Semidefinite Relaxations of OPF

Steven Low

Computing + Math Sciences Electrical Engineering

January 2015 Grid Science Winter School

Caltech

 M. Chandy, J. Doyle, M. Farivar, L. Gan, B. Hassibi, Q. Peng, T. Teeraratkul, C. Zhao

Former

 S. Bose (Cornell), L. Chen (Colorado), D. Gayme (JHU), J. Lavaei (Columbia), L. Li (Harvard), U. Topcu (Upenn)

SCE

 A. Auld, J. Castaneda, C. Clark, J. Gooding, M. Montoya, S. Shah, R. Sherick

Mathematical preliminaries

Bus injection model

- OPF formulation
- 3 convex relaxations & relationship

Branch flow model

- OPF formulation
- SOCP relaxation & equivalence
- Exact relaxation
 - Radial networks
 - Mesh networks

Multiphase unbalanced networks

Largely following a 2-part tutorial

SL, Convex relaxation of OPF, 2014 http://netlab.caltech.edu

- Semidefinite programs
- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

min
$$c_0^H x$$

s.t. $||C_k x + b_k||$ f $c_k^H x + d_k$ k^{31}

•
$$C_k \hat{\mathbf{I}} \mathbf{R}^{(n_k-1)'n}, b_k \hat{\mathbf{I}} \mathbf{R}^{n_k-1}, c_k \hat{\mathbf{I}} \mathbf{C}^n, d_k \hat{\mathbf{I}} \mathbf{R}^n$$

- || || : Euclidean norm
- Feasible set is 2nd order cone and convex
- Includes LP, convex QP as special cases
- Special case of SDP, but much simpler computationally

min
$$c_0^H x$$

s.t. $\|C_k x + b_k\|^2$ f $(c_k^H x + d_k)(\hat{c}_k^H x + \hat{d}_k)$

• Useful for OPF:

min
$$c_0^H x$$

s.t. $C_k x = b_k$ $k^3 1$
 $\|w_m\|^2 \neq y_m z_m$ $m^3 1$

• Transformation: $\|w\|^2 \le yz, y \ge 0, z \ge 0 \iff \|\begin{bmatrix} 2w \\ y-z \end{bmatrix} \| \le y+z$

Primal:
$$\min_{x \in \mathbb{R}^n} \stackrel{a}{\underset{i=1}{\overset{a}{\frown}}} c_i x_i$$
 s. t. $A_0 + \stackrel{a}{\underset{i=1}{\overset{a}{\frown}}} x_i A_i \notin 0$

Lagrangian: for
$$\lfloor 3 0$$

 $L(x; L) := \stackrel{n}{\underset{i=1}{\overset{n}{\Rightarrow}}} c_i x_i + \operatorname{tr} L \stackrel{n}{\underset{e}{\overset{\alpha}{\oplus}}} A_0 + \stackrel{n}{\underset{i=1}{\overset{n}{\Rightarrow}}} x_i A_i \stackrel{+}{\underset{o}{\overset{i}{\Rightarrow}}}$
 $= \operatorname{tr} (A_0 L) + \stackrel{n}{\underset{i=1}{\overset{n}{\Rightarrow}}} (\operatorname{tr} (A_i L) + c_i) x_i$
 $D(L) = \stackrel{i}{\underset{1}{\overset{i}{\uparrow}}} \operatorname{tr} (A_0 L) \quad \text{if} \quad \operatorname{tr} (A_i L) + c_i = 0 \quad "i$
 $i \stackrel{i}{\underset{1}{\xrightarrow{f}{\rightarrow}}} = \text{else}$

Primal:
$$\min_{x \in \mathbb{R}^n} \stackrel{n}{\underset{i=1}{\overset{a}{\rightarrow}}} c_i x_i \quad \text{s. t.} \quad A_0 + \stackrel{n}{\underset{i=1}{\overset{a}{\rightarrow}}} x_i A_i \notin 0$$

Dual:
$$\max_{L^{30}} \operatorname{tr} (A_0 L) \quad \text{s.t.} \quad \operatorname{tr} (A_i L) + c_i = 0 \quad "i$$

We will later use an inequality form:

$$\max_{L^{3}0} \operatorname{tr}(A_{0}L)$$

s.t.
$$\operatorname{tr}(A_{i}L) \notin c_{i} \quad "i$$

equivalent to equality form through slack variables

Hermitian matrices

$$\mathbf{S}^{n} := \left\{ A \widehat{\mathsf{I}} \quad \mathbf{C}^{n \cdot n} \middle| A = A^{H} \right\}$$

- □ Positive semidefinite (psd) matrices $\mathbf{S}_{+}^{n} := \left\{ A \hat{\mathbf{I}} \quad \mathbf{S}^{n} \middle| x^{T} A x \stackrel{3}{=} 0 \text{ for all } x \hat{\mathbf{I}} \quad \mathbf{C}^{n} \right\}$
- □ Positive definite (pd) matrices $\mathbf{S}_{++}^{n} := \left\{ A \hat{\mathbf{I}} \ \mathbf{S}^{n} \middle| x^{T} A x > 0 \text{ for all } x \hat{\mathbf{I}} \ \mathbf{C}^{n} \right\}$

Primal:
$$\min_{x \in \mathbb{R}^n} \stackrel{a}{\underset{i=1}{\overset{a}{\rightarrow}}} c_i x_i \quad \text{s. t.} \quad A_0 + \stackrel{a}{\underset{i=1}{\overset{a}{\rightarrow}}} x_i A_i \notin 0$$

Dual:
$$\max_{L^{30}} \operatorname{tr} (A_0 L) \quad \text{s.t.} \quad \operatorname{tr} (A_i L) + c_i = 0 \quad i$$

Theorem: strong duality

primal optimal value = dual optimal value

- **Theorem**: The following are equivalent $\Box (x^*, L^*) \text{ is primal-dual optimal}$ $\Box (x^*, L^*) \text{ is a saddle pt of Lagrangian}$ $L(x^*, L) \notin L(x^*, L^*) \notin L(x, L^*) \quad \text{'' feasible } x, L$
- $\square \text{ KKT: } A_0 + \overset{n}{\underset{i=1}{\overset{i=1$

Semidefinite programs

- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

min $x^{H}C_{0}x$ over $x \mid \mathbf{C}^{n}$ s.t. $x^{H}C_{k}x \in b_{k}$ $k^{3}1$

