Power System Analysis

Chapter 8 Unbalanced network: component models

Steven Low EE/CS/EST 135 Caltech

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
- 4. Three-phase line models
- 5. Three-phase transformer models

Outline

1. Overview

- Internal & terminal variables
- 3-phase device models
- 3-phase line & transformer models
- 3-phase network models
- 2. Mathematical properties
- 3. Three-phase device models
- 4. Three-phase line models
- 5. Three-phase transformer models

Overview

Example Single-phase system

System model = device model + network model

1. Device model:
$$V_1 = \frac{V_{\text{gen}}}{\sqrt{3} e^{i\pi/6}}$$
, $V_{\text{load}} = Z_{\text{load}} I_{\text{load}}$

2. Transformer model:
$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = Y_{\text{transformer}} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

3. Line model:
$$\begin{bmatrix} I_2 \\ I_{load} \end{bmatrix} = Y_{line} \begin{bmatrix} V_2 \\ V_{load} \end{bmatrix}$$

- 4. Nodal (current) balance are implicitly taken into account
- 5. 6 (linear) equations in 6 unknowns $(V_1, V_2, V_{\text{load}}), (I_1, I_2, I_{\text{load}})$

Example

Three-phase unbalanced system

System model = device model + network model

- 1. Device model: Y/Δ -configured devices are a key difference
- 2. Transformer model: Y/Δ -configured transformers are a key difference
- 3. Line model: 3-phase lines have straightforward extension
- 4. Nodal (current) balance are the same as for 1-phase network
- 5. 6 (linear) equations in 6 unknowns $(V_1, V_2, V_{\text{load}}), (I_1, I_2, I_{\text{load}})$ each in \mathbb{C}^3

Steven Low Caltech Overview

Overview

Key question

How to derive external models of 3-phase devices

- 1. Voltage/current/power sources, impedances (1-phase device: internal models)
- 2. ... in Y/Δ configurations

(conversion rules: int \rightarrow ext)

3. ... with or without neutral lines, grounded or ungrounded, zero or nonzero grounding impedances

similar principle to derive external models of 3-phase transformers (but different details)

Steven Low Caltech Overview

overall network model

Internal variables Y configuration

Internal voltage, current, power across single-phase devices:

$$V^{Y} := \begin{bmatrix} V^{an} \\ V^{bn} \\ V^{cn} \end{bmatrix}, \ I^{Y} := \begin{bmatrix} I^{an} \\ I^{bn} \\ I^{cn} \end{bmatrix}, \ s^{Y} := \begin{bmatrix} s^{an} \\ s^{bn} \\ s^{cn} \end{bmatrix} := \begin{bmatrix} V^{an} \overline{I}^{an} \\ V^{bn} \overline{I}^{bn} \\ V^{cn} \overline{I}^{cn} \end{bmatrix}$$

neutral voltage (wrt common reference pt) $V^n \in \mathbb{C}$ neutral current (away from neutral) $I^n \in \mathbb{C}$

- Neutral line may or may not be present
- Device may or may not be grounded
- Neutral impedance z^n may or may not be zero

overall network model

Ouleview. Single terminal derice

Internal voltage, current, power across single-phase devices:

 $V^{\Delta} := \begin{vmatrix} V^{ab} \\ V^{bc} \\ V^{ca} \end{vmatrix}, I^{\Delta} := \begin{vmatrix} I^{ab} \\ I^{bc} \\ I^{ca} \end{vmatrix}, \overset{\text{Over all } s^{ab} \\ \overset{\text{Nervork } nodel \\ s^{bc} \\ s^{ca} \\ S^{ca} \\ U^{ca} \\ V^{ca} \\ S^{ca} \\ U^{ca} \\ S^{ca} \\ S^{$

Vea - Jab

single-terminal device

Steven Low

Caltech

Ja Va

1.0

single - terminal device

Device models Internal model

- 1. Relation between internal vars: $f^{\text{int}}(V^{Y/\Delta}, I^{Y/\Delta}) = 0$, diag $(V^{Y/\Delta}I^{Y/\Delta H}) = s^{Y/\Delta}$
- 2. Examples

ideal voltage source:
$$V^{Y/\Delta} = E^{Y/\Delta}$$
, $s^{Y/\Delta} = \operatorname{diag}\left(E^{Y/\Delta}\left(I^{Y/\Delta}\right)^{\mathsf{H}}\right)$ impedance: $V^{Y/\Delta} = z^{Y/\Delta}I^{Y/\Delta}$, $s^{Y/\Delta} = \operatorname{diag}\left(V^{Y/\Delta}\left(I^{Y/\Delta}\right)^{\mathsf{H}}\right)$

- 3. Internal model
 - Independent of Y or Δ configuration
 - Depends only on behavior of single-phase devices
 - Voltage/current/power source, impedance

Line or transformer model

- 1. A line or transformer has two terminals j and k
 - Each terminal may have 3 wires (ports) or 4 wires (ports) if neutral line present
- 2. Terminal variables (3-wired)
 - Terminal voltages: $V_j := \left(V_j^a, V_j^b, V_j^c\right) \in \mathbb{C}^3, \ V_k := \left(V_k^a, V_k^b, V_k^c\right) \in \mathbb{C}^3$
 - Sending-end currents: $I_{jk} := \left(I_{jk}^a, I_{jk}^b, I_{jk}^c\right) \in \mathbb{C}^3, \ I_{kj} := \left(I_{kj}^a, I_{kj}^b, I_{kj}^c\right) \in \mathbb{C}^3$
 - Sending-end powers: $S_{jk} := \left(S_{jk}^a, S_{jk}^b, S_{jk}^c\right) \in \mathbb{C}^3$, $S_{kj} := \left(S_{kj}^a, S_{kj}^b, S_{kj}^c\right) \in \mathbb{C}^3$
- 3. Model in terms of 3×3 admittance matrices:

• IV relation:
$$g\left(V_{j}, V_{k}, I_{jk}, I_{kj}\right) = 0$$

• sV relation: $S_{jk}^{\phi} := V_{j}^{\phi}\left(I_{jk}^{\phi}\right)^{\mathsf{H}}$ or in vector form $S_{jk} := \operatorname{diag}\left(V_{j}I_{jk}^{\mathsf{H}}\right), \quad S_{kj}^{\mathsf{H}} := \operatorname{diag}\left(V_{k}^{\mathsf{H}}I_{kj}^{\mathsf{H}}\right)$

Network model

Network balance equations relate terminal vars

• Nodal current balance: $I_j = \sum_{k:j \sim k} I_{jk}$

Nodal power balance:
$$s_j = \sum_{k:j \sim k} S_{jk}$$

Nov 17, 2021

Overall model Device + network

- 1. Device model for each 3-phase device
 - Internal model on $\left(V_{j}^{Y/\Delta}, I_{j}^{Y/\Delta}, s_{j}^{Y/\Delta}\right)$ + conversion rules
 - External model on $\left(V_{j}, I_{j}, s_{j}\right)$
 - Either can be used
 - Power source models are nonlinear; other devices are linear
- 2. Network model relates terminal vars (V, I, s)
 - Nodal current balance equation: linear
 - Nodal power balance equation: nonlinear
 - Either can be used

Overall model will be linear if and only if only voltage/current sources and impedances are present (but no power sources)

Outline

- 1. Overview
- 2. Mathematical properties
 - Conversion matrices Γ , Γ^{T}
 - Sequence variables
- 3. Three-phase device models
- 4. Three-phase line models
- 5. Three-phase transformer models

$$\Gamma := \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}, \qquad \Gamma^{\mathsf{T}} := \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Incidence matrices for: Oct 25, 221

Convert between internal vars and external vars

$$\begin{bmatrix} V_{ab} \\ V_{bc} \\ V_{ca} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}}_{\Gamma} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}, \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}}_{\Gamma^{\mathsf{T}}} \begin{bmatrix} I_{ab} \\ I_{bc} \\ I_{ca} \end{bmatrix}$$

Convert between internal vars and external vars

$$\begin{bmatrix} V_{ab} \\ V_{bc} \\ V_{ca} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}}_{\Gamma} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}, \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}}_{\Gamma^{\mathsf{T}}} \begin{bmatrix} I_{ab} \\ I_{bc} \\ I_{ca} \end{bmatrix}$$

In vector form

Lemma

Let $M \in \mathbb{C}^{n \times n}$ be a normal matrix, i.e., $MM^{H} = M^{H}M$.

