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Mathematical preliminaries

Bus injection model
◼ OPF formulation

◼ 3 convex relaxations & relationship

Branch flow model
◼ OPF formulation

◼ SOCP relaxation & equivalence
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◼ Radial networks

◼ Mesh networks

Multiphase unbalanced networks



Outline

Largely following a 2-part tutorial

SL, Convex relaxation of OPF, 2014

http://netlab.caltech.edu



Mathematical preliminaries

◼ Semidefinite programs

◼ QCQP and semidefinite relaxations

◼ Partial matrices and completions

◼ Chordal relaxation



2nd order cone program (SOCP)

min          c0

H x

s.t.           Ckx+bk  £   ck
H x+ dk         k ³1

•

• || || : Euclidean norm

• Feasible set is 2nd order cone and convex

• Includes LP, convex QP as special cases

• Special case of SDP, but much simpler 

computationally

Ck ÎR
nk-1( )´n,   bk ÎRnk-1,   ck ÎCn,  dk ÎR



SOCP in rotated form

min          c0

H x

s.t.           Ckx+bk
2

 £   ck
H x + dk( ) ĉkH x+ d̂k( )

• Useful for OPF:

• Transformation:

min          c0

H x

s.t.           Ckx   =  bk           k ³1

               wm
2

 £   ymzm      m ³1

w
2
£ yz,  y ³ 0,  z ³ 0  Û   

2w

y- z

é

ë
ê

ù

û
ú £ y+ z



Semidefinite program (SDP)

min
xÎRn

 cixi
i=1

n

å     s. t.     A0 + xi
i=1

n

å Ai £ 0Primal:

Lagrangian:  for 

L(x;L) := cixi
i=1

n

å  + tr L A0 + xi
i=1

n

å Ai
æ

è
ç

ö

ø
÷

             = tr A0L( )  + tr (AiL)+ ci( ) xi
i=1

n

å

L ³ 0

D(L) =
tr A0L( )     if   tr (AiL)+ ci = 0  "i

-¥            else

ì
í
î



Semidefinite program (SDP)

min
xÎRn

 cixi
i=1

n

å     s. t.     A0 + xi
i=1

n

å Ai £ 0Primal:

Dual: max
L³0

 tr A0L( )      s.t.    tr (AiL)+ ci = 0  "i

We will later use an inequality form:

equivalent to equality form through slack variables

max
L³0

 tr A0L( )      

s.t.    tr (AiL) £ ci    "i



PSD cones are convex

 Hermitian matrices

 Positive semidefinite (psd) matrices

 Positive definite (pd) matrices

S
n := A ÎCn´n A = AH{ }

S+

n := AÎ Sn xTAx ³ 0  for all x ÎCn{ }

S++

n := AÎ Sn xTAx > 0  for all x ÎCn{ }



Semidefinite program (SDP)

min
xÎRn

 cixi
i=1

n

å     s. t.     A0 + xi
i=1

n

å Ai £ 0Primal:

Dual: max
L³0

 tr A0L( )      s.t.    tr (AiL)+ ci = 0  "i

Theorem: strong duality

primal optimal value  =  dual optimal value



Theorem: The following are equivalent

 is primal-dual optimal 

 is a saddle pt of Lagrangian

 KKT:

Semidefinite program (SDP)

(x*, L*)

L(x*, L) £ L(x*, L*) £ L(x, L*)   "feasible x, L

(x*, L*)

A0 + xi
*

i=1

n

å Ai £ 0,   

L* ³ 0,   tr (AiL
*)+ ci = 0  "i

tr L* A0 + xi
*

i=1

n

å Ai
æ

è
ç

ö

ø
÷ = 0



Mathematical preliminaries

◼ Semidefinite programs

◼ QCQP and semidefinite relaxations

◼ Partial matrices and completions

◼ Chordal relaxation



QCQP

min          xHC0x

over         x ÎCn

s.t.            xHCkx £   bk         k ³1    

•

• Convex problem if all Ck are psd

Nonconvex otherwise 

Ck,k ³ 0,  Hermitian  Þ   xHCkx is real

bk ÎRn     



QCQP

min          xHC0x

over         x ÎCn

s.t.            xHCkx £   bk         k ³1    

• xHCkx  =  tr xHCkx  =  tr Ck xx
H( )     



QCQP

min          tr C0 xx
H( )

over         x ÎCn

s.t.            tr Ck xx
H( )

XÎS+
n

 £   bk         k ³1    

• xHCkx  =  tr xHCkx  =  tr Ck xx
H( )     



QCQP

min          tr C0 xx
H( )

over         x ÎCn

s.t.            tr Ck xx
H( )

XÎS+
n

 £   bk         k ³1    

• xHCkx  =  tr xHCkx  =  tr Ck xx
H( )     



QCQP

min          tr C0X

over         X Î S+

n

s.t.            tr CkX  £   bk         k ³1

                rank X   =  1  only nonconvexity

• Any solution X yields a unique x through

X = xxH

• Feasible sets are equivalent



Semidefinite program (SDP)

min          tr C0X

s.t.            tr CkX  £   bk         k ³1

                 X  ³  0  

• Feasible set of QCQP is an effective 

subset of feasible set of SDP

• SDP is a relaxation of QCQP



Preview: solution strategy

OPF
nonconvex QCQP

OPF
rank constrained SDP

SDP

relaxation rank W opt =1
Radial network: sufficient

conditions for exact relaxation

Mesh network: convexification

through phase shifters

Heuristic algorithms

OPF-sdp
convex

 rank W opt >1

solution not 

meaningful



SOCP in rotated form

min          c0

H x
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• Transformation:

min          c0

H x

s.t.           Ckx   =  bk           k ³1

               wm
2

 £   ymzm      m ³1

w
2
£ yz,  y ³ 0,  z ³ 0  Û   

2w

y- z

é

ë
ê

ù

û
ú £ y+ z



Recap: QCQP, SDP, SOCP

min          xHC0x

s.t.            xHCkx £   bk         k ³1    

min          tr C0X

s.t.            tr CkX  £   bk         k ³1

                 X  ³  0  

QCQP 

SDP 

SOCP min          c0

H x

s.t.           Ckx   =  bk           k ³1

               wm
2

 £   ymzm      m ³1
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◼ QCQP and semidefinite relaxations

◼ Partial matrices and completions

◼ Chordal relaxation



Graphs

Graph G = (V, E)

Complete graph: all node pairs adjacent

Clique: complete subgraph of G
◼ An edge is a clique

◼ Maximal clique: a clique that is not a subgraph of 
another clique

Chordal graph: all minimal cycles have 
length 3 

◼ Minimal cycle: cycle without chord

Chordal ext: chordal graph containing G
◼ Every graph has a chordal extension

◼ Chordal extensions are not unique



Partial matrix XG :

Partial matrices

Fix an undirected graph G = (V, E)

XG := XG[ ]
jj
, j ÎV,  XG[ ]

jk
, ( j,k) Î E( )

Completion X of a partial matrix XG :

X   =  XG  on G
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Fig.1:C hordal extensions of G .(a) G raph G and the partialm atrix XG .(b) A chordalextension F and
its XF thathave 2 m axim alcliques,q1 := (1,2,3) and q2 := (2,3,4,5).These cliques share tw o nodes,2
and 3.The corresponding XF (q1) and XF (q2) are outlined in XF w ith the overlapping entries shaded in
green.The chordal relaxation based on this F requires 4 decoupling variables u jk.(c) A nother chordal
extension F and its XF that have 3 m axim al cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
X 02S7

trC 00X
0 (10a)

subj.to trC 0m X
0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
m axim alcliquesq.Second,how ever,m ore m axim al
cliquesq tendsto require m ore decoupling variables
u jk in order to express the decoupled subm atrices

Wc(G) Wc(G)

c(G) c(G)G

Example

partial matrix XG := { complex numbers on G }

completion:  full matrix X that 

agrees with XG on G

n-vertex complete graph
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extension F and its XF that have 3 m axim al cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
X 02S7

trC 00X
0 (10a)

subj.to trC 0m X
0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
m axim alcliquesq.Second,how ever,m ore m axim al
cliquesq tendsto require m ore decoupling variables
u jk in order to express the decoupled subm atrices

Wc(G)

c(G) c(G)G

Xc(G)
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D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
X 02S7

trC 00X
0 (10a)

subj.to trC 0m X
0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
m axim alcliquesq.Second,how ever,m ore m axim al
cliquesq tendsto require m ore decoupling variables
u jk in order to express the decoupled subm atrices

Xc(G) Xc(G)

c(G) c(G)G



A partial matrix XG is psd if 

Partial matrices

Fix an undirected graph G = (V, E)

XG q( ) ³ 0  for all maximal cliques q

A partial matrix XG is rank-1 if 

rank XG q( ) =1  for all maximal cliques q



Matrix completion

Theorem [Grone et al 1984]

Every psd partial matrix XG has a psd
completion if and only if G is chordal

 Motivates chordal relaxation



Feasible set

Consider

• full matrix

• partial matrix           defined on a chordal ext of G

• partial matrix           defined on G

W

Wc(G )

WG

dec

# vars

C1: 

C2: 

C3: 



Feasible set

Consider

• full matrix

• partial matrix           defined on a chordal ext of G

• partial matrix           defined on G

W

Wc(G )

WG

dec

# vars

C1: 

C2: 

C3: 



Feasible set

Consider

• full matrix

• partial matrix           defined on a chordal ext of G

• partial matrix           defined on G

W

Wc(G )

WG

dec

# vars

C1: 

C2: 

C3: 
Ð WG[ ]

jk



Feasible set

C1: 

C2: 

C3: 

Theorem

C1 = C2 = C3

Ð WG[ ]
jk

Bose, Low, Chandy Allerton 2012

Bose, Low, Teeraratkul, Hassibi TAC2014
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D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
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0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
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C1 = C2 means:

