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Preface

Some notes.

1. A key feature of this book is its extensive and systematic treatment of unbalanced three-phase mod-
eling and power flow analysis. A three-phase network consists of three-phase devices connected by
three-phase lines and transformers. Motivated by emerging applications in secondary distribution
circuits, our perspective is that most controllable devices are the single-phase devices that make up
three-phase devices in Y or D configurations. It is therefore important to model carefully the internal
voltages, currents, and powers across these single-phase devices and how they determine the termi-
nal voltages, currents, and powers that are externally observable and that interact over the network.
This is developed in Part II of the book and used to formulate three-phase optimal power problems
in Part III (Chapters 13.1 and 13.2). It will become clear that the difference between single-phase
and three-phase systems mainly lies in the device models, not in network equations that relate the
terminal variables.
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Chapter 0

Introduction

0.1 Notation

Let C denote the set of complex numbers, R the set of real numbers, and N the set of integers. We use
i to denote

p
�1. For a 2 C, Re a and Im a denote its real and imaginary parts respectively, and ā or

aH denotes its complex conjugate. For any set A ✓ C
n, convA denotes the convex hull of A. For a 2 R,

[a]+ := max{a,0}. For a,b2C, a b means Re a Re b and Im a Im b. We sometimes abuse notation
to use the same symbol a to denote either a complex number Rea+ i Ima or a size 2 real vector a =(Rea,
Ima) depending on the context. The empty set is denoted /0.

In general scalar or vector variables are in small letters, e.g. u,w,x,y,z. Most power system quantities
however are in capital letters, e.g. S jk,Pjk,Q jk, I j,Vj. Unless otherwise specified, a vector is a column
vector and is written interchangeably as

V =

2

4
Va
Vb
Vc

3

5 or V = (Va,Vb,Vc)

A variable without a subscript usually denotes a vector with appropriate components, e.g. s := (s j, j =
0, . . . ,n), S := (S jk,( j,k) 2 E). For a vector a = (a1, . . . ,ak), a�i denotes (a1, . . . ,ai�1,ai+1,ak) without
the ai entry. For a subset A ( {1, . . . ,k}, a�A := (ai, i 62 A). For vectors x,y, x y denotes componentwise
inequality. We freely refer to x as singular if we mean the vector x or as plural if we mean its components
x1, . . . ,xn. For example we may refer to l ⇤ as a locational marginal price or locational marginal prices.

Matrices are usually in capital letters. Let M,N be index sets with m := |M|, n := |N|. An m⇥ n
matrix with ai j 2 C as its (i, j)-th entry for i 2M, j 2 N, can be written as A = (ai j, i 2M, j 2 N). Given
k := min{m,n} and scalars a1, . . . ,ak, diag(a1, . . . ,ak) is a k⇥ k diagonal matrix with ai on its diagonal.
Given an m⇥n matrix A, diag(A) := diag(A11, . . . ,Akk). We use Ā to denote the componentwise complex
conjugate of a matrix A. The transpose of a matrix A is denoted by AT and its Hermitian (or conjugate)
transpose by AH := ĀT. Sometimes we also use A⇤ to denote AH. If a is a scalar then aH = a⇤ is its
complex conjugate. We use interchangeably

�
AY�H and AYH. A matrix A is Hermitian if A = AH. A is

positive semidefinite (or psd), denoted by A⌫ 0, if A is Hermitian and xHAx� 0 for all x2Cn; in particular

1
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if A⌫ 0 then by definition A = AH. A is negative semidefinite (nsd) if �A is psd. For matrices A,B, A⌫ B
means A�B is psd. Let Sn be the set of all n⇥n Hermitian matrices, Sn

+ the set of n⇥n psd matrices, and
S

n
� the set of n⇥n nsd matrices.

A graph G = (N,E) consists of a set N of nodes and a set E ✓ N⇥N of edges. If G is undirected then
( j,k)2 E if and only if (k, j)2 E. If G is directed then ( j,k)2 E only if (k, j) 62 E; in this case we will use
( j,k) and j! k interchangeably to denote an edge pointing from j to k. Therefore, for an undirected graph,
Â( j,k)2E x jk includes both x jk and xk j for each edge ( j,k) 2 E, whereas, for a directed graph, Â( j,k)2E x jk
includes a single term x jk for each directed edge j! k. Sometimes, we write Â( j,k)2E

�
x jk + xk j

�
instead

of Â( j,k)2E x jk to emphasize the undirected nature of the graph. By “ j ⇠ k” we mean an edge ( j,k) if
G is undirected and either j! k or k! j if G is directed. Sometimes we write j 2 G or ( j,k) 2 G to
mean j 2 N or ( j,k) 2 E respectively. A path p := ( j1, . . . , jK) is an ordered set of nodes jk 2 N so that
( jk, jk+1) 2 E for k = 1, . . . ,K�1. In that case we refer to a link or a node in the cycle by ( jk, jk+1) 2 p
or jk 2 p respectively. A cycle is a path where jK = j1. A simple cycle is a cycle that visits every node
at most once. Unless specified otherwise, we refer to j interchangeably as a node or a bus and j ⇠ k
interchangeably as a link, an edge, or a line.

Given a function f : Rn! R
m, ∂ f

∂x is the m⇥n matrix whose ( j,k) entry is


∂ f
∂x

�

jk
:=

∂ f j

∂xk
(x), j = 1, . . . ,m, k = 1, . . . ,n

and — f (x) :=
⇣

∂ f
∂x

⌘T
is its transpose. In particular if m = 1 then ∂ f

∂x is a row vector and — f (x) is a column
vector.

We use e to denote the constant limn(1 + 1/n)n and e j 2 {0,1}n the unit vector of appropriate size
n with a single 1 in the jth position. For the study of three-phase power systems, both balanced and
unbalanced, ea := (1,0,0), eb := (0,1,0), ec := (0,0,1), and ef

j 2 {0,1}3n is the unit vector with a single
1 in the jf th position. The vector 1 usually denotes the vector of all 1s of size 3 and I usually denotes the
identity matrix of size 3; they sometimes denote the vector of all 1s and the identity matrix respectively
of other sizes depending on context. We often use a := e�i2p/3. The standard balanced vector in positive
sequence is a+ := (1,a,a2) and that in negative sequence is a� := (1,a2,a). The following conversion
matrices are key to the understanding of three-phase power systems:

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

Its properties are explained in Theorems 1.2 and 7.2. The similarity transformation to obtain symmetrical
components due to Fortescue is defined by the eigenvectors (1,a+,a�) of G.

0.2 Units

The unit of a quantity is specified usually the first time the quantity is introduced. Commonly used units
in this book are collected here for convenience. We often overload notations so that the same symbol
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may refer to different quantities depending on the context, e.g., I may denote a vector of current phasors
I = (Ii, i = 1, . . . ,n) or the identity matrix of appropriate size, V may denote a vector of voltage phasors
V = (Vi, i = 1, . . . ,n) or their unit volt.

1. voltage v(t),V : volt (V).

2. current i(t), I: ampere (A).

3. real power P : watt (W); reactive power Q : volt-ampere reactive (var); complex power S := P+ iQ,
apparent power |S|: volt-ampere (VA).

4. resistance r, reactance x = iwl or 1/iwc, impedance z := r + ix: ohm (W).

5. conductance g := r/(r2 + x2), susceptance b := x/(r2 + x2), admittance y := z�1 =: g+ ib: Siemen
(S) or mho (W�1).

6. inductance l: henry (H); magnetic flux linkage l (t) = li(t) : weber-turn (Wb-turn).

7. capacitance c: farad (F); electric charge q(t) = cv(t) : coulomb (C)

We will sometimes overload notation, e.g., l is used sometimes to denote inductance, sometimes in-
ductance per unit length, some times a line index. The meaning should be clear from the context.



Part I

Single-phase networks

4



Chapter 1

Basic concepts

This chapter introduces basic concepts in modeling the steady-state behavior of an alternating current (AC)
power system where voltages and currents are sinusoidal functions of time. For us, steady state means that
the frequencies of voltages and currents in the entire network are at their nominal value (e.g., 60 Hz in
the US, 50 Hz in China and Europe). In Chapter 1.1 we describe phasor representation of sinusoidal
voltages and currents, and introduce circuit models of devices that make up a single-phase system. In
Chapter 1.2 we explain balanced three-phase systems and how to simplify their analysis using per-phase
models. In Chapter 1.3 we define the concept of complex power for single-phase and three-phase systems,
and illustrate through an example that a three-phase system saves power and conductors compared with a
single-phase system serving the same load.

1.1 Single-phase systems

An AC system consists of generators and loads connected by transmission or distribution lines and trans-
formers. Their behavior can be described using quantities such as voltages, currents, and power which
are sinusoidal functions of time. These quantities obey laws of physics. For our purposes they are the
Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), and Ohm’s law. These laws allow us to
analyze or simulate system behavior in the time domain. For steady-state behavior it is often easier to
transform these quantities to the phasor domain, apply the corresponding physical laws in the phasor do-
main to analyze the steady state of a power network, and then translate the results back to the time domain,
as illustrated in Figure 1.1.

In this section we define voltage and current phasors, present simple models of generators, loads, and
lines using voltage sources, current sources, and impedances. We also summarize KCL, KVL and Ohm’s
law in the phasor domain. They can be used to analyze a network of these circuit elements.

5
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Figure 1.1: Phasor representation and analysis.

1.1.1 Voltage and current phasors

The quantities of interest, voltage v(t), current i(t), and power p(t), are physical and can be empirically
measured. The potential energy gained in moving a unit of charge from point k to point j is called the
voltage, or electric potential difference, between j and k, denoted by v jk. Its SI unit (International Systems
of Units) is volt (V ), or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for
all voltages in the system under study. In that case we refer to the voltage at point j with respect to the
reference point simply as the voltage at j and denote v j0 simply by v j. Then the voltage between two
points j and k is v jk := v j� vk and represents the energy required to move a unit of charge from point k
to point j. The flow rate of electric charge through a point is called the current through that point. Its SI
unit is ampere (A), or equivalently, coulomb/second. The rate of energy transfer when a unit of charge is
moved through an electric potential difference (voltage) between two points is called electric power. Its
SI unit is watt (W ), or equivalently, joule/second. It is equal to the product of voltage and current between
these two points.

A sinusoidal voltage function is

v(t) = Vmax cos(wt +qV ) = Re
n

VmaxeiqV · eiwt
o

where Vmax is the amplitude (i.e., maximum magnitude) of the voltage v(t), w is the steady-state frequency
in radian, and qV is the phase angle. In steady state, w is assumed fixed systemwide, and hence a voltage
function is fully specified by two parameters (Vmax,qV ). This motivates the definition of voltage phasor

V :=
Vmaxp

2
eiqV volt (V)

such that

v(t) = Re
⇣p

2|V | · ei(wt+qV )
⌘

(1.1)

The period of v(t) is T := 2p/w . The magnitude of the voltage phasor

|V | :=
Vmaxp

2
is equal to the root-mean-square (RMS) value of the voltage, defined as

s
1
T

Z
T

0
v2(t)dt =

s
1
T

Z
T

0
V 2

max cos2(wt +qV )dt =
Vmaxp

2
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where we have used cos2 f = (1+ cos2f)/2.

Similarly let the sinusoidal current function be

i(t) = Imax cos(wt +qI) ampere (A)

with the corresponding current phasor

I :=
Imaxp

2
eiqI

such that

i(t) = Re
⇣p

2|I| · ei(wt+qI)
⌘

(1.2)

The RMS value of the current is |I| := Imax/
p

2.

1.1.2 Single-phase devices

Basic building blocks of an AC power system are generators that generate power, loads that consume
power, transmission and distribution lines and transformers that connect generators and loads. These
devices can be modeled by circuit elements such as impedances, voltage sources, current sources, and
(later) power sources, as we now explain.

Impedance z. The voltage and current across a resistor r in ohm (W), an ideal inductor l in henry (H), or
an ideal capacitor c in farad (F) satisfy a linear relation, both in the time domain and in the phasor domain.
We now derive Ohm’s law in the phasor domain from its representation in the time domain.

Consider the circuit in Figure 1.2. The voltage v(t) across the resistor r and the current i(t) through it

R,#L,#C#v(t)

+

−

i(t)

R,  L,  C

Figure 1.2: In phasor domain the voltage V and current I across a linear circuit element z are related by
V = zI where the impedances for resistor r, inductor l, capacitor c are z = r, iwl,(iwc)�1 respectively.
(April 1, 2024: Fig change: R,L,C! r, l,c.)

are related by Ohm’s law:

v(t) = r i(t)
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Using (1.1)(1.2), this is equivalent to:

Re
n

V ·
p

2eiwt
o

= Re
n

r I ·
p

2eiwt
o

Hence Ohm’s law in the phasor domain for a resistor is:

V = r I

The current across a resistor is called in phase with the voltage.

An ideal inductor l is characterized by

v(t) = l
di(t)

dt

Substituting (1.1) and

di(t)
dt

= �w Imax sin(wt +qI) = w Imax cos(wt +qI +p/2)

we have

Re
n

V ·
p

2eiwt
o

= Re
n

iw l I ·
p

2eiwt
o

or in the phasor domain:

V = (iw l) I

The current across an inductor is said to lag the voltage by p/2 radian.

Similarly an ideal capacitor c is characterized by

i(t) = c
dv(t)

dt

Substituting (1.2) and

dv(t)
d(t)

= �w Vmax sin(wt +qV ) = w Vmax cos(wt +qV +p/2)

we have

Re
n

I ·
p

2eiwt
o

= Re
n

iw cV ·
p

2eiwt
o

or in the phasor domain:

V =
1

iw c
I

The current across a capacitor is said to lead the voltage by p/2 radian.
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In summary we define the impedances of these elements, a resistor r, an ideal inductor l, and an ideal
capacitor c in the phasor domain as respectively:

zr := r, zl := iwl, zc :=
1

iwc

Instead of impedance z, sometimes it is convenient to use its inverse, called the admittance y := z�1. The
voltage V across an impedance z (or admittance y) and the current I through it are related in the phasor
domain by

V = zI and I = yV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor r and an inductor l in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = l d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = ri(t) + l
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get

p
2V eiwt = r

p
2I eiwt + l

⇣
iw
p

2I eiwt
⌘

V = (r + iwl) I

Hence the resistor and inductor in series can be modeled in the phasor domain by an impedance z :=
r + iwl.

Voltage source (E,z). In the phasor domain, a voltage source is a circuit model with a constant internal
voltage E in series with an impedance z, as shown in Figure (a). Its external behavior is described by the
relation between its terminal voltage and terminal (V, I):

V = E � zI

Hence the open-circuit (terminal) voltage V equals the internal voltage E. We often adopt an ideal voltage
source with z = 0. In this case V = E.
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(a) Voltage source

 

(b) Current source

Figure 1.3: A voltage source (E,z) and a current source (J,y). An ideal voltage source has z = 0 and an
ideal current source has y = 0. (Fig change: Z,Y ! z,y.)

Current source (J,y). In the phasor domain, a current source is a circuit model with a constant internal
current J in parallel with an admittance y, as shown in Figure (b). Its external behavior is described by the
relation between its terminal voltage and current (V, I):

I = J � yV

Hence the closed-circuit (terminal) current I equals the internal current J. We often adopt an ideal current
source with y = 0. In this case I = J.

Remark 1.1. 1. A nonideal voltage source (E,z) and a current source (J,y) are equivalent, i.e., have
the same terminal voltage and current relationship if their parameters satisfy

J =
E
z

(closed-circuit equivalent)

y := z�1 (open-circuit equivalent)

2. Ideal voltage or current sources are reasonable models as their series impedances or shunt admit-
tances can be combined with the series impedance and shunt admittances of a transmission or dis-
tribution line to which they are connected, as we will see in Chapter 2. We will therefore often use
ideal voltage and current sources in this book with series series impedances and shunt admittances.

Single-phase devices. Basic devices in a power system are generators, loads, transmission and distribu-
tion lines, and transformers. A generator can be modeled by a voltage source or current source. A load can
be modeled by an impedance (or admittance), a voltage source, or a current source. A line can be modeled
by a series impedance, possibly with a shunt admittance at each end of the line; the details are described
in Chapter 2. A transformer can be modeled by a series impedance and a shunt admittance followed by
voltage and current gains; the details are described in Chapter 3. We will introduce in Chapter 1.3 the
concept of complex power. This leads to a device we will call a power source that generates or draws a
constant power. These are summarized in Table 1.1. This book develops techniques for analyzing power
system models constructed from these circuit elements.

A common load model is called a ZIP load where Z models a load by a constant impedance z or its
reciprocal y := 1/z, I models a load by a constant current source (J,y), or equivalently, by a constant
voltage source (E,z), and P models a load by a constant complex power injection/withdrawal, e.g., a PQ
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Device Circuit model
Generator Voltage source, current source, power source
Load Impedance, voltage source, current source, power source
Line Impedance (Chapter 2)
Transformer Impedance, voltage/current gain (Chapter 3)

Table 1.1: Circuit elements commonly used for modeling generators, loads, lines, and transformers.

bus in Chapter 4.3.4. All three types of loads can be represented by a relationship between the power S
consumed by the load and the voltage V across the load:

S := S0
�
a2|V |2 + a1|V | + a0

�

where

• S0 is the nominal power consumption of the load;

• a2|V |2 represents a constant impedance load whose power is proportional to voltage magnitude |V |
quadratically.

• a1|V | represents a constant current load whose power is proportional to |V |.

• a0 represents a constant power load.

For instance a0 = 1/3, a1 := |V0|�1/3, and a2 := |V0|�2/3 where V0 is the nominal voltage of the load. In
this case the load power is a combination of ZIP and S = S0 when V = V0. The nominal power S0 may
depend also on frequency. During transient, this dependence can be made explicit by the time-domain
model

s(t) := s0
�
a2|v(t)|2 + a1|v(t)| + a0

�
(1+a3Dw(t))

where s(t) := v(t)i(t) is the instantaneous power in the time-domain (see Chapter 1.3 for relation between
the instantaneous power s(t) in time domain and the complex power S in the phasor domain), and Dw(t)
is the deviation from the nominal frequency during transient.

1.1.3 KVL, KCL, Ohm’s Law, Tellegen’s theorem

Consider a circuit consisting of an interconnection of resistors, inductors, capacitors, and voltage and
current sources. An ideal voltage source between two points enforces a given voltage between these two
points. An ideal current source between two points enforces a given current between them. We now
describe KVL, KCL, Ohm’s law for a general circuit and derive a result called Tellegen’s theorem.

We represent a circuit by a connected directed graph Ĝ := (N̂, Ê) with an arbitrary orientation where
N̂ is a set of nodes and Ê ✓ N̂⇥ N̂ is a set of links. We abuse notation and use N̂ to denote both the set
of nodes and the number of nodes in N̂; the meaning should be clear from the context. We allow multiple
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links between two nodes j and k. A link l that points from node j to node k is represented by l = ( j,k) or
l = j! k. Multiple links l1, . . . , lk between nodes j and k may have different orientations, e.g., l1 = j! k
and l2 = k! j. There are two variables associated with each link l = ( j,k) between nodes j and k. The
voltage across link l is denoted by Ul in the direction of l and the branch current over link l from j to k is
denoted by Jl .

A link l represents either an impedance, a voltage source, or a current source. If link l represents an
impedance then its value zl is given and the voltage Ul and branch current Jl across link l satisfies Ul = zlJl
(Ohm’s law). If link l represents a voltage source then Ul = ul is given, and if it represents a current source
then Jl = jl is given. These notations are illustrated in Figure 1.4a.











































































































(a) Circuit












































































































(b) Incidence matrix

Figure 1.4: A circuit represented as a directed graph where each link l is either an impedance zl , a voltage
source Ul , or a current source Jl . The voltage source Ul5 = u5 and current source Jl6 = � j6 are given. Its
incidence matrix Ĉ is partitioned into Ĉ1 corresponding to the impedances, Ĉ2 corresponding to the voltage
source, and Ĉ3 corresponding to the current source. (Fig change: Zl1 ,Zl2 , · · ·! zl1 ,zl2 , . . . .)

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero:

� Â
i:i! j2Ê

Ji j + Â
k: j!k2Ê

J jk = 0 (1.3a)

For the example in Figure 1.4 this means �Jl1 + Jl2 + Jl3 + Jl4 = 0 at node 2. Kirchhoff’s voltage law
(KVL) states that voltage drops around any cycle c sum to zero. Consider a cycle c in the graph with an
arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is denoted by
l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states that the
voltage drops around any cycle c sum to zero:

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4(a) we have Ul1 +Ul3�Ul5 = 0.

We can represent (1.3) compactly in vector notation. Let U :=
�
Ul, l 2 Ê

�
and J :=

�
Jl, l 2 Ê

�
denote

the vectors of voltages and currents respectively across these lines. Let Ĉ 2 {�1,0,1}|N̂|⇥|Ê| be the node-
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by-link incidence matrix defined by:

Ĉ jl :=

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i

0 otherwise
, j 2 N̂, l 2 Ê

See Figure 1.4 (properties of general incidence matrices are summarized in Appendix 25.2). Then Kirch-
hoff’s current law (1.3a) states that

KCL: Ĉ J = 0 (1.4a)

Kirchhoff’s voltage law is equivalent to the condition that there exist nodal voltages V 2C|N̂| (with respect
to the common reference point node 0) such that

KVL: U = ĈTV (1.4b)

i.e., given line voltages U , there must exist nodal voltages such that Ul = Vj�Vk where l = j! k, from
which (1.3b) follows. This seems intuitive and can be proved mathematically using concepts in algebraic
graph theory (Exercise 1.1). Without loss of generality we use node N̂ as the common reference point for
all voltages, i.e., we have by definition

VN̂ := 0 (1.4c)

Circuit analysis. Consider a circuit represented by an incidence matrix Ĉ. The |N̂|⇥ |Ê| incidence
matrix Ĉ is of rank |N̂|� 1 since Ĝ is connected, with span(1) as its null space (see Chapter 25.2 for
more details). Therefore (1.4) consists of |N̂|+ |Ê| linearly independent complex equations in |N̂|+ 2|Ê|
complex variables (V,U,J). To obtain another |Ê| linearly independent equations we note that across every
link l is exactly one of the following devices:

1. impedance with a given zl: Its behavior is described by Ohm’s law

Ul = zlJl (1.5a)

2. ideal voltage source with a given ul: Its behavior is described by

Ul = ul (1.5b)

3. ideal current source with a given jl: Its behavior is described by

Jl = jl (1.5c)

In other words (1.4)(1.5) specify |N̂|+2|Ê| linearly independent equations in |N̂|+2|Ê| variables (V,U,J).
A circuit analysis problem is to solve (1.4)(1.5) for these variables. A sufficient condition is given in
Theorem 1.1 for the existence and uniqueness of solution. A necessary condition for the existence of a
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solution is that the given voltage and current vectors (v, j) are consistent, e.g., if only current sources are
incident on a node k, then these given currents must satisfy KCL at node k, or if a set of voltage sources
form a cycle c then these given voltages must satisfy KVL on c.

The system (1.4)(1.5) of equations can be simplified, as follows. Partition the set E of links into three
disjoint sets E =: E1 [E2 [E3 where E1 is the set of impedances, E2 voltage sources, and E3 current
sources. Order the links such that the incidence matrix decomposes into submatrices Ĉ1,Ĉ2,Ĉ3 corre-
sponding to impedances, voltage sources, and current sources respectively (see Figure 1.4b):

Ĉ =:
⇥
Ĉ1 Ĉ2 Ĉ3

⇤

Partition the branch voltages U and branch currents J accordingly:

U :=

2

4
U1
u

U3

3

5 , J :=

2

4
J1
J2
j

3

5

where v and j are the given vectors of voltage and current sources respectively. Let Z := diag(zl,E1) be
the diagonal matrix whose entries are the given impedances zl . Then KCL and KVL are

Ĉ1J1 + Ĉ2J2 = �Ĉ3 j
U1 = ĈT

1 V, u = ĈT

2 V, U3 = ĈT

3 V

for some nodal voltages V . Use Ohm’s law U1 = Z J1 to eliminate U1 to obtain

2

664

0 Ĉ1 Ĉ2 0
ĈT

1 �Z 0 0
ĈT

2 0 0 0
ĈT

3 0 0 �IU3

3

775

2

664

V
J1
J2
U3

3

775 =

2

664

�Ĉ3 j
0
u
0

3

775 (1.6)

where IU3 is the identity matrix of compatible size with U3. The desired quantities (V,U3,J1,J2) are
solutions of (1.6) if they exist. Given J1, U1 is given by U1 = ZJ1.

Recall that we take without loss of generality node N̂ as the common reference point for nodal voltages
and assign VN̂ := 0. We can consider the (|N̂|�1)⇥ |Ê| reduced incidence matrix C obtained from Ĉ by
deleting the last row corresponding to the reference node N̂. The advantage of using C is that it has a full
row rank of |N̂|� 1. Let V�N̂ :=

�
Vj, j 6= N̂

�
be the vector of all non-reference nodal voltages. Similarly

partition C into C =: [C1 C2 C3]. Then (1.6) is equivalent to the following equation:

2

664

0 C1 C2 0
CT

1 �Z 0 0
CT

2 0 0 0
CT

3 0 0 �IU3

3

775

| {z }
M

2

664

V�N̂
J1
J2
U3

3

775 =

2

664

�C3 j
0
u
0

3

775 (1.7)

The key feature of this model, compared with (1.6), is that it does not contain the reference node N̂.
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Example 1.2. Consider the circuit in Figure 1.4 represented by the directed graph Ĝ = (N̂, Ê) with

N̂ := {1,2,3,4}
Ê := {l1 := 1! 2, l2 := 2! 3, l3 := 2! 4, l4 := 2! 4, l5 := 1! 4, l6 := 3! 4}

The incidence matrix Ĉ can be partitioned into submatrices

Ĉ1 :=

2

664

1 0 0 0
�1 1 1 1
0 �1 0 0
0 0 �1 �1

3

775 , Ĉ2 :=

2

664

1
0
0
�1

3

775 , Ĉ3 :=

2

664

0
0
1
�1

3

775

The reduced incidence submatrices are then

C1 :=

2

4
1 0 0 0
�1 1 1 1
0 �1 0 0

3

5 , C2 :=

2

4
1
0
0

3

5 , C3 :=

2

4
0
0
1

3

5

The equation (1.7) becomes:
2

6666666666664

0 0 0 1 0 0 0 1 0
0 0 0 �1 1 1 1 0 0
0 0 0 0 �1 0 0 0 0
1 �1 0 �zl1 0 0 0 0 0
0 1 �1 0 �zl2 0 0 0 0
0 1 0 0 0 �zl3 0 0 0
0 1 0 0 0 0 �zl4 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 �1

3

7777777777775

2

6666666666664

V1
V2
V3
Jl1
Jl2
Jl3
Jl4
Jl5
Ul6

3

7777777777775

=

2

6666666666664

0
0
j6
0
0
0
0
u5
0

3

7777777777775

We now discuss the existence and uniqueness of solution to (1.7).

Theorem 1.1. The matrix M in (1.7) is invertible if both of the following square matrices of sizes N̂� 1
and |E2| respectively are invertible:

C1Z�1CT

1 , CT

2

⇣
C1Z�1CT

1

⌘�1
C2

where E2 is the set of voltage sources.

If zl are real and positive then C1Z�1CT

1 is invertible since Z := diag(zl) is positive definite and C and
hence its submatrix C1 are both of full row rank. When Z is complex, C1Z�1CT

1 may not be invertible even
if zl are all nonzero and C1 is of full row rank (see discussions in Chapter 4.2.5). The matrix CT

2 is of full
row rank if and only if no voltage sources form a cycle in the circuit.
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The proof of Theorem 1.1 relies on the following fact. Let M 2 C
n⇥n and partition it into blocks:

M =


A B
D C

�

such that C 2 C
k⇥k, k < n, is invertible and the other submatrices are of matching dimensions. The

(n� k)⇥ (n� k) matrix M/C := A�BC�1D is called the Schur complement of block C of matrix M. If A
is invertible then the k⇥k matrix M/A := C�DA�1B is called the Schur complement of block A of matrix
M. Then M is nonsingular if and only if C and M/C are nonsingular. Also, M is nonsingular if and only if
A and M/A are nonsingular; see Theorem 25.4 in Appendix 25.1.3.

Proof of Theorem 1.1. We can interchange the second and third rows and interchange the second and third
column write (1.7) equivalently in terms of the matrix

M̃ =

2

664

0 C2 C1 0
CT

2 0 0 0
CT

1 0 �Z 0
CT

3 0 0 �IU3

3

775

The matrix M is nonsingular if and only if M̃ is. Since Z and IU3 are both nonsingular, M̃ is nonsingular if
and only if the Schur complement of diag(�Z,�IU3):

S :=


0 C2
CT

2 0

�
+


C1 0
0 0

�
Z�1 0

0 IU3

�
CT

1 0
CT

3 0

�
=


C1Z�1CT

1 C2
CT

2 0

�

is nonsingular. The Schur complement S is a square matrix of size (N̂� 1)+ |Ê2| where E2 is the set of
voltage sources. By assumption the (N̂� 1)⇥ (N̂� 1) matrix C1Z�1CT

1 is nonsingular. Therefore M is
nonsingular if and only if the Schur complement

S/
⇣

C1Z�1CT

1

⌘
:= �CT

2

⇣
C1Z�1CT

1

⌘�1
C2

of C1Z�1CT

1 is nonsingular.

Tellegen’s theorem An important result in circuit theory is Tellegen’s theorem that expresses a relation
between voltage drops across links and currents on these links. It is a simple consequence of Kirchhoff’s
laws and algebraic graph theory (see Chapter 25.2 for more details). Since the rank of the |N̂|⇥ |Ê|
incidence matrix Ĉ is |N̂|�1 assuming Ĝ is connected, the rank of the range space range

�
ĈT
�

is |N̂|�1
and the rank of the null space null(Ĉ) is |Ê|� |N̂|+ 1. Recall that the subspaces null(Ĉ) and range

�
ĈT
�

are orthogonal complements of each other and they span C
|Ê|, i.e., C|Ê| = null(Ĉ)� range

�
ĈT
�
. The

KCL and KVL (1.3a)(1.3b) say that the branch currents satisfy J 2 null(Ĉ) and the branch voltages satisfy
U 2 range

�
ĈT
�

respectively. Therefore

Tellegen’s theorem: JHU = 0

It is remarkable that this relation holds for any branch current vector J and branch voltage vector U , even
if they are from different networks as long as these networks have the same incidence matrix Ĉ.
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1.1.4 One-line diagram and equivalent circuit

A power system is often not specified as a circuit of the form we study in Chapter 1.1.3. Instead it is
usually specified by what is called a one-line diagram. A one-line diagram is equivalent to a circuit that
includes the common reference point for nodal voltages as an addition node. Each line in the one-line
diagram may represent a transmission line, a distribution line or a transformer, single or multi-phased. As
we will see below if a single-phase line has a equivalent P circuit then the line translates into three links
in the equivalent circuit. In this subsection we formally define one-line diagram and derive its equivalent
circuit. A one-line diagram can be analyzed by applying the method of Chapter 1.1.3 to its equivalent
circuit.

One-line diagram. A one-line diagram specifies a network topology and admittance parameters associ-
ated with the lines; see an example in Figure 1.5 for a three-bus network. Formally we define a one-line
diagram as a pair (G,Y) where G := (N,E) is a graph and Y :=

⇣
ys

jk,y
m
jk,y

m
k j, l = ( j,k) 2 E

⌘
is a set of

line parameters for every line l 2 E (we assume here a single-phase system and ys
jk = ys

k j). Each node
j 2N represents a bus in the power system. We will therefore refer to j as a bus or a node interchangeably.
Each link l 2 E represents a transmission or distribution line or a transformer. We will therefore refer to l
as a line, a link or a branch interchangeably. The line parameter ys

jk 2C is called the series admittance as-

sociated with line ( j,k) and
⇣

ym
jk,y

m
k j

⌘
2 C

2 is called its shunt admittances. We will see below how these
para eters determine the equivalent circuit of the line. There can be multiple lines between two buses,
though for notational simplicity we often assume there is a single line between each pair of buses in which
case a line l between buses j and k can be identified by ( j,k).












































































































(a) Graph G = (N,E)












































































































(b) Line parameters Y

Figure 1.5: One-line diagram for a three-bus network (G,Y). It is not a circuit but has an equivalent P
circuit model.

Equivalent circuit. Associated with each node j are a nodal voltage Vj 2 C with respect to an arbitrary
but common reference point and a nodal current injection I j 2C. To derive the relation between the vectors
(V, I) of nodal voltages and currents specified by the one-line diagram, we first derive its equivalent circuit
and then apply the method of Chapter 1.1.3 to the circuit.



18 Draft: EE 135 Notes April 30, 2024

We illustrate this with a simple 2-bus network. The method and the conclusion extend directly to
general networks.
Example 1.3 (Equivalent P circuit of a single line). Figure 1.6(a) specifies a one-line diagram (G,Y) for
a network consisting of two nodes 1 and 2 connected by a line l = (1,2). The nodal voltages and currents
are (V1, I1) and (V2, I2) respectively. The line parameter

�
ys

12,y
m
12,y

m
21
�

defines the equivalent circuit in












































































































(a) One-line diagram (G,Y)












































































































(b) Equivalent P circuit

Figure 1.6: One-line diagram (G,Y) with two nodes 1,2 connected by a line l = (1,2) and its equivalent
P circuit. The nodal current injections (I1, I2) and the nodal voltages (V1,V2) in the one-line diagram
become current sources and branch voltages respectively between nodes 1,2 and the reference node 3 in
the P circuit.

Figure 1.6(b) called the P circuit of line l = (1,2). (We will explain the origin of the equivalent circuit
in Chapter 2.) The application of KVL, KCL, and Ohm’s law on the P circuit leads to a relation between
(I1, I2) and (V1,V2), as we now explain.

Let the directed graph Ĝ := (N̂, Ê) represent the P circuit where

N̂ := {1,2,3}, Ê := {l1 := 1! 3, l2 := 2! 3, l3 := 1! 3, l4 := 2! 3, l5 := 1! 2}

as shown in Figure 1.6(b). Note that the graph G of the one-line diagram has 2 nodes while the graph Ĝ
of its equivalent circuit has 3 nodes with node 3 being the voltage reference point. The key feature is that
the nodal current injections (I1, I2) and the nodal voltages (V1,V2) in the one-line diagram become current
sources and branch voltages respectively, between nodes 1, 2 and the reference node 3 in the P circuit (see
Figure 1.6b).

For each link l 2 Ê let Ul and Jl denote the voltage and current across line l in the direction of l. Let
U := (Ul, l 2 Ê) and J := (Jl, l 2 Ê). The devices on the links l 2 Ê are:

l1 : current source I1 with Jl1 =�I1, l2 : current source I3 with Jl2 =�I2

I3 : admittance ym
12 with Jl3 = ym

12Ul3 , I4 : admittance ym
21 with Jl4 = ym

21Ul4
l5 : admittance ys

12 with Jl5 = ys
12Ul5

The node-by-link incidence matrix Ĉ of the P circuit is

Ĉ :=

2

4
1 0 1 0 1
0 1 0 1 �1
�1 �1 �1 �1 0

3

5
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The KCL, KVL and Ohm’s law in terms of C,U,J for the P circuit in Figure 1.6(b) are:

KCL : ĈJ = 0 (1.8a)

KVL : 9 V := (V1,V2,V3) s.t. U = ĈTV (1.8b)
Ohm’s law : Jl2 = ym

12Ul2 , Jl4 = ym
21Ul4 , Ul5 = ys

12Ul5 (1.8c)

We will set the nodal voltage V3 implied by KVL to V3 := 0 since node 3 in N̂ is chosen to be the voltage
reference point. Using

Jl1 = �I1, Jl2 = �I2, V3 := 0

to eliminate branch variables (U,J) from the set (1.8) of equations leads to a relation between the nodal
currents I := (I1, I2) and voltages V := (V1,V2):

I1 = ys
12 (V1�V2)+ ym

12V1, I1 = ys
12 (V2�V1)+ ym

21V2

In vector form this is I = YV with

Y :=


ys
12 + ym

12 �ys
12

�ys
12 ys

12 + ym
21

�

The matrix Y is called the admittance matrix of the network, a single-line in this example. The admittance

matrix Y can be expressed using the submatrix C1line :=


1
�1

�
of Ĉ corresponding to line l5 with the series

admittance ys
12. Note that C1line includes every node in the equivalent circuit except the reference node 3,

i.e., C describes the connectivity between exactly the set of nodes in the original one-line diagram. If we

let Y s := [ys
12] and Y m :=


ym

12
ym

21

�
then

Y := C1lineY sCT

1line + diag(Y m)

For a general network specified by a one-line diagram (G = (N,E),Y) let V := (Vj, j 2 N) and I :=
(I j, j 2 N) denote the vectors of nodal voltages and current injections respectively. We interpret the line
parameter

⇣
ys

jk,y
m
jk,y

m
k j

⌘
of each line ( j,k) as defining a P circuit model for the line, as explained in

Example 1.3. This induces an equivalent circuit for the entire network that can be described by a directed
graph Ĝ = (N̂, Ê) constructed from G = (N,E), as follows. The set N̂ of nodes in the equivalent circuit is

N̂ := N[{|N|+1}

where the additional node N̂ := |N| + 1 is the reference point for all voltages, i.e., VN̂ := 0. For each
node j 2 N in the one-line diagram, there is a link l = j! N̂ in the equivalent circuit. Each such link
corresponds to a current source with branch current Jl =�I j. Denote this set of links by Ê1 ⇢ Ê.
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For each line l = ( j,k) 2 E parametrized by
⇣

ys
jk,y

m
jk,y

m
k j

⌘
in the one-line diagram, there are 3 links

�
ll1 , ll2 , ll3

�
in Ê in the equivalent circuit, corresponding to

ll1 = j! N̂ : shunt admittance ym
jk with Jl1 = ym

jk Ul1

ll2 = k! N̂ : shunt admittance ym
k j with Jl2 = ym

k j Ul2

ll3 = j! k : series admittance ys
jk with Jl3 = ys

jk Ul3

Let Ê2 denote the set of links corresponding to shunt admittances and Ê3 denote the set of links corre-
sponding to series admittances. Like links in Ê1, links in Ê2 are of the form l = j! N̂ and connect nodes
j 2 N to the reference node N̂. The remaining links in the equivalent circuit are exactly those in E of
the form l = j! k connecting two non-reference nodes j,k 2 N in the one-line diagram. If bus j 2 N
is connected to k j other buses k 2 N in the one-line diagram, then there will be k j links lk = j! N̂ in
the equivalent circuits, for k = 1, . . . ,k j, all between nodes j and N̂, representing shunt admittances ym

jk on
these lines. The set Ê is the disjoint union of these three types of links:

Ê = E [ Ê1[ Ê2

Their sizes are |Ê1| = |N|, |Ê2| = 2 |E|. See the two-bus network in Figure 1.6 and its equivalent P circuit
for an example.

Let C1line be the incidence matrix for the subgraph of the circuit consisting of non-reference nodes N
and links in E connecting them, i.e., C1line describes the connectivity between exactly the nodes in the
one-line diagram:

[C1line] jl :=

8
<

:

1 if l = j! k in E
�1 if l = i! j in E

0 otherwise
, j 2 N, l 2 E

Let Y s := diag
⇣

ys
jk, ( j,k) 2 E

⌘
denote the diagonal matrix of series admittances on the lines. Let Y m :=

diag
⇣

ym
j j, j 2 N

⌘
denote the diagonal matrix of total shunt admittances ym

j j := Âk:( j,k)2E ym
jk incident on

each bus j. Then the linear relation between nodal current injections and voltages found in Example 1.3:

I = YV (1.9a)

holds for the general network with the admittance matrix Y given by (Exercise 1.4)

Y = C1lineY sCT

1line + Y m (1.9b)

The relation (1.9) serves as a formal identification of a one-line diagram (G,Y) with an equivalent P
circuit. Moreover given (G,Y) we can directly write down the admittance matrix Y without going through
the circuit analysis conducted above. We therefore often refer to the one-line diagram itself as a circuit
model. This relation including the invertibility of Y will be studied in detail in Chapter 4.
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1.2 Three-phase systems

To motivate three-phase systems, consider the single-phase system in Figure 1.7(a) composed of three
identical circuits each consisting of a generator modeled as a voltage source in series with an impedance
zg, a forward conductor and a return conductor each modeled as an impedance zt , and a load modeled as
an impedance zl . The same loads can also be supplied by a three-phase system shown in Figure 1.7(b).
As we will illustrate in Chapter 1.3.3, such a three-phase system needs half as much the conductor and
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(a) Single-phase system
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(b) Balanced three-phase system

Figure 1.7: A single-phase system and a balanced three-phase system that transfer power from generators
through transmission lines to loads. (Fig change: Z! z.)

incurs half as much the thermal loss as the single-phase system. In this section we explain the operation
of three-phase systems.

Three-phase sources and loads can be arranged in Y (Wye) or D (Delta) configurations. This is ex-
plained in Chapter 1.2.1. A three-phase system is balanced if all the sources are balanced, loads are iden-
tical, and transmission lines are identical and have symmetric geometry. A balanced three-phase system
has several simplifying properties. In Chapter 1.2.2 we prove a theorem that summarizes the mathemat-
ical structure of balanced three-phase systems that underlies these properties. We apply this theorem to
balanced system in Y configuration (Chapter 1.2.3) and D configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part II of this book.
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1.2.1 Y and D configurations

Three single-phase devices can be arranged in either an Y or a D configuration as shown in Figure 1.8. They

V aI a

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n’

n

a

b

c

I n’= I n
V n’

(a) Y configuration

V aI a

I ab

I bc
I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) D configuration

Figure 1.8: Three-phase systems, not necessarily balanced, in Y and D configurations.

can be three voltage sources, three current sources, or three impedances and they may not be identical,
e.g., the three impedances may have different values.

Y configuration. For the Y configuration, the internal voltage (vector) is VY := (V an,V bn,V cn). These
voltages are called phase-to-neutral or phase voltages. The internal current (vector) IY := (Ian, Ibn, Icn)
is defined to flow from each terminal to the neutral as shown in Figure 1.8(a). The external behavior of
a three-phase device is described by what is measurable on the terminal of the device. The terminal (or
nodal or bus) voltage V := (V a,V b,V c) are voltages with respect to an arbitrary but common reference
point, and the terminal (or line) current I :=

�
Ia, Ib, Ic� is defined to be the current coming out of the device

as shown in the figure. If the common reference point is taken to be the neutral of this device then V = VY ,
i.e., the terminal voltage is the same as the phase voltage for Y configuration. Otherwise V = VY �V n1
where 1 is three-dimensional vector of all 1s. As we will see in Chapters 1.2.3 and 1.2.4, for a balanced
systems, the neutrals of all Y -configured devices are at the same voltage and therefore can serve as the
common reference point. This is not necessarily the case for an unbalanced system, which we will study
in Part II of this book.

Hence, for Y configuration, the terminal voltage and current (V, I) are determined by the internal
voltage and current

�
VY , IY� according to (when the common reference point for V is the neutral so that

V n := 0):

V = VY , I = �IY (1.10)

When the common reference is not the neutral of this device, we have V =
�
VY �V n1

�
.

Instead of the terminal voltage V it is also common to describe the behavior of the three-phase device
in terms of its line-to-line or line voltage V line :=

�
V ab,V bc,V ca�. To relate V line to V or to VY , define the
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matrices G and its transpose GT:

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5 (1.11)

We call G and GT conversion matrices. They can be interpreted as the bus-by-line incidence matrices of
the directed graphs shown in Figure 1.9. Then

(a) G (b) GT

Figure 1.9: Directed graphs of which G and GT are incidence matrices.

2

4
V ab

V bc

V ca

3

5 =

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V a

V b

V c

3

5 =

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V an

V bn

V cn

3

5

or in vector form:

V line = GV = GVY (1.12)

This holds for both Y and D configurations and whether or not the common reference point for V is the
neutral of a Y configured device (since G1 = 0).

D configuration. For the D configuration in Figure 1.8(b), the internal voltage (vector) is the line-to-line
voltage V D := (V ab,V bc,V ca) =V line, and the internal current ID := (Iab, Ibc, Ica) is the line-to-line current.
As for the Y configuration, the terminal voltage V := (V a,V b,V c) are voltages with respect to an arbitrary
but common reference point. The terminal current is I :=

�
Ia, Ib, Ic� as shown in Figure 1.8(b). The

terminal voltage and current (V, I) is determined by the internal voltage and current
�
V D, ID� according to

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V a

V b

V c

3

5 =

2

4
V ab

V bc

V ca

3

5 ,

2

4
Ia

Ib

Ic

3

5 = �

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

| {z }
GT

2

4
Iab

Ibc

Ica

3

5

or in vector form (for arbitrary common reference point for V ):

GV = V D, I = �GTID (1.13)
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Equivalent Y configuration. For any D configuration with given internal voltage V D := (V ab,V bc,V ca)
and current ID := (Iab, Ibc, Ica), an equivalent Y configuration is one that has the same external behavior.
This means that, if VY := (V an,V bn,V cn) and IY := (Ian, Ibn, Icn) are the internal voltage and current of the
Y -equivalent then they are related to

�
V D, ID� according to (from (1.12) (1.13)):

GVY = V D, IY = GTID (1.14)

Summary. The external behavior (1.10) and (1.13) for Y and D configurations respectively as well as
their equivalence (1.14) hold for any three-phase system whether or not it is balanced. The relation (1.12)
between line-to-line voltage V line and terminal voltage V holds for Y and D configurations whether or not
the system is balanced.

The behavior of a three-phase system is determined by the mathematical properties of the conversion
matrices G and GT. When a system is balanced the conversion becomes particularly simple because the
transformation of balanced vectors under G and GT preserves their balanced nature (Corollary 1.3). We
now explain these mathematical properties and then apply them to the analysis of balanced systems in
Chapters 1.2.3 and 1.2.4.

1.2.2 Balanced vectors and conversion matrices G,GT

Definition 1.1 (Balanced vector). A vector x := (x1,x2,x3) with x j = |x j|eiq j 2 C, j = 1,2,3, is called
balanced if x j have the same magnitude and they are separated by 120�, i.e.,

|x1| = |x2| = |x3|

and either

q2�q1 =�2p
3

and q3�q1 =
2p
3

(positive sequence) (1.15a)

or

q2�q1 =
2p
3

and q3�q1 =�2p
3

(negative sequence) (1.15b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part II of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 7.1), i.e., we will call x̂ a (generalized) balanced vector if it is of the form x̂ = x + g1 and x is
balanced according to Definition 1.1, for some possibly nonzero g 2C. The bias g may models a common
reference voltage or the internal loop flow in a D configuration. We assume g = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.15a) and in a negative sequence
set if x satisfies (1.15b). Let

a := e�i2p/3
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3

30!

α 2

α

1

Im#

Re#

3

3

Figure 1.10: Phase shift a := e�i2p/3 in Theorem 1.2.

Clearly a2 = ei2p/3, a3 = 1; see Figure 1.10. (Also see Exercise 1.5 for more properties of a .) Define
the vectors

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5 (1.16a)

Then a+ is a balanced vector in a positive sequence and a� is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span(a+) and the set of all balanced negative-
sequence vectors is span(a�), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

x = x1a+, y = y1a�, x1, y1 2 C (1.16b)

Note that a+ = a� where for any vector x, x is its complex conjugate componentwise. Define the matrix
F whose columns are a+,a� as well as 1 normalized:

F :=
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 (1.17)

All main properties of balanced three-phase systems originate from the mathematical properties of
the vectors a+, a� and their transformation under the matrices G,GT defined in (1.11), summarized in
Theorem 1.2. Its proof is left as Exercise 1.6. The theorem implies in particular that the transformations G
and GT preserve the balanced nature of a vector and hence ensures that the entire network stays balanced.
The key enabling property is that the voltages and currents from balanced sources are in span(a+) or
span(a�) and (a+,a�) are eigenvectors of G,GT (according to (1.18a)(1.19a)).

Theorem 1.2 (Transformation of balanced vectors by G,GT). Let a := e�i2p/3. Recall the balanced vectors
(a+,a�) defined in (1.16a), the matrices F in (1.17) and G,GT in (1.11).

1. Suppose the entries x j of x := (x1,x2,x3) 2 C
3 have the same magnitude. Then x is balanced if and

only if x1 + x2 + x3 = 0.



26 Draft: EE 135 Notes April 30, 2024

2. The columns of F are orthonormal. Both F and F are complex symmetric, i.e., FT = F and FT
= F ,

where F is the complex conjugate of F componentwise. Hence

F�1 = FH = F =
1p
3

⇥
1 a� a+

⇤

3. G is a normal matrix, GGT = GTG. (Note that GGT = GTG are Laplacian matrices of the graphs in
Figure 1.9.)

4. Spectral decomposition of G:

(a) The eigenvalues and eigenvectors of G are

G1 = 0, Ga+ = (1�a)a+, Ga� = (1�a2)a� (1.18a)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

(b) Therefore the spectral decomposition of G is:

G = F

2

4
0

1�a
1�a2

3

5F (1.18b)

5. Spectral decomposition of GT:

(a) The eigenvalues and eigenvectors of GT are

GT1 = 0, GTa� = (1�a)a�, GTa+ = (1�a2)a+ (1.19a)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

(b) Therefore the spectral decomposition of GT is:

GT = F

2

4
0

1�a
1�a2

3

5F (1.19b)

The following corollary of the theorem is repeatedly used in the analysis of balanced systems. It says
that the transformation of a balanced vector x under G and GT reduces to a scaling by (1�a) and (1�a2)
respectively.

Corollary 1.3. For any balanced positive-sequence vector x 2 C
3 and g 2 C, we have

1. G(x+ g1) = (1�a)x.

2. GT(x+ g1) = (1�a2)x.
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3. GGT(x+ g1) = GTG(x+ g1) = 3x.

Informally a three-phase system is called balanced if all voltages and currents are balanced vectors in,
say, positive-sequence sets. The main consequence of the corollary is the following. A three-phase system
consists of voltage sources, current sources, and impedances connected by lines. The voltage and current
at any point in the system are induced by the internal voltages of voltage sources and the internal currents
of current sources. When these sources are balanced positive-sequence sets, their internal voltages and
currents are in span(a+) and a+ is an eigenvector of G and GT. This means that the transformation of bal-
anced voltages and currents under G,GT reduces to a scaling of these variables by their eigenvalues 1�a
and 1�a2 respectively. Since the voltage and current at every point in the system are linear combinations
of transformed source voltages and source currents, transformed by G, GT and line admittance matrices,
they remain in span(a+) when the sources are balanced and the lines are identical and phase-decoupled.
This is the key property that enables balanced sources to induce balanced voltages and currents throughout
the network, leading to per-phase analysis of three-phase systems. A formal statement and its proof have
to wait till Chapter 9 (Theorem 9.7) when we develop a general model of unbalanced three-phase system.
In this chapter we will use the corollary to analyze example circuits to build intuition.

1.2.3 Balanced systems in Y configuration

Figure 1.11 shows the Y configuration of voltage sources and impedance loads. The loads are said to be
balanced if their impedances z are identical. An ideal three-phase voltage source in Y configuration is

n

Ean

+

−

Ebn
+

−

+

−Ecn

b

a

c

(a) Balanced sources

n

b

a

c

Z

Z Z

(b) Balanced loads

Figure 1.11: Balanced three-phase (a) voltage source EY and (b) impedance zY := diag(z,z,z) in Y config-
uration. (Fig change: Z! z.)

specified by its internal voltage (vector) EY :=
�
Ean,Ebn,Ecn� in the phasor domain between the terminals

a,b,c and the neutral n respectively. It is called balanced if EY is a balanced vector according to Definition
1.1, i.e.,

positive sequence: Ean = 1\q , Ebn = 1\q �120�, Ecn = 1\q +120�

or

negative sequence: Ean = 1\q , Ebn = 1\q +120�, Ecn = 1\q �120�
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where their magnitudes are normalized to 1. See Figure 1.12(a) where q = 0. For a balanced voltage source

Ecn

Ebn

Ean

Im#

Re#

(a) Phase voltages

3

30!
Eab

Ecn

Ebn

Ean

Im

Re

Eca

Ebc

(b) Phase and line voltages

Figure 1.12: A balanced three-phase source in Y configuration. (a) Its phase voltage (vector) EY :=�
Ean,Ebn,Ecn� is a balanced vector. (b) Its line voltage E line = GEY = (1�a)EY .

in a positive sequence, the instantaneous voltages in the time domain reach their maximum values in the
order abc. We sometimes call abc in such an order a positive sequence and the voltages

�
Ean,Ebn,Ecn a

(balanced) positive-sequence set. Whether a voltage source is in a positive or negative sequence depends
only on how one labels the wires. Therefore, unless otherwise specified, we will always consider abc to be
a positive sequence. If there are multiple three-phase sources connected to the same network their phase
sequences must be the same.

Theorem 1.2 implies the following properties of a balanced positive-sequence voltage source:

1. Sum to zero: Ean +Ebn +Ecn = 0

2. All voltages and currents are in a balanced positive sequence, i.e., all are in span(a+).

3. Phases are decoupled.

Sum to zero. The first property follows from Theorem 1.2.1, or more directly, EY = a+Ean and hence
1TEY =

⇣
1Ta+

⌘
Ean = 0.

Line voltage V line is balanced. The second properties is due to the fact that a+ is an eigenvector of
G,GT. Specifically the line voltage E line :=

�
Eab,Ebc,Eca� across the terminals is given by E line = GEY

from (1.12)). This implies 1TE line = Eab +Ebc +Eca = 0. Moreover Corollary 1.3 implies

E line = GEY = (1�a)EY

Hence E line is in a balanced positive sequence if EY is, i.e., Ebc = e�i2p/3 Eab and Eca = ei2p/3 Eab. Since
1�a =

p
3eip/6 we have

Eab =
p

3eip/6 Ean, Ebc =
p

3eip/6 Ebn, Eca =
p

3eip/6 Ecn

This is illustrated in Figure 1.12(b).
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Balanced systems are phase-decoupled. We start by analyzing the simple circuit in Figure 1.13(a)
when a balanced three-phase load is connected to a balanced three-phase positive-sequence voltage source
in Y configuration. We will show that

1. The neutral-to-neutral voltage is zero, Vnn0 = 0.

2. The internal voltage and current across the impedances are in a balanced positive sequence.

The most important implication is that the phases are decoupled, i.e., the variables in each phase depend
on quantities only in that phase, and can be analyzed separately. We will illustrate through examples that
these conclusions hold in more general balanced systems than the simple circuit in Figure 1.13(a). A full
understanding of phase decoupling and per-phase analysis is postponed till Part II of this book where a
balanced system is studied in the context of general unbalanced systems.

n

Ean

+

−

Ebn
+

−

+

−Ecn

n '

Z

b

a

c

Z Z

a '

b 'c '

Ia

Ib

Ic

(a) Balanced three-phase system

n

Ean

+

−
n '

Z

a a 'Ia

(b) Equivalent per-phase system

Figure 1.13: Balanced three-phase source and load in Y configuration and its per-phase model. (Fig
change: Z! z.)

Referring to Figure 1.13(a) let

• EY :=
�
Ean,Ebn,Ecn� and V 0Y :=

⇣
V a0n0 ,V b0n0 ,V c0n0

⌘
denote the internal voltages from terminals to

neutrals, and I0Y :=
⇣

Ia0n0 , Ib0n0 , Ic0n0
⌘

denote the internal current between the terminals a0,b0,c0 and
the neutral n0 across the identical impedances z.

• V :=
�
V a,V b,V c� denote the terminal voltage (vector), with respect to an arbitrary and common

reference point, not necessarily the neutral n or n0;

• V n and V n0 denote the neutral voltages with respect to the common reference point.

Given the balanced positive-sequence voltage EY and balanced impedances z, we wish to show that V n =
V n0 , that V 0Y , I0Y are in a balanced positive sequence, and that phases are decoupled.
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Solution. KVL, KCL, and Ohm’s law imply

EY = V �V n1, V 0Y = V �V n01, V 0Y = z I0Y , 1TI0Y = 0 (1.21)

Therefore EY �V 0Y =
⇣

V n0 �V n
⌘

1 and hence (since 1TEY = 0)

1T
�
EY �V 0Y

�
=
⇣

V n0 �V n
⌘

1T1 =) 3
⇣

V n0 �V n
⌘

= �1TV 0Y = �z
⇣

1TI0Y
⌘

= 0

showing that the voltage across the neutrals Vnn0 = 0. Substituting it into (1.21) yields (denoting y := z�1)

V 0Y = EY +
⇣

V n�V n0
⌘

1 = EY , I0Y = yV 0Y = yEY

Hence both V 0Y and I0Y are in a balanced positive sequence. Moreover the phases are decoupled in that
Vfn0 and Ifn0 , f = a0,b0,c0, depend only on Efn but not on voltages on other phases.

In view of Theorem 1.2.1, the terminal voltage V is not balanced unless V n = V n0 = 0, i.e., the neutral
is taken as the common reference point for voltages, because

1TV = 1T
�
EY +V n1

�
= 3V n

Remark 1.2. 1. Since Vnn0 = 0, even if n and n0 are connected, the current on that wire will be zero.
We can therefore either assume n and n0 are connected or disconnected in our analysis, whichever is
more convenient.

2. Since the currents are balanced, Ia + Ib + Ic = 0 or ia(t)+ ib(t)+ ic(t) = 0 at all times t, the currents
flow from and return to the sources only via the wires connecting the sources to the loads, and no
additional physical wires are necessary for return currents. This halves the amount of required wire
compared with three separate single-phase circuits; see Chapter 1.3.3.

As a consequence, each phase of the balanced system is decoupled and equivalent to the circuit in
Figure 1.13(b). We can therefore analyze the phase a equivalent circuit; see Chapter 1.2.5. The voltages
and currents in phase b and phase c circuits will be the corresponding phase a quantities shifted by �120�
and 120� respectively, assuming the three-phase source is of positive sequence.

These conclusions hold for more general circuits than that in Figure 1.13(a), as Example 1.4 shows.

Example 1.4 (Balanced three-phase system in Y configuration). Figure 1.14 shows a balanced three-
phase source of positive sequence supplies two sets of balanced three-phase loads in parallel through
balanced transmission lines. The transmission lines have a common admittance t and all loads have a
constant admittance l, as shown in the figure. Suppose the neutrals are connected by lines with a common
admittance y. Denote the internal voltages and currents in stage k = 1,2, by VY

k := (V aknk ,V bknk ,V cknk) and
IY
k := (Iaknk , Iaknk , Iaknk) respectively. Denote the terminal voltages and currents from stage k� 1 to stage

k, k = 1,2, by Vk := (V ak�1ak ,V bk�1bk ,V ck�1ck) and Ik := (Iak�1ak , Iak�1bk , Iak�1ck) respectively.

Suppose y 6= 0, t = y/µ , and l = y/µ2 for some real number µ 6= 0. Prove that
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Figure 1.14: Balanced three-phase system in Y configuration (Example 1.4). (Fig change: T ! t, L! l,
and Y ! y.)

1. Vn0n1 = Vn1n2 = 0.

2. For k = 1,2, all voltages and currents VY
k ,Vk, IY

k , Ik are balanced positive-sequence sets.

3. The phases are decoupled, i.e.,

EY
0 = V1 + VY

1

VY
1 = V2 + VY

2

where EY
0 := (Ea0n0 ,Eb0n0 ,Ec0n0).

This implies that the three phases of the balanced system in Figure 1.14 are decoupled and can be studied
by analyzing the per-phase circuit shown in Figure 1.15 where the line admittances connecting the neutrals
are set to zero.

a0

n0

Ean

+

−
n1 n2

a1 a2
! !

""

Figure 1.15: The per-phase equivalent circuit of the balanced system in Figure 1.14 in Y configuration.
(Fig change: T ! t, L! l, and Y ! y.)

Solution:
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1. We will apply Ohm’s law and Kirchhoff’s current and voltage laws (KCL and KVL) to derive two
linear equations in (Vn0n1 ,Vn1n2) and show that Vn0n1 = Vn1n2 = 0 is the only solution to these equa-
tions. By Ohm’s law across each admittance, the currents are in terms of voltages:

IY
k = lVY

k , Ik = tVk, k = 1,2 (1.22)

This allows us to eliminate currents IY
k , Ik and express KCL and KVL in the following in terms only

of voltages VY
k ,Vk.

Making use of (1.22), apply KCL at node (a1,b1,c1) to obtain

tV a0a1 = lV a1n1 + tV a1a2 , tV b0b1 = lV b1n1 + tV b1b2 , tV c0c1 = lV c1n1 + tV c1c2

and similarly for KCL at nodes (a2,b2,c2). This in vector form is

tV1 = lVY
1 + tV2 (1.23a)

tV2 = lVY
2 (1.23b)

Apply KCL at nodes (n0,n1,n2) to obtain

t
⇣

1TV1

⌘
+ yV n0n1 = 0

l
⇣

1TVY
1

⌘
+ yV n0n1 = yV n1n2

l
⇣

1TVY
2

⌘
+ yV n1n2 = 0

where 1 := (1,1,1) is the column vector of all 1’s. Hence, since y/t = µ and y/l = µ2, we have

1TV1 = �µV n0n1 , 1TVY
1 = �µ2V n0n1 + µ2V n1n2 , 1TVY

2 = �µ2V n1n2 (1.24)

Finally, apply KVL around the loops from stage 0 to stage 1 to obtain

Ea0n0 = V a0a1 +V a1n1�V n0n1 , Eb0n0 = V b0b1 +V b1n1�V n0n1 , Ec0n0 = V c0c1 +V c1n1�V n0n1

and similarly for loops from stage 1 to stage 2. This in vector form is

EY
0 = V1 + VY

1 � V n0n11 (1.25a)
VY

1 = V2 + VY
2 � V n1n21 (1.25b)

where EY
0 := (Ea0n0 ,Eb0n0 ,Ec0n0). Substitute (1.23b) into the last equation to eliminate V2:

VY
1 =

✓
1
µ

+1
◆

VY
2 � V n1n21 (1.25c)

To obtain a system of equations that involves only (V n0n1 ,V n1n2), multiply (1.25) by 1T and apply
(1.24) to obtain (using 1TE0 = 0 since the sources are balanced):


µ2 + µ +3 �µ2

�µ2 2µ2 + µ +3

�
V n0n1

V n1n2

�
=


0
0

�
(1.26)
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We now argue that the determinant of the matrix in (1.26) is nonzero, and hence V n0n1 = V n1n2 = 0.
Let B := µ2 + µ +3. Then

determinant = B(B+ µ2)�µ4

If determinant is zero then

B = �µ2

2

⇣
1±
p

5
⌘

By the definition of B := µ2 + µ +3 we therefore have

(3±
p

5)µ2 + 2µ + 6 = 0

It is easy to check that no real number µ satisfies this equation, and hence V n0n1 = V n1n2 = 0.

2. We now prove that (VY
k ,Vk) are balanced positive-sequence sets. Since V n1n2 = 0, (1.25c) implies

VY
2 =

µ
µ +1

VY
1 (1.27)

Substitute this and (1.23b) into (1.23a) to obtain

V1 =
1
µ

VY
1 +

1
µ

VY
2 =

2µ +1
µ(µ +1)

VY
1

Substitute into (1.25a) to get

EY
0 =

2µ +1
µ(µ +1)

VY
1 + VY

1

Hence

VY
1 =

µ(µ +1)

µ2 +3µ +1
E0 and V1 =

µ(2µ +1)

µ2 +3µ +1
E0

Hence V1,VY
1 are balanced positive-sequence sets since E0 is. Furthermore V2,VY

2 are balanced
positive-sequence sets from (1.27) and (1.23b). Then (1.22) implies that all currents (IY

k , Ik) are
balanced positive-sequence sets.

3. To show that the phases are decoupled, substitute V n0n1 = V n1n2 = 0 in (1.25a)(1.25b).

This completes the proof.

Remark 1.3 (Phase-decoupling of lines). 1. A key enabling property that allows the balanced nature
of voltages and currents to propagate from one node to the next is the assumption that three-phase
lines are phase-decoupled (see Example 1.4 and Exercise 1.9). This assumption is valid only if the
lines are symmetric and the sources and loads are balanced such that currents and charges both sum
to zero in these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase model
of transmission lines should be used; see Part II of this book.

2. If the lines are symmetric but the sources or loads are unbalanced then variables of different phases
are coupled. A similarity transformation can be used to transform the system to a so called sequence
coordinate in which the lines become decoupled and single-phase analysis can then be applied in
the sequence coordinate; see Chapter 9 in Part II of this book.
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1.2.4 Balanced systems in D configuration

Figure 1.16 shows the D configuration of a balanced voltage source and a balanced impedance. An ideal

bEbc

+−

Eab
+

−+

−Eca

a

c

(a) Balanced source

b

a

c

Z Z

Z

(b) Balanced load

Figure 1.16: Balanced three-phase (a) voltage source ED and (b) impedance zD in D configuration. (Fig
change: Z! z.)

voltage source in D configuration is specified by its line voltage ED :=
�
Eab,Ebc,Eca�. It is balanced if

ED is a balanced vector according to Definition 1.1, i.e., assuming positive sequence:

Ebc = e�i2p/3 Eab, Eca = ei2p/3 Eab

A balanced three-phase system in D configuration enjoys the same properties as such a system in Y con-
figuration in Chapter 1.2.3 does. In particular the line voltages sum to zero (see Figure 1.12(b)):

Eab +Ebc +Eca = 0

The three-phase voltages and currents in a balanced system in D configuration driven by balanced three-
phase positive-sequence sources are balanced positive sequences. Moreover the phases are decoupled. We
illustrate this in the next example.

Example 1.5 (Balanced three-phase system in D configuration). Figure 1.17 shows a balanced three-phase
source connected to a balanced three-phase load through balanced transmission lines in D configuration.
The transmission lines have identical admittance t 6= 0 and the loads are of constant admittance l 6= 0. Sup-
pose the internal voltage ED := (Ea0b0 ,Eb0c0 ,Ec0a0) is in a positive sequence. Denote the terminal current
by I := (Ia0a1 , Ib0b1 , Ic0c1), the terminal voltage by V := (V a0a1 ,V b0b1 ,V c0c1), and the line-to-line voltage
by U := (V a1b1 ,V b1c1 ,V c1a1). We will show that I,V,U are in balanced positive sequences, provided the
ratio

µ :=
t
l
6= �3

Solution. Apply KCL at nodes a1,b1,c1 to get (cf. (1.13)):

I = l GTU = t V (1.28)
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Figure 1.17: Example 1.5. (Fig change: T ! t, L! l.)

where GT is defined in (1.11). Apply KVL to get

ED = U + GV (1.29)

where G is defined in (1.11). Eliminate V from (1.28) and (1.29) to get

ED =
1
µ

⇣
µI + GGT

⌘
U =

1
µ

2

4
µ +2 �1 �1
�1 µ +2 �1
�1 �1 µ +2

3

5U (1.30)

where µ := t/l and I is the identity matrix of size 3. The matrix µI + GGT has a determinant of µ(µ +3)2

and hence is nonsingular provided µ 6= 0,�3. Since ED is a balanced positive-sequence matrix we have
⇣

µI + GGT

⌘
U = µ Eab a+

It therefore suffices to show that a+ is an eigenvector of µI + GGT with an associated eigenvalue l , for
then

U = µ Eab
⇣

µI + GGT

⌘�1
a+ =

µ Eab

l
a+

showing that U is also a balanced positive-sequence voltage (note that if Ax = lx for a nonsingular matrix
A then A�1x = 1

l x). To show that a+ is an eigenvector of µI + GGT, we apply Theorem 1.2 to get
⇣

µI + GGT

⌘
a+ = µ a+ + G(1�a2)a+ =

�
µ + (1�a)

�
1�a2��a+ = (µ + 3)| {z }

l

a+

as desired. This shows that U is indeed a balanced positive-sequence voltage. Indeed

U =
µ

µ +3
ED

To show that phase voltages V are also a balanced positive sequence and decoupled, use (1.28) and
Corollary 1.3 to get

V =
1
µ

GTU =
1
µ
�
1�a2�U =

1�a2

µ +3
ED

Hence V is in a balanced positive sequence. The expression I = tV from (1.28) then implies that the phase
current I is also in a balanced positive sequence and that the phases are decoupled.
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D and Y transformation. A balanced D-configured system also has a per-phase equivalent circuit. We
now explain how to transform between D and Y configuration. This is the first step in per-phase analysis of
balanced three-phase system described in Chapter 1.2.5 where all balanced devices in D configuration are
transformed into their equivalent Y configuration, the per-phase circuit of the Y -equivalent network is then
analyzed and the result translated back to the original system with D-configured devices. This validity of
this procedure is formally proved in Chapter 9.3.4.

As explained in Chapter 1.2.1, given any balanced internal voltage V D := (V ab,V bc,V ca) and current
ID := (Iab, Iac, Iaa) in D configuration, an equivalent Y configuration is one that has the same external
behavior, i.e., the internal voltage VY := (V an,V bn,V cn) and current IY := (Ian, Ian, Ian) of the Y -equivalent
satisfy (1.14) reproduced here

GVY = V D, IY = GTID

Assume the neutral of the Y equivalent voltage source is the reference for all voltages and V n = 0. Since
VY and ID are balanced vectors, Corollary 1.3 implies

(1�a)VY = V D, IY = (1�a2)ID

Hence the Y -equivalent of
�
Y D, ID� is

VY =
1

1�a
V D =

1p
3eip/6

V D, IY =
�
1�a2� ID =

p
3

eip/6 ID (1.31a)

This implies in particular that a voltage source ED in D configuration has an equivalent Y -configured
voltage source with EY := (1�a)�1ED. It also implies that a current source JD in D configuration has an
equivalent Y -configured current source with JY :=

p
3e�ip/6 JD.

Consider a balanced three-phase impedance zD 2 C in D configuration as shown in Figure 1.18(a). An
Y -equivalent is a balanced impedance zY 2 C as shown in Figure 1.18(b) so that their external behavior is
the same, i.e., the terminal currents I are the same when the same line-to-line voltage V line is applied to
both impedances. Let V D 2C

3 and ID 2C
3 be the internal voltage and current across the impedance zD in

n

ZY

ZY ZY

b

a

c b

a

c

Z Δ

Z Δ

Z Δ

Figure 1.18: D-Y transformation of balanced loads: ZY = ZD/3. (Fig change: Z! z.)

D configuration. Let ZD := diag
�
zD,zD,zD�. Then V D = ZDID and

V line = V D = ZDID, I = �GTID = �(1�a2)ID
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where the last equality follows from Corollary 1.3. Hence, for D-configured impedance, the line-to-line
voltage V line is related to the terminal current I according to

V line = � 1
1�a2 ZD I

For the Y -equivalent, let VY 2 C
3 and IY 2 C

3 be its internal voltage and current across the impedance zY

in Y configuration. Let ZY := diag
�
zY ,zY ,zY�. Then VY = ZY IY and Corollary 1.3 implies

V line = GVY = (1�a)ZY IY , I = �IY

Hence, for Y -configured impedance, the line-to-line voltage V line is related to the terminal current I ac-
cording to

V line = �(1�a)ZY I

The relationships between the line-to-line voltage V line and the terminal current I for both the D-configured
impedance and its Y -equivalent will be identical if and only if

zY =
zD

(1�a)(1�a2)
=

zD

3
(1.31b)

The corresponding admittances yY :=
�
zY��1 and yD :=

�
zD��1 are related by yY = 3yD.

1.2.5 Per-phase analysis

A balanced three-phase system consists of balanced three-phase sources and loads connected by balanced
(identical) transmission lines. Given a balanced three-phase system with all sources and loads in Y config-
uration, assuming there is no mutual inductance between phases, then

• all the neutrals are at the same potential;

• all phases are decoupled;

• all corresponding network variables are in balanced sets of the same sequence as the sources.

These properties lead to equivalent per-phase circuits, as explained in Chapter 1.2.3. Even though we have
only illustrated these properties for simple systems, they hold more generally. They allow us to study such
a system by analyzing a single phase, say, phase a. The corresponding variables in phases b and c lags
those in phase a by 120� and 240� respectively when abc is a positive sequence, and by 240� and 120�
respectively when abc is a negative sequence.

When some or all of the sources and loads are in D configuration, the phases are still decoupled
and can be analyzed separately. To obtain the equivalent per-phase circuit, however, we first transform
each D-configured device into an equivalent Y -configured device using the transformation (1.31a) for
voltage sources and (1.31b) for impdances. We then analyze the equivalent circuit that consists of only
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Y -configured devices. Finally we translate the results for equivalent Y configuration back to the corre-
sponding quantities in D configuration.

We emphasize that these transformations hold only in the balanced case with balanced sources, identi-
cal impedances, and symmetric transmission lines. Moreover the equivalence of these two configurations
is with respect to their external behavior (V ab, Ia, etc); for internal behavior, we have to analyze the original
circuit; see Example 1.6.

In summary, the procedure for per-phase analysis is:

1. Convert all sources and loads in D configuration into their equivalent Y configurations using (1.31a)
for sources and (1.31b) for loads.

2. Solve for the desired phase a variables using phase a circuit with all neutrals connected.

3. For positive-sequence sources, the phase b and c variables are determined by subtracting 120� and
240� respectively from the corresponding phase a variables. For negative-sequence sources, add
120� and 240� instead.

4. If variables in the internal of a D configuration are desired, derive them from the original circuits.

This procedure is formally justified in Chapter 9.3.4. We illustrate it with an example.

Example 1.6 (Per-phase analysis). Consider the balanced three-phase system shown in Figure 1.19.
The three-phase sources are a balanced positive sequence in D configuration with line voltage Eab =p

3eip/6Ean, etc. The D-configured loads are balanced with identical admittances l1, and the Y-configured
loads are balanced with identical admittances l2. The transmission lines are modeled by admittances t1 and
t2. Find the current i1(t) and voltage v2(t) in the diagram. Assume 3l1l2 +3l1t2 + l2(t1 + t2)+ t1t2 6= 0.

Solution. First we convert the D sources to their equivalent Y sources using (1.31a) and D loads to their
equivalent Y loads using (1.31b). The result is shown in the upper panel of Figure 1.19(b). Then we
construct the equivalent per-phase circuit with all neutrals n,n1,n2 connected, as shown in the lower panel
of Figure 1.19(b).

We analyze the per-phase circuit to solve for voltages

V1 := V a1n1 and V2 := V a2n2

Applying KCL to nodes a1 and a2 we get

t1 (Ean�V1) = 3l1V1 + t2 (V1�V2)

t2 (V1�V2) = l2V2

Hence


3l1 + t1 + t2 �t2
t2 �(l2 + t2)

�
V1
V2

�
=


t1Ean

0

�
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Figure 1.11: Balanced three-phase system and its per-phase equivalent circuit. The balanced three-phase
loads have admittances L1 and L2, and the transmission lines have admittances T1 and T2.

By assumption, the determinant

D := �(3L1L2 +3L1T2 +L2(T1 +T2)+T1T2)

is nonzero. Hence

V1
V2

�
=

1
D


�(L2 +T2) T2

�T2 3L1 +T1 +T2

�
T1Ean

0

�
=

�T1Ean

D


L2 +T2

T2

�
(1.19)

Since Va2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.19). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.20)

we use (1.15) to first get

Va1b1 =
p

3eip/6V1

where V1 is given by (1.19). Hence

Ia1b1 = L1Va1b1 =
p

3L1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ic1a1 = �Ia1b1 ei2p/3 = �
p

3ei5p/6 3L1V1 = 3
p

3e�ip/6 L1V1

where V1 is given by (1.19). Substituting Ia1c1 into (1.20) yields i1(t).
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Figure 1.11: Balanced three-phase system and its per-phase equivalent circuit. The balanced three-phase
loads have admittances L1 and L2, and the transmission lines have admittances T1 and T2.

By assumption, the determinant

D := �(3L1L2 +3L1T2 +L2(T1 +T2)+T1T2)
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Since Va2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.19). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.20)

we use (1.15) to first get

Va1b1 =
p

3eip/6V1

where V1 is given by (1.19). Hence

Ia1b1 = L1Va1b1 =
p

3L1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ic1a1 = �Ia1b1 ei2p/3 = �
p
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p

3e�ip/6 L1V1

where V1 is given by (1.19). Substituting Ia1c1 into (1.20) yields i1(t).

(b) Equivalent per-phase system

Figure 1.19: Balanced three-phase system and its per-phase equivalent circuit. The balanced three-phase
loads have admittances l1 and l2, and the transmission lines have admittances t1 and t2. (Fig change: T ! t,
L! l.)

By assumption, the determinant

D := �(3l1l2 +3l1t2 + l2(t1 + t2)+ t1t2)

is nonzero. Hence

V1
V2

�
=

1
D


�(l2 + t2) t2
�t2 3l1 + t1 + t2

�
t1Ean

0

�
=
�t1Ean

D


l2 + t2

t2

�
(1.32)

Since V a2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.32). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.33)

we use (1.31a) to first get

V a1b1 =
p

3eip/6V1

where V1 is given by (1.32). Hence

Ia1b1 = l1V a1b1 =
p

3 l1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ia1a1 = �Ia1b1 ei2p/3 = �
p

3ei5p/6 3l1V1 = 3
p

3e�ip/6 l1V1

where V1 is given by (1.32). Substituting Ia1c1 into (1.33) yields i1(t).
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1.2.6 Example configurations and line limits

The secondary sides of three-phase distribution transformers in the US are commonly configured as shown
in Figure 1.20. For our purposes we can treat them as balanced three-phase sources. Figure 1.20(a) shows

n
Vcn

b

a

c

Van =120V

Vbn =120V

Vab = 208V

(a) 208Y/120V 3-phase Y

b

a

c

Vad =120V

Vab = 240Vd

Vbd =120V

Vcd = 208V

Vbc =120V240V

(b) 240V split phase D

Figure 1.20: Common distribution transformer configurations.

the secondary side of a typical 5-wire three-phase transformer in Y configuration. Three phase wires
(labeled a,b,c) and a neutral wire (labeled n) are shown. The fifth wire, not shown, is the earth ground
wire, typically connected to neutral. A different voltage magnitude can be supplied to a load depending
on how it is connected. The voltage magnitude between a phase wire and the neutral is 120V and that
between a pair of phase wires is 120

p
3V = 208V.

Figure 1.20(b) shows a 5-wire transformer in D configuration with one of the phases center-tapped to
provide three voltage levels. Four phase wires (labeled a,b,c,d) are shown but an earth ground wire is not
shown. The voltage magnitude between wires ad or bd is 120V, whereas that between wire cd is 208V
(derive this). The line-to-line voltage magnitude is 240V.

Line limits. Figure 1.21(a) shows a Y -configured voltage source connected to a set of loads in D configu-
ration. The voltage source is the secondary side of a three-phase 208Y/120V transformer shown in Figure
1.20(a). The voltage magnitude across each load is the line-to-line voltage 208V. Figure 1.21(b) shows the
electric panel arrangement to connect the loads to the voltage source. The dot in the first row indicates that
the wires numbered 1 and 2 are connected to phase a, the dot in the second row indicates that the wires
numbered 3 and 4 are connected to phase b, the dot in the third row indicates that the wires numbered 5 and
6 are connected to phase c, and so on. Therefore the load connected between wires 1 and 3 is connected
between phase a and phase b lines (see the corresponding labels on the loads in Figure 1.21(a)). Similarly
for the load connected between wires 2 and 4, and other loads connected between different phases.

We are interested in the currents J0 := (Ia0a1 , Ia0b1 , Ia0c1) supplied by the three-phase source to the
loads. Suppose the wires connecting the three-phase source to the loads are rated at Imax. Then we require
that the current magnitude in each phase be bounded by Imax:

|I p0 p1 |  Imax, p = a,b,c (1.34)
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(b) Panel ar-
rangement

Figure 1.21: (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase panel used to
connect loads in parallel to the voltage source.

Suppose the loads are not impedance loads, but constant current loads that draw specified currents. Let
the current drawn by the load in Figure 1.21(a) between wires 1 and 3 be Ia1b1 , that between wires 9 and 11
be Ib1c1 , that between wires 5 and 7 be Ic1a1 . In general, let the load currents in the kth three-phase load be
Ik := (Iakbk , Ibkck , Ickak). We now derive bounds on the load currents (Ik,k = 1, . . . ,K) that enforce the line
limits (1.34). Recall that magnitudes (|Iakbk |, |Iakck |, |Iakak |) of the current phasor are the root-mean-square
(RMS) values of their sinusoidal currents in the time domain. Therefore bounding (|Iakbk |, |Iakck |, |Iakak |)
bounds the RMS values of the currents.

Before proceeding, we mention as an example application the smart charging of electric vehicles where
each load is a vehicle. We are to design an algorithm that determines the charging rate, i.e., current
magnitude |I pkqk |, for each vehicle to optimize certain objective subject to capacity constraints such as
(1.34) and other constraints. Such an algorithm can be applied periodically, e.g., every minute, to update
the charging rates. Note that in this kind of applications, the system is unbalanced since the loads |I pkqk |
are generally not identical across phases, but here we ignore the effect of wires connecting these devices.

Applying KCL at nodes (a1,b1,c1) we have
2

4
Ia0a1

Ia0b1

Ia0c1

3

5

| {z }
J0

=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

| {z }
GT

2

4
Ia1b1

Ia1c1

Ia1a1

3

5

| {z }
I1

+

2

4
Ia1a2

Ia1b2

Ia1c2

3

5

| {z }
J1

where Jk := (Iakak+1 , Iakbk+1 , Iakck+1), k = 0, . . . ,K�1, are the line currents from stage k to stage k + 1. In



42 Draft: EE 135 Notes April 30, 2024

general we have

Jk = GTIk + Jk+1, k = 0, . . . ,K�1

Hence the total supply currents are given by

J0 = GT (I0 + I1 + · · ·+ IK) (1.35)

when there are K three-phase constant current loads. Note that this expression does not require that the
loads are balanced. In particular, if a load (say) Iakbk is absent, then we set Iakbk = 0 in (1.35).

Let the total load current in each leg of the D configuration be denoted by

Iab :=
K

Â
k=1

Iakbk , Ibc :=
K

Â
k=1

Iakck , Ica :=
K

Â
k=1

Iakak (1.36)

Then (1.35) can be written in terms of the total load currents as:
2

4
Ia0a1

Ia0b1

Ia0c1

3

5 =

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

2

4
Iab

Ibc

Ica

3

5

The line limits (1.34) are therefore

|Ia0a1 | = |Iab� Ica|  Imax

|Ia0b1 | = |Ibc� Iab|  Imax

|Ia0c1 | = |Ica� Ibc|  Imax

Enforcing line limits requires one to know not just the magnitudes of the load currents, but also their
phases in order to compute their sums. As explained in the caption of Figure 1.22, these inequalities are

Im

Re
!"#

!$"
!"%"&

'"%"& : = ∠!$" − ∠!"#

'"%"&

Figure 1.22: Ia0a1 = Iab� Ica. Hence by the cosine rule |Ia0a1 |2 =
��Iab
��2 + |Ica|2 � 2

��Iab
�� |Ica| cosf where

fa0a1 := \Ica�\Iab is the angle between Iab and Ica.

equivalent to:

|Iab|2 + |Ica|2 � 2 |Iab| |Ica| cosfa0a1  (Imax)2 (1.38a)

|Ibc|2 + |Iab|2 � 2 |Ibc| |Iab| cosfb0b1  (Imax)2 (1.38b)

|Ica|2 + |Ibc|2 � 2 |Ica| |Ibc| cosfc0c1  (Imax)2 (1.38c)
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If we know the angles fp0 p1 , p = a,b,c, between the total load currents (Iab, Ibc, Ica) in each leg of the D
configuration, then (1.38) are convex quadratic constraints on the magnitudes of (Iab, Ibc, Ica). We next
consider several special cases and derive simple bounds on the magnitudes (|Iakbk |, |Iakck |, |Iakak |) of the
individual load currents that will enforce (1.38).

Assumption 1: Current phasors Iakbk have the same, and known, phase angle qab for all k; similarly for
Iakck and Iakak . From (1.36) we have

Iab := eiqab
K

Â
k=1

���Iakbk
��� , Ibc := eiqbc

K

Â
k=1

|Iakck | , Ica := eiqca
K

Â
k=1

|Iakak |

and constraints (1.38a) become
 

K

Â
k=1

���Iakbk
���

!2

+

 
K

Â
k=1

|Iakak |
!2

� 2

 
K

Â
k=1

���Iakbk
���

! 
K

Â
k=1

|Iakak |
!

cosfa0a1  (Imax)2 (1.39)

where cosfa0a1 := qca�qab is known. Similarly for constraints (1.38b) and (1.38c). These are quadratic
constraints in the magnitudes (|Iakbk |, |Iakck |, |Iakak |) of the individual load currents that will enforce (1.38),
given the angles fp0 p1 , p = a,b,c, between the load currents in different legs of the D configuration.

Assumption 2: In addition to Assumption 1, the angles fp0 p1 = 120�, for p = a,b,c. Then cosfp0 p1 =�1/2
and (1.39) becomes

 
K

Â
k=1

���Iakbk
���

!2

+

 
K

Â
k=1

|Iakak |
!2

+

 
K

Â
k=1

���Iakbk
���

! 
K

Â
k=1

|Iakak |
!
 (Imax)2 (1.40)

Similarly for constraints (1.38b) and (1.38c).

Assumption 3 (balanced case): All load currents have the same magnitude and the phases of currents on
different legs of the D differ by 120�. That is, assuming positive sequence, for all k = 1, . . . ,K, we have

Iakbk = I eiqab , Iakck = I eiqbc , Iakak = I eiqca

where I is the common magnitude of the load currents, and

qab�qbc = 120�, qbc�qca = 120�, qca�qab = 120�

Then the constraint (1.40) reduces to 3K2I2  (Imax)2, or a bound on the common magnitude I of individ-
ual load currents

I  Imax
p

3K
(1.41)

Linear bounds. Many applications operate in unbalanced conditions, e.g., adaptive electric vehicle charg-
ing where the magnitudes

��Ipkqk

�� of the load currents are to be determined and generally different. In
these cases there are two difficulties with the line limits (1.39) and (1.40). First the angles (qab,qbc,qca)
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may not be known. Second even when these angles are known, the constraints are quadratic which can
be computationally too expensive to implement in real time in inexpensive devices. In this case, we can
impose linear constraints which are simpler but more conservative.

Take phase a as an example. Since |Ia0a1 | = |Iab� Ica|  |Iab| + |Ica|, a simple limit on the load
currents that enforces |Ia0a1 | Imax is to require

|Iab| + |Ica|  Imax

i.e., the sum of the magnitudes of the total load currents in legs ab and ca should be less than the current
rating Imax. From (1.36) we have

��Iab
�� =

��Âk Iakbk
��  Âk |Iakbk |. Hence a simple linear bound on the

load current magnitudes is:

K

Â
k=1

⇣
|Iakbk | + |Iakak |

⌘
 Imax (1.42)

The constraints on phases b and c are similar.

For a balanced system we can easily assess how conservative the bound (1.42) is compared with the
exact limit (1.41) on the load currents. In the balanced case the bound (1.42) reduces to

I  Imax

2K

Hence it is
p

3/2⇠ 87% of that in (1.41), i.e., it is conservative by ⇠ 13% for a balanced system.

1.3 Complex power

1.3.1 Single-phase power

Instantaneous power. When a voltage v(t) is applied across two ports and a current i(t) flows between
them, as shown in Figure 1.23(a), energy is delivered to the network that connects the ports. We define the
instantaneous power supplied as:

p(t) := v(t)i(t) =
VmaxImax

2
(cos(qV �qI)+ cos(2wt +qV +qI)) (1.43)

Since the last term inside the bracket of (1.43) is sinusoidal with twice the nominal frequency w the
average power delivered is

1
T

Z T

0
p(t)dt =

VmaxImax

2
cos(qV �qI)

where T := 2p/w .
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Figure 1.23: Definition of power

Complex power. Define the complex power in terms of the voltage and current phasors as:

S := V I⇤ =
VmaxImax

2
ei(qV�qI) = |V ||I|eif (1.44)

where I⇤ denotes the complex conjugate of I. See Figures 1.23(b) and (c). Here f := qV � qI is called
the power factor angle and cosf is called the power factor (PF). Power engineers often says leading or
lagging power factor: here lagging means current I lags voltage V so that f > 0. A leading power factor
has f < 0. A unity power factor means f = 0. Figure 1.24 shows four complex powers












































































































Figure 1.24: Power factor angles f and power factor cosf .

S1 := P+ iQ, S2 := P� iQ, S3 := �P+ iQ, S2 := �P� iQ

with power factor angles f1 := q , f2 := �q , f3 := p�q , and f4 := �p + q respectively. Here P,Q > 0
and q 2 [0,p]. Their power factors are

cosf1 =
Pp

P2 +Q2
= cosf2, cosf3 =

�Pp
P2 +Q2

= cosf4

Therefore power factor cosfi does not differentiate between S1 and S2. Power engineers specify S1 as
power factor cosq lagging (f1 > 0 and therefore Q1 := Q > 0) and S2 as power factor cosq leading
(f2 < 0 and Q2 := �Q < 0). Similarly S3 has a power factor �cosq lagging (f3 > 0 and Q3 := Q > 0)
and S4 has a power factor �cosq leading (f4 < 0 and Q4 :=�Q < 0). For example “a load draws 100kW
at a power factor of 0.707 leading” means that the real power Re(S) = 100 kW and cosf = 1p

2
. Since the

power factor is leading, f =�45� and S = 100� j100 kVA .
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Note that S is not a phasor because
p

2|S| cos(wt + f) is not the instantaneous power in the time
domain. This complex quantity is important in power flow analysis in the phasor domain, as we will see.
The real part of S

P := |V ||I|cosf

is called the active or real power and its unit is W (watt). The imaginary part of S

Q := |V ||I|sinf

is called the reactive power and its unit is var (volt-ampere reactive). We write both S = P + jQ and
S = |V ||I|eif . The magnitude |S| = |V ||I| is called the apparent power and its unit is VA (volt-ampere).
Given an active power P and a power factor cosf , the complex power S is given by (since P = |S| cosf )

S =
P

cosf
eif

i.e. the complex power is completely determined by the active power P and the power factor angle f .
Power is balanced at every node in a network. Referring to Figure 1.25, if I jk and S jk are sending-end
current and power respectively from node j to node k, then power balance at node j means Âk S jk = 0.

Figure 1.25: Power balance at a node.

This is a consequence of KCL Âk I jk = 0 and the definition of branch power S jk := VjI⇤jk.

Relation between instantaneous and complex power. The complex power S in the phasor domain
is related to the instantaneous power in the time domain as follows. We can use (1.43) to express the
instantaneous power p(t) in terms of active power P and reactive power Q as (Problem 1.10):

p(t) = P + Pcos2(wt +qI)�Qsin2(wt +qI) (1.45)

It is then clear that the active power P is equal to the average power delivered (in the time domain):

P =
1
T

Z T

0
p(t)dt

as the last two terms in (1.45) average to zero over a cycle T . The reactive power Q determines the
magnitude of the instantaneous power p(t).
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Power delivered to an impedance. The current and voltage across an impedance z is related by Ohm’s
law, V = zI and hence

|z| =
|V |
|I| and \z = qV �qI =: f

Therefore from (1.44)

S = z|I|2 = |z||I|2eif

and

P = |z||I|2 cosf and Q = |z||I|2 sinf

The active and reactive power for the three passive elements are given in Table 1.2.

|z| f = \z P Q
Resistor z = r r 0 r|I|2 0
Inductor z = iwl wl p/2 0 wl|I|2
Capacitor z = (iwc)�1 (wc)�1 �p/2 0 �(wc)�1|I|2

Table 1.2: Power delivered to RLC elements.

Therefore the power delivered to a resistor is active (Q = 0). The instantaneous power p(t) := v(t)i(t)
is

p(t) := ri2(t) = rI2
max cos2 (wt +qI) = P(1+ cos2(wt +qI))

which is (1.45). Table 1.2 also implies that the complex power delivered to an inductor or a capacitor is
reactive. Substituting into (1.45), the instantaneous power p(t) to a purely reactive load depends only on
the reactive power Q:

p(t) =

⇢
�Qsin2(wt +qI) for inductor z = jwl

Qsin2(wt +qV ) for capacitor z = ( jwc)�1

i.e., the net (average) power delivered to the load is zero and the instantaneous power is sinusoidal with
twice the frequency and has an amplitude Q.

Example 1.7. Suppose z = jwl (inductance) or z = ( jwc)�1 (capacitance). Prove directly in time domain
that the average delivered power is 0 and the amplitude of the instantaneous power is Q.

Solution: Suppose power is delivered to an inductor z = jwl. Let the current be i(t) = Imax cos(wt +qI).
Then the voltage v(t) across the inductor is given by

v(t) = l
di
dt

(t) = �wl Imax sin(wt +qI)
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and therefore

p(t) = v(t)i(t) = �wl I2
max sin(wt +qI)cos(wt +qI)

= �wl
I2
max
2

sin2(wt +qI) = �wl |I|2 sin2(wt +qI)

= �Q sin2(wt +qI)

where the last equality follows from Q = |z||I|2 sin\z = wl|I|2 since\z = p
2 . Moreover the average power

delivered is

P =
1
T

Z
T

0
p(t)dt = 0

The case of capacitor load z = ( jwc)�1 is similar and omitted (see Exercise 1.12).

1.3.2 Three-phase power

Under balanced three-phase operation, the total instantaneous power delivered is constant and the total
complex power is 3 times the per-phase complex power.

Indeed, for a balanced three-phase positive-sequence source, we have

V bn = V an e�i2p/3, Ian = Ian e�i2p/3 and V cn = V an ei2p/3, Ian = Ian ei2p/3

Hence

S3f = V anIanH +V bnIanH +V cnIanH = 3V anIanH = 3S

where S := V anIanH is the per-phase complex power.

For instantaneous power, we have from (1.43), for a balanced three-phase positive-sequence source,

p3f (t) := va(t)ia(t)+ vb(t)ib(t)+ vc(t)ic(t)
= |V a||Ia|(cosf + cos(2wt +qV +qI))

+ |V a||Ia|(cosf + cos(2wt +(qV �2p/3)+(qI�2p/3)))

+ |V a||Ia|(cosf + cos(2wt +(qV +2p/3)+(qI +2p/3)))

= 3|V a||Ia|cosf + |V a||Ia|(cosq(t) + cos(q(t)�4p/3) + cos(q(t)+4p/3))

= 3P

where q(t) := 2wt +qV +qI and P is the per-phase active power. Here the last equality follows from

cosx+ cos(x�4p/3)+ cos(x+4p/3) = Re
⇣

eix + ei(x�4p/3) + ei(x+4p/3)
⌘

and
⇣

eix + ei(x�4p/3) + ei(x+4p/3)
⌘

=
⇣

eix + ei(x+2p/3) + ei(x�2p/3)
⌘

= 0

where the last equality follows from Theorem 1.2.
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1.3.3 Advantages of three-phase power

There are two main advantages of balanced three-phase systems over a system with a single phase or that
with other polyphases.

First it offers several benefits to motor operation. The total instantaneous power p3f (t) = 3P delivered
is constant over time in a balanced three-phase system. On a generator or motor this produces a constant
mechanical torque, reducing vibrations, noise, wear and tear, and other mechanical issues. A three-phase
system can also self-start an induction motor.

In contrast, the instantaneous power

p1f (t) = P + |V ||I|cos(2wt +qV +qI) =: P+ |V ||I|cosq(t)

in a single-phase system, where q(t) := 2wt + qV + qI , is a sinusoidal signal with twice the system fre-
quency. This is the case also with a two-phase system where the instantaneous power is

p2f (t) = |V a||Ia|(cosf + cos(2wt +qV +qI))+ |V a||Ia|(cosf + cos(2wt +(qV +p)+(qI +p)))

= |V a||Ia|(2cosf + cosq(t)+ cos(q(t)+2p))

= P + 2|V a||Ia|cosq(t)

It can be shown that for K � 3, a balanced K-phase system has pKf (t) = KP independent of t (Exercise
1.11). Even though a balanced four-phase system also has time-invariant instantaneous power, its design
is more complex than a three-phase system.

Second a three-phase system typically saves materials and thermal loss (r|I2|) compared with a single-
phase system that serves the same load. For example, it is clear that the single-phase system that consists
of three identical subsystems shown in Figure 1.7(a) needs twice as much transmission line and incurs
twice as much thermal loss in transmission as the balanced three-phase system in Figure 1.7(b), since the
balanced three-phase system has zero return current and hence does not need a neutral line.

The following example compares a balanced three-phase system with a single one-phase circuit with
a higher ampacity, as opposed to three identical subcircuits in Figure 1.7(a), to supply the same load. The
same conclusion holds that the three-phase system needs half as much conductor and incurs half as much
transmission loss.

Example 1.8 (Single-phase vs three-phase systems). Consider two systems that deliver a specified ap-
parent power |S| at a specified voltage magnitude |V | to a constant power load, as shown in Figure 1.26.
The distance between the generation and the load is d. The first system is single-phased and the second
system is balanced three-phased. Compare the required amount of wire and thermal loss in the line in
these systems.

The line has an impedance z := r+ jx per unit length where the resistance r per unit length is inversely
proportional to the area of the line with proportionality constant r . The current density limit of the line is
d in ampere per unit area.

Solution. A single-phase system requires two cables, one for return current, each carrying a current of
magnitude |I1f | = |S|/|V |. This is illustrated in Figure 1.26 with z0 = z. A balanced three-phase sys-
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Figure 1.26: A system that delivers power |S| to a load at voltage |V |. The distance between the generation
and the load is d. The line has an impedance z := r + jx per unit length.

tem requires three cables, each carrying a per-phase apparent power of |S|/3 and a per-phase current of
magnitude |I3f | = |S|/(3|V |). The per-phase equivalent circuit is illustrated in Figure 1.26 with z0 = 0.

For the single-phase system the required cross-sectional area of the cable is

A1f :=
|I1f |

d
=

|S|
d |V |

Hence the amount of material (volume of the cable) required is

m1f := 2A1f d = 2
d|S|
d |V |

Moreover the resistance per-unit length of the cable is

r1f :=
r

A1f
=

rd |V |
|S|

and hence the active power loss in the cable is

l1f := 2r1f |I1f |2d =
2rd |V |

|S| · d|S|2

|V |2 = 2
rdd|S|

|V |

For the balanced three-phase system the required cross-sectional area of the cable in each phase is

A3f :=
|I3f |

d
=

|S|
3d |V |

Hence the amount of material required is

m3f := 3A3f d =
d|S|
d |V | =

1
2

m1f

Moreover the resistance r3f per unit length of the cable is

r3f :=
r

A3f
=

3rd |V |
|S|
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and hence the active power loss in the cable is

l3f := 3r3f |I3f |2d =
9rd |V |

|S| · d|S|2

9|V |2 =
rdd|S|

|V | =
1
2

l1f

i.e., the balanced three-phase system uses half as much material and incurs half as much loss as the single-
phase system.

Remark 1.4. 1. Example 1.8 also shows that thermal loss r|I|2 is inversely proportional to |V |. Intu-
itively a higher load voltage |V | requires a smaller load current |I| to deliver the same amount of
power |S|, resulting in a smaller thermal loss in the grid.

2. It is shown in Exercise 2.7 that, given a desired load power, the active line loss is inversely propor-
tional to the square |V |2 of the load voltage magnitude, rather than |V | derived here. This is because,
in Exercise 2.7, the line resistance is given and independent of load power and voltage |V |, whereas,
here, the line resistance r3f is chosen to be proportional to |V | (reducing the dependence of line loss
r3f |I3f |2 from |V |2 to |V |).

3. Note that V is the voltage drop across the load, not the voltage drop across transmission line z which
is zdI = zdS⇤/V ⇤. In the case of balanced three-phase system (where z0 = 0 in Figure 1.26), if the
load power S and voltage V are specified then the required squared voltage magnitude at the source
is

|zdI + V |2 =

����zd
S⇤

V ⇤
+ V

����
2

= |V |2 + d|z|2 |S|2

|V |2 + 2dRe(z⇤S)

4. In practice most three-phase systems do include a grounded neutral line to carry unbalanced current
during asymmetrical conditions, e.g., due to line faults, and reduce voltage transients during line
switching or lightning events. Since the unbalanced current is much smaller than the phase currents,
the neutral line is typically much smaller in size and ampacity and therefore much cheaper.

1.4 Bibliographical notes

There are many excellent textbooks on basic power system concepts, e.g., [1, 2, 3, 4]. Many materials in
this chapter follow [1]. The example comparing the savings of single-phase and three-phase systems is
from [4]. Circuit theory is a well established field. For general circuit analysis using KCL and KVL, see,
e.g., [5, Chapter 12]. The connection with algebraic graph theory is recently surveyed in [6].

1.5 Problems

Chapter 1.1.

Exercise 1.1 (KVL). Prove that Kirchhoff’s voltage law (1.3b) is equivalent to (1.4b). (Hint: See Ap-
pendix 25.2 and use Theorem 25.35.1 and Theorem 25.35.2.)
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Exercise 1.2 (Circuit analysis). Consider a 3-node 3-link circuit specified by:

incidence matrix Ĉ :=

2

4
1 0 1
�1 1 0
0 �1 �1

3

5 , impedances z12 = z23 = 1, voltage source v13

Use (??) to determine the currents J1 := (J12,J23,J13), voltages U1 := (U12,U23) and nodal voltages V :=
(V1,V2), assuming without loss of generality that node 3 is the reference node with V3 := 0.

Exercise 1.3 (Circuit analysis). For the three-bus network in Figure 1.5, derive the current balance equa-
tion (1.9a) by analyzing the equivalent circuit using KCL, KVL, and Ohm’s law, as explained in Chapter
1.1.4. Draw the equivalent circuit.

Exercise 1.4 (One-line diagram and P circuit). Derive (1.9) I =YV from the one-line diagram of a general
network by analyzing its equivalent circuit.

Chapter 1.2.

Exercise 1.5 (a := e�i2p/3). Prove the following properties of a := e�i\120� (see Figure 1.27):

1. a2 = a , a3 = 1, a4 = a , ak = ak mod 3 where a denotes the complex conjugate of a.

2. 1+a +a2 = 0.

3. 1�a =
p

3\30�, 1�a2 =
p

3\�30�.

4. 1+a =�a2 = 1\�60�, 1+a2 =�a = 1\60�.

5. a+ = a�, a� = a+.

Exercise 1.6 (Proof of Theorem 1.2). Let a := e�i2p/3. Recall the matrices F defined in (1.17) and G in
(1.11), reproduced here:

F :=
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 , G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

1. Suppose the entries x j of x := (x1,x2,x3) 2 C
3 have the same magnitude. Then x is balanced if and

only if x1 + x2 + x3 = 0.
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Figure 1.27: Properties of a from [7, Fig. 3, p.9].
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2. The columns of F are orthonormal. Both F and F are complex symmetric, i.e., FT = F and FT
= F ,

where F is the complex conjugate of F componentwise. Hence

F�1 = FH = F =
1p
3

⇥
1 a� a+

⇤

3. G is a normal matrix, GGT = GTG.

4. Spectral decomposition of G:

(a) The eigenvalues and eigenvectors of G are

G1 = 0, Ga+ = (1�a)a+, Ga� = (1�a2)a� (1.46)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

(b) Therefore the spectral decomposition of G is:

G = F

2

4
0

1�a
1�a2

3

5F

5. Spectral decomposition of GT:

(a) The eigenvalues and eigenvectors of GT are

G1 = 0, Ga� = (1�a)a�, Ga+ = (1�a2)a+ (1.47)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

(b) Therefore the spectral decomposition of GT is:

GT = F

2

4
0

1�a
1�a2

3

5F (1.48)

Exercise 1.7. Show that the voltage magnitude |V cd| = 208V in the split-phase Delta transformer in Figure
1.20(b), assuming the system is a balanced three-phase positive sequence.

Exercise 1.8. Consider the balanced three-phase system in Y configuration shown in Figure 1.28. Show
that V n0n1 = 0 provided z 6=�(z1 + l1)/3.1
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Figure 1.28: Balanced three-phase system in Y configuration where the impedances z,z1, l1 are given.
(April 3, 2024: Fig change: Z! z, L! l.)
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Figure 1.29: Balanced three-phase system in Y configuration where a three-phase voltage source in posi-
tive sequence supplies m three-phase loads in parallel. (April 3, 2024: Fig change: Z! z, L! l.)
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Exercise 1.9 (Balanced Y loads). Consider the balanced three-phase system in Y configuration shown
in Figure 1.29 where a three-phase voltage source in positive sequence supplies m three-phase loads in
parallel. All transmission lines have a common admittance T = 1 and all loads have a common admittance
L. Consider the following 10m variables:

• a voltage and a current for each phase at each stage k = 1, . . . ,m:

Ṽk :=

2

4
V aknk

V bknk

V cknk

3

5 and Ĩk :=

2

4
Iaknk
Ibknk
Icknk

3

5 , k = 1, . . . ,m

for a total of 6m variables.

• a current for each phase from stage k�1 to stage k:

J̃k�1,k :=

2

4
Iak�1ak
Ibk�1bk
Ick�1ck

3

5 , k = 1, . . . ,m

for a total of 3m currents.

• a voltage between neutrals from stage k�1 to stage k: V nk�1nk , k = 1, . . . ,m, for a total of m voltages.

1. Show that V nk�1nk = 0 for k = 1, . . . ,m.

2. Show that

V aknk = bk Ea0n0 , V bknk = bk Eb0n0 , V cknk = bk Ec0n0 , k = 1, . . . ,m

where bk is:

bk :=
rk

1rm
2 (r2�1)� rk

2rm
1 (r1�1)

rm
2 (r2�1)� rm

1 (r1�1)

and r1,r2 are given by:

r1,2 =
1
2

⇣
(L+2)±

p
L(L+4)

⌘
(1.49)

(Hint: Derive a recursion on Ṽk across stages k and solve the difference equation for each phase
a,b,c separately.)

3. Show that Ṽk, Ĩk, J̃k�1,k are balanced positive-sequence sets for k = 1, . . . ,m.

1Suppose the impedances z,z1, l1 all have positive resistance, which is the case in practice. Then this condition is automat-
ically satisfied. If 3z =�(z1 + l1) holds, however, then V n0n1 can take any value and Kirchhoff’s laws will be satisfied because
In0n1 + Ia + Ib + Ic = 0 will always be satisfied for any value of V n0n1 .
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Chapter 1.3.

Exercise 1.10. Show that the instantaneous power in the time domain can be expressed in terms of real
and reactive powers in the phasor domain:

p(t) = |V ||I|(cosf + cos(2wt +qV +qI))

= P (1+ cos2(wt +qI))�Q sin2(wt +qI)

where f := qV �qI is the power factor angle, P := |V ||I|cosf is the real power and Q := |V ||I|sinf is the
reactive power.

Exercise 1.11 (Instantaneous power). Consider a balanced K-phase system with K � 3 and for k =
0, · · · ,K�1,

vk(t) =
p

2|V |cos
✓

wt +

✓
qV + k

2p
K

◆◆
, ik(t) =

p
2|I|cos

✓
wt +

✓
qI + k

2p
K

◆◆

Show that pKf (t) := ÂK�1
k=0 vk(t)ik(t) = KP where P := (1/T )

R T
0 v0(t)i0(t)dt = |V ||I|cos(qV � qI) and

T := 2p/w .

Exercise 1.12. Suppose z = 1/iwc (capacitance). Prove directly in time domain that the average delivered
power is 0 and the magnitude of the instantaneous power is Q.

Exercise 1.13 (Power meter). A power meter measures voltage and current magnitudes (rms values)
(|V |, |I|) and instantaneous power p(t) over 1 or more period T . In addition to reporting (|V |, |I|), it
usually reports real and reactive power (P,Q), apparent power |S|, and power factor as well. Explain how
to calculate these quantities.

Exercise 1.14. Consider Figure 1.30.

1. Shunt capacitor is VAR source: Prove that in Figure 1.30(a), S2 = S1 + iwC|V |2.

2. Short transmission line is inductive: Prove that in Figure 1.30(b), if |V2| = |V1| then S2 = SH1 .
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CS1 S2

s +

−

V

(a) Shunt capacitor is VAR source

L
S1 S2V1

+

−

V2

+

−

I

(b) Short transmission line is inductive

Figure 1.30: Conservation of power



Chapter 2

Transmission line models

An electric network consists of transmission lines that transfer power from generators to loads. In this
chapter we develop models for terminal behavior of a three-phase transmission line that map the voltage
and current at one end of the line to those at the other end, in two steps. In Chapter 2.1 we derive inductance
and capacitance parameters of a transmission line as functions of line geometry. In Chapter 2.2 we use
these parameters to develop circuit models for short, medium, and long-distance transmission lines. These
line models are building blocks for network models developed in later chapters.

2.1 Line characteristics

The alternating currents in the conductors of a three-phase transmission line create electromagnetic in-
teractions among them that couple the voltages on, and currents and charges in these conductors. In a
balanced operation however the interactions are as if the phases are decoupled. This allows per-phase
analysis where, in each phase, the line can be characterized as a combination of a series impedance and a
shunt admittance parameterized by:

series impedance per meter z := r + iwl W/m
shunt admittance per meter to neutral y := g+ iwc W�1/m

In this section we present models for these per-meter line parameters (r, l) and (g,c). In the next section
we will use these parameters to derive lumped-circuit models of the line. A three-phase line consists of
multiple wires and therefore we need to derive the series inductance l and shunt capacitance c due to
currents and charges in multiple wires. The key property that will be important in our derivation is that the
set of wires carry currents in both directions so that the currents and charges in all the wires sum to zero
at all times, as expressed in (2.2) and (2.5) below.

