Power Systems Analysis

Chapter 9 Unbalanced network: BIM

Steven Low EE/CS/EST 135 Caltech

Outline

- 1. Network models
- 2. Three-phase analysis
- 3. Balanced network
- 4. Symmetric network

Outline

- 1. Network models: BIM
 - IV relation (I = YV)
 - *sV* relation (power flow equations)
 - Overall model (device + nodal balance)
- 2. Three-phase analysis
- 3. Balanced network
- 4. Symmetric network

Overview

Review: single-phase BIM Network model

- 1. Network $G := (\overline{N}, E)$
 - $\overline{N} := \{0\} \cup N := \{0\} \cup \{1, \dots, N\}$: buses/nodes
 - $E \subseteq \overline{N} \times \overline{N}$: lines/links/edges
- 2. Each line (j, k) is parameterized by $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right) \in \mathbb{C}^{3}$
 - y_{jk}^s : series admittance
 - y_{jk}^m , y_{kj}^m : shunt admittances, generally different

Review: single-phase BIM

Admittance matrix $Y \in \mathbb{C}^{(N+1)\times(N+1)}$

$$I_{j} = \sum_{k:j \sim k} I_{jk} = \left(\sum_{k:j \sim k} y_{jk}^{s} + y_{jj}^{m}\right) V_{j} - \sum_{k:j \sim k} y_{jk}^{s} V_{k}$$

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

Assumption: 3-phase BIM

- 1. All lines are characterized by a 3-wire model
 - Only to simplify exposition
 - Valid if neutral lines are absent (e.g. connecting Δ devices) or grounded with $z_i^n = 0$ (Kron reduction)
 - Otherwise, 4-wire (including neutral line) or 5-wire (including earth return) models should be used.
 - They are conceptually similar to 3-wire model; see examples later

- 2. All transformers are modeled as 3-phase lines, characterized by a 3-wire model
 - We will henceforth talk about just lines in network models (even though they may be models for transformers)

Bus injection model Network model

- 1. A network of N + 1 3-phase devices connected by 3-phase lines is also modeled by a graph G
- 2. Each line in *G* is characterized by $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ where
 - $y_{jk}^s \in \mathbb{C}^{3 \times 3} : 3 \times 3$ series phase admittance matrix
 - $y_{jk}^m, y_{kj}^m \in \mathbb{C}^3 : 3 \times 3$ shunt phase admittance matrices
- 3. Each bus (node) has 3 variables $(I_j, s_j, V_j) \in \mathbb{C}^9$
 - Only bus injections (I_j, s_j) are involved
 - Branch flow models also involve branch variables $(I_{jk}, I_{kj}, S_{jk}, S_{kj})$

Assumption: 3-phase Π circuit representation

Series and shunt admittances **Current balance** • 1-phase : scalars • 3-phase : 3×3 (3-wire) or 4×4 (4-wire) matrices 1. 3-phase sending-end currents: $I_{jk} = y_{jk}^{s} \left(V_{j} - V_{k} \right) + y_{jk}^{m} V_{j}, \qquad I_{kj} = y_{jk}^{s} \left(V_{k} - V_{j} \right) + y_{kj}^{m} V_{k}$

1

2 Nodal current balance:

$$I_{j} = \sum_{k:j\sim k} I_{jk} = \sum_{k:j\sim k} y_{jk}^{s} (V_{j} - V_{k}) + \left(\sum_{k:j\sim k} y_{jk}^{m}\right) V_{j}$$
$$= \left(\left(\sum_{k:j\sim k} y_{jk}^{s}\right) + y_{jj}^{m}\right) V_{j} - \sum_{k:j\sim k} y_{jk}^{s} V_{k} \qquad y_{jj}^{m} := \sum_{k:j\sim k} y_{jk}^{m}$$

Bus injection model Bus admittance matrix *Y*

3. In terms of $3(N+1) \times 3(N+1)$ admittance matrix *Y*

I = YV 3(N+1) vector

where

$$Y_{jj} := \sum_{k:j \sim k} y_{jk}^{s} + y_{jj}^{m} \qquad 3 \times 3 \text{ matrices}$$
$$Y_{jk} := -y_{jk}^{s} \qquad 3 \times 3 \text{ matrices}$$

Y is admittance matrix of single-phase equivalent

Bus injection model

Bus admittance matrix *Y*

(a) 3-bus example.

(b) Admittance matrix Y.

Bus injection model Bus admittance matrix *Y*

The $3(N + 1) \times 3(N + 1)$ admittance matrix *Y* leads to an equivalent circuit which we call the single-phase equivalent of a 3-phase network

Bus injection model Single-phase equivalent

Given: 3-phase network *G* with 3(N + 1) buses, described by $3(N + 1) \times 3(N + 1)$ admittance matrix *Y*

Single-phase equivalent circuit $G^{3\phi}$ with 3(N+1) nodes

- Each node in $G^{3\phi}$ is identified by bus-phase pair (j,ϕ)
- Nodes (j, ϕ) and (k, ϕ') in $G^{3\phi}$ are connected if $Y_{j\phi,k\phi'} \neq 0$
- Each line (j, k) in G forms a 6-clique in the 1-phase equivalent $G^{3\phi}$

Single-phase analysis methods can be applied to single-phase equivalent $G^{3\phi}$ using Y

A clique in $G^{3\phi}$ corresponding to line (j, k) in G

Outline

1. Network models: BIM

- IV relation (I = YV)
- *sV* relation (power flow equations)
- Overall model (device + nodal balance)
- 2. Three-phase analysis
- 3. Balanced network
- 4. Symmetric network

Review: single-phase BIM Complex line power

Using
$$S_{jk} := V_j I_{jk}^H$$
:
 $S_{jk} = \left(y_{jk}^s \right)^H \left(|V_j|^2 - V_j V_k^H \right) + \left(y_{jk}^m \right)^H |V_j|^2$
 $S_{kj} = \left(y_{jk}^s \right)^H \left(|V_k|^2 - V_k V_j^H \right) + \left(y_{kj}^m \right)^H |V_k|^2$

Line loss

$$S_{jk} + S_{kj} = \left(y_{jk}^{s} \right)^{H} \left| V_{j} - V_{k} \right|^{2} + \left(y_{jk}^{m} \right)^{H} \left| V_{j} \right|^{2} + \left(y_{kj}^{m} \right)^{H} \left| V_{k} \right|^{2}$$

series impedance

shunt impedances

Review: single-phase BIM Power flow equation

Nodal power balance
$$s_j = \sum_{k:j\sim k} S_{jk}$$
:

$$s_j = \sum_{k:j\sim k} \left(|V_j|^2 - V_j V_k^H \right) \left(y_{jk}^s \right)^H + |V_j|^2 \left(y_{jj}^m \right)^H$$

In terms of admittance matrix Y

$$s_j = \sum_{k=1}^{N+1} Y_{jk}^H V_j V_k^H$$

N + 1 complex equations in 2(N + 1) complex variables $(s_j, V_j, j \in \overline{N})$

Bus injection model Single-phase equivalent

Bus injection model for 3-phase network:

$$s_{j}^{\phi} = \sum_{\substack{k \in \overline{N} \\ \phi' \in \{a, b, c\}}} Y_{j\phi, k\phi'}^{H} V_{j}^{\phi} \left(V_{k}^{\phi'}\right)^{H}$$

where $Y_{j\phi,k\phi'}$ are $(j\phi,k\phi')$ th entry of the $3(N+1) \times 3(N+1)$ admittance matrix Y

This generalizes single-phase BIM: $s_j = \sum_{k=1}^{N+1} Y_{jk}^H V_j V_k^H$

Bus injection model Single-phase equivalent

Nodal power balance for 3-phase network

$$s_j = \sum_{k:j\sim k} \operatorname{diag}\left(V_j(V_j - V_k)^H \left(y_{jk}^s\right)^H + V_j V_j^H \left(y_{jk}^m\right)^H\right) \qquad s_j = \operatorname{diag}\left(V_j I_j^H\right)$$

generalizes single-phase:

$$s_j = \sum_{k:j\sim k} \left(|V_j|^2 - V_j V_k^H \right) \left(y_{jk}^s \right)^H + |V_j|^2 \left(y_{jj}^m \right)^H$$

