Semidefinite Relaxations of OPF

Steven Low

Computing + Math Sciences
Electrical Engineering

Caltech

January 2015
Grid Science Winter School

Acknowledgment

Caltech

■ M. Chandy, J. Doyle, M. Farivar, L. Gan, B. Hassibi, Q. Peng, T. Teeraratkul, C. Zhao

Former
■ S. Bose (Cornell), L. Chen (Colorado), D. Gayme (JHU), J. Lavaei (Columbia), L. Li (Harvard), U. Topcu (Upenn)

SCE

- A. Auld, J. Castaneda, C. Clark, J. Gooding, M. Montoya, S. Shah, R. Sherick

Outline

Mathematical preliminaries
Bus injection model

- OPF formulation

■ 3 convex relaxations \& relationship
Branch flow model

- OPF formulation

■ SOCP relaxation \& equivalence
Exact relaxation
■ Radial networks

- Mesh networks

Multiphase unbalanced networks

Outline

Largely following a 2-part tutorial

SL, Convex relaxation of OPF, 2014
http://netlab.caltech.edu

Mathematical preliminaries

■ Semidefinite programs

- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

$2^{\text {nd }}$ order cone program (SOCP)

\min $c_{0}^{H} x$
s.t.

$$
\left\|C_{k} x+b_{k}\right\| \quad c_{k}^{H} x+d_{k} \quad k \quad 1
$$

- $C_{k} \mathbf{R}^{\left(n_{k} 1\right) n}, b_{k} \quad \mathbf{R}^{n_{k} 1}, c_{k} \quad \mathbf{C}^{n}, d_{k} \quad \mathbf{R}$
- || || : Euclidean norm
- Feasible set is $2^{\text {nd }}$ order cone and convex
- Includes LP, convex QP as special cases
- Special case of SDP, but much simpler computationally

SOCP in rotated form

\min

$$
c_{0}^{H} x
$$

st.

$$
\left\|C_{k} x+b_{k}\right\|^{2} \quad\left(c_{k}^{H} x+d_{k}\right)\left(\hat{c}_{k}^{H} x+\hat{d}_{k}\right)
$$

- Useful for OPF:

$$
\begin{array}{llllll}
\min & c_{0}^{H} x & & & \\
\text { s.t. } & C_{k} x=b_{k} \quad k & 1 \\
& \left\|w_{m}\right\|^{2} \quad y_{m} z_{m} & m & 1
\end{array}
$$

- Transformation:

$$
\left.\|w\|^{2} \leq y z, y \geq 0, z \geq 0 \Leftrightarrow \| \begin{array}{ll}
2 w \\
y & z
\end{array}\right] \| \leq y+z
$$

Semidefinite program (SDP)

$$
n \quad n
$$

Primal: $\min _{x \mathbf{R}^{n}} c_{i=1} x_{i} \quad$ s. t. $\quad A_{0}+x_{i=1} A_{i} \quad 0$
Lagrangian: for
0

$$
\begin{aligned}
& L(x ; \quad):=c_{i=1} x_{i}+\operatorname{tr} \quad A_{0}+x_{i} A_{i} \div \\
&=\operatorname{tr}\left(A_{0}\right)+{ }_{i=1}^{n}\left(\operatorname{tr}\left(A_{i}\right)+c_{i}\right) x_{i} \\
& D(\quad)= \operatorname{tr}\left(A_{0}\right) \quad \text { if } \operatorname{tr}\left(A_{i}\right)+c_{i}=0 \quad i \\
& \quad \text { else }
\end{aligned}
$$

Semidefinite program (SDP)

$n \quad n$

Primal: $\min _{x \times \mathbf{R}^{n}} c_{i=1} c_{i} \quad$ s. t. $\quad A_{0}+x_{i=1} A_{i} \quad 0$
Dual: $\quad \max _{0} \operatorname{tr}\left(A_{0}\right) \quad$ s.t. $\quad \operatorname{tr}\left(A_{i}\right)+c_{i}=0 \quad i$

We will later use an inequality form:

$$
\begin{array}{llll}
\max _{0} & \operatorname{tr}\left(A_{0}\right) \\
\text { s.t. } & \operatorname{tr}\left(A_{i}\right) \quad c_{i} & i
\end{array}
$$

equivalent to equality form through slack variables

PSD cones are convex

\square Hermitian matrices

$$
\mathbf{S}^{n}:=\left\{\begin{array}{ll}
A n & \mathbf{C}^{n} \mid A=A^{H}
\end{array}\right\}
$$

\square Positive semidefinite (psd) matrices

$$
\mathbf{S}_{+}^{n}:=\left\{\begin{array}{ll}
A & \mathbf{S}^{n} \mid x^{T} A x \quad 0 \text { for all } x \quad \mathbf{C}^{n}
\end{array}\right\}
$$

\square Positive definite (pd) matrices

$$
\mathbf{S}_{++}^{n}:=\left\{\begin{array}{ll}
A & \mathbf{S}^{n} \mid x^{T} A x>0 \text { for all } x \quad \mathbf{C}^{n}
\end{array}\right\}
$$

Semidefinite program (SDP)

${ }^{n}{ }_{n}{ }^{n}$

Primal: $\min _{x \mathbf{R}^{n}} c_{i=1} x_{i}$ s.t. $A_{0}+x_{i=1} A_{i} \quad 0$
Dual: $\quad \max _{0} \operatorname{tr}\left(A_{0}\right) \quad$ s.t. $\operatorname{tr}\left(A_{i}\right)+c_{i}=0 \quad i$

Theorem: strong duality

 primal optimal value $=$ dual optimal value
Semidefinite program (SDP)

Theorem: The following are equivalent $\square\left(x^{*},{ }^{*}\right)$ is primal-dual optimal
$\square\left(x^{*},{ }^{*}\right)$ is a saddle pt of Lagrangian

$$
L\left(x^{*}, \quad\right) \quad L\left(x^{*},{ }^{*}\right) \quad L\left(x,{ }^{*}\right) \quad \text { feasible } x
$$

$\square \mathrm{KKT}: \quad A_{0}+x_{i}^{*} A_{i} \quad 0$,

$$
i=1
$$

* $0, \operatorname{tr}\left(A_{i}{ }^{*}\right)+c_{i}=0 \quad i$

$$
\operatorname{tr} \quad{ }^{*} A_{0}+{ }_{i=1}^{n} x_{i}^{*} A_{i} \div=0
$$

Mathematical preliminaries

- Semidefinite programs
- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

QCQP

$\min \quad x^{H} C_{0} x$
over $\quad x \quad \mathbf{C}^{n}$
s.t. $\quad x^{H} C_{k} x \quad b_{k} \quad k \quad 1$

- $C_{k}, k \quad 0$, Hermitian $\quad x^{H} C_{k} x$ is real $b_{k} \quad \mathbf{R}^{n}$
- Convex problem if all C_{k} are psd Nonconvex otherwise

QCQP

$\min \quad x^{H} C_{0} x$
over $\quad x \quad \mathbf{C}^{n}$
s.t. $\quad x^{H} C_{k} x \quad b_{k} \quad k \quad 1$

- $x^{H} C_{k} x=\operatorname{tr} x^{H} C_{k} x=\operatorname{tr} C_{k}\left(x x^{H}\right)$

QCQP

min $\operatorname{tr} C_{0}\left(x x^{H}\right)$
over $\quad x \quad \mathbf{C}^{n}$
s.t. $\quad \operatorname{tr} C_{k}\left(x x^{H}\right) \quad b_{k} \quad k \quad 1$

- $x^{H} C_{k} x=\operatorname{tr} x^{H} C_{k} x=\operatorname{tr} C_{k}\left(x x^{H}\right)$

QCQP

\min $\operatorname{tr} C_{0}\left(x x^{H}\right)$
over $\quad x \quad \mathbf{C}^{n}$
s.t. $\quad \operatorname{tr} C_{k} \underbrace{\left(x x^{H}\right)}_{x \mathbf{S}_{+}^{n}} \quad b_{k} \quad k \quad 1$

- $x^{H} C_{k} x=\operatorname{tr} x^{H} C_{k} x=\operatorname{tr} C_{k}\left(x x^{H}\right)$

QCQP

min
$\operatorname{tr} C_{0} X$
over $\quad X \quad \mathbf{S}_{+}^{n}$
s.t.
$\operatorname{tr} C_{k} X \quad b_{k} \quad k \quad 1$
$\xrightarrow{\text { rank } V} \Psi$ only nonconvexity

