# **Branch Flow Model**

relaxations, convexification

### Masoud Farivar Steven Low

Computing + Math Sciences Electrical Engineering Caltech

May 2012



### Collaborators

S. Bose, M. Chandy, L. Gan, D. Gayme, J. Lavaei, L. Li

### **BFM** reference

Branch flow model: relaxations and convexification
 M. Farivar and S. H. Low
 arXiv:1204.4865v2, April 2012

### Other references

- Zero duality gap in OPF problem
   J. Lavaei and S. H. Low
   IEEE Trans Power Systems, Feb 2012
- QCQP on acyclic graphs with application to power flow
   S. Bose, D. Gayme, S. H. Low and M. Chandy
   arXiv:1203.5599v1, March 2012



# big picture



### 1 Proliferation renewables

- Driven by sustainability
- Enabled by policy and investment

# Sustainability challenge



US CO<sub>2</sub> emission
Elect generation: 40%
Transportation: 20%





Wind power over land (exc. Antartica) 70 – 170 TW



#### Solar power over land 340 TW

#### <u>Worldwide</u>

energy demand: 16 TW

electricity demand: 2.2 TW

wind capacity (2009): 159 GW

#### grid-tied PV capacity (2009): 21 GW

Source: Renewable Energy Global Status Report, 2010 Source: M. Jacobson, 2011





Source: Rosa Yang, EPRI



# 1 Proliferation of renewables

- Driven by sustainability
- Enabled by policy and investment

# 2 Migration to distributed arch

- 2-3x generation efficiency
- Relief demand on grid capacity





|     | #nodes    | capacity<br>per node | total<br>capacity | completion<br>time | remarks                                      |
|-----|-----------|----------------------|-------------------|--------------------|----------------------------------------------|
| SCE | 500       | 1 MW                 | 500 MW            | 2015               | SCE Commercial Rooftop<br>Solar              |
| СА  | 175,000   | 10 kW                | 1.75 GW           | 2016               | CA Solar Initiative                          |
| SCE | 400,000   | 2 kW                 | 800 MW            |                    | 10% penetration of SCE residential customers |
| CA  | 1,000,000 | 3 kW                 | 3 GW              | 2017               | CA Million Solar Roofs<br>Initiative         |
| CA  |           |                      | 25 GW             | 2020               | CA Renewable Portfolio<br>Standard           |
| US  |           |                      | 3 TW              | 2035               | Obama's goal for clean<br>energy             |

DER: PVs, wind turbines, batteries, EVs, DR loads





DER: PVs, wind turbines, EVs, batteries, DR loads



Current control paradigm works well today

- Low uncertainty, few active assets to control
- Centralized, open-loop, human-in-loop, worst-case preventive
- Schedule supplies to match loads

### Future needs

- Fast computation to cope with rapid, random, large fluctuations in supply, demand, voltage, freq
- Simple algorithms to scale to large networks of active DER
- Real-time data for adaptive control, e.g. real-time DR





Convex relaxations

Large scale

Distributed algorithms

### Uncertainty

Risk-limiting approach



# Foundation of LMP

- Convexity justifies the use of Lagrange multipliers as various prices
- Critical for efficient market theory

## Efficient computation

Convexity delineates computational efficiency and intractability

# A lot rides on (assumed) convexity structureengineering, economics, regulatory



# optimal power flow motivations

# Optimal power flow (OPF)

OPF is solved routinely to determine

- How much power to generate where
- Market operation & pricing
- Parameter setting, e.g. taps, VARs

Non-convex and hard to solve

- Huge literature since 1962
- Common practice: DC power flow (LP)



#### Problem formulation

Carpentier 1962

Computational techniques

- Dommel & Tinney 1968
- Surveys: Huneault et al 1991, Momoh et al 2001, Pandya et al 2008
- Bus injection model: SDP relaxation
  - Bai et al 2008, 2009, Lavaei et al 2010, 2012
  - Bose et al 2011, Zhang et al 2011, Sojoudi et al 2012
  - Lesieutre et al 2011

Branch flow model: SOCP relaxation

Baran & Wu 1989, Chiang & Baran 1990, Taylor 2011, Farivar et al 2011



### Motivation

Static capacitor control cannot cope with rapid random fluctuations of PVs on distr circuits

### Inverter control

- Much faster & more frequent
- IEEE 1547 does not optimize
   VAR currently (unity PF)