- 1. Decomposition: $M = U\Lambda U^{\mathsf{H}}$ where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ are eigenvalues and columns of U are eigenvectors of M.
- 2. Pseudo-inverse: $M^{\dagger} = U\Lambda^{\dagger}U^{\mathsf{H}}$ where $\Lambda^{\dagger} := \operatorname{diag}\left(\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}\right)$ with $\lambda_{j}^{-1} := 0$ if $\lambda_{j} = 0$.
- 3. Solution of Mx = b: A solution x exists if and only if b is orthogonal to null (M^{H}) in which case

$$x = M^{\dagger}b + w, \qquad w \in \operatorname{null}(M)$$

Conversion matrices Spectral decomposition

Spectral decomposition:

$$\Gamma = F\Lambda \overline{F}, \qquad \Gamma^{\mathsf{T}} = \overline{F}\Lambda F$$

where

$$\Lambda := \begin{bmatrix} 0 & & & \\ & 1 - \alpha & & \\ & & 1 - \alpha^2 \end{bmatrix},$$

and $\alpha := e^{-i2\pi/3}$

Theorem

- 1. The null spaces of Γ and Γ^{T} are both span(1).
- 2. Γ is normal. Moreover, $\Gamma\Gamma^{\dagger} = \Gamma^{\dagger}\Gamma = \frac{1}{3}\Gamma\Gamma^{T} = \frac{1}{3}\Gamma^{T}\Gamma = \frac{1}{3}\Gamma^{T}\Gamma = \frac{1}{3}\mathbf{1}\mathbf{1}^{T}$
- 3. Their pseudo-inverses are: $\Gamma^{\dagger} = \frac{1}{3}\Gamma^{T}$, $\Gamma^{T\dagger} = \frac{1}{3}\Gamma$
- 4. Consider $\Gamma x = b$. Solutions x exist if and only if $\mathbf{1}^{\mathsf{T}}b = 0$, in which case

$$x = \frac{1}{3}\Gamma^{\mathsf{T}}b + \gamma \mathbf{1}, \qquad \gamma \in \mathbb{C}$$

5. Consider $\Gamma^{\mathsf{T}} x = b$. Solutions *x* exist if and only if $\mathbf{1}^{\mathsf{T}} b = 0$, in which case

$$x = \frac{1}{3}\Gamma b + \beta 1, \qquad \beta \in \mathbb{C}$$

Steven Low Caltech Mathematical properties

Sequence variables Fortescue matrix *F*

- 1. *F* is unitary and complex symmetric (recall $\Gamma = F \Lambda \overline{F}$)
- 2. Its inverse is:

Steven Low

$$F^{-1} = F^{\mathsf{H}} = \overline{F} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \overline{\alpha}_{+} & \overline{\alpha}_{-} \end{bmatrix}$$

- 3. F defines a similarity transformation:
 - $x = F\tilde{x}, \qquad \tilde{x} := F^{-1}x = \overline{F}x$
- 4. \tilde{x} is called the sequence variable of x. Its components are

Sequence variables Sequence voltage, current, power

1. Sequence voltage and current:

 $\tilde{V} = \overline{F}V, \qquad \tilde{I} = \overline{F}I$

2. Powers in phase and sequence coordinates:

$$s := \operatorname{diag}(VI^{\mathsf{H}}), \qquad \tilde{s} := \operatorname{diag}(\tilde{V}\tilde{I}^{\mathsf{H}})$$

3. The total powers are equal $1^{T}\tilde{s} = 1^{T}s$:

$$1^{\mathsf{T}}\tilde{s} = \tilde{I}^{\mathsf{H}}\tilde{V} = (I^{\mathsf{H}}\overline{F}^{\mathsf{H}})(\overline{F}V) = I^{\mathsf{H}}V = 1^{\mathsf{T}}s$$

since $\overline{F}^{\mathsf{H}}\overline{F} = F\overline{F} = \mathbb{I}$

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
 - Conversion rules
 - Devices in *Y* configuration
 - Devices in Δ configuration
 - Y- Δ transformation (ideal devices)
- 4. Three-phase line models
- 5. Three-phase transformer models

single-terminal device

overall network model

Conversion rule *Y* configuration

1. Converts between internal and terminal variables

 $V = V^{Y} + V^{n}$, $I = -I^{Y}$, $s = -(s^{Y} + V^{n}\bar{I}^{Y})$

 $\mathbf{1}^{\mathsf{T}}I = -\mathbf{1}^{\mathsf{T}}I^{Y} = -I^{n}$

- 2. Negative signs in I, s due to directions of currents and powers
 - (I, s) : current & power injection from 3-phase device to rest of network
 - (I^Y, s^Y) : current & power delivered to the single-phase devices
- 3. If there is no neutral line, then $z^n := \infty$, $I^n := 0$
 - $1^{\mathsf{T}}I = -1^{\mathsf{T}}I^{Y} = 0$, V^{n} determined by network interaction

overall network nisdel

single-terminal device

overall network nisdel

C8.1 often assumed sometimes implicitly in literature over all network model

Conversion rule *Y* configuration: assumption C8.1

1. Assumption C8.1

- All voltages are defined wrt the ground
- All neutrals are grounded through z^n (which may be zero)
- 2. If Assumption C8.1 holds
 - $V^n = -z^n \left(\mathbf{1}^\mathsf{T} I \right)$
 - $V^n = 0$ if $z^n = 0$
- 3. If neutrals are ungrounded but connected to neutrals of other devices through 4-wire lines
 - (V^n, I^n) determined by network interaction

$\Delta \text{ configuration: voltage conversion} \qquad \qquad \text{overall network model}$

1. Converts between internal and terminal voltages & currents

Conversion rule

Δ configuration: current conversion

1. Converts between internal and terminal voltages & currents

Conversion rule

Δ configuration: power conversion

- 1. Relation between *s* and s^{Δ} is indirect, through (V^{Δ}, I^{Δ}) , through (V, I), or through (V, I^{Δ})
 - Follows from voltage and current conversions

2. Given
$$(V^{\Delta}, I^{\Delta})$$
 with $1^{\mathsf{T}}V^{\Delta} = 0$, $s^{\Delta} := \text{diag}(V^{\Delta}I^{\Delta\mathsf{H}})$ and terminal power is

$$s := \operatorname{diag}\left(VI^{\mathsf{H}}\right) = -\operatorname{diag}\left(\Gamma^{\dagger}\left(V^{\Delta}I^{\Delta\mathsf{H}}\right)\Gamma\right) + \gamma \overline{I}$$

3. Given (V, I) with $1^{\mathsf{T}}I = 0$, $s := \text{diag}(VI^{\mathsf{H}})$ and internal power is

$$s^{\Delta} := \operatorname{diag}\left(V^{\Delta}I^{\Delta \mathsf{H}}\right) = -\operatorname{diag}\left(\Gamma\left(VI^{\mathsf{H}}\right)\Gamma^{\dagger}\right) + \overline{\beta}V^{\Delta}$$

- 4. Zero-sequence voltage γ and current β may be determined by spec or network interaction
- 5. Total powers $1^{\mathsf{T}}s$ and $1^{\mathsf{T}}s^{\Delta}$ are independent of (γ, β)
 - Because $\mathbf{1}^{\mathsf{T}}I = 0$ and $\mathbf{1}^{\mathsf{T}}V^{\Delta} = 0$

Conversion rule

Δ configuration: power conversion

6. Relation between *s* and s^{Δ} through (V, I^{Δ}) :

$$s = - \operatorname{diag} \left(V I^{\Delta \mathsf{H}} \Gamma \right), \quad s^{\Delta} \ = \ \operatorname{diag} \left(\Gamma V I^{\Delta \mathsf{H}} \right)$$

- no direct relation between s and s^{Δ}
- follows from voltage & current conversions
- The parameterization (V, I^{Δ}) implicitly contains $\gamma := \frac{1}{3} \mathbf{1}^{\mathsf{T}} V$ and $\beta := \frac{1}{3} \mathbf{1}^{\mathsf{T}} I^{\Delta}$ and is more convenient computationally

Steven Low

Voltage source (E^Y, z^Y, z^n) : *Y* configuration Internal model

г

1. Internal voltages and currents

$$V^{Y} = E^{Y} + z^{Y}I^{Y}, \qquad I^{n} = \mathbf{1}^{\mathsf{T}}I^{Y}, \qquad V^{n} = z^{n}(\mathbf{1}^{\mathsf{T}}I^{Y})$$

2. Internal powers:

Steven Low

- Across each single-phase device: $s^{Y} := \text{diag}(V^{Y}I^{YH})$
- Across neutral conductor: $s^n := V^n \overline{I}^n$

$$s^{Y} = \operatorname{diag}\left(E^{Y}I^{YH}\right) + \operatorname{diag}\left(z^{Y}I^{YH}\right) = \underbrace{\begin{bmatrix}E^{an}I^{anH}\\E^{bn}I^{bnH}\\E^{cn}I^{cnH}\end{bmatrix}}_{s^{Y}\text{ideal}} + \underbrace{\begin{bmatrix}z^{an} |I^{an}|^{2}\\z^{bn} |I^{bn}|^{2}\\z^{cn} |I^{cn}|^{2}\end{bmatrix}}_{s^{i}\text{imp}},$$
Caltech 3-phase devices

Voltage source (E^Y, z^Y, z^n) : *Y* configuration External model

1. Internal model

 $V^Y = E^Y + z^Y I^Y$

2. Conversion rule for Y configuration

 $V = V^Y + V^n \mathbf{1}, \qquad I = -I^Y$

3. \implies External model (under Assumption C8.1 \Rightarrow Vⁿ = $-z^n(1^TI)$) $V = E^Y - (z^Y + z^n 11^T)I$ neutral conductor z^n couples the phases

$$S = \operatorname{diag}\left(V\left(E^{Y}-V\right)^{\mathsf{H}}\left((Z^{Y})^{-1}\right)^{\mathsf{H}}\right)$$

Steven Low Caltech 3-phase devices

JA LO

+ I9

Voltage source (E^Y, z^Y, z^n) : *Y* configuration External model

4. Comparison

Single-phase : $V = E - zI \in \mathbb{C}$

Three-phase: $V = E^Y - Z^Y I \in \mathbb{C}^3$

$$Z^{Y} := \begin{bmatrix} z^{an} + z^{n} & z^{n} & z^{n} \\ z^{n} & z^{bn} + z^{n} & z^{n} \\ z^{n} & z^{n} & z^{cn} + z^{n} \end{bmatrix}$$

 y^{s}

 I_{s}

 V_{a}

Voltage source (E^Y, z^Y, z^n) : *Y* configuration Ideal source

- 1. Assumptions
 - $z^Y = 0$
 - Assumption C8.1 with $z^n = 0$: $V^n = 0$
- 2. Internal model