- Any solution X yields a unique x through

$$
X=x x^{\mathrm{H}}
$$

- Feasible sets are equivalent

Semidefinite program (SDP)

min

$$
\begin{array}{lllll}
\operatorname{tr} C_{0} X & & & \\
\operatorname{tr} C_{k} X & b_{k} & k & 1 \\
X & 0 & & &
\end{array}
$$

- Feasible set of QCQP is an effective subset of feasible set of SDP
- SDP is a relaxation of QCQP

Preview: solution strategy

OPF $\sqrt{\text { OPF }}$ nonconvex QCQP
 rank constrained SDP

Radial network: sufficient conditions for exact relaxation rank $W^{\text {opt }}=1$

Mesh network: convexification through phase shifters
rank $W^{\text {opt }}>1 \sqrt{ }$

> OPF-sdp
> convex
solution not meaningful Heuristic algorithms

SOCP in rotated form

\min

$$
c_{0}^{H} x
$$

st.

$$
\left\|C_{k} x+b_{k}\right\|^{2} \quad\left(c_{k}^{H} x+d_{k}\right)\left(\hat{c}_{k}^{H} x+\hat{d}_{k}\right)
$$

- Useful for OPF:

$$
\begin{array}{llllll}
\min & c_{0}^{H} x & & & \\
\text { s.t. } & C_{k} x=b_{k} \quad k & 1 \\
& \left\|w_{m}\right\|^{2} \quad y_{m} z_{m} & m & 1
\end{array}
$$

- Transformation:

$$
\left.\|w\|^{2} \leq y z, y \geq 0, z \geq 0 \Leftrightarrow \| \begin{array}{ll}
2 w \\
y & z
\end{array}\right] \| \leq y+z
$$

Recap: QCQP, SDP, SOCP

QCQP

min

$$
x^{H} C_{0} x
$$

s.t. $\quad x^{H} C_{k} x \quad b_{k} \quad k \quad 1$

SDP

$$
\begin{array}{llllll}
\min & \operatorname{tr} C_{0} X & & & \\
\text { s.t. } & \operatorname{tr} C_{k} X & b_{k} & k & 1 \\
& X & 0 & & &
\end{array}
$$

SOCP min $c_{0}^{H} x$

$$
\begin{array}{llllll}
\text { s.t. } & & C_{k} x=b_{k} & k & 1 \\
& & \left\|w_{m}\right\|^{2} & y_{m} z_{m} & m & 1
\end{array}
$$

Mathematical preliminaries

- Semidefinite programs
- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

Graphs

Graph $G=(V, E)$
Complete graph: all node pairs adjacent Clique: complete subgraph of G

- An edge is a clique
- Maximal clique: a clique that is not a subgraph of another clique
Chordal graph: all minimal cycles have length 3
- Minimal cycle: cycle without chord

Chordal ext: chordal graph containing G

- Every graph has a chordal extension
- Chordal extensions are not unique

Partial matrices

Fix an undirected graph $G=(V, E)$
Partial matrix X_{G} :

$$
X_{G}:=\left(\left[X_{G}\right]_{j j}, j \quad V,\left[X_{G}\right]_{j k},(j, k) \quad E\right)
$$

Completion X of a partial matrix X_{G} :

$$
X=X_{G} \text { on } G
$$

Example

partial matrix $X_{G}:=\{$ complex numbers on $G\}$

n -vertex complete graph
$\begin{array}{rlllr}!x_{11} & x_{12} & x_{13} & & \\ \# & \\ \# x_{21} & x_{22} & & & x_{25} \& \\ X_{G}=\# & \\ \# x_{31} & & x_{33} & x_{34} & \& \\ \# & & x_{43} & x_{44} & x_{45} \& \\ \# & & & \& \\ & \# & x_{52} & & x_{54} \\ & x_{55} \&\end{array}$
completion: full matrix X that
agrees with X_{G} on G

Example

chordal ext $X_{c(G)}:=\{$ complex numbers on $c(G)\}$

Example

chordal ext $X_{c(G)}:=\{$ complex numbers on $c(G)\}$

Partial matrices

Fix an undirected graph $G=(V, E)$
A partial matrix X_{G} is $p s d$ if
$X_{G}(q) \quad 0$ for all maximal cliques q
A partial matrix X_{G} is rank-1 if $\operatorname{rank} X_{G}(q)=1$ for all maximal cliques q

Matrix completion

Theorem [Grone et al 1984]

Every psd partial matrix X_{G} has a psd completion if and only if G is chordal
\square Motivates chordal relaxation

Feasible set

Consider

C1:

$$
W \succeq 0, \text { rank } W=1
$$

Feasible set

Consider

C2:

$$
\begin{aligned}
W & \succeq 0, \text { rank } W=1 \\
W_{c(G)} & \succeq 0, \text { rank } W_{c(G)}=1
\end{aligned}
$$

Feasible set

Consider

dec - full matrix W
\# vars - partial matrix $W_{c(G)}$ defined on a chordal ext of G - partial matrix W_{G} defined on G

C1:

$$
W \succeq 0, \text { rank } W=1
$$

C2: $\quad W_{c(G)} \succeq 0, \operatorname{rank} W_{c(G)}=1$
C3: $\left\{\begin{array}{l}W_{G}(j, k) \succeq 0, \text { rank } W_{G}(j, k)=1, \quad(j, k) \in E: \\ \sum_{(j, k) \in c}\left[W_{G}\right]_{j k}=0 \quad \bmod 2 \pi\end{array}\right.$

Feasible set

Theorem
 $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3$

C1:
$W \succeq 0$, rank $W=1$
C2: $\quad W_{c(G)} \succeq 0, \operatorname{rank} W_{c(G)}=1$
$\left\{W_{G}(j, k) \succeq 0\right.$, rank $W_{G}(j, k)=1, \quad(j, k) \in E$
C3: $\left\{\sum_{(j, k) \in c}\right.$

$$
\left[W_{G}\right]_{j k}=0 \quad \bmod 2 \pi
$$

Bose, Low, Chandy Allerton 2012
Bose, Low, Teeraratkul, Hassibi TAC2014

Example

$\mathrm{C} 1=\mathrm{C} 2$ means:
W is psd rank-1 iff
$W_{c(G)}$ is psd rank-1 /

$$
\begin{array}{lllll}
W_{11} & \mathrm{~W}_{12} & \mathrm{~W}_{13} \\
W_{21} & \mathrm{~W}_{22} & & & \\
W_{G}= & & \mathrm{W}_{25} \\
W_{31} & & \mathrm{~W}_{33} & \mathrm{~W}_{34} & \\
& & \mathrm{~W}_{43} & \mathrm{~W}_{44} & \mathrm{~W}_{45} \\
& \mathrm{~W}_{52} & & \mathrm{~W}_{54} & \mathrm{~W}_{55}
\end{array}
$$

$$
W_{c(G)}=\left\lvert\, \begin{array}{ccc|c}
\left.\begin{array}{|llll}
W_{11} & \mathrm{~W}_{12} & \mathrm{~W}_{13} \\
W_{21} & \mathrm{~W}_{22} & \mathrm{~W}_{23} & \\
W_{31} & \mathrm{~W}_{32} & \mathrm{~W}_{33} & \mathrm{~W}_{24} \\
W_{25} \\
\mathrm{~W}_{42} & \mathrm{~W}_{43} & \mathrm{~W}_{44} & \mathrm{~W}_{45} \\
\mathrm{~W}_{52} & \mathrm{~W}_{53} & \mathrm{~W}_{54} & \mathrm{~W}_{55}
\end{array} \right\rvert\,
\end{array}\right.
$$

iff
these 2 submatrices are psd rank-1
much smaller for large sparse network

Example

$\mathrm{C} 1=\mathrm{C} 3$ means:
W is psd rank-1 iff
W_{G} is psd rank-1 and satisfies cycle cond
iff
52×2 submatrices are psd rank-1 and satisfies cycle cond
much much smaller for large sparse network

Feasible set

Theorem
 $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3$

Moreover, given W_{G} that satisfies C3, there is a unique completion W that satisfies C 1

C1:

$$
W \succeq 0, \text { rank } W=1
$$

C2:

$$
W_{c(G)} \succeq 0, \text { rank } W_{c(G)}=1
$$

$\left[W_{G}(j, k) \succeq 0, \operatorname{rank} W_{G}(j, k)=1, \quad(j, k) \in E\right.$
C3: $\{$

$$
\left[W_{G}\right]_{j k}=0 \quad \bmod 2 \pi
$$

Bose, Low, Chandy Allerton 2012
Bose, Low, Teeraratkul, Hassibi TAC2014

Example

Given W_{G} that satisfies C3, there is only one way to fill in missing entries to get an W from which an V can be recovered

Chordal relaxation

QCQP
$\min \quad x^{H} C_{0} x$
s.t. $\quad x^{H} C_{k} x \quad b_{k} \quad k \quad 1$

SDP

min
s.t.