# Load and Solar Variation



Distribution of System State (Solar vs Load) 0.9 0.8 0.2 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.8 0.9 Solar Output Level (%) **Empirical distribution** 

of (load, solar) for Calabash

# Summary

**RESULTS FOR SOME VOLTAGE TOLERANCE THRESHOLDS** 

| Voltage Drop  | Annual Hours Saved Spending | Average Power |
|---------------|-----------------------------|---------------|
| Tolerance(pu) | Outside Feasibility Region  | Saving (%)    |
| 0.03          | 842.9                       | 3.93%         |
| 0.04          | 160.7                       | 3.67%         |
| 0.05          | 14.5                        | 3.62%         |

- More reliable operation
- Energy savings



# theory relaxations and convexification



## Branch flow model and OPF

# Solution strategy: two relaxations

- Angle relaxation
- SOCP relaxation

# Convexification for mesh networks

# Extensions















### Equivalent models of Kirchhoff laws

- Bus injection model focuses on nodal vars
- Branch flow model focuses on branch vars





- 1. What is the model?
- 2. What is OPF in the model?
- **3.** What is the solution strategy?



# let's start with something familiar



$$\begin{split} \widetilde{S}_{j} &= V_{j} \widetilde{I}_{j}^{*} & \text{for all } j & \text{power definition} \\ \widetilde{I} &= YV & \text{Kirchhoff law} \\ \widetilde{S}_{j} &= -s_{j} & \text{for all } j & \text{power balance} \end{split}$$

#### admittance matrix:

$$Y_{ij} := \begin{cases} \hat{i} & \hat{j} & \text{if } i = j \\ \hat{j} & k \sim i \\ \hat{j} & -y_{ij} & \text{if } i \sim j \\ \hat{j} & 0 & \text{else} \end{cases}$$





$$\begin{split} & \tilde{S}_{j} = V_{j} \tilde{I}_{j}^{*} & \text{for all } j & \text{power definition} \\ & \tilde{I} = YV & \text{Kirchhoff law} \\ & \tilde{S}_{j} = -s_{j} & \text{for all } j & \text{power balance} \end{split}$$

variables 
$$\tilde{x} := (\tilde{S}, \tilde{I}, V, s), \quad s := s^c - s^g$$



subject to

e.g. quadratic gen cost



min
$$\underset{j}{\overset{\circ}{a}} f_{j}\left(\operatorname{Re}\left(\tilde{S}_{j}\right)\right)$$
e.g. quadratic gen costover $\tilde{x} := \left(\tilde{S}, \tilde{I}, V, s\right)$ subject to $\underline{s}_{j}$  $\underline{F}$  $\underline{s}_{j}$  $\underline{F}$  $\overline{s}_{j}$  $\underline{V}_{k}$  $\underline{F}$  $|V_{k}|$  $\underline{V}_{k}$  $\underline{F}$ 



nonconvex, NP-hard



- min tr  $C_0 W$
- over W matrices
- s.t. tr  $C_k W \in b_k$

 $W^30$ 



convex relaxation: SDP polynomial





# OPF = rank constrained SDP

# Sufficient conditions for SDP to be exact

- Whether a solution is globally optimal is always easily checkable
- Mesh: must solve SDP to check
- Tree: depends only on constraint pattern or r/x ratios





- 1. What is the model?
- 2. What is OPF in the model?
- **3.** What is the solution strategy?



$$S_{ij} = V_i I_{ij}^*$$
 for all  $i \to j$  power def

$$V_i - V_j = z_{ij} I_{ij}$$
 for all  $i \rightarrow j$  Ohm's law




$$S_{ij} = V_i I_{ij}^*$$
 for all  $i \to j$  power def

$$V_i - V_j = z_{ij} I_{ij}$$
 for all  $i \rightarrow j$  Ohm's law

$$\sum_{i \to j} \left( S_{ij} - Z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j \quad \text{for all } j \text{ power balance}$$

variables 
$$x := (S, I, V, s), \quad s := s^c - s^g$$



$$S_{ij} = V_i I_{ij}^* \quad \text{for all } i \to j \quad \text{power def}$$
$$V_i - V_j = z_{ij} I_{ij} \quad \text{for all } i \to j \quad \text{Ohm's law}$$
$$\sum_{i \to j} \left( S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = s_j \quad \text{for all } j \quad \text{power balance}$$

variables 
$$x := (S, I, V, s), \quad s := s^c - s^g$$
  
projection  $\hat{y} := h(x) := (S, \ell, v, s)$ 



min  $\operatorname{ar}_{ij} |I_{ij}|^2 + \operatorname{ar}_{ij} |V_i|^2$ *i∼j* i **CVR** (conservation real power loss

voltage reduction)



min 
$$f(h(x))$$
  
over  $x := (S, I, V, s^g, s^c)$ 

s. t.