59
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2.1.1 Series resistance r and shunt conductance g

The direct current (dc) resistance of a conductor is

rdc :=
rT

A
W/m

where rT is called the conductor resistivity at temperature T and A is the cross-sectional area of the
conductor. Hence the per-meter resistance is inversely proportional to the size of the line. The alternating
current (ac) resistance (or effective resistance) of a conductor is defined to be

rac :=
Ploss

|I|2 W/m

where Ploss is the real power loss in W and |I| is the root-mean-square of the current in A in the conductor.
The current distributes uniformly throughout the conductor’s cross-sectional area for dc. For ac, the current
density is lower at the conductor center and higher near the conductor surface. This is called the skin
effect and is more pronounced at higher ac frequencies. As frequency increases, the real power loss, and
hence the ac resistance, also increase. At 60 Hz the ac resistance is at most a few percent higher than dc
resistance. These effects are modeled by the series resistance r in W/m in transmission line models.

Shunt conductance g in W�1/m accounts for real power loss between conductors or between conduc-
tors and ground, typically due to either leakage currents at insulators or to corona. Insulator loss depends
on the environment such as moisture level. Corona occurs when a strong electric field at a conductor
surface ionizes the air, causing it to conduct. It depends on meteorological conditions such as rain. Losses
due to insulator leakage and corona are typically negligible compared to resistance loss r|I|2. It is therefore
common to assume zero shunt conductance g in transmission line models.

2.1.2 Series inductance l

Roughly, the per-meter series inductance l in henrys/m of a wire is the proportionality constant between
the current i in a meter of the wire and the total magnetic flux linkages l , i.e., l (t) = li(t), where i(t) is
in ampere and l is in webers. We now study how the per-meter series inductance l of a wire depends on
the geometry of the transmission lines.

Single conductor. Consider a straight infinitely long wire of radius r with uniform current density in the
wire with a total current i (dropping t from the notation for simplicity). The total flux linkages lR per
meter of the wire within a radius R of the wire is related to the current i and the geometry by:

lR =
µ0

2p

✓
µr

4
+ ln

R
r

◆
i

where µ0 := 4p ⇥ 10�7 weber/ampere-meter is the permeability of free space, and µr is the relative per-
meability of the wire. If the conductor is nonmagnetic (e.g. copper or aluminum), then µr ⇡ 1. The first
term is due to flux linkages inside the wire and the second term is due to flux linkages outside the wire up
to radius R. The details are explained in [1, pp.54–59].
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Multiple conductors. We will calculate approximately the per-meter total flux linkages l1 of conductor 1
that carries a current i1. The total flux linkages l1 is determined not only by current i1, but also by currents
ik from other conductors k = 2, . . . ,n, that carry currents ik and are at distances d1k from the center of
conductor 1. See Figure 2.1.

conductor#1#
radius#r1 
current#i1 

R1

Rk
d1k

ik

a

Figure 2.1: Per-meter total flux linkages in a volume within a radius R1 from the center of conductor 1
due to all conductors. Conductors k carry currents ik and their centers are distances d1k from the center of
conductor 1 and Rk from point a.

Denote by R1 the distance of point a from the origin (center of conductor 1) and by Rk the distance of
the center of conductor k from point a. Then the total flux linkages of conductor 1 is

l1 = lim
R1!•

µ0

2p

 
i1
✓

µr

4
+ ln

R1

r1

◆
+

n

Â
k=2

ik ln
Rk

d1k

!
(2.1)

where ln denotes the natural log. We make the key assumption

n

Â
k=1

ik(t) = 0 at all times t (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation to load and the
lines carrying the return currents follow the same physical path by design. The implication is that the
magnetic inductances due to all the lines cancel each other at infinity. Formally, we add � lnR1 Ân

k=1 ik
into the bracket on the right-hand side of (2.1) to get

l1 = lim
R1!•

µ0

2p

 
i1
✓

µr

4
+ ln

1
r1

◆
+

n

Â
k=2

ik ln
1

d1k

!
+

µ0

2p

n

Â
k=1

ik ln
Rk

R1
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As R1! •, ln(Rk/R1)! 0. Hence

l1 =
µ0

2p

 
i1 ln

1
r01

+
n

Â
k=2

ik ln
1

d1k

!

where r01 := r1e�µr/4 is the radius of an equivalent hollow conductor with the same flux linkages as the
solid conductor of radius r. For a nonmagnetic wire, µr ⇡ 1 and r01 ⇡ 0.78r1.

In general the total flux linkages lk of conductor k depends not only on current ik but currents ik0 in
other conductors as well, and is given by

lk =

✓
µ0

2p
ln

1
r0k

◆
ik + Â

k0 6=k

✓
µ0

2p
ln

1
dkk0

◆
ik0 (2.3)

where r0k := rke�µr/4. In vector form this is

l = Li

where l := (lk,k = 1, . . . ,n), i := (ik, i = 1, . . . ,n), and the (k,k0)-th entry of the n⇥n matrix L is

lkk0 =

( µ0
2p ln 1

r0k
if k = k0

µ0
2p ln 1

dkk0
if k 6= k0

The voltage drop vk(t) between two points on conductor k that are separated by an infinitesimal distance
is related to the rate of change of the total flux linkages lk(t) (Faraday’s law), i.e.,

vk(t) =
d
dt

lk(t) = Â
k0

lkk0
d
dt

ik0(t)

This relation, in the phasor domain, is used in Chapter 2.2.1 to derive a circuit model of a transmission
line. In a circuit model, the term

lkk :=
µ0

2p
ln

1
r0k

henrys/m

is called the self-inductance per meter of conductor k and the term

lkk0 :=
µ0

2p
ln

1
dkk0

henrys/m

is called the mutual inductances per meter between conductors k and k0. The larger the conductor rk the
smaller the self-inductance lk.

2.1.3 Shunt capacitance c

Roughly, the per-meter shunt capacitance c, in farads/m, of a wire is the proportionality constant between
the charge q, in coulombs/m, in a meter of the wire and the voltage v on the surface of the wire, i.e.,
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q(t) = cv(t). We now study how the per-meter shunt capacitance c of a wire depends on the geometry of
the transmission lines.

Consider the situation in Figure 2.1 with multiple conductors. A similar analysis to that in Chapter
2.1.2 shows that the voltage, with respect to a reference at infinity, at a point on the surface of conductor k
is

vk =

✓
1

2pe
ln

1
rk

◆
qk + Â

k0 6=k

✓
1

2pe
ln

1
dkk0

◆
qk0 (2.4)

where e is the permittivity of the medium (e = 8.854⇥ 10�12 farads/meter in free space and e ⇡ 1
farad/meter in dry air). As before, rk is the radius of conductor k and dkk0 is the distance between the
centers of conductors k and k0. Here qk is the total charge per unit length of wire k in coulombs/m. In
vector form this is

v = Fq

where v := (vk,k = 1, . . . ,n), q := (qk,k = 1, . . . ,n), and the (k,k0)-th entry of the n⇥n matrix F is

fkk0 =

(
1

2pe ln 1
rk

if k = k0
1

2pe ln 1
dkk0

if k 6= k0

Taking time derivatives relates the currents in the conductors to the rate of change in a voltage on the
surface of the conductor relative to the reference, v̇ = Fi(t). Let C := F�1. The diagonal entries ckk of
C are called self-capacitances per meter of conductor k and the off-diagonal entries ckk0 of C are called
mutual capacitances per meter between conductors k and k0, in farads/m. The larger the conductor rk the
larger the self-capacitance ckk.

The key assumption (among others) in deriving (2.4) is

n

Â
k=1

qk(t) = 0 at all times t (2.5)

Compare this assumption with the assumption (2.2), and the expressions (2.3) and (2.4).

Example 2.1. The voltage vk in (2.4) is the potential, or voltage with respect to the reference at infinity,
at a point on the surface of conductor k. The voltage difference v jk between two points on the surfaces of
two parallel conductors j and k that are on a plane perpendicular to conductor j is:

v jk := v j � vk =
1

2pe

 
q j ln

dk j

r j
� qk ln

d jk

rk
+ Â

k0 6= j,k
qk0 ln

dkk0

d jk0

!

2.1.4 Balanced three-phase line

Consider the simplest model of a symmetric three-phase transmission line in balanced operation, as shown
in Figure 2.2, with the assumptions:
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1. the conductors are equally spaced at D and have equal radii r;1

2. ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. qa(t)+qb(t)+qc(t) = 0 at all times t.

D

D D

r

Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0

H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.
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Consider any point p that is equidistant from the centers of the conductors a,b,c, e.g., the point at the
center of the triangle in Figure 2.2. The potential, or the voltage relative to the reference point at infinity,
at this point p can be shown to be

vp =
1

2pe

✓
qa ln

1
dpa

+qb ln
1

dpb
+qc ln

1
dpc

◆
(2.6)

where dpa = dpb = dpc are the distances between p and the centers of the conductors. Since qa + qb +
qc = 0 we have vp = 0, and hence p has the same potential as the reference point at infinity and can
therefore be taken as the reference point. We will construct an imaginary geometric line parallel to the
conductors pass through the equidistance point from these conductors. Every point on this line is the
reference potential. By default we will pick this as the neutral potential that defines the phase-to-neutral
voltages. The current supplied to the transmission line capacitance is called the charging current and the
corresponding capacitance is also called the line charging. Figure 2.3 shows the corresponding circuit
model of a transmission line. When the phase a line-to-neutral voltage is Van the phase a charging current

n

b

a

c

c F/m to neutral

cc

Figure 2.3: Circuit model of the cross section of a balanced three-phase transmission line.

is

Ia,charging = iwcVan A/m

from phase a conductor to neutral.

2.2 Line models

Consider a three-phase transmission line in balanced operation in sinusoidal steady state, modeled as in
Figure 2.3. A key conclusion of Chapter 2.1.4 is that for balanced three-phase lines, we can analyze each
phase separately. Consider now a transmission line on one of the phases. Let

series impedance per meter z := r + iwl W/m
shunt admittance per meter to neutral y := g+ iwc W�1/m
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where the per-meter resistance r > 0 and conductance g > 0 depend on the material and size of the line,
and the per-meter inductance l > 0 and parameter c > 0 of the line can be calculated as in Chapters 2.1.2–
2.1.4. In this section we derive two equivalent models of a balanced three-phase transmission line. The
first model represents the terminal behavior, i.e., the mapping of the voltage and current between one end
of the line and those at the other end, by a transmission matrix in (2.9) below. The second model represents
the terminal behavior of the line by a linear circuit with series impedance and shunt admittances given in
(2.14) below.

2.2.1 Transmission matrix

Distributed-element model. We start by deriving the V -I relations between two ends of a transmission line.
Figure 2.4 shows a per-phase model of a balanced three-phase line of length `. The voltages are phase
(line-to-neutral) voltages as illustrated in Figure 2.3. We will call the left end the sending end and the right
end the receiving end. When we apply a voltage V1, with respect to neutral, at the sending end driving a
current I1 towards the receiving end, the voltage drops and the current leaks from the sending end to the
receiving end so that the voltage V (x) and current I(x) at each point x of the line vary. We will derive a
relation between the sending end (V1, I1) and the receiving end (V2, I2) by solving for (V (x), I(x)) in terms
of (V2, I2) for all 0 x `.

V1

+

−

V2

+

−

y dx

z dx

xdx


V (x)

+

−

I(x) I2I1

V (x)+ dV

+

−

dI

Figure 2.4: Per-phase model of a balanced three-phase line of length ` with impedance parameters z,y.

To this end consider the infinitesimal segment of length dx at a distance x from the receiving end.
This segment is modeled by the circuit with series impedance zdx and shunt admittance ydx to neutral as
shown in Figure 2.4. Let the voltage and current at point x be V := V (x) and I := I(x) respectively. Let
the corresponding quantities at point x+dx be V (x)+dV and I(x)+dI. Applying Kirchhoff’s laws to the
segment, we have

dV = zI(x) dx
dI = (V (x)+dV )y dx ⇡ yV (x) dx
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where the approximation results from ignoring the second-order term dV dx. Hence we have
"

dV
dx
dI
dx

#
=


0 z
y 0

�
V
I

�
(2.7)

Transmission matrix. The ordinary differential equation (2.7) can be easily solved using standard
method (see below for details), and the general solution is:


V (x)
I(x)

�
= U


egx 0
0 e�gx

�
k1
k2

�
(2.8a)

for some constants k1,k2, where

U :=


Zc �Zc
1 1

�
and U�1 :=

1
2Zc


1 Zc
�1 Zc

�
(2.8b)

Here

Zc :=
r

z
y

Wm�1 and g :=
p

zy m�1 (2.8c)

are called the characteristic impedance and propagation constant of the line respectively. At x = 0, V (0) =
V2 and I(0) = I2. From (2.8) we have


V2
I2

�
= U


k1
k2

�

and hence

V (x)
I(x)

�
= U


egx 0
0 e�gx

�
k1
k2

�
= U


egx 0
0 e�gx

�
U�1


V2
I2

�

The sending-end voltage and current are therefore related to the receiving-end (V2, I2) as

V1
I1

�
= U


eg` 0
0 e�g`

�
U�1


V2
I2

�

Expanding, we have

V1
I1

�
=


cosh(g`) Zc sinh(g`)

Z�1
c sinh(g`) cosh(g`)

�
V2
I2

�
(2.9)

where coshx := (ex + e�x)/2 and sinhx := (ex� e�x)/2. This defines a linear mapping that maps the
voltage and current (V2, I2) at the receiving end to the voltage and current (V1, I1) at the sending end. The
matrix in (2.9) is called a transmission matrix.

The ratio V1/I1 at the sending end is called the driving-point impedance. It is the equivalent impedance
across the two sending-end terminals.
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Example 2.2 (Driving-point impedance). Consider the terminal model (2.9) of a transmission line. Sup-
pose the receiving end is connected to an impedance load Zl . Show that the driving-point impedance V1/I1
is equal to the characteristic impedance Zc of the line under one of the following conditions:

• if the load is matched to the line, i.e., Zl = Zc; or

• if the line length ` grows to infinity, since the line parameters satisfy r,x,g,c > 0.

The second condition implies that as the line grows in length its impedance comes to dominate the load
impedance Zl .

Solution. Since V2 = ZlI2, we have from (2.9) that when Zl = Zc

V1

I1
= Zc

cosh(g`)+ sinh(g`)

sinh(g`)+ cosh(g`)
= Zc

For the second case, we have from (2.9)

V1

I1
= Zc

Zl cosh(g`)+Zc sinh(g`)

Zl sinh(g`)+Zc cosh(g`)
= Zc

Zl +Zc tanh(g`)

Zl tanh(g`)+Zc

Now g =
pzy =:

p
ĝ where ĝ := (rg�w2lc)+ iw(rc+gl). Note that Imĝ > 0 and hence \ĝ 2 (0,p) and

g 2 (0,p/2). If we write g =: a + ib then a > 0. Hence

cosh(g`) =
1
2

⇣
eg` + e�g`

⌘
=

1
2

⇣
e(a+ib )` + e�(a+ib )`

⌘

sinh(g`) =
1
2

⇣
eg`� e�g`

⌘
=

1
2

⇣
e(a+ib )`� e�(a+ib )`

⌘

and

tanh(g`) =
e(a+ib )`� e�(a+ib )`

e(a+ib )` + e�(a+ib )`
=

1� e�2(a+ib )`

1+ e�2(a+ib )`
! 1 as `! •

Hence V1/I1! Zc as `! •.

Example 2.3 (Matched load). Suppose the line is terminated in its characteristic impedance Zc, i.e., V2 =
ZcI2. Then (2.9) yields

V1 = (cosh(g`)+ sinh(g`))V2 = V2 eg`

I1 = (cosh(g`)+ sinh(g`)) I2 = I2 eg`

Therefore the driving-point impedance V1/I1 is also the characteristic impedance Zc of the line. Moreover
the ratio of the receiving to sending end voltages and currents are

V2

V1
=

I2

I1
= e�g`

The ratio of the receiving power to the sending power is:

�S21

S12
=

V2I⇤2
V1I⇤1

= e�g`
⇣

e�g`
⌘⇤
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Writing g =
pzy =

p
(rg�w2lc)+ iw(rc+gl) =: a + ib , we have

�S21

S12
= e�2a`

Since e�2a` is real, the powers have the same phase angle \(�S21) = \S12 =: q . This implies that the
transmission efficiency has the same ratio in terms of real power �P21 received and real power P12 sent:

�P21

P12
=
�S21 cosq
S12 cosq

= e�2a`

Hence for an impedance load that is matched to the line impedance Zc, the transmission efficiency h
decreases exponential in the line length `. For high-voltage transmission lines, a ⇡ 0 so the loss is small
and h ⇡ 1.

Indeed, for a lossless line, r = g = 0. Then z = iwl and y = iwc. Hence

Zc =

r
z
y

=

r
l `
c`

=

r
L
C

is real, where L is the total inductance of the line and C the total capacitance of the line, and

g =
p

zy = iw
p

lc

is purely imaginary (a = 0). The transmission efficiency is h = �P21/P12 = 1. We will study lossless
lines in more detail in Chapter 2.2.4.

Solution of (2.7). First we note that even though (V, I) and the parameters (y,z) are complex variables,
the variable x (distance from terminal 2) is a real variable. Hence the ordinary differential equation (ode)
(2.7) can be solved in the same way as an ode in the real domain. To see this consider a general ode:

ż :=
dz
dt

= Mz (2.10)

where z := x+ jy 2Cn with x,y in R
n and M := A+ jB 2Cn⇥n with A,B in R

n⇥n, with the interpretation
ẋ+ jẏ = (A+ jB)(x+ jy). Rewrite this in the real domain:


ẋ
ẏ

�
=


A �B
B A

�

| {z }
M̃


x
y

�
(2.11)

Two matrices

M = A+ jB and M̃ =


A �B
B A

�

are equivalent, written M$ M̃, in the sense that for any z = x+ iy with x,y 2 R
n,


Re(Mz)
Im(Mz)

�
= M̃


x
y

�
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Since

M2 =
�
A2�B2� + j (AB+BA) and M̃2 =


A2�B2 �(AB+BA)
AB+BA A2�B2

�

we have M̃2 $ M2, and by induction M̃k $ Mk for all k. Hence eM̃ $ eM. This implies that a trajectory
z(t) 2 C

n is a solution of (2.10) if and only if (x(t),y(t)) 2 R
2n with z(t) =: x(t)+ iy(t) is a solution of

(2.11). Hence solving (2.11) using M̃ in the real domain is equivalent to solving (2.10) using M directly
in the complex domain.

We now solve the ode (2.7). Let

A :=


0 z
y 0

�

Then the eigenvalues of A are ±g where g :=pyz is the propagation constant defined in (2.8c). Recall the
characteristic impedance of the line Zc :=

q
z
y also defined in (2.8c). The corresponding eigenvectors are

(any vectors proportional to) the columns of the matrix U defined in (2.8b). Let U�1 be its inverse. Since
AU = Udiag(g,�g), if we define


Ṽ (x)
Ĩ(x)

�
:= U�1


V (x)
I(x)

�
(2.12)

then

d
dx


Ṽ
Ĩ

�
= U�1 d

dx


V
I

�
= U�1A


V (x)
I(x)

�
= U�1AU

✓
U�1


V (x)
I(x)

�◆
= diag(g,�g)


Ṽ (x)
Ĩ(x)

�

i.e., Ṽ and Ĩ are decoupled. Hence

Ṽ (x) = k1egx and Ĩ(x) = k2e�gx

for some constants k1,k2. Then (2.12) implies that the general solution of (2.7) is (2.8).

2.2.2 Lumped-element P-circuit model

If we are only interested in the terminal voltages and currents of a line, then we can represent the line by a
lumped-circuit model as shown in Figure 2.5 that consists of a series impedance Z0 and a shunt admittance
Y 0/2 at each end of the line. This is called the P model or P-circuit model of a transmission line. We now
derive the parameters (Z0,Y 0) in the P model in terms of line characteristics (Zc,g).

Applying Kirchhoff’s laws we have

I1 =
Y 0

2
V1 +

Y 0

2
V2 + I2

V1�V2 = Z0
✓

Y 0

2
V2 + I2

◆
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V1

+

−

V2

+

−

Y '
2

Z ' I2I1

Y '
2

Figure 2.5: Lumped-circuit P model of a transmission line.

Hence

V1
I1

�
=


1+Z0Y 0/2 Z0

Y 0(1+Z0Y 0/4) 1+Z0Y 0/2

�
V2
I2

�
(2.13)

Comparing (2.13) and (2.9) we find that the P model in Figure 2.5 is given by:

Z0 = Zc sinh(g`) =

r
z
y

sinh(g`) = Z
sinh(g`)

g`
(2.14a)

Y 0

2
=

1
Zc

cosh(g`)�1
sinh(g`)

=
1
Zc

sinh(g`/2)

cosh(g`/2)
=

Y
2

tanh(g`/2)

g`/2
(2.14b)

where Z := z` is the total series impedance of the line and Y := y` is the total shunt admittance to neutral
of the line.

When |g`|⌧ 1 then sinh(g`)/(g`) ⇡ 1 and tanh(g`/2)/(g`/2) ⇡ 1, in which case the P model in
Figure 2.5 can be approximated by the total series impedance Z and total shunt admittance Y to neutral of
the line.

In summary each phase of a balanced three-phase transmission line can be modeled as follows:

• Long line (` > 150 miles approximately): Use either (2.9) or the P circuit model with Z0 and Y 0

given by (2.14).

• Medium line (50 < ` < 150 miles approximately): Use the P circuit model with Z := z` and Y := y`
instead of Z0 and Y 0. Here Z = R+ iwL is the total series impedance of the line and Y = iwC is the
total shunt admittance to neutral of the line. In particular, for medium lines, the shunt resistance is
negligible.

• short line (` < 50 miles approximately): Use the P circuit model with Z only and neglect Y .
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2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1 are (from Kirchhoff’s
laws):

S12 := V1IH
1 =

✓
1
Z0

◆H �
|V1|2�V1V H

2
�

+

✓
Y 0

2

◆H
|V1|2

S21 := V2(�I2)
H =

✓
1
Z0

◆H �
|V2|2�V2V H

1
�

+

✓
Y 0

2

◆H
|V2|2

They are not negatives of each other because of power loss along the line. Indeed the total complex power
loss is their sum:

S12 +S21 =

✓
1
Z0

◆H
|V1�V2|2 +

✓
Y 0

2

◆H �
|V1|2 + |V2|2

�
= Z0|Is

12|2 +

✓
Y 0

2

◆H �
|V1|2 + |V2|2

�

where Is
12 denotes the current through the series impedance Z0. The first term on the right-hand side is

loss due to series impedance and the last term are losses due to shunt admittances of the line. Suppose
Z0 = Rs + iXs and the shunt admittance is purely capacitive, i.e., Y 0 = iBm with Rs,Xs,Bm > 0. Then, over
the transmission line,

real power loss Re(S12 +S21) = Rs|Is
12|2

reactive power loss Im(S12 +S21) = Xs|Is
12|2 �

Bm

2
�
|V1|2 + |V2|2

�

Remark 2.1 (High voltage reduces line loss). Consider a load supplied by a source through a transmission
line modeled by a series impedance R+ iX and zero shunt admittances. Suppose the load draws an active
power Pload with power factor cosf at a specified voltage magnitude |Vload|. It can be shown that, given a
desired active load power Pload, the active line loss Pline is inversely proportional to the square of the load
voltage magnitude |V2| and its power factor cosf (Exercise 2.7):

Pline = R|Iload|2 = R
P2

load
|V2|2 cos2 f

Therefore a higher voltage (magnitude) reduces line loss.

Note that the higher voltage refers to the voltage |V2| across the load (and eventually the source voltage
|V1|), not the voltage across the transmission line which is |V1�V2|; see Figure 2.5. It is derived in
Example 1.8 that, given a desired load power, the active line loss is inversely proportional to the load
voltage magnitude |V2|, rather than |V2|2. This is because, in Exercise 2.7, the line resistance R is given
and independent of load power and voltage |V2|, whereas, in Example 1.8, the line resistance R is chosen
to be proportional to |V2| (reducing the dependence of line loss R|Iload|2 from |V2|2 to |V2|).

2.2.4 Lossless line

In this subsection we look at some properties of a lossless line, i.e., when r = g = 0. A lossless line is an
important model because a high-voltage transmission line typically has very small power loss compared
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with the power flow on the line, and can be modeled as a lossless line. As noted above we have

Zc =

r
z
y

=

r
iwl
iwc

=

r
l
c

W

g =
p

zy =
p

(iwl)(iwc) = iw
p

lc =: ib m�1

with b := w
p

lc. Therefore the characteristic impedance Zc is purely resistive while the propagation
constant g is purely reactive. The characteristic impedance Zc is called a surge impedance for a lossless
line. This implies

cosh(gx) = cos(bx) and sinh(gx) = isin(bx)

P-circuit model. Substituting Zc and g into (2.9) the transmission matrix reduces to

V (x)
I(x)

�
=


cosh(gx) Zc sinh(gx)

Z�1
c sinh(gx) cosh(gx)

�
V2
I2

�
=


cos(bx) iZc sin(bx)

iZ�1
c sin(bx) cos(bx)

�
V2
I2

�
(2.15)

for x 2 [0,`]. The circuit elements Z0 and Y 0 in the P circuit model of a transmission line reduces to (from
(2.14)):

Z0 = Zc sinh(g`) = iZc sin(b`) =: iX W (2.16a)
Y 0

2
=

Y
2

tanh(g`/2)

g`/2
=

Y
2

tan(b`/2)

b`/2
=: iwC0

2
W�1 (2.16b)

where Y := iwc` and C0 := c`(tan(b`/2)/(b`/2)). If ` is small then C0 ⇡ c`. When b` < p radian, both
Z0 > 0 and Y 0 > 0, i.e., the series impedance is purely inductive and the shunt admittances are purely
capacitive. In practice, for overhead lines, 1/

p
lc⇡ 3⇥108 ms�1. At 60 Hz (using b := w

p
lc)

p
b

=
p

2p(60)
p

lc
⇡ 2,500 km

Hence a lossless overhead transmission line less than 2,500 km can be modeled by the simple circuit in
Figure 2.6 where X and C0 are given in (2.16). It is a model for either a single-phase line or the phase-to-

V1

+

−

V2

+

−

I2I1
5<

5 =>′2 5 =>′2

Figure 2.6: P circuit model for a lossless line with length ` < p/b .

neutral of a balanced three-phase line.
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Voltage profile. Usually power must be delivered to a load at a specified nominal voltage magnitude
|V2| at the load. To see how the voltage magnitude changes along a line from the source x = ` to the load
x = 0, we determine the voltage V (x) for x 2 [0,`] using (2.15):

V (x) = V2 cos(bx) + iZc I2 sin(bx) (2.17)

Suppose the line terminates at an impedance load Zload := Rload + iXload. Then the voltage V (x) at each
point x depends on the load impedance because V2 = ZloadI2. There are four cases of load impedance:

1. No load I2 = 0: V (x) = V2 cos(bx) is real. Hence the voltage magnitude V (x) increases from the
source at x = ` to the end of the line at x = 0 as long as b` < p/2 radian.

2. Surge impedance load Zload = Zc: The voltage magnitude |V (x)| is constant. Moreover the power
delivered S(x) at every point x 2 [0,`] is real and constant |V2|2/Zc, so only real power is delivered.
See Exercise 2.4.

3. Full load: Since I2 = V2/Zload we have

V (x) =

✓
cos(bx) + i Zc

Zload
sin(bx)

◆
V2

=

✓
cos(bx)+

ZcXload

|Zload|2
sin(bx) + i ZcRload

|Zload|2
sin(bx)

◆
V2 (2.18)

In Exercise 2.5 we derive for special cases sufficient conditions under which the voltage magnitude
|V (x)| decreases from the source at x = ` to the load Zload at x = 0.

4. Short circuit V2 = 0: V (x) = iZc I2 sin(bx). Hence the voltage magnitude |V (x)| decreases from the
source at x = ` to the load at x = 0 as long as b` < p/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude towards the load (case
3 above) can be problematic because loads are generally designed to work with specific voltages. As
mentioned above low load voltage also increases line loss in the network. Voltages are regulated tightly
around their nominal values through various voltage compensation devices in generating units and inside
the network.

Example 2.4 (Steady-state stability limit). To derive the power delivered to a generic load we have from
(2.16) that

I2 =
V1�V2

iX
� iwC0

2
V2

Hence the complex power delivered is

�S21 = V2(I⇤2 ) = �
✓

|V2|2�V2V ⇤1
�iX

� iwC0

2
|V2|2

◆

and the real power delivered is

�P2 =
|V1||V2|

X
sind
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!(#)

!(#)

!(#)

# = ℓ # = 0

No	load	() = 0

SIL	*load = */

Full	 load

Short	circuit	!) = 0

Figure 2.7: Voltage magnitude |V (x)| on a lossless line.

where d :=\V1�\V2 is the angle difference between V1 and V2. Hence the maximum power is delivered
on a lossless line if d = p/2 and the maximum power would have been |V1||V2|/X . This d = p/2 is called
the steady-state stability limit. If the load exceeds this limit, there is no solution for d for this equation. In
practice a transmission network operates with d ⌧ p/2 because a line is typically limited by three other
factors. First the voltage drop from the source to the load must be small, e.g., |V2|/|V1|� 95%. Second d
is usually limited to 30� or 35� by transient stability. Third d can be limited by the thermal rating of the
conductor insulation materials.

2.2.5 Short line

Consider a three-phase transmission line connecting two buses in balanced operation so we can analyze
each phase separately. Assume the line is short and can be modeled by a P equivalent circuit with only
a series impedance Z = R + iX and no shunt admittances. We explain some properties of complex power
transfer over this line.

Let Vi and Ii be the voltages and currents at buses i = 1,2. Let Si j, i, j = 1,2, be the sending-end
complex power from bus i to bus j, i 6= j, and Ii j be the complex current from bus i to bus j. Then

Si j = ViI⇤i j = Vi
V ⇤i �V ⇤j

Z⇤
=

1
Z⇤
�
|Vi|2�ViV ⇤j

�
(2.19)

If the voltage magnitudes |Vi|, i = 1,2, are fixed, the branch powers depend only on the power angle
qi j := qi�q j:

Si j =
1

Z⇤
⇣
|Vi|2� |Vi||Vj|e jqi j

⌘

Taking the sum of the branch powers in (2.19), the complex loss over the line is

S12 +S21 =
|V1�V2|2

Z⇤
= Z |I12|2
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where I12 is the current from buses 1 to 2. In particular the real power loss is P12 +P21 = R|I12|2.

Nose curve and voltage collapse. Suppose bus 1 has a generator with a fixed V1 := |V1|\0� supplying a
load at bus 2 through a line with impedance Z. Let the power supplied to the load be �S21 = |S21|(cosf +
isinf) =: P(1+ i tanf) where P > 0 is the active load power and f is the power factor angle. The power
flow equation (2.19) hence becomes

P(1+ i tanf) = � 1
Z⇤
⇣
|V2|2� |V2| |V1|eiq21

⌘
(2.20)

where q21 :=\V2�\V1 =\V2. Voltage support is typically available on the generator side, so we assume
|V1| is fixed even when the load power varies.2 Voltage support may not be available on the load side
and we are interested in the behavior of the load voltage |V2| as the active load power P increases while
keeping the power factor angle f constant.

Fix V1 and f . For each P, (2.20) defines two real equations in two variables |V2| and q21. For this
simple system we can analytically solve for |V2| for each P. Depending on the value of P, there may be
zero, one, or two solutions for |V2|. As P varies, the solutions |V2| trace out a curve called a nose curve.
As P increases from zero with fixed power factor angle f , there are exactly two solutions for |V2|, one
with a high voltage and the other with a low voltage. The difference between the high-voltage solution
and the low-voltage solution of |V2| decreases until they coincide. This is the point where the active load
power P = Pmax is maximum and represents the limit of power transfer from the voltage source V1 through
the transmission line Z to the load. If P increases further, real solutions for |V2| cease to exist. This
phenomenon is called voltage collapse. This is studied in Exercise 2.9. See Chapter ?? for discussions on
voltage collapse beyond the infinite bus model.

Short and lossless line R = 0. Suppose the series resistance is negligible (which is a reasonable approx-
imation for high voltage transmission lines), Z = iX . Then (2.19) reduces to

Si j = i 1
X
�
|Vi|2�ViV ⇤j

�

Hence

P12 =
|V1||V2|

X
sinq12 = �P21 (2.21)

Q12 =
1
X
�
|V1|2� |V1||V2|cosq12

�

Q21 =
1
X
�
|V2|2� |V1||V2|cosq12

�

where q12 := \V1�\V2. This has the following implications.

1. Transmission efficiency. The transmission efficiency h := �P21/P12 = 1 since there is zero real
power loss. The maximum power transfer |V1||V2|/X is proportional to voltage magnitude product.
This is another reason why transmission networks tend to operate at very high voltage levels. Indeed
doubling the voltage increases the maximum power transfer capability by fourfold.

2An ideal voltage source whose complex bus voltage is fixed regardless of its power generation is called an infinite bus.
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2. DC power flow model. When voltage magnitudes are fixed, the real power depends only on the
power angle q12. When the power angle is small |q12| ⇡ 0, sinq12 ⇡ q12 and the real powers Pi j
are roughly linear in the phase angles (q1,q2). These assumptions are called the DC power flow
approximation (R = 0, fixed |Vi|, small |qi j|, ignore Qi j); see Chapter ?? for more details.

3. Decoupling. When |q12|⇡ 0, there is a decoupling between real and reactive powers:

∂P12

∂q12
= �∂P21

∂q12
=

|V1||V2|
X

cosq12 ⇡
|V1||V2|

X
∂P12

∂ |Vi|
= �∂P21

∂ |Vi|
=

|Vj|
X

sinq12 ⇡ 0

Hence the real powers Pi j depend strongly on q12 but not on the voltage magnitudes |Vk|.
On the other hand

∂Qi j

∂q12
=

|V1||V2|
X

sinq12 ⇡ 0

i.e., the reactive powers Qi j depend weakly on the power angle q12. Moreover

∂Q12

∂ |V2|
= � |V1|

X
cosq12 < 0,

∂Q21

∂ |V2|
=

1
X

(2|V2|� |V1|cosq12)

Typically |V1| ⇡ |V2| and hence the second expression above is positive. Hence to maintain a high
load voltage |V2|, we should increase Q21 and/or decrease Q12, i.e., the load should supply reactive
power and the generation should absorb reactive power. This motivates the use of reactive power to
regulate voltage magnitudes. The decoupling property holds in a network setting as well and leads
to a fast algorithm to solve power flow problems; see Chapter 4.4.3.

4. Out-of-step generators. When generators are not synchronized, i.e., they operate with slightly dif-
ferent frequencies, the long-run average active power transmitted across a lossless line is zero. To
see this, consider voltages at buses 1 and 2 given by

v1(t) =
p

2|V1|cos(w 0t +q1)

v2(t) =
p

2|V2|cos(wt +q2)

where the frequency w 0 at bus 1 is slightly out of step, with w 0 ⇡ w . Write

v1(t) =
p

2|V1|cos(wt +q 01(t))

with a slowly-varying phase q 01(t) := q1 +(w 0 �w)t. If the phase q 01(t) varies slowly enough, we
can still use the steady-state expressions above as reasonable approximations of powers. Then the
short-term active power is given by (from (2.21)):

P12 =
|V1||V2|

X
sin
�
(w 0 �w)t +q12

�

Hence the long-term average of active power transfer is zero. This is not only ineffective, but highly
undesirable because the line current can be very large. In practice protective devices would remove
the out-of-step generator.
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2.3 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]; see also [2, Chapter 4]. We develop line characteristics in Chapter 2.1 based on basic results in
physics that we do not elaborate. For example, the derivation of shunt capacitance c of a transmission line
in Chapter 2.1.3 is explained in [1, Chapters 3.7–3.8] or [2, Chapters 4.8–4.12]). The expression (2.6) for
the potential vp at the center of a balanced three-phase transmission line is from [1, Example 3.8, p. 79].
Some of the materials on lossless lines follow [2].

2.4 Problems

Chapter 2.1.
Exercise 2.1. Consider the simplest model of a symmetric three-phase transmission line in balanced op-
eration, as shown in Figure 2.8, with the assumptions

• the conductors are equally spaced at D and have equal radii r;

• ia(t)+ ib(t)+ ic(t) = 0 at all times t;

• qa(t)+qb(t)+qc(t) = 0 at all times t.

where ik(t) are currents and qk are the total charge per unit length of wire k in coulombs/meter. Show that

D

D D

r

Figure 2.8: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

the per-phase inductance per meter of the three-phase transmission line is

l =
µ0

2p
ln

D
r0

(in H/m)

where r0 := re�µr/4, and the per-phase capacitance per meter is

c =
2pe

ln(D/r)
(in F/m)
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Chapter 2.2.

Exercise 2.2. Consider the per-phase transmission line model described by (2.9). We are to determine the
line characteristic impedance Zc and propagation constant g` from two measurements:

1. Open-circuit test. The load side is open-circuited so that I2 = 0 and the driving-point impedance is
measured as

Zoc :=
V1

I1

2. Short-circuit test. The load side is short-circuited so that V2 = 0 and the driving-point impedance
is measured as

Zcc :=
V1

I1

Derive Zc and g` in terms of Zoc and Zsc (sign ambiguity is fine).

Exercise 2.3 (Lumped-circuit P model). Consider a general transmission matrix T that maps the receiving-
end voltage and current (V2, I2) to those (V1, I1) at the sending-end:


V1
I1

�
=


a b
c d

�

| {z }
T


V2
I2

�

1. Show that the transmission matrix T in (2.9) has the property ad�bc = 1.

2. Suppose b 6= 0 in T . Show that the condition ad�bc = 1 is necessary and sufficient for interpreting
the transmission matrix T as a P equivalent circuit consisting of a series impedance Z 6= 0 and shunt
admittances (line charging) Y1 and Y2 at the sending and receiving ends respectively (note that Y1
may not necessarily equal Y2).

Exercise 2.4 (Surge impedance load (SIL) on lossless line.). Consider a lossless line with r = g = 0 that
terminates in an impedance load that is equal to the characteristic (surge) impedance Zload = Zc =

p
l/c W

of the line. The power delivered by a lossless line to the resistive load Zc is called the surge impedance
loading (SIL).

1. Show that the voltage magnitude |V (x)| is constant over x 2 [0,`].

2. Calculate SIL.
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Exercise 2.5 (Voltage drop along lossless line). We have derived in Chapter 2.2.4 the voltage V (x) at each
point x 2 [0,`] along a lossless line terminating at an impedance load Zload = Rload + iXload to be (from
(2.18)):

V (x) =

✓
cos(bx)+

ZcXload

|Zload|2
sin(bx) + i ZcRload

|Zload|2
sin(bx)

◆
V2

Assume b` < p/4. Prove the following:

1. If the load is purely resistive Zload = Rload then |V (x)| is an increasing function for all x 2 [0,`] (i.e.,
the voltage magnitude |V (x)| drops from the source at x = ` to the load Zload at x = 0) if and only if
Rload  Zc.

2. If the load is purely inductive Zload = iXload with Xload > 0 then |V (x)| is an increasing function for
all x 2 [0,`] if and only if

Xload 
sin(2b`)

1� cos(2b`)
Zc

3. If Zload = Rload(1+ i) then |V (x)| is an increasing function for all x 2 [0,`] if and only if

Rload 
 s

1+
1

sin2(2b`)
� cot(2b`)

!�1

Zc

Exercise 2.6 (Voltage, reactive power compensation). Consider a generator with voltage and power in-
jection (Vj,s j) supplying a load with voltage and power injection (Vk,sk) through a transmission line
parametrized by series and shunt admittances

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Power balance at the load bus k is (with

ys
k j = ys

jk)

sk =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 (2.22)

Let ys
k j =: gs

k j + ibs
k j and ym

k j =: gm
k j + ibm

k j and suppose gs
k j � 0, bs

k j < 0 (inductive) and gm
k j � 0, bm

k j �
0 (capacitive). Let sk =: pk + iqk, and Vi =: |Vi|eiqi , i = j,k. Use (2.22) to express the receiving real
power �pk and receiving reactive power �qk in terms of the voltage magnitudes |Vj|, |Vk|, and the angle
difference qk j := qk�q j.

Suppose ym
k j = 0 (zero shunt), gs

jk = 0 (loss line), and 0 < |qk j| p/2 (power slow solution stability).

1. Show that real power is delivered to the load (i.e., �pk > 0) if and only if �p/2 qk j < 0.

2. The next few questions study the relation between load voltage magnitude |Vk| and reactive power
injection qk. Show that:

(a) For DC load (i.e., qk = 0), we must have |Vk| < |Vj|, i.e., the load voltage magnitude must be
smaller than the generator voltage magnitude.



Draft: EE 135 Notes April 30, 2024 81

(b) On the other hand, |Vk| = |Vj| implies that qk > 0, i.e., the load must inject reactive power to
maintain a high load voltage magnitude.

(c) If �qk > 0 (i.e., the load receives reactive power), then |Vk| < |Vj|cosqk j (i.e., load voltage
magnitude will be further suppressed).

3. The power factor angle is fk := tan�1 (qk/pk) and the power factor PF is cosfk. Show that

1 + tanfk tanqk j =
|Vk|

|Vj| cosqk j

When |Vk| = |Vj| cosqk j, what is the PF and is the load receiving or injecting real power?

4. Suppose further that Vj := 1\0� and bs
jk = �1. Suppose that the load voltage magnitude |Vk| must

lie between [1� e,1+ e].

(a) At unity power (qk = 0), find the maximum received power �pk and the corresponding load
voltage phasor Vk = |Vk|eiqk . Conclude that the maximum received real power satisfies �pk 
1
2 .

(b) Show that the maximum received real power is �pk = (1 + e) when the load must inject the
reactive power qk = (1� e)2.

Exercise 2.7 (Voltage, line loss and voltage drop). Consider two buses 1 and 2 connected by a transmission
line modeled by a per-phase P circuit model with series impedance Z and shunt admittance (line charging)
Y/2 at each end of the line, as shown in Figure 2.9. Let S12 be the sending-end complex power from buses

V1

+

−

V2

+

−

Y
2

Z
I2I1

Y
2

S12 S21

one3line#diagram:# S12 S21

V2V1 Z,Y
2
,Y
2

!

"
#

$

%
&

Figure 2.9: Two buses connected by a transmission line.

1 to 2 and S21 be the sending-end complex power from buses 2 to 1 (or, equivalently,�S21 is the receiving-
end complex power at bus 2). Note that the direction of load current I2 is opposite to the convention we
used in Chapter 2.2.2.
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1. Calculate the complex line loss as a function of voltages (V1,V2). Can you express the complex line
loss in terms of the load voltage and current (V2, I2) instead?

2. Suppose bus 2 is connected to a load that draws a fixed active power Pload with a fixed power factor
cosf at a fixed voltage magnitude |V2|. Suppose Z = R + iX and the shunt admittance Y/2 = iB/2
is purely reactive (i.e., zero conductance). Calculate the active power loss Pline over the line in terms
of the active load power Pload, the power factor angle f , and the load voltage |V2|.

For the following subproblems, assume Y = iB = 0 (short transmission line).

3. Given the fixed active load power Pload, show that the active line loss Pline derived in part 2 of the
problem is inversely proportional to the squared load voltage |V2|2 and to the squared power factor
cos2 f .

4. Suppose now the load at bus 2 is an electric vehicle that draws an active power of Pload = 20 kW with
unity power factor at a voltage magnitude of |V2| = 200V. Calculate the ratio of the active power
loss to the active load power if R = 0.04W (wires with gauge number 6 at 100ft).

5. What is the magnitude of the voltage drop |V1�V2| across the transmission line (the series impedance
Z), relative to the load voltage |V2|, in terms of Z,Pload, |V2|,cosf?

Exercise 2.8. Consider the short-line model S12 = (Z⇤)�1 �|V1|2�V1V ⇤2
�

of a transmission line with Z :=
y�1eif that connects bus 1 and bus 2. Let V1,V2 be the complex voltages at buses 1 and 2 respectively and
assume |V1| = |V2| = 1. Let q12 := \V1�\V2.

1. For what value of q12 is S12 real and nonzero?

2. What is the maximum real power �P21 that can be received at bus 2 and what is q12 that delivers it?

Exercise 2.9 (Nose curve and voltage collapse). Consider a voltage source with a fixed magnitude |V1|
supplying a load through a line modeled by a series impedance z := |z|eiqz with |qz| < p/2. Let the power
supplied to the load be S2 = |S2|(cosf + isinf) =: P(1+ i tanf) where P > 0 is the active load power and
f is the power factor angle. The power flow equation is:

P(1+ i tanf) = � 1
z⇤
⇣
|V2|2� |V2| |V1|eiq21

⌘
(2.23)

where q21 := \V2�\V1.

1. For each P, solve (2.23) for |V2| with |V1| and f fixed.

2. Show that |V2| behaves as follows as P increases from P = 0 with the power factor angle f kept
constant: |V2| is a nonunique rool of a polynomial equation in P. As P increases, the resulting
nonunique roots |V2| trace out a curve called the nose curve. As P keeps increasing, eventually, the
polynomial equation has no real root, which is the phenomenon of voltage collapse.

3. Find the maximum power transfer P = Pmax at which solutions for |V2| exist.



Chapter 3

Transformer models

A large electric network is composed of multiple areas that have different nominal voltage magnitudes.
These areas are connected by transformers that convert between different voltage levels. The ease of
converting between voltage levels is an important advantage of AC over DC transmission systems. It
allows, for example, the transmission network to operate at 765kV to reduce power loss and household
appliances to operate at 120V for safety. In this chapter we develop transformer models and explain how
to analyze a balanced three-phase system that contains transformers.

We start in Chapter 3.1 with models of a single-phase transformer and use them in Chapter 3.2 to
develop models of three-phase transformers in balanced operation. We describe in Chapter 3.3 how to
refer impedances from one side of a transformer to the other side. We apply this method in Chapter 3.4
to simplify per-phase analysis of circuits that contain transformers. We explain in Chapter 3.5 per-unit
normalization that further simplifies the analysis of balanced three-phase systems.

3.1 Single-phase transformer

We first model an ideal single-phase transformer by a transmission matrix and then describe circuit models
of a nonideal single-phase transformer.

3.1.1 Ideal transformer

An ideal transformer has no loss (zero resistance), no leakage flux, and the magnetic core has infinite
permeability. Let N1 be the number of turns in the primary winding, N2 that in the secondary winding, and

n :=
N2

N1
, a :=

1
n

=
N1

N2

An ideal transformer is represented schematically in Figure 3.1. We will call n the voltage gain and
its reciprocal a the turns ratio. The voltage gain n relates the voltages and currents in the primary and

83
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v1

i1 i2

v2

N1

N2n := N2

N1a := 
N1    :    N2

Figure 3.1: Single-phase ideal transformer.

secondary circuits, both at all times in the time domain:

v2(t)
v1(t)

= n,
i2(t)
i1(t)

= a

and in the phasor domain:

V2

V1
= n,

I2

I1
= a

This relation can also be written as

V1
I1

�
=


a 0
0 n

� 
V2
I2

�
(3.1)

The matrix on the right-hand side is called a transmission matrix of an ideal transformer. It maps (V2, I2)
to (V1, I1). The dot notation indicates that the currents I1, I2 are defined to be positive when one flows into
and the other out of the dotted terminals, as indicated in Figure 3.1. This notation is convenient when we
use single-phase transformers to construct three-phase transformers.

The ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤2
V1I⇤1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Nonideal transformer

A real transformer has power losses due to resistance in the windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. Figure 3.2(a) shows
elements of a (nonideal) transformer. The primary winding has N1 turns around the magnetic core and the
secondary winding has N2 turns. The mutual flux Fm due to the currents i1 and i02 links all the turns of the
primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
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Φl1

Φm

Φl2
v2v1

core

primary 
winding
N1 turns

secondary
winding
N2 turns

i1 i2’

(a) Nonideal transformer

ym
V1 V2V̂1

Îm

V̂2

zp zs

N1    :    N2

I2I1

(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a := N1/N2. (Megan: Û1! V̂1, Û2! V̂2.)

Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
and satisfies N1îm = RFm from (3.3).1 Define

v̂1 := N1
dFm

dt
= Lm

dîm
dt

, v̂2 := N2
dFm

dt
=

N2

N1
v̂1

1Instead of im := (R/N1)Fm, we can define i0m := (R/N2)Fm as the secondary magnetizing current when the primary circuit
is open i1 = 0. In this case the shunt admittance ym in Figure 3.4(a) will be in the secondary circuit.
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where Lm := N2
1/R. Substituting into (3.2) yields, denoting i2 :=�i02, we have

Nonideal elements: v1 = r1i1 +Ll1
di1
dt

+ v̂1, v̂1 = Lm
dîm
dt

, v2 = �r2i2�Ll2
di2
dt

+ v̂2

Ideal transformer: v̂2 =
N2

N1
v̂1, i2 =

N1

N2

�
i1� îm

�

where the last equality follows from substituting RFm = N1îm into (3.3). This set of equations in the
phasor domain is

Nonideal elements: V1 = zpI1 +V̂1, Îm = ymV̂1, V̂2 = zsI2 +V2 (3.4a)

Ideal transformer: V̂2 =
N2

N1
V̂1, I2 =

N1

N2

�
I1� Îm

�
(3.4b)

where the series impedances zp := r1 +wLl1 and zs := r2 +wLl2 model the core losses and leakage fluxes
in the primary and secondary circuits respectively, and the shunt admittance ym := 1/(wLm) = R/(wN2

1 )
models the finite permeability of the core. The model (3.4) can be interpreted as the circuit in Figure
3.2(b). Variables with hats denote internal variables.

In the following we present three circuit models derived from that in Figure 3.2(b). Their relation is
shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a T equivalent circuit (Chapter 3.1.3). The

circuit model

T equivalent
circuit

unitary voltage
network

simplified model
≈

Figure 3.3: Relation between different circuit models of transformers.

T equivalent circuit can be approximated by a simplified model whose parameters can be determined by
short-circuit and open-circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
a circuit consisting of two ideal transformers connected by a unitary voltage network (Chapter 3.1.5). The
unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

3.1.3 T equivalent circuit

We can refer the leakage impedance zs in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the
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ym

I1 I2

N1    :    N2

V1 V2

zp a2zs

Figure 3.4: T equivalent circuit.

transformer. It is equivalent in the sense that the transmission matrices that map (V2, I2) to (V1, I1) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix T of the T equivalent circuit is
given by (Exercise 3.1)


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.5)

where n := N2/N1 and a := N1/N2.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables V̂1 and V̂2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

1. Short-circuit test (V2 = 0). With the secondary circuit short-circuited, the primary voltage Vsc and
primary current Isc are measured. The primary short-circuit voltage Vsc is called the impedance
voltage.

2. Open-circuit test (I2 = 0). With the secondary circuit open, the primary voltage Voc and primary
current Ioc are measured.

To determine the parameters (zp,zs,ym) of the transmission matrix T in (3.5), note that during the short-
circuit test, the voltage on the primary side of the ideal transformer is zero. Hence

Vsc =

 
zp +

✓
ym +

1
a2zs

◆�1
!

Isc (3.6a)
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During the open-circuit test, the secondary current I2 = 0 and hence there is zero current on the primary
side of the ideal transformer. Hence

Voc =

✓
zp +

1
ym

◆
Ioc (3.6b)

Since there are three unknowns (zp,zs,ym), they cannot be uniquely determined from the two equations in
(3.6). Additional measurements will be needed to determine (zp,zs,ym), e.g. measurements of separate dc
resistances in the primary and secondary circuits. Sometimes ym is assumed to be zero (open-circuited)
so that (3.6a) becomes Vsc = (zp + a2zs)Isc, yielding the total leakage impedance zp + zs. Alternatively
assuming zp = hzs with known h results in two nonlinear equations in two unknowns (zs,ym).

It may seem that we can measure the current I2 in the T equivalent circuit in Figure 3.4 during a
short-circuit test and use it to determine (zp,zs,ym), but this is not the case because it will involve internal
variables. Even though we have informally justified (3.6) using internal variables in the T equivalent
circuit, e.g., the voltage and current on the primary side of the ideal transformer, we should be careful
with this line of reasoning. A more rigorous derivation of (3.6) uses the circuit model in Figure 3.2(b), by
setting V2 = 0 in (3.4) (Exercise 3.2). In this case, even if the short-circuit current I2 is also measured, there
are 6 unknowns (V̂1,V̂2, Îm;zp,zs,ym) but only 5 equations in (3.4) and hence these unknowns cannot be
uniquely determined from just the short-circuit and open-circuit tests either. This implies that we cannot
apply the measured value of short-circuit current I2 to determine (zp,zs,ym).

3.1.4 Simplified model

In practice the shunt admittance ym is much smaller than the leakage admittances (see Example 3.1).
Specifically when |ym|⌧ 1/|a2zs| or |e| := |a2zsym|⌧ 1, we interchange ym and a2zs to obtain the sim-
plified model in Figure 3.5(a) with zl = zp + a2zs. An even simpler model assumes ym = 0, as shown in
Figure 3.5(b).

N1    :    N2

aV2

I1 I2nI2

V1 V2

zl

ym

(a) Simplified model

N1    :    N2

aV2

I1 I2nI2

V1 V2

zl

(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Transmission matrix. Apply KCL, KVL and Ohm’s law to the model in Figure 3.5(a) to get:

V1 = zlI1 +aV2, I1 = ym(aV2) + nI2
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Hence the transmission matrix T̂ is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
T̂


V2
I2

�
(3.7)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When zl = ym = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

T̂ �T =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) azs(1+ zpym)+nzp
aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The leakage impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e|⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kT̂ �Tk
kTk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 25.1.8.3 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., T̂ = T .

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:

1. Short-circuit test (V2 = 0). With the secondary circuit short-circuited, the primary voltage Vsc and
current Isc are measured. Then, from Figure 3.5,

zl =
Vsc

Isc

The primary short-circuit voltage Vsc is called the impedance voltage.

2. Open-circuit test (I2 = 0). With the secondary circuit open, the primary voltage Voc and current Ioc
are measured. Then Voc = (zl +1/ym)Ioc and hence

1
ym

=
Voc

Ioc
� Vsc

Isc
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Example 3.1 (Parameter determination). Consider a single-phase distribution (stepdown) transformer with
the following ratings: 2.9 MVA, 7.2 kV / 240 V. Construct the equivalent circuit model in Figure 3.5 from
the following test results:

1. Short-circuit test (V2 = 0). With the secondary circuit short-circuited, a voltage |Vsc| = 500V is
applied to the primary circuit that causes the rated primary current |Is

1| to flow.

2. Open-circuit test (I2 = 0). With the secondary circuit open, the rated voltage |Voc| = 7.2kV is
applied to the primary circuit. This caused a current of |Ioc| = 7A to flow in the primary circuit.

Assume zl = ixl and ym = (ixm)�1. Determine xl and xm.

Solution. In the short-circuit test the secondary voltage V2 = 0. Hence the voltage on the primary side
of the ideal transformer is zero and the shunt reactance xm is effectively short-circuited, leaving only the
leakage reactance xl in the primary circuit. Since the rated primary current is |Isc| = 2.9MVA/7.2kV =
403A, we have |Vsc| = |Isczl| = |Isc|xl . Hence xl = 500V/403A = 1.24 W.

In the open-circuit test the secondary current I2 = 0 and hence there is zero current on the primary
side of the ideal transformer (see Figure 3.5). Hence |Voc| = |Ioc(zl + 1/ym)| = |Ioc|(xl + xm), and xm =
|Voc|/|Ioc|� xl = 7.2kV/7A�1.24 = 1.03kW.

As expected, |ym|⌧ 1/|zl|.

In transformer ratings, the ratio of secondary open-circuit voltage to the primary open-circuit voltage
is usually taken to be the voltage gain n, even though more precisely it should be

V2

V1
= n · 1/ym

zl +1/ym

In practice the resistances due to core losses are much smaller than the reactances due to leakage fluxes
and finite permeability of the core so that zl ⇡ ixl and ym ⇡�ibm. Moreover bm⌧ 1/xl . For Example 3.1

V2

V1
= n

xm

xl + xm
=

1.03kW
1.03kW+1.24W

' n

Parameter determination from transformer ratings when ym := 0. If ym := 0 then the model param-
eter is just the leakage impedance zl in the primary circuit, which can be determined from the short-circuit
test, zl = Vsc/Isc. Moreover its magnitude can be determined from typical transformer ratings, as follows.

A typical specification of a three-phase transformer includes:

• Three-phase power rating |S3f |.

• Rated primary line-to-line voltage |Vpri| and rated primary line current |Ipri|.

• Rated secondary line-to-line voltage |Vsec| and rated secondary line current |Isec|.

• Impedance voltage b on the primary side, per phase, as a percentage of the rated primary voltage.
The shunt admittance is assumed zero.
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As mentioned above, the impedance voltage is the voltage drop across the leakage impedance zl on the
primary side of each single-phase transformer in a short-circuit test. The b specification means that
the voltage needed on the primary side to produce the rated primary current across each single-phase
transformer is b , as a percentage of the rated primary voltage. We emphasize that the short-circuit voltage
and current needed to derive zl should be those across each single-phase transformer, which depends on
the configuration of the primary circuit. If the primary circuit is in D configuration then the short-circuit
voltage and current on the primary side of the single-phase transformer are (assuming balanced positive
sequence):

D configuration: |Vsc| = |Vab| = b |Vpri|, |Isc| = |Iab| =

����
Iprip

3
eip/6

����

If the primary circuit is in Y configuration then the short-circuit voltage and current on the primary side of
the single-phase transformer are:

Y configuration: |Vsc| = |Van| = b
����

Vprip
3eip/6

���� , |Isc| = |Ian| = |Ipri|

Since zl = Vsc/Isc we therefore have,

D configuration: |zl| =

p
3b |Vpri|
|Ipri|

; Y configuration: |zl| =
b |Vpri|p

3|Ipri|
(3.8a)

We reiterate that Vpri denotes the line-to-line voltage even for Y configuration; otherwise |zl| = b |Vpri|/|Ipri|
for Y configuration if the rated voltage Vpri is line-to-neutral.

Sometimes the primary line current |Ipri| is not specified directly. In that case zl can be determined
from the power and voltage ratings (|S3f |, |Vpri|), as follows. If the primary circuit is in D configuration
then the short-circuit voltage and current on the primary side of the single-phase transformer are (assuming
balanced positive sequence):

D configuration: |S3f | = 3|Sf | = 3|Vab| |Iab|

|Vsc| = |Vab| = b |Vpri|, |Isc| = |Iab| =
|S3f |
3|Vpri|

Note that |S3f |
3|Vpri| is the rated primary current produced in the short-circuit test. If the primary circuit is in Y

configuration then the short-circuit voltage and current on the primary side of the single-phase transformer
are:

Y configuration: |S3f | = 3|Sf | = 3|Van| |Ian|

|Vsc| = |Van| = b
����

Vprip
3eip/6

���� , |Isc| = |Ian| =
|S3f |

3
��� Vprip

3eip/6

���
=

|S3f |p
3|Vpri|

Since zl = Vsc/Isc we therefore have,

D configuration: |zl| =
3b |Vpri|2

|S3f | ; Y configuration: |zl| =
b |Vpri|2

|S3f | (3.8b)

As mentioned above, Vpri denotes the line-to-line voltage even for Y configuration; otherwise |zl| =
3b |Vpri|2/|S3f | for Y configuration if the rated voltage Vpri is line-to-neutral.
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Figure 3.6: The transformer ratings.

Example 3.2 (Transformer ratings). Figure 3.6 shows a typical specification of a three-phase transformer
in DY configuration:

• Three-phase power rating |S3f | = 150kVA.

• Rated primary line-to-line (high) voltage |Vpri| = 480V in D configuration with rated primary line
current |Ipri| = 180A.

• Rated secondary line-to-line (low) voltage |Vsec| = 208Y/120V in Y configuration with rated sec-
ondary line current |Isec| = 416A. This notation means that the secondary side is Y -configured with
a line-to-line voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings. Determine the magnitude |zl| of the leakage impedance of the transformer.

Solution. The primary side is in D configuration and hence we have

|S3f | = 3 |Sab| = 3 |Vab Īab| = 3 |Vpri| |Iab|

Since (assuming balanced positive sequence)

Ia = Iab� Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

we have |Ipri| =
p

3 |Iab|. Hence

|S3f | =
p

3 |Vpri| |Ipri|

The rated line-to-line voltage |Vpri| = |Vab| = 480V. The rated line current |Ipri| = |Ia| = 180A. Hence
p

3 |Vpri| |Ipri| =
p

3 ·480 ·180 = 149.65 kVA
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which is approximately the power rating |S3f | = 150 kVA.

The secondary side is in Y configuration and hence we have

|S3f | = 3 |San| = 3 |Van Īan| = 3
��� Vsecp

3eip/6

��� |Isec| =
p

3 |Vsec| |Isec|

where the third equality follows since Vsec = Vab = Van

⇣p
3eip/6

⌘
is the line-to-end voltage. The rated

secondary line-to-line voltage is |Vsec| = 208V and the line current |Isec| = 416A, and hence
p

3 |Vsec| |Isec| =
p

3 ·208 ·416 = 149.87kVA

which is approximately the power rating 150 kVA.

From (3.8a) the magnitude |zl| of the leakage impedance of each single-phase transformer is (b is the
impedance voltage on the primary side)

|zl| =

p
3b |Vpri|
|Ipri|

=

p
3 ·5.45% ·480V

180A
= 0.2517W

Distribution system transformers. In the US, single-phase or three-phase stepdown transformers are
typical in the distribution system. The most common three-phase system voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude) and hence the
line-to-neutral voltage is |Van| = 12.47/

p
3 = 7.2kV. A typical primary side current rating is |Ian| = 400A.

Hence the total (three-phase) rated apparent power is |S3f | = 3|Van||Ian| = (3)(7.2)(400) = 8.6MVA.
Other common distribution system voltages and their total power at 400A are shown in Table 3.1. The

line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|Vab| |Van| |S3f |
4.8 2.8 3.3

12.47 7.2 8.6
22.9 13.2 15.9
34.5 19.9 23.9

Table 3.1: Typical distribution system voltages (line-to-line) and their total (three-phase) power rating at
400A current.

advantages of a higher-voltage system include:

• It can carry more power for a given ampacity.

• It has a smaller voltage drop for a given level of power flow, requiring fewer voltage regulators and
capacitor banks for voltage support (see Exercise 2.7.5).

• It has a smaller line loss for a given level of power flow (see Exercise 2.7).
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• It can cover a larger service area since it has a smaller voltage drop and a smaller line loss. Roughly,
for the same load density, the area covered increases linearly with voltage.

• It requires fewer substations since it covers a larger service area, which can be a big cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.

• Crew safety is a bigger concern with a higher voltage.

• Higher voltage equipment costs more, from transformers to cables to voltage regulators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary phases and
the other end connects to the transformer case which is connected to the neutral wire of the three-phase
system and also earth ground. On the secondary side, the 240V is center-tapped and the center neutral
wire is grounded, making the two ends “hot” with respect to the center tap. These three wires run down
the service drop to the meter and electric panel of a house. This is shown in Figure 3.7. Connecting a

240V

120V

120V

abcn

Figure 3.7: A common single-phase distribution transformer in the US.

load between either hot wire and the neutral gives 120V while connecting it between both hot wires gives
240V. Note that the transformer is single-phase. This is the split-phase 120/240 V system typical in the
US.

3.1.5 Model with unitary voltage network

Single-phase two-winding transformer. As far as the end-to-end behavior is concerned, the transformer
model in Figure 3.2(b) is equivalent to the model in Figure 3.8(a) where the ideal transformer with turns
ratio N1/N2 is replaced by two ideal transformers in series with turns ratios N1 and 1/N2. Referring the
leakage impedances (zp,zs) and shunt admittance ym to the other sides of the ideal transformers using
(3.14) in Chapter 3.3, this model is equivalent to the one in Figure 3.8(b) where

y0 := N2
1 ym, z1 :=

zp

N2
1
, z2 :=

zs

N2
2

(3.9)
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ym

I1 I2

N1   :   1 1   :    N2

zp

V1 V2

zs

(a) Equivalent model

y0

z1
I1 I2

unitary voltage network

V1 V2

N1   :   1 1   :   N2

z2

(b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

The network between the two ideal transformers is sometimes referred to as a unitary voltage network
because the nominal voltage of the network is 1 pu if the scaled nominal voltages V nom

1 /N1 = V nom
2 /N2

on both sides of the (nonideal) transformer is used as the voltage base for per unit normalization. Note
that no nodes in the transformer models may be grounded. The main advantage of modeling a nonideal
transformer this way is that the unitary voltage network can be generalized from the simple network in
Figure 3.8(b) to a more general network that can be used to model nonstandard transformers with multiple
windings; see below.

We now derive the admittance matrix that maps (V1,V2) to (I1,�I2). First focus on the unitary voltage
network, shown in Figure 3.9, where y1 := 1/z1 = N2

1 yp, y2 := 1/z2 = N2
2 ys with yp := 1/zp, ys := 1/zs.

Variables with hats denote internal variables.2 The variables (V̂0,V̂1,V̂2) are defined as voltage drops as

y0

y2y1

V̂0V̂1 V̂2

Î2Î1
Î0 := 0

Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).

shown in the figure and (Î0, Î1, Î2) are the current injections at these nodes with Î0 := 0. Then

Î1 = y1(V̂1�V̂0), Î2 = y2(V̂2�V̂0), Î0 + Î1 + Î2 = y0V̂0 (3.10)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 4)
2

4
Î0
Î1
Î2

3

5 =

2

4
y0 + y1 + y2 �y1 �y2
�y1 y1 0
�y2 0 y2

3

5

2

4
V̂0
V̂1
V̂2

3

5

Since Î0 = 0 we can eliminate V̂0 and derive the Kron-reduced admittance matrix Yuvn that maps (V̂1,V̂2)
to (Î1, Î2). Let Î := (Î1, Î2) and V̂ := (V̂1,V̂2). Then Î = YuvnV̂ where Yuvn is the Schur complement of

2The explicit separation of internal variables (e.g., V̂i, Îi) and terminal variables (e.g., Vi, Ii) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapters 7 and 8.
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y0 + y1 + y2 (see Appendix 25.1.3.1 for details of Schur complement):

Yuvn :=


y1 0
0 y2

�
� 1

Â2
i=0 yi


y1
y2

�⇥
y1 y2

⇤
=

1
Âi yi


y1(y0 + y2) �y1y2
�y1y2 y2(y0 + y1)

�
(3.11a)

Next connect the two ideal transformers to each side of the unitary voltage network; see Figure 3.8(b).
Let I := (I1,�I2) and V := (V1,V2). The conversion between internal variables (V̂ , Î) and terminal variables
(V, I) is V̂ = MV and Î = M�1I where

M :=


1/N1 0
0 1/N2

�
(3.11b)

Substituting into Ĵ = YuvnÛ we obtain the relation between the terminal variables V to I:

I = (MYuvnM)V (3.11c)

where MYuvnM is called the admittance matrix of the transformer. It can be shown that (3.11) is equivalent
to the T equivalent circuit (3.5) (Exercise 3.4). As a consequence the model parameters (y0,y1,y2) cannot
be uniquely determined by just the short-circuit and open-circuit tests.

We often do not know the numbers N1, N2 of turns of the primary and secondary windings respectively,
but can determine the turns ratio a := N1/N2 from the specified rated voltages. The admittance matrix
MYuvnM can also be written in terms of the turns ratio a (Exercise 3.5):

YYY := MYuvnM =
ypys

a2ym +a2yp + ys


1+a2ym/ys �a
�a a2(1+ ym/yp)

�
(3.11d)

If y0 = ym = 0 then both (3.5) and (3.11) are equivalent to the simplified model in Figure 3.5(b). In this case
the model parameter is just the leakage impedance zl in the primary circuit, which can be determined from
standard power ratings as described above. Recall that zl = zp + a2zs and hence the leakage admittance in
the simplified model is

yl =
1
zl

=
1

1/yp + a21/ys
=

ypys

a2yp + ys

Indeed, when ym = 0, the admittance matrix YYY is the same for both the simplified model and the unitary
voltage network model, from (3.11d):

YYY = MYuvnM = yl


1 �a
�a a2

�

Multi-winding transformers. The single-phase circuit model in Figure 3.8(b) can be generalized in
two ways, or a combination. First, multiple copies of the single-phase model can be connected in D or
Y configuration on each side to create models for three-phase transformers. This is derived in detail in
Chapter 8.3 for unbalanced three-phase systems. Second, the unitary voltage network can be generalized
to model nonstandard transformers with more than two windings. As an illustration we now use this
approach to model a split-phase transformer.
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y0

y1
I1 I2

I3

unitary voltage network

V1

V2

V3

N1   :   1 1   :   N3

1   :   N2

y2

V̂3

V̂2

y3

Î2Î1

Î3V̂1 V̂0

Figure 3.10: Single-phase split-phase transformer.

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages (V̂0,V̂1,V̂2,V̂3) and
currents (Î0, Î1, Î2, Î3) on the unitary voltage network are defined in the figure. The admittance matrix that
maps these voltages to currents is given by:

2

664

Î0
Î1
Î2
Î3

3

775 =

2

664

Â3
i=0 �y1 �y2 �y3
�y1 y1 0 0
�y2 0 y2 0
�y3 0 0 y3

3

775

2

664

V̂0
V̂1
V̂2
V̂3

3

775

Let V̂ := (V̂1,V̂2,V̂3) and Î := (Î1, Î2, Î3). Since Î0 = 0 we can eliminate V̂0 to relate Î = YuvnV̂ where Yuvn
is the Kron-reduced admittance matrix:

Yuvn :=

2

4
y1 0 0
0 y2 0
0 0 y3

3

5 � 1
Â3

i=0 yi

2

4
y1
y2
y3

3

5⇥y1 y2 y3
⇤

=
1

Âi yi

2

4
y1(y0 + y2 + y3) �y1y2 �y1y3
�y2y1 y2(y0 + y1 + y3) �y2y3
�y3y1 �y3y2 y3(y0 + y1 + y2)

3

5 (3.12a)

This extends in a straightforward manner Yuvn in (3.11) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in Figure 3.10. The
terminal voltages V := (V1,V2,V3) and currents I := (I1,�I2,�I3), as well as the internal current Î3 into
the third winding, are defined in the figure. Let M := diag(1/N1,1/N2,1/N3). Then V̂ = MV and, using
I2 + I3 + Î3 = 0,

Î = M�1

2

4
I1
�I2
Î3

3

5 = M�1

2

4
I1
�I2
�I2� I3

3

5 =: M�1AI

where

A :=

2

4
1 0 0
0 1 0
0 1 1

3

5 (3.12b)
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Substituting into Î = YuvnV̂ we obtain the relation between the terminal variables V to I:

I = A�1 (MYuvnM)V (3.12c)

3.2 Three-phase transformers

In this section we develop models for a balanced three-phase transformer and derive its single-phase
equivalent.

3.2.1 Ideal transformers

The primary and secondary circuits of a three-phase transformer can be arranged in four different config-
urations: YY , DD, DY , Y D. Figure 3.11(a) shows a primary three-phase winding in Y configuration and
its schematic diagram. The winding on the first magnetic core goes from terminal a to neutral n and then
connects with the neutral terminals on the second and third magnetic cores. It matches the connectivity in
the schematic diagram where the windings are indicated by the thick lines. Figure 3.11(b) shows a sec-

Ia Iaa a

b

c

n

b
c

n

(a) Primary winding in Y configuration

Ia’Ia’ a’ a’

b’

c’
b’
c’

(b) Secondary winding in D configuration

Figure 3.11: Primary and secondary windings in Y and D configurations respectively. The thick lines in
the schematic diagrams represent transformer windings.

ondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal c on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,DD,DY,Y D configurations. We
will first derive the terminal behavior. This means the line-to-line voltage gain and the line current gains
in these configurations. We then derive the line-to-neutral voltage and current gains of their YY equivalent
models, which yields their per-phase circuits. We will see that, as expected, the terminal behavior of a
three-phase transformer has the same gains as those in its per-phase circuit. The derivation proceeds in
three steps:
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1. Internal model: Derive the voltage and current gains for each single-phase transformer.

2. External model: Derive the line-to-line voltage gains and line current gains for the three-phase
transformer.

3. YY equivalent: Derive the YY equivalent circuit from which a per-phase circuit can be obtained.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. Steps 2 and 3 apply the following
relation between line voltages/currents and phase voltages/currents to the single-phase voltage and current
gains:

Y configuration (line voltages): Vab =
p

3eip/6Van, Va0b0 =
p

3eip/6Va0n0 (3.13a)

D configuration (line currents): Ia =
p

3e�ip/6 Iab, Ia0 = �
p

3e�ip/6 Ia0b0 (3.13b)

where the signs of the current gains are different on the primary side (entering terminal a and the secondary
sides (leaving terminal a0) of D configuration. The relations (3.13) follows (1.12) (1.13), reproduced here

Y configuration: V line = GVY

D configuration: I = ± GTID

Assuming positive sequence, the balanced voltages VY and currents ID are in span(a+) and hence Corol-
lary 1.3 implies

Y configuration: V line = (1�a)VY =
p

3eip/6VY

D configuration: I = ± (1�a2) ID = ±
p

3e�ip/6V D

In per-phase analysis later, we will convert each D configuration into an equivalent Y configuration. For YY
configurations, line voltage/current gains are equal to line-to-neutral voltage/currents gains and therefore,
with Y equivalents, we often use the ratios Va0n0/Van and �Ia0n0/Ian to represent both the internal and the
external models.

YY configuration. The winding of an ideal three-phase transformer in YY configuration and its schematic
digram are shown in Figure 3.12(a). The parallel lines in the schematic diagram indicate corresponding
primary and secondary windings in the single-phase transformers. From the figure, the YY configuration
is characterized by the following voltage and current gains:

Va0n0

Van
= n,

Ia0

Ia
=
�Ia0n0

Ian
=

1
n

Note the opposite directions of the currents Ia0 and Ia0n0 . The line voltages, being proportional to phase
voltages from (3.13a), have the same ratio, i.e., its external model is the same as its internal model. The
voltage and current gains are the same for phases b and c as well under balanced operation.
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(a) YY configuration

Iaa

b

c

a’

b’

c’

Ia’

Ia
a

b
c

Ia’
a’

b’
c’

(b) DD configuration

Figure 3.12: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the
schematic diagram indicate corresponding primary and secondary windings.

DD configuration. The winding of an ideal three-phase transformer in DD configuration and its schematic
digram are shown in Figure 3.12(b). It is characterized by the following voltage and current gains from
the single-phase transformer:

Va0b0

Vab
= n,

�Ia0b0

Iab
=

1
n

Applying (3.13b) to both Ia on the primary side and Ia0 = �
p

3e�ip/6 Ia0b0 on the secondary side, the
external model is

Va0b0

Vab
= n,

Ia0

Ia
=

1
n

Similarly for voltage and current gains on other lines.

Equivalent YY configuration. To calculate the ratio of line-to-neutral voltages of an equivalent YY config-
uration, we use (3.13a) to obtain

VY
a0n0

VY
an

=

⇣p
3eip/6

⌘�1
VY

a0b0
�p

3eip/6
��1 VY

ab

=
Va0b0

Vab
= n

since VY
a0b0 = Va0b0 and VY

ab = Vab by the definition of Y equivalence. To calculate the ratio of the phase
currents in the equivalent YY configuration, we use the property that the terminal currents in the DD
configuration and its equivalent YY configuration are the same. Therefore IY

an = IY
a = Ia and �IY

a0n0 = IY
a0 =

Ia0 . Hence

�IY
a0n0

IY
an

=
Ia0

Ia
=

1
n

Therefore the line voltages and currents in the DD configuration and the phase voltages and currents in its
equivalent YY configuration have the same ratios. The voltage and current gains for phases b and c are the
same as for phase a under balanced operation.
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DY configuration. The winding of an ideal three-phase transformer in DY configuration and its schematic
digram are shown in Figure 3.13(a). It is characterized by the following voltage and current gains in the

Iaa

b

c

Ia
a

b
c

n’

a’

b’

c’

Ia’

n’

Ia’
a’

b’
c’

(a) DY configuration

c

b

a

Ia’
a’

b’
c’

n’

Ia
a

b
c

n

c’

b’

a’
Ia’Ia

(b) Y D configuration

Figure 3.13: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the
schematic diagram indicate corresponding primary and secondary windings. Note the wiring of the Y D
configuration.

single-phase transformer:

Va0n0

Vab
= n,

�Ia0n0

Iab
=

1
n

To obtain the external model we have (assuming positive sequence)

Va0b0

Vab
=

p
3eip/6Va0n0

Vab
=
p

3eip/6n =: KDY (n)

where the complex voltage gain

KDY (n) :=
p

3n eip/6

boosts the voltage gain by
p

3 and shifts the phase by 30�. The line current gain is (using (3.13b))

Ia0

Ia
=

�Ia0n0p
3e�ip/6 Iab

=
1p

3e�ip/6 n
=

1
K⇤DY (n)

Similarly on other lines.

Equivalent YY configuration. We have on the primary side VY
an =

⇣p
3eip/6

⌘�1
VY

ab =
⇣p

3eip/6
⌘�1

Vab

since VY
ab = Vab by definition of Y equivalence. Hence

Va0n0

VY
an

=
Va0n0

�p
3eip/6

��1 Vab

=
p

3eip/6 Va0n0

Vab
= KDY (n)

To calculate the phase currents in the equivalent Y configured primary circuit, use (3.13b) to get IY
an = Ia =p

3e�ip/6 Iab. Hence

�Ia0n0

IY
an

=
�Ia0n0p

3e�ip/6 Iab
=

1p
3n e�ip/6

=
1

K⇤DY (n)
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This also implies Ia = K⇤DY (n) Ia0 . As expected the voltage and current gains in the DY configuration are the
same as those in their YY equivalent. Hence the phase voltages and currents on the secondary and primary
sides of the YY equivalent configuration are related as:

Va0n0

VY
an

=
Vb0n0

VY
bn

=
Vc0n0

VY
cn

= KDY (n)

Ia0

Ia
=

Ib0

Ib
=

Ic0

Ic
=

1
K⇤DY (n)

The DY connection has several advantages (e.g., a gain of
p

3 in addition to the gain n due to turns ratio)
and is the most commonly adopted in practice.

Y D configuration. The winding of an ideal three-phase transformer in Y D configuration and its schematic
digram are shown in Figure 3.13(b). Note that the windings in phase an on the primary side are not paired
with the windings in phase a0b0 on the secondary side, but with a0c0 instead. Otherwise a Y D-configured
transformer with primary on the left will be the same as a DY -configured transformer with primary on the
right (see Example 3.6 and Exercise 3.6).

The Y D configuration in Figure 3.13(b) is characterized by the following voltage and current gains in
a single-phase transformer:3

Va0c0

Van
= n,

Ic0a0

Ian
=

1
n

To obtain the terminal behavior we have (assuming positive sequence)

Va0c0

Vac
=

Va0c0

Van�Vcn
=

Va0c0p
3e�ip/6Van

=
np
3

eip/6 =: KY D(n)

The line current gain is

Ia0

Ia
=

Ic0a0 � Ia0b0

Ian
=

p
3eip/6 Ic0a0

Ian
=

p
3eip/6

n
=

1
K⇤Y D(n)

Similarly on other lines.

Equivalent YY configuration. To obtain the Y equivalent VY
a0n0 of the D configuration we have

Va0c0 = VY
a0c0 = VY

a0n0 �VY
c0n0 = VY

a0n0(1� ei2p/3) =
p

3e�ip/6 VY
a0n0

Hence

VY
a0n0

Van
=

⇣p
3e�ip/6

⌘�1
Va0c0

Van
=
⇣p

3e�ip/6
⌘�1

n = KY D(n)

3Despite the connectivity, positive sequence still means

Vbn = e�i2p/3 Van, Vcn = ei2p/3 Van

Vb0c0 = e�i2p/3 Va0b0 , Vc0a0 = ei2p/3 Va0b0

It amounts to assumptions about the relative phases of voltages applied to the terminals a,b,c.
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Similar to (3.13b), we relate the line and phase currents on the secondary side, �IY
a0n0 = Ia0 =

p
3eip/6 Ic0a0 .

Hence

�IY
a0n0

Ian
=

p
3eip/6 Ic0a0

Ian
=

p
3eip/6

n
=

1
K⇤Y D(n)

This also implies Ia = K⇤Y D(n) Ia0 . As expected the line voltage and current gains in the Y D configuration
are the same as those in their YY equivalent. Hence the phase voltages and currents on the secondary and
primary sides of the YY equivalent configuration are related as:

VY
a0n0

Van
=

VY
b0n0

Vbn
=

VY
c0n0

Vcn
= KY D(n)

Ia0

Ia
=

Ib0

Ib
=

Ic0

Ic
=

1
K⇤Y D(n)

Property Gain
Voltage gain K(n)
Current gain 1

K⇤(n)

Power gain 1
Sec Zl referred to pri Zl

|K(n)|2

Configuration Gain
YY KYY (n) := n
DD KDD(n) := n
DY KDY (n) :=

p
3n eip/6

Y D KY D(n) := np
3

eip/6

Table 3.2: Ideal complex transformer properties.

Summary. These properties of an ideal three-phase transformer in balanced operation are summarized
in Table 3.2. For each configuration, K(n) denotes the complex voltage gain of an ideal three-phase
transformer:

voltage gain
Vsec

Vpri
= K(n)

current gain
Isec

Ipri
=

1
K⇤(n)

As we have shown, these gains apply to both phase voltages/currents and line voltages/currents in both the
original transformer and its YY equivalent. Hence the complex power gain is 1 for ideal transformers:

�S0

S
:=

VY
a0n0(�IY

a0n0)
⇤

VY
an (IY

an)
⇤ = K(n)

1
K(n)

= 1

It often simplifies per-phase analysis of a balanced system to refer series impedances and shunt ad-
mittances on one side to the other side of a transformer. This is explained in Chapter 3.3. In particular, a
secondary series impedance Zl is referred to the primary as Zl/|K(n)|2 according to (3.14) below. When
terminated in a symmetric three-phase impedance load Zload on the secondary side so that VY

a0n0 = ZloadIY
a0n0 ,

the per-phase driving-point impedance on the primary side is

VY
an

IY
an

=
VY

a0n0/K(n)

IY
a0n0K

⇤(n)
=

Zload

|K(n)|2
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The different configurations of three-phase transformer banks can also be represented compactly as in
Figure 3.14 (see its caption for details).

a

c b

n

a’

c’ b’

n’

a’

c’ b’

a

c b

(a) YY and DD configurations

a

c b

n

a’

b’

c’

n’

a’

b’

c’

a

c b

(b) DY and Y D configurations

Figure 3.14: Compact representation of ideal three-phase transformers in (a) YY , DD configurations and
(b) DY , Y D configurations. For instance, in the YY configuration, the vertical arrow represents the vector
Van in the complex plane. The arrow from b to a (not shown) represents the vector Vab. The parallel lines
in the diagram indicate corresponding primary and secondary windings.

3.2.2 Nonideal transformers

In this section we first present circuit models of (nonideal) three-phase transformers and then their per-
phase equivalent circuits after all D-configured transformers have been converted into their Y equivalents.

Per-phase equivalent circuits. Figure 3.15(a) shows a model of balanced three-phase (nonideal) transform-
ers in YY configuration and Figure 3.15(b) shows its per-phase equivalent circuit. The per-phase circuit
is identical to that in Figure 3.5(b). Figure 3.16(a) shows a model of balanced three-phase transformers
in DD configuration. Its YY equivalent and per-phase circuit are identical to those in Figure 3.15 except
that the equivalent leakage impedance Zl/3 is one-third of the value in the original DD circuit and the
shunt admittance 3Ym is three times the value in the original DD circuit. This can be verified by checking
the secondary open-circuit equivalent and the secondary short-circuit equivalent of the original DD circuit.
Figure 3.17 shows a model of balanced three-phase transformers in DY configuration and its per-phase
equivalent circuit. Finally Figure 3.18 shows the model for Y D configuration and its per-phase circuit.

Hence balanced three-phase transformers in YY , DD, DY and Y D configurations all have the same per-
phase equivalent circuit, with appropriate values for their leakage impedance and shunt admittance and
the corresponding (complex) transformer gains K(n).
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(b) Per-phase circuit

Figure 3.15: Model of three-phase transformers in YY configuration and its per-phase equivalent circuit.
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(b) Per-phase circuit

Figure 3.16: Model of three-phase transformers in DD configuration and its per-phase equivalent circuit.
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(b) Per-phase circuit

Figure 3.17: Model of three-phase transformers in DY configuration and its per-phase equivalent circuit.
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Figure 3.18: Model of three-phase transformers in Y D configuration and its per-phase equivalent circuit.
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3.3 Equivalent impedance in transformer circuit

In this subsection we explain how to derive an “equivalent” impedance when looking into the terminal,
either on the primary side or on the secondary side of a transformer. Consider the singe-phase equiva-
lent circuit of a balanced three-phase transformer. A series impedance Zs in the secondary circuit of the
transformer can be equivalently replaced by a series impedance Zp in the primary circuit, and vice versa,
provided they are related by:

Zp =
Zs

|K(n)|2 or equivalently Zs = |K(n)|2 Zp (3.14a)

The first operation in (3.14a) is called referring Zs in the secondary to the primary. The second operation
is called referring Zp in the primary to the secondary. A shunt admittance Ys in the secondary circuit of the
transformer can be equivalently replaced by a shunt admittance Yp in the primary circuit, and vice versa,
provided they are related by:

Yp = |K(n)|2 Ys or equivalently Ys =
Yp

|K(n)|2 (3.14b)

These operations will be used as a shortcut in the analysis of circuits that contain transformers the same
way we use the Thévenin equivalent of impedances in series or in parallel; see Chapter 3.4.

Here “equivalence” means that the external behavior remains unchanged when a series impedance or
a shunt admittance on one side is referred to the other. Specifically we consider two kinds of external
behavior. In the first case, explained in Chapter 3.3.1, the external behavior is the transmission matrix
that maps (V2, I2) to (V1, I1). In the second case, explained in Chapter 3.3.2, the external behavior is the
driving-point impedance on one side of the transformer when the other side is connected to an impedance.
We next derive (3.14) as a simple consequence of Kirchhoff’s and Ohm’s laws.

3.3.1 Transmission matrix

Consider the per-phase transformer circuits in Figure 3.19 of a balanced three-phase system, one with a
series impedance in the secondary circuit and the other in the primary circuit. Let Ts and Tp denote the
transmission matrices that maps (V2, I2) to (V1, I1) in Figure 3.19(a) and Figure 3.19(b) respectively. We
claim that the relation (3.14a) between series impedances Zp and Zs ensures that Ts = Tp. It is in this sense
that we say these two circuits are equivalent.

To show that Ts = Tp let V denote the voltage at the secondary terminal of the ideal transformer in
Figure 3.19(a). Then

V = V2 +ZsI, I = I2

or

V
I

�
=


1 Zs
0 1

�
V2
I2

�



108 Draft: EE 135 Notes April 30, 2024
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(a) Series impedance Zs in the secondary circuit.
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+

−
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ideal
transformer
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(b) Series impedance Zp in the primary circuit.

Figure 3.19: Referring series impedance in the secondary to the primary.

Then

V1
I1

�
=


K�1(n) 0

0 K⇤(n)

�
1 Zs
0 1

�
V2
I2

�
=


K�1(n) K�1(n)Zs

0 K⇤(n)

�

| {z }
Ts


V2
I2

�

Similarly, for the circuit in Figure 3.19(b), we have

V1
I1

�
=


1 Zp
0 1

�
K�1(n) 0

0 K⇤(n)

�
V2
I2

�
=


K�1(n) K⇤(n)Zp

0 K⇤(n)

�

| {z }
Tp


V2
I2

�

Hence Ts = Tp if and only if (3.14a) holds.

The relation (3.14b) between shunt admittances Yp and Ys ensures that the transmission matrix for the
circuit in Figure 3.20(a) is the same as that in Figure 3.20(b). This is left as Exercise 3.8.

V1

+

−

V2

+

−

I2

ideal
transformer

K(n) Ys

I1

(a) Shunt admittance Ys in the secondary circuit.

V1

+

−

V2

+

−

I2I1

ideal
transformer

K(n)Yp

(b) Shunt admittance Yp in the primary circuit.

Figure 3.20: Referring shunt admittance in the secondary to the primary.

The operations in (3.14) can be repeatedly applied to a circuit involving multiple impedances and
admittances, as illustrated in the next example.
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Example 3.3. A combination of a series impedance Zs and a shunt admittance Ys in the secondary circuit,
as shown in Figure 3.21(a), can be referred to the primary one element at a time, starting from the element
that is closest to the ideal transformer. The transformer gain is K(n) = n = 1/a. Referring the series

V1

+

−

V2

+

−

I2I1

Ys

N2N1

Zs

ideal$
transformer$

(a) (Zs,Ys) in the secondary circuit.

V1

+

−

V2

+

−

I2I1

Ys

N2N1

a2Zs

ideal$
transformer$

(b) Refer Zs to the primary.

V1

+

−

V2

+

−

I2I1

n2Ys

N2N1
ideal$

transformer$

a2Zs

(c) Refer Ys to the primary.

Figure 3.21: Referring (Zs,Ys) in the secondary to the primary.

impedance Zs to the primary yields the equivalent circuit in Figure 3.21(b) with an equivalent primary
impedance a2Zs. Referring then the shunt admittance Ys to the primary yields the equivalent circuit in
Figure 3.21(c) with an equivalent shunt admittance n2Ys.

3.3.2 Driving-point impedance

In the second case the external behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current I flows between
these two terminals through the network. The ratio V/I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.22. For two impedances Z1,Z2 in series depicted in Figure 3.22(a), the Thévenin equiv-

V

+

−

I

Z1

Z2

V

+

−

I

Zeq = Z1 + Z2

(a) Impedances in series

V

+

−

I

Z2Z1 V

+

−

I

Zeq =
1
Z1
+
1
Z2

!

"
#

$

%
&

−1

(b) Impedances in parallel

Figure 3.22: (a) Thévenin equivalent Zeq of two impedances Z1,Z2 in series. (b) Thévenin equivalent Zeq
of two impedances Z1,Z2 in parallel.
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alent impedance Zeq is defined such that the two networks in Figure 3.22(a) have the same driving-point
impedance:

V
I

= Z1 +Z2 =: Zeq (3.15a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted in Figure 3.22(b) is
defined to be:

V
I

=

✓
1
Z1

+
1
Z2

◆�1
=: Zeq (3.15b)

These are simple consequences of Kirchhoff’s and Ohm’s laws. Repeated application of (3.15) reduces a
cascade of impedances in parallel and series into a single equivalent impedance that preserves the driving-
point impedance.

When such a network contains not just impedances, but also transformers, the relation (3.14) allows
us to reduce it to a single Thévenin equivalent impedance with the same driving-point impedance. As we
explain below, the key element of this procedure is the driving-point impedance seen from two terminals
of one side of a single-phase transformer when the other side is connected to an impedance Zeq that may
be the Thévenin equivalent of a network of impedances. This yields an equivalent network where the
transformer and Zeq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.14) and (3.15) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance Z2,eq as shown in Figure 3.23(a), the transformer and the impedance
Z2,eq can be replaced by the Thévenin equivalent impedance Z2,eq/|K(n)|2 in the sense that the driving-
point impedance V1/I1 on the primary side is the same in both circuits in Figure 3.23(a). This is the same
operation that refers Z2,eq in the secondary to the primary expressed in (3.14a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.10. Similarly when the primary side is connected

V1

+

−

I1

ideal
transformer

K(n) Z2, eq V1

+

−

I1

1
K(n) 2 Z2, eq

(a) V1/I1 on the primary side

V2

+

−

I2

ideal
transformer

K(n)Z1, eq V2

+

−

I2

K(n) 2 Z1, eq

(b) V2/I2 on the secondary side

Figure 3.23: Driving-point impedances

to an impedance Z1,eq as shown in Figure 3.23(b), the transformer and the impedance Z1,eq can be replaced
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by the Thévenin equivalent impedance |K(n)|2 Z1,eq in the sense that the driving-point impedance V2/I2
on the secondary side is the same in both circuits in Figure 3.23(b). This is the same operation that refers
Z1,eq in the primary to the secondary expressed in (3.14a) (see Exercise 3.10).

We caution that the shortcut (3.14) and (3.15) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.7 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.4 (V1/I1 on the primary side.). Consider the network in Figure 3.24(a) where the secondary
side is connected to a network whose Thévenin equivalent is Z2,eq. What is the driving-point impedance
V1/I1? We first derive the driving-point impedance directly using Kirchhoff’s and Ohm’s laws. We then

V1

+

−

I1

ideal$
transformer$

K(n)V1 '

+

−

I1 '

V2 '

+

−

I2 '

Z2, eq

Z1, eq

Y1,eq

(a) Transformer circuit

V1

+

−

I1 Z1, eq

1
K(n) 2 Z2, eqY1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.24: Driving-point impedance V1/I1 on the primary side.

use the result to verify the shortcut expressed in (3.14) and (3.15).

Circuit analysis. We have for the primary circuit


V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
V 01
I01

�

Hence

V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
K�1(n) 0

0 K⇤(n)

�
V 02
I02

�

Substituting

V 02 = Z2,eq I02
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we have

V1
I1

�
=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
|K(n)|�2 0

0 1

�
Z2,eq

1

�
K⇤(n) I02

=


1+Z1,eqY1,eq Z1,eq

Y1,eq 1

�
Z2,eq/|K(n)|2

1

�
K⇤(n) I02

Hence the driving-point impedance is

V1

I1
=

(1+Z1,eqY1,eq)
�
Z2,eq/|K(n)|2

�
+ Z1,eq

Y1,eq
�
Z2,eq/|K(n)|2

�
+ 1

or equivalently

V1

I1
= Z1,eq +

✓
Y1,eq +

1
Z2,eq/|K(n)|2

◆�1
(3.16)

It is the Thévenin equivalent on the primary side of a network consisting of impedances, admittances,
as well as an ideal transformer. The Thévenin equivalent (3.16) has a simple interpretation, as we now
explain.

Shortcut.. Use (3.14a) to refer Z2,eq in the secondary to the primary, we can replace the ideal transformer
and Z2,eq by the equivalent impedance Z2,eq/|K(n)|2 and arrive at the equivalent circuit in Figure 3.24(b)
seen from the primary side. The application of (3.15) then yields the driving-point impedance (3.16).

Example 3.5 (V2/I2 on the secondary side.). Consider the circuit in Figure 3.25(a) where the primary
side is connected to the impedance Z1,eq. Use (3.14a) to refer Z1,eq in the primary to the secondary, we

V2

+

−

I2

ideal$
transformer$

K(n)V1 '

+

−

I1 '

V2 '

+

−

I2 '

Z1, eq

Z2, eq

Y2,eq

(a) Transformer circuit

V2

+

−

I2Z2, eq

K(n) 2 Z1, eq Y2,eq

(b) Equivalent circuit seen on the secondary side

Figure 3.25: Driving-point impedance V2/I2 on the secondary side.

can replace the ideal transformer and Z1,eq by the equivalent impedance |K(n)|2 Z2,eq and arrive at the
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equivalent circuit in Figure 3.25(b) seen from the secondary side. The application of (3.15) then yields the
driving-point impedance:

V2

I2
=

✓
Y2,eq +

1
Z2,eq + |K(n)|2 ·Z1,eq

◆�1
(3.17)

3.4 Per-phase analysis

In this section we apply the techniques developed in the previous sections in the analysis of a balanced
three-phase power system consisting of generators, transformers, transmission lines, and loads, in a mix
of Y and D configurations. We first explain how to obtain a per-phase equivalent circuit of the system and
then illustrate, through an example, the per-phase analysis using the shortcut (3.14) and (3.15). Finally we
discuss a circuit that contains parallel paths to which the shortcut is not applicable. We explain why the
end to end complex transformer gains on these paths should be equal.

3.4.1 Analysis procedure

We have explained in Chapter 1.2.5 how to convert all sources, series impedances, shunt admittances in
D configurations into their equivalent Y configurations and obtain a per-phase equivalent circuit. Chapter
3.2.1 shows that an ideal balanced three-phase transformer has a per-phase equivalent model specified by
a complex voltage gain K(n) that relates the line-to-neutral voltages and the line currents on two sides
of the transformer. Chapter 3.2.2 shows how to incorporate the transformer series impedance and shunt
admittance into the per-phase model for both Y and D configurations. Chapter 3.3.1 explains how to refer
series impedances and shunt admittances on one side to the other and Chapter 3.3.2 explains how to use
this shortcut to simplify circuit analysis the same way we use Thévenin equivalent of impedances in series
or in parallel. Putting everything together the procedure for per-phase analysis of a balanced three-phase
system is as follows:

1. Convert all sources and loads in D configuration into their Y equivalents using (1.31a) for sources
and (1.31b) for loads.

2. Convert all ideal transformers in D configuration into their Y equivalents with voltage gains K(n)
given in Table 3.2.

3. Obtain the phase a equivalent circuit by connecting all neutrals.

4. Solve for the desired phase a variables. Use Thévenin equivalent of series impedances and shunt
admittances in a network containing transformers to simplify the analysis when applicable, e.g., for
a radial system.

5. Obtain variables for phases b and c by subtracting (or adding) 120� and 240� from the phase a
variables for positive-sequence (negative-sequence) sources. If variables in the internal of the D
configurations are desired, derive them from the original circuits.
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We illustrate this procedure in the next example.

Example 3.6. Consider the balanced system described by the one-line diagram in Figure 3.26(a) where a
three-phase generator is connected to a stepup three-phase transformer bank (primary on the left) in DY
configuration, which is connected through a three-phase transmission line to a stepdown transformer bank
(primary on the right) in DY configuration, and then to a load. The terminal line voltage of the generator

Zline

Zload
Δ Y ΔY

Vline

(a) One-line diagram

V1

+

−

V2

+

−

I2I1

1: 3n

Zl

e jπ /6 V3

+

−

I3

1: 3n

Zl

e jπ /6 Zload

Zline

transformer#T1 transmission#
line##

z#

transformer#T2 

z#

3n :1

(b) Per-phase circuit

Figure 3.26: Example 3.6.

is Vline. The transmission line is modeled by a series impedance Zline and the load is assumed to be an
impedance Zload. The transformer banks are made up of identical single-phase transformers each specified
by a series impedance of 3Zl and a turns ratio of a := 1/n.

Find the generator current, the transmission line current, the load current, the load voltage, and the
complex power delivered to the load in terms of the given parameters.

Solution. The per-phase equivalent circuit is shown in Figure 3.26(b). Note that the stepdown DY trans-
former near the load has its primary side on the right and secondary side on the left so that, going from left
to right, the voltage (current) angle is shifted down (down) by 30� and their magnitudes scaled down (up)
by
p

3n.4 The primary sides of both the stepup and stepdown transformers have been converted from D
4 See Exercise 3.6.
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to its Y equivalent, with an equivalent series impedance Zl that is 1/3 of the original impedance 3Zl . The
phase voltage of the generator is

V1 :=
Vlinep
3e jp/6

Our solution strategy is as follows. We will use (3.14) and (3.15) to refer all the (load, transformer, and
transmission line) impedances to the primary side of the stepup transformer. This calculates the driving-
point impedance seen at the generator. Given generator phase voltage V1, we can derive the generator
current I1. We then propagate this towards the load to calculate the other quantities.

Let K(n) :=
p

3ne jp/6. Going from right to left, we cross the stepdown transformer T2 from the
primary to the secondary. Referring the impedance Z1,eq := Zload +Zl on the primary to the secondary (see
Figure 3.23(b)), the equivalent impedance at the right-end of the transmission line is

|K(n)|2 (Zload +Zl)

Hence the equivalent impedance at the secondary side of the stepup transformer T1 is

Z2,eq := Zline + |K(n)|2 (Zload +Zl)

Referring this impedance to the primary side of T1 (see Figure 3.23(a)), the driving point impedance at the
generator is:

V1

I1
= Zl +

1
|K(n)|2 ·

�
Zline + |K(n)|2 (Zload +Zl)

�

= 2Zl +
Zline

|K(n)|2 + Zload

Hence the primary side of T1 sees the series impedance Zl of the two transformers, a scaled down version
of the line impedance Zline, and the load Zload, all in series. Note that, seen from the generator, the load
Zload goes through a stepdown transformer and a stepup transformer and therefore the scaling effects of
these two transformers are canceled out.

Given the bus voltage V1 of the generator, the generator current is then

I1 =
V1

2Zl + Zline
|K(n)|2 + Zload

The transmission line current is

I2 =
I1

K⇤(n)
=

V1

K⇤(n)
⇣

2Zl + Zline
|K(n)|2 + Zload

⌘

The load current is

I3 = K⇤(n) I2 = I1
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i.e., the effects of stepup and stepdown transformers cancel each other and the load current is equal to the
generator current. The load voltage is

V3 = Zload I3 = Zload I1 = V1 · Zload

2Zl + Zline
|K(n)|2 + Zload

Hence V3 relates to V1 according to the voltage-divider rule where V1 is the voltage drop across the series
of impedances 2Zl + Zline

|K(n)|2 + Zload and V3 is the voltage drop across Zload. The complex power delivered
to the load is

V3 I⇤3 = Zload ·

������
V1

2Zl + Zline
|K(n)|2 + Zload

������

2

= Zload · |Vline|2

3
���2Zl + Zline

|K(n)|2 + Zload

���
2

Simplified per-phase diagram for external behavior. In Example 3.6, only the transmission line cur-
rent I2 that is in between the pair of transformers depends on the connection-induced phase shift e jp/6 in
the complex transformer gain K(n). Outside the pair of transformers, the driving point impedance V1/I1,
the generator current I1, the load current I3, the load voltage V3, and the power delivered to the load do
not. They depend only on |K(n)|2. This is the case even if we use the more detailed P-model of the
transmission line instead of the short-line model used here. Indeed, suppose the series impedance Zline
in Figure 3.26(b) is replaced by the matrix given by (2.9) or (2.13)(2.14) as in Figure 3.27(a). Then the

3n :1

e jπ /6V

+

−

I

1: 3n

e jπ /6
A  B
C   D
!

"
#

$

%
& V '

+

−

I '

transmission$
line$$

z$

(a) Transmission line P-model

3n :1

V

+

−

I

1: 3n

A  B
C   D
!

"
#

$

%
& V '

+

−

I '

transmission$
line$$

z$

(b) Equivalent circuit without connection-induced phase
shift

Figure 3.27: P-model of transmission line in place of the series impedance Zline model in Figure 3.26(b).

voltage and current (V, I) on the left is related to the voltage and current (V 0, I0) by


V |K(n)|e jp/6

I |K(n)|�1 e jp/6

�
=


A B
C D

�
·


V 0 |K(n)|e jp/6

I0 |K(n)|�1 e jp/6

�


V |K(n)|

I |K(n)|�1

�
=


A B
C D

�
·


V 0 |K(n)|
I0 |K(n)|�1

�
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Therefore the external behavior is as if the connection-induced phase shift e jp/6 is absent, as shown in
Figure 3.27(b). This motivates a simplified per-phase diagram for external behavior that ignores all the
connection-induced phase shifts of transformers as long as every path contains stepup and stepdown trans-
forms in pairs and wired in opposite directions. This is generally true for radial networks in practice where
no transmission lines nor transformers are in parallel. Radial networks are a special case of a normal sys-
tem that we discuss next.

3.4.2 Normal system

A system is called normal if, in the per-phase equivalent circuit, the product of the complex ideal trans-
former gains around every loop is 1. Equivalently, on each parallel path,

1. the product of ideal transformer gain magnitudes is the same, and

2. the sum of ideal transformer phase shifts is the same.

Normal systems have a normalization that greatly simplifies analysis which we will discuss in Chapter
3.5. The following example motivates such a system.

Example 3.7 (Loop flows). Consider a generator and a load connected by two three-phase transformer
banks in parallel forming a loop as shown in Figure 3.28(a). The transformer in the upper path is charac-

1:K1

1:K2

load
Zl '

Zl '

gen

(a) Transmission line P-model

Vload

+

−

I1
Zl

Zload

K1

Zl

K2

I2

I1 '

I2 '

I load+

−

Vgen

(b) Equivalent circuit

Figure 3.28: Two buses connected in a loop with two parallel transformers.

terized by a series impedance and a complex gain K1. The transformer in the lower path is characterized
by the same series impedance and a possibly different complex gain K2. Suppose line-to-neutral voltage
of the generator bus is Vgen, the series impedance Zl of the transformer and the load impedance Zload in the
per-phase equivalent circuit are given, as shown in Figure 3.28(b). Derive the currents Iload, I01, I

0
2 in terms

of Vgen,Zl,Zload. Discuss the implications when

1. K2 = K1. This is the case if both transformer banks are YY -configured.
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2. K2 = K1 e jq . This is the case if the upper transformer bank is YY -configure with a voltage gain of n
but the lower transformer bank is DY -configured with a voltage gain of n/

p
3 and q = p/6.

3. K2 = k · K1, k > 0. This is the case if both transformer banks are YY -configured but with different
turns ratios.

Solution. We cannot directly apply the shortcut (3.14) and (3.15) to refer the impedances Zload and Zl to
the primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s
and Ohm’s laws.

We have five unknowns currents Iload, I01, I
0
2, I1, I2. The five equations that relate them are

Iload = I01 + I02
Zload Iload = K1 ·

�
Vgen � Zl I1

�

Zload Iload = K2 ·
�
Vgen � Zl I2

�

I0j =
I j

K⇤j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I01, I

0
2 we have

Zload

✓
I1

K⇤1
+

I2

K⇤2

◆
= K1 ·

�
Vgen � Zl I1

�

Zload

✓
I1

K⇤1
+

I2

K⇤2

◆
= K2 ·

�
Vgen � Zl I2

�

or


Zl +Zload|K1|�2 Zload(K1 K⇤2 )�1

Zload(K⇤1 K2)�1 Zl +Zload|K1|�2

�
·


I1
I2

�
=


Vgen
Vgen

�

Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2

where

a1 = 1 +
Zload

Zl
· K1�K2

K1 |K2|2

a2 = 1 +
Zload

Zl
· K2�K1

|K1|2 K2
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Hence

I01 =
I1

K⇤1
=

Vgen

Zl + Zload (|K1|�2 + |K2|�2)
· a1

K⇤1

I02 =
I2

K⇤2
=

Vgen

Zl + Zload (|K1|�2 + |K2|�2)
· a2

K⇤2
and

Iload = I01 + I02 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·
✓

1
K⇤1

+
1

K⇤2

◆

where we have used
a1

K⇤1
+

a2

K⇤2
=

✓
1

K⇤1
+

Zload

Zl
· K1�K2

|K1|2 |K2|2

◆
+

✓
1

K⇤2
+

Zload

Zl
· K2�K1

|K1|2 |K2|2

◆
=

1
K⇤1

+
1

K⇤2

1. When K2 = K1, then a1 = a2 = 1 and

I01 = I02 =
Vgen

Zl + Zload (2 |K1|�2)
· a1

K⇤1
=

K1Vgen

|K1|2Zl + 2Zload

and

Iload =
Vgen

|K1|2Zl + 2Zload| {z }
I0

·2K1 = I0 ·2K1 (3.18)

2. When K2 = K1 e jq , then, for i = 1,2,

I0i =
Vgen

Zl + Zload (2 |K1|�2)
· ai

K⇤i
=

Vgen

|K1|2Zl + 2Zload
· (ai Ki)

Since a1 K1 + a2 K2 = K1 +K2 = K1 (1+ e jq ) and |K1| = |K2|, we have

Iload =
Vgen

|K1|2Zl + 2Zload
·
⇣

1+ e jq
⌘

K1 = I0

⇣
1+ e jq

⌘
K1

Hence Iload reduces to the load current in (3.18) when the transformer gains are equal with q = 0.
When the transformer gains K1 and K2 are not in phase,

�
1+ e jq� can be much smaller than 2 and

the current |Iload| that enters the load can be much smaller than the currents |I0i |, i = 1,2. In particular

|Iload|
|I01|

=
|1+ e jq |

|a1|
and

|Iload|
|I02|

=
|1+ e jq |

|a2|

To appreciate the issue, take K1 = 10, K2 = 10e jp/6, Vgen = 8 kV, Zl = j0.05W, Zload = 800\0�W.
Then

I01 = 3,754.99 \�164.85 A
I02 = 4,527.24 \14.88 A

Iload = I01 + I02 = 772.50 \13.57 A
|Iload|
|I01|

= 20.57%,
|Iload|
|I02|

= 17.06%
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Hence |I01| and |I02| are much larger than |Iload|. The interpretation is that most of the current loops
between the two transformer banks without entering the load. This is undesirable because the cir-
culating current serves no purpose and heats up the transformers. The problem arises because the
connection-induced phase shifts in the two parallel paths are different. In practice we will not par-
allelize these transformers.