Overall model Device + network

- 1. Device model for each 3-phase device
 - Internal model on $\left(V_{j}^{Y/\Delta}, I_{j}^{Y/\Delta}, s_{j}^{Y/\Delta}\right)$ + conversion rules
 - External model on $\left(V_j, I_j, s_j\right)$
 - Either can be used
 - Power source models are nonlinear; other devices are linear
- 2. Network model relates terminal vars (V, I, s)
 - Nodal current balance (linear): I = YV

Nodal power balance (nonlinear): $s_j = \sum_{k:j \sim k} \text{diag} \left(V_j (V_j - V_k)^H y_{jk}^{sH} + V_j V_j^H y_{jk}^{mH} \right)$

• Either can be used

Overall model Device + network

Overall model is linear if and only if voltage/current sources and impedances are present

- Power sources lead to nonlinear analysis
- ... even though network equation I = YV is linear, device models for power sources are nonlinear

Outline

- 1. Network models: BIM
- 2. Three-phase analysis
 - Device specification
 - Examples
 - General solution approach
- 3. Balanced network
- 4. Symmetric network

Three-phase analysis & optimization

At each bus j, there are 20 complex quantities for each 3-phase device

- External vars : $(V_j, I_j, s_j), \gamma_j$
- Internal vars : $\left(V_{j}^{Y\Delta}, I_{j}^{Y/\Delta}, s_{j}^{Y/\Delta}\right), \beta_{j}$

Analysis

Given: 3-phase devices & their specifications

- Voltage/current/power sources, impedances
- ... in Y/Δ configuration

Calculate remaining variables

Solution:

- Write down device+network model
- Solve numerically

Optimization

Given: 3-phase devices & their specifications

- Voltage/current/power sources, impedances
- ... in Y/Δ configuration

Minimize cost(controllable vars & state)

Solution:

- Write down device+network model
- Write down additional constraints
- Solve numerically

Device specification Ideal devices

- 1. Voltage source (E^{Y}, γ_{j}) or $(E^{\Delta}, \gamma_{j}, \beta_{j})$

 - *Y* configuration: $\gamma_j := V_j^n$ neutral voltage Δ configuration: $\gamma_j := \frac{1}{3} \mathbf{1}^T V_j$ zero-seq terminal voltage, $\beta_j := \frac{1}{3} \mathbf{1}^T I^{\Delta}$ zero-seq internal current
- 2. Current source (J^Y, γ_j) or J^{Δ}
- 3. Power source (σ^{Y}, γ_{j}) or $(\sigma^{\Delta}, \gamma_{j} \text{ or } \beta_{j})$
 - Δ configuration: spec generally depends on details of the problem •

4. Impedance
$$\left(z^{Y}, \gamma_{j}\right)$$
 or z^{Δ}

Device specification Summary

	Buses j	Specification
{ buses with voltage sources in Y , Δ configurations }	N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
	N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
{ buses with current sources in Y , Δ configurations }	N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
	N_c^{Δ}	$I_j^\Delta := J_j^\Delta$
{ buses with impedances in Y , Δ configurations }	N_i^Y	$z_j^Y, \; \gamma_j$
	N_i^{Δ}	z_j^{Δ}
{ buses with power sources in Y , Δ configurations }	N_p^Y	σ_j^Y,γ_j
	N_p^{Δ}	$\sigma_j^{\Delta}, \gamma_j$

Device specification

Neutral voltage γ_i for *Y*-configured devices

- 1. Neutral voltage $\gamma_j := V_j^n$ for every *Y*-configured device
 - γ_j may be specified directly (e.g. $\gamma_j := 1$ pu)
 - γ_i may be determined from other information (more likely)
- 2. Indirect specification of γ_i
 - Assumption C8.1 (neutral is grounded and voltage ref is ground): $\gamma_j = V_j^n = -z_j^n \left(\mathbf{1}^T I_j \right)$
 - Assumption C8.1 with $z_j^n = 0$: $\gamma_j = V_j^n = 0$ • Neutral not grounded but $1^T V_j^Y = 0$: $\gamma_j = \frac{1}{3} 1^T V_j$
 - Neutral not grounded but i $v_j = 0$: $v_j = \frac{1}{3}$ i v_j
 - Such indirect specification provides additional equations to solve for γ_j
- 3. Neutral voltage γ_j and zero-seq voltage
 - For *Y*-configured device: $V_j = V_j^Y + V_j^n \mathbf{1}$

•
$$\gamma_j := V_j^n = \frac{1}{3} \mathbf{1}^T V_j$$
 if and only if $\mathbf{1}^T V_j^Y = 0$

Steven Low Caltech Three-phase analysis

Device specification

Zero-sequence voltage γ_i for Δ -configured devices

- 1. For Δ -configured voltage sources, zero-seq voltages $\gamma_j := \frac{1}{3} \mathbf{1}^T V_j$ need to be specified
 - γ_j may be specified by one of its terminal voltages, say, V_i^a
- 2. For Δ -configured current sources and impedances, γ_j need not be specified

• $\gamma_j := \frac{1}{3} \mathbf{1}^T V_j$ can be determined once its terminal voltages V_j is determined from network equations

Three-phase analysis problem

Given:

- device spec in blue
- line model

Determine:

- Some or all of internal variables
- Some or all of terminal variables

Buses j	Specification	Unknowns
N_{v}^{Y}	$V_j^Y := E_j^Y, \gamma_j$	$\left(I_{j}^{Y},s_{j}^{Y} ight),\left(V_{j},I_{j},s_{j} ight)$
$N_{ u}^{\Delta}$	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$	$\left(I_{j}^{\Delta},s_{j}^{\Delta} ight),\left(V_{j},I_{j},s_{j} ight)$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$	$\left(V_{j}^{Y}, s_{j}^{\Delta}\right), \left(V_{j}, I_{j}, s_{j}\right)$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$	$\left(V_{j}^{\Delta}, s_{j}^{\Delta}, \boldsymbol{\beta}_{j}\right), \left(V_{j}, I_{j}, s_{j}, \boldsymbol{\gamma}_{j}\right)$
N_i^Y	$z_j^Y, \ \gamma_j$	$\left(V_{j}^{Y}, I_{j}^{Y}, s_{j}^{Y}\right), \left(V_{j}, I_{j}, s_{j}\right)$
N_i^{Δ}	z_j^{Δ}	$\left(V_{j}^{\Delta}, I_{j}^{\Delta}, s_{j}^{\Delta}, \boldsymbol{\beta}_{j}\right), \left(V_{j}, I_{j}, s_{j}, \boldsymbol{\gamma}_{j}\right)$
N_p^Y	σ_j^Y, γ_j	$\left(V_{j}^{Y}, I_{j}^{Y}\right), \left(V_{j}, I_{j}, s_{j}\right)$
N_p^{Δ}	$\sigma^{\Delta}_j, \gamma_j$	$\left(V_{j}^{\Delta}, I_{j}^{\Delta}, \beta_{j}\right), \left(V_{j}, I_{j}, s_{j}\right)$

Example

Δ -configuration

Given:

- Voltage source $\left(E_{j}^{\Delta}, \gamma_{j}, \beta_{j}\right)$ Impedance z_{k}^{Δ}
- Line parameters $\left(y_{jk}^{s}, y_{jk}^{m} = y_{kj}^{m} = 0\right)$

Show:

 $I_k^{\Delta} = Z_{\mathsf{Th}}^{-1} E_i^{\Delta}, \qquad V_k^{\Delta} = z_k^{\Delta} Z_{\mathsf{Th}}^{-1} E_i^{\Delta}$ voltage divider rule

where $Z_{\text{Th}} := \Gamma z_{ik}^{s} \Gamma^{\text{T}} + z_{k}^{\Delta}$ is the Thevenin equivalent of line in series with load