min 
$$f(h(x))$$

over 
$$x := (S, I, V, s^g, s^c)$$

s. t. 
$$\underline{s}_i^g \, \mathrm{fl} \, s_i^g \, \mathrm{fl} \, \overline{s}_i^g \qquad \underline{s}_i \, \mathrm{fl} \, s_i^c \qquad \underline{v}_i \, \mathrm{fl} \, \overline{v}_i$$



$$\begin{array}{ll} \min & f\left(h(x)\right) \\ \text{over} & x := (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{S_i^g \ f \ S_i^g \ f \ \overline{S_i^g}} & \underline{S_i \ f \ S_i^c} & \underline{V_i \ f \ V_i \ f \ \overline{V_i}} \\ & \text{generation,} \\ \text{VAR control} \\ \end{array}$$



$$\begin{array}{ccc} \min & f\left(h(x)\right) \\ \text{over} & x := (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \notin s_i^g \notin \overline{s}_i^g & \underline{s}_i \notin s_i^c & \underline{v}_i \notin v_i \notin \overline{v}_i \\ & & \text{demand} \\ \text{response} \\ \end{array}$$



### Branch flow model and OPF

## Solution strategy: two relaxations

- Angle relaxation
- SOCP relaxation

## Convexification for mesh networks

## Extensions









branch flow model

$$\sum_{i \to j} \left( S_{ij} - Z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j^c - S_j^g$$
$$V_j = V_i - Z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^*$$







 $\left(S, I, V, S\right) \qquad \sum_{i \to j} \left(S_{ij} - Z_{ij} \left|I_{ij}\right|^{2}\right) - \sum_{j \to k} S_{jk} = S_{j}^{c} - S_{j}^{g}$  $V_{i} = V_{i} - Z_{ij}I_{ij} \qquad S_{ij} = V_{i}I_{ij}^{*}$  $|V_i|^2 = |V_j|^2 + 2 \operatorname{Re}(z_{ij}^*S_{ij}) - |z_{ij}|^2 |I_{ij}|^2$  $\left(S, \ell, \nu, S\right) \quad \left|I_{ij}\right|^{2} = \frac{\left|S_{ij}\right|^{2}}{\left|V\right|^{2}}$ 

 $\ell_{ij} := \left| I_{ij} \right|^2$  $\nu_i := \left| V \right|^2$ 



relaxed branch flow solutions:  $(S, \ell, v, s)$  satisfy

$$\sum_{i \to j} \left( S_{ij} - z_{ij} \ell_{ij} \right) - \sum_{j \to k} S_{jk} = S_j^c - S_j^g$$
$$v_i = v_j + 2 \operatorname{Re} \left( z_{ij}^* S_{ij} \right) - \left| z_{ij} \right|^2 \ell_{ij}$$
$$\ell_{ij} = \frac{\left| S_{ij} \right|^2}{v_i}$$

Baran and Wu 1989 for radial networks



$$\begin{array}{ll} \min & f\left(h(x)\right) \\ \text{over} & x := (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \in s_i^g \in \overline{s}_i^g & \underline{s}_i \in s_i^c & \underline{v}_i \in v_i \in \overline{v}_i \end{array}$$

branch flow model

$$\sum_{i \to j} \left( S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j^c - S_j^g$$
$$V_j = V_i - z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^*$$



$$\begin{array}{ll} \min & f(h(x)) \\ \text{over} & x := (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \in s_i^g \in \overline{s}_i^g & \underline{s}_i \in s_i^c & \underline{v}_i \in v_i \in \overline{v}_i \end{array}$$







$$\begin{array}{ll} \min & f\left(\hat{y}\right) \\ \text{over} & \hat{y} \coloneqq (S, \ell, v, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \notin s_i^g \notin \overline{s}_i^g & \underline{s}_i \notin s_i^c & \underline{v}_i \notin v_i \notin \overline{v}_i \end{array}$$

$$\hat{y} := h(x) \hat{\mathbf{I}} \hat{\mathbf{Y}}$$

relax each voltage/current from a point in complex plane into a circle





$$\begin{array}{ll} \min & f\left(\hat{y}\right) \\ \text{over} & \hat{y} \coloneqq (S, \ell, v, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \triangleq s_i^g \triangleq \overline{s}_i^g & \underline{s}_i \triangleq s_i^c & \underline{v}_i \triangleq v_i \triangleq \overline{v}_i \\ & \sum_{i \to j} \left(S_{ij} - z_{ij}\ell_{ij}\right) - \sum_{j \to k} S_{jk} = s_j^c - s_j^g \\ & v_i = v_j + 2 \operatorname{Re}\left(z_{ij}^*S_{ij}\right) - \left|z_{ij}\right|^2 \ell_{ij} \\ & \text{source of} \\ \operatorname{nonconvexity} & \ell_{ij} = \frac{\left|S_{ij}\right|^2}{v_i} & \text{econvex objective} \\ & \text{linear constraints} \\ & \text{- quadratic equality} \end{array}$$