The complex generation power and load power are respectively

Sgen := Vget(I1 + I2)
⇤ = 182.98 \70.97� MVA

Sload := Zload|Iload|2 = 59.68 \0� MVA

Again the apparent load power is a small fraction of the apparent generation power. However, since
the transformers have zero resistance, their real powers are the same:

Pgen = Pload = 59.68 MW

3. When K2 = k ·K1, we have

I01 =
K1 Vgen

|K1|2 Zl + (1+ k�2) Zload
·a1

I02 =
K1 Vgen

|K1|2 Zl + (1+ k�2) Zload
· a2

k

Iload =
Vgen

|K1|2 Zl + (1+ k�2) Zload
·
✓

1+
1
k

◆
K1

Hence

|Iload|
|I01|

=
1+ k�1

|a1|
and

|Iload|
|I02|

=
1+ k
|a2|

If we take K1 = 10, K2 = 20, Vgen = 8 kV, Zl = j0.05 W, Zload = 800\0� W. Then

I01 = 3,260.76 \76.40 A
I02 = 3,213.39 \�86.58 A

Iload = I01 + I02 = 959.23 \�2.29 A
|Iload|
|I01|

= 29.42%,
|Iload|
|I02|

= 29.85%

Again |I01| and |I02| are much larger than |Iload| and there is a large loop flow between the transformer
banks. This time the problem arises because the voltage gains in the two parallel paths are different.
In practice we will not parallelize these transformers.
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3.5 Per-unit normalization

In this section we describe a normalization method that will simplify the analysis of balanced three-phase
systems. For a normal system where all connection-induced phase shifts of transformers can be ignored
in the per-phase equivalent circuit, the system after normalization will contain no transformers if there
is no off-nominal transformer in the original system. For general systems, normalization will typically
still simplify the equivalent circuit and per-phase analysis, but the system after normalization may contain
ideal transformers with real or complex voltage gains. We are usually interested in four types of generally
complex quantities: power S, voltages V , currents I, and impedances Z and functions of these quantities.
We will choose base values for these quantities and define the quantities in per unit as:

quantity in p.u. :=
actual quantity

base value of quantity

The base values are chosen to be real positive values and have the same units as the corresponding actual
quantities. For example a power base SB will be in unit VA when it serves as the base value for complex
power, W for real power, var for reactive power. Hence the per-unit quantities generally have different
magnitudes from, but always the same phase as, the corresponding actual quantities. Furthermore they
are dimensionless. The base values are chosen so that the per-unit quantities behave exactly as the actual
quantities do, as we now explain.

Consider a power network that consists of multiple areas connected by transformers. It represents
either a single-phase system or the per-phase equivalent circuit of a balanced three-phase system. The
nominal voltage magnitudes are the same within each area and those in neighboring areas are related by
transformer turns ratios. It is common to choose the power base value S1B for the entire network and the
voltage base value V1B for one of the areas, say, area 1. For example the base value V1B can be chosen
to be the nominal voltage magnitude for area 1 and the base value SB can be the rated apparent power of
one of the transformers in area 1, so that its rated voltage is 1 pu and the rated power is 1 pu. The base
values for all other quantities in the entire network are then calculated from these two values (SB,V1B) so
that these base values satisfy:

• Kirchhoff’s laws within each area;

• ideal transformer gains across areas;

• three-phase relations.

We derive in Chapter 3.5.1 the base values within area 1 and in Chapter 3.5.2 the base values of other areas
connected by transformers to area 1. In Chapter 3.5.3 we describe the normalization of off-nominal trans-
formers. In Chapter 3.5.4 we describe how to calculate base values of three-phase quantities in a balanced
three-phase system. In Chapter 3.5.5 we summarize the procedure for per-unit per-phase analysis.

3.5.1 Kirchhoff’s and Ohm’s laws

Consider a single-phase system or the per-phase equivalent circuit of a three-phase system. Start with area
1 for which we have the power base SB in VA (or W or var for real and reactive powers respectively) for
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the entire network, and the voltage base V1B in V . The base values I1B,Z1B of currents and impedances
respectively are calculated as:

I1B :=
SB

V1B
A, Z1B :=

V 2
B

SB
W (3.19)

so that the base values satisfy the Kirchhoff’s laws:

V1B = Z1BI1B V, SB = V1BI1B VA

Since

V1

V1B
=

Z1I1

Z1BI1B
,

S1

SB
=

V1I⇤1
V1BI1B

the per-unit quantities satisfy Kirchhoff’s laws as the actual quantities do:

V1pu = Z1pu I1pu, S1pu = V1pu I⇤1pu

We can therefore perform circuit analysis using the per-unit quantities instead of the actual quantities. We
can convert the result of the analysis back to the original quantities by multiplying the per-unit quantities
by their base values.

Extensions to other related quantities are straightforward. For example SB is also the base value for
real power in W and reactive power in var so that

P1pu :=
P1

SB
, Q1pu :=

Q1

SB

and S1pu = P1pu + jQ1pu. ZB is the base value for resistances and reactances so that

R1pu :=
R1

Z1B
, X1pu :=

X1

Z1B

and Z1pu = R1pu + jX1pu. Similarly Y1B := 1/Z1B in W�1 is the base value for admittances Y1 := 1/Z1 =
G� jB in W�1 as well as conductances G and susceptances B also in W�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a transformer. We choose
the bases for different sides of the transformer in a way that respects the transformer gains. Consider the
circuit in Figure 3.29(a) where areas 1 and 2 are connected through a transformer with a voltage gain
K(n). If it is a single-phase system then K(n) = n, the reciprocal of the turns ratio. If it is the per-phase
equivalent of a balanced three-phase system then K(n) may be complex if the transformer is not in YY or
DD configuration. Given the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for
the other side of the transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.20)
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(a) In standard unit

!V1pu =V2pu

+

−

!I1pu = I2pu
Zlpu

YmpuV1pu

+

−

I1pu

(b) In per unit

Figure 3.29: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.29(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2B

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤1pu = V2puI⇤2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.29(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for external behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.9.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area
satisfy the Kirchhoff’s laws, as long as the per-unit quantities in area 1 satisfy the Kirchhoff’s laws and
those in other areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer gain magnitudes is the
same, and (ii) the sum of ideal transformer phase shifts is the same. As discussed above these properties
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prevent loop flows between transformers, as illustrated in Example 3.7. Note that in Figure 3.28(b) of that
example, the secondary-side voltages of the two ideal transformers are the same but their primary-side
voltages are different when K2 = K1e jq with q 6= 0. The first property also ensures that the calculation
(3.20) of base values across areas is consistent, i.e., does not depend on the order in which the areas are
chosen for calculation; see Exercise 3.13.
Example 3.8 (Single-phase system). Consider the single-phase system in Figure 3.30 where the voltage
source has a nameplate rated voltage magnitude of v V and a nameplate rated power of s VA. Calculate

V1

+

−

V2

+

−

I2I1

1: 3n

Zl

e jπ /6
+

−

!"#$ V3

+

−

I3

1: 3n

Zl

e jπ /6 Zload

Zline

%

1: () (*: 1

area		1 area		2 area		3

Figure 3.30: Single-phase system for Example 3.8 with a rated voltage magnitude of v in V and a rated
apparent power of s in VA.

the base values for the system.

Solution. Let the base value for power be SB := s in VA for the entire system and the base value for voltage
in area 1 (where the voltage source is) be V1B := v in V . Then the base values for currents and impedances
in area 1 are respectively:

I1B :=
s
v

A and Z1B :=
v2

s
W

The base values in area 2 connected by the first transformer with a voltage gain n1 are:

V2B := n1V1B = n1 v V

I2B :=
I1B

n1
=

s
n1v

A

Z2B := n2
1 Z1B =

(v1v)2

s
W, Y2B :=

1
Z2B

=
s

(v1v)2 W�1

The base values in area 3 connected by the second transformer are:

V3B :=
V2B

n2
=

n1

n2
v V

I3B := n2 I2B =
n2

n1

s
v

A

Z3B :=
1
n2

2
Z2B =

n2
1

n2
2

v2

s
W, Y3B :=

1
Z3B

=
n2

2
n2

1

s
v2 W�1
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3.5.3 Off-nominal transformer

Power systems employ two types of regulating transformers. The first type regulates voltage magnitudes,
e.g., through variable taps on some of its windings that control the number of turns and hence the voltage
gain. Such a transformer is usually connected at the end of a line to regulate the voltage magnitude at a
node. Its turns ratio may be variable and different from the ratio of the voltage bases in its primary and
secondary areas. The second type regulates phase angle displacement between two nodes. Their voltage
gains may be complex K(n) = r\f where f may be variable and cannot be omitted in normalization.
These transformers are said to be off-nominal. They will not disappear under per-unit normalization but
will appear as a transformer with a different (normalized) voltage gain, as we now explain.

Consider an ideal transformer with a possibly complex voltage gain V2
V1

=: K(n) as shown in Figure
3.31(a). Suppose the ratio of the voltage base in area 2 to that in area 1 is V2B

V1B
=: r . Since

V2 = K(n)V1 =
K(n)

r
·rV1

the transformer is equivalent to two ideal transformers in series with voltage gains r and K(n)/r respec-
tively as shown in Figure 3.31(b). Since the first transformer has an voltage gain of r , it disappears in
per-unit normalization and hence the per-unit equivalent circuit of the original transformer has a gain re-
duced by r as shown in Figure 3.31(c). For instance for a phase shifting transformer with voltage gain
K(n) = r\f its voltage gain in the per-unit circuit will be 1\f .

Example 3.9 (Normalization with connection-induced phase shifts). Consider a balanced three-phase
ideal transformer in DY or Y D configuration with a complex voltage gain K(n). Let the bases for one
side of the transformer be (SB,V1B, I1B,Z1B). Choose the bases for the other side according to (3.20).
Suppose we cannot ignore the connection-induced phase shift. Then the per-unit equivalent circuit of the
ideal transformer will be an off-nominal phase shifting transformer with a gain K(n)

|K(n)| = \K(n) as shown
in Figure 3.32.

As we will see in Chapter 4.2 a nonideal transformer, whether in standard unit or per unit, can be
represented by a phase impedance matrix for power flow analysis.

3.5.4 Three-phase quantities

In Chapters 3.5.1–3.5.3 we explain how to choose bases for a single-phase system. They are also applica-
ble to the per-phase equivalent of a three-phase system where the voltages and currents are line-to-neutral
voltages and line-to-neutral currents. Suppose the base values (S1f

B ,V 1f
B , I1f

B ,Z1f
B ) for a single-phase sys-

tem are given. When single-phase devices (sources, loads, impedances, transformers) are connected to
form a balanced three-phase system, three-phase quantities are created for which base values need to
be defined. For instance the ratings of a three-phase transformer are always specified in terms of three-
phase power and line-to-line voltages. In this subsection we will derive these base values, in terms of
(S1f

B ,V 1f
B , I1f

B ,Z1f
B ), in a way that respects three-phase relations. The main issue is to define the meaning

of these base values and the relation they intend to capture in Y and in D configurations.
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Scanned with CamScanner
Figure 3.31: Normalization of an off-nominal transformer.

Scanned with CamScanner

Figure 3.32: Normalization when connection-induced phase shifts cannot be ignored.
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Let (S1f ,V 1f , I1f ,Z1f ) denote respectively the power generated or consumed by a single-phase device,
the voltage across and current through the device, and the impedance of the device. We are interested in the
following three-phase quantities. The three-phase power S3f is defined to be the sum of power generated
or consumed by each device in either Y or D configuration. The line-to-line voltages V ll and terminal (line)
currents I3f are external quantities. In an Y configured three-phase device, a line-to-neutral voltage V ln

and a three-phase impedance Z3f are equal to the voltage V 1f and impedance Z1f respectively associated
with each single-phase device. For a D configured three-phase device V ln and Z3f are defined to be the
line-to-neutral voltage and the impedance respectively in its Y equivalent circuit. As explained in Chapter
1 these quantities are related to the corresponding single-phase quantities according to:5

S3f = 3S1f , V ll =
p

3eip/6V ln (3.21a)

I3f =

⇢
Ian = I1f for Y configuration
Iab� Ica =

p
3e� jp/6I1f for D configuration

(3.21b)

V ln =

(
V 1f for Y configuration⇣p

3e jp/6
⌘�1

V 1f for D configuration
(3.21c)

Z3f =

⇢
Z1f for Y configuration
Z1f/3 for D configuration (3.21d)

Motivated by the three-phase relations (3.21) we define the base values (S3f
B ,V ll

B , I3f
B ,V ln

B ,Z3f
B ) for the

three-phase quantities (S3f ,V ll, I3f ,V ln,Z3f ) in terms of the single-phase base values (S1f
B ,V 1f

B , I1f
B ,Z1f

B )
as follows:

S3f
B := 3S1f

B , V ll
B :=

p
3V ln

B (3.22a)

I3f
B :=

(
I1f
B for Y configurationp

3 I1f
B for D configuration

(3.22b)

V ln
B :=

(
V 1f

B for Y configuration�p
3
��1V 1f

B for D configuration
(3.22c)

Z3f
B :=

(
Z1f

B for Y configuration
Z1f

B /3 for D configuration
(3.22d)

In light of (3.19) we could also have defined the base values I3f
B and Z3f

B in terms of S3f
B and V ll

B as (see
Exercise 3.14):

I3f
B :=

S3f
Bp

3V ll
B

, Z3f
B :=

�
V ll

B
�2

S3f
B

(3.22e)

These definitions replace (3.22b) and (3.22d) and are applicable for both Y and D configurations (note that
V ll

B are different functions of V 1f
B for Y and D configurations).

5
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With these base values the per-unit quantities satisfy the following relations (see Exercise 3.15):

S3f
pu = S1f

pu , V ll
pu = V ln

pu, Z3f
pu = Z1f

pu (3.23a)
���I3f

pu

��� =
���I1f

pu

��� ,
���V ln

pu

��� =
���V 1f

pu

��� (3.23b)

Therefore in per unit, the three-phase power, voltage, current and impedance equal their per-phase quan-
tities (at least in magnitude). In particular when one says that the voltage magnitude is 1 pu, it means that
the line-to-line voltage magnitude is 1 pu (i.e., equal to its base value V ll

B which is
p

3V 1f
B for Y configura-

tion and V 1f
B for D configuration), and the phase voltage magnitude is 1 pu (i.e., equal to its base value V ln

B

which is V 1f
B for Y configuration and

�p
3
��1V 1f

B ). We sometimes need not specify whether a per-unit
voltage is line-to-line or line-to-neutral, or whether a per-unit power is single-phase or three-phase. In D
configuration the line-to-neutral voltage V ln

pu is related to single-phase voltage V 1f
pu according to

V ln
pu :=

V ln

V ln
B

=

⇣p
3eip/6

⌘�1
V 1f

�p
3
��1V 1f

B

= e�ip/6V 1f
pu

Similarly for line currents I3f
pu and I1f

pu .

The next example illustrates the calculation of three-phase bases from single-phase bases. It shows
in particular that impedances, including transformer parameters, will have the same per-unit values in
single-phase or three-phase circuits and regardless of Y or D configuration.

Example 3.10 (Three-phase system). Consider a single-phase distribution transformer with nameplate
ratings of

• Power rating (1f ): 50 kVA;

• Voltage ratio: 408 V – 120 V;

• Transformer parameter: Xl = 0.1 pu, Xm = 100 pu (referred to the primary).

They are used to build three-phase transformer banks in YY , DD, DY or Y D configurations. Find the per-
unit normalization “induced” by the nameplate ratings and the impedance diagram of the per-phase circuit
in per unit.

Solution. The nameplate-induced base for the single-phase transformer is such that the power rating is
1pu and voltage rating is 1pu. Hence

S1f
B := 50kVA, V 1f

1B := 408V, V 1f
2B := 120V

Therefore the current bases are

I1f
1B :=

S1f
B

V 1f
1B

=
50kVA
408V

= 122.55A, I1f
2B :=

S1f
B

V 1f
2B

=
50kVA
120V

= 416.67A
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Since S = |V |2/Z, the impedance base for the single-phase transformer induced by the nameplate ratings
is:

Z1f
1B =

⇣
V 1f

1B

⌘2

S1f
B

=
(408V)2

50kVA
= 3.33W, Z1f

2B =

⇣
V 1f

2B

⌘2

S1f
B

=
(120V)2

50kVA
= 0.29W

Hence the actual transformer reactances Xl and Xm in W in the single-phase system are:

Xl = (0.1)Z1f
1B = 0.333W, Xm = (100)Z1f

1B = 333W

Consider now a three-phase transformer bank obtained from connecting three of these single-phase
transformers. We consider first the base values for the primary side; the base values for the secondary
side can be similarly chosen. What we will find is that if we choose our bases (S3f

B ,V ll
B , I3f

B ,Z3f
B ) accord-

ing to (3.22), then the impedance diagram of the per-phase equivalent circuit is independent of Y or D
configuration.

Case 1: primary side in Y configuration. From (3.22), the base values of the three-phase power and
line-to-line voltage induced by the nameplate ratings are

S3f
B := 3S1f

B = 3(50) = 150kVA

V ll
1B :=

p
3V 1f

B =
p

3(408) = 706.68V

These three-phase quantities are used as the power and voltage ratings on the three-phase transformer
nameplate. Hence a line voltage of 1 pu corresponds to the rated primary voltage (706.68 V) on the
nameplate. The base values for the terminal currents and impedances are:

I3fY
1B := I1f

1B = 122.55 A, Z3fY
1B := Z1f

1B = 3.33W

It can be checked that (S3f
B ,V ll

B , I3f
B ,Z3f

B ) as defined indeed satisfy three-phase relations:

I3fY
1B =

S3f
Bp

3V ll
1B

, Z3fY
1B =

�
V ll

B
�2

S3f
B

Since Z3fY
1B = Z1f

1B , Xl = 0.1pu and Xm = 100pu as before for the three-phase transformer.

Case 2: primary side in D configuration. From (3.22), the base values of the three-phase power and
line-to-line voltage induced by the nameplate ratings are

S3f
B := 3S1f

B = 3(50) = 150kVA, V ll
1B := V 1f

B = 408V

The terminal current and the impedance bases are:

I3fY
1B :=

p
3 I1f

1B =
p

3(122.55) = 212.26 A, Z3fD
1B =

Z1f
B
3

=
3.33

3
= 1.11 W
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To convert the transformer circuit model in D configuration to its equivalent Y configuration, the trans-
former reactances are reduced by a factor of 3, i.e., XY

l = Xl/3 and XY
m = Xm/3. Hence the transformer

reactances in pu are:

XY
lpu :=

XY
l

Z3f
1B

=
Xl/3

Z1f
1B/3

=
Xl

Z1f
1B

= 0.1 pu

XY
mpu :=

XY
m

Z3f
1B

=
Xm/3

Z1f
1B/3

=
Xm

Z1f
1B

= 100 pu

as expected.

In summary, with the three-phase base values defined in (3.22), the transformer reactances Xl and Xm
remain the same in pu regardless of how the single-phase transformers are connected into a three-phase
transformer bank. The impedance diagram of its per-phase circuit is shown in Figure 3.33.

V1pu

+

−

V2pu

+

−

I2puI1pu
jXlpu

jXmpu

Figure 3.33: Impedance diagram of a three-phase transformer bank.

3.5.5 Per-unit per-phase analysis

Consider a balanced three-phase normal system. Recall that the nameplate ratings of three-phase trans-
formers are specified in terms of their three-phase power and line-to-line voltages. The procedure for
per-unit per-phase analysis is summarized as follows:

1. For a single-phase system, pick a power base S1f
B for the entire system and a voltage base V ln

1B in one
of the areas, e.g., induced by the nameplate ratings of one of the single-phase transformers.

2. For a balanced three-phase system, pick a three-phase power base S3f
B and line-to-line voltage base

V ll
1B induced by the nameplate ratings of one of the three-phase transformers in area 1 (choose either

the primary or secondary circuit as area 1). Then choose the power and voltage bases for the per-
phase equivalent circuit of the balanced three-phase system according to (3.22a):

S1f
B :=

S3f
B
3

and V 1f
1B :=

V ll
1Bp
3

S1f
B will be the power base for the entire per-phase circuit.
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3. Calculate the current and impedance bases in that area by:

I1B :=
S1f

B

V 1f
1B

and Z1B :=

⇣
V 1f

1B

⌘2

S1f
B

4. Calculate the base values for voltages, currents, and impedances in areas i connected to area 1 by
the magnitudes ni of the transformer gains (assuming area 1 is the primary side of the transformers):

V 1f
iB := niV

1f
1B , V ll

iB := niV ll
1B IiB :=

1
ni

I1B, ZiB := n2
i Z1B

Continue this process to calculate the voltage, current, and impedance base values for all areas.

5. For real, reactive, apparent power in the entire system, use S1f
B as the base value. For resistances and

reactances, use ZiB as the base value in area i. For admittances, conductances, and susceptances, use
YiB := 1/ZiB as the base value in area i.

6. Draw the impedance diagram of the entire system, and solve for the desired per unit quantities.

7. Convert back to actual quantities if desired.

3.6 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]. Some of the materials on per-unit normalization, e.g., off-nominal regulating transformer
in Chapter 3.5.3, follow [2]. [8] describes a rigorous approach that treats per-unit normalization as a
similarity transformation of a dynamical system in the time domain. The per-unit normalization presented
in this chapter represents the steady-state of the per-unit dynamical system of [8].

3.7 Problems

Chapter 3.1.

Exercise 3.1 (T model of transformer). For the T equivalent circuit of transformer in Figure 3.34, show
that the transmission matrix T is given by


V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.24)

Hence if ym = 0 then

V1
I1

�
=


a n

�
zp +a2zs

�

0 n

�
V2
I2

�

which is the same as the transmission matrix T̂ in (3.7).



132 Draft: EE 135 Notes April 30, 2024










































































































Figure 3.34: Example 3.1: T equivalent circuit of transformer with n := N2/N1 and a := N1/N2.

Exercise 3.2 (T model of transformer). Given the primary voltages and primary currents (Vsc, Isc) and
(Voc, Ioc) of a short-circuit and open-circuit tests respectively, derive (3.6), reproduced here:

Vsc =

 
zp +

✓
ym +

1
a2zs

◆�1
!

Isc, Voc =

✓
zp +

1
ym

◆
Ioc (3.25)

from (3.4), reproduced here:

Nonideal elements: V1 = zpI1 +V̂1, Îm = ymV̂1, V̂2 = zsI2 +V2 (3.26a)

Ideal transformer: V̂2 =
N2

N1
V̂1, I2 =

N1

N2

�
I1� Îm

�
(3.26b)

where the series impedances

Exercise 3.3 (Simplified model). Consider the transformer model in Figure 3.5 with zl = zp +a2zs and its
transmission matrix T̂ in (3.7), reproduced here


V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
T̂


V2
I2

�
(3.27)

This question shows that when the shunt admittance matrix ym is small compared with the series admit-
tances zs, T̂ is a good approximation of T , the transmission matrix in (3.24). Let e := a2zsym.

1. Show that their difference is

T̂ �T = e


a �nzp
0 �n

�

2. Suppose zp = hzs = h(rs + ixs) for some real number h > 0 with rs > 0 and xs > 0, ym =�ibm with
bm > 0, and |e|⌧ 1. Show that

kT̂ �Tk
kTk < |e| ⌧ 1

where kAk denotes the sum norm kAk := Âi, j |Ai j|.
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Exercise 3.4 (Unitary voltage network). Show that the T equivalent circuit described by

V1
I1

�
=


a(1+ zpym) azs(1+ zpym)+nzp

aym n+azsym

�

| {z }
T


V2
I2

�
(3.28)

is equivalent to the transformer model I = (MYuvnM)V given by (3.11).

Exercise 3.5 (Unitary voltage network). Show that, instead of the numbers N1, N2 of turns of the primary
and secondary windings respectively, the admittance matrix MYuvnM in (3.11) can equivalently be written
in terms of the turns ratio a := N1/N2:

MYuvnM =
ypys

a2ym +a2yp + ys


1+a2ym/ys �a
�a a2(1+ ym/yp)

�

Chapter 3.2.

Exercise 3.6 (Y D configuration). Consider the three-phase transformer with Y -configured primary side on
the left and D-configured secondary side on the right as shown in Figure 3.35 with a voltage gain n. Show
that the voltage gain Vsecondary/Vprimary is K(n) := np

3
e�ip/6.

Note that the voltage gain K(n) := np
3

e�ip/6 is equal to the inverse of the voltage gain KDY (1/n) for a
DY -configured transformer, i.e.,

K(n) =
1

KDY (1/n)

This means that this transformer is identical to a DY transformer with its primary and secondary sides
switched. It is unlike the voltage gain of the Y D-configured transformer with connectivity shown in Figure
3.13(b).

a

bc

n

b’

c’

a’

Figure 3.35: Exercise 3.6: Three-phase transformers in Y D configuration.
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a 

c 

b’ 

c’ 

Zl

Ym

Ym

Ym

b 

a’ 

Zl

Zl

(a) DY configuration

Van

+

−

Va 'n '

+

−

Ia 'Ia

1: 3n

Zl / 3

3Ym e jπ /6

KΔY (n)

V

+

−

I

(b) Per-phase circuit

Figure 3.36: Model of three-phase transformers in DY configuration and its per-phase equivalent circuit.

Exercise 3.7. Figure 3.36 shows a model of balanced three-phase transformers in DY configuration and
its per-phase equivalent circuit. Show that the mapping from (Va0n0 , Ia0) to (Van, Ian) is given by


Van
Ia

�
=


K�1

DY (n)(1+ZlYm) K⇤DY (n)Zl
3

K�1
DY (n)(3Ym) K⇤DY (n)

�
Va0n0

Ia0

�

where KDY (n) :=
p

3n e jp/6 and Ym :=� j/Xm.

Exercise 3.8 (Referring shunt admittance in one side to the other). Show that the transmission matrix for
the circuit in Figure 3.20(a) is the same as that in Figure 3.20(b) provided that the relation (3.14b) between
shunt admittances Yp and Ys holds.

Exercise 3.9 (Transmission matrix). Consider a balanced three-phase ideal transformer with a complex
gain K(n) connected to a balanced three-phase series impedance Zs and a balanced three-phase shunt
admittance Ys on the secondary side. The per-phase equivalent circuit is shown in Figure 3.37(a). Show
directly that transmission matrix of the circuit in Figure 3.37(a) is the same as that in Figure 3.37(b)
provided the relation (3.14) between impedances/admittances (Zp,Yp) and (Zs,Ys) holds.

.

Exercise 3.10 (Driving-point impedance). Refer to Figure 3.23.

1. Show that the driving-point impedance V1/I1 on the primary side is the same in both circuits in
Figure 3.23(a).
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V1

+

−

V2

+

−

I2I1

Ys

Zs

ideal$
transformer$

K(n) V

+

−

I

(a) (Zs,Ys) in the secondary

V1

+

−

V2

+

−

I2I1

Yp

Zp

ideal$
transformer$

K(n)

(b) (Zp,Yp) in the primary

Figure 3.37: Referring (Zs,Ys) on the secondary to the primary for an ideal transformer with a complex
gain K(n).

2. Show that the driving-point impedance V2/I2 on the secondary side is the same in both circuits in
Figure 3.23(b).

Exercise 3.11 (Driving-point impedance on primary side). Suppose the secondary sides of the (equivalent)
circuits in Figure 3.37 are connected to an identical load Zload so that V2 = Zload I2 in both circuits.

1. Show that the driving-point impedances on the primary side of the circuit in Figure 3.37(a) is:

V1

I1
=

1
|K(n)|2

 
Zs +

1
Ys +Z�1

load

!
(3.29a)

The term in the bracket is the Thévain equivalent impedance in the secondary circuit, seen from the
output of the ideal transformer.

2. Show that the driving-point impedances on the primary side of the circuit in Figure 3.37(b) is:

V1

I1
= Zp +

1
Yp + |K(n)|2 Z�1

load
(3.29b)

3. Show that (3.29a) and (3.29b) are equivalent provided that (Zp,Yp) and (Zs,Ys) satisfy (3.14).

Exercise 3.12. Consider the balanced three phase system in Figure 3.38 where the line-to-line voltage of
the three-phase generator in D configuration is Vgen. The 3f transformer consists of single-phase trans-
formers in DY configuration. Each single-phase transformer is modeled by a series impedance Zl (and
negligible shunt admittance) on the primary side followed by an ideal transformer with turn ratio n. The
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Zline,
Ym
2
,Ym
2

!

"
#

$

%
&

Zload

Δ YVgen
~

1:n
transmission#line##

Zl

Figure 3.38: A three-phase generator in D configuration connected to a three-phase DY transformer and
then to a three-phase load in Y configuration through a three-phase AC transmission line.

transmission line is modeled by a P-model with a series impedance Zs and a shunt admittance Ym/2 at each
end of the line. The transmission line is connected to a balanced 3f impedance load in Y configuration
with an impedance Zload in each phase.

1. Draw the equivalent per-phase circuit.

2. Derive the complex power delivered to the load Zload in each phase.

Exercise 3.13 (Bases across transformers). For a normal system, on each parallel path in its per-phase
equivalent circuit, the product of ideal transformer gain magnitudes is the same. Show that this property
allows us to consistently define base values between two neighboring areas using (3.20). (Hint: Show that
around any loop, (3.20) holds only if the product of voltage gain magnitudes around the loop is 1.)

Exercise 3.14 (Terminal current and three-phase impedance bases). Show the definition (3.22b) (3.22d)
for base values I3f

B and Z3f
B respectively are equivalent to definition (3.22e).

Exercise 3.15 (Per unit properties). Prove the per-unit properties (3.23).

Exercise 3.16 (Caltech ACN: transformers). Figure 3.39 shows the layout of the Adaptive Charging Net-
work (ACN) for electric vehicles (EVs) in a Caltech garage. The Caltech ACN consists of two three-phase
stepdown transformers in DY configuration with D on the primary side. Each of these transformers is con-
nected to an electric panel, to which charging stations and subpanels are connected. Figure 3.40(a) shows
the two three-phase transformers and the two electric panels. Figure 3.40(b) shows the ratings of each of
the three-phase transformers:

• Power rating 150 kVA (three-phase).

• Primary (high voltage) side: 480V in Delta configuration with rated line current of 180A.

• Secondary (low voltage) side: 208Y/120V in Wye configuration with rated line current of 416A.
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Figure 3.39: Caltech Adaptive Charging Network (ACN) layout.

(a) Transformers and panels (b) Transformer ratings

Figure 3.40: (a) The two 150 kVA transformers and two electric panels in Caltech ACN to which charging
stations and electric subpanels are connected. (b) The transformer ratings.
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• Impedance voltage (percentage impedance): b = 5.45% on the primary side (the shunt admittance
is negligible).

The impedance voltage is the voltage drop across the series impedance Zl on the primary side of the
transformer in a short-circuit test, as a percentage of the rated primary voltage. In a short-circuit test the
secondary side is short-circuited. The b specification means that the voltage needed on the primary side
to produce a rated primary current is b times the rated primary voltage.

Verify that the rated line currents on the primary and secondary sides are consistent with the power
rating and voltage ratings. Determine the magnitude |Zl| of the series impedance of the transformer and
draw the circuit model of the three-phase transformer.

Exercise 3.17 (Caltech ACN: estimating distribution line impedances). Suppose the transformer in Exer-
cise 3.16 is connected to a three-phase voltage source with a line voltage of |Vline| = 480V on the primary
side through a three-phase distribution line modeled by a series impedance Zline,1, and to a three-phase load
on the secondary side through another three-phase distribution line modeled by a series impedance Zline,2,
as shown in Figure 3.41. Suppose the system is balanced. The load is a three-phase constant-current load

Zline,2

load

Vline
~

distribu7on##
line##

Δ Y

1:n
Zl

Zline,1

distribu7on##
line##

Figure 3.41: The three-phase transformer is connected to a three-phase voltage source and a three-phase
load through two three-phase lines.

in D configuration with a known current Iload from phase a to phase b. The voltage is measured to be V2
across the load between phase a and phase b. The phase a voltage on the secondary side of the transformer
(before the distribution line) is measured to be Van.

Determine the distribution line impedances Zline,1 and Zline,2 in terms of the line voltage |Vline|, the
series impedance Zl of the transformer, and the complex gain K(n) of the ideal DY transformer, as well as
the measured voltages V2,Van and current Iload. Assume without loss of generality that the voltage source
has Vab = |Vline|\0� and the sources are in positive sequence.

Exercise 3.18 (Caltech ACN: network design). This problem considers the deployment costs of different
network designs for ACN. Referring to Figure 3.40(a), the output (secondary side) of each of the 150 KVA
transformers is connected to the input of one of the two electric panels. A wire connects a circuit breaker
in the panel to an electric vehicle (EV) charger or a subpanel and these wires are housed in conduits. We
consider the network that connects all the EV chargers to one of the two panels in Figure 3.40(a). In
this network, the main components are wires, conduits, and subpanels and the types and sizes of these
hardware determine the deployment costs, both parts and labor. The types and sizes depend on the current
limit (ampacity) of each wire segment required to carry the current to chargers it supplies and the distance
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Figure 3.42: Caltech ACN network design.

of that wire segment. Consider an idealized layout in Figure 3.42 where the network connects a total of nk
EV chargers to the electric panel. These chargers are clustered into n groups. Each group i is associated
with a junction i = 1, . . . ,n as shown in the figure. Every group consists of k identical chargers labeled by
EV1, . . . ,EVk. Each charger can draw a maximum current of I (in A).

Design 1. The first design runs a wire from the electric panel at junction 0 directly to each charger
following the path labeled in black in Figure 3.42(a). Let (D,Ai) denote the distance and the cross-sectional
area of the wire between each junction i�1 to i. Let (d,a) denote the distance and the cross-sectional area
of the wire from a junction to every EV in its group. The cross-sectional area of a wire depends on the
maximum current it needs to supply. We assume the maximum current that can be drawn by any charger
is the same, and therefore the wires from a junction to any EV in its group all have the same size a. The
wire size Ai between junctions i�1 and i depends on the layout. In design 1, Ai = a for all i. This will be
different in design 2 (see below).

For example, the wire connecting EV1 in group 1 goes from junction 0 (electric panel) to junction 1 to
the charger, as shown in blue, and has a total length of D+d and size a. The wire connecting EVk in group
n goes from junction 0 to junctions 1, . . . ,n, to the charger, and has a total length of nD+d and size a.

Design 2. In this design a single wire of length D and size A1 connects the electric panel at junction 0 to an
electric subpanel at junction 1; see Figure 3.42(b). Then k wires each of length d and size a connects the
k chargers in group 1 to the subpanel. A single wire of length D and size A2 < A1 connects the subpanel
at junction 1 to a subpanel at junction 2, and k wires each of (d,a) then connects the k chargers in group
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2, and so on.

For both design 1 and design 2, the cross-sectional area of the wire used for any segment of the layout
depends on the maximum current (called the ampacity of the wire in ampere) that it needs to carry. That
is, the wire sizes a,Ai above are functions a(x) where x is the ampacity. See below for an example of
a(x).

Deployment costs. The total deployment cost (parts and labor) involve mainly three types of hardware.

1. Wire. The cost of deploying a wire of length l and cross-sectional area a is denoted by the function
Cw(l ,a).

2. Conduit. The cost Cc(l ,a) of deploying a conduit of length l that carries wires with a total cross-
sectional areas a has two components:

Cc (l ,a) := Cc1 (l ,a) + Cc2 (a)

The first component Cc1(l ,a) depends on the length l and total wire size a , the longer and larger
the conduit, the higher the cost. The second component Cc2(a) depends only on the total wire size
a and is usually a step function: when the total wire size exceeds a threshold, a special machine is
needed to deploy the conduit at an extra cost. In Design 1, all wires that share the same segment
(say) between junctions i� 1 to i will be housed in the same conduit. For example, the conduit
between junction 1 and junction 2 will carry (n� 1)k wires. We assume that if a conduit carries
wires of areas a1, . . . ,am, then the total wire size is simply its sum a := Âm

i=1 ai.

3. Subpanel. For simplicity we assume every subpanel (in design 2) has the same cost cs.

Assumptions on cost functions. Assume the cost functions take the following form:

Cw(l ,a) := cw l a, Cc1(l ,a) := cc l a, Cc2(a) = b 1(a � t) (3.30a)

Figure 3.43(a) shows the wire size dependence a(x) on ampacity x from (a version of) the American
Wire Gauge (AWG) standard. Based on the data, Figure 3.43(b) shows that a(x) can be well approximated
by a quadratic function

a(x) := x2 +0.6x+4 (3.30b)

with x in A and a(x) in mm2. The quadratic term represents the fact that the thermal power loss due
to a current I0 through a wire with resistance r is roughly rI2

0 . Doubling the current means that the
resistance must be scaled down by a factor of 4 in order to maintain the same heat loss. Since r is inversely
proportional to the cross-sectional area of the wire, this requires a wire with 4 times the area.

1. Evaluate the total cost of network design 1 and design 2.

2. Prove that design 1 is always less expensive than design 2 as long as the maximum current I that can
be drawn by a charger is at least 2A.6

6Currently a level-2 EV charger typically has a current limit of 32A or higher.
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AWG"#" ""
area"

(mm^2)" ""
ampacity"
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10   5.269   33 
8   8.347   46 
6   13.332   60 
4   21.156   80 
2   33.593   100 
1   42.429   125 
0   53.456   150 
00   67.491   175 

000   84.949   200 
0000   107.146   225 

(a) AWG table
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Figure 3.43: (a) American Wire Gauge (AWG) standard: dependence of wire cross-sectional area a(x) on
ampacity x. (b) The data for a(x) in the table can be approximated by the quadratic function in (3.30b).
The black solid line is the plot of the data and the orange dashed line is the quadratic fit.

Exercise 3.19 (Caltech ACN: network design). This problem generalizes problem 3.18 to show that design
2 is more expensive even for very general cost functions and wire size dependency. Suppose the cost
functions Cw(l ,a),Cc1(l ,a),Cc2(a) and the dependency of wire size a(x) on its ampacity satisfy the
following conditions:

C1: For any fixed a , Cw(l ,a) is linear in l . For any fixed l , Cw(l ,a) linear and increasing in a .

C2: Cc1(l ,a) is increasing in a for any fixed l . Cc2(a) is increasing in a .

C3: There is an ampacity set X such that for all x 2 X , a(ix)� ia(x) for any integer i� 1.

Prove that design 2 is more expensive for any ampacity x 2 X .

It can be easily verified that the cost functions and a(x) in (3.30) satisfy these conditions. In particular
the ampacity set X in condition C3 is X = {x� 2A}. Therefore the conditions C1–C3 allow a much larger
set of cost functions and a(x) than (3.30).

We now interpret these conditions to illustrate that they are realistic. Condition C1 says that the total
deployment cost (parts and labor) grows linearly in wire length l and in wire size a . If either one doubles,
the cost exactly doubles. Condition C2 says that regardless of its length, both the first and second cost
components of the conduit increase as the cross-sectional area of the conduit increases. Finally condition
C3 implies in particular that, for any ampacity x in X , doubling the ampacity more than doubles the cost.
As explained immediately after (3.30b), since thermal loss is quadratic in ampacity, the required wire size
satisfies this condition. The proof reveals that this is the key condition that makes design 2 more expensive
than design 1, i.e., it is always cheaper to use more and longer small wires because the wire size grows
faster than linearly in ampacity.
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Exercise 3.20 (Caltech ACN: network design). Problem 3.19 shows that, under very general and realistic
conditions, design 2 is always more expensive than design 1. This assumes that, in design 2, the ampacity
of the wire between junction i� 1 and i must be the sum of the ampacities of all the downstream wires
supplying groups i, i+1, . . . ,n. In practice however it is unlikely all the EV chargers in these groups will
draw maximum currents simultaneously and therefore it is reasonable to install a smaller ampacity between
junction i�1 and i, i.e., each subpanel can be over-subscribed. Discuss over-subscription conditions under
which design 2 is less expensive than design 1 (open-ended problem).



Chapter 4

Bus injection models

In previous chapters we introduce mathematical models of main power system components. In this and the
next chapters we use these models to describe a power network consisting of an interconnection of basic
components such as generators, loads, transmission lines and transformers. In Chapter 4.1 we summarize
the component models from previous chapters. In Chapter 4.2 we explain how to model a power network
by a matrix that linearly relates current injections to voltages at each node of the network. In Chapter 4.3
we present power flow equations that relate power injections and voltages at each node. In Chapter 4.4 we
discuss classical solution methods.

4.1 Component models

4.1.1 Single-phase sources and impedance

In Chapters 1.1.2 and 1.3.1 we describe circuit models of single-phase single-terminal devices as sum-
marized here. They are also per-phase models of balanced three-phase devices. Associated with each
device j is its terminal voltage, current, and power (Vj, I j,s j) 2 C

3. There is an arbitrary reference point
with respect to which all voltages are defined. If the common reference point is taken to be the ground
then voltage Vj is the voltage drop between terminal j and the ground. The current from terminal j flows
from the terminal to the reference point; see Figure 4.1. Such a single-terminal device is characterized by
relations between the terminal variables (Vj, I j,s j).

1. Voltage source
�
E j,z j

�
. This is a device with a constant internal voltage E j in series with an

impedance z j as shown in Figure 1.1.2(a). Its external model is the relation Vj = E j � z jI j be-
tween its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
E j�Vj

�H
/zHj

between the terminal variables
�
Vj,s j

�
.

2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.1.2(b). Its external model is the relation I j = Jj� y jVj between
its terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj� y jVj

�H between

143
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the terminal variables
�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj� z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z jI jIHj .

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj
��2 /zHj .

4.1.2 Single-phase line

In Chapter 2 we describe the P circuit model of a single-phase line. It is also a per-phase model of balanced
three-phase lines. A line has two terminals ( j,k) and is specified by a three-tuple (ys

jk,y
m
jk,y

m
k j)2C3 where

ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at terminal j, and ym

k j is
the shunt admittance of the line at terminal k; see Figure 4.1. Recall that if ( j,k) represents a transmission

+

−

+

−

!!"#

!!"$ !"!$

"!" , $!"

%! %"

$"! , ""!

reference point

Figure 4.1: P circuit model of a single-phase line.

line then (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k), and

the currents through these shunt admittances model the current supplied to the line capacitance called the
charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j)2C3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj�Vk) + ym

jk Vj, Ik j = ys
k j(Vk�Vj) + ym

k j Vk (4.1a)
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This defines a matrix Yline for a line that maps terminal voltages to sending-end currents:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�

| {z }
Yline


Vj
Vk

�
(4.1b)

where we have used the fact that ys
jk = ys

k j to obtain a symmetric Yline. The off-diagonal entries of Yline
are the negatives of the series admittances while the diagonal entries are the sum of series and shunt
admittances. As we will see this structure holds for general networks.

In general the sending-end currents
�
I jk, Ik j

�
are not negative of each other when the shunt admit-

tances are nonzero. Since ys
jk = ys

k j, their sum represents the total current loss along the line due to shunt
admittances:

I jk + Ik j = ym
jkVj + ym

k jVk 6= 0

Thermal limits on branch current flows should be imposed on both |I jk| and |Ik j|:

|I jk| =
���ys

jk(Vj�Vk) + ym
jk Vj

���  Imax
jk

|Ik j| =
���ys

k j(Vk�Vj) + ym
k j Vk

���  Imax
k j

not just on
���ys

jk(Vj�Vk)
��� unless the shunt admittances are zero.

V s relation. The sending-end line power flows from terminals j to k and that from terminals k to j are
respectively (using (4.1a)):

S jk := VjIHjk =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2 (4.2a)

Sk j := VkIHk j =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 (4.2b)

They are not negatives of each other because of power loss along the line. Since ys
jk = ys

k j, the total
complex power loss is:

S jk +Sk j =
⇣

ys
jk

⌘H ��Vj�Vk
��2 +

⇣
ym

jk

⌘H
|Vj|2 +

⇣
ym

k j

⌘H
|Vk|2 (4.3)

The first term on the right-hand side is loss due to series impedance and the last two terms are losses due
to shunt admittances of the line. Thermal limits on branch power flows should be imposed on both |S jk|
and |Sk j|:

|S jk| =

����
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2

����  Smax
jk

|Sk j| =

����
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2

����  Smax
k j
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not just on
����
⇣

ys
jk

⌘H �
|Vj|2�VjVH

k
����� and

����
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘���� unless the shunt admittances are zero.

If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (4.3) and (4.1a) and using ys

jk = ys
k j, we have

S jk +Sk j = zs
jk ·
���ys

jk

���
2 ��Vj�Vk

��2 = zs
jk
��I jk
��2

because I jk = ys
jk(Vj�Vk) = �Ik j when the shunt elements are zero and ys

jk = ys
k j. This is not the case

otherwise.

4.1.3 Single-phase transformer

In Chapter 3 we describe circuit models of a single-phase transformer. They are also per-phase models of
balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its voltage
gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the per-
phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ys

jk and shunt admittance ym
jk

in the primary circuit, as shown in Figure 4.2(a).
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−
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(a) Non-ideal transformer
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(b) Equivalent P circuit model (real n jk)

Figure 4.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

that the direction of Ik j at terminal k is opposite to that in Chapter 3. The behavior of the (possibly off-
nominal) transformer in Figure 4.2 is characterized by the relation between the terminal voltages (Vj,Vk)
and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and line powers

�
S jk,Sk j

�
, which we now explain.

Real voltage gain n jk. Using Kirchhoff’s and Ohm’s laws and transformer gains we have

I jk = ys
jk
�
Vj�a jkVk

�
, I jk = ym

jk a jkVk +n jk(�Ik j) (4.4a)
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This defines a matrix Ytransformer for the single-phase transformer:


I jk
Ik j

�
=

"
ys

jk �a jk ys
jk

�a jk ys
jk a2

jk

⇣
ys

jk + ym
jk

⌘
#

| {z }
Ytransformer


Vj
Vk

�
(4.4b)

If transformer gains are real then their terminal behavior can be modeled by a P circuit, the same way a
transmission line is. Specifically Ytransformer can be rewritten in terms of admittances

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
of a P

circuit:

Ytransformer :=


ỹs
jk + ỹm

jk �ỹs
jk

�ỹs
jk ỹs

jk + ym
k j

�

where

ỹs
jk := a jk ys

jk, ỹm
jk := (1�a jk)ys

jk, ỹm
k j := a jk(a jk�1)ys

jk +a2
jk ym

jk

as illustrated in Figure 4.2(b). In particular the shunt admittances ỹm
jk and ỹm

k j of the P circuit model are
different unless (1�a2)ys

jk = a2ym
jk.

Complex voltage gain K(n). A physical transformer always has a real voltage gain n. The per-phase
model of three-phase transformer in a balanced setting however can have a complex voltage gain K(n) as
we have seen in Chapter 3.2. In that case �nIk j in the above derivation should be replaced by KH

jk(n)Ik j,
and we have instead:


I jk
Ik j

�
=

"
ys

jk �ys
jk/Kjk(n)

�ys
jk/KH

jk(n)
⇣

ys
jk + ym

jk

⌘
/|Kjk(n)|2

#

| {z }
Ytransformer


Vj
Vk

�
(4.5)

In this case the matrix Ytransformer is not symmetric. This means that the terminal behavior of the trans-
former does not have an equivalent P circuit model, unless we can ignore connection-induced phase shifts
so that K(n) and K⇤(n) are both taken as |K(n)|. For transformers with complex gains we have to use (4.5)
for power flow analysis. See Chapter 8.2.3 for a more general discussion in the context of unbalanced
three-phase systems.

4.2 Network model: V I relation

In this section we explain how to use the component models of Chapter 4.1 to model a single-phase
network consisting of generators and loads connected by a network of transmission lines and transformers.
We will construct an equivalent circuit consisting of ideal voltage and current sources connected by a
network of series and shunt admittances. The nodal current injections and linearly related to nodal voltages
through a matrix called an admittance matrix. An admittance matrix is also called a network admittance
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matrix or a bus admittance matrix. The relation represents the Kirchhoff’s laws and the Ohm’s law. In this
section we derive the admittance matrix.

We start in Chapter 4.2.1 with a few examples, present in Chapter 4.2.2 our line model, and define in
Chapter 4.2.3 the admittance matrix Y for general networks. In Chapter 4.2.6 we explain Kron reduction of
an admittance matrix Y . In Chapter 4.2.4 we present a common numerical method for solving the current
balance equation I = YV . Finally in Chapter 4.2.5 we discuss sufficient conditions for the invertibility of
Y .

4.2.1 Examples

In this subsection we derive the admittance matrix Y of a single-phase network shown in Figure 4.3 where:

1. The generator on the left end is modeled as a current source with parameters (I1,y1).

2. The non-ideal single-phase transformer has a real voltage gain n, a series admittance yl and shunt
admittance ym in the primary circuit.

3. The transmission line is modeled as a series admittance y (and zero shunt admittances).

4. The motor load on the right end is modeled as another current source (I2,y2).

~
transmission#line##transformer#generator#

load#

Figure 4.3: One-line diagram of a generator supplying a load through a transformer and a transmission
line.

We will derive the admittance matrix Y for the overall system in two steps.

Example 4.1 (Non-ideal transformer and transmission line). Figure 4.4 shows the circuit model of the
non-ideal transformer in series with the transmission line. To determine the admittance matrix that relates












































































































Figure 4.4: A non-ideal transformer in series with a transmission line.
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(I1, I2) to (V1,V2), we introduce an additional network node in between the two series admittances yl and
ny with auxiliary voltage V3 and an auxiliary injection current I3 at node 3, as shown in the figure.

Since the voltage gain n is real, use the transformer model (4.4) and the line model (4.1) to get


I13
I31

�
=


yl �ayl

�ayl a2 �yl + ym�
�

V1
V3

�
,


I32
I23

�
=


y �y
�y y

�
V3
V2

�

Kirchhoff’s current law at each node gives:

I1 = I13, 0 = I3 = I31 + I32, I2 = I23

where I3 = 0 because node 3 is internal to the non-ideal transformer. Eliminating branch currents relates
nodal currents (I1, I2, I3) to nodal voltages (V1,V2,V3) through matrix Y1:

2

4
I1
I2
I3

3

5 =

2

4
yl 0 �ayl

0 y �y
�ayl �y y+a2 �yl + ym�

3

5

| {z }
Y1

2

4
V1
V2
V3

3

5 (4.6)

The matrix Y1 is complex symmetric and is therefore an admittance matrix that can be represented as a P
circuit as shown in Figure 4.5 where ỹs

13 := ayl , ỹm
13 := (1�a)yl and ỹm

31 := a(a�1)yl +a2ym.












































































































Figure 4.5: P circuit model of the system in Figure 4.4.

Example 4.2 (Overall system). Finally the circuit model of the overall system that includes the two cur-
rent sources that model the generator and the load is shown in Figure 4.6(a). The only changes to the
admittance matrix, compared with the admittance matrix Y1 in (4.6), are the additional shunt admittances
y1,y2 at nodes 1 and 2 respectively. They should be added to the first two diagonal entries of Y1. The
overall network can therefore be modeled by an admittance matrix Y that relates nodal current injections
and nodal voltages (setting I3 = 0):

2

4
I1
I2
0

3

5 =

2

4
yl + y1 0 �ayl

0 y+ y2 �y
�ayl �y y+a2 �yl + ym�

3

5

| {z }
Y1

2

4
V1
V2
V3

3

5

The terminal behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.
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yV1 V2

generator# load#

y1
sI1 y2

s I2

(a) One-line diagram










































































































 (b) Equivalent circuit model

Figure 4.6: Generator, transformer, transmission line and load.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[N,
N := {1,2, . . . ,N} and E ✓ N⇥N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.












































































































Figure 4.7: Network graph and notations.

For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal voltages at each end of the line. Let I jk denote

the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each line
( j,k) 2 E is characterized by four admittances

⇣
ys

jk,y
m
jk

⌘
2 C

2 from j to k and
⇣

ys
k j,y

m
k j

⌘
2 C

2 from k to

j; see Figure 4.7. We call
⇣

ys
jk,y

s
jk

⌘
the series admittances and

⇣
ym

jk,y
m
jk

⌘
the shunt admittances of line

( j,k). They define the relation between
�
Vj,Vk

�
and

�
I jk, Ik j

�
:

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
k j(Vk�Vj) + ym

k jVk (4.7a)

or in matrix form:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

k j ys
k j + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(4.7b)

We emphasize that the series admittances ys
jk and ys

k j may be different and therefore this general model may
not have a P circuit representation. It can model single-phase transmission or distribution lines, single-
phase transformers, and per-phase models of balanced three-phase transformers with real or complex
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voltage gains, as derived in Chapters 4.1.2 and 4.1.3. Moreover, as we have seen in Example 4.2, a line
( j,k) in the graph G, the matrix Yjk may also contain generator and load impedances. In general the shunt
admittances ym

jk and ym
k j are different.

We will often restrict ourselves to the special case where the series admittances are equal ys
jk = ys

k j.
Then (4.7) reduces to

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
jk(Vk�Vj) + ym

k jVk (4.8a)

or in terms of Yjk:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(4.8b)

Since Yjk is symmetric, it has a P circuit representation and behaves like a transmission or distribution
line (though with generally different ym

jk and ym
k j). We characterize such a line by three admittances⇣

ys
jk,y

m
jk,y

m
k j

⌘
. This model cannot be used as the per-phase model of a balanced three-phase transformer in

DY or Y D configuration that has a complex voltage gain K(n). It is however widely applicable, e.g., when
the network does not contain transformers with complex voltage gains or when used in per unit systems
where (nominal) transformers disappear. We therefore often adopt this model and will explicitly state it as
assumption C4.1 when we use it.

4.2.3 Admittance matrix Y

In bus injection models we are interested in nodal variables (Vj, I j,s j)2C3, j 2N, where Vj is the complex
voltage at bus j with respect to an arbitrary but fixed common reference point, e.g., the ground. Here I j
and s j are the complex nodal current and power injections respectively into the network at bus j. As
mentioned above they can be interpreted as flowing from terminal j to the common reference point in
the circuit model. Bus 0 is the slack bus. Its voltage is fixed and we sometimes assume that V0 = 1\0�
per unit (pu), i.e., the voltage drop between bus 0 and the reference point is 1\0�. A bus j 2 N can
have a generator, a load, both or neither and

�
I j,s j

�
are the net current and power injections (generation

minus load) at bus j. We often use s j to denote both the complex number p j + iq j 2 C and the real pair
(p j,q j) 2 R

2 depending on the context. The nodal quantities are related by s j = VjIHj for each bus j 2 N.

The nodal current injections I := (I j, j 2 N) and voltages V := (Vj, j 2 N) are linearly related. The
admittance matrix Y relates, not the line currents, but the net nodal current injections I to nodal voltages
V . Applying (4.7) to KCL I j = Âk: j⇠k I jk at each node j, we have1

I j = Â
k: j⇠k

I jk =

 

Â
k: j⇠k

ys
jk + ym

j j

!
Vj � Â

k: j⇠k
ys

jkVk, j 2 N (4.9a)

1If there is a load attached to bus j with shunt admittance ysh
j , then the net injection becomes I j�ysh

j Vj = Âk: j⇠k I jk instead
of I j on the left-hand side of (4.9a).
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where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (4.9b)

In vector form, this is I = YV where the matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(4.9c)

We refer to Y that maps nodal voltages to nodal current injections as an admittance matrix, or a network
admittance matrix or bus admittance matrix. Equation (4.9c) prescribes a way to write down the admit-
tance matrix Y by inspection of the network connectivity and line admittances: its off-diagonal entries are
the negatives of series admittances

⇣
ys

jk,y
s
k j

⌘
in each direction on line ( j,k) while its diagonal entries are

the sum of the series and shunt admittances incident on the corresponding buses. Note that Yjk and Yk j
may not be equal if ( j,k) models a transformer.

If we restrict ourselves to the special line model (4.8) where ys
jk = ys

k j for all ( j,k) 2 E, then each line
( j,k) has a P circuit representation, i.e., behaves like a transmission or distribution line. The admittance
matrix Y is then complex symmetric. It is not Hermitian unless Y is a real matrix. Since this special line
model is widely used, we label the following assumption and will explicitly state it when it is required:

C4.1: The series admittances ys
jk = ys

k j for every line ( j,k) 2 E so that the single-phase admittance
matrix Y is complex symmetric.

Example 4.3. Consider the three-bus network shown in Figure 4.8. Under condition C4.1, each line ( j,k)

V1 V2

I2I1

y12
s , y12

m , y21
m( )

y13
s , y13

m, y31
m( )

V3

I3

y23
s , y23

m , y32
m( )

I12

I13

I21

Figure 4.8: Three-bus network of Example 4.3.

is modeled by a P circuit with series and shunt admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. The sending-end branch current

from bus j to bus k is I jk and that from bus k to bus j is Ik j. Applying Kirchhoff’s current law and Ohm’s



Draft: EE 135 Notes April 30, 2024 153

law at bus 1 gives

I12 = ys
12(V1�V2) + ym

12V1

I13 = ys
13(V1�V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

where

ys
jk = ys

k j, ym
j j := Â

k: j⇠k
ym

jk

Again the off-diagonal entries of the admittance matrix Y are given by the series admittances on the lines:

Yjk :=
⇢
�ys

jk if j ⇠ k ( j 6= k)
0 otherwise

and the diagonal entries of Y by the sum of series and shunt admittances incident on buses j:

Yj j := Â
k: j⇠k

ys
jk + ym

j j

Under Assumption C4.1, the admittance matrix Y given in (4.9) can also be expressed in terms of more
elementary matrices. Fix an arbitrary orientation for the graph G := (N,E) so that a line l = i! j 2 E is
now considered pointing from bus i to bus j. Let C 2 {�1,0,1}|N|⇥|E| be the bus-by-line incidence matrix
defined by:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

Let Ds
y := diag

�
ys

l , l 2 E
�

be the |E|⇥ |E| diagonal matrix with the series admittances ys
l as its diagonal

entries. Let Dm
y := diag

⇣
ym

j j, j 2 N
⌘

be the |N|⇥ |N| diagonal matrix with the total shunt admittances ym
j j

in (4.9b) as its diagonal entries. Then the admittance matrix in (4.9c) is, when ys
jk = ys

k j,

Y = C Ds
yC

T + Dm
y (4.10)

Clearly the matrix CDs
yC

T has zero row and column sums. It verifies that Y is symmetric but not Hermitian
unless Ds

y and Dm
y are real matrices. This representation can be used to study the inverse of Y ; see Exercise

4.7.
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Figure 4.9: Multiple devices connected to the same bus.

Remark 4.1 (Nodal devices). Our notation for current injection I j suggests that there is a single device at
each bus j. This simplifies notation and loses no generality. If there are multiple devices connected to bus
j, e.g., a non-ideal voltage source

⇣
E j,zv

j

⌘
, a non-ideal current source

⇣
Jj,yc

j

⌘
, and a bus shunt admittance

ya
j or equivalently its impedance zi

j =
⇣

ya
j

⌘�1
, as shown in Figure 4.9. then I j is the net current injection

from bus j to the rest of the network:

I j =
E j�Vj

zv
j| {z }

voltage source

+
�
Jj� yc

jVj
�

| {z }
current source

� ya
jVj|{z}

shunt admittance

This assumes all voltages are defined with respect to the ground and if a single-phase device is the per-
phase model of a three-phase Y configured device, then its neutral is grounded directly. Then (4.9a)
becomes

E j�Vj

zv
j

+
�
Jj� yc

jVj
�
� ya

jVj =

 

Â
k: j⇠k

ys
jk + ym

j j

!
Vj � Â

k: j⇠k
ys

jkVk, j 2 N

4.2.4 Solving I = YV

Suppose we are given I 2C
N+1 and want to determine V 2C

N+1 from I = YV . For large networks taking
the inverse of Y can be difficult computationally even when it exists. A common method is to compute the
LU factorization of Y , i.e., Y = LU where L is a lower triangular matrix with all diagonal entries being 1
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and U an upper triangular matrix. Any square matrix A 2 C
n⇥n has an LU factorization after possibly an

appropriate re-ordering of the rows, i.e., there exists a permutation matrix P such that PA = LU for some
L,U . If A is invertible then it admits an LU factorization without permutation (i.e., A = LU for some L,U)
if and only if all its leading principal minors are nonzero.2 In that case, the LU factorization is unique. For
a singular A, necessary and sufficient conditions for the existence and uniqueness of LU factorization are
known but are more involved.

Possibly after an appropriate permutation of Y (such that e.g. Y11 6= 0), we can compute the entries of
L and U recursively. From

2

666664

Y00 Y01 Y02 · · · Y0N
Y10 Y11 Y12 · · · Y1N
Y20 Y21 Y22 · · · Y2N

...
...

... . . . ...
YN0 YN1 YN2 · · · YNN

3

777775
=

2

666664

1 0 0 · · · 0
L10 1 0 · · · 0
L20 L21 1 · · · 0

...
...

... . . . ...
LN0 LN1 LN2 · · · 1

3

777775

2

666664

U00 U01 U02 · · · U0N
0 U11 U12 · · · U1N
0 0 U22 · · · U2N
...

...
... . . . ...

0 0 0 · · · YNN

3

777775

we proceed as follows:

1. The 0th row of U is set to the 0th row of Y since L00 = 1:

U0 j = Y0 j, j = 0, . . . ,N

2. To compute row-1 entry L10 of L, we have

Y10 = L10U00 ) L10 =
Y10

U00

To compute row-1 entries U1 j of U , we have for columns j = 1, . . . ,N,

Y1 j = L10U0 j +U1 j ) U1 j = Y1 j�L10U0 j

3. In general, to compute row-i entries Li j of L (i = 2, . . . ,N), we have for columns j = 0, . . . , i�1,

Yi0 = Li0U00 ) Li0 =
Yi0

U00

Yi1 = Li0U01 +Li1U11 ) Li1 =
1

U11
(Yi1�Li0U01)

...
...

Yi(i�1) =
i�2

Â
j=0

Li jUj(i�1) +Li(i�1)U(i�1)(i�1) ) Li(i�1) =
1

U(i�1)(i�1)

 
Yi(i�1)�

i�2

Â
j=0

Li jUj(i�1)

!

2Consider a matrix A2Cn⇥n. Let I := {i1, . . . , ik}✓ {1, . . . ,n}, J := { j1, . . . , jl}✓ {1, . . . ,n}, and AIJ denote the submatrix
obtained from deleting rows not in I and columns not in J.

• If k = l, i.e., AIJ is square, then the minor MIJ of A is the determinant of the submatrix AIJ .

• If I = J, then AIJ is called a principal submatrix and MIJ a principal minor of A.

• If I = J = {1, . . . ,k} with k  n, then AIJ is called a leading principal submatrix of order k and MIJ a leading principal
minor of order k.
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To compute row-i entries Ui j of U (i = 2, . . . ,N), we have for columns j = i, . . . ,N,

Yii =
i�1

Â
j=0

Li jUji +Uii ) Uii = Yii�
i�1

Â
j=0

Li jUji

Yi(i+1) =
i�1

Â
j=0

Li jUj(i+1) +Ui(i+1) ) Ui(i+1) = Yi(i+1)�
i�1

Â
j=0

Li jUj(i+1)

...
...

YiN =
i�1

Â
j=0

Li jUjN +UiN ) UiN = YiN�
i�1

Â
j=0

Li jUjN

Once the factorization is obtained we have I = YV = LUV . Hence, given I, V can be solved in two
steps from:

I = LṼ (4.11)
Ṽ = UV (4.12)

In step 1, Ṽ is solved using (4.11) by forward substitution (compute Ṽ1 then Ṽ2 and so on). In step 2, V is
solved using (4.12) by backward substitution (compute Vn then Vn�1 and so on).

Example 4.4. Suppose

Y =

2

4
2(0.5� j)+ j0.5 �0.5+ j �0.5+ j
�0.5+ j (0.5� j)+ j0.1 0
�0.5+ j 0 (0.5� j)+ j0.2

3

5

Then

Y =

2

4
1 0 0

�0.6154+ j0.0769 1 0
�0.6154+ j0.0769 �1.6763+ j0.8960 1

3

5

2

4
1� j1.5 �0.5+ j �0.5+ j

0 0.2692� j0.2462 �0.2308+ j0.6538
0 0 0.4682+ j1.1566

3

5

Given I, V can be obtained in two steps: solve for Ṽ from:

2

4
I1
I2
I3

3

5 =

2

4
1 0 0

�0.6154+ j0.0769 1 0
�0.6154+ j0.0769 �1.6763+ j0.8960 1

3

5

2

4
Ṽ1
Ṽ2
Ṽ3

3

5

and then solve for V from:
2

4
Ṽ1
Ṽ2
Ṽ3

3

5 =

2

4
1� j1.5 �0.5+ j �0.5+ j

0 0.2692� j0.2462 �0.2308+ j0.6538
0 0 0.4682+ j1.1566

3

5

2

4
V1
V2
V3

3

5
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4.2.5 Properties of Y

In this subsection we collect some analytical properties of the admittance matrix Y , particularly on their
invertibility. Invertibility is of interests because given I 2 C

N+1 we may be interested in inverting Y to
obtain V 2CN+1 from I = YV as discussed in Chapter 4.2.4. This is referred to as the Zbus := Y�1 method
in the literature. The matrix Zbus is called a bus impedance matrix or an impedance matrix and is useful for
fault analysis (which we will not cover in this book). The admittance matrix Y can be constructed easily
by inspection of a network graph or its one-line diagram as specified by (4.9c). It inherits the sparsity
structure of the network graph. The impedance matrix Z on the other hand cannot be easily inferred from
the one-line diagram and is usually dense even for a sparse network. LU decomposition can be used for
both computing Z and solving V from I = YV .

We first consider the case where the shunt admittances of lines are negligible, i.e., ym
j j = 0 for all j 2N,

so that all row sums of Y are zero. In this case Y is not invertible and we present its pseudo-inverse. We
then discuss conditions under which Y with nonzero shunt admittances is invertible. Kron reduction in
Chapter 4.2.6 requires that the submatrix Y22 be invertible. The invertibility of Y22 is studied in Chapter
4.2.7.

We often assume C4.1 holds in this section and will explicitly state it where it is needed.

4.2.5.1 Pseudo-inverse and Takagi decomposition

Suppose ym
j j = 0 for all j 2 N so that Y has zero row (and hence column) sums.3 Then Y is not invertible.

Its pseudo-inverse always exists and can be obtained through singular value decomposition (see Chapter
25.1.6 for singular value decomposition and Chapter 25.1.7 for pseudo-inverse). Let Ȳ denote the com-
ponentwise complex conjugate of Y , i.e., [Ȳ ] jk =

�
Yjk
�H. Then Y = YT = (Ȳ )H. Let the singular value

decomposition of Y be

Y = USWH

where S := diag(s0, · · · ,sN) is a (N + 1)⇥ (N + 1) real nonnegative diagonal matrix whose diagonal
entries s j � 0, called the singular values of Y , are the nonnegative square roots of the eigenvalues of YȲ ,
and U,W 2 C

(N+1)⇥(N+1) are unitary matrices (see discussion after Theorem 25.11 in Chapter 25.1.6 for
their derivation). The pseudo-inverse of Y is then

Y † := WS†UH

where S† is the real nonnegative diagonal matrix obtained from S by replacing the nonzero singular values
s j by 1/s j.

If null(Y ) =span(1) then, for each current vector I with 1TI = 0, there is a subspace of solutions to
I = YV given by

V = Y †I + g1, g 2 C

3If Y were real symmetric with zero row sums, then its rank is N and its null space is span(1) when the network is connected.
This property generally does not hold when Y is complex symmetric; see Exercise 4.3 for a sufficient condition for this property.
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parametrized by g . Hence V is unique up to an arbitrary reference voltage. For example the solution
V = Y †I corresponds to a solution with g = 0. Alternatively g can be chosen so that V0 = 1\0� at bus 0.
If null(Y ) �span(1) then I needs to be orthogonal to all vectors in null(Y ) for I = YV to have a solution
for V .

Under assumption C4.1, Y is symmetric. Since it is generally not Hermitian, it may not be unitarily
diagonalizable. A matrix is unitarily diagonalizable if and only if it is normal (Theorem 25.13 in Appendix
25.1.6). Y may or may not be normal. See Exercise 4.2 for sufficient conditions under which Y is normal
and hence unitarily diagonalizable. Even when Y is not normal, it can still be diagonalized but the unitary
matrix U may consist of neither the singular vectors nor the eigenvectors of Y , according to Theorem
25.17 in Appendix 25.1.6.

Theorem 4.1 (Takagi decomposition of Y ). Suppose ym
j j = 0 for all j 2N and condition C4.1 holds. There

exists a unitary matrix U 2 C
(N+1)⇥(N+1) and a real nonnegative diagonal matrix S :=diag(s1, . . . ,sN+1)

such that Y = USUT where the diagonal entries s j � 0 of S are the singular values of Y .

Since UT 6= UH in general, the Takagi decomposition is generally different from the singular decom-
position of Y and therefore Y † is generally not equal to US†UT.

4.2.5.2 Inverse of Y

In this subsection we derive the inverse of Y , assuming it is invertible, in terms of its real and imaginary
parts when either is invertible. We will study conditions under which Y is invertible in Chapter 4.2.5.3.

Let Y =: G + iB with G,B 2 R
(N+1)⇥(N+1). Let Z := R + iX with R,X 2 R

(N+1)⇥(N+1). By definition
Y�1 exists and is equal to Z if and only if there exist unique R,X such that ZY = Y Z = I, the identity
matrix. Consider

Y Z = (G+ iB)(R+ iX) = (GR�BX)+ i(BR+GX) = I

or


G �B
B G

�

| {z }
M


R
X

�
=


I
0

�
(4.13a)

Therefore Y�1 exists if and only if the matrix M :=


G �B
B G

�
is nonsingular. Suppose G is nonsingular.

According to Theorem 25.4 in Appendix 25.1.3.1, M is nonsingular if and only if the Schur complement
M/G := G+BG�1B of G is nonsingular (given that G is nonsingular). Moreover the inverse of M is

M�1 =


(M/G)�1 (M/G)�1BG�1

�G�1B(M/G)�1 G�1�G�1B(M/G)�1BG�1

�

Hence if both G and M/G are nonsingular, then Y is nonsingular and, from (4.13a), its inverse Z := R+ iX
is given by


R
X

�
=


(M/G)�1

�G�1B(M/G)�1

�
=


(G+BG�1B)�1

�G�1B(G+BG�1B)�1

�
(4.13b)
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Suppose B is nonsingular. Then (4.13a) can be written equivalently as


B G
G �B

�

| {z }
M0


R
X

�
=


0
I

�
(4.14a)

Applying again Theorem 25.4 in Appendix 25.1.3.1, M0 is nonsingular if and only if the Schur complement
M0/B :=�B�GB�1G of B is nonsingular (given that B is nonsingular). Moreover the inverse of M0 is

M0�1 =


B�1 +B�1G(M0/B)�1GB�1 �B�1G(M0/B)�1

�(M0/B)�1GB�1 (M0/B)�1

�

Hence if both B and M0/B are nonsingular, then Y is nonsingular and, from (4.14a), its inverse Z := R+ iX
is given by


R
X

�
=


�B�1G(M0/B)�1

(M0/B)�1

�
=


B�1G(B+GB�1G)�1

�(B+GB�1G)�1

�
(4.14b)

To recap, Y is invertible when both G and M/G are invertible or when both B and M0/B are invertible.
When neither G nor B is invertible, Y = G+ iB may still be invertible though its inverse Z := R+ iX is not
given by (4.13b) or (4.14b) (Exercise 4.4).

4.2.5.3 Invertibility of Y

Nonzero shunt admittances do not guarantee the invertibility of Y . A strictly diagonally dominant matrix
is invertible (Theorem 25.8 in Appendix 25.1.3). Shunt admittances however does not guarantee strict
diagonal dominance, i.e., |Yii| > Â j: j 6=i |Yi j| may not hold for some i. This can be the case for a transmission
line since the susceptances of line charging admittances and those of series admittances are typically of
different signs. Strict diagonal dominance is however only sufficient for invertibility and a network of
transmission lines typically has an invertible Y (see Remark 4.3). We now discuss two sufficient conditions
for Y to be invertible.

The first sufficient condition builds on (4.13) and (4.14). It ensures both G and M/G are nonsingular,
or both B and M0/B are nonsingular. Recall that a real matrix A is positive definite, denoted A� 0, if A is
symmetric and vTAv > 0 for all real vectors v (see Remark 25.1 in Appendix 25.1.5). A positive definite
matrix is nonsingular since all its eigenvalues are strictly positive. A real matrix A is negative definite,
denoted A� 0, if �A� 0.

Theorem 4.2. Suppose a complex matrix Y is symmetric (i.e., satisfies condition C4.1).

1. If Re(Y )� 0 then Y�1 exists and is symmetric. Moreover Re(Y�1)� 0.

2. If Im(Y )� 0 then Y�1 exists and is symmetric. Moreover Im(Y�1)� 0.
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Proof. For part 1, suppose Re(Y ) =: G� 0. Then G is nonsingular. The Schur complement M/G of G is,
from (4.13a), M/G := G+BG�1B. Since B = BT and G,G�1 are positive definite, M/G := G+BG�1B�
0. This implies that Y is nonsingular according to Theorem 25.4 in Appendix 25.1.3.1. It also implies that
Re(Y�1)� 0 since, from (4.13b), Re(Y�1) = (M/G)�1 which is positive definite since M/G is.

Finally if Z := Y�1 then Z is the unique matrix such that Y Z = ZY = I where I is the identity matrix.
Then

ZTYT = YTZT = ZTY = Y ZT = I

Hence ZT = Y�1. Since inverse is unique, ZT = Z, i.e., Y�1 is (complex) symmetric.

Part 2 follows the same argument and is left as Exercise 4.5. (Also see Exercise 4.6 for an alternative
proof of the nonsingularity of Y .)

Remark 4.2 (Generalization). Theorem 4.2 holds with small modifications as long as either Re(Y ) or
Im(Y ) is not indefinite. Specifically if Y is complex symmetric then

1. Y�1 exists and is symmetric if (a) Re(Y )� 0; or (b) Re(Y )� 0; or (c) Im(Y )� 0; or (d) Im(Y )� 0.

2. (a) If Re(Y )� 0 then Re(Y�1)� 0; and (b) if Re(Y )� 0 then Re(Y�1)� 0.

3. (a) If Im(Y )� 0 then Im(Y�1)� 0; and (b) if Im(Y )� 0 then Im(Y�1)� 0.

The second set of sufficient conditions for the invertibility of Y is in terms of the series admittances ys
jk

and shunt admittances ym
jk. These conditions ensure either Re(Y ) or Im(Y ) is either positive or negative

definite, and hence Y is nonsingular by Theorem 4.2 and Remark 4.2.

Let Y = G+ iB, i.e., for all ( j,k) 2 E,

ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk, ym
k j =: gm

k j + ibm
k j

Recall ym
j j := Âk: j⇠k ym

jk and let gm
j j := Âk: j⇠k gm

jk, bm
j j := Âk: j⇠k bm

jk. Previous discussion implies that, for
Y to be invertible, it is necessary to have at least one nonzero shunt element. Additional conditions on⇣

gs
jk,g

m
jk,g

m
k j

⌘
are needed to guarantee invertibility, as follows.

C4.2: For all lines ( j,k) 2 E, gs
jk,g

m
jk,g

m
k j are nonnegative.

C4.3a: For all buses j 2 N, gm
j j := Âk:k⇠ j gm

jk 6= 0, i.e., for all j, there exists a line ( j,k) 2 E such that
gm

jk 6= 0.

C4.3b: For all lines ( j,k)2 E, gs
jk 6= 0. Furthermore there exists a line ( j0,k0)2 E such that gm

j0k0 6= 0.

Condition C4.2 can be replaced by: for all lines ( j,k) 2 E, all nonzero gs
jk,g

m
jk,g

m
k j have the same sign, and

the invertibility conditions below will still hold with obvious modifications. Indeed if gs
jk,g

m
jk,g

m
k j are all

nonpositive then the proof below shows that Re(Y )� 0 (see Remark 4.2).
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Theorem 4.3. Suppose the network is connected and the admittance matrix Y satisfies condition C4.1. If
C4.2 and one of C4.3a and C4.3b hold, then

1. Re(Y )� 0.

2. Y�1 exists and is symmetric. Moreover Re(Y�1)� 0.

Proof. Recall that Re(Y ) =: G 2 R
(N+1)⇥(N+1) is given by G jk =�gs

jk if j ⇠ k, Âi: j⇠i(gs
ji +gm

ji) if j = k,
and 0 otherwise. Hence for any nonzero vector r 2 R

N+1 we have

rTGr = Â
j
Â
k

r jrkG jk = Â
j

 

Â
k: j⇠k
�r jrkgs

jk + r2
j Â

i: j⇠i
(gs

ji +gm
ji)

!

= Â
( j,k)2E

�
r2

j �2r jrk +r2
k
�

gs
jk + Â

j2N
r2

j gm
j j

= Â
( j,k)2E

�
r j�rk

�2 gs
jk + Â

j2N
r2

j gm
j j

Every summand is nonnegative by C4.2. Moreover if C4.3a holds then the second summation is strictly
positive since r 6= 0. If C4.3b holds then for the first summation to be zero, r j = rk. Since the network
is connected this implies r j = r1 for all j. Then the second summation becomes Â j r2

j gm
j j � r2

1 gm
j0k0 > 0

since r 6= 0. Therefore Re(Y ) = G� 0. Theorem 4.2 then completes the proof.

See Exercise 4.9 for an alternative proof of Theorem 4.3.

Instead of
⇣

gs
jk,g

m
jk,g

m
k j

⌘
conditions on

⇣
bs

jk,b
m
jk,b

m
k j

⌘
can also ensure the invertibility of Y .

C4.4: For all lines ( j,k) 2 E, bs
jk,b

m
jk,b

m
k j are nonpositive.

C4.5a: For all buses j 2 N, bm
j j := Âk:k⇠ j bm

jk 6= 0, i.e., for all j, there exists a line ( j,k) 2 E such that
bm

jk 6= 0.

C4.5b: For all lines ( j,k)2 E, bs
jk 6= 0. Furthermore there exists a line ( j0,k0)2 E such that bm

j0k0 6= 0.

As before C4.2 can be replaced by: for all lines ( j,k) 2 E, all nonzero bs
jk,b

m
jk,b

m
k j have the same sign, and

the invertibility conditions below will still hold with obvious modifications.

Theorem 4.4. Suppose the network is connected and the admittance matrix Y satisfies condition C4.1. If
C4.4 and one of C4.5a and C4.5b hold, then

1. Im(Y )� 0.

2. Y�1 exists and is symmetric. Moreover Im(Y�1)� 0.
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Proof. The proof is similar to that for Theorem 4.3. For Im(Y ) =: B, for any nonzero real vector r , the
same calculation yields

rTBr = Â
( j,k)2E

�
r j�rk

�2 bs
jk + Â

j2N
r2

j bm
j j

Every summand is nonpositive by C4.4. Moreover if C4.5a holds then the second summation is strictly
negative since r 6= 0. If C4.5b holds then for the first summation to be zero, r j = r1 for all j since the
network is connected. Then the second summation becomes Â j r2

j bm
j j  r2

1 bm
j0k0 < 0 since r 6= 0. Therefore

Im(Y ) = B� 0. Theorem 4.2 then completes the proof.

Remark 4.3 (Transmission line). A transmission line ( j,k) typically has nonnegative series conductance
gs

jk � 0 and negative series susceptance bs
jk < 0 (inductive line). Its shunt conductances gm

jk � 0 are usually
nonnegative, but shunt susceptances bm

jk � 0 are usually nonnegative (capacitive).

1. Hence the conditions in Theorem 4.3 are usually satisfied for transmission lines (but not for trans-
formers; see Example 4.5).

2. Since bs
jk < 0 but bm

jk � 0 for a typical transmission line, condition C4.4 in Theorem 4.4 is usually
not satisfied.

Remark 4.4 (Distribution feeder test systems). 1. It has been verified on a set of test distribution feed-
ers that indeed Re(Y�1)� 0 and hence Theorem 4.2 holds....

The conditions in Theorems 4.3 and 4.4 are sufficient but not necessary. The next example shows
that, even though Condition C4.2 in Theorem 4.3 is usually not satisfied for a transformer, the admittance
matrix may nonetheless be nonsingular.

Example 4.5 (Sufficiency only). Consider Example 4.1. An alternative solution approach is to introduce
an internal node 3 on the primary side of the ideal transformer, not the secondary side as in Example 4.1.
4 Then the parameters of lines (1,3) and (2,3) are

(ys
13,y

m
13,y

m
31) :=

⇣
yl,0,ym

⌘

(ys
23,y

m
23,y

m
32) := (ny,(1�n)y,n(n�1)y)

where n is the voltage gain of the transformer, y is the series admittance of the line and (yl,ym) are the
series and shunt admittances of the transformer. The admittance matrix is therefore

Y =

2

4
yl 0 �yl

0 y �ny
�yl �ny yl + ym +n2y

3

5

Let the admittances be of the form:

y =: gs + ibs, yl =:
1

r + jwLl = gl + ibl, ym =: jwLm = ibm

4
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with gs,gl � 0, bs,bl  0, and bm� 0. We now show that the admittance matrix Y does not satisfy condition
C4.2 in Theorem 4.3, but Y is invertible if and only if bm > 0.

We have

ys
13 = ys

31 = gl + ibl, ys
23 = ys

32 = ngs + inbs

ym
11 = 0, ym

22 = (1�n)gs + i(1�n)bs, ym
33 = n(n�1)gs + i(n(n�1)bs +bm)

Hence condition C4.1 is satisfied but C4.2 is not since gm
22 := (1�n)gs and gm

33 := n(n�1)gs have opposite
signs unless n = 1. For any nonzero vector aHY a 6= 0, one can show (Exercise 4.9)

aHY a =

0

@ Â
( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2N

gm
j j |a j|2

1

A+ i

0

@ Â
( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2N

bm
j j |a j|2

1

A

Hence

Re
⇣

aHY a
⌘

=
⇣

gl|a1�a3|2 +ngs|a2�a3|2
⌘

+
�
(1�n)gs|a2|2 +n(n�1)gs|a3|2

�

= gl|a1�a3|2 + gs|a2�na3|2

Therefore

Re
⇣

aHY a
⌘

= 0 if and only if a1 = a3 =
a2

n
(4.15)

On the other hand

Im
⇣

aHY a
⌘

=
⇣

bl|a1�a3|2 +nbs|a2�a3|2
⌘

+
�
(1�n)bs|a2|2 +(n(n�1)bs +bm) |a3|2

�

= bl|a1�a3|2 + bs|a2�na3|2 + bm|a3|2

In light of (4.15), if bm > 0 then aHY a = 0 if and only if a1 = a2 = a3 = 0. Hence if bm > 0 then Y is
invertible.

If bm = 0 then there exists nonzero a 2C3 with aHY a = 0. Exercise 4.8 says that, since Y is complex
symmetric (but not Hermitian), this does not necessarily imply Y a = 0 and hence may not imply that Y is
singular. Using the admittance matrix given above, however, it can be verified that, when ym = ibm = 0,
a :=

⇥
1 n 1

⇤T is indeed an eigenvector of Y corresponding to zero eigenvalue. Hence Y is singular if
the (only) shunt element bm in the model is zero, even when ym

22 and ym
33, which originate from the effect

of an ideal transformer, are nonzero.

4.2.5.4 Radial network

Distribution systems are mostly radial, i.e., its network topology is a tree. Moreover shunt admittances
(ym

jk,y
m
k j) are often negligible. In this case the admittance matrix Y has zero row and column sums. Recall

from (4.10) that we can write Y = C Ds
yCT in terms of the incidence matrix C. Let Ŷ denote the N ⇥

N reduced admittance matrix obtained from Y by removing the row and column corresponding to the
reference bus 0. Let Ĉ denote the reduced incidence matrix by removing the row corresponding to bus 0.
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Then Ŷ = ĈDs
yĈT and Î = ŶV̂ where Î is the vector of current phasors at non-reference buses and V̂ is the

vector of voltage phasors relative to V0. For a radial network, Ĉ is invertible (see Theorem ?? of Chapter
??). Suppose Ŷ is also invertible (which will be the case if Ds

y is real) and let Ẑ := Ŷ�1 = Ĉ�TDs
zĈ�1

where Ds
z = (Ds

y)
�1. Then, for a single-phase radial network,

V̂ = ẐÎ and Ẑ jk = Â
l2P j\Pk

zs
l

where zs
l :=

�
ys

l
��1. Hence Ẑ jk is the sum of impedances on the common segment of the unique paths from

the reference bus 0 to buses j and k. See Theorem ?? of Chapter ?? for proof.

Example 4.6 (Application: topology identification).

4.2.6 Kron reduction Y/Y22

In many applications we are interested in the relation between the current injections and voltages at only
a subset Nred ⇢ N of the buses. For example we are interested in the external behavior of a system defined
by the relationship between currents and voltages of the end devices. Denote the number of buses in Nred
also by Nred. Without loss of generality we can partition the buses such that I1 2CNred denotes the first Nred
current injections and I2 the remaining N +1�Nred current injections. Similarly partition the voltages into
(V1,V2) with V1 2 C

Nred , V2 2 C
N+1�Nred . Partition the admittance matrix Y so that


I1
I2

�
=


Y11 Y12
Y21 Y22

�

| {z }
Y


V1
V2

�

If Y22 is invertible then we can eliminate V2 by substituting V2 =�Y�1
22 Y21V1 +Y�1

22 I2 to obtain
�
Y11�Y12Y�1

22 Y21
�

V1 = I1 � Y12Y�1
22 I2 (4.16)

The Nred⇥Nred matrix Y/Y22 :=Y11�Y12Y�1
22 Y21 is the Schur complement of Y22 of matrix Y (see Appendix

25.1.3 for its properties). It can be interpreted as the admittance matrix of the reduced network consisting
only of buses in Nred and describes the effective connectivity and line admittances of the reduced network.
The quantity I1�Y12Y�1

22 I2 describes the effective current injections at these buses. This is called a Kron
reduction of network G. If Y is complex symmetric, its Kron reduced admittance matrix Y/Y22 is also
complex symmetric and hence satisfies Assumption C4.1. Two buses j and k are adjacent in the Kron-
reduced network, i.e., [Y/Y22] jk 6= 0, if and only if j and k are adjacent in the original graph (i.e., Yjk 6= 0)
or if there is a path in the original graph that connects j and k. These properties are studied in Chapter
4.2.7.

Example 4.7 (Kron reduction). Consider the network shown in Figure 4.10(a).

Under condition C4.1 its admittance matrix Y is (0 and symmetric entries are omitted for simplicity)

Y :=

2

664

ys
14 + ym

11 �ys
14

ys
24 + ym

22 �ys
24

ys
34 + ym

33 �ys
34

Â j ys
j4 + ym

44

3

775
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(a) Original net-
work

(b) Kron reduced network

Figure 4.10: Kron reduction: Nred := {1,2,3} with internal bus 4. While the original network is a tree, the
Kron reduced network is fully connected.

with Y22 := Â j ys
j4 + ym

44. The Schur complement Y/Y22 of Y22 is

Y11 � Y12Y�1
22 Y21

=

2

4
ys

14 + ym
11

ys
24 + ym

22
ys

34 + ym
33

3

5 � 1
Y22

2

4
�ys

14
�ys

24
�ys

34

3

5⇥�ys
14 �ys

24 �ys
34
⇤

=

2

664

ys
14

Y22

�
ys

24 + ys
34
�
+
�
ym

11 + g ys
14
� �ys

14ys
24

Y22

�ys
14ys

34
Y22

ys
24

Y22

�
ys

14 + ys
34
�
+
�
ym

22 + g ys
24
� �ys

24ys
34

Y22
ys

34
Y22

�
ys

14 + ys
24
�
+
�
ym

33 + g ys
34
�

3

775

where g := ym
44/Y22 = ym

44/
⇣

Â j ys
j4 + ym

44

⌘
. The Kron reduced network corresponding to Y/Y22 is fully

connected as shown in Figure 4.10(b).

The effective current injections in the Kron reduced network are
2

4
I1
I2
I3

3

5 � Y12Y�1
22 I3 =

2

4
I1
I2
I3

3

5 +

2

4
ys

14
ys

24
ys

34

3

5 I3

Y22

An admittance matrix Y has zero row, and hence column, sums if and only if all line charging admit-
tances are zero, ym

jk = ym
k j = 0 for ( j,k) 2 E. In that case the Kron-reduced admittance matrix Y/Y22 also

has zero, and hence column, sums (Exercise 4.10). The converse may not hold.

Given current injections I = (I1, I2), we can obtain V1 in terms of the Schur complement Y/Y22 and the
effective current injections:

V1 =
�
Y11�Y12Y�1

22 Y21
��1 �I1 � Y12Y�1

22 I2
�

If additional information is available that expresses I2 linearly in terms of I1, say, I2 = AI1 for an appropriate
(N +1�Nred)⇥Nred matrix A, then we can obtain from (4.16) a relationship between I1 and V1:

�
Y11�Y12Y�1

22 Y21
�

V1 =
�
INred � Y12Y�1

22 A
�

I1
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where INred denotes the identity matrix of size Nred. In many applications current injections I2 = 0. For
example the buses in N\Nred represent internal buses without generators or loads (see Example 4.1). Then
(4.16) reduces to:

I1 =
�
Y11�Y12Y�1

22 Y21
�

| {z }
Y/Y22

V1

and the reduced network is described by the Schur complement Y/Y22 that directly relates V1 and I1.

4.2.7 Properties of Y/Y22

In this section we summarize some useful analytical properties of the Kron-reduced admittance matrix
Y/Y22.

4.2.7.1 Invertibility of Y22

The principal submatrix Y22 may not be strictly diagonal dominant nor invertible.5 The situation is similar
to the invertibility of Y . We now extend Theorems 4.3 and 4.4 to Y22. They ensure the invertibility of Y22
and hence the validity of the Kron reduction.

Let A ( N denote the set of buses corresponding to Y22 and assume A is a strict subset of N. For the
rest of this subsection denote the ( j,k) entry of a matrix M by M[ j,k], e.g., Y [ j,k],Y22[ j,k]. Note that the
indices j,k of Y22 take values in A, e.g., they run from N�n+2, . . . ,N +1, not 1, . . . ,n, if Y22 corresponds
to the last n buses. The argument is similar to that for the invertibility of Y . By definition Y22 is not
invertible if and only if zero is an eigenvalue of Y22. 6 If l is an eigenvalue and a 2C

n is a corresponding
eigenvector then

aHY22a = Â
j2A

Â
k2A

Y [ j,k]aH

j ak = l ||a||2 (4.17)

where || · || denotes the Euclidean norm. Hence for Y22 to be invertible it is sufficient, but not necessary,
that aHY22a 6= 0 for all nonzero vectors a 2 C

n (see Exercise 4.8). We have from (4.9c)

Y22[ j, j] = Â
k 62A:( j,k)2E

ys
jk + Â

k2A:( j,k)2E
ys

jk + ym
j j, j 2 A

5This is in contrast to the Laplacian matrix Y = L in the DC power flow model whose a strict principal submatrix is always
strictly diagonally dominant and hence invertible. See Chapter ??.

6
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Substituting this and Y [ j,k] =�ys
jk for j ⇠ k into (4.17) we have

aHY22a = Â
j2A

  

Â
k 62A:( j,k)2E

ys
jk + Â

k2A:( j,k)2E
ys

jk + ym
j j

!
|a j|2 � Â

k2A:( j,k)2E
ys

jk aH

j ak

!

= Â
j,k2A:( j,k)2E

⇣
ys

jk|a j|2� ys
jkaH

j ak� ys
k ja

H

k a j + ys
k j|ak|2

⌘
+ Â

j2A

 

Â
k 62A:( j,k)2E

ys
jk + ym

j j

!
|a j|2

= Â
j,k2A:( j,k)2E

ys
jk
��a j�ak

��2 + Â
j2A

 

Â
k 62A:( j,k)2E

ys
jk + ym

j j

!
|a j|2

where the third equality uses from ys
jk = ys

k j in condition C4.1. The first term sums over links in the
subgraph induced by A. The second term sums over links between the subgraph induced by A and that by
N \A. Recall ys

jk =: gs
jk + ibs

jk and ym
j j =: gm

j j + ibm
j j. Then

Re
⇣

aHY22a
⌘

= Â
j,k2A:( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2A

 

Â
k 62A:( j,k)2E

gs
jk + gm

j j

!
|a j|2 (4.18a)

Im
⇣

aHY22a
⌘

= Â
j,k2A:( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2A

 

Â
k 62A:( j,k)2E

bs
jk + bm

j j

!
|a j|2 (4.18b)

The subgraph corresponding to Y22 may consist of multiple connected components Ci✓A. Each connected
component Ci is a disjoint set of buses that are connected to each other and to no buses outside Ci such
that [iCi = A. Let

G j := Â
k 62A:( j,k)2E

gs
jk + gm

j j, B j := Â
k 62A:( j,k)2E

bs
jk + bm

j j, j 2 A (4.19a)

Then we can rewrite (4.18) in terms of the connected components Ci and G j,B j:

Re
⇣

aHY22a
⌘

= Â
i

 

Â
j,k2Ci:( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2Ci

G j|a j|2
!

(4.19b)

Im
⇣

aHY22a
⌘

= Â
i

 

Â
j,k2Ci:( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2Ci

B j|a j|2
!

(4.19c)

Consider the following conditions on the conductances gs
jk and G j:

C4.6: For all lines ( j,k) 2 E, gs
jk � 0 and for all buses j 2 N, G j � 0.

C4.7a: For all buses j 2 N, G j 6= 0,

C4.7b: For all lines ( j,k) 2 E, gs
jk 6= 0. Furthermore on each connected component Ci there exists a

bus ji 2Ci such that G ji 6= 0.
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Conditions C4.6 can be changed to gs
jk,G j having the same sign. Theorem 4.3 extends directly to Y22.

Theorem 4.5. Suppose the admittance matrix Y satisfies condition C4.1. If C4.6 and one of C4.7a and
C4.7b hold, then the strict principal submatrix Y22 satisfies

1. Re(Y22)� 0.

2. Y�1
22 exists and is symmetric. Moreover Re

�
Y�1

22
�
� 0.

Proof. The proof is similar to that for Theorem 4.3. Condition C4.6 implies that every summand in (4.19b)
is nonnegative. Moreover if C4.7a holds then the second summation is strictly positive if a 6= 0. If C4.7b
holds then for the first summation to be zero, a j = ak for all j,k in each connected component Ci. Then
the second summation becomes, on each Ci, Â j2Ci G j|a j|2 � G ji |a ji |2 > 0 unless a j = a ji = 0 for all
j 2Ci. Therefore Re

�
aHY22a

�
> 0 if r 6= 0, i.e., Re(Y22) � 0. Since Y22 is symmetric Theorem 4.2 then

completes the proof.

Consider the following conditions on the susceptances bs
jk and B j:

C4.8: bs
jk  0 for all lines ( j,k) 2 E and B j  0 for all buses j 2 N.

C4.9a: For all buses j 2 N, B j 6= 0,

C4.9b: For all lines ( j,k) 2 E, bs
jk 6= 0. Furthermore on each connected component Ci there exists a

bus ji 2Ci such that B ji 6= 0.

Conditions C4.8 can be changed to bs
jk,B j having the same sign respectively. Theorem 4.4 extends directly

to Y22 in the following result whose proof is omitted.
Theorem 4.6. Suppose the admittance matrix Y satisfies condition C4.1. If C4.8 and one of C4.9a and
C4.9b hold, then the strict principal submatrix Y22 satisfies

1. Im(Y22)� 0.

2. Y�1
22 exists and is symmetric. Moreover Im

�
Y�1

22
�
� 0.

The invertibility conditions in Theorems 4.5 and 4.6 for the submatrix Y22 are less restrictive than those
in Theorems 4.3 and 4.4 for Y , as we explain in Remark 4.5. Therefore if conditions of Theorem 4.3 or
4.4 are satisfied then Y�1, Y�1

22 and Y/Y22 all exist.
Remark 4.5 (Transmission line). As discussed in Remark 4.3, for a transmission line, we usually have
gs

jk � 0, bs
jk < 0, gm

j j � 0 and bm
j j � 0.

1. If all lines ( j,k), j,k 2 E, have nonzero conductances, then conditions C4.6 and C4.7b are satisfied.
This is the case even with zero shunt admittances ym

jk = ym
k j = 0 in which case Y has zero row sums

and is singular.

2. For C4.8, even though bs
jk and bm

j j have opposite signs, the shunt susceptances bm
jk are typically much

smaller than the series susceptances bs
jk such that usually B j in (4.19a) has the same sign as bs

jk.
Hence both C4.8 and C4.9a are likely to be satisfied since bs

jk are usually nonzero for transmission
lines.
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When shunt admittances ym
jk = ym

k j = 0. When ym
jk = ym

k j = 0 for all lines ( j,k) 2 E a symmetric admit-
tance matrix Y has zero row and column sums and is hence singular. In this case G j and B j in (4.19a)
becomes

G j := Â
k 62A:( j,k)2E

gs
jk, B j := Â

k 62A:( j,k)2E
bs

jk, j 2 A

Hence Theorems 4.5 and 4.6 imply the following simple conditions for the invertibility of a strict principal
submtirx Y22 of Y .

Corollary 4.7. Suppose the admittance matrix Y satisfies condition C4.1 and ym
jk = ym

k j = 0 for all lines
( j,k) 2 E. Consider the strict principal submatrix Y22.

1. If gs
jk > 0 for all lines ( j,k) 2 E then Y�1

22 exists and is symmetric. Moreover both Re(Y22)� 0 and
Re
�
Y�1

22
�
� 0.

2. If bs
jk < 0 for all lines ( j,k) 2 E then then Y�1

22 exists and is symmetric. Moreover Im(Y22) � 0 but
Im
�
Y�1

22
�
� 0.

Even when not all gs
jk are strictly positive and not all bs

jk are strictly negative the admittance matrix Y
can still be invertible because they cannot be zero simultaneously, as the following result from [11] shows.

Theorem 4.8. Suppose the admittance matrix Y satisfies condition C4.1 and ym
jk = ym

k j = 0 for all lines
( j,k) 2 E. If gs

jk � 0 and bs
jk  0 for all lines ( j,k) 2 E then the strict principal submatrix Y22 satisfies

1. Re(Y22)⌫ 0, Im(Y22)� 0.

2. Moreover Re(Y22)� Im(Y22)� 0.

3. Y�1
22 exists and is symmetric.

Proof. Write Y =: G+ iB and Y22 =: G22 + iB22. Denote the ( j,k) element of a matrix M by M[ j,k], e.g.,
Y [ j,k], G22[ j,k], etc. Since ym

jk = ym
k j = 0 for all lines ( j,k) 2 E and hence Y has zero row (and column)

sums, each row of G22 and B22 are diagonally dominant:

|G22[ j, j]| =

����� Â
k 62A:( j,k)2E

gs
jk + Â

k2A:( j,k)2E
gs

jk

����� � Â
k2A:( j,k)2E

gs
jk = Â

k2A:k 6= j
|G22[ j,k]| , j 2 A

|B22[ j, j]| =

����� Â
k 62A:( j,k)2E

bs
jk + Â

k2A:( j,k)2E
bs

jk

����� � Â
k2A:( j,k)2E

�bs
jk = Â

k2A:k 6= j
|B22[ j,k]| , j 2 A

Since G22 and B22 are real and symmetric their eigenvalues are all real. The Geršgorin disc theorem states
that all eigenvalues of a real matrix M 2 R

n⇥n lie in the union of n discs

[n
i=1

(
z 2 C

n : |z�Mii| Â
j: j 6=i

|Mi j|
)
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Therefore all eigvenvalues of the G22 are nonnegative and those of B22 are nonpositive, i.e., G22 ⌫ 0 and
B22 � 0. This implies that G22�B22 ⌫ 0.

We now show that, indeed, G22�B22 � 0 because the network is connected and A ⇢ N is a strict
subset. Since G22�B22 is real symmetric, consider, for any nonzero real vector r ,

rT(G22�B22)r = Â
j2A

Â
k2A

r j(G22[ j,k]�B22[ j,k])rk

= Â
j2A

Â
k2A:( j,k)2E

r j(�gs
jk +bs

jk)rk + Â
j2A

r2
j

 

Â
k2A:( j,k)2E

(gs
jk�bs

jk) + Â
k 62A:( j,k)2E

(gs
jk�bs

jk)

!

= Â
j,k2A:( j,k)2E

�
r j�rk

�2
(gs

jk�bs
jk) + Â

j2A
r2

j G j

where the third equality uses gs
jk = gs

k j and bs
jk = bs

k j from C4.1. Here G j := Âk 62A:( j,k)2E(gs
jk� bs

jk) for
j 2 A and the summation is not vacuous because the network is connected and A ( N. For every line
( j,k) 2 E, ys

jk 6= 0 and hence gs
jk� bs

jk > 0 since gs
jk � and bs

jk � 0. This implies G j > 0 as well for all
j 2 A. Therefore for rT(G22�B22)r > 0 for any real vector r 6= 0, i.e., G22�B22 � 0.

Finally we use G22�B22 � 0 to show that Y22 is nonsingular (it is clear that Y�1
22 is symmetric if it

exists). If Y22 is singular then it has a nonzero eigenvector a = r + ie corresponding to the zero eigenvalue
and hence

0 = Y22a = (G22 + iB22)(r + ie) = (G22r�B22e) + i(G22e +B22r)

Hence

G22r�B22e = 0, B22r +G22e = 0

To solve for (r,e), subtract the second equation from the first to get (G22�B22)r = (G22 +B22)e . Since
G22�B22 � 0 we have r = (G22�B22)�1(G22 +B22)e . Substituting into the first equation we have

0 =
�
G22(G22�B22)

�1(G22 +B22)�B22
�

e
=
�
G22(G22�B22)

�1G22 +G22(G22�B22)
�1B22�B22

�
e

But G22(G22 � B22)�1B22 � B22 = (G22� (G22�B22))(G22 � B22)�1B22 = B22(G22 � B22)�1B22 and
hence

0 =
�
G22(G22�B22)

�1G22 +B22(G22�B22)
�1B22

�
e

Multiplying on the left by eT we have

0 = eT
�
G22(G22�B22)

�1G22 +B22(G22�B22)
�1B22

�
e

which implies e = 0 since (G22�B22)�1 � 0. But then r = (G22�B22)�1(G22 +B22)e = 0 and therefore
a = r + ie = 0, contradicting that the eigenvector a is nonzero. Hence Y22 is nonsingular.
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4.2.7.2 Properties of Y/Y22

Theorem 4.2 extends directly to the Schur complement Y/Y22 := Y11�Y12Y�1
22 YT

12.

Theorem 4.9. Consider a complex symmetric matrix Y =:

Y11 Y12
YT

12 Y22

�
with symmetric Y11,Y22 (i.e., satis-

fies condition C4.1). Suppose Y22 is nonsingular.

1. If Re(Y ) � 0 then the Schur complement Y/Y22 of Y22 is invertible and (Y/Y22)�1 is symmetric.
Moreover both Re(Y/Y22)� 0 and Re

�
(Y/Y22)�1�� 0.

2. If Im(Y ) � 0 then the Schur complement Y/Y22 of Y22 is invertible and (Y/Y22)�1 is symmetric.
Moreover Im(Y/Y22)� 0 but Im

�
(Y/Y22)�1�� 0.

Proof. It is clear that the Schur complement Y/Y22 of Y22 is symmetric since Y11 and Y22, and hence
Y�1

22 , are symmetric. From Theorem 25.4 in Appendix 25.1.3.1, Y is nonsingular if and only if Y/Y22 is
nonsingular, given that Y22 is nonsingular. If Re(Y )� 0 or Im(Y )� 0, Theorem 4.2 implies that Y�1 exists
and Re(Y�1)� 0 or Im(Y�1)� 0 respectively. Hence Y/Y22 is nonsingular if Re(Y )� 0 or Im(Y )� 0.

Write Y�1 in terms of the Schur complement Y/Y22 (from Theorem 25.4):

Y�1 =


(Y/Y22)�1 �(Y/Y22)�1Y12Y�1

22
�Y�1

22 YT

12(Y/Y22)�1 A

�

where A := Y�1
22 +Y�1

22 YT

12(Y/Y22)�1Y12Y�1
22 . If Re(Y ) � 0 then Theorem 4.2 implies that Re(Y�1) �

0. Hence all the principal submatrices of Re(Y�1) are (symmetric and) positive definite. In particular
Re
�
(Y/Y22)�1�� 0. But (Y/Y22)�1 is symmetric and therefore Theorem 4.2 implies that Re(Y/Y22)� 0.

If on the other hand Im(Y ) � 0, then Theorem 4.2 implies that Im(Y�1) � 0. Hence its princi-
pal submatrix Im

�
(Y/Y22)�1� � 0. But (Y/Y22)�1 is symmetric and therefore Remark 4.2 implies that

Im(Y/Y22)� 0.

Application: admittance matrix Y identification.

4.2.8 Summary

We have explained how to model different network components, such as transmission lines, transformers,
generators and loads, as nodes in a graph with links connecting these nodes parameterized by (ys

jk,y
m
jk,y

m
k j).

This can be described by an admittance matrix Y . The equation I = YV expresses nodal current balance
due to KCL. Finally we have discussed sufficient conditions for the invertibility of Y and its principal
submatrices.

In this setting if all generators and loads can be modeled by constant current sources then, given I, the
voltages V on the network can be computed from the equation I = YV as discussed in Chapter 4.2.4. This
is simple as it involves linear equations only. The power injection at each node j can then be computed as
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s j = VjIHj . Other quantities such as power or current flows on the lines or active power loss in the network
can all be computed from V . For instance the current over line ( j,k) is I jk = ys

jk(Vj�Vk)+ ym
jkVj. The

complex sending-end power flow over line ( j,k) from node j and that from node k are respectively

S jk := VjIHjk =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2

Sk j := VkIHk j =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2

Hence the active power loss over line (i, j) is

Pjk +Pk j = Re
�
S jk +Sk j

�

= Re
⇣
(ys

jk)
⇤ �|Vj|2�VjV ⇤k

�
+ (ys

k j)
⇤ �|Vk|2�VkV ⇤j

�
+ (ym

jk)
⇤|Vj|2 + (ym

k j)
⇤|Vk|2

⌘

= Re
⇣

ys
jk

⌘��Vj�Vk
��2 + Re

⇣
ym

jk

⌘��Vj
��2 + Re

⇣
ym

k j

⌘
|Vk|2

where the last equality follows if condition C4.1 holds.

4.3 Network model: V s relation

In many applications however loads and generators are not specified as constant currents. They may be
described instead in terms of power injections or removals. For instance, for electric vehicle charging,
the travel need is specified in terms of the number of miles required which translates to the amount of
energy in kWh required that must be delivered by a deadline. For example it requires roughly 3 kWh
for an electric vehicle to travel 10 miles. Hence a charging facility is often characterized by its power
requirement to support a certain electric vehicle charging capacity. In this section we present power flow
equations that describe the relation between power injections and voltages on the network. As we will see
this involves nonlinear equations which are much more difficult to solve.

4.3.1 Complex form

The bus injection model (BIM) in its complex form is defined by power balance s j = Âk: j⇠k S jk at each
node j where S jk are sending-end line powers from j to its neighbors k given in (4.2). This leads to the
power flow equations that relate power injections and voltages through (4.2):

s j = Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N (4.20a)

where, from (4.9b), the total shunt admittance ym
j j := Âk: j⇠k ym

jk associated with bus j is the sum of shunt
admittances ym

jk of all lines ( j,k) incident on bus j. We can also express (4.20a) in terms of the elements
of the admittance matrix Y as

s j =
N

Â
k=0

YH

jk VjVH

k , j 2 N (4.20b)
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where Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âi: j⇠i ys
ji + ym

j j j = k
0 otherwise

(4.20c)

When the total shunt admittance ym
j j = 0, (4.20a) reduces to

s j = Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
, j 2 N

For convenience we include V0 in the vector variable V := (Vj, j 2 N) with the understanding that V0 :=
1\0� is fixed. There are N +1 equations in (4.20a) in 2(N +1) complex variables (s j,Vj, j 2 N).

This model does not require assumption C4.1.

Remark 4.6 (Nodal devices). If bus j in Remark 4.1 includes, in addition, a power source with a fixed
power injection s p

j , then s j is the net bus injection (assuming all neutrals are grounded and all voltages
are defined with respect to the ground):

s j = �
⇣

zvH
j

⌘�1⇣
|Vj|2�VjEH

j

⌘

| {z }
voltage source

+ Vj
�
Jj� yc

jVj
�H

| {z }
current source

� yaH
j |Vj|2| {z }

shunt admittance

+ s p
j|{z}

power source

and (4.20a) becomes:

�
⇣

zvH
j

⌘�1⇣
|Vj|2�VjEH

j

⌘
+ Vj

�
Jj� yc

jVj
�H � yaH

j |Vj|2 + s p
j

= Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N

4.3.2 Polar form

We may alternatively treat (4.20) as 2(N + 1) equations in 4(N + 1) real variables (p j,q j, |Vj|,q j, j 2 N)
where s j := p j + iq j are the complex injections and Vj := |Vj|eiq j are the complex voltages. Let ys

jk =:
gs

jk + ibs
jk denote the series admittance of line ( j,k). Similarly let ym

jk =: gm
jk + ibm

jk denote the shunt
admittance of line ( j,k) associated with bus j and ym

j j =: gm
j j + ibm

j j the total shunt admittance associated
with bus j. As discussed in Remark 4.5, usually gs

jk � 0, bs
jk < 0 (inductive line), gm

jk � 0, but bm
jk � 0

(capacitive shunt). Substituting

Yjk =

8
><

>:

�(gs
jk + ibs

jk), j ⇠ k ( j 6= k)

Âi: j⇠i

⇣
gs

ji +gm
ji

⌘
+ iÂi: j⇠i

⇣
bs

ji +bm
ji

⌘
j = k

0 otherwise
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into (4.20b) we have

s j =
N

Â
k=0

�
g jk� ib jk

� ��Vj
��2 �

N

Â
k=0,k 6= j

�
g jk� ib jk

���Vj
�� |Vk| eiq jk j 2 N

where q jk := q j�qk is the voltage phase angle difference across each line ( j,k) 2 E, and

g jk :=

8
><

>:

Âi: j⇠i

⇣
gs

ji +gm
ji

⌘
if j = k

gs
jk if j 6= k, ( j,k) 2 E

0 if j 6= k, ( j,k) 62 E
(4.21a)

b jk :=

8
><

>:

Âi: j⇠i

⇣
bs

ji +bm
ji

⌘
if j = k

bs
jk if j 6= k, ( j,k) 2 E

0 if j 6= k, ( j,k) 62 E
(4.21b)

Then we can write (4.20a) in the polar form:

p j =

 
N

Â
k=0

g jk

!
|Vj|2 � Â

k 6= j
|Vj||Vk|

�
g jk cosq jk +b jk sinq jk

�
, j 2 N (4.22a)

q j = �
 

N

Â
k=0

b jk

!
|Vj|2 � Â

k 6= j
|Vj||Vk|

�
g jk sinq jk�b jk cosq jk

�
, j 2 N (4.22b)

where (g jk,b jk) are defined in (4.21).

