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big picture



Global trends

1 Proliferation renewables
◼ Driven by sustainability

◼ Enabled by policy and investment



Sustainability challenge

US CO2 emission

 Elect generation: 40%

 Transportation: 20%

Electricity generation 1971-2007

1973: 

6,100 TWh

2007: 

19,800 

TWh

Sources: International Energy Agency, 2009

DoE, Smart Grid Intro, 2008

In 2009, 1.5B people

have no electricity



Source: Renewable Energy

Global Status Report, 2010

Source: M. Jacobson, 2011

Wind power over land (exc. Antartica) 

70 – 170 TW

Solar power over land

340 TW

Worldwide

energy demand:

16 TW

electricity demand:

2.2 TW

wind capacity (2009):

159 GW

grid-tied PV capacity (2009):

21 GW



High Levels of Wind and Solar PV Will 

Present an Operating Challenge!

Source: Rosa Yang, EPRI

Uncertainty



Global trends

1 Proliferation of renewables
◼ Driven by sustainability

◼ Enabled by policy and investment

2 Migration to distributed arch
◼ 2-3x generation efficiency

◼ Relief demand on grid capacity



Large active network of DER

DER: PVs, wind turbines, batteries, EVs, DR loads  



DER: PVs, wind turbines, EVs, batteries, DR loads  

Millions of active 
endpoints introducing 

rapid large 
random fluctuations 

in supply and demand

Large active network of DER



Implications

Current control paradigm works well today
◼ Low uncertainty, few active assets to control

◼ Centralized, open-loop, human-in-loop, worst-case 
preventive

◼ Schedule supplies to match loads

Future needs
◼ Fast computation to cope with rapid, random, 

large fluctuations in supply, demand, voltage, freq

◼ Simple algorithms to scale to large networks of 
active DER

◼ Real-time data for adaptive control, e.g. real-time 
DR



Key challenges

Nonconvexity
◼ Convex relaxations

Large scale
◼ Distributed algorithms

Uncertainty
◼ Risk-limiting approach



Why is convexity important

Foundation of LMP
◼ Convexity justifies the use of Lagrange 

multipliers as various prices

◼ Critical for efficient market theory

Efficient computation
◼ Convexity delineates computational efficiency 

and intractability

A lot rides on (assumed) convexity structure
• engineering, economics, regulatory



optimal power flow
motivations



Optimal power flow (OPF)

OPF is solved routinely to determine

◼ How much power to generate where

◼ Market operation & pricing

◼ Parameter setting, e.g. taps, VARs

Non-convex and hard to solve

◼ Huge literature since 1962

◼ Common practice: DC power flow (LP)



Optimal power flow (OPF)

Problem formulation

◼ Carpentier 1962

Computational techniques

◼ Dommel & Tinney 1968 

◼ Surveys: Huneault et al 1991, Momoh et al 2001, 
Pandya et al 2008

Bus injection model: SDP relaxation

◼ Bai et al 2008, 2009, Lavaei et al 2010, 2012

◼ Bose et al 2011, Zhang et al 2011, Sojoudi et al 2012

◼ Lesieutre et al 2011

Branch flow model: SOCP relaxation

◼ Baran & Wu 1989, Chiang & Baran 1990, Taylor 2011,  
Farivar et al 2011



Application: Volt/VAR control

Motivation

◼ Static capacitor control cannot cope with rapid 
random fluctuations of PVs on distr circuits

Inverter control

◼ Much faster & more frequent

◼ IEEE 1547 does not optimize 
VAR currently (unity PF)



Load and Solar Variation

Empirical distribution 
of (load, solar) for Calabash

pi
c

pi
g



Summary

• More reliable operation
• Energy savings



theory
relaxations and convexification



Outline

Branch flow model and OPF

Solution strategy: two relaxations
◼ Angle relaxation

◼ SOCP relaxation

Convexification for mesh networks

Extensions



Two models

i j k

s j
g
s j
c

Sij
S jkbranch

flow

S j = S jk
k

å

bus 
injection



Two models

i j kzij

Vi VjIij

branch 

current I j = I jk
k

å

bus

current



Two models

Vi Vj

Si =ViIi
*

Sij =ViIij
*

Equivalent models of Kirchhoff laws

◼ Bus injection model focuses on nodal vars

◼ Branch flow model focuses on branch vars



Two models

Vi Vj

Si =ViIi
*

Sij =ViIij
*

1. What is the model?

2. What is OPF in the model?

3. What is the solution strategy?



let’s start with 
something familiar



Bus injection model

S j =VjI j
*           for all  j

I =YV

S j = -s j          for all  j

admittance matrix: 