 $V^Y = E^Y$

3. Conversion rule for Y configuration

 $V = V^Y, \qquad I = -I^Y$

4. \implies External model

$$V = E^{Y}$$

s = diag $(E^{Y}I^{H})$

Steven Low Caltech 3-phase devices

Unbalanced 36 retwork / voltage source

Nov 13, 2021 Unbaranced Network (component Engaged (Hands Va

Current source $(J^Y, y_{ct}^Y, z_{2,2}^n)$: Y configuration **Internal model**

1. Internal voltages and currents

$$I^Y = J^Y + y^Y V^Y$$

2. li

Steven Low

$$I^{Y} = J^{Y} + y^{Y}V^{Y}$$

$$\text{nternal powers:}$$

$$s^{Y} := \operatorname{diag}\left(V^{Y}I^{YH}\right) = \operatorname{diag}\left(V^{Y}J^{YH}\right) + \operatorname{diag}\left(V^{Y}J^{YH}\right) + \operatorname{diag}\left(V^{Y}V^{H}\right)^{T} + \operatorname{diag}\left(V^{Y}\right)^{T} + \operatorname{diag}\left(V^{Y}\right)^{T}$$

I^a

Unbalanced 3 & network / voltage source

Za

Z

20

₹ T

IC

Network Componen

Current source $(J^Y, y_{et}^Y, z_{202}^n)$: Y configuration **External model**

1. Internal model

$$I^Y = J^Y + y^Y V^Y$$

2. Conversion rule

$$V = V^Y + V^n \mathbf{1}, \qquad I = -I^Y$$

3.
$$\implies$$
 External model (under Assumption C8.1 \Rightarrow $V_{1}^{T}=-z^{n}\left(1\overset{\mathsf{T}}{}_{I}\right)_{V^{c}}$

2"

II I

Nov 13, 2021

Ea

Unbalanced

Steven Low Caltech 3-phase devices

+ 19

TC

Current source $(J^Y, y_{t}^Y, z_{rol}^n)$: Y configuration Ideal source

- 1. Assumptions
 - $y^Y = 0$
 - Assumption C8.1 with $z^n = 0$: $V^n = 0$
- 2. \implies External model
 - $I = -J^{Y}$ $s = -\operatorname{diag}\left(VJ^{YH}\right)$

36 retwork / voltage source Unbalanced Nov 13, 2021 Unbalanced Netronk/ component Za E. C Ec Z T° VC $\rightarrow \circ$ Nov 13, 2021 Unbalanced Netronk/ component model (Iª 1/ª JA C 500 Ib 36

J،

II I

TC

¥ II

ra1 m

Steven Low Caltech 3-phase devices

1. Internal powers

$$s^{Y} = \sigma^{Y}, \qquad s^{n} := V^{n}I^{nH} = z^{n} \left| \mathbf{1}^{\mathsf{T}}I^{Y} \right|^{2}$$

1. Internal model

$$s^Y = \sigma^Y$$

External model

2. Conversion rule

$$V = V^Y + V^n \mathbf{1}, \qquad I = -I^Y$$

3. \implies External model (under Assumption C8.1 \Rightarrow $V^n = -z^n (1^T I)$)

IV relation:
$$V = -\operatorname{diag} (I^{\mathsf{H}})^{-1} \sigma^{Y} - z^{n} (11^{\mathsf{T}}) I$$

Is relation: $s = -(\sigma^{Y} + z^{n} (\overline{I}I^{\mathsf{T}}) 1)$

4. Comparison

Note: directions of σ are opposite

Za

- Assumption C8.1 with $z^n = 0$: $V^n = 0$
- 2. \implies External model

$$s = -\sigma^{Y}$$

1-phase device

Balanced impedance			
When $z^n \neq 0$ but z^Y is balanced, i.e., $z^{an} = z^{bn} = z^{cn}$, then similarity			
transformation using F produces a sequence impedance that is decoupled in the			
sequence coordinate			
$\begin{bmatrix} z^{an} + 3z^n & 0 & 0 \end{bmatrix}$			
$\tilde{Z}^Y = \begin{bmatrix} 0 & z^{an} & 0 \end{bmatrix}$			
$\begin{bmatrix} 0 & 0 & z^{an} \end{bmatrix}$			

Recap: external models

Y-configured devices (ideal)

Device	Y configuration	
Voltage source	$V = E^Y + \gamma 1$	$s = \operatorname{diag}\left(E^{Y}I^{H}\right) + \gamma \overline{I}$
Current source	$I = -J^Y$	$s = -\text{diag}(VJ^{YH})$
Power source	diag $(I^{H})(V - \gamma 1) = -\sigma$	$s = -\sigma^Y + \gamma \overline{I}$
Impedance	$V = -z^Y I + \gamma 1$	$s = -\operatorname{diag}\left(V\left(V - \gamma 1\right)^{H} y^{YH}\right)$

- 1. $\gamma := V^n$ is neutral voltage
- 2. Negative signs are only due to directions of *I* and *s* (out of device)
- 3. total terminal power $1^{T}s =$ total internal power $1^{T}s^{Y} +$ power delivered across neutral

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
 - Conversion rules
 - Devices in *Y* configuration
 - Devices in Δ configuration
 - Y- Δ transformation
- 4. Three-phase line models
- 5. Three-phase transformer models

1. Internal voltages and currents

 $V^{\Delta} = E^{\Delta} + z^{\Delta} I^{\Delta}$ independent of Y/Δ config

2. Internal powers:

$$s^{\Delta} := \operatorname{diag} \left(V^{\Delta} I^{\Delta H} \right) = \operatorname{diag} \left(E^{\Delta} I^{\Delta H} \right) + \operatorname{diag} \left(z^{\Delta} I^{\Delta} I^{\Delta H} \right)$$

1. Internal model

 $V^{\Delta} = E^{\Delta} + z^{\Delta} I^{\Delta}$

2. Conversion rule for Δ configuration

$$V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$$

1. Internal model

 $V^{\Delta} = E^{\Delta} + z^{\Delta} I^{\Delta}$

2. Conversion rule for Δ configuration

 $V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$

- 3. Two (asymmetric) relations between terminal vars (V, I)
 - Given *V*, 1st relation uniquely determines *I* (hence $\left(V^{\Delta}, I^{\Delta}
 ight)$ as well)
 - Given *I*, 2nd relation determines *V* up to zero-sequence voltage γ

Asymmetry is because *V* contains more info (γ) than *I* does (which contains no info about zero-sequence current $\beta := \frac{1}{3} \mathbf{1}^{\mathsf{T}} I^{\Delta}$)

6^{ca}

or be

4. Given V,

$$I = (\Gamma^{\mathsf{T}} y^{\Delta}) E^{\Delta} - Y^{\Delta} V$$

$$Y^{\Delta} := \Gamma^{\mathsf{T}} y^{\Delta} \Gamma = \begin{bmatrix} y^{ab} + y^{ca} & -y^{ab} & -y^{ca} \\ -y^{ab} & y^{ab} + y^{bc} & -y^{bc} \\ -y^{ca} & -y^{bc} & y^{ca} + y^{bc} \end{bmatrix}, \quad y^{\Delta} := (z^{\Delta})^{-1}$$

4. Given V,

$$I = (\Gamma^{\mathsf{T}} y^{\Delta}) E^{\Delta} - Y^{\Delta} V$$

$$Y^{\Delta} := \Gamma^{\mathsf{T}} y^{\Delta} \Gamma = \begin{bmatrix} y^{ab} + y^{ca} & -y^{ab} & -y^{ca} \\ -y^{ab} & y^{ab} + y^{bc} & -y^{bc} \\ -y^{ca} & -y^{bc} & y^{ca} + y^{bc} \end{bmatrix}, \quad y^{\Delta} := (z^{\Delta})^{-1}$$

5. Given I with $\mathbf{1}^{\mathsf{T}}I = 0$,

$$V = \hat{\Gamma} E^{\Delta} - Z^{\Delta} I + \gamma \mathbf{1}, \qquad \mathbf{1}^{\mathsf{T}} I = 0$$

$$\hat{\Gamma} := \frac{1}{3} \Gamma^{\mathsf{T}} \left(\mathbb{I} - \frac{1}{\zeta} \tilde{z}^{\Delta} \mathbf{1}^{\mathsf{T}} \right), \qquad Z^{\Delta} := \frac{1}{9} \Gamma^{\mathsf{T}} z^{\Delta} \left(\mathbb{I} - \frac{1}{\zeta} \mathbf{1} \tilde{z}^{\Delta \mathsf{T}} \right) \Gamma$$

Steven Low Caltech 3-phase devices

6. Terminal power in terms of V or I:

$$s = \operatorname{diag} (VI^{\mathsf{H}}) = \operatorname{diag} \left(V \left(\Gamma^{\mathsf{T}} y^{\Delta} E^{\Delta} - Y^{\Delta} V \right)^{\mathsf{H}} \right)$$
$$s = \operatorname{diag} \left(VI^{\mathsf{H}} \right) = \operatorname{diag} \left(\left(\hat{\Gamma} E^{\Delta} - Z^{\Delta} I \right) I^{\mathsf{H}} \right) + \gamma \overline{I}$$

Power due to zero-sequence voltage γ Total power 1^Ts is independent of γ because $\gamma 1^{\mathsf{T}} \vec{I} = 0$

~

7. Comparison

Single-phase : V = E - zI

Three-phase: $V = \hat{\Gamma} E^{\Delta} - Z^{\Delta} I + \gamma \mathbf{1}, \quad \mathbf{1}^{\mathsf{T}} I = 0$

 I_{s}

 y^{s}

 I_a

+

 V_{a}

Steven Low Caltech 3-phase devices

Voltage source (E^{Δ}, z^{Δ}) : Δ configuration Ideal source

0

1. Assumption

• $z^{\Delta} = 0$

2.
$$\implies \hat{\Gamma} = \frac{1}{3}\Gamma^{\mathsf{T}}, \qquad Z^{\Delta} = 0$$