This model does not require assumption C4.1.

4.3.3 Cartesian form

The power flow equations (4.20) or (4.22) can also be reformulated in the real domain by writing Vj
in terms of its real and reactive components (e j, f j), i.e., Vj =: e j + i f j. Then (4.22) becomes (using
e j = |Vj|cosq j and f j = |Vj|sinq j)

p j =

 

Â
k

g jk

!
�
e2

j + f 2
j
�
� Â

k 6= j

�
g jk(e jek + f j fk) + b jk( f jek� e j fk)

�
(4.23a)

q j = �
 

Â
k

b jk

!
�
e2

j + f 2
j
�
� Â

k 6= j

�
g jk( f jek� e j fk) � b jk(e jek + f j fk)

�
(4.23b)

where (g jk,b jk) are defined in (4.21). These are 2(N + 1) quadratic equations in 4(N + 1) variables
(p j,q j,e j, f j, j 2 N).

This model does not require assumption C4.1.
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4.3.4 Types of buses

Each set of power flow equations (4.20)(4.22)(4.23) is a set of 2(N+1) nonlinear real equations in 4(N+1)
real variables corresponding to real and imaginary parts of power injections s and voltage phasors V . Given
any 2(N +1) of these real variables, these equations can be used to solve for the remaining 2(N +1) real
variables. There can be zero, unique or multiple solutions. Solving for these solutions is the power flow or
load flow problem (Chapter 4.4).

A popular formulation of the power flow problem uses the polar form where each bus j is classified
into one of three types based on which two of the four real variables (p j,q j, |Vj|,q j) are specified:

• PV bus. This is a bus where the real power injection p j and the voltage magnitude |Vj| are specified
and the reactive power injection q j and voltage angle q j are to be determined. It usually models a
bus with a conventional generator.

• PQ bus. This is a constant-power bus where the injection (p j,q j) is specified and the complex
voltage |Vj|e jq j is to be determined. It usually models a load but can also model a renewable
generator with undispatchable generation.

• Slack bus. Bus 0 is taken as a slack bus where V0 = |V0|\0� is specified and the injection s0 =
(p0,q0) is to be determined. This is usually used for mathematical convenience to avoid an ill
specified power flow problem that has no solution.

A slack bus (or a set of slack buses) is needed because power needs to be balanced over the network. For
example if the resistance of every line is zero then Â j p j must be zero. If all buses are PV or PQ buses
then all active powers p j are specified; if the specified values do not satisfy power balance then the set of
power flow equations will have no solution. This is resolved by taking an arbitrary bus (denoted by bus
0 here) as a slack bus with its power injection s0 unspecified in order to balance power. For instance a
distribution system with a substation at bus 0 and N constant power loads or generations can be modeled
by a slack bus and N PQ buses with V0 and (p j,q j) specified. The power flow problem solves (4.22) for
the N complex voltages Vj, j 6= 0, and the power injection s0 (see Chapter 4.4).

For optimal power flow problems p j and |Vj| on generator buses or s j on load buses can be variables
as well. For instance economic dispatch optimizes real power generations p j at generator buses; demand
response optimizes demands s j at load buses; and volt/var control optimizes reactive powers q j at capacitor
banks, tap changers, or inverters. We will discuss optimal power flow problems in Part III of the book.

4.3.5 Real power loss

For each line ( j,k) 2 E, let its series and shunt admittances be ys
jk = gs

jk + ibs
jk and ym

jk = gm
jk + ibm

jk.
Suppose ys

jk = ys
k j and gs

jk � 0, gm
jk � 0 (these conditions are satisfied if ( j,k) models a transmission line).

Define the total real power loss as the total real power injections as functions of voltages V :

C0(V ) := Â
j

Re
�
s j(V )

�
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Then the complex power flow equation (4.20a) implies

C0(V ) = Â
j

Re

 

Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2

!

It can be shown (Exercise 13.6) that C0(V ) is a quadratic form C0(V ) = VHC0V where the cost matrix
C0 := Re(Y ) is the real part of the admittance matrix Y . Moreover C0 is a positive definite matrix when
gm

jk +gm
k j > 0 for at least one line ( j,k) 2 E.

Suppose ym
jk = ym

k j = 0. Define the total thermal loss as:

C0(V ) := Â
( j,k)2E

rs
jk |I jk(V )|2 = Â

( j,k)2E
rs

jk

���ys
jk(Vj�Vk)

���
2

where zs
jk = rs

jk + ixs
jk := 1/ys

jk. Then it can be shown (Exercise 13.6) that C0(V ) is a quadratic form
C0(V ) = VHC0V where the cost matrix C0 = Re(Y ) =: Gs when ym

jk = ym
k j = 0. Therefore the total real

power loss reduces to total thermal loss when ym
jk = ym

k j = 0. The matrix Gs has zero row sum and is a
positive semidefinite matrix.

4.4 Computation methods

Suppose we are given a set of power flow equations in the bus injection model. Suppose 2(N + 1) of the
4(N +1) real variables are specified and we are interested in solving for the remaining variables. We now
present three solution methods. These methods do not require assumption C4.1.

4.4.1 Gauss-Seidel algorithm

Consider the power flow equations (4.20a) in the complex form. To illustrate the basic idea consider first
the case with a slack bus and load buses only.

Case 1: Given V0 and (s1, . . . ,sN), determine s0 and (V1, . . . ,VN). The power flow equations are:

s0 = Â
k

YH

0k V0VH

k (4.24a)

s j = Â
k

YH

jk Vj VH

k , j 2 N (4.24b)

Once we have computed (V1, . . . ,VN), s0 can be evaluated using (4.24a). Hence the main task is to compute
(V1, . . . ,VN) from (4.24b). We have from (4.24b):

sHj
VH

j
= Yj jVj +

N

Â
k=0
k 6= j

YjkVk, j 2 N
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Rearrange to obtain

Vj =
1

Yj j

0

B@
sHj
VH

j
�

N

Â
k=0
k 6= j

YjkVk

1

CA =: f j (V1, . . . ,VN) , j 2 N

Hence a power flow solution V := (V1, . . . ,VN) is a fixed point of f := ( f1, . . . , fN) with

V = f (V )

The Gauss algorithm is the standard fixed point iteration V (t +1) = f (V (t)), or

V1(t +1) = f1 (V1(t), . . . ,VN(t))
V2(t +1) = f2 (V1(t), . . . ,VN(t))

...
VN(t +1) = fn (V1(t), . . . ,VN(t))

Starting from an initial vector V (0) (e.g., Vj(0) = 1\0� pu for all j), the Gauss algorithm produces a
sequence V (1),V (2), . . . . If the sequence converges to a limit V lim then V lim is a fixed point of f and a
power flow solution.

When this iteration is carried out sequentially then when V2(t + 1) is computed, V1(t + 1) is already
known and can be used in the computation of V2(t + 1), and so on. This is the Gauss-Seidel algorithm
where the latest value of Vi(t +1) is used to compute Vj+1(t +1), j > i:

V1(t +1) = f1 (V1(t),V2(t), . . . ,VN(t))
V2(t +1) = f2 (V1(t +1),V2(t), . . . ,VN(t))

...
VN(t +1) = fN (V1(t +1), . . . ,VN�1(t +1),VN(t))

Case 2: Given (V0,V1, . . . ,Vm) and (sm+1, . . . ,sN), determine (s0,s1, . . . ,sm) and (Vm+1, . . . ,VN). In this
case, first determine (Vm+1, . . . ,VN) from the reduced set of power flow equations (4.24b) for j = m +
1, . . . ,N, using the same algorithm. Then determine (s0,s1, . . . ,sm) given (V0, . . . ,VN).

The Gauss-Seidel algorithm is simple and does not require the evaluation of any derivatives. If the
function f is a contraction mapping then it has a unique fixed point V lim and the Gauss or Gauss-Seidel
algorithm is guaranteed to converge to V lim. See Exercise 4.11. Otherwise there is no guarantee that
the algorithms will converge, but if it does, it produces a fixed point which is a power flow solution
V lim. Whether it converges can depend on the choice of the initial vector V (0). Take for an example
x = f (x) := x2 for x 2 R as shown in Figure 4.11. It has two fixed points xlim = 0 or 1. The fixed point
iteration x(t +1) = f (x(t)) = x2(t) converges to xlim = 0 if the initial point x(0) 2 (�1,1) and diverges to
positive infinity if |x(0)| > 1. The fixed point xlim = 0 is stable in the sense that the iterate x(t) converges
back to the origin after a small perturbation. The fixed point xlim = 1 is unstable in the sense that x(t)
leaves and will not return after a small perturbation in the positive direction.
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x

f (x) = x2

y = x

x0x1x2x* = 0

(a) Convergence

x0
x

f (x) = x2

y = x

x1 x2

(b) Divergence

Figure 4.11: The fixed point iteration x(t + 1) = f (x(t)) := x2(t) is not a contraction mapping and its
convergence depends on the initial point x(0) = x0.

4.4.2 Newton-Raphson algorithm

The Newton-Raphson algorithm is popular for iteratively solving the equation

f (x) = 0

where x 2 R
n and f is a vector-valued function f : Rn ! R

n. The iteration is motivated by the Taylor
series expansion of f . Suppose we have computed x(t) and wish to determine the next iterate x(t +1) =:
x(t)+Dx(t). The Taylor series of f around x(t) is

f (x(t)+Dx(t)) = f (x(t)) + J(x(t))Dx(t) + higher-order terms

where J(x(t)) is the Jacobian of f evaluated at x(t):

J(x) :=
∂ f
∂x

(x) =

2

664

∂ f1
∂x1

(x) · · · ∂ f1
∂xn

(x)
...

...
...

∂ fn
∂x1

(x) · · · ∂ fn
∂xn

(x)

3

775

If we ignore the higher-order terms in the Taylor expansion and set f (x(t +1)) = 0 then we have

J(x(t))Dx(t) = � f (x(t)) (4.25)

This is illustrated in Figure 4.12. If J(x(t)) is invertible then Dx(t) = �J�1(x(t)) f (x(t)), yielding the
Newton-Raphson iteration:

x(t +1) = x(t) � J�1(x(t)) f (x(t)) (4.26)

In practice we usually do not evaluate the inverse J�1(x(t)) except for very small systems. Instead we
solve the linear equation (4.25) for Dx(t). The next iterate is then x(t +1) = x(t)+Dx(t).
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!" # = " # % + '(# % )(# − # % )

!

"(#)

#(%)#(% + 1)#(% + 2)

Figure 4.12: Newton-Raphson algorithm: The next iterate x(t + 1) is obtained by approximating f by its
linear approximation at x(t) and setting the linear approximation f̂ (x) = 0.
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We now apply this method to solve the power flow equations in the polar form. To illustrate the
idea we consider the case where every bus in the network is either a slack bus (with V0 specified and s0
unknown), a PV bus (with (p j, |Vj|) specified and (q j,q j) unknown), or a PQ bus (with (p j,q j) specified
and (q j, |Vj|) unknown). The idea can be extended to more general cases. As mentioned before, (p j,q j)
can be evaluated directly from the power flow equations once all (q j, |Vj|) are determined. Hence the main
task is to solve for those (q j, |Vj|) that are not specified.

Let Npq ✓ N be the set of PQ buses where |Vj| (as well as q j) are unknown. We abuse notation and use
Npq to also denote the number |Npq| of buses in Npq. Let

q := (q j, j 2 N)

|V | := (|Vj|, j 2 Npq)

i.e., q collects all unknown phase angles and |V | collects all unknown voltage magnitudes. Rewrite (4.22)
as (right-hand sides are given constants):

p j(q , |V |) = p j, j 2 N
q j(q , |V |) = q j, j 2 Npq

where we have abused notation to use (p j,q j) to denote both power injections and as functions of (q , |V |)
given by:

p j(q , |V |) :=

 
N

Â
k=0

g jk

!
|Vj|2 � Â

k 6= j
|Vj||Vk|

�
g jk cosq jk +b jk sinq jk

�
, j 2 N (4.27a)

q j(q , |V |) := �
 

N

Â
k=0

b jk

!
|Vj|2 � Â

k 6= j
|Vj||Vk|

�
g jk sinq jk�b jk cosq jk

�
, j 2 Npq (4.27b)

Here q jk := q j�qk and (g jk,b jk) are defined in (4.21). Define the function f : RN+Npq ! R
N+Npq by

f (q , |V |) :=


Dp(q , |V |)
Dq(q , |V |)

�
:=


p(q , |V |)� p
q(q , |V |)�q

�
(4.28)

where p := (p j, j 2 N), q := (q j, j 2 Npq) are constants and

p(q , |V |) :=

2

64
p1(q , |V |)

...
pN(q , |V |)

3

75 , q(q , |V |) :=

2

64
q1(q , |V |)

...
qN(q , |V |)

3

75

Our goal is to compute a root of f (q , |V |) = 0 iteratively. The Jacobian of f is the (N +Npq)⇥ (N +Npq)
matrix

J(q , |V |) :=

" ∂ p
∂q

∂ p
∂ |V |

∂q
∂q

∂q
∂ |V |

#
(4.29)

Hence the Newton-Raphson algorithm is:
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1. Choose an initial point (q(0), |V |(0)).

2. Iterate until converge (or the maximum number of iterations has been reached):

(a) Solve (Dq(t),D|V |(t)) from

J (q(t), |V |(t))


Dq(t)
D|V |(t)

�
= �


Dp(q(t), |V |(t))
Dq(q(t), |V |(t))

�
(4.30)

(b) Set


q(t +1)
|V |(t +1)

�
:=


q(t)
|V |(t)

�
+


Dq(t)

D|V |(t)

�

The right-hand side of (4.30) is defined in (4.28) and represents the mismatch in injections at iteration
t. This mismatch is used to compute the increment (Dq(t),D|V |(t)) that updates the current iterate
(q(t), |V |(t)).

The Newton-Raphson algorithm is widely used in industry to compute power flow solution and solve
optimal power flow problems. It converges, typically quadratically, to a solution if it starts close to a
solution; see Kantorovich Theorem in Exercise 4.13. Like the Gauss-Seidel algorithm, it may not converge
if the initial point is far away from a solution.

Remark 4.7. Usually the injection q j at a PV bus j must be constrained within a range. After solving
for (q , |V |) and evaluating the resulting q j at bus j, if it hits or exceeds its limit then q j is set to the limit
and bus j is re-classified as a PQ bus with |Vj| (as well as q j) to be determined. The updated power flow
equations are then re-solved for the remaining unknown quantities.

4.4.3 Fast decoupled algorithm

We now take a closer look at the Jacobian J in (4.29). Using (4.27) it can be shown that for the diagonal
blocks (see Exercise 4.14):

∂ p j

∂qk
=

8
<

:

�|Vj||Vk|
�
g jk sinq jk�b jk cosq jk

�
, j 6= k, j,k 2 N

�q j(q , |V |) �
�
Âi b ji

�
|Vj|2, j = k, j 2 N

(4.31a)

∂q j

∂ |Vk|
=

8
><

>:

�|Vj|
�
g jk sinq jk�b jk cosq jk

�
, j 6= k, j,k 2 Npq

q j(q ,|V |)
|Vj| �

�
Âi b ji

�
|Vj|, j = k, j 2 Npq

(4.31b)



182 Draft: EE 135 Notes April 30, 2024

and for the off-diagonal blocks:

∂ p j

∂ |Vk|
=

8
><

>:

�|Vj|
�
g jk cosq jk +b jk sinq jk

�
, j 6= k, j 2 N,k 2 Npq

p j(q ,|V |)
|Vj| +

�
Âi g ji

�
|Vj|, j = k, j,k 2 Npq

(4.31c)

∂q j

∂qk
=

8
<

:

|Vj||Vk|
�
g jk cosq jk +b jk sinq jk

�
, j 6= k, j 2 Npq,k 2 N

p j(q , |V |) �
�
Âi g ji

�
|Vj|2, j = k, j 2 Npq

(4.31d)

From (4.21), g jk = b jk = 0 if buses j and k are not connected. Hence the corresponding off-diagonal
entries of all the submatrices of the Jacobian J are zero. This means that the sparsity of the network graph
induces a sparse Jacobian matrix J.

Moreover if line losses and angle differences q jk are small then it is reasonable to approximate g jk = 0
and sinq jk = 0. In this case it can be verified that the off-diagonal blocks are approximately zero (see
Exercise 4.14), i.e.,

∂ p j

∂ |Vk|
⇡ 0 and

∂q j

∂qk
⇡ 0, 8 j,k

This means that the voltage magnitudes and the real power injections (at the same or different buses)
are approximately decoupled, and the voltage angles and the reactive power injections are approximately
decoupled. This motivates a fast decoupled algorithm where an approximate Jacobian Ĵ matrix with the
off-diagonal blocks of J set to zero is used in place of J in the Newton-Raphson’s algorithm (step 2):

Ĵ(q , |V |) :=

"
∂ p
∂q 0
0 ∂q

∂ |V |

#

Then equation (4.30) to compute the increments in the Newton-Raphson algorithm is replaced by the
following equations that decouple active and reactive power:

∂ p
∂q

(q(t), |V |(t)) Dq(t) = �Dp(q(t), |V |(t)) (4.32a)

∂q
∂ |V |(q(t), |V |(t)) D|V |(t) = �Dq(q(t), |V |(t)) (4.32b)

There are other properties of J one can exploit to obtain symmetric matrices that saves storage and
computation in executing the exact Newton-Raphson algorithm; see [1, p. 350–351]. The fast decoupled
algorithm (4.32) can be further simplified with more approximations; see [1, p. 353–354].

4.4.4 Holomorphic Embedding Load-flow Method (HELM)

We now explain a solution method from [16] for solving power flow equations that adopts a very different
approach from those in Chapters 4.4.1, 4.4.2 and 4.4.3.
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Holomorphic functions. A complex-valued function f : C! C is complex differentiable at z 2 C if

f 0(z) := lim
h2C
h!0

f (z+h)� f (z)
h

(4.33)

exists. When f 0(z) exists we will call it the complex derivative (or derivative) of f at z2C. Note that f 0(z)
is generally a complex number. If f is complex differentiable at every z 2 Z ✓ C then f is holomorphic
on Z. Complex differentiability in (4.33) is a much stronger notion than differentiability of real-valued
functions because h must approach 0 from all directions in the complex plane; see Chapter 25.1.9 for
details. The most important property of holomorphic functions is that they are (complex) analytic, i.e.,
they can be expressed as a power series. Specifically a complex-valued function f : Z!C on an open set
Z ✓ C is holomorphic on Z if and only if at every point z0 2 Z there is a neighborhood Bd (z0) := {z 2 Z :
|z� z0| < d} around z0 such that

f (z) =
•

Â
k=0

ak(z� z0)
k, z 2 Bd (z0) (4.34)

wher ak = f (k)(z0)
k! , i.e., f (z) can be expressed as a Taylor series on Bd (z0). The neighborhood Bd (z0) is

called the region of convergence for (4.34).

Power flow equations. Suppose the voltage phasor V0 at bus 0 and power injections s := (s j, j 2 N)
at buses j 6= 0 are given. Bus 0 is often referred to as a slack bus or a PV bus because its voltage V0 is
specified and its power injection s0 is a variable. Our goal is to compute a solution V := (Vj, j 2 N) 2 C

N

to the complex-form power flow equations:

N

Â
k=0

YjkVk =
s̄ j

V̄j
, j 2 N (4.35)

where Yjk are the jkth entries of the admittance matrix Y 2 C
(N+1)⇥(N+1) and for a 2 C, ā denotes its

complex conjugate. Here is a summary of the HELM procedure (to be elaborated later).

Holomorphic embedding Introduce a new variable l 2C and embed (4.35) in C
N+1 so that the voltage

V := V (l ) := (Vj(l ), j 2 N) becomes a vector function of l , i.e., consider the polynomial equations

Yj0V0 +
N

Â
k=1

YjkVk(l ) =
l s̄ j

V̄j(l̄ )
, j 2 N (4.36)

Note that the denominator on the right-hand side is V̄j(l̄ ), not V̄j(l ), in order for Vj(l ) to be a holomorphic
function. Instead of solving (4.35) for V , HELM solves (4.36) rewritten as:

Yj0V0 +
N

Â
k=1

YjkVk(l ) =
l s̄ j

Ṽj(l )
, Ȳj0V̄0 +

N

Â
k=1

ȲjkṼk(l ) =
l s j

Vj(l )
, j 2 N (4.37a)

Ṽj(l ) = V̄j(l̄ ), j 2 N (4.37b)
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for two sets of complex-valued functions (V (l ),Ṽ (l )) := (Vj(l ),Ṽj(l ), j 2 N).

At l = 0, (4.37a) reduces to

Yj0V0 +
N

Â
k=1

YjkVk(0) = 0, Ȳj0V̄0 +
N

Â
k=1

ȲjkṼk(0) = 0, j 2 N

Decomposing the admittance matrix Y =:

W00 WT

10
W10 W11

�
according to V0 and V := (Vj, j 2N) where W00 2C

and W11 2 C
N⇥N , the system of equations above becomes

W11V (0) = �V0W10, W̄11Ṽ (0) = �V̄0W̄10

where W̄11 and W̄10 are the componentwise complex conjugates of W11 and W10 respectively. If W11 is
nonsingular then the unique solution is

V (0) = �V0W�1
11 W10, Ṽ (0) = �V̄0W̄�1

11 W̄10 (4.38)

Note that the solution (V (0),Ṽ (0)) satisfies (4.37b) as well. This is the solution driven by the given voltage
source V0 at bus 0 and zero injections at other buses.

The solution to the original power flow equation (4.35) corresponds to a solution (V (l ),Ṽ (l )) of
(4.37) at l = 1. HELM uses a continuation method to compute this solution, starting from (V (0),Ṽ (0))
in (4.38).

Power series. To show that the functions (Vj(l ),Ṽj(l ), j 2 N) are holomorphic, Gröbner basis can be
used to express Ṽ1,(V2,Ṽ2), . . . ,(VN ,ṼN) in terms of V1 and reduce (4.37a) to a polynomial equation in V1:

P(V1) :=
M

Â
k=0

pk(l )V k
1 = 0 (4.39)

The degree M of the polynomial in (4.39) is generally exponential in the number N of original variables.
This defines an algebraic curve which then implies that (Vj(l ),Ṽj(l ), j 2 N) are indeed holomorphic
functions everywhere except at a finite number of points.

Therefore, for each j 2N, we can write Vj(l ) and 1/Vj(l ) as power series in a neighborhood of l = 0,
from (4.34),

Vj(l ) =
•

Â
i=0

a jil i,
1

Vj(l )
=

•

Â
i=0

b jil i, j 2 N (4.40)

for some sequences (a ji, i� 0, j 2N) and (b ji, i� 0, j 2N). Hence 1/Ṽj(l ) =
�
1/Vj(lH)

�H
= Â•

i=0 b̄ jil i.
Substituting into (4.37) we have

Yj0V0 +
N

Â
k=1

Yjk

•

Â
i=0

akil i = l s̄ j

•

Â
i=0

b̄ jil i, j 2 N (4.41a)
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or in vector form

V0W10 +
•

Â
i=0

(W11ai)l i =
•

Â
i=0

�
s̄� b̄i

�
l i+1 (4.41b)

where s := (s j, j 2 N) is the vector of injections at buses j 6= 0, and for i � 0, ai := (a ji, j 2 N) and
bi := (b ji, j 2 N) are N-dimensional column vectors of coefficients. For two vectors x and y, x� y is
the column vector of componentwise products, i.e., (x� y) j := x jy j. We can compute these coefficients
(ai,bi, i� 0) iteratively from (4.41), as follows. Setting l := 0, (4.41) yields, when W11 is nonsingular,

V0W10 + W11a0 = 0, =) a0 = �V0W�1
11 W10 (4.42a)

Differentiating successively (4.41b) with respect to l and setting l := 0 yields

W11a1 = s̄� b̄0, · · · , W11ai = s̄� b̄i�1, · · · , (4.42b)

Since Vj(l )
�
1/Vj(l )

�
= 1 we have 1 =

�
Â•

i=0 a jil i��Â•
i=0 b jil i� for j 2 N, or in vector form

1N =

 
•

Â
i=0

ail i

!
�
 

•

Â
i=0

bil i

!

where 1N is the column vector of all 1s of size N. Hence

1N = a0�b0 + (a0�b1 +a1�b0)l + (a0�b2 +a1�b1 +a2�b0)l 2 + · · ·

= Â
i�0

 
i

Â
k=0

ak�bi�k

!
l i (4.42c)

From (4.42) we can obtain (ai,bi, i� 0) iteratively: a0 from (4.42a) and then b0 from (4.42c):

a0 = �V0W�1
11 W10, b0 = 1N↵a0 (4.43a)

where, for two vectors x and y, x↵y is the column vector of componentwise division, i.e., (x↵y) j := x j/y j.
For i� 1, we have from (4.42b) and (4.42b), assuming W11 is nonsingular,

ai = W�1
11
�
s̄� b̄i�1

�
, bi = �

 
i

Â
k=1

ak�bi�k

!
↵a0, i� 1 (4.43b)

With the coefficients (ai, i� 0) = (a ji, j 2 N, i� 0) from (4.43), the solution Vj(l ) is given by (4.40) as a
power series in l . In practice only an approximation V̂j(l ) := ÂK

i=0 a jil i of Vj(l ) with a finite number of
terms is computed.

Analytic continuation. We are interested in V (l ) := (Vj(l ), j 2 N) at l = 1. Even though, for l 2
Bd (0) in the region of convergence around l = 0,

Vj(l ) =
•

Â
i=0

a jil i, j 2 N
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and we have the coefficients (ai, i � 0) = (a ji, j 2 N, i � 0) from (4.43), the radius d of convergence is
typically much smaller than 1 so we may not be able to simply substitute l = 1 into the power series as the
infinite sum may not converge. To deal with this, Padé approximation is used to approximate the power
series. Padé approximation approximates a power series by a rational function and typically has much
better convergence properties than a power series (Taylor series). The power solution Vj(l ) is computed
as the analytic continuation of the Padé approximation, starting from Vj(0) in (4.38). See [16] for details.

Example 4.8 (Two-bus system [16]).

4.5 Properties of power flow solutions

Example 4.9 (Two-bus network). Consider two buses 1 and 2 connected by a line with admittance y =
g + ib with g > 0,b < 0. Assume zero charging admittances, and we ignore reactive powers. Assume
V1 := 1\0� and V2 = eiq , i.e., voltage magnitudes are fixed at 1 pu. Then the real power injections (p1, p2)
depend on q according to the power flow equations in polar form are:

p1 := p1(q) := g � gcosq � bsinq (4.44a)
p2 := p2(q) := g � gcosq + bsinq (4.44b)

or in vector form

P�g1 = A


cosq
sinq

�
(4.45)

where 1 := [1 1]T and A is an invertible (indeed negative definite) matrix:

A :=

�g �b
�g b

�

Show that, as q ranges from 0 to 2p , (p1(q), p2(q)) traces out an ellipse.

4.6 Bibliographical notes

The description of LU decomposition to solve I = YV and algorithms to compute power flow solutions are
adapted from [1]. For properties of complex symmetric matrices such as the admittance matrix Y , see [33,
Chapter 4.4]. For invertibility of Y , the first part of Theorem 4.2 is from [22, Lemma 1] though we have
used properties of Schur complement to simplify its proof. See also [10, ?].
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The use of Newton-Raphson algorithm for solving power flow problems is first proposed in [34]. An
implementation at BPA is reported in [35] with major improvements, especially a heuristic to optimize
the order of Gaussian elimination of the Jacobian matrix in solving J(x(t))Dx(t) =� f (x(t). A method is
introduced in [36] that computes a new voltage solution V 0 = V +Âl i jlkl(e jl � ekl) to I = Y 0V 0 in terms of
the old voltage solution V to I = YV when the admittance matrix changes from Y to Y 0 (line changes). The
quantities i jlkl are called compensation currents and are computed from using the old admittance matrix
Y . This method, well explained in [37], has the advantage of not having to factorize new matrix Y 0 into
its LU decomposition when relatively few number of lines are changed. The Fast Decoupled algorithm is
proposed in [38].

4.7 Problems

Chapter 4.2

Exercise 4.1 (Ideal transformer and transmission line). Consider the cascade in the one-line diagram of
Figure 4.13(a) of an ideal transformer with voltage gain n and a transmission line modeled by a series
admittance y (and zero shunt admittances). Show that its external behavior is equivalent to that of the P

y

1:n

V1 V2
I2I1 aI1

nV1

(a) One-line diagram

V1

+

−

V2

+

−

n(n−1)y

I2I1

(1− n)y

ny

(b) Equivalent P circuit model

Figure 4.13: An ideal transformer with turns ratio a = n�1 followed by a transmission line modeled by a
series admittance y.

circuit model in Figure 4.13(b).

Exercise 4.2 (Unitary diagonalizability of Y ). Suppose condition C4.1 holds. Let the bus admittance
matrix Y := G+ iB where G and B are real matrices (whose rows may not sum to zero).

1. Show that Y is normal (i.e., YY H = Y HY ) and hence unitarily diagonalizable if and only if G and B
commute, or if and only if BG is symmetric.

2. Suppose all lines have the same RX ratio, i.e., for some real a , bs
jk = ags

jk for all ( j,k) 2 E and
bm

j j = agm
j j for all j 2 N (or all shunt elements are zero). Show that Y is normal. (Hint: Use part 1.)
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Exercise 4.3 (Real Laplacian matrix). Suppose the n⇥n admittance matrix Y of a connected graph is real
symmetric with zero row sums (e.g., Y is the admittance matrix of a DC network), i.e., Yjk = Yk j  0 for
all j 6= k and Yj j =�Âk: j 6=k Yjk for all j.

1. Show that rank Y = n�1 and hence Y is not invertible and null(Y ) = span(1).

2. Show that the (n�1)⇥ (n�1) matrix Y 0 obtained from Y by removing the jth row and column, for
any j, has rank n�1 and is hence invertible.

3. Give a counter-example to part 1 if Y is real symmetric but Yjk have different signs for j 6= k.

Exercise 4.4 (Inverse of Y ). Consider a complex matrix A =: G+ iB where G,B 2 R
n⇥n. Show that, even

if both G and B are singular, its inverse A�1 =: R+ iX may exist though not given by the formulae (4.13b)
or (4.14b). This is the case even if G and B are symmetric.

Exercise 4.5 (Invertibility of Y ). Prove part 2 of Theorem 4.2: For a complex symmetric matrix Y , if
Im(Y )� 0 then Y�1 exists and is symmetric. Moreover Im(Y�1)� 0.

Exercise 4.6 (Invertibility of Y , [22]). This is an alternative proof from [22, Lemma 1] of (part of) Theorem
4.2: a complex symmetric matrix Y is nonsingular if Re(Y ) � 0 or if Im(Y ) � 0. Prove the claim by
showing that there exists no nonzero vector a such that Y a = 0.

The next problem expresses the invertibility of the admittance matrix Y in terms of the invertibility of
another matrix Ŷ s defined below. If Y is invertible then

Y�1 = (Y m)�1 � (Y m)�1
⇣

C
�
Ŷ s��1CT

⌘
(Y m)�1

This is known as the matrix inversion lemma.

Exercise 4.7 (Invert Y using matrix inversion lemma). Recall that, under condition C4.1, the admittance
matrix Y can be written in terms of the incidence matrix C as (from (4.10)):

Y = CY sCT + Y m

where Y s := diag
�
ys

l , l 2 E
�

and Y m := diag
⇣

ym
j j, j 2 N

⌘
. Suppose ys

l 6= 0 for all l and ym
j j 6= 0 for all j

so that the diagonal matrices Y s and Y m are invertible. Show that Y is invertible if and only if the M⇥M
matrix

Ŷ s := (Y s)�1 +CT (Y m)�1C

is invertible. (Hint: Use the property that a matrix is nonsingular if and only if a principal submatrix and
its Schur complement are both nonsingular, according to Theorem 25.4 in Appendix 25.1.3.)
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Exercise 4.8 (Invertibility of Y ). For any matrix A 2 C
n⇥n, prove the following.

1. A is invertible if vHAv 6= 0 for all nonzero v 2 C
n.

2. Show that the converse is not true by providing a counter-example A that is Hermitian (including
real symmetric) and a counter-example A that is complex symmetric. (Hint: Consider 2⇥2 diagonal
matrices.)

3. Suppose A is (Hermitian and) positive semidefinite. Then the following are equivalent:

• A is invertible

• vHAv 6= 0 for all nonzero v 2 C
n.

• A is positive definite.

Exercise 4.9 (Alternative proof of Theorem 4.3). Consider the complex symmetric admittance matrix
Y 2C(N+1)⇥(N+1). Let l be an eigenvalue of Y and a 2CN+1 a corresponding eigenvector. Then aHY a =
l ||a||2 where || · || denotes the Euclidean norm. A sufficient (but not necessary) condition for Y to be
invertible is that aHY a 6= 0 for all nonzero vectors a 2 C

N+1. Let ys
jk =: gs

jk + ibs
jk, ym

j j =: gm
j j + ibm

j j.

1. Suppose condition C4.1 holds. Show that

aHY a =

0

@ Â
( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2N

gm
j j |a j|2

1

A+ i

0

@ Â
( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2N

bm
j j |a j|2

1

A

2. Show that the conditions in Theorem 4.3 imply that aHY a 6= 0 for all nonzero vectors a 2 C
N+1.

Exercise 4.10 (Kron reduction). Given an admittance matrix Y and its Kron-reduction Y/Y22 (assume Y22
is invertible):

Y =:

Y11 Y12
YT

12 Y22

�
, Y/Y22 := Y11 � Y12Y�1

22 YT

12

1. Show that if Y has zero row (and hence column) sums, i.e., ym
jk = ym

k j = 0 for ( j,k) 2 E, so does
Y/Y22.

2. Show that the converse does not necessarily hold.
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Chapter 4.4

Exercise 4.11 (Gauss algorithm). Consider solving for the roots of

g(x) = ax2� x (4.46)

i.e., finding x such that g(x) = 0. An x is a root of g if and only if it is a fixed point of f (x) := ax2, i.e., if
and only if x = f (x). The Gauss algorithm computes a fixed point of f (x) by performing the fixed-point
iteration:

x(t +1) := f (x(t)) (4.47)

Let X ✓ R be closed and convex and suppose f maps X into X . We say f is a contraction mapping on X
if there exists an a 2 [0,1) such that

| f (y)� f (x)|  a |y� x|, for all x,y 2 X (4.48)

If f is a contraction mapping on X then there is a unique fixed point x⇤ 2 X and the fixed-point iteration
(4.47) always converges to x⇤, starting from any initial point x(0) 2 X .

1. What are the roots of g in (4.46)?

2. Whenever |a| < 1, f maps X := [�1,1] into X . Show that f is a contraction mapping on X if and
only if |a| < 1/2. In that case, what is the root of g that (4.47) computes?

3. Show that (4.47) converges to x⇤ = 0 if and only if x(0) satisfies |ax(0)| < 1.

4. Is it necessary for f to be a contraction mapping for the Gauss algorithm (4.47) to compute a root
of g? What is the advantage, if any, if f is indeed a contraction mapping?

Exercise 4.12 (Newton algorithm). The Newton algorithm solves iteratively for x 2Rn such that g(x) = 0
where g : Rn! R

n. In each iteration, it approximates g by its linearization at the current iterate x(t) and
moves to x(t + 1) where the linearization vanishes. Show that if g is linear, g(x) = Ax + b where A is
invertible, then the Newton algorithm solves g(x) = 0 in one step wherever it starts.

Exercise 4.13 (Kantorovich Theorem). The Newton algorithm converges if the initial point is close to a
solution. This is made precise by the Kantorovich Theorem. Consider g : D! R

n where D ✓ R
n is an

open convex set. Suppose g is differentiable on D and —g is Lipschitz on D, i.e., there is an L such that

k—g(y)�—g(x)k  Lky� xk, for all x,y 2 D

where [—g(x)]i j := ∂gi
∂x j

(x). Suppose x0 2 D and that —g(x0) is invertible. Let

b �
���(—g(x0))

�1
��� , h �

���(—g(x0))
�1 g(x0)

���

h := bhL, r :=
1�
p

1�2h
h

h
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The Kantorovich Theorem says that if the closed ball Br (x0)✓ D and h 1/2 then the Newton iteration

x(t +1) := x(t) � (—g(x(t)))�1 g(x(t))

converges to a solution x⇤ of g(x) = 0 in the closed ball Br (x0).

1. Apply the Kantorovich Theorem to g(x) := ax2� x to prove that the Newton iterates converge to a
root of g if the initial point x0 satisfies either of the following conditions, assuming a > 0:

x0 
1

2a

✓
1� 1p

2

◆
or x0 �

1
2a

✓
1+

1p
2

◆

Which root will the Newton iteration compute in each case?

2. The Kantorovich Theorem provides only a sufficient condition for convergence of the Newton iter-
ates. Show that, for g(x) := ax2� x, as long as x0 6= (2a)�1 = minx g(x), the Newton iterates will
converge. (Hint: use part 1.)

Exercise 4.14 (Fast decoupled algorithm). 1. Use (4.27) to prove (4.31) reproduced here:

∂ p j

∂qk
=

8
<

:

�|Vj||Vk|
�
g jk sinq jk�b jk cosq jk

�
, j 6= k, j,k 2 N

�q j(q , |V |) �
�
Âi b ji

�
|Vj|2, j = k, j 2 N

∂q j

∂ |Vk|
=

8
><

>:

�|Vj|
�
g jk sinq jk�b jk cosq jk

�
, j 6= k, j,k 2 Npq

q j(q ,|V |)
|Vj| �

�
Âi b ji

�
|Vj|, j = k, j 2 Npq

∂ p j

∂ |Vk|
=

8
><

>:

�|Vj|
�
g jk cosq jk +b jk sinq jk

�
, j 6= k, j 2 N,k 2 Npq

p j(q ,|V |)
|Vj| +

�
Âi g ji

�
|Vj|, j = k, j,k 2 Npq

∂q j

∂qk
=

8
<

:

|Vj||Vk|
�
g jk cosq jk +b jk sinq jk

�
, j 6= k, j 2 Npq,k 2 N

p j(q , |V |) �
�
Âi g ji

�
|Vj|2, j = k, j 2 Npq

2. Show that if g jk = 0 and sinq jk = 0 then the Jacobian reduces to the approximating block-diagonal
matrix:

Ĵ(q , |V |) :=

"
∂ p
∂q 0
0 ∂q

∂ |V |

#



Chapter 5

Branch flow models

In this chapter we introduce several forms of the branch flow model. Whereas a bus injection model
consists of only nodal variables (power and current injections and voltages), a branch flow model involves
also branch power flows and branch currents. We present branch flow models in complex form, real form,
for general networks in Chapter 5.1 and radial networks in Chapter 5.2, with and without shunt admittances
of the lines. We prove in Chapter 5.3 the equivalence of this set of models and the bus injection model of
Chapter 4. For radial networks we describe in Chapter 5.4 a fast iterative algorithm, the backward forward
sweep, to compute a power flow solution. Finally we present in Chapter 5.5 a linearized model for radial
networks and illustrate its application to volt/var control.

Branch flow models were originally proposed for radial networks and have been extended to general
networks with cycles. These models have two important advantages when specialized to radial networks:
the backward forward sweep for power flow computation and a linearized model that admits an explicit
solution and bounds on nonlinear branch powers and voltage magnitudes.

5.1 General network

5.1.1 Line model

As in Chapter 4 we model a power network with N + 1 buses and M lines as a connected undirected
graph G = (N,E) where N := {0}[N, N := {1,2, . . . ,N} and E ✓ N ⇥N; see Figure 4.7. For each
bus j 2 N, let Vj its voltage phasor and s j its complex power injection. For each line ( j,k) 2 E, let
(I jk, Ik j) denote the sending-end line currents from buses j to k and buses k to j respectively. Similarly let
(S jk,Sk j) denote the sending-end line power flows in each direction. Let V := (Vj, j 2 N), s := (s j, j 2 N),
I := (I jk, Ik j,( j,k) 2 E), and S := (S jk,Sk j,( j,k) 2 E).

Each line ( j,k)2 E is characterized by two series admittances and two shunt admittances,
⇣

ys
jk,y

m
jk

⌘
2

C
2 from j to k and

⇣
ys

k j,y
m
k j

⌘
2C2 from k to j. They define the relation between

�
Vj,Vk

�
and

�
I jk, Ik j

�
(see

(5.1c)(5.1d) below). A line may model a transmission or distribution line, a single-phase transformer, the

192
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per-phase model of a three-phase transformer in balanced setting, and may contain admittances of sources
and loads. When it models a transformer with real voltage gain, ym

jk and ym
k j are in general different.

When the voltage gain is complex, ys
jk and ys

k j may also be different. (See Chapter 4.2.2 for more details.)
Despite the appearance in Figure 5.1, this general line model does not have a P circuit representation when

ys
jk 6= ys

k j. Let zs
jk :=

⇣
ys

jk

⌘�1
and zs

k j :=
⇣

ys
k j

⌘�1
.

We will often restrict ourselves to the special case where the series admittances are equal ys
jk = ys

k j, and

characterize a line by three admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. This model can be represented as a P circuit and

behaves like a transmission or distribution line though with generally different ym
jk and ym

k j; see Figure 5.1.
It cannot be used as the per-phase model of a balanced three-phase transformer in DY or Y D configuration












































































































Figure 5.1: Line model under assumption C5.1.

that has a complex voltage gain K(n), but is still widely applicable.

As in Chapter 4 we label the following assumption and will explicitly state it when it is required:

C5.1: The series admittances ys
jk = ys

k j or equivalently the series impedances zs
jk = ys

k j for every line
( j,k) 2 E.

5.1.2 Complex form

The branch flow model (BFM) in the complex form is defined by the following power flow equations in
the variables (s,V, I,S) 2 C

2(N+1)+4M (from (4.1)(4.2)):

s j = Â
k: j⇠k

S jk, j 2 N (5.1a)

S jk = Vj IHjk, Sk j = Vk IHk j, ( j,k) 2 E (5.1b)
I jk = ys

jk(Vj�Vk) + ym
jkVj, ( j,k) 2 E (5.1c)

Ik j = ys
k j(Vk�Vj) + ym

k jVk, ( j,k) 2 E (5.1d)

where (5.1a) imposes power balance at each bus, (5.1b) defines branch power in terms of the associated
voltage and current, and (5.1c)(5.1d) describes Kirchhoff’s and Ohm’s laws. For convenience we include
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V0 in the vector variable V := (Vj, j 2N) with the understanding that V0 := 1\0� is fixed. This model does
not require assumption C5.1.

As we will see in Chapter 5.3 this model serves as a bridge between the bus injection model of Chapter
4 in complex form and the branch flow models in real domain in the rest of this chapter.

5.1.3 Real form

A branch flow model, called the DistFlow equations, is proposed in [39, 40] for radial networks. Its key
feature is that it does not involve phase angles of voltage and current phasors. For each bus j let

• s j := (p j,q j) and s j := (p j + iq j) represent the real and reactive power injections at bus j;1

• v j represent the squared voltage magnitude at bus j.

For each line ( j,k) let

• S jk = (Pjk,Q jk) and S jk = Pjk + iQ jk represent the sending-end real and reactive branch power flow
from bus j to bus k, and Sk j represent the sending-end power from k to j;

• ` jk represent the squared magnitude of the sending-end current from bus j to bus k, and `k j represent
the squared current magnitude from k to j.

The variables v := (v j, j 2 N) and ` := (` jk,`k j,( j,k) 2 E) will replace the phasors V and I in the model
(5.1). The power flow equations below therefore are in terms of a real vector x := (s,v,`,S) 2R

3(N+1)+6M

that does not involve voltage and phase angles as variables.

The angle information is however embedded in x. Define for each ( j,k) 2 E

zs
jk :=

⇣
ys

jk

⌘�1
=: zs

k j

a jk := 1+ zs
jk ym

jk, ak j := 1+ zs
k j ym

k j

Note that a jk = ak j if and only if ym
jk = ym

k j and a jk = ak j = 1 if and only if ym
jk = ym

k j = 0 since |zs
jk| 6= 0.

Given any x define the vector b (x) 2 R
2M of line angles as a function of x by

b jk(x) := \
✓

aH

jk v j�
⇣

zs
jk

⌘H
S jk

◆
, ( j,k) 2 E (5.2a)

bk j(x) := \
✓

aH

k j vk�
⇣

zs
k j

⌘H
Sk j

◆
, ( j,k) 2 E (5.2b)

Using (5.1b)(5.1c)(5.1d), it can be shown that, if x is a power flow solution, then (b jk(x),bk j(x)) are
voltage angle differences across line ( j,k) (Exercise 5.1), i.e.,

b jk(x) = \Vj�\Vk, bk j(x) = \Vk�\Vj, ( j,k) 2 E

1We abuse notation and use s to denote both the complex power injection s = (p+ iq) and the real pair s = (p,q), depending
on the context. Similarly for S = (P+ iQ) and S = (P,Q), and for z = (r + ix) and z = (r,x).
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This implies in particular that b jk(x) =�bk j(x), even in the absence of assumption C5.1.

The following branch flow model relaxes the angles of voltages and currents and are applicable to
general networks:

s j = Â
k: j⇠k

S jk, j 2 N (5.3a)

��S jk
��2 = v j ` jk,

��Sk j
��2 = vk `k j, ( j,k) 2 E (5.3b)

��a jk
��2 v j� vk = 2Re

✓
a jk

⇣
zs

jk

⌘H
S jk

◆
�
���zs

jk

���
2
` jk, ( j,k) 2 E (5.3c)

��ak j
��2 vk� v j = 2Re

✓
ak j

⇣
zs

k j

⌘H
Sk j

◆
�
���zs

k j

���
2
`k j, ( j,k) 2 E (5.3d)

there exists q 2 R
N+1 s.t. b jk(x) = q j�qk, ( j,k) 2 E (5.3e)

bk j(x) = qk�q j, ( j,k) 2 E (5.3f)

where b jk(x) and bk j(x) are defined in (5.2). Equation (5.3a) expresses power balance at each bus and is a
shorthand for the real equations:

p j = Â
k: j⇠k

Pjk, q j = Â
k: j⇠k

Q jk, j 2 N

Equation (5.3b) defines apparent branch power and follows from (5.1b). The relationship (5.3c)(5.3d)
originates from KCL and Ohm’s law in (5.1c)(5.1d); see (5.20) in the proof of Theorem 5.3. We call
(5.3e)(5.3f) the cycle condition and it ensures that the line angles implied by x can indeed be realized by
nodal voltage angles. This means that the model (5.3), which does not include phase angles, is consistent
with the model (5.1), which does. The cycle condition can also be expressed in vector form in terms of
the bus-by-line incidence matrix C 2 {0,±1}(N+1)⇥N of the radial network, defined by:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

(5.4)

Then b (x) must be in the row (line) space of C:

b (x) =


CT

�CT

�
q , for some q 2 R

N+1

A vector x is called a power flow solution if it satisfies (5.3) with v � 0 and ` � 0. Given a power flow
solution x we can recover the voltage and current phasors; see (5.13) in Chapter 5.2.

We emphasize that, despite the complex notation, (5.3) is a set of 2(N + 1) + 6M real equations in
3(N +1)+6M real variables x := (s,v,`,S) = (p j,q j,v j,` jk,`k j,Pjk,Pk j,Q jk,Qk j, j 2 N, ( j,k) 2 E). The
power flow problem is: given N + 1 of these variables, determine the remaining 2(N + 1)+ 6M variables
from these power flow equations. Equations (5.3b) are quadratic, the cycle condition is nonlinear, and the
rest are linear in x. This model does not require assumption C5.1.
Remark 5.1. Branch flow models have been most useful for radial networks, which is the focus of the rest
of this chapter. These models for radial networks are all special cases of the general model (5.3). Even
though the branch flow models (5.3)(5.1) and the bus injection model (4.20a) are defined by different sets
of equations in terms of their own variables, all of them are models of Kirchhoff’s and Ohm’s laws. We
will show in Chapter 5.3 that these models are indeed equivalent in a precise sense.
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5.2 Radial network

In this section we assume the network graph G is a tree. The cycle condition (5.3e)(5.3f) for general
networks is highly nonlinear in the variable x. When the network graph is a tree, the cycle condition can
be replaced by a linear condition on x. When shunts admittances are assumed zero then the cycle condition
becomes vacuous.

5.2.1 With shunt admittances

The major simplification for radial networks is the replacement of the nonlinear cycle condition (5.3e)(5.3f)
by the following linear cycle condition on a power flow solution x:

aH

jk v j �
⇣

zs
jk

⌘H
S jk =

✓
aH

k j vk �
⇣

zs
k j

⌘H
Sk j

◆H

, ( j,k) 2 E

This leads to the following branch flow model for radial networks that generalizes the original DistFlow
equations of [39, 40] to allow shunt admittances of lines:

s j = Â
k: j⇠k

S jk, j 2 N (5.5a)

��S jk
��2 = v j ` jk,

��Sk j
��2 = vk `k j, ( j,k) 2 E (5.5b)

��a jk
��2 v j� vk = 2Re

✓
a jk

⇣
zs

jk

⌘H
S jk

◆
�
���zs

jk

���
2
` jk, ( j,k) 2 E (5.5c)

��ak j
��2 vk� v j = 2Re

✓
ak j

⇣
zs

k j

⌘H
Sk j

◆
�
���zs

k j

���
2
`k j, ( j,k) 2 E (5.5d)

aH

jk v j �
⇣

zs
jk

⌘H
S jk =

✓
aH

k j vk �
⇣

zs
k j

⌘H
Sk j

◆H

, ( j,k) 2 E (5.5e)

where we recall that v j represents the squared voltage magnitude at bus j. We will show in Theorem 5.3
below that they are equivalent when the network is radial, i.e., an x satisfies the nonlinear cycle condition
(5.3e)(5.3f) if and only if it satisfies the linear cycle condition (5.5e). The model (5.5) is a set of 2(N +
1) + 6M real equations in the vector x of 3(N + 1) + 6M real variables (M = N since G is a tree). All
equations are linear in x except (5.5b) which are quadratic. This model does not require assumption C5.1.

5.2.2 Without shunt admittances

Consider a radial network where lines have zero shunt admittances and hence a jk = ak j = 1. Moreover
we suppose assumption C5.1 holds. A consequence of substituting zs

jk = zs
k j and ym

jk = ym
k j = 0 into (5.5)

for all lines ( j,k) 2 E is the relation between the sending-end power flows S jk and Sk j (see Exercise 5.3):

S jk + Sk j = zs
jk` jk = zs

jk`k j (5.6)

It says that the sum of sending-end power flows is equal to the complex line loss across the series
impedance zs

jk. We can use this relation to express `k j = ` jk and Sk j = zs
jk` jk� S jk in terms of (` jk,S jk)
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and eliminate branch variables (`k j,Sk j) in the opposite direction from (5.5). This leads to a simpler set of
equations based on a directed, rather than undirected, graph G, as we now explain. In particular the linear
cycle condition (5.5e) becomes vacuous.

In this subsection we assume G = (N,E) is directed. We denote a line in E from bus j to bus k either
by ( j,k) 2 E or j! k 2 E. Associated with each line j! k 2 E are branch variables (` jk,S jk). It is
important to remember that, unlike models in the previous sections, (`k j,Sk j) in the opposite direction are
not defined in the models in this subsection, unless otherwise specified. Let (s,v) := (s j,v j, j 2 N) and
(`,S) := (` jk,S jk, j! k 2 E). Let x := (s,v,`,S) in R

3(N+1+M) with M = N since G is a tree. Without loss
of generality we take bus 0 as the root of the tree. Even though the graph orientation can be arbitrary we
discuss two particularly convenient graph orientations: one where every line points away from bus 0 and
the other where every line points towards bus 0; see Figure 5.2. For every bus j there is a unique node i

0

i

j

k

0

i

j

k

(a) All lines point away from bus 0 (b) All lines point towards bus 0

Figure 5.2: Notation for BFM for radial networks.

that is adjacent to j on the path from bus 0 to bus j. We present two sets of power flow equations, one for
each graph orientation. These two models are equivalent in the sense that there is a bijection F that maps x
to x̂ = F(x) such that x is a solution to the first set of equations if and only if x̂ is a solution to the second set
of equations. A power flow solution x contains no voltage and current angles, but we will explain below
how to recover these angles from x using (5.13). To simplify notation we omit the superscript and write

z jk = (r jk,x jk) =
⇣

ys
jk

⌘�1
as the series impedance of line ( j,k).

Down orientation: lines point away from bus 0. Under assumption C5.1, we can substitute `k j = ` jk
and Sk j = zs

jk` jk�S jk into (5.5) to eliminate branch variables (`k j,Sk j) and obtain a simpler set of equations
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for BFM for a radial network without line shunts:

Â
k: j!k

S jk = Si j� zi j`i j + s j, j 2 N (5.7a)

v j� vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j! k 2 E (5.7b)

v j` jk = |S jk|2, j! k 2 E (5.7c)

where, in (5.7a), bus i := i( j) denotes the unique adjacent node of j on the path from node 0 to node j,
with the understanding that when j = 0 then Si0 = 0 and `i0 = 0. When j is a leaf node2, all S jk = 0 in
(5.7a). Here we recall that v j represents the squared voltage magnitude at bus j. Again this model adopts
a directed graph where branch variables (` jk,S jk) are defined only for the direction of the lines j! k 2 E,
not for the opposite directions. The vector v includes v0 and s includes s0. This model is first proposed in
[39, 40] for radial networks and is called the DistFlow equations.

Despite the complex notation, (5.7) is a set of 2(N + 1 + M) real equations in 3(N + 1 + M) real
variables x = (pi,qi,vi,` jk,Pjk,Q jk) and a shorthand for:

Â
k: j!k

Pjk =
�
Pi j� ri j`i j

�
+ p j, j 2 N

Â
k: j!k

Q jk =
�
Qi j� xi j`i j

�
+q j, j 2 N

v j� vk = 2
�
r jkPjk + x jkQ jk

�
� (r2

jk + x2
jk)` jk, j! k 2 E

v j` jk = P2
jk +Q2

jk, j! k 2 E

Since M = N, there are (4N + 2) equations in (6N + 3) real variables. Given (2N + 1) of these variables
(e.g., given v0 = 1 and non-slack bus injections (p j,q j), j 2 N), the power flow problem is to determine
the remaining 4N +2 variables from these equations. There can be zero, one or more than one solutions.

Up orientation: lines point towards bus 0. When the graph orientation is opposite to that in Case 1,
BFM is specified by the following equations in x := (s,v,`,S):

S ji = Â
k:k! j

�
Sk j� zk j`k j

�
+ s j, j 2 N (5.8a)

vk� v j = 2Re
⇣

zHk jSk j

⌘
� |zk j|2`k j, k! j 2 E (5.8b)

vk`k j = |Sk j|2, k! j 2 E (5.8c)

where i := i( j) in (5.8a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by S ji = 0 in (5.8a) when j = 0 and Sk j = 0,`k j = 0 in (5.8a) when j
is a leaf node. For an advantage of this orientation see Remark 5.2. As for the down orientation, (5.8) is a
valid model only under assumption C5.1.

2A node j is a leaf node if there exists no k such that j! k 2 E.
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General orientation. For general graph orientation, the power flow equations in x are:

Â
k: j!k

S jk = Â
i:i! j

�
Si j� zi j`i j

�
+ s j, j 2 N (5.9a)

v j� vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j! k 2 E (5.9b)

v j` jk = |S jk|2, j! k 2 E (5.9c)

The power flow equations (5.9) for different graph orientations are the same, but their boundary conditions
may be different. As explained at the beginning of Chapter 5.2.2, (5.9) is a valid model only under
assumption C5.1. This model can also be written compactly in vector form in terms of the (N +1)⇥N
incidence matrix C of the radial network, defined in (5.4). Let C+ := max{C,0} and C� := min{C,0}
denote the matrices containing only the source nodes and destination nodes respectively of the (directed)
lines. Then (5.9) is:

s = CS�C�Z` (5.10a)

CTv = 2Re
⇣

ZHS
⌘
� |Z|2` (5.10b)

|S|2 = diag
⇣

vTC+

⌘
` (5.10c)

where Z := diag(z jk, j! k 2 E), |Z|2 := diag(|z jk|2, j! k 2 E), and |S|2 := (|S jk|2, j! k 2 E).

Intuitively nodal injections and voltages (s,v) should not depend on the orientation of the graph while
branch currents and power (`,S) do, since branch variables are defined only in the direction of the lines,
not in the opposite direction. We can formally relate the power flow solutions defined for opposite graph
orientations. Specifically, consider the opposite orientation where the direction of every line is reversed
from that in (5.9). The resulting power flow equations are:

Â
k: j!k

Ŝ jk = Â
i:i! j

�
Ŝi j� zi j ˆ̀i j

�
+ ŝ j, j 2 N (5.11a)

v̂k� v̂ j = 2Re
⇣

zHjkŜk j

⌘
� |z jk|2 ˆ̀k j, k! j 2 E (5.11b)

v̂k ˆ̀k j = |Ŝk j|2, k! j 2 E (5.11c)

An example is the down and up orientations above. Then it can be shown that there is a bijection g such
that x is a power flow solution of (5.9) if and only if x̂ := g(x) is a power flow solution of (5.11) (Exercise
5.4). Indeed x̂ = g(x) is given by:

ŝ j := s j, v̂ j := v j, ˆ̀k j := ` jk, Ŝk j := �
�
S jk� z jk` jk

�
(5.12)

Angle recovery, cycle condition. We first show that, for a radial network, the linear cycle condition
(5.5e) becomes vacuous when the shunt admittances ym

jk = ym
k j = 0 and C5.1 holds. Then we explain how

to use this fact to recover phase angles for voltage and current phasors (V, I) as well as line flows S.

As explained above C5.1 allows us to adopt a directed network graph G := (N,E) with an arbitrary
orientation. Without loss of generality we assume G is connected and hence M = N. Recall the bus-by-line
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incidence matrix C defined in (5.4). Let b (x) :=
�
b jk(x), j! k 2 E

�
, i.e., b (x) contains only b jk(x) for

all directed lines j! k, but not bk j(x) = �b jk(x) in the opposite direction. It is proved in Theorem 5.3
below that the cycle condition (5.5e) is equivalent to (5.3e)

b (x) = CTq for some q 2 R
N+1 (5.13a)

where the entries b jk(x) of b (x) are given by (5.2a), reproduced here:

b jk(x) := \
✓

v j�
⇣

zs
jk

⌘H
S jk

◆
, j! k 2 E

The N⇥ (N + 1) matrix CT has rank N = M for a (connected) radial network. The null space of CT is
span(1) and its pseudo-inverse

�
CT
�†

= C
�
CTC

��1 (Exercise 5.2 shows that CT has full row rank and its
pseudo-inverse is therefore given by Corollary 25.20.2 of Appendix 25.1.7). Given a power flow solution
x, a solution to (5.13a) is

q = C
⇣

CTC
⌘�1

b (x) + f1 (5.13b)

for an arbitrary angle f 2 R. The angle f is fixed by the assumption that q0 := 0. Hence we have shown
that a power flow solution x that satisfies the DistFlow equation (5.7) or (5.8) or (5.9) also satisfies (5.13a)
which is equivalent to the cycle condition (5.5e). Hence (5.5e) is vacuous.

To recover the voltage and current phasors, pick any solution q(x) in (5.13b), and without loss of
generality, we can project it to q j(x)2 (�p,p]. The voltage and current phasors (V, I) can then be obtained
in terms of x as:

Vj := pv j eiq j(x), I jk :=
q

` jk ei(q j(x)�\S jk) (5.13c)

where \S jk := tan�1(Q jk/Pjk) is the power factor angle.

5.2.3 Power flow solutions

Example 5.1 (Two-bus network). Consider two buses 0 and 1 connected by a line with series impedance
z = r + ix with r > 0, x > 0 and zero shunt admittances. The power balance at bus 0 (noting that S0k := 0)
and the other DistFlow equations over line 1! 0 are given by:

p0 � r` = �p1, q0 � x` = �q1 (5.14a)
v1 � v0 = 2(rp1 + xq1) � (r2 + x2)` (5.14b)
p2

1 + q2
1 = v1` (5.14c)

where the voltage v0 and the injections p1, q1 are given. Suppose q1 = 0 and v0 = r = x = 1 pu.

1. Show that power flow solutions (p0,q0,v1,`) exist if and only if

1
2

⇣
1�
p

2
⌘
 p1 

1
2

⇣
1+
p

2
⌘
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2. Show that for each injection value p1 that satisfies the condition in part 1, there are two voltage
solutions v1 given by

v1 =
1
2

⇣
1+2p1⌥

p
D
⌘

=
1
2

⇣
1+2p1⌥

p
4p1(1� p1)+1

⌘

where

D := 4
�
(rp1 + xq1) � (rq1� xp1)

2� + 1

3. Show that the locus (v1, p1) that satisfies (15.44) is a (rotated) ellipse. Plot the two solutions for v1
in Part 2 as functions of p1. These two curves form the ellipse.

4. Show that the lowest voltage solution is v1 = 0 pu attained at p1 = 0 pu and the highest voltage
solution is v1 = 2 pu attained at p1 = 1 pu.

For the two-bus network in Example 5.1 power flow solutions, when projected in the (v1, p1) coor-
dinate, form an ellipse without the interior. This feature of hollow solution set is generally true for the
DistFlow model (5.7), (5.8), (5.9), as the following result shows. Let

T := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (5.9) under assumption C5.1}

Theorem 5.1 (Hollow solution set). If x̂ and x̃ are distinct power flow solutions in T with the same voltage
v̂0 = ṽ0 at the root bus 0, then no convex combination of x̂ and x̃ can be in T. In particular T is nonconvex.

Proof. Suppose x̂ 6= x̃ are distinct power flow solutions in T. Fix any a 2 [0,1] and consider x := ax̂+(1�
a)x̃. We now show that if x 2 T then x̂ = x̃, contradicting that x̂ and x̃ are distinct.

Suppose x 2 T. In particular v j` jk = |S jk|2 by (5.9c). Substituting x := (x̂+ x̃)/2, we have

1
4
(v̂ j + ṽ j)( ˆ̀jk + ˜̀jk) =

1
4
��Ŝ jk + S̃ jk

��2 , j! k 2 E

Substituting v̂ j ˆ̀jk = |Ŝ jk|2 and ṽ j ˜̀jk = |S̃ jk|2 yeilds

v̂ j ˜̀jk + ṽ j ˆ̀jk = 2 Re
⇣

ŜHjkS̃ jk

⌘
(5.15a)

The right-hand side satisfies

2 Re
⇣

ŜHjkS̃ jk

⌘
 2 |S̃ jk||Ŝ jk| (5.15b)

with equality if and only if \Ŝ jk = \S̃ jk (mod 2p). The left-hand side of (5.15a) is

v̂ j ˜̀jk + ṽ j ˆ̀jk = h j |S̃ jk|2 + h�1
j |Ŝ jk|2 � 2 |S̃ jk||Ŝ jk| (5.15c)
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with equality if and only if h j|S̃ jk| = |Ŝ jk|, where for j 2 N, h j := v̂ j/ṽ j. But (5.15) implies that equalities
are attained in both (5.15b) and (5.15c), and hence

h jS̃ jk = Ŝ jk and h j ˜̀jk = ˆ̀jk, j 2 N (5.16)

Define h0 := v̂0/ṽ0 = 1. Then for each line j! k 2 E we have, using (5.9b),

hk =
v̂k

ṽk
=

v̂ j�2Re(zHjkŜ jk)+ |z jk|2 ˆ̀jk

ṽ j�2Re(zHjkS̃ jk)+ |z jk|2 ˜̀jk

=
h j

⇣
ṽ j�2Re(zHjkS̃ jk)+ |z jk|2 ˜̀jk

⌘

ṽ j�2Re(zHjkS̃ jk)+ |z jk|2 ˜̀jk
= h j

where the third equality follows from (5.16). This implies, since the network graph G is connected, that
h j = h0 = 1 for all j 2 N, i.e. v̂ j = ṽ j, j 2 N.

We have thus shown that Ŝ = S̃, ˆ̀ = ˜̀, v̂ = ṽ, and hence, by (5.9a), ŝ = s̃, i.e., x̂ = x̃. This completes
the proof.

This property of the power flow solution set is illustrated vividly in several numerical examples in
[41, 24, 25, 26].

Radiality condition. Many applications can be formulated as a constrained optimization problem, e.g.,
state estimation, voltage regulation, feeder reconfiguration, or topology identification. Some of these ap-
plications, e.g., feeder reconfiguration and topology identification, involve computing an incidence matrix
C of a radial network among a set of (N +1)⇥N matrices. A convenient way to specify a connected radial
network is the following linear constraint on the reduced incidence matrix defined from [42]. Denote by
cT0 the first row of C corresponding to bus 0 and by Ĉ the N⇥N submatrix consisting of the remaining
rows of C so that

C =:

� cT0 �

Ĉ

�
(5.17)

The submatrix Ĉ is called the reduced incidence matrix.

Lemma 5.2. Let Ĉ 2 {0,±1}N⇥N denote the reduced incidence matrix of a general network with N + 1
nodes and N lines. The network network is radial and connected if and only if there exists line flows
P 2 R

|E| such that ĈP = 1.

Proof. If the network is radial and connected then its reduced incidence matrix Ĉ is invertible (Exercise
5.9) and therefore P = Ĉ�11 is well defined. Conversely suppose there exists P that satisfies ĈP = 1. Since
there are N + 1 nodes and only N lines, the network is connected if and only if it is radial. Suppose then
the network is not connected. Consider a maximal connected component that does not contain bus 0, and
let N1 ( N denote its nodes. Without loss of generality we can partition Ĉ according to nodes in N1 and
those in its complement N0 := N \N1:

Ĉ =:

Ĉ0 0
0 Ĉ1

�
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where Ĉ1 is the (full) incidence matrix of the maximal connected component N1. Therefore ĈT

1 11 = 0
(whereas ĈT

0 10 6= 0 since Ĉ0 is the reduced incidence matrix of the subgraph N0). This means that 11 is
in the null space of ĈT and therefore orthogonal to the range space of Ĉ1, i.e., there does not exist any P1
such that Ĉ1P1 = 11. This contradicts ĈP = 1 for some P.

5.3 Equivalence

Equivalence. As presented in Chapters 5.1 and 5.2 the branch flow models are defined by different sets
of power flow equations:

1. For general networks: (5.1) or (5.3);

2. For radial networks with shunt admittances: (5.5);

3. For radial networks without shunt admittances (DistFlow equations): (5.7), (5.8), (5.9) when as-
sumption C5.1 holds.

BFMs are usually used for modeling radial networks commonly found in distribution systems. The Dist-
Flow equations (5.7), (5.8) are most commonly used in the literature. The model (5.5) is useful in appli-
cations where shunt admittances of the lines are important.

The models (5.1) and (5.3) for general networks are used mostly as a bridge to relate BFM models for
radial networks to the bus injection models for general networks studied in Chapter 4.3. Specifically even
though BFMs and the bus injection model (4.20a), reproduced here:

s j = Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N (5.18)

are defined by different sets of equations in terms of their own variables, all of them are models of Kirch-
hoff’s and Ohm’s laws. We now clarify the precise sense in which these mathematical models are equiva-
lent.

Let the set of solutions (s,V ) of BIM be:

V := {(s,V ) 2 C
2(N+1) | (s,V ) satisfies (5.18)} (5.19a)

Let the sets of solutions of BFM be:

X̃ := {x̃ : (s,V, I,S) 2 C
2(N+1)+4M | x̃ satisfies (5.1)} (5.19b)

Xmeshed := {x : (s,v,`,S) 2 R
3(N+1)+6M) | x satisfies (5.3)} (5.19c)

Xtree := {x : (s,v,`,S) 2 R
9N+3 | x satisfies (5.5)} (5.19d)

T0 := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (5.7) under assumption C5.1} (5.19e)

T0 := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (5.8) under assumption C5.1} (5.19f)

We say two sets A and B are equivalent, denoted by A ⌘ B, if there is a bijection between them. The
equivalence of these power flow models is clarified in the following theorem and illustrated in Figure 5.3.
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Figure 5.3: Equivalence of BFM and BIM (the model T0 defined by (5.7) is the original DistFlow model).

Theorem 5.3. Suppose the network G is connected.

1. V⌘ X̃⌘ Xmeshed.

2. If G is a tree then Xmeshed ⌘ Xtree.

3. Suppose ys
jk = ys

k j (assumption C5.1) and ym
jk = ym

k j = 0 for all lines ( j,k). If G is a tree then
Xtree ⌘ T0 ⌘ T0.

Proof. Part 1: V⌘ X̃⌘Xmeshed. It is obvious V⌘ X̃ since, given (s,V )2V, define I by (5.1c)(5.1d) and S
by (5.1b) and the resulting (s,V, I,S) 2 X̃. Conversely given (s,V, I,S) 2 X̃, substituting (5.1b)(5.1c)(5.1d)
into (5.1a) shows (s,V ) 2 V.

To show X̃⌘ Xmeshed, fix an x̃ := (s,V, I,S) 2 X̃. Define (v,`) by:

v j := |Vj|2, ` jk := |I jk|2, `k j := |Ik j|2

We now show that x := (s,v,`,S)2Xmeshed. That x satisfies (5.3a) follows from (5.1a). Taking the squared
magnitude on both sides of (5.1b) gives (5.3b). For (5.3c) rewrite (5.1c) as

Vk = a jk Vj � zs
jk

✓
S jk

Vj

◆H

(5.20)

where we have substituted I jk := SHjk/VH
j from (5.1b). Taking the squared magnitude on both sides gives

vk =
��a jk

��2 v j +
���zs

jk

���
2
` jk � 2Re

✓
a jk

⇣
zs

jk

⌘H
S jk

◆

which is (5.3c). Similarly (5.3d) can be derived from (5.1d). From (5.1b)(5.1c) we have

VjVH

k = aH

jk|Vj|2 �
⇣

zs
jk

⌘H
S jk, VkVH

j = aH

k j|Vk|2 �
⇣

zs
jk

⌘H
Sk j
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The definitions of b jk(x) and bk j(x) in (5.2) then imply that b jk(x) = \Vj�\Vk = �bk j(x) and hence
(5.3e)(5.3f) hold with q j := \Vj. This shows x 2 Xmeshed.

Conversely fix an x := (s,v,`,S) 2 Xmeshed. Since b jk(x) defined in (5.2) satisfy (5.3e), they satisfy
(5.13a). Hence we can construct (V, I) from x using (5.13b)(5.13c) as:

Vj := pv j eiq j , I jk :=
q

` jk ei(q j�\S jk)

We now verify that x̃ := (s,V, I,S) satisfies (5.1). Clearly (5.1a) is (5.3a). For (5.1b), we have from (5.3b)
and the construction (5.13c) of (V, I) that

|S jk| =
���VjIHjk

��� , \S jk = \Vj�\I jk

Hence S jk = VjIHjk. Similarly Sk j = VkIHk j. We next show that (5.1c) follows from (5.3c). First note that

(5.1c) is equivalent to zs
jk
�
S jk/Vj

�H
= a jkVj � Vk which is equivalent to

VjVH

k = aH

jk v j � zsH
jk S jk (5.21)

We now show that (5.3c) implies that the quantities on both sides of (5.21) have equal magnitudes and
angles, thus establishing their equality. For their angles, the definition of b jk(x) in (5.2) implies

\
⇣

aH

jk v j � zsH
jk S jk

⌘
= b jk(x) = q j � qk = \

⇣
VjVH

k

⌘

where the last two equalities follow from the construction of Vj,Vk. The squared magnitude of the right-
hand side of (5.21) is

���aH

jk v j � zsH
jk S jk

���
2

=
��a jk

��2 v2
j � 2v j Re

⇣
a jk zsH

jk S jk

⌘
+
��z jk
��2 ��S jk

��2

= v j

⇣��a jk
��2 v j � 2Re

⇣
a jk zsH

jk S jk

⌘
+
��z jk
��2 ` jk

⌘
= v jvk

which is the squared magnitude of the quantity on the left-hand side of (5.21) by a jk. The second equality
above follows from |S jk|2 = v j` jk from (5.3b) and the last equality follows from (5.3c). Hence (5.1c)
follows from (5.3c). Similarly (5.1d) follows from (5.3d). This proves x̃ 2 X̃. We hence conclude X̃ ⌘
Xmeshed.

Part 2: Xmeshed ⌘ Xtree. Suppose G is a tree. We will show that x := (s,v,`,S) satisfies (5.3) if and only if
it satisfies (5.5). It suffices to show that x satisfies (5.3e)(5.3f) if and only if it satisfies (5.5e). Suppose x
satisfies (5.3e)(5.3f) which implies that b jk(x) =�bk j(x). Using (5.2) we have

\
⇣

aH

jk v j � zHjk S jk

⌘
= b jk(x) = �bk j(x) = �\

⇣
aH

k j vk � zHk j Sk j

⌘

i.e., the quantities on both sides of (5.5e) have equal angles. We now show that they have equal magnitudes
as well. Indeed

���aH

jk v j � zHjk S jk

���
2

=
��a jk

��2 v2
j +
��z jk
��2 |S jk|2�2Re

⇣
a jk zHjk v j S jk

⌘
= v j vk
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where the last equality follows from multiplying both sides of (5.5c) by v j and then substituting (5.5b).
Similarly

���aH

k j vk � zHjk Sk j

���
2

= v j vk =
���aH

jk v j � zHjk S jk

���
2

This shows that aH

jk v j � zHjk S jk =
⇣

aH

k j vk � zHk j Sk j

⌘H
. Hence x satisfies (5.5e). Conversely suppose x sat-

isfies (5.5e). Adopt an arbitrary orientation of the network graph and define b jk(x) :=\
⇣

aH

jk v j� zHjk S jk

⌘

for each directed line j! k (only). Then q given by (5.13b) is a solution to (5.3e). The condition (5.5e) im-
plies that bk j(x) =�b jk(x). Hence the q determined also satisfies (5.3f). This shows that Xmeshed ⌘Xtree.

Part 3: Xtree ⌘ T0 ⌘ T0. The proof for part 3 under assumption C5.1 is left as Exercise 5.5.

Given the bijection between the solution sets of BIM and BFM, any result in one model is in principle
derivable in the other. Some results however are much easier to state or derive in one model than the other.
For instance BIM, which is widely used in transmission network problems, allows a much cleaner for-
mulation of semidefinite program (SDP) relaxation. BFM for radial networks has a convenient recursive
structure that allows a more efficient computation of power flows and leads to a useful linear approxi-
mation; see Chapters 5.4 and 5.5. The sufficient condition for exact relaxation in Chapter ?? provides
intricate insights on power flows that are hard to formulate or prove in BIM. BFM for radial networks
seems to be much more stable numerically than BIM as the network size scales up. Finally, since BFM
directly models branch flows S jk and currents I jk, it is easier to use for some applications. One should
freely use either model depending on which is more convenient for the problem at hand.

5.4 Backward forward sweep for radial network

The tree topology induces a spatially recursive structure in power flow equations. This structure can be
used to develop an efficient method to compute a power flow solution, called a backward forward sweep
(BFS). The Newton-Raphson algorithm of Chapter 4.4.2 works for general networks but needs to compute
Jacobian or solve a linear system in each iteration, a significant computational burden for large networks.
The Fast Decoupled Algorithm of Chapter 4.4.3 works well when line losses are small, which is a good
approximation for high-voltage transmission networks but not distribution systems. In contrast BFS is
simple, accurate, and tends to converge quickly in practice.

An outline of BFS is as follows. A power flow solution is partitioned into two groups of variables x
and y. Starting from an initial vector y, the components xi can be recursively computed starting from leaf
nodes and working towards the root (backward sweep). Given the newly updated vector x, the components
yi are then updated recursively starting from the root and working towards the leaf nodes (forward sweep).
A BFS method iterates on a backward sweep followed by a forward sweep, until convergence. It can be
interpreted as a special Gauss-Siedel algorithm.

Different BFS algorithms mostly differ in their choice of variables x and y and the associated power
flow equations. In the following we first provide in Chapter 5.4.1 a general formulation of BFS and then
illustrate in Chapters 5.4.2 and 5.4.3 BFM algorithms using the complex form BFM and the DistFlow
model. Finally in Chapter 5.4.4 we present convergence analysis.
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5.4.1 General BFS

Overview. The method of backward forward sweep can be interpreted as a Gauss-Siedel algorithm dis-
cussed in Chapter 4.4.1, with two special structures that exploit that tree topology of the network. First it
partitions a power flow variable into two vectors x2 An1 and y2 An2 where A is either C or R. It iteratively
computes a fixed point:

x(t) = F(x(t),y(t�1)), y(t) = G(x(t),y(t)) (5.22)

where F : An1+n2 ! An1 and G : An1+n2 ! An2 . By this notation we mean that each (outer) iteration in
(5.22) is computed iteratively in an inner loop that always uses the latest available values to update each
component (xi(t),yi(t)) in turn, i.e.,

xi(t) = Fi(x1(t), . . . ,xi�1(t),xi+1(t�1), . . . ,xn1(t�1),y(t�1)), i = 1, . . . ,n1

yi(t) = Gi(x(t),y1(t), . . . ,yi�1(t),yi+1(t�1), . . . ,yn2(t�1)), i = 1, . . . ,n2

Second the inner loop makes use of a spatially recursive structure enabled by the tree topology. Specif-
ically the partition x and y are chosen so that, given a vector y, each component xi depends on the other
components x�i := (x1, . . . ,xi�1,xi+1, . . . ,xn1) recursively, i.e., the update function Fi depends on x�i only
through (x1, . . . ,xi�1). This means that, starting from x j(t) at leaf nodes j and propagating towards the root
of the tree, xi(t) at nodes at successive layers are computed in a Gauss-Siedel manner (backward sweep):

xi(t) = Fi(x1(t), . . . ,xi�1(t),y(t�1)), i = 1, . . . ,n1

Similarly, given x(t), each component yi(t) depends on y�i(t) recursively and is computed by propagating
from the root towards the leaf nodes (forward sweep). The design of BFS involves the choice of power
flow equations and variables (x,y) based in part on what information is given in a power flow problem.
These choices are not unique and may have different convergence properties.

Most BFS algorithms compute line currents or power flows in the backward sweep and voltages in the
forward sweep. Typically the voltage at the substation (the root of the tree) is specified and that the line
current or power out of a leaf node is zero. These two boundary conditions mean that the computation
of line currents or powers must start from the leaf nodes and propagate backward, while that of voltages
must start from the root and propagate forward.

Algorithm. Fix any graph orientation. It is natural to use either the down orientation (all lines point
away from the root) or the up orientation (all lines point towards the root). Often it is convenient to use
the up orientation when designing the backward sweep. The variables associated with a line j! k such
as line currents I jk or power flows S jk, can be consistently identified by the from node j. In the following
we assume such identification has been done and we will identify variables xi, yi by nodes i even though
they may represent line variables. Let the root of the tree be bus i = 0.

Typically xi depends only on x j at its child nodes j (i.e., j is adjacent to i and farther away from the
root than i). More generally let T�i denote the set of buses in the subtree rooted at bus i, not including i. Let
xT�i :=

�
x j, j 2 T�i

�
denote the variables x j in the subtree T�i . We say that x satisfies a spatially recursive

structure if, given y, xi depends on the other variables x�i only through xT�i ✓ x�i, in the form:

xi = fi

⇣
xT�i ; y

⌘
, i 2 N
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Each xi can be a vector and fi a vector-valued function. This means that, starting from the leaf nodes and
working towards the root (bus 0) in the reverse breadth-first search order, xi can be recursively updated
given a vector y. The boundary condition for the recursion is that, if i is a leaf node, then T�i := /0 and
xi = fi ( /0,y) =: fi(y). This relation starts the backward sweep working from the leaf nodes towards the
root, as illustrated in Figure 5.4(a).

(a) Backward sweep (b) Forward sweep

Figure 5.4: General backward forward sweep

Similarly x and y are chosen so that, given x, the components yi depends on the other components y�i
only through variables y j in the path from the root to node i. Specifically let P�i denote the set of buses in
the unique path from the root to bus i, including bus 0 but not including i. Let yP�i :=

�
y j, j 2 P�i

�
. The

variable y satisfies a spatially recursive structure if, given x, yi depends on y�i only through yP�i ✓ y�i, in
the form:

yi = gi

⇣
yP�i ; x

⌘
, i 2 N

Each yi can be a vector and gi a vector-valued function. The boundary condition for the recursion is that,
if i is a child of the root bus 0, then P�i := {0} and y0 at bus 0 is given and hence yi = gi(y0; x). This
relation starts the forward sweep to recursively update yi, working from the root towards the leaf nodes in
the breadth-first search order; see Figure 5.4(b).

In summary let x := (xi, i2N) and y := (yi(t), i2N). A pair (x,y) is a power flow solution if it satisfies

xi = fi

⇣
xT�i ; y

⌘
, i 2 N, yi = gi

⇣
yP�i ; x

⌘
, i 2 N (5.23a)

T�i = /0 for all leaf nodes i y0 given (5.23b)

Let the update functions be f := ( fi, i = 1, . . . ,N) and g := (gi, i = 1, . . . ,N). A BFS algorithm is a special
Gauss-Seidel algorithm that computes a fixed point of (5.23a) starting from the initial conditions in (5.23b).
It is defined by the update functions ( f ,g) and described in Algorithm 1. If it converges and ( f ,g) are
continuous then the limit point is a fixed point and therefore a power flow solution. An advantage of BFS
is that it does not need to calculate derivatives of power flow equations and tends to converge quickly in
practice.
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Algorithm 1: Backward forward sweep
Input: ( fi,T�i , i 2 N), (gi,P�i , i 2 N), (y0,y�0) 2 Fn2 with y�0 := (yi, i 2 N).
Output: a solution (x,y) of (5.23).

1. Initiatization:

• T�i := /0 for all leaf notes i.

• y0(t) y0 for t = 0,1, . . . ; y(0) (y0,y�0).

• t 0.

2. while stopping criterion not met do

(a) t t +1;

(b) Backward sweep: for i starting from the leaf nodes and iterating towards bus 0 do

xi(t)  fi

⇣
xT�i (t); y(t�1)

⌘
, i 2 N

(c) Forward sweep: for i starting from bus 0 and iterating towards the leaf nodes do

yi(t)  gi

⇣
yP�i (t); x(t)

⌘
, i 2 N

3. Return: x := x(t), y := y(t).
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5.4.2 Complex form BFM

Without loss of generality we consider G as a directed graph where each line points away from the root bus
0. As explained at the beginning of Chapter 5.2.2, we can adopt directed graph and involve line variables�
I jk,S jk

�
in the direction of the line j! k, but not variables

�
Ik j,Sk j

�
in the opposite direction, only under

assumption C5.1 guaranteeing zs
jk = zs

k j.

We hence assume C5.1 holds in this subsection. Suppose V0 and injections s j at all non-reference buses
j 6= 0 are given. We will compute the voltage phasor Vj for every bus j 6= 0 and the current Is

jk through the
series admittance ys

jk for every line j! k in the direction of the line (see Figure 5.1):

Is
jk := I jk � ym

jkVj

All other variables, such as injection s0 and branch flows S jk in (5.1), can be computed once (Vj, Is
jk) for

all j 2 N and all j! k 2 E are determined (Exercise 5.6).3

For each bus j, let i( j) denote the unique parent bus between the buses 0 and j. By Ohm’s law we
have Vj�Vk = zs

jkIs
jk where zs

jk := 1/ys
jk is the series impedance of line ( j,k). The sending-end power

from buses j to k is S jk = VjIHjk = Vj

⇣
Is

jk + ym
jkVj

⌘H
and the received power at bus j from i := i( j) is

Vi

⇣
Is
i j� ym

jiVj

⌘H
. The BFS algorithm of [43] starts with the power balance equation at each bus j:4

s j + Vj
�
Is
i j� ym

jiVj
�H

= Â
k: j!k

Vj

⇣
Is

jk + ym
jkVj

⌘H
(5.24)

where i := i( j) denote the unique parent of j; see Figure 5.5. We therefore have, for all non-reference
buses (dividing both sides of (5.24) by Vj and rearranging),

Is
i j = Â

k: j!k
Is

jk �
 ✓

s j

Vj

◆H

� ym
j jVj

!
, j 2 N (5.25a)

Vj = Vi � zs
i jI

s
i j, j 2 N (5.25b)

where ym
j j := ym

ji +Âk: j!k ym
jk is the total shunt admittance incident on bus j. The boundary conditions are

Is
jk := 0 for all leaf nodes j, V0 is given , Vj(0) := V0, j 2 N (5.25c)

This is spatially recursive in that, given voltages
�
Vj, j 2 N

�
, propagating (5.25a) backward from the leaf

nodes towards the root (bus 0) in the reverse breadth-first search order, the current Is
i j can be updated once

all the currents Is
jk in the previous level are determined; see Figure 5.5. In the forward direction, given

currents Is :=
⇣

Is
i j,(i, j) 2 E

⌘
, propagating (5.25b) from the root towards the leaf nodes in the breadth-first

search order, the voltage Vj can be updated recursively once its parent Vi is determined.

Since the injections s j at all non-reference buses j are given (i.e., all buses j are PQ buses), (5.25)
defines a BFS algorithm where:

3Instead of Is
jk, we can also compute the branch current (see Exercise 5.7) but the choice of Is

jk over I jk has an advantage of
the simple relation Is

jk =�Is
k j.

4An implicit assumption in (5.24) is that the receiving-end current at bus j from i is Is
i j � ym

jiVj. This holds only under
assumption C5.1.
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Figure 5.5: Recursive structure of power flow equations (5.25).

• x j := Is
i j for j 2 N are the complex line currents across the series impedance zs

i j from buses i to j.
The backward sweep functions f j in (5.23a) are given by (5.25a).

• y j := Vj for j 2 N are the complex voltage at buses j. The forward sweep functions g j in (5.23a) are
given by (5.25b).

• The initialization in (5.23b) is given by (5.25c).

The update function f is linear in x given y, but not jointly linear in (x,y). The function g is linear in (x,y).

The algorithm proceeds as follows.

Input: voltage V0 pu and injections (si, i 2 N).
Output: currents (Is

jk, j! k 2 E) and voltages (Vi, i 2 N).

1. Initialization.

• Is
jk(t) := 0 for all leaf nodes j for all iterations t = 1,2, . . . .

• V0(t) := V0 at bus j = 0 for all t = 0,1, . . . .

• Vj(0) := V0 at all buses j 2 N.

2. Backward forward sweep. Iterate for t = 1,2, . . . until a stopping criterion (see below) is satisfied:

(a) Backward sweep. Starting from the leaf nodes and iterating towards bus 0, compute

Is
i j(t)  Â

k: j!k
Is

jk(t) �
 ✓

s j

Vj(t�1)

◆H

� ym
j j Vj(t�1)

!
, i! j 2 E (5.26a)

where ym
j j := ym

ji +Âk: j⇠k ym
jk.
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(b) Forward sweep. Starting from bus 0 and iterating towards the leaf nodes, compute

Vj(t) = Vi(t) � zs
i j Is

i j(t), j 2 N (5.26b)

where zs
i j :=

⇣
ys

i j

⌘�1
.

3. Output: Is
jk := Is

jk(t) and Vi := Vi(t).

A stopping criterion can be based on the discrepancy between the given injections s j and the injections
s j(t) implied by Is(t) := (Is

jk(t), j ! k 2 E) and V (t) := (Vj(t), j 2 N) at the end of each iteration t.
Specifically let

s j(t) := �Vj(t)IsH
i j (t) + ymH

j j
��Vj(t)

��2 + Â
k: j!k

Vj(t)IsH
jk (t)

Then a stopping criterion can be

ks(t)� sk := Â
j2N

�
s j(t)� s j

�2
< e

for a given tolerance e > 0.

5.4.3 DistFlow model

The BFS algorithm defined by (5.25) assumes all power injections s j at non-reference buses j are given
and computes Is

jk in the backward sweep. If some buses have their voltage magnitudes |Vj| and real power
p j given instead (i.e., these are PV buses), we can develop BFS algorithms based on the DistFlow model
of Chapter 5.2.2. The advantage of the DistFlow model is that the BFS algorithms need not compute the
voltage angles q j. Phase angles can be recovered using (5.13) after BFS has produced a solution.

We will present two algorithms, one where V0 and (s j, j 2 N) are given, as in Chapter 5.4.2, and the
other where (V0,v j, j 2 N) and (p j, j 2 N) are given. In both cases only v0 is needed in BFS but the angle
\V0 is needed in (5.13) to ensure a unique angle vector q from the solution of BFS.

It will be convenient to adopt a graph orientation where every line k! j points towards the root bus
0. Assume for simplicity zero shunt admittances, ym

jk = ym
k j = 0. As explained at the beginning of Chapter

5.2.2, DistFlow model is valid only under assumption C5.1 guaranteeing zs
jk = zs

k j. Hence we assume C5.1
holds in this subsection.

Example 5.2 (Given (V0,s j)). Suppose the complex voltage V0 and (s j, j 2 N) for all non-reference buses
j are given. We will use the DistFlow equations to compute

�
S jk,` jk, j! k 2 E

�
and (v j, j 2 N).

The DistFlow equations for the up orientation are (5.8). The equations (5.8a) and (5.8c) lead to the
following backward sweep to compute

�
Sk j,`k j,k! j

�
:

S ji = s j + Â
k:k! j

⇣
Sk j� zs

k j`k j

⌘
, j 2 N (5.27a)

` ji =
|S ji|2

v j
, j 2 N (5.27b)
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where i := i( j) in (5.27a) denotes the parent node of j on the unique path between node 0 and node j. The
equation (5.8b) leads to a forward sweep to compute (v j, j 2 N):

v j = vi + 2Re
⇣

zsH
ji S ji

⌘
� |zs

ji|2` ji, j 2 N (5.27c)

The boundary conditions are

S0i := 0, Sk j := 0, `k j := 0 for leaf nodes j, V0 is given , v j(0) := |V0|2, j 2 N (5.27d)

This defines a BFS algorithm where:

• x j :=
�
S ji,` ji

�
for j 2 N. The backward sweep functions f j in (5.23a) are given by (5.27a)(5.27b).

• y j := v j for j 2 N. The forward sweep functions g j in (5.23a) are given by (5.27c).

• The initialization in (5.23b) is given by (5.27d).

The function f is nonlinear in x given y due to (5.27b). The function g is jointly linear in (x,y).

Example 5.3 (Given (v j, p j)). Suppose the complex voltage V0, squared voltage magnitudes (v j, j 2 N)
and real power injections (p j, j 2 N) for all non-reference buses j are given. We will compute the reactive
power injections (q j, j 2 N) as well as the line flows (S jk, j ! k 2 E). All other variables, including
(p0,q0), can then be determined.

Eliminating `k j from (5.27a)(5.27b) we can compute S ji :=
�
Pji,Q ji

�
in a backward sweep and q j in a

forward sweep:

S ji = s j + Â
k:k! j

 
Sk j� zk j

|Sk j|2

vk

!
, j 2 N (5.28a)

q j = Q ji � Â
k:k! j

 
Qk j� xk j

|Sk j|2

vk

!
, j 2 N (5.28b)

The boundary conditions are

S0i := 0, Sk j := 0 for leaf nodes j, v j are given for j 2 N (5.28c)

This defines a BFS algorithm where:

• x j := S ji for j 2 N. The backward sweep functions f j in (5.23a) are given by (5.28a).

• y j := q j for j 2 N. The forward sweep functions g j in (5.23a) are given by (5.28b).

• The initialization in (5.23b) is given by (5.28c).

The function f is nonlinear in x given y. The function g is linear (constant) in y given x.
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5.4.4 Convergence analysis

Apparently the only convergence analysis is [44]. See [17, Chapter 3] for contraction mapping applied to
nonlinear iterative algorithms such as Gauss-Siedel algorithm [17, Proposition 1.4] and Newton algorithms
[17, Chapters 3.1.3, 3.2].

5.5 Linearized model for radial network

We now present a linear approximation of BFM for radial networks when the line losses zs
jk` jk are small

compared with the line flows S jk. In this case it is also reasonable to ignore line charging effects since
shunt admittances (ym

jk,y
m
k j) are typically much smaller than series admittances ys

jk. Hence the linear model
in this section is a reasonable approximation, not only to (5.7)(5.8), but also to (5.5) with nonzero shunt
admittances.

It has two advantages. Given injections s, the voltages vlin
i and line flows Slin

jk of the linearized model
can be solved explicitly in terms of s. Moreover the linear solution (vlin,Slin) provides bounds on line
flows S and voltages v of nonlinear branch flow models (5.7)(5.8).

Since (5.7)(5.8) are valid models only under assumption C5.1, we assume C5.1 in this section in order
to derive their linearizations.

5.5.1 Linear DistFlow equations

Consider a radial network. It has N + 1 nodes and M := N lines since it is a tree. Fix an arbitrary graph
orientation. The linearized model from [40] is:

Â
k: j!k

S jk = Â
i:i! j

Si j + s j, j 2 N (5.29a)

v j� vk = 2Re
⇣

zHjkS jk

⌘
, j! k 2 E (5.29b)

It can be justified by setting ` jk := 0 in the DistFlow equations (5.9) of Chapter 5.2.2, when line losses
|zs

jk` jk| are negligible compared with |S jk|, and ignoring equation (5.9c). We can also write (5.29) more
compactly in vector form using (5.10) in terms of the bus-by-line incidence matrix C of the radial network.
Let Dr := diag(rl, l 2 E) and Dx := diag(xl, l 2 E) be the N⇥N diagonal matrices of line resistances and
reactances. Let s := (s j, j 2 N), v := (v j, j 2 N), and S := (Sl, l 2 E). Then (5.29) in vector form can be
obtained by substituting ` := 0 into (5.10a)(5.10b):

s = C S, CTv = 2(DrP + DxQ)

The matrix C is of rank N since the graph is connected, i.e., its columns are linearly independent. The
null space of CT is span(1). Any N⇥N submatrix of C obtained by removing any row of C is invertible
(Theorem 25.36 of Appendix 25.2).

Given reference bus voltage v0 and injections ŝ :=
�
s j, j 2 N

�
at other buses, we can derive an explicit

solution for non-reference bus voltages v̂ :=
�
v j, j 2 N

�
and line flows S, from which s0 can also be
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determined. Recall the decomposition in (5.17) of the incidence matrix C into the row cT0 corresponding
to bus 0 and the remaining reduced incidence matrix Ĉ, reproduced here:

C =:

� cT0 �

Ĉ

�

Then the linearized model (5.29) is s0 = cT0 S and

ŝ = Ĉ S (5.30a)
v0 c0 + ĈTv̂ = 2(DrP + DxQ) (5.30b)

To derive an explicit solution for (v̂,S), let P j denote the unique path from bus 0 to bus j, including both
buses 0 and j. We use “l 2 P j” to refer to a directed line l in the path P j that points away from bus 0 and
“�l 2 P j” to refer to a directed line l in P j that points towards bus 0. It can be verified direclty that the
inverse Ĉ�1 of Ĉ is given by (Exercise 5.9)

⇥
Ĉ�1⇤

l j =

8
<

:

�1 l 2 P j
1 �l 2 P j
0 otherwise

and Ĉ�T c0 =�1. Then the solution to (5.30) is

S = Ĉ�1ŝ (5.31a)
v̂ = v0 1 + 2(Rp̂ + Xq̂) (5.31b)

where R := Ĉ�T DrĈ�1, X := Ĉ�T DxĈ�1 and ŝ =: (p̂, q̂).5 As will be shown in Theorem 5.4, the matrices
R and X have a simple interpretation where their ( j,m) entries are the total resistance and reactance
respectively in the common segment of the paths from bus 0 to buses j and m.

To gain insight on the power flow solution (v,S) given by (5.31) we consider two special graph orien-
tation.

Down orientation: lines point away from bus 0. By setting ` jk = 0 in (5.7) the linearized model (5.29)
reduces to:

Â
k: j!k

Slin
jk = Slin

i j + s j, j 2 N (5.32a)

vlin
j � vlin

k = 2Re
⇣

zHjkSlin
jk

⌘
, j! k 2 E (5.32b)

where bus i := i( j) in (5.32a) denotes the bus adjacent to j on the unique path from bus 0 to bus j. The
boundary condition is: Slin

i0 := 0 in (5.32a) when j = 0 and Slin
jk = 0 in (5.32a) when j is a leaf node. The

set of equations (5.32) is called the simplified DistFlow equations in [40].

5We can interpret L̂ := Ĉ(D�1
r )ĈT as a reduced Laplacian matrix. Then R = L̂�1.
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Up orientation: lines point towards bus 0. A linear approximation of (5.8) is (setting `k j = 0):

Slin
ji = Â

k:k! j
Slin

k j + s j, j 2 N (5.33a)

vlin
k � vlin

j = 2Re
⇣

zHk jS
lin
k j

⌘
, k! j 2 E (5.33b)

where i := i( j) in (5.33a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by Slin

ji = 0 in (5.33a) when j = 0 and Slin
k j = 0,`k j = 0 in (5.33a) when

j is a leaf node.

5.5.2 Analytical properties

Denote by T j the subtree rooted at bus j, including j. We write “k 2 T j” to mean bus k of T j and
“(k, l) 2 T j” to mean line (k, l) of T j. Denote by Pk the set of lines on the unique path from bus 0 to bus
k. Recursing on the linear power flow equations (5.32) and (5.33) leads to explicit linear solutions given
in the following theorem (see Exercise 5.10 for a proof).

Theorem 5.4 (Linear solutions). Suppose assumption C5.1 holds. Fix any v0 and ŝ = (p̂, q̂) 2 R
2N . Let

(vlin,Slin) 2 R
N+2M be the solution of (5.32) and (vlin,Slin

) 2 R
N+2M the solution of (5.33).

1. For any graph orientation let Ĉ denote the corresponding reduced incidence matrix. Then the unique
solution of the linear model (5.30) is

S = Ĉ�1ŝ v = v0 1 + 2(Rp̂ + Xq̂) (5.34)

where R := Ĉ�TDrĈ�1 and X := Ĉ�TDxĈ�1. Moreover R and X are positive definite matrices.

2. For (i, j) 2 E

Slin
i j = � Â

k2T j

sk, i! j

Slin
ji = Â

k2T j

sk, j! i

Hence Slin
i j =�Slin

ji .

3. For j 2 N

vlin
j = vlin

j = v0 + 2Â
m

�
R jm pm + Xjmqm

�

where

R jm = Â
(i,k)2P j\Pm

rik, Xjm = Â
(i,k)2P j\Pm

xik (5.35)
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Theorem 5.4 says that, on each line (i, j) 2 E, the power flow Si j from i to j, or the power flow S ji in
the opposite direction, equals the total load �Âk2T j sk in the subtree rooted at node j. These linear line
flows neglect line losses and underestimate the required power to supply these loads. With zero line loss,
we have Slin

i j = �Slin
ji . The matrices R and X have a simple interpretation where their ( j,m) entries are

the total resistance and reactance respectively in the common segment of the paths from bus 0 to buses j
and m. Since all entries of R and X are nonnegative both real and reactive power injections (p,q) always
increase voltage magnitudes v according to the linear approximation. This property is exploited to identify
the topology of a radial network in the following example.

Example 5.4 (Application: topology detection [58]). A distribution grid typically consists of a mesh
network with tie switches and sectionalizing switches that are configured so that the operational network
at any time consists of a forest of nonoverlapping trees that span all nodes. Often the switch status may
not be known accurately due to frequent reconfigurations or manual changes in distribution systems. This
example illustrates the use of (5.35) for estimating the switch status and hence the operational topology
studied in [58]. We assume the topology, line admittances, and switch locations are known.

Define the covariance matrix Wv := E[v�E(v)][(v�E(v)]T of voltages v and the variance C(a,b) :=
E[(va� vb)�E(va� vb)]

2. The linear model v = v01 + 2(Rp̂ + Xq̂) from (5.34) and the property from
(5.35) relate Wv and C(a,b) to the covariance matrices of (p,q) and allow one to prove useful properties
about Wv and C(a,b). For instance if powers at different nodes are nonnegatively correlated, then W(a,a)
increases as we move farther away from the root (substation). If powers at different nodes are uncorrelated,
then for each node a, the minimization of C(a,b) over b that is not a descendent of a is attained uniquely at
a’s parent. . These properties are used to identify from voltage magnitude measurements the operational
topology by iteratively determine a node’s parent.

This is not the case for solutions of nonlinear power flow equations (5.7) or (5.8). Indeed fix any v0
and injections ŝ 2 R

2N at non-reference buses in N. We can recurse on the power flow equations (5.7),
starting from the leaf nodes, to show that any solution (v,`,S) of (5.7) must satisfy (Exercise 5.12):

Si j = � Â
k2T j

sk +

0

@zi j`i j + Â
(k,l)2T j

zkl`kl

1

A (5.36a)

v j = v0 � Â
(i,k)2P j

⇣
2Re

⇣
zHikSik

⌘
� |zik|2`ik

⌘
(5.36b)

where `i j = |Si j|2/vi. Similarly we can recurse on (5.8) to show that

S ji = Â
k2T j

sk � Â
(k,l)2T j

zkl`kl (5.36c)

v j = v0 + Â
(i,k)2P j

⇣
2Re

⇣
zHikSik

⌘
� |zik|2`ik

⌘
(5.36d)

Summing (5.36a) and (5.36c) shows that

Si j + S ji = zi j`i j
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as we saw earlier in (5.6). Note that given v0 and s 2 R
2N , Theorem 5.4 provides the unique solution

(vlin,Slin) to (5.32) (or unique solution (vlin,Slin
) to (5.33)). For nonlinear model (5.7) or (5.8), the solu-

tions (v,`,S) or (v,s,S) may not be unique. Any nonlinear solution however must satisfy (5.36).

It is proved in the solution of Exercise 5.10 that, for j 2 N, the linear solutions satisfy:

vlin
j = v0 � Â

(i,k)2P j

2Re
⇣

zHikSlin
ik

⌘
(5.37a)

vlin
j = v0 + Â

(i,k)2P j

2Re
⇣

zHikSlin
ik

⌘
(5.37b)

Comparing these relations and (5.36) leads to bounds on the nonlinear solutions in the following corollary
(see Exercise 5.13 for a proof). Recall that, by definition, x is a power flow solution only if v� 0 and `� 0
componentwise (assuming zi j = (ri j,xi j)� 0).

Corollary 5.5 (Bounds on nonlinear solutions). Suppose assumption C5.1 holds. Fix any v0 and ŝ 2R
2N .

Let (v,`,S) and (v,`,S) in R
N+3M be any (possibly nonunique) solutions of (5.7) and (5.8) respectively.

Let (vlin,Slin) and (vlin,Slin
) in RN+2M be the unique solutions of their linearizations (5.32) and (5.33)

respectively. Then

1. For i! j 2 E, Si j � Slin
i j with equality if only if `i j and all `kl in T j are zero.

2. For j! i 2 E, S ji  Slin
ji with equality if and only if all `kl in T j are zero.

3. For j 2 N, v j = v j  vlin
j = vlin

j .

Remark 5.2. While it is easy to prove v j  vlin
j from (5.36) and Theorem 5.4, it does not seem easy to

prove v j  vlin
j directly, except by relating the variables (v j,vlin

j ) to (v j,vlin
j ) in the opposite direction. This

is an advantage of the models (5.8) and (5.33) in the up orientation.

Remark 5.3. Bounds for SOCP relaxation. The bounds in Corollary 5.5 do not depend on the quadratic
equalities (5.7c) and (5.8c) as long as ` jk � 0. In particular the bounds hold if the equalities are relaxed to
inequalities v j` jk � |S jk|2. These bounds are used in Chapter ?? to prove a sufficient condition for exact
SOCP relaxation of optimal power flow problems for radial networks.

Remark 5.4. Linear approximations. For radial networks the linear approximations (5.32) and (5.33) of
BFM have two advantages over the (linear) DC approximation of BIM. First they have a simple recur-
sive structure that leads to simple bounds on power flow quantities. Second DC approximation assumes
r jk = 0, fixes voltage magnitudes, and ignores reactive power, whereas (5.32) and (5.33) do not. This
is important for distribution systems where r jk are not negligible, voltages can fluctuate significantly and
reactive powers are used to regulate them. On the other hand (5.32) and (5.33) are applicable only to radial
networks whereas DC approximation applies to meshed networks as well.

5.5.3 Example application: local volt/var control

To illustrate application of the linear model (5.29) or (5.30), we present a method to design a local algo-
rithm to stabilize voltages on a distribution network.
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Model. We assume the network is radial and can be modeled by the set of single-phase linear power
flow equations (5.29) or (5.30). We assume on each bus j there is a fixed and given active and reactive
load s0

j :=
⇣

p0
j ,q

0
j

⌘
. In addition there is possibly an inverter on bus j with a fixed active power injection

p j and an adaptable reactive power injection q j. For example, p j may represent solar generation. The
problem of volt/var control is to adapt the reactive outputs q j in order to stabilize voltages on the network.
In this subsection we will use for notational simplicity s = (p,q) 2 R

2N , v 2 R
N to denote variables at

non-reference buses, instead of ŝ, v̂. Using (5.31b) the voltages v depend on power injections according to

v = v0 1 + 2
�
R(p� p0) + X(q�q0)

�

We write v := v(q) explicitly as a function of the control q as

v(q) = 2Xq + ṽ (5.38)

where ṽ := v0 1+2R
�

p� p0��2Xq0 does not depend on q.

A common model of inverters constrains the reactive power q j to the sector {q j : p2
j + q2

j  s2} with
a power factor limit �q j  tan�1(q j/p j)  q j  p/2. Equivalently the control q j is constrained to the
sector Uj determined by the given active power p̃ j:

Uj :=
n

q j : q j  q j  q j

o
, j = 1, . . . ,N (5.39)

where q j := min
n

p j tanq j,
q

s2� p2
j

o
and q j := max

n
�p j tanq j, �

q
s2� p2

j

o
. Let U := U1⇥ · · ·⇥

UN . If the reactive power q j of the inverter at bus j is fixed and not controllable, this can be modeled by
setting q j = q j = q j. If there is no inverter at bus j, then we set p j = q j = q j := 0.

Local memoryless control. Let vref be a given vector of reference voltages. Our goal is to choose
control q 2U to drive voltages towards vref. We require our control to be local, i.e., q j(t + 1) depends
only on voltage v j(t) at bus j not other buses, and memoryless, i.e., q(t +1) depends only on v(t) but not
v(s),s < t. In particular, q j is a function only of voltage discrepancy v j(t)� vref

j , of the form

q j(t +1) =
h
u j

⇣
v j(t)� vref

j

⌘i

Uj
, j = 1, . . . ,N

where v j(t) is the measured local voltage, u j : R! R is a control function that maps a voltage deviation
v j(t)� vref

j into a potential reactive power setting, [a]Uj := max
n

q j,min
�

a,q j
 o

is the projection onto
Uj. Such a local memoryless control is simple to implement as it requires no communications among
controllers at different buses.

The local volt/var control problem in our formulation boils down to the design of the control function
u j. Many functions u j have been proposed and analyzed in the literature. We now present such a control
from [46, 47]. From Theorem 5.4.3,

∂v j

∂q j
= 2Xj j = Â

(i,k)2P j

xik > 0

Therefore it is natural to choose a control function u j that is nonincreasing in voltage discrepancy v j(t)�
vref

j . An example u j is shown in Figure 5.6(a).
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Figure 5.6: (a) The piecewise linear control function u j(v j), (b) its inverse u�1
j (q j), and (c) the implied

cost function c j(q j).

Closed-loop behavior. Consider the closed-loop system under a local control u j. Suppose the voltages
evolve according to Linear DistFlow model (5.38), i.e., suppose the measured voltages at time t is v j(t) =
v j(q(t)). Then the closed-loop system is a discrete-time dynamical system defined by the control function
u j : R! R followed by a projection onto Uj:

q j(t +1) =
h
u j

⇣
v j(q(t))� vref

j

⌘i

Uj
, j = 1, . . . ,N (5.40)

where v j(q) is given by (5.38). If q⇤ =
⇥
u
�
v(q⇤)� vref�⇤

U then q⇤ is called a fixed point, or an equilibrium
point, of (5.40).

We now analyze the convergence and optimality of a class of u j in (5.40) that satisfy the following
assumptions:

C5.2: The control functions u j are differentiable on R and there exist a j such that
���u0j(v j)

��� a j for
all v j 2 R.

C5.3: The control functions ui are strictly decreasing on R.

The differentiability assumption in C5.2 can be relaxed to allow control functions with a deadband and
saturation as shown in Figure 5.6(a) (see [47]). Let A := diag(a j, j 2 N).

Theorem 5.6 (Convergence). Suppose assumptions C5.1 and C5.2 hold. If the largest singular value
smax(AX) < 1/2 then there exists a unique equilibrium point q⇤ 2U and the volt/var control (5.40) con-
verges to q⇤ geometrically, i.e.,

kq(t)�q⇤k  b t kq(0)�q⇤k ! 0

for some b 2 [0,1).

Proof. Applying the mean value theorem to the control function u j(v j) we have

u j(v j)�u j(v̂ j) = u0j(w)(v j� v̂ j)
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where w = lv j +(1�l )v̂ j for some l 2 [0,1]. Therefore

ku(v)�u(v̂)k2
2 = Â

j

��u j(v j)�u j(v̂ j)
��2  Â

j

��a j(v j� v̂ j)
��2 = kA(v� v̂)k2

2

where the inequality follows from the mean value theorem and assumption C5.2. Hence ku(v)�u(v̂)k2 
kA(v� v̂)k2. Applying the chain rule to Av = Av(q) as a vector-valued function of q we have

∂Av
∂q

(q) = A
∂v
∂q

= 2AX

Therefore
���u
⇣

v(q)� vref
⌘
� u

⇣
v(q̂)� vref

⌘���
2
 kAv(q)�Av(q̂)k2  k2AXk2 kq� q̂k2

where the first inequality follows from ku(v)� u(v̂)k2  kA(v� v̂)k2 and the second inequality follows
from the mean value Theorem 25.34 for vectored-valued functions in Appendix 25.1.10. Since the induced
matrix norm kMk2 = smax(M) (Exercise 5.14) we have

���u
⇣

v(q)� vref
⌘
� u

⇣
v(q̂)� vref

⌘���
2
 2smax(AX) kq� q̂k2

Therefore the control function u
�
v(q)� vref� as a function of q is a contraction. Since projection onto

U is nonexpansive by the Projection Theorem 11.7 of Appendix ??, the function on the right-hand side
of (5.40), as a function of q, is a contraction. The theorem then follows from the Contraction Mapping
Theorem 11.30.