Example

Δ -configuration

Given:

- Voltage source $\left(E_{j}^{\Delta}, \gamma_{j}, \beta_{j}\right)$ Impedance z_{k}^{Δ} Line parameters $\left(y_{jk}^{s}, y_{jk}^{m} = y_{kj}^{m} = 0\right)$

Solution:

• Current balance:
$$V_k = V_j - z_{jk}^s I_j$$

• Conversion rule :
$$V_k^{\Delta} = \Gamma V_k$$
, $E_j^{\Delta} = \Gamma V_j$, $I_j = -I_k = \Gamma^{\mathsf{T}} I_k^{\Delta}$
 $\implies V_k^{\Delta} = E_j^{\Delta} - \Gamma Z_{jk}^s \Gamma^{\mathsf{T}} I_k^{\Delta}$

• Internal model:
$$V_k^{\Delta} = z_k^{\Delta} I_k^{\Delta}$$

 $\implies \left(\Gamma z_{jk}^s \Gamma^{\mathsf{T}} + z_k^{\Delta} \right) I_k^{\Delta} = E_j^{\Delta}$

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, \beta_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}

Solution procedure

- 1. Write down current balance equation that relates terminal vars (V, I)
- 2. Write down internal models and conversion rules (or external device models)
- 3. Solve numerically for desired vars

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, \boldsymbol{\beta}_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \; \gamma_j$
N_i^{Δ}	z_j^{Δ}

Details: overall system of equations I. Network equation: $\begin{bmatrix}
I_v \\
I_c \\
I_i
\end{bmatrix} = \begin{bmatrix}
Y_{vv}Y_{vc}Y_{vi} \\
Y_{cv}Y_{cc}Y_{ci} \\
Y_{iv}Y_{ic}Y_{ii}
\end{bmatrix}
\begin{bmatrix}
V_v \\
V_c \\
V_i
\end{bmatrix}$ 2. Voltage sources: $V_v := \Gamma_v^{\dagger}E_v + \gamma_v \otimes 1$ 3. Current sources: $I_c := -\Gamma_c^{\mathsf{T}}J_c$

4. Impedances: $V_i^{\text{int}} = Z_i I_i^{\text{int}}$ $I_i = -\Gamma_i^{\mathsf{T}} I_i^{\text{int}}$ $\Gamma_i V_i = V_i^{\text{int}} + \gamma_i \otimes 1$

Steven Low Caltech Three-phase analysis

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	Z_j^{Δ}

Solution procedure

- 1. Write down current balance equation that relates terminal vars (V, I)
- 2. Write down internal models and conversion rules (or external device models)
- 3. Solve numerically for desired vars

Remark (nonlinearity)

- 1. Can always use I = YV in Step 1 (instead of nonlinear power flow equations)
- 2. If there is no power source, device models are linear \Rightarrow overall system is linear
- 3. Otherwise, power sources models are nonlinear \Rightarrow overall system is nonlinear

1

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_v^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
N_c^Y	$I_j^Y:=J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}

Solution procedure

- 1. Write down current balance equation that relates terminal vars (V, I)
- 2. Write down internal models and conversion rules (or external device models)
- 3. Solve numerically for desired vars

Reduced system

$$\begin{array}{ll} & \text{Solve for } \left(V_c, I_i^{\text{int}} \right) \\ & \begin{bmatrix} \mathbb{I}_c \otimes \mathbb{I} Z_{ci} \Gamma_i^{\mathsf{T}} \\ & 0 \Gamma_i Z_{ii} \Gamma_i^{\mathsf{T}} + Z_i \end{bmatrix} \begin{bmatrix} V_c \\ I_i^{\text{int}} \end{bmatrix} = \begin{bmatrix} Z_{cc} \\ & \Gamma_i Z_{ic} \end{bmatrix} I_c - \begin{bmatrix} A_{cv} \\ & A_{iv} \end{bmatrix} V_v - \begin{bmatrix} 0 \\ & \gamma_i \otimes 1 \end{bmatrix}$$

2. Derive all other variables analytically in terms of $\left(V_{c}, I_{i}^{\text{int}}\right)$

Steven Low Caltech Three-phase analysis

Buses j	Specification
N_{v}^{Y}	$V_j^Y := E_j^Y, \gamma_j$
$N_{ u}^{\Delta}$	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, \beta_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}
N_p^Y	σ_j^Y, γ_j
N_p^{Δ}	$\sigma_j^{\Delta}, \gamma_j$

With power sources

- 1. Write down current balance equation that relates terminal vars (V, I)
- 2. Write down internal models and conversion rules (or external device models)
- 3. Solve numerically for desired vars

Buses j	Specification
N_{v}^{Y}	$V_j^Y := E_j^Y, \gamma_j$
$N_{ u}^{\Delta}$	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, \beta_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}
N_p^Y	σ_j^Y, γ_j
N_p^{Δ}	$\sigma_j^{\Delta},\gamma_j$

Details: overall system of equations 1. Network equation: $\begin{vmatrix} I_v \\ I_c \\ I_i \end{vmatrix} = \begin{vmatrix} Y_{vv}Y_{vc}Y_{vi} \\ Y_{cv}Y_{cc}Y_{ci} \\ Y_{iv}Y_{ic}Y_{ii} \end{vmatrix} \begin{vmatrix} V_v \\ V_c \\ V_i \end{vmatrix}$ Y 2. Voltage sources: $V_v := \Gamma_v^{\dagger} E_v + \gamma_v \otimes 1$ 3. Current sources: $I_c := -\Gamma_c^{\mathsf{T}} J_c$ 4. Impedances: $V_i^{\text{int}} = Z_i I_i^{\text{int}}$ $I_i = -\Gamma_i^{\mathsf{T}} I_i^{\mathsf{int}}$ $\Gamma_i V_i = V_i^{\text{int}} + \gamma_i \otimes 1$

Steven Low Caltech Three-phase analysis

same equations as before

General solution approach

Buses j	Specification
$N_{ u}^{Y}$	$V_j^Y := E_j^Y, \gamma_j$
$N_{ u}^{\Delta}$	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, \boldsymbol{\beta}_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^\Delta := J_j^\Delta$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}
N_p^Y	σ_j^Y, γ_j
N_p^{Δ}	$\sigma_j^{\Delta}, \gamma_j$

Details: overall system of equations

5. Power sources: internal model

$$\sigma_{p} = \operatorname{diag}\left(V_{p}^{\operatorname{int}}I_{p}^{\operatorname{intH}}\right)$$

Conversion rules:

$$I_{p} = -\Gamma_{p} I_{p}^{\text{int}}$$
$$\Gamma_{p} V_{p} = V_{p}^{\text{int}} + \gamma_{p} \otimes 1$$

additional (nonlinear) equations for power sources

General solution approach

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}

Solution procedure

- 1. Write down current balance equation that relates terminal vars (V, I)
- 2. Write down internal models and conversion rules (or external device models)
- 3. Solve numerically for desired vars

Remark (nonlinearity)

- 1. Can always use I = YV in Step 1 (instead of nonlinear power flow equations)
- 2. If there is no power source, device models are linear \Rightarrow overall system is linear
- 3. Otherwise, power sources models are nonlinear \Rightarrow overall system is nonlinear

General solution approach

1

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_v^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
N_c^Y	$I_j^Y:=J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}

Solution procedure

- 1. Write down current balance equation that relates terminal vars (V, I)
- 2. Write down internal models and conversion rules (or external device models)
- 3. Solve numerically for desired vars