Zero-sequence voltage γ

3. \implies External model

$$V = \frac{1}{3} \Gamma^{\mathsf{T}} E^{\Delta} + \gamma \mathbf{1}, \quad \mathbf{1}^{\mathsf{T}} I =$$

$$s = \frac{1}{3} \operatorname{diag} \left(\Gamma^{\mathsf{T}} E^{\Delta} I^{\mathsf{H}} \right) + \gamma \overline{I}$$

Voltage source (E^{Δ}, z^{Δ}) : Δ configuration

Voltage source specifies E^{Δ} which does not uniquely determine terminal voltage V

- Because the zero-sequence voltage $\gamma := \frac{1}{3} \mathbf{1}^{\mathsf{T}} V$ is arbitrary
- γ needs to be specified, e.g., fixed by a reference voltage or grounding
- ... for both ideal or non-ideal voltage sources

Current source (J^{Δ}, y^{Δ}) : Δ configuration

Ja Va

Current source (J^{Δ}, y^{Δ}) : Δ configuration External model

1. Internal model

$$I^{\Delta} = J^{\Delta} + y^{\Delta} V^{\Delta}$$

2. Conversion rule

$$V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$$

3. \implies External model

$$I = -(\Gamma^{\mathsf{T}} J^{\Delta} + Y^{\Delta} V)$$

where (as before):
$$Y^{\Delta}$$
 := $\Gamma^{\mathsf{T}} y^{\Delta} \Gamma$

Steven Low Caltech 3-phase devices

Ia

Current source (J^{Δ}, y^{Δ}) : Δ configuration External model

1. Internal model

$$I^{\Delta} = J^{\Delta} + y^{\Delta} V^{\Delta}$$

2. Conversion rule

$$V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$$

3. \implies External model

$$I = -(\Gamma^{\mathsf{T}} J^{\Delta} + Y^{\Delta} V)$$

$$s = \operatorname{diag}(VI^{\mathsf{H}}) = -\operatorname{diag}(VJ^{\Delta \mathsf{H}} \Gamma)$$

Steven Low Caltech 3-phase devices

o Va

 $VV^{H}Y^{\Delta H}$

Current source (J^{Δ}, y^{Δ}) : Δ configuration External model

Ja

Current source (J^{Δ}, y^{Δ}) : Δ configuration Ideal source

- 1. Assumption
 - $y^{\Delta} = 0$
- 2. \implies External model

$$I = -\Gamma^{\mathsf{T}} J^{\Delta}$$

$$s = -\operatorname{diag}(VJ^{\Delta H}\Gamma)$$

Ja

Steven Low Caltech 3-phase devices

Voltage & current sources: comparison

- 1. Voltage source specifies E^{Δ} which does not uniquely determine terminal voltage V
 - $V = \hat{\Gamma} E^{\Delta} Z^{\Delta} I + \gamma \mathbf{1}, \qquad \mathbf{1}^{\mathsf{T}} I = 0$

• due to arbitrary zero-sequence voltage $\gamma := \frac{1}{2} \mathbf{1}^{\mathsf{T}} V$

- 2. Current source specifies J^{Δ} which uniquely determines terminal current I
 - $I = -(\Gamma^{\mathsf{T}}J^{\Delta} + Y^{\Delta}V)$
 - J^{Δ} contains its zero-sequence current $\beta := \frac{1}{2} \left[\frac{1}{J} \frac{1}{J} \frac{J}{J} \right]$

Power source σ^{Δ} : Δ configuration Internal model

1. Internal powers

$$s^{\Delta}$$
 := diag $\left(V^{\Delta}I^{\Delta \mathsf{H}}\right)$ = σ^{Δ}

1. Internal model

$$s^{\Delta} = \sigma^{\Delta}$$

- 2. Conversion rule
 - $V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$
- 3. \implies External model

IV relation:
$$\sigma^{\Delta} = -\frac{1}{3} \operatorname{diag} \left(\Gamma \left(V I^{\mathsf{H}} \right) \Gamma^{\mathsf{T}} \right) + \overline{\beta} \Gamma V, \quad \mathbf{1}^{\mathsf{T}} I = 0$$

7 complex vars (V, I, β) , 4 quadratic equations

1. Internal model

$$s^{\Delta} = \sigma^{\Delta}$$

- 2. Conversion rule
 - $V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$
- 3. \implies External model

IV relation:
$$\sigma^{\Delta} = -\frac{1}{3} \operatorname{diag} \left(\Gamma \left(VI^{\mathsf{H}} \right) \Gamma^{\mathsf{T}} \right) + \overline{\beta} \Gamma V$$
, $\mathbf{1}^{\mathsf{T}}I = 0$
Equivalent model: $\sigma^{\Delta} = \operatorname{diag} \left(\Gamma VI^{\Delta \mathsf{H}} \right)$

4. Comparison

Single-phase : $s = \sigma$

Three-phase : $s = - \operatorname{diag} \left(V I^{\Delta H} \Gamma \right)$

$$\sigma^{\Delta} = \operatorname{diag}\left(\Gamma V I^{\Delta \mathsf{H}}\right) = \begin{bmatrix} \left(V_{a} - V_{b}\right) \bar{I}^{ab} \\ \left(V_{b} - V_{c}\right) \bar{I}^{bc} \\ \left(V_{c} - V_{a}\right) \bar{I}^{ca} \end{bmatrix}$$

1-phase device

Given V (and σ^{Δ}), I^{Δ} and hence s are uniquely determined Given I^{Δ} (and σ^{Δ}), only ΓV is uniquely determined, not V nor s

Power source σ^{Δ} : Δ configuration Ideal source

- Assumption C8.1 with $z^n = 0$: $V^n = 0$
- 2. \implies External model

$$s = -\sigma^{Y}$$

Ca Va Jao Va Jao Va Jab Jab Jbc Jc Vc Vc

Impedance z^{Δ} : Δ configuration

1. Internal voltage and current:

$$V^{\Delta} = z^{\Delta} I^{\Delta}$$

2. Internal power:

$$s^{\Delta} = \operatorname{diag}\left(V^{\Delta}I^{\Delta \mathsf{H}}\right) := \operatorname{diag}\left(z^{\Delta}I^{\Delta}I^{\Delta \mathsf{H}}\right)$$

Impedance z^{Δ} : Δ configuration \overline{z}

1. Internal model

$$V^{\Delta} = z^{\Delta} I^{\Delta}$$

2. Conversion rule

$$V^{\Delta} = \Gamma V, \qquad I = -\Gamma^{\mathsf{T}} I^{\Delta}$$

3. \implies External model

Given V,
$$I = -Y^{\Delta}V := -(\Gamma^{\mathsf{T}}y^{\Delta}\Gamma)V$$

Given I, $V = -Z^{\Delta}I + \gamma 1$, $\mathbf{1}^{\mathsf{T}}I = 0$
 $Z^{\Delta} := \frac{1}{9}\Gamma^{\mathsf{T}}z^{\Delta}\left(\mathbb{I} - \frac{1}{\zeta}\mathbf{1}\,\tilde{z}^{\Delta\mathsf{T}}\right)\Gamma$

As for voltage source, the asymmetry is because V contains more info (γ) than I does

As for voltage source, the asymmetry is because *V* contains more info (γ) than *I* does

Impedance z^{Δ} : Δ configuration \overline{z}

5. Comparison

Single-phase : I = -yZ or V = -zI

Three-phase :

$$I = -Y^{\Delta}V \in \mathbb{C}^{3}$$
$$V = -Z^{\Delta}I + \gamma 1,$$

1-phase device

Steven Low Caltech 3-phase devices

Impedance z^{Δ} : Δ **configuration** Balanced impedance

1. Assumption

•
$$z^{ab} = z^{bc} = z^{ca}$$

2. External model

$$V = -Z^{\Delta}I + \gamma \mathbf{1}, \qquad \mathbf{1}^{\mathsf{T}}I = 0$$
$$Z^{\Delta} = \frac{z^{ab}}{3} \left(\mathbb{I} - \frac{1}{3}\mathbf{1}\mathbf{1}^{\mathsf{T}} \right) \qquad \text{phases are}$$

Ja

o Va

Impedance z^{Δ} : Δ **configuration** $z^{\frac{1}{1}}$, $z^{\frac{1}{$

1. Assumption

•
$$z^{ab} = z^{bc} = z^{ca}$$

2. External model

$$V = -Z^{\Delta}I + \gamma 1, \qquad 1^{\mathsf{T}}I = 0$$
$$Z^{\Delta} = \frac{z^{ab}}{3} \left(\mathbb{I} - \frac{1}{3} \mathbf{1}\mathbf{1}^{\mathsf{T}} \right) \qquad \text{phases are of}$$

3. Sequence impedance \tilde{Z}^{Δ} is decoupled in sequence coordinate

$$\tilde{Z}^{\Delta} = \frac{z^{ab}}{3} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

zero-sequence component (first row & col) is zero because $I^a + I^b + I^c = 0$

Recap: external models

 Δ -configured devices (ideal)

Device	Δ configuration		
Voltage source	$V = \frac{1}{3} \Gamma^{T} E^{\Delta} + \gamma 1, \ 1^{T} I = 0$	$s = \frac{1}{3} \operatorname{diag} \left(\Gamma^{T} E^{\Delta} I^{H} \right) + \gamma \overline{I}$	
Current source	$I = -\Gamma^{T} J^{\Delta}$	$s = -\text{diag}\left(VJ^{\Delta H}\Gamma\right)^{2}$	
Power source	$\sigma^{\Delta} = \operatorname{diag}\left(\Gamma V I^{\Delta H}\right)$		
Impedance	$I = -Y^{\Delta}V$	$s = -\text{diag}\left(VV^{H}Y^{\DeltaH}\right)$	