W is psd rank-1

iff
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these 2 submatrices
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much smaller for

large sparse network
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D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
X 02S7

trC 00X
0 (10a)

subj.to trC 0m X
0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
m axim alcliquesq.Second,how ever,m ore m axim al
cliquesq tendsto require m ore decoupling variables
u jk in order to express the decoupled subm atrices

Wc(G)

c(G) c(G)G

Xc(G)
WG =

W11   W12   W13     

W21   W22                   W25

W31           W33   W34   

                W43   W44   W45

        W52           W54   W55
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Wc(G ) =

W11   W12   W13  

W21   W22   W23   W24   W25

W31   W32   W33   W34   W35

        W42   W43   W44   W45

        W52   W53   W54   W55
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C1 = C3 means:

W is psd rank-1  iff

WG is psd rank-1 and 

satisfies cycle cond

iff

5  2x2 submatrices are psd rank-1 

and satisfies cycle cond

much much smaller for

large sparse network



Feasible set

C1: 

C2: 

C3: 

Theorem

C1 = C2 = C3

Moreover, given WG that satisfies C3, there is a 

unique completion W that satisfies C1

Ð WG[ ]
jk

Bose, Low, Chandy Allerton 2012

Bose, Low, Teeraratkul, Hassibi TAC2014
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(a)" (b)" (c)"

Fig.1:C hordal extensions of G .(a) G raph G and the partialm atrix XG .(b) A chordalextension F and
its XF thathave 2 m axim alcliques,q1 := (1,2,3) and q2 := (2,3,4,5).These cliques share tw o nodes,2
and 3.The corresponding XF (q1) and XF (q2) are outlined in XF w ith the overlapping entries shaded in
green.The chordal relaxation based on this F requires 4 decoupling variables u jk.(c) A nother chordal
extension F and its XF that have 3 m axim al cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
X 02S7

trC 00X
0 (10a)

subj.to trC 0m X
0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
m axim alcliquesq.Second,how ever,m ore m axim al
cliquesq tendsto require m ore decoupling variables
u jk in order to express the decoupled subm atrices

Wc(G)

c(G) c(G)G

Xc(G)
WG =

W11   W12   W13     

W21   W22                   W25

W31           W33   W34   

                W43   W44   W45

        W52           W54   W55
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Wc(G ) =

W11   W12   W13  

W21   W22   W23   W24   W25

W31   W32   W33   W34   W35

        W42   W43   W44   W45

        W52   W53   W54   W55

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

Given WG that satisfies C3,

there is only one way to fill

in missing entries to get an

W from which an V can be 

recovered



Chordal relaxation

min          xHC0x

s.t.            xHCkx £   bk         k ³1    

min          tr C0X

s.t.            tr CkX  £   bk         k ³1

                 X  ³  0  

QCQP 

SDP 

Chordal min
Xc (G )

         tr C0XG

s.t.           tr CkXG  £   bk         k ³1

                Xc(G)  ³  0  



Outline

Mathematical preliminaries

Bus injection model
◼ OPF formulation

◼ 3 convex relaxations & relationship

Branch flow model
◼ OPF formulation

◼ SOCP relaxation & equivalence

Exact relaxation
◼ Radial networks

◼ Mesh networks

Multiphase unbalanced networks



Bus injection model

i j k
zij = yij

-1

admittance matrix: 

Yij :=

yik
k~i

å       if  i = j

-yij         if  i ~ j

0            else

ì

í

ï
ï

î

ï
ï

s j

graph G: undirected

Y specifies topology of G and

impedances z on lines



Yj =  Y He je j
T

Bus injection model

Power flow problem:

Given            find Y, s( ) V V

In terms of :V

s j =  tr Yj
HVV H( )          for all  j

isolated solutions



min              tr CVV H( )
over             V, s( )

subject to     s j   £   s j  £   s j             V j  £  |Vj |  £   V j

                    s j  =  tr Yj
HVV H( ) power flow equation

OPF: bus injection model

gen cost,

power loss



power flow equation

OPF: bus injection model

min              tr CVV H( )
over             V, s( )

subject to     s j   £   s j  £   s j             V j  £  |Vj |  £   V j

                    s j  =  tr Yj
HVV H( )

gen cost,

power loss



min            tr CVV H

subject to   s j   £   tr YjVV
H( )  £   s j         v j  £  |Vj |2  £   v j

  

Summary: OPF (bus injection model)

nonconvex QCQP

(quad constrained quad program)



Other features

Security constraint OPF
◼ Solve for operating points after each single 

contingency (N-1 security)

◼ N sets of variables and constraints, one for 
each contingency

Unit commitment
◼ Discrete variables

Stochastic OPF
◼ Chance constraints Pr(bad event) < 

Other constraints
◼ Line flow, line loss, stability limit, … 

e

… OPF in practice is a lot harder 



Literature

relaxation model first proposed first analyzed

SOCP BIM Jabr 2006 TPS

SDP BIM Bai et al 2008 EPES Lavaei, Low 2012 TPS

Chordal BIM Bai, Wei 2011 EPES
Jabr 2012 TPS

Molzahn et al 2013 TPS
Bose et al 2014 TAC

SOCP BFM Farivar et al 2011 SGC
Farivar, Low 2013 TPS

Farivar et al 2011 SGC
Farivar, Low 2013 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Convex relaxations of OPF



Basic idea

V

Approach

1. Three equivalent characterizations of V
2. Each suggests a lift and relaxation

• What is the relation among different relaxations ?

• When will a relaxation be exact ?

min            tr CVV H

subject to   s j   £   tr YjVV
H( )  £   s j         v j  £  |Vj |2  £   v j

  

V



min            tr CW

subject to   s j £ tr YjW( ) £ s j         vi £Wii £ vi

                  W ³ 0,   rank W =1

Equivalent problem: 

Feasible set & SDP

convex in W

except this constraint

quadratic in V

linear in W 

min            tr CVV H

subject to   s j   £   tr YjVV
H( )  £   s j         v j  £  |Vj |2  £   v j

  



Equivalent feasible sets

QCQP: n variables 

V:= V: quadratic constraints  { }

W
+

V

W

idea:  W =VV H

SDP: n2 vars !



Feasible set

y jk
H

k:k~ j

å Vj
2

-VjVk
H( )  :  only Vj

2

 and VjVk
H  

corresponding to edges ( j,k) in G! 

Wjj Wjk
linear in                Wjj,Wjk( )

only n+2m vars !

V

min            tr CVV H

subject to   s j   £   tr YjVV
H( )  £   s j         v j  £  |Vj |2  £   v j

  



y jk
H

k:k~ j

å Vj
2

-VjVk
H( )  :  only Vj

2

 and VjVk
H  

corresponding to edges ( j,k) in G! 

Feasible set

Wjj Wjk
linear in                Wjj,Wjk( )

only n+2m vars !

partial matrix WG  defined on G

WG := [WG ] jj,[WG ] jk j, jk ÎG{ }

Kircchoff’s laws depend directly only on WG
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Fig.1:C hordal extensions of G .(a) G raph G and the partialm atrix XG .(b) A chordalextension F and
its XF thathave 2 m axim alcliques,q1 := (1,2,3) and q2 := (2,3,4,5).These cliques share tw o nodes,2
and 3.The corresponding XF (q1) and XF (q2) are outlined in XF w ith the overlapping entries shaded in
green.The chordal relaxation based on this F requires 4 decoupling variables u jk.(c) A nother chordal
extension F and its XF that have 3 m axim al cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

D efine the 7⇥ 7 block-diagonal m atrix

X 0 :=
X 0F (q1) 0
0 XF (q2)

Then the chordal relaxation (7) can be w ritten in
the standard form (3)in term s ofthese 7⇥ 7 block-
diagonalH erm itian m atrices:

m in
X 02S7

trC 00X
0 (10a)

subj.to trC 0m X
0 bm , m = 1,...,M (10b)

trC 0rX
0= 0, r= 1,2,3,4 (10c)

X 0⌫0 (10d)

forappropriate choices ofC 0m ,m = 0,...,M .In the
above problem the constraint X 0⌫0 is equivalent
to the requirem ent(9) on its subm atrices and C 0r in

(10c)can be chosen to enforce the requirem ent(8).
H ence the chordalrelaxation (7) is indeed an SD P.