• quadratic equality



min  $f(\hat{y})$ over  $\hat{y} := (S, \ell, v, s^g, s^c)$ s. t.  $\underline{s}_{i}^{g} \in \underline{s}_{i}^{g} \in \overline{s}_{i}^{g}$   $\underline{s}_{i} \in \underline{s}_{i}^{c}$  $\underline{v}_i \in v_i \in \overline{v}_i$  $\sum \left( S_{ij} - Z_{ij} \ell_{ij} \right) - \sum S_{jk} = S_j^c - S_j^g$  $i \rightarrow i$  $i \rightarrow k$  $v_i = v_j + 2 \operatorname{Re}(z_{ij}^* S_{ij}) - |z_{ij}|^2 \ell_{ij}$  $\ell_{ij}$  3  $|S_{ij}|^2$ → inequality



min  $f(\hat{y})$ over  $\hat{y} := (S, \ell, v, s^g, s^c)$ s. t.  $\underline{s}_{i}^{g} \in \underline{s}_{i}^{g} \in \overline{s}_{i}^{g}$  $\underline{v}_i \neq v_i \neq \overline{v}_i$  $\underline{S}_i \neq S_i^c$ 



relax to convex hull (SOCP)









**OPF-cr is convex SOCP** when objective is linear  $f(h(x)) := \mathop{\text{a}}_{i \sim j} r_{ij} l_{ij} + \mathop{\text{a}}_{i} \partial_i v_i$ 

SOCP much simpler than SDP

#### OPF-cr is exact

- optimal of OPF-cr is also optimal for OPF-ar
- for mesh as well as radial networks
- real & reactive powers, but volt/current mags





**OPF-ar** 

does there exist q s.t.  $h_q^{-1}(\hat{y}) \hat{i} \mathbf{X}$ ?



solution x to OPF recoverable from  $\hat{y}$  iff inverse projection exist iff  $p_{q}$  s.t.

incidence matrix; depends on topology depends on OPF-ar solution

Two simple angle recovery algorithms

 $BQ = b(\hat{y})$ 

- centralized: explicit formula
- decentralized: recursive alg



## For radial network: \$!q $Bq = b(\hat{y})$







#buses - 1

#lines in T 
$$\acute{\Theta}B_T$$
  $\grave{U}$   $\acute{\Theta}D_T$   $\grave{U}$   
 $\grave{Q}^T$   $\grave{U}Q = \grave{Q}^T$   $\grave{U}$   
#lines outside T  $\grave{Q}B_\wedge$   $\grave{U}$   $\grave{U}Q = \grave{Q}D_\wedge$   $\grave{U}$ 

#### **Theorem**

Inverse projection exist iff  $B_{\wedge}(B_T^{-1}b_T) = b_{\wedge}$ 

Unique inverse given by  $q^* = B_T^{-1} b_T$ 

For radial network:  $B_{\wedge} = b_{\wedge} = 0$ 











## Branch flow model and OPF

## Solution strategy: two relaxations

- Angle relaxation
- SOCP relaxation

## Convexification for mesh networks

## Extensions











#### ideal phase shifter

# Convexification of mesh networks

**PF** 
$$\min_{x} f(h(x))$$
 s.t.  $x \hat{I} X$ 

**OPF-ar** 
$$\min_{x} f(h(x))$$
 s.t.  $x \mid \mathbf{Y}$ 

**OPF-ps** 
$$\min_{x,f} f(h(x))$$
 s.t.  $x \hat{I} \overline{X}$ 

optimize over phase shifters as well

#### <u>Theorem</u>

 $\bigcap$ 

- $\overline{\mathbf{X}} = \mathbf{Y}$
- Need phase shifters only outside spanning tree