Yij :=

yik
k~i

å       if  i = j

-yij         if  i ~ j

0            else

ì

í

ï
ï

î

ï
ï

S j =VjI j
*

s j = s j
c - s j

g

Kirchhoff law

power balance

power definition



Bus injection model

S j =VjI j
*           for all  j

I =YV

S j = -s j          for all  j

Kirchhoff law

power balance

power definition

variables   x := S, I,V, s( ),      s := sc - sg



Bus injection model: OPF

min              f j Re S j( )( )
j

å

over             x := S, I,V, s( )
subject to     s j   £   s j  £   s j             V k  £  |Vk |  £   V k

                    I =YV

                    S j = -s j         S j =VjI j
*

e.g. quadratic gen cost

Kirchhoff law

power balance



Bus injection model: OPF

min              f j Re S j( )( )
j

å

over             x := S, I,V, s( )
subject to     s j   £   s j  £   s j             V k  £  |Vk |  £   V k

                    I =YV

                    S j = -s j         S j =VjI j
*

e.g. quadratic gen cost

Kirchhoff law

power balance



Bus injection model: OPF

min              f j Re S j( )( )
j

å

over             x := S, I,V, s( )
subject to     s j   £   s j  £   s j             V k  £  |Vk |  £   V k

                    I =YV

                    S j = -s j         S j =VjI j
*

e.g. quadratic gen cost

Kirchhoff law

power balance

nonconvex, NP-hard



min      tr C0W

over     W  matrices

s.t.        tr CkW £   bk

            W ³ 0

            rank W =1 

                   

Bus injection model: relaxation

convex relaxation: SDP

polynomial



Bus injection model: SDR
Non-convex QCQP

Rank-constrained SDP

Relax the rank constraint and solve the SDP

Does the optimal solution satisfy the rank-constraint?

We are done! Solution may not

be meaningful

yes no

Lavaei 2010, 2012

Radial: Bose 2011, Zhang 2011

Sojoudi 2011
Lesiertre 2011

Bai 2008



Bus injection model: summary

OPF = rank constrained SDP

Sufficient conditions for SDP to be 
exact
◼ Whether a solution is globally optimal is 

always easily checkable

◼ Mesh: must solve SDP to check

◼ Tree: depends only on constraint pattern or 
r/x ratios



Two models

Vi Vj

Si =ViIi
*

Sij =ViIij
*

1. What is the model?

2. What is OPF in the model?

3. What is the solution strategy?



Branch flow model

Ohm’s law

Sij =ViIij
*                     for all  i® j

Vi -Vj = zijIij               for all  i® j

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j    for all j power balance

s j

sending

end pwr loss

sending

end pwr

power def



Branch flow model

Ohm’s law

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j    for all j

Sij =ViIij
*                     for all  i® j

Vi -Vj = zijIij               for all  i® j

power balance

variables   x := S, I,V, s( ),      s := sc - sg

branch flows

power def



Branch flow model

Ohm’s law

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j    for all j

Sij =ViIij
*                     for all  i® j

Vi -Vj = zijIij               for all  i® j

power balance

variables   x := S, I,V, s( ),      s := sc - sg

projection   ŷ := h(x) := S, ,v, s( )

power def



Sij =ViIij
*

Sij = S jk
k: j~k

å + zij Iij
2

+ s j
c - s j

gKirchoff’s Law:

Vj =Vi - zijIijOhm’s Law:

min    rij
i~ j

å Iij
2

+ ai

i

å Vi
2

over   (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c  

            vi £ vi £ vi

Branch flow model: OPF

real power loss CVR (conservation
voltage reduction) 