Rem ark 1: There are tw o conflicting factors in
choosing a good chordalextension.Firsta chordal
extension F that contains few er num ber of m ax-
im al cliques q generally involves larger cliques,
leading to larger subm atrices XF (q); for exam ple
the com plete graph F has a single m axim al clique
but the corresponding XF (q) = X has n2 entries
and the chordal relaxation (7) offers no com puta-
tionaladvantage over solving (in factitis exactly)
the original SD P (3). This argues for a chordal
extension F w ith sm aller, though possibly m ore,
m axim alcliquesq.Second,how ever,m ore m axim al
cliquesq tendsto require m ore decoupling variables
u jk in order to express the decoupled subm atrices

Wc(G) Wc(G)

c(G) c(G)G

Example

W =

W11   W12   W13   W14   W15

W21   W22   W23   W24   W25

W31   W32   W33   W34   W35

W41   W42   W43   W44   W45

W51   W52   W53   W54   W55
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SDP solves for W ÎCn
2

n2 variables

Want to solve for WG

n+2m variables

WG =

W11   W12   W13     

W21   W22                   W25

W31           W33   W34   

                W43   W44   W45

        W52           W54   W55

é

ë

ê
ê
ê
ê
ê
ê

ù
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ú



Feasible sets

V := V s j £ tr YjVV
H( ) £ s j,    v j  £|Vj |2£ v j{ }OPF

W := W s j £ tr YjW( ) £ s j,  v j £Wjj £ v j{ }Ç W ³ 0, rank-1{ }

SDP

depend only on WG

depend on all 

entries of W

nonconvexity



Feasible sets

OPF

W := W s j £ tr YjW( ) £ s j,  v j £Wjj £ v j{ }Ç W ³ 0, rank-1{ }

SDP

WG := WG s j £ tr YjWG( ) £ s j,  v j £ [WG ] jj £ v j{ }Ç WG ³ 0, rank-1{ }

WG is equivalent to V when G is chordal

Not equivalent otherwise … 

first idea:

V := V s j £ tr YjVV
H( ) £ s j,    v j  £|Vj |2£ v j{ }



Equivalent feasible sets 

idea:  W =VV H

idea:  Wc(G) = VV H  on c(G)( )



Equivalent feasible sets 

idea:  W =VV H

idea:  Wc(G) = VV H  on c(G)( )



Equivalent feasible sets 

idea:  W =VV H

idea:  Wc(G) = VV H  on c(G)( )

idea:  WG = VV H  only on G( )



Equivalent feasible sets 

idea:  W =VV H

idea:  Wc(G) = VV H  on c(G)( )

idea:  WG = VV H  only on G( )



Cycle condition

Ð WG[ ]
jk

cycle

cond

local

global



Equivalent feasible sets

V W Wc(G )
WG

Bose, Low, Chandy Allerton 2012

Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem: V ºW ºWc(G) ºWG



Equivalent feasible sets

V W Wc(G )
WG

Theorem: V ºW ºWc(G) ºWG

Given                                                  there is

unique completion                and unique 

WG ÎWG   or  Wc(G) ÎWc(G)

W ÎW V ÎV

Can minimize cost over any of these sets, but …



Equivalent feasible sets 

idea:  W =VV H

idea:  Wc(G) = VV H  on c(G)( )

idea:  WG = VV H  only on G( )



W
+ Wc(G )

+

Relaxations

WG

+

V W Wc(G )
WG

Theorem

◼ Radial G : 

◼ Mesh G : 

VÍW+ @Wc(G )

+ @WG

+

VÍW+ @Wc(G )

+ ÍWG

+

Bose, Low, Chandy Allerton 2012

Bose, Low, Teeraratkul, Hassibi TAC2014



W
+ Wc(G )

+

Relaxations

WG

+

V W Wc(G )
WG

Theorem

◼ Radial G : 

◼ Mesh G : 

VÍW+ @Wc(G )

+ @WG

+

VÍW+ @Wc(G )

+ ÍWG

+

For radial networks: always solve SOCP !



Convex relaxations

OPF

min
V

  C(V )   subject to  V Î V

G



Recap: convex relaxations

V W Wc(G )
WG

WG

+

SOCP relaxation

• coarsest superset

• min # variables

• fastest

W
+

SDP relaxation

• tightest superset

• max # variables

• slowest 

Wc(G )

+

Chordal relaxation

• equivalent superset

• much faster for 

sparse networks

simple

construction

simple

construction

simple

construction



Recap: convex relaxations

V W Wc(G )
WG

WG

+

SOCP relaxation

• coarsest superset

• min # variables

• fastest

W
+

SDP relaxation

• tightest superset

• max # variables

• slowest 

Wc(G )

+

Chordal relaxation

• equivalent superset

• much faster for 

sparse networks

simple

construction

simple

construction

simple

construction

radial

For radial network: always solve SOCP !



Examples
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(a) (b)

Fig.4:Projections of feasible regions on p1 − p2 space for 3-bus system in (3).

P 1

P
2

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

0.48

0.49

0.5

0.51

0.52

0.53

0.54

h1(F
+
2 )

h1(F
+
1 )

h1(F1)= h1(F2)

Fig.5:Zoom ed in Pareto fronts of the 3-bus case in p1 − p2 space.

B. IEEE benchm ark system s

For IEEE benchm ark system s [35],[42],w e solve R 1,R 2 and R ch in M ATLA B using C V X

[43] w ith the solver SeD uM i [44]. The objective values and running tim es are presented in

Table II.A s in Theorem 1,the problem s R 1 and R ch have the sam e objective function value,

i.e., r⇤1 = r
⇤
ch. H ow ever, the optim al objective value of R 2 is low er, i.e., r

⇤
2 < r

⇤
1. For IEEE

benchm ark system s,note that R 1 and R ch are exact [14]–[16],w hile R 2 is not.A s evidenced

by the running tim es in Table II, R ch is m uch faster than R 1. The chordal extension of the

M ay 31,2013 D R A FT

power flow

solution X

SDP Y

SOCP Y

Real Power Reactive Power

• Relaxation is exact if X and Y have same 
Pareto front

• SOCP is faster but coarser than SDP

Bose, Low, Teeraratkul, Hassibi TAC 2014



SOCP more efficient than SDP

Relaxations are exact in all cases
• IEEE networks: IEEE 13, 34, 37, 123 buses (0% DG)

• SCE networks 47 buses (57% PV), 56 buses (130% PV)

• Single phase; SOCP using BFM
• Matlab 7.9.0.529 (64-bit) with CVX 1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 

Due CPU and 4GB 1067MHz DDR3 memory 



Outline

Mathematical preliminaries

Bus injection model
◼ OPF formulation

◼ 3 convex relaxations & relationship

Branch flow model
◼ OPF formulation

◼ SOCP relaxation & equivalence

Exact relaxation
◼ Radial networks

◼ Mesh networks

Multiphase unbalanced networks



Branch flow model 

i j k

s j

zij = yij
-1

graph model G: directed



Vi -Vj = zijIij               for all  i® j

Branch flow model

power definition

power balance

s j

Kirchhoff law

Sij :  branch power 

Iij :  branch current

Vj :  voltage

Sij =ViIij
H                     for all  i® j

Sij - zij Iij
2

( )
i® j

å + s j = S jk
j®k

å    for all j

loss

sending

end pwr

sending

end pwr



Vi -Vj = zijIij               for all  i® j

Branch flow model

power definition

power balance

Kirchhoff law

Sij - zij Iij
2

( )
i® j

å + s j = S jk
j®k

å    for all j

Power flow problem:

Given            find z, s( ) (S, I,V )
X

Sij =ViIij
H                     for all  i® j

isolated sols



Vi -Vj = zijIij

Recap

Branch flow modelBus injection model

Sij =ViIij
H

S jk
j®k

å = Sij - zij Iij
2

( )
i® j

å + s j

s j =  tr YjVV
H( )

X

(S, I,V, s) ÎC2(m+n+1)

V

(V, s) ÎC2(n+1)

solution 

set



Equivalence

X

(S, I,V, s) ÎC2(m+n+1)

V

(V, s) ÎC2(n+1)

solution 

set

Theorem: V ºX

• BIM and BFM are equivalent in this sense

• Any result in one model is in principle provable in the other,

• … but some results are easier to formulate or prove in one 

than the other

• BFM seems to be much more numerically stable (radial networks)



OPF: branch flow model

min      f x( )

over    x := (S, I,V, s)

s. t.     s j £ s j £ s j        v j £ v j £ v j



OPF: branch flow model

min      f x( )

over    x := (S, I,V, s)

s. t.     s j £ s j £ s j        v j £ v j £ v j



Sij =ViIij
H

Vj =Vi - zijIij

branch flow
model

Sij - zij Iij
2

( )
i® j

å - S jk
j®k

å = s j

min      f x( )

over    x := (S, I,V, s)

s. t.     s j £ s j £ s j        v j £ v j £ v j

nonconvex (quadratic)

Summary: OPF (branch flow model)



Literature

relaxation model first proposed first analyzed

SOCP BIM Jabr 2006 TPS

SDP BIM Bai et al 2008 EPES Lavaei, Low 2012 TPS

Chordal BIM Bai, Wei 2011 EPES
Jabr 2012 TPS

Molzahn et al 2013 TPS
Bose et al 2014 TAC

SOCP BFM Farivar et al 2011 SGC
Farivar, Low 2013 TPS

Farivar et al 2011 SGC
Farivar, Low 2013 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Convex relaxations of OPF



Vi -Vj = zijIij

Branch flow model

SOCP relaxationBranch flow model

S jk
j®k

å = Sij - zij Iij
2

( )
i® j

å + s j

X

(S, I,V, s) ÎC2(m+n+1)

Pjk
j®k

å = Pij - rij Iij
2

( )
i® j

å + p j

Qjk

j®k

å = Qij - xij Iij
2

( )
i® j

å + q j

ViIij
H = Sij



Vi -Vj = zijIij

Branch flow model

SOCP relaxationBranch flow model

S jk
j®k

å = Sij - zij Iij
2

( )
i® j

å + s j

(S, I,V, s) ÎC2(m+n+1)

S jk
j®k

å = Sij - zij ij( )
i® j

å + s j

vi - v j = 2 Re zij
HSij( ) - zij

2

ij

   vi ij = Sij
2

ij := Iij
2

vi := Vi
2

(S, ,v, s) ÎR3(m+n+1)

X

ViIij
H = Sij

DistFlow model for radial networks
Baran and Wu 1989



Vi -Vj = zijIij

Branch flow model

SOCP relaxationBranch flow model

S jk
j®k

å = Sij - zij Iij
2

( )
i® j

å + s j

X

(S, I,V, s) ÎC2(m+n+1)