 $\begin{array}{cccc} \acute{e}B_T \grave{u} & \acute{e}b_T \grave{u} & \acute{e}O & \grave{u} \\ \acute{e}B_{\Lambda} \grave{u} & \acute{e}b_{\Lambda} \grave{u} & \acute{e}f_{\Lambda} \grave{u} \\ \acute{e}B_{\Lambda} \grave{u} & \acute{e}b_{\Lambda} \grave{u} & \acute{e}f_{\Lambda} \grave{u} \end{array}$ 

Inverse projection always exists

Unique inverse given by  $q^* = B_T^{-1} b_T$ 

Don't need PS in spanning tree  $f^*_{\wedge} = 0$ 







|                      |              | No PS     | With PS      |
|----------------------|--------------|-----------|--------------|
| Test cases           | # links      | Min loss  | Min loss     |
|                      | ( <i>m</i> ) | (OPF, MW) | (OPF-cr, MW) |
| IEEE 14-Bus          | 20           | 0.546     | 0.545        |
| IEEE 30-Bus          | 41           | 1.372     | 1.239        |
| IEEE 57-Bus          | 80           | 11.302    | 10.910       |
| IEEE 118-Bus         | 186          | 9.232     | 8.728        |
| IEEE 300-Bus         | 411          | 211.871   | 197.387      |
| New England 39-Bus   | 46           | 29.915    | 28.901       |
| Polish (case2383wp)  | 2,896        | 433.019   | 385.894      |
| Polish (case2737sop) | 3,506        | 130.145   | 109.905      |



| Test cases           | # links      | # active PS            |       | Angle range (°)                               |
|----------------------|--------------|------------------------|-------|-----------------------------------------------|
|                      | ( <i>m</i> ) | $ \phi_i  > 0.1^\circ$ |       | $[\phi_{\min},\phi_{\max}]$                   |
| IEEE 14-Bus          | 20           | 2                      | (10%) | [-2.1, 0.1]                                   |
| IEEE 30-Bus          | 41           | 3                      | (7%)  | [-0.2, 4.5]                                   |
| IEEE 57-Bus          | 80           | 19                     | (24%) | [-3.5, 3.2]                                   |
| IEEE 118-Bus         | 186          | 36                     | (19%) | [-1.9, 2.0]                                   |
| IEEE 300-Bus         | 411          | 101                    | (25%) | [-11.9, 9.4]                                  |
| New England 39-Bus   | 46           | 7                      | (15%) | [-0.2, 2.2]                                   |
| Polish (case2383wp)  | 2,896        | 376                    | (13%) | [-20.1, 16.8]                                 |
| Polish (case2737sop) | 3,506        | 433                    | (12%) | $\begin{bmatrix} -21.9, \ 21.7 \end{bmatrix}$ |



## Radial networks computationally simple

- Exploit tree graph & convex relaxation
- Real-time scalable control promising

#### Mesh networks can be convexified

- Design for simplicity
- Need few (?) phase shifters (sparse topology)


### Branch flow model and OPF

## Solution strategy: two relaxations

- Angle relaxation
- SOCP relaxation

## Convexification for mesh networks

## Extensions





$$\tilde{\mathbf{X}} := \left\{ \tilde{x} = \left( \tilde{S}, \tilde{I}, V \right) | \text{BI model} \right\}$$

•

 $\mathbf{X} := \left\{ x = \left( S, I, V \right) \middle| \mathsf{BF} \mathsf{ model} \right\}$ 



#### **Theorem**

# BI and BF model are equivalent (there is a bijection between $\widetilde{X}$ and X)

Work in progress with Subhonmesh Bose, Mani Chandy





#### **Theorem**: radial networks

- $\Box \quad \tilde{y} \text{ in SOCP} \qquad \iff W \text{ in SDR}$
- $\square \tilde{y}$  satisfies angle cond  $\iff W$  has rank 1

Work in progress with Subhonmesh Bose, Mani Chandy



| $i \qquad P_{ii},$ | $Q_{ii}, \ell_{ii}$           |  |
|--------------------|-------------------------------|--|
| 5                  | $v_j$                         |  |
|                    | local load,                   |  |
|                    | generation                    |  |
|                    | local Lagrange<br>multipliers |  |
|                    | highly parallelizable !       |  |

Local algorithm at bus j

- update local variables based on Lagrange multipliers from children
- send Lagrange multipliers to parents

Work in progress with Lina Li, Lingwen Gan, Caltech

## Extension: distributed solution



#### <u>Theorem</u>

Distributed algorithm converges

- to global optimal for radial networks
- to global optimal for convexified mesh networks
- to approximate/optimal for general mesh networks

Work in progress with Lina Li, Lingwen Gan, Caltech