$\operatorname{tr} C_{0} X$
$\operatorname{tr} C_{k} X$
$b_{k} \quad k \quad 1$
X 0

Chordal

$$
\begin{array}{llllll}
\min _{X_{c(G)}} & \operatorname{tr} C_{0} X_{G} & & & \\
\text { s.t. } & \operatorname{tr} C_{k} X_{G} & & b_{k} & k & 1 \\
& X_{c(G)} & 0 & & &
\end{array}
$$

Outline

Mathematical preliminaries

Bus injection model

- OPF formulation

■ 3 convex relaxations \& relationship
Branch flow model
■ OPF formulation
■ SOCP relaxation \& equivalence
Exact relaxation
■ Radial networks
■ Mesh networks

Bus injection model

$$
z_{i j}=y_{i j}{ }^{1}
$$

admittance matrix:

$$
Y_{i j}:=\begin{array}{cl}
y_{k i} & \text { if } i=j \\
y_{i j} & \text { if } i \sim j \\
0 & \text { else }
\end{array}
$$

graph G : undirected
Y specifies topology of G and impedances z on lines

Bus injection model

In terms of V :

$$
s_{j}=\operatorname{tr}\left(Y_{j}^{H} V V^{H}\right) \quad \text { for all } j \quad Y_{j}=Y^{H} e_{j} e_{j}^{T}
$$

Power flow problem:
Given (Y, s) find V

isolated solutions

OPF: bus injection model

min	$\operatorname{tr}\left(C V V^{H}\right)$		gen cost, power loss		
over	(V, s)				
subject to	$\underline{s}_{j} \quad s_{j}$	\bar{s}_{j}	\underline{V}_{j}	$\left\|V_{j}\right\|$	\bar{V}_{j}

OPF: bus injection model

\min	$\operatorname{tr}\left(C V V^{H}\right)$
over	(V, s)

subject to

$$
\begin{array}{cccc}
\underline{s}_{j} \quad s_{j} \quad \bar{s}_{j} & \underline{V}_{j} & \left|V_{j}\right| & \bar{V}_{j} \\
s_{j}=\operatorname{tr}\left(Y_{j}^{H} V V^{H}\right) & & & \text { power flow equation }
\end{array}
$$

gen cost, power loss

Summary: OPF (bus injection model)

$\min \quad \operatorname{tr} C V V^{H}$
subject to $\underline{s}_{j} \quad \operatorname{tr}\left(Y_{j} V V^{H}\right) \quad \bar{s}_{j} \quad \underline{v}_{j} \quad\left|V_{j}\right|^{2} \quad \bar{v}_{j}$

nonconvex QCQP
 (quad constrained quad program)

Other features

Security constraint OPF

- Solve for operating points after each single contingency ($\mathrm{N}-1$ security)
- N sets of variables and constraints, one for each contingency

Unit commitment

- Discrete variables

Stochastic OPF
■ Chance constraints $\operatorname{Pr}($ bad event) $<$
Other constraints

- Line flow, line loss, stability limit, ...

Literature

Convex relaxations of OPF

relaxation	model	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Basic idea

$\min \quad \operatorname{tr} C V V^{H}$
subject to $\underline{s}_{j} \quad \operatorname{tr}\left(Y_{j} V V^{H}\right)$

$\xrightarrow{\mathbf{V}}$
Approach

1. Three equivalent characterizations of \mathbf{V}
2. Each suggests a lift and relaxation

- What is the relation among different relaxations ?
- When will a relaxation be exact?

Feasible set \& SDP

$\min \quad \operatorname{tr} C V V^{H}$
subject to $\quad \underline{s}_{j} \quad \underset{\text { tr }\left(Y_{j} V V^{H}\right)}{ } \quad \bar{s}_{j} \quad \underline{v}_{j} \quad \mid V_{j}$
Equivalent problem:
min
subject to

$\operatorname{tr} C W$

 linear in W$$
\begin{array}{|llllll|}
\hline \underline{s}_{j} & \operatorname{tr}\left(Y_{j} W\right) & \bar{s}_{j} & \underline{v}_{i} & W_{i i} & \bar{v}_{i} \\
\hline
\end{array}
$$

$W \quad 0, \operatorname{rank} W=1 \quad$ convex in W
except this constraint

Equivalent feasible sets

$\mathbf{V}:=\{V$: quadratic constraints $\}$

QCQP: n variables

SDP: n^{2} vars !

$\mathbf{W}:=\{W: \underline{\text { linear }}$ constraints $\} \cap\{W \geq 0$ rant $\}$ idea: $W=V V^{H}$

Feasible set

only $n+2 m$ vars !

$$
y_{j k: k \sim j}^{H}\left(\left|V_{j}\right|^{2} \quad V_{j} V_{k}^{H}\right): \text { only }\left|V_{j}\right|^{2} \text { and } V_{j} V_{k}^{H}
$$

corresponding to edges (j, k) in G !
min $\operatorname{tr} C V V^{H}$
subject to $\underline{s}_{j} \quad \operatorname{tr}\left(Y_{j} V V^{H}\right) \quad \bar{s}_{j} \quad \underline{v}_{j} \quad\left|V_{j}\right|^{2} \quad \bar{v}_{j}$
V

Feasible set

only $n+2 m$ vars !

partial matrix W_{G} defined on G

$$
W_{G}:=\left\{\left[W_{G}\right]_{j j},\left[W_{G}\right]_{j k} \mid j, j k \quad G\right\}
$$

Kircchoff's laws depend directly only on W_{G}

Example

$W_{11} \quad \mathrm{~W}_{12} \quad \mathrm{~W}_{13} \quad \mathrm{~W}_{14} \quad \mathrm{~W}_{15}$
$\begin{array}{lllll}W_{21} & \mathrm{~W}_{22} & \mathrm{~W}_{23} & \mathrm{~W}_{24} & \mathrm{~W}_{25}\end{array}$
$W=\begin{array}{lllll}W_{31} & \mathrm{~W}_{32} & \mathrm{~W}_{33} & \mathrm{~W}_{34} & \mathrm{~W}_{35}\end{array}$
$\begin{array}{lllll}W_{41} & \mathrm{~W}_{42} & \mathrm{~W}_{43} & \mathrm{~W}_{44} & \mathrm{~W}_{45}\end{array}$
$W_{51} \quad \mathrm{~W}_{52} \quad \mathrm{~W}_{53} \quad \mathrm{~W}_{54} \quad \mathrm{~W}_{55}$

$$
\begin{array}{ccccc}
W_{11} & \mathrm{~W}_{12} & \mathrm{~W}_{13} \\
W_{21} & \mathrm{~W}_{22} & & & \\
W_{G}= & \mathrm{W}_{25} \\
W_{31} & & \mathrm{~W}_{33} & \mathrm{~W}_{34} & \\
& & \mathrm{~W}_{43} & \mathrm{~W}_{44} & \mathrm{~W}_{45} \\
& \mathrm{~W}_{52} & \mathrm{~W}_{54} & \mathrm{~W}_{55}
\end{array}
$$

Want to solve for W_{G} $n+2 m$ variables

SDP solves for $W \quad \mathbf{C}^{n^{2}}$
n^{2} variables

Feasible sets

OPF $\quad \mathbf{V}:=\left\{\begin{array}{llllll}V \mid \underline{s}_{j} & \underbrace{\operatorname{tr}\left(Y_{j} V V^{H}\right)} & \bar{s}_{j}, & \underline{v}_{j} & \left|V_{j}\right|^{2} & \bar{v}_{j}\end{array}\right\}$
SDP
$\mathbf{W}:=\left\{\begin{array}{lllll}\text { nonconvexity }\end{array}\right.$

Feasible sets

OPF $\quad \mathbf{V}:=\left\{\left.V\left|\underline{s}_{j} \operatorname{tr}\left(Y_{j} V V^{H}\right) \quad \bar{s}_{j}, \quad \underline{v}_{j} \quad\right| V_{j}\right|^{2} \quad \bar{v}_{j}\right\}$
SDP

$$
\mathbf{W}:=\left\{W \mid \underline{s}_{j} \quad \operatorname{tr}\left(Y_{j} W\right) \quad \bar{s}_{j}, \underline{v}_{j} \quad W_{j j} \quad \bar{v}_{j}\right\} \quad \begin{cases}W & 0, \text { rank-1 }\}\end{cases}
$$

first idea:
$\mathbf{W}_{G}:=\left\{W_{G} \mid \underline{s}_{j} \operatorname{tr}\left(Y_{j} W_{G}\right) \quad \bar{s}_{j}, \underline{v}_{j} \quad\left[\begin{array}{lll}\left.W_{G}\right]_{j j} & \left.\bar{v}_{j}\right\}\end{array} \quad \begin{cases}W_{G} & 0, \text { rank-1 }\}\end{cases}\right.\right.$
W_{G} is equivalent to V when G is chordal Not equivalent otherwise ...