S jk
j®k

å = Sij - zij ij( )
i® j

å + s j

ij := Iij
2

vi := Vi
2

X
+

(S, ,v, s) ÎR3(m+n+1)

vi - v j = 2 Re zij
HSij( ) - zij

2

ij

   vi ij ³ Sij
2

ViIij
H = Sij



Branch flow model

P :=
x :  jkv j = S

2

     cycle cond on x

ì
í
ï

îï

ü
ý
ï

þï

X
+ := x :  linear constraints{ }Ç jkv j ³ S

2

{ }

Theorem X ºX+ ÇP

SOC



Cycle condition

A solution     satisfies the cycle condition if

incidence matrix;

depends on topology

$q    s.t.    Bq = b(x)      mod 2p

x

x := (S, ,v, s)

b jk (x) := Ð v j - z jk
HS jk( )



BFM: SOCP relaxation of OPF

OPF:    min
xÎX

 f x( )

SOCP:    min
xÎX+

 f x( )



W
+ Wc(G )

+

Equivalence

WG

+

V W Wc(G )
WG

Theorem

WG ºX   and  WG

+ ºX+

X
+

X



BFM for radial networks

Recursive structure

• backward-forward 

sweep for PF solution

Advantages over BIM

• much faster 

• much more stable

numerically



OPF-socp

OPF solution

Recover V*cycle
condition

Y

rank-1

OPF-ch OPF-sdp

Y

WG

* Wc(G )

*
W *

Y, mesh

2x2 rank-1

Y
radial

OPF-socp

cycle
conditionY

x*

equality

Y
radial

Y, mesh



OPF-socp

OPF solution

Recover V*cycle
condition

Y

rank-1

OPF-ch OPF-sdp

Y

WG

* Wc(G )

*
W *

Y, mesh

2x2 rank-1

Y
radial

OPF-socp

cycle
conditionY

x*

equality

Y
radial

Y, mesh



OPF-socp

OPF solution

Recover V*cycle
condition

Y

rank-1

OPF-ch OPF-sdp

Y

WG

* Wc(G )

*
W *

Y, mesh

2x2 rank-1

Y
radial

OPF-socp

cycle
conditionY

x*

equality

Y
radial

Y, mesh

open problemopen problem



exactness
(tree)

OPF: extensions

distributed
OPF

Kim, Baldick 1997

Dall’Anese et al 2012

Lam et al 2012

Kraning et al 2013

Devane, Lestas 2013

Sun et al 2013

Li et al 2013

moment/SoS,
quadratic
relaxation

Molzahn, Hiskens 2014

Josz et al 2014

Ghaddar et al 2014

multiphase
unbalanced

Dall’Anese et al 2012

Gan, Low 2014

semidefinite
relaxations

applications

quadratic 
relaxation, 

B&B

Phan 2012

Gopalakrishnan 2012

Hijazi et al 2013

refs in SL, Part II

TCNS 2014



Digression:

Branch flow model 
for radial networks



BFM for radial networks

S jk
j®k

å = Sij - zij ij + s j

vi - v j = 2 Re zij
HSij( ) - zij

2

ij

   ijvi = Sij
2

DistFlow model
Baran and Wu 1989

ij := Iij
2

vi := Vi
2

Advantages

• PF: recursive structure ➔ backward/forward sweep

• OPF: more numerically stable SOCP

• Linear approx. suitable for radial networks (unlike DC)

• Variables represent physical quantities



Lin DistFlow for radial networks

Linear DistFlow
Baran and Wu 1989

S jk
lin

j®k

å = Sij
lin + s j

vi
lin - v j

lin = 2 Re zij
HSij

lin( )

Advantages over DC power flow

• Includes voltages and reactive power as vars

• Allows nonzero resistance

• Accurate when line loss is small compared with

with branch power flow

• … more …



Lin DistFlow for radial networks

Linear DistFlow
Baran and Wu 1989

S jk
lin

j®k

å = Sij
lin + s j

vi
lin - v j

lin = 2 Re zij
HSij

lin( )

• Explicit solution: Sij
lin = - sk

kÎTj

å

v j
lin = v0 - 2 Re zik

HSik
lin( )

(i,k )ÎPj

å

• Bounding true solution: v j £ v j
lin      Sij ³ Sij

lin



Outline

Mathematical preliminaries

Bus injection model
◼ OPF formulation

◼ 3 convex relaxations & relationship

Branch flow model
◼ OPF formulation

◼ SOCP relaxation & equivalence

Exact relaxation
◼ Radial networks

◼ Mesh networks

Multiphase unbalanced networks



Exact relaxation

A relaxation is exact if an optimal solution 
of the original OPF can be recovered from 
every optimal solution of the relaxation 



OPF-socp

OPF solution

Recover V*cycle
condition

Y

rank-1

OPF-ch OPF-sdp

Y

WG

* Wc(G )

*
W *

Y, mesh

2x2 rank-1

Y
radial

OPF-socp

cycle
conditionY

x*

equality

Y
radial

Y, mesh

Definition

Every optimal matrix

or partial matrix is 

(2x2) rank-1

Definition

Every optimal relaxed

solution attains equality



Summary of sufficient conds



1.  QCQP over tree

graph of QCQP

G C,Ck( )   has edge (i, j)   Û

Cij ¹ 0  or  Ck[ ]
ij
¹ 0  for some k     

QCQP

QCQP over tree

G C,Ck( )   is a tree

min          x*Cx

over         x ÎCn

s.t.            x*Ckx £   bk         k Î K     

C,Ck( )



1.  Linear separability

min          x*Cx

over         x ÎCn

s.t.            x*Ckx £   bk         k Î K     

Key condition

i ~ j :   Cij, Ck[ ]
ij
,  "k( )  lie on half-plane through 0

QCQP C,Ck( )

Theorem

SOCP relaxation is exact for 

QCQP over tree 

Re

Im

Bose et al 2012, 2014

Sojoudi, Lavaei 2013



Implication on OPF

Not both lower & upper bounds on real & reactive powers at both ends 

of a line can be finite 



2. Voltage upper bounds

p0,q0( ) p1,q1( )  given

v1
v0  given

vars are:  p0,q0( ), ℓ,v1

geometric insight



2. Voltage upper bounds

p0,q0( ) p1,q1( )  given

v1

when there is no voltage constraint

• feasible set : 2 intersection pts

• relaxation: line segment

• exact relaxation: c is optimal

… as long as cost increasing in 

v0  given

ℓ, p0,q0



2. Voltage upper bounds

p0,q0( ) p1,q1( )  given

v1
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is exact if the upper bound v1 does not exclude the high-
voltage pow er flow solution c and is not exact otherw ise.

p0

q0

c

(a) Voltage constraintnotbinding

p0

q0

c

(b) Voltage constraint binding

Fig. 3: Im pact of voltage upper bound v1 on exactness. (a)
W hen v1 (corresponding to a low er bound on )̀ is not
binding, the pow er flow solution c is in the feasible set
of SO C P and hence the relaxation is exact. (b) W hen v1
excludes c from the feasible setofSO C P,the optim alsolution
is infeasible for O PF and the relaxation is notexact.

To state the sufficient condition for a general radial net-
w ork,recall from [24,Section V I] the linear approxim ation
of B FM for radial netw orks obtained by setting `jk = 0 in
(17):for each s

Slinjk(s) = Â
i2 T j

si (22a)

vlinj (s) = v0 + 2 Â
(i,k)2 P j

R e
⇣
zHikS

lin
ik (s)

⌘
(22b)

w here T j denotes the subtree at node j, including j, and
P j denotes the set of links on the unique path from j to 0.
The key property w e w ill use is, from [24,Lem m a 13 and
R em ark 9]:

Sjk Slinjk(s) and vj vlinj (s) (23)

D efine the 2⇥2 m atrix function

A jk(S jk,vj) := I−
2

vj
zjk Sjk

T
(24)

w here zjk := [rjk xjk]
T is the line im pedance and S jk :=

[Pjk Q jk]
T is the branch pow er flow s, both taken as 2-

dim ensional real vectors so thatzjk S jk
T
is a 2⇥2 m atrix

w ith rank less or equal to 1. The m atrices A jk(S jk,vj)
describe how changes in the real and reactive pow er flow s
propagate tow ards the rootnode 0.Specifically,as the proof
of the theorem in [34] show s, A jk is the Jacobian of how
infinitesim alchanges in the com plex pow er on branch j! k
affect the com plex pow er on branch k ! l w here l is the
node on the unique path from node k to node 0.Evaluate the

Jacobian m atrix A jk(S jk,vj) atthe boundary values:

A jk := A jk

✓h
Slinjk(s)

i +
, vj

◆

:= I−
2

vj
zjk

✓h
Slinjk(s)

i +
◆ T

(25)

H ere [a]+
T
is the row vector [[a1]+ [a2]+ ]w here [aj]+ :=

m ax{0,aj}.
Fora radialnetw ork,for j6= 0,every link j! k identifies

a unique node k and therefore,to sim plify notation,w e refer
to a link interchangeably by (j,k) or j and use A j, A j, zj
etc. in place of A jk,A jk,zjk etc. respectively w hen there is
no danger of confusion.
A ssum e

B 1: The cost function is C (x) := Â nj= 0C j(R esj) w ith C 0
strictly increasing.There is no constraint on s0.

B 2: The set S j of injections satisfies vlinj (s) vj, j2 N ,
w here vlinj (s) is given by (22).

B 3: For each leaf node j2 N let the unique path from
j to 0 have k links and be denoted by P j :=
((ik,ik− 1),...,(i1,i0)) w ith ik = j and i0 = 0. Then
Ait···Ait0zit0+ 1 > 0 for all1 t t0< k.

The follow ing resultis proved in [34].
Theorem 5: Suppose G̃ is a tree and B 1–B3 hold. Then

O PF-socp (19) is exact.