1. $\gamma := \frac{1}{3} \mathbf{1}^{\mathsf{T}} V$ is zero-seq terminal voltage

2. total terminal power $\mathbf{1}^{\mathsf{T}}s$ is independent of γ because $\mathbf{1}^{\mathsf{T}}\overline{I} = 0$

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
 - Conversion rules
 - Devices in *Y* configuration
 - Devices in Δ configuration
 - Y- Δ transformation
- 4. Three-phase line models
- 5. Three-phase transformer models

Δ -Y transformation Ideal voltage source (E^{Δ}, γ)

1. External model

$$V = \frac{1}{3}\Gamma^{\mathsf{T}}E^{\Delta} + \gamma \mathbf{1}, \qquad \mathbf{1}^{\mathsf{T}}I = 0$$

- 2. Y equivalent
 - Ideal voltage source $V = E^{Y} + V^{n} \mathbf{1}, \mathbf{1}^{\mathsf{T}} I = -I^{n}$ with

$$E^Y := \frac{1}{3} \Gamma^T E^{\Delta}, \quad V^n := \gamma, \quad \text{no neutral line so that } I^n = 0$$

• Not necessarily balanced

Δ -Y transformation Ideal voltage source (E^{Δ}, γ)

3. If E^{Δ} is balanced then

$$\Gamma^{\mathsf{T}} E^{\Delta} = (1 - \alpha^2) E^{\Delta} = \sqrt{3} e^{-i\pi/6} E^{\Delta}$$
$$V = \frac{1}{\sqrt{3}} e^{-i\pi/6} E^{\Delta} + \gamma 1, \qquad \mathbf{1}^{\mathsf{T}} I = 0$$

Y equivalent:

$$E^{Y} = \frac{1}{\sqrt{3} e^{i\pi/6}} E^{\Delta}, \qquad V^{n} := \gamma, \qquad \text{no neutral line so that } I^{n} = 0$$

Δ -*Y* transformation Non-ideal voltage source $(E^{\Delta}, z^{\Delta}, \gamma)$

1. External model

$$V = \hat{\Gamma} E^{\Delta} - Z^{\Delta} I + \gamma \mathbf{1}, \qquad \mathbf{1}^{\mathsf{T}} I = 0$$

where $\hat{\Gamma} := \frac{1}{3} \Gamma^{\mathsf{T}} \left(\mathbb{I} - \frac{1}{\zeta} \tilde{z}^{\Delta} \mathbf{1}^{\mathsf{T}} \right), \qquad Z^{\Delta} := \frac{1}{9} \Gamma^{\mathsf{T}} z^{\Delta} \left(\mathbb{I} - \frac{1}{\zeta} \mathbf{1} \tilde{z}^{\Delta \mathsf{T}} \right) \Gamma$

- 2. There is no Y equivalent
 - Y equivalent has no neutral line so that $\mathbf{1}^{\mathsf{T}}I = 0$
 - External model: $V = E^Y z^Y I + V^n 1$
 - Z^{Δ} is generally not diagonal (even if $z^{\Delta} = z^{ab} \mathbb{I}$), but z^{Y} is diagonal

Δ -Y transformation Ideal current source J^{Δ}

1. External model

$$I = -\Gamma^{\mathsf{T}} J^{\Delta}$$

- 2. Y equivalent
 - Ideal current source $I = -J^Y$, $1^T I = -I^n$ with

$$J^Y := \Gamma^T J^{\Delta}$$
, no neutral line $(1^T I = 0)$

3. If J^{Δ} is balanced then

$$J^Y = (1 - \alpha^2) J^\Delta = \frac{\sqrt{3}}{e^{i\pi/6}} J^\Delta$$

Steven Low Caltech 3-phase devices

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
- 4. Three-phase line models
 - 4-wire model
 - 3-wire model
- 5. Three-phase transformer models

4-wire line model

Series impedance matrix \hat{z}_{jk}^{s}

- 1. Single-phase line: $V_j V_k = z_{jk}^s I_{jk}$
- 2. Three-phase line: $\hat{V}_j \hat{V}_k = \hat{z}_{jk}^s I_{jk}$

$$\begin{bmatrix} V_{j}^{a} \\ V_{j}^{b} \\ V_{j}^{c} \\ V_{j}^{c} \\ V_{j}^{n} \end{bmatrix} - \begin{bmatrix} V_{k}^{a} \\ V_{k}^{b} \\ V_{k}^{c} \\ V_{k}^{n} \end{bmatrix} = \begin{bmatrix} \hat{z}_{jk}^{aa} & \hat{z}_{jk}^{ab} & \hat{z}_{jk}^{ac} & \hat{z}_{jk}^{an} \\ \hat{z}_{jk}^{ba} & \hat{z}_{jk}^{bb} & \hat{z}_{jk}^{bc} & \hat{z}_{jk}^{bn} \\ \hat{z}_{jk}^{ca} & \hat{z}_{jk}^{cb} & \hat{z}_{jk}^{cc} & \hat{z}_{jk}^{cn} \\ \hat{z}_{jk}^{na} & \hat{z}_{jk}^{nb} & \hat{z}_{jk}^{nc} & \hat{z}_{jk}^{nn} \end{bmatrix} \begin{bmatrix} I_{jk}^{a} \\ I_{jk}^{b} \\ I_{jk}^{c} \\ I_{jk}^{n} \end{bmatrix}$$
impedance matrix \hat{z}_{jk}^{s}

- 3. Impedance matrix \hat{z}_{ik}^s depends on
 - wire materials, lengths, distances between wires, frequency, earth resistivity

4-wire line model Interpretation

Complete circuit *a* only

 $\begin{bmatrix} V_{j}^{a} \\ V_{j}^{b} \\ V_{j}^{c} \\ V_{j}^{c} \\ V_{j}^{n} \end{bmatrix} - \begin{bmatrix} V_{k}^{a} \\ V_{k}^{b} \\ V_{k}^{c} \\ V_{k}^{n} \end{bmatrix} = \begin{bmatrix} \hat{z}_{jk}^{aa} & \hat{z}_{jk}^{ab} & \hat{z}_{jk}^{ac} & \hat{z}_{jk}^{an} \\ \hat{z}_{jk}^{ba} & \hat{z}_{jk}^{bb} & \hat{z}_{jk}^{bc} & \hat{z}_{jk}^{bn} \\ \hat{z}_{jk}^{ca} & \hat{z}_{jk}^{cb} & \hat{z}_{jk}^{cc} & \hat{z}_{jk}^{cn} \\ \hat{z}_{jk}^{na} & \hat{z}_{jk}^{nb} & \hat{z}_{jk}^{nc} & \hat{z}_{jk}^{nn} \end{bmatrix} \begin{bmatrix} I_{jk}^{a} \\ 0 \\ 0 \\ 0 \end{bmatrix}$ self impedance: mutual impedance: $V_i^b - V_k^b$ $=\frac{v_j-v_k}{I_{ik}^a}$ \hat{z}_{jk}^{aa}

$$\hat{z}_{jk}^{ba} = \frac{f_j}{I_{jk}^a}$$

4-wire line model With shunt admittances

Each line is characterized by

• Series admittance
$$\hat{y}_{jk}^s := \left(\hat{z}_{jk}^s\right)^{-1}$$

• Shunt admittances $\left(\hat{y}_{jk}^m, \hat{y}_{kj}^m\right)$

Terminal voltages $(\hat{V}_{j}, \hat{V}_{k})$ and terminal currents $(\hat{I}_{jk}, \hat{I}_{kj})$ satisfy $\hat{I}_{jk} = \hat{y}_{jk}^{s} (\hat{V}_{j} - \hat{V}_{k}) + \hat{y}_{jk}^{m} \hat{V}_{j}$ $\hat{I}_{kj} = \hat{y}_{jk}^{s} (\hat{V}_{k} - \hat{V}_{j}) + \hat{y}_{kj}^{m} \hat{V}_{k}$

Steven Low Caltech 3-phase line

3-wire line model

Series impedance matrix z_{jk}^s

$$\begin{bmatrix} V_j^a \\ V_j^b \\ V_j^c \\ V_j^c \\ V_j^n \end{bmatrix} - \begin{bmatrix} V_k^a \\ V_k^b \\ V_k^c \\ V_k^n \end{bmatrix} = \begin{bmatrix} \hat{z}_{jk}^{aa} & \hat{z}_{jk}^{ab} & \hat{z}_{jk}^{ac} & \hat{z}_{jk}^{an} \\ \hat{z}_{jk}^{ba} & \hat{z}_{jk}^{bb} & \hat{z}_{jk}^{bc} & \hat{z}_{jk}^{bn} \\ \hat{z}_{jk}^{ca} & \hat{z}_{jk}^{cb} & \hat{z}_{jk}^{cc} & \hat{z}_{jk}^{cn} \\ \hat{z}_{jk}^{ca} & \hat{z}_{jk}^{cb} & \hat{z}_{jk}^{cc} & \hat{z}_{jk}^{cn} \\ \hat{z}_{jk}^{na} & \hat{z}_{jk}^{nb} & \hat{z}_{jk}^{nc} & \hat{z}_{jk}^{nn} \end{bmatrix} \begin{bmatrix} I_{jk}^a \\ I_{jk}^b \\ I_{jk}^c \\ I_{jk}^c \end{bmatrix}$$