Equivalent feasible sets

$\mathbf{W}_{c(G)}:=\left\{W_{c(G)}\right.$: linear constraints $\}$
idea: $W_{c(G)}=\left(V V^{H}\right.$ on $\left.c(G)\right)$
$\mathbf{W}:=\{W$: linear constraints $\} \cap\{W \geq 0$ rank- 1$\}$ idea: $W=V V^{H}$

Equivalent feasible sets

$\mathbf{W}_{c(G)}:=\left\{W_{c(G)}\right.$: linear constraints $\} \cap\left\{W_{c(G)} \geq 0\right.$ rank-1 $\}$ idea: $W_{c(G)}=\left(V V^{H}\right.$ on $\left.c(G)\right)$
$\mathbf{W}:=\{W$: linear constraints $\} \cap\{W \geq 0$ rank- 1$\}$ idea: $W=V V^{H}$

Equivalent feasible sets

$\mathbf{W}_{G}:=\left\{W_{G}: \underline{\text { linear constraints }\}}\right.$
idea: $W_{G}=\left(V V^{H}\right.$ only on $\left.G\right)$
 idea: $W_{c(G)}=\left(V V^{H}\right.$ on $\left.c(G)\right)$
$\mathbf{W}:=\{W: \underline{\text { linear constraints }}\} \cap\{W \geq 0$ rank -1$\}$ idea: $W=V V^{H}$

Equivalent feasible sets

$\mathbf{W}_{G}:=\left\{W_{G}: \underline{\text { linear constraints }}\right\} \cap\left\{\begin{array}{l}W(j, k) \geq 0 \text { rank }-1, \\ \text { cycle cond on } \angle W_{j k}\end{array}\right\}$
idea: $W_{G}=\left(V V^{H}\right.$ only on $\left.G\right)$
 idea: $W_{c(G)}=\left(V V^{H}\right.$ on $\left.c(G)\right)$
$\mathbf{W}:=\{W: \underline{\text { linear constraints }}\} \cap\{W \geq 0$ rank -1$\}$ idea: $W=V V^{H}$

Cycle condition

local $\quad W_{G}(j, k) \succeq 0, \operatorname{rank} W_{G}(j, k)=1, \quad(j, k) \in E$.
global

$$
\sum_{(j, k) \in c}\left[W_{G}\right]_{j k}=0 \quad \bmod 2 \pi \longleftarrow \begin{aligned}
& \text { cycle } \\
& \text { cond }
\end{aligned}
$$

Equivalent feasible sets

Bose, Low, Chandy Allerton 2012
Bose, Low, Teeraratkul, Hassibi TAC2014

Equivalent feasible sets

Theorem: $\begin{array}{llll}\mathbf{V} & \mathbf{W} & \mathbf{W}_{c(G)} & \mathbf{W}_{G}\end{array}$

Given $W_{G} \quad \mathbf{W}_{G}$ or $W_{c(G)} \quad \mathbf{W}_{c(G)}$ there is unique completion $W \quad \mathbf{W}$ and unique $V \quad \mathbf{V}$

Can minimize cost over any of these sets, but ...

Equivalent feasible sets

$\mathbf{W}_{G}:=\left\{W_{G}: \underline{\text { linear constraints }}\right\} \cap\left\{\begin{array}{l}W(j, k) \geq 0 \text { rank-1, } \\ \text { cycle cond }\end{array}\right\}$
idea: $W_{G}=\left(V V^{H}\right.$ only on $\left.G\right)$
$\mathbf{W}_{c(G)}:=\left\{W_{c(G)}\right.$: linear constraints $\} \cap\left\{W_{c(G)} \geq 0\right.$ nn-1 $\}$ idea: $W_{c(G)}=\left(V V^{H}\right.$ on $\left.c(G)\right)$
$\mathbf{W}:=\{W$: linear constraints $\} \cap\{W \geq 0$ rank-1 $\}$ idea: $W=V V^{H}$

Relaxations

Theorem
■ Radial $G: \mathbf{V} \subseteq \mathbf{W}^{+} \quad \mathbf{W}_{c(G)}^{+} \quad \mathbf{W}_{G}^{+}$
■ Mesh $G: \mathbf{V} \subseteq \mathbf{W}^{+} \quad \mathbf{W}_{c(G)}^{+} \subseteq \mathbf{W}_{G}^{+}$
Bose, Low, Chandy Allerton 2012
Bose, Low, Teeraratkul, Hassibi TAC2014

Relaxations

Theorem
■ Radial $G: \mathbf{V} \subseteq \mathbf{W}^{+} \quad \mathbf{W}_{c(G)}^{+} \quad \mathbf{W}_{G}^{+}$
■ Mesh $G: \mathbf{V} \subseteq \mathbf{W}^{+} \quad \mathbf{W}_{c(G)}^{+} \subseteq \mathbf{W}_{G}^{+}$
For radial networks: always solve SOCP !

Convex relaxations

OPF

$\min _{V} C(V)$ subject to $V \quad \mathbf{V}$
OPF-sdp:
$\min _{W} C\left(W_{G}\right) \quad$ subject to $\quad W \in \mathbb{W}^{+}$
OPF-ch:
$\min _{W_{c(G)}} C\left(W_{G}\right) \quad$ subject to $\quad W_{c(G)} \in \mathbb{W}_{c(G)}^{+}$
OPF-socp:
$\min _{W_{G}} C\left(W_{G}\right) \quad$ subject to $\quad W_{G} \in \mathbb{W}_{G}^{+}$
W_{G}

Recap: convex relaxations

SDP relaxation

- tightest superset
- max \# variables
- slowest

Chordal relaxation

- equivalent superset
- much faster for sparse networks

SOCP relaxation

- coarsest superset
- min \# variables
- fastest

Recap: convex relaxations

For radial network: always solve SOCP!

Examples

Real Power

- Relaxation is exact if \mathbf{X} and \mathbf{Y} have same Pareto front
- SOCP is faster but coarser than SDP

Bose, Low, Teeraratkul, Hassibi TAC 2014

SOCP more efficient than SDP

Relaxations are exact in all cases

- IEEE networks: IEEE 13, 34, 37, 123 buses (0\% DG)
- SCE networks 47 buses (57\% PV), 56 buses (130% PV)
- Single phase; SOCP using BFM
- Matlab 7.9.0.529 (64-bit) with CVX 1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 Due CPU and 4GB 1067MHz DDR3 memory

Outline

Mathematical preliminaries

Bus injection model

■ OPF formulation
■ 3 convex relaxations \& relationship
Branch flow model
■ OPF formulation
■ SOCP relaxation \& equivalence

■ Radial networks
■ Mesh networks

Branch flow model

graph model G : directed

Branch flow model

$$
\begin{aligned}
& V_{i} \quad V_{j}=z_{i j} I_{i j} \\
& S_{i j}=V_{i} I_{i j}^{H}
\end{aligned}
$$

for all $i \rightarrow j$
Kirchhoff law
for all $i \rightarrow j$
power definition

Branch flow model

$$
\begin{array}{lll}
V_{i} V_{j}=z_{i j} I_{i j} & \text { for all } i \rightarrow j & \text { Kirchhoff law } \\
S_{i j}=V_{i} I_{i j}^{H} & \text { for all } i \rightarrow j & \text { power definition } \\
\sum_{i \rightarrow j}\left(S_{i j} \quad z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j}=\sum_{j \rightarrow k} S_{j k} & \text { for all } j & \text { power balance }
\end{array}
$$