W e now com m ent on the conditions B 1–B3. B 1 requires
that the cost functions C j depend only on the injections sj.
For instance, if C j(R esj)= p j,then the cost is total active
pow er loss over the netw ork. It also requires that C 0 be
strictly increasing but m akes no assum ption on C j,j> 0.
C om m on cost functions such as line loss or generation cost
usually satisfy B 1. If C 0 is only nondecreasing, rather than
strictly increasing, in p0 then B 1–B3 still guarantee that all
optim al solutions of O PF (10) are (effectively) optim al for
O PF-socp (19),butO PF-socp m ay notbe exact,i.e.,itm ay
have an optim al solution that m aintains strict inequalities in
(17c). In this case the proof of Theorem 5 can be used to
recursively construct from it another optim al solution that
attains equalities in (17c).

B 2 is affine in the injections s := (p,q). It enforces the
upper bounds on voltage m agnitudes because of (23).
B 3 is a technical assum ption and has a sim ple interpreta-

tion:the branch pow er flow S jk on allbranches should m ove
in the sam e direction. Specifically,given a m arginal change
in the com plex pow er on line j! k, the 2⇥2 m atrix A jk
is (a low er bound on) the Jacobian and describes the effect
of this m arginal change on the com plex pow er on the line
im m ediately upstream from line j! k. The product of Ai
in B 3 propagates this effectupstream tow ards the rootnode
0. B 3 requires that a sm all change, positive or negative, in
the pow er flow on a line affects all upstream branch pow er
flow s in the sam e direction.This condition tends to hold w ith

voltage lower bound (upper bound on l) does not affect relaxation

v0  given



Gan, Li, Topcu, Low TAC2014

Theorem

SOCP relaxation is exact for 

radial networks 

2. Voltage upper bounds

min
xÎX

 f x( )     s.t.   v £ v £ v,   s Î S

min
xÎX+

 f x( )     s.t.   v £ v £ v,   s Î S

OPF: 

SOCP: 

Key conditions:

•

• Jacobian condition 

voltages if network were lossless

if upward current were reduced

then all subsequent powers dec
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p0

q0

c

(a) Voltage constraintnotbinding

p0

q0

c

(b) Voltage constraintbinding

Fig.3:Im pact of voltage upper bound v1 on exactness. (a)
W hen v1 (corresponding to a low er bound on )̀ is not
binding, the pow er flow solution c is in the feasible set
of SO CP and hence the relaxation is exact. (b) W hen v1
excludesc from the feasible setofSO CP,the optim alsolution
is infeasible for O PF and the relaxation is notexact.

w here T j denotes the subtree at node j,including j,and
P j denotes the setof links on the unique path from j to 0.
The key property w e w ill use is,from [25,Lem m a 13 and
Rem ark 9]:

Sjk Slinjk(s) and vj vlinj (s) (23)

D efine the 2⇥2 m atrix function

A jk(Sjk,vj) := I−
2

vj
zjk Sjk

T
(24)

w here zjk := [rjk xjk]
T is the line im pedance and Sjk :=

[Pjk Q jk]
T is the branch pow er flow s, both taken as 2-

dim ensional realvectors so thatzjk Sjk
T
is a 2⇥2 m atrix

w ith rank less or equal to 1. The m atrices A jk(Sjk,vj) de-
scribe how changes in branch pow erflow spropagate tow ards
the rootnode 0;see com m ents below.Evaluate the Jacobian
m atrix A jk(Sjk,vj) atthe boundary values:

A jk := A jk

✓h
Slinjk(s)

i+
, vj

◆

:= I−
2

vj
zjk

✓h
Slinjk(s)

i+
◆T

(25)

H ere [a]+
T
is the row vector [[a1]+ [a2]+ ] w ith [aj]+ :=

m ax{0,aj}.

Fora radialnetw ork,for j6= 0,every link j! k identifies
a unique node k and therefore,to sim plify notation,w e refer
to a link interchangeably by (j,k) or j and use A j, A j,zj
etc.in place of A jk,A jk,zjk etc.respectively.A ssum e

B1: The cost function is C (x):= Â nj= 0C j(Resj) w ith C 0
strictly increasing.There is no constrainton s0.

B2: The set S j of injections satisfies vlinj (s) vj, j2 N ,

w here vlinj (s) is given by (22).
B3: For each leaf node j2 N let the unique path from

j to 0 have k links and be denoted by P j :=
((ik,ik− 1),...,(i1,i0)) w ith ik = j and i0 = 0. Then
Ait···Ait0zit0+ 1 > 0 for all1 t t0< k.

The follow ing resultis proved in [35].
Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then
O PF-socp (19) is exact.

W e now com m ent on the conditions B1–B3.B1 requires
that the costfunctions C j depend only on the injections sj.
For instance, ifC j(Resj)= pj,then the cost is total active
pow er loss over the netw ork. It also requires that C 0 be
strictly increasing but m akes no assum ption on C j,j> 0.
Com m on costfunctions such as line loss or generation cost
usually satisfy B1.If C 0 is only nondecreasing, rather than
strictly increasing,in p0 then B1–B3 still guarantee thatall
optim al solutions of O PF (10) are (effectively) optim al for
O PF-socp (19),butO PF-socp m ay notbe exact,i.e.,itm ay
have an optim alsolution thatm aintains strictinequalities in
(17c).In this case the proofofTheorem 5 can constructfrom
itanother optim alsolution thatattains equalities in (17c).
B2 is affine in the injections s:= (p,q). It enforces the
upper bounds on voltage m agnitudes because of (23).
B3 has a sim ple interpretation: the pow er flow s Sjk on
allbranches should m ove in the sam e direction.Specifically,
given a m arginalchange in the com plex pow eron line j! k,
the 2⇥2 m atrix A jk is (a low er bound on) the Jacobian and
describes the effectof this m arginalchange on the com plex
pow eron the line im m ediately upstream from line j! k.The
productof Ai in B3 propagates this effectupstream tow ards
the root.B3 requiresthata sm allchange,positive ornegative,
in the pow erflow on a line affectsallupstream branch pow ers
in the sam e direction.This seem s to hold w ith a significant
m argin in practice;see [35]forexam ples from realsystem s.
Theorem 5 unifies and generalizes som e earlier results in
[32],[33],[34].The sufficientconditions in these papershave
the follow ing sim ple and practical interpretation: O PF-socp
is exactprovided either

• there are no reverse pow er flow s in the netw ork,or
• if the r/x ratios on alllines are equal,or
• if the r/x ratios increase in the dow nstream direction
from the substation (node 0)to the leaves then there are
no reverse realpow er flow s,or

• if the r/x ratios decrease in the dow nstream direction
then there are no reverse reactive pow er flow s.

The exactness of SO CP relaxation does not require con-
vexity, i.e., the cost C (x) = Â nj= 0C j(Resj) need not be a
convex function and the injection regions S j need not be
convex sets.Convexity allow s polynom ial-tim e com putation.
M oreoverw hen itisconvex the exactness ofSO CP relaxation
also im plies the uniqueness of the optim al solution, as the
follow ing resultfrom [35] show s.
Theorem 6: Suppose G̃ is a tree. Suppose the costs C j,
j= 0,...,n,are convex functions and the injection regions
S j, j= 1,...,n,are convex sets.If the relaxation O PF-socp
(19) is exactthen its optim alsolution is unique.

Consider the m odelof [18] for radial netw orks,w hich is
(17)w ith the inequalities in (17c)replaced by equalities.Let

vlin(s) £ v



Key conditions:

•

• Jacobian condition 
vlin(s) £ v

Gan, Li, Topcu, Low TAC2014

Theorem

SOCP relaxation is exact for 

radial networks 

2. Voltage upper bounds

min
xÎX

 f x( )     s.t.   v £ v £ v,   s Î S

min
xÎX+

 f x( )     s.t.   v £ v £ v,   s Î S

OPF: 

SOCP: 

satisfied with large margin in 

IEEE circuits and SCE circuits
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p0

q0

c

(a) Voltage constraintnotbinding

p0

q0

c

(b) Voltage constraintbinding

Fig.3:Im pact of voltage upper bound v1 on exactness. (a)
W hen v1 (corresponding to a low er bound on )̀ is not
binding, the pow er flow solution c is in the feasible set
of SO CP and hence the relaxation is exact. (b) W hen v1
excludesc from the feasible setofSO CP,the optim alsolution
is infeasible for O PF and the relaxation is notexact.

w here T j denotes the subtree at node j,including j,and
P j denotes the setof links on the unique path from j to 0.
The key property w e w ill use is,from [25,Lem m a 13 and
Rem ark 9]:

Sjk Slinjk(s) and vj vlinj (s) (23)

D efine the 2⇥2 m atrix function

A jk(Sjk,vj) := I−
2

vj
zjk Sjk

T
(24)

w here zjk := [rjk xjk]
T is the line im pedance and Sjk :=

[Pjk Q jk]
T is the branch pow er flow s, both taken as 2-

dim ensional realvectors so thatzjk Sjk
T
is a 2⇥2 m atrix

w ith rank less or equal to 1. The m atrices A jk(Sjk,vj) de-
scribe how changes in branch pow erflow spropagate tow ards
the rootnode 0;see com m ents below.Evaluate the Jacobian
m atrix A jk(Sjk,vj) atthe boundary values:

A jk := A jk

✓h
Slinjk(s)

i+
, vj

◆

:= I−
2

vj
zjk

✓h
Slinjk(s)

i+
◆T

(25)

H ere [a]+
T
is the row vector [[a1]+ [a2]+ ] w ith [aj]+ :=

m ax{0,aj}.

Fora radialnetw ork,for j6= 0,every link j! k identifies
a unique node k and therefore,to sim plify notation,w e refer
to a link interchangeably by (j,k) or j and use A j, A j,zj
etc.in place of A jk,A jk,zjk etc.respectively.A ssum e

B1: The cost function is C (x):= Â nj= 0C j(Resj) w ith C 0
strictly increasing.There is no constrainton s0.