Reduced system

$$\begin{array}{l} \text{. Solve for } \left(V_{c}, I_{i}^{\mathsf{int}}\right) \\ \begin{bmatrix} \mathbb{I}_{c} \otimes \mathbb{I}Z_{ci}\Gamma_{i}^{\mathsf{T}} \\ 0\Gamma_{i}Z_{ii}\Gamma_{i}^{\mathsf{T}} + Z_{i} \end{bmatrix} \begin{bmatrix} V_{c} \\ I_{i}^{\mathsf{int}} \end{bmatrix} = \begin{bmatrix} Z_{cc} \\ \Gamma_{i}Z_{ic} \end{bmatrix} I_{c} - \begin{bmatrix} A_{cv} \\ A_{iv} \end{bmatrix} V_{v} - \begin{bmatrix} 0 \\ \gamma_{i} \otimes 1 \end{bmatrix} \end{array}$$

2. Derive all other variables analytically in terms of $\left(V_{c}, I_{i}^{\text{int}}\right)$

Steven Low Caltech Three-phase analysis

Outline

- 1. Network models: BIM
- 2. Three-phase analysis
- 3. Balanced network
 - Three-phase analysis
 - Per-phase network
 - Per-phase analysis
- 4. Symmetric network

Three-phase analysis

At each bus j, there are 20 complex quantities for each 3-phase device

- External vars : $(V_j, I_j, s_j), \gamma_j$
- Internal vars : $(V_j^{Y\Delta}, I_j^{Y/\Delta}, s_j^{Y/\Delta}), \beta_j$

Analysis

Given: 3-phase devices & their specifications

- Voltage/current/power sources, impedances
- ... in Y/Δ configuration

Calculate remaining variables

Solution:

- Write down device+network model
- Solve numerically

Special case:

- Devices are balanced
- Lines are balanced & decoupled

Balanced devices

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, eta_j,$
N_c^Y	$I_j^Y:=J_j^Y,\gamma_j$
N_c^{Δ}	$I_j^\Delta := J_j^\Delta$
N_i^Y	$z_j^Y, \; \gamma_j$
N_i^Δ	z_j^{Δ}

Device specification

1. Devices are balanced positive-seq sets:

$V_j^{Y/\Delta} := \lambda_j \alpha_+,$	$j \in N_v$
$I_j^{Y/\Delta} := \mu_j \alpha_+,$	$j \in N_c$
$z_j^{Y/\Delta} := \zeta_j \mathbb{I},$	$j \in N_i$
where $\lambda_j, \mu_j, \zeta_j \in \mathbb{C}$	

2. External model of voltage sources:

$$V_{\nu} = \hat{\lambda_{\nu}} \otimes \alpha_{+} + \gamma_{\nu} \otimes 1$$

3. External model of current sources:

$$I_c = -\hat{\mu}_c \otimes \alpha_+$$

Balanced devices

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^\Delta := J_j^\Delta$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^{Δ}	z_j^{Δ}

Device specification

4. Internal impedance model and conversion rules

$$V_i^{\text{int}} = \left(\zeta_i \otimes \mathbb{I}\right) I_i^{\text{int}}$$
$$I_i = -\Gamma_i^{\mathsf{T}} I_i^{\text{int}}$$
$$\Gamma_i V_i = V_i^{\text{int}} + \gamma_i^0 \otimes 1$$

Balanced lines

1. All lines are balanced, i.e.

$$y_{jk}^{s} = \eta_{jk}^{s}\mathbb{I}, \qquad y_{jk}^{m} = \eta_{jk}^{m}\mathbb{I}, \qquad y_{kj}^{m} = \eta_{kj}^{m}\mathbb{I}, \qquad \eta_{jk}^{s}, \eta_{jk}^{m}, \eta_{kj}^{m} \in \mathbb{C}$$

2. Define per-phase admittance matrix $Y^{1\phi} \in \mathbb{C}^{(N+1)\times(N+1)}$

$$Y_{jk}^{1\phi} := \begin{cases} -\eta_{jk}^{s}, & (j,k) \in E, \ (j \neq k) \\ \sum_{k:j \sim k} \left(\eta_{jk}^{s} + \eta_{jk}^{m} \right), & j = k \\ 0 & \text{otherwise} \end{cases}$$

- 3. $3(N+1) \times 3(N+1)$ admittance matrix *Y* becomes $Y = Y^{1\phi} \otimes \mathbb{I}$
- 4. Current balance equation I = YV becomes

$$I = \left(Y^{1\phi} \otimes \mathbb{I} \right) Y$$

Three-phase analysis problem

Buses j	Specification
N_v^Y	$V_j^Y := E_j^Y, \gamma_j$
N_{v}^{Δ}	$V_j^{\Delta} := E_j^{\Delta}, \gamma_j, oldsymbol{eta}_j,$
N_c^Y	$I_j^Y := J_j^Y, \gamma_j$
N_c^{Δ}	$I_j^{\Delta} := J_j^{\Delta}$
N_i^Y	$z_j^Y, \ \gamma_j$
N_i^Δ	z_j^{Δ}

Given

- device spec in blue
- line model

Determine

• some or all remaining vars

Balanced voltages & currents

Theorem

- 1. Any solution *x* consists of generalized balanced vectors in positive sequence, i.e., $x_j = a_j \alpha_+ + b_j 1$ for some $a_j, b_j \in \mathbb{C}$
- 2. All $x_j = a_j \alpha_+$ are balanced if
 - For all voltage sources: $\gamma_v = 0$

• For all *Y* configured impedances:
$$\gamma_i^Y := \left(V_j^n, j \in N_i^Y\right) = 0$$

Balanced voltages & currents Proof sketch

- 1. Use reduced system to show (V_c, I_i^{int}) consists of generalized balanced vectors
- 2. Derive all other vars in terms of (V_c, I_i^{int}) and show that they consist of generalized balanced vectors

Balanced voltages & currents Proof sketch: step 1

Lemma

Reduced system becomes

$$\begin{bmatrix}
\mathbb{I}_{c} \otimes \mathbb{I} & \left(Z_{ci}^{1\phi} \otimes \mathbb{I}\right) \Gamma_{i}^{\mathsf{T}} \\
0 & \Gamma_{i} \left(Z_{ii}^{1\phi} \otimes \mathbb{I}\right) \Gamma_{i}^{\mathsf{T}} + \left(\zeta_{i} \otimes \mathbb{I}\right)
\end{bmatrix} \begin{bmatrix}
V_{c} \\
I_{i}^{\text{int}}
\end{bmatrix} = a' \otimes a_{+} + b' \otimes 1$$

$$\underbrace{M}$$

Balanced voltages & currents Proof sketch: step 1

Lemma

Reduced system becomes

$$\underbrace{\begin{bmatrix} \mathbb{I}_{c} \otimes \mathbb{I} & \left(Z_{ci}^{1\phi} \otimes \mathbb{I}\right) \Gamma_{i}^{\mathsf{T}} \\ 0 & \Gamma_{i} \left(Z_{ii}^{1\phi} \otimes \mathbb{I}\right) \Gamma_{i}^{\mathsf{T}} + \left(\zeta_{i} \otimes \mathbb{I}\right) \end{bmatrix}}_{M} \begin{bmatrix} V_{c} \\ I_{i}^{\mathsf{int}} \end{bmatrix} = a' \otimes a_{+} + b' \otimes 1$$

Lemma

Each 3 × 3 block of
$$M^{-1}$$
 is of the form $[M^{-1}]_{jk} := v_{jk} \mathbb{I} + w_{jk} W_{jk}$
where $v_{jk}, w_{jk} \in \mathbb{C}$ and $W_{jk} \in \mathbb{C}^{3 \times 3}$ is one of $\mathbb{I}, \Gamma, \Gamma^{\mathsf{T}}, \Gamma\Gamma^{\mathsf{T}}, \Gamma^{\mathsf{T}}\Gamma$