- $C_k, k \ge 0$, Hermitian $\triangleright x^H C_k x$ is real $b_k \mid \mathbf{R}^n$
- Convex problem if all C_k are psd Nonconvex otherwise

- min $x^{H}C_{0}x$ over $x \hat{1} C^{n}$
- s.t. $x^H C_k x \in b_k \quad k^3 1$

•
$$x^H C_k x = \operatorname{tr} x^H C_k x = \operatorname{tr} C_k (x x^H)$$

min
$$\operatorname{tr} C_0(xx^H)$$

over $x \mid \mathbb{C}^n$
s.t. $\operatorname{tr} C_k(xx^H) \in b_k \quad k^3 1$

• $x^H C_k x = \operatorname{tr} x^H C_k x = \operatorname{tr} C_k (x x^H)$

min tr
$$C_0(xx^H)$$

over $x \mid \mathbf{C}^n$
s.t. tr $C_k(xx^H) \in b_k$ $k^{3}1$

•
$$x^H C_k x = \operatorname{tr} x^H C_k x = \operatorname{tr} C_k (x x^H)$$

- min tr $C_0 X$
- over $X\hat{I} S^n_+$
- s.t. tr $C_k X \notin b_k = k^3 1$ rank Y = 1 \leftarrow only nonconvexity
- Any solution X yields a unique x through $X = xx^{H}$
- Feasible sets are *equivalent*

- min tr $C_0 X$
- s.t. tr $C_k X \in b_k$ $k^3 1$ $X^3 0$

- Feasible set of QCQP is an *effective subset* of feasible set of SDP
- SDP is a *relaxation* of QCQP

min
$$c_0^H x$$

s.t. $\|C_k x + b_k\|^2$ f $(c_k^H x + d_k)(\hat{c}_k^H x + \hat{d}_k)$

• Useful for OPF:

min
$$c_0^H x$$

s.t. $C_k x = b_k$ $k^3 1$
 $\|w_m\|^2 \neq y_m z_m$ $m^3 1$

• Transformation: $\|w\|^2 \le yz, y \ge 0, z \ge 0 \iff \|\begin{bmatrix} 2w \\ y-z \end{bmatrix} \| \le y+z$

QCQPmin $x^H C_0 x$ s.t. $x^H C_k x \in b_k$ $k^{3} 1$

SDP	min	tr $C_0 X$	
	s.t.	$\operatorname{tr} C_k X \in b_k$	<i>к</i> ^з 1
		Х 3 0	

SOCP min $c_0^H x$ s.t. $C_k x = b_k$ $k^3 1$ $\|w_m\|^2 \in y_m z_m$ $m^3 1$

- Semidefinite programs
- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

Graph G = (V, E)

Complete graph: all node pairs adjacent

Clique: complete subgraph of G

- An edge is a clique
- Maximal clique: a clique that is not a subgraph of another clique

Chordal graph: all minimal cycles have length 3

Minimal cycle: cycle without chord

Chordal ext: chordal graph containing G

- Every graph has a chordal extension
- Chordal extensions are not unique

Fix an undirected graph G = (V, E)

Partial matrix X_G : $X_G := \left(\left[X_G \right]_{jj}, j \in V, \left[X_G \right]_{jk}, (j,k) \in E \right)$

Completion X of a partial matrix *X_G*:

$$X = X_G$$
 on G

partial matrix $X_G := \{ \text{ complex numbers on } G \}$

n-vertex complete graph

completion: full matrix X that agrees with X_G on G

chordal ext $X_{c(G)} := \{ \text{ complex numbers on } c(G) \}$

$$X_{G} = \frac{\#x_{11}}{\#x_{21}} \begin{array}{c} x_{12} \\ x_{22} \\ \#x_{21} \\ \#x_{22} \\ \#x_{31} \\ \#x_{43} \\ x_{43} \\ x_{43} \\ x_{44} \\ x_{52} \\ x_{54} \\ x_{55} \\ \#x_{55} \\ x_{55} \\ \#x_{55} \\ x_{55} \\$$

chordal ext $X_{c(G)} := \{ \text{ complex numbers on } c(G) \}$

Fix an undirected graph G = (V, E)A partial matrix X_G is *psd* if $X_G(q)^3 0$ for all maximal cliques qA partial matrix X_G is *rank-1* if rank $X_G(q) = 1$ for all maximal cliques q

Theorem [Grone et al 1984]

Every psd partial matrix X_G has a psd completion if and only if G is chordal

Motivates chordal relaxation

Consider

- dec # vars full matrix W• partial matrix $W_{c(G)}$ defined on a chordal ext of G• partial matrix W_G defined on G

$W \succeq 0$, rank W = 1C1:

Consider

- dec # vars full matrix W• partial matrix $W_{c(G)}$ defined on a chordal ext of G• partial matrix W_G defined on G

C1:
$$W \succeq 0$$
, rank $W = 1$

C2:
$$W_{c(G)} \succeq 0$$
, rank $W_{c(G)} = 1$

Consider

- dec # vars full matrix W• partial matrix $W_{c(G)}$ defined on a chordal ext of G• partial matrix W_G defined on G

C1:
$$W \succeq 0$$
, rank $W = 1$
C2: $W_{c(G)} \succeq 0$, rank $W_{c(G)} = 1$
C3:
$$\begin{cases} W_G(j,k) \succeq 0, \text{ rank } W_G(j,k) = 1, (j,k) \in E, \\ \sum_{(j,k)\in c} \bigoplus [W_G]_{jk} = 0 \mod 2\pi \end{cases}$$

$\frac{\text{Theorem}}{C1 = C2 = C3}$

C1:
$$W \succeq 0$$
, rank $W = 1$
C2: $W_{c(G)} \succeq 0$, rank $W_{c(G)} = 1$
C3:
$$\begin{cases} W_G(j,k) \succeq 0, \text{ rank } W_G(j,k) = 1, (j,k) \in E, \\ \sum_{(j,k)\in c} \bigoplus [W_G]_{jk} = 0 \mod 2\pi \end{cases}$$

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

C1 = C3 means:

iff

W is psd rank-1 iff W_G is psd rank-1 and satisfies cycle cond

5 2x2 submatrices are psd rank-1 and satisfies cycle cond

much much smaller for large sparse network

$\frac{\text{Theorem}}{C1 = C2 = C3}$

Moreover, given W_G that satisfies C3, there is a <u>unique</u> completion W that satisfies C1