B2: The set S j of injections satisfies vlinj (s) vj, j2 N ,

w here vlinj (s) is given by (22).
B3: For each leaf node j2 N let the unique path from

j to 0 have k links and be denoted by P j :=
((ik,ik− 1),...,(i1,i0)) w ith ik = j and i0 = 0. Then
Ait···Ait0zit0+ 1 > 0 for all1 t t0< k.

The follow ing resultis proved in [35].
Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then
O PF-socp (19) is exact.

W e now com m ent on the conditions B1–B3.B1 requires
that the costfunctions C j depend only on the injections sj.
For instance, ifC j(Resj)= pj,then the cost is total active
pow er loss over the netw ork. It also requires that C 0 be
strictly increasing but m akes no assum ption on C j,j> 0.
Com m on costfunctions such as line loss or generation cost
usually satisfy B1.If C 0 is only nondecreasing, rather than
strictly increasing,in p0 then B1–B3 still guarantee thatall
optim al solutions of O PF (10) are (effectively) optim al for
O PF-socp (19),butO PF-socp m ay notbe exact,i.e.,itm ay
have an optim alsolution thatm aintains strictinequalities in
(17c).In this case the proofofTheorem 5 can constructfrom
itanother optim alsolution thatattains equalities in (17c).
B2 is affine in the injections s:= (p,q). It enforces the
upper bounds on voltage m agnitudes because of (23).
B3 has a sim ple interpretation: the pow er flow s Sjk on
allbranches should m ove in the sam e direction.Specifically,
given a m arginalchange in the com plex pow eron line j! k,
the 2⇥2 m atrix A jk is (a low er bound on) the Jacobian and
describes the effectof this m arginalchange on the com plex
pow eron the line im m ediately upstream from line j! k.The
productof Ai in B3 propagates this effectupstream tow ards
the root.B3 requiresthata sm allchange,positive ornegative,
in the pow erflow on a line affectsallupstream branch pow ers
in the sam e direction.This seem s to hold w ith a significant
m argin in practice;see [35]forexam ples from realsystem s.
Theorem 5 unifies and generalizes som e earlier results in
[32],[33],[34].The sufficientconditions in these papershave
the follow ing sim ple and practical interpretation: O PF-socp
is exactprovided either

• there are no reverse pow er flow s in the netw ork,or
• if the r/x ratios on alllines are equal,or
• if the r/x ratios increase in the dow nstream direction
from the substation (node 0)to the leaves then there are
no reverse realpow er flow s,or

• if the r/x ratios decrease in the dow nstream direction
then there are no reverse reactive pow er flow s.

The exactness of SO CP relaxation does not require con-
vexity, i.e., the cost C (x) = Â nj= 0C j(Resj) need not be a
convex function and the injection regions S j need not be
convex sets.Convexity allow s polynom ial-tim e com putation.
M oreoverw hen itisconvex the exactness ofSO CP relaxation
also im plies the uniqueness of the optim al solution, as the
follow ing resultfrom [35] show s.
Theorem 6: Suppose G̃ is a tree. Suppose the costs C j,
j= 0,...,n,are convex functions and the injection regions
S j, j= 1,...,n,are convex sets.If the relaxation O PF-socp
(19) is exactthen its optim alsolution is unique.

Consider the m odelof [18] for radial netw orks,w hich is
(17)w ith the inequalities in (17c)replaced by equalities.Let



3. Voltage angles

12

F j
²# %jk

Re

Im
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F k[ ]
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upper)bounds)
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Fig. 2: C ondition A 2 on a line (j,k) 2 E .
The quantities ([F j]jk,[F k]jk,[Y j]jk,[Y k]jk) on
the left-half plane correspond to finite up-
per bounds on (pj,pk,qj,qk) in (18b)–(18c);
(− [F j]jk,− [F k]jk,− [Y j]jk,− [Y k]jk) on the right-
half plane correspond to finite low er bounds on
(p j,pk,qj,qk). A 2 is satisfied if there is a line
through the origin,characterized by the angle a jk,
so thatthe quantities corresponding to finite upper
or low er bounds on (pj,q j) and (pk,qk) lie on one
side of the line, including on the line itself. The
load over-satisfaction condition in [48], [46] and
in [49,Theorem 7] corresponds to the Im -axis that
excludes all quantities on the right-half plan (no
low er bounds on pow er injections). The sufficient
condition in [45,Theorem 2]corresponds to the red
line in the figure that allow s a finite low er bound
on pk.

plan (no low er bounds on pow er injections). The
sufficientcondition in [45,Theorem 2]corresponds
to the red line in Figure 2 that allow s a finite
low er bound on the real pow er injection at one
end of a line (pj or pk but not both), and no
finite low er bound on reactive pow er injections
qj. The approach in the independent w orks [48],
[51], [45] proves that O PF-sdp (24) is exact, not
by show ing that an optim al W ⇤ w ould be rank-
1, but by show ing a certain m atrix A⇤ in the
com plem entary slackness condition trA⇤W ⇤= 0 for
SD P has rank n − 1, as suggested in [52]. They
m ake use of the fact that, if an n⇥n H erm itian
m atrix M is positive sem idefinite and its underlying
graph is a tree,then rank M ≥n− 1;see e.g.,[53],

[54, Theorem 3.4] and [55, C orollary 3.9]. The
com plem entary slackness condition tr A⇤W ⇤= 0
then im plies rank W ⇤= 1.The proof in [49] also
m akes use of the geom etry of the pow er injection
region,firstexplored in [51],to w hich w e now turn.

2) Pareto front: W hen the voltage m agnitudes
are fixed [45],[49],[56]provide a geom etric insight
on w hy convex relaxations are exact.Forsim plicity
w e w illexplain the intuition using the resultin [49]
for the O PF problem w here |Vi| are given for all
i2 N and reactive pow ers are ignored (the objective
function and the constraints depend only on the real
pow er injections pj,j2 N ).This resultis extended
to include reactive pow er in [56,Theorem 1] w ith
fixed |Vi|w here an additionalconstraintis im posed
on the low erbounds ofreactive pow erinjections to
ensure these low erbounds are nevertight.The case
ofvariable |Vi|w ithoutreactive pow eris considered
in [49,Theorem 7] but the exact relaxation result
there requires the load over-satisfaction condition
and is therefore a special case of C orollary 8 w ith
line lim its.
R ecallthatyjk = gjk− ibjk w ith g jk > 0,bjk > 0.

C onsider the follow ing O PF problem :

m in
p,P,V

C (p) (29a)

s.t. p
j
p j pj (29b)

q jk qjk q jk (29c)

p j= Â
k:k⇠j

Pjk (29d)

Pjk = |V j|
2g jk− |V j||Vk|g jkcosqjk (29e)

+ |V j||Vk|bjksinqjk (29f)

|V j|= 1 (29g)

w here j2 N in the above constraints,qjk := qj−

qk, and qj are the phase angles of V j, i.e., V j =
|V j|eiqj.
W e firstcom m enton the constraints on anglesqjk

in (29).W hen the voltage m agnitudes |Vi|are fixed,
constraints on real pow er flow s, branch currents,
line losses, and stability can all be represented in
term s of qjk. Indeed a line flow constraint of the
form |Pjk| P jk becom es a constrainton qjk using
the expression for Pjk in (29).A constrainton cur-
rentofthe form |Ijk| Ijk isalso a constrainton qjk
since Ijk = yjk(V j− Vk) and |V j|,|Vk|are fixed.The
line lossover(j,k)2 E isequalto Pjk+ Pkjw hich is

assumptions: 

• fixed voltage magnitudes

• real power only

Can represent constraints on

• Line flows

• Line loss

• Stability

Zhang & Tse, TPS 2013

Lavaei, Zhang, Tse, 2012
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30

Pjk

Pkj

(a) Ellipse (Pjk,Pkj)

P jk,Pkj( )

Pjk,Pkj( )

Pjk

Pkj

(b) Feasible sets

Fig.6:Feasible sets and Pareto front.(a)F
jk
q defined in (68)isthe entire ellipse w hen qjk isunconstrained,

q jk = 0,q jk = 2p. Its convex hull convF
jk
q is the ellipse together w ith its interior. The Pareto front

O
⇣
F jkq

⌘
,the set of points x that have no x06= x w ith x0 x,is the darkened segm entof the ellipse.(b)

The intersection of convF jkq and upper and low er bounds im plied by P p.

3.1]. A sim ilar result is also provided in Theorem ?? below in Section Q for the branch flow m odel,
proved using a differentapproach.
The follow ing sufficient condition for exact relaxation allow s low er bounds on pow er injections but
relaxes upper bounds on voltage m agnitudes.Itis proved in [60] using a differenttechnique.
Theorem 18 ([60]): Fix V1.O PF-socp and O PF-sdp are exact if vj= • for all j2 N and C 0(p0) is
strictly increasing.M oreover if O PF-socp/O PF-sdp is exactthen its solution is unique.

R. AC radial

R ecall the branch flow m odelfor radialnetw orks from Section II-D of PartI:

Â
k:j! k

Sjk = Sij− zij̀ ij+ sj, j2 N (71a)

vj− vk = 2R e zHjkS jk − |zjk|
2`jk, j! k 2 Ẽ

(71b)

`jkvj = |Sjk|
2, j! k 2 Ẽ (71c)

w here bus iin (71a) denotes the unique parentof bus j(on the unique path from bus 0 to bus j).The
pow er injections sj are generation m inus load:

sj := (p j,qj) = : (p
g
j− p

c
j,q
g
j− q

c
j)

A ssum e

A 1: The cost function C (x) is convex, strictly increasing in ,̀ nonincreasing in load (pc,qc), and
independentof branch flow s S = (P,Q ).