Balanced voltages & currents Proof sketch: step 1

j-th 3 × 3 block of (V_c, I_k^{Δ}) is of the form

$$\sum_{k} \left[M^{-1} \right]_{jk} \left(a'_{k} \alpha_{+} + b'_{k} \mathbf{1} \right) = \sum_{k} a'_{k} \left(v_{jk} \mathbb{I} + w_{jk} W_{jk} \right) \alpha_{+} + \sum_{k} b'_{k} \left(v_{jk} \mathbb{I} + w_{jk} W_{jk} \right) \mathbf{1}$$
$$= a_{j} \alpha_{+} + b_{j} \mathbf{1}$$

because

$$W_{jk}\alpha_{+} = \begin{cases} \alpha_{+} & \text{if } W_{jk} = \mathbb{I} \\ (1 - \alpha)\alpha_{+} & \text{if } W_{jk} = \Gamma \\ (1 - \alpha^{2})\alpha_{+} & \text{if } W_{jk} = \Gamma^{T} \\ 3\alpha_{+} & \text{if } W_{jk} = \Gamma\Gamma^{T} \text{ or } \Gamma^{T}\Gamma \end{cases} \qquad \qquad W_{jk}1 = \begin{cases} 1 & \text{if } W_{jk} = \mathbb{I} \\ 0 & \text{else} \end{cases}$$

Decoupling & per-phase analysis Positive-seq per-phase network

Reduced system implies (α_+ coordinate):

$$\begin{bmatrix} \hat{i}_{v} \\ -\hat{\mu}_{c} \\ \hat{i}_{i} \end{bmatrix} = \begin{bmatrix} Y_{vv}^{1\phi}Y_{vc}^{1\phi}Y_{vi}^{1\phi} \\ Y_{cv}^{1\phi}Y_{cc}^{1\phi}Y_{ci}^{1\phi} \\ Y_{iv}^{1\phi}Y_{ic}^{1\phi}Y_{ii}^{1\phi} \end{bmatrix} \begin{bmatrix} \hat{\lambda}_{v} \\ \hat{\nu}_{c} \\ \hat{\nu}_{i} \end{bmatrix}$$

Defines per-phase network

- Admittance matrix: $Y^{1\phi}$
- Voltage sources: $\hat{\lambda_{\nu}}$
- Current sources: $-\hat{\mu}_c$

• Impedances
$$\hat{\eta}_i$$
: $\hat{i}_i = -\hat{\eta}_i \hat{v}_i$

4 sets of equations in 4 sets of vars $(\hat{v}_c, \hat{v}_i, \hat{i}_v, \hat{i}_i)$

Decoupling & per-phase analysis Zero-seq per-phase network

Reduced system implies (1 coordinate):

$$\begin{bmatrix} \hat{\beta}_{v} \\ 0 \\ \hat{\beta}_{i} \end{bmatrix} = \begin{bmatrix} Y_{vv}^{1\phi} Y_{vc}^{1\phi} Y_{vi}^{1\phi} \\ Y_{cv}^{1\phi} Y_{cc}^{1\phi} Y_{ci}^{1\phi} \\ Y_{iv}^{1\phi} Y_{ic}^{1\phi} Y_{ii}^{1\phi} \end{bmatrix} \begin{bmatrix} \gamma_{v} \\ \hat{\gamma}_{c} \\ \hat{\gamma}_{i} \end{bmatrix}$$

Defines per-phase network

- Admittance matrix: $Y^{1\phi}$
- Voltage sources: γ_{v}
- Current sources: 0 (no device at buses j where current sources are connected)
- Impedances $\hat{\eta}_i$: $\hat{\beta}_i = -\hat{\eta}_i \left(\hat{\gamma}_i \gamma_i \right)$

4 sets of equations in 4 sets of vars $(\hat{\gamma}_c, \hat{\gamma}_i, \hat{\beta}_v, \hat{\beta}_i)$

Decoupling & per-phase analysis Zero-seq per-phase network

Set $\hat{\gamma}_{-\nu} := 0$ and $\hat{\beta}_{-c} := 0$ if

- For all voltage sources: $\gamma_v = 0$
- For all *Y* configured impedances: $\gamma_i^Y := \left(V_j^n, j \in N_i^Y\right) = 0$

Decoupling & per-phase analysis Per-phase analysis

1. Solve positive-seq per-phase network for $(\hat{v}_c, \hat{v}_i, \hat{i}_v, \hat{i}_i)$

2. Solve zero-seq per-phase network for $(\hat{\gamma}_c, \hat{\gamma}_i, \hat{\beta}_v, \hat{\beta}_i)$

3. Derive terminal voltages V_{-v}

$$V_{j} =: v_{j}^{\text{int}} \alpha_{+} + (\gamma_{j}^{\text{int}} + \gamma_{j}) 1, \qquad j \in N_{c}^{Y} \cup N_{i}^{Y}$$
$$V_{j} =: v_{j} \alpha_{+} + \gamma_{j} 1, \qquad j \in N_{c}^{\Delta} \cup N_{i}^{\Delta}$$

4. Determine terminal currents I_{-c}

$$I_{j} := i_{j}^{\text{int}} \alpha_{+} + \beta_{j}^{\text{int}} 1, \qquad j \in N_{v}^{Y} \cup N_{i}^{Y}$$
$$I_{j} := i_{j} \alpha_{+}, \qquad \qquad j \in N_{v}^{\Delta} \cup N_{i}^{\Delta}$$

Outline

- 1. Network models: BIM
- 2. Three-phase analysis
- 3. Balanced network
- 4. Symmetric network
 - Sequence impedances and sources
 - Sequence line
 - Three-phase analysis

Symmetric components

- 1. In an unbalanced network, phases are coupled and per-phase analysis is generally not applicable
- 2. If the network has certain symmetry, similarity transformation may lead to sequence networks that are decoupled
 - e.g., impedances are balanced, lines are transposed (even if lines are coupled and generations and loads are unbalanced)
- 3. Single-phase analysis can then be applied to each of the decoupled sequence networks. This is most useful for fault analysis
- 4. Without any symmetry, symmetric components may offer no advantage.

Recall: similarity transformation Sequence variables

1. Complex symmetric Fortescue matrix *F* and its inverse $F^{-1} = \overline{F}$:

$$F = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \alpha_{+} & \alpha_{-} \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1^{\mathsf{T}} \\ \alpha_{+}^{\mathsf{T}} \\ \alpha_{-}^{\mathsf{T}} \end{bmatrix} := \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix}$$
$$\overline{F} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \alpha_{-} & \alpha_{+} \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1^{\mathsf{T}} \\ \alpha_{-}^{\mathsf{T}} \\ \alpha_{+}^{\mathsf{T}} \end{bmatrix} := \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha^{2} & \alpha \\ 1 & \alpha & \alpha^{2} \end{bmatrix}$$

Recall: similarity transformation Sequence variables

- 2. F defines a similarity transformation:
 - $x = F\tilde{x}, \qquad \tilde{x} := F^{-1}x = \overline{F}x$
- 3. \tilde{x} is called the sequence variable of x. Its components are

$$\tilde{x}_{0} := \frac{1}{\sqrt{3}} \mathbf{1}^{\mathsf{H}} x, \qquad \tilde{x}_{+} := \frac{1}{\sqrt{3}} \alpha_{+}^{\mathsf{H}} x, \qquad \tilde{x}_{-} := \frac{1}{\sqrt{3}} \alpha_{-}^{\mathsf{H}} x$$
zero-sequence positive-sequence negative-sequence

They are also called symmetric components.