We next show that the equilibrium point q⇤ implicitly optimizes a cost function implied by the control
function u. Under assumption C5.3, the inverse functions u�1

j exist and are strictly decreasing on R. We
hence can define c j : R! R by

c j(q j) := �
Z q j

0
u�1

j (q̂ j)dq̂ j, j 2 N

Moreover c j is strictly convex since c00j (q j) =�1/u0j(q j) > 0 under assumptions C5.2 and C5.3. Consider
the optimization problem

min
q2U Â

j
c j(q j) + qTXq + qTDṽ (5.41)

where Dṽ := ṽ� vref.

Theorem 5.7 (Optimality). Suppose assumptions C5.1, as well as C5.2 and C5.3 hold. Then the unique
equilibrium point q⇤ 2U of (5.40) is the unique minimizer of (5.41).

Proof. Let C(q) := Â j c j(q j) + qTXq + qTDṽ denote the objective function of (5.41). Since X is positive
definite and c j are strictly convex, C(q) is strongly convex (and hence also continuous on R

N). This
implies, in particular, that if a minimizer of (5.41) exists (e.g., if U is bounded), then it is unique. It
therefore suffices to show that q⇤ is an equilibrium point of (5.40) if and only if it is a minimizer of (5.41).
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Since (5.41) is a convex problem, q⇤ 2U is optimal if and only if

(—C(q⇤))T (q�q⇤) � 0 8q 2U

Since each Uj in (5.39) is a box constraint, this means the optimal q⇤ 2U is optimal if and only if (Exercise
5.15)

q⇤j 2 (q j,q j) only if [—C(q⇤)] j = 0 (5.42a)

q⇤j = q j if [—C(q⇤)] j > 0 (5.42b)

q⇤j = q j if [—C(q⇤)] j < 0 (5.42c)

We have from (5.38) and (5.40)

—C(q⇤) = —c(q⇤) + 2Xq⇤ + Dṽ = —c(q⇤) +
⇣

v(q⇤) � vref
⌘

where —c(q⇤) = (c0j(q
⇤
j) =�u�1

j (q⇤j), i 2 N). Therefore

[—C(q⇤)] j = �u�1
j (q⇤j) +

⇣
v j(q⇤j) � vref

j

⌘

Since u j(v j) is strictly decreasing in v j we have

[—C(q⇤)] j = 0 () u j

⇣
v j(q⇤j) � vref

j

⌘
= q⇤j

[—C(q⇤)] j > 0 () u j

⇣
v j(q⇤j) � vref

j

⌘
< q⇤j

[—C(q⇤)] j < 0 () u j

⇣
v j(q⇤j) � vref

j

⌘
> q⇤j

Substituting this into (5.42) shows that q⇤ =
⇥
u
�
v(q⇤)� vref�⇤

U , i.e., q⇤ is the unique equilibrium point of
(5.40). This shows that q⇤ is an equilibrium point of (5.40) if and only if it is a minimizer of (5.41).

Remark 5.5. Theorem 5.7 shows that the control function in (5.40) implies an objective function C(q)
in (5.41) that an equilibrium implicitly optimizes. This is often referred to as reverse engineering. One
can also start by designing an objective function C(q) and deriving a control function as an iterative
algorithm to solve the optimization problem (5.41). This is referred to as forward engineering; see e.g.
[46, 47]. Often these algorithms require some communications among controllers at different buses but are
guaranteed to converge under less stringent requirement than that in Theorem 5.6. For instance, since X is
positive definite and c(q) is convex, the objective function in (5.41) is strongly convex. Theorem 11.33 in
Appendix ?? implies that a gradient projection algorithm is a contraction and converges geometrically to
the unique optimal solution.

The formulation here imposes limits [q,q] on the control q. It is pointed out in [48] that local mem-
oryless control such as (5.40) may not be able to stabilize the equilibrium voltages v(q⇤) to within an
apriori range [v,v] (see Exercise 5.17). Alternative formulation imposes apriori limits [v,v] on equilibrium
voltages v(q⇤) but relaxes limits on the control q using control laws with internal state, see e.g. [48]
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5.6 Bibliographical notes

A branch flow model, called the DistFlow equations, is proposed in [39, 40] for radial networks. Its
key feature is that it does not involve phase angles of voltage and current phasors. This is extended
to general meshed network in [51] by introducing a cycle condition. All of these models assume zero
shunt admittances on the lines. Shunt admittances of the lines are added to the branch flow model in
[52]. The main difference of the model (5.5) from the model in [39, 40, 51] is the use of undirected
rather than directed graph when shunt elements are included so that line currents and power flows are
defined in both directions. The equivalence of BFM and bus injection model (BIM) is proved in [53].
The equivalence of DistFlow to BFM in complex form and hence equivalent to BIM follows from [51,
Theorems 2, 4]. Theorem 5.1 is from [54]. For BFM and SOCP relaxations when a radial network contain
ideal transformers and multiple lines between two buses, see [55].

The linearized model (5.29) is first proposed in [40] and called the Simplified DistFlow equations.
The paper also states an explicit solution for the squared voltage magnitude vi as an affine function of the
injections s j whose coefficients xi j are the total impedances on the common paths P�i and P�j from the root
(bus 0) to buses i and j respectively. This is the same solution as that in Theorem 5.4. The properties in
Theorem 5.4 and Corollary 5.5 of the linear model seem to have been independently observed in several
papers, e.g., [56, 46, 47, 57, 58] where vi� v j is sometimes approximated by 2(|Vi|� |Vj|) since |Vi| ⇡ 1
pu. Our discussion on the local volt/var control algorithm follows [46, 47].

Backward forward sweep. Power flow solutions for general networks are mostly based on Newton-
Raphson and its variants, or more recently, interior-point methods. Another approach has been developed
for radial networks, both single-phase and three-phase networks, that exploits their tree structure. The
idea of backward forward sweep (BFS) is first proposed in [61] for three-phase distribution systems. Early
examples of BFS algorithms for three-phase radial networks are designed in [62][63, Chapter 10.1.3].
The BFS method for single-phase networks described in Chapter 5.4.2 is from [43]. It is extended in
[64] to allow PV buses by computing line power flows S jk instead of currents Is

jk. Both algorithms (with
extensions for meshed networks) were developed for weakly meshed transmission systems as well as
distribution systems. Another variant of BFS, proposed in [?], calculates voltages in both forward and
backward iterations in linear feeders with voltage-dependent loads. The BFS algorithm in [43] is extended
in [65] from single-phase to three-phase networks, and in [?] to four-wire neutral-grounded networks. In
[?], three-phase voltages and line currents are calculated with generalized line models that incorporate
transformers and constant impedance loads. Transformers of different configurations have been included
in BFS through modified augmented nodal analysis [?]. Some of these works are briefly discussed in
[66]. BFS algorithms tend to have better convergence properties than general algorithms such as Newton-
Raphson. Simulation results in [67] suggest however that Newton-Raphson converges in a smaller number
of iterations.

The solution approach in the original DistFlow paper [40] uses one-time backward sweep to express all
variables in terms of the power injections at the feeder head and all branch points followed by a Newton-
Raphson algorithm to solve for these injections. The existence and uniqueness of solutions are studied in
[68]. By exploiting the approximate sparsity of the Jacobian matrix in [40], approximate fast decoupled
methods are developed and their convergence properties analyzed in [69]. These methods are extended to
three-phase radial networks in [67]. The existence and uniqueness of power flow solutions of three-phase
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DistFlow model is analyzed in [70].

5.7 Problems

Chapter 5.1.

Exercise 5.1 (Line angles b (x)). Justify the definition of line angles in (5.2) using (5.1b)(5.1c)(5.1d).

Chapter 5.2.

Exercise 5.2 (Incidence matrix C). Consider the (N + 1)⇥M incidence matrix C of a (connected) radial
network defined by:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

Show that C has rank N = M, the null space of CT is span(1) and its pseudo-inverse
�
CT
�†

= C
�
CTC

��1

Exercise 5.3 (Line loss). Consider a radial network where lines have zero shunt admittances. Show that,
under assumption C5.1, substituting ym

jk = ym
k j = 0 into (5.5) for all lines ( j,k) 2 E leads to:

S jk + Sk j = zs
jk` jk = zs

jk`k j

Exercise 5.4 (Graph orientation). Prove (5.12) under assumption C5.1, i.e., x satisfies (5.9) if and only if
x̂ := g(x) satisfies (5.11)

Exercise 5.5 (DistFlow equations). Suppose assumption C5.1 holds so that (5.7) and (5.8) are valid mod-
els. Show that Xtree⌘T0⌘T0 where these sets are defined in (5.19) when shunt admittances ym

jk = ym
k j = 0

for all lines ( j,k).
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Chapter 5.4

Exercise 5.6 (Backward forward sweep). Suppose assumption C5.1 holds. For the backward forward
sweep algorithm in Chapter 5.4.2 based on the branch flow model (5.1) in complex form, show that all
other variables, such as injection s0 and branch flows S jk in (5.1), can be computed once (Vj, Is

jk) for all
j 2 N and all j! k 2 E are determined.

Exercise 5.7 (Backward forward sweep). This exercise solves the same power flow equations as the BFS
described in Chapter 5.4.2, under assumption C5.1, except that here we are to derive a BFS algorithm to
compute the sending-end current I jk for every line j! k, instead of Is

jk over the series impedance, as well
as the voltage Vj for every bus j.

Exercise 5.8 (Backward forward sweep). Consider a 2-bus network and prove a sufficient condition for
BFS to converge under assumption C5.1.

Chapter 5.5. Assumption C5.1 is assumed for Chapter 5.5 for linearized DistFlow models and hence
the problems in this section.

Exercise 5.9 (Inverse of reduced incidence matrix Ĉ). Consider the (N + 1)⇥M incidence matrix C of a
(connected) radial network defined in Exercise 5.2. Denote by cT0 the first row of C corresponding to bus
0 and by Ĉ the N⇥N submatrix consisting of the remaining rows of C so that

C =:

� cT0 �

Ĉ

�

Show that:

1. The inverse Ĉ�1 of Ĉ is given by

⇥
Ĉ�1⇤

l j =

8
<

:

�1 l 2 P j
1 �l 2 P j
0 otherwise

Here “l 2 P j” means a directed line l that points away from bus 0 and is in the unique path P j from
bus 0 to bus j, and “�l 2 P j” means a directed line l in P j that points towards bus 0.

2. Ĉ�T c0 =�1.

Exercise 5.10 (Linear solutions). Prove Theorem 5.4.
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Exercise 5.11 (Sensitivity matrix L̂�1). Consider the bus injection model for a radial network:

I j = Â
k: j!k

Ĩ jk, Ĩ jk = ys
jk(Vj�Vk)

where Vj, I j are nodal voltages and current injections respectively at bus j, and Ĩ jk is the (sending-end) line
current from buses j to k. We assume ym

jk = ym
k j = 0. Let L̂ denote the N⇥N reduced incidence matrix,

which is invertible since the network has a tree topology. Let V̂ := (Vj, j 6= 0) and Î := (I j, j 6= 0).

1. Show that V̂ = L̂�1Î, i.e., the matrix L̂�1 is the sensitivity of nodal voltages to current injections.

2. Show that
⇥
L̂�1⇤

jm = Â(i,k)2P j\Pm 1/yik.

Exercise 5.12 (Nonlinear recursion). Derive (5.36) from the DistFlow equations (5.7) and (5.8).

Exercise 5.13 (Bounds). Prove Corollary 5.5.

Exercise 5.14 (Induced matrix norm). For any n⇥n matrix M show that the induced norm

kAk2 := max
kxk2=1

kAxk2 = smax(A)

where smax(A) is the largest singular value of A.

Exercise 5.15. [Local volt/var control] Let Uj := {x j : x j  x j  x j}, j = 1, . . . ,n, and U := U1⇥ · · ·⇥Un.
Let f : Rn! R

n. Show that

x⇤ 2 U, fT(x⇤)(x� x⇤) � 0 8x 2U (5.43)

if and only if

x⇤j 2 (x j,x j) only if f j(x⇤) = 0 (5.44a)
x⇤j = x j if f j(x⇤) > 0 (5.44b)
x⇤j = x j if f j(x⇤) < 0 (5.44c)

Exercise 5.16. [Local volt/var control] Let the control function in (5.40) be u j(v j) = �g j v j with g j > 0.
Derive the condition for convergence and the resulting cost function C(q).
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Exercise 5.17. [Local volt/var control] Suppose it is desirable to asymptotically stabilize the voltages v to
within a certain bounds [v,v] while maintaining the limits [q,q] on the reactive power.

1. Show that there exists ṽ such that no equilibrium point of (5.40) can lie in [v,v].

2. Fix ṽ. For each bus j, find the maximum v j and minimum v j for which it is possible to asymptotically
stabilize v j to within [v j,v j]. Note that it may not be possible for v j to attain v j (or v j) smultaneously
for all j.
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Linear models
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Chapter 7

Component models, I: devices

Single-phase models are a good approximation of the reality for many transmission network applications
where lines are symmetric and loads are balanced. In that case, a similarity transformation produces three
networks in a sequence coordinate, called zero, positive, and negative-sequence networks, that are de-
coupled. Each network can be analyzed using a single-phase model studied in previous chapters. These
sequence networks are coupled when lines are not transposed or equally spaced, e.g., as in distribution
systems, or when loads are unbalanced or nonlinear, e.g., AC furnaces, high-speed trains, power electron-
ics, or single or two-phase laterals in distribution networks. In that case single-phase analysis can produce
incorrect power flow solutions. In this and next chapters we extend single-phase models to unbalanced
three-phase models.

We first provide in Chapter 7.1 an overview of models for three-phase devices, lines and transformers,
and how to use these component models to compose an overall network model. We summarize in Chapter
7.2 mathematical properties that underly the behavior of three-phase systems. Finally we derive in Chapter
7.3 the models of three-phase voltage sources, current sources, power sources, and impedances in Y and D
configurations. In Chapter 8 we derive models for three-phase lines and transformers. We will use these
component models in Chapters 9 and 10 to construct network models and study unbalanced three-phase
analysis.

7.1 Overview

Figure 7.1 shows a simple example of a three-phase system with three components, two devices connected
by a line. For example the single-terminal device on the left can model a three-phase generator and
the other single-terminal device can be a three-phase load. Each terminal has three wires (or ports or
conductors) indexed by its phases a,b,c, and possibly a neutral wire indexed by n. Internally, it can be in
Y or D configuration, and the Y configuration may have a neutral wire that may be grounded. A three-phase
line has two terminals, each terminal with three or four wires, and it connects two single-terminal devices,
one at each end of the line. The line may model a transmission or distribution line or a transformer. The
distribution line can be underground or overhead with a neutral wire that may be grounded in regular
spacing along the line.

230
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three-phase 
source

three-phase 
load

a’
b’
c’

n’

a
b
c

n

Figure 7.1: A simple model of a three-phase system consisting of a source connected through a line to a
load.

The basic idea in modeling a three-phase component is to explicitly separate its model into an internal
model that specifies the characteristics of the constituent single-phase components in terms of internal
variables, and a conversion rule that maps its internal variables to its terminal variables. The internal
model depends only on the type of components (non-ideal voltage sources, ZIP loads, or different single-
phase transformer models) regardless of their configurations. The conversion rule depends only on their
configurations regardless of the type of components. They determines an external model which is a relation
between the terminal variables, obtained by eliminating the internal variables from the set of equations
describing the internal model and the conversion rule. We next describe this procedure in detail.

7.1.1 Internal and terminal variables

V aI a

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n’

n

a

b

c

I n’= I n
V n’

(a) Y configuration

V aI a

I ab

I bc
I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) D configuration

Figure 7.2: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal variables of a generic single-terminal device are shown in Figure 7.2 and defined as
follows:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3, (V n, In,sn) 2 C
3:
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line-to-neutral voltages, currents, and power across the single-phase devices in Y configuration, as
well as the voltage, current, and power across the neutral impedance zn, respectively. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage V n, with respect
to a common reference point, is generally nonzero. A Y -configured device may or may not have a
neutral line which may or may not be grounded and the grounding impedance zn may or may not
be zero. When present, the current on the neutral line is denoted by In in the direction coming out
of the device. The Kirchhoff current law dictates that In = Âf Ifn. The internal power across the

neutral impedance is sn :=
⇣

V n�V n0
⌘

In where In denotes the complex conjugate of In. The term

V nIY , in contrast, is the vector power delivered across the neutral and the common reference point
(e.g., the ground).

• V D :=
�
V ab,V bc,V ca� 2 C

3, ID :=
�
Iab, Ibc, Ica� 2 C

3, sD :=
�
sab,sbc,sca� 2 C

3 : line-to-line volt-
ages, currents, and power across the single-phase devices respectively in D configuration. By defi-
nition sab := V ab �Iab�H is the power across the phase-a device, etc.

Note that the direction of the internal power san or sab across a single-phase device is defined in the
direction of the current across the device. The neutral line, when present, is often assumed grounded, i.e.,
V n0 = 0, and the voltage reference point is the ground. In this case sn = V nInH.

The terminal variables of the single-terminal device in Figure 7.2 are defined as follows:

• V :=
�
V a,V b,V c� 2 C

3, I :=
�
Ia, Ib, Ic� 2 C

3, s :=
�
sa,sb,sc� 2 C

3,
⇣

V n0 , In0 ,sn0
⌘
2 C

3: terminal
voltages, currents, and power respectively. The terminal voltage V is defined with respect to an
arbitrary but common reference point, e.g., the ground. The terminal current I is defined in the
direction coming out of the device, i.e., I is defined to be the current injection from the device to the
rest of the network when it is connected to a bus bar, regardless of whether it generates or consumes
power. By definition sa := V a (Ia)H is the power across the terminal a and the common reference
point. When there is a neutral wire its terminal voltage (with respect to the common reference point),
current and power are denoted by

⇣
V n0 , In0 ,sn0

⌘
with In0 = In and sn0 := V n0In0H = V n0InH.

The internal and external variables of a three-phase device are summarized in Table 7.1.

Voltage Current Power Neutral line
Internal variable VY/D IY/D sY/D (V n, In,sn)

External variable V I s
⇣

V n0 , In0 ,sn0
⌘

Table 7.1: Internal and external variables of single-terminal three-phase devices. The notation xY/D is a
shorthand for the pair (xY ,xD).



Draft: EE 135 Notes April 30, 2024 233

7.1.2 Three-phase device models

An internal model of a three-phase device is a relation between the internal variables
�
VY , IY ,sY� or

between
�
V D, ID,sD�. It describes the behavior of the single-phase devices, and does not depend on their

Y or D configuration nor the absence or presence of a neutral line. For example the internal model of an
ideal voltage source specified by its internal voltage EY/D 2 C

3 is

VY/D = EY/D, sY/D = diag
✓

EY/D
⇣

IY/D
⌘H◆

where the notation xY/D is a shorthand for the pair (xY ,xD). The internal model of an impedance specified
by a complex matrix zY/D 2 C

3⇥3 is

VY/D = zY/D IY/D, sY/D = diag
✓

VY/D
⇣

IY/D
⌘H◆

Denote the internal model of a general three-phase device by

f int
⇣

VY/D
, IY/D

⌘
= 0, sY/D = diag

⇣
VY/DIY/DH

⌘
(7.1)

The external model of a device is the relation between its terminal variables (V, I,s) and possibly⇣
V n0 , In0 ,sn0

⌘
. It describes the externally observable behavior of the device and depends on both the inter-

nal model of the single-phase devices and their configuration. How the Y or D configuration determines
its external model is described by conversion rules that map internal variables to terminal variables. While
the internal model depends only on the type of single-phase devices, the conversion rules depend only on
the configuration, but not on the device type. This will be explained in detailed in Chapter 7.3. Denote the
external model by

f ext(V, I) = 0, s = diag
⇣

V IH
⌘

(7.2)

The importance of the external model is that devices interact over a network only through their terminal
variables. The external model of each three-phase device imposes local constraints on its own terminal
variables while network equations, to be studied in Chapters 9 and 10, impose global constraints on the
terminal variables across devices.

Though not explicit, the functions in (7.1) and (7.2) may be augmented with the internal and terminal
variables (V n, In,sn) and

⇣
V n0 , In0 ,sn0

⌘
respectively associated with the neutral in a Y configuration. The

functions f int and f ext are linear for voltage sources, current sources and impedances, but quadratic for
power sources; see Chapter 7.3.

A three-phase device can therefore be modeled in two equivalent ways:

1. An internal model (7.1) that describes the relation between its internal variables
⇣

VY/D, IY/D,sY/D
⌘

and the conversion rules, (7.8) (7.9) (7.10) below, that map internal variables to external variables.
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2. An external model (7.2) that describes the relation between its terminal variables. The external
model is obtained by applying the conversion rules to the internal model (7.1) to eliminate the
internal variables.

The first model is useful when the application under study needs to determine or optimize some of the
internal variables such as the power sY/D

j generated or consumed by each of the single-phase devices
connected at a bus j. Otherwise the external model (7.2) can be used if the application involves only the
terminal variables.

Remark 7.1. One should be careful with the direction in which currents and powers are defined when
relating internal and external powers (see Chapter7.3). For instance V an is the voltage drop between
terminal a and the neutral n and Ian is the current from a to n. The power san is therefore the power
delivered to the device in the direction of the current Ian. If the device models a generator then the power
it generates is �san = V an (�Ian)H.

7.1.3 Three-phase line and transformer models

Let the terminals of a three-phase line or transformer be indexed by j and k. Let Vj :=
⇣

V a
j ,V b

j ,V c
j

⌘
2

C
3 and Vk :=

�
V a

k ,V b
k ,V c

k
�
2 C

3 denote the voltages at terminals j and k respectively with respect to
an arbitrary but common reference point. Let I jk :=

⇣
Ia

jk, I
b
jk, I

c
jk

⌘
2 C

3 denote the sending-end current
from terminal j to terminal k along the line or transformer, and Ik j denote the sending-end current in the
opposite direction. The external behavior of a three-phase line or transformer is described by a linear
relation between

�
Vj,Vk, I jk, Ik j

�
2 C

12 of the form

g
�
Vj,Vk, I jk, Ik j

�
= 0 (7.3a)

where g is defined by 3⇥3 matrix parameters of the line ( j,k).

Let S jk :=
⇣

Sa
jk,S

b
jk,S

c
jk

⌘
2 C

3 denote the sending-end power from terminal j to terminal k along
the line or transformer, and Sk j denote the sending-end power in the opposite direction. For each phase

f = a,b,c, Sf
jk := V f

j

⇣
If

jk

⌘H
. In vector form this is

S jk := diag
⇣

VjIHjk
⌘

, Sk j := diag
⇣

VkIHk j

⌘
(7.3b)

When there is a neutral wire between terminals j and k, their voltages are V n
j and V n

k . The current in

the neutral wire is denoted by
⇣

In
jg, I

n
kg

⌘
if the neutral is grounded or

⇣
In

jk, I
n
k j

⌘
otherwise. The function g

(7.3a) includes neutral voltages and currents and is defined by 4⇥ 4 matrix parameters of the line. The
power flow equation (7.3b) is modified accordingly.

The equations (7.3) describe the end-to-end behavior of a three-phase line or transformer. We reiterate
that they depend on the three-phase devices connected to its terminals only through their external variables.



Draft: EE 135 Notes April 30, 2024 235

7.1.4 Three-phase network models

A network of three-phase devices connected by three-phase lines and transformers can be composed from
the component models (7.2) and (7.3) for these components through the flow balance equations that relate
nodal current and power (s j, I j) to line currents and power

�
I jk,S jk

�
connected to the same bus bar j:

I j = Â
k: j⇠k

I jk, 8 j (7.4a)

s j = Â
k: j⇠k

S jk, 8 j (7.4b)

Depending on the application, what information is available and what quantities are controllable, we
can model the network in two ways:

1. V I model: We can model the network using the relation f ext(V, I) = 0 in (7.2) and (7.3a) (7.4a)
between bus voltage and current vectors (V, I). This model is linear. Once nodal voltages Vj 2 C

3

and currents I j 2 C
3 are determined, nodal powers s j := diag

⇣
VjIHj

⌘
can be calculated.

2. V s model: We can model the network using the device model (7.2) and the power flow equations
(7.3b) (7.4b) between bus voltages and power injections (V,s). This model is generally nonlinear.

The linear V I model can always be used if the system contains no power sources. Otherwise either the V I
model or the V s model can be used to describe the network but, since the device model (7.2) is nonlinear,
the overall model will always be nonlinear. Network models are studied in Chapter 9 for bus injection
models and Chapter 10 for branch flow models.

In summary a complete network model consists of

1. (7.3) (7.4) + (7.1) and (7.8) (7.9) (7.10): involves the internal variables of three-phase devices.

2. (7.3) (7.4) + (7.2): does not involve internal variables of the three-phase devices.

7.1.5 Balanced operation

If the following conditions are satisfied throughout the network:

1. all lines have symmetric geometry;

2. zero total current: ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. zero total charge: qa(t)+qb(t)+qc(t) = 0 at all times t;

then the system is balanced and its phases are decoupled. This means that (7.2) reduces to

f ext,f (V f , If ) = 0, sf = V f IfH, f = a,b,c
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and similarly for equations (7.3)(7.4). For example the line current Ia
jk in phase a depends only on voltages⇣

V a
j ,V a

k

⌘
in phase a, but not on voltages in other phases. This allows per-phase analysis, as we have done

in earlier chapters. These decoupling conditions can be satisfied if the terminal voltages of all three-phase
sources are balanced (i.e., they have equal magnitudes and are separated by 120� in phase), all three-phase
loads consist of identical impedances, and all three-phase lines has symmetric geometry (e.g. through
transposition). In that case the magnetic coupling across phases can be modeled by self-impedance alone,
i.e., a three-phase line behaves as if its mutual inductances and capacitances across phases are zero and self
inductances and capacitances are equal in each phase, as shown in Chapter 2.1.4. A general formulation
of per-phase analysis of a balanced network and its formal justification is provided in Chapter 9.3. The
underlying mathematical property is explained in Corollary 1.3 and Theorem 7.2.

Otherwise, self-impedance alone is not sufficient to model the coupling across phases of a line and per-
phase analysis becomes inaccurate. A unbalanced three-phase model is necessary for power flow analysis.
The overview of such a model is illustrated in Figure 7.3.

Figure 7.3: Overall network model of the system in Figure 7.1.

Before deriving in detail the internal and external models of these components we first describe some
mathematical tools that are important for our derivation.

7.2 Mathematical properties of three-phase network

In this section we collect several mathematical properties that are used in the rest of this chapter, of-
ten without explicit references. These properties underlie much of the behavior of three-phase systems.
Specifically we use the spectral properties of the conversion matrices G and GT defined in Chapter 1.2.2
to derive in Chapter 7.2.1 their pseudo inverses. The eigenvectors of G are orthogonal and can serve as a
basis of C3. In Chapter 7.2.2 we use this basis to transform voltages and currents to a sequence coordinate
in which an unbalanced network may become decoupled.
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7.2.1 Pseudo-inverses of conversion matrices G,GT.

The main characters of three-phase networks arise from the spectral properties of the conversion matrices
G and GT, defined in (1.11) of Chapter 1.2.2 and reproduced here:

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5 (7.5)

We have seen in Chapter 1.2.4 that these conversion matrices play an important role in relating the internal
and external behaviors of a balanced three-phase system. In such a system, positive-sequence voltages
and currents are in span(a+) and a+ is an eigenvector of G and GT. This means that the transformation
of balanced voltages and currents under G,GT reduces to a scaling of these variables by their eigenvalues
1�a and 1�a2 respectively (Corollary 1.3). The voltage and current at every point in a network can
be written as linear combinations of transformed source voltages and source currents, transformed by�
G,GT� and line admittance matrices. Therefore if the source voltages and source currents are balanced

positive-sequence sets and lines are identical and phase-decoupled, then the transformed voltages and
currents remain in span(a+) and hence are balanced positive-sequence sets. This is the key property
that enables balanced sources to induce balanced voltages and currents throughout a balanced network,
allowing per-phase analysis of three-phase systems. A formal statement and proof of this property for
general three-phase networks is provided in Chapter 9.3.

For unbalanced systems where voltages and currents are not necessarily in span(a+), Corollary 1.3 is
not applicable and we need the concept of pseudo inverses of G,GT in order to convert between terminal
variables and line-to-line variables internal to a D configuration. Even though G and GT are not invertible,
their pseudo inverses G† and GT† respectively always exist. The pseudo inverse M† of a matrix M 2 C

n⇥n

maps the null space of MH to zero. The orthogonal complement of the null space of MH is the range space
of M. M† restricted to the range space acts like an inverse of M in that it maps each vector v in the range
space of M to the unique vector u := M†v in the range space of MH. The vector u is the one in C

n with the
minimum norm such that Mu = v. See Appendix 25.1.7 for more properties of pseudo-inverse. The facts
relevant to us is summarized in the following lemma (from Theorem 25.13, Theorem 25.19 and Remark
25.2.)

Lemma 7.1. Let M 2 C
n⇥n be a normal matrix, i.e., MMH = MHM.

1. Unitary diagonalization. There exists a unitary matrix U 2 C
n⇥n and a diagonal matrix L 2 C

n⇥n

with

M = ULUH =
n

Â
i=1

liuiuHi

where

(a) L =diag(l1, . . . ,ln) consists of the eigenvalues of A;
(b) the columns of U are the associated eigenvectors of A.

2. Pseudo inverse. The pseudo-inverse of M is given by M† =UL†UH where L† := diag
�
l�1

1 , . . . ,l�1
n
�

with l�1
j := 0 if l j = 0.
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3. Consider Mx = b. A solution x exists if and only if b is orthogonal to null
�
MH
�

in which case

x = M† b + w, w 2 null(M)

Moreover M†b is the unique solution to Mx = y with the minimum Euclidean norm kxk2 = kM†bk2+
kwk2, w 2 null(M).

Theorem 1.2 shows that G and GT are normal matrices and their spectral decompositions are

G = FLF , GT = FLF (7.6a)

where L is a diagonal matrix and F is a unitary matrix defined in (1.17), reproduced here:

L :=

2

4
0

1�a
1�a2

3

5 , F :=
1p
3

⇥
1 a+ a�

⇤
:=

1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 (7.6b)

with a := e�i2p/3 and a+ and a� being the standard positive and negative sequence vectors respectively:

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5

Here F is the complex conjugate of F componentwise. Since F is symmetric (Theorem 1.2), Lemma 7.1
implies that the pseudo inverses of G,GT are

G† = FL†F , GT† = FL†F (7.6c)

where L† := diag
�
0,(1�a)�1,(1�a2)�1�. This yields the following simple expressions for these

pseudo inverses. The proof of the theorem is left as Exercise 7.1.

Theorem 7.2 (Pseudo inverses of G,GT). 1. The null spaces of G and GT are both span(1,1,1).

2. Their pseudo-inverses are

G† =
1
3

GT, GT† =
1
3

G

3. Consider Gx = b where b,x2C3. Solutions x exist if and only if 1Tb = 0, in which case the solutions
x are given by

x =
1
3

GTb + g1, g 2 C

4. Consider GTx = b where b,x 2 C
3. Solutions x exist if and only if 1Tb = 0, in which case the

solutions x are given by

x =
1
3

Gb + g1, g 2 C

5. GG† = G†G = 1
3 GGT = 1

3 GTG = I � 1
3 11T where I is the identity matrix of size 3.

Recall that GGT = GTG are complex symmetric Laplacian matrices of the graphs in Figure 1.9. This
theorem underlies much of the materials in this chapter.
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7.2.2 Similarity transformation and symmetrical components

Fortescue transformation. Since G and GT are normal matrices, they have orthonormal eigenvectors
(1,a+,a�) which are the columns of F defined in (7.6b). We can therefore use F to define a similarity
transformation (see Appendix 25.1.4 for discussions on similarity transformation). This idea is due to
Fortescue [74] and F is sometimes called a (normalized) Fortescue matrix. It simplifies the analysis of an
unbalanced three-phase system when the network has a certain symmetry, as explained in Chapter 9.4.

Consider a vector x that may represent a voltage or current. Recall that F is unitary and complex
symmetric (Theorem 1.2) and therefore its inverse is:

F�1 = FH = F =
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1T
aT
�

aT
+

3

5 (7.7)

(Note that a+ = a�, a� = a+; more properties of a are studied in Exercise 1.5). The matrix F defines
the transformation:

x = Fx̃, x̃ := F�1x = Fx

The vector x̃ is called the sequence variable of x. Its components

x̃0 :=
1p
3

1Hx, x̃+ :=
1p
3

aH

+x, x̃� :=
1p
3

aH

�x

are called the zero-sequence, positive-sequence, and negative-sequence components of x. They are also
called symmetrical components of x. We will sometimes refer to x as a phase variable to differentiate it
from the sequence variable x̃. The relation x = Fx̃ expresses the phase variable in terms of its sequence
components:

x =
1p
3

(x̃01 + x̃+a+ + x̃�a�) =
1
3

⇣⇣
1Hx
⌘

1 +
⇣

aH

+x
⌘

a+ +
⇣

aH

�x
⌘

a�
⌘

Sequence voltage, current, power. Applying this similarity transformation to phase voltage V and cur-
rent I, we obtain their sequence variables:

Ṽ = FV, Ĩ = FI,

The vector of power in the phase coordinate is s := diag
�
V IH

�
and that in the sequence coordinate is

s̃ := diag
�
Ṽ ĨH

�
. They are related through the outer product of voltage and current in their respective

coordinates according to:

s̃ := diag
⇣

Ṽ ĨH
⌘

= diag
⇣

FV IHFH
⌘

= diag
⇣

FV IHF
⌘

s := diag
⇣

V IH
⌘

= diag
⇣

FṼ ĨHFH

⌘
= diag

⇣
FṼ ĨHF

⌘
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The total powers 1Ts̃ = 1Ts however are equal in both coordinates:

1Ts̃ = ĨHṼ =
⇣

IHFH
⌘�

FV
�

= IHV = 1Ts

since FHF = FF = I. This is sometimes referred to as power invariance property of the similarity trans-
formation F . In Chapter 9.4 we will apply sequence variables to the external models of Chapter 7.3 to
define sequence networks.

In Definition 1.1, we call x a balanced vector if its zero-sequence component x̃0 = 0 and exactly one
of x̃+ and x̃� is nonzero. In particular a balanced positive-sequence vector is in span(a+). To simplify
exposition in this chapter it is convenient to generalize the definition of balanced vector to include a zero-
sequence component.

Definition 7.1 (Generalized balanced vector). A vector x̂ := (x̂1, x̂2, x̂3) 2 C
3 is called a generalized bal-

anced vector if x̂ = x+ g1, for some g 2 C, such that x is balanced according to Definition 1.1.

Hence a generalized balanced vector x̂ may contain a nontrivial zero-sequence component x̃0 and
exactly one of x̃+ and x̃�. We will often refer to a generalized balanced vector x̂ simply as balanced if
there is no risk of confusion or if the differentiation is not important, even if g 6= 0. The key property
Corollary 1.3 for balanced networks holds for generalized balanced vectors, i.e., G(x+ g1) = (1�a)x
and GT (x+ g1) = (1�a2)x if x is a balanced positive-sequence vector.

Park transformation. Besides Foretescue transformation F , several other similarity transformations
have been proposed that have different advantages and disadvantages for steady-state fault analysis; see
[75] that explains their relation. Park’s transformation [76] is applicable not only to steady-state voltage
and current phasors, but also to instantaneous voltages, currents, and flux linkages. It is originally proposed
for analyzing synchronous machines and is defined by the following real orthonormal matrix (which is the
normalized version of Park’s original matrix; we follow [1]):

P :=
r

2
3

2

64

1p
2

cosq sinq
1p
2

cos(q �120�) sin(q �120�)
1p
2

cos(q +120�) sin(q +120�)

3

75

It can be verified that P is orthonormal so that P�1 = PT. The matrix can be used to transform instanta-
neous phase voltages, currents and flux linkages. For example, for instantaneous voltages we have

v =

2

4
va

vb

vc

3

5 =

r
2
3

2

64

1p
2

cosq sinq
1p
2

cos(q �120�) sin(q �120�)
1p
2

cos(q +120�) sin(q +120�)

3

75

2

4
v0

vd

vq

3

5 = Pṽ

ṽ =

2

4
v0

vd

vq

3

5 =

r
2
3

2

4
1p
2

1p
2

1p
2

cosq cos(q �120�) cos(q +120�)
sinq sin(q �120�) sin(q +120�)

3

5

2

4
va

vb

vc

3

5 = PTv

The transformed coordinate is called the 0dq, or zero-direct-quadrature, or rotor coordinate. The abc
variables are stator-based quantities and the 0dq variables are rotor-based quantities. Similarly we can
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transform abc currents and flux linkages into the 0dq coordinate with ĩ = PTi and l̃ = PTl . The model of
a synchronous machine becomes simpler in the rotor coordinate. For example the inductance matrix L in
the abc coordinate that relates currents and flux linkages, l = Li, becomes diagonal in the rotor coordinate,
i.e., l̃ = L̃ĩ for a diagonal L̃.

7.3 Three-phase device models

In this section we develop the external models (7.2)(7.3) of three-phase devices in terms of their internal
specifications. The models of three-phase devices developed in Chapter 1.2 and the phase-decoupled line
model of Chapter 2 are special cases of the models in this section.

We start by describing in Chapter 7.3.1 the conversion rules (7.8) and (7.9)(7.10) that maps internal
variables

⇣
VY/D, IY/D,sY/D

⌘
to external variables (V, I,s) for devices in Y and D configurations respec-

tively. These conversion rules depend only on the configuration and are applicable to any types of devices.
In Chapters 7.3.3 and 7.3.4 we present the internal models of four types of devices in Y and D configura-
tion respectively and apply the conversion rules to these internal models to derive their external models. In
Chapter 7.3.5 we explain how to derive the Y equivalent of an ideal D-configured voltage or current source
in an unbalanced setting.

7.3.1 Conversion rules

Conversion in Y configuration. Consider a generic three-phase device in Y configuration with internal
and terminal variables defined as in Figure 7.2(a). Its terminal voltage, current, and power (V, I,s) are
related to its internal variables (VY , IY ,sY ) by:

V = VY + V n1, I = �IY , �1TI = In, s = �
⇣

sY +V nIY
⌘

(7.8)

where IY denotes the componentwise complex conjugate of the vector IY 2 C
3. The negative sign on the

current and power conversions is due to the definition of
�
IY ,sY� as internal current and power delivered

to the single-phase devices whereas (I,s) is defined as the terminal current and power injections out of the
three-phase device; see Remark 7.1. The property �1TI = In follows from the KCL at the neutral.

Here sY := diag
�
VY IYH� is the internal power delivered across the single-phase devices, or equiv-

alently, �sY is the power generated internally by these devices. The term V nIY is the vector power
delivered across the neutral and the common reference point (e.g., the ground). The terminal power
s := diag

�
V IH

�
is power delivered from the device across the phase lines and the common reference

point. Hence �sY = s+V nIY says that the power generated by the device is equal to that delivered to the
neutral impedance and the rest of the network. This follows from the conversion between voltages and
currents:

s := diag
⇣

V IH
⌘

= diag
⇣

VY ��IY�H
⌘

+ V n diag
⇣

1
�
�IY�H

⌘
= �

⇣
sY + V nIY

⌘
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The conversion rule (7.8) holds whether or not there is a neutral line and whether or not the neutral
is grounded with zero or nonzero neutral impedance zn. If there is not a neutral line then In := 0 and we
have 1TI = 1TIY = 0. If the neutral is grounded, then In is the current from the neutral to the ground and
V n = znIn =�zn1TI whether or not zn = 0. If the neutral is ungrounded but connected to the neutral of a
4-wire line, then In is the current on the neutral line leaving the neutral of the device. Its value will depend
on network interaction; see Example 9.5 and Exercise 9.7.

Remark 7.2 (Neutral voltage V n). In general the neutral voltage V n with respect to a common reference
point is nonzero whether or not there is a neutral line and whether or not the neutral is grounded. If the
neutral is grounded with zero neutral impedance and voltages are defined with respect to the ground, then
V n = 0, and hence V = VY and s = �sY . It is important to explicitly include V n in a network model
because not every device in a network may be grounded or grounded with zero neutral impedance.

Remark 7.3 (Total power). The total terminal power is

1Ts = �1TsY � V n
⇣

1T IY
⌘

The first term 1TsY on the right-hand side is the total power delivered across the single-phase devices.
The expression says that the total terminal power injection is equal to the total power �1TsY generated
internally net of power consumed by the neutral impedance.

If the neutral is ungrounded then 1T IY = 0 by KCL and 1Ts =�1TsY . If the neutral is grounded (i.e.,
V n0 = 0) through an impedance then V n

⇣
1T IY

⌘
is the power delivered to the neutral impedance. In general

the internal power delivered to the neutral impedance is sn :=
⇣

V n�V n0
⌘

In

Conversion in D configuration. Consider a generic three-phase device in D configuration with internal
and terminal variables defined as in Figure 7.2(b). We now apply Theorem 7.2 to convert between internal
and external variables in D configuration.

Voltage and current conversion. The relation between terminal voltage and current (V, I) and internal
voltage and current

�
V D, ID� is:

2

4
V ab

V bc

V ca

3

5 =

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V a

V b

V c

3

5 ,

2

4
Ia

Ib

Ic

3

5 = �

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

| {z }
GT

2

4
Iab

Ibc

Ica

3

5

or in vector form

V D = GV, I = �GT ID (7.9a)

where G,GT are given in (7.5). Given appropriate vectors V D and I, solutions V and ID to (7.9a) is provided
by Theorem 7.2.

1. Given V D, there is a solution V to (7.9a) if and only if V D is orthogonal to 1, i.e.,

V ab +V bc +V ca = 0
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which expresses Kirchhoff’s voltage law. In that case, there is a subspace of solutions V given by

V = G†V D + g 1 =
1
3

GTV D + g 1, g 2 C (7.9b)

This amounts to an arbitrary reference voltage for V . The quantity g := 1
31TV is the (scaled) zero-

sequence voltage of V . In most applications we are given a reference voltage (e.g., V0 := a+ at the
reference bus 0) which will fix the constant g for every D-configured device (different devices may
have different zero-sequence voltages g).

2. Given I, there is a solution ID to (7.9a) if and only if I is orthogonal to 1, i.e.,

Ia + Ib + Ic = 0

which expresses Kirchhoff’s current law. In that case, there is a subspace of ID that satisfy (7.9a),
given by

ID = �GT† I + b 1 = �1
3

GI + b 1, b 2 C (7.9c)

where b specifies the amount of loop flow in ID and does not affect the terminal current I since
GTID = 0. The quantity b := 1

31T ID is the (scaled) zero-sequence current of ID.

We make two remarks regarding the solutions (V, ID). First the minimum-norm solution

V :=
1
3

GTV D =
1
3

2

4
V ab�V ca

V bc�V ab

V ca�V bc

3

5

sets g = 0 such that 1TV = 3g = 0. Note that this solution does not set one of (V a,V b,V c) to zero. A
consequence of the arbitrary reference voltage is that, given the internal voltage and current

�
V D, ID� with

1TV D = 0 of a D-configured device, its terminal power vector s depends on the arbitrary constant g (similar
to the effect of the neutral voltage V n on s for a Y -configured device); see Remark 7.4. To fix V to be the
minimum-norm solution (7.9b) with g = 0, it is important to include explicitly the condition 1TV = 0
together with V D = GV , i.e., the minimum-norm solution with g = 0 is the unique solution to the system
of equations:

V D = GV, 1TV = 0, (given V D that satisfies 1TV D = 0)

Second the minimum-norm solution sets b = 0 and is

ID = �1
3

GI = �1
3

2

4
Ia� Ib

Ib� Ic

Ic� Ia

3

5

It contains zero loop flow, i.e., 1TID = 3b = 0. Analogous to the case above, a consequence of an arbitrary
b is that, given the terminal voltage and current (V, I) of a D-configured device, its internal power vector
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sD depends on the zero-sequence current b ; see Remark 7.4. To fix I to be the minimum-norm solution
(7.9c) with b = 0, it is important to include explicitly the condition 1TID = 0 together with I = �GTID,
i.e., the minimum-norm solution with b = 0 is the unique solution to the system of equations:

I = �GTID, 1TID = 0 (given I that satisfies 1TI = 0)

Power conversion. The terminal power injection from the device is s := diag
�
V IH

�
and the internal power

delivered across the single-phase devices in the direction ab, bc, ca is sD := diag
�
V DIDH�. Unlike a Y -

configured power source for which the terminal power s is related directly to the internal power sY (see
(7.8)), for a D-configured power source, the relation between s and sD is indirect through

�
V D, ID�, through

(V, I), or through
�
V, ID�. We now derive these relations using the voltage and current conversion (7.9).

Specifically, given internal voltage and current
�
V D, ID� with 1TV D = 0, the internal power is sD :=

diag
�
V DIDH�. To express the terminal power s in terms of

�
V D, ID�, we use (7.9a) (7.9b) to write the

terminal voltage and current as

V = G†V D + g1, g 2 C, I = �GTID

where different g correspond to different reference voltages. Therefore

V IH =
⇣

G†V D + g1
⌘⇣
�GTID

⌘H
= �G†

⇣
V DIDH

⌘
G + g

⇣
1 IH
⌘

Hence the terminal power s can be expressed in terms of the internal voltage and current
�
V D, ID� as

s := diag
⇣

V IH
⌘

= �diag
⇣

G†
⇣

V DIDH
⌘

G
⌘

+ gI, 1TV D = 0 (7.10a)

where I is the componentwise complex conjugate of the terminal current I = �GTID and g 2 C is deter-
mined by a reference voltage.

Example 7.1. Given internal voltage and current
�
V D, ID� with 1TV D = 0, evaluate the terminal power

s := diag
�
V IH

�
directly using the solution (7.9b) with g := 0.

Solution. We have

I = �GTID = �

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

2

4
Iab

Ibc

Ica

3

5 = �

2

4
Iab� Ica

Ibc� Iab

Ica� Ibc

3

5

Combine with (7.9b) with g = 0 to evaluate diag
�
V IH

�
:

s := �1
3

2

64

�
V ab�V ca��Iab� Ica�H
�
V bc�V ab��Ibc� Iab�H
�
V ca�V bc��Ica� Iab�H

3

75 = �1
3

0

B@

2

4
sab + sca

sbc + sab

sca + sbc

3

5 +

2

4
V ca 0 V ab

V bc V ab 0
0 V ca V bc

3

5

2

64
Iab

Ibc

Ica

3

75

1

CA

This is (7.10a) with g = 0.
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We next relate s and sD in terms of terminal voltage and current (V, I). Given (V, I) with 1TI = 0,
s := diag

�
V IH

�
. To express sD in terms of (V, I), use (7.9a) (7.9c) to write the internal voltage and current

as

V D = GV, ID = �GT†I + b1, b 2 C

where different b correspond to different loop flows in the D configuration. Therefore

V DIDH = �G
⇣

V IH
⌘

G† + b
⇣

V D 1T
⌘

Hence the internal power sD := diag
�
V DIDH� can be expressed in terms of the terminal voltage and current

(V, I) as

sD := diag
⇣

V DIDH
⌘

= �diag
⇣

G
⇣

V IH
⌘

G†
⌘

+ bV D, 1TI = 0 (7.10b)

where V D = GV and b 2 C is determined by the amount of loop flow in ID.

Even though (7.10a) and (7.10b) contain the zero-sequence voltage and current (g,b ), the total powers
1Ts and 1TsD do not.

Remark 7.4 (Total powers). 1. Given an internal voltage and current
�
V D, ID�, the terminal power vec-

tor s in (7.10a) does not depend on the zero-sequence current b := 1
31TID but does depend on the

zero-sequence voltage g := 1
31TV . Since I = �GTID and hence 1TI = 0, the total terminal power

however is independent of g:

1T s = �1Tdiag
⇣

G†
⇣

V DIDH
⌘

G
⌘

This is the same as the effect of neutral voltage V n on terminal power s and its aggregate 1Ts in Y
configuration when the neutral is ungrounded so that 1TIY = 0 by KCL.

2. Analogously, from (7.10b), the internal power vector sD depends on zero-sequence current b . Since
V D = GV and hence 1TV D = 0, the total internal power however is independent of the loop flow:

1TsD = �1Tdiag
⇣

G
⇣

V IH
⌘

G†
⌘

It can be shown that 1Tdiag
�
G
�
V IH

�
G†�= 1Tdiag

�
V IH

�
(Exercise 7.6). Therefore the total internal

and terminal powers are equal, i.e., 1TsD = 1Ts.

Finally we can relate s and sD through the terminal voltage and internal current
�
V, ID�. Indeed both s

and sD can be expressed in terms of
�
V, ID� using (7.9a):

s := diag
⇣

V IH
⌘

= �diag
⇣

V IDHG
⌘

, sD := diag
⇣

V DIDH
⌘

= diag
⇣

GV IDH
⌘

(7.10c)

An important advantage of (7.10c) is that
�
V, ID� contains implicitly both the zero-sequence voltage g :=

1
31TV and the zero-sequence current b := 1

31TID. This is often a more computationally convenient model
than (7.10a) and (7.10b).

In summary:
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• Given internal voltage and current (V D, ID) with 1TV D = 0, the terminal power s as a function of
(V D, ID) is given by (7.10a).

• Given terminal voltage and current (V, I) with 1TI = 0, the internal power sD as a function of (V, I)
is given by (7.10b).

• Given terminal voltage and internal current
�
V, ID�, the terminal power s and the internal power sD

are given by (7.10c).

These expressions are used to derive the external model a constant-power source in D configuration; see
Chapter 7.3.4.

Finally, note that unlike the relation I = �GTID which expresses KCL, it is not true that s = �GTsD.
The relation between terminal power and internal power is given only indirectly by (7.10).

7.3.2 Case study: Riverside CA utility

In this subsection we present voltage and current measurements from a distribution transformer in a South-
ern California municipal utility grid. The case study makes concrete some of the concepts introduced in the
previous sections. It also illustrates how unbalanced three-phase models can be used to analyze physical
systems that are not necessarily three-phased, in this case a split-phase system modeled as a D-configured
three-phase load with one terminal grounded.

Figure 7.4 shows a typical pad-mounted split-phase distribution transformer. The transformer in the
Southern California grid supplies 8 houses in a residential area in D configuration. It is rated at 75
kVA, with 12 kV grounded-Y on the high-voltage side and single split-phase 240V/120V with grounded
neutral on the low-voltage side as shown in the figure. We measure the voltage and current phasors

𝑰𝒃

𝑰𝒂

𝑰𝒄

𝑽𝒃

𝑽𝒂

𝑽𝒄

(a) Split-phase distribution transformer












































































































(b) Equivalent circuit

Figure 7.4: Typical distribution transformer and the equivalent circuit of the Southern California system
supplying 8 houses arranged in D configuration.

V := (V a,V b,V c) and I := (Ia, Ib, Ic) respectively at the low-voltage terminals of the transformer. Termi-
nal b is grounded and used as the common reference point, i.e., V b := 0. Note that the terminal current is
defined here to be into the load which is in the opposite direction to what we usually use elsewhere in this
chapter, corresponding to the direction in Figure 7.4. We assume that the line loss between the transformer
and the load (8 houses) is negligible, and hence V and I are also the terminal voltage and terminal current



Draft: EE 135 Notes April 30, 2024 247

respectively of the load in D configuration. We reiterate that even though we use unbalanced three-phase
concepts to model the load, they are on a single (split-)phase on the low-voltage side of the transformer.

We illustrate in Figures 7.5 and 7.6 the behavior of the circuit using the noisy time series of (V, I)
measured from the field on March 28 Thur, 2024.

1. Voltage behavior. The solid lines in Figures 7.5(a) and 7.5(b) show the magnitude and phase respec-
tively of the terminal voltage V . We see from Figure 7.5(a) that the magnitudes |V a| and |V c| are
roughly 120 V but their phase angles in Figure 7.5(b) are roughly 180� apart most of the time due
to the split phase. Notice that the green solid line |V b| is zero in Figures 7.5(a) and there is no green
solid line for voltage angle on line b. Instead the red solid line \V a = 0� in Figure 7.5(b). This is
because voltage measurement va(t) in the time domain is actually the voltage drop between terminal
a and terminal b, which is grounded, and hence vb(t) := 0. This means that, in the phasor domain
\V a is arbitrary and it is set to be 0� in our calculation, i.e., \V a = 0 is the reference for all voltage,
current and power angles. Relative to the potential on the b terminal, vc(t) is approximately a half
cycle off from va(t) and \V c ⇡�180� most of the time due to the split phase. (See also discussion
below on voltage imbalance.)

2. Current behavior. The dash lines in Figures 7.5(a) and 7.5(b) show the magnitude and phase re-
spectively of the terminal current I. There are three curves in each of the figures for phases a,b,c.
As discussed above the angles \If are relative to the reference \V a := 0. The magnitudes of Ia

and Ic are similar but their phases are approximately 180� apart most of the time due to the split
phase. Both the magnitudes |Ia|, |Ic| and their phases \Ia, \Ic show prominently the effect of so-
lar generation between roughly 8am to 5pm. In particular from Figure 7.5(b) during 9am–5pm the
power factor angles \V f �\If ⇡ �180� for both phases a and c, resulting in negative real pow-
ers Re(sf ) = |V f ||If |cos180� during this period, i.e., real powers flow from the loads towards the
transformer on phases a and c. The magnitude of Ib is much smaller in Figure 7.5(a) and its angle
in Figure 7.5(b) fluctuates between 0� and ±180�, indicating that a relatively small amount of line
b current flows back and forth between the transformer and the loads. This means that the current
Ia on line a mostly returns as Ic on line c, and hence their angles are approximately 180� apart as
noted above.

3. Power behavior. We can construct the behavior of the terminal power s from that of V and I and
confirm that in the measurement. As noted above, between 9am–5pm, the real powers Re(sf ) on
phases a and c are negative, shown as red and blue curves respectively in Figure 7.5(c), whereas
they are positive and flow from the transformer to the loads outside this period. From Figure 7.5(d),
the reactive powers Im(sf ) are small most of the time. The green curve representing power on line
b is zero because V b := 0 by definition.

The internal (load) power sD, from (7.10b), is sD = 1
3diag

�
G
�
V IH

�
GT
�

+ b (GV ) which cannot be
computed from (V, I) because of the unknown loop flow parameter b 2 C. Even though s and sD

are generally different vectors, the total powers 1Ts and 1TsD are equal as explained in Remark 7.4.
They are illustrated in 7.5(e) which are the sums of the curves in Figure 7.5(c) for the real part and
those in Figure 7.5(d) for the imaginary part.

4. Voltage imbalance. If we view our system as an unbalanced three phase system with grounded
terminal b then the zero-sequence voltage g := 1

3(V a +V b +V c) can be treated as a measure of
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(a) |V f | and |If |

(b) \V a := 0, \V c and \If

(c) Terminal power Re(sf )

(d) Terminal Im(sf )

(e) Total powers 1Ts = 1TsD

Figure 7.5: Voltage, current and power behavior. (a)(b)(c)(d) Solid lines: voltages, dashed lines: currents.
Red: phase a, green: phase b, blue: phase c. (e) Brown: real (kW), grey: imaginary (kVar).
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(a) Sequence voltage magntidues |Ṽ0| (red) and |Ṽ1| (green)

(b) Neutral current |In| = |Ia + Ib + Ic|

(c) Voltage and current waveforms around midnight 12am (in phase)

(d) Voltage and current waveforms around noon 12pm (out of phase)

Figure 7.6: Sequence voltages, neutral current, voltage and current waveforms. (a) Brown: real, grey:
imaginary. (c)(d) Solid lines: voltages, dashed lines: currents. Red: phase a, green: phase b, blue: phase
c.
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voltage imbalance. A more natural perspective is to view the split-phase system as a two-phase
system with terminal phase voltages (V a,V c) and terminal phase currents (Ia, Ic), return current Ib

and a neutral current In. We can decompose these voltages along an orthonormal basis for two-phase
systems to obtain the sequence voltages Ṽ :

Ṽ :=

Ṽ0
Ṽ1

�
:=

1p
2


1 1
1 �1

� 
V a

V c

�

Note that Ṽ0 can be viewed as a measure of voltage imbalance and is equal to 3p
2
g since V b := 0.

The magnitudes |Ṽ0| and |Ṽ1| are shown in Figures 7.6(a). Their normalized values averaged over
the measurement period t = 1, . . . ,T are:

|Ṽ0| :=
1
T

T

Â
t=1

|Ṽ0(t)|
kṼ (t)k2

= 0.0010, |Ṽ1| :=
1
T

T

Â
t=1

|Ṽ1(t)|
kṼ (t)k2

= 0.9999

5. Neutral current. From KCL we have Ia + Ib + Ic = In where In is the neutral current from terminal
b to the ground. Its magnitude |In| is shown in Figure 7.6(b). It is small most of the time com-
pared with |Ib| on line b. Its magnitude relative to those of the phase currents averaged over the
measurement period is

average relative neutral current :=
1
T

T

Â
t=1

|Ia(t)+ Ib(t)+ Ic(t)|
(|Ia(t)|+ |Ib(t)|+ |Ic(t)|)/3

= 0.1752

6. Voltage and current waveforms. Figure 7.6(c) shows the voltage (solid lines) and current (dashed
lines) waveforms around midnight where the currents and voltages are roughly in phase, indicating
that real power flows from the transformer to the loads. Figure 7.6(d) shows the voltage and current
waveforms around noon where the currents and voltages are roughly out of phase, indicating that
real power flows from the loads to the transformer.

7.3.3 Devices in Y configuration

In this subsection we first present parameters of a voltage source, current source, power source, and
impedance in Y configuration. For each device we then specify its internal model. Finally we apply
the conversion rule (7.8) to the internal model of each device to derive its external model.

Device specification. The devices we study are shown in Figure 7.7.

1. Voltage source
�
EY ,zY ,zn�. A voltage source is a single-terminal three or four-wire device. When

the configuration is Y , as shown in Figure 7.7(a), it is specified by three parameters. Its internal
voltage is fixed at EY := (Ean,Ebn,Ecn) and its series impedance matrix is zY := diag

�
zan,zbn,zcn�.

If there is a neutral wire then its impedance is a scalar zn which may or may not be zero whether
or not the neutral is grounded. An ideal voltage source is one with zY = 0 and zn = 0. A voltage
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I n
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V c

n’ I n’
V n’

Ean

Ecn Ebn

zan

zcn zbn

(a) Voltage source

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’
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ycn

J an

J cn

J bn

(b) Current source

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’

σa

σbσc

(c) Power source

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’

zbn

zan

zcn

(d) Impedance

Figure 7.7: Three-phase devices in Y configuration. (a) A voltage source. (b) A current source. (c) A
power source. (d) An impedance. Note that the direction of JY and sY is terminal-to-neutral.
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source can serve as a Thévenin equivalent circuit of a synchronous generator for which the internal
voltage EY is typically balanced. It can also model the primary or secondary side of a transformer,
or a grid-forming inverter.

2. Current source
�
JY ,yY ,zn�. A current source is a single-terminal three or four-wire device. When

the configuration is Y , as shown in Figure 7.7(b), it is specified by three parameters. Its internal
current is fixed at JY := (Jan,Jbn,Jcn) and its shunt admittance matrix is yY := diag

�
yan,ybn,ycn�. If

there is a neutral wire then its impedance is a scalar zn which may or may not be zero whether or not
the neutral is grounded. An ideal current source is one with yY = 0 and zn = 0. A current source can
serve as a Norton equivalent circuit of a synchronous generator. It can also model a load such as an
electric vehicle charger, or a grid-following inverter.

3. Power source
�
sY ,zn�. A single-terminal three or four-wire power source in Y configuration is

shown in Figure 7.7(c) and specified by two parameters. It consumes a constant power sY :=�
san,sbn,s cn� or injects a constant power �sY . If there is a neutral wire then its impedance is

a scalar zn which may or may not be zero whether or not the neutral is grounded. An ideal power
source is one with zn = 0. A power source can model a load, a generator, or the primary or secondary
side of a transformer.

4. Impedance
�
zY ,zn�. A single-terminal three or four-wire impedance in Y configuration as shown

in Figure 7.7(d) is specified by an impedance matrix zY := diag
�
zan,zbn,zcn�. If there is a neutral

wire then its impedance is a scalar zn which may or may not be zero whether or not the neutral is
grounded. An impedance can model a load.

Note that the direction of JY and sY is defined to be terminal-to-neutral, opposite to that of the terminal
current I.

The list above only specifies the internal parameters of a Y -configured device. When it is connected to
a network, its neutral voltage V n will need to be either specified or computed in order to translate between
its internal voltage VY and external voltage V = VY +V n1 (from (7.8)) and determine voltages, currents,
and powers at other parts of the network. We will discuss in Chapter 9.2, for each device in a typical three-
phase analysis problem, what quantities are parameters that should be specified and what are variables to
be computed through network equations. An assumption that is often made, sometimes implicitly, is:

C7.1: All neutrals are grounded either through an impedance zn or directly (zn = 0) and all voltages
are defined with respect to the ground.

This assumption is often satisfied in practice. Under this assumption, V n0 = 0 (see Figure 7.7). Moreover
the internal neutral voltage V n is not independently specified but is determined by the current through the
neutral impedance zn:

V n = zn
⇣

1TIY
⌘

= �zn
⇣

1TI
⌘

(7.11)

If the neutral is directly grounded, i.e., zn = 0, then V n = 0. Without C7.1 or for an ungrounded voltage
source, knowing the internal voltage and current

�
VY , IY� alone may not be sufficient to determine the

external voltage V . We will be explicit when we assume C7.1.
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Voltage source (EY ,zY ,zn). Internal model. Referring to Figure 7.7(a) the internal model of a voltage
source is

VY = EY + zY IY , V n�V n0 = zn
⇣

1TIY
⌘

, In = 1TIY (7.12a)

This yields an internal power sY := diag
�
VY IYH� across the non-ideal voltage source and an internal power

sn :=
⇣

V n�V n0
⌘

InH across the impedance zn on the neutral line, given by:

sY = diag
⇣

EY IYH
⌘

+ diag
⇣

zY IY IYH
⌘

=

2

4
EanIanH

EbnIbnH

EcnIcnH

3

5

| {z }
sY

ideal

+

2

64
zan |Ian|2

zbn
��Ibn
��2

zcn |Icn|2

3

75

| {z }
simp

(7.12b)

sn = zn
���1TIY

���
2

(7.12c)

External model. To derive an external model, apply the conversion rule (7.8), reproduced here:

V = VY + V n1, I = �IY , �1TI = In, s = �
⇣

sY +V nIY
⌘

to the internal model (7.12) to eliminate the internal variables (here, IY is the complex conjugate of vector
IY componentwise). This yields a relation between its terminal variables (V, I,s):

V = EY + V n1 � zY I, 1TI = �In, s = diag
⇣

EY IH
⌘

+ V nI � diag
⇣

zY IIH
⌘

(7.13a)

The model (7.13a) holds whether there is a neutral line or whether the neutral line is grounded or un-
grounded but connected to another device over a four-wire line. As discussed before, In = 0 if the neutral
is ungrounded.

Suppose assumption C7.1 holds so that V n0 = 0 and V n =�zn
⇣

1TI
⌘

. Then (7.13a) yields the external
model:

V = EY � ZY I (7.13b)

where

ZY := zY + zn 11T =

2

4
zan + zn zn zn

zn zbn + zn zn

zn zn zcn + zn

3

5

This has the same form as that of a single-phase voltage source discussed in Chapter ??. The neutral
impedance zn couples the phases. Substituting (7.13b) into s = diag

�
V IH

�
expresses the terminal power s

as a quadratic function of V :

s = diag
⇣

V
�
EY �V

�H �
(ZY )�1�H

⌘
(7.13c)
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assuming ZY is invertible. The inverse of ZY is calculated in Exercise 7.7.

The linear I-V relation and the nonlinear V -s or I-s relation in (7.2) takes the form of (7.13) for a
voltage source.

If zn = 0 then ZY = zY . From (7.13b) the phases are decoupled, i.e., V a = Ean� zanIa, whether or not
the current I and the voltage V are balanced. For an ideal voltage source where both zn = 0 and zY = 0,
the internal and external models (7.12) (7.13) here reduce to, under assumption C7.1,

V = V = EY , s = sY = diag(EY IH)

Example 7.2. Unlike for an ideal voltage source, sY in (7.12b) includes both the power sY
ideal := diag

�
EY IYH�

across the ideal voltage source and the power simp := diag
�
zY IY IYH� delivered to the series impedance zY .

Hence the net power injection is

s = �
⇣

sY
ideal + simp + V nIY

⌘

Summing across phases a,b,c shows that the total power generated is equal to the total power injection
and total power consumed by the internal impedances of the voltage source:

�1TsY
ideal = 1Ts + 1Tsimp + sn

where sn given by (7.12c) is the power delivered to the impedance zn on the neutral wire.

Current source (JY ,yY ,zn). Internal model. Referring to Figure 7.7(b) the internal model of a current
source is given by

IY = JY + yYVY , V n�V n0 = zn
⇣

1TIY
⌘

, In = 1TIY (7.14a)

This yields an internal power sY := diag
�
VY IYH� across the non-ideal current source and an internal power

sn := V nInH across the impedance zn on the neutral line, given by (Exercise 7.8):

sY = diag
⇣

VY JYH
⌘

+ diag
⇣

VYVYH yYH
⌘

=

2

4
V anJanH

V bnJbnH

V cnJcnH

3

5

| {z }
sY

ideal

+

2

64
yanH |V an|2

ybnH
��V bn

��2

ycnH |V cn|2

3

75

| {z }
sadm

(7.14b)

sn := V nInH = zn
���1TJY + diag

�
yY�TVY

���
2

(7.14c)

External model. The derivation here is analogous to that for a voltage source above. Applying the con-
version rule (7.8) to the internal model (7.14a) yields an external model of a current source that relates its
terminal variables:

I = �JY � yY (V �V n1) , 1TI = �In, s = �diag
⇣

V JYH
⌘
� diag

⇣
V (V �V n1)H yYH

⌘
(7.15a)
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As discussed earlier, In = 0 if the neutral is ungrounded.

Suppose assumption C7.1 holds so that V n =�zn
⇣

1TI
⌘

. Then (7.15a) yields (Exercise 7.9):

V = �
�
zY JY + ZY I

�
, I = �A

�
JY + yY V

�
(7.15b)

where, assuming ZY is invertible,

zY :=
�
yY��1

, ZY := zY + zn 11T, A := I� zn

1+ zn
⇣

1TyY 1
⌘ yY 11T

and I denotes the identity matrix of size 3. The effective impedance matrix ZY is the same matrix in
(7.13b) for a voltage source. Substituting (7.15b) into s = diag

�
V IH

�
expresses the terminal power s as a

quadratic function of V :

s = �diag
⇣

V
⇣

JYH + VHyYH
⌘

AH

⌘
(7.15c)

The linear I-V relation and the nonlinear V -s or I-s relation in (7.2) takes the form of (7.15) for a current
source.

Analogous to a voltage source, the phases are decoupled if zn = 0. An ideal current source with yY = 0
and zn = 0 has I =�IY =�JY and s =�diag

�
V JYH�.

Power source
�
sY ,zn�. Internal model: By definition the power delivered to a constant-power source

and the power delivered to the impedance zn on the neutral line are respectively (Figure 7.7(c))

sY := diag
⇣

VY IYH
⌘

= sY , sn :=
⇣

V n�V n0
⌘

InH = zn
���1TIY

���
2

(7.16)

External model: Apply the conversion rule to the internal model (7.16) yields an external model that
relates the terminal variables:

sY = diag
⇣

IYH
⌘

VY = �diag
⇣

IH
⌘

(V �V n1) , s = �sY + V nI, 1TI = �In (7.17a)

Suppose assumption C7.1 holds so that V n0 = 0 and V n = �zn
⇣

1TI
⌘

. We can then rewrite the vector

V nIY as

V nI = �zn
⇣

1TI
⌘

I = �zn
⇣

IIT
⌘

1

This yields a quadratic relation between V and I (Exercise 7.10):

V = �
�
diag I

��1 sY � zn
⇣

11T
⌘

I (7.17b)

and between s and I:

s = �
⇣

sY + zn
⇣

IIT
⌘

1
⌘

(7.17c)
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It is generally not possible to solve (7.17b) for I in closed form and hence there is generally not an explicit
V -s model for a power source. From (7.17c) the total power �1TsY generated by the constant-power
source is equal to the total power injection and the power delivered to the impedance on the neutral line:

�1TsY = 1Ts + zn
⇣

1TIY
⌘

| {z }
�V n

⇣
1TIY

⌘

| {z }
�InH

= 1Ts + sn

Clearly s =�sY if zn = 0.

Impedance
�
zY ,zn�. Internal model: Referring to Figure 7.7(d) the internal model of an impedance is

VY = zY IY , sY := VY IYH, sn :=
⇣

V n�V n0
⌘

InH = zn
���1TIY

���
2

(7.18)

External model: Application of the conversion rule (7.8) to the internal model (7.18) yields an external
model that relates the terminal variables:

V = �zY I + V n1, �1TI = In (7.19a)

If assumption C7.1 holds so that V n0 = 0 and V n =�zn
⇣

1TI
⌘

, then the external model reduces to:

V = �ZY I (7.19b)

where ZY := zY + zn 11T is the same effective impedance ZY in (7.13b) for a voltage source. Substituting
(7.19b) into s = diag

�
V IH

�
expresses s as a quadratic function of V :

s = �diag
⇣

VVH
�
(ZY )�1�H

⌘
(7.19c)

assuming ZY is invertible. If zn = 0 then ZY = zY is diagonal.

Balanced impedance. When zn 6= 0 but zY is balanced, i.e., zan = zbn = zcn, then ZY = zan
I+ zn 11T and

its off-diagonal entries will couple voltages and currents in different phases. One can perform a similarity
transformation using the unitary matrix F to what is called the sequence coordinate as explained in Chapter
7.2.2. In the sequence coordinate, the transformed impedance Z̃Y , called the sequence impedance, is
diagonal:

Z̃Y =

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

This leads to decoupled voltages and currents in the sequence coordinate called symmetrical components.
The decoupled relation between the sequence voltages, currents and impedances can be interpreted as
defining separate sequence networks that can be analyzed independently. This is explained in Chapter
9.4.1.
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Remark 7.5 (Phase decoupling). The matrix ZY := zY + zn11T in (7.13) (7.15) (7.19) is called the phase
impedance matrix or the impedance matrix.

1. If zn = 0 in these four devices, i.e., the neutrals are directly grounded, then the phases are decoupled.
This is because, for a power source, s = �sY , and for the other devices, the impedance matrix
ZY = zY becomes diagonal and hence V = zY I.

2. If zn 6= 0 but the currents are balanced, i.e., Ia + Ib + Ic = 0 then In = 0 and V ng = 0. In this case the
phases are also decoupled. If the voltage V is balanced and zan = zan = zcn then In will indeed be
zero and the phases will be decoupled (Exercise 7.11).

3. In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has
nonzero off-diagonal entries that couple voltages and currents in different phases. As mentioned
above, if zan = zan = zcn then the sequence impedance Z̃Y is diagonal and hence decoupled in the
sequence domain (Chapter 9.4).

7.3.4 Devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 7.3.3,
but arranged in D rather than Y configuration. For each device we then specify its internal model. Finally
we apply the conversion rule (7.9) (7.10) to the internal model of each device to derive its external models.

Internal specification. The three-phase devices we study are shown in Figure 7.8.

1. Voltage source
�
ED,zD�. A three-wire voltage source in D configuration as shown in Figure 7.8(a)

is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0. An ideal voltage source is one with

zD = 0.

2. Current source
�
JD,yD�. A three-wire current source in D configuration as shown in Figure 7.8(b) is

specified by its internal line-to-line current JD := (Jab,Jbc,Jca) and shunt admittance matrix yD :=
diag

�
yab,ybc,yca�. An ideal current source is one with yD = 0.

3. Power source sD. A three-wire power source in D configuration as shown in Figure 7.8(c) consumes
a constant power sD :=

�
sab,sbc,s ca� or injects a constant power �sD.

4. Impedance zD. A three-wire impedance in D configuration as shown in Figure 7.8(d) is specified by
an impedance matrix zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.
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Figure 7.8: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.
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Voltage source
�
ED,zD�. Internal model. Referring to Figure 7.8(a) the internal model of a voltage

source in D configuration is

V D = ED + zD ID, sD := diag
⇣

V DIDH
⌘

= diag
⇣

EDIDH
⌘

+ diag
⇣

zD IDIDH
⌘

(7.20)

External model. The terminal voltage and current (V, I) are related to the internal voltage and current�
V D, ID� according to the conversion rule (7.9a) for D-configured devices, reproduced here

V D = GV, I = �GT ID

We will derive two equivalent relations between the terminal (V, I). Given V , the first relation uniquely
determines I in terms of V . Given I, the second relation however determines V in terms of I only up
to an arbitrary zero-sequence voltage g . The asymmetry between these two cases is because V contains
more information (g := 1

31TV ) than I and uniquely determines the internal voltage V D and hence ID (from
(7.20)) and I. In contrast I contains no information about the zero-sequence current b := 1

31TID and hence
does not uniquely determine the internal current ID.

For the first relation that maps V to I, define yD :=
�
zD��1 and write from (7.20)

ID = yD
⇣

V D�ED
⌘

Multiplying both sides by �GT and substituting the conversion rule we have

I =
⇣

GTyD
⌘

ED � Y DV (7.21a)

where YD is a complex symmetric Laplacian matrix of the graph in Figure 1.9:1

Y D := GTyD G =

2

4
yab + yca �yab �yca

�yab ybc + yab �ybc

�yca �ybc yca + ybc

3

5

Note that the terminal current I given by (7.21a) satisfies 1TI = 0.

For the second relation that maps I to V , substitute the conversion rule into the internal model (7.20)
to eliminate the internal variable

�
V D, ID�:

GV = ED + zD
⇣
�GT† I +b1

⌘

where we have used ID = �GT† I +b1 from (7.9c) and this is valid if and only if we require

1TI = 0

1Note however that yD is a complex matrix and therefore Y D is complex symmetric, not Hermitian. Therefore span(1) is a
subset of the null space of Y D. For a sufficient condition for the null space of Y D to be span(1), see Exercise 4.3.
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Here b 2 C is not arbitrary but depends on ED and I.2 Multiplying both sides by 1T gives

0 = 1TGV = 1TED � 1TzD
|{z}

z̃DT

GT†I + b
⇣

1TzD1
⌘

| {z }
z

Define the column vector z̃D := zD1 =
�
zab,zbc,zca� and the scalar z := 1TzD1 = zab + zbc + zca. Then

b =
1
z

⇣
z̃DTGT†I � 1TED

⌘

Note that 1TED is the zero-sequence internal voltage and z̃D is the vector of internal impedances. Both are
zero, and hence b = 0, if the internal voltage ED and impedances z̃D are balanced. Therefore

GV = ED � zD GT† I +
1
z

zD1
⇣

z̃DTGT†I � 1TED
⌘

=

✓
I� 1

z
z̃D 1T

◆
ED � zD

✓
I� 1

z
1 z̃DT

◆
GT†I

or

V = ĜED � ZDI + g1, 1TI = 0 (7.21b)

where (using Theorem 7.2)

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

and g is fixed by a given reference voltage. This is similar to (7.13b) for the Y -configured voltage source.

The two external models (7.21a) and (7.21b) are equivalent in the following sense.

Theorem 7.3. Given the conversion rules V D = GV and I = �GTID between the terminal and internal
voltages and currents, the following are equivalent:

1. Internal model: V D = ED + zDID and 1T
�
ED + zDID�= 0.

2. External model: I =
�
GTyD�ED�Y DV where Y D := GTyDG.

3. External model: V = ĜED�ZDI + g1, 1TI = 0 for some g 2 C where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

2To gain intuition, imagine the voltage source is connected to a constant-voltage device that fixes the terminal voltage V of
the voltage source, and hence its internal voltage V D = GV . Therefore, on each phase line, say, line ab, we have V ab�Eab =
zabIab. Hence ID is uniquely determined which fixes both I and b := 1

3 1TID.
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The proof of the theorem is similar to that of Theorem 7.4 and left as Exercise 7.14.

Hence given V , I is uniquely determined by (7.21a) and given I, V is determined by (7.21b) up to a
reference voltage specified by g . These equations allow us to relate terminal power injection s to V or to I
as:

s = diag
⇣

V IH
⌘

= diag
✓

V
⇣

GTyDED � Y DV
⌘H◆

(7.21c)

s = diag
⇣

V IH
⌘

= diag
⇣⇣

ĜED � ZDI
⌘

IH
⌘

+ gI (7.21d)

For an ideal voltage source where zD = 0 we have Ĝ := 1
3GT and ZD = 0. The external model is,

provided 1TED = 0,

V =
1
3

GTED + g1, 1TI = 0, s =
1
3

diag
⇣

GTEDIH
⌘

+ gI

where g is fixed by a reference voltage.

Current source
�
JD,yD�. Internal model. Referring to Figure 7.8(b) the internal model of a current

source in D configuration is

ID = JD + yDV D, sD := diag
⇣

V DIDH
⌘

= diag
⇣

V DJDH
⌘

+ diag
⇣

V DV DHyDH
⌘

(7.22)

External model. Multiplying both sides of ID = JD +yDV D by�GT and substituting the general conversion
rule

V D = GV, I = �GT ID

for D-configured devices, we have

I = �
⇣

GTJD + Y DV
⌘

(7.23a)

where Y D := GTyD G is the matrix in (7.21a). The power injection is

s = diag
⇣

V IH
⌘

= �diag
⇣

V JDHG + VVHY DH
⌘

(7.23b)

For an ideal current source where yD = 0 we have I =�GTJD and s =�diag(V JDHG).

Remark 7.6 (Voltage and current sources). A D-configured current source specifies its internal current
JD which then uniquely determines its terminal current I through the conversion rule (7.9a), as well as
its zero-sequence current b := 1

31TJD, whereas a voltage source specifies its internal voltage ED which
does not uniquely determine its terminal voltage V . This is why the external voltage source model (7.21b)
determines V only up to an arbitrary zero-sequence voltage g and requires 1TI = 0 while both (7.21a)
and (7.23a) are valid without any extra condition as their derivation does not involve pseudo-inverse of
conversion matrices.
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Power source sD. Internal model. Referring to Figure 7.8(c) the internal model of a constant-power
source is

sD := diag
⇣

V D IDH
⌘

= sD (7.24)

This specifies the powers (sab,sbc,s ca) delivered to these single-phase devices.

External model. Applying the power conversion rule (7.10b) to the internal model sD = sD yields an
external model of a constant-power source that relates its terminal voltage and current (V, I):

sD = �1
3

diag
⇣

G
⇣

V IH
⌘

GT

⌘
+ bGV, 1TI = 0 (7.25a)

where the first equality follows because
�
GT†�H = 1

3GH = 1
3GT from Theorem 7.2. Here b represents the

amount of loop flow in the internal current ID. All three quantities (V, I,b ) are variables to be determined
by the interaction with other devices through the network; see Chapter 9.1. Here (V, I) are terminal
variables but, unlike the external models of other devices, b is a quantity internal to the D configuration.

An alternative model of a constant-power source is (7.10c) that relates its terminal voltage V with its
internal current ID:

sD := diag
⇣

V DIDH
⌘

= diag
⇣

GV IDH
⌘

(7.25b)

An advantage of this model is that it contains implicitly both the zero-sequence terminal voltage g := 1
31TV

and zero-sequence internal current b := 1
31TID.

We now study the connection between the two equivalent models (7.25a) and (7.25b) of a constant-
power source that relate (V, I) and

�
V, ID� respectively. Expand the first equation in (7.25a) to get

sD = �1
3

2

64

�
Ia� Ib�H �V a�V b�
�
Ib� Ic�H �V b�V c�

(Ic� Ia)H (V c�V a)

3

75 + b

2

4
V a�V b

V b�V c

V c�V a

3

5 =

✓
diag

✓⇣
�GT†I

⌘H
◆

+ b I
◆

| {z }
diag(IDH)

(GV )

which is equivalent to (7.25b). Given a terminal voltage V , the currents I and ID can be uniquely deter-
mined in these models (7.25a) and (7.25b) respectively. Given a current I or ID in (7.25a) and (7.25b)
respectively, however, V cannot be uniquely determined.

Specifically, given a terminal voltage V , the model (7.25b) provides three linear equations in three
unknowns ID, which determines ID uniquely. Both the terminal current I and b are then determined
uniquely. Conversely, given ID (and hence b ), (7.25b) provides three linear equations in three unknowns
V but only

�
V a�V b,V b�V c,V c�V a�, i.e., V D = GV , can be uniquely determined. The terminal voltage

V (or equivalently, its zero-sequence voltage g) needs to be determined through network equations or from
a reference voltage.

Similarly for the model (7.25b), given a terminal voltage V , (7.25a) provides four linear equations
in four unknowns I := (Ia, Ib, Ic) and b which determine (I,b ) uniquely (Exercise 7.15). Intuitively,
the given terminal voltage V fixes the internal voltage V D which then fixes the internal current ID since



Draft: EE 135 Notes April 30, 2024 263

diag
�
V DIDH� = sD. This then produces a unique terminal current I and the zero-sequence current b :=

1
31TID. On the other hand, consider the situation where the terminal current I with 1TI = 0 is given, instead
of ID as for the model (7.25b) above. In this case (7.25a) also does not uniquely determine the terminal
voltage V because (7.25a) provides three quadratic equations in four unknowns (V,b ), quadratic due to
the term bGV . Moreover since I contains less information than ID, there is ambiguity in b in addition to
g; see Exercise 7.16. As for the model (7.25b) the terminal voltage V (hence g) and b will be determined
through network equations or from a reference voltage.

For a balanced system however the loop flow b and the internal voltages V D are uniquely determined
by sD and a terminal current I, as the next example illustrates.

Example 7.3 (Balanced systems). Consider a constant-power source with a given sD whose external
behavior is described by (7.25a). Given a terminal current I = ia+ which is a positive-sequence balanced
vector with 1TI = 0:

1. Show that the given sD and I must satisfy

sD 2 span
✓
�1�a

3
i1 + ba+

◆

for some b 2 C. Note that the internal power sD is different in each phase (with different phase
angles separated by 120�) if and only if the loop flow b 6= 0.

2. Show that the loop flow b and the internal voltage V D are uniquely determined by sD and I, and that
the terminal voltage V is unique only up to an arbitrary reference voltage.

Assume that the internal voltage V D is also a positive-sequence balanced vector.

Solution. By Corollary 1.3 we have for any balanced vector x 2 C
3 in positive sequence

Gx = (1�a)x, GTx = (1�a2)x

Hence the internal current is

ID = �GT†I + b1 = �1
3

GI + b1 = �1�a
3

ia+ + b1

where the second equality follows from Theorem 7.2. By assumption V D is a positive-sequence balanced
vector, i.e., V D = va+ where v 2 C is a scalar to be determined. Then

sD = diag
⇣

V DIDH
⌘

= v diag

 
a+

✓
�(1�a)i

3
a+ + b1

◆H
!

= v
✓
�(1�a)i

3
diag

⇣
a+ aH

+

⌘
+ b diag

⇣
a+1T

⌘◆

= v
✓
�(1�a)i

3
1 + ba+

◆
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i.e., sD lies in span
⇣
� (1�a)i

3 1 + ba+

⌘
for some b . To determine v, multiplying both sides by 1T to get

v =
�1TsD

(1�a)i

Then V D = va+. The terminal voltage V is given by

V = G†V D + g1 =
v
3

GTa+ + g1 =
�1TsD(1+a)

3i
a+ + g1, g 2 C

which is unique up to an arbitrary reference voltage specified by g 2 C.

Note that neither V D nor V depends on b , even though from the expression above for sD in part 1, the
internal powers sD :=

�
sab,sbc,s ca� depend on the loop flow specified by b . Moreover the expression

uniquely determines b :

sab = v
✓
�(1�a)i

3
+ b

◆
, sbc = v

✓
�(1�a)i

3
+ ab

◆
=) b =

sbc�sab

sab +sbc +s ca i

Whereas (7.25a) relates the internal power sD to the external voltage and current (V, I), we can also
use the conversion rule (7.10a) to relate the external power s to the internal voltage and current

�
V D, ID�.

Specifically, the internal voltage and current (V D, ID) and the terminal power s of a constant-power source
must satisfy:

s = �1
3

diag
⇣

GT

⇣
V DIDH

⌘
G
⌘
� g GTID

, sD = diag
⇣

V DIDH
⌘

, 1TV D = 0 (7.25c)

where g is fixed by a reference voltage. An equivalent model in terms of
�
V, ID� is (using (7.10c))

s = �diag
⇣

V IDHG
⌘

, sD = diag
⇣

GV IDH
⌘

(7.25d)

The choice of different models in (7.25) for three-phase analysis depends on the specification of the prob-
lem. See Example 9.11 in Chapter 9.2.1.

Remark 7.7 (Total power). Since sD is the power delivered to the single-phase devices while s is the
power injected from the three-phase power source to the network it is connected to, (7.25) implies that
(the negative of) its total internal power is equal to its total terminal power, i.e., 1Ts = �1TsD (Exercise
7.17). In particular the total terminal power 1Ts is independent of the loop-flow b and zero-sequence
voltage g even when s does.

Impedance zD. Internal model. Referring to Figure 7.8(d) the internal model of an impedance zD in D
configuration is

V D = zD ID, sD = diag
⇣

V DIDH
⌘

:= diag
⇣

zDIDIDH
⌘

(7.26)
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External model. The external model can be derived in a similar way to that for a voltage source, by
applying the conversion rule V D = GV , I = �GTID to the internal model (7.26). We will derive first a
relation that maps a terminal voltage V (which also determines its zero-sequence component g) uniquely
to a terminal current I and then a converse relation that maps I to V up to an arbitrary g .

Define the admittance matrix yD :=
�
zD��1. Substituting into (7.26), multiplying both sides by �GT

and applying the conversion rule, we get

I = �Y DV (7.27a)

where Y D := GTyDG is the same complex symmetric Laplacian matrix in (7.21a) for a voltage source. Note
that the terminal current I given by (7.27a) satisfies 1TI = 0.

For the converse relation, given any terminal current I that satisfies 1T I = 0, substitute the conversion
rule into the internal model (7.26) to eliminate

�
V D, ID�:

GV = zD
⇣
�GT† I +b1

⌘

where b 2 C is not arbitrary but depends on I. Multiplying both sides by 1T gives

0 = 1TGV = �1TzD
|{z}

z̃DT

GT†I + b
⇣

1TzD1
⌘

| {z }
z

where z̃D := zD1 and z := zab + zbc + zca. Hence

b =
1
z

⇣
z̃DTGT†

⌘
I

Therefore

GV = �zD
✓
I� 1

z
1 z̃DT

◆
GT†I

or

V = �ZDI + g1, 1TI = 0 (7.27b)

where g is a variable to be determined together with V and (using Theorem 7.2)

ZD :=
1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

is the same matrix in (7.21b).

Remark 7.8. Note that (7.27b) is a system of at most 4 linearly independent equations in 7 variables
(V, I,g). We can also eliminate the variable g := 1

31TV and write (7.27b) equivalently in terms of only
(V, I):

✓
I� 1

3
11T
◆

V = �ZDI, 1TI = 0

Since the matrices on both sides of the first equation are singular, this is a system of at most 3 linearly
independent equations in 6 variables. It is often more convenient to use (7.27b) in analysis as it expresses
V explicitly in terms of I despite the additional variable g; see Example 9.8.



266 Draft: EE 135 Notes April 30, 2024

As for a voltage source, the two external models (7.27a) and (7.27b) of an impedance are equivalent
in the following sense. The theorem also implies that ZD and Y D are pseudo-inverses of each other.

Theorem 7.4. Given the conversion rules V D = GV and I = �GTID between the terminal and internal
voltages and currents, the following are equivalent:

1. Internal model: V D = zDID and hence 1TzDID = 0.

2. External model: I = �Y DV where Y D := GTyDG.

3. External model: V =�ZDI + g1, 1TI = 0 for some g 2 C where

ZD :=
1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

Proof. The derivation above of the two external models (7.27a) and (7.27b) shows that 1) 2 and 3. For
the converse we will show that 2) 1 and 3) 1.

Suppose I =�Y DV =�
�
GTyDG

�
V . Substitute the conversion rules to get

GT

⇣
yDV D� ID

⌘
= 0

i.e., yDV D� ID is in the null space of GT, or yDV D� ID = b1 for some b 2 C. Therefore

V D = zDID +b zD1

It is important to note that this expression is not of the form V D = z0DID + b 01 for some diagonal matrix
z0D 2 C

3 and scalar b 0 2 C. Since 1TV D = 0 because of the conversion rule, multiplying both sides by 1T
yields

b = � 1
z

z̃DTID

where z̃D := zD1 and z := zab + zbc + zca. Hence

V D = zDID� 1
z

z̃DTID zD1 = zD
✓
I� 1

z
11TzD

◆

| {z }
z0D

ID

For z0D to be a valid three-phase impedance, it must be a diagonal matrix. This is the case if and only if
zD1
⇣

1TzDID
⌘

= 0 in which case V D = zDID, as desired.

Suppose V =�ZDI + g1, 1TI = 0 for some g 2 C. Then †

V D = GV = �1
3

GG†zD
✓
I� 1

z
1 z̃DT

◆
G I
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Since 1TI = 0, there exists ID such that I =�GTID. Hence

V D = GG†zD
✓
I� 1

z
1 z̃DT

◆
GGTID = zD

✓
I� 1

z
11TzD

◆

| {z }
z0D

ID

where we have used GG† = I� 1
311T from Theorem 7.2. As before, z0D must be a diagonal matrix to be a

valid three-phase impedance. This is the case if and only if zD1
⇣

1TzDID
⌘

= 0 in which case V D = zDID,
as desired.

Hence given a V , I is uniquely determined by (7.27a) and given an I with 1TI = 0, V is determined
by (7.27b) up to a reference voltage specified by g . These equations allow us to relate terminal power
injection s to V or to I as:

s = diag
⇣

V IH
⌘

= �diag
⇣

VVHY DH
⌘

(7.27c)

s = diag
⇣

V IH
⌘

= �diag
⇣

ZDIIH
⌘

+ gI (7.27d)

Balanced impedance. When the impedance is balanced, i.e., zab = zbc = zca then (Exercise 7.18)

ZD =
zab

3

✓
I� 1

3
11T
◆

i.e., ZD is not diagonal and the off-diagonal entries will couple voltages and currents in different phases.
As we will see in Chapter 9.4.1, in this case, one can perform a similarity transformation using the uni-
tary matrix F to what is called the sequence coordinate as explained in Chapter 7.2.2. In the sequence
coordinate, the transformed impedance Z̃D, called the sequence impedance, is diagonal:

Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

This leads to decoupled voltages and currents in the sequence coordinate called symmetrical components.
The zero-sequence component (first row and column of Z̃D) is zero, reflecting the fact that Ia + Ib + Ic = 0
in a D configuration since there is no neutral line. The decoupled relation between the sequence voltages,
currents and impedances can be interpreted as defining separate sequence networks that can be analyzed
independently.

Remark 7.9 (Phase decoupling). Determine conditions under which phases become decoupled ( Exercise
7.19).

7.3.5 D-Y transformation

Ideal voltage source
�
ED,g

�
. The terminal voltage of an ideal D-configured voltage source

�
ED,g

�
with

zero internal impedance zD = 0 is, from (7.21b):

V =
1
3

GTED + g1, 1TI = 0
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where g is fixed by a given reference voltage. The terminal voltage of an ideal Y -configured voltage source�
EY ,V n� with zero internal impedance zY = 0 is, from (7.13a):

V = EY + V n 1, 1TI = �In

Hence the Y equivalent of an ideal voltage source
�
ED,g

�
, not necessarily balanced, is given by

EY :=
1
3

GTED, V n := g, no neutral line so that In := 0

Note that this does not satisfy assumption C7.1 since the neutral is not grounded unless g = 0. If ED is
balanced then GTED = (1�a2)ED =

p
3e�ip/6 ED (by Corollary 1.3) and EY reduces to the expression

(1.31a) derived in Chapter 1.2.4 for balanced systems:

EY =
1p

3eip/6
ED, V n := g, no neutral line so that In := 0

For a non-ideal D-configured voltage source
�
ED,zD,g

�
, its terminal voltage is, from (7.21b):

V = ĜTED � ZDI + g1

where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

It generally does not have a Y equivalent. Indeed, since the Y equivalent needs to be ungrounded so that
1TI = 0, its external model is V = EY � zY I +V n1 from (7.13a). In general the effective impedance ZD is
not diagonal and hence may not be interpreted as an internal series impedance matrix zY of an Y -configured
source, even if the impedance is balanced zD := zab

I (in which case ZD = zab

3

⇣
I� 1

311T
⌘

).

Remark 7.10 (Y -equivalent with equal line-to-line voltage). Given a general D-configured device with
internal voltage V D, its equivalent line-to-neutral voltage is defined in [63, p.204] to be

VY :=
1
3

2

4
2 1 0
0 2 1
1 0 2

3

5V D (7.28)

This definition is the same as the Y -equivalent of an ideal voltage source V D derived above with a particular
choice of the neutral voltage:

VY :=
1
3

GTV D, V n := g = 0

in the sense that they have the same line-to-line voltages.

To see this, recall that the line-to-line voltage ṼY (not the terminal voltage) of a Y -configured device
with internal voltage VY is ṼY = GVY . If it is equivalent to the given V D then V D = ṼY = GVY . Theorem
7.2 then implies

VY =
1
3

GTV D + g1 for any g 2 C
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Here g being arbitrary means that the D-configured device has an arbitrary zero-sequence terminal voltage
and its Y -equivalent has an arbitrary neutral voltage. Take g := 0. Since 1TV D = 1T

�
GVY� = 0 we can

add 1
31TV D to YY to get

VY =
1
3

⇣
GT +11T

⌘
V D =

1
3

0

@

2

4
1 0 �1
�1 1 0
0 �1 1

3

5+

2

4
1 1 1
1 1 1
1 1 1

3

5

1

AV D =
1
3

2

4
2 1 0
0 2 1
1 0 2

3

5V D

The model (7.28) is applicable only if the zero-sequence voltage g := 1
31TV of the given D-configured

device is zero. Otherwise its Y -equivalent must have a nonzero neutral voltage V j = g .

Ideal current source JD. An ideal D-configured current source JD has an external model of I =�GTJD.
Note that 1TI = 0. The external model of a Y -configured current source is I = �JY , 1TI = �In. Hence
the Y equivalent is

JY = GTJD, no neutral line so that In := 0

If JD is balanced then Corollary 1.3 implies

JY = (1�a2)JD =

p
3

eip/6 JD

the same expression (1.31a) for balanced systems.

7.3.6 Comparison with single-phase devices

Assume C7.1 holds, i.e., neutrals are grounded and voltages are defined with respect to the ground. We
compare the external models of three-phase devices to those of their single-phase counterparts. As we will
see they are structurally the same, except for the D-configured power source.

E

z I

V

(a) Single-phase

V aI a

V n

I n

Zn

I b

I c

V b

V c

zan

zbn

zcn

Ecn Ebn

Ean

(b) Y configuration (grounded)

V aI a

I b

I c

V b

V c

E ab

E ca

E bc

zab

zbc
zca

(c) D configuration

Figure 7.9: Comparison of single-phase and three-phase voltage sources.
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Voltage source. Figure 7.9 shows a single-phase voltage source specified by an internal voltage E and a
series impedance z and the three-phase voltage sources in Y and D configurations studied in this section.
Their external models are, from (7.13b) and (7.21b):

single-phase: V = E� zI

Y -configuration: V = EY � ZY I, ZY := zY + zn11T

D-configuration: V = ĜED � ZDI + g1, 1TI = 0

J

I

Vy

(a) Single-phase

V aI a

V n

I n

zn

I b

I c

V b

V c

yan

ybn
ycn

J an

J cn

J bn

(b) Y configuration (grounded)

V aI a

I b

I c

V b

V c

J ab

J bc

J ca

yab

ybc

yca

(c) D configuration

Figure 7.10: Comparison of single-phase and three-phase current sources.

Current source. Figure 7.10 shows a single-phase current source specified by an internal current J and
a shunt admittance y and the three-phase current sources in Y and D configurations studied in this section.
Their external models are, from (7.15b) and (7.23a):

single-phase: I = �(J + yV )

Y -configuration: I = �A
�
JY + yYV

�
, A := I� zn

1+ zn
⇣

1TyY 1
⌘yY 11T

D-configuration: I = �
⇣

GTJD + Y DV
⌘

, Y D := GTyD G

Power source. Figure 7.11 shows a single-phase power source specified by an internal power s and the
three-phase power sources in Y and D configurations studied in this section. Their external models are,
from (7.17c) and (7.25d):

single-phase: s = �s

Y -configuration: s = �
⇣

sY + zn
⇣

IIT
⌘

1
⌘

D-configuration: s = �diag
⇣

V IDHG
⌘

, sD = diag
⇣

GV IDH
⌘

Impedance. Figure 7.12 shows a single-phase impedance specified by z and the three-phase power
sources in Y and D configurations studied in this section. Their external models are, from (7.19b) and
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(a) Single-phase












































































































(b) Y configuration

V aI a

I b

I c

V b

V c

σabσca

σbc

(c) D configuration

Figure 7.11: Comparison of single-phase and three-phase power sources.
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(b) Y configuration

V aI a

I b

I c

V b

V c

zab

zbc

zca

(c) D configuration

Figure 7.12: Comparison of single-phase and three-phase impedances.
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(7.27a):

single-phase: V = �zI

Y -configuration: V = �ZY I, ZY := zY + zn 11T

D-configuration: I = �Y DV, Y D := GTyDG

7.3.7 Summary

The external models of three-phase devices are summarized in Table 7.2 and will be used to compose
network models in Chapters 9 and 10.

Device Y configuration D configuration
Specification Internal External Specification Internal External

Voltage source
�
EY ,zY ,zn� (7.12) (7.13)

�
ED,zD� (7.20) (7.21)

Current source
�
JY ,yY ,zn� (7.14) (7.15)

�
JD,yD� (7.22) (7.23)

Power source
�
sY ,zn� (7.16) (7.17) sD (7.24) (7.25)

Impedance
�
zY ,zn� (7.18) (7.19) zD (7.26) (7.27)

Line (3-wire model) (8.8)

Table 7.2: Specification, internal and external models of three-phase devices.

When the devices are ideal these models reduce to a simpler form summarized in Tables 7.3 and 7.4.
The internal models of ideal devices are:

1. Ideal voltage source EY/D:

VY/D = EY/D, sY/D = diag
✓

EY/D
⇣

IY/D
⌘H◆

(7.29a)

2. Ideal current source JY/D:

IY/D = JY/D, sY/D = diag
✓

VY/D
⇣

JY/D
⌘H◆

(7.29b)

3. Ideal power source sY/D:

sY/D = sY/D, sY/D = diag
✓

VY/D
⇣

IY/D
⌘H◆

(7.29c)

4. Impedance zY/D:

VY/D = zY/D IY/D, sY/D = diag
✓

VY/D
⇣

IY/D
⌘H◆

(7.29d)
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Device Assumption Y configuration
Voltage source zn = 0, zY = 0 V = EY + g1 s = diag

�
EY IH

�
+ gI

Current source zn = 0, yY = 0 I =�JY s =�diag
�
V JYH�

Power source zn = 0 diag
�
IH
�
(V � g1) =�s s =�sY + gI

Impedance zn = 0 V =�zY I + g1 s =�diag
⇣

V (V � g1)H yYH
⌘

Table 7.3: External models of ideal single-terminal devices in Y configuration. The quantity g := V n is the
neutral voltage. If all neutrals are directly grounded and voltages are defined with respect to the ground,
then g := V n = 0 for all Y -configured devices.

Device Assumption D configuration
Voltage source zD = 0, 1TED = 0 V = G†ED + g1, 1TI = 0 s = diag

�
G†EDIH

�
+ gI

Current source yD = 0 I =�GTJD s =�diag
�
V JDHG

�

Power source sD = diag
�
GV IDH�

1TI = 0 sD = �diag
�
GT† �V IH

�
GT
�
+b GV

s = diag
�
V IDHG

�

1TV D = 0 s = �diag
�
G† �V DIDH�G

�
� g GTID

Impedance I =�Y DV s =�diag
�
VVHY DH�

V =�ZDI + g1, 1TI = 0 s =�diag
�
ZDIIH

�
+ gI

Table 7.4: External models of ideal single-terminal devices in D configuration. The quantity g := 1
31TV is

the zero-sequence voltage of V and b := 1
31TID is the zero-sequence current of ID.
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In each case the internal specification of the three-phase device fixes one of the terminal variables (V, I,s)
and the relation between the remaining variables characterizes its external behavior. In the rest of this
book we often assume sources are ideal and characterized by Tables 7.3 and 7.4 (see Chapter 8.1.4 for a
justification).

Consider a network of three-phase voltage sources, current sources, power sources, and impedances
connected by three-phase lines and transformers. A power flow problem typically specifies a set of these
devices and the objective is to determine other voltages, currents, and powers on the network. The spec-
ification of these devices include not only internal voltages, currents, or powers, but also some of the
zero-sequence quantities (g,b ). We will clarify in Chapter 9.2 the parameters that should be specified
versus variables to be computed of the external models in Tables 7.3 and 7.4.

7.4 Voltage regulators

7.5 Bibliographical notes

The concept of symmetrical component is described in another seminal paper [74] by C. L. Fortescue
to simplify the analysis of unbalanced operation of a multiphase system. The use of symmetrical com-
ponents for fault current analysis is explained in e.g. [7] which also proposes a different transformation
called (a,b ,0) components. The paper [75] explains that Fortescue’s transformation matrix as a particular
choice of orthogonal basis for three-dimensional vectors over the complex field (the similarity transfor-
mation matrix F in Chapter 7.2.2 is the normalized version of Fortescue’s original matrix so that the basis
are orthonormal). It shows that other well-known transformations such as those of Clarke, Concordia,
Kimbark, and Park can be obtained from Forescue’s matrix through elementary row and column transfor-
mations and have different advantages and disadvantages mostly for fault analysis. Park transformation
[76] is applicable not only to steady state voltage and current phasors, but also to instantaneous voltages,
currents, and flux linkages in modeling synchronous machines.

As we will see in Chapter 9 a three-phase network has a single-phase equivalent circuit where the
network equations have the form as a single-phase network. The main difference with a single-phase
network is the models of three-phase devices in the equivalent circuit, such as models for constant-power
devices [77, Chapter 11], loads and voltage regulars [63], as we have studied in Chapter 7.3, as well as
three-phase lines and transformers, to be studied in Chapter 8. See also [78, Chapter 3] for comprehensive
models of three-phase components including distribution lines, transformers and switches.

7.6 Problems

Chapter 7.2.
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Exercise 7.1 (Proof of Theorem 7.2). Let

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

Prove Theorem 7.2:

1. The null spaces of G and GT are both span(1,1,1).

2. Their pseudo-inverses are

G† =
1
3

GT, GT† =
1
3

G

3. Consider Gx = b. If 1Tb = 0 then the solutions x are given by x = G†b+b1 for all b 2 C
3.

4. Consider GTx = b. If 1Tb = 0 then the solutions x are given by x = GT†b+b1 for all b 2 C
3.

5. GG† = G†G = 1
3 GGT = 1

3 GTG = I � 1
3 11T where I is the identity matrix of appropriate size.

Exercise 7.2. Use G† = 1
3 GT (Theorem 7.2) to verify the four defining properties of pseudo-inverse of G:

1. (GG†)G = G.

2. G†(GG†) = G†.

3. GG† is Hermitian.

4. G†G is Hermitian.

Exercise 7.3. Suppose I =�GTID. Show that V IH
�
G† G

�
= V IH.

Chapter 7.3.1.

Exercise 7.4 (Terminal power s). Consider the three-phase voltage source serving a three-phase impedance
load shown in Figure 7.13. Both the source and the load are grounded. Suppose the terminal voltage V is
defined with respect to the ground. The terminal current Ia flows from terminal a of the source to the load
and returns from the ground, and sa := V aIaH is the power delivered across terminal a and the ground.
Relate the terminal power 1Ts := V aIaH+V bIbH+V cIcH and the internal power 1TsY for both the voltage
source and the impedance.
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Figure 7.13: Terminal power s and internal power sY .

Figure 7.14: Terminal power s and internal power sY .
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Exercise 7.5 (Terminal power s). Repeat Exercise 7.4 but for the case where the neutrals are not grounded,
as shown in Figure 7.14. All voltages are defined with respect to an arbitrary but common reference point,
e.g., the ground.

Exercise 7.6 (Total powers). Show that 1Tdiag
�
G
�
V IH

�
G†�= 1Tdiag

�
V IH

�
and hence the total internal

and terminal powers are equal, i.e., 1TsD = 1Ts.

Chapter 7.3.3.

Exercise 7.7 (Y -configured voltage source). Compute the inverse of ZY := zY +zn 11T in (7.13c) using the
matrix inversion formula.

Exercise 7.8 (Y -configured current source). Consider the current source in Figure 7.7(b). Derive (7.14)
for internal power sY and sn.

Exercise 7.9 (Y -configured current source). Consider the current source in Figure 7.7(b). Suppose as-
sumption C7.1 holds. Derive (7.15b):

V = �
�
zY JY + ZY I

�
, I = �A

�
JY + yY V

�

where

zY :=
�
yY��1

, ZY := zY + zn 11T, A := I� zn

1+ zn
⇣

1TyY 1
⌘ yY 11T

assuming ZY is invertible.

Exercise 7.10 (Y -configured power device). Suppose all voltages are defined with respect to the ground,
so that V n =�zn

⇣
1TI
⌘

. Derive (7.17b).

Exercise 7.11 (Y -configured impedance). Consider a three-phase load in Y configuration specified by a
series impedance matrix ZY :

V :=

2

4
Vag
Vbg
Vcg

3

5 =

2

4
za + zn zn zn

zn zb + zn zn
zn zn zc + zn

3

5

2

4
Ia
Ib
Ic

3

5

Show that if V is balanced and za = zb = zc then the neutral current In = 0 and the phases are decoupled.
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Chapter 7.3.4.

Exercise 7.12 (Voltage source in D configuration). Consider the voltage source in Figure 7.8(a). Let
V D = GV .

1. Show that 1TI = 0 implies 1T
�
ED� zDGT†I

�
= 0.

2. Show that the converse is not true.

Exercise 7.13 (Voltage source in D configuration). Suppose A is a complex symmetric matrix A with zero
row sums. Show that its pseudo-inverse A† is also complex symmetric with zero row sums. (Hint: Use
Takagi factorization for complex symmetric matrices in Theorem 25.17 of Appendix 25.1.6.)

Exercise 7.14 (Voltage source in D configuration). Prove Theorem 7.3: Given the conversion rules V D =
GV and I =�GTID between the terminal and internal voltages and currents, the following are equivalent:

1. Internal model: V D = ED + zDID and hence 1T
�
ED + zDID�= 0.

2. External model: I =
�
GTyD�ED�Y DV where Y D := GTyDG.

3. External model: V = ĜED�ZDI + g1, 1TI = 0 for some g 2 C where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

(Hint: See the proof of Theorem 7.4.)

Exercise 7.15 (Voltage source in D configuration). Consider (7.25a), reproduced here:

sD = �1
3

diag
⇣

G
⇣

V IH
⌘

GT

⌘
+ bGV, 1TI = 0

Given any terminal voltage V , show that I and b are uniquely determined in terms of V and sD.

Exercise 7.16 (Voltage source in D configuration). Consider the model of a constant-power source (7.25a),
reproduced here:

sD = �1
3

diag
⇣

G
⇣

V IH
⌘

GT

⌘
+ bGV, 1TI = 0, b 2 C

Given a terminal current I with 1TI = 0, show that the zero-sequence current b := 1
31TID can take two

values.



Draft: EE 135 Notes April 30, 2024 279

Exercise 7.17 (Total power in D). Consider a power source with internal power sD := (sab,sbc,s ca) in D
configuration. Show that (the negative of) its total internal power is equal to its total terminal power, i.e.,
1Ts =�1TsD.

Exercise 7.18 (Balanced impedance zD). Consider a D-configured impedance zD whose external equivalent
is (from (7.27b)):

ZD :=
1
9

GT zD
✓
I� 1

z
1 z̃DT

◆

| {z }
ẑD

G

If the impedance is balanced, i.e., zab = zbc = zca, show that

ZD =
zab

3

✓
I� 1

3
11T
◆

Exercise 7.19 (Devices in D configuration). Show that the phases are decoupled, i.e., phase a variables
(sa,V a, Ia) do not depend on variables in phases b and c, if the terminal currents are balanced Ia + Ib + Ic =
0 and the terminal voltages V a +V b +V c = 0 for the four types of devices in D configuration discussed in
Chapter 7.3.4.

Chapter 7.3.5.

Exercise 7.20 (D-Y transformation). Show that the external behavior of a symmetric non-ideal voltage
source

�
ED,zab

I
�

with identical series impedance zD := zab
I and zero-sequence voltage g = 0 is equivalent

to a non-ideal Y -configured voltage source
�
EY ,zY ,zn� whose neutral is grounded through an impedance

zn with:

EY :=
1
3

GTED, zY :=
zab

3
I, zn := �zab

9

under assumption C7.1.