The nextresult show s that O PF-socp for radial netw orks in the branch flow m odel is exact provided
there are no upper bound on loads,or equivalent,no low er bound on the pow er injections.
Theorem 19 ([42]): Suppose A 1 holds.If sj= − • , j2 N + then O PF-socp is exact.

Theorem

SOCP relaxation is exact for 

radial networks Vj  constant( )

3. Voltage angles 
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3) For each link (j,k)∈E \ E T not in the spanning
tree,node j is an additionalparentofk in addition
to k’s parentin the spanning tree from w hich ∠Vk
has already been com puted in Step 2.

a) C om pute currentangle ∠Ijk using (39).
b) C om pute a new voltage angle θjk using the new

parent j and (40). If θjk = ∠Vk, then angle
recovery has failed and (S, ,v,s0) is spurious.

Ifthe angle recovery procedure succeeds in Step 3,then
(S, ,v,s0) together w ith these angles ∠Vk,∠Ijk are
indeed a branch flow solution.O therw ise,the angles∠Vk
determ ined in Step 1 do notsatisfy the K irchhoffvoltage
law iVi = 0 around the loop that involves the link
(j,k) identified in Step 3(b).This violates the condition
B T ⊥B − 1

T βT = βT ⊥ in Theorem 2.

C . Radialnetw orks

R ecall that all relaxed solutions in Ŷ \ ĥ(X ) are
spurious. O ur next key result show s that, for radial
netw ork,ĥ(X ) = Ŷ and hence angle relaxation is alw ays
exact in the sense that there is alw ays a unique inverse
projection thatm aps any relaxed solution ŷ to a branch
flow solution in X (even though X = Y ).
Theorem 4: Suppose G = T is a tree.Then

1) ĥ(X ) = Ŷ .
2) given any ŷ,θ∗ := B − 1β alw ays exists and is the
unique phase angle vector such thathθ∗ (ŷ)∈X .

Proof: W hen G = T is a tree, m = n and hence
B = B T and β = βT . M oreover B is n ×n and of
full rank. Therefore θ∗ = B − 1β alw ays exists and, by
Theorem 2, hθ∗ (ŷ) is the unique branch flow solution
in X w hose projection is ŷ. Since this holds for any
arbitrary ŷ∈Ŷ , Ŷ = ĥ(X ).

A direct consequence of Theorem 1 and Theorem 4
is that, for a radial netw ork, O PF is equivalent to the
convex problem O PF-cr in the sense thatw e can obtain
an optim alsolution ofone problem from thatofthe other.

C orollary 5: Suppose G is a tree. G iven an optim al
solution (ŷ∗,s∗) ofO PF-cr,there exists a unique θ∗ such
that (hθ∗ (ŷ∗),s∗) is an optim al solution of the original
O PF.
Proof:Suppose (ŷ∗,s∗) is optim alforO PF-cr(24)–

(25).Theorem 1 im plies thatitis also optim alfor O PF-
ar.In particular ŷ∗ ∈Ŷ (s∗).Since G is a tree, Ŷ (s∗) =
ĥ(X (s∗)) by Theorem 4 and hence there is a unique θ∗
such that hθ∗ (ŷ∗) is a branch flow solution in X (s∗).
This m eans (hθ∗ (ŷ∗),s∗) is feasible for O PF (10)–(11).
Since O PF-aris a relaxation ofO PF,(hθ∗ (ŷ∗),s∗)isalso
optim al for O PF.

Rem ark 3: Theorem 1 im plies that w e can alw ays
solve efficiently a conic relaxation O PF-cr to obtain a
solution of O PF-ar,provided there are no upper bounds
on the pow er consum ptions pci,q

c
i. From a solution of

O PF-ar,Theorem 4 and C orollary 5 prescribe a w ay to
recover an optim alsolution of O PF for radialnetw orks.
Form esh netw orks,how ever,the solution ofO PF-arm ay
be spurious,i.e.,there are no angles∠Vi,∠Iij thatw ill
satisfy the K irchhofflaw sifthe angle recovery condition
in Theorem 2 fails to hold. To deal w ith this, w e next
propose a w ay to convexify the netw ork.

V I. C O N V E X IFIC A T IO N O F M E SH N E T W O R K

In this section, w e explain how to use phase shifters
to convexify a m esh netw ork so that an extended angle
recovery condition can alw aysbe satisfied by any relaxed
solution and can be m apped to a valid branch flow
solution of the convexified netw ork.A s a consequence,
the O PF for the convexified netw ork can alw ays be
solved efficiently (in polynom ial tim e).

A. Branch flow solutions

In this section w e study pow er flow solutions
and hence w e fix an s. A ll quantities, such as
x,ŷ,X ,Ŷ ,X ,X T ,are w ith respect to the given s,even
though that is not explicit in the notation. In the next
section, s is also an optim ization variable and the sets
X ,Ŷ ,X ,X T are for any s;c.f.the m ore accurate nota-
tion in (4) and (5).
Phase shifters can be traditional transform ers or
FA C TS (Flexible A C Transm ission System s) devices.
They can increase transm ission capacity and im prove
stability and pow er quality [37], [38]. In this paper,
w e consider an idealized phase shifter that only shifts
the phase angles of the sending-end voltage and current
across a line, and has no im pedance nor lim its on the
shifted angles.Specifically,consider an idealized phase
shifter param etrized by φij across line (i,j), as show n
in Figure 4. A s before, let Vi denote the sending-end

k
zij

i j
! ij

Fig.4: M odelof a phase shifter in line (i,j).

voltage.D efine Iij to be the sending-end currentleaving
node i tow ards node j. Let k be the point betw een
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w hich is equivalentto the requirem entthatthe (im plied)
voltage angle differences sum to zero around any cycle
c:

X

(i,j)2 c

β̃ij = 0 (m od 2⇡)

w here β̃ij = βij if (i,j) 2 E and β̃ij = − βji if (j,i) 2
E .

B. M odelw ith phase shifters

Phase shifters can be traditional transform ers or
FA C TS (Flexible A C Transm ission System s) devices.
They can increase transm ission capacity and im prove
stability and pow er quality [3], [4]. In this paper, w e
consider an idealized phase shifter that only shifts the
phase angles of the sending-end voltage and current
across a line, and has no im pedance nor lim its on the
shifted angles.Specifically,consider an idealized phase
shifter param etrized by φij across line (i,j), as show n
in Figure 2. A s before, let Vi denote the sending-end

k
zij

i j
! ij

Fig.2: M odelof a phase shifter in line (i,j).

voltage.D efine Iij to be the sending-end currentleaving
node i tow ards node j. Let k be the point betw een
the phase shifter φij and line im pedance zij. Let Vk
and Ik be the voltage at k and current from k to j
respectively.Then the effectofthe idealized phase shifter
is sum m arized by the follow ing m odeling assum ption:

Vk = Vi e
iφij and Ik = Iij e

iφij

The pow er transferred from nodes i to j is still(defined
to be) Sij := ViI⇤ij w hich, as expected, is equal to the
pow er VkI⇤k from nodes k to j since the phase shifter is
assum ed to be lossless.A pplying O hm ’s law across zij,
w e define the branch flow m odel w ith phase shifters as
the follow ing setof equations:

Iij = yij
⇣
Vi− Vj e

− iφij
⌘

(9)

Sij = ViI
⇤
ij (10)

sj =
X

k:j! k

Sjk −
X

i:i! j

Sij − zij|Iij|
2 + y⇤j|Vj|

2 (11)

W ithoutphase shifters (φij = 0),(9)–(11) reduce to the
branch flow m odel(1)–(3).
The inclusion of phase shifters m odifies the netw ork
and enlargers the solution set of the (new ) branch flow
equations.Form ally,let

X := {x |x solves (9)–(11) for som e φ} (12)

U nless otherw ise specified, all angles should be inter-
preted as being m odulo 2⇡ and in (− ⇡,⇡].H ence w e are
prim arily interested in φ 2 (− ⇡,⇡]m .For any spanning
tree T of G , let“φ 2 T ?”stands for “φij = 0 for
all (i,j) 2 T”, i.e., φ involves only phase shifters in
branches notin the spanning tree T .D efine

X T :=
n
x |x solves (9)–(11) for som e φ 2 T ?

o

(13)

Since (9)–(11) reduce to the branch flow m odel w hen
φ = 0,X ✓ X T ✓ X .

III. PH A SE A N G L E SE T T IN G

G iven a relaxed solution ŷ,there are in generalm any
w ays to choose angles φ on the phase shifters to recover
a feasible branch flow solution x 2 X from ŷ. They
depend on the num berand location ofthe phase shifters.

A. C om puting φ

For a netw ork w ith phase shifters, w e have from (9)
and (10)

S ij = Vi
V ⇤i − V ⇤j e

iφij

z⇤ij

leading to ViV ⇤j e
iφij = vi− z⇤ijSij.H ence✓i− ✓j = βij−

φij + 2⇡kij forsom e integerkij.This changes the angle
recovery condition in Theorem 2 of [2] from w hether
there exists (✓,k) thatsolves (7) to w hether there exists
(✓,φ,k) thatsolves

B ✓ = β − φ + 2⇡k (14)

for som e integer vector k 2 (− 2⇡,2⇡]m . The case
w ithoutphase shifters corresponds to setting φ = 0.
W e now describe tw o w ays to com pute φ: the first
m inim izes the required num ber of phase shifters, and
the second m inim izes the size of phase angles.

1) M inim ize num ber of phase shifters: O ur first key
result im plies that, given a relaxed solution ŷ :=
(S,`,v,s0) 2 Ŷ , w e can alw ays recover a branch flow
solution x := (S,I,V,s0) 2 X of the convexified
netw ork. M oreover it suffices to use phase shifters in
branches only outside a spanning tree. This m ethod
requires the sm allest num ber (m − n) of phase shifters.
G iven any d-dim ensional vector ↵, let P (↵) denote
its projection onto (− ⇡,⇡]d by taking m odulo 2⇡ com -
ponentw ise.
Theorem 1: Let T be any spanning tree of G . C on-
sider a relaxed solution ŷ 2 Ŷ and the corresponding β
defined by (6) in term s of ŷ.