Power flow problem:
Given (z, s) find (S, I, V)

isolated sols

Recap

Bus injection model

$$
s_{j}=\operatorname{tr}\left(Y_{j} V V^{H}\right)
$$

Branch flow model

$$
\begin{aligned}
V_{i} \quad V_{j} & =z_{i j} I_{i j} \\
S_{i j} & =V_{i} I_{i j}^{H} \\
\sum_{j \rightarrow k} S_{j k} & =\sum_{i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & \left.z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j}
\end{array}\right.
\end{aligned}
$$

$$
(S, I, V, s) \quad \mathbf{C}^{2(m+n+1)}
$$

solution set

Equivalence

Theorem: V X

- BIM and BFM are equivalent in this sense
- Any result in one model is in principle provable in the other,
- ... but some results are easier to formulate or prove in one than the other
- BFM seems to be much more numerically stable (radial networks)
$(V, s) \quad \mathbf{C}^{2(n+1)}$
$(S, I, V, s) \quad \mathbf{C}^{2(m+n+1)}$

OPF: branch flow model

$\begin{array}{ll}\min & f(x) \\ \text { over } & x:=(S, I, V, s) \\ \text { s. t. } & \end{array}$

OPF: branch flow model

$\min \quad f(x)$
over $\quad x:=(S, I, V, s)$
$\begin{array}{lllllll}\text { s. t. } & \underline{S}_{j} & s_{j} & \bar{s}_{j} & \underline{v}_{j} & v_{j} & \bar{v}_{j}\end{array}$

Summary: OPF (branch flow model)

$\min f(x)$
over $\quad x:=(S, I, V, s)$
$\begin{array}{lllllll}\text { s. t. } & \underline{s}_{j} & s_{j} & \bar{s}_{j} & \underline{v}_{j} & v_{j} & \bar{v}_{j}\end{array}$

nonconvex (quadratic)

Literature

Convex relaxations of OPF

relaxation	model	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC
SOCP	BFM	Farivar et al 2011 SGC Farivar, Low 2013 TPS	Farivar et al 2011 SGC Farivar, Low 2013 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Branch flow model

Branch flow model

$$
\begin{aligned}
& \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & z_{i j}\left|I_{i j}\right|^{2}
\end{array}\right)+s_{j} \\
& V_{i} \quad V_{j}=z_{i j} I_{i j} \\
& V_{i} I_{i j}^{H}=S_{i j} \\
& (S, I, V, s) \mathbf{C}^{2(m+n+1)} \\
& \sum_{j \rightarrow k} P_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
P_{i j} & \left.r_{i j}\left|I_{i j}\right|^{2}\right)+p_{j} \\
Q_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
Q_{i j} & \left.x_{i j}\left|I_{i j}\right|^{2}\right)+q_{j}
\end{array}\right.
\end{array} . \begin{array}{ll}
\end{array}\right.
\end{aligned}
$$

SOCP relaxation

Branch flow model

Branch flow model

$$
\begin{array}{ll}
\sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & \left.z_{i j}\left|I_{i j}\right|^{2}\right)+s_{j} \\
V_{i} \quad V_{j}=z_{i j} I_{i j} & S_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & z_{i j} \ell_{i j}
\end{array}\right)+s_{j} \\
v_{i} & v_{j}=2 \operatorname{Re}\left(z_{i j}^{H} S_{i j}\right) \quad\left|z_{i j}\right|^{2} \ell_{i j} \\
V_{i} I_{i j}^{H}=S_{i j} & v_{i} \ell_{i j}=\left|S_{i j}\right|^{2}
\end{array}\right.
\end{array}
$$

$$
(S, I, V, s) \quad \mathbf{C}^{2(m+n+1)}
$$

$$
(S, \ell, v, s) \quad \mathbf{R}^{3(m+n+1)}
$$

DistFlow model for radial networks Baran and Wu 1989

Branch flow model

Branch flow model

$$
\sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(\left.\begin{array}{ll}
S_{i j} & z_{i j} \mid I_{i j}
\end{array}\right|^{2}\right)+S_{j} \quad \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & z_{i j} \ell_{i j}
\end{array}\right)+s_{j}
$$

$$
V_{i} \quad V_{j}=z_{i j} I_{i j}
$$

$$
v_{i} \quad v_{j}=2 \operatorname{Re}\left(z_{i j}^{H} S_{i j}\right) \quad\left|z_{i j}\right|^{2} \ell_{i j}
$$

$$
V_{i} I_{i j}^{H}=S_{i j}
$$

$$
v_{i} \ell_{i j} \quad\left|S_{i j}\right|^{2}
$$

$(S, I, V, s) \quad \mathbf{C}^{2(m+n+1)}$
$(S, \ell, v, s) \quad \mathbf{R}^{3(m+n+1)}$

Branch flow model

$\begin{aligned} \mathbf{X}^{+} & :=\left\{x: \underline{\text { linear constraints }\}} \underset{\text { soc }}{\left\{\ell_{j k} v_{j}\right.}|S|^{2}\right\} \\ & :=\begin{aligned} x: \ell_{j k} v_{j}=|S|^{2} \\ \text { cycle cond on } x\end{aligned}\end{aligned}$

Theorem $\quad \mathbf{X} \quad \mathbf{X}^{+}$

Cycle condition

A solution X satisfies the cycle condition if

$$
\text { s.t. } \sum_{x:=(S, \ell, v, s)}^{(x)} \bmod 2
$$

incidence matrix; depends on topology

$$
{ }_{j k}(x):=\left(\begin{array}{ll}
v_{j} & z_{j k}^{H} S_{j k}
\end{array}\right)
$$

BFM: SOCP relaxation of OPF

OPF: $\min _{x \mathbf{X}} f(x)$

SOCP: $\min _{x} \mathbf{x}^{+} f(x)$

Equivalence

Theorem
$\mathbf{W}_{G} \quad \mathbf{X}$ and $\mathbf{W}_{G}^{+} \quad \mathbf{X}^{+}$

BFM for radial networks

Table 5.3: Objective values and CPU times of CVX and IPM

\# bus	CVX		IPM		error	speedup
	obj	time(s)	obj	time(s)		
42	10.4585	6.5267	10.4585	0.2679	$-0.0 \mathrm{e}-7$	24.36
56	34.8989	7.1077	34.8989	0.3924	$+0.2 \mathrm{e}-7$	18.11
111	0.0751	11.3793	0.0751	0.8529	$+5.4 \mathrm{e}-6$	13.34
190	0.1394	20.2745	0.1394	1.9968	$+3.3 \mathrm{e}-6$	10.15
290	0.2817	23.8817	0.2817	4.3564	$+1.1 \mathrm{e}-7$	5.48
390	0.4292	29.8620	0.4292	2.9405	$+5.4 \mathrm{e}-7$	10.16
490	0.5526	36.3591	0.5526	3.0072	$+2.9 \mathrm{e}-7$	12.09
590	0.7035	43.6932	0.7035	4.4655	$+2.4 \mathrm{e}-7$	9.78
690	0.8546	51.9830	0.8546	3.2247	$+0.7 \mathrm{e}-7$	16.12
790	0.9975	62.3654	0.9975	2.6228	$+0.7 \mathrm{e}-7$	23.78
890	1.1685	67.7256	1.1685	2.0507	$+0.8 \mathrm{e}-7$	33.03
990	1.3930	74.8522	1.3930	2.7747	$+1.0 \mathrm{e}-7$	26.98
1091	1.5869	83.2236	1.5869	1.0869	$+1.2 \mathrm{e}-7$	76.57
1190	1.8123	92.4484	1.8123	1.2121	$+1.4 \mathrm{e}-7$	76.27
1290	2.0134	101.0380	2.0134	1.3525	$+1.6 \mathrm{e}-7$	74.70
1390	2.2007	111.0839	2.2007	1.4883	$+1.7 \mathrm{e}-7$	74.64
1490	2.4523	122.1819	2.4523	1.6372	$+1.9 \mathrm{e}-7$	74.83
1590	2.6477	157.8238	2.6477	1.8021	$+2.0 \mathrm{e}-7$	87.58
1690	2.8441	147.6862	2.8441	1.9166	$+2.1 \mathrm{e}-7$	77.06
1790	3.0495	152.6081	3.0495	2.0603	$+2.1 \mathrm{e}-7$	74.07
1890	3.8555	160.4689	3.8555	2.1963	$+1.9 \mathrm{e}-7$	73.06
1990	4.1424	171.8137	4.1424	2.3586	$+1.9 \mathrm{e}-7$	72.84