Branch flow model: OPF

min      f h(x)( )

over    x := (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi



Branch flow model: OPF

min      f h(x)( )

over    x := (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi



Sij =ViIij
*

Vj =Vi - zijIij

branch flow
model

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j
c - s j

g

min      f h(x)( )

over    x := (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi

generation,
VAR control

Branch flow model: OPF



Sij =ViIij
*

Vj =Vi - zijIij

branch flow
model

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j
c - s j

g

min      f h(x)( )

over    x := (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi

demand
response

Branch flow model: OPF



Outline

Branch flow model and OPF

Solution strategy: two relaxations
◼ Angle relaxation

◼ SOCP relaxation

Convexification for mesh networks

Extensions



Solution strategy

OPF
nonconvex

OPF-ar
nonconvex

OPF-cr
convex

exact

relaxation

inverse

projection

for tree

angle

relaxation

SOCP

relaxation



Angle relaxation

Sij =ViIij
*

Vj =Vi - zijIij

branch flow
model

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j
c - s j

g



Angle relaxation

Sij =ViIij
*

Vj =Vi - zijIij

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j
c - s j

g

S, I,V, s( )



Angle relaxation

Sij =ViIij
*

Vj =Vi - zijIij

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j
c - s j

g

S, I,V, s( )

S, ,v, s( )

Vi
2

= Vj
2

+ 2 Re zij
*Sij( ) - zij

2

Iij
2

Iij
2

=
Sij

2

Vi
2

ij := Iij
2

vi := Vi
2



Relaxed BF model

Sij - zij ij( )
i® j

å - S jk
j®k

å = s j
c - s j

g

vi = v j + 2 Re zij
*Sij( ) - zij

2

ij

ij =
Sij

2

vi

Baran and Wu 1989
for radial networks

relaxed branch flow solutions:                satisfyS, ,v, s( )



Sij =ViIij
*

Vj =Vi - zijIij

branch flow
model

OPF

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j
c - s j

g

min      f h(x)( )

over    x := (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi



OPF

x ÎX X

min      f h(x)( )

over    x := (S, I,V, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi



min      f ŷ( )

over    ŷ := (S, ,v, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi

OPF-ar

ŷ := h(x) Î Ŷ

Ŷ

h X( )

relax each voltage/current from a 

point in complex plane into a circle 



min      f ŷ( )

over    ŷ := (S, ,v, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi

OPF-ar

Sij - zij ij( )
i® j

å - S jk
j®k

å = s j
c - s j

g

vi = v j + 2 Re zij
*Sij( ) - zij

2

ij

ij =
Sij

2

vi

• convex objective

• linear constraints

• quadratic equality

source of

nonconvexity



min      f ŷ( )

over    ŷ := (S, ,v, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi

OPF-cr

Sij - zij ij( )
i® j

å - S jk
j®k

å = s j
c - s j

g

vi = v j + 2 Re zij
*Sij( ) - zij

2

ij

ij =
Sij

2

vi

→ inequality
ij ³

Sij
2

vi



min      f ŷ( )

over    ŷ := (S, ,v, sg, sc )

s. t.      si
g

£ si
g £ si

g          si £ si
c          vi £ vi £ vi

OPF-cr

ŷ Î  conv Ŷ

Ŷ

h X( )

relax to convex hull

(SOCP)



Recap so far …

OPF
nonconvex

OPF-ar
nonconvex

OPF-cr
convex

exact

relaxation

inverse

projection

for tree

angle

relaxation

SOCP

relaxation



Theorem

OPF-cr is convex
◼ SOCP when objective is linear

◼ SOCP much simpler than SDP

OPF-cr is exact relaxation

f h(x)( ) := rij
i~ j

å lij + ai

i

å vi

OPF-cr is exact
◼ optimal of OPF-cr is also optimal for OPF-ar

◼ for mesh as well as radial networks

◼ real & reactive powers, but volt/current mags



OPF ??

Angle recovery

Ŷ

ŷ

OPF-ar

hq

-1(ŷ) Î  X ?

Ŷ

h X( )

Ŷ

h X( )

ŷ
ŷ

does there exist     s.t.q



Theorem

solution    to OPF recoverable from     iff

inverse projection exist  iff s.t.

Angle recovery

Bq = b ŷ( )

Two simple angle recovery algorithms

◼ centralized: explicit formula

◼ decentralized: recursive alg

$!q

incidence matrix;

depends on topology

depends on 

OPF-ar solution

ŷx



Theorem

For radial network: 

Angle recovery

Bq = b ŷ( )

$!q

h X( ) = Ŷ

ŷ

Ŷ

h X( )

ŷ

mesh tree



Theorem

Inverse projection exist iff

Unique inverse given by 

For radial network: 

Angle recovery

B^ BT
-1bT( ) = b^

BT

B^

é

ë
ê

ù

û
úq =

bT

b^

é

ë
ê

ù

û
ú

#buses - 1

#lines in T

#lines outside T

q* = BT
-1bT

B^ = b^ = 0



OPF solution

Solve OPF-cr

OPF solution

Recover angles

radial

SOCP  

• explicit formula

• distributed alg



OPF solution

Solve OPF-cr

???