2

O n the other extrem e,one can choose to m inim ize (the
Euclidean norm of)the phase shifterangles by deploying
phase shifters on every link in the netw ork. W e prove
that this m inim ization problem is N P-hard.Sim ulations
suggest,how ever,thata sim ple heuristic w orksquite w ell
in practice.
These results lead to an algorithm for solving O PF
w hen there are phase shifters in m esh netw orks, as
sum m arized in Figure 1.

Solve&OPF*cr&

Op. mize&phase&
shi5ers&

N&

OPF&solu. on&

Recover&angles&

radial&

angle&recovery&
condi. on&holds?& Y&mesh&

Fig.1:Proposed algorithm for solving O PF w ith phase
shifters in m esh netw orks.The details are explained in
this tw o-partpaper.

Since pow er netw orks in practice are very sparse,the
num ber of lines notin a spanning tree can be relatively
sm all com pared to the num ber of buses squared, as
dem onstrated in sim ulations in Section V using the IEEE
testsystem s w ith 14,30,57,118 and 300 buses,as w ell
as a 39-bus m odelof a N ew England pow er system and
tw o m odels of a Polish pow er system w ith m ore than
2,000 buses. M oreover, the placem ent of these phase
shifters depends only on netw ork topology, but not on
pow erflow s,generations,loads,oroperating constraints.
Therefore only one-tim e deploym ent cost is required
to achieve subsequent sim plicity in netw ork operation.
Even w hen phase shiftersare notinstalled in the netw ork,
the optim al solution of a convex relaxation is useful in
providing a low er bound on the true optim al objective
value.This low erbound serves as a benchm ark forother
heuristic solutions of O PF.
The paper is organized as follow s. In Section II,w e
extend the branch flow m odel of [2] to include phase
shifters.In Section III,w e describe m ethods to com pute
phase shifter angles to m ap any relaxed solution to an
branch flow solution.In Section IV ,w e explain how to
use phase shifters to sim plify O PF. In Section V , w e

presentour sim ulation results.

II. B R A N C H FL O W M O D E L W IT H PH A SE SH IFT E R S

W e adoptthe sam e notations and assum ptions A 1–A 4
of [2].

A. Review : m odelw ithoutphase shifters

For ease of reference, w e reproduce the branch flow
m odelof [2] here:

Iij = yij (Vi− Vj) (1)

S ij = ViI
⇤
ij (2)

sj =
X

k:j! k

S jk −
X

i:i! j

Sij − zij|Iij|
2 + y⇤j|Vj|

2 (3)

R ecall the set X (s) of branch flow solutions given s
defined in [2]:

X (s):= {x := (S,I,V,s0)|x solves (1)–(3) given s}

(4)

and the setX of allbranch flow solutions:

X :=
[

s2 C n

X (s) (5)

To sim plify notation, w e often use X to denote the set
defined either in (4)orin (5),depending on the context.
In this section w e study pow er flow solutions and hence
w e fix an s. A ll quantities, such as x,ŷ,X ,Ŷ ,X ,X T ,
are w ith respect to the given s,even though that is not
explicitin the notation.In the nextsection,s is also an
optim ization variable and the sets X ,Ŷ ,X ,X T are for
any s.
G iven a relaxed solution ŷ,define β := β(ŷ) by:

βij := \ vi− z
⇤
ijS ij , (i,j) 2 E (6)

It is proved in Theorem 2 of [2] that a given ŷ can be
m apped to a branch flow solution in X if and only if
there exists an (✓,k) thatsolves

B ✓ = β + 2⇡k (7)

for som e integer vector k 2 N n.M oreover if (7) has a
solution,then ithas a countably infinite setof solutions
(✓,k), but they are relatively unique, i.e., given k, the
solution ✓ is unique, and given ✓, the solution k is
unique. H ence (7) has a unique solution (✓⇤,k⇤) w ith
✓⇤2 (− ⇡,⇡]n if and only if

B ? B
− 1
T βT = β? (m od 2⇡) (8)

BFM without phase shifters:

BFM with phase shifters:



Convexification of mesh networks

OPF min
x

   f h(x)( )    s.t.     x ÎX    

Theorem

•

• Need phase shifters only

outside spanning tree

X =Y

OPF-ar min
x

   f h(x)( )    s.t.     x ÎY   

Y

X

OPF-ps min
x,f

   f h(x)( )    s.t.     x ÎX    

X

X

optimize over phase shifters as well



Cycle condition

A solution     satisfies the cycle condition if

• without PS: 

x

$q    s.t.    Bq = b(x)      mod 2p

x := (S, ,v, s)

b jk (x) := Ð v j - z jk
HS jk( )

• without PS: 

$q,f    s.t.    Bq = b(x)-f       mod 2p

can always satisfy with PS at strategic locations



Convexification of mesh networks

OPF-ps min
x,f

   f h(x)( )    s.t.     x ÎX    

X

X

optimize over phase shifters as well

Optimization of f
• Min # phase shifters (#lines - #buses + 1)

• Min       : NP hard  (good heuristics)

• Given existing network of PS, min # or

angles of additional PS 

f
2

Farivar & Low TPS 2013
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Outline

Mathematical preliminaries

Bus injection model
◼ OPF formulation

◼ 3 convex relaxations & relationship

Branch flow model
◼ OPF formulation

◼ SOCP relaxation & equivalence

Exact relaxation
◼ Sufficient conditions

Multiphase unbalanced networks



Distribution systems

Mostly radial networks

Multiphase unbalanced

◼ Lines may not be transposed

◼ Loads may not be balanced

Some references

◼ Kersting (2002)

◼ Shirmohammadi, et al (1988), Chen et al (1991)

◼ Lo and Zhang (1993), Arboleya et al (2014)

◼ Dall’Anese, Zhu and Giannakis (2012)

◼ ……
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everywhere.  See paper

for general multiphase

Bus injection model (phase frame)
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Bus injection model (phase frame)
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Admittance matrix 
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I =YV

N x N matrix



Admittance matrix (phase frame)
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3N x 3N matrix



Single-phase equivalent

Single-phase equivalent is a chordal graph for radial

networks !
• with a maximal clique for each line (j,k)

T. H. Chen et al (1991)



BIM: OPF and relaxations

OPF: reduced to single-phase case

◼ Each node is indexed by (bus, phase)

Standard SDP relaxation applies 

◼ Dall’Anese, Zhu and Giannakis (TSG 2012)

◼ Distribute OPF into areas (maximal cliques) in 
chordal extension

Chordal relaxation applies

◼ Simpler for large sparse networks

◼ Gan and L (PSCC 2014)



BFM for radial: advantages

SOCP relaxation

◼ Much more scalable than SDP

Linearized model

◼ Baran and Wu (TPD 1989)

◼ More suitable for distribution systems

 nonzero R, variable V, includes Q (unlike DC)

 explicit solution given power injections

Much more stable numerically than BIM

ALL extend to multiphase unbalanced case !

Gan and Low, PSCC 2014



Vi -Vj = zijIij

MultiphaseSingle phase

S jk
j®k

å = Sij - zij Iij
2

( )
i® j

å + s j

Sij =ViIij
*

BFM for radial

Sij =ViIij
*

diag S jk( )
j®k

å = diag Sij - zijIijIij
*( )

i® j

å + s j

scalar

Vi -Vj = zijIij

3x3 matrix

vector



SOCP relaxation: single phase

S jk
k: j®k

å = Sij - zij ij( )
i:i® j

å + s j

vi - v j = 2 Re zij
*Sij( ) - zij

2

ij

   ijvi = Sij
2

Baran and Wu 1989
for radial networks

power flow solutions:                        satisfyx := S, ,v, s( )

ij := Iij
2

vi := Vi
2

nonconvexity

linear



S jk
k: j®k

å = Sij - zij ij( )
i:i® j

å + s j

vi - v j = 2 Re zij
*Sij( ) - zij

2

ij

   ijvi ³ Sij
2

Farivar et al 2011

power flow solutions:                        satisfyx := S, ,v, s( )

ij := Iij
2

vi := Vi
2

second-order cone

linear

SOCP relaxation: single phase



Multiphase

Single phase

SOCP relaxation: multiphase

diag S jk( )
j®k

å = diag Sij - zij ij( )
i® j

å + s j

vi - v j = Sijzij
* + zijSij

*( ) - zij ijzij
*

S jk
k: j®k

å = Sij - zij ij( )
i:i® j

å + s j

vi - v j = Sijzij
* + zijSij

*( ) - zij
2

ij

3x3 matrix



MultiphaseSingle phase

SOCP relaxation: multiphase
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Equivalence: multiphase

Theorem

◼ BFM and BIM are equivalent

◼ Linear bijection between solution/feasible sets

Theorem

◼ Relaxation is exact for BFM iff it is for BIM

Gan and Low, PSCC 2014



Simulation results: multiphase

BFM is much more numerically stable

numerically

unstable

numerically 

stable



Linear approximation in BFM

Single phase

◼ Simple DistFlow equations 

◼ Baran and Wu (1989)

Multiphase

◼ Extension to multiphase unbalanced networks

◼ Closed-form solution given power injections

Gan and Low, PSCC 2014



Summary

Bus injection model
◼ OPF formulation

◼ 3 convex relaxations & relationship

Branch flow model
◼ OPF formulation

◼ SOCP relaxation & equivalence

Exact relaxation
◼ Radial networks

◼ Mesh networks

Multiphase unbalanced networks