1. $I_{jk}^n = 0$: can eliminate last column and row of \hat{z}_{jk}^s

- There is no neutral line, e.g., $\Delta\text{-configured}$ device

2.
$$V_j^n = V_k^n$$
: can eliminate $I_{jk}^n = -\frac{1}{\hat{z}_{jk}^{nn}} \left(\hat{z}_{jk}^{na} I_{jk}^a + \hat{z}_{jk}^{nb} I_{jk}^b + \hat{z}_{jk}^{nc} I_{jk}^c \right)$

• Neutrals at both ends are grounded with $z_j^n = z_k^n = 0$

Steven Low Caltech 3-phase line

3-wire line model

Series impedance matrix z_{jk}^s

Both cases can be modeled by 3×3 impedance matrix

$$\begin{bmatrix} V_j^a \\ V_j^b \\ V_j^c \end{bmatrix} - \begin{bmatrix} V_k^a \\ V_k^b \\ V_k^c \end{bmatrix} = \begin{bmatrix} z_{jk}^{aa} & z_{jk}^{ab} & z_{jk}^{ac} \\ z_{jk}^{ba} & z_{jk}^{bb} & z_{jk}^{bc} \\ z_{jk}^{ca} & z_{jk}^{cb} & z_{jk}^{cc} \end{bmatrix} \begin{bmatrix} I_{jk}^a \\ I_{jk}^b \\ I_{jk}^c \end{bmatrix}$$

Three-phase line: $V_j - V_k = z_{jk}^s I_{jk}$

3-wire line model With shunt admittances

Each line is characterized by

• Series admittance
$$y_{jk}^s := \left(z_{jk}^s\right)^{-1}$$

• Shunt admittances $\left(y_{jk}^m, y_{kj}^m\right)$

Terminal voltages (V_j, V_k) and terminal currents (I_{jk}, I_{kj}) satisfy $I_{jk} = y_{jk}^s (V_j - V_k) + y_{jk}^m V_j$ $I_{kj} = y_{jk}^s (V_k - V_j) + y_{kj}^m V_k$

3-wire line model With shunt admittances

Each line is characterized by

• Series admittance
$$y_{jk}^s := \left(z_{jk}^s\right)^{-1}$$

• Shunt admittances $\left(y_{jk}^m, y_{kj}^m\right)$

Terminal voltages (V_j, V_k) and line power matrices $(S_{jk}, S_{kj}) \in \mathbb{C}^{6 \times 6}$ satisfy $S_{jk} := V_j (I_{jk})^{\mathsf{H}} = V_j (V_j - V_k)^{\mathsf{H}} (y_{jk}^s)^{\mathsf{H}} + V_j V_j^{\mathsf{H}} (y_{jk}^m)^{\mathsf{H}}$ $S_{kj} := V_k (I_{kj})^{\mathsf{H}} = V_k (V_k - V_j)^{\mathsf{H}} (y_{jk}^s)^{\mathsf{H}} + V_k V_k^{\mathsf{H}} (y_{kj}^m)^{\mathsf{H}}$ line flows are diag (S_{jk}) , diag (S_{kj})

Steven Low Caltech 3-phase line

Comparison

IV relation

$$\begin{split} I_{jk}\left(V_{j},V_{k}\right) &= y_{jk}^{s}\left(V_{j}-V_{k}\right) + y_{jk}^{m}V_{j} \\ I_{kj}\left(V_{j},V_{k}\right) &= y_{jk}^{s}\left(V_{k}-V_{j}\right) + y_{kj}^{m}V_{k} \end{split}$$

SV relation

$$S_{jk}\left(V_{j}, V_{k}\right) = V_{j}\left(V_{j} - V_{k}\right)^{\mathsf{H}}\left(y_{jk}^{s}\right)^{\mathsf{H}} + V_{j}V_{j}^{\mathsf{H}}\left(y_{jk}^{m}\right)^{\mathsf{H}}$$
$$S_{kj}\left(V_{j}, V_{k}\right) = V_{k}\left(V_{k} - V_{j}\right)^{\mathsf{H}}\left(y_{jk}^{s}\right)^{\mathsf{H}} + V_{k}V_{k}^{\mathsf{H}}\left(y_{kj}^{m}\right)^{\mathsf{H}}$$

same expressions for 1 or 3 phases !

	1-phase	3-phase (4-wire)	3-phase (3-wire)
admittances $y_{jk}^s, y_{jk}^m, y_{kj}^m$	C	$\mathbb{C}^{4 \times 4}$	$\mathbb{C}^{3\times 3}$
voltages V_j, V_k	С	\mathbb{C}^4	\mathbb{C}^3
currents I_{jk}, I_{kj}	C	\mathbb{C}^4	\mathbb{C}^3
line powers S_{jk}, S_{kj}	С	$\mathbb{C}^{4 \times 4}$	C ^{3×3}

• Line model relates terminal voltages and currents at both ends of the line, regardless of device Y/Δ configuration

3-wire line model Properties

- 1. Properties of admittance matrices $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$
 - They are typically complex symmetric (not Hermitian)
 - y_{jk}^s is typically invertible

Complex symmetry of y_{jk}^s leads to single-phase equivalent of 3-phase networks (see later)

Steven Low Caltech 3-phase line

3-wire line model Properties

- 1. Properties of admittance matrices $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$
 - They are typically complex symmetric (not Hermitian)
 - y_{ik}^s is typically invertible
- 2. Symmetric line, e.g., through transpose and symmetric line geometry

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
- 4. Three-phase line models
- 5. Three-phase transformer models
 - General derivation method
 - *YY*, $\Delta\Delta$, ΔY , $Y\Delta$ configurations
 - UVN-based model

Review: single-phase transformer

- 1. Internal and terminal vars
 - Internal vars: $\left(\hat{V}_{j},\hat{I}_{j}
 ight)$ and $\left(\hat{V}_{k},\hat{I}_{k}
 ight)$
 - Terminal vars: $\left(V_{j}, V_{j}^{n}, I_{j}\right)$ and $\left(V_{k}, V_{k}^{n}, I_{k}\right)$

- (Ideal) transformer gains: $\hat{V}_k = n\hat{V}_j, \quad \hat{I}_k = a\hat{I}_j$
- 3. Conversion between internal & terminal vars on each side

$$V_{j} = y^{-1}\hat{I}_{j} + \hat{V}_{j} + V_{j}^{n}, \qquad I_{j} = \hat{I}_{j}$$
$$V_{k} = \hat{V}_{k} + V_{k}^{n}, \qquad I_{k} = -\hat{I}_{k}$$

Review: single-phase transformer

Three-phase transformers

- 1. Three-phase transformers consists of 3 single-phase transformers in Y/Δ configuration
- 2. External models can be derived following the same procedure

General method Primary side

1. Internal vars (defined across individual windings)

$$\hat{V}_{j}^{Y} := \begin{bmatrix} \hat{V}_{j}^{an} \\ \hat{V}_{j}^{bn} \\ \hat{V}_{j}^{cn} \end{bmatrix}, \quad \hat{I}_{j}^{Y} := \begin{bmatrix} \hat{I}_{j}^{an} \\ \hat{I}_{j}^{bn} \\ \hat{I}_{j}^{cn} \end{bmatrix}, \quad \hat{V}_{j}^{\Delta} := \begin{bmatrix} \hat{V}_{j}^{ab} \\ \hat{V}_{j}^{bc} \\ \hat{V}_{j}^{ca} \end{bmatrix}, \quad \hat{I}_{j}^{\Delta} := \begin{bmatrix} \hat{I}_{j}^{ab} \\ \hat{I}_{j}^{bc} \\ \hat{I}_{j}^{ca} \\ \hat{I}_{j}^{ca} \end{bmatrix}$$

2. Terminal vars (voltages wrt common reference, e.g., ground)

$$V_{j} := \begin{bmatrix} V_{j}^{a} \\ V_{j}^{b} \\ \hat{V}_{j}^{c} \end{bmatrix}, \quad I_{j} := \begin{bmatrix} I_{j}^{a} \\ I_{j}^{b} \\ \hat{I}_{j}^{c} \\ \hat{I}_{j}^{c} \end{bmatrix}, \quad \text{for } Y \text{ configuration: } \left(V_{j}^{n}, I_{j}^{n}\right)$$

3. Leakage admittance matrix $y := \text{diag}(y^a, y^b, y^c)$

General method Primary side

- 4. Conversion between internal and terminal vars
 - Y configuration

$$I_j = y \left(V_j - V_j^n \, 1 - \hat{V}_j^Y \right), \qquad I_j = \hat{I}_j^Y, \qquad I_j^n = - \, 1^{\mathsf{T}} \hat{I}_j^Y$$

- Δ configuration

$$\hat{I}_{j}^{\Delta} = y \left(\Gamma V_{j} - \hat{V}_{j}^{\Delta} \right), \qquad I_{j} = \Gamma^{\mathsf{T}} \hat{I}_{j}^{\Delta}$$

Steven Low Caltech 3-phase transformers

General method Secondary side

1. Internal vars (defined across individual windings)

$$\hat{V}_{k}^{Y} := \begin{bmatrix} \hat{V}_{k}^{an} \\ \hat{V}_{k}^{bn} \\ \hat{V}_{k}^{cn} \end{bmatrix}, \quad \hat{I}_{k}^{Y} := -\begin{bmatrix} \hat{I}_{k}^{an} \\ \hat{I}_{k}^{bn} \\ \hat{I}_{k}^{cn} \end{bmatrix}, \quad \hat{V}_{k}^{\Delta} := \begin{bmatrix} \hat{V}_{k}^{ab} \\ \hat{V}_{k}^{bc} \\ \hat{V}_{k}^{ca} \end{bmatrix}, \quad \hat{I}_{k}^{\Delta} := -\begin{bmatrix} \hat{I}_{k}^{ab} \\ \hat{I}_{k}^{bc} \\ \hat{I}_{k}^{ca} \\ \hat{I}_{k}^{ca} \end{bmatrix}$$

