3-phase transformers

Overview

External models: $I=D^{\top} Y_{Y Y} D(V-\gamma)$ where

$Y Y: D:=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], \Delta \Delta: D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & \Gamma\end{array}\right], \Delta Y: D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & 0\end{array}\right], Y \Delta: D:=\left[\begin{array}{ll}0 & 0 \\ 0 & \Gamma\end{array}\right]$

- $Y Y, \Delta \Delta: D^{\top} Y_{Y Y} D$ is block symmetric and has 3 -phase Π circuit representation
- $\Delta Y, Y \Delta$: Not

Next: derive external models for each configuration in detail

$Y Y$ configuration

Internal and terminal vars

1. Internal vars (defined across individual windings)
2. Terminal vars (voltages wrt common reference, e.g., ground)

$$
\begin{aligned}
& V_{j}:=\left[\begin{array}{c}
V_{j}^{a} \\
V_{j}^{b} \\
\hat{V}_{j}^{c}
\end{array}\right], I_{j}:=\left[\begin{array}{c}
I_{j}^{a} \\
I_{j}^{b} \\
\hat{I}_{j}^{c}
\end{array}\right], \quad V_{k}:=\left[\begin{array}{c}
V_{k}^{a} \\
V_{k}^{b} \\
\hat{V}_{k}^{c}
\end{array}\right], I_{k}:=\left[\begin{array}{c}
I_{k}^{a} \\
I_{k}^{b} \\
\hat{I}_{k}^{c}
\end{array}\right] \\
& \left(V_{j}^{n}, I_{j}^{n}\right), \quad\left(V_{k}^{n}, I_{k}^{n}\right)
\end{aligned}
$$

$Y Y$ configuration

External model

1. External model

$$
\begin{aligned}
& {\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left(\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]-\left[\begin{array}{c}
V_{j}^{n_{1}} \\
V_{k}^{n_{1}}
\end{array}\right]\right)} \\
& I_{j}^{n}=-1^{\top} I_{j}, \quad I_{k}^{n}=-1^{\top} I_{k}
\end{aligned}
$$

2. If both neutrals are grounded with zero impedance and
 voltages are defined wrt ground

$$
\left[\begin{array}{l}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

which can be represented as a Π circuit

Comparison

With single-phase transformer

External models: exactly the same expression

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left(\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]-\left[\begin{array}{c}
V_{j}^{n_{1}} \\
V_{k}^{n_{1}}
\end{array}\right]\right)
$$

- Single-phase: $Y_{Y Y} \in \mathbb{C}^{2 \times 2}$

- Three-phase: $Y_{Y Y} \in \mathbb{C}^{6 \times 6}$

$\Delta \Delta$ configuration
 Internal and terminal vars

1. Internal vars (defined across individual windings)

$$
\hat{V}_{j}^{\Delta}:=\left[\begin{array}{c}
\hat{V}_{j}^{a b} \\
\hat{V}_{j}^{b c} \\
\hat{V}_{j}^{c a}
\end{array}\right], \hat{I}_{j}^{\Delta}:=\left[\begin{array}{l}
\hat{I}_{j}^{a b} \\
\hat{I}_{j}^{b c} \\
\hat{I}_{j}^{c a}
\end{array}\right], \quad \hat{V}_{k}^{\Delta}:=\left[\begin{array}{c}
\hat{V}_{k}^{a b} \\
\hat{V}_{k}^{b c} \\
\hat{V}_{k}^{c a}
\end{array}\right], \quad \hat{I}_{k}^{\Delta}:=-\left[\begin{array}{c}
\hat{I}_{k}^{a b} \\
\hat{I}_{k}^{b c} \\
\hat{I}_{k}^{c a}
\end{array}\right]
$$

2. Terminal vars $\left(V_{j}, I_{j}\right),\left(V_{k}, I_{k}\right)$ same as for $Y Y$ config

- without neutral vars

$\Delta \Delta$ configuration

External model

External model

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
\Gamma^{\top} & 0 \\
0 & \Gamma^{\top}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left[\begin{array}{cc}
\Gamma & 0 \\
0 & \Gamma
\end{array}\right]\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

- Can be represented as Π circuit
- Conversion matrices due to Δ configurations

Comparison

With single-phase transformer

Single-phase: $Y_{Y Y} \in \mathbb{C}^{2 \times 2}$

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

- No neutral lines

Three-phase: $Y_{Y Y} \in \mathbb{C}^{6 \times 6}$

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
\Gamma^{\top} & 0 \\
0 & \Gamma^{\top}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left[\begin{array}{cc}
\Gamma & 0 \\
0 & \Gamma
\end{array}\right]\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]
$$