C1:
$$W \succeq 0$$
, rank $W = 1$
C2: $W_{c(G)} \succeq 0$, rank $W_{c(G)} = 1$
C3:
$$\begin{cases} W_G(j,k) \succeq 0, \text{ rank } W_G(j,k) = 1, (j,k) \in E \\ \sum_{(j,k)\in c} \bigoplus [W_G]_{jk} = 0 \mod 2\pi \end{cases}$$

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

Given W_G that satisfies C3, there is only one way to fill in missing entries to get an W from which an V can be recovered

QCQPmin $x^H C_0 x$ s.t. $x^H C_k x$ for b_k $k^3 1$

SDP	min	tr $C_0 X$	
	s.t.	$\operatorname{tr} C_k X \in b_k$	<i>к</i> ^з 1
		Х 3 0	

Chordal $\min_{X_{c(G)}}$ tr $C_0 X_G$ s.t.tr $C_k X_G$ f b_k $k \ ^3 1$ $X_{c(G)} \ ^3 0$

Mathematical preliminaries

Bus injection model

- OPF formulation
- 3 convex relaxations & relationship

Branch flow model

- OPF formulation
- SOCP relaxation & equivalence

Exact relaxation

- Radial networks
- Mesh networks

Multiphase unbalanced networks

$$Y_{ij} := \begin{cases} a \\ y_{ik} \\ -y_{ij} \\ 0 \end{cases} \quad \text{if } i = j \\ if \\ 0 \\ else \end{cases}$$

graph G: undirected

Y specifies topology of G and impedances \boldsymbol{z} on lines

In terms of V:

$$S_j = \operatorname{tr}\left(Y_j^H V V^H\right)$$
 for all j $Y_j = Y^H e_j e_j^T$

Power flow problem: Given (Y, s) find V

isolated solutions

mintr (CVV^H) gen cost,
power lossover(V, s)subject to \underline{s}_j for s_j for \overline{s}_j \underline{V}_j for V_j for V_j for V_j

mintr (CVV^H) gen cost,
power lossover(V, s)subject to $\underline{s}_j \quad \pounds \quad s_j \quad \pounds \quad \overline{s}_j$ $\underline{V}_j \quad \pounds \quad |V_j| \quad \pounds \quad \overline{V}_j$ $s_j \quad = \operatorname{tr} \left(Y_j^H V V^H\right)$ power flow equation

min tr
$$CVV^H$$

subject to \underline{s}_j f $(\underline{r}(\underline{Y}_jVV^H)$ f \overline{s}_j \underline{v}_j f $|V_j|^2$ f \overline{v}_j

nonconvex QCQP (quad constrained quad program)

Security constraint OPF

- Solve for operating points after each single contingency (N-1 security)
- N sets of variables and constraints, one for each contingency

Unit commitment

Discrete variables

Stochastic OPF

■ Chance constraints Pr(bad event) < *C*

Other constraints

Line flow, line loss, stability limit, ...

... OPF in practice is a lot harder

Convex relaxations of OPF

model	first proposed	first analyzed
BIM	Jabr 2006 TPS	
BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC
	model BIM BIM BIM	modelfirst proposedBIMJabr 2006 TPSBIMBai et al 2008 EPESBIMBai, Wei 2011 EPES Jabr 2012 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

min tr
$$CVV^H$$

subject to \underline{s}_j f tr (Y_jVV^H) f \overline{s}_j \underline{v}_j f $|V_j|^2$ f \overline{v}_j
V

Approach

- 1. Three equivalent characterizations of ${\bf V}$
- 2. Each suggests a lift and relaxation
- What is the relation among different relaxations ?
- When will a relaxation be <u>exact</u>?

min tr
$$CVV^H$$

subject to $\underline{s}_j \in \operatorname{tr}(Y_jVV^H) \in \overline{s}_j \quad \underline{v}_j \in |V_j|^2 \in \overline{v}_j$
quadratic in V
linear in W
subject to $\underline{s}_j \in \operatorname{tr}(Y_jW) \in \overline{s}_j \quad \underline{v}_i \in W_{ii} \in \overline{v}_i$
 $W^3 0, \operatorname{rank} W = 1$ convex in W
except this constraint

only n+2m vars !

corresponding to edges (j, k) in G!

min
$$\operatorname{tr} CVV^H$$

subject to \underline{s}_j f $\operatorname{tr} (Y_jVV^H)$ f \overline{s}_j \underline{v}_j f $|V_j|^2$ f \overline{v}_j

only n+2m vars !

partial matrix W_G defined on G $W_G := \{ [W_G]_{jj}, [W_G]_{jk} | j, jk \mid G \}$ Kircchoff's laws depend <u>directly</u> only on W_G

SDP solves for $W \hat{I} C^{n^2}$ n^2 variables

Want to solve for W_G n+2m variables

OPF
$$\mathbf{V} := \left\{ V \middle| \underline{s}_{j} \in \operatorname{tr} \left(Y_{j} V V^{H} \right) \in \overline{s}_{j}, \underline{v}_{j} \in |V_{j}|^{2} \in \overline{v}_{j} \right\}$$

SDP
 $\mathbf{W} := \left\{ W \middle| \underline{s}_{j} \in \operatorname{tr} \left(Y_{j} W \right) \in \overline{s}_{j}, \underline{v}_{j} \in W_{jj} \in \overline{v}_{j} \right\} \subset \left\{ W^{3} 0, \operatorname{rank-1} \right\}$
depend only on W_{G}
depend on all
entries of W

OPF
$$\mathbf{V} := \left\{ V \middle| \underline{s}_j \in \operatorname{tr} \left(Y_j V V^H \right) \in \overline{s}_j, \quad \underline{v}_j \quad \mathrm{fr} |V_j|^2 \in \overline{v}_j \right\}$$

SDP

$$\mathbf{W} := \left\{ W \middle| \underline{s}_j \in \operatorname{tr} (Y_j W) \in \overline{s}_j, \ \underline{v}_j \in W_{jj} \in \overline{v}_j \right\} \zeta \left\{ W^3 \text{ 0, rank-1} \right\}$$

first idea:

$$\mathbf{W}_{G} := \left\{ W_{G} \left| \underline{s}_{j} \in \operatorname{tr} \left(Y_{j} W_{G} \right) \in \overline{s}_{j}, \underline{v}_{j} \in [W_{G}]_{jj} \in \overline{v}_{j} \right\} \zeta \left\{ W_{G}^{3} 0, \operatorname{rank-1} \right\} \right\}$$