Exercise 7.21 (D-Y transformation). Consider a symmetric non-ideal current source
�
JD,yab

I
�

with iden-
tical shunt admittance yD := yab

I. Show that it cannot be equivalent to a non-ideal Y -configured current
source

�
JY ,yY ,zn� under assumption C7.1.



Chapter 8

Component models, II: line and transformers

In this chapter we continue the modeling of three-phase components. In Chapter 8.1 we model a three-
phase line. In Chapter 8.2 we extend the simplified model of transformers of Chapter 3.1.4 from single-
phase to three-phase setting. In Chapter 8.3 we extend the transformer model based on unitary voltage
network of Chapter 3.1.5 from single-phase to three-phase setting. In Chapter 8.4 we explain how to
identify model parameters from measurements. We will use these component models in Chapters 9 and
10 to construct network models and study unbalanced three-phase analysis.

8.1 Three-phase line models

As explained Chapter 2.1 the electromagnetic interactions among the electric charges in wires of different
phases couple the voltages on and currents in these wires. The relation between the voltages and currents
in these phases can be modeled by a linear mapping that depends on the line characteristics (resistances,
inductances, capacitances).

8.1.1 Review: single-phase model

The linear mapping becomes decoupled when the phases are balanced, leading to a per-phase model of
a line as a two-terminal device specified by a P-equivalent circuit (ys

jk, ym
jk, ym

k j), as explained in Chapter
2.2.2. The terminal (or bus) voltages (Vj,Vk) and sending-end line currents (I jk, Ik j) on this two-terminal
device describes the end-to-end behavior of the line. They are linearly related according to Kirchhoff’s
and Ohm’s laws:

I jk = ys
jk
�
Vj�Vk

�
+ ym

jk Vj, Ik j = ys
jk
�
Vk�Vj

�
+ ym

k j Vk (8.1a)

The terms ym
jkVj and ym

k jVk assume that the shunt admittances connect the buses j and k both to the common
reference point for terminal voltages, e.g., the ground. The sending-end line power

�
S jk,Sk j

�
is related to

280
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(Vj,Vk) by

S jk =
⇣

ys
jk

⌘H
Vj
�
Vj�Vk

�H
+
⇣

ym
jk

⌘H
VjVH

j (8.1b)

Sk j =
⇣

ys
jk

⌘H
Vk
�
Vk�Vj

�H
+
⇣

ym
k j

⌘H
VkVH

k (8.1c)

When the line admittances are zero, i.e., ym
jk = ym

k j = 0, then I jk =�Ik j and this relation reduces to

Vj � Vk = zs
jk I jk (8.1d)

where zs
jk :=

⇣
ys

jk

⌘�1
is the series impedance of the line. We now extend these relations to an unbalanced

three-phase line.

8.1.2 Four-wire three-phase model

A three-phase line has three wires one for each phase a,b,c. It may also have a neutral wire which may
be grounded at one or both ends if the device connected to that end of the line is in Y configuration.
Consider then a four-wire three-phase line where the total current ia(t)+ ib(t)+ ic(t) and the total charge
qa(t) + qb(t) + qc(t) may be nonzero and they flow through the neutral wire (if present) and the earth
return. The effect of neutral or earth return on the impedance of a transmission line depends on details
such as how many neutral wires are present, whether they are grounded along the lines at regular spacing,
etc.

To build intuition we first omit line charging. In this case the three-phase voltages and currents are
related by a series impedance matrix, similar to (8.1d) for a single-phase system. We then incorporate
the effect of line charging by including shunt admittances to obtain a model that generalizes (8.1a) to a
three-phase system.

Without shunt admittances. Consider a four-wire three-phase line with a neutral wire. The voltage
between one end of a wire to the other end depends linearly on the current in each of the four wires. Let
V̂j :=

⇣
V a

j ,V b
j ,V c

j ,V
n
j

⌘
and V̂k :=

�
V a

k ,V b
k ,V c

k ,V n
k
�

be the terminal (or nodal or bus) voltages at terminals j
and k respectively of the phase and neutral wire ( j,k), with respect to an arbitrary but common reference
point, e.g., the ground. Let Î jk :=

⇣
Ia

jk, I
b
jk, I

c
jk, I

n
jk

⌘
denote the currents in these lines. Then the four-wire

three-phase line can be modeled by a series impedance matrix1 ẑs
jk that linearly relates these voltages and

currents:
2

664

V a
j

V b
j

V c
j

V n
j

3

775 �

2

664

V a
k

V b
k

V c
k

V n
k

3

775 =

2

6664

ẑaa
jk ẑab

jk ẑac
jk ẑan

jk
ẑba

jk ẑbb
jk ẑbc

jk ẑbn
jk

ẑca
jk ẑcb

jk ẑcc
jk ẑcn

jk
ẑna

jk ẑnb
jk ẑnc

jk ẑnn
jk

3

7775

| {z }
ẑs

jk

2

6664

Ia
jk

Ib
jk

Ic
jk

In
jk

3

7775
(8.2a)

1It is sometimes called a series phase impedance matrix to differentiate it from a series sequence impedance matrix for
sequence variables; see Chapter 9.4.
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or in vector form

V̂j � V̂k = ẑs
jk Î jk (8.2b)

For example, the series impedance matrix ẑs
jk can model an overhead three-phase line with an overhead

neutral wire and earth return. Here ẑff
jk are called the self-impedances of phase f wires, including the

effect of earth return, and ẑff 0
jk the mutual impedances between phase f and phase f 0 wires, including the

effect of earth return. Their values depend on the wire materials, their lengths, distances between them,
the operating frequency, and the resistivity of the earth. To relate these impedances to the physical system,
suppose a voltage is applied between the phase a terminals and therefore completing the phase a circuit,
while circuits of phases b,c,n are open. Then the current Ia

jk in the phase a wire is nonzero while all other
currents If

jk = 0, f 6= a, so that

2

664

V a
j

V b
j

V c
j

V n
j

3

775 �

2

664

V a
k

V b
k

V c
k

V n
k

3

775 =

2

6664

ẑaa
jk ẑab

jk ẑac
jk ẑan

jk
ẑba

jk ẑbb
jk ẑbc

jk ẑbn
jk

ẑca
jk ẑcb

jk ẑcc
jk ẑcn

jk
ẑna

jk ẑnb
jk ẑnc

jk ẑnn
jk

3

7775

2

664

Ia
jk
0
0
0

3

775

Hence the self-impedance

ẑaa
jk =

V a
j �V a

k

Ia
jk

is the ratio of the voltage applied between the phase a terminals to the current in the phase a wire when all
other circuits are open. The current Ia

jk induces voltages in other phases and the mutual impedance

ẑba
jk =

V b
j �V b

k

Ia
jk

is the ratio of the voltage induced across the phase b terminals to the phase a current when only the phase
a circuit is complete.

With shunt admittances. To incorporate the effect of line charging, let the series admittance matrix be

ŷs
jk :=

⇣
ẑs

jk

⌘�1
, assuming ẑs

jk is invertible. Let
⇣

ŷm
jk, ŷ

m
k j

⌘
denote the shunt admittance matrices. The termi-

nal voltages
�
Vj,Vk

�
2 C

8 and the sending-end currents
�
I jk, Ik j

�
2 C

8 respectively are related according
to

I jk = ŷs
jk
�
Vj�Vk

�
+ ŷm

jk Vj, Ik j = ŷs
jk
�
Vk�Vj

�
+ ŷm

k j Vk (8.3)

This model is illustrated in Figure 8.1. It has exactly the same form as (8.1a), except that the variables
and admittances are vectors and matrices respectively. It generalizes (8.1a) from a single-phase model to
a three-phase model. The terms ym

jkVj and ym
k jVk in (8.3) assume that the shunt admittances connect the

buses j and k both to the common reference point for terminal voltages, e.g., the ground.
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Figure 8.1: A four-wire line characterized by 4⇥4 series and shunt admittance matrices
⇣

ŷs
jk, ŷ

m
jk, ŷ

m
k j

⌘
.

8.1.3 Three-wire three-phase model

An equivalent three-wire model can be derived from the four-wire models (8.2) and (8.3). To this end
denote the phase voltages by Vj := (V a

j ,V b
j ,V b

j ) and Vk := (V a
k ,V b

k ,V b
k ) and phase currents by I jk :=

(Ia
jk, I

b
jk, I

c
jk).

Without shunt admittances. Ignore first shunt admittances. Decompose the impedance matrix ẑs
jk in

(8.2a) into

ẑs
jk =

"
ẑff

jk ẑfn
jk

ẑnf
jk ẑnn

jk

#
:=

2

6664

ẑaa
jk ẑab

jk ẑac
jk ẑan

jk
ẑba

jk ẑbb
jk ẑbc

jk ẑbn
jk

ẑca
jk ẑcb

jk ẑcc
jk ẑcn

jk
ẑna

jk ẑnb
jk ẑnc

jk ẑnn
jk

3

7775
(8.4a)

where ẑff
jk 2 C

3⇥3, ẑnn
jk 2 C, and ẑfn

jk , ẑnf
jk are of matching dimensions. Then (8.2a) can be rewritten as


Vj
V n

j

�
�


Vk
V n

k

�
=

"
ẑff

jk ẑfn
jk

ẑnf
jk ẑnn

jk

#
I jk
In

jk

�
(8.4b)

The Schur complement of ẑnn
jk of ẑs

jk is

zschur
jk := ẑff

jk �
1

ẑnn
jk

ẑfn
jk ẑnf

jk =

2

64
ẑaa

jk ẑab
jk ẑac

jk
ẑba

jk ẑbb
jk ẑbc

jk
ẑca

jk ẑcb
jk ẑcc

jk

3

75 �
1

ẑnn
jk

2

64
ẑan

jk
ẑbn

jk
ẑcn

jk

3

75
h
ẑna

jk ẑnb
jk ẑnc

jk

i
(8.5a)
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Then we can perform Kron reduction on (8.4) to obtain an equivalent three-wire model that relates Vj�Vk
and In

jk to I jk and V n
j �V n

k :

Vj�Vk = zschur
jk I jk +

ẑfn
jk

ẑnn
jk

�
V n

j �V n
k
�

(8.5b)

In
jk = �

ẑnf
jk

ẑnn
jk

I jk +
1

ẑnn
jk

�
V n

j �V n
k
�

(8.5c)

i.e., a complete three-wire model expresses the phase voltages Vj�Vk and the neutral current In
jk in terms

of the phase currents I jk and neutral voltage difference V n
j �V n

k . It is equivalent to the four-wire model
(8.2) for the case where shunt admittances are assumed zero. Therefore in using three-wire models we
generally have to keep track of neutral voltages for Y -configured devices because V n

j �V n
k affects the phase

voltages and currents (Vjk, I jk) through (8.5b).

We refer to the complete model (8.5) as a three-wire model because when the neutral wire is absent or
open circuited, e.g., when connecting devices in D configuration, or when the neutral is grounded at both
the sending and the receiving ends of the line, the phase voltages and currents (Vjk, I jk) are related simply
by a 3⇥3 impedance matrix:

1. Neutral wire absent: In
jk = 0. Then (8.5) reduces to

Vj�Vk = ẑff
jk I jk, V n

j �V n
k = ẑnf

jk I jk (8.6a)

where ẑff
jk 2 C

3⇥3 is defined in (8.4a). The neutral voltages V n
j ,V n

k are generally nonzero since they
are not grounded (assuming voltages are defined with respect to the ground) and their difference
depends on the phase currents according to (8.6a).

2. Neutral wire grounded: V n
j = V n

k .2 Then (8.5) reduces to

Vj�Vk = zschur
jk I jk, In

jk = �
ẑnf

jk

ẑnn
jk

I jk (8.6b)

Even though V n
j = V n

k across the neutral wire, the current In
jk in the neutral wire is generally nonzero

and given by (8.6b).

Hence when In
jk = 0 or V n

j = V n
k , we can use a simplified three-wire model and characterize a three-phase

line by a 3⇥3 series impedance matrix zs
jk that relates the phase voltages and currents:

Vj � Vk = zs
jk I jk (8.7)

where zs
jk := ẑff

jk if In
jk = 0 and zs

jk := zschur
jk if V n

j = V n
k . This is a direct generalization of (8.1d) from a

single-phase model to a three-phase model. Even though the three-wire model (8.7) involves no neutral
voltage or current, the 3⇥3 impedance matrix zs

jk includes the effect of neutral lines and earth return (see
(8.6)).

2The neutral n0 of a Y -configured four-wire device may be through a neutral impedance zn
j to the external terminal n of the

device which is then connected to the neutral of the line. The neutral impedance zn
j of the device may or may not be zero but

V n
j = V n

k .
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Example 8.1. For the case where the neutrals of the sending and receiving ends are grounded through
nonzero impedances, derive the three-wire model from the four-wire model (8.2).

With shunt admittances. To incorporate the effect of line charging, let the series admittance matrix be

ys
jk :=

⇣
zs

jk

⌘�1
, assuming zs

jk is invertible. Let
⇣

ym
jk,y

m
k j

⌘
denote the shunt admittance matrices. The termi-

nal voltages
�
Vj,Vk

�
2 C

6 and the sending-end currents
�
I jk, Ik j

�
2 C

6 respectively are related according
to

I jk = ys
jk
�
Vj�Vk

�
+ ym

jk Vj, Ik j = ys
jk
�
Vk�Vj

�
+ ym

k j Vk (8.8a)

This model is the three-wire version of (8.3). It is illustrated in Figure 8.2 which is a three-wire version of
Figure 8.1. The terms ym

jkVj and ym
k jVk in (8.8a) assume that the shunt admittances connect the buses j and

Figure 8.2: A three-wire line characterized by 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

k both to the common reference point for terminal voltages, e.g., the ground.

Example 8.2. Derive the three-wire model (8.8a) directly from the four-wire model (8.3) with nonzero
shunt admittances.

To describe the relation between the sending-end line power and the voltages
�
Vj,Vk

�
, define the

matrices S jk,Sk j 2 C
3⇥3 by

S jk := Vj
�
I jk
�H

= Vj
�
Vj�Vk

�H⇣ys
jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H
(8.8b)

Sk j := Vk
�
Ik j
�H

= Vk
�
Vk�Vj

�H⇣ys
jk

⌘H
+ VkVH

k

⇣
ym

k j

⌘H
(8.8c)

The three-phase sending-end line power from terminals j to k along the line is the vector diag
�
S jk
�

of
diagonal entries and that in the opposite direction is the vector diag

�
Sk j
�
. The off-diagonal entries of

these matrices represent electromagnetic coupling between phases. This generalizes (8.1b)(8.1c) from a
single-phase model to a three-phase model.

Example 8.3 (External vs internal variables). Figure 8.3 shows a three-phase voltage source connected to
a three-phase impedance load through the line in Figure 8.2. As the figure highlights, the voltages (Vj,Vk)
and currents (I jk, Ik j) in (8.8a) are terminal voltages and currents regardless of whether the three-phase
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Figure 8.3: A voltage source connected to an impedance load through the line in Figure 8.2.

devices connected to terminals j and k are in Y or D configuration. The relation between the terminal
variables and internal variables are derived in Chapters 7.3.3 and 7.3.4.

The terminal variable
�
Vj, I j,s j

�
at each bus j satisfies both the external device model and the line

model (8.8):

0 = f ext
j
�
Vj, I j

�
, s j = diag

⇣
VjIHj

⌘

I j = I jk
�
Vj,Vk

�
, s j = diag

�
S jk
�
Vj,Vk

��

In particular the nodal balance equation (8.8) relate
�
Vj, I j,s j

�
to the terminal voltage Vk at bus k.

Remark 8.1 (Three-wire model). We will mostly use three-wire line models (8.8) for simplicity, but all
analysis extends to four-wire models (including a neutral line) or five-wire models (including a neutral
line and the ground return) almost without change with proper definitions that include neutral and ground
variables; see Example 9.5 in Chapter 9.2 and Exercise 9.7.

In most practical situations the series impedance matrix zs
jk is symmetric, i.e.,

⇣
zs

jk

⌘ff 0
=
⇣

zs
jk

⌘f 0f
,

f ,f 0 = a,b,c, meaning that the coupling between phases f and f 0 does not depend on direction. It is also
common in practice that the shunt admittance matrices ym

jk and ym
k j are symmetric. Formally, we assume

throughout this chapter:

C8.1: zs
jk is symmetric and invertible. Moreover zs

jk = zs
k j.

C8.2: ym
jk and ym

k j are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. By Theorem 4.2, zs
jk is invertible and

Re(ys
jk)� 0 if Re(zs

jk)� 0. Assumption C8.1 implies that ys
jk is symmetric and ys

jk = ys
k j (Exercise 8.1).

Symmetric line. When the line geometry is symmetric (e.g. through transposition) then the series
impedance matrix zs

jk has the following important property:

zaa
jk = zbb

jk = zcc
jk =: z jk and zab

jk = zba
jk = zbc

jk = zcb
jk = zca

jk = zac
jk =: e jk
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so that

zs
jk =

2

4
z jk e jk e jk
e jk z jk e jk
e jk e jk z jk

3

5 =
�
z jk� e jk

�
I + e jk11T (8.9a)

Typically |z jk| > |e jk|. Then the line admittance ys
jk :=

⇣
zs

jk

⌘�1
has the same structure

ys
jk =

2

64
y1

jk y2
jk y2

jk
y2

jk y1
jk y2

jk
y2

jk y2
jk y1

jk

3

75 =
�
y jk�d jk

�
I + d jk11T (8.9b)

where

y jk :=
z jk + e jk�

z jk� e jk
��

z jk +2e jk
� , d jk := �

e jk�
z jk� e jk

��
z jk +2e jk

� (8.9c)

and (8.9c) follows from:

I = ys
jk zs

jk =
⇣�

y jk�d jk
�
I+d11T

⌘⇣�
z jk� e jk

�
I+ e jk11T

⌘

=
�
y jk�d jk

��
z jk� e jk

�
I +

�
e jky jk + z jkd jk + e jkd jk

�
11T

Typically |y jk| > |d jk|. If the sources and loads are balanced so that currents sum to zero ia(t)+ ib(t)+
ic(t) = 0 and charges sum to zero qa(t)+qb(t)+qc(t) = 0 across phases then e jk = 0 (see Chapter 2.1.4),
i.e., zs

jk is diagonal and the voltages and currents of different phases are decoupled. Otherwise zs
jk is

not diagonal and therefore the voltages and currents of different phases are coupled even if the line is
symmetric, i.e., even if the series impedance zs

jk satisfies (8.9). As we will see in Chapter 9.4.4, in this
case, when shunt admittances are assumed zero, a similarity transformation using the unitary matrix F
yields a diagonal impedance matrix z̃s

jk in the sequence coordinate. This leads to decoupled relation
between the sequence voltages and currents across the three-phase line that can be interpreted as defining
separate sequence networks.

Example 8.4 (Special lines). The line in (8.8a) is an abstraction that can model a transmission or distri-
bution line, a transformer, or parts of series impedances or shunt admittances of generators or loads. We
discuss some degenerate forms of (8.8a) that will be used for this purpose, e.g., for modeling non-ideal
voltage and current sources in Chapter 8.1.4. The series impedance zY

jk in Figure 8.4(a) can be treated as a

line
⇣

ys
jk,y

m
jk,y

m
k j

⌘
with a diagonal series impedance, i.e., ym

jk = ym
k j = 0, and

ys
jk := diag�1

⇣
za

jk,z
b
jk,z

c
jk

⌘
, I jk := ys

jk
�
Vj�Vk

�
, Ik j := �I jk (8.10a)

The Y -configured shunt admittance yY
jk in Figure 8.4(b) can be treated as a line

⇣
ys

jk,y
m
jk,y

m
k j

⌘
with a shunt

admittance in Y configuration, i.e., zs
jk = 0, ym

k j = 0, and

ym
jk := diag

⇣
ya

jk,y
b
jk,y

c
jk

⌘
, Vj = Vk, I jk + Ik j = ym

jk Vj (8.10b)
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(a) Series impedance (b) Shunt admittance in Y (c) Shunt admittance in D

Figure 8.4: Special three-wire lines characterized by (8.10).

The D-configured shunt admittance yD
jk in Figure 8.4(c) can be treated as a line

⇣
ys

jk,y
m
jk,y

m
k j

⌘
with a shunt

admittance in D configuration, i.e., zs
jk = 0, ym

k j = 0, and

ym
jk := diag

⇣
yab

jk ,y
bc
jk,y

ca
jk

⌘
, Vj = Vk, ID = ym

jk GVj

where ID :=
�
Iab, Ibc, Ica� are the line-to-line current internal to the D configuration. Therefore for any

currents I jk and Ik j with 1TI jk = 1TIk j = 0, the degenerate line in Figure 8.4(c) is characterized by

ym
jk := diag

⇣
yab

jk ,y
bc
jk,y

ca
jk

⌘
, Vj = Vk, GT† �I jk + Ik j

�
+ b1 = ym

jk GVj (8.10c)

where b 2 C depends on the amount of loop flow in the internal current ID.

We next use these special lines to simplify models for non-ideal voltage and current sources in Y and
D configurations.

8.1.4 Ideal voltage and current sources

A voltage or current source in Y configuration may or may not have a neutral line which may or may
not be grounded. Figure 8.5 shows the case where the neutral is grounded through an impedance zn. In
this case the voltage source

�
EY ,zY ,zn� can be treated as an ideal voltage source

�
EY ,zn� connected to a

(degenerate) three-phase line with a series impedance zY characterized by (8.10a). Similarly a grounded
current source

�
JY ,yy,zn� in Y configuration, as shown in Figure 8.5(b), can be treated as an ideal current

source
�
JY ,zn� connected to a three-phase line with a shunt admittance yY characterized by (8.10b). In

both cases the ideal source has no series impedance or shunt admittance. In general the neutral voltage V n

is nonzero whether or not there is a neutral line and whether or not the neutral is grounded.

A voltage source
�
ED,zD� in D configuration, as shown in Figure 8.6(a), can be treated as an ideal

voltage source ED in D configuration connected to a three-phase line with a series impedance ZD :=
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(a) Voltage source (b) Current source

Figure 8.5: Three-wire sources in Y configuration. (a) A voltage source. (b) A current source.

(a) Voltage source (b) Current source

Figure 8.6: Three-wire sources in D configuration. (a) A voltage source. (b) A current source.
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1
9 GTzD

⇣
I� 1

z 1 z̃DT
⌘

G in (7.21b). A current source
�
JD,yD� in D configuration, as shown in Figure 8.6(b),

can be treated as an ideal current source JD in D configuration connected to a three-phase line with a shunt
admittance yD in D configuration characterized by (8.10c).

Example 8.5 (Ideal sources). Figure 8.7 shows a three-phase voltage source in Y configuration connected
to a three-phase current source in D configuration through the line in Figure 8.2. The shunt admittance

Figure 8.7: A voltage source connected to a current source through the line in Figure 8.2.

yD
k := diag

�
yab

k ,ybc
k ,yca

k
�

of the current source can be absorbed into the shunt admittance matrix ym
k j of the

line so that the system is equivalent to an ideal current source JD
k connected to terminal k of a line with an

equivalent shunt admittance matrix ỹm
k j given by:

ỹm
k j :=

2

64
yaa

k j yab
k j yac

k j
yba

k j ybb
k j ybc

k j
yca

k j ycb
k j ycc

k j

3

75

| {z }
yk j

+

2

4
0 yab

k yca
k

yab
k 0 ybc

k
yca

k ybc
k 0

3

5

| {z }
from yD

k

Note that in this equivalent model the two shunt admittance matrices ym
jk and ỹm

k j are generally unequal
even if ym

jk = ym
k j originally. Note also that the series impedance matrix zY

j of the voltage source cannot be
directly absorbed into the line parameters.

8.2 Three-phase transformer models: simplified circuit

In this section we show that, as for a three-phase line, the external model of a three-phase transformer
takes the form of an admittance matrix Y . The general method is similar to that for other three-phase
devices: (i) define internal and terminal variables; (ii) derive conversion rules that relate internal and
terminal variables; (ii) define internal models that relate these internal variables; and finally (iv) eliminate
the internal variables to arrive at the external model. We start by reviewing the single-phase transformer.
The notation and the derivation generalize naturally when these transformers are configured into a three-
phase transformer.



Draft: EE 135 Notes April 30, 2024 291

8.2.1 Review: single-phase transformer

Consider the simplified mode of a single-phase transformer in Figure 3.5 of Chapter 3.1.4, reproduced in
Figure 8.8, consisting of an ideal transformer with a voltage gain n, a leakage admittance ys and a shunt
admittance ym on the primary side. Let the turns ratio be a := n�1 (even though a is used to denote both
a phase and a turns ratio its meaning should be clear from the context). The currents entering/leaving and

ym

yl

V̂j V̂k

I j IkÎj Îk

ideal transformer

1    :    nI jn Ikn
Vj

n Vk
n

Vj Vk

Figure 8.8: Single-phase transformer: simplified model. The internal variables (V̂j, Î j), (V̂k, Îk) and termi-
nal variables (Vj,V n

j , I j), (Vk,V n
k , Ik).

the voltages across the ideal transformer are denoted by variables with a hat:
�
V̂j, Î j

�
,
�
V̂k, Îk

�
. They are

called internal variables. The dot notation on the ideal transformer indicates that the internal currents are
defined to be positive when Î j flows into and Îk flows out of the dotted terminals, as indicated in Figure
8.8.

The terminal voltages
⇣

Vj,V n
j ,Vk,V n

k

⌘
are defined with respect to an arbitrary but common reference

point, e.g., the ground. We emphasize that, while the internal voltages (V̂j,V̂k) are defined to be the voltage
drops across the ideal transformer windings, the terminal voltages

⇣
Vj,V n

j ,Vk,V n
k

⌘
are defined with respect

to a common reference point; in particular the primary and secondary windings are not assumed to be
grounded. The terminal currents

�
I j, Ik

�
are defined to be the sending-end currents from buses j and k

respectively to the other side, as shown in Figure 8.8. The terminal and internal variables are related by
the conversion rule:

I j = yl �Vj�V n
j �V̂j

�
, I j = ymV̂j + Î j, In

j = �I j (8.11a)

V̂k = Vk � V n
k , Îk = �Ik, In

k = �Ik (8.11b)

where the neutral currents (In
j , I

n
k ) are injections from the neutral terminals into the ideal transformer and

follow from In
j = �(ymV̂j + Î j) = �I j and In

k = Îk = �Ik respectively. The internal model of the single-
phase (ideal) transformer is defined by its transformer gains (n,a):

V̂k = nV̂j, Îk =
1
n

Î j =: aÎ j (8.11c)

Eliminating the internal variables from (8.11) yields an external model that relates the terminal variables:

I j = yl ��Vj�V n
j
�
�a(Vk�V n

k )
�
, Ik = �aÎ j = aym �Vj�V n

j
�
�a
✓

1+
ym

yl

◆
I j



292 Draft: EE 135 Notes April 30, 2024

or in terms of an admittance matrix Y :


I j
Ik

�
=


yl �ayl

�ayl a2(yl + ym)

�

| {z }
Y

✓
Vj
Vk

�
�

V n

j
V n

k

�◆
(8.12a)

We can add neutral currents from (8.11) to (8.12a):


In
j

In
k

�
= �


I j
Ik

�
= �Y

✓
Vj
Vk

�
�

V n

j
V n

k

�◆

to obtain a two-wire model of a single-phase transformer:
2

664

I j
Ik
In

j
In
k

3

775 =


Y �Y
�Y Y

�

| {z }
Y 2wire

2

664

Vj
Vk
V n

j
V n

k

3

775 (8.12b)

Both Y and the 4⇥ 4 admittance matrix Y 2wire are complex symmetric. While Y generally has nonzero
row and column sums, Y 2wire has zero row and column sums. The admittance matrix Y 2wire is represented
by a four-node network in Figure 8.9(a). Since Y 2wire has zero row and column sums, there are no shunt

a2 (yl+ ym)yl

ayl

−ayl −ayl

ayl

jn kn

kj

(a) General circuit model.

a(a−1)yl+a2ym(1−a)yl

ayl kj

(b) P circuit model.

Figure 8.9: (a) Circuit model of admittance matrix Y 2wire and (b) when neutrals are grounded with zero
grounding impedances, V n

j = V n
k = 0.

admittances in the four-node network in Figure 8.9(a).

It is often assume implicitly (e.g., in Chapter 3 and Chapter 4.1.3) that neutrals are grounded with zero
grounding impedance and voltages are defined with respect to the ground (assumption C7.1). In this case,
V n

j = V n
k = 0 and the model (8.12a) reduces to a P circuit model:


I j
Ik

�
= Y


Vj
Vk

�

The four-node network in Figure 8.9(b) then reduces to a P circuit in which parallel branches to the ground
are combined into shunt admittances, i.e., it can be characterized by series and shunt admittances given by

ỹs
jk := ayl, ỹm

jk := (1�a)yl, ỹm
k j := a(a�1)yl +a2ym (8.12c)
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like a transmission or distribution line.

We now explain how these relations (8.11)(8.12) extend naturally to three-phase transformers in an
unbalanced setting.

8.2.2 General derivation method

The external model of a three-phase transformer depends on the models of its constituent single-phase
transformers and their configuration on each side of the three-phase transformer. In particular each of
the primary and secondary sides can be in Y or D configuration, giving four configurations for a standard
three-phase transformer. The external model can be derived in four simple steps, similar to the derivation
for a single-phase transformer or other three-phase devices:

1. Conversion rule: For the primary side, define the internal variables (V̂j, Î j) and external variables
(Vj,V n

j , I j) (defined precisely below) and relate them.

2. Conversion rule: For the secondary side, define the internal variables (V̂k, Îk) and external variables
(Vk,V n

k , Ik) and relate them.

3. Internal model: Couple these relations through the transformer gains (8.11c) on (V̂j, Î j), (V̂k, Îk) for
each of the single-phase transformers.

4. External model: Derive the external model, a relation between external variables (Vj, I j) and (Vk, Ik),
by eliminating the internal variables.

This method is modular and applicable in a general setting where the single-phase transformers may have
different admittances or turns ratios, the neutrals of Y configurations may or may not be connected to the
other side, may or may not be grounded, with zero or nonzero grounding impedances. The method can
also be generalized to non-standard transformers such as open transformers.

We now describe these steps in more detail.

1. Primary side. Consider the primary circuit of a three-phase transformer in Y or D configuration in
Figure 8.10. The internal voltages and currents associated with the ideal transformer are denoted by

V̂Y
j :=

2

4
V̂ an

j
V̂ bn

j
V̂ cn

j

3

5 , ÎY
j :=

2

4
Îan

j
Îbn

j
Îcn

j

3

5 , V̂ D
j :=

2

4
V̂ ab

j
V̂ bc

j
V̂ ca

j

3

5 , ÎD
j :=

2

4
Îab

j
Îbc

j
Îca

j

3

5

The terminal voltages and currents are denoted by

Vj :=

2

4
V a

j
V b

j
V c

j

3

5 , I j :=

2

4
Ia

j
Ib

j
Îc

j

3

5
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yma

yla

V̂j
an

V̂j
bn

V̂j
cn

I ja
Vj

a
Îjan

ylb
I jb

Vj
b

Îjbn

ylc

I jn
Vj

n

I jc
Vj

c
Îjcn

ymb

ymc

yma V̂j
ab

V̂j
bc

V̂j
ca

I ja
Vj

a
Îj
ab

I jb
Vj

b
Îj
bc

I jc
Vj

c
Îj
ca

ymb

ymc

yla

ylb

ylc

Figure 8.10: Primary side of a three-phase transformer in Y (left) or D (right) configuration. (Add shunt
admittance ym; see Figures 8.21, 8.22.)

regardless of the configuration. For Y configuration the (terminal) neutral voltage and current are denoted
by
⇣

V n
j , In

j

⌘
in the direction shown in Figure 8.10. As for the single-phase model, these voltages are

defined with respect to a common reference point (e.g., the ground); in particular the neutrals are not
assumed to be grounded. Note that the internal voltages and currents

⇣
V̂Y/D

j , ÎY/D
j

⌘
are defined across the

ideal transformers. In general, Vj 6= V̂Y
j +V n

j 1 and V̂ D
j 6= GVj. Moreover, I j 6= ÎY

j and I j 6= GTÎD
j , unless

ym = 0.

The leakage admittances of the transformer are denoted by the diagonal matrix yl := diag
�
yla,ylb,ylc�

and the shunt admittances are denoted by ym := diag
�
yma,ymb,ymc�. From (8.11a) for each single-phase

transformer the terminal variables are related to the internal variables according to the conversion rule:

Y configuration: I j = yl �Vj � V n
j 1 � V̂Y

j
�
, I j = ymV̂Y

j + ÎY
j , In

j = �1TI j (8.13a)

D configuration: ÎD
j = ylGVj � (yl + ym)V̂ D

j , I j = GT

⇣
ÎD

j + ymV̂ D
j

⌘
(8.13b)

For Y configuration the neutral current In
j in (8.13a) follows from In

j = �1T
⇣

ymV̂Y
j + ÎY

j

⌘
= �1TI j. For

D configuration ÎD
j in (8.13b) follows from Îab

j + ymaV̂ ab
j = yla

⇣
V a

j �V b
j �V̂ ab

j

⌘
. Clearly 1TI j = 0 for D

configuration. Moreover (8.13) implies that the internal and terminal voltages are related according to

Y configuration: Vj = V̂Y
j + V n

j 1 + zlI j (8.13c)

D configuration: V̂ D
j = GVj + ylzmGVj � (zl + zm)ÎD

j (8.13d)

where zl := (yl)�1 and zm := (ym)�1.
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2. Secondary side. Consider the secondary side of a three-phase transformer in Y or D configuration in
Figure 8.11. The internal voltages and currents associated with the transformer are denoted by

V̂k
ab

V̂k
bc

V̂k
ca

Vk
a

Vk
b

Vk
c

–Îk
ab

–Îk
bc

–Îk
ca

Ika

Ikb

Ikc

V̂k
an

V̂k
bn

V̂k
cn

Vk
a

Vk
b

Vk
c

–Îk
an

–Îk
bn

–Îk
cn

Ika

Ikb

Ikc

Vk
n

Ikn

Figure 8.11: Secondary side of a three-phase transformer in Y (left) or D (right) configuration.

V̂Y
k :=

2

4
V̂ an

k
V̂ bn

k
V̂ cn

k

3

5 , ÎY
k :=

2

4
Îan
k

Îbn
k

Îcn
k

3

5 , V̂ D
k :=

2

4
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k
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k
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k

3
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2

4
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The terminal voltages and currents are denoted by

Vk :=

2

4
V a

k
V b

k
V c

k

3

5 , Ik :=

2

4
Ia
k

Ib
k

Îc
k

3

5

regardless of the configuration. For Y configuration the neutral voltage and current are denoted by
�
V n

k , In
k
�

in the direction shown in Figure 8.11.

From (8.11b) for each single-phase transformer the terminal variables are related to the internal vari-
ables according to the conversion rule:

Y configuration: Vk = V̂Y
k + V n

k 1, Ik = ÎY
k , In

k = �1TÎY
k = �1TIk (8.14a)

D configuration: V̂ D
k = GVk, Ik = GTÎD

k (8.14b)

For D configuration, 1TIk = 0.

3. Internal model. The voltage and current gains across the ideal transformer define an internal model
which couples the internal variables in the primary and secondary circuits and connects the relations
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(8.13) and (8.14). These gains are determined by the turns ratios of the constituent single-phase ideal
transformers according to (8.11c), but tailored for different configurations. Denote the voltage gain of the
ideal three-phase transformer by a real diagonal matrix n := diag

�
na,nb,nc� 2 R

3⇥3 and its turns ratio by
a := n�1 2 R

3⇥3. Then

YY configuration: V̂Y
k = nV̂Y

j , �ÎY
k = a ÎY

j (8.15a)

DD configuration: V̂ D
k = nV̂ D

j , �ÎD
k = a ÎD

j (8.15b)

DY configuration: V̂Y
k = nV̂ D

j , �ÎY
k = a ÎD

j (8.15c)

Y D configuration: V̂ D
k = nV̂Y

j , �ÎD
k = a ÎY

j (8.15d)

These are internal models of a three-phase (ideal) transformer. The negative signs on ÎY
k and ÎD

k are due
to the convention that the transformer current gain is defined for secondary current leaving the dotted
terminal of the secondary winding (see Figure 8.11).

4. External model. The external model of a three-phase transformer relates the terminal variables
(Vj,V n

j , I j) and (Vk,V n
k , Ik) on both sides of the transformer in terms of the leakage admittance ys, the shunt

admittance ym, and the turns ratio a. It can be derived by eliminating the internal variables
⇣

V̂Y/D
j , ÎY/D

j

⌘

and
⇣

V̂Y/D
k , ÎY/D

k

⌘
from the conversion rules (8.13) (8.14) and the internal model (8.15).

The external models, derived in detail below, turn out to have a striking modular structure. To describe
the general form let V :=

�
Vj,Vk

�
2 C

6 and I :=
�
I j, Ik

�
2 C

6. Define a 6⇥6 admittance matrix YYY and a
column vector g 2 C

6:

YYY :=


yl �ayl

�ayl a2(yl + ym)

�
, g :=


V n

j 1
V n

k 1

�
(8.16a)

where 1 := (1,1,1). Let D denote a 6⇥6 block diagonal matrix whose value depends on configuration. As
we will explain below YYY is the admittance matrix of a transformer in YY configuration. It is the same as
that in (8.12a) for a single-phase transformer, except that a,y are now 3⇥3 diagonal matrices rather than
scalars. The vector g is the neutral voltages of a transformer in YY configuration. For DD configuration,
Dg = 0 2C

6 in (8.16b), reflecting that a D configuration contains no neutral voltage; similarly for DY and
Y D configurations. The external models of three-phase transformers in YY , DD, DY and Y D configurations
take the form

I = DTYYY D(V � g) (8.16b)
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where D is a 6⇥6 block diagonal matrix that depends on configuration:

YY configuration: D :=

I 0
0 I

�
(8.16c)

DD configuration: D :=


G 0
0 G

�
(8.16d)

DY configuration: D :=


G 0
0 I

�
(8.16e)

Y D configuration: D :=

I 0
0 G

�
(8.16f)

Hence the external models of DD, DY , Y D configurations can be obtained by pre-multiplying the admit-
tance matrix YYY of the YY configuration by GT and post-multiplying it by G for a (primary or secondary)
circuit that is in D configuration and setting its neutral voltage to zero.

Remark 8.2. 1. Neither the voltage gains n :=
�
na,nb,nc� nor the admittances yl :=

�
yla,ylb,ylc�,

ym :=
�
yma,ymb,ymc� may be equal across phases a,b,c. Unless otherwise specified we assume

n and a are real matrices. This is the case if they represent voltage gains and turns ratios of con-
stituent single-phase transformers (they can be complex if phase-shifting transformers are involved
or if the three-phase transformer is the YY equivalent model of a DY -configured transformer in a
balanced setting; see Example 8.7).

2. The derivation method is modular. If a different single-phase transformer model is used, e.g., with
complex transformer gains, then the relations (8.13) or (8.14) need to be modified but the structure
of the derivation remains unchanged.

3. The model (8.16) is a three-wire model that does not include neutral currents. See (8.19c) for a
four-wire model that does.

4. The method is also applicable to non-standard transformers such as open transformers. Indeed
the external model of an open DD transformer is also given by (8.16b) (8.16d) but with the diagonal
matrices yl,ym in YYY in (8.16a) replaced by diag

�
yla,ylb,0

�
and diag

�
yma,ymb,0

�
with ylc = ymc = 0

on the third leg that has no transformer.

We will illustrate this general method by deriving the external models (8.16) of three-phase trans-
formers in YY , DD, DY and Y D configurations and then show how to adapt the method to non-standard
transformers such as open transformers. We start by explaining when a three-phase transformer can be
represented by a three-phase P circuit.

8.2.3 Three-phase P circuit, block symmetry, symmetry

Refer to the P circuit model in Figure 8.9(b) for a single-phase transformer where the neutral voltages
V n

j = V n
k = 0. The series and shunt admittances

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
of the P circuit are given by (8.12c). They
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define a 2⇥ 2 admittance matrix Yjk that relates
�
Vj,Vk

�
to
�
I jk, Ik j

�
that is complex symmetric. This is

because the application of Kirchhoff’s laws to this circuit yields

I jk = ỹs
jk
�
Vj�Vk

�
+ ỹm

jkVj, Ik j = ỹs
jk
�
Vk�Vj

�
+ ỹm

jkVk (8.17)

Therefore a single-phase transformer always has a P circuit representation and, in this sense, behaves like
a single-phase transmission line.

This is not the case for three-phase transformers. Consider a three-phase transformer and denote
by Yjk the 6⇥ 6 transmission matrix that maps its voltage vectors

�
Vj,Vk

�
2 C

6 to its current vectors�
I jk, Ik j

�
2 C

6, i.e.,


I jk
Ik j

�
=


Yjk,11 Yjk,12
Yjk,21 Yjk,22

�

| {z }
Yjk


Vj
Vk

�

If Yjk can be represented by a three-phase P circuit model, i.e., if it behaves like a three-phase transmission
line as shown in Figure 8.2, then (8.17) must also hold but

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
are now 3⇥ 3 matrices, not

scalars. This means that the two off-diagonal submtrices of Yjk 2 C
6 must be equal Yjk,12 = Yjk,21 and Yjk

must be of the form

Yjk =


ỹs

jk + ỹm
jk �ỹs

jk
�ỹs

jk ỹs
jk + ỹm

k j

�

We call such a matrix block symmetric (see Definition 9.1). In contrast, if Yjk is symmetric then YT

jk,12 =
Yjk,21. As we will see a three-phase transformer may not be block symmetric and hence may not have a
three-phase P circuit representation. For balanced systems, this manifests itself as the per-phase model
of a DY or Y D-configured transformer having no single-phase P circuit representation because of the its
complex voltage gain K(n), as discussed in Chapter 4.1.3. This phenomenon is generalized in the rest of
this section for unbalanced systems.

Whether or not Yjk is block symmetric we can always interpret Yjk as the 6⇥6 admittance matrix of a
single-phase network consisting of 6 buses, indexed by if , i = j,k and f 2 {a,b,c}, as studied in Chapter
4.2. This is referred to as its single-phase equivalent circuit and studied in Chapter 9.1.2.

A matrix can be symmetric but not block symmetric, and vice versa. Symmetry of a matrix is deter-
mined only by its off-diagonal entries but its diagonal entries can be arbitrary. Block symmetry is deter-
mined only by its off-diagonal blocks but its diagonal blocks can be arbitrary. A symmetric Yjk is block
symmetric if YT

jk,12 = Yjk,12. A block symmetric Yjk is symmetric if all submatrices Yjk,12, Yjk,11,Yjk,22 are
symmetric. These are reasonable assumptions for modeling a three-phase transmission or distribution line,
i.e., Yjk for a transmission or distribution line can be assumed to be both block symmetric and symmetric
and therefore has both a three-phase P circuit representation and a single-phase equivalent circuit. This is
not necessarily the case for three-phase transformers.

We will generalize the concepts of block symmetry and single-phase equivalent circuit in Chapter 9.1.2
to a network setting.
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Figure 8.12: YY -configured transformer.

8.2.4 YY configuration

Referring to Figure 8.12 and combining the variables defined in Chapter 8.2.2 for each configuration, the
internal voltages and currents associated with the ideal transformer are:

V̂Y
j :=

2

4
V̂ an

j
V̂ bn

j
V̂ cn

j

3

5 , ÎY
j :=

2

4
Îan

j
Îbn

j
Îcn

j

3

5 , V̂Y
k :=

2

4
V̂ an

k
V̂ bn

k
V̂ cn

k

3

5 , ÎY
k :=

2

4
Îan
k

Îbn
k

Îcn
k

3

5

The terminal voltages and currents are:

Vj :=

2

4
V a

j
V b

j
V̂ c

j

3

5 , I j :=

2

4
Ia

j
Ib

j
Îc

j

3

5 , Vk :=

2

4
V a

k
V b

k
V̂ c

k

3

5 , Ik :=

2

4
Ia
k

Ib
k

Îc
k

3

5

as well as the the neutral voltages and currents
⇣

V n
j , In

j

⌘
and

�
V n

k , In
k
�

as shown in the figure. The relation
between the internal and terminal variables is given by (8.13a) and (8.14a) for Y configurations on the
primary and secondary sides respectively:

I j = yl �Vj � V n
j 1 � V̂Y

j
�
, I j = ymV̂Y

j + ÎY
j , In

j = �1TI j (8.18a)

Vk = V̂Y
k + V n

k 1, Ik = ÎY
k , In

k = �1TIk (8.18b)

The transformer gains that relate the internal variables are:

V̂Y
k = nV̂Y

j , ÎY
k = �a ÎY

j (8.18c)
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Here yl := diag
�
yla,ylb,ylc� is the leakage admittance matrix, ym := diag

�
yma,ymb,ymc� is the shunt ad-

mittance matrix, n := diag
�
na,nb,nc� is the voltage gain matrix and a := n�1 is the turns ratio matrix.

We can derive an external model that relates the terminal variables by eliminating the internal variables
from (8.18). Specifically we have from (8.18a)(8.18b)

V̂Y
j = (Vj�V n

j 1) �
⇣

yl
⌘�1

I j, V̂Y
k = Vk�V n

k 1

ÎY
j = I j � ym(Vj�V n

j 1) + ym
⇣

yl
⌘�1

I j, ÎY
k = Ik

Substituting it into (8.18c) yields the external model of a three-phase transformer in YY configuration:


I j
Ik

�
=


yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(8.19a)

In
j = �1TI j, In

k = �1TIk (8.19b)

where we have used yla = ayl and a(yl + ym)a = a2(yl + ym) since they are all diagonal matrices. The
expression (8.19a) is the same as the external model (8.12a) for a single-phase transformer, except that,
instead of scalars, the variables

�
Vj, I j,Vk, Ik

�
are vectors in C

3 and the parameters a,yl,ym are 3⇥ 3
matrices. It is the expression (8.16).

We can also express the neutral currents
⇣

In
j , I

n
k

⌘
in terms of the terminal voltages instead of the

terminal currents using (8.19a)(8.19b):


In
j

In
k

�
= �


1T 0
0 1T

�
YYY

| {z }
Y n

YY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆

A four-wire model includes the neutral currents. To derive the four-wire model we rewrite this and (8.19a)
as


I j
Ik

�
=


yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


Vj
Vk

�
�


yl1 �ayl1
�ayl1 a2(yl + ym)1

�

| {z }
YYY (I2⌦1)


V n

j
V n

k

�


In

j
In
k

�
= �


1Tyl �1Tayl

�1Tayl 1Ta2(yl + ym)

�

| {z }
(I2⌦1T)YYY


Vj
Vk

�
+


1Tyl1 �1Tayl1
�1Tayl1 1Ta2(yl + ym)1

�

| {z }
(I2⌦1T)YYY (I2⌦1)


V n

j
V n

k

�

where I2 is the identity matrix of size 2, 1Tyl1 = Âf ylf , 1Tayl1 = Âf af ylf , and 1Ta2(yl + ym)1 =

Âf (af )2(ylf + ymf ). Hence the four-wire model of a three-phase transformer in YY configuration is:
2

664

I j
Ik
In

j
In
k

3

775 =

"
YYY �YYY (I2⌦1)

�
⇣
I2⌦1T

⌘
YYY

⇣
I2⌦1T

⌘
YYY (I2⌦1)

#

| {z }
Y 4wire

YY

2

664

Vj
Vk
V n

j
V n

k

3

775 (8.19c)
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This model extends (8.12b) with neutral currents to three-phase transformers. The matrix YYY in (8.19a) is
both symmetric and block symmetric (see Chapter 8.2.3) because a, yl and ym are diagonal. This, together
with (A⌦B)T = AT⌦BT, imply that the four-wire admittance matrix Y 4wire

YY is also symmetric. While the
admittance matrix YYY generally has nonzero row and column sums, Y 4wire

YY has zero row and column sums.

If both neutrals are grounded with zero impedances and voltages are defined with respect to the ground,
then V n

j = V n
k = 0 and (8.19a) reduces to


I j
Ik

�
= YYY


Vj
Vk

�
=


yl �ayl

�ayl a2(yl + ym)

�
Vj
Vk

�

which can be represented as a three-phase P circuit. This means that the external behavior of a YY
transformer, when its neutral voltages are zero, has the same structure as that of a three-phase transmission
line and can be specified by 3⇥3 series and shunt admittance matrices

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
where

ỹs
jk := ayl, ỹm

jk := (I�a)yl, ỹm
k j := a(a� I)yl +a2ym (8.19d)

This extends the single-phase P circuit model (8.12c) to the three-phase setting.

8.2.5 DD configuration
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Figure 8.13: DD-configured transformer.

Referring to Figure 8.13, and combining the variables defined in Chapter 8.2.2 for each configuration,
the internal voltages and currents associated with the ideal transformer are:
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The terminal voltages and currents are denoted by (Vj, I j), (Vk, Ik), as for a YY -configured transformer. The
relation between the internal and terminal variables is given by (8.13b) and (8.14b) for D configurations:

ÎD
j = ylGVj � (yl + ym)V̂ D

j , I j = GT

⇣
ÎD

j + ymV̂ D
j

⌘
(8.20a)

V̂ D
k = GVk, Ik = GTÎD

k (8.20b)

The transformer gains that relate the internal variables are:

V̂ D
k = nV̂ D

j , ÎD
k = �a ÎD

j (8.20c)

To derive an external model, eliminate the internal variables from (8.20). We obtain from (8.20b)(8.20c):

V̂ D
j = n�1V̂ D

k = aGVk, GTaÎD
j = �Ik

Substitute into the first expression in (8.20a) to eliminate (V̂ D
j , ÎD

j ):

Ik = �
⇣

GTaylG
⌘

Vj +
⇣

GTa2(yl + ym)G
⌘

Vk

Substitute again V̂ D
j into the first expression in (8.20a) to obtain ÎD

j = ylGVj � a(yl + ym)GVk. Substitute
this and V̂ D

j into the second expression in (8.20a) to eliminate (V̂ D
j , ÎD

j ):

I j =
⇣

GTylG
⌘

Vj �
⇣

GTaylG
⌘

Vk

The external model of a three-phase transformer in DD configuration is hence


I j
Ik

�
=


GTyl G �GTayl G
�GTayl G GTa2(yl + ym)G

�

| {z }
YDD


Vj
Vk

�
(8.21a)

or in terms of the admittance matrix YYY in (8.19a) for a YY -configured transformer:


I j
Ik

�
=


GT 0
0 GT

�
yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


G 0
0 G

�
Vj
Vk

�
(8.21b)

This is the expression (8.16). Unlike YYY the admittance matrix YDD is not invertible (it has zero row and
column sums). Since YDD is block symmetric (as well as symmetric) it can be represented as a three-phase
P circuit. This means that its external behavior has the same structure as that of a three-phase transmission
line and can be specified by 3⇥3 series and shunt admittance matrices

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
where

ỹs
jk := GTayl G, ỹm

jk := GT (I�a)yl G, ỹm
k j := GT

⇣
a(a� I)yl +a2ym

⌘
G (8.21c)

This is the P circuit model (8.19d) for YY -configured transformer, multiplied on both sides by GT and G.
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The submatrices in (8.21b) are (cf. Y D in (7.21a)):

GTyl G =

2

4
yla + ylc �yla �ylc

�yla ylb + yla �ylb

�ylc �ylb ylc + ylb

3

5 , GTayl G =

2

4
ŷla + ŷlc �ŷla �ŷlc

�ŷla ŷlb + ŷla �ŷlb

�ŷlc �ŷlb ŷlc + ŷlb

3

5

where ŷlf := af ylf for f 2 {a,b,c}. In the special case where the single-phase transformers are identical,
i.e., yl = yla

I and a := aa
I, these matrices are particularly simple:

⇣
yla
⌘

GTG = yla

2

4
2 �1 �1
�1 2 �1
�1 �1 2

3

5 ,
⇣

aayla
⌘

GTG = aayla

2

4
2 �1 �1
�1 2 �1
�1 �1 2

3

5 (8.22)

These expressions are often used in simplified models of three-phase transformers.

8.2.6 DY configuration

This is a popular configuration for stepdown transformers in distribution systems. ‘Referring to Figure
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–Îk
bn

–Îk
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Figure 8.14: DY -configured transformer.

8.14, the internal voltages and currents associated with the ideal transformer are:
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The terminal voltages and currents are denoted by (Vj, I j), (Vk, Ik), as before. The relation between the
internal and terminal variables is given by (8.13b) for D configuration on the primary side and (8.14a) for
Y configuration on the secondary side:

ÎD
j = ylGVj � (yl + ym)V̂ D

j , I j = GT

⇣
ÎD

j + ymV̂ D
j

⌘
(8.23a)

Vk = V̂Y
k + V n

k 1, Ik = ÎY
k , In

k = �1TIk (8.23b)

The transformer gains that relate the internal variables are:

V̂Y
k = nV̂ D

j , ÎY
k = �a ÎD

j (8.23c)

Eliminating the internal variables from (8.23), the external model of a three-phase transformer in DY
configuration is (Exercise 8.2):


I j
Ik

�
=


GTyl G �GTayl

�ayl G a2(yl + ym)

�

| {z }
YDY


Vj
Vk

�
�

�GTayl

a2(yl + ym)

�
V n

k 1 (8.24a)

or in terms of the admittance matrix YYY in (8.19a):


I j
Ik

�
=


GT 0
0 I

�
yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


G 0
0 I

�✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(8.24b)

It is the expression (8.16). The matrix YDY in (8.24a) is not invertible. It is symmetric but not block
symmetric. Therefore it cannot be represented as a three-phase P circuit even if the neutral voltage V n

k = 0.

Even though there is no neutral line on the primary side, the primary current I j is affected by the
neutral voltage V n

k on the secondary side, unless a = aa
I and y = ya

I, i.e., the single-phase transformers
are identical, in which case GT1 = 0 and I j becomes independent of V n

k .

8.2.7 Y D configuration

Figure 8.15 shows a Y D-configured three-phase transformer. Its external model is (Exercise 8.3):


I j
Ik

�
=


yl �aylG

�GTayl GTa2(yl + ym)G

�

| {z }
YY D


Vj
Vk

�
�


yl

�GTayl

�
V n

j 1 (8.25a)

or in terms of the admittance matrix YYY in (8.19a):


I j
Ik

�
=


I 0
0 GT

�
yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


I 0
0 G

�✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(8.25b)

It is the expression (8.16). The matrix YY D is singular, symmetric but not block symmetric. In particular it
cannot be represented as a three-phase P circuit even if the neutral voltage V n

j = 0.
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V̂k
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V̂k
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V̂k
ca

Vk
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Vk
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Ikb
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Îjbn

ylc

I jn
Vj

n

I jc
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c
Îjcn

ymb
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Figure 8.15: Y D-configured transformer.

8.2.8 Open transformer

Open transformers where at least one leg of a three-phase transformer is open (not connected) are widely
used in distribution systems to connect single-phase loads, e.g., a household. The analysis of a closed
transformer can be adapted to that of an open transformer. Indeed their external models are identical,
except that the admittance matrices are ỹl = diag

�
yla,ylb,0

�
and ỹm = diag

�
yma,ymb,0

�
for an open trans-

former without the third leg (compare (8.21) with (8.26) for an open DD transformer). We now derive
the external model of an open DD transformer. Other configurations, such as open YY , open DY , or open
Y D, can be analyzed in a similar manner. The analysis proceeds in the same manner as for its closed
version, once the voltage gain expression has been modified to represent the open transformer leg where
the internal voltages V̂ ca

j and V̂ ca
k are no longer related by a voltage gain.

Figure 8.16 shows an open DD-configured transformer where only two single-phase transformers are
used. The leakage admittances of these transformers are

�
ya,yb� and their voltage gains are

�
na,nb�. The

internal voltages and currents associated with the ideal transformer are:

V̂ D
j :=

2

4
V̂ ab

j
V̂ bc

j
V̂ ca

j

3

5 , ÎD
j :=

2

4
Îab

j
Îbc

j
Îca

j

3

5 , V̂ D
k :=

2

4
V̂ ab

k
V̂ bc

k
V̂ ca

k

3

5 , ÎD
k :=

2

4
Îab
k

Îbc
k

Îca
k

3

5

The terminal voltages and currents are denoted by (Vj, I j) 2 C
6, (Vk, Ik) 2 C

6, as before. We will show
that its external model is


I j
Ik

�
=


GTỹl G �GTaỹl G
�GTaỹl G GTa2(ỹl + ỹm)G

�

| {z }
YopenDD


Vj
Vk

�
(8.26a)
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Îj
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Figure 8.16: Open DD-configured transformer.

or


I j
Ik

�
=


GT 0
0 GT

�
ỹl �aỹl

�aỹl a2(ỹl + ỹm)

�
G 0
0 G

�
Vj
Vk

�
(8.26b)

where

ỹl :=

2

4
yla 0 0
0 ylb 0
0 0 0

3

5 , ỹm :=

2

4
yma 0 0
0 ymb 0
0 0 0

3

5 (8.26c)

where a := diag
�
aa,ab,ac�. The constant ac is introduced for notational convenience and can take any

arbitrary nonzero finite value, e.g. ac = 1, as its value does not affect the external model. Hence the admit-
tance matrix YopenDD in (8.26a)(8.26b) are the same as YDD in (8.21a)(8.21b) for a closed DD transformer,
except that ylc = ymc = 0 on the third leg that has no transformer. It is also the same as the expression (8.16)
with (yl,ym) in YYY replaced by (ỹl, ỹm). The matrix YopenDD is block symmetric (as well as symmetric)
and therefore has a three-phase P circuit representation with series and shunt admittance matrices:

ỹs
jk := GTaỹlG, ỹm

jk := GT (I�a) ỹlG, ỹm
k j := GTa(a� I)(ỹl + ỹm)G (8.26d)

which is the same as (8.21c) with (yl,ym) replaced by (ỹl, ỹm).

For notational convenience, we introduce an artificial voltage gain nc which can take any nonzero
finite values, e.g., nc := 1. As before let n := diag

�
na,nb,nc� and a := n�1. As defined above, the leakage

and magnetizing admittances are ỹl := diag
�
yla,ylb,0

�
and ỹm := diag

�
yma,ymb,0

�
respectively. The fact

that the third leg of the transformer is open requires two adjustments to the derivation of a closed DD
transformer. These adjustments modify the internal model (the current and voltage gain on the missing
leg) and the derivation then follows the same procedure, as we now explain.
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1. The relation between the internal and terminal variables are still given by (8.20a)(8.20b) with the
following modifications: replace (yl,ym) by (ỹl, ỹm) and enforce the current on the missing leg on
the secondary side to be zero (see Figure 8.16):

ỹlc := 0, ỹmc := 0, Îca
k := 0 (8.27a)

This implies that Îca
j = 0 and Ic

j =�Îbc
j on the primary side from the last row of (8.20a).

2. For the internal model (8.20c), the current gain ÎD
k = �a ÎD

j remains unchanged (given (8.27a)), but
the voltage gain needs modification because the internal voltages V̂ ca

k :=V c
k �V a

k and V̂ ca
j :=V c

j �V a
j

are no longer related by the voltage gain n, unlike in a closed transformer.

In order to follow the same derivation we will replace the voltage gain expression V̂ D
j = aV̂ D

k in
(8.20c), as follows. In the analysis of a closed DD transformer, the voltage gain is used to relate V̂ D

j
to Vk through

V̂ D
j = aV̂ D

k = aGVk

For an open DD transformer, the last row of this relation is rewritten as:

V̂ ca
j = acV̂ ca

k +
�
V̂ ca

j �acV̂ ca
k
�

leading to the voltage relation V̂ D
j = aV̂ D

k + E3

⇣
V̂ D

j �aV̂ D
k

⌘
where E3 := diag(0,0,1). The right-

hand side can then be written in terms of the terminal voltage Vj because V̂ ca
j := V c

j �V a
j :

V̂ D
j = E3GVj + (I�E3)aV̂ D

k (8.27b)

which can then be related to Vk using V̂ D
k = GVk.

In summary, these two modifications (8.27) means that, for open DD transformer, the conversion rules are
(8.20a)(8.20b) with (yl,ym) replaced by (ỹl, ỹm):

ÎD
j = ỹlGVj � (ỹl + ỹm)V̂ D

j , I j = GT

⇣
ÎD

j + ỹmV̂ D
j

⌘
(8.28a)

V̂ D
k = GVk, Ik = GTÎD

k (8.28b)

and the internal model (8.20c) is replaced by:

V̂ D
j = E3GVj + (I�E3)aV̂ D

k , ÎD
k = �a ÎD

j (8.28c)

We then follow the same derivation for the external model. For example we obtain from (8.28b)(8.28c):

V̂ D
j = E3GVj + (I�E3)aGVk, GTaÎD

j = �Ik

Substitute into the first expression in (8.28a) to eliminate (V̂ D
j , ÎD

j ):

Ik = �
⇣

GTaỹlG
⌘

Vj +
⇣

GTa2(ỹl + ỹm)G
⌘

Vk
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where we have used (ỹl + ỹm)E3 = 0. Similarly we have

I j =
⇣

GTỹlG
⌘

Vj �
⇣

GTaỹlG
⌘

Vk

verifying the external model (8.26). With ylc = ymc = 0 the matrices are explicitly:

GTỹl G =

2

4
yla �yla 0
�yla ylb + yla �ylb

0 �ylb ylb

3

5 , GTaỹl G =

2

4
ŷla �ŷla 0
�ŷla ŷlb + ŷla �ŷlb

0 �ŷlb ŷlb

3

5

where ŷlf := af ylf for f 2 {a,b}.

Example 8.6 (Bernie Leseiutre, Allerton Conference, September 2023). Bernie Leseiutre told me about
an interesting circulating loop flow phenomenon in an open DD transformer, shown in Figure He said

Figure 8.17: Unitary voltage network in each phase f of a three-phase transformer.

that even if the D load is purely inductive, there is real power P flowing between the two single-phase
transformers, even if the transformers are (assumed) ideal. They have verified this experimentally. The
terminal currents/powers are purely reactive, so real current/power only are in internal vars. This show be
derivable from the results here.

8.2.9 Single-phase equivalent in balanced setting

A three-phase transformer is equivalent to a YY -configured transformer if they have the same external
model, i.e., their admittance matrices are equal. In general a three-phase transformer not in YY configu-
ration does not have a YY equivalent, except in a balanced setting. In a balanced setting, not only does a
three-phase transformer have a YY equivalent, there is also a single-phase transformer that can be naturally
interpreted as the single-phase equivalent of the YY equivalent. For simplicity we assume ym = 0.

Consider a DD-configured transformer whose external model is determined by the admittance matrix
YDD in (8.21b), reproduced here:

YDD :=


GT 0
0 GT

�
yl �ayl

�ayl a2yl

�
G 0
0 G

�
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Recall from (8.19) that the admittance matrix ỸYY of a YY -configured transformer with turns ratio ã and
leakage admittance ỹl is given by

ỸYY :=


ỹl �ãỹl

�ãỹl ã2ỹl

�

The DD-configured transformer has a YY equivalent if YDD = ỸYY for some ỸYY . Since the submatrices of
ỸYY are diagonal while those of YDD are not, there is generally no YY equivalent, even if the constituent
single-phase transformers are identical, i.e., if yl = yla

I and a = aa
I (see (8.22)).

The DD-configured transformer does have a YY equivalent, however, if the system is balanced, i.e., the
single-phase transformers are identical and voltages and currents are positive-sequence sets. This property
is used in Chapter 3.4 for per-phase analysis and can be justified using the external models derived here.

Suppose

yl := yla
I, a := aa

I, Vj := v ja+, Vk := vka+

where we recall that a+ := (1,a,a2) is the unit positive-sequence vector and a := e�i2p/3. In this case
Corollary 1.3 implies

GVj = (1�a)Vj, GTVj = (1�a2)Vj

The external model (8.21a) of the DD-configured transformer then reduces to (with ym = 0):

I j =
⇣

GTylG
⌘

Vj �
⇣

GTaylG
⌘

Vk = (1�a)(1�a2)yla �Vj � aaVk
�

Ik = �
⇣

GTaylG
⌘

Vj +
⇣

GTa2ylG
⌘

Vk = (1�a)(1�a2)yla
⇣
�aaVj + (aa)2Vk

⌘

Since (1�a)(1�a2) = 3 we have


I j
Ik

�
=


ỹ �aỹ
�aỹ a2ỹ

�

| {z }
ỸYY


Vj
Vk

�

where ỹl = 3yla
I and a = aa

I. Hence when the system is balanced a DD-configured transformer has a YY
equivalent with the same turns ratio a but a leakage admittance ỹl three times the original admittance yl .
Since the admittance matrix of the YY equivalent is

ỸYY :=
✓

3yla


1 �aa

�aa (aa)2

�◆
⌦ I

we can interpret

Ỹ1f := 3yla


1 �aa

�aa (aa)2

�

as the admittance matrix of the single-phase equivalent of the DD transformer in balanced setting.

In a balanced system a DY -configured transformer also has a YY equivalent when V n
k = 0 and hence

a single-phase equivalent, but the YY equivalent requires complex, rather than real, turns ratios. This is
explained in the next example.
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Example 8.7 (Single-phase equivalent of DY configuration with V n
k = 0). Consider a DY -configured trans-

former. Suppose, not only is the system balanced, i.e.,

yl := yla
I, a := aa

I, Vj := v ja+, Vk := vka+

but the neutral on the secondary side is also grounded with zero grounding impedance, i.e., V n
k = 0. Show

that its YY equivalent and single-phase equivalent are respectively

ỸYY := Ỹ1f ⌦ I, Ỹ1f := ỹla


1 �ãa

�ãaH |ãa|2
�

where

ỹla := 3yla, ãa :=
aa

1�a
=

aa
p

3eip/6

Solution. The external model of a DY -configured transformer is given by (8.24a). Applying Corollary 1.3
(GVj = (1�a)Vj, GTVj = (1�a2)Vj), (1�a)(1�a2) = 3 and GT1 = 0, we have3

I j =
⇣

GTyl G
⌘

Vj �
⇣

GTayl
⌘

(Vk�V n
k 1) = 3yla

✓
Vj �

aa

1�a
Vk

◆

Ik =
⇣
�ayl G

⌘
Vj +

⇣
a2yl

⌘
(Vk�V n

k 1) = 3yla

 
� aa

1�a2Vj +

✓
aa
p

3

◆2
(Vk�V n

k 1)

!

Since aa 2 R we have
✓

aa

1�a2

◆H

=
aa

1�a
=

aa
p

3eip/6

Define the matrices

ỹl := 3yla
I, ã :=

aa

1�a
I, |ã|2 :=

(aa)2

3
I (8.29a)

The external model of the DY -configured transformer is then


I j
Ik

�
=


ỹl �ãỹl

�ãHỹl |ã|2ỹl

�
Vj
Vk

�
�


0
|ã|2ỹl V n

k 1

�
(8.29b)

To derive its YY equivalent, consider a YY -configured transformer with a complex voltage gain (matrix)
n̂ := diag

�
n̂a, n̂b, n̂c� 2 C

3⇥3 and its turns ratio (matrix) â := n̂�1. Instead of (8.18c) for real transformer
gains, the transformer gains when n̂ and â are complex are given by

V̂Y
k = n̂V̂Y

j , ÎY
k = âH ÎY

j (8.30a)

3To illustrate the effect of V n
k on YY equivalent we do not substitute V n

k = 0 until the last step.
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Let ŷ 2 C
3⇥3 denote its leakage admittance matrix. Then its external model can be shown to be (Exercise

8.5):


I j
Ik

�
=


ŷl �âŷl

�âHŷl |â|2ŷl

�

| {z }
ỸYY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(8.30b)

In
j = �1TI j, In

k = �1TIk (8.30c)

where |â|2 is the matrix |â|2 := diag
�
1/|n̂a|2,1/|n̂b|2,1/|n̂c|2

�
. Note that the matrix ỸYY is not complex

symmetric and therefore does not have a three-phase P circuit representation when â is complex.

Comparing (8.29b) and (8.30b) we see that, if V n
k = 0, then the DY -configured transformer has a

YY equivalent whose neutrals are grounded with zero grounding impedances on both sides and whose
admittance matrix ŷ = ỹ and complex turns ratio matrix â = ã are given by (8.29a). This completes the
proof.

8.3 Three-phase transformer models: unitary voltage network

In this section we extend the single-phase model in Chapter 3.1.5 with unitary voltage network to three-
phase transformers. Multiple copies of the single-phase circuit in Figure 3.8(b) can be connected in D or
Y configuration on each side of the unitary voltage network, per phase, to create three-phase transform-
ers. The derivation of their external models follows a similar method as that in Chapter 8.2.2: (i) define
internal variables for the unitary voltage network in each phase; (ii) derive the internal model that relate
these internal variables; (iii) the transformer gains across the two ideal transformers define the conversion
between the internal and terminal variables; and finally (iv) eliminate the internal variables to arrive at the
external models.

8.3.1 Internal model: UVN per phase

The internal variables on the unitary voltage network in each phase f 2 {a,b,c} are defined in Figure
8.18. Note that the voltages (V̂ f

0 ,V̂ f
j ,V̂ f

k ) are defined to be the voltage drops, whether the unitary voltage

y0ø

ykøyjø

V̂0
øV̂j

ø V̂k
ø

Îk
øÎj

ø Î0
ø:= 0

Figure 8.18: Unitary voltage network in each phase f of a three-phase transformer.
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network is grounded or not. These variables satisfy (3.10) for each phase f :

Îf
j = yf

j (V̂
f
j �V̂ f

0 ), Îf
k = yf

k (V̂ f
k �V̂ f

0 ), Îf
0 + Îf

j + Îf
k = yf

0V̂ f
0 , f 2 {a,b,c} (8.31)

Define the internal variables and admittance matrices:

Îi :=

2

4
Îa
i

Îb
i

Îc
i

3

5 , V̂i :=

2

4
V̂ a

i
V̂ b

i
V̂ c

i

3

5 , yi := diag
⇣

ya
i ,y

b
i ,y

c
i

⌘
, i = 0, j,k

Then (8.31) is in vector form:

Î j = y j(V̂j�V̂0), Îk = yk(V̂k�V̂0), Î0 + Î j + Îk = y0V̂0

or in terms of a 9⇥9 admittance matrix:
2

4
Î0
Î j
Îk

3

5 =

2

4
Âi yi �y j �yk
�y j y j 0
�yk 0 yk

3

5

2

4
V̂0
V̂j
V̂k

3

5 (8.32)

where Âi yi = y0 + y j + yk is a diagonal matrix of all admittances. Since Î0 = 0 2 C
3 we can eliminate V̂0

and derive the 6⇥6 Kron-reduced admittance matrix Yuvn that maps V̂ := (V̂j,V̂k)2C6 to Î := (Î j, Îk)2C6

(Exercise 8.6):

Î = YuvnV̂ where Yuvn :=

0

@I2⌦
 

Â
i

yi

!�1
1

A


y j(y0 + yk) �y jyk
�y jyk yk(y0 + y j)

�
(8.33)

and I2 is the identity matrix of size 2. This defines the internal model that relates Î and V̂ . Note that
the phases of these internal variables are decoupled in (8.33) since the admittance matrices yi 2 C

3⇥3

are diagonal. The phases will be coupled in the terminal variables (Vj,Vk) and (I j, Ik) through Y or D
configuration, as we now explain.

8.3.2 Conversion rules

Let the terminal currents of the three-phase transformer be Ii := (Ia
i , Ib

i , Ic
i ), its terminal voltages be Vi :=

(V a
i ,V b

i ,V c
i ), and the terminal neutral voltage of Y configuration be V n

i , i = j,k. The primary side is illus-
trated in Figure 8.19. These voltages are defined respect to an arbitrary and common reference point, e.g.,
the ground. Let Mj := diag

⇣
1/Na

j ,1/Nb
j ,1/Nc

j

⌘
and Mk := diag

�
1/Na

k ,1/Nb
k ,1/Nc

k
�

be the transformer
gain matrices of the ideal transformers on each side of the unitary voltage network.

To derive the conversion between internal and terminal variables, consider first the primary side where
three single-phase ideal transformers are connected to the left end of the unitary voltage network in Figure
8.18. Figure 8.19(a) shows the primary side in Y configuration. The conversion rule between the internal
variables (V̂j, Î j) and the terminal variables (Vj, I j,V n

j ) is:

Y configuration: V̂j = Mj
�
Vj�V n

j 1
�
, Î j = M�1

j I j (8.34a)



Draft: EE 135 Notes April 30, 2024 313
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b
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n
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b
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Îk
b

Îk
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b
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(a) Y configuration

I j
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Vj
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b
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b

I j
c

Vj
c

V̂j
a

V̂j
b

V̂j
c

Îj
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b

Îj
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b
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b
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V̂k
c

Îj
ab

Îj
bc

Îj
ca

(b) D configuration

Figure 8.19: Primary side of a three-phase transformer with unitary voltage networks.

where 1 := (1,1,1). Figure 8.19(b) shows the primary side in D configuration. Let ÎD
j := (Îab

j , Îbc
j , Îca

j ) de-
note the internal currents entering the primary side of the ideal transformer as indicated in Figure 8.19(b).
From (7.9a) the internal variables (V̂j, Î j, ÎD

j ) are related to the terminal variables (Vj, I j) according to the
conversion rule:

D configuration: V̂j = MjGVj, Î j = M�1
j ÎD

j , I j = GTÎD
j (8.34b)

where G,GT are conversion matrices. Similarly on the secondary side we have the conversion rule (see
Figure 8.20):

Y configuration: V̂k = Mk (Vk�V n
k 1) , Îk = M�1

k Ik (8.34c)

D configuration: V̂k = MkGVk, Îk = M�1
k ÎD

k , Ik = GTÎD
k (8.34d)

8.3.3 External model

We can derive an external model by eliminating the internal variables (V̂ , Î, ÎD) from the internal model
(8.33) and the conversion rules (8.34). Specifically substitute (8.34) into (8.33) to get

YY :


M�1
j I j

M�1
k Ik

�
= Yuvn


Mj(Vj�V n

j 1)
Mk(Vk�V n

k 1)

�
, DD :


M�1

j ÎD
j

M�1
k ÎD

k

�
= Yuvn


MjGVj
MkGVk

�
(8.35a)

DY :


M�1
j ÎD

j
M�1

k Ik

�
= Yuvn


MjGVj

Mk(Vk�V n
k 1)

�
, Y D :


M�1

j I j

M�1
k ÎD

k

�
= Yuvn


Mj(Vj�V n

j 1)
MkGVk

�
(8.35b)
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Îk
b

Îk
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Figure 8.20: Three-phase transformer models with unitary voltage networks.
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Let V := (Vj,Vk) 2 C
6 and I := (I j, Ik) 2 C

6 denote the vectors of terminal voltages and currents respec-
tively. Let M := diag(Mj,Mk) 2 R

6⇥6 be the transformer gain matrices. Then the external model of a
three-phase transformer is (Exercise 8.7)

I = DT(MYuvnM)D(V � g) (8.36a)

where Yuvn is defined in (8.33), D 2 C
6⇥6 and g 2 C

6 are defined in (8.16).

We often do not know the numbers Nf
j , Nf

k of turns of the primary and secondary windings respectively
and hence cannot determine the matrices Mj,Mk, but we can always determine the turns ratio matrix
a := M�1

j Mk = diag
⇣

Na
j /Na

k ,Nb
j /Nb

k ,Nc
j /Nc

k

⌘
from the specified rated voltages. The 3⇥ 3 admittance

matrices y0,y1,y2 are assembled from their per-phase admittances and recall from (3.9) (see Figure 3.8):

y0 := N2
j ym := N2

j diag
⇣

yma,ymb,ymc
⌘

y j := N2
j yp := N2

j diag
⇣

ypa,ypb,ypc
⌘

, ypf :=
1

zpf , f 2 {a,b,c}

yk := N2
k ys := N2

j diag
⇣

ysa,ysb,ysc
⌘

, ysf :=
1

zsf , f 2 {a,b,c}

Then the matrix MYuvnM in (8.36a) can also be written in terms of the 3⇥ 3 turns ratio and admittance
matrices a, yp,ys,ym (Exercise 8.8):

YYY := MYuvnM = ypys �a2ym +a2yp + ys��1

I+a2ym(ys)�1 �a

�a a2 �
I+ ym(yp)�1�

�
(8.36b)

Hence the external model of a standard three-phase transformer is

I = DTYYY D(V � g) (8.36c)

where YYY is defined in (8.36b), D 2 C
6⇥6 and g 2 C

6 are defined in (8.16), reproduced here: g :=⇣
V n

j 1,V n
k 1
⌘

are neutral voltages for Y configuration and D is a 6⇥ 6 block diagonal matrix that depends
on configuration:

YY configuration: D :=

I 0
0 I

�

DD configuration: D :=


G 0
0 G

�

DY configuration: D :=


G 0
0 I

�

Y D configuration: D :=

I 0
0 G

�

For DD configuration, Dg = 0 2C
6 in (8.36), reflecting that a D configuration contains no neutral voltage;

similarly for other configurations.

Remark 8.3. 1. As explained in Chapter 3.1.5, the transformer model with unitary voltage networks
is equivalent to the T equivalent circuit. This holds in both single-phase and three-phase settings.
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2. This model is generally different from the simplified model of Chapter 8.2 which is the three-phase
extension of the model in Chapter 3.1.4. From (8.36) and (8.16), these models however have the
same structure. They differ only in the admittance matrix YYY for the YY configuration and the
difference is due to different models for single-phase nonideal transformers.

3. When the shunt admittances are assumed zero in both models, i.e., yf
0 = ymf = 0 for f 2 {a,b,c},

these two models are equivalent, as in the single-phase case. To see this, recall that per-phase
f 2 {a,b,c}, the leakage impedances in the simplified model are zlf = zpf + (af )2zsf and hence
the leakage admittances per phase are

ylf =
⇣

zla
⌘�1

=
⇣

1/ypf + (af )2 ysf
⌘�1

=
ypf ysf

(af )2ypf + ysf , f 2 {a,b,c}

Since all matrices are diagonal we have yl = ypys �a2yp + ys��1. Substituting this and ym = 0 into
(8.36b), YYY for the transformer model based on the unitary voltage network reduces to

YYY = yl

I �a
�a a2

�

which is the same as YYY in (8.16a) for the simplified model. (See Exercise 8.9 for another proof).

4. The model (8.36) generalizes the single-phase model (3.11) in three ways. First the 6⇥6 admittance
matrix MYuvnM in (8.36) has the same structure as the 2⇥ 2 matrix in (3.11). Second the neutrals
of the three-phase transformer in Y configuration may not be grounded, i.e., V n

j ,V n
k may be nonzero

whereas V in (3.11) is assumed to be the voltage drop across the windings. Finally the admittance
matrix of a three-phase transformer in YY configuration is YYY := MYunvM, and a D configuration in
either the primary or the secondary circuit is represented by conversion matrices GT and G.

8.3.4 Split-phase transformer

8.4 Parameter identification: examples

8.4.1 Simplified circuit

Example 8.8 (Parameter identification). Consider a three-phase transformer in DY configuration. Its sim-
plified circuit model is shown in Figure 8.21. Suppose the single-phase transformers are identical, i.e.
their turns ratios a := aa

I and leakage admittances yl := yla
I are the same across phases. Suppose the

shunt admittances are zero. We discuss parameter identification in two steps.

1. Suppose the following measurements are given:

• Terminal currents I j = i j 2 C
3 and Ik = ik 2 C

3.

• Terminal voltages Vj = v j 2 C
3 (with respect to ground) on the primary (D) side.

• Line-to-line voltages GVk = uk 2 C
3 on the secondary (Y ) side.
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Figure 8.21: DY -configured transformer with zero shunt admittances.

• The neutral is grounded with zero grounding impedance so that V n
k := 0.

Assume the measurements are error free and let x := (i j, ik,v j,uk) be the measurement vector. Cal-
culate:

• The turns ratio aa and the leakage admittance yla.

• The terminal voltage Vk with respect to the ground.

• The internal voltage and current (V̂Y
k , ÎY

k ) on the secondary side.

• The internal voltage and current (V̂ D
j , ÎD

j ) on the primary side and hence the loop flow b j within
the D configuration.

2. Repeat part 1 when T measurements (x1, . . . ,xT ) are given and measurement errors may be nonzero.

Solution. Under the assumption of zero measurement error, the measurement x := (i j, ik,v j,uk) 2C
12, the

parameter q := (aa,yla) 2 C
2, and the variable Vk 2 C satisfy (8.24a) with yl := yla

I,a := aa
I:


i j
ik

�
= yla


GTG �aaGT

�aa G (aa)2
I

�
v j
Vk

�
(8.37)

We can obtain GTVk from the line-to-line voltage measurement GVk = uk by shifting the values of uk:

GTVk =

2

4
V a�V c

V b�V a

V c�V b

3

5 = �

2

4
0 0 1
1 0 0
0 1 0

3

5

| {z }
permutation P

2

4
V a�V b

V b�V c

V c�V a

3

5 = �PGVk = �Puk
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Hence the first row of (8.37) becomes

i j = yla
⇣

GTGv j + aaPuk

⌘
(8.38a)

where P is the permutation matrix

P :=

2

4
0 0 1
1 0 0
0 1 0

3

5 (8.38b)

This is a set of 3 quadratic equations in a positive real variable aa 2 R+ and a complex variables yla 2 C.
Under appropriate conditions a solution of (8.38) exists and can be computed numerically. Let q :=
(aa,yla) denote such a solution. All other variables can then be derived in terms of the parameter q and
the measurement x := (i j, ik,v j,uk), as follows.

The terminal voltage Vk can be calculated from the second row of (8.37):

Vk =
1

(aa)2yla ik +
1
aa Gv j (8.39a)

On the secondary side the internal voltage and current (V̂Y
k , ÎY

k ) are given by the conversion rule in (8.23b)
for Y configuration on the secondary side:

V̂Y
k = Vk�V n

k 1 = Vk, ÎY
k = ik (8.39b)

On the primary side the internal voltage V̂ D
j across the ideal transformers is given by (8.13d) with zm := 0

(no shunt admittance):

V̂ D
j = Gv j �

1
yla ÎD

j

Instead of expressing ÎD
j in terms of the measurement i j using ym = 0 and the conversion rule i j = GTÎD

j ,
we will use the transformer current gain in (8.23c) for DY configuration to express ÎD

j in terms of the
measurement ik, yielding

V̂ D
j = Gv j +

1
aa yla ik, ÎD

j = � 1
aa ÎY

k = � 1
aa ik, b j :=

1
3

1TÎD
j = � 1

3aa 1Tik (8.39c)

Even though we cannot determine the loop flow b j from the terminal current i j, we can from the measure-
ment ik on the secondary side.

When the measurement error is zero, the measurement vector x := (i j, ik,v j,uk) and the parameter
vector q := (aa,yla) satisfy (8.38). This can be represented as f (x;q) = 0 for some function f . Given T
measurements x := (x1, . . . ,xT ), there may not be any choice of q such that f (xt ;q) = 0 for all t = 1, . . . ,T
when measurement errors are nonzero. A popular estimate of q is one that minimizes error subject to
certain constraints:

q̂ := argmin
q Â

t
k f (xt ;q)k s.t. g(xt ;q)  0, t = 1, . . . ,T
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for some appropriate norm k · k. Here g(xt ;q)  0 expresses some known relations that must hold, e.g.,
aa � 0 is real. Let q̂ denote an estimate of the parameter. Then other variables

ŷt := (Vk(t),V̂ D
j (t), ÎD

j (t),V̂Y
k (t), ÎY

k (t)), t = 1, . . . ,T

can be derived from (8.39) in terms of q̂ and the measurements xt .

It is possible that the estimate ŷt derived in this way may violate some known constraints, e.g., vmin
k 

kVk(t)k2  vmax
k for some t given voltage limits. An alternative identification method is to estimate the

parameter q and the variables y := (y1, . . . ,yT ) jointly from the measurements x := (x1, . . . ,xT ), i.e., solve

(q̂ , ŷ) := arg min
(q ,y)

Â
t
k f (xt ,yt ;q)k s.t. g(xt ,yt ;q)  0, t = 1, . . . ,T

where f represents (8.38)(8.39) and g(xt ,yt ;q) 0 express some known constraints on (q̂ , ŷ).

From Figure 8.21 the terminal powers s j and sk are powers injected into the transformer at terminals
j and k respectively. Hence 1T(s j + sk) is the total power loss in the three-phase transformer due to the
leakage impedance 1/yl , as the next example shows.

Example 8.9 (Total power loss). For the three-phase transformer in Example 8.8 show that the total power
loss 1T(s j + sk) in the transformer is equal to (assuming zero measurement error):

1T(s j + sk) =
1

yla kn
aikk2

2

where na := 1/aa is the voltage gain. Even though the transformer gain na relates the internal currents
(ÎD

j , ÎY
k ), not terminal currents (I j, Ik), we can interpret naik as the “effective” terminal current on the

primary side.

Solution. The terminal powers are, from (8.39),

s j := diag
⇣

VjIHj
⌘

= �na diag
⇣

v j iHk G
⌘

sk := diag
⇣

VkIHk
⌘

= na diag
⇣

Gv j iHk
⌘

+
(na)2

yla diag
⇣

ik iHk
⌘

where na := 1/aa, the second equality follows from ym = 0 and hence i j = GTÎD
j =�na GTik, and the last

equality follows from (8.39a). Hence

s j + sk = na
⇣

diag
⇣

Gv j iHk
⌘
� diag

⇣
v j iHk G

⌘⌘
+

(na)2

yla diag
⇣

ik iHk
⌘

Now

diag
⇣

Gv j iHk
⌘
�diag

⇣
v j iHk G

⌘
=

2

4
(va

j � vb
j)ī

a
k

(vb
j � vc

j)ī
b
k

(vc
j� va

j)ī
c
k

3

5�

2

4
va

j(ī
a
k� īck)

vb
j(ī

b
k� īak)

vc
j(ī

c
k� ībk)

3

5 =

2

4
va

j ī
c
k

vb
j ī

a
k

vc
jī

b
k

3

5�

2

4
vb

j ī
a
k

vc
jī

b
k

va
j ī

c
k

3

5

diag
⇣

ik iHk
⌘

=

2

4
|iak |2
|ibk |2
|ick|2

3

5
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where P is the permutation matrix in (8.38b). The total power loss in the three-phase transformer is then

1T(s j + sk) = na
⇣
(Pik)Hv j � iHk (PTv j)

⌘
+

(na)2

yla kikk
2
2 =

1
yla kn

aikk2
2

where the last equality follows from (Pik)Hv j = iHk (PTv j).

8.4.2 Unitary voltage network

8.5 Bibliographical notes

The modeling of transmission lines with earth return is presented in the seminal paper [85] by J. R. Carson.
Circuit models of three-phase line models studied in Chapter 8.1 are developed in e.g. [79, 86, 63]. See
e.g. [78, Chapter 3] for comprehensive models of three-phase components including distribution lines,
transformers and switches. For the simplified model of Chapter 8.2 see [83, 87, 88, 89] for early work
and [63, Ch 8][77, Ch 7.4][90] for recent summary. The idea of decomposing a nonideal transformer into
two ideal transformers connected by a unitary voltage network as in Chapter 8.3 is first mentioned, but not
explored, in [83]. It is developed in detail in [82] where the unitary network is a P circuit with a leakage
(series) admittance and two shunt admittances. The unitary voltage network in [84] uses a T circuit model,
as Chapter 8.3 does. The unitary voltage network that models leakage fluxes and core losses can be quite
general e.g. [91, 92].

8.6 Problems

Chapter 8.1.

Exercise 8.1 (Symmetric y jk). Let z jk be a phase impedance matrix of a three-phase line ( j,k). Assume
z jk is symmetric invertible and z jk = zk j (A0). Show that its inverse y jk := z�1

jk is symmetric. Moreover
y jk = yk j.

Chapter 8.2.

Exercise 8.2 (DY -configured transformer). Derive the external model (8.24) of the DY -configured three-
phase transformer in Figure 8.14.

Exercise 8.3 (Y D-configured transformer). Derive the external model (8.25) of the Y D-configured three-
phase transformer in Figure 8.15.
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Exercise 8.4 (Open transformers).

Exercise 8.5 (Complex voltage gain). Consider a YY -configured transformer with a complex voltage gain
(matrix) n := diag

�
na,nb,nc� 2 C

3⇥3. Let its turns ratio be a := n�1 2 C
3⇥3. Let yl 2 C

3⇥3 denote its
series admittance and assume its shunt admittance ym = 0. Show that its external model is


I j
Ik

�
=


yl �ayl

�aHyl |a|2yl

�

| {z }
YYY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆

In
j = �1TI j, In

k = �1TIk

where |a|2 is the matrix |a|2 := diag
�
1/|na|2,1/|nb|2,1/|nc|2

�
.

Exercise 8.6 (Unitary voltage network: 3f transformers). Derive (8.33), reproduced here:

Î = YuvnV̂

where

Yuvn :=

0

@I2⌦
 

Â
i

yi

!�1
1

A


y j(y0 + yk) �y jyk
�y jyk yk(y0 + y j)

�

I2 is the identity matrix of size 2, and Âi yi = y0 + y j + yk is a diagonal matrix of all admittances.

Exercise 8.7 (Unitary voltage network: 3f transformers). Show that, for the transformer model in Chapter
8.3 with unitary voltage network, the admittance matrices of standard three-phase transformers are given
by

I = DT(MYuvnM)D(V � g)

where Yuvn is defined in (8.33), and D 2 C
6⇥6 and g 2 C

6 are defined in (8.16).

Exercise 8.8 (Unitary voltage network: turns ratio a). Prove (8.36b): the matrix MYuvnM in (8.36) can be
written in terms of the 3⇥3 turns ratio and admittance matrices a, yp,ys,ym:

YYY := MYuvnM = ypys �a2ym +a2yp + ys��1

I+a2ym(ys)�1 �a

�a a2 �
I+ ym(yp)�1�

�
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Exercise 8.9 (3f transformer: ym = y0 = 0). Suppose shunt admittances y0 = ym = diag(0,0,0). Then the
admittance matrices Yuvn defined in (8.33) and YYY defined in (8.16a) become

Yuvn :=
�
I2⌦

�
y j + yk)

�1��


y jyk �y jyk
�y jyk y jyk

�
, YYY :=


yl �ayl

�ayl a2yl

�

Show that MYuvnM = YYY .

Exercise 8.10 (Split-phase transformer). Consider a split-phase DD transformer in Figure ??. Suppose
Âf2{a,b,c}

⇣
If
k + If 0

k

⌘
= 0. Derive (??).



Chapter 9

Bus injection models

In this chapter we use the component models in Chapters 7 and 8 to construct network models and study
unbalanced three-phase analysis. In Chapter 9.1 we extend the relation between terminal voltage, current
and power (V, I,s) in the single-phase bus injection model of Chapter 4.3 to the unbalanced three-phase
setting. In Chapter 9.2 we formulate a general three-phase analysis problem. In Chapter 9.3 we study the
analysis problem when the network is balanced. We prove formally that a general balanced network is
equivalent to per-phase networks and its analysis can be solved by per-phase analysis. In Chapter 9.4 we
explain that, when an unbalanced system has a certain symmetry, we can transform it to a sequence coor-
dinate in which the system becomes decoupled even if the phases are coupled in the original coordinate.
Single-phase analysis can then be applied to individual sequence networks.

9.1 Network models

In this section we develop a model for a network of three-phase devices connected by three-phase lines
and transformers studied in Chapters 7 and 8. We start in Chapter 9.1.1 with a line model that models a
three-phase transmission or distribution line or a three-phase transformer. The line model linearly relates
the sending-end line currents

�
I jk, Ik j

�
2 C

6 and the nodal voltages
�
Vj,Vk

�
2 C

6 by an admittance matrix
Yjk which may or may not have a three-phase P circuit representation. The line model induces a network
model through nodal current balance equations. This is derived in Chapter 9.1.2 and it linearly relates
the nodal (terminal) current injections I j and voltages Vj through a network admittance matrix Y . The
admittance matrix Y also implies a single-phase equivalent circuit of the three-phase network. We then use
Y to derive in Chapter 9.1.4 nonlinear power flow equations that relate nodal (terminal) power injections
s j and voltages Vj. Finally we explain in Chapter 9.1.5 that the overall model consists of the network
equations of Chapters 9.1.2 and 9.1.4 and the three-phase device models of Chapter 7.3. A device model
can either be specified as an internal model with conversion rules or an external model relating the terminal
variables (Vj, I j,s j).

323
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9.1.1 Line model

Consider a network with N + 1 three-phase devices connected by three-phase lines represented as an
undirected graph G := (N,E) where every bus j 2 N and every line ( j,k) 2 E has 3 phases. A bus is
where the terminals of three-phase devices are connected. A line may model a transmission or distribution
line, a transformer, or a combination. We will hence refer to j 2 N interchangeably as a bus, a node, or
a terminal, and ( j,k) 2 E interchangeably as a line, a branch, a link, or an edge. The formulation can be
generalized to the case where a bus or a line has a single, two, or three phases.

For simplicity of exposition we assume, by default, we can use three-wire models for these lines
and their characterization includes the effects of neutral and earth return on the phase variables. This
assumption is reasonable if, e.g., neutral wires are absent, the line connects devices in D configuration, or
the neutrals are directly grounded with equal spacing along a line and at both ends of the line so that all
neutrals have V n

j = 0. Otherwise, the line model in this section needs to be augmented with neutral lines
with variables in C

4 instead of C3 and line admittance matrices in C
4⇥4 instead of C3⇥3; see Example 9.5

and Exercise 9.7. As we will see, even though lines are assumed to be three-wired, Y -configured devices
such as voltage, current and power sources and impedances do have neutral lines in the our model and
their neutral voltages g j := V n

j may be nonzero.

For each line ( j,k) 2 E let
�
Vj,Vk

�
2 C

6 denote the terminal voltages at each end of the line and�
I jk, Ik j

�
2 C

6 denote the sending-end line currents in both directions. In general each line ( j,k) 2 E is
characterized by four 3⇥ 3 series and shunt admittance matrices,

⇣
ys

jk,y
m
jk

⌘
from j to k and

⇣
ys

k j,y
m
k j

⌘

from k to j. See Figure 9.1. They define the relation between
�
Vj,Vk

�
and

�
I jk, Ik j

�
:











































































































Figure 9.1: A model of three-phase system.

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
k j(Vk�Vj) + ym

k jVk (9.1a)

or in matrix form:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

k j ys
k j + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(9.1b)

We emphasize that ys
jk and ys

k j may be different matrices and therefore this general model Yjk may not have
a three-phase P circuit representation. It can model, where ys

jk = ys
k j:
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• A transmission or distribution line where, from (8.8a), ys
jk = ys

k j is its series admittance and
⇣

ym
jk,y

m
k j

⌘

are its shunt admittances.

• A transformer in YY configuration where neutral voltages are zero, from (8.19d) (recalling that
V n

j = V n
k = 0),

ys
jk = ys

k j := ay, ym
jk := (I�a)y, ym

k j := a(a� I)y (9.2a)

with a being the diagonal matrix of its turns ratios and y the diagonal matrix of its leakage admit-
tances.

• A transformer in DD configuration where, from (8.21c),

ys
jk = ys

k j := GTayG, ym
jk := GT (I�a)yG, ym

k j := GTa(a� I)yG (9.2b)

Or a transformer in open DD configuration where, from (8.26a),

ys
jk = ys

k j := GTaỹG, ym
jk := GT (I�a) ỹG, ym

k j := GTa(a� I)ỹG (9.2c)

where ỹ := diag
�
ya,yb,0

�
is the leakage admittance matrix of the open transformer.

This model can also model transformers in other configurations where ys
jk 6= ys

k j:

• A transformer in DY configuration with zero neutral voltage where, from (8.24a),

ys
jk := GTay, ys

k j := ayG, ym
jk := GTy(G�a), ym

k j := ay(a�G) (9.3a)

• A transformer in Y D configuration with zero neutral voltage where, from (8.25a),

ys
jk := ayG, ys

k j := GTay, ym
jk := y(I�aG), ym

k j := GTay(aG� I) (9.3b)

Remark 9.1 (Transformer models). 1. We emphasize that the models (9.2) (9.3) assume that, for three-
phase transformers with Y configuration either in the primary or secondary side, their neutrals are
directly grounded so the neutral voltages V n

j = 0.

2. While the shunt admittances ym
jk and ym

k j are typically equal for a transmission or distribution line,
they are typically different for a transformer.

3. The series and shunt admittance matrices
⇣

ys
jk,y

m
jk

⌘
and

⇣
ys

k j,y
m
k j

⌘
in (9.2) are all complex symmet-

ric. None of them are symmetric for series and shunt admittances in (9.3).

For simplicity we often restrict ourselves to the special case where ys
jk = ys

k j. In this case we charac-

terize a line ( j,k) by three 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. With ys

jk = ys
k j, (9.1)

reduces to

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
jk(Vk�Vj) + ym

k jVk (9.4a)
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or in terms Yjk:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(9.4b)

which is now block symmetric (see Definition 9.1). We say Yjk has a three-phase P circuit representa-
tion in the sense that its external behavior is the same as the external behavior (8.8a) of a three-phase
transmission line; see Figure 8.2.

From (9.3) this more restrictive Yjk cannot be used to model transformers in DY and Y D configura-
tions. It is however still widely used. We therefore often adopt this model and will explicitly state it as
assumption C9.1 below when we use it.

9.1.2 V I relation

Associated with each bus j are three nodal variables
�
Vj, I j,s j

�
2C9 representing the nodal voltage, current

injection, and power injection respectively at the terminal of the device connected to bus j. To simplify
notation we assume, without loss of generality, that at most one single-terminal device (source or load)
is connected to a bus but one or more lines can be connected to a bus.1 The bus current and power
injection (I j,s j) at bus j therefore refers unambiguously to the injection from the unique device at bus j.
As explained in Chapters 7.3.3 and 7.3.4, the external behavior of a three-phase device is described by
the relation between (Vj, I j) or that between (Vj,s j). We can assume without loss of generality that these
three-phase devices are ideal (see Chapter 8.1.4) and their behavior is summarized in Tables 7.3 and 7.4.

Let (V, I,s) :=
�
Vj, I j,s j, j 2 N

�
2C

3(N+1) be nodal variables over the entire network. As for a single-
phase network, a three-phase network model is a relation between the terminal voltage and current (V, I) or
a relation between the terminal voltage and power (V,s), independent of the internal Y or D configurations
of the three-phase devices that are connected by the lines. In this subsection we derive the linear V I
relation defined by an admittance matrix Y and show that Y defines a single-phase equivalent circuit of the
three-phase network. In the next subsection we derive the V s relation in the form of nonlinear power flow
equations. In both cases the extension of the line model (9.1) to a network is the nodal current or power
balance equations:

I j = Â
k: j⇠k

I jk, s j = Â
k: j⇠k

diag
�
S jk
�
, j 2 N

where S jk := VjIHjk are matrices defined in (8.8b).

Network admittance matrix Y . Substitute the line currents (9.1) into the current balance equation to
get

I j = Â
k: j⇠k

I jk = Â
k: j⇠k

ys
jk(Vj�Vk) +

 

Â
k: j⇠k

ym
jk

!
Vj

1If K three-phase devices with terminal current injections I j1, . . . , I jK are connected to bus j then the net bus injection is
I j := Âk I jk. Unless otherwise specified we assume K = 1.
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Therefore

I j =

  

Â
k: j⇠k

ys
jk

!
+ ym

j j

!
Vj � Â

k: j⇠k
ys

jkVk, j 2 N (9.5a)

where

ym
j j := Â

k: j⇠k
ym

jk (9.5b)

Note that I j is the net current injection.2 In vector form, this relates the bus current vector I := (I0, . . . , IN)
to the bus voltage vector V := (V0, . . . ,VN):

I = YV (9.6a)

through a 3(N +1)⇥3(N +1) admittance matrix Y where its 3⇥3 submatrices Yjk 2 C
3⇥3 are given by

Yjk :=

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(9.6b)

The submatrices Yjk and Yk j may be different if ( j,k) models a three-phase transformer in DY or Y D
configuration.

Definition 9.1 (Block symmetry and block row sum). Given a matrix A 2 C
3n⇥3n, partition it into n⇥ n

blocks of 3⇥3 submatrices. Denote by A jk 2 C
3⇥3 its jkth submatrix.

1. A is called block symmetric if A jk = Ak j for all j,k = 1, . . . ,n.

2. A is said to have zero block row sums if Âk A jk = 0 for all j = 1, . . . ,n.

As discussed in Chapter 8.2.3 a matrix can be symmetric but not block symmetric, and vice versa.
Symmetry of a matrix is determined only by its off-diagonal entries but its diagonal entries can be ar-
bitrary. Block symmetry is determined only by its off-diagonal blocks but its diagonal blocks can be
arbitrary. A symmetric matrix A is block symmetric if, in addition, all its off-diagonal blocks are them-
selves symmetric, i.e., AT

jk = A jk, for all j 6= k. A block symmetric A is symmetric if, in addition, all blocks
A jk, including the diagonal blocks, are symmetric (Exercise 9.1). We will remark on zero block row sums
below after introducing single-phase equivalent circuit.

In general an admittance matrix Y defined by (9.6) may neither be block symmetric nor symmetric. If
the series admittances ys

jk = ys
k j for all lines ( j,k) 2 E then the admittance matrix Y is block symmetric

and hence has a three-phase P circuit representation. As in Chapter 4 we label the following assumption
and will explicitly state it when it is required:

2If there is a nodal shunt admittance load ysh
j , e.g., a capacitor bank, in addition to a device whose terminal injection is Ĩ j,

then the net injection from bus j to the rest of the network is I j = Ĩ j�ysh
j Vj. This assumes that ysh

j connects bus j to the ground
and the terminal voltage Vj is defined with respect to the ground.
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C9.1: The series admittance matrices ys
jk = ys

k j for every line ( j,k)2E, so that the admittance matrix
Y is block symmetric.

If every ( j,k) 2 E models a transmission or distribution line or a transformer described by (9.2), then Y
is block symmetric with a three-phase P circuit representation. If some ( j,k) 2 E model transformers
described by (9.3), however, then Y is not.

The expression (4.10) for Y for a single-phase network generalizes directly to the three-phase setting.
Let C 2 {�I,0,I}|N|⇥|E| be the bus-by-line incidence matrix defined by:

Cjl =

8
<

:

I if l = j! k for some bus k
�I if l = i! j for some bus i
0 otherwise

where I is the identity matrix of size 3. Let Y s := diag
�
ys

l , l 2 E
�

be the 3|E|⇥3|E| block diagonal matrix
with the series admittance matrices ys

l 2 C
3⇥3 as its diagonal submatrices. Let Y m := diag

⇣
ym

j j, j 2 N
⌘

be

the |N|⇥ |N| block diagonal matrix with the total shunt admittances ym
j j 2 C

3⇥3 in (9.5b) as its diagonal
submatrices. Then the admittance matrix in (9.6b) is, when ys

jk = ys
k j,

Y = CY sCT + Y m

Example 9.1. The admittance matrix Y for a 3-terminal network with zero shunt admittances is shown in
Figure 9.2.
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(b) Admittance matrix Y .

Figure 9.2: The admittance matrix Y for a 3-terminal network with no shunt admittances.

Single-phase equivalent circuit. The 3(N +1)⇥3(N +1) admittance matrix Y in (9.6) defines a single-
phase equivalent circuit of the three-phase network. Recall that a three-phase network can be represented
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by a graph G := (N,E) where N is a set of N +1 three-phase buses and E is a set of three-phase lines. The
admittance matrix Y induces a network graph G3f := (N3f

,E3f ) where N3f has 3(N + 1) buses. Each
bus in N3f is indexed by jf with j 2 N,f 2 {a,b,c} in the original network G. Each line in E3f is
indexed by ( jf ,kf 0). There is a line between bus jf and another distinct bus kf 0 in G3f if and only if
Y ff 0

jk is nonzero. We call this graph G3f the single-phase equivalent (circuit) of the three-phase network
G. All the single-phase modeling and analysis developed in earlier chapters can be directly applied to this
single-phase equivalent.

When shunt admittances are assumed zero, ym
jk = ym

k j = 0 for all ( j,k) 2 E, the 3(N + 1)⇥ 3(N + 1)
admittance matrix Y has zero block row sums (Definition 9.1), because

Yj j = Â
k:( j,k)2E

ys
jk = Â

k
�Yjk, j 2 N

so that Âk Yjk = 0 for all j. Suppose Y has zero block row sums. Then Y also has zero block column sums
if and only if Y is block symmetric. The matrix has zero row sums if Âk,f 0Yjf ,kf 0 = 0 for all jf . This is
equivalent to

Â
k,f 0

Yjf ,kf 0 = Â
f 02{a,b,c}

yff 0
j j � Â

k:( j,k)2E
f 02{a,b,c}

yff 0
jk = 0, jf 2 N⇥{a,b,c}

i.e., zero row sums requires only that the 3⇥3 matrix Âk Yjk has zero row sums, whereas zero block row
sums requires that Âk Yjk is a zero matrix. Hence if a matrix has zero block row sums, then all its row sums
are zero, but the converse does not necessarily hold.

In general Y is not symmetric (nor block symmetric), i.e., it may not satisfy C4.1 as the admittance
matrix of a single-phase network. It is symmetric, and block symmetric, under the following condition:

C9.2: In addition to C9.1, all series and shunt admittance matrices ys
jk,y

m
jk,y

m
k j are complex symmet-

ric, so that the admittance matrix Y is both symmetric and block symmetric.

Suppose all transmission and distribution line models satisfy C9.2 (in particular, it satisfies assumptions
C8.1 and C8.2). If every ( j,k) 2 E models a transmission or distribution line or a transformer described
by (9.2), then Y is not only block symmetric, but also symmetric (hence satisfying C4.1). Therefore
Y has a three-phase P circuit representation and the admittance matrix of its single-phase equivalent is
complex symmetric. If some ( j,k) 2 E models transformers described by (9.3), however, then Y is neither
symmetric nor block symmetric.

Radial network. Even when the multiphase network G is radial (i.e., with tree topology), its single-
phase equivalent G3f is a meshed network (i.e., has cycles), but in that case, G3f has a radial macro-
structure in which each line is represented as a clique (complete subgraph). Specifically G3f has a maximal
clique consisting of the set

n
jf ,kf 0 2 N3f : f ,f 0 2 {a,b,c}

o
of buses if and only if ( j,k) is a line in G;

see Figure 9.3. The corresponding principal submatrix YG3f ( j,k) 2 C
6⇥6 of Y is:

YG3f ( j,k) =


Yj j Yjk
Yk j Ykk

�
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ja jb jc 

kb kc ka 

Figure 9.3: A clique of G3f corresponding to line ( j,k) in G.

We will explain in Chapter ?? that G3f is a chordal graph which can be exploited to simplify the semidef-
inite relaxation of optimal power problems.

9.1.3 Invertibility of Y , Y22 and Y/Y22

In this subsection we study the invertibility and properties of Y , Y22 and its Schur complement Y/Y22.
These results extend those in Chapter 4.2.5 from single-phase to three-phase networks.

Invertibility of Y . Recall that a real matrix G is positive semidefinite (or positive definite), denoted
G⌫ 0 (or G� 0), if G is symmetric and vTGv� 0 (or vTGv > 0) for all real vectors v (see Remark 25.1 in
Appendix 25.1.5). Under assumption C9.2 (ys

jk = ys
k j, ym

jk and ym
k j are complex symmetric) the admittance

matrix Y 2 C
3(N+1)⇥3(N+1) is both symmetric and block symmetric. Write admittances in terms of their

real and imaginary parts, ys
jk = gs

jk + ibs
jk, ym

jk = gm
jk + ibm

jk, and ym
k j = gm

k j + ibm
k j. Consider the following

conditions on the conductances gs
jk,g

m
jk,g

m
k j 2 R

3⇥3:

C9.3: For all lines ( j,k) 2 E, gs
jk ⌫ 0, gm

jk ⌫ 0, gm
k j ⌫ 0.

C9.4a: For all buses j 2 N, gm
j j := Âk:k⇠ j gm

jk � 0, i.e., for all j, there exists a line ( j,k) 2 E such that
gm

jk � 0

C9.4b: For all lines ( j,k)2 E, gs
jk � 0. Furthermore there exists a line ( j0,k0)2 E such that gm

j0k0 � 0.

C9.4c: For all lines ( j,k) 2 E, gs
jk � 0. Furthermore there exists a line ( j0,k0) 2 E such that the

intersection of the null spaces of gm
j0k0 and gm

k0 j0 is {0}.

Condition C9.4b is a special case of C9.4c which does not require positive definiteness of gm
jk. The next

result extends Theorems 4.2, 4.3, and 4.9 in Chapter 4.2.5 from single-phase to three-phase networks.

Theorem 9.1. Suppose the network is connected and the admittance matrix Y 2 C
3(N+1)⇥3(N+1) satisfies

C9.2. If the conductance matrices gs
jk,g

m
jk,g

m
k j 2 R

3⇥3 satisfy conditions C9.3 and one of C9.4a, C9.4b,
C9.4c, then



Draft: EE 135 Notes April 30, 2024 331

1. The admittance matrix Y�1 2 C
3(N+1)⇥3(N+1) exists and is symmetric. Moreover both Re(Y ) � 0

and Re(Y�1)� 0.

In addition if Y =:

Y11 Y12
YT

12 Y22

�
with invertible Y22, then

2. The Schur complement Y/Y22 := Y11�Y12Y�1
22 YT

12 of Y22 is symmetric and invertible. Moreover both
Re(Y/Y22)� 0 and Re

�
(Y/Y22)�1�� 0.

Proof. Let G := Re(Y ) 2 R
3(N+1)⇥3(N+1). We will show that G � 0. The claims then follow from Theo-

rems 4.2 and 4.9.