Recursive structure

- backward-forward sweep for PF solution

Advantages over BIM

- much faster
- much more stable numerically

OPF solution

OPF: extensions

Kim, Baldick 1997
Dall'Anese et al 2012
Lam et al 2012
Kraning et al 2013
Devane, Lestas 2013
Sun et al 2013
Li et al 2013

multiphase unbalanced

Dall'Anese et al 2012 Gan, Low 2014

applications

exactness (tree)

refs in SL, Part II TCNS 2014

moment/SoS, quadratic relaxation

Molzahn, Hiskens 2014 Josz et al 2014
Ghaddar et al 2014

Digression:

Branch flow model

for radial networks

BFM for radial networks

$$
\begin{aligned}
\sum_{j \rightarrow k} S_{j k} & =S_{i j} \quad z_{i j} \ell_{i j}+s_{j} \\
v_{i} \quad v_{j} & =2 \operatorname{Re}\left(z_{i j}^{H} S_{i j}\right) \quad\left|z_{i j}\right|^{2} \ell_{i j} \\
\ell_{i j} v_{i} & =\left|S_{i j}\right|^{2}
\end{aligned}
$$

DistFlow model
Baran and Wu 1989

$$
\begin{aligned}
& \ell_{i j}:=\left|I_{i j}\right|^{2} \\
& v_{i}:=\left|V_{i}\right|^{2}
\end{aligned}
$$

Advantages

- PF: recursive structure \rightarrow backward/forward sweep
- OPF: more numerically stable SOCP
- Linear approx. suitable for radial networks (unlike DC)
- Variables represent physical quantities

Lin DistFlow for radial networks

$\sum_{j \rightarrow k} S_{j k}^{\mathrm{ln}}=S_{i j}^{\mathrm{lin}}+s_{j}$

Linear DistFlow
Baran and Wu 1989

Advantages over DC power flow

- Includes voltages and reactive power as vars
- Allows nonzero resistance
- Accurate when line loss is small compared with with branch power flow
- ... more ...

Lin DistFlow for radial networks

$\sum_{j \rightarrow k} s_{k}^{\mathrm{sin}}=S_{j l}^{\mathrm{lin}}+s_{j}$

Linear DistFlow
 Baran and Wu 1989

$v_{i}^{\operatorname{lin}} \quad v_{j}^{\mathrm{lin}}=2 \operatorname{Re}\left(z_{i j}^{H} S_{i j}^{\mathrm{lin}}\right)$

- Explicit solution:

$$
\begin{aligned}
& S_{i j}^{\operatorname{lin}}=S_{k \mathbf{T}_{j}} S_{k} \\
& v_{j}^{\operatorname{lin}}=v_{0} \quad 2 \operatorname{Re}\left(z_{i k}^{H} S_{i k}^{\operatorname{lin}}\right)
\end{aligned}
$$

- Bounding true solution: $v_{j} \quad v_{j}^{\text {lin }} \quad S_{i j} \quad S_{i j}^{\text {lin }}$

Outline

Mathematical preliminaries

Bus injection model
■ OPF formulation
■ 3 convex relaxations \& relationship
Branch flow model
■ OPF formulation
■ SOCP relaxation \& equivalence
Exact relaxation
■ Radial networks
■ Mesh networks
Multiphase unbalanced networks

Exact relaxation

A relaxation is exact if an optimal solution of the original OPF can be recovered from every optimal solution of the relaxation

Summary of sufficient conds

$\left.\begin{array}{||c||c|c|c|c||}\hline \hline \text { type } & \text { condition } & \text { model } & \text { reference } & \text { remark } \\ \hline \hline \text { A } & \text { power injections } & \text { BIM, BFM } & {[25],[26],[27],[28],[29]} & \\ & & & {[30],[16],[17]}\end{array}\right]$

TABLE I: Sufficient conditions for radial (tree) networks.

network	condition	reference	remark
with phase shifters	type A, B, C	$[17$, Part II], [37]	equivalent to radial networks
direct current	type A	$[17$, Part I], [19], [38]	assumes nonnegative voltages
	type B	$[39],[40]$	assumes nonnegative voltages

TABLE II: Sufficient conditions for mesh networks

1. QCQP over tree

QCQP $\left(C, C_{k}\right)$

$$
\begin{array}{ll}
\text { min } & x^{*} C x \\
\text { over } & x
\end{array} \mathbf{C}^{n}
$$

$$
\begin{array}{lllll}
\text { s.t. } & x^{*} C_{k} x & b_{k} & k & K
\end{array}
$$

graph of QCQP
$G\left(C, C_{k}\right)$ has edge $(i, j) \Leftrightarrow$
$C_{i j} \neq 0$ or $\left[C_{k}\right]_{i j} \neq 0$ for some k
QCQP over tree
$G\left(C, C_{k}\right)$ is a tree

1. Linear separability

QCQP $\left(C, C_{k}\right)$ $\min x^{*} C x$ over $\quad x \quad \mathbf{C}^{n}$ s.t.
$x^{*} C_{k} x$
b_{k}
k K

Key condition
$i \sim j:\left(C_{i j},\left[C_{k}\right]_{i j}, \quad k\right)$ lie on half-plane through 0

Theorem

SOCP relaxation is exact for QCQP over tree

Implication on OPF

Not both lower \& upper bounds on real \& reactive powers at both ends of a line can be finite

2. Voltage upper bounds

v_{0} given

$\left(p_{0}, q_{0}\right)$

geometric insight

$\left(p_{1}, q_{1}\right)$ given
vars are: $\left(p_{0}, q_{0}\right), \ell, v_{1}$

$$
\begin{aligned}
& p_{0}^{2}+q_{0}^{2}=\ell \\
& p_{0}-r \ell=-p_{1}, \quad q_{0}-x \ell=-q_{1} \\
& v_{1}-v_{0}=2\left(r p_{0}+x q_{0}\right)-|z|^{2} \ell
\end{aligned}
$$

2. Voltage upper bounds

when there is no voltage constraint

- feasible set : 2 intersection pts
- relaxation: line segment
- exact relaxation: c is optimal
\ldots as long as cost increasing in ℓ, p_{0}, q_{0}

2. Voltage upper bounds

$$
\left(p_{0}, q_{0}\right)
$$

$\left(p_{1}, q_{1}\right)$ given

voltage lower bound (upper bound on l) does not affect relaxation

(a) V oltage constraint not binding
(b) Voltage constraint binding

2. Voltage upper bounds

OPF: $\min _{x \mathbf{X}} f(x)$ s.t. $\underline{v} \quad v \quad \bar{v}, s$
SOCP: $\min _{x} f(x) \quad$ s.t. $\underline{v} \quad v \quad \bar{v}, s$

Key conditions:

- $v^{\operatorname{lin}}(s) \quad \bar{v}$
voltages if network were lossless
- Jacobian condition if upward current were reduced
$\underline{A}_{\dot{i t}_{t}} \cdot \underline{\underline{H}}_{\dot{t}_{0}} z_{\dot{t}_{a_{1}}}>0$ for all $1 \leq t \leq t^{\mu}<k$
Theorem
SOCP relaxation is exact for radial networks

2. Voltage upper bounds

OPF: $\min _{x \mathbf{X}} f(x)$ s.t. $\underline{v} \quad v \quad \bar{v}, s$
SOCP: $\min _{x} f(x) \quad$ s.t. $\underline{\mathbf{x}^{+}}v\quad v \quad \bar{v}, S$

Key conditions:

- $v^{\operatorname{lin}}(s) \quad \bar{v}$
- Jacobian condition
$\underline{A}_{\dot{i t}_{t}} \cdots \underline{\underline{1}}_{\dot{t}_{0}} z_{\dot{i}_{q_{1}}}>0$ for all $1 \leq t \leq t^{\mu}<k$
satisfied with large margin in IEEE circuits and SCE circuits

Theorem
SOCP relaxation is exact for radial networks

3. Voltage angles

m in $C(p)$
p, P, V

$$
\begin{aligned}
& \text { s.t. } \underline{p}_{j} \leq p_{j} \leq \bar{p}_{j} \\
& \underline{q}_{k} \leq q_{k} \leq \bar{q}_{k} \longleftarrow \text { • Line flows } \\
& p_{j}=\hat{\mathbf{A}} P_{k} \quad \text { - Stability } \\
& k: k \leqslant-j \\
& P_{k}=/ V_{j}{ }^{2} g_{k}-/ V_{j} / /_{k} / g_{k k} \cos q_{k} \\
& +/ V_{j} / / V_{k} / b_{k} \sin q_{k}
\end{aligned}
$$

assumptions:

- fixed voltage magnitudes
- real power only

Zhang \& Tse, TPS 2013 Lavaei, Zhang, Tse, 2012

3. Voltage angles

OPF:

$$
\begin{aligned}
\min _{p, \theta} & C(p) \\
\text { s.t. } & \underline{p}_{j} \leq p_{j} \leq \bar{p}_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\theta}_{j k} \leq \theta_{j k} \leq \bar{\theta}_{j k} \\
& p_{j}=\sum_{k: k \sim j} g_{j k}-g_{j k} \cos \theta_{j k}+b_{j k} \sin \theta_{j k}
\end{aligned}
$$

Key condition: $\tan { }^{1} \frac{x_{j k}}{r_{j k}} \frac{\dot{\div}}{\dot{\circ}}{ }_{-j k}-_{j k}<\tan ^{1} \frac{x_{j k}}{r_{j k}} \dot{\vdots}$
Theorem
SOCP relaxation is exact for radial networks $\left(\left|V_{j}\right|\right.$ constant $)$

Mesh networks with phase shifter

ideal phase shifter

Mesh networks with phase shifter

BFM without phase shifters:

$$
\begin{aligned}
I_{i j} & =y_{i j}\left(V_{i}-V_{j}\right) \\
S_{i j} & =V_{i} I_{i j}^{K} \\
S_{j} & =\int_{k: j!k}^{S_{j k}-} \begin{array}{l}
\mathrm{X}::!!j
\end{array}\left(S_{i j}-z_{i j} / I_{i j} F^{2}\right)+y_{j}^{\kappa-} / V_{j} f^{2}
\end{aligned}
$$

BFM with phase shifters:

$$
\begin{aligned}
I_{i j} & =y_{i j} V_{i}-V_{j} e^{-\mathrm{i} \varphi_{i j}} \longleftrightarrow{ }_{i j} \\
S_{i j} & V_{i} I_{i j}^{K} \\
S_{j} & =S_{k: j!k}^{S_{j k}-} \mathrm{X}_{i: i!}\left(S_{i j}-z_{i j} / I_{i j} f^{2}\right)+y_{j}^{k} / V_{j}{ }^{2}
\end{aligned}
$$

Convexification of mesh networks

OPF

OPF-ar $\min _{x} f(h(x))$ s.t. $x \quad \mathbf{Y}$

OPF-ps $\quad \min _{x,} f(h(x))$ s.t. $\quad x \quad \overline{\mathbf{X}}$ optimize over phase shifters as well

Theorem

- $\overline{\mathbf{X}}=\mathbf{Y}$
- Need phase shifters only outside spanning tree

Cycle condition

A solution x satisfies the cycle condition if

- without PS:

$$
\begin{array}{r}
\text { s.t. } B=(x) \quad \bmod 2 \\
x:=(S, \ell, v, s) \\
{ }_{j k}(x):=\left(\begin{array}{ll}
v_{j} & \left.z_{j k}^{H} S_{j k}\right)
\end{array}\right)
\end{array}
$$

- without PS:

$$
\text { , s.t. } B=(x) \quad \bmod 2
$$

can always satisfy with PS at strategic locations

Convexification of mesh networks

$$
\text { OPF-ps } \quad \min _{x,} f(h(x)) \quad \text { s.t. } \quad x \quad \overline{\mathbf{X}}
$$ optimize over phase shifters as well

Optimization of ϕ

- Min \# phase shifters (\#lines - \#buses + 1)
- Min $\left\|\|_{2}\right.$: NP hard (good heuristics)
- Given existing network of PS, min \# or angles of additional PS

Examples

		No PS	With PS
Test cases	\# links (m)	Min loss (OPF, MW)	Min loss (OPF-cr, MW)
IEEE 14-Bus	20	0.546	0.545
IEEE 30-Bus	41	1.372	1.239
IEEE 57-Bus	80	11.302	10.910
IEEE 118-Bus	186	9.232	8.728
IEEE 300-Bus	411	211.871	197.387
New England 39-Bus	46	29.915	28.901
Polish (case2383wp)	2,896	433.019	385.894
Polish (case2737sop)	3,506	130.145	109.905

Examples

Test cases

\# links	
(m)	\# active PS
$\left\|\phi_{i}\right\|>0.1^{\circ}$	

Min \#PS (${ }^{\circ}$) $\left[\phi_{\min }, \phi_{\max }\right]$
IEEE 14-Bus
IEEE 30-Bus
IEEE 57-Bus
IEEE 118-Bus
IEEE 300-Bus
New England 39-Bus Polish (case2383wp) Polish (case2737sop)

20	2	(10%)	$[-2.09,0.58]$
41	3	(7%)	$[-0.20,4.47]$
80	19	(24%)	$[-3.47,3.15]$
186	36	(19%)	$[-1.95,2.03]$
411	101	(25%)	$[-13.3,9.40]$
46	7	(15%)	$[-0.26,1.83]$
2,896	373	(13%)	$[-19.9,16.8]$
3,506	395	(11%)	$[-10.9,11.9]$

Examples

Test cases

| 20 | $[-2.09,0.58]$ | $[-0.63,0.12]$ |
| ---: | :---: | :---: | :---: |
| 41 | $[-0.20,4.47]$ | $[-0.95,0.65]$ |
| 80 | $[-3.47,3.15]$ | $[-0.99,0.99]$ |
| 186 | $[-1.95,2.03]$ | $[-0.81,0.31]$ |
| 411 | $[-13.3,9.40]$ | $[-3.96,2.85]$ |
| 46 | $[-0.26,1.83]$ | $[-0.33,0.33]$ |
| 2,896 | $[-19.9,16.8]$ | $[-3.07,3.23]$ |
| 3,506 | $[-10.9,11.9]$ | $[-1.23,2.36]$ |

\# links	Min \#PS $\left(^{\circ}\right.$
(m)	$\left[\phi_{\min }, \phi_{\max }\right.$

$\operatorname{Min}\|\phi\|^{2}\left({ }^{\circ}\right)$ $\left[\phi_{\min }, \phi_{\max }\right]$

IEEE 14-Bus
IEEE 30-Bus
IEEE 57-Bus
IEEE 118-Bus
IEEE 300-Bus
New England 39-Bus Polish (case2383wp) Polish (case2737sop)

Outline

Mathematical preliminaries
Bus injection model

- OPF formulation
- 3 convex relaxations \& relationship

Branch flow model

- OPF formulation
- SOCP relaxation \& equivalence

Exact relaxation
■ Sufficient conditions
Multiphase unbalanced networks

Distribution systems

Mostly radial networks

Multiphase unbalanced

- Lines may not be transposed
- Loads may not be balanced

Some references
■ Kersting (2002)
■ Shirmohammadi, et al (1988), Chen et al (1991)

- Lo and Zhang (1993), Arboleya et al (2014)

■ Dall'Anese, Zhu and Giannakis (2012)

Bus injection model (phase frame)

3-phase balanced

(positive sequence)

n
3-phase unbalanced

$$
\begin{array}{rllllll}
I_{j k}^{a} & y_{j k}^{a a a} & y_{j k}^{a b} & y_{j k}^{a c} & V_{j}^{a} & V_{k}^{a} \\
I_{j k}^{b}= & y_{j k}^{b a} & y_{j k}^{b b} & y_{j k}^{b c} & V_{j}^{b} & V_{k}^{b} \dot{\bar{\vdots}} \overline{\dot{\vdots}} \\
I_{j k}^{c} & y_{j k}^{c a} & y_{j k}^{c b} & y_{j k}^{c c} & V_{j}^{c} & V_{k}^{c} \dot{\bar{\prime}}
\end{array}
$$

Assume 3 phases everywhere. See paper for general multiphase

Bus injection model (phase frame)

3-phase balanced

(positive sequence)

$$
\begin{array}{ll}
V_{j}^{a} & V_{k}^{a} \\
V_{j}^{b} & V_{k}^{b} \doteqdot \dot{\vdots} \\
V_{j}^{c} & V_{k}^{c}
\end{array}
$$

3-phase unbalanced

$$
\begin{array}{ccccccc}
I_{j k}^{a} & y_{j k}^{a a} & y_{j k}^{a b} & y_{j k}^{a c} & V_{j}^{a} & V_{k}^{a} & \vdots \\
I_{j k}^{b}= & y_{j k}^{b a} & y_{j k}^{b b} & y_{j k}^{b c} & V_{j}^{b} & V_{k}^{b} & \vdots \\
I_{j k}^{c} & y_{j k}^{c a} & y_{j k}^{c b} & y_{j k}^{c c} & V_{j}^{c} & V_{k}^{c} & \vdots
\end{array}
$$

$$
\begin{gathered}
\left.I_{j k}=\underset{\substack{y_{j k} \\
\uparrow \\
3 \times 3 \text { matrix }}}{ } \begin{array}{ll}
V_{j} & V_{k}
\end{array}\right) \\
\hline
\end{gathered}
$$