 W_G is equivalent to V when G is **chordal** Not equivalent otherwise ...

$$\mathbf{W}_{c(G)} := \left\{ W_{c(G)} : \underline{\text{linear}} \text{ constraints} \right\}$$

idea: $W_{c(G)} = \left(VV^H \text{ on } c(G) \right)$

$$\mathbf{W}_{c(G)} := \left\{ W_{c(G)} : \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\}$$

idea: $W_{c(G)} = \left(VV^H \text{ on } c(G) \right)$

$$\mathbf{W}_G := \{ W_G : \underline{\text{linear}} \text{ constraints} \}$$

idea:
$$W_G = (VV^H \text{ only on } G)$$

$$\begin{split} \mathbf{W}_{c(G)} &:= \left\{ W_{c(G)} : \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\} \\ &\text{idea: } W_{c(G)} = \left(VV^H \text{ on } c(G) \right) \end{split}$$

$$W:= \{W: \underline{\text{linear} \text{ constraints}} \} \cap \{W \ge 0 \text{ rank-1}\}$$

idea: $W = VV^H$

$$\mathbf{W}_{G} := \left\{ W_{G} : \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ \begin{matrix} W(j,k) \ge 0 \text{ rank-1,} \\ \text{cycle cond on } \angle W_{jk} \end{matrix} \right\}$$

idea: $W_{G} = \left(VV^{H} \text{ only on } G \right)$
$$\mathbf{W}_{c(G)} := \left\{ W_{c(G)} : \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\}$$

idea: $W_{c(G)} = \left(VV^{H} \text{ on } c(G) \right)$

$$\begin{array}{lll} \text{local} & W_G(j,k) \succeq 0, \text{ rank } W_G(j,k) = 1, & (j,k) \in E_{j} \\ \\ \text{global} & \sum_{(j,k) \in c} \left. \mathbb{D} \big[W_G \big]_{jk} = & 0 & \mod 2\pi & \longleftarrow & \begin{array}{c} \text{cycle} \\ \text{cond} \end{array} \end{array}$$

Theorem: $\mathbf{V} \circ \mathbf{W} \circ \mathbf{W}_{c(G)} \circ \mathbf{W}_{G}$

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem: $\mathbf{V} \circ \mathbf{W} \circ \mathbf{W}_{c(G)} \circ \mathbf{W}_{G}$

Given $W_G \hat{I} \ \mathbf{W}_G$ or $W_{c(G)} \hat{I} \ \mathbf{W}_{c(G)}$ there is unique completion $W \hat{I} \ \mathbf{W}$ and unique $V \hat{I} \ \mathbf{V}$

Can minimize cost over any of these sets, but ...

$$\begin{split} \mathbf{W}_{G} &:= \left\{ W_{G} \colon \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ \begin{matrix} W(j,k) \ge 0 \text{ rank-t}, \\ \text{cycle cond on } \angle W_{jk} \end{matrix} \right\} \\ &\text{idea: } W_{G} = \left(VV^{H} \text{ only on } G \right) \\ \\ \mathbf{W}_{c(G)} &:= \left\{ W_{c(G)} \colon \underline{\text{linear}} \text{ constraints } \right\} \cap \left\{ W_{c(G)} \ge 0 \text{ rank-1} \right\} \\ &\text{idea: } W_{c(G)} = \left(VV^{H} \text{ on } c(G) \right) \end{split}$$

<u>Theorem</u>

Radial G: V ⊆ W⁺ @ W⁺_{c(G)} @ W⁺_G
Mesh G: V ⊆ W⁺ @ W⁺_{c(G)} ⊆ W⁺_G

Bose, Low, Chandy Allerton 2012 Bose, Low, Teeraratkul, Hassibi TAC2014

<u>Theorem</u>

Radial G: V ⊆ W⁺ @ W⁺_{c(G)} @ W⁺_G
Mesh G: V ⊆ W⁺ @ W⁺_{c(G)} ⊆ W⁺_G

For radial networks: always solve SOCP !

OPF $\min_{V} C(V) \text{ subject to } V \hat{\mid} \mathbf{V}$

OPF-sdp:

 $\min_{W} C(W_G) \quad \text{subject to} \quad W \in \mathbb{W}^+$

OPF-ch:

 $\min_{W_{c(G)}} C(W_G) \quad \text{subject to} \quad W_{c(G)} \in \mathbb{W}_{c(G)}^+$

OPF-socp:

 $\min_{W_G} C(W_G) \quad \text{subject to} \quad W_G \in W_G^+$

- max # variables •
- slowest ٠

much faster for • sparse networks

- coarsest superset
- min # variables
- fastest

For radial network: always solve SOCP !

Bose, Low, Teeraratkul, Hassibi TAC 2014

SOCP more efficient than SDP

Relaxations are exact in all cases

- IEEE networks: IEEE 13, 34, 37, 123 buses (0% DG)
- SCE networks 47 buses (57% PV), 56 buses (130% PV)
- Single phase; SOCP using BFM
- Matlab 7.9.0.529 (64-bit) with CVX 1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 Due CPU and 4GB 1067MHz DDR3 memory

Mathematical preliminaries

Bus injection model

- OPF formulation
- 3 convex relaxations & relationship

Branch flow model

- OPF formulation
- SOCP relaxation & equivalence

Exact relaxation

- Radial networks
- Mesh networks

Multiphase unbalanced networks

graph model G: directed

$$V_i - V_j = z_{ij} I_{ij}$$
 for all $i \rightarrow j$ Kirchhoff law

$$S_{ij} = V_i I_{ij}^H$$
 for all $i \to j$ power definition

$$V_{i} - V_{j} = z_{ij}I_{ij} \qquad \text{for all } i \to j \qquad \text{Kirchhoff law}$$

$$S_{ij} = V_{i}I_{ij}^{H} \qquad \text{for all } i \to j \qquad \text{power definition}$$

$$\sum_{i \to j} \left(S_{ij} - z_{ij} \left|I_{ij}\right|^{2}\right) + s_{j} = \sum_{j \to k} S_{jk} \quad \text{for all } j \qquad \text{power balance}$$