2. Terminal vars (voltages defined wrt common reference, e.g., ground)

$$V_{k} := \begin{bmatrix} V_{k}^{a} \\ V_{k}^{b} \\ \hat{V}_{k}^{c} \end{bmatrix}, \quad I_{k} := \begin{bmatrix} I_{k}^{a} \\ I_{k}^{b} \\ \hat{I}_{k}^{c} \\ \hat{I}_{k}^{c} \end{bmatrix}, \quad \text{for } Y \text{ configuration: } \left(V_{k}^{n}, I_{k}^{n}\right)$$

3. Admittances in secondary side assumed to have been referred to primary

General method Secondary side

- 4. Conversion between internal and terminal vars
 - Y configuration

$$V_k = \hat{V}_k^Y + V_k^n \mathbf{1}, \qquad I_k = -\hat{I}_k^Y, \qquad I_k^n = \mathbf{1}^{\mathsf{T}} \hat{I}_k^Y$$

- Δ configuration

 $\hat{V}_k^{\Delta} = \Gamma V_k, \qquad I_k = -\Gamma^{\mathsf{T}} \hat{I}_k^{\Delta}$

General method Internal model

- 1. Voltage gain (real) $n := \text{diag}(n^a, n^b, n^c) \in \mathbb{R}^{3 \times 3}$, turns ratio $a := n^{-1} \in \mathbb{R}^{3 \times 3}$
 - Voltage gains (or turns ratios) may be different across phases *a*, *b*, *c*
- 2. Transformer gains on internal vars across primary and secondary sides

YY configuration:	$\hat{V}_k^Y =$	$n \hat{V}_j^Y$,	$\hat{I}_k^Y =$	$a \widehat{I}_{j}^{Y}$
$\Delta\Delta$ configuration:	$\hat{V}_k^{\Delta} =$	$n\hat{V}_j^{\Delta},$	$\hat{I}_k^{\Delta} =$	$a\hat{I}_j^\Delta$
ΔY configuration:	$\hat{V}_k^Y =$	$n\hat{V}_j^{\Delta},$	$\hat{I}_k^Y =$	$a\hat{I}_j^\Delta$
$Y\Delta$ configuration:	$\hat{V}^{\Delta}_{k} =$	$n \hat{V}_j^Y$,	$\hat{I}^{\Delta}_{k} =$	$a\hat{I}_j^Y$

Voltage and current gains follow the same gains as those for single-phase transformers, regardless of 3-phase configuration

Steven Low Caltech 3-phase transformers

General method External model: summary

- 1. Couple internal vars $(\hat{V}_{j}^{Y/\Delta}, \hat{I}_{j}^{Y/\Delta}), (\hat{V}_{k}^{Y/\Delta}, \hat{I}_{k}^{Y/\Delta})$ across pri and sec sides through transformer gains, the same way as in single-phase transformers
- 2. Relate terminal vars (V_j, V_j^n, I_j) , (V_k, V_k^n, I_k) to internal vars $(\hat{V}_j^{Y/\Delta}, \hat{I}_j^{Y/\Delta})$, $(\hat{V}_k^{Y/\Delta}, \hat{I}_k^{Y/\Delta})$ on each of primary and secondary sides
- 3. Eliminate internal vars from equations in Steps 1 and 2 (in previous slides) to obtain an external model relating only terminal vars $(V_j, V_j^n, I_j), (V_k, V_k^n, I_k)$

The method is modular with respect to YY, $\Delta\Delta$, ΔY , $Y\Delta$ configurations, as we will see

3-phase transformers Overview

• Let
$$V := \left(V_j, V_k\right) \in \mathbb{C}^6$$
 and $I := \left(I_j, I_k\right) \in \mathbb{C}^6$

• Define 6×6 admittance matrix Y_{YY} and column vector

$$\begin{split} Y_{YY} &:= \begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}, \quad \gamma &:= \left(V_j^n \mathbf{1}, V_k^n \mathbf{1}\right) \\ \text{where } a &:= \operatorname{diag}\left(a^a, a^b, a^c\right), \qquad y &:= \operatorname{diag}\left(y^a, y^b, y^c\right) \end{split}$$

External models: $I = D^{\mathsf{T}} Y_{YY} D(V - \gamma)$ where

$$YY: D := \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{bmatrix}, \ \Delta\Delta: \ D := \begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix}, \ \Delta Y: \ D := \begin{bmatrix} \Gamma & 0 \\ 0 & \mathbb{I} \end{bmatrix}, \ Y\Delta: \ D := \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \Gamma \end{bmatrix}$$

3-phase transformers Overview

External models: $I = D^{\mathsf{T}} Y_{YY} D (V - \gamma)$ where $YY: D := \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{bmatrix}, \ \Delta \Delta : D := \begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix}, \ \Delta Y: D := \begin{bmatrix} \Gamma & 0 \\ 0 & \mathbb{I} \end{bmatrix}, \ Y\Delta : D := \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \Gamma \end{bmatrix}$

- $YY, \Delta \Delta : D^{\mathsf{T}}Y_{YY}D$ is block symmetric and has 3-phase Π circuit representation
- $\Delta Y, Y\Delta$: Not

Next: derive external models for each configuration in detail

YY configuration Internal and terminal vars

1. Internal vars (defined across individual windings)

$$\hat{V}_{j}^{Y} := \begin{bmatrix} \hat{V}_{j}^{an} \\ \hat{V}_{j}^{bn} \\ \hat{V}_{j}^{cn} \end{bmatrix}, \quad \hat{I}_{j}^{Y} := \begin{bmatrix} \hat{I}_{j}^{an} \\ \hat{I}_{j}^{bn} \\ \hat{I}_{j}^{cn} \end{bmatrix}, \quad \hat{V}_{k}^{Y} := \begin{bmatrix} \hat{V}_{k}^{an} \\ \hat{V}_{k}^{bn} \\ \hat{V}_{k}^{bn} \\ \hat{V}_{k}^{cn} \end{bmatrix}, \quad \hat{I}_{k}^{Y} := -\begin{bmatrix} \hat{I}_{k}^{an} \\ \hat{I}_{k}^{bn} \\ \hat{I}_{k}^{cn} \\ \hat{I}_{k}^{cn} \end{bmatrix},$$

2. Terminal vars (voltages wrt common reference, e.g., ground)

$$V_{j} := \begin{bmatrix} V_{j}^{a} \\ V_{j}^{b} \\ \hat{V}_{j}^{c} \end{bmatrix}, \quad I_{j} := \begin{bmatrix} I_{j}^{a} \\ I_{j}^{b} \\ \hat{I}_{j}^{c} \\ \hat{I}_{j}^{c} \end{bmatrix}, \quad V_{k} := \begin{bmatrix} V_{k}^{a} \\ V_{k}^{b} \\ \hat{V}_{k}^{b} \\ \hat{V}_{k}^{c} \end{bmatrix}, \quad I_{k} := \begin{bmatrix} I_{k}^{a} \\ I_{k}^{b} \\ \hat{I}_{k}^{c} \\ \hat{I}_{k}^{c} \end{bmatrix}$$
$$\left(V_{j}^{n}, I_{j}^{n}\right), \quad \left(V_{k}^{n}, I_{k}^{n}\right)$$

Steven Low Caltech 3-phase transformers

YY configuration External model

1. External model

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix} \begin{pmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix} - \begin{bmatrix} V_j^n 1 \\ V_k^n 1 \end{bmatrix} \end{pmatrix}$$
$$I_j^n = -1^{\mathsf{T}}I_j, \quad I_k^n = -1^{\mathsf{T}}I_k$$

2. If both neutrals are grounded with zero impedance and voltages are defined wrt ground

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix}$$

which can be represented as a Π circuit

Comparison With single-phase transformer

External models: exactly the same expression

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \underbrace{\begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}}_{Y_{YY}} \left(\begin{bmatrix} V_j \\ V_k \end{bmatrix} - \begin{bmatrix} V_j^n 1 \\ V_k^n 1 \end{bmatrix} \right)$$

- Single-phase: $Y_{YY} \in \mathbb{C}^{2 \times 2}$
- Three-phase: $Y_{YY} \in \mathbb{C}^{6 \times 6}$

$\Delta\Delta$ configuration Internal and terminal vars

1. Internal vars (defined across individual windings)

$$\hat{V}_{j}^{\Delta} := \begin{bmatrix} \hat{V}_{j}^{ab} \\ \hat{V}_{j}^{bc} \\ \hat{V}_{j}^{ca} \end{bmatrix}, \quad \hat{I}_{j}^{\Delta} := \begin{bmatrix} \hat{I}_{j}^{ab} \\ \hat{I}_{j}^{bc} \\ \hat{I}_{j}^{ca} \end{bmatrix}, \quad \hat{V}_{k}^{\Delta} := \begin{bmatrix} \hat{V}_{k}^{ab} \\ \hat{V}_{k}^{bc} \\ \hat{V}_{k}^{ca} \end{bmatrix}, \quad \hat{I}_{k}^{\Delta} := -\begin{bmatrix} \hat{I}_{k}^{ab} \\ \hat{I}_{k}^{bc} \\ \hat{I}_{k}^{ca} \\ \hat{I}_{k}^{ca} \end{bmatrix}$$

- 2. Terminal vars $(V_j, I_j), (V_k, I_k)$ same as for *YY* config
 - without neutral vars