Admittance matrix

per-phase:

$$
Y=\begin{array}{ccc}
y_{13} & 0 & y_{13} \\
0 & y_{23} & y_{23} \\
y_{13} & y_{23} & y_{13}+y_{23}
\end{array}
$$

$N \times N$ matrix

Admittance matrix (phase frame)

3-phase:

$$
\begin{aligned}
& \begin{array}{lll}
y_{13}^{a a} & y_{13}^{a b} & y_{13}^{a c}
\end{array} \\
& \begin{array}{llll}
y_{13}^{b a} & y_{13}^{b b} & y_{13}^{b c}
\end{array} \\
& \begin{array}{llll}
y_{13}^{c a} & y_{13}^{c b} & y_{13}^{c c}
\end{array} \\
& \begin{array}{lll}
y_{13}^{a a} & y_{13}^{a b} & y_{13}^{a c}
\end{array} \\
& 0 \\
& y_{13}^{b a} \quad y_{13}^{b b} \quad y_{13}^{b c} \\
& \begin{array}{llll}
y_{13}^{c a} & y_{13}^{c b} & y_{13}^{c c}
\end{array} \\
& Y= \\
& 0 \\
& {\left[y_{23}\right]} \\
& {\left[y_{23}\right]} \\
& {\left[y_{13}\right] \quad\left[y_{23}\right] \quad\left[y_{13}\right]+\left[y_{23}\right]} \\
& I=Y V \underbrace{}_{3 N \times 3 N \text { matrix }}
\end{aligned}
$$

Single-phase equivalent

Single-phase equivalent is a chordal graph for radial networks!

- with a maximal clique for each line (j, k)
\qquad

BIM: OPF and relaxations

OPF: reduced to single-phase case
■ Each node is indexed by (bus, phase)

Standard SDP relaxation applies
■ Dall'Anese, Zhu and Giannakis (TSG 2012)
■ Distribute OPF into areas (maximal cliques) in chordal extension

Chordal relaxation applies

- Simpler for large sparse networks
- Gan and L (PSCC 2014)

BFM for radial: advantages

SOCP relaxation

- Much more scalable than SDP

Linearized model

- Baran and Wu (TPD 1989)

■ More suitable for distribution systems
\square nonzero R, variable V, includes Q (unlike DC)
\square explicit solution given power injections
Much more stable numerically than BIM

ALL extend to multiphase unbalanced case !

BFM for radial

$$
\begin{aligned}
& \text { Single phase } \\
& V_{i} \quad V_{j}=z_{i j} I_{i j} \\
& S_{i j}=V_{i} I_{i j}^{*} \\
& \sum_{j \rightarrow k} S_{j k}=\sum_{i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & \left.z_{i j}\left|I_{i j}\right|^{2}\right)+V_{i} I_{i j}^{*} \\
\sum_{j \rightarrow k} \operatorname{diag}\left(S_{j k}\right)=\sum_{i \rightarrow j} \operatorname{diag}\left(\begin{array}{ll}
S_{i j} & \left.z_{i j} I_{i j} I_{i j}^{*}\right)+s_{j}
\end{array}\right.
\end{array} \text { vector } \longrightarrow V_{i j} I_{i j}\right.
\end{aligned}
$$

SOCP relaxation: single phase

 power flow solutions: $x:=(S, \ell, v, s)$ satisfy$$
\begin{aligned}
& \left.\begin{array}{l}
\sum_{k: j \rightarrow k} S_{j k}=\sum_{i: i \rightarrow j}\left(S_{i j} \quad z_{i j} \ell_{i j}\right)+s_{j} \\
v_{i} \quad v_{j}=2 \operatorname{Re}\left(z_{i j}^{*} S_{i j}\right)\left|z_{i j}\right|^{2} \ell_{i j}
\end{array}\right\} \text { linear } \\
& \ell_{i j} v_{i}=\left|S_{i j}\right|^{2} \\
& 1 \\
& \text { nonconvexity } \\
& \ell_{i j}:=\left|I_{i j}\right|^{2} \\
& v_{i}:=\left|V_{i}\right|^{2} \\
& \text { Baran and Wu } 1989
\end{aligned}
$$

SOCP relaxation: single phase

 power flow solutions: $x:=(S, \ell, v, s)$ satisfy$$
\begin{array}{rlr}
\sum_{k: j \rightarrow k} S_{j k}=\sum_{i: i \rightarrow j}\left(\begin{array}{ll}
S_{i j} & \left.z_{i j} \ell_{i j}\right)+s_{j} \\
v_{i} \quad v_{j} & =2 \operatorname{Re}\left(z_{i j}^{*} S_{i j}\right)\left|z_{i j}\right|^{2} \ell_{i j}
\end{array}\right\} \text { linear } \\
& \\
& \ell_{i j} v_{i} & \geq\left|S_{i j}\right|^{2} \\
& \uparrow & \begin{array}{l}
\ell_{i j}:=\mid I_{i j} \\
v_{i}:=\left|V_{i}\right|^{2}
\end{array}
\end{array}
$$

second-order cone

SOCP relaxation: multiphase

Single phase

Multiphase

$$
\sum_{j \rightarrow k} \operatorname{diag}\left(S_{j k}\right)=\sum_{i \rightarrow j} \operatorname{diag}\left(S_{i j} \quad z_{i j} \ell_{i j}\right)+s_{j}
$$

$$
3 \times 3 \text { matrix } \longrightarrow v_{i} v_{j}=\left(S_{i j} z_{i j}^{*}+z_{i j} S_{i j}^{*}\right) \quad z_{i j} \ell_{i j} z_{i j}^{*}
$$

$$
\begin{aligned}
& \sum_{k: j \rightarrow k} S_{j k}=\sum_{i: i \rightarrow j}\left(S_{i j} \quad z_{i j} \ell_{i j}\right)+s_{j} \\
& v_{i} \quad v_{j}=\left(S_{i j} z_{i j}^{*}+z_{i j} S_{i j}^{*}\right) \quad\left|z_{i j}\right|^{2} \ell_{i j}
\end{aligned}
$$

SOCP relaxation: multiphase

Single phase

$$
\ell_{i j} v_{i}\left|S_{i j}\right|^{2} \quad \begin{align*}
& v_{i} S_{i j} \tag{0}\\
& S_{i j}^{*} \ell_{i j}
\end{align*}
$$

Multiphase
exact: $\quad \ell_{i j} v_{i}=\left|S_{i j}\right|^{2}$
recovery:

$$
\begin{aligned}
& v_{i} S_{i j} \\
& S_{i j}^{H} \quad \ell_{i j}
\end{aligned}=\begin{aligned}
& V_{i} \\
& I_{i j}
\end{aligned} V_{i}^{H} I_{i j}^{H}
$$

Equivalence: multiphase

Theorem

- BFM and BIM are equivalent

■ Linear bijection between solution/feasible sets

Theorem

- Relaxation is exact for BFM iff it is for BIM

Simulation results: multiphase

network	BIM-SDP			BFM-SDP		
	value	time	ratio	value	time	ratio
IEEE 13-bus	152.7	1.05	$8.2 \mathrm{e}-9$	152.7	0.74	$2.8 \mathrm{e}-10$
IEEE 34-bus	-100.0	2.22	1.0	279.0	1.64	$3.3 \mathrm{e}-11$
IEEE 37-bus	212.3	2.66	$1.5 \mathrm{e}-8$	212.2	1.95	$1.3 \mathrm{e}-10$
IEEE 123-bus	-8917	7.21	$3.2 \mathrm{e}=2$	229.8	8.86	$0.6 \mathrm{e}-11$
Rossi 2065-bus	-100.0	115.50	1.0	19.15	96.98	$4.3 \mathrm{e}-8$

numerically
unstable
numerically stable

BFM is much more numerically stable

Linear approximation in BFM

Single phase

- Simple DistFlow equations
- Baran and Wu (1989)

Multiphase
■ Extension to multiphase unbalanced networks

- Closed-form solution given power injections

Summary

Bus injection model

- OPF formulation
- 3 convex relaxations \& relationship

Branch flow model

- OPF formulation
- SOCP relaxation \& equivalence

Exact relaxation

- Radial networks

■ Mesh networks
Multiphase unbalanced networks