Power flow problem: Given (z, s) find (S, I, V)

isolated sols

Bus injection model

$$s_j = \operatorname{tr}\left(Y_j V V^H\right)$$

Branch flow model

 $V_{i} - V_{j} = z_{ij}I_{ij}$ $S_{ij} = V_{i}I_{ij}^{H}$ $\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^{2} \right) + S_{j}$

 $(S, I, V, s) \hat{I} C^{2(m+n+1)}$

Theorem: V°X

- BIM and BFM are equivalent in this sense
- Any result in one model is in principle provable in the other,
- ... but some results are easier to formulate or prove in one than the other
- BFM seems to be much more numerically stable (radial networks)

min
$$f(x)$$

over $x := (S, I, V, s)$
s. t.

$$\begin{array}{ll} \min & f(x) \\ \text{over} & x \coloneqq (S, I, V, s) \\ \text{s. t.} & \underline{s}_j \ \mathbb{E} \ s_j \ \mathbb{E} \ \overline{s}_j & \underline{v}_j \ \mathbb{E} \ v_j \ \mathbb{E} \ \overline{v}_j \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{over} & x \coloneqq (S, I, V, s) \\ \text{s. t.} & \underline{s}_j \notin \underline{s}_j \notin \overline{s}_j & \underline{v}_j \notin v_j \notin \overline{v}_j \end{array}$$

branch flow _____ model

$$\sum_{i \to j} \left(S_{ij} - Z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j$$
$$V_j = V_i - Z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^H$$

nonconvex (quadratic)

Convex relaxations of OPF

relaxation	model	first proposed	first analyzed
SOCP	BIM	Jabr 2006 TPS	
SDP	BIM	Bai et al 2008 EPES	Lavaei, Low 2012 TPS
Chordal	BIM	Bai, Wei 2011 EPES Jabr 2012 TPS	Molzahn et al 2013 TPS Bose et al 2014 TAC
SOCP	BFM	Farivar et al 2011 SGC Farivar, Low 2013 TPS	Farivar et al 2011 SGC Farivar, Low 2013 TPS

Low. Convex relaxation of OPF (I, II), IEEE Trans Control of Network Systems, 2014

Branch flow model

SOCP relaxation

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) + s_j$$

$$V_i - V_j = z_{ij} I_{ij}$$

$$V_i I_{ij}^H = S_{ij}$$

$$\sum_{j \to k} P_{jk} = \sum_{i \to j} \left(P_{ij} - r_{ij} \left| I_{ij} \right|^2 \right) + p_j$$

$$S, I, V, S) \cap \mathbb{C}^{2(m+n+1)}$$

$$\sum_{j \to k} Q_{jk} = \sum_{i \to j} \left(Q_{ij} - x_{ij} \left| I_{ij} \right|^2 \right) + q_j$$

Branch flow model

 $\ell_{ij} := \left| I_{ij} \right|^2$ $\nu_i := \left| V_i \right|^2$

SOCP relaxation

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) + s_j \qquad \sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + s_j$$
$$V_i - V_j = z_{ij} I_{ij} \qquad \qquad v_i - v_j = 2 \operatorname{Re} \left(z_{ij}^H S_{ij} \right) - \left| z_{ij} \right|^2 \ell_{ij}$$
$$V_i I_{ij}^H = S_{ij} \qquad \qquad v_i \ell_{ij} = \left| S_{ij} \right|^2$$

 $(S, I, V, s) \hat{I} C^{2(m+n+1)}$

Branch flow model

SOCP relaxation

$$(S, I, V, s) \hat{I} C^{2(m+n+1)}$$

 $(S, \ell, \nu, s) \hat{I} \mathbf{R}^{3(m+n+1)}$

$$\mathbf{X}^{+} := \left\{ x : \underline{\text{linear constraints}} \bigcup \left\{ \ell_{jk} v_{j}^{3} \left| S \right|^{2} \right\} \right\}$$

$$P := \begin{cases} \hat{f} x : \ell_{jk} v_j = |S|^2 & \text{if} \\ \hat{f} & \text{cycle cond on } x \neq \end{cases}$$

<u>Theorem</u> $X \circ X^+ \mathbb{C} P$

A solution $\boldsymbol{\chi}$ satisfies the cycle condition if

\$*q* s.t.
$$Bq = b(x) \mod 2p$$

incidence matrix;
depends on topology $b_{jk}(x) := \Theta(v_j - z_{jk}^H S_{jk})$

OPF: $\min_{x \in \mathbf{X}} f(x)$

SOCP: $\min_{x \in \mathbf{X}^+} f(x)$

<u>Theorem</u>

 $\mathbf{W}_{G} \circ \mathbf{X}$ and $\mathbf{W}_{G}^{+} \circ \mathbf{X}^{+}$

BFM for radial networks

Table 5.3: Objective values and CPU times of CVX and IPM						
# bus	CVX		IPM		orror	speedun
# Dus	obj	time(s)	obj	time(s)		specuup
42	10.4585	6.5267	10.4585	0.2679	-0.0e-7	24.36
56	34.8989	7.1077	34.8989	0.3924	+0.2e-7	18.11
111	0.0751	11.3793	0.0751	0.8529	+5.4e-6	13.34
190	0.1394	20.2745	0.1394	1.9968	+3.3e-6	10.15
290	0.2817	23.8817	0.2817	4.3564	+1.1e-7	5.48
390	0.4292	29.8620	0.4292	2.9405	+5.4e-7	10.16
490	0.5526	36.3591	0.5526	3.0072	+2.9e-7	12.09
590	0.7035	43.6932	0.7035	4.4655	+2.4e-7	9.78
690	0.8546	51.9830	0.8546	3.2247	+0.7e-7	16.12
790	0.9975	62.3654	0.9975	2.6228	+0.7e-7	23.78
890	1.1685	67.7256	1.1685	2.0507	+0.8e-7	33.03
990	1.3930	74.8522	1.3930	2.7747	+1.0e-7	26.98
1091	1.5869	83.2236	1.5869	1.0869	+1.2e-7	76.57
1190	1.8123	92.4484	1.8123	1.2121	+1.4e-7	76.27
1290	2.0134	101.0380	2.0134	1.3525	+1.6e-7	74.70
1390	2.2007	111.0839	2.2007	1.4883	+1.7e-7	74.64
1490	2.4523	122.1819	2.4523	1.6372	+1.9e-7	74.83
1590	2.6477	157.8238	2.6477	1.8021	+2.0e-7	87.58
1690	2.8441	147.6862	2.8441	1.9166	+2.1e-7	77.06
1790	3.0495	152.6081	3.0495	2.0603	+2.1e-7	74.07
1890	3.8555	160.4689	3.8555	2.1963	+1.9e-7	73.06
1990	4.1424	171.8137	4.1424	2.3586	+1.9e-7	72.84