N

OPF solution

Recover angles

radial

angle recovery
condition holds? Ymesh



Outline

Branch flow model and OPF

Solution strategy: two relaxations
◼ Angle relaxation

◼ SOCP relaxation

Convexification for mesh networks

Extensions



Recap: solution strategy

OPF
nonconvex

OPF-ar
nonconvex

OPF-cr
convex

exact

relaxation

inverse

projection

for tree

angle

relaxation

SOCP

relaxation

??



Phase shifter

ideal phase shifter

11

3) For each link (j,k)∈E \ E T not in the spanning
tree,node j is an additionalparentofk in addition
to k’s parentin the spanning tree from w hich ∠Vk
has already been com puted in Step 2.

a) C om pute currentangle ∠Ijk using (39).
b) C om pute a new voltage angle θjk using the new

parent j and (40). If θjk = ∠Vk, then angle
recovery has failed and (S, ,v,s0) is spurious.

Ifthe angle recovery procedure succeeds in Step 3,then
(S, ,v,s0) together w ith these angles ∠Vk,∠Ijk are
indeed a branch flow solution.O therw ise,the angles∠Vk
determ ined in Step 1 do notsatisfy the K irchhoffvoltage
law iVi = 0 around the loop that involves the link
(j,k) identified in Step 3(b).This violates the condition
B T ⊥B − 1

T βT = βT ⊥ in Theorem 2.

C . Radialnetw orks

R ecall that all relaxed solutions in Ŷ \ ĥ(X ) are
spurious. O ur next key result show s that, for radial
netw ork,ĥ(X ) = Ŷ and hence angle relaxation is alw ays
exact in the sense that there is alw ays a unique inverse
projection thatm aps any relaxed solution ŷ to a branch
flow solution in X (even though X = Y ).
Theorem 4: Suppose G = T is a tree.Then

1) ĥ(X ) = Ŷ .
2) given any ŷ,θ∗ := B − 1β alw ays exists and is the
unique phase angle vector such thathθ∗ (ŷ)∈X .

Proof: W hen G = T is a tree, m = n and hence
B = B T and β = βT . M oreover B is n ×n and of
full rank. Therefore θ∗ = B − 1β alw ays exists and, by
Theorem 2, hθ∗ (ŷ) is the unique branch flow solution
in X w hose projection is ŷ. Since this holds for any
arbitrary ŷ∈Ŷ , Ŷ = ĥ(X ).

A direct consequence of Theorem 1 and Theorem 4
is that, for a radial netw ork, O PF is equivalent to the
convex problem O PF-cr in the sense thatw e can obtain
an optim alsolution ofone problem from thatofthe other.

C orollary 5: Suppose G is a tree. G iven an optim al
solution (ŷ∗,s∗) ofO PF-cr,there exists a unique θ∗ such
that (hθ∗ (ŷ∗),s∗) is an optim al solution of the original
O PF.
Proof:Suppose (ŷ∗,s∗) is optim alforO PF-cr(24)–

(25).Theorem 1 im plies thatitis also optim alfor O PF-
ar.In particular ŷ∗ ∈Ŷ (s∗).Since G is a tree, Ŷ (s∗) =
ĥ(X (s∗)) by Theorem 4 and hence there is a unique θ∗
such that hθ∗ (ŷ∗) is a branch flow solution in X (s∗).
This m eans (hθ∗ (ŷ∗),s∗) is feasible for O PF (10)–(11).
Since O PF-aris a relaxation ofO PF,(hθ∗ (ŷ∗),s∗)isalso
optim al for O PF.

Rem ark 3: Theorem 1 im plies that w e can alw ays
solve efficiently a conic relaxation O PF-cr to obtain a
solution of O PF-ar,provided there are no upper bounds
on the pow er consum ptions pci,q

c
i. From a solution of

O PF-ar,Theorem 4 and C orollary 5 prescribe a w ay to
recover an optim alsolution of O PF for radialnetw orks.
Form esh netw orks,how ever,the solution ofO PF-arm ay
be spurious,i.e.,there are no angles∠Vi,∠Iij thatw ill
satisfy the K irchhofflaw sifthe angle recovery condition
in Theorem 2 fails to hold. To deal w ith this, w e next
propose a w ay to convexify the netw ork.