$\Delta\Delta \text{ configuration} \\ \textbf{External model} \\$

External model

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} \Gamma^{\mathsf{T}} & 0 \\ 0 & \Gamma^{\mathsf{T}} \end{bmatrix} \underbrace{\begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}}_{Y_{YY}} \begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix}$$

- Can be represented as $\boldsymbol{\Pi}$ circuit
- Conversion matrices due to Δ configurations

Comparison With single-phase transformer

Single-phase:
$$Y_{YY} \in \mathbb{C}^{2 \times 2}$$

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \underbrace{\begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}}_{Y_{YY}} \begin{bmatrix} V_j \\ V_k \end{bmatrix}$$

• No neutral lines

Three-phase: $Y_{YY} \in \mathbb{C}^{6 \times 6}$ $\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} \Gamma^{\mathsf{T}} & 0 \\ 0 & \Gamma^{\mathsf{T}} \end{bmatrix} \underbrace{\begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}}_{Y_{YY}} \begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix}$

- Conversion matrices due to Δ configurations

Steven Low Caltech 3-phase transformers

ΔY configuration Internal and terminal vars

1. Internal vars (defined across individual windings)

$$\hat{V}_{j}^{\Delta} := \begin{bmatrix} \hat{V}_{j}^{ab} \\ \hat{V}_{j}^{bc} \\ \hat{V}_{j}^{ca} \end{bmatrix}, \quad \hat{I}_{j}^{\Delta} := \begin{bmatrix} \hat{I}_{j}^{ab} \\ \hat{I}_{j}^{bc} \\ \hat{I}_{j}^{ca} \end{bmatrix}, \quad \hat{V}_{k}^{Y} := \begin{bmatrix} \hat{V}_{k}^{an} \\ \hat{V}_{k}^{bn} \\ \hat{V}_{k}^{bn} \\ \hat{V}_{k}^{cn} \end{bmatrix}, \quad \hat{I}_{k}^{Y} := -\begin{bmatrix} \hat{I}_{k}^{an} \\ \hat{I}_{k}^{bn} \\ \hat{I}_{k}^{cn} \\ \hat{I}_{k}^{cn} \end{bmatrix},$$

2. Terminal vars (V_j, I_j) , (V_k, I_k) same as before

ΔY configuration External model

1. External model

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} \Gamma^{\mathsf{T}} & 0 \\ 0 & \mathbb{I} \end{bmatrix} \underbrace{\begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}}_{Y_{YY}} \begin{bmatrix} \Gamma & 0 \\ 0 & \mathbb{I} \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix} - \begin{bmatrix} -\Gamma^{\mathsf{T}}ay \\ a^2y \end{bmatrix} V_k^{n-1}$$

- 2. Comparison with YY and $\Delta\Delta$ configurations (modular)
 - I_j depends on (V_j, V_k) similarly to $\Delta\Delta$ config
 - I_k depends on (V_j, V_k) similarly to YY config
 - Even though there is no neutral line on primary side, $I_{\!j}$ depends on V^n_k on secondary side
 - If $a = a^{a}\mathbb{I}$, $y = y^{a}\mathbb{I}$, i.e., identical single-phase transformers, then I_{j} becomes independent of V_{k}^{n} (because $\Gamma^{T}\mathbf{1} = 0$)

$Y\Delta$ configuration External model

1. External model

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \Gamma^{\mathsf{T}} \end{bmatrix} \underbrace{\begin{bmatrix} y & -ay \\ -ay & a^2y \end{bmatrix}}_{Y_{YY}} \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \Gamma \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix} - \begin{bmatrix} y \\ -\Gamma^{\mathsf{T}}ay \end{bmatrix} V_j^n \mathbf{1}$$

- 2. Same modular structure as for ΔY configuration
 - I_j depends on (V_j, V_k) similarly to YY config
 - I_k depends on (V_j, V_k) similarly to $\Delta\Delta$ config
 - Even though there is no neutral line on secondary side, I_k depends on V_j^n on primary side
 - If $a = a^{a}\mathbb{I}$, $y = y^{a}\mathbb{I}$, i.e., identical single-phase transformers, then I_{k} becomes independent of V_{j}^{n} (because $\Gamma^{T}\mathbf{1} = 0$)

Other transformers

Same method can be applied to derive external models for other transformers

- Open transformer
- Split-phase transformer
- See textbook

Open $\Delta\Delta$ transformer

Split-phase transformer

Steven Low Caltech 3-phase transformers

Outline

- 1. Overview
- 2. Mathematical properties
- 3. Three-phase device models
- 4. Three-phase line models
- 5. Three-phase transformer models
 - General derivation method
 - *YY*, $\Delta\Delta$, ΔY , *Y* Δ configurations
 - UVN-based model

Example: *YY* configuration

External vars:

$$I := \begin{bmatrix} I_j \\ I_k \end{bmatrix} \in \mathbb{C}^6, \quad V := \begin{bmatrix} V_j \\ V_k \end{bmatrix} \in \mathbb{C}^6$$

Transformer parameters:

$$M := \begin{bmatrix} \operatorname{diag}(1/N_j^{abc}) & 0\\ 0 & \operatorname{diag}(1/N_k^{abc}) \end{bmatrix} \in \mathbb{C}^{6 \times 6}$$

$$y_i := \operatorname{diag}\left(y_i^a, y_i^b, y_i^c\right) \in \mathbb{C}^{3 \times 3}, \ i = 0, j, k$$

Unitary voltage network per phase

Example: $\Delta \Delta$ configuration

External vars:

$$I := \begin{bmatrix} I_j \\ I_k \end{bmatrix} \in \mathbb{C}^6, \quad V := \begin{bmatrix} V_j \\ V_k \end{bmatrix} \in \mathbb{C}^6$$

Transformer parameters:

$$M := \begin{bmatrix} \operatorname{diag}(1/N_j^{abc}) & 0\\ 0 & \operatorname{diag}(1/N_k^{abc}) \end{bmatrix} \in \mathbb{C}^{6 \times 6}$$

$$y_i := \operatorname{diag}\left(y_i^a, y_i^b, y_i^c\right) \in \mathbb{C}^{3 \times 3}, \ i = 0, j, k$$

Unitary voltage network per phase

Unitary voltage network per phase

$$\hat{J}_{j} = y_{k}(\hat{U}_{j} - \hat{U}_{0}), \qquad \hat{J}_{k} = y_{k}(\hat{U}_{k} - \hat{U}_{0})$$
$$y_{0}\hat{U}_{0} = \hat{J}_{0} + \hat{J}_{j} + \hat{J}_{k}$$

Admittance matrix in $\mathbb{C}^{9\times9}$

$$\begin{bmatrix} \hat{J}_0 \\ \hat{J}_j \\ \hat{J}_k \end{bmatrix} = \begin{bmatrix} \sum_i y_i & -y_j & -y_k \\ -y_j & y_j & 0 \\ -y_k & 0 & y_k \end{bmatrix} \begin{bmatrix} \hat{U}_0 \\ \hat{U}_j \\ \hat{U}_k \end{bmatrix}$$

Since $\hat{J}_0=0,$ can eliminate \hat{U}_0 to obtain Kron reduced admittance matrix

$$\hat{J} = Y_{\text{uvn}} \hat{U}$$

where

$$Y_{\mathsf{uvn}} := \left(\mathbb{I}_2 \otimes \left(\sum_i y_i \right)^{-1} \right) \begin{bmatrix} y_j (y_0 + y_k) & -y_j y_k \\ -y_j y_k & y_k (y_0 + y_j) \end{bmatrix}$$

External model: primary circuit

 Δ config:

$$\hat{U}_j = M_j \Gamma V_j, \qquad \hat{J}_j = M_j^{-1} I_j^{\Delta}, \qquad I_j = \Gamma^{\mathsf{T}} I_j^{\Delta}$$

Three-phase transformers External model: conversion rule

Primary circuit

Y configuration:	$\hat{U}_j = M_j \left(V_j - V_j^n 1 \right),$	$\hat{J}_j = M_j^{-1} I_j$	
Δ configuration:	$\hat{U}_j = M_j \Gamma V_j,$	$\hat{J}_j = M_j^{-1} I_j^{\Delta},$	$I_j = \Gamma^{T} I_j^{\Delta}$
Secondary circuit			
Y configuration:	$\hat{U}_k = M_k \left(V_k - V_k^n 1 \right),$	$\hat{J}_k = M_k^{-1} I_k$	
Δ configuration:	$\hat{U}_k = M_k \Gamma V_k,$	$\hat{J}_k = M_k^{-1} I_k^{\Delta},$	$I_k = \Gamma^{T} I_k^{\Delta}$

Steven Low EE/CS/EST 135 Caltech

Three-phase transformers External model: admittance matrix

Eliminate internal vars (\hat{U}, \hat{J}) :

 $I = D^{\mathsf{T}}(MY_{\mathsf{uvn}}M)D(V-\gamma)$

where

 $\gamma := \left(V_j^n \mathbf{1}, V_k^n \mathbf{1}\right)$: neutral voltages in *YY* configuration

 $D \in \mathbb{C}^{6 \times 6}$: configuration dependent

For both single-phase & three-phase transformers:

- This model is equivalent to T equivalent circuit
- Different from simplified circuit (approximation)
- If shunt adm = 0, then all 3 models are equivalent

YY config:
$$D := \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{bmatrix}$$
 $\Delta \Delta$ config: $D := \begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix}$ ΔY config: $D := \begin{bmatrix} \Gamma & 0 \\ 0 & \mathbb{I} \end{bmatrix}$ $Y\Delta$ config: $D := \begin{bmatrix} \Pi & 0 \\ 0 & \Gamma \end{bmatrix}$