Recursive structure

backward-forward • sweep for PF solution

Advantages over BIM

- much faster
- much more stable • numerically

Digression:

Branch flow model for radial networks

 $\sum S_{ik} = S_{ij} - Z_{ij}\ell_{ij} + S_j$ **DistFlow model** Baran and Wu 1989 $i \rightarrow k$ $v_{i} - v_{j} = 2 \operatorname{Re}(z_{ij}^{H}S_{ij}) - |z_{ij}|^{2} \ell_{ij}$ $\ell_{ij} := \left| I_{ij} \right|^2$ $\nu_i := \left| V_i \right|^2$ $\ell_{ii} v_i = \left| S_{ii} \right|^2$

Advantages

- PF: recursive structure → backward/forward sweep
- OPF: more numerically stable SOCP
- Linear approx. suitable for radial networks (unlike DC)
- Variables represent physical quantities

$$\sum_{j \to k} S_{jk}^{\text{lin}} = S_{ij}^{\text{lin}} + S_j$$
$$v_i^{\text{lin}} - v_j^{\text{lin}} = 2 \operatorname{Re}\left(z_{ij}^H S_{ij}^{\text{lin}}\right)$$

Linear DistFlow Baran and Wu 1989

Advantages over DC power flow

- Includes voltages and reactive power as vars
- Allows nonzero resistance
- Accurate when line loss is small compared with with branch power flow
- ... more ...

$$\sum_{j \to k} S_{jk}^{\lim} = S_{ij}^{\lim} + S_j$$

$$v_i^{\text{lin}} - v_j^{\text{lin}} = 2 \operatorname{Re}\left(z_{ij}^H S_{ij}^{\text{lin}}\right)$$

• Explicit solution:

$$S_{ij}^{\text{lin}} = - \bigotimes_{k \in \mathbf{T}_{j}}^{\bullet} S_{k}$$
$$v_{j}^{\text{lin}} = v_{0} - \bigotimes_{(i,k) \in \mathbf{P}_{j}}^{\bullet} 2 \operatorname{Re}\left(z_{ik}^{H} S_{ik}^{\text{lin}}\right)$$

• Bounding true solution: $v_j \notin v_j^{\text{lin}} = S_{ij} \Im S_{ij}^{\text{lin}}$

Mathematical preliminaries

Bus injection model

- OPF formulation
- 3 convex relaxations & relationship

Branch flow model

- OPF formulation
- SOCP relaxation & equivalence

Exact relaxation

- Radial networks
- Mesh networks

Multiphase unbalanced networks

A relaxation is exact if an optimal solution of the original OPF can be recovered from *every* optimal solution of the relaxation

type	condition	model	reference	remark
A	power injections	BIM, BFM	[25], [26], [27], [28], [29]	
			[30], [16], [17]	
B	voltage magnitudes	BFM	[31], [32], [33], [34]	allows general injection region
C	voltage angles	BIM	[35], [36]	makes use of branch power flows

TABLE I: Sufficient conditions for radial (tree) networks.

network	condition	reference	remark
with phase shifters	type A, B, C	[17, Part II], [37]	equivalent to radial networks
direct current	type A	[17, Part I], [19], [38]	assumes nonnegative voltages
	type B	[39], [40]	assumes nonnegative voltages

TABLE II: Sufficient conditions for mesh networks

graph of QCQP

$$G(C, C_k)$$
 has edge $(i, j) \Leftrightarrow$
 $C_{ij} \neq 0$ or $[C_k]_{ij} \neq 0$ for some k

QCQP over tree $G(C, C_k)$ is a tree

Key condition
$$i \sim j: (C_{ij}, [C_k]_{ij}, "k)$$
 lie on half-plane through 0

Theorem SOCP relaxation is exact for QCQP over tree

Bose et al 2012, 2014 Sojoudi, Lavaei 2013

Not both lower & upper bounds on real & reactive powers at both ends of a line can be finite

geometric insight

vars are: $(p_0, q_0), \ell, v_1$ $p_0^2 + q_0^2 = \ell$ $p_0 - r\ell = -p_1, \quad q_0 - x\ell = -q_1$

$$v_1 - v_0 = 2(rp_0 + xq_0) - |z|^2 \ell$$

when there is no voltage constraint

- feasible set : 2 intersection pts
- relaxation: line segment
- exact relaxation: c is optimal

... as long as cost increasing in l, p_0, q_0

voltage lower bound (upper bound on l) does not affect relaxation

(a) Voltage constraint not binding

(b) Voltage constraint binding

OPF:
$$\min_{x \in \mathbf{X}} f(x)$$
 s.t. $\underline{v} \in v \in \overline{v}, s \in S$

SOCP: $\min_{x \in \mathbf{X}^+} f(x)$ s.t. $\underline{v} \in v \in \overline{v}$, $s \in \mathbf{S}$

Key conditions:

- $v^{\text{lin}}(s) \notin \overline{v}$
- Jacobian condition $\underline{A}_{i_t} \cdot \underline{A}_{i_0} Z_{i_0} > 0 \text{ for all } 1 \le t \le t' < k$

voltages if network were lossless

if upward current were reduced then all subsequent powers dec

Theorem SOCP relaxation is exact for radial networks

Gan, Li, Topcu, Low TAC2014

OPF:
$$\min_{x \in \mathbf{X}} f(x)$$
 s.t. $\underline{v} \in v \in \overline{v}, s \in \mathbf{S}$

SOCP: $\min_{x \in \mathbf{X}^+} f(x)$ s.t. $\underline{v} \in v \in \overline{v}$, $s \in \mathbf{S}$

Key conditions:

- $v^{\text{lin}}(s) \in \overline{v}$
- Jacobian condition $\underline{A}_{i_t} \bullet \underline{A}_{i_0} Z_{i_0} > 0 \text{ for all } 1 \le t \le t' < k$

satisfied with large margin in IEEE circuits and SCE circuits

Theorem SOCP relaxation is exact for radial networks

Gan, Li, Topcu, Low TAC2014

m in C(p)p.P.V

s.t. $\underline{p}_{j} \leq p_{j} \leq \overline{p}_{j}$ Can represent constraints on $\underline{q}_{k} \leq q_{k} \leq q_{k}$ Line flows Line loss $p_i = \mathbf{\hat{A}} P_k$ **Stability** k:k.-- i $P_{k} = \frac{N_{j}}{g_{k}} - \frac{N_{j}}{N_{k}} \cos q_{k}$ + $|V_i|/|V_k|/|b_k \sin q_k$

assumptions:

- fixed voltage magnitudes
- real power only

Zhang & Tse, TPS 2013 Lavaei, Zhang, Tse, 2012

Key condition:
$$-\tan^{-1} \underbrace{\overset{\mathfrak{a}}{\underset{e}{\delta}} x_{jk}}_{r_{jk}} \overset{\ddot{o}}{\underset{e}{\delta}} < \mathcal{Q}_{jk}} \neq \overline{q}_{jk} < \tan^{-1} \underbrace{\overset{\mathfrak{a}}{\underset{e}{\delta}} x_{jk}}_{r_{jk}} \overset{\ddot{o}}{\underset{e}{\delta}}$$

Theorem SOCP relaxation is exact for radial networks $(|V_i| \text{ constant})$

Lavaei, Tse, Zhang 2012

ideal phase shifter

BFM without phase shifters:

$$I_{ij} = y_{ij} (V_i - V_j)$$

$$S_{ij} = V_i I_{ij}^{\not\leftarrow} X$$

$$S_j = S_{jk} - (S_{ij} - Z_{ij}/I_{ij}^2) + y_j^{\not\leftarrow}/V_j^2$$

$$k:j! \ k \qquad i:i! \ j$$

BFM with phase shifters:

$$I_{ij} = y_{ij} \quad V_i - V_j \quad e^{-i\varphi_{ij}}$$

$$S_{ij} = \bigvee_i I_{ij}^{\leftarrow} \times S_{jk} - (S_{ij} - z_{ij}/I_{ij}^2) + y_j^{\leftarrow}/V_j^2$$

$$k:j! \quad k \qquad i:i! \quad j$$

A solution $\boldsymbol{\chi}$ satisfies the cycle condition if

• without PS:

\$*q* s.t. $Bq = b(x) \mod 2p$ $x := (S, \ell, v, s)$ $b_{jk}(x) := \bigoplus \left(v_j - z_{jk}^H S_{jk}\right)$

without PS:

$$q, f$$
 s.t. $Bq = b(x) - f \mod 2p$

can always satisfy with PS at strategic locations

Optimization of ϕ

- Min # phase shifters (#lines #buses + 1)
- Min $\|f\|_2$: NP hard (good heuristics)
- Given existing network of PS, min # or angles of additional PS

		No PS	With PS	
Test cases	# links	Min loss	Min loss	
	(<i>m</i>)	(OPF, MW)	(OPF-cr, MW)	
IEEE 14-Bus	20	0.546	0.545	
IEEE 30-Bus	41	1.372	1.239	
IEEE 57-Bus	80	11.302	10.910	
IEEE 118-Bus	186	9.232	8.728	
IEEE 300-Bus	411	211.871	197.387	
New England 39-Bus	46	29.915	28.901	
Polish (case2383wp)	2,896	433.019	385.894	
Polish (case2737sop)	3,506	130.145	109.905	

Test cases	# links	# active PS		Min #PS (°)	
	(<i>m</i>)	$ \phi_i > 0.1^\circ$		$[\phi_{\min},\phi_{\max}]$	
IEEE 14-Bus	20	2	(10%)	[-2.09, 0.58]	
IEEE 30-Bus	41	3	(7%)	$\begin{bmatrix} -0.20, \ 4.47 \end{bmatrix}$	
IEEE 57-Bus	80	19	(24%)	[-3.47, 3.15]	
IEEE 118-Bus	186	36	(19%)	[-1.95, 2.03]	
IEEE 300-Bus	411	101	(25%)	[-13.3, 9.40]	
New England 39-Bus	46	7	(15%)	[-0.26, 1.83]	
Polish (case2383wp)	2,896	373	(13%)	[-19.9, 16.8]	
Polish (case2737sop)	3,506	395	(11%)	[-10.9, 11.9]	

	<u> </u>	/		
Test cases	# links	Min #PS (°)	$ Min \ \phi\ ^2 (^\circ)$	
	(m)	$[\phi_{\min},\phi_{\max}]$	$[\phi_{\min},\phi_{\max}]$	
IEEE 14-Bus	20	[-2.09, 0.58]	[-0.63, 0.12]	
IEEE 30-Bus	41	[-0.20, 4.47]	[-0.95, 0.65]	
IEEE 57-Bus	80	$[-3.47, \ 3.15]$	[-0.99, 0.99]	
IEEE 118-Bus	186	[-1.95, 2.03]	[-0.81, 0.31]	
IEEE 300-Bus	411	[-13.3, 9.40]	[-3.96, 2.85]	
New England 39-Bus	46	[-0.26, 1.83]	[-0.33, 0.33]	
Polish (case2383wp)	2,896	[-19.9, 16.8]	[-3.07, 3.23]	
Polish (case2737sop)	3,506	[-10.9, 11.9]	[-1.23, 2.36]	

Mathematical preliminaries

Bus injection model

- OPF formulation
- 3 convex relaxations & relationship
- Branch flow model
 - OPF formulation
 - SOCP relaxation & equivalence

Exact relaxation

Sufficient conditions

Multiphase unbalanced networks

Mostly radial networks

Multiphase unbalanced

- Lines may not be transposed
- Loads may not be balanced

Some references

- Kersting (2002)
- Shirmohammadi, et al (1988), Chen et al (1991)
- Lo and Zhang (1993), Arboleya et al (2014)
- Dall'Anese, Zhu and Giannakis (2012)

Bus injection model (phase frame)