- Conversion matrices due to Δ configurations

ΔY configuration
 Internal and terminal vars

1. Internal vars (defined across individual windings)

$$
\hat{V}_{j}^{\Delta}:=\left[\begin{array}{c}
\hat{V}_{j}^{a b} \\
\hat{V}_{j}^{b c} \\
\hat{V}_{j}^{c a}
\end{array}\right], \hat{I}_{j}^{\Delta}:=\left[\begin{array}{c}
\hat{I}_{j}^{a b} \\
\hat{I}_{j}^{b c} \\
\hat{I}_{j}^{c a}
\end{array}\right], \quad \hat{V}_{k}^{Y}:=\left[\begin{array}{c}
\hat{V}_{k}^{a n} \\
\hat{V}_{k}^{b n} \\
\hat{V}_{k}^{c n}
\end{array}\right], \hat{I}_{k}^{Y}:=-\left[\begin{array}{c}
\hat{I}_{k}^{a n} \\
\hat{I}_{k}^{b n} \\
\hat{I}_{k}^{c n}
\end{array}\right],
$$

2. Terminal vars $\left(V_{j}, I_{j}\right),\left(V_{k}, I_{k}\right)$ same as before

ΔY configuration

External model

1. External model

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
\Gamma^{\top} & 0 \\
0 & \mathbb{0}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left[\begin{array}{cc}
\Gamma & 0 \\
0 & \mathbb{1}
\end{array}\right]\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]-\left[\begin{array}{c}
-\Gamma^{\top} a y \\
a^{2} y
\end{array}\right] V_{k}^{n_{1}}
$$

2. Comparison with $Y Y$ and $\Delta \Delta$ configurations (modular)

- I_{j} depends on $\left(V_{j}, V_{k}\right)$ similarly to $\Delta \Delta$ config
- I_{k} depends on $\left(V_{j}, V_{k}\right)$ similarly to $Y Y$ config
- Even though there is no neutral line on primary side, I_{j} depends on V_{k}^{n} on secondary side
- If $a=a^{a}$, $y=y^{a}$ П, i.e., identical single-phase transformers, then I_{j} becomes independent of V_{k}^{n} (because $\Gamma^{\top} 1=0$)

$Y \Delta$ configuration

External model

1. External model

$$
\left[\begin{array}{c}
I_{j} \\
I_{k}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & \Gamma^{\top}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
y & -a y \\
-a y & a^{2} y
\end{array}\right]}_{Y_{Y Y}}\left[\begin{array}{cc}
0 & 0 \\
0 & \Gamma
\end{array}\right]\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right]-\left[\begin{array}{c}
y \\
-\Gamma^{\top} a y
\end{array}\right] V_{j}^{n_{1}}
$$

2. Same modular structure as for ΔY configuration

- I_{j} depends on $\left(V_{j}, V_{k}\right)$ similarly to $Y Y$ config
- I_{k} depends on $\left(V_{j}, V_{k}\right)$ similarly to $\Delta \Delta$ config

- Even though there is no neutral line on secondary side, I_{k} depends on V_{j}^{n} on primary side
- If $a=a^{a} \rrbracket, y=y^{a}$, i.e., identical single-phase transformers, then I_{k} becomes independent of V_{j}^{n} (because $\Gamma^{\top} 1=0$)

Other transformers

Same method can be applied to derive external models for other transformers

- Open transformer
- Split-phase transformer
- See textbook

Outline

1. Overview
2. Mathematical properties
3. Three-phase device models
4. Three-phase line models
5. Three-phase transformer models

- General derivation method
- $Y Y, \Delta \Delta, \Delta Y, Y \Delta$ configurations
- UVN-based model

Three-phase transformers

Example: $Y Y$ configuration

External vars:

$$
I:=\left[\begin{array}{l}
I_{j} \\
I_{k}
\end{array}\right] \in \mathbb{C}^{6}, \quad V:=\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right] \in \mathbb{C}^{6}
$$

Transformer parameters:

$$
\begin{aligned}
& M:=\left[\begin{array}{cc}
\operatorname{diag}\left(1 / N_{j}^{a b c}\right) & 0 \\
0 & \operatorname{diag}\left(1 / N_{k}^{a b c}\right)
\end{array}\right] \in \mathbb{C}^{6 \times 6} \\
& y_{i}:=\operatorname{diag}\left(y_{i}^{a}, y_{i}^{b}, y_{i}^{c}\right) \in \mathbb{C}^{3 \times 3}, \quad i=0, j, k
\end{aligned}
$$

Unitary voltage network per phase

Three-phase transformers

Example: $\Delta \Delta$ configuration

External vars:

$$
I:=\left[\begin{array}{l}
I_{j} \\
I_{k}
\end{array}\right] \in \mathbb{C}^{6}, \quad V:=\left[\begin{array}{c}
V_{j} \\
V_{k}
\end{array}\right] \in \mathbb{C}^{6}
$$