4. Sequence voltage and current:

$$\tilde{V} = \overline{F}V, \qquad \tilde{I} = \overline{F}I$$

Sequence networks

General method to derive sequence networks: for each (linear) device or line/transformer

- 1. Write its external model I = AV that relates terminal voltage and current (V, I)
 - e.g., impedances are balanced, lines are transposed (even if lines are coupled and generations and loads are unbalanced)
- 2. Substitute $V = F\tilde{V}$ and $I = F\tilde{I}$ to obtain the external model $\tilde{I} = (FAF)\tilde{V}$ relating the sequence vars (\tilde{V}, \tilde{I})
- 3. With symmetry, $\tilde{F}AF$ turns out to be diagonal and hence can be interpreted as 3 separate devices on 3 decoupled networks called sequence networks
- 4. Each sequence network can be analyzed separately like a single-phase network

Y configuration (z^Y, z^n)

1. External model (from Ch 8) is, under assumption C8.1:

$$V = -Z^{Y}I \quad \text{with} \quad Z^{Y} := z^{Y} + z^{n} \mathbf{1}\mathbf{1}^{\mathsf{T}} = \begin{bmatrix} z^{an} + z^{n} & z^{n} & z^{n} \\ z^{n} & z^{an} + z^{n} & z^{n} \\ z^{n} & z^{n} & z^{cn} + z^{n} \end{bmatrix}$$

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to get sequence impedance matrix \tilde{Z}^{Y} :

$$\tilde{V} = -\underbrace{\overline{F}Z^{Y}F}_{\tilde{Z}^{Y}}\tilde{I} = -\widetilde{Z}^{Y}\tilde{I}$$

Y configuration (z^Y, z^n)

1. If impedance is balanced, i.e., $z^{an} = z^{bn} = z^{cn}$, then

$$\tilde{Z}^{Y} = \begin{bmatrix} z^{an} + 3z^{n} & 0 & 0\\ 0 & z^{an} & 0\\ 0 & 0 & z^{an} \end{bmatrix}$$

2. External model $\tilde{V} = -\tilde{Z}^Y \tilde{I}$ in sequence coordinate becomes decoupled

$$\begin{bmatrix} \tilde{V}_{0} \\ \tilde{V}_{+} \\ \tilde{V}_{-} \end{bmatrix} = - \begin{bmatrix} z^{an} + 3z^{n} & 0 & 0 \\ 0 & z^{an} & 0 \\ 0 & 0 & z^{an} \end{bmatrix} \begin{bmatrix} \tilde{I}_{0} \\ \tilde{I}_{+} \\ \tilde{I}_{-} \end{bmatrix}$$

diagonal = decoupled !

Y configuration (z^Y, z^n)

Interpretation

1. The external model $\tilde{V} = -\tilde{Z}^Y \tilde{I}$ defines sequence impedances on 3 separate (decoupled) sequence networks:

zero-seq impedance: $\tilde{V}_0 = -(z^{an} + 3z^n) \tilde{I}_0$ positive-seq impedance: $\tilde{V}_+ = -z^{an}\tilde{I}_+$ negative-seq impedance: $\tilde{V}_- = -z^{an}\tilde{I}_-$

2. Each of these decoupled sequence networks can be analyzed like a single-phase network

Sequence impedance Δ configuration (z^{Δ}, z^n)

1. External model (from Ch 8) is:

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to convert to sequence coordinate:

$$\tilde{V} = -\left(\overline{F}Z^{\Delta}F\right)\tilde{I} + \gamma \overline{F}\mathbf{1}, \qquad \mathbf{1}^{\mathsf{T}}F\tilde{I} = 0$$

$$\underbrace{\tilde{Z}^{\Delta}}_{\tilde{Z}^{\Delta}}$$

 Δ configuration (z^{Δ}, z^n)

1. If impedance is balanced, i.e., $z^{ab} = z^{bc} = z^{ca}$, then

$$Z^{\Delta} = \frac{z^{ab}}{3} \left(\mathbb{I} - \frac{1}{3} \mathbf{1} \mathbf{1}^{\mathsf{T}} \right), \qquad \tilde{Z}^{\Delta} = \frac{z^{ab}}{3} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. External model in sequence coordinate becomes decoupled

$$\begin{bmatrix} 0\\ \tilde{V}_{+}\\ \tilde{V}_{-} \end{bmatrix} = -\frac{z^{ab}}{3} \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{I}_{0}\\ \tilde{I}_{+}\\ \tilde{I}_{-} \end{bmatrix}, \qquad \tilde{I}_{0} = \frac{1}{\sqrt{3}} \left(I_{a} + I_{b} + I_{c} \right) = 0$$

 $\tilde{I}_0 = 0$ is KCL because there is no neutral wire

 Δ configuration $\left(z^{\Delta}, z^{n}\right)$

Interpretation

1. The relation $\tilde{V} = -\tilde{Z}^{\Delta}\tilde{I}$ defines sequence impedances on 2 decoupled sequence networks: zero-seq impedance: null $(\tilde{I}_0 = 0, \tilde{Z}_0 = \infty, \text{ open circuit})$ positive-seq impedance: $\tilde{V}_{\perp} = -\frac{z^{ab}}{2}\tilde{I}_{\perp}$

negative-seq impedance:

$$\tilde{V}_{+} = -\frac{z^{ab}}{3}\tilde{I}_{+}$$
$$\tilde{V}_{-} = -\frac{z^{ab}}{3}\tilde{I}_{-}$$

2. $\tilde{I}_0 = 0$ means zero-seq impedance is open-circuited (no device) in the zero-seq network

3. Positive and negative-seq impedances are $z^{ab}/3$, as in a balanced network

Y configuration (E^Y, z^Y, z^n)

1. External model (from Ch 8) is, under assumption C8.1:

$$V = E^{Y} - Z^{Y}I \quad \text{with} \quad Z^{Y} := z^{Y} + z^{n} \mathbf{1}\mathbf{1}^{\mathsf{T}} = \begin{bmatrix} z^{an} + z^{n} & z^{n} & z^{n} \\ z^{n} & z^{an} + z^{n} & z^{n} \\ z^{n} & z^{n} & z^{cn} + z^{n} \end{bmatrix}$$

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to convert to sequence coordinate

$$\tilde{V} = \underbrace{\overline{F}E^{Y}}_{\tilde{E}^{Y}} - \underbrace{\overline{F}Z^{Y}F}_{\tilde{Z}^{Y}}\tilde{I} =: \tilde{E}^{Y} - \tilde{Z}^{Y}\tilde{I}$$

Y configuration (E^Y, z^Y, z^n)

1. If impedance is balanced, i.e., $z^{an} = z^{bn} = z^{cn}$ (internal voltage E^Y may be unbalanced), then external model in sequence coordinate becomes decoupled:

$$\begin{bmatrix} \tilde{V}_0 \\ \tilde{V}_+ \\ \tilde{V}_- \end{bmatrix} = \begin{bmatrix} \tilde{E}_0^Y \\ \tilde{E}_+^Y \\ \tilde{E}_-^Y \end{bmatrix} - \begin{bmatrix} z^{an} + 3z^n & 0 & 0 \\ 0 & z^{an} & 0 \\ 0 & 0 & z^{an} \end{bmatrix} \begin{bmatrix} \tilde{I}_0 \\ \tilde{I}_+ \\ \tilde{I}_- \end{bmatrix}$$

2. Interpretation: voltage sources on 3 decoupled sequence networks:

zero-seq voltage source: $\tilde{V}_0 = \tilde{E}_0^Y - (z^{an} + 3z^n) \tilde{I}_0$ positive-seq voltage source: $\tilde{V}_+ = \tilde{E}_+^Y - z^{an} \tilde{I}_+$ negative-seq voltage source: $\tilde{V}_- = \tilde{E}_-^Y - z^{an} \tilde{I}_-$

Y configuration (E^Y, z^Y, z^n)

1. If $z^{an} = z^{bn} = z^{cn}$ and $E^Y = E^{an}\alpha_+$ is balanced:

$$\begin{bmatrix} \tilde{V}_0 \\ \tilde{V}_+ \\ \tilde{V}_- \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{3} E^{an} \\ 0 \end{bmatrix} - \begin{bmatrix} z^{an} + 3z^n & 0 & 0 \\ 0 & z^{an} & 0 \\ 0 & 0 & z^{an} \end{bmatrix} \begin{bmatrix} \tilde{I}_0 \\ \tilde{I}_+ \\ \tilde{I}_- \end{bmatrix}$$