3-phase unbalanced

Assume 3 phases everywhere. See paper for general multiphase

Bus injection model (phase frame)

per-phase analysis

$$I^a_{jk} = \mathcal{Y}^{aa}_{jk} \left(V^a_j - V^a_k \right)$$

3-phase unbalanced

 3-phase analysis

$$I_{jk} = \mathcal{Y}_{jk} \left(V_j - V_k \right)$$

$$3x3 \text{ matrix}$$

per-phase:

$$Y = \begin{pmatrix} \hat{e} & y_{13} & 0 & -y_{13} & \hat{u} \\ \hat{e} & 0 & y_{23} & -y_{23} & \hat{u} \\ \hat{e} - y_{13} & -y_{23} & y_{13} + y_{23} \dot{\ell} \end{pmatrix}$$

$$I = YV$$

$$\uparrow$$

$$N \times N \text{ matrix}$$

3-phase:

$$Y = \stackrel{\acute{e}}{e} 0 [y_{13}] - [y_{23}] - [y_{23}] \stackrel{\acute{e}}{y_{13}} + [y_{23}] \stackrel{\acute{e}}{u}$$

I = YV3N x 3N matrix

Single-phase equivalent is a chordal graph for radial networks !

• with a maximal clique for each line (j,k)

1147

OPF: reduced to single-phase case Each node is indexed by (bus, phase)

Standard SDP relaxation applies

- Dall'Anese, Zhu and Giannakis (TSG 2012)
- Distribute OPF into areas (maximal cliques) in chordal extension

Chordal relaxation applies

- Simpler for large sparse networks
- Gan and L (PSCC 2014)

SOCP relaxation

Much more scalable than SDP

Linearized model

- Baran and Wu (TPD 1989)
- More suitable for distribution systems
 - \Box nonzero *R*, variable *V*, includes *Q* (unlike DC)
 - explicit solution given power injections

Much more stable numerically than BIM

ALL extend to multiphase unbalanced case !

Gan and Low, PSCC 2014

$$\sum_{j \to k} \operatorname{diag}(S_{jk}) = \sum_{i \to j} \operatorname{diag}(S_{ij} - Z_{ij}I_{ij}I_{ij}^*) + S_j$$

power flow solutions: $x := (S, \ell, v, s)$ satisfy

$$\sum_{k:j \to k} S_{jk} = \sum_{i:i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + S_j$$

$$v_i - v_j = 2 \operatorname{Re} \left(z_{ij}^* S_{ij} \right) - \left| z_{ij} \right|^2 \ell_{ij}$$

$$\ell_{ij} v_i = \left| S_{ij} \right|^2$$

$$\ell_{ij} := \left| I_{ij} \right|^2$$

Nonconvexity
Baran and Wu 1989
for radial networks

power flow solutions: $x := (S, \ell, v, s)$ satisfy

$$\sum_{k:j \to k} S_{jk} = \sum_{i:i \to j} \left(S_{ij} - Z_{ij} \ell_{ij} \right) + S_j$$

$$v_i - v_j = 2 \operatorname{Re} \left(Z_{ij}^* S_{ij} \right) - \left| Z_{ij} \right|^2 \ell_{ij}$$

$$\ell_{ij} v_i \ge \left| S_{ij} \right|^2$$

$$\ell_{ij} := \left| I_{ij} \right|^2$$

Second-order cone
Farivar et al 2011

Single phase

$$\sum_{k:j \to k} S_{jk} = \sum_{i:i \to j} \left(S_{ij} - Z_{ij} \ell_{ij} \right) + S_j$$
$$v_i - v_j = \left(S_{ij} Z_{ij}^* + Z_{ij} S_{ij}^* \right) - \left| Z_{ij} \right|^2 \ell_{ij}$$

Multiphase

$$\sum_{j \to k} \operatorname{diag} \left(S_{jk} \right) = \sum_{i \to j} \operatorname{diag} \left(S_{ij} - z_{ij} \ell_{ij} \right) + s_j$$
3x3 matrix \cdots $v_i - v_j = \left(S_{ij} z_{ij}^* + z_{ij} S_{ij}^* \right) - z_{ij} \ell_{ij} z_{ij}^*$

Single phase

$$\ell_{ij} v_i^{3} \left| S_{ij} \right|^2$$

Multiphase

$$\begin{array}{ccc} \stackrel{\circ}{\rm e}_{v_{i}} & S_{ij} \stackrel{\circ}{\rm u} \\ \stackrel{\circ}{\rm e} & \stackrel{\circ}{\rm u} \stackrel{\circ}{\rm u} \\ \stackrel{\circ}{\rm e} S_{ij}^{*} & \ell_{ij} \stackrel{\circ}{\rm u} \end{array}$$

$$\ell_{ij}v_i = |S_{ij}|$$

$$\operatorname{rank}_{\hat{\mathfrak{e}}}^{\acute{\mathfrak{e}}_{v_{i}}} \begin{array}{c} S_{ij} \\ \downarrow \\ \tilde{\mathfrak{e}} \\ S_{ij}^{*} \\ \ell_{ij} \\ \not{\mathfrak{g}} \end{array} = 1$$

recovery:

Theorem

- BFM and BIM are equivalent
- Linear bijection between solution/feasible sets

Theorem

Relaxation is exact for BFM iff it is for BIM

network	BIM-SDP			BFM-SDP		
network	value	time	ratio	value	time	ratio
IEEE 13-bus	152.7	1.05	8.2e-9	152.7	0.74	2.8e-10
IEEE 34-bus	- 100.0	2.22	1.0	279.0	1.64	3.3e-11
IEEE 37-bus	212.3	2.66	1.5e-8	212.2	1.95	1.3e-10
IEEE 123-bus	- <u>8917</u>	7.21	<u>3.2e-</u> 2	229.8	8.86	0.6e-11
Rossi 2065-bus	-100.0	115.50	1.0	19.15	96.98	4.3e-8

numerically unstable numerically stable

BFM is much more numerically stable

Single phase

- Simple DistFlow equations
- Baran and Wu (1989)

Multiphase

- Extension to multiphase unbalanced networks
- Closed-form solution given power injections

Bus injection model

- OPF formulation
- 3 convex relaxations & relationship
- Branch flow model
 - OPF formulation
 - SOCP relaxation & equivalence
- Exact relaxation
 - Radial networks
 - Mesh networks

Multiphase unbalanced networks