Transformer parameters:

$$
\begin{aligned}
& M:=\left[\begin{array}{cc}
\operatorname{diag}\left(1 / N_{j}^{a b c}\right) & 0 \\
0 & \operatorname{diag}\left(1 / N_{k}^{a b c}\right)
\end{array}\right] \in \mathbb{C}^{6 \times 6} \\
& y_{i}:=\operatorname{diag}\left(y_{i}^{a}, y_{i}^{b}, y_{i}^{c}\right) \in \mathbb{C}^{3 \times 3}, \quad i=0, j, k
\end{aligned}
$$

Unitary voltage network per phase

Three-phase transformers

Unitary voltage network per phase

$\begin{aligned} \hat{J}_{j} & =y_{k}\left(\hat{U}_{j}-\hat{U}_{0}\right), \quad \hat{J}_{k}=y_{k}\left(\hat{U}_{k}-\hat{U}_{0}\right) \\ y_{0} \hat{U}_{0} & =\hat{J}_{0}+\hat{J}_{j}+\hat{J}_{k}\end{aligned}$

Admittance matrix in $\mathbb{C}^{9 \times 9}$

$$
\left[\begin{array}{l}
\hat{J}_{0} \\
\hat{J}_{j} \\
\hat{J}_{k}
\end{array}\right]=\left[\begin{array}{ccc}
\sum_{i} y_{i} & -y_{j} & -y_{k} \\
-y_{j} & y_{j} & 0 \\
-y_{k} & 0 & y_{k}
\end{array}\right]\left[\begin{array}{c}
\hat{U}_{0} \\
\hat{U}_{j} \\
\hat{U}_{k}
\end{array}\right]
$$

Since $\hat{J}_{0}=0$, can eliminate \hat{U}_{0} to obtain Kron reduced admittance matrix

$$
\hat{J}=Y_{\mathrm{uvn}} \hat{U}
$$

where

$$
Y_{\mathrm{uvn}}:=\left(\mathbb{a}_{2} \otimes\left(\sum_{i} y_{i}\right)^{-1}\right)\left[\begin{array}{cc}
y_{j}\left(y_{0}+y_{k}\right) & -y_{j} y_{k} \\
-y_{j} y_{k} & y_{k}\left(y_{0}+y_{j}\right)
\end{array}\right]
$$

Three-phase transformers

External model: primary circuit

Y config:

$$
\hat{U}_{j}=M_{j}\left(V_{j}-V_{j}^{n} 1\right), \quad \hat{J}_{j}=M_{j}^{-1} I_{j}
$$

Δ config:

$$
\hat{U}_{j}=M_{j} \Gamma V_{j}, \quad \hat{J}_{j}=M_{j}^{-1} I_{j}^{\Delta}, \quad I_{j}=\Gamma^{\top} I_{j}^{\Delta}
$$

Three-phase transformers

External model: conversion rule

Primary circuit
Y configuration: $\quad \hat{U}_{j}=M_{j}\left(V_{j}-V_{j}^{n_{1}}\right), \quad \hat{J}_{j}=M_{j}^{-1} I_{j}$
Δ configuration: $\quad \hat{U}_{j}=M_{j} \Gamma V_{j}, \quad \hat{J}_{j}=M_{j}^{-1} I_{j}^{\Delta}, \quad I_{j}=\Gamma^{\top} I_{j}^{\Delta}$

Secondary circuit
Y configuration: $\quad \hat{U}_{k}=M_{k}\left(V_{k}-V_{k}^{n}\right), \quad \hat{J}_{k}=M_{k}^{-1} I_{k}$
Δ configuration
$\hat{U}_{k}=M_{k} \Gamma V_{k}$,
$\hat{J}_{k}=M_{k}^{-1} I_{k}^{\Delta}, \quad I_{k}=\Gamma^{\top} I_{k}^{\Delta}$

Three-phase transformers

External model: admittance matrix

Eliminate internal vars (\hat{U}, \hat{J}) :

$$
I=D^{\top}\left(M Y_{\mathrm{uvn}} M\right) D(V-\gamma)
$$

For both single-phase \& three-phase transformers:

- This model is equivalent to T equivalent circuit
- Different from simplified circuit (approximation)
- If shunt adm $=0$, then all 3 models are equivalent
where
$\gamma:=\left(V_{j}^{n} 1, V_{k}^{n_{1}}\right):$ neutral voltages in $Y Y$ configuration
$D \in \mathbb{C}^{6 \times 6}$: configuration dependent
$Y Y$ config: $\quad D:=\left[\begin{array}{ll}\square & 0 \\ 0 & \mathbb{1}\end{array}\right]$
$\Delta \Delta$ config: $\quad D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & \Gamma\end{array}\right]$
ΔY config: $\quad D:=\left[\begin{array}{ll}\Gamma & 0 \\ 0 & \mathbb{1}\end{array}\right]$
$Y \Delta$ config: $\quad D:=\left[\begin{array}{cc}\rrbracket & 0 \\ 0 & \Gamma\end{array}\right]$