2. Interpretation: voltage source and impedances on decoupled sequence networks:

positive - reg nh

gers-seq.

negative - seg uli

 Δ configuration (E^{Δ}, z^{Δ})

1. External model (from Ch 8) is:

$$V = \hat{\Gamma} E^{\Delta} - Z^{\Delta} I + \gamma \mathbf{1}, \quad \mathbf{1}^{\mathsf{T}} I = 0 \quad \text{with}$$
$$\hat{\Gamma} := \frac{1}{3} \Gamma^{\mathsf{T}} \left(\mathbb{I} - \frac{1}{\zeta} \tilde{z}^{\Delta} \mathbf{1}^{\mathsf{T}} \right), \quad Z^{\Delta} := \frac{1}{9} \Gamma^{\mathsf{T}} z^{\Delta} \left(\mathbb{I} - \frac{1}{\zeta} \mathbf{1} \tilde{z}^{\Delta \mathsf{T}} \right) \Gamma$$

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to convert to sequence domain

$$\tilde{V} = \underbrace{\overline{F}\hat{\Gamma}E^{\Delta}}_{\tilde{E}^{\Delta}} - \underbrace{\overline{F}Z^{\Delta}F}_{\tilde{Z}^{\Delta}}\tilde{I} + \gamma\overline{F}\mathbf{1} =: \tilde{E}^{\Delta} - \tilde{Z}^{\Delta}\tilde{I} + \tilde{V}_{0}e_{1}, \qquad \sqrt{3}\tilde{I}_{0} = 0$$

 $ilde{I}_0=0$ is KCL because there is no neutral wire

 Δ configuration $\left(E^{\Delta}, z^{\Delta} \right)$

1. If impedance is balanced, i.e., $z^{ab} = z^{bc} = z^{ca}$ (internal voltage E^{Y} may be unbalanced), then external model in sequence domain becomes decoupled:

$$\begin{bmatrix} 0\\ \tilde{V}_{+}\\ \tilde{V}_{-} \end{bmatrix} = \begin{bmatrix} 0\\ (1-\alpha)^{-1}\tilde{E}_{+}^{\Delta}\\ (1-\alpha^{2})^{-1}\tilde{E}_{-}^{\Delta} \end{bmatrix} - \frac{z^{ab}}{3} \begin{bmatrix} 0\\ \tilde{I}_{+}\\ \tilde{I}_{-} \end{bmatrix}, \qquad \tilde{I}_{0} = 0$$

2. Interpretation: voltage sources on positive and negative-sequence networks:

zero-seq voltage source:	null $(ilde{I}_0 ~=~ 0, ~ ilde{Z}_0 ~=~ \infty,~ ext{open ci}$	rcuit)
positive-seq voltage source:	$\tilde{V}_{+} = \frac{E_{+}^{\Delta}}{1-\alpha} - \frac{z^{ab}}{3}\tilde{I}_{+}$	voltage source
negative-seq voltage source:	$\tilde{V}_{-} = \frac{E_{-}^{\Delta}}{1 - \alpha^2} - \frac{z^{ab}}{3}\tilde{I}_{-}$	voltage source

Steven Low Caltech Symmetric network

 Δ configuration (E^{Δ}, z^{Δ})

1. If
$$z^{ab} = z^{bc} = z^{ca}$$
 and $E^{\Delta} = E^{ab}\alpha_+$ is balanced:

$$\begin{bmatrix} 0\\ \tilde{V}_{+}\\ \tilde{V}_{-} \end{bmatrix} = \begin{bmatrix} 0\\ e^{-i\pi/6}E^{ab}\\ 0 \end{bmatrix} - \frac{z^{ab}}{3}\begin{bmatrix} 0\\ \tilde{I}_{+}\\ \tilde{I}_{-} \end{bmatrix}$$

2. Interpretation: voltage source in positive-seq network and impedance on negative-seq network:

zero-seq voltage source:null
$$(\tilde{I}_0 = 0, \tilde{Z}_0 = \infty, \text{ open circuit})$$
positive-seq voltage source: $\tilde{V}_+ = e^{-i\pi/6}E^{ab} - \frac{z^{ab}}{3}\tilde{I}_+$ voltage sourcenegative-seq impedance: $\tilde{V}_- = -\frac{z^{ab}}{3}\tilde{I}_-$ impedance

Steven Low Caltech Symmetric network

Sequence current source

Y configuration (J^Y, y^Y, z^n)

1. External model (from Ch 8) is

$$I = -J^Y - y^Y (V - V^n \mathbf{1})$$

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to convert to sequence coordinate

$$\tilde{I} = -\underbrace{\overline{F}J^{Y}}_{\tilde{J}^{Y}} - \underbrace{\overline{F}y^{Y}F}_{\tilde{Y}^{Y}} \tilde{V} + V^{n}\overline{F}y^{Y} \mathbf{1}$$

Sequence current source

Y configuration (J^Y, y^Y, z^n)

Steven Low

1. If admittance $y^Y := y^{an} \mathbb{I}$ is balanced, then under assumption C8.1, external model in sequence coordinate becomes decoupled (though unbalanced):

$$\begin{bmatrix} \left(1+3 y^{an} z^{n}\right) \tilde{I}_{0} \\ \tilde{I}_{+} \\ \tilde{I}_{-} \end{bmatrix} = -\begin{bmatrix} \tilde{J}_{0}^{Y} \\ \tilde{J}_{+}^{Y} \\ \tilde{J}_{-}^{Y} \end{bmatrix} - y^{an} \begin{bmatrix} \tilde{V}_{0} \\ \tilde{V}_{+} \\ \tilde{V}_{-} \end{bmatrix}$$

2. Interpretation: current sources on 3 decoupled sequence networks:

zero-seq current source: $\tilde{I}_0 = -\frac{\tilde{J}_0^Y}{1+3y^{an}z^n} - \frac{y^{an}}{1+3y^{an}z^n}\tilde{V}_0$ positive-seq current source: $\tilde{I}_+ = -\tilde{J}_+^Y - y^{an}\tilde{V}_+$ negative-seq current source: $\tilde{I}_- = -\tilde{J}_-^Y - y^{an}\tilde{V}_-$ Caltech Symmetric network

Sequence current source *Y* configuration (J^Y, y^Y, z^n)

1. If $y^Y := y^{an}$ and $J^Y := J^{an} \alpha_+$ is balanced then the sequence networks become

zero-seq admittance:

 $\tilde{I}_0 = -\frac{y^{an}}{1+3 v^{an} z^n} \tilde{V}_0$

admittance

negative-seq admittance: $\tilde{I}_{-} = -v^{an}\tilde{V}$

positive-seq current source: $\tilde{I}_{+} = -\sqrt{3}J^{an} - y^{an}\tilde{V}_{+}$

current source admittance

Sequence current source Δ configuration (J^{Δ}, y^{Δ})

1. External model (from Ch 8) is

$$I = - \left(\Gamma^{\mathsf{T}} J^{\Delta} + Y^{\Delta} V \right)$$

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to convert to sequence coordinate

$$\tilde{I} = -\left(\frac{\overline{F}\Gamma^{\mathsf{T}}J^{\Delta}}{\tilde{J}^{\Delta}} + \frac{\overline{F}Y^{\Delta}F}{\tilde{Y}^{\Delta}}\tilde{V}\right) =: -\left(\tilde{J}^{\Delta} + \tilde{Y}^{\Delta}\tilde{V}\right)$$

Sequence current source Δ configuration (J^{Δ}, y^{Δ})

1. If admittance $y^{\Delta} := y^{ab} \mathbb{I}$ is balanced, then external model in sequence coordinate becomes decoupled (though unbalanced):

$$\begin{bmatrix} \tilde{I}_0 \\ \tilde{I}_+ \\ \tilde{I}_- \end{bmatrix} = - \begin{bmatrix} \tilde{J}_0^{\Delta} \\ \tilde{J}_+^{\Delta} \\ \tilde{J}_-^{\Delta} \end{bmatrix} - 3y^{ab} \begin{bmatrix} 0 \\ \tilde{V}_+ \\ \tilde{V}_- \end{bmatrix}$$