Fix any real vector r 2 R
3(N+1) and decompose it into r =: (r j, j 2 N) with r j 2 R

3. We have using
(9.6b) and (9.5b)

rTGr = Â
j

Â
k:k⇠ j

⇣
rT

j gs
jk r j � rT

j gs
jk rk

⌘
+ Â

j2N
rT

j gm
j j r j (9.7a)

= Â
( j,k)2E

⇣
rT

j gs
jkr j � rT

j gs
jk rk � rT

k gs
k j r j + rT

k gs
k j rk

⌘
+ Â

j
Â

k:k⇠ j
rT

j gm
jk r j (9.7b)

= Â
( j,k)2E

(r j�rk)
Tgs

jk (r j�rk) + Â
( j,k)2E

⇣
rT

j gm
jk r j + rT

k gm
k j rk

⌘
(9.7c)

where the last equality follows because gs
jk = gs

k j for all ( j,k) 2 E by C9.2. Since gs
jk,g

m
jk,g

m
k j 2 R

3⇥3 are
positive semidefinite for all lines ( j,k) 2 E by C9.3, every summand is nonnegative and hence rTGr = 0
if and only if every summand is zero. We examine each of the three cases:

• C9.4a holds: Then for all buses j 2 N, rT
j gm

j j r j > 0 unless r j = 0. Therefore for the second
summation in (9.7a) to be zero we must have r j = 0 for all j 2 N. This implies that G� 0.

• C9.4b holds: For the first summation in (9.7c) to be zero we must have r j = rk for all ( j,k) 2 E.
Since the network is connected, this implies that r j = r1 for all j 2 N. The second summation in
(9.7b) then becomes, if r1 6= 0,

Â
j

Â
k:k⇠ j

rT

j gm
jk r j = rT

1

 

Â
j

Â
k:k⇠ j

gm
jk

!
r1 � rT

1 gm
j0k0 r1 > 0

Therefore rTGr > 0 unless r = 0, i.e., G� 0.

• C9.4c holds: As for the case of C9.4b, we must have r j = r1 for all j 2 N. Then the second
summation in (9.7c) becomes, if r1 6= 0,

Â
( j,k)2E

⇣
rT

j gm
jk r j + rT

k gm
k j rk

⌘
� rT

1

⇣
gm

j0k0 + gm
k0 j0

⌘
r1 > 0

where the last inequality follows because gm
j0k0 and gm

k0 j0 are positive semidefinite and their null spaces
intersect only at the origin. Therefore rTGr > 0 unless r = 0, i.e., G� 0.
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Hence in all three cases G is positive definite. Since Y is complex symmetric and Y22 is nonsingular by
assumption, Theorems 4.2 and 4.9 complete the proof.

Consider the following conditions on the conductances bs
jk,b

m
jk,b

m
k j 2 R

3⇥3:

C9.5: For all lines ( j,k) 2 E, bs
jk � 0, bm

jk � 0, bm
k j � 0.

C9.6a: For all buses j 2 N, bm
j j := Âk:k⇠ j bm

jk � 0, i.e., for all j, there exists a line ( j,k) 2 E such that
bm

jk � 0

C9.6b: For all lines ( j,k)2 E, bs
jk � 0. Furthermore there exists a line ( j0,k0)2 E such that bm

j0k0 � 0.

C9.6c: For all lines ( j,k) 2 E, bs
jk � 0. Furthermore there exists a line ( j0,k0) 2 E such that the

intersection of the null spaces of bm
j0k0 and bm

k0 j0 is {0}.

Condition C9.6b is a special case of C9.6c which does not require negative definiteness of bm
jk. The next

result extends Theorems 4.2, 4.4, and 4.9 in Chapter 4.2.5 from single-phase to three-phase networks. Its
proof is left as Exercise 9.2.

Theorem 9.2. Suppose the network is connected and the admittance matrix Y 2 C
3(N+1)⇥3(N+1) satisfies

C9.2. If the susceptance matrices bs
jk,b

m
jk,b

m
k j 2 R

3⇥3 satisfy conditions C9.5 and one of C9.6a, C9.6b,
C9.6c, then

1. The admittance matrix Y�1 2 C
3(N+1)⇥3(N+1) exists and is symmetric. Moreover Im(Y ) � 0 and

Im(Y�1)� 0.

In addition if Y =:

Y11 Y12
YT

12 Y22

�
with invertible Y22, then

2. The Schur complement Y/Y22 := Y11�Y12Y�1
22 YT

12 of Y22 is symmetric and invertible. Moreover
Im(Y/Y22)� 0 but Im

�
(Y/Y22)�1�� 0.

The conditions in Theorem 9.1 not only ensure Re(Y ) � 0 and those in Theorem 9.2 not only ensure
Im(Y ) � 0. Each set of conditions also ensures aHY a 6= 0 for any nonzero a 2 C

3(N+1) (Exercise 9.3).
Since a necessary condition for Y to be singular is the existence of a nonzero a with aHY a = 0, these
conditions imply the invertibility of Y , as expected, and extend the sufficient conditions in Theorems 4.3
and 4.4 to three-phase networks.

Remark 9.2. The admittance matrix of a three-phase transformer involving D configuration is singular
(see (8.16) or (8.36)). This causes the admittance matrix Y of a network that contains such transformers
to be singular. A proposal in the literature is to add a small shunt admittance (diagonal entries) to the
admittance matrix of such a transformer to make it nonsingular.
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Invertibility of Y22 when ym
jk = ym

k j = 0. Let A ( N and YA be the 3|A|⇥ 3|A| principal submatrix of Y
consisting of row and column blocks Yjk with j,k 2 A. Suppose the shunt admittances are zero, ym

jk = ym
k j =

0 so that the admittance matrix Y has zero block row sums and is not invertible. The next result provides
a set of simple sufficient conditions for a principal submatrix YA to be invertible when A is a strict subset
of N. Its proof is similar to those of Theorems 4.5 and 4.6 and left as Exercise 9.4.

Theorem 9.3. Suppose the network is connected and the admittance matrix Y 2 C
3(N+1)⇥3(N+1) satisfies

C9.2. Suppose ym
jk = ym

k j = 0 for all lines ( j,k) 2 E. Consider the principal submatrix YA 2C
3|A|⇥3|A| for a

strict subset A ( N.

1. If gs
jk � 0 for all lines ( j,k) 2 E then Y�1

A exists and is symmetric. Moreover both Re(YA) � 0 and
Re(Y�1

A )� 0.

2. If bs
jk � 0 for all lines ( j,k) 2 E then Y�1

A exists and is symmetric. Moreover Im(YA) � 0 but
Im(Y�1

A )� 0.

Even when not all gs
jk are positive definite and not all bs

jk are negative definite the admittance matrix
Y can still be invertible because they cannot be zero simultaneously. The next result extends Theorem 4.8
from single-phase to three-phase setting.

Theorem 9.4. Suppose the network is connected and the admittance matrix Y 2 C
3(N+1)⇥3(N+1) satisfies

C9.2. Suppose ym
jk = ym

k j = 0 for all lines ( j,k) 2 E. If gs
jk ⌫ 0 and bs

jk � 0 for all lines ( j,k) 2 E then the
principal submatrix YA 2 C

3|A|⇥3|A| for a strict subset A ( N satisfies:

1. Re(YA)⌫ 0, Im(YA)� 0.

2. Moreover Re(YA)� Im(YA)� 0.

3. Y�1
A exists and is symmetric.

Proof. The proof of Theorem 4.8 for single-phase network shows that GA is diagonally dominant since
gs

jk 2 R are nonnegative and hence its eigenvalues are nonnegative by the the Geršgorin disc theorem. In
the three-phase case, we cannot use this argument since not every element of the 3⇥3 conductance matrix
gs

jk is nonnegative. We will use the argument in the proof of Theorem 9.1 (see (9.7)): for any real vector
r =: (r j, j 2 A) with r j 2 R

3 we have, using GA := Re(YA),

rTGAr = Â
j

Â
k:k⇠ j

⇣
rT

j gs
jk r j � rT

j gs
jk rk

⌘

= Â
( j,k)2E

⇣
rT

j gs
jkr j � rT

j gs
jk rk � rT

k gs
k j r j + rT

k gs
k j rk

⌘

= Â
( j,k)2E

(r j�rk)
Tgs

jk (r j�rk)
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where the last equality has used gs
jk = gs

k j for all ( j,k) 2 E from C9.2. Since gs
jk ⌫ 0, rTGAr � 0 for any

r , i.e., GA ⌫ 0. Similar, using BA := Im(YA), we have

rTBAr = Â
j

Â
k:k⇠ j

⇣
rT

j bs
jk r j � rT

j bs
jk rk

⌘
= Â

( j,k)2E
(r j�rk)

Tbs
jk (r j�rk)

Therefore rTBAr  0 since bs
jk � 0, i.e., BA � 0. This implies that GA�BA ⌫ 0.

We now show that, indeed, GA�BA � 0 because the network is connected and A⇢ N is a strict subset.
The argument is the same as that for Theorem 4.8 for single-phase networks. For a 3n⇥3n matrix M, let
M[ j,k] denote the 3⇥ 3 submatrix of M consisting of the jth row block and the kth row column. Since
GA�BA is real symmetric, consider, for any nonzero real vector r 2 R

3|A|,

rT(GA�BA)r = Â
j2A

Â
k2A

rT

j (GA[ j,k]�BA[ j,k])rk

= Â
j2A

Â
k2A:

( j,k)2E

rT

j (�gs
jk +bs

jk)rk + Â
j2A

rT

j

0

B@ Â
k2A:

( j,k)2E

(gs
jk�bs

jk) + Â
k 62A:

( j,k)2E

(gs
jk�bs

jk)

1

CAr j

= Â
j,k2A:

( j,k)2E

�
r j�rk

�T
(gs

jk�bs
jk)
�
r j�rk

�
+ Â

j2A
r jG jrT

where the third equality has used gs
jk = gs

k j for all ( j,k)2 E from C9.2. Here G j := Âk 62A:( j,k)2E(gs
jk�bs

jk)

for j 2 A and the summation is not vacuous because the network is connected and A ( N. For every line
( j,k) 2 E, ys

jk 6= 0 and hence gs
jk�bs

jk � 0 since gs
jk ⌫ 0 and bs

jk ⌫ 0. This implies G j � 0 as well for all
j 2 A. Therefore for rT(GA�BA)r > 0 for any real vector r 6= 0, i.e., GA�BA � 0.

Finally GA�BA � 0 implies that YA is nonsingular (it is clear that Y�1
A is symmetric if it exists). The

argument is exactly the same as that for Theorem 4.8 for single-phase networks.

Application: admittance matrix Y identification.

Uniform lines. Suppose all lines are of the same type specified by an impedance matrix y�1 per unit
length. These lines differ only in their lengths. We will call y the unit admittance.3 We show that this
property is preserved under Schur complement. It means that the effective line admittances of the Kron-
reduced admittance matrix Y/YA are also specified by the unit admittance y. This assumption makes the
iterative construction of the Schur complement particularly simple.

Consider any 3(N +1)⇥3(N +1) complex symmetric matrix Y on a graph G := (N,E) where its 3⇥3
(i, j)th blocks Y [i, j] are given by:

Y [i, j] =

8
<

:

�µi j y (i, j) 2 E�
Âk:(i,k)2E µik

�
y i = j

0 otherwise
(9.8)

3
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where y 2 C
3⇥3 is complex symmetric. Suppose Re(y)� 0 and µi j > 0 for all (i, j) 2 E0. Then Theorem

4.2 implies that y�1 exists, is symmetric, and Re(y�1)� 0. Kron reduction preserves this structure.

Theorem 9.5. Suppose Re(y)� 0 and µi j > 0 for all (i, j)2E0 in the complex symmetric matrix Y defined

in (9.8). Let Y =:

Y11 Y12
YT

12 Y22

�
with a 3n⇥3n nonsingular submatrix Y22, 1 n N.

1. The 3⇥3 (i, j)th blocks (Y/Y22)[i, j] of the Schur complement Y/Y22 of Y22 of Y are given by

(Y/Y )[i, j] =

8
<

:

�µ̃i j y i j
(Âk:i k µ̃ik)y i = j
0 otherwise

(9.9)

for some µ̃i j = µ̃ ji > 0. Here i j if and only if there is a path in the underlying graph G connecting
nodes i and j.

2. If the network is connected and the admittance matrix Y satisfies C9.2, then (Y/Y22)�1 exists and is
symmetric, and both Re(Y/Y22)� 0 and Re(Y/Y22)�1 � 0.

Proof. The Schur complement Y/Y22 is the admittance matrix describing the effective connectivity be-
tween nodes 1, . . . ,N� n + 1 obtained by eliminating interior nodes N� n + 2, . . . ,N + 1 by Kron reduc-
tion. We follow the approach of [12] to prove the theorem by induction on the interior nodes to be Kron
reduced one by one. Define

A0 := Y, A1 := A0/A0[n,n], · · · An := An�1/An�1[N�n+2,N�n+2] = Y/Y22

i.e., Al+1 is the admittance matrix for the graph after the last node in Al has been Kron reduced, and hence
Y/Y22 = An. Define the set of lines in the graph underlying A0, A1, . . . ,An by

E0 := E, El :=
n
(i, j) : Al[i, j] 6= 0

o
, l = 1, . . . ,k

Hence these sets are well-defined given the matrices A0, A1, . . . ,An. For 0 < l < n, let the induction
hypothesis be

Al[i, j] =

8
><

>:

�µ l
i j y (i, j) 2 El

⇣
Âk:(i,k)2El µ l

ik

⌘
y i = j

0 otherwise
(9.10)

for some µ l
i j = µ l

ji > 0. Clearly A0 satisfies (9.10). Suppose Al satisfies (9.10). We now prove that
Al+1 := Al/Al[N� l +1,N� l +1] satisfies (9.10).

The 3⇥3 (i, j)th block Al+1[i, j] is given by

Al+1[i, j] = Al[i, j] � Al[i,N� l +1]
⇣

Al[N� l +1,N� l +1]
⌘�1

Al[ j,N� l +1] (9.11)

We consider 6 cases by substituting the induction hypothesis (9.10) into (9.11):
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1. If (i, j) 2 El but either (i,N � l + 1) 62 El or ( j,N � l + 1) 62 El then, substituting the induction
hypothesis (9.10) into (9.11), we have Al+1[i, j] =�µ l+1

i j y where µ l+1
i j := µ l

i j > 0.

2. If (i, j) 62 El but both (i,N� l +1) 2 El and ( j,N� l +1) 2 El then

Al+1[i, j] = �µ l
i(N�l+1) y

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1) y

1

A
�1

µ l
j(N�l+1) y = �µ l+1

i j y

where

µ l+1
i j := µ l

i(N�l+1) µ l
j(N�l+1)

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1)

1

A
�1

> 0

3. If (i, j) 2 El , (i,N� l +1) 2 El and ( j,N� l +1) 2 El then

Al+1[i, j] := �µ l
i j y � µ l

i(N�l+1) y

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1) y

1

A
�1

µ l
j(N�l+1) y

= �µ l+1
i j y

where

µ l+1
i j := µ l

i j + µ l
i(N�l+1) µ l

j(N�l+1)

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1)

1

A
�1

> 0

4. If i = j but (i,N� l +1) 62 El then Al+1[i, i] =
⇣

Âk:(i,k)2El+1 µ l+1
ik

⌘
y where µ l+1

ik := µ l
ik > 0.

5. If i = j and (i,N� l +1) 2 El then

Al+1[i, i] :=

0

@ Â
k:(i,k)2El

µ l
ik

1

Ay � µ l
i(N�l+1) y

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1) y

1

A
�1

µ l
i(N�l+1) y

=

0

@ Â
k:(i,k)2El+1

µ l+1
ik

1

Ay

where µ l+1
ik := µ l

ik > 0 for (i,k) 2 El and k = 1, . . . ,N� l +1, and

µ l+1
i(N�l+1) := µ l

i(N�l+1)

 
1 �

µ l
i(N�l+1)

Âk:(k,N�l+1)2El µ l
k(N�l+1)

!
> 0

6. Otherwise, i 6= j and (i, j) 62 El and Al+1[i, j] = 0.

This completes the induction and the proof of part 1. Part 2 follows from Re(y)� 0 and Theorem 9.1.
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9.1.4 V s relation

Power flow equations. The power flow equations that relate bus injections s :=
�
s j, j 2 N

�
and voltages

V :=
�
Vj, j 2 N

�
can be obtained by applying the derivation for single-phase systems to the single-phase

equivalent network G3f . In particular the bus injection model in complex form is defined by the following
power flow equation that expresses power balance at each bus jf in terms of the elements Yjf ,kf 0 of the
3(N +1)⇥3(N +1) admittance matrix Y defined in (9.6):

sf
j = Â

k2N
f 02{a,b,c}

YH

jf ,kf 0V
f
j

⇣
V f 0

k

⌘H
, j 2 N, f 2 {a,b,c} (9.12a)

This directly generalizes (4.20b) from the single-phase setting to the three-phase setting. To generalize
(4.20a) to the three-phase setting note that

s j = Â
k: j⇠k

diag
⇣

VjIHjk
⌘

, j 2 N

where s j,Vj, I jk 2 C
3 are power injections, voltages, and line currents in all phases. We then have from

(8.8)

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (9.12b)

Power flow analysis and optimization for unbalanced three-phase networks can be conducted using both
forms of the bus injection model (9.12). In particular (9.12b) will be used in Chapter 10.1 to prove the
equivalence of the branch flow model and the bus injection model (Theorem 10.1). The model (9.12) does
not require condition C9.1 nor C9.2.

9.1.5 Overall model

Most power flow analysis or optimization applications involve three-phase devices, either in Y or D config-
uration, connected by three-phase lines. The lines may not be phase-decoupled and the sources and loads
may not be balanced. In this subsection we compose an overall model consisting of the device modes of
Chapter 7.3 and the network equations of this section. We use this overall model to formulate a general
three-phase analysis problem in the next section.

The overall model consists of:

1. A network model that relates terminal voltage, current, and power (V, I,s). Any equivalent model
can be used, whichever is convenient for the problem under study, including:

• The (linear) current balance equation (9.5)(9.6).

• The (quadratic) power flow equation that defines the BIM model (9.12).

2. A device model for each three-phase device j. For ideal devices, this can either be:
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• Its internal model (7.29) and the conversion rules (7.8) and (7.9)(7.10); or
• Its external model summarized in Tables 7.3 and 7.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 7.2 and the conversion rules (7.8) and (7.9)(7.10); or
• Its external model summarized in Table 7.2 when only terminal quantities are needed.

If only voltage sources, current sources and impedances are involved then the overall model is linear,
consisting of the nodal current balance equation (9.5)(9.6) and linear device models. If power sources are
also involved then, even though (9.5)(9.6) can still be used as the network model, the overall model will
be nonlinear because of nonlinear power source models.

9.2 Three-phase analysis

A device model relates its internal and terminal variables. A network equation relates the terminal vari-
ables of these devices. A typical three-phase analysis problem is: given a collection of voltage sources,
current sources, power sources and impedances connected by three-phase lines, compute a certain set of
external and internal variables. We first illustrate this in Chapter 9.2.1 using examples. We then formulate
in Chapter 9.2.2 a general three-phase analysis problem and outline in Chapter 9.2.3 a solution strategy
based on intuitions from these examples.

9.2.1 Examples

Three-phase analysis or optimization problems in practice are large-scale and can only be solved numer-
ically. The goal of analyzing small examples is to gain intuition on how to specify these problems using
the models developed in this chapter and illustrate their structure.

Consider a network of three-phase sources and impedances connected by three-phase lines. Assume
without loss of generality that there is exactly one device at each bus j. The quantities of interest include
the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘
and the terminal variables

�
Vj, I j,s j,g j

�
at each bus j. The

first set of examples is driven by voltage and current sources and the second set by power sources as well.
In these examples we specify the parameters of a set of (ideal) devices and our objective is to compute the
remaining internal and terminal voltages, currents, and powers.

The general analysis problem we formulate in Chapter 9.2.3 will specify g j for all voltage sources.
The first example shows how g j arises in a circuit.

Example 9.2 (Reference voltage and g j). We start with a single-phase circuit shown in Figure 9.4(a)
where the source can be a voltage, current, or power source, the load is an impedance zk, and the line is a
series impedance z jk. The terminal voltages

�
Vj,Vk,Vg

�
are defined with respect to an arbitrary but fixed

reference point. The defining equations are

Vj � Vk = z jkI jk, Vk�Vg = zkI jk
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(a) Single-phase network (b) Three-phase network

Figure 9.4: Reference voltage and constant g j

Suppose the source is a current source with a given Jj from g to terminal j. Then the solution is:

I jk = Jj, Vj =
�
z jk + zk

�
Jj + Vg Vk = zkJj + Vg

The terminal voltages depend on the choice of the reference point through the ground voltage Vg. For
this example, g j = gk = Vg. In particular, if g j at the source is specified then gk at the load is fixed and
the voltages (Vj,Vk) are uniquely determined. If we choose the reference point to be the ground then
g j = gk = Vg = 0.

Consider now a three-phase system shown in Figure 9.4(b) where a device may or may not have
a neutral line and the neutrals may or may not be grounded, directly or through an impedance. The
voltage conversion rule between internal and terminal voltages for Y and D configured devices is (7.8)(7.9),
reproduced here:

Vj = VY
j + g j1, V D

j = GVj or equivalently Vj = G†V D
j + g j1

For Y -configured devices, g j =V n
j , i.e., their neutral voltages with respect to the reference point. In general

we need two of
⇣

Vj,VY
j ,g j

⌘
to determine the third. For D-configured devices, g j can be determined by

specifying one of
⇣

V a
j ,V b

j ,V c
j

⌘
for each device j. Knowing the vector Vj is sufficient to determine both

the internal voltage V D
j and g j. Knowing V D

j however is not sufficient to determine Vj without g j. This is
studied in detail in the next few examples.

Voltage and current sources. For a network driven by constant voltage and current sources without
power sources, both the device models and the network equation I =YV are linear. We will therefore focus
on linear analysis to compute terminal and internal voltages and currents. Given (Vj, I j) and

⇣
VY/D

j , IY/D
j

⌘
,

external and internal powers can be computed. As we will see, the key step in our analysis is to solve for
the internal currents IY/D

k of all impedances k, together with other quantities such as the terminal voltages
Vj of current sources j, using the network equation, internal models of impedances and the voltage and
current conversion rules. All other variables can then be derived. This solution strategy is extended in
Chapter 9.2.3 to general three-phase networks.

Example 9.3 (Generator/load in Y configuration). Consider the system in Figure 9.5 where an (ideal)
voltage source is connected through a three-phase line to an impedance, both in Y configuration. We
assume the neutrals are not grounded and there is not a neutral line. Suppose the following are specified:
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• Voltage source
⇣

EY
j ,g j := V n

j

⌘
.

• Impedance
�
zY

k ,gk := V n
k
�
.

• Line parameters
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. In particular assumption C9.1 is satisfied.

Derive the terminal and internal voltages and currents
�
Vk, Ik,VY

k , IY
k
�

of the impedance.

Figure 9.5: Example 9.3: A Y -configured generator connected through a three-phase line to a Y -configured
impedance load.

Solution. The terminal voltages (Vj,Vk) and current injections (I j, Ik) are related according to (9.5):

I j = ys
jk
�
Vj�Vk

�
+ ym

jkVj (9.13a)

Ik = ys
jk
�
Vk�Vj

�
+ ym

k jVk (9.13b)

From Table 7.3, the external models for the ideal voltage source and impedance in Y configuration are

Vj = EY
j + g j, Vk = �zY

k Ik + gk1 (9.13c)

This is a system of 12 linear equations in 12 unknowns
�
Vj, I j

�
and (Vk, Ik).

Substituting Vj from (9.13c) and the current conversion rule IY
k =�Ik into (9.13b) we have

�IY
k = �ys

jk
�
EY

j + g j
�
+
⇣

ys
jk + ym

k j

⌘
Vk (9.14a)

Substituting Vk from (9.13c) we have
✓⇣

ys
jk + ym

k j

⌘�1
+ zY

k

◆
IY
k =

⇣
ys

jk + ym
k j

⌘�1
ys

jkVj � gk1 (9.14b)

Hence

IY
k = �Ik =

�
ẑ jk + zY

k
��1 ẑ jk ys

jkVj � gk
�
ẑ jk + zY

k
��1 1

=
⇣

zY
k + zs

jk + zs
jkym

k jz
Y
k

⌘�1
Vj � gk

�
ẑ jk + zY

k
��1 1
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where zs
jk :=

⇣
ys

jk

⌘�1
, ẑ jk :=

⇣
ys

jk + ym
k j

⌘�1
and Vj = EY

j + g j. From (9.13c)

VY
k = zY

k IY
k = zY

k

⇣
zY

k + zs
jk + zs

jkym
k jz

Y
k

⌘�1
Vj � gk zY

k
�
ẑ jk + zY

k
��1 1

Vk = VY
k + gk1 = zY

k

⇣
zY

k + zs
jk + zs

jkym
k jz

Y
k

⌘�1
Vj + gk

⇣
I�
�
ẑ jk + zY

k
��1
⌘

1

In Example 9.3 the neutral voltages g j,gk are given explicitly. Often some of them are not explicitly
given but additional information is available to indirectly specify them, i.e., to either compute their values,
provide additional equations, or eliminate them in terms of other variables. For instance, if a neutral at
bus j is grounded with zero grounding impedance and voltages are defined with respect to the ground
then g j = 0. The next two examples study this in more detail. In Example 9.4, gk of the impedance zY

k
is not explicitly given, but the additional information shows that its terminal voltage and current satisfy
Vk = �ZY

k Ik; see (9.15). This means that the external model of the impedance is equivalent to that of
an impedance with an effective internal impedance ZY

k with a known neutral voltage gk = 0. (See also
Exercise 9.7 for another four-wire example).

Example 9.4 (Indirect specification of gk = V n
k ). Repeat Example 9.3 with the modification that the

impedance is specified only by zY
k (i.e., gk is not specified), and that the neutral of the impedance is

connected through a given impedance zn
k to the ground and not to the voltage source.

Solution. The equations (9.13) in Example 9.3 is now a system of 4 vector linear equations in 4 vector
unknowns

�
Vj,Vk, I j, Ik

�
and a scalar unknown, the unspecified neutral voltage gk := V n

k of the impedance,
one more unknown than in Example 9.3. Since the neutral of the impedance is connected only to the
ground (and not to the voltage source) through the impedance zn

k , KCL and Ohm’s law provide the addi-
tional equation

gk := V n
k = �zn

k

⇣
1TIk

⌘

Substituting into gk in (9.13c) we have Vk =�zY
k Ik� zn

k11TIk. Hence the external device model (9.13c) in
Example 9.3 can be replaced by

Vj = EY
j + g j1, Vk = �

⇣
zY

k Ik + zn
k11T

⌘

| {z }
ZY

k

Ik (9.15)

It says that the external behavior of the impedance zY
k when its neutral is grounded through zn

k is equivalent
to an impedance with an effective admittance ZY

k that is grounded directly so that gk := V n
k = 0. The same

computation leads to the same solution for (Vk, Ik) with the following replacement:

zY
k ! ZY

k , gk ! 0
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The next example illustrates the case where the neutrals are not grounded but connected directly to
each end of a four-wire line (also see Exercise 9.7). In this case, neither g j nor gk needs to be explicitly
specified and can be determined from the network equation I = YV . This is an example where g j of a
voltage source cannot be specified arbitrarily but is constrained by the network equation, in contrast to the
three-wire models of Examples 9.3 and 9.4. This is because, when the neutral of the voltage source j is not
grounded nor connected to bus k, the current I j is determined only by (Vj,Vk) through (9.13a) and g j can
be arbitrary. With the neutral wire, the additional constraint In0

j = 1TI j determines g j uniquely. Similarly
for gk for the impedance.

Example 9.5 (Four-wire model). Repeat Example 9.3 with the modification that the neutrals of both
devices are ungrounded and are connected to the neutral wires at each end of a 4-wire line; see Figure 9.6.
Suppose the following are specified:

• Voltage source EY
j .

• Impedance zY
k .

• Line parameters
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. In particular assumption C9.1 is satisfied.

Note that neither g j nor gk is explicitly specified.

Figure 9.6: Example 9.5: A Y -configured generator connected through a four-wire line to a Y -configured
impedance load.

Solution. To indicate the direction of internal currents on the neutral lines, we will use n to denote the
internal neutral of a device and n0 to denote the external terminal of the neutral line. In this example,
n0 = n in the sense that V n0n

j = V n0n
k = 0. See Exercise 9.7 for the case where the neutrals of the voltage

source and the load are connected through internal impedances
⇣

zn
j ,z

n
k

⌘
to each end of the four-wire line,

so
⇣

V n0n
j ,V n0n

k

⌘
may not be zero.
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Define the terminal voltages (with respect to a common reference point) and currents in C
4:

V̂j :=

2

6664

V a
j

V b
j

V c
j

V n0
j

3

7775
, V̂k :=

2

664

V a
k

V b
k

V c
k

V n0
k

3

775 , Î j :=

2

664

Ia
j

Ib
j

Ic
j

In
j

3

775 , Îk :=

2

664

Ia
k

Ib
k

Ic
k

In
k

3

775

As noted above, zn
k = 0 implies that g j := V n

j = V n0
j and gk := V n

k = V n0
k are variables to be determined.

These terminal variables are related by Î = ŶV̂ as in (9.13a) (9.13b), except that the admittance matrices
are replaced by their four-wire counterparts:

Î j = ŷs
jk
�
V̂j�V̂k

�
+ ŷm

jkV̂j, Îk = ŷs
jk
�
V̂k�V̂j

�
+ ŷm

k jV̂k (9.16a)

The external model of a four-wire voltage source in Y configuration is, since the neutrals are ungrounded
and connected to each other,

V̂j =

2

664

Ean
j +V n

j
Ebn

j +V n
j

Ecn
j +V n

j
V n

j

3

775 =


EY

j
0

�

| {z }
ÊY

j

+ g j1̂ =: ÊY
j + g j1̂, In

j = 1TI j (9.16b)

where 1̂ is the vector of all 1s of size 4 and I j := (Ia
j , I

b
j , I

c
j ). Similarly the internal model of a four-wire

impedance in Y configuration is, since the neutrals are ungrounded and connected to each other,

V̂k =

2

664

zan
k Ian

k
zbn

k Ibn
k

zcn
k Icn

k
0

3

775 + gk1̂ = �


zk 0
0 0

�
Îk + gk1̂, In

k = 1TIk (9.16c)

This is a set of 18 linear equations in 18 unknowns
�
V̂j, Î j,g j

�
and

�
V̂k, Îk,gk

�
. It replaces (9.13) when

neutrals are ungrounded and unconnected to each other and g j,gk must be given explicitly. It can be solved
as in Example 9.3.

Exercise 9.6 expresses (g j,gk) in terms of the phase voltages and currents
�
Vj,Vk, I j, Ik

�
.

The next example considers the setup of Example 9.3 in D configuration when the load is supplied by
a voltage source. Exercise 9.8 considers the D configuration when the load is supplied by a current source.
A voltage source

⇣
ED

j ,g j,b j

⌘
is fully specified. A current source only needs to specify its internal current

JD
j if shunt admittances of the line are nonzero. Otherwise its zero-sequence voltage g j also needs to be

specified (see Exercise 9.8 and Remark 9.8). Neither the zero-sequence voltage nor the zero-sequence
current (gk,bk) of the load need to be specified. They will be derived from network equations. A more
detailed comparison between Example 9.3 (voltage source) and Exercise 9.8 (current source) is given in
Tables 9.1 and 9.2 and in Remark 9.3. We will also explain in Remark 9.6 in Chapter 9.2.2 the asymmetry
in the specification of voltage and current sources in D configuration.



344 Draft: EE 135 Notes April 30, 2024

Figure 9.7: Example 9.6: Three-phase generator in D configuration connected through a three-phase line
to an impedance load in D configuration.

Example 9.6 (Generator/load in D configuration). Repeat Example 9.3 when the devices are in D config-
uration as shown in Figure 9.7, Suppose the following are specified:

• Voltage source
⇣

ED
j ,g j,b j

⌘
.

• Impedance zD
k . (Note that the internal current bk need not be specified and can be derived.)

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk = ym
k j := 0

◆
. We have assumed assumption C9.1 and that shunt

admittances are zero.

1. Compute all the other quantities in Table 9.1. In particular show that the internal voltage and current�
V D

k , ID
k
�

of the impedance depends only on ED
j , but not on

�
g j,b j

�
.

2. Show that ID
j � ID

k = d1 for some d 2 C when 11TZ�1
Th ED

j is in span(1) where ZTh := Gzs
jkGT + zD

k .

3. Show that gk = g j when the three-phase line is symmetric of the form in (8.9) with z1
jk +2z2

jk 6= 0.

4. In deriving the impedance model (7.27b), we have shown that its internal variable bk and terminal
current Ik must satisfy bk = 1

zk

�
z̃DT

k GT†� Ik, where z̃D
k := zD

k 1 and zk := 1TzD
k 1. Verify this expressions

using the answer to part 1.

Solution. We will derive the quantities in the following order: ED
j ) ID

k ,V D
k ) bk, Ik, I j. Then ED

j ,g j )
Vj,Vk,gk ) ID

j .

The current balance equation (9.5) with ym
jk = ym

k j = 0 is:

Vk = Vj � zs
jkI j
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Multiplying both sides by G and substituting the conversion rule V D
k = GVk, ED

j = GVj, and I j = �Ik, we
have

V D
k = GVk = ED

j + Gzs
jk Ik (9.17)

Substitute the internal model V D
k = zD

k ID
k of impedance and the conversion rule Ik =�GTID

k to get
⇣

Gzs
jkGT + zD

k

⌘
ID
k = ED

j (9.18)

Hence

ID
k = Z�1

Th ED
j , V D

k = zD
k Z�1

Th ED
j

where ZTh := Gzs
jkGT+zD

k is the Thévenin equivalent of the three-phase line and the three-phase impedance.
The expression for V D

k is the three-phase version of the voltage divider rule. Note that the internal variables�
V D

k , ID
k ,b j

�
of the impedance does not depend on g j.

We now calculate the other variables
⇣

Vj, I j, ID
j

⌘
and (Vk, Ik,gk,bk). The zero-sequence current and the

terminal current of the impedance are

Ik = �GTID
k = �GTZ�1

Th ED
j , bk :=

1
3

1TID
k =

1
3

1TZ�1
Th ED

j

Using the external model of an ideal voltage source from Table 7.4 we have

Vj =
1
3

GTED
j + g j1, I j = �Ik = GTZ�1

Th ED
j (9.19)

Hence

Vk = Vj� zs
jkI j =

✓
1
3

GT� zs
jkGTZ�1

Th

◆
ED

j + g j1

gk =
1
3

1TVk = g j �
1
3

⇣
1Tzs

jkGT

⌘
Z�1

Th ED
j

Since�GTID
j = I j = GTZ�1

Th ED
j from (9.19) we have GT

⇣
ID

j +Z�1
Th ED

j

⌘
= 0. Therefore (since the null space

of GT is span(1))

ID
j = �Z�1

Th ED
j + b 0j1

where b 0j 2 C is related to the given b j := 1
31TID

j by b 0j = b j +
1
31TZ�1

Th ED
j . Hence4

ID
j = �Z�1

Th ED
j +

✓
1
3

1TZ�1
Th ED

j +b j

◆
1

4Alternative derivation is: �GTID
j = GTZ�1

Th ED
j implies

ID
j = �1

3
GGTZ�1

Th ED
j + b j1 = �Z�1

Th ED
j +

1
3

11TZ�1
Th ED

j + b j1

where the last equality follows from 1
3 GGT = I� 1

3 11T by Theorem 7.2.
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From the derivation above, gk = g j if 1Tzs
jkGTZ�1

Th ED
j = 0. When the line is symmetric of the form in

(8.9) we have

1Tzs
jk = 1T

2

64
z1

jk z2
jk z2

jk
z2

jk z1
jk z2

jk
z2

jk z2
jk z1

jk

3

75 =
⇣

z1
jk +2z2

jk

⌘
1T

Hence (since z1
jk +2z2

jk 6= 0)

1Tzs
jkGT =

⇣
z1

jk +2z2
jk

⌘⇣
1TGT

⌘
= 0

Finally we verify that the expressions bk = 1
31TZ�1

Th ED
j and Ik =�GTZ�1

Th ED
j satisfy bk = 1

zk

�
z̃DT

k GT†� Ik

where z̃D
k := zD

k 1 and zk := 1TzD
k 1. We have

⇣
z̃DT

k GT†
⌘

Ik = �z̃DT
k

⇣
GT†GT

⌘
Z�1

Th ED
j = �z̃DT

k

✓
I� 1

3
11T
◆

Z�1
Th ED

j = �z̃DT
k Z�1

Th ED
j +

zk

3
1TZ�1

Th ED
j

where the second equality follows from Theorem 7.2. But

z̃DT
k Z�1

Th ED
j = 1TzD

k Z�1
Th ED

j = 1TV D
k = 0

where the last equality follows from (9.17). Hence
�
z̃DT

k GT†� Ik = zkbk as desired.

Voltage source j
V D

j given ED
j V D

k zD
k ID

k = zD
k Z�1

Th ED
j

ID
j �

�
GG†�Z�1

Th ED
j +b j1 ID

k Z�1
Th ED

j
b j given bk

1
31TID

k = 1
31TZ�1

Th ED
j

Vj G†ED
j + g j Vk

⇣
1
3GT� zs

jkGTZ�1
Th

⌘
ED

j + g j1
I j �Ik = GTZ�1

Th ED
j Ik �GTID

k =�GTZ�1
Th ED

j

g j given gk g j� 1
3

⇣
1Tzs

jkGT

⌘
Z�1

Th ED
j

Table 9.1: Example 9.6: parameters and variables for a voltage source j where ZTh := Gzs
jkGT + zD

k .

Remark 9.3 (Comprison: voltage vs current sources). In both Example 9.6 and Exercise 9.8, the key to
the derivation is to first calculate the internal current ID

k of the impedance by relating it to the given source
parameter ED

j or JD
j . Given ID

k , all other variables can be derived. This insight will be used in Chapter 9.2.3
for analyzing a general three-phase problem.

Compare the results in Table 9.1 from Example 9.6 for the voltage source with the results in Table 9.2
from Exercise 9.8 for the current source.

1. The internal variables
�
V D

k , ID
k ,bk

�
of the impedance do not depend on

�
g j,b j

�
, but only on ED

j for
the voltage source and ID

j for the current source.
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Current source j
V D

j V D
k �

⇣
Gzs

jkGT

⌘
ID

j V D
k zD

k ID
k = zD

k A(zD
k )JD

j

ID
j given JD

j ID
k A(zD

k )JD
j

b j
1
31TJD

j bk

⇣
z̃D

k
zk
� 1

3

⌘T
JD

j

Vj Vk + zs
jkI j = Vk� zs

jkGTJD
j Vk

1
3GTV D

k + gk1
I j �GTJD

j Ik GTJD
j

g j given gk g j +
1
31Tzs

jkGTJD
j

Table 9.2: Exercise 9.8: parameters and variables for a current source j where z̃D
k := zD

k 1, zk := 1TzD
k 1, and

A(zD
k ) :=

⇣
1
zk

1z̃DT
k � I

⌘
.

2. For the current source, ID
k = A(zD

k )JD
j depends only on the impedance zD

k but not on the line series
admittance ys

jk. This is because of the assumption zm
jk = zm

k j = 0. For the voltage source, ID
k =

Z�1
Th ED

j depends on both zs
jk and zD

k through their Thévenin equivalent. Their values are equal if
ED

j = ZTh A
�
zD

k
�

JD
j .

3. For both the voltage and current source, gk = g j if zs
jk is symmetric.

4. For the current source, the loop flows b j and bk are related as follows (see Exercise 9.8):

• bk =�b j if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = 0.

• bk = 0 if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = zkb j.

• bk = 0 if the impedance zD
k = zk

3 I is balanced, regardless of whether JD
j is balanced or whether

b j is zero. The converse does not necessarily hold.

Example 9.7 (Balanced system). Assume the system in Example 9.6 is a balanced system, i.e., given

• The voltage source parameters
⇣

ED
j ,g j,b j

⌘
with ED

j := l ja+ where l j 2 C, a+ := (1,a,a2), and

a := e�i2p/3,

• The impedance zD
k := z 0k I where z 0k 2 C.

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk = ym
k j := 0

◆
with zs

jk = z jkI, i.e., the phases are decoupled.

1. Show that ZTh = z 0kI+z jkGGT and Z�1
Th = a

⇣
I� az jk

3az jk�1 11T
⌘

where a := 1/(z 0k +3z jk).

2. Show that all variables
�
Vj,Vk, I j, Ik

�
,
�
V D

k , ID
k
�

are balanced positive-sequence sets.
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Solution. By definition

ZTh := zD
k +Gzs

jkGT = z 0kI + z jkGGT

Substituting GGT = 3I� 11T from Theorem 7.2 we have ZTh = (1/a)
⇣
I�az jk11T

⌘
. Apply the matrix

inversion formula (25.5) in Appendix 25.1.3: given a scalar c 2 C, vectors b,d 2 C
n, and the identity

matrix In of size n,
⇣
In +bcdT

⌘�1
= In � b

⇣
c�1 +dTb

⌘�1
dT

we therefore have (with c :=�az jk, b = d = 1)

Z�1
Th = a

✓
I �

az jk

3az jk�1
11T
◆

(9.20)

To show that all voltages and currents are balanced positive-sequence sets, i.e., in span(a+), the key
property that we will use is Corollary 1.3 which states that: For any balanced positive-sequence vector
x+a1 2 C

3 with a 2 C, we have

G(x+a1) = (1�a)x, GT(x+a1) = (1�a2)x

We have from Table 9.1 (substituting ED
j = l jI and zD

k = z 0kI)

ID
k = Z�1

Th ED
j = al j

✓
I �

az jk

3az jk�1
11T
◆

a+ =
l j

z 0k +3z jk
a+

V D
k = zD

k ID
k =

z 0k
z 0k +3z jk

l j a+, bk :=
1
3

1TID
k = 0

where we have used 1Ta+ = 0. The expression for V D
k is the voltage divider rule.

We now calculate the other variables
⇣

Vj, I j, ID
j

⌘
and (Vk, Ik,gk). The terminal current of the impedance

are

Ik = �GTID
k = �

l j

z 0k +3z jk
GTa+ = �

(1�a2)l j

z 0k +3z jk
a+

Using the external model of an ideal voltage source from Table 7.4 we have

Vj =
1
3

GTED
j + g j1 =

1
3
(1�a2)l j a+ + g j1

I j = �Ik =
(1�a2)l j

z 0k +3z jk
a+

Hence

Vk = Vj� zs
jkI j =

(1�a2)z 0k
3
�
z 0k +3z jk

�l j a+ + g j1, gk =
1
3

1TVk = g j

Finally

ID
j = �1

3
GI j +b j1 = �

(1�a)(1�a2)l j

3
�
z 0k +3z jk

� a+ + b j1
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With power sources. The solution strategy is the same as that for problems without power sources with
the addition of quadratic device models of power sources. Specifically we first relate internal voltages and
currents to power sources (sD

j ,g j) to obtain a system of quadratic equations that can be solved numerically.
Then all other voltages and currents can be obtained analytically in terms of a solution of the quadratic
equations. Finally we can calculate internal and external power using sY/D

j := diag
⇣

VY/D
j IY/DH

j

⌘
and

s j := diag
⇣

VjIHj
⌘

respectively. This solution strategy is extended in Chapter 9.2.3 to general three-phase
networks.

Example 9.8 (Power source). Consider the system in Figure 9.7 where, instead of a voltage source, the
generator is a three-phase power source. Suppose the following are specified:

• Power source
⇣

sD
j ,g j

⌘
.

• Impedance zD
k . (Note that bk needs not be specified for an impedance and can be derived.)

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
with nonzero ym

jk and ym
k j. In particular assumption C9.1 is satisfied.

Find all remaining internal and external variables
�
V D

i , ID
i ,sD

i ,b j
�

and (Vi, Ii,si,gk), i = j,k.

Solution. The current balance equation I = YV , the internal models of the power source and impedance,
and the conversion rules are:


I j
Ik

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�
Vj
Vk

�
(9.21a)

sD
j = diag

⇣
V D

j IDH
j

⌘
, V D

k = zD
k ID

k (9.21b)

GVi = V D
i , Ii = �GTID

i , i = j,k (9.21c)

Assuming the admittance matrix Y is invertible (e.g., it satisfies the condition in Theorem 4.3), denote its
inverse by

Y�1 :=


ys
jk + ym

jk �ys
jk

�ys
jk ys

jk + ym
k j

��1

=


z j j z jk
zk j zkk

�

We can then relate the internal variables
�
V D

i , ID
i
�
, i = j,k, by eliminating the external variables to get


V D

j
V D

k

�
= �diag(G,G)


z j j z jk
zk j zkk

�
diag

⇣
GT,GT

⌘ID
j

ID
k

�
(9.22)

sD
j = diag

⇣
V D

j IDH
j

⌘

Eliminating V D
k using V D

k = zD
k ID

k and re-arranging, we get


Z j j Z jk I

Zk j Zkk + zD
k 0

�2

4
ID

j
ID
k

V D
j

3

5 =


0
0

�
(9.23a)

diag
⇣

V D
j IDH

j

⌘
= sD

j (9.23b)
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where Z j j := Gz j jGT and so on. This is a system of 9 quadratic equations in 9 variables
⇣

V D
j , ID

j , ID
k

⌘
.

It can be solved numerically. All other variables can then be derived analytically in terms of a solution⇣
V D

j , ID
j , ID

k

⌘
.

We can further reduce (9.23) by eliminating V D
j and ID

k to get a quadratic equation in ID
j :

diag
✓✓
�Z j j +Z jk

⇣
Zkk + zD

k

⌘�1
Zk j

◆
ID

j IDH
j

◆
= sD

j , j 2 N (9.24)

In summary we can first solve (9.24) numerically to obtain ID
j and then derive all other variables, or first

solve (9.23) numerically to obtain
⇣

V D
j , ID

j , ID
k

⌘
and then all other variables. They are equivalent to solving

the original system (9.21) numerically. The decentralized structure of (9.24) is quite striking: the system
of power flow equations for the entire network reduces to this quadratic equation separately for each bus j
that can be solved in parallel.

We now derive all other variables from ID
j , by tracing back the derivation of (9.24). From (9.23a) we

have

ID
k = �

⇣
Zkk + zD

k

⌘�1
Zk jID

j , V D
j = �Z j jID

j �Z jkID
k =

✓
�Z j j +Z jk

⇣
Zkk + zD

k

⌘�1
Zk j

◆
ID

j

From (9.21b) we have

V D
k = zD

k ID
k = �zD

k

⇣
Zkk + zD

k

⌘�1
Zk jID

j ,

The internal zero-sequence currents are given by

b j =
1
3

1TID
j , bk =

1
3

1TID
k

This completes the derivation of internal voltages and currents.

The terminal currents can be obtained from the conversion rule (9.21c):

I j = �GTID
j , Ik = �GTID

k = GT

⇣
Zkk + zD

k

⌘�1
Zk jID

j

Note that 1TV D
j = 1TV D

k = 0 from (9.22). Hence the conversion rule (9.21c) yields (recall that g j is
specified)

Vj =
1
3

V D
j + g j1 (9.25a)

Given the terminal voltage Vj of the power source, (Vk,gk) of the impedance can then be determined
through the network equation (9.21a):

Vk =
⇣

ys
jk + ym

k j

⌘�1⇣
ys

jkVj + Ik

⌘
, gk =

1
3

1TVk (9.25b)

Notice that the zero-sequence voltage g j of the power source uniquely determines gk of the impedance.
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The derivation in Example 9.8 relies on the assumption that the admittance matrix Y in (9.21a) is
invertible. If the shunt admittances ym

jk = ym
k j = 0 then Y has zero block row sums (Definition 9.1), i.e.,

Âk Yjk = 0 for all j. This implies that Y has zero row sums, i.e., Âk,f 0Yjf ,kf 0 = 0 for all jf , and is therefore
singular. In that case, additional information needs to be specified to obtain a unique solution, as the next
example illustrates.

Example 9.9 (Power source). Repeat Example 9.8 but with zero shunt admittances and given zero-
sequence currents, i.e., suppose the following are specified:

• Power source
⇣

sD
j ,g j

⌘
.

• Impedance zD
k .

• Line admittances
⇣

ys
jk,y

m
jk = ym

k j = 0
⌘

with nonsingular ys
jk. In particular assumption C9.1 is satis-

fied.

• b j +bk := 1
31T

⇣
ID

j + ID
k

⌘
= b 0.

Solution. When ym
jk = ym

k j = 0 the network equation (9.21a) reduces to

I j = �Ik = ys
jk
�
Vj�Vk

�
(9.26)

Hence GT

⇣
ID

j + ID
k

⌘
= 0 from (9.21c), implying that

ID
j + ID

k =
�
b j +bk

�
1 = b 0 1 (9.27)

with b 0 a given quantity. We will express V D
j in terms of ID

j in order to write s j = diag
⇣

V D
j IDH

j

⌘
as a

quadratic equation in ID
j .

Multiplying both sides of (9.26) by zs
jk :=

⇣
ys

jk

⌘�1
and using the conversion rule again (9.21b)(9.21c),

we have

V D
j =

⇣
Gzs

jkGT + zD
k

⌘
ID
k = ZD

jk

⇣
�ID

j +b 01
⌘

= �ZD
jkID

j +b 0z̃D
k (9.28)

where the second equality follows from (9.27), ZD
jk := Gzs

jkGT + zD
k , and z̃D

k := zD
k 1. Hence we have

sD
j = diag

⇣
V D

j IDH
j

⌘
= diag

⇣
�ZD

jkID
j IDH

j + b 0z̃D
k IDH

j

⌘
(9.29)

This is a system of three quadratic equations in three variables ID
j 2 C

3. Assume a solution exists and can
be obtained by solving (9.29) numerically.

Given a solution ID
j of (9.29), all other variables can be derived analytically in terms of ID

j by tracing
back the derivation of (9.29), similar to the derivation in Example 9.8. Specifically we have I j = �GTID

j
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and b j := 1
31TID

j . We obtain V D
j from (9.28), from which we have Vj = 1

3GTV D
j + g j1. This computes all

voltages and currents of the power source j.

The network equation (9.26) then yields Vk = Vj� zs
jkI j and hence also gk := 1

31TVk. We also have
Ik = �I j = GTID

j , bk = b 0 �b j, and hence ID
k = �1

3GIk + bk1 and V D
k = zD

k ID
k . This computes all voltages

and currents of the impedance k.

The next example shows that if the power source and the impedance are balanced and the line is
decoupled and balanced, then all voltages, currents, and powers will be generalized balanced vectors.
This will be proved for general networks in Chapter 9.3. Furthermore the given power sD

j cannot be
arbitrary but must be consistent with other parameters of the network such as line and device impedances,
e.g., from (9.33), b j/c must be real. This generalizes the single-phase case where a power source s supplies
an impedance load z with a current i. Then s = z|i|2 implying that s/z is a read number. This is because
\z = \s fixes the phase difference between the voltage v and current i across the impedance.

Example 9.10 (Balanced power source). Repeat Example 9.8 when the system is balanced, i.e.,

• Power source
⇣

sD
j ,g j

⌘
with sD

j = a ja+ + b j1 for given
�
a j,b j

�
, i.e., a balanced power source

must be a generalized balanced vector. Moreover its voltage and current
⇣

V D
j , ID

j

⌘
are generalized

balanced vectors.

• Impedance zD
k := z D

k I.

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
:=
⇣

hs
jkI,h

m
jkI,h

m
k jI
⌘

with nonzero hs
jk, hm

jk and hm
k j.

Find all remaining internal and external variables
�
V D

i , ID
i ,sD

i ,b D
i
�

and (Vi, Ii,si,gi), i = j,k. Show that the
problem can be solved analytically when a reference angle is given, say, \V a

j := q a
j .

Solution. Let (recall that 1TV D
j = 0)

V D
j =: vD

j a+, ID
j =: iDj a+ +b j1 (9.30)

giving (noting diag
�
a+aH

+

�
= 1)

sD
j = diag

✓
vD

j a+

⇣
iDj a+ +b j1

⌘H◆
=
⇣

vD
j b j

⌘
a+ +

⇣
vD

j iDj
⌘

1

where
⇣

vD
j , i

D
j ,b j 2 C

3
⌘

are to be determined. Recall that x denotes the complex conjugate of any x 2 C.

Therefore, since sD
j = a ja+ +b j1,

vD
j b j = a j, vD

j iDj = b j (9.31)

which are two quadratic equations in unknowns
⇣

vD
j , i

D
j ,b j

⌘
2 C

3. Note that the internal power sD
j is

different in each phase (with different phase angles separated by 120�) if and only if b j 6= 0.
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We will solve this problem by substituting the given balanced system parameters into the solution of
Example 9.8.

Specifically the admittance matrix is

Y :=


ys
jk + ym

jk �ys
jk

�ys
jk ys

jk + ym
k j

�
=

hs
jk +hm

jk �hs
jk

�hs
jk hs

jk + ym
k j

�

| {z }
Y 1f

⌦I

Assuming the 2⇥2 admittance matrix Y 1f is invertible with inverse
�
Y 1f��1

=:


z j j z jk
zk j zkk

�
we have

Y�1 =
⇣

Y 1f
⌘�1
⌦ I =:


z j j z jk
zk j zkk

�
⌦ I

where the first equality follows from (A⌦B)�1 = A�1⌦B�1 in Lemma 9.6. Then (9.22) becomes

V D

j
V D

k

�
= �diag(G,G)

✓
z j j z jk
zk j zkk

�
⌦ I

◆
diag

⇣
GT,GT

⌘ID
j

ID
k

�

=


z j j z jk
zk j zkk

�
⌦
⇣

GGT

⌘ID
j

ID
k

�

where GGT = 3I�11T from Theorem 7.2. Then (9.23) becomes (9.31) together with


z j j
�
GGT

�
z jk
�
GGT

�
I

zk j
�
GGT

�
zkk
�
GGT

�
+z D

k I 0

�2

4
iDj a+ +b j1

ID
k

vD
j a+

3

5 =


0
0

�

where we have used the specification (9.30). This is a system of 8 (redundant) quadratic equations that can
be solved numerically for the 6 unknowns

⇣
vD

j , i
D
j ,b j

⌘
2C3 and ID

k 2C3. It implies that ID
k is a generalized

balanced vector of the form ID
k = iDk a+ +bk1 for some

�
iDk ,bk

�
.

To evaluate (9.24) we have

ID
j IDH

j =
⇣

iDj a+ +b j1
⌘⇣

iDj a+ +b j1
⌘H

=
���iDj
���
2

a+aH

+ + iDj b j a+1T + iDj b j 1aH

+ +
��b j
��2 11T

and therefore
⇣

GGT

⌘
ID

j IDH
j = 3

✓���iDj
���
2

a+aH

+ + iDj b j a+1T
◆

(9.32a)

where we have used GGTa+ = 3a+ from Corollary 1.3 and GT1 = 0. Furthermore

⇣
Zkk + zD

k

⌘�1
=
⇣

zkk

⇣
GGT

⌘
+z D

k I
⌘�1

=
⇣⇣

3zkk +z D
k

⌘
I � zkk11T

⌘�1
=

1
3zkk +z D

k

 
I� zkk

z D
k

11T
!
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where the last equality follows from the matrix inversion formula (see Appendix 25.1.3.2)

(In +BD)�1 = In � B(Ik +DB)�1 D

when B,DT 2 C
n⇥k and In,Ik denote identity matrices of sizes n,k respectively. Hence

Z jk

⇣
Zkk + zD

k

⌘�1
Zk j =

z jkzk j

3zkk +z D
k

⇣
GGT

⌘ 
I� zkk

z D
k

11T
!⇣

GGT

⌘
=

3z jkzk j

3zkk +z D
k

GGT (9.32b)

Together with Z j j = z j jGGT, (9.32) implies that (9.24) is

s j = a ja+ + b j1 =

 
�z j j +

3z jkzk j

3zkk +z D
k

!
diag

⇣
GGHID

j IDH
j

⌘

= 3

 
�z j j +

3z jkzk j

3zkk +z D
k

!

| {z }
c

✓
iDj b j a+ +

���iDj
���
2

1
◆

where we have used diag
�
a+aH

+

�
= 1. Hence

c iDj b j = a j, c
���iDj
���
2

= b j (9.33)

which is a system of 2 quadratic equations. This yields the magnitude of iDj :

���iDj
���
2

=
b j

c

which in particular means that the specification cannot be arbitrary, e.g., b j/c must be real.

When the reference angle\V a
j := q a

j is given, let f j :=\iDj . Given iDj :=
q

b j
c eif j , all the other variables⇣

vD
j , i

D
j ,b j

⌘
2 C

3 and ID
k 2 C

3 can be obtained as in Example 9.8, as a function of f j which can then be
determined from the given reference angle:

\V a
j = \


1
3

GTvD
j a+ + g j1

�a
= q a

j

This also shows that all variables are (generalized) balanced positive-sequence sets.

Remark 9.4 (Nonuniqueness of specification). Device specification is not unique and depends on the
application under study. For Example 9.8, since both internal voltages V D

j and V D
k are obtained in terms

of ID
j in (9.25), we can either specify g j for the power source and derive gk of the impedance through the

network equation, as done in Example 9.8, or alternatively, we can specify gk and determine g j from the
network equation instead. While Example 9.8 contains no power sources, the next example illustrates
multiple ways to specify and solve the case when both the generator and the load are power sources.

Also see Remark 9.6 for discussions on the asymmetry in device specifications.
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The next example uses the internal model or an external model of power sources, depending on how
the power sources are specified. Specifically the solution boils down to a system of quadratic equations
that can be solved numerically. All other variables can then be derived analytically in terms of a solution of
the quadratic equations. For each of the two power sources, if its zero-sequence voltage gi is specified, we
will use the internal model for the power source to obtain the system of quadratic equations in the internal
currents ID

i . Then the internal voltage V D
i can be derived and, with the given gi, the terminal voltages Vi.

If its zero-sequence current bi is specified, on the other hand, we will use an external model to obtain the
quadratic equations in the terminal current Ii from which, with the given bi, the internal current ID

i can
then be derived. The network equation is used to express V D

i in terms of ID
i in the first case and express Vi

in terms of Ii in the second case in the derivation of the system of quadratic equations.

Example 9.11 (Power sources). Consider the system in Figure 9.7 where both the generator and load
are power sources. Suppose the line admittances

⇣
ys

jk,y
m
jk,y

m
k j

⌘
are specified with nonzero ym

jk, ym
k j and

assumption C9.1, as in Example 9.8.

1. Suppose the power sources are specified as
⇣

sD
j ,g j

⌘
and

�
sD

k ,gk
�
. Determine all variables

�
V D

i , ID
i ,bi

�

and (Vi, Ii,si), i = j,k.

2. Suppose the power sources are specified as
⇣

sD
j ,b j

⌘
and

�
sD

k ,bk
�
. Determine all variables

�
V D

i , ID
i
�

and (Vi, Ii,si,gi), i = j,k.

3. Suppose the power sources are specified as
⇣

sD
j ,g j

⌘
and

�
sD

k ,bk
�
. Determine all variables

�
V D

i , ID
i
�

and (Vi, Ii,si), i = j,k, and b j,gk.

Solution.

1. The internal model of the power sources, the conversion rules, and the current balance equation are

sD
i := diag

⇣
V D

i IDH
i

⌘
, V D

i = GVi, Ii = �GTID
i , i = j,k (9.34a)


I j
Ik

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�
Vj
Vk

�
(9.34b)

Assume the admittance matrix Y in (9.34b) is invertible and let Y�1 =:


z j j z jk
zk j zkk

�
. Then substituting

the conversion rules into the network equation (9.34b) yields

V D

j
V D

k

�
= �diag(G,G)


z j j z jk
zk j zkk

�
diag

⇣
GT,GT

⌘

| {z }

Z:=

"
Z j j Z jk
Zk j Zkk

#


ID

j
ID
k

�
(9.35)

Substituting V D
j and V D

k into the internal power source models in (9.34a) yelds

sD
j := �diag

⇣⇣
Z j jID

j +Z jkID
k

⌘
IDH

j

⌘
, sD

k := �diag
⇣⇣

Zk jID
j +ZkkID

k

⌘
IDH
k

⌘
(9.36)
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This is a system of 6 quadratic equations that can be solved numerically for
⇣

ID
j , ID

k

⌘
2 C

6.

All other variables can then be derived in terms of a solution
⇣

ID
j , ID

k

⌘
. Specifically, the internal

voltages can be obtained from the internal power source model (9.34a) (or equivalently from (9.35)),
V D

i =
�
diag

�
IDH
i
���1 sD

i , i = 1,2. Using gi, the terminal voltages are determined by the conversion
rule, Vi = 1

3 GTV D
i + gi1, i = 1,2. In terms of ID

i we have bi := 1
31TID

i and Ii =�GTID
i , i = j,k. The

terminal power is si := diag
�
ViIHi

�
, i = j,k.

2. When
�
g j,gk

�
are given as in part 1, we set up equation (9.36) to solve numerically for

⇣
ID

j , ID
k

⌘
,

so that V D
i and then Vi can be derived for i = j,k. When

�
b j,bk

�
are given instead, we will solve

numerically for (Vj,Vk) by using the external model (7.25a) of a power source, reproduced here:

sD
i = �1

3
diag

⇣
G
⇣

ViIHi
⌘

GT

⌘
+ b iGVi, 1TIi = 0, i = j,k

and the network equation (9.34b). Note that all these equations relate terminal voltages and currents.

Specifically, instead of (9.35)), obtain from the network equation (9.34b)

Vj
Vk

�
=


z j j z jk
zk j zkk

�
I j
Ik

�

Substituting into the external models of the power sources we have

sD
j = �1

3
diag

⇣
G
�
z j jI j + z jkIk

�
IHj GT

⌘
+ b jG

�
z j jI j + z jkIk

�
, 1TI j = 0

sD
k = �1

3
diag

⇣
G
�
zk jI j + zkkIk

�
IHk GT

⌘
+ b kG

�
zk jI j + zkkIk

�
, 1TIk = 0

This is a system of 8 (redundant) quadratic equations that can be solved numerically for
�
I j, Ik

�
2C6.

Given a solution
�
I j, Ik

�
, the internal currents can be determined from the conversion rule and the

given
�
b j,bk

�
as ID

i =�1
3GIi +bi1, i = j,k. The remaining variables can then be derived as in part

1.

3. This combines the solution approaches of parts 1 and 2. Specifically we use the internal model for
power source j, the external model for k:

sD
j := diag

⇣
V D

j IDH
j

⌘
, V D

j = GVj, I j = �GTID
j (9.37a)

sD
k = �1

3
diag

⇣
G
⇣

VkIHk
⌘

GT

⌘
+ b kGVk, 1TIk = 0 (9.37b)

From the network equation (9.34b) we have

V D

j
Vk

�
= diag(G,I)


z j j z jk
zk j zkk

�
diag

⇣
�GT,I

⌘ID
j

Ik

�
=


�Gz j jGT Gz jk
�zk jGT zkk

�
ID

j
Ik

�



Draft: EE 135 Notes April 30, 2024 357

Substituting V D
j and Vk into the internal power source models in (9.37) yelds

sD
j := diag

⇣⇣
�Gz j jGTID

j +Gz jkIk

⌘
IDH

j

⌘

sD
k = �1

3
diag

⇣
G
⇣
�zk jGTID

j + zkkIk

⌘
IHk GT

⌘
+ b kG

⇣
�zk jGTID

j + zkkIk

⌘
, 1TIk = 0

This is a system of 7 (redundant) quadratic equations that can be solved numerically for
⇣

ID
j , Ik

⌘
2

C
6. All other variables can then be derived analytically in terms of a solution

⇣
ID

j , Ik

⌘
as done in

parts 1 and 2.

9.2.2 General analysis problem

We now formulate a general three-phase analysis problem. Consider a three-phase network G := (N,E)

where each line ( j,k) 2 E is characterized by 3⇥ 3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

At each bus j 2 N we assume, without loss of generality, there is a single three-wire device in either Y or
D configuration. Associated with each device j are its internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘
2 C

10 (or

in C
9 for Y -configured devices j without b j) and terminal variables

�
Vj, I j,s j,g j

�
2 C

10. Some of these
variables will be specified in our formulation. The others are to be computed from network equations,
device models and the conversion rules.

We start by describing which of these variables are specified for each type of devices using the internal
and external device models in Tables 7.3 and 7.4. It is important to keep in mind that device specification
is not unique and our formulation here may need to be modified depending on the details of an application,
especially for problems involving power sources as discussed in Remark 9.4 and illustrated in Example
9.11. The principle of analysis described here, however, is widely applicable and can be applied to other
formulations. For instance, we formulate our analysis problem in a three-wire model. If the neutrals of
two Y -configured devices are not grounded and are connected to each other through a four-wire line, then
a four-wire model needs to be used; see Example 9.5 and Exercise 9.7. In that case the neutral voltages
of these devices may not be arbitrarily specified but must be determined through network equations and
device models, even for a voltage source, unlike the formulation here.

Partition N into 8 disjoint subsets:

• NY/D
v : buses with ideal voltage sources in Y or D configurations. Let Nv := NY

v [ND
v .

• NY/D
c : buses with ideal current sources in Y or D configurations. Let Nc := NY

c [ND
c .

• NY/D
i : buses with impedances in Y or D configurations. Let Ni := NY

i [ND
i .

• NY/D
p : buses with ideal power sources in Y or D configurations. Let Np := NY

p [ND
p .
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with N = Nv[Nc[Ni[Np. These devices are specified as follows.

1. Voltage source
⇣

EY
j ,g j

⌘
or
⇣

ED
j ,g j,b j

⌘
: It is specified by its internal voltage EY/D

j and a parameter

g j where g j := V n
j is the neutral voltage for Y configuration and g j := 1

31TVj is the zero-sequence
terminal voltage for D configuration. For D configuration, ED

j should satisfy 1TED
j = 0. The zero-

sequence internal current b j := 1
31TID

j also needs to be specified in order to determine ID
j from the

terminal current I j.

2. Current source
⇣

JY
j ,g j

⌘
or JD

j : It is specified by its internal current JY/D
j . For a Y -configured current

source, its neutral voltage g j is also specified. For a D-configured current source, the zero-sequence
voltage gi generally need not be specified and can be derived in terms of other quantities, but there
are exceptions; see Remark 9.8.

3. Power source
�
sY ,g j

�
or
�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given ad-
mittance matrices

⇣
ys

jk,y
m
jk

⌘
,
⇣

ys
k j,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3. Note that the analysis

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D

j , ID
j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j

⇣
VY

j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j

⇣
V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

problem does not assume C9.1 and therefore each line ( j,k) may model a transmission or distribution line,
or a three-phase transformer where its series admittance matrices ys

jk and ys
k j may be different.
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We make a few remarks on the voltage g j. See Remark 9.3 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.5 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for a three-wire line model as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj� g j1 from the terminal voltage Vj.

As noted above, Example 9.5 and Exercise 9.7 consider a four-wire line model where the neutrals
of the voltage source and the impedance are connected to each other. Here the (internal) neutral
voltages

�
g j,gk

�
of neither device can be arbitrarily specified but must be determined through the

network equation and device models.

2. D configuration. For a D-configured voltage source, the zero-sequence voltage g j := 1
31TVj needs

to be specified, e.g., by specifying one of its terminal voltages, say, V a
j . For a D-configured current

source or impedance, g j can be determined once its terminal voltage Vj is determined from network
equations. For a D-configured power source, typically either g j or b j can be specified; see Example
9.11.

3. Neutral voltage g j and zero-sequence voltage. For any Y -configured device, we have

Vj = VY
j + V n

j 1

The parameter g j := V n
j may or may not equal the zero-sequence voltage 1

31TVj. They are equal if
and only if the internal voltages have no zero-sequence component since 1

31TVj = 1
31TVY

j +V n
j .

Remark 9.6 (Asymmetry in D specification). As summarized in Table 9.3, in our formulation, for D
configuration, a voltage source needs to specify both

�
g j,b j

�
, but a power source only needs to specify

its g j, and a current source or impedance needs to specify none. This asymmetry is because internal
currents ID

j contain more information (they fix b j) than internal voltages V D
j (they do not fix g j). Device

specification and network equation determine
⇣

ED
j , I j

⌘
for voltage sources, which contains neither b j nor

g j. These quantities therefore need to be specified. Device specification and network equation, on the
other hand, determine

⇣
JD

j ,Vj

⌘
for current sources, which contains both b j and g j. For impedances, as

we will see in Chapter 9.2.3, the network equation will determine their internal currents ID
j which contain

b j. When the terminal voltages of all sources, including power sources, are specified or obtained, the
terminal voltages Vj of impedances can be determined by the network equation. Therefore both

�
g j,b j

�

are determined by the network equation in that case.
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9.2.3 Solution strategy

The solution strategy for the problem formulated in Chapter 9.2.2 consists of three steps:

1. Write down a network equation that relates the terminal variables (V, I,s), either the current balance
equation (9.5)(9.6) I = YV or the power flow equation (9.12). As discussed in Remark 9.7 we can
always use the linear equation I = YV .

2. Write down the device models of the given collection of sources and impedances, either their internal
models and conversion rules, or their external models.

3. Numerically solve this system of equations for desired variables.

Step 1 specifies, for the entire network, an equation that relates all the terminal variables. For examples,
see (9.38) and (9.43) for analysis problems without and with power sources respectively. Step 2 specifies,
for each device, equations relating its terminal variables to its internal variables or specified parameters.
For examples, see (9.39d)(9.39d) and (9.44a) respectively.

Remark 9.7 (Nonlinearity). Using the nonlinear power flow equations s j = diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H◆

as the network equation in Step 1 is equivalent to using the linear current balance equation I = YV . This
is because dividing both sides of the power flow equations by Vj and taking complex conjugate yields
I = YV . Therefore if no power sources are involved, then the device models of voltage sources, current
sources and impedances are linear and therefore the overall model will be linear.

If power sources are involved, then even if we use I = YV as the network equation, the device models
of power sources will be quadratic and therefore the overall network will be nonlinear. In this case the
power source device model is the only place where nonlinearity appears.

In the rest of this subsection we first describe in detail Steps 1 and 2 in the general solution strategy
outline above to obtain a system of equations that can be solved numerically. In light of Remark 9.7 we
will use the current balance equation I = VY as our network equation. Then, motivated by the examples
in Chapter 9.2.1, we show how to reduce the entire system of equations obtained from Steps 1 and 2
into a smaller system with possibly much fewer variables, which must be solved numerically. All other
variables can then be derived analytically in terms of the solution of the reduced system. (For problems
without power sources, this reduces equations (9.38)(9.39) to (9.42).) This simpler solution strategy not
only reduces the size of the system that needs numerical solution, but more importantly, it often reveals
more clearly the essential structure of the problem. For instance, for problems with power sources, the
reduced system is equation (9.47) which consists of a linear equation and a quadratic equation due to
power sources.

We first derive the solution for the case without power sources. We then show how to extend the
solution to incorporate power sources simply by adding their device models to the systems of equations.
We will focus on determining terminal and internal voltages and currents. Once they are determined,
internal and external powers can be calculated using sY/D

j := diag
⇣

VY/D
j IY/DH

j

⌘
and s j := diag

⇣
VjIHj

⌘

respectively.
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Without power sources. Recall that Nv := NY
v [V D

v , Nc := NY
c [V D

c , and Ni := NY
i [V D

i are the set of
buses with, respectively, voltage sources, current sources, and impedances. With a slight abuse of notation
define the following (column) vectors of terminal voltages and currents:

(Vv, Iv) :=
�
Vj, I j, j 2 Nv

�
, (Vc, Ic) :=

�
Vj, I j, j 2 Nc

�
, (Vi, Ii) :=

�
Vj, I j, j 2 Ni

�

Some of them will be specified and the remaining voltages and currents will be determined from the
network equation and device models. Step 1 of the solution strategy is to write the network equation
I = YV :

2

4
Iv
Ic
Ii

3

5 =

2

4
Yvv Yvc Yvi
Ycv Ycc Yci
Yiv Yic Yii

3

5

| {z }
Y

2

4
Vv
Vc
Vi

3

5 (9.38)

where the admittance matrix Y is defined in (9.6).

Step 2 is to describe the device models. The specifications for voltage sources, current sources and
impedances are, from Table 9.3:

⇣
EY/D

v ,gY/D
v ,b D

v

⌘
:=

⇣
EY/D

j , g j, j 2 NY/D
v ; b j, j 2 ND

v

⌘

⇣
JY/D

c ,gY
c

⌘
:=

⇣
JY/D

j , j 2 NY/D
c ; g j, j 2 NY

c

⌘

⇣
ZY/D

i ,gY
i

⌘
:=

⇣
diag

⇣
zD

j , j 2 NY/D
i

⌘
; g j, j 2 NY

i

⌘

To unify notation we define the following matrices

GY †
v := I

Y
v ⌦ I, GD†

v := I
D
v ⌦G†, G†

v := diag
⇣

GY †
v ,GD†

v

⌘

GY
c := I

Y
c ⌦ I, GD

c := I
D
c ⌦G, Gc := diag

⇣
GY

c ,GD
c

⌘

GY
i := I

Y
i ⌦ I, GD

i := I
D
i ⌦G, Gi := diag

⇣
GY

i ,GD
i

⌘

where I
Y
v ,IYc ,IYi are the identity matrices of sizes |NY

v |, |NY
c |, |NY

i | respectively and I
D
v ,ID

c ,ID
i denote the

identity matrices of sizes |ND
v |, |ND

c |, |ND
i | respectively. Define vectors of specifications

Ev :=


EY
v

ED
v

�
, Jc :=


JY

c
JD

c

�
, Zi := diag

⇣
ZY

i ,ZD
i

⌘
(9.39a)

gv :=


gY
v

gD
v

�
, gc :=


gY

c
0

�
, gi :=


gY

i
0

�
(9.39b)

so that gv 2 C
|Nv|, gc 2 C

|Nc| and gi 2 C
|Ni|. Then the terminal voltage and current Vv and Ic in (9.38) are

given by

Vv :=


EY
v + gY

v ⌦1
GD†

v ED
v + gD

v ⌦1

�
= G†

vEv + gv⌦1 (9.39c)

Ic := �


JY
c

GDT
c JD

c

�
= �GT

c Jc (9.39d)
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Define the following notations for internal variables of impedances:

IY
i :=

�
IY

j , j 2 NY
i
�
, ID

i :=
⇣

ID
j , j 2 ND

i

⌘
, Iint

i :=


IY
i

ID
i

�

VY
i :=

�
VY

j , j 2 NY
i
�
, V D

i :=
⇣

V D
j , j 2 ND

i

⌘
, V int

i :=

VY

i
V D

i

�

The internal model of the impedances in Y and D configurations is then

V int
i = Zi Iint

i (9.39e)

where Zi is defined in (9.39a). The conversion rule for the current and voltage (Ii,Vi) is:

Ii =


�IY

i
�GDT

i ID
i

�
= �GT

i Iint
i , GiVi =


VY

i + gY
i ⌦1

V D
i

�
= V int

i + gi⌦1 (9.39f)

The analysis problem is: Solve the network equation (9.38) and the device models (9.39) for the
unknown external and internal variables. This can be done by numerically solving the system of equations
(9.38)(9.39). Note that the analysis problem defined by (9.38)(9.39) does not assume C9.1 and therefore
each line ( j,k) may model a transmission or distribution line, or a three-phase transformer where its series
admittance matrices ys

jk and ys
k j may be different.

The intuition from Example 9.3, Example 9.6 and Exercise 9.8 suggests that, instead of numerically
solving (9.38)(9.39), it is possible to reduce it to a smaller system of equations with possibly much fewer
variables. Once the reduced system is solved numerically, all other variables can be derived analytically in
terms of a solution of the reduced system. The key observation from the examples is to first solve for the
internal currents Iint

i of all impedances, not their internal voltages V int
i nor other terminal variables (Vi, Ii),

using the network equation, the internal device models and the conversion rules. We now explain how
to obtain the reduced system of equations in the internal currents Iint

i of all impedances and the terminal
voltages Vc of all current sources.

Substituting Ii in (9.39f) into (9.38) we have


Ic
�GT

i Iint
i

�
=


Ycv
Yiv

�
Vv +


Ycc Yci
Yic Yii

�
Vc
Vi

�
(9.40)

To express Vi in this equation in terms of Iint
i , suppose the inverse


Zcc Zci
Zic Zii

�
:=

Ycc Yci
Yic Yii

��1
(9.41)

exists and multiplying both sides of (9.40) by this inverse and then by diag(Ic,Gi) we have

diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ic

�GT
i Iint

i

�
= diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ycv
Yiv

�

| {z }"
Acv
Aiv

#

Vv +


Vc

GiVi

�
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where Ic is the identity matrix of size |Nc|. Substituting GiVi = V int
i + gi⌦1 = ZiIint

i + gi⌦1 from (9.39e)
and (9.39f) and re-arranging, we have thus reduced the original system (9.38)(9.39) into the following
reduced system in

�
Vc, Iint

i
�
:


Ic⌦ I ZciGT

i
0 GiZiiGT

i +Zi

�
Vc
Iint
i

�
=


Zcc

GiZic

�
Ic �


Acv
Aiv

�
Vv �


0

gi⌦1

�
(9.42)

Here Vv, Ic, Zi and gi are given by (9.39), the submatrices Zcc,Zci,Zic,Zii are from the inverse in (9.41), and


Acv
Aiv

�
:= diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ycv
Yiv

�

All quantities on the right-hand side of (9.42) are known. This is a system of 3(|Nc|+ |Vi|) linear equations
in 3(|Nc|+ |Vi|) unknowns

�
Vc, Iint

i
�
. Assuming the matrix on the left-hand side is invertible, the methods

described in Chapter 4.2.4 can be used to compute numerically a solution
�
Vc, Iint

i
�

of (9.42).

We now explain how to derive all the remaining variables.

1. For impedances, with Iint
i , the internal voltage V int

i = ZiIint
i and the terminal current Ii = �GT

i Iint
i

from the internal model (9.39e) and the conversion rule (9.39f). With both Iint
i and Vc, we can

obtain Vi from (9.40). The zero-sequence voltages and currents
⇣

g j = 1
31TVj, b j := 1

31TID
j

⌘
of all

D-configured impedances j 2 ND
i can then be derived from

�
Vi, Iint

i
�
. This completes the derivation

of all voltages and currents of impedances.

2. For voltage sources, with (Vv,Vc,Vi), the terminal current Iv can be derived from (9.38). For Y -
configured voltage sources j 2 NY

v , the internal currents are IY
j = �I j. For D-configured voltage

sources j 2 ND
v , b j are given and hence the internal currents are ID

j =�1
3GI j +b j1. This completes

the derivation of all voltages and currents of power sources.

3. For Y -configured current sources j 2 NY
c , g j are given and hence the internal voltages are VY

j =

Vj� g j1. For D-configured current sources j 2 ND
c , b j can be calculated from JD

j and
⇣

V D
j ,g j

⌘
can

be calculated from Vj. This completes the derivation of the voltages and currents of all current
sources.

With all voltages and currents determined, the internal and external powers are then sY/D
j := diag

⇣
VY/D

j IY/DH
j

⌘

and s j = diag
⇣

VjIHj
⌘

, j 2 N, respectively. This completes the derivation of the variables of all devices in
the network.

Remark 9.8. The derivation of the reduced system (9.42) depends critically on the assumption that the
admittance matrix in (9.40) and the effective impedance matrix GiZiiGT

i +Zi in (9.42) are invertible. When
that is not the case, additional information will be needed to uniquely determine all the quantities.

1. If there are voltage sources then the matrix in (9.40) is a strict submatrix of an admittance matrix
and therefore will be invertible if the conditions in Theorem 4.5 are satisfied, including the condition
ys

jk = ys
k j.
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In Example 9.3 where a voltage source j supplies an impedance k both in Y configuration over a
three-phase line, the equation (9.40) is (9.14a) for which the inverse exists. In Example 9.6 where
the devices are in D configuration, the equation (9.40) takes the form

�GTID
k = �ys

jkVj + ys
jkVk

so the inverse
⇣

ys
jk

⌘�1
also exists.

2. When only current sources are present, the matrix in (9.40) is the network admittance matrix and
is invertible if the conditions in Theorem 4.3 are satisfied, including the condition ys

jk = ys
k j. In

particular if the shunt admittances of all three-phase lines are assumed zero, then the admittance
matrix is not invertible because it will have zero row sums. In that case, additional information
needs to be specified to provide an additional equation to (9.40) for solving

�
Vc, Iint

i
�

and Vi.

In Exercise 9.8 where the voltage source is replaced by a current source j and shunt admittances⇣
ym

jk,y
m
k j

⌘
are assumed zero, the equation (9.40) takes the form


I j

�GTID
k

�
=


ys

jk �ys
jk

�ys
k j ys

k j

�
Vj
Vk

�

for which the inverse does not exist. As a result the zero-sequence voltage g j of the current source
is also specified to provide the additional equation for solving

�
Vj, Iint

i
�
. If the shunt admittances⇣

ym
jk,y

m
k j

⌘
are nonzero as in Exercise 9.9, g j of the current source need not be specified and can be

derived because the equation above will be invertible.

3. The reduced system (9.42) generalizes (9.14b) in Example 9.3 and (9.18) in Example 9.6 to general
networks and with current sources.

With power sources. Analysis problems with power sources can be solved following the same proce-
dure, but with the addition of device models of power sources. Specifically the current balance equation
(9.38) is extended to

2

664

Iv
Ic
Ii
Ip

3

775 =

2

664

Yvv Yvc Yvi Yvp
Ycv Ycc Yci Vcp
Yiv Yic Yii Yip
Ypv Ypc Ypi Ypp

3

775

| {z }
Y

2

664

Vv
Vc
Vi
Vp

3

775 (9.43)

where (Vp, Ip) :=
�
Vj, I j, j 2 Np

�
, with Np := NY

p [ND
p , are the terminal voltages and currents of power

sources.

The device model (9.39) also needs to be extended to include power sources. For a Y -configured
power source,

⇣
sY

j := sY
j ,g j := V n

j

⌘
are specified. For a D-configured power source, we assume that



Draft: EE 135 Notes April 30, 2024 365

⇣
sD

j := sD
j ,g j := 1

31TVj

⌘
are specified. Let sp :=


sY

p
sD

p

�
. Then the internal models of the power sources in

Y and D configurations are

sY
p =

⇣
diag

⇣
VY

j IYH
j

⌘
, j 2 NY

p

⌘
, sD

p :=
⇣

diag
⇣

V D
j IDH

j

⌘
, j 2 ND

p

⌘

To simplify notation define the internal currents and voltages for all power sources:

IY
p :=

�
IY

j , j 2 NY
p
�
, ID

p :=
⇣

ID
j , j 2 ND

p

⌘
, Iint

p :=


IY
p

ID
p

�

VY
p :=

�
VY

j , j 2 NY
p
�
, V D

p :=
⇣

V D
j , j 2 ND

p

⌘
, V int

p :=

VY

p
V D

p

�

Then the internal models of the power sources can be written as

sp = diag
⇣

V int
p IintH

p

⌘
(9.44a)

This is a quadratic equation in the unknowns internal voltage and current
�
V int

p , Iint
p
�
.5 Define

GD
p := I

D
p⌦G, Gp := diag

⇣
I
Y
p ,GD

p

⌘
, gp :=


gY

p
0

�

where I
D
p denotes the identity matrix of size |ND

p |, I
Y
p the identity matrices of size 3|NY

p |, and gY
p :=⇣

g j := V n
j , j 2 NY

p

⌘
are neutral voltages of all Y -configured power sources j. The current and voltage

conversion rule is (similar to (9.39f))

Ip = �Gp Iint
p , GpVp = V int

p + gp⌦1 (9.44b)

The analysis problem can be stated as: Solve the network equation (9.43) and the device models (9.39)
(9.44) for the unknown external and internal variables. This system of equations (9.43)(9.39)(9.44) can be
solved numerically.

We will follow the same procedure to reduce (9.43)(9.39)(9.44) into a smaller system of (nonlinear)
equations that involves only

�
Vc, Iint

i , Iint
p ,V int

p
�
. All other variables can then be derived from a solution�

Vc, Iint
i , Iint

p ,V int
p
�
.

Substituting Ii, Ip in (9.39f) and (9.44b) respectively into (9.43) we have

diag
⇣
Ic,�GT

i ,�GT

p

⌘
2

4
Ic

Iint
i

Iint
p

3

5 =

2

4
Ycv
Yiv
Ypv

3

5Vv +

2

4
Ycc Yci Ycp
Yic Yii Yip
Ypc Ypi Ypp

3

5

2

4
Vc
Vi
Vp

3

5 (9.45)

5We can also use the equivalent model sp = diag
�
(GpVp � gp) IintH

p
�

of power sources in terms of the terminal volt-
age Vp, the internal current Iint

p , and the neutral voltage gY
p . The network equation however will only allow us to solve

for G jVj = V D
j for D-configured power sources j. Specifically V int

p in (9.47a) will be replaced by GpVp and (9.47b) by
sp = diag

�
(GpVp � gp) IintH

p
�
. Therefore it is simpler to solve for the internal voltage V int

p and then use g j to obtain the terminal
voltages Vj of D-configured power sources j.
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Suppose the inverse

2

4
Zcc Zci Zcp
Zic Zii Zip
Zpc Zpi Zpp

3

5 :=

2

4
Ycc Yci Ycp
Yic Yii Yip
Ypc Ypi Ypp

3

5
�1

(9.46)

exists and multiplying both sides by this inverse and then by diag(Ic,Gi,Gp) we have

diag(Ic,Gi,Gp)

2

4
Zcc Zci Zcp
Zic Zii Zip
Zpc Zpi Zpp

3

5diag
⇣
Ic,�GT

i ,�GT

p

⌘
2

4
Ic

Iint
i

Iint
p

3

5 =

2

4
Bcv
Biv
Bpv

3

5Vv +

2

4
Vc

GiVi
GpVp

3

5

where
2

4
Bcv
Biv
Bpv

3

5 := diag(Ic,Gi,Gp)

2

4
Zcc Zci Zcp
Zic Zii Zip
Zpc Zpi Zpp

3

5

2

4
Ycv
Yiv
Ypv

3

5

Substituting GiVi = V int
i + gi⌦ 1 = ZiIint

i + gi⌦ 1 from (9.39e) and (9.39f), GpVp = V int
p + gp⌦ 1 from

(9.44b), and re-arranging, we have

2

4
Ic ZciGT

i ZcpGT
p 0

0 GiZiiGT
i +Zi GiZipGT

p 0
0 GpZpiGT

i GpZppGT
p Ip

3

5

2

664

Vc
Iint
i

Iint
p

V int
p

3

775 =

2

4
Zcc

GiZic
GpZpc

3

5 Ic �

2

4
Bcv
Biv
Bpv

3

5Vv �

2

4
0
gi
gp

3

5⌦1 (9.47a)

diag
⇣

V int
p IintH

p

⌘
= sp (9.47b)

The reduced system of (9.43)(9.39)(9.44) is (9.47) which must be solved numerically. The analysis prob-
lem therefore becomes: Solve (9.47) for

�
Vc, Iint

i , Iint
p ,V int

p
�

and derive all other variables analytically (Exer-
cise 9.13). As before, the analysis problem does not assume C9.1 and therefore each line ( j,k) may model
a transmission or distribution line, or a three-phase transformer where its series admittance matrices ys

jk
and ys

k j may be different.

We make three remarks. First, compared with the reduced system (9.42) without power sources,
the reduced system (9.47) involves two more variables

�
V int

p ,V int
p
�

with two additional sets of equations.
While (9.42) is linear, (9.47) is quadratic because of the device model (9.47b) of power sources. Even if
the inverse in (9.46) exists and the matrix on the left-hand side of (9.47a) is invertible, (9.47) may or may
not have a solution which may or may not be unique because of the nonlinearity. Second, these inverses
may not exist in which case more information is needed to determine a solution. For example, when there
are no voltage sources as in Example 9.9 and the shunt admittances ym

jk = ym
k j = 0, the admittance matrix in

(9.45) has zero row sums and is singular. In that case additional information (b j +bk) is given, compared
with the case in Example 9.8; see also Remark 9.8. Finally, the linearity of (9.47a) is the consequence
of using the linear current balance equation I = YV in (9.43), and this is always possible as discussed in
Remark 9.7.
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9.3 Balanced network

In this section we show that, if the voltage sources, current sources, and impedances are generalized
balanced vectors and the lines are decoupled, then the analysis problem in Chapter 9.2 can be solved
by analyzing certain simpler per-phase networks. The intuition is that the balanced voltage and current
sources render all voltages and currents in the network to be balanced due to Corollary 1.3. To simplify
exposition we only consider the case without power sources so that our problem remains linear.

With today’s abundant computing power the smaller problem size may not be an important advan-
tage of per-phase analysis. Rather, per-phase analysis clarifies the simple structure underlying a balanced
network and enhances our conceptual understanding of three-phase networks in general, balanced or un-
balanced.

We start in Chapter 9.3.1 by summarizing properties of Kronecker product which underlies the equiv-
alence of three-phase analysis and per-phase analysis for a balanced network.

9.3.1 Kronecker product

The simple structure that underlies balanced networks depends critically on properties of the Kronecker
product. For instance the admittance matrix Y of a balanced three-phase network can be written as the
Kronecker product of a per-phase admittance matrix and the identity matrix I of size 3. This is explained
in Chapter 9.3. In particular we will use the following properties in the proof of Theorem ?? there.

Lemma 9.6 (Kronecker product). Let A,B,C,D be complex matrices of appropriate dimensions.

1. (A+B)⌦C = (A⌦C) + (B⌦C); C⌦ (A+B) = (C⌦A) + (C⌦B).

2. (A⌦B)(C⌦D) = (AC)⌦ (BD).

3. (A⌦B)T = AT⌦BT; (A⌦B)H = AH⌦BH.

4. (A⌦B)�1 = A�1⌦B�1; (A⌦B)† = A†⌦B† where A† denotes the pseudo-inverse of A.

5. rank (A⌦B) = rank A · rank B.

6. If A 2 C
m⇥n is invertible and X ,Y 2 C

p⇥q then

A⌦X = A⌦Y, () X = Y

The proof of the lemma is left as Exercise ??

9.3.2 Three-phase analysis

We first explain how the device models and the admittance matrix simplify in a balanced system. We then
use that to simplify the three-phase analysis problem in Chapter 9.2. Finally we show that the problem is
equivalent to solving per-phase systems.



368 Draft: EE 135 Notes April 30, 2024

Balanced devices. When the devices are balanced positive-sequence sets with parameters l j,µ j,z j 2C:

EY/D
j := l ja+, j 2 Nv, JY/D

j := µ ja+, j 2 Nc, zY/D
j := z jI, j 2 Ni

their internal models in Table 9.3 reduce to those specified in Table 9.4. In vector form the voltage sources
are

EY
v = lY

v ⌦a+, ED
v = l D

v ⌦a+, Ev :=


EY
v

ED
v

�
= lv⌦a+

where lY
v :=

�
l j, j 2 NY

v
�
, l D

v :=
�
l j, j 2 ND

v
�

and lv :=
�
l j, j 2 Nv

�
. Defining similar quantities for

current sources and impedances, the specification (9.39a)(9.39b) in vector form reduces to

Ev :=


lY
v

l D
v

�
⌦a+ = lv⌦a+, gv :=


gY

v
gD

v

�
(9.48a)

Jc :=


µY
c

µD
c

�
⌦a+ = µc⌦a+, g0

c :=


gY
c
0

�
(9.48b)

Zi := diag
⇣

zY
i ,z D

i

⌘
⌦ I = zi⌦ I, g0

i :=


gY
i
0

�
(9.48c)

where zY
i := diag

�
z j, j 2 NY

i
�
, z D

i := diag
�
z j, j 2 ND

i
�
, zi := diag

�
zY

i ,z D
i
�

are diagonal matrices of sizes��VY
i
��,
��V D

i
��, |Vi| respectively.

The external models in Table 9.4 are obtained by substituting these specifications into the external
models in Table 9.3 and applying Corollary 1.3 and Theorem 7.2, specifically

Ga+ = (1�a)a+, GTa+ =
�
1�a2�a+, G† =

1
3

GT, GT† =
1
3

G

The derivation of the impedance model in Table 9.4 in D configuration is left as Exercise 9.14. These

Buses j Specification External model Vars Internal vars
NY

v EY
j = l ja+, g j Vj = l ja+ + g j1 I j IY

j =�I j

ND
v ED

j = l ja+, g j, b j Vj = 1
3(1�a2)l ja+ + g j1 I j ID

j = �GT†I j +b j1
NY

c JY
j = µ ja+,g j I j = �µ ja+ Vj VY

j = Vj� g j1
ND

c JD
j = µ ja+ I j = �(1�a2)µ ja+ Vj V D

j = GVj, g j := 1
31TVj

b j := 1
31TID

j
NY

i zY
j = z jI, g j I j = �h j

�
Vj� g j1

� �
Vj, I j

�
VY

j = Vj� g j1, IY
j =�I j

ND
i zD

j = z jI, b j I j =�3h j
�
Vj � g j1

� �
Vj, I j

�
V D

j = GVj, g j := 1
31TVj

ID
j = �GT†I j +b j1

Table 9.4: Internal and external models of balanced positive-sequence sources and impedances with h j :=
z�1

j . The impedance model for ND
i in the table is equivalent to I j =�3h j

⇣
Vj �

⇣
1
31TVj

⌘
1
⌘

which is the

model I j = �Y D
j Vj in Table 9.3.
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models are special cases of the three-phase devices in Chapters 7.3.3 and 7.3.4. To simplify the notation
for the external models of voltage and current sources, define

â j :=

8
>><

>>:

1 if j 2 NY
v [NY

c [NY
i

(1�a2)/3 if j 2 ND
v (voltage sources)

(1�a2) if j 2 ND
c (current sources)

3 if j 2 ND
i (admittance)

Then when the voltage and current sources are balanced, their external models (9.39c)(9.39d) reduce to:

Vv =
�
â jl ja+ + g j1, j 2 Nv

�
=: l̂v⌦a+ + gv⌦1 (9.48d)

Ic =
�
�â jµ ja+, j 2 Nc

�
=: �µ̂c⌦a+ (9.48e)

where l̂v,gv 2 C
|Nv| and µ̂c 2 C

|Nc|.

Remark 9.9 (D-Y transformation). The specification (9.48d)(9.48e) corresponds to the first step of per-
phase analysis in Chapter 1.2.5 that converts all D configured devices to their Y equivalents that have the
same external behavior. It generalizes the standard practice of assuming g j = 0 to the case where g j may be
nonzero, because some Y -configured devices on the network are not grounded, some are grounded through
nonzero earthing impedances, and some D-configured devices have nonzero zero-sequence voltages.

The internal models of impedances (9.39e) and the conversion rules (9.39f) become

V int
i = Zi Iint

i = (zi⌦ I) Iint
i (9.48f)

Ii =


�IY

i
�
�
I

D
i ⌦GDT

i
�

ID
i

�
= �GT

i Iint
i (9.48g)

GiVi =


VY

i + gY
i ⌦1

V D
i

�
= V int

i + g0
i ⌦1 (9.48h)

where Zi,zi,g0
i are defined in (9.48c), and I

Y
i ,ID

i are the identity matrices of sizes
��VY

i
�� ,
��V D

i
�� respectively.

Balanced admittance matrix Y . We assume all lines are balanced, i.e.,

ys
jk = hs

jkI, ym
jk = hm

jkI, ym
k j = hm

k jI (9.49a)

for some constants hs
jk,h

m
jk,h

m
k j 2 C. The terminal voltages and currents V := (V0, . . . ,VN) and I :=

(I0, . . . , IN) are described by (9.5) which, with balanced lines, reduces to

I j = Â
k: j⇠k

⇣
ys

jk + ym
jk

⌘
Vj � Â

k: j⇠k
ys

jkVk = Â
k: j⇠k

h jkVj � Â
k: j⇠k

hs
jkVk, j 2 N (9.49b)

where h jk := hs
jk +hm

jk and Vj, I j 2C
3. This in vector form is I = YV . The balanced lines in (9.49a) allow

us to write the admittance matrix Y using the Kronecker product. This is the key mathematical structure,
in addition to the conversion matrices G,GT as described in Corollary 1.3, that underlies the balanced
property of all voltages and currents in the network.
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Specifically, define the (N +1)⇥ (N +1) per-phase admittance matrix Y 1f by

Y 1f
jk :=

8
><

>:

�hs
jk, ( j,k) 2 E, ( j 6= k)

Âk: j⇠k

⇣
hs

jk + hm
jk

⌘
, j = k

0 otherwise
(9.50a)

As we will see, this is the bus admittance matrix studied in Chapter 4.2 for the per-phase circuit of
a balanced three-phase network where each line is characterized by four complex scalars

⇣
hs

jk,h
m
jk

⌘
,

⇣
hs

k j,h
m
k j

⌘
. In particular Y does not assume C9.1 and hence Y 1f may not satisfy C4.1. Therefore each

line ( j,k) may model a transmission or distribution line, or a three-phase transformer where its series
admittance matrices ys

jk and ys
k j may be different.

Substituting (9.49a) into the admittance matrix Y in (9.6) for the three-phase network, we can write Y
in terms of the per-phase admittance matrix Y 1f using the Kronecker product:

Y = Y 1f ⌦ I (9.50b)

The relation I = YV for the three-phase network becomes

I =
⇣

Y 1f ⌦ I

⌘
V (9.50c)

Three-phase analysis. We are interested in determining the (column) vectors of terminal and internal
variables

V�v := (Vc,Vi) :=
�
Vj, j 2 Nc[Ni

�
, I�c := (Iv, Ii) :=

�
I j, j 2 Nc[Ni

�
(9.51a)

V int
�v :=

⇣
V int

c ,V int
i

⌘
:=
⇣

VY/D
j , j 2 Nc[Ni

⌘
, Iint

�c :=
⇣

Iint
v , Iint

i

⌘
:=
⇣

IY/D
j , j 2 Nc[Ni

⌘
(9.51b)

gD
�v :=

⇣
gD

c ,gD
i

⌘
:=
⇣

g j, j 2 ND
c [ND

i

⌘
, b D

�v :=
⇣

b D
j ,b D

j

⌘
:=
⇣

b j, j 2 ND
c [ND

i

⌘
(9.51c)

Let x :=
�
V�v, I�c,V int

�v , Iint
�c,gD

�v,b D
�v
�
. When the network is balanced the three-phase analysis problem in

Chapter 9.2 reduces to: solve for x given the device specification (9.48) and the network equation (9.50).

9.3.3 Balanced voltages and currents

In this subsection we prove a structural result that says that, when the internal voltages and currents of
non-power sources are balanced, so are all other voltages and currents in the network.

Partition the per-phase admittance matrix Y 1f defined in (9.50) into submatrices (A11,A21,A22):

Y 1f =:

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75 =:


A11 AT

21
A21 A22

�
(9.52)

The matrix A22 is complex symmetric and therefore a legitimate admittance matrix. We will make two
assumptions on the per-phase admittance matrix Y 1f .
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C9.7: The submatrix A22 is invertible.

Assuming C9.7 (see Chapter 4.2.5 for sufficient conditions for the invertibility of principal submatrices
of an admittance matrix), denote the inverse of the submatrix A22 by

"
Z1f

cc Z1f
ci

Z1f
ic Z1f

ii

#
:=

"
Y 1f

cc Y 1f
ci

Y 1f
ic Y 1f

ii

#�1

= A�1
22 (9.53a)

Then the inverse in (9.41) exists and is:


Zcc Zci
Zic Zii

�
:=

Ycc Yci
Yic Yii

��1
= A�1

22 ⌦ I (9.53b)

where we have used (A⌦B)�1 = A�1⌦B�1 (Lemma 9.6). The second assumption is:

C9.8: The impedances z j 2 C are nonzero for all j 2 Ni, the submatrix Z1f
ii in (9.53a) and the matrix

Ĉi =

✓⇣
Z1f

ii

⌘�1
⌦ I

◆
+ GT

i
�
z�1

i ⌦ I
�

Gi (9.54)

are invertible.

Theorem 9.7 (Balanced voltages and currents). Suppose C9.7 and C9.8 hold.

1. Any solution x of (9.48)(9.50) consists of generalized balanced vectors in positive sequence, i.e.,
any voltage or current x j in (9.51) at bus j is of the form x j = a ja+ +b j1 for some a j,b j 2 C.

2. Moreover all x j are balanced vectors, i.e., b j = 0, if gv = 0 for all voltage sources and the neutral
voltages gY

i = 0 for all Y configured impedances.

In the rest of this subsection we prove the theorem following the solution strategy in Chapter 9.2.3
to show that any solution

�
Vc, Iint

i
�

of the reduced system (9.42) consists of generalized balanced vectors.
All other variables can then be derived analytically in terms of the solution

�
Vc, Iint

i
�

and shown to be
generalized balanced vectors (Exercise 9.15).

The variable
�
Vc, Iint

i
�

satisfies (9.42), reproduced here:

Ic⌦ I ZciGT

i
0 GiZiiGT

i +Zi

�
Vc
Iint
i

�
=


Zcc

GiZic

�
Ic �


Acv
Aiv

�
Vv �


0

g0
i ⌦1

�
(9.55)

where


Acv
Aiv

�
:= diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ycv
Yiv

�

We now prove Theorem 9.7 in the following three lemmas. The first lemma simplifies (9.55) using bal-
anced devices (9.48) and balanced lines (9.50).
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Lemma 9.8. Suppose C9.7 holds. Balanced devices and lines (9.48)(9.50) reduces (9.55) to
2

4
Ic⌦ I

⇣
Z1f

ci ⌦ I

⌘
GT

i

0 Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i + (zi⌦ I)

3

5

| {z }
M


Vc
Iint
i

�
= a0 ⌦a+ + b0 ⌦1 (9.56a)

where

a0 := �

2

64
Z1f

cc µ̂c + Bcv l̂v

Z1f ,Y
ic µ̂c + BY

ivl̂v

(1�a)
⇣

Z1f ,D
ic µ̂c + BD

ivl̂v

⌘

3

75 , b0 := �

2

4
Bcv gv

BY
ivgY

v + gY
i

0

3

5 (9.56b)

for some matrices Bcv,BY
iv,B

D
iv.

The second lemma shows that the inverse M�1 of the matrix in (9.53a) has a structure that preserve the
balanced nature of voltages and currents.

Lemma 9.9. Suppose C9.7 and C9.8 hold.

1. The matrix M in (9.56) is invertible.

2. Each 3⇥3 block
⇥
M�1⇤

jk of M�1 corresponding to phases abc is of the form

⇥
M�1⇤

jk := v jk I + w jk Wjk (9.57)

where v jk,w jk 2 C are scalars and Wjk 2 C
3⇥3 is one of I, G, GT, GGT and GTG.

The structure (9.57) of M�1 in Lemma 9.9 is what allows
�
Vc,V int

i
�

to remain generalized balanced
vectors. It requires that Ĉi in C9.8 be invertible. The following lemma is the crucial fact in determining
the inverse of Ĉi that appears in M�1. The lemma can be verified directly using

�
GTG

��
GTG

�
= 3GTG

(Theorem 7.2). It says that taking the inverse of the sum of a Kronecker product with I and a Kronecker
product with GTG preserves the Kronecker structure.

Lemma 9.10. For any matrix A and B of appropriate sizes, if A and A+3B are invertible then
⇣

A⌦ I + B⌦GTG
⌘�1

=
⇣

A�1⌦ I �
⇣
(A+3B)�1 BA�1

⌘
⌦GTG

⌘

We now prove Lemmas 9.8 and 9.9.

Proof of Lemma 9.8. From (9.53) and (9.48c), the matrix on the left-hand side of (9.55) reduces to
2

4
Ic⌦ I

⇣
Z1f

ci ⌦ I

⌘
GT

i

0 Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i + (zi⌦ I)

3

5 (9.58)
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On the right-hand side partition Z1f
ic in (9.53) into submatrices corresponding to impedances in Y and

D configurations:

Z1f
ic =:

"
Z1f ,YY

ic Z1f ,Y D
ic

Z1f ,DY
ic Z1f ,DD

ic

#
=:

"
Z1f ,Y

ic
Z1f ,D

ic

#

where Z1f ,Y
ic denotes the first |NY

i | rows of Z1f
ic corresponding to Y configured impedances and Z1f ,D

ic
denotes the remaining |ND

i | rows of Z1f
ic corresponding to D configured impedances. We then have, using

Gi = diag
�
I
Y
i ⌦ I,ID

i ⌦G
�
,

GiZic = Gi

⇣
Z1f

ic ⌦ I

⌘
=

"
Z1f ,Y

ic ⌦ I

Z1f ,D
ic ⌦G

#

The important structure is that the conversion matrix G appears on the right as “⌦G” which allows the
current Ic transformed by GiZic to remain in span(a+) on the right-hand side (using (9.48e)):


Zcc

GiZic

�
Ic = �

"
Z1f

cc ⌦ I

Gi

⇣
Z1f

ic ⌦ I

⌘
#

µ̂c⌦a+ = �

2

64
Z1f

cc µ̂c

Z1f ,Y
ic µ̂c

(1�a)Z1f ,D
ic µ̂c

3

75⌦a+ (9.59a)

where we have used (A⌦B)(C⌦D) = (AC)⌦ (BD) (Lemma 9.6) and Ga+ = (1�a)a+ (Corollary 1.3).

The second term


Acv
Aiv

�
Vv on the right-hand side of (9.55) can be simplified in a similar manner but

with more steps. We have from (9.53)


Acv
Aiv

�
=

"
Z1f

cc ⌦ I Z1f
ci ⌦ I

Gi

⇣
Z1f

ic ⌦ I

⌘
Gi

⇣
Z1f

ii ⌦ I

⌘
#"

Y 1f
cv ⌦ I

Y 1f
iv ⌦ I

#

Similarly partition Z1f
ii into its first |NY

i | and the remaining |ND
i | rows:

Z1f
ii =:

"
Z1f ,Y

ii
Z1f ,D

ii

#

Then, using (9.48d) and Gi = diag
�
I
Y
i ⌦ I,ID

i ⌦G
�
, we have


Acv
Aiv

�
Vv =

2

64
Z1f

cc ⌦ I Z1f
ci ⌦ I

Z1f ,Y
ic ⌦ I Z1f ,Y

ii ⌦ I

Z1f ,D
ic ⌦G Z1f ,D

ii ⌦G

3

75

"
Y 1f

cv ⌦ I

Y 1f
iv ⌦ I

#⇣
l̂v⌦a+ + gv⌦1

⌘

=:

2

4
Bcv l̂v
BY

ivl̂v
(1�a)BD

ivl̂v

3

5

| {z }
a0

⌦a+ +

2

4
Bcv gv
BY

ivgY
v

0

3

5

| {z }
b0

⌦1 (9.59b)
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where

Bcv := Z1f
cc Y 1f

cv + Z1f
ci Y 1f

iv , BY
iv := Z1f ,Y

ic Y 1f
cv + Z1f ,Y

ii Y 1f
iv , BD

cv := Z1f ,D
ic Y 1f

cv + Z1f ,D
ii Y 1f

iv

The factor 1�a in (9.59b) is due to Ga+ = (1�a)a+ and the 0 entry is due to G1 = 0 and originates
from the fact that the internal voltages in a D configuration sum to zero, i.e., 1TV D = 0.

Substituting (9.58)(9.59) into (9.55) then yields (9.56) (recall from (9.48c) that g0
i :=

�
gY

i ,0
�
).

Proof of Lemma 9.9. The matrix in (9.56):

M :=

2

4
Ic⌦ I

⇣
Z1f

ci ⌦ I

⌘
GT

i

0 Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i + (zi⌦ I)

3

5

is invertible if its submatrix

M22 := (zi⌦ I) + Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i (9.60a)

is invertible in which case its inverse is

M�1 :=

"
Ic⌦ I �

⇣
Z1f

ci ⌦ I

⌘
GT

i M�1
22

0 M�1
22

#
(9.60b)

(see Appendix 25.1.3 for discussions on Schur complement for the inverse of general block matrices). To
study the invertibility of M22 we use the matrix inversion formula (25.5):

(A+BCD)�1 = A�1 � A�1 �BC̃�1D
�

A�1

where C̃ := C�1 + DA�1B in Appendix 25.1.3.2. The matrix A + BCD is invertible if A, C and C̃ :=
C�1 +DA�1B are invertible. Therefore M22 in (9.60a) is invertible if (i) the impedances z j 2C are nonzero
for all j 2 Ni; (ii) Z1f

ii is invertible; and (iii) the matrix Ĉi in (9.54) is invertible, as claimed in Lemma 9.9.