V I. C O N V E X IFIC A T IO N O F M E SH N E T W O R K

In this section, w e explain how to use phase shifters
to convexify a m esh netw ork so that an extended angle
recovery condition can alw aysbe satisfied by any relaxed
solution and can be m apped to a valid branch flow
solution of the convexified netw ork.A s a consequence,
the O PF for the convexified netw ork can alw ays be
solved efficiently (in polynom ial tim e).

A. Branch flow solutions

In this section w e study pow er flow solutions
and hence w e fix an s. A ll quantities, such as
x,ŷ,X ,Ŷ ,X ,X T ,are w ith respect to the given s,even
though that is not explicit in the notation. In the next
section, s is also an optim ization variable and the sets
X ,Ŷ ,X ,X T are for any s;c.f.the m ore accurate nota-
tion in (4) and (5).
Phase shifters can be traditional transform ers or
FA C TS (Flexible A C Transm ission System s) devices.
They can increase transm ission capacity and im prove
stability and pow er quality [37], [38]. In this paper,
w e consider an idealized phase shifter that only shifts
the phase angles of the sending-end voltage and current
across a line, and has no im pedance nor lim its on the
shifted angles.Specifically,consider an idealized phase
shifter param etrized by φij across line (i,j), as show n
in Figure 4. A s before, let Vi denote the sending-end

k
zij

i j
! ij

Fig.4: M odelof a phase shifter in line (i,j).

voltage.D efine Iij to be the sending-end currentleaving
node i tow ards node j. Let k be the point betw een



Convexification of mesh networks

OPF min
x

   f h(x)( )    s.t.     x ÎX    

Theorem

•

• Need phase shifters only

outside spanning tree

X =Y

OPF-ar min
x

   f h(x)( )    s.t.     x ÎY   

Y

X

OPF-ps min
x,f

   f h(x)( )    s.t.     x ÎX    

X

X

optimize over phase shifters as well



Theorem

Inverse projection always exists

Unique inverse given by 

Don’t need PS in spanning tree

Angle recovery with PS

BT

B^

é

ë
ê

ù

û
úq =

bT

b^

é

ë
ê

ù

û
ú-

0

f ^

é

ë
ê

ù

û
ú

q* = BT
-1bT

f^

* = 0



OPF solution

Solve OPF-cr

Optimize phase
shifters

N

OPF solution

Recover angles

radial

angle recovery
condition holds? Ymesh

• explicit formula

• distributed alg



Examples

With PS



Examples

With PS



Key message

Radial networks computationally simple

◼ Exploit tree graph & convex relaxation 

◼ Real-time scalable control promising

Mesh networks can be convexified

◼ Design for simplicity

◼ Need few (?) phase shifters (sparse topology)



Outline

Branch flow model and OPF

Solution strategy: two relaxations
◼ Angle relaxation

◼ SOCP relaxation

Convexification for mesh networks

Extensions



Extension: equivalence

Work in progress with Subhonmesh Bose, Mani Chandy

Theorem

BI and BF model are equivalent

(there is a bijection between and    )X X

X := x = S, I,V( ) BI model{ } X := x = S, I,V( ) BF model{ }



Extension: equivalence

Work in progress with Subhonmesh Bose, Mani Chandy

Theorem: radial networks

 in SOCP                   W in SDR

 satisfies angle cond W has rank 1

y

SDR W ³ 0 SOCP ŷ := S, ,v( )

ŷ = g W( )

W Î g-1 ŷ( )

y

Û
Û



Extension: distributed solution

Work in progress with Lina Li, Lingwen Gan, Caltech

Local algorithm at bus j

 update local variables based on Lagrange 
multipliers from children

 send Lagrange multipliers to parents  

i

local Lagrange 

multipliers

v j
Pij,Qij, ij

local load, 

generation

highly parallelizable !



Extension: distributed solution

Work in progress with Lina Li, Lingwen Gan, Caltech

Theorem

Distributed algorithm converges 
◼ to global optimal for radial networks

◼ to global optimal for convexified mesh networks

◼ to approximate/optimal for general mesh networks

4

5

0
0.1
0.2
0.3 p (MW)

140
145

150

155
0
1
2
3

0 1000 2000 3000 4000

3

1.5
2

2.5 P0  

(MW)

P (MW)

SCE distribution circuit