2. Interpretation: current sources on 3 decoupled sequence networks:

zero-seq current source:	$ ilde{I}_0 ~=~ - ilde{J}_0^\Delta$	ideal current source
positive-seq current source:	$\tilde{I}_{+} = -\tilde{J}_{+}^{\Delta} - 3y^{ab}\tilde{V}_{+}$	non-ideal current source
negative-seq current source:	$\tilde{I}_{-} = -\tilde{J}_{-}^{\Delta} - 3y^{ab}\tilde{V}_{-}$	non-ideal current source

Sequence current source Δ configuration (J^{Δ}, y^{Δ})

1. If $y^{\Delta} := y^{ab}\mathbb{I}$ and $J^{\Delta} := J^{ab}\alpha_+$ is balanced then the sequence networks become

zero-seq current source: positive-seq current source: negative-seq admittance:

null
$$(\tilde{I}_0 = 0)$$
 open circuit (no device)
 $\tilde{I}_+ = -3e^{-i\pi/6}J^{ab} - 3y^{ab}\tilde{V}_+$ current source
 $\tilde{I}_- = -3y^{ab}\tilde{V}_-$ admittance $3y^{ab}$

Sequence line

1. Line model with zero shunt admittances

$$V_j - V_k = z_{jk}^s I_{jk}$$

2. Substituting $V = F\tilde{V}$, $I = F\tilde{I}$ to convert to sequence coordinate

$$\tilde{V}_{j} - \tilde{V}_{k} = \left(\overline{F}z_{jk}^{s}F\right)\tilde{I}_{jk} =: \tilde{z}_{jk}^{s}\tilde{I}_{jk}$$
$$\underbrace{\tilde{z}_{jk}^{s}}_{\tilde{z}_{jk}^{s}}$$

Sequence line

1. If phase impedance matrix z_{jk}^{s} is symmetric:

$$z_{jk}^{s} = \begin{bmatrix} z^{1} & z^{2} & z^{2} \\ z^{2} & z^{1} & z^{2} \\ z^{2} & z^{2} & z^{1} \end{bmatrix}$$

then the sequence impedance matrix \tilde{z}_{jk}^s is diagonal (decoupled):

$$\tilde{z}_{jk}^{s} = \begin{bmatrix} z^{1} + 2z^{2} & 0 & 0 \\ 0 & z^{1} - z^{2} & 0 \\ 0 & 0 & z^{1} - z^{2} \end{bmatrix}$$

Sequence line

2. Interpretation: the 3-phase line becomes 3 separate (decoupled) sequence networks

zero-seq impedance:

negative-seq impedance:

 $\tilde{V}_{i,0} - \tilde{V}_{k,0} = (z^1 + 2z^2) \tilde{I}_{ik,0}$ positive-seq impedance: $\tilde{V}_{i,+} - \tilde{V}_{k,+} = (z^1 - z^2) \tilde{I}_{ik,+}$ $\tilde{V}_{j,-} - \tilde{V}_{k,-} = (z^1 - z^2) \tilde{I}_{ik,-}$

Outline

- 1. Network models: BIM
- 2. Three-phase analysis
- 3. Balanced network
- 4. Symmetric network
 - Sequence impedances and sources
 - Sequence line
 - Three-phase analysis

Symmetric network

A 3-phase network is symmetric if

- 1. All impedances are symmetric, $z_j^{Y/\Delta} = z_j^{an/ab}$
- 2. All voltage sources have symmetric series impedances $z_i^{Y/\Delta} = z_i^{an/ab}$
- 3. All current sources have symmetric shunt admittances $y_j^{Y/\Delta} = y_j^{an/ab} \mathbb{I}$
- 4. All lines (j, k) have symmetric series impedances $z_{jk}^{s} = \begin{bmatrix} z_{jk}^{1} & z_{jk}^{2} & z_{jk}^{2} \\ z_{jk}^{2} & z_{jk}^{1} & z_{jk}^{2} \\ z_{jk}^{2} & z_{jk}^{2} & z_{jk}^{1} \end{bmatrix}$ and zero shunt admittances

It can be shown that its sequence networks are decoupled (see textbook)

Example

Symmetric network

Calculate

- 1. Terminal load voltage $V_2 := (V_2^a, V_2^b, V_2^c)$
- 2. Internal current $I_2^Y := (I_2^{an}, I_2^{bn}, I_2^{cn})$ and total complex power $1^T s_2^Y$ delivered to *Y*-configured load
- 3. Internal current $I_2^{\Delta} := (I_2^{ab}, I_2^{bc}, I_2^{ca})$ and total complex power $\mathbf{1}^T s_2^{\Delta}$ delivered to Δ -configured load

Example Sequence networks

Solution strategy

- 1. Construct sequence networks (decoupled)
- 2. Determine terminal sequence voltage \tilde{V}_2 and terminal sequence currents $\tilde{I}_2^1, \tilde{I}_2^2$
- 3. Terminal phase variables are then

$$V_2 = F\tilde{V}_2, \ I_2^1 = F\tilde{I}_2^1, \ I_2^2 = F\tilde{I}_2^2$$

4. Determine internal currents (I_2^Y, I_2^{Δ}) and power (s_2^Y, s_2^{Δ}) using conversion rules

Example Solution sketch

- 1. Determine terminal sequence voltage \tilde{V}_2 by analyzing each sequence network separately
- 2. Terminal sequence load currents are then, in terms of \tilde{V}_2

$$\tilde{I}_{2,0}^{1} = -\frac{\tilde{V}_{2,0}}{z_{2}^{an} + 3z_{2}^{n}}, \qquad \tilde{I}_{2,+}^{1} = -\frac{\tilde{V}_{2,+}}{z_{2}^{an}}, \qquad \tilde{I}_{2,-}^{1} = -\frac{\tilde{V}_{2,-}}{z_{2}^{an}}, \qquad \tilde{I}_{2,0}^{2} = 0, \qquad \tilde{I}_{2,+}^{2} = -\frac{3\tilde{V}_{2,+}}{z_{2}^{ab}}, \qquad \tilde{I}_{2,-}^{2} = -\frac{3\tilde{V}_{2,-}}{z_{2}^{ab}}, \qquad \tilde{I}_{2,-}^{2} = -\frac{3\tilde{V}_{2,-}}{z_{2}^{ab}}$$

3. Terminal phase variables are then

$$V_2 = F\tilde{V}_2, \ I_2^1 = F\tilde{I}_2^1, \ I_2^2 = F\tilde{I}_2^2$$

4. Internal voltages are (under assumption C8.1) and currents are

$$V_2^Y = V_2 - V_2^n \mathbf{1} = V_2 + z_2^n (\mathbf{1}\mathbf{1}^T) I_2^1, \qquad V_2^\Delta = \Gamma V_2$$

$$I_2^Y = -I_2^1, \qquad I_2^\Delta = -\frac{1}{3} \Gamma I_2^2 + \beta_2 \mathbf{1}$$

5. Hence load powers are (total power $1^{\mathsf{T}}s_2^{\Delta}$ is independent of β_2

$$\begin{split} s_2^Y &:= \operatorname{diag}\left(V_2^Y I_2^{Y\mathsf{H}}\right) &= -\operatorname{diag}\left(V_2 I_2^{1\mathsf{H}} + z_2^n \left(\mathsf{1}\mathsf{1}^\mathsf{T}\right) I_2^1 I_2^{1\mathsf{H}}\right) \\ s_2^\Delta &:= \operatorname{diag}\left(V_2^\Delta I_2^{\Delta\mathsf{H}}\right) &= -\operatorname{diag}\left(\Gamma V_2 I_2^{2\mathsf{H}} \Gamma^\dagger\right) + \overline{\beta}_2 \Gamma V_2 \end{split}$$