We now prove (9.57). To apply Lemma 9.10 to determine the inverse of Ĉi, use Gi = diag
�
I
Y
i ⌦ I,ID

i ⌦G
�

to get

GT

i
�
z�1

i ⌦ I
�

Gi = diag
⇣
I
Y
i ⌦ I,ID

i ⌦GT

⌘
diag

✓�
zY

i
��1⌦ I,

⇣
z D

i

⌘�1
⌦ I

◆
diag

⇣
I
Y
i ⌦ I,ID

i ⌦G
⌘

= diag
⇣

hY
i ⌦ I,hD

i ⌦GTG
⌘

where hY/D
i :=

⇣
zY/D

i

⌘�1
. Partition

⇣
Z1f

ii

⌘�1
into submatrices:

⇣
Z1f

ii

⌘�1
=:


AYY AY D

ADY ADD

�

Then

Ĉi :=
✓⇣

Z1f
ii

⌘�1
⌦ I

◆
+ GT

i
�
z�1

i ⌦ I
�

Gi =


ÃYY AY D

ADY ADD

�
⌦ I + diag

⇣
0,hD

i

⌘
⌦GTG
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where ÃYY := AYY +hY
i . We can then apply Lemma 9.10 to get

Ĉ�1
i = Ã⌦ I � B̃⌦GTG (9.61)

where

Ã :=


AYY +hY
i AY D

ADY ADD

��1

, B̃ :=


AYY +hY
i AY D

ADY ADD +3hD
i

��1

diag
⇣

0,hD
i

⌘
Ã

Applying the matrix inversion formula with Ĉ�1
i given by (9.61) we obtain the inverse of M22 in (9.60a)

as

M�1
22 = (hi⌦ I) � (hi⌦ I)Gi

⇣
Ã⌦ I � B̃⌦GTG

⌘
GT

i (hi⌦ I)

= (hi⌦ I) �
✓

ÂYY ⌦ I ÂY D⌦GT

ÂDY ⌦G ÂDD⌦GGT

�
�


B̂YY ⌦GTG 3B̂Y D⌦GT

3B̂DY ⌦G 3B̂DD⌦GGT

�◆
(9.62)

where

[Â/B̂]YY := hY
i [Ã/B̃]YY hY

i , [Â/B̂]Y D := hY
i [Ã/B̃]Y DhD

i

[Â/B̂]DY := hD
i [Ã/B̃]DY hY

i , [Â/B̂]DD := hD
i [Ã/B̃]DDhD

i

and hY/D
i :=

⇣
zY/D

i

⌘�1
, hi := diag

�
hY

i ,hD
i
�
. Therefore each 3⇥3 block of M�1

22 is of the desired form of

v jkI+w jk Wjk where v jk,w jk 2 C are scalars and Wjk 2 C
3⇥3 is one of I, G, GT, GGT and GTG.

Finally substituting (9.61) into (9.60b) we see that each 3⇥3 block of the 3(|Nc|+ |Ni|)⇥3(|Nc|+ |Ni|)
matrix M�1 will also be of the desired form of w jk Wjk if this property holds for its off-diagonal submatrix⇣

Z1f
ci ⌦ I

⌘
GT

i M�1
22 . We now show that this is indeed the case. Partition Z1f

ci into submatrices corresponding
to impedances in Y and D configurations:

Z1f
ci =:

"
Z1f ,YY

ci Z1f ,Y D
ci

Z1f ,DY
ci Z1f ,DD

ci

#

Using Z1f
ci and Gi = diag

�
I
Y
i ⌦ I,ID

i ⌦G
�

we have

⇣
Z1f

ci ⌦ I

⌘
GT

i M�1
22 =

"
Z1f ,YY

ci ⌦ I Z1f ,Y D
ci ⌦GT

Z1f ,DY
ci ⌦ I Z1f ,DD

ci ⌦GT

#
M�1

22

Substituting M�1
22 in (9.62) and using

GTGGT =
⇣

3I�11T
⌘

GT = 3GT

we see that each 3⇥3 block of
⇣

Z1f
ci ⌦ I

⌘
GT

i M�1
22 is of the desired form of v jkI+w jk Wjk where v jk,w jk 2C

are scalars and Wjk 2 C
3⇥3 is one of I, G, GT, GGT and GTG.

This completes the proof of (9.57).
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Lemmas 9.8 and 9.9 imply Theorem 9.7.

Proof of Theorem 9.7. Multiplying both sides of (9.56) by M�1 in (9.57) we see that the jth 3⇥ 3 block
of
�
Vc, Iint

i
�

is of the form

Â
k

⇥
M�1⇤

jk

�
a0ka+ +b0k1

�
= Â

k
a0k
�
v jkI+w jkWjk

�
a+ + Â

k
b0k
�
v jkI+w jkWjk

�
1

Since

Wjka+ =

8
>><

>>:

a+ if Wjk = I

(1�a)a+ if Wjk = G
(1�a2)a+ if Wjk = GT

3a+ if Wjk = GGT or GTG

and Wjk1 = 1 if Wjk = I and 0 otherwise,
�
Vc, Iint

i
�

consists of generalized balanced vectors of the form
a ja+ +b j1. When gv = 0 for all voltage sources and gY

i = 0 for all Y configured impedances, then b0 = 0
in (9.56) and hence b = 0. This completes the proof of Theorem 9.7.

9.3.4 Phase decoupling and per-phase analysis

In this subsection we show that phases in a balanced network are decoupled so that the three-phase analysis
problem can be solved by solving two per-phase networks.

Substitute the per-phase admittance matrix (9.52), and the external models of voltage and current
sources (9.48d)(9.48e) into the current balance equation I = YV (9.50c) to get

2

4
Iv

�µ̂c⌦a+

Ii

3

5 =

0

B@

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75⌦ I

1

CA

2

4
l̂v⌦a+ + gv⌦1

Vc
Vi

3

5 (9.63)

Instead of following the solution strategy of Chapter 9.2.3 to compute the internal impedance current Iint
i

from the reduced system (9.42) we will compute the terminal voltage Vi, as well as Vc, using (9.63). We
can then compute (Iv, Ii) and all other variables such as internal voltages and currents and zero-sequence
voltages and currents.

We know from Theorem 9.7 that all voltages and currents consist of generalized balanced vectors of
the form a ja+ +b j1. We now describe separately external models for devices in D and Y configurations.

D configuration. Consider a D configured device j 2 ND
v [ND

c [ND
i . Let

Vj =: v ja+ + g j1, j 2 ND
c [ND

i (9.64a)

I j =: i ja+, j 2 ND
v [ND

i (9.64b)
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for some (v j,g j) and i j to be determined. Here g j =
1
31TVj is the zero-sequence voltage of Vj. As expected,

1TI j = 0 since I j = �GTID
j . For an impedance j 2 ND

i , we can express its terminal current I j in terms of
its terminal voltage Vj using its external model (from Table 9.4)

I j = �3h j
�
Vj� g j1

�
= �3h jv j a+, j 2 ND

i (9.64c)

Hence the variables (v j, i j) for an impedance j 2 ND
i satisfies i j = �3h jv j, the negative sign due to the

definition of I j being injection from the device to the rest of the network.

Y configuration. Consider a Y configured device j 2 NY
v [NY

c [NY
i . Let its internal voltage and internal

current be generalized balanced vectors:

VY
j =: vint

j a+ + g int
j 1, j 22 NY

c [NY
i

IY
j =: �

⇣
iint

j a+ + b int
j 1
⌘

, j 2 NY
v [NY

i

for some (vint
j ,g int

j ) and
⇣

iint
j ,b int

j

⌘
to be determined. Here g int

j := 1
31TVY

j is the zero-sequence voltage of

the internal voltage VY
j , not the neutral voltage g j := V n

j , and b int
j := 1

31TIY
j is the zero-sequence current

of the internal current IY
j . Since Vj = VY

j +V n
j 1 and I j =�IY

j , the terminal voltage and current are:

Vj =: vint
j a+ +

⇣
g int

j + g j

⌘
1, j 2 NY

c [NY
i (9.65a)

I j =: iint
j a+ + b int

j 1, j 2 NY
v [NY

i (9.65b)

Recall that the neutral voltages g j := V n
j are given for all Y configured devices. The zero-sequence voltage

of the terminal voltage Vj is the sum of the zero-sequence voltage g int
j of the internal voltage VY

j and the
neutral voltage g j. Hence the terminal voltage Vj is balanced if and only if the neutral voltage g j is offset
by g int

j so that g int
j + g j = 0 (see below for a sufficient condition). Moreover 1TI j = �1TIY

j = �In
j is the

negative of the neutral current. Hence b int
j = 1

31TI j = 0 if device j has no neutral line. For an impedance
j 2 NY

i , we can express its terminal current I j in terms of its terminal voltage Vj using the external model
(from Table 9.4 and (9.65a))

I j = �h j
�
Vj� g j1

�
= �h j

⇣
vint

j a+ + g int
j 1
⌘

, j 2 NY
i (9.65c)

Hence iint
j =�h jvint

j and b int
j =�h jg int

j .

Before substituting (9.64)(9.65) into the network equation (9.63) we unify notations by defining

v̂ j :=
⇢

vint
j ,

v j,
ĝ j :=

⇢
g int

j + g j,
g j,

j 2 NY
c [NY

i
j 2 ND

c [ND
i

(9.66a)

î j :=
⇢

iint
j ,

i j,
b̂ j :=

⇢
b int

j ,
0,

j 2 NY
v [NY

i
j 2 ND

v [ND
i

(9.66b)
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Even though g j = V n
j are given for j 2 NY

c [NY
i , g int

j (as well as g j := 1
31TVj for j 2 ND

c [ND
i ) are un-

known, and hence ĝ j is unknown for j 2 Nc[Ni. Therefore all the quantities in (9.66a) (9.66b) are to be
determined. Collect currents and voltages associated with voltage and current sources respectively into

îv :=
�
î j, j 2 Nv

�
, b̂v :=

⇣
b̂ j, j 2 Nv

⌘
, v̂c :=

�
v̂ j, j 2 Nc

�
, ĝc :=

�
ĝ j, j 2 Nc

�
(9.66c)

Collect currents and voltages associated with impedances into

îi :=
�
î j, j 2 Ni

�
, b̂i :=

⇣
b̂ j, j 2 Ni

⌘
, v̂i :=

�
v̂ j, j 2 Ni

�
, ĝi :=

�
ĝ j, j 2 Ni

�
(9.66d)

Using the same notation for â j as in (9.48d)(9.48e), we can apply (9.66) to the external impedance models
(9.65c) and (9.64c) to relate v̂i and îi:

îi⌦a+ + b̂i⌦1 = �(ĥi⌦ I)(v̂i⌦a+ +(ĝi� gi)⌦1) (9.67a)

where the diagonal matrix ĥi 2 C
|Ni|⇥|Ni| and the vector gi 2 C

|Ni| are defined as

ĥi := diag
�
â jh j, j 2 Ni

�
, gi :=


gY

i
gD

i

�
:=

2

4

⇣
g j := V n

j , j 2 NY
i

⌘

⇣
g j := 1

31TVj, j 2 ND
i

⌘

3

5 (9.67b)

Hence ĝi� gi =


g int

i
0

�
with g int

i :=
⇣

g int
j , j 2 NY

i

⌘
. Note the difference between gi defined here and the

specification g0
i :=


gY

i
0

�
defined in (9.48c). Recall that gY

i is given, but g int
i and hence ĝi are to be deter-

mined.

Substituting (9.66) into (9.63) we have

2

4
îv
�µ̂c

îi

3

5⌦a+ +

2

4
b̂v
0
b̂i

3

5⌦1 =

0

B@

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75⌦ I

1

CA

0

@

2

4
l̂v
v̂c
v̂i

3

5⌦a+ +

2

4
gv
ĝc
ĝi

3

5⌦1

1

A (9.68)

where the voltage sources l̂v, current sources�µ̂c, as well as
�
gv,g0

c ,g0
i
�

are given, and
⇣

v̂�v, ĝ�v, î�c, b̂�c

⌘

are variables to be determined. Since a+ and 1 are orthogonal this induces two sets of equations that can
be interpreted as two per-phase networks.

Positive-sequence per-phase network. Equating the a+ coordinates on both sides of (9.68) the per-
phase variables must satisfy

2

4
îv
�µ̂c

îi

3

5 =

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75

2

4
l̂v
v̂c
v̂i

3

5 (9.69a)

This defines the following per-phase network:



Draft: EE 135 Notes April 30, 2024 379

• The admittance matrix is Y 1f .

• The voltage sources have given voltages l̂v.

• The current sources have given currents �µ̂c.

• The impedances are ĥi so that (from (9.67a))

îi = �ĥiv̂i (9.69b)

This is a system of 4 sets of equations in 4 sets of variables
�
v̂c, v̂i, îv, îi

�
. Substituting (9.69b) into (9.69a)

we obtain
"

Y 1f
cc Y 1f

ci
Y 1f

ic Y 1f
ii + ĥi

#
v̂c
v̂i

�
= �

 
µ̂c
0

�
+

"
Y 1f

cv

Y 1f
iv

#
l̂v

!
(9.70)

If the matrix on the left-hand side is invertible then (v̂c, v̂i) can be uniquely determined. The other variables�
îv, îi
�

can then be derived in terms of a solution (v̂c, v̂i).

Zero-sequence per-phase network. Equating the 1 coordinates in (9.68) the per-phase variables must
satisfy

2

4
b̂v
0
b̂i

3

5 =

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75

2

4
gv
ĝc
ĝi

3

5 (9.71a)

This defines the following per-phase network:

• The network is described by the admittance matrix is Y 1f .

• The voltage sources have given voltages gv.

• The current sources inject 0 currents, i.e., no device is connected at buses j of the zero-sequence
per-phase network where three-phase current sources are connected in the original network.

• The impedances are ĥi so that (from (9.67a))

b̂i = �ĥi (ĝi� gi) = �diag
�
ĥY

i ,0
��ĝY

i � gY
i
�

0

�
(9.71b)

where ĥY
i := diag

�
h j, j 2 NY

i
�
, ĝY

i :=
�
ĝ j, j 2 NY

i
�

and gY
i :=

⇣
V n

j , j 2 NY
i

⌘
. Note that gY

i is given
and ĝY

i is unknown.
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This is a system of 4 sets of equations in 4 sets of variables
⇣

ĝc, ĝi, b̂v, b̂i

⌘
. Substituting (9.71b) into (9.71a)

we obtain
"

Y 1f
cc Y 1f

ci
Y 1f

ic Y 1f
ii +diag

�
ĥY

i ,0
�
#

ĝc
ĝi

�
= �

"
Y 1f

cv

Y 1f
iv

#
gv +


0

ĥig0
i

�
(9.72)

where we recall ĥi in (9.67) and the given neutral voltages g0
i :=


gY

i
0

�
. If the matrix on the left-hand side

is invertible then (ĝc, ĝi) can be uniquely determined. The other variables
⇣

b̂v, b̂i

⌘
can then be derived in

terms of a solution (ĝc, ĝi).

Assume the matrix in (9.72) is invertible. If gv = 0 and gY
i = 0 as in Theorem 9.7.2, then ĝc = 0

and ĝi = 0 and all voltages consist of balanced vectors. In this case we do not have to compute the
zero-sequence network but simply set ĝ�v := 0 and b̂�c := 0. Recall from (9.66a)(9.66b) that this means
g int

j +V n
j = 0 and b int

j = 0 for Y configured devices and g j = 0 for D configured devices.

Note that, even though b̂�c is determined from (9.72) (9.71), its components b̂ j = 0 for j 2 ND
v [ND

i
from (9.66b). This is consistent because, for j 2 ND

v [ND
i , multiplying both sides of (9.49b) by 1T gives,

using g j := 1
31TVj,

Â
k: j⇠k

⇣
ys

jk + ym
jk

⌘
g j � Â

k: j⇠k
ys

jkgk = 0

which is (9.71) for rows corresponding to j 2 ND
v [ND

i .

Per-phase analysis. Per-phase analysis for solving (9.63) is as follows:

1. Solve the positive-sequence per-phase network (9.70) for (v̂c, v̂i) and then derive
�
îv, îi
�
.

2. If gv = 0 and gY
i = 0, set ĝ�v := 0, b̂�c := 0, and goto the next step. Otherwise, solve the zero-

sequence per-phase network (9.72) for (ĝc, ĝi) and then derive
⇣

b̂v, b̂i

⌘
.

3. Substitute into (9.64)(9.65) to obtain (V�v, I�c).

Example 9.12 (gY = 0). Explain per-phase analysis in the special case where all neutrals are grounded
with zero neutral impedances and voltages are defined with respect to the ground, i.e., g j = 0 for j 2
NY

v [NY
c [NY

i .

9.4 Symmetric network

We have formulated a general three-phase analysis problem in Chapter 9.2.2 and described a solution
strategy in Chapter 9.2.3. When the network is balanced, the phases are decoupled and the network
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decomposes into two independent per-phase networks and the problem can be solved using per-phase
analysis as explained in Chapter 9.3.

When the network is not balanced, e.g., the sources are unbalanced or the transmission lines are not
phase-decoupled, then we can apply the similarity transformation F defined in Chapter 7.2.2 to transform
terminal phase voltage and current (V, I) into sequence voltage and current (Ṽ , Ĩ). Even though the phases
are coupled, we show in Chapters 9.4.1–9.4.4 that if three-phase lines are symmetric and loads are identi-
cal, then their external models are decoupled in the sequence coordinate. They define sequence networks
that can be analyzed separately, similar to the per-phase networks of a balanced network studied in Chap-
ter 9.3. The results from analyzing the sequence networks can then be transformed back to the original
phase coordinate. We describe in Chapter 9.4.5 how to compose the sequence networks from the sequence
models of individual devices and how to solve the three-phase analysis problem using these decoupled
sequence networks when the original network is symmetric.

Symmetric components and sequence networks are most useful for fault analysis in a system that is
more or less balanced, e.g., a three-phase network that remains balanced until the fault location. Without
any symmetry, symmetrical components may not offer much advantage because they do not lead to de-
coupled sequence networks. Even though we do not study fault analysis in this book, the discussion in
this section illustrates the application of various three-phase models developed in this chapter.

9.4.1 Sequence impedances

Y configuration
�
zY ,zn�. Consider the four-wire three-phase impedance

�
zY ,zn� in Y configuration

shown in Figure 7.7 of Chapter 7.3.3. Under assumption C7.1 (all neutrals are grounded and all voltages
are defined with respect to the ground), recall the external model (7.19b) relating the terminal voltage and
current (V, I):

V = �ZY I with ZY := zY + zn 11T =

2

4
zan + zn zn zn

zn zan + zn zn

zn zn zcn + zn

3

5

Substitute V = FṼ and I = FĨ to obtain the external model in the sequence coordinate:

Ṽ = �FZY F| {z }
Z̃Y

Ĩ = �Z̃Y Ĩ

where F from (7.6b) and its inverse F�1 = F from (7.7) are

F =
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1T
aT

+

aT
�

3

5 :=
1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 (9.73a)

F =
1p
3

⇥
1 a� a+

⇤
=

1p
3

2

4
1T
aT
�

aT
+

3

5 :=
1p
3

2

4
1 1 1
1 a2 a
1 a a2

3

5 (9.73b)
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We call Z̃Y a sequence impedance matrix to differentiate it from the (phase) impedance matrix ZY . Sub-
stituting ZY = zY + zn11T, F and F , we have (Exercise 9.18)

Z̃Y =
1
3

2

4
1T z aT

+z aT
�z

aT
�z 1T z aT

+z
aT

+z aT
�z 1T z

3

5 +

2

4
3zn 0 0
0 0 0
0 0 0

3

5

where z :=
�
zan,zbn,zcn� is the column vector of phase impedances. Hence the neutral impedance zn

appears only in the zero-sequence impedance.

If the impedance is balanced zan = zbn = zcn, then 1T z = 3zan and aT
+z = aT

�z = 0 and

Z̃Y =

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5 (9.74a)

Hence the sequence impedance matrix Z̃Y is diagonal even though the phase impedance ZY is not. This
implies that the external model Ṽ =�Z̃Y Ĩ relating the sequence voltage and current in the sequence coor-
dinate is decoupled:

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 = �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 (9.74b)

i.e., the external model consists of three separate impedances:

zero-seq impedance: Ṽ0 = �(zan +3zn) Ĩ0

positive-seq impedance: Ṽ+ = �zanĨ+
negative-seq impedance: Ṽ� = �zanĨ�

The interpretation is as follows. When the similarity transformation defined by the unitary matrix F
transforms a power network from the abc phase coordinate to 0+� sequence coordinate (see Chapter
7.2.2), a balanced impedance with zan = zbn = zcn becomes decoupled in the sequence coordinate. If all
devices are decoupled in the sequence coordinate, the entire sequence networks are decoupled and the
sequence impedances are impedances on these decoupled sequence networks. Each sequence network can
be analyzed separately like a single-phase network. We will explain in Chapter 9.4.5 on how to compose
the sequence networks from sequence models of individual devices.

Note that if the impedance is not balanced then the relation Ṽ = Z̃Y Ĩ is generally coupled and power
flow analysis using the sequence variables may not offer any advantage over using the phase variables.

D configuration zD. Consider the three-wire three-phase impedance zD in D configuration shown in Fig-
ure 7.8 of Chapter 7.3.4. Recall the external model (7.27b) relating the terminal voltage and current (V, I):

V = �ZDI + g1, 1TI = 0 (9.75)
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where the zero-sequence voltage g := 1
31TV is also a variable to be determined in an analysis problem and

ZD :=
1
9

GT zD
✓
I� 1

z
1 z̃DT

◆

| {z }
ẑD

G

Substitute V = FṼ and I = FĨ to obtain the external model in the sequence coordinate:

Ṽ = �
⇣

FZDF
⌘

| {z }
Z̃D

Ĩ + g F1, 1TFĨ = 0 (9.76)

where F and its inverse F is given in (9.73). It can be shown (Exercise 9.19) that

Z̃D :=
1
9

(FL)H ẑD (FL) with L :=

2

4
0

1�a
1�a2

3

5

Moreover g F1 = Ṽ0 e1 and 1TFĨ =
p

3Ĩ0 = 0.

If the impedance is balanced, i.e., zab = zbc = zca then (Exercise 9.19)

ZD =
zab

3

✓
I� 1

3
11T
◆

, Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5 (9.77a)

and the external model (9.76) of a D-configured impedance in the sequence coordinate becomes decoupled:
2

4
0

Ṽ+

Ṽ�

3

5 = �zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 , Ĩ0 =
1p
3

(Ia + Ib + Ic) = 0 (9.77b)

For a D-configured load, Ĩ0 = 0 because there is no neutral wire and therefore KCL dictates that the line
currents sum to zero. The model (9.77) defines three separate impedances in the sequence coordinate:

zero-seq impedance: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq impedance: Ṽ+ = �zab

3
Ĩ+

negative-seq impedance: Ṽ� = �zab

3
Ĩ�

The interpretation is that a balanced D-configured impedance with zab = zbc = zca connected to a bus in a
power network is transformed into an impedance of zab/3 at that bus (as we have seen in Chapter 1.2.4)
in the positive and the negative-sequence networks and no impedance at that bus in the zero-sequence
network (i.e., in the circuit model for the zero-sequence network, the connection between this bus and the
ground is open; see (??) and discussions therein). This does not mean that the voltage Vj,0 = 0 at bus j in
the zero-sequence network where the impedance is connected. Rather, it means that there is zero injection
at bus j (Ĩ j,0 = 0) and Ṽj,0 will be determined by the network equation; see Chapter 9.4.5.
Remark 9.10 (Terminal variables). It is important to remember that the external models derived in this
section relate the sequence variables (Ṽ , Ĩ) of the terminal voltage and current (V, I), not the internal
voltage and current

⇣
VY/D, IY/D

⌘
. See Example 9.13 on how to use sequence networks to calculate internal

currents and powers.
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9.4.2 Sequence voltage sources

Y configuration
�
EY ,zY ,zn�. Consider the four-wire three-phase voltage source

�
EY ,zY ,zn� in Y con-

figuration shown in Figure 7.7 of Chapter 7.3.3. Under assumption C7.1 (all neutrals are grounded and
all voltages are defined with respect to the ground), recall the external model (7.13b) relating the terminal
voltage and current (V, I):

V = EY � ZY I with ZY := zY + zn 11T

where ZY is the same matrix as that for Y -configured impedance. Substitute V = FṼ and I = FĨ to obtain
the external model in the sequence coordinate:

Ṽ = FEY
|{z}

ẼY

� FZY F| {z }
Z̃Y

Ĩ =: ẼY � Z̃Y Ĩ

The sequence impedance matrix Z̃Y := FZY F is the same matrix as that for Y -configured impedance and
the sequence internal voltage is:

ẼY := FEY =
1p
3

2

4
1HEY

aH
+EY

aH
�EY

3

5

When the impedance zY is balanced, i.e., zan = zbn = zcn, even if the internal voltage EY is unbalanced,
its external model in the sequence coordinate becomes decoupled (using (9.74b)):

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 =

2

4
ẼY

0
ẼY

+
ẼY
�

3

5 �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 (9.78a)

This defines three separate non-ideal voltage sources:

zero-seq voltage source: Ṽ0 = ẼY
0 � (zan +3zn) Ĩ0

positive-seq voltage source: Ṽ+ = ẼY
+ � zanĨ+

negative-seq voltage source: Ṽ� = ẼY
� � zanĨ�

As for a balanced impedance, the voltage source becomes decoupled in the sequence coordinate even if
they remain unbalanced.

Furthermore, if EY = Eana+ is a balanced positive-sequence set then only the positive-sequence volt-
age is nonzero:

FEY = ẼY =
1p
3

2

4
1T
aT
�

aT
+

3

5(Eana+) =
Ean
p

3

2

4
1Ha+

aH
+a+

aH
�a+

3

5 =

2

4
0p

3Ean

0

3

5
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The external model of a balanced Y -configured voltage source in the sequence coordinate becomes (from
(9.78a)):

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 =

2

4
0p

3Ean

0

3

5 �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 (9.78b)

This defines a voltage source
�p

3Ean,zan� on the positive-sequence network and impedances on the other
sequence networks:

zero-seq impedance: Ṽ0 = �(zan +3zn) Ĩ0

positive-seq voltage source: Ṽ+ =
p

3Ean � zanĨ+
negative-seq impedance: Ṽ� = �zanĨ�

They are illustrated in Figure 9.8. 6

Scanned with CamScanner

Figure 9.8: The sequence networks of a balanced voltage source
�
EY ,zY ,zn� in Y configuration.

D configuration
�
ED,zD�. Consider the three-phase voltage source

�
ED,zD� in D configuration shown in

Figure 7.8 of Chapter 7.3.4. One of its external models is (7.21b), reproduced here 7

V = ĜED � ZDI + g1, 1TI = 0

where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

where z̃D := zD1 is a column vector and z := 1Tz̃D is a scalar. This is similar to the model (9.75) of
D-configured impedance with the extra term ĜED. Substitute V = FṼ and I = FĨ to obtain the external
model in the sequence coordinate:

Ṽ = FĜED
| {z }

ẼD

� FZDF| {z }
Z̃D

Ĩ + gF1 =: ẼD � Z̃DĨ + Ṽ0e1, 1TFĨ = 0

6The sequence networks of synchronous generators are generally more complicated and their sequence impedances (mostly
reactances) are generally unequal unlike the model in (9.78b); see e.g. [83, Section 2.3].

7
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where 1TFĨ =
p

3Ĩ0 = 0. This is similar to (9.76) with the extra term (Exercise 9.20)

ẼD := FĜED = L†F
✓
I� 1

z
z̃D 1T

◆
ED with L† :=

2

4
0

(1�a)�1

(1�a2)�1

3

5

If the impedance is balanced, i.e., zab = zbc = zca then z̃D := zab1, z := 3zab, and (Exercise 9.20 and
from (9.77a))

ẼD =

2

4
0

(1�a)�1ẼD
+

(1�a2)�1ẼD
�

3

5 , ZD =
zab

3

✓
I� 1

3
11T
◆

, Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

where the sequence voltages are ẼD
+ := 1

3aH
+ED and ẼD

� := 1
3aH
�ED. The zero-sequence voltage ẼD

0 = 0
because there is no neutral line in D configuration. Hence the external model in the sequence coordinate is

2

4
0

Ṽ+

Ṽ�

3

5 =

2

4
0

(1�a)�1ẼD
+

(1�a2)�1ẼD
�

3

5 � zab

3

2

4
0
Ĩ+
Ĩ�

3

5 , Ĩ0 =
1p
3

⇣
Ia + Ib + Ic

⌘
= 0 (9.79a)

Hence the voltage sources in the sequence coordinate are unbalanced but decoupled:

zero-seq voltage source: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq voltage source: Ṽ+ =
ED

+

1�a
� zab

3
Ĩ+

negative-seq voltage source: Ṽ� =
ED
�

1�a2 �
zab

3
Ĩ�

As for a D-configured impedance, a symmetric voltage source in a power network is transformed into
voltage sources in the positive and negative-sequence networks. The equivalent series impedance of the
sequence voltage sources is zab/3 as we have seen in Chapter 1.2.4. There is no device (open circuit)
in the zero-sequence network, which means that, when the voltage source is connected to bus j, there is
zero injection at bus j in the zero-sequence network (Ĩ j,0 = 0) and Ṽj,0 will be determined by the network
equation; see Chapter 9.4.5.

Furthermore, if ED := Eaba+ is a balanced positive-sequence set then

ẼD
+ =

p
3Eab, ẼD

� = 0

and
2

4
0

Ṽ+

Ṽ�

3

5 =

2

4
0

e�ip/6 Eab

0

3

5 � zab

3

2

4
0
Ĩ+
Ĩ�

3

5 (9.79b)
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since
p

3/(1�a) = e�ip/6. This defines a voltage source
⇣

e�ip/6Eab,zab/3
⌘

in the positive-sequence

network and an impedance zab/3 in the negative-sequence network:

zero-seq voltage source: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq voltage source: Ṽ+ = e�ip/6 Eab � zab

3
Ĩ+

negative-seq voltage source: Ṽ� = � zab

3
Ĩ�

There is no device (open circuit) in the zero-sequence network.

9.4.3 Sequence current sources

Y configuration
�
JY ,yY ,zn�. An external model of a Y -configured current source

�
JY ,yY ,zn� is (from

(7.15a)):

I = �JY � yY (V �V n1)

Substitute V = FṼ and I = FĨ to obtain the external model in the sequence coordinate:

Ĩ = �FJY
|{z}

J̃Y

� FyY F| {z }
ỸY

Ṽ + V nFyY 1

where J̃Y := FJY and

ỸY := FyY F =
1
3

⇣
yan11H + ybna�aH

� + ycna+aH

+

⌘
(9.80)

If the phase admittance yY := yan
I is balanced then the sequence admittance is also balanced:

ỸY := FyY F = yan
I, FyY 1 = yanF1 = yan

2

4

p
3

0
0

3

5

The current source becomes decoupled in the sequence coordinate even though it is unbalanced:
2

4
Ĩ0
Ĩ+
Ĩ�

3

5 = �

2

4
J̃Y

0
J̃Y
+

J̃Y
�

3

5 � yan

0

@

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 �

2

4

p
3V n

0
0

3

5

1

A

In particular the neutral voltage V n appears only in the zero-sequence network. If, furthermore, the current
source JY := Jana+ is in a balanced positive sequence then

J̃Y = FJY =
Jan
p

3

2

4
1H
aH

+

aH
�

3

5a+ =

2

4
0p
3Jan

0

3

5
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The current source in the sequence coordinate becomes a current source
�p

3Jan,yan� in the positive-
sequence network and the impedance (yan)�1 in each of the other two sequence networks:

zero-seq impedance: Ĩ0 = �yan
⇣

Ṽ0�
p

3V n
⌘

positive-seq current source: Ĩ+ = �
p

3Jan � yanṼ+

negative-seq impedance: Ĩ� = �yanṼ�

The interpretation of the zero-sequence impedance is that the voltage drop across the impedance (yan)�1

is Ṽ0�
p

3V n with one end of the impedance at a potential
p

3V n with respect to the common voltage
reference point.

When assumption C7.1 holds (the neutral is grounded and voltages are defined with respect to the
ground) so that V n =�zn

⇣
1TI
⌘

, we have

V n = �zn
⇣

1TFĨ
⌘

= � zn
p

3

⇣
1T
⇥
1 a+ a�

⇤
Ĩ
⌘

= �
p

3zn Ĩ0

i.e., the neutral voltage depends only on the zero-sequence current Ĩ0 (of the terminal current I). Substitute
this into expressions above, the sequence voltage and current

�
Ṽ , Ĩ
�

satisfies, when yY := yan
I,

2

4
(1+3yan zn) Ĩ0

Ĩ+
Ĩ�

3

5 = �

2

4
J̃Y

0
J̃Y
+

J̃Y
�

3

5 � yan

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 (9.81a)

and the current source becomes decoupled in the sequence coordinate even if they remain unbalanced:

zero-seq current source: Ĩ0 = �
J̃Y

0
1+3yan zn �

yan

1+3yan zn Ṽ0

positive-seq current source: Ĩ+ = �J̃Y
+ � yanṼ+

negative-seq current source: Ĩ� = �J̃Y
� � yanṼ�

If, furthermore, the current source JY := Jana+ they become:

zero-seq admittance: Ĩ0 = � yan

1+3yan zn Ṽ0 (9.81b)

positive-seq current source: Ĩ+ = �
p

3Jan � yanṼ+ (9.81c)
negative-seq admittance: Ĩ� = �yanṼ� (9.81d)

Instead of sequence current sources in (9.81), equivalent voltage sources in the sequence domain can
also be derived starting from the external model of a current source (from (7.15b)): V =�

�
zY JY + ZY I

�

where zY :=
�
yY��1 and ZY := zY + zn 11T; see Exercise 9.22.
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D configuration
�
JD,yD�. The external model of a D-configured current source is (from (7.23a)):

I = �
⇣

GTJD + Y DV
⌘

where Y D := GTyD G is the matrix in (7.21a). Substitute V = FṼ and I = FĨ to obtain the external model
in the sequence coordinate:

Ĩ = �

0

@FGTJD
| {z }

J̃D

+ FY DF| {z }
Ỹ D

Ṽ

1

A =: �
⇣

J̃D + Ỹ DṼ
⌘

where

J̃D := FGTJD = 3L†FJD

Ỹ D := F
⇣

GTyD G
⌘

F = F
⇣

3FL†F
⌘

yD �FLF
�

F = 3L†
⇣

FyDF
⌘

L

where we have used G = FLF and GT = 3G† = 3FL†F from (7.6).

If the phase admittance yY := yab
I is balanced, then the effective phase admittance Y D is not diagonal

but its sequence admittance Ỹ D is unbalanced but diagonal:

Y D := yabGTG = 3yab
✓
I� 1

3
11T
◆

Ỹ D := FY DF = 3yab
⇣
I � e1eT1

⌘

where we have used GTG = 3
⇣
I� 1

311T
⌘

from Theorem 7.2 and F1 =
p

3e1. Hence the current source is
unbalanced but decoupled in the sequence coordinate:

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 = �

2

4
J̃D

0
J̃D
+

J̃D
�

3

5 � 3yab

2

4
0 0 0
0 1 0
0 0 1

3

5

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 = �

2

4
J̃D

0
J̃D
+

J̃D
�

3

5 � 3yab

2

4
0

Ṽ+

Ṽ�

3

5 (9.82a)

The zero-sequence network has an ideal current source J̃D
0 and the other two sequence networks each has

a non-ideal current source:

zero-seq current source: Ĩ0 = �J̃D
0

positive-seq current source: Ĩ+ = �J̃D
+ � 3yabṼ+

negative-seq current source: Ĩ� = �J̃D
� � 3yabṼ�

If, furthermore, the current source JD := Jaba+ is a balanced positive sequence then

J̃D := 3JabL†Fa+ = 3Jab

2

4
0

(1�a)�1
�
1�a2��1

3

5

2

4
0p
3

0

3

5 =

2

4
0

3e�ip/6Jab

0

3

5
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where we have used Fa+ =
p

3e2 and
p

3/(1�a) = e�ip/6. A balanced positive-sequence current source
is therefore transformed into a current source

⇣
3e�ip/6Jab,3yab

⌘
in the positive-sequence network and an

admittance 3yab in the negative-sequence network:

zero-seq current source: null (Ĩ0 = 0) (9.82b)

positive-seq current source: Ĩ+ = �3e�ip/6Jab � 3yabṼ+ (9.82c)

negative-seq admittance: Ĩ� = �3yabṼ� (9.82d)

There is no device in the zero-sequence network because D configuration has no neutral line.

9.4.4 Sequence line model

Consider a three-phase line connecting bus j and bus k that is modeled by only a series phase impedance
matrix zs

jk. We omit shunt admittances for simplicity.8 The terminal voltages and the line current is related
by Ohm’s law:

Vj � Vk = zs
jk I jk

Convert to the sequence coordinate by substituting Vj = FṼj, Vk = FṼk and I jk = FĨjk to get

Ṽj � Ṽk =
⇣

Fzs
jkF
⌘

| {z }
z̃s

jk

Ĩ jk =: z̃s
jk Ĩ jk (9.83a)

where z̃s
jk := Fzs

jkF is called the sequence impedance matrix of line ( j,k). This does not assume C9.1,
i.e., zs

jk and zs
k j may be different.

If the phase impedance matrix zs
jk is symmetric of the form in (8.9) then (omitting the subscript jk for

simplicity)

z̃s
jk =

1
3

2

4
1 1 1
1 a2 a
1 a a2

3

5

2

4
z1 z2 z2

z2 z1 z2

z2 z2 z1

3

5

2

4
1 1 1
1 a a2

1 a2 a

3

5 =

2

4
z1 +2z2 0 0

0 z1� z2 0
0 0 z1� z2

3

5 (9.83b)

i.e., the sequence impedance matrix of line ( j,k) is diagonal. This defines three separate sequence net-
works:

zero-seq impedance: Ṽj,0�Ṽk,0 =
�
z1 +2z2� Ĩ jk,0

positive-seq impedance: Ṽj,+�Ṽk,+ =
�
z1� z2� Ĩ jk,+

negative-seq impedance: Ṽj,��Ṽk,� =
�
z1� z2� Ĩ jk,�

8Shunt admittances can be included using (8.8a): I jk = ys
jk(Vj�Vk)+ym

jkVj in which case the sequence admittance matrices⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
are given by:

Ĩ jk =
⇣

Fys
jkF
⌘

| {z }
ỹs

jk

�
Ṽj�Ṽk

�
+
⇣

Fym
jkF
⌘

| {z }
ỹm

jk

Ṽj
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The phase impedance matrix zs
jk in (8.9) is complex symmetric but not Hermitian. In general a complex

symmetric matrix may not be diagonalizable (see Exercise 9.23 for an example). The matrix zs
jk however

is normal and hence unitarily diagonalizable through the unitary matrix F (Exercise 9.24).

9.4.5 Three-phase analysis

We now explain how to compose sequence networks from individual device models in the sequence co-
ordinate derived in Chapters 9.4.1–9.4.4. We will show that if a network is unbalanced but symmetric, its
sequence networks are decoupled and can be analyzed separately.

Definition 9.2 (Symmetric network). A network G :=
�
N,E

�
that connects a set of three-phase devices

by three-phase lines is called symmetric if the following assumptions hold:

C9.9: All impedances are symmetric zY/D
j = zan/ab

j I.

C9.10: All voltage sources have symmetric series impedances zY/D
j = zan/ab

j I.

C9.11: All current sources have symmetric shunt admittances yY/D
j = yan/ab

j I.

C9.12: All three-phase lines ( j,k) have series impedances zs
jk = zs

k j that satisfy (8.9) and zero shunt
admittances. In particular we assume for simplicity that assumption C9.1 holds.

Suppose we are given a symmetric network with a single three-phase device at each bus. As before,
partition the set N of buses into 6 disjoint subsets:

• NY/D
v : buses with non-ideal voltage sources in Y or D configurations:

�
EY ,zY ,zn�,

�
ED,zD�.

• NY/D
c : buses with non-ideal current sources in Y or D configurations:

�
JY ,yY ,zn�,

�
JD,yD�.

• NY/D
i : buses with impedances in Y or D configurations:

�
zY ,zn�, zD.

Suppose assumption C7.1 holds (i.e., all neutrals are grounded and voltages are defined with respect to
the ground). C7.1 and the assumption of a single three-phase device at each bus are made without loss
of generality only to simplify presentation (see Example 9.13 for a network where there are two devices
connected to a single bus). We will follow the solution strategy of Chapter 9.3.4 that solves

2

4
Iv
Ic
Ii

3

5 =

2

4
Yvv Yvc Yvi
Ycv Ycc Yci
Yiv Yic Yii

3

5

| {z }
Y

2

4
Vv
Vc
Vi

3

5 (9.84)

for the terminal voltage V�v := (Vc,Vi) and current I�c := (Iv, Ii). All other variables such as internal
voltages and currents

⇣
VY/D, IY/D

⌘
can then be derived in terms of the terminal voltages and currents

(V, I).
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We now show that (9.84) decomposes into three separate sequence networks so that it can be solved by
analyzing three simpler networks. Furthermore, if not only is the network symmetric but all voltage and
current sources are also balanced positive-sequence sets, then it is sufficient to analyze only the positive-
sequence network. This is because in that case there are only impedances and admittances, but no voltage
or current sources, in the zero-sequence and the negative-sequence networks.

Let IN+1 be the identity matrix of size N +1 so that IN+1⌦F is a matrix of size 3(N +1)⇥3(N +1).
Convert both sides of (9.84) into the sequence coordinate by substituting

I =: (IN+1⌦F) Ĩ, V =: (IN+1⌦F)Ṽ

to obtain

2

4
Ĩv
Ĩc
Ĩi

3

5 =

2

4
Ỹvv Ỹvc Ỹvi
Ỹcv Ỹcc Ỹci
Ỹiv Ỹic Ỹii

3

5

| {z }
Ỹ

2

4
Ṽv
Ṽc
Ṽi

3

5 where Ỹ :=
�
IN+1⌦F

�
Y (IN+1⌦F) (9.85a)

and we have used (IN+1⌦F)�1 = IN+1⌦F from Lemma 9.6. The three rows (3 j + 1,3 j + 2,3 j + 3) of
(9.85a) corresponding to the sequence current Ĩ j 2 C

3 of device j = 0, . . . ,N, are:

Ĩ j = Â
j: j⇠k
k2Nv

ỹ jk
�
Ṽj�Ṽk

�
+ Â

j: j⇠k
k2Nc

ỹ jk
�
Ṽj�Ṽk

�
+ Â

j: j⇠k
k2Ni

ỹ jk
�
Ṽj�Ṽk

�
, j 2 N (9.85b)

where ỹ jk :=
�
z̃ jk
��1 :=

⇣
Fzs

jkF
⌘�1

are the series admittance matrices of lines ( j,k) in the sequence
coordinate from (9.83). The network equation (9.85) relates terminal variables. To show that the three-
phase network decomposes into decoupled sequence networks we have to show both of the following:

1. The three rows of (9.85b) are decoupled, i.e., the zero-sequence current Ĩ j,0 depends only on voltages
Ṽk,0 of its adjacent buses k 6= j in the zero-sequence network but not on voltages Ṽk,s in the other
sequence networks s2 {+,�}. Similarly for the positive and negative-sequence currents

�
Ĩ j,+, Ĩ j,�

�
.

2. At each bus j, the terminal voltage and current
�
Ṽj, Ĩ j

�
are decoupled, i.e., the zero-sequence voltage

Ṽj,0 does not depend on the positive or negative-sequence currents
�
Ĩ j,+, Ĩ j,�

�
at bus j. Similarly for

Ṽj,+ and Ṽj,�.

The first claim follows from C9.12 in Definition 9.2 which implies that ỹ jk is diagonal (from (9.83)). This
means that the three rows of (9.85b) are decoupled at all buses j 2 N. We hence only need to prove
the second claim that locally at each bus j the sequence voltage Ṽj,s, s 2 {0,+,�}, does not couple the
sequence currents Ĩ j,s0 , s0 6= s. This can be shown using the models derived in Chapters 9.4.1–9.4.3.

Specifically the external models of the three-phase devices are as follows.
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1. Voltage source j 2 Nv from (9.78a) and (9.79a):
2

4
Ṽj,0
Ṽj,+
Ṽj,�

3

5 =

2

4
ẼY

j,0
ẼY

j,+
ẼY

j,�

3

5 �

2

4
zan

j +3zn
j

zan
j

zan
j

3

5

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 NY
v (9.86a)

2

4
0

Ṽj,+
Ṽj,�

3

5 =

2

4
0

1
1�a

1
1�a2

3

5

2

4
ẼD

j,0
ẼD

j,+
ẼD

j,�

3

5 �
zab

j

3

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 ND
v (9.86b)

2. Current sources j 2 Nc from (9.81a) and (9.82a):
2

4
Ĩ j,0
Ĩ0,+

Ĩ j,�

3

5 = � 1
1+3yan zn

2

4
J̃Y

j,0
J̃Y

0,+
J̃Y

0,�

3

5 � yan

1+3yan zn

2

4
Ṽj,0
Ṽj,+
Ṽ0,�

3

5 , j 2 NY
c (9.86c)

2

4
Ĩ j,0
Ĩ0,+

Ĩ j,�

3

5 = �

2

4
J̃D

j,0
J̃D

j,+
J̃D

j,�

3

5 � 3yab

2

4
0

Ṽj,+
Ṽj,�

3

5 , j 2 ND
c (9.86d)

3. Impedances j 2 Ni from (9.74b) and (9.77b):
2

4
Ṽj,0
Ṽj,+
Ṽj,�

3

5 = �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 NY
i (9.86e)

2

4
0

Ṽj,+
Ṽj,�

3

5 = �zab

3

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 ND
i (9.86f)

Therefore the terminal voltage and current
�
Ṽj, Ĩ j

�
at each bus j are decoupled, even if they are unbalanced.

The network equation (9.85) and the device models (9.86) thus decompose into separate 0/+/� sequence
networks that can be analyzed separately, similar to per-phase analysis for balanced networks.

We illustrate the analysis of sequence networks with an example.

Example 9.13 (Sequence network analysis). Consider the network shown in Figure 9.9 where a voltage
source and a current source supply power through two lines to two loads in parallel. Suppose the network
is symmetric (Definition 9.2) and C7.1 holds (i.e., all neutrals are grounded and voltages are defined with
respect to the ground). Given the Y -configured voltage source

�
EY ,zY ,zn�, the D-configured current source�

JD,yD�, the balanced impedances
�
zY ,zn�, zD, and the symmetric lines with series impedance matrices

(z12,z23), calculate:

1. the terminal load voltages V2 :=
�
V a

2 ,V b
2 ,V c

2
�
;

2. the internal current IY
2 :=

�
Ian
2 , Ibn

2 , Icn
2
�

and the total complex power 1TsY
2 delivered to the Y -configured

load;



394 Draft: EE 135 Notes April 30, 2024

Figure 9.9: Example 9.13: Three-phase unbalanced sources supplies power two balance loads in parallel
through symmetric lines.

3. the internal current ID
2 :=

�
Iab
2 , Ibc

2 , Ica
2
�

and the total complex power 1TsD
2 delivered to the D-configured

load;

Solution. The network equation (9.85) and the device models (9.86) decompose into separate 0/+/� se-
quence networks as shown in Figure 9.10. We will first determine the terminal sequence voltage Ṽ2 and
then the terminal sequence currents Ĩ1

2 and Ĩ2
2 coming out of the Y -configured and D-configured impedances

respectively. The terminal phase variables are then V2 = FṼ2, I1
2 = FĨ1

2 , and I2
2 = FĨ2

2 . Given these terminal
variables we can determine internal currents

�
IY
2 , ID

2
�

and powers
�
sY

2 ,sD
2
�

using the conversion rules.

To determine Ṽ2, apply KCL at bus 2 of the zero-sequence networks to get

ẼY
1,0�Ṽ2,0�

zan
1 +3zn

1
�
+
�
zs

12 +2zm
12
� =

Ṽ2,0

zan
2 +3zn

2
+ J̃D

3,0 (9.87a)

To analyze the positive and negative-sequence networks let the Thévenin equivalent load admittance be

Ỹ2 = yan
2 + 3yab

2

where yan
2 :=

�
zan

2
��1 and yab

2 :=
�
zab

2
��1. KCL at bus 2 of the positive-sequence network gives

ẼY
1,+�Ṽ2,+

zan
1 +

�
zs

12� zm
12
� = Ỹ2Ṽ2,+ + 3yab

3 Ṽ3,+ + J̃D
3,+

Hence we have, after eliminating Ṽ3,+

ẼY
1,+�Ṽ2,+

zan
1 + zs

12� zm
12

=
⇣

Ỹ2 +3r̃3yab
3

⌘
Ṽ2,+ +

⇣
1 � 3r̃3yab

3 (zs
23� zm

23)
⌘

J̃D
3,+ (9.87b)
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Figure 9.10: Example 9.13: Circuit models of sequence networks.
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Similarly, from the negative-sequence network, we get

ẼY
1,��Ṽ2,�

zan
1 + zs

12� zm
12

=
⇣

Ỹ2 +3r̃3yab
3

⌘
Ṽ2,� �

⇣
1 � 3r̃3yab

3 (zs
23� zm

23)
⌘

J̃D
3,� (9.87c)

The terminal sequence voltage Ṽ2 :=
�
Ṽ2,0,Ṽ2,+,Ṽ2,�

�
can be obtained from (9.87). From the 0/+/� se-

quence networks, the terminal sequence load currents are

Ĩ1
2,0 = �

Ṽ2,0

zan
2 +3zn

2
, Ĩ1

2,+ = �
Ṽ2,+

zan
2

, Ĩ1
2,� = �

Ṽ2,�
zan

2

Ĩ2
2,0 = 0, Ĩ2

2,+ = �
3Ṽ2,+

zab
2

, Ĩ2
2,� = �

3Ṽ2,�

zab
2

From the terminal sequence variables
�
Ṽ2, Ĩ1

2 , Ĩ2
2
�

we can obtain the terminal phase variables

V2 = FṼ2, I1
2 = FĨ1

2 , I2
2 = FĨ2

2

To obtain the internal currents IY
2 and ID

2 , apply the conversion rules to get

IY
2 = �I1

2 , ID
2 = �GT†I2

2 + b21 = �1
3

GI2
2 + b21

for an arbitrary b 2 C, where ID
2 exists because Ĩ2

2,0 = 0 means 1TI2
2 = 0.

Finally to calculate the internal powers sY
2 and sD

2 we first obtain the internal voltages:

VY
2 = V2 � V n

2 1 = V2 + zn
2

⇣
11T
⌘

I1
2 , V D

2 = GV2

where the second equality follows from V n
2 =�zn

2

⇣
1TI1

2

⌘
under C7.1. Hence

sY
2 := diag

⇣
VY

2 IYH
2

⌘
= �diag

⇣
V2I1H

2 + zn
2

⇣
11T
⌘

I1
2 I1H

2

⌘

sD
2 := diag

⇣
V D

2 IDH
2

⌘
= �diag

⇣
GV2I2H

2 G†
⌘

+ b 2GV2

The total internal powers are 1TsY
2 and 1TsD

2 which is independent of b2.

9.5 Bibliographical notes

Three-phase load flow solvers have been developed since at least the 1960s, e.g., see [93] for solution
in the sequence coordinate and [61, 83] in the phase coordinate. A three-phase network is equivalent to
a single-phase circuit where each node in the equivalent circuit is indexed by a (bus, phase) pair [83].
The main difference with a single-phase network is the models of three-phase devices in the equivalent
circuit, such as models for generators and loads studied in Chapter 7, and lines and transformers studied in
Chapter 8. Single-phase power flow algorithms such as Newton Raphson [94] or Fast Decoupled methods
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[95] can be directly applied to the equivalent circuit. See also [77, Chapter 11] for recent algorithms for
solving three-phase power flows. A sufficient condition is derived in [21] to ensure a fixed-point iteration
of an AC power flow equation converges to a unique power flow solution. Sufficient conditions are also
proved in [22] for the invertibility of three-phase admittance matrix which then ensures the validity of Z-
bus method for computing power flow solutions. Finally recent studies on three-phase AC optimal power
flow problems and their semidefinite relaxations include e.g. [96, 97, 98].

9.6 Problems

Chapter 9.1.

Exercise 9.1 (Symmetry and block symmetry). Consider a 3n⇥ 3n matrix A partitioned as in Definition
9.1.

1. Suppose A is symmetric. Show that it is block symmetric if all its off-diagonal blocks are symmetric,
i.e., AT

jk = A jk, for all j 6= k.

2. Suppose A is block symmetric. Show that it is symmetric if all blocks A jk, including the diagonal
blocks, are symmetric.

Exercise 9.2 (Invertibility of Y ). Prove Theorem 9.2.

Exercise 9.3 (Invertibility of Y ). This exercise shows that the set of conditions in Theorem 9.1 and that
in Theorem 9.2 each ensures aHY a 6= 0 for any nonzero a 2 C

3(N+1). Suppose C9.2 is satisfied, i.e.,
ys

jk = ys
k j, ym

jk and ym
k j are complex symmetric, so that the admittance matrix Y is both symmetric and block

symmetric. Consider aHY a for any a 2 C
3(N+1), and write ys

jk,y
m
j j := Âk: j⇠k ym

jk and a j in terms of their
real and imaginary parts:

ys
jk =: gs

jk + ibs
jk 2 C

3⇥3, ym
j j =: gm

j j + ibm
j j 2 C

3⇥3, a j =: r j + ie j 2 C
3

1. Show that the real and imaginary parts of aHY a are:

Re
⇣

aHY a
⌘

= Â
( j,k)2E

✓
r j
e j

�
�


rk
ek

�◆Tgs
jk 0
0 gs

jk

�✓
r j
e j

�
�


rk
ek

�◆
+ Â

j2N

⇥
rT

j eTj
⇤gm

j j 0
0 gm

j j

�
r j
e j

�

Im
⇣

aHY a
⌘

= Â
( j,k)2E

✓
r j
e j

�
�


rk
ek

�◆Tbs
jk 0
0 bs

jk

�✓
r j
e j

�
�


rk
ek

�◆
+ Â

j2N

⇥
rT

j eTj
⇤bm

j j 0
0 bm

j j

�
r j
e j

�

2. Show that the conditions in Theorem 9.1 ensure aHY a 6= 0 for any nonzero a 2 C
3(N+1).

3. Show that the conditions in Theorem 9.2 ensure aHY a 6= 0 for any nonzero a 2 C
3(N+1).
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Exercise 9.4 (Invertibility of Y22). Prove Theorem 9.3.

Exercise 9.5 (Power flow equation). Express the three-phase power injection s j 2 C
3 in terms of the

voltage vector V 2 C
3(N+1):

s j = Â
k: j⇠k

diag
⇣⇣

eTj ⌦ I

⌘
VVH

⇣
(e j� ek)⌦ ysH

jk

⌘
+
⇣

eTj ⌦ I

⌘
VVH

⇣
e j⌦ ymH

jk

⌘⌘

Chapter 9.2.

Exercise 9.6 (Four-wire model in Y -configured). For Example 9.3 express the neutral voltages (g j,gk) in
terms of the phase voltages and currents

�
Vj,Vk, I j, Ik

�
.

Exercise 9.7 (Four-wire model in Y -configured). Repeat Example 9.5 but for the case where the neutrals n
of the voltage source and the impedance are connected through impedances

⇣
zn0n

j ,zn0n
k

⌘
to their respective

external neutral terminals n0 which are then connected to the four-wire line. See Figure 9.6.

Figure 9.11: Exercise 9.7: A Y -configured generator connected through a four-wire line to a Y -configured
impedance load.

Note that V n
j is the voltage (with respect to a common reference point) at the neutral internal of the

device, and V n0
j is the voltage at the terminal of the neutral line of the device, and that

⇣
V n0

j ,V n0
k

⌘
do not

need to be given or grounded.

Exercise 9.8 (Current Source in D configuration). Consider Example 9.6 but with an ideal current source
instead of the ideal voltage source. Specifically suppose the following are specified:

• Current source
⇣

JD
j ,g j

⌘
.
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• Impedance zD
k . (Note that bk need not be specified but can be derived.)

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk = ym
k j := 0

◆
. We have assumed for simplicity that shunt admit-

tances are zero.

1. Compute all the other quantities in Table 9.2.

2. Show that if zs
jk is symmetric of the form in (8.9) with z1

jk +2z2
jk 6= 0, then gk = g j.

3. Show the following relation between the loop flows b j and bk:

• bk =�b j if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = 0.

• bk = 0 if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = zkb j where zk := 1Tzk1.

• bk = 0 if the impedance zD
k = zk

3 I is balanced, regardless of whether JD
j is balanced or whether

b j is zero. The converse does not necessarily hold.

Note that if the shunt admittances
⇣

ym
jk,y

m
k j

⌘
are nonzero, then g j need not be specified and can be derived;

see Remark 9.8.

Exercise 9.9 (Y and D devices). Consider a Y -configured current source connected to a D-configured
impedance as shown in Figure 9.12. Suppose the following are specified:

Figure 9.12: Three-phase Y -configured current source connected through a three-phase line to a D-
configured impedance load.

• Current source JY
j .

• Impedance zD
k .
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• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk,y
m
k j

◆
with at least one of

⇣
ym

jk,y
m
k j

⌘
being nonzero.

Follow the solution strategy outlined in Chapter 9.2.3 to solve the network. State any invertibility assump-
tions in your derivation. An alternative approach is that used in Exercise 9.8.

Exercise 9.10 (Balanced power source). Solve Example 9.9 when the system is balanced, i.e.,

• Power source
⇣

sD
j ,g j

⌘
with sD

j = a ja+ + b j1 for given
�
a j,b j

�
. i.e., a balanced power source

must be a generalized balanced vector. Moreover its voltage and current
⇣

V D
j , ID

j

⌘
are generalized

balanced vectors.

• Impedance zD
k := z D

k I.

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
:=
⇣

hs
jkI,0,0

⌘
.

• b j +bk := 1
31T

⇣
ID

j + ID
k

⌘
= b 0.

Use the external model (7.27b) of impedance.

Exercise 9.11 (Power sources). Repeat Example 9.11 when the shunt admittances are zero, i.e., the three-
phase line is specified as

⇣
ys

jk,y
m
jk = ym

k j = 0
⌘

with nonsingular ys
jk, as in Example 9.9. Since the admit-

tance matrix is no longer invertible, suppose b j +bk := 1
31T

⇣
ID

j + ID
k

⌘
= b 0 is also given.

Exercise 9.12 (Balanced power sources). Consider the system in Figure 9.7 where both the generator and
load are power sources and the lines have zero shunt admittances, as in Example 9.9. Suppose the system
is balanced and the following are specified:

• Power source
⇣

sD
j ,g j

⌘
with sD

j = a ja+ + b j1 for given
�
a j,b j

�
, with its voltage and current

⇣
V D

j , ID
j

⌘
being generalized balanced vectors.

• Power source sD
k = aka+ +bk1 for given (ak,bk), with its voltage and current

⇣
V D

j , ID
j

⌘
being gen-

eralized balanced vectors. Note that gk is not specified.

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
:=
⇣

hs
jkI,0,0

⌘
.

• Suppose a reference voltage \V a
j := q a

j is given.
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Show how to derive all variables
�
V D

i , ID
i ,bi

�
and

�
Vi, Ii,g j

�
, i = j,k, analytically. In particular show that

g j = gk.

Exercise 9.13 (Power sources). Given a solution
�
Vc, Iint

i , Iint
p ,V int

p
�

to the reduced system (9.47), derive

all the unknown internal variables
⇣

VY/D
j , IY/D

j ,sY/D
j ,b j

⌘
and external variables

�
Vj, I j,s j,g j

�
over the

network.

Chapter 9.3

Exercise 9.14 (Balanced network). The two equivalent external models of an impedance zD
j in Tables 7.3

and 7.4 are

Vj = �ZDI j + g j1, 1TI j = 0

I j = �Y DVj

where the effective impedance and admittance matrices are ZD
j := 1

9 GTzD
j G and and Y D

j := GTyD
j G. For

balanced networks where the impedance zD
j = e�1

j I, show that these models reduce to:

Vj = � 1
3e j

I j + g j1, 1TI j = 0

I j = �3e j
�
Vj � g j1

�

Exercise 9.15 (Balanced voltages & currents). Consider the reduced system (9.42) of (9.48)(9.50). We
have shown that any solution

�
Vc, Iint

i
�

of (9.42) consists of generalized balanced vectors. Derive all
other variables analytically in terms of the solution

�
Vc, Iint

i
�

and show that they are generalized balanced
positive-sequence sets.

Exercise 9.16 (Balanced network). Suppose (A⇥ I)V = b⌦a+ + c⌦ 1 where A 2 C
n⇥n, b,c 2 C

n, I is
the identity matrix of size 3 and 1 is the vector of all 1s of size 3. Let g j := 1

31TVj be the zero-sequence
component of Vj 2 C

3. Show that Ag = c.

Chapter 9.4.

Exercise 9.17. Prove that if a vector V of three-phase voltages is a balanced negative sequence then the
negative-sequence voltage Ṽ� =

p
3Va and the zero-sequence and the positive-sequence voltages are both

zero, Ṽ0 = Ṽ+ = 0.
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Exercise 9.18 (Sequence impedance Z̃Y ). Consider the phase impedance matrix ZY := zY + zn11T of a
Y -configured impedance zY . Show that its sequence impedance matrix is

Z̃Y =
1
3

2

4
1T z aT

+z aT
�z

aT
�z 1T z aT

+z
aT

+z aT
�z 1T z

3

5 +

2

4
3zn 0 0
0 0 0
0 0 0

3

5

If zan = zbn = zcn then

Z̃Y =

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

Exercise 9.19 (Sequence impedance Z̃D). Consider a D-configured impedance zD whose external model is
(from (9.75)):

V = �ZDI + g1, 1TI = 0 (9.88)

where the zero-sequence voltage g := 1
31TV is also a variable to be determined and

ZD :=
1
9

GT zD
✓
I� 1

z
1 z̃DT

◆

| {z }
ẑD

G

Show that its sequence impedance matrix is

Z̃D :=
1
9

(FL)H ẑD (FL)

where F is given in (??) and

L :=

2

4
0

1�a
1�a2

3

5

If zab = zbc = zca then

Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

and the external model of the D-configured impedance in the sequence coordinate is:
2

4
0

Ṽ+

Ṽ�

3

5 = �zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 , Ĩ0 = 0
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Exercise 9.20 (Sequence network: D-configured voltage source). One of the external models of a D-
configured voltage source is (from (7.21b)):

V = ĜED � ZDI + g1, 1TI = 0

where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

where z̃D := diag
�
zD�1 and z := 1Tz̃D.

1. Show that

Exercise 9.21 (Sequence network: D-configured voltage source). Repeat Exercise 9.20 starting with the
alternative external models of a D-configured voltage source is (from (7.21a)).

Exercise 9.22 (Sequence network: Y -configured current source). Suppose assumption C9.1 holds (all
neutrals are grounded and voltages are defined with respect to the ground) so that V n =�zn

⇣
1TI
⌘

. Derive
the sequence networks for a Y -configured current source (as those in Chapter 9.4.3) starting from the
external model in the phase domain (from (7.15b)):

V = �
�
zY JY + ZY I

�

where zY :=
�
yY��1 and ZY := zY + zn 11T.

Exercise 9.23. Consider the complex symmetric matrix

M :=


1 i
i �1

�

Show that M is not diagonalizable by computing its Jordan form and that:

1. Its eigenvalue l = 0 has algebraic multiplicity of 2 and geometric multiplicity of 1.

2. Its eigenvector is v1 = (�i,1) and generalized eigenvector is v2 = (�2i,1).

Exercise 9.24. Consider the complex symmetric phase impedance matrix

z :=

2

4
s m m
m s m
m m s

3

5

where s,m 2 C.
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1. Check directly that zzH = zHz. Hence, even though z is symmetric but not Hermitian, it is normal.

2. Since z is normal, it is unitarily similar to a diagonal matrix z̃, i.e., there exists a unitary matrix F
such that z̃ = FHzF . Find F and z̃.

Exercise 9.25 (Unbalanced currents). Consider a balanced load in (a) Y configuration, or (b) D con-
figuration, with one of the loads open-circuited, as shown in Figure 9.13. Find the sequence currents
Ĩ := (Ĩ1, Ĩ2, Ĩ3) and the neutral current In (for Y configuration) when the terminal phase currents are

I =

2

4
ia

ia ei2p/3

Ic

3

5

Why is only the negative-sequence component nonzero even though the loads are unbalanced because of
the open circuit?

Scanned with CamScanner

Figure 9.13: Sequence components of unbalanced phase currents.

Exercise 9.26. Repeat Example 9.13 without using symmetrical components and sequence networks.

Exercise 9.27. Repeat Example 9.13 but with the Y and D-impedances in series (instead of in parallel)
connected by a line with the same series-phase impedance matrix zline, as shown in Figure 9.14.

Exercise 9.28. Repeat Exercise 9.27 without using symmetrical components and sequence networks.
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Sc
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w
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r

Figure 9.14: Exercise 9.27: A three-phase unbalanced voltage source supplies power two balance loads in
series through symmetric lines.



Chapter 10

Branch flow models

In this chapter we extend the single-phase branch flow models of Chapter 5 to unbalanced three-phase
networks. We will build on materials in Chapter 9 on unbalanced bus injection models.

10.1 General network

In this section we extend the branch flow model of Chapter 5.1 for single-phase networks to unbalanced
three-phase networks, under the following condition throughout this chapter:

C10.1: For every line ( j,k) 2 E, the series impedance matrices zs
jk = zs

k j.

This means that the admittance admittance Y is block symmetric and has a three-phase P circuit represen-
tation. If ( j,k) 2 E models a three-phase transformer then it is in YY or DD configuration.

We often assume the shunt admittances ym
jk = ym

k j = 0 as well in which the admittance matrix Y has
zero block row sums. This, together with C10.1, allow us to adopt a directed graph for network model.

10.1.1 Three-phase model

Review: single-phase model. Consider the branch flow model (5.1) of Chapter 5.1 for general networks.
We assume C5.1 (zs

jk = zs
k j for every line ( j,k)2E) and zero shunt admittances ym

jk = ym
k j = 0. We therefore

often omit the superscript s and write series impedances and admittances as z jk =:
�
y jk
��1. Then the

branch variables in one direction of a line can be easily expressed in terms of those in the other direction:

Ik j = �I jk, Sk j = �
⇣

S jk� z jk
��I jk
��2
⌘

This allows us to adopt a (connected) directed graph G = (N,E) with an arbitrary but fixed orientation and
reduce the number of variables by defining branch variables only in the direction of the lines. Substituting

406
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ym
jk = ym

k j = 0 into (5.1) then simplifies the model to (Exercise 10.1):

Â
k: j!k

S jk = Â
i:i! j

�
Si j� zi j`i j

�
+ s j, j 2 N (10.1a)

Vj�Vk = z jkI jk, j! k 2 E (10.1b)

S jk = Vj IHjk, j! k 2 E (10.1c)

` jk = |I jk|2, j! k 2 E (10.1d)

Here (10.1a) imposes power balance at each bus, (10.1b) is Ohm’s law, and (10.1c) defines branch power
in terms of the associated voltage and current. The quantity ` jk in (10.1d) is the squared magnitude of the
branch current and zi j` jk represents line loss so that Si j� zi j`i j is the receiving-end complex power at bus
j from bus i. For convenience we include V0 in the vector variable V := (Vj, j 2 N) with the understanding
that V0 := 1\0� is fixed. The BFM (10.1) is applicable to both radial networks and meshed networks.

Three-phase BFM. We now generalize the single-phase BFM (10.1) for general networks to unbalanced
three-phase networks under assumption C10.1. We also assume zero shunt admittance matrices ym

jk =
ym

k j = 0 for all lines j! k 2 E. We therefore often omit the superscript s and write series impedance and

admittance matrices as z jk =:
�
y jk
��1. For notational simplicity we assume that all buses and all lines

have three phases a,b,c; the generalization to the case where a bus/line has one, two, or three phases is
straightforward.

As explained in Chapter 8.1 a three-phase line is characterized by its series impedance matrix:

z jk :=
⇣

ys
jk

⌘�1
:=

2

64
zaa

jk zab
jk zac

jk
zba

jk zbb
jk zbc

jk
zca

jk zcb
jk zcc

jk

3

75 2 C
3⇥3

For each line j! k let I jk 2 C
3 be the 3-phase complex line current. For each bus j 2 N let Vj 2 C

3 be
the 3-phase complex voltage and s j 2 C

3 be the 3-phase net complex power injection at bus j. A key
to generalizing single-phase BFM to the 3-phase setting is the generalization of the quadratic relation in
(10.1c) and (10.1d) between

�
S jk,` jk

�
and

�
Vj, I jk

�
. They are generalized in [97] to the 3-phase setting

using outer product:

S jk = Vj IHjk, ` jk = I jkIHjk

i.e., S jk and ` jk are 3⇥ 3 rank-1 matrices. The diagonal terms of S jk are the 3-phase sending-end power
on line ( j,k) 2 E and those of ` jk are the squared magnitudes of the 3-phase branch currents. The BFM
for unbalanced multiphase networks is then the following set of equations:

Â
k: j!k

diag(S jk) = Â
i:i! j

diag
�
Si j� zi j`i j

�
+ s j, j 2 N (10.2a)

Vj�Vk = z jkI jk, j! k 2 E (10.2b)

S jk = Vj IHjk, j! k 2 E (10.2c)

` jk = I jkIHjk, j! k 2 E (10.2d)
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with a given V0 2 C
3. This model generalizes directly the single-phase model (10.1) where the variables

I jk,Vj,s j are now vectors and S jk,` jk are now 3⇥3 matrices instead of scalars. The power balance equation
(10.2a) constrains only the diagonal terms of S jk and ` jk. Their off-diagonal terms are determined by
(10.2c)(10.2d). For convenience we assume here the vector V0, not just V f

0 , f 2 {a,b,c}, is given (see
angle recovery in Chapter 10.2.1 and a backward forward sweep method in Chapter 10.4.2).

10.1.2 Equivalence

Therefore the bus injection model and the branch flow model differ only in their power flow equations
(9.12) and (10.2) respectively. We now show that these models for unbalanced multiphase networks are
equivalent in the following sense. Define the solution sets:

V := V(V0) :=
n

(s,V ) 2 C
6(N+1) | (s,V ) satisfies (9.12) with a given V0

o

X̃ := X̃(V0) :=
n

x̃ := (s,V, I,`,S) 2 C
6(N+1)+21M | x̃ satisfies (10.2) with a given V0

o

where N +1 is the number of nodes and M := |E| is the number of lines in G.1 We say that two sets A and B
are equivalent, denoted by A⌘ B, if there is a bijection between them. The following theorem generalizes
Theorem 5.3.1 of Chapter 5.3 from single-phase to multiphase networks, assuming the admittance matrix
y jk :=

�
z jk
��1 exists (assumption C8.1).

Theorem 10.1. Suppose assumptions C10.1 and C8.1 hold. Then V⌘ X̃.

Proof. Fix any (s,V ) 2 V. We will construct an x̃ := (s,V, I,`,S) 2 X̃. For each line j! k 2 E define
(I jk` jk,S jk) in terms of V by

I jk := y jk
�
Vj�Vk

�
(10.3a)

` jk := I jkIHjk = y jk
�
Vj�Vk

��
Vj�Vk

�H yHjk (10.3b)

S jk := VjIHjk = Vj
�
Vj�Vk

�H yHjk (10.3c)

By construction, x̃ satisfies (10.2b)(10.2c) (10.2d). We now show that since (s,V ) satisfies (9.12b), x̃ also
satisfies (10.2a). We have from (9.12b)

s j = Â
k: j!k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H◆
+ Â

i:i! j
diag

⇣
Vj(Vj�Vi)

H
�
ys

ji
�H⌘

The core of the first term on the right-hand side equals S jk because of (10.3c), noting y jk := ys
jk. We claim

that the core of the second term equals �
�
Si j� zi j`i j

�
and therefore (10.2a) is satisfied. To see this, use

(10.3b) (10.3b) to get

�
�
Si j� zi j`i j

�
= �Vi

�
Vi�Vj

�H yHi j + zi j

⇣
yi j
�
Vi�Vj

��
Vi�Vj

�H yHi j

⌘
= Vj(Vj�Vi)

H
�
ys

ji
�H

1 The assumption that V0 fixed and equal in both V and X̃ is not necessary for Theorem 10.1. This condition is used in the
proof of Theorem 10.2 on the equivalence of BFM for radial networks and X̃, and hence is added here as well. Another reason
is that a given reference angle, say, \V a

0 = a0, is needed for most three-phase analysis problems whose specifications determine
a power flow solution only up to an arbitrary reference angle; see Examples 9.8 and 9.11 for BIM and Examples 10.1 and 10.2
for BFM.
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This shows that x̃ satisfies (10.2a).

Conversely, if x̃ := (s,V, I,`,S) satisfies (10.2a) then the argument above also shows that its component
(s,V ) satisfies (9.12b), and hence (s,V ) 2 V.

10.2 Radial network

10.2.1 Three-phase model

Review: single-phase model. Assume C5.1 (zs
jk = ys

k j for every line ( j,k) 2 E) and zero shunt admit-
tances. When the network is radial we adopt, without loss of generality, the graph orientation in which all
lines point away from bus 0. Then the power flow equations are (5.7) in Chapter 5.2, reproduced here:

Â
k: j!k

S jk =
�
Si j� zi j`i j

�
+ s j, j 2 N (10.4a)

v j� vk = 2Re
⇣

z jkSHjk
⌘
� |z jk|2` jk, j! k 2 E (10.4b)

v j` jk = |S jk|2, j! k 2 E (10.4c)

where V0 2 C is given. In (10.4a), i := i( j) denotes the unique bus between bus 0 and bus j so that
i! j 2 E is a line. Here we omit the superscript in zs

jk.

Three-phase BFM. We now specialize to radial networks and generalize the single-phase model (10.4)
to multiphase networks, under assumptions C10.1 and zero shunt admittance matrices ym

jk = ym
k j = 0 2

C
3⇥3. Without loss of generality we adopt the graph orientation where all lines point away from the root

bus 0. The variables for an unbalanced three-phase network are:

s j 2 C
3, v j 2 S

3
+, j 2 N

` jk 2 S
3
+, S jk 2 C

3⇥3, j! k 2 E

where S
n
+ ✓ C

n⇥n is the set of of n⇥ n complex (Hermitian and) positive semidefinte matrices. Let
s := (s j, j 2 N),v := (v j, j 2 N), ` := (` jk,( j,k) 2 E), S := (S jk,( j,k) 2 E), and let x := (s,v,`,S). The
following equations are proposed in [97] to generalize the DistFlow model from the single-phase to the
three-phase setting:

Â
k: j!k

diag(S jk) = diag
�
Si j� zi j`i j

�
+ s j, j 2 N (10.5a)

v j� vk =
⇣

z jk SHjk +S jkzHjk
⌘
� z jk ` jk zHjk, j! k 2 E (10.5b)


v j S jk
SHjk ` jk

�
� 0, j! k 2 E (10.5c)

rank


v j S jk
SHjk ` jk

�
= 1, j! k 2 E (10.5d)
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where V0 2 C
3 is given and bus i := i( j) is the unique parent of bus j in (10.5a). Here, and below, we

omit the superscript in zs
jk when shunt admittances zm

jk = zm
k j = 0. Even though V f

0 for any f 2 {a,b,c} is
sufficient to ensure unique voltage and current angles from a solution x of (10.5), as we explain below, we
assume for convenience that the vector V0 is given because V0 enables Algorithm 2 below that explicitly
constructs a x̃ := (s,V, I,`,S) 2 X̃ from x := (s,v,`,S). A given V0 also enables a backward forward sweep
method in Chapter 10.4.2. Note however that fixing V0 may not guarantee the uniqueness of power flow
solutions x since (10.5) is nonlinear.

Angle recovery. We now explain how to recover the phase angles for voltage and current phasors (V, I)
for a radial network with zero shunt admittance matrices ym

jk = ym
k j = 0 and under assumption C5.1, i.e.,

given a power solution x = (s,v,`,S) that satisfies (10.5) we will construct the phasors (V, I).

The BFM (10.5) does not contain the vectors Vj or I jk, but the psd rank-1 constraints (10.5c)(10.5d)
ensure that there exist Vj and I jk such that

v j = VjVH

j , ` jk = I jkIHjk, S jk = VjIHjk (10.6a)

or equivalently


v j S jk
SHjk ` jk

�
=


Vj
I jk

�
·
h
VH

j IHjk
i
, j! k 2 E (10.6b)

Given matrices
�
v j,` jk,S jk

�
, the vectors

�
Vj, I jk

�
are determined uniquely up to a reference angle. If a

reference angle is given, e.g., \V a
0 = 0�, the power flow equation (10.5) will fix the angles of all variables.

See Example 10.1 in Chapter 10.3.

If V0 is given, not just V f
0 , f 2 {a,b,c}, then given a power solution x := (s,v,`,S) that satisfies (10.5),

an x̃ := (s,V, I,`,S) 2 X̃ can be explicitly constructed using the iterative Algorithm 2 from [97] that makes
use of the tree topology. The basic idea in Step 5 of the algorithm is to compute the phasors Vi and Ii j
recursively, starting from bus 0 when V0 is given: since Si j = Vi IHi j , taking the Hermitian transpose and
multiplying both sides by Vi, we have

Vi IHi j = Si j ) Ii j

⇣
VH

i Vi

⌘
= SHi j Vi ) Ii j =

1
tr(vi)

SHi j Vi (10.7)

Tree topology and cycle condition. An x satisfying (10.5) is a legitimate power flow solution, i.e., from
which a unique (up to an arbitrary reference angle) phasor (V, I) can be constructed as described above,
only if the network is radial. To see this, substituting I jk = y jk

�
Vj�Vk

�
into S jk = VjIHjk we get

VjVH

k = v j � S jkzHjk, j! k 2 E
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Algorithm 2: Recover x̃ = (s,V, I,`,S) from x = (s,v,`,S).
Down orientation where all lines point away from root bus 0.

Input: x = (s,v,`,S) 2 X; V0 2 C
3.

Output: x̃ = (s̃,Ṽ , Ĩ, ˜̀, S̃) 2 X̃

1: s̃  s; ˜̀  `; S̃  S;
2: Nvisit  {0};
3: while Nvisit 6= N do
4: find i! j such that i 2 Nvisit and j /2 Nvisit;
5: compute

Ĩi j  
1

tr(vi)
SHi j Ṽi

Ṽj  Ṽi� zi j Ĩi j

Nvisit  Nvisit[{ j}

6: end while

Taking the diagonal vectors on both sides, we conclude that given a solution x of (10.5), voltage phasors
Vj exist if and only if there exist q j :=

⇣
q a

j ,q b
j ,q c

j

⌘
, for all j 2 N, such that

2

664

|V a
j V a

k |ei(q a
j�q a

k )

|V b
j V b

k |ei(q b
j�q b

k )

|V c
j V c

k |ei(q c
j�q c

k )

3

775 =

2

664

|Ua
jk|e

ib a
jk

|Ub
jk|e

ib b
jk

|Uc
jk|e

ib c
jk

3

775 , j! k 2 E

where the vectors b jk := b jk(x)2R3 of angles depend on x and are defined by b jk(x) :=\diag
⇣

v j�S jkzHjk
⌘

.

In particular there must exist q :=
�
q j 2 R

3, j 2 N
�
2 R

3(N+1) such that

b (x) =
⇣

CT⌦ I

⌘
q (10.8a)

where b (x) :=
�
b jk(x), j! k 2 E

�
2 C

3M and C is the (N + 1)⇥M bus-by-line incidence matrix whose
rank is N. See Chapter 25.2 for more properties of C. The condition (10.8a) is the cycle condition that
generalizes (5.13a) from single-phase to three-phase networks. We now show that the cycle condition is
vacuous for radial networks, i.e., any x satisfying (10.5) also satisfies (10.8a) when the network is radial.

Partition C into its first row cT0 and an N⇥M matrix Ĉ of the remaining rows so that

CT =:
⇥
c0 ĈT

⇤

Similarly partition q =:
�
q0, q̂

�
2 R

3(N+1). Suppose G is a (connected) tree with M = N. Then ĈT

is N ⇥N and of full rank. Therefore c0 = ĈTh for some h 2 C
N . It is proved in Exercise 10.2 that�

ĈTh
�
⌦ I =

�
ĈT⌦ I

�
(h⌦ I). Hence (10.8a) becomes

b (x) =
⇣

cT0 ⌦ I

⌘
q0 +

⇣
ĈT⌦ I

⌘
q̂ =

⇣
ĈT⌦ I

⌘�
q̂ +(h⌦q0)

�
(10.8b)
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where we have used (h⌦ I)q0 = h⌦q0. Since ĈT and hence
�
ĈT⌦ I

�
are invertible, for any x satisfying

(10.5), there always exists an q =
�
q0, q̂

�
2R3(N+1) that satisfies (10.8b). Indeed the solution q of (10.8b)

is not unique. Given any q0 2C3, there is always a (unique) q̂ :=
⇣�

ĈT
��1⌦ I

⌘
b (x)�h⌦q0 that satisfies

(10.8b).2

If G contains cycles, on the other hand, then M > N and the 3M⇥3(N +1) matrix
�
CT⌦ I

�
in (10.8a)

has a column rank of 3N < 3M since rank (A⌦B) = rank A · rank B from Lemma 9.6. This means that
the column space of

�
CT⌦ I

�
does not span R

3M and hence there may be b (x) for which no q exists that
satisfies (10.8a), regardless of whether q0 is given. A power flow model for a meshed network consists of
(10.5) augmented with the cycle condition (10.8a).

10.2.2 Equivalence

The two unbalanced three-phase BFM models, (10.2) and (10.5), are defined by different sets of variables
that satisfy different sets of equations. In the first model, the variables are x̃ := (s,V, I,`,S) where s j,Vj, I jk
are vectors in C

3, and ` jk,S jk are matrices in C
3⇥3. They satisfy (10.2). In the second model, the variables

are x := (s,v,`,S) where s j are vectors in C
3 and v j,` jk,S jk are matrices in C

3⇥3. They satisfy a different
set of equations (10.5). Nonetheless, for radial networks, they are equivalent in the following sense. Let

X := X(V0) :=
n

x := (s,v,`,S) 2 C
12(N+1)+18M | x satisfies (10.5) with a given V0

o

See footnote 1 for the need for a reference angle, say, \V a
0 = a0, that underlies the condition of a fixed and

given V0. The following theorem generalizes Theorem 5.3 of Chapter 5.3 from single-phase to multiphase
radial networks.

Theorem 10.2. Suppose assumptions C10.1 and C8.1 hold. If G is a (connected) tree then X̃⌘ X.

Proof. We explicitly construct a bijection between these two sets. Fix any x̃ := (s,V, I,`,S) with the given
V0 that satisfies (10.2). The mapping x̃ 7! x is defined by x := (s,v,`,S) where v is

v j := VjVH

j (10.9)

We first show that x satisfies (10.5). Then we show that the mapping x̃ 7! x defined by (10.9) is both
injective and surjective, and it is therefore a bijection.

First x clearly satisfies (10.5a). To prove (10.5b), rewrite (10.2b) as

Vk = Vj � z jkI jk

Multiply both sides on the right by its Hermitian transpose to get

vk = v j + z jk ` jk zHjk � Vj IHjk zHjk � z jk I jk VH

j

2Here the vector q0 can be arbitrary to satisfy (10.8b) whereas a single angle e.g. q a
0 fixes all other angles in (10.6). This is

because (10.6) uses the matrix v j whereas (10.8) uses only the diagonal entries of v j.
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where we have identified the psd rank-1 matrices v j = VjVH
j and ` jk = I jkIHjk. Substituting S jk = VjIHjk from

(10.2c), we have

vk = v j + z jk ` jk zHjk �
⇣

S jk zHjk + z jk SHjk
⌘

which is (10.5b). To prove (10.5c)–(10.5d), note that (10.9) and (10.2c)(10.2d) imply


v j S jk
SHjk ` jk

�
=


Vj
I jk

�
·
h
VH

j IHjk
i
, j! k 2 E (10.10)

i.e., this matrix is psd and rank-1. We hence have constructed a mapping x̃ 7! x through (10.9) that maps
any x̃ that satisfies (10.2) to an x that satisfies (10.5).

We next show that, when V0 is fixed, the mapping x̃ 7! x is injective. For the sake of contradiction,
suppose both x̃ := (s̃,Ṽ , Ĩ, ˜̀, S̃) and x̂ = (ŝ,V̂ , Î, ˆ̀, Ŝ), with Ṽ0 = V̂0, are mapped to x = (s,v,`,S) through
(10.9). By definition of x̃ 7! x we have s̃ = s = ŝ, ˜̀ = ` = ˆ̀, S̃ = S = Ŝ. Moreover ṼjṼH

j = v j = V̂jV̂H
j for

all j 2 N. We have to show that Ṽ = V̂ and Ĩ = Î. Since the rank-1 decomposition (10.10) is unique up to
an arbitrary phase,

�
Ṽj, Ĩ jk

�
and (V̂j, Î jk) can differ only by an arbitrary phase shift j jk. We argue that j jk

must be the same for all lines j! k 2 E as long as the network is connected. It is convenient to assume,
without loss of generality, that all lines point towards bus 0 (only) in this proof. Start from a leaf node i
and consider a line i! j 2 E. Let

V̂i = Ṽi eiji j , Îi j = Ĩi j eiji j (10.11)

Similarly, for all lines j! k connected to j, we have V̂j = Ṽj eij jk . Substituting V̂i,V̂j, Î jk into (10.2b)
yields ji j = j jk (strictly speaking it is ji j�j jk = 2p but we ignore this nonuniqueness issue). On the
other hand, if j = 0 (i.e., there is no line j! k) then V̂j = Ṽj by assumption and substituting V̂i,V̂j, Î jk into
(10.2b) yields ji j = 0. Propagating towards bus 0 in a reverse breadth-first search order, we conclude that
the angles j jk must be the same on all lines j! k since the network is connected. Moreover j jk = 0.
Hence x̃ = x̂ and the mapping x̃ 7! x is injective.

To show that the mapping x̃ 7! x is surjective, we show that for any x := (s,v,`,S) that satisfies (10.5)
there is a x̃ that satisfies (10.2). Fix such an x := (s,v,`,S). As explained above, when G is a tree, if
v j,` jk,S jk satisfy (10.5c)–(10.5d), then there exist (Vj, I jk) that satisfies (10.10) (or (10.6)). In particular,
VjVH

j = v j, I jkIHjk = ` jk, and VjIHjk = S jk. They are unique only up to an arbitrary phase, but we do not need
x̃ to be unique for the mapping to be surjective. Let x̃ := (s,V, I,`,S). We now show that x̃ satisfies (10.2)
and hence the mapping x̃ 7! x through (10.9) is surjective.

Clearly x̃ satisfies (10.2a), (10.2c) and (10.2d). To prove (10.2b), consider

VkVH

k � (Vj� z jkI jk)(Vj� z jkI jk)
H = vk�

⇣
v j�

⇣
z jkSHjk +S jkzHjk

⌘
+ z jk` jkzHjk

⌘
= 0

where the last equality follows from (10.5b). Hence we have shown

Vk VH

k = (Vj� z jk I jk)(Vj� z jk I jk)
H

Since rank-1 decomposition is unique up to an arbitrary phase, we have

Vj�Vk eij jk = z jk I jk, j! k 2 E

for any j jk; in particular, choosing j jk = 0 shows that x satisfies (10.2b). Hence the mapping x̃ 7! x is
surjective, and hence bijective.
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10.3 Overall model and examples

10.3.1 Overall model

Suppose assumption C10.1 holds. The overall model of a network of three-phase devices connected by
three-phase lines, its specification and analysis are similar to that in the bus injection model discuss in
Chapter 9.2. The only difference is that the power flow equations are those for BFM rather than BIM.
Specifically the overall model consists of:

1. A network model that relates terminal voltage, current, and power (V, I,s). Any equivalent model
can be used, whichever is convenient for the problem under study, including:

• the BFM (10.5) for radial networks; or
• the BFM (10.2) for general networks.

2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (7.29) and the conversion rules (7.8) and (7.9)(7.10); or
• Its external model summarized in Tables 7.3 and 7.4 when only terminal quantities are needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 7.2 and the conversion rules (7.8) and (7.9)(7.10); or
• Its external model summarized in Table 7.2 when only terminal quantities are needed.

Unlike the models of Chapter 9.1.5 where, if only voltage sources, current sources and impedances are
involved, then the overall model is linear, consisting of the nodal current balance equation (9.5)(9.6) and
linear device models. Here the BFM equations (10.5) and (10.2) are quadratic, leading to a nonlinear
overall model even if power sources are absent.

A typical three-phase analysis problem can be specified and analyzed the same way as described in
Chapter 9.2 for BIM. A solution typically takes the following steps:

1. Write down the models of the given collection of three-phase devices, either their internal models
and conversion rules or their external models (if internal variables are not required).

2. Write down a network equation that relates the terminal variables, either the current balance equation
or a power flow equation.

3. Steps 1 and 2 specify a system of nonlinear equations that relate relevant external and internal
variables as well as given parameters. It generally needs to be solved numerically. We will describe
in Chapter 10.4 such an algorithm for radial networks, the three-phase backward-forward sweep
(BFS).

4. Usually we first compute the terminal variables
�
Vj, I j,s j

�
using network equations, together with

some of
�
g j,b j

�
, and then determine the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j

⌘
using the conversion

rules.
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10.3.2 Examples

We now illustrate with examples three-phase BFMs and the analysis procedure. Suppose assumption
C10.1 holds.

Example 10.1 (Power source in Y configuration). Consider the system in Figure 10.1 where a constant-
power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in Y con-
figuration. For simplicity we assume that both neutrals are directly grounded and all voltages are defined
with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the following

are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk 2C3⇥3 of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 10.1: Example 10.1.

Solution. The system is specified by:

1. Netowrk model: The power flow equation (10.5) that relates terminal variables, specialized to the
two-bus system in Figure 10.1, is:

diag(S jk) = s j, diag
�
S jk� z jk` jk

�
= �sk (10.12a)

v j� vk =
⇣

z jk SHjk +S jkzHjk
⌘
� z jk ` jk zHjk (10.12b)


v j S jk
SHjk ` jk

�
� 0, rank


v j S jk
SHjk ` jk

�
= 1 (10.12c)

2. Device model: The internal model of Y -configured impedance is (since Vk =VY
k = zY

k IY
k and IY

k = I jk):

vk = zY
k ` jk zYH

k , sY
k = diag

�
zY

k ` jk
�

(10.13a)
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and the conversion rule (7.8) between internal and terminal variables is:

s j = �
�
sY

j +V n
j I jk

�
= �sY

j , sk = �
�
sY

k +V n
k (�I jk)

�
= �sY

k (10.13b)

The system of quadratic equations (10.12)(10.13) cannot generally be solved in closed form, but can be
solved numerically for

�
sY

k ,vk,` jk,S jk
�

(see Chapter 10.4).

To better appreciate the structure of the three-phase model we now reduce (10.12)(10.13) to three
quadratic equations in three unknowns I jk 2 C

3. Relate ` jk to sY
j by eliminating the terminal powers

(s j,sk), line power S jk and internal power sY
k from (10.12a) (10.13):

�sY
j = diag

��
zY

k + z jk
�
` jk
�

(10.14)

This is a system of three complex quadratic equations in three unknown line currents I jk :=
⇣

Ia
jk, I

b
jk, I

c
jk

⌘

because (10.12c) means that ` jk has a rank-1 decomposition ` jk = I jkIHjk (from (10.6)). Let ZY
k := zY

k + z jk.
Then (10.14) is explicitly:

�sY
j = diag

0

B@

2

4
Zaa

k Zab
k Zac

k
Zba

k Zbb
k Zbc

k
Zca

k Zcb
k Zcc

k

3

5

2

64
Ia

jk
Ib

jk
Ic

jk

3

75
h
IaH

jk IbH
jk IcH

jk

i
1

CA

or

�san
j = Zaa

k Ia
jkIaH

jk + Zab
k Ib

jkIaH
jk + Zac

k Ic
jkIaH

jk

�sbn
j = Zba

k Ia
jkIbH

jk + Zbb
k Ib

jkIbH
jk + Zbc

k Ic
jkIbH

jk

�s cn
j = Zca

k Ia
jkIcH

jk + Zcb
k Ib

jkIcH
jk + Zcc

k Ic
jkIcH

jk

There is a power flow solution for (10.12)(10.13) if and only if (10.14) has a solution for I jk, up to an angle
to be determined (from the given \V a

0 = 0�).

Once I jk and hence ` jk are determined from (10.14), all other variables can be obtained. Specifically
since Vk = VY

k +V n
k = VY

k by assumption, the load voltage and power are given by (10.13a):

vk = vY
k = zY

k ` jk zYH
k =

�
zY

k I jk
��

zY
k I jk
�H

, sY
k = diag

�
zY

k ` jk
�

Since vk has a rank-1 decomposition due to (10.12c), Vk :=
�
V a

k ,V b
k ,V c

k
�

can be obtained from the first
equation as Vk = zY

k I jk, up to an angle to be determined. Finally we obtain Vj from�sY
j = s j = diag

⇣
VjIHjk

⌘

due to (10.13b) and then S jk = VjIHjk. The given \V a
j = 0� then fixes the angles of

�
Vj,Vk, I jk

�
.

The next example illustrates two solution approaches for constant-power source in D configuration.
Both relate the terminal variables of each device to its parameters and then relates these terminal variables
by the power flow equation. The first approach boils down to computing the internal current ID

j from a
system of quadratic equations, which then yields

�
I j,b j

�
and all other variables. The second approach
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boils down to computing the terminal current and its zero-sequence component
�
I j,b j

�
and then other

variables.

As for Example 9.8, only g j of the source needs to be given. All other variables including
�
b j,gk,bk

�

can then be determined. The solution method of these two examples is similar because the overall models
in these examples differ only in their power flow equations, BIM (9.12) versus BFM (10.2). The positive
definite and rank-1 condition in (10.12c) leads to the equivalence of BFM (10.2) to (10.12) and BIM (9.12)
(Theorems 10.2 and 10.1).

Example 10.2 (Power source in D configuration). Consider a three-phase power source and an impedance,
both in D configuration, connected by a three-phase line (as in Example 9.8) with the following given
parameters:

• The constant-power source
⇣

sD
j ,g j

⌘
with \V ab

j := 0�.

• The impedance load zD
k . (Note that bk need not be specified for an impedance and can be derived.)

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Solve for the remaining variables.

Solution 1: compute ID
j . The system is specified by:

1. Netowrk model: The power flow equation that relates terminal variables remains (10.12).

2. Device model for power source sD
j : At bus j we use the model (7.25b) and the conversion rule that

relates the terminal variables
�
Vj, I j,s j

�
to internal power sD

j and internal current ID
j :

s j := diag
⇣

VjIHj
⌘

(10.15a)

sD
j := diag

⇣
V D

j IDH
j

⌘
= diag

⇣
GVjIDH

j

⌘
, I j = �GTID

j (10.15b)

3. Device model for impedance zD
k : At bus k the external model in Table 7.4 relates the terminal vari-

ables (Vk, Ik,sk) to impedance zD
k through the admittance matrix ZD

k defined in (7.27b):3

sk := diag
⇣

VkIHk
⌘

, Vk = �ZDIk + gk1, 1TIk = 0 (10.15c)

The device models (10.15) relate terminal variables
�
Vj, I j,s j

�
and (Vk, Ik,sk) to the internal parameters⇣

sD
j ,zD

k

⌘
of the devices through gk (which is to be determined). The power flow equation (10.12) relates

these terminal variables.
3Using the equivalent impedance model in terms of the impedance matrix Y D

k defined in (7.27a) here does not . in which
case (10.15c) is replaced by:

sk := diag
⇣

VkIHk
⌘

, Ik = �Y DVk
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The rank-1 condition (10.12c) (as well as KCL) connects these terminal variables and the variables�
v j,vk,` jk,S jk

�
of (10.12):

I j = I jk = �Ik, S jk = VjIHjk (10.16a)

` jk = I jkIHjk, v j = VjVH

j , vk = VkVH

k (10.16b)

The equations (10.12)(10.15)(10.16) are a system of quadratic equations in variables
⇣

Vj, I j,s j, ID
j

⌘
, (Vk, Ik,sk,gk),

and
�
I jk,v j,vk,` jk,S jk

�
. They can be solved numerically. Once these terminal variables are determined,

the internal variables
�
b j,V D

k , ID
k ,sD

k ,bk
�

can be determined. In particular once Vk is determined from the
network equations we can obtain V D

k = GVk and then ID
k = z�1

jk V D
k and hence bk.

To better appreciate the structure of this model we now reduce (10.12)(10.15)(10.16) to 3 quadratic
equations in 3 variables ID

jk for each link j ! k 2 E. Theorem 10.2 implies the equivalence of BFMs
(10.12) and (10.2). In particular (from (10.2b))

Vj�Vk = z jk I jk

which can also be derived by substituting (10.16) into (10.12b). Substitute Vk from (10.15c) and Ik =�I jk
into this equation to eliminate Vk:

Vj = ẐD
k I jk + gk1, 1TI jk = 0 (10.17)

where ẐD
k := ZD

k +z jk is the equivalent of the line impedance in series with the load impedance. Substituting
I jk = I j =�GTID

j into (10.17) and substituting the resulting Vj into (10.15b), we obtain a quadratic equation
in ID

j (using G1 = 0):

sD
j := �diag

⇣⇣
GẐD

k GT

⌘
ID

j IDH
j

⌘
, j 2 N (10.18)

There is a power flow solution to (10.12)(10.15)(10.16) if and only if (10.18) has a solution for ID
j . Once

ID
j is determined it yields I jk = I j = �GTID

j and b j := 1
31TID

j . Since (10.18) is the same equation as
(9.24) in Example 9.8, we can follow the same procedure there to derive all variables

�
Vj, I j,s j,b j

�
and

(Vk, Ik,sk,gk). Then we can obtain internal variables
�
V D

k , ID
k ,sD

k ,bk
�

and the BFM variables
�
I jk,v j,vk,` jk,S jk

�

from (10.16). In particular, Vk yields V D
k and hence ID

k and bk. (To get more insight on its solution, see the
solution of the balanced case in Exercise 9.10.)

Solution 2: compute Ij. Instead of the power source model (10.15b), we can also use the external model
in Table 7.4 to relate the terminal current I j direclty to the internal power sD

j :

sD
j := diag

⇣
V D

j IDH
j

⌘
= �diag

⇣
G
⇣

VjIHj
⌘

G†
⌘

+ b j GVj, 1TI j = 0 (10.19)

where the internal variable b j is to be determined. Substituting (10.17) into (10.19) and noting I j = I jk we
have

sD
j = �1

3
diag

⇣
GẐD

k I jkIHjkGT

⌘
+ b j GẐD

k I jk, 1TI jk = 0 (10.20)
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There is a power flow solution to (10.12)(10.15)(10.16) if and only if there is a solution I jk := I jk(sD
j ) and

b j := b j(sD
j ) to (10.20). Given a solution

�
I jk,b j

�
and hence ID

jk, all other variables can be derived as in
Solution 1.

Remark 10.1. Even though the analysis in Example 10.2 makes heavy use of BFM (10.12) with phasor
variables such as

�
Vj, I jk

�
instead of variables of BFM (10.2) such as

�
v j,` jk,S jk

�
, the model (10.2) is

useful for solving optimal power flow problems through semidefinite relaxation; see Chapter .

10.4 Backward forward sweep

In this section we extend the backward forward sweep (BFS) of Chapter 5.4 for the computation of power
flow solutions from single-phase radial networks to three-phase radial networks. As explained in Chapter
5.4.1 BFS can be interpreted as a Gauss-Siedel algorithm that computes a fixed point of BFM equations.
It has two special structures that exploit the tree topology of the network. First it partitions the power flow
variable into two vectors x and y and updates them iteratively in an outer loop. Typically x consists of
branch variables, e.g., branch currents or powers, and y consists of nodal variables, e.g., nodal voltages.
Second, for each outer iteration, it computes iteratively each component of (x,y) in an inner loop that
makes use of a spatially recursive structure enabled by the tree topology. Specifically it computes the
components of x iteratively from leaf nodes towards the root of the tree (backward sweep) and then com-
putes the components of y iteratively from the root towards the leaf nodes (forward sweep). The design of
BFS involves the choice of power flow equations and variables (x,y) based on what information is given
in a power flow problem. These choices are not unique and may have different convergence properties.
The general algorithmic structure described in Chapter 5.4.1 applies to three-phase as well as single-phase
radial networks. We have presented two BFS algorithms in Chapters 5.4.2 and 5.4.3 that use different
branch flow models. In this section we describe an algorithm that extends both single-phase algorithms
to the three-phase setting. As we will see, the main addition is the computation of internal variables
associated with each three-phase device.

Recall that we assume C10.1 holds throughout this chapter.

10.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
bus j 2 N, the internal power sY/D

j 2 C
3 of the power source is given and its terminal voltage and current

(Vj, I j) are to be determined.4 At bus 0, V0 2C3 is given and the current injection I0 and the internal power
injection sY/D

0 are to be determined. We assume for simplicity that C7.1 with zn
j = 0 holds at every bus

j 2 N that has a Y -configured power source so that V n
j = 0 (see Remark 10.3 on the case when zn

j 6= 0 so

that V n
j =�zn

j

⇣
1TI j

⌘
).

4
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As for the single-phase BFS, let
⇣

Is
jk, j! k 2 E

⌘
be the branch current through the series admittance

matrix ys
jk 2 C

3⇥3 (see Exercise 10.3 for a BFS algorithm that computes the sending-end current I jk in-

stead). The receiving current at bus j from its parent i is
⇣

Is
i j� ym

jiVj

⌘
2 C

3 (see Figure 10.2). The current

I s
jk

k

Vj

Vi

∆ 

∆ 

Y

Y

I s
ij

sj , Ij

Figure 10.2: Notation for BFS on unbalanced three-phase radial networks.

balance equation is then

I j +
�
Is
i j� ym

jiVj
�

= Â
k: j!k

⇣
Is

jk + ym
jkVj

⌘

Rewriting this in a form suitable for backward sweep, we obtain the following three-phase branch flow
model in terms of branch variables

⇣
Is

jk, j! k 2 E
⌘

and nodal variables
�
Vj, I j, j 2 N

�
:

Is
i j = Â

k: j!k
Is

jk �
�
I j � ym

j jVj
�
, j 2 N (10.21a)

Vj = Vi � zs
i jI

s
i j, j 2 N (10.21b)

where ym
j j := ym

ji +Âk: j!k ym
jk are the total shunt admittances incident on j and zs

i j :=
⇣

ys
i j

⌘�1
are the series

impedances. These network equations relate the branch currents Is
jk as well as the terminal voltages and

currents
�
Vj, I j

�
at buses across the network.

Each terminal variable
�
Vj, I j

�
is related to the internal power sY/D

j through a three-phase device
model. We adopt the following device models for reasons discussed in Remark 10.2 (from (7.17b) and
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(7.25b) and recall that V n
j = 0 by assumption):

Y configuration: sY
j = diag

⇣
VjIYH

j

⌘
, I j = �IY

j (10.22a)

D configuration: sD
j = diag

⇣
GVjIDH

j

⌘
, I j = �GTID

j (10.22b)

Hence, for a non-root bus j, the given internal power sY/D
j determines, through its internal current IY/D

j ,
its terminal voltage and current (Vj, I j) according to (10.22). These terminal variables interact across the
network according to the network equations (10.21). Given Vj, the forward sweep function g j in (5.23a)
to update

⇣
IY/D

j , I j

⌘
is:

Y : IY
j =

�
diag V̄j

��1 s̄Y
j , I j = �IY

j , j 2 N (10.23a)

D : ID
j =

�
diag

�
GV̄j
���1 s̄D

j , I j = �GTID
j , j 2 N (10.23b)

where v̄ denotes the componentwise complex conjugate of a vector v. Here, we have used, for vectors
v,w 2 C

n, diag(vwH) = diag(v)w̄ = diag(w̄)v 2 C
n where diag(v) is the diagonal matrix whose diagonal

is the vector v.

To construct the backward forward sweep, identify lines j! k 2 E by the non-root buses k 2N. Given
V0 and s :=

⇣
sY/D

j , j 2 N
⌘

, the BFS will compute the following branch and nodal variables respectively:

x :=
�
Is
i j, j 2 N

�
, y :=

⇣
Vj, I j, I

Y/D
j , j 2 N

⌘

All other variables, such as injections I0,s0,s
Y/D
0 2C3, branch flow matrices S jk 2C3⇥3, and

�
g j,b j

�
2C2

of power sources sD
j , can be computed once (x,y) are determined. The update function f in the backward

sweep to update x is defined by (10.21a) and the update function g in the forward sweep to update y is
defined by (10.21b) and (10.23). The function f is jointly linear in (x,y). The function g is linear in x but
nonlinear in y because of the power source model (10.23).

The boundary conditions are

V0 2 C
3 is given , Is

jk := 0 for all leaf nodes j, Vj(0) := V0, j 2 N (10.24a)

In addition, given the initial voltages
�
Vj(0), j 2 N

�
, the terminal and internal currents

⇣
I j(0), IY/D(0)

j , j 2 N
⌘

are determined using (10.23):

Y : IY
j (0) =

�
diag V̄j(0)

��1 s̄Y
j , I j(0) = �IY

j (0), j 2 N (10.24b)

D : ID
j (0) =

�
diag

�
GV̄j(0)

���1 s̄D
j , I j(0) = �GTID

j (0), j 2 N (10.24c)

Specifically the BFS algorithm defined by (10.21) (10.23) (10.24) proceeds as follows.

0. Input: voltage V0 pu and internal power
⇣

sY/D
j , j 2 N

⌘
.
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1. Initialization.

• Is
jk(t) := 0 for all leaf nodes j for all iterations t = 1,2, . . . .

• V0(t) := V0 for all t = 0,1, . . . .

• Vj(0) := V0 at all buses j 2 N. Compute
⇣

I j(0), IY/D
j (0)

⌘
using (10.24b)(10.24c).

2. Backward forward sweep. Iterate for t = 1,2, . . . until a stopping criterion (see below) is satisfied:

(a) Backward sweep. Starting from the leaf nodes and iterating towards bus 0, compute

Is
i j(t)  Â

k: j!k
Is

jk(t) �
�
I j(t�1)� ym

j j Vj(t�1)
�
, i! j 2 E (10.25a)

where ym
j j := ym

ji +Âk: j⇠k ym
jk.

(b) Forward sweep. Starting from bus 0 and iterating towards the leaf nodes, compute for j 2 N

Vj(t)  Vi(t) � zs
i j Is

i j(t) (10.25b)

Y : IY
j (t)  

�
diag V̄j(t)

��1 s̄Y
j , I j(t)  �IY

j (t) (10.25c)

D : ID
j (t)  

�
diag

�
GV̄j(t)

���1 s̄D
j , I j(t)  �GTID

j (t) (10.25d)

where zs
i j :=

⇣
ys

i j

⌘�1
.

3. Output: branch variable x :=
⇣

Is
i j(t), j 2 N

⌘
and nodal variable y :=

⇣
Vj(t), I j(t), I

Y/D(t)
j , j 2 N

⌘
.

A stopping criterion can be based on the discrepancy between the given internal powers sY/D
j and those

implied by the nodal variable
⇣

Vj(t), I j(t), I
Y/D(t)
j , j 2 N

⌘
in each iteration t. From the device model

(10.23), let

ŝ j(t) :=

8
<

:
diag

⇣
Vj(t)IYH

j (t)
⌘

for Y configuration

diag
⇣

GVj(t)IDH
j (t)

⌘
for D configuration

Then a stopping criterion can be

kŝ(t)�sY/Dk2
2 := Â

j2N

⇣
ŝ j(t)�sY/D

j

⌘2
< e

for a given tolerance e > 0.

Remark 10.2 (Choice of variables). 1. We have used the current balance equation (10.21a) to relate
terminal voltages and currents (Vj, I j) across the network. This leads to a linear update function
(10.21a) for x in backward sweep. Nonlinearity shows up in the device model (10.23) for the nodal
variable y :=

⇣
Vj, I j, I

Y/D
j , j 2 N

⌘
in the forward sweep (together with (10.21b)).
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2. A direct extension of the single-phase BFS in [43] to the three-phase setting is the approach in [65]
which substitutes I j in (10.21a) by I j =

�
diagV̄j

��1 s̄ j to obtain a nonlinear update function for x:

Is
i j = Â

k: j!k
Is

jk �
⇣�

diag V̄j
��1 s̄ j � ym

j jVj

⌘
, j 2 N (10.26a)

In this case the nodal variable becomes y :=
⇣

Vj,s j, I
Y/D
j , j 2 N

⌘
and the update functions (10.23)

become

Y : IY
j =

�
diag V̄j

��1 s̄Y
j , s j = �sY

j , j 2 N (10.26b)

D : ID
j =

�
diag

�
GV̄j
���1 s̄D

j , s j = �diag
⇣

VjIDH
j G

⌘
, j 2 N (10.26c)

The three-phase BFS of [65] includes only Y -configured power sources and therefore its update
functions simplifies to only (10.26a) (10.21b), with s j =�sY

j that is fixed and given. The addition
of D-configured power sources requires the nodal variable ID

j and update function (10.26c).

3. For D configuration, the device model (10.23) relates sD to (Vj, I j) through ID
j . Since

⇣
Vj, ID

j

⌘
are

determined directly from the overall model, the quantities
�
g j,b j

�
can be computed and need not be

specified. Note however that V0 is given.

Remark 10.3 (Nonzero zn
j). If we had assumed C7.1 with zn

j 6= 0 so that V n
j =�zn

j

⇣
1TI
⌘

, then the device
model (10.23a) for a Y -configured power source becomes nonlinear in I j (from (7.17b)):

Y : Vj = �
�
diag

�
Ī j
���1 sY

j � zn
j

⇣
11T
⌘

I j, j 2 N

Given voltage Vj this is a system of three quadratic equations in three unknowns I j 2 C
3:

zn
j

⇣
1TI j

⌘
Ī j + diag

�
Vj
�

Ī j + sY
j = 0

The linear update functions (10.23a) (10.24b) then become nonlinear. Moreover the update of I j is defined
only implicitly by a solution of this system of quadratic equations.

Remark 10.4 (Specification). Unlike in Examples 10.1 and 10.2, the BFS method here does not required
g j be specified, but it requires that V0 be specified.

10.4.2 DistFlow model

Consider a three-phase radial network modeled by a directed graph with every link k ! j 2 E points
away from the root bus 0. Assume for simplicity zero shunt admittances, ym

jk = ym
k j = 0. The three-phase

DistFlow equations for the down orientation are (10.5). Given V0, hence v0 := V0VH

0 , and internal power
s :=

⇣
sY/D

j , j 2 N
⌘

, we wish to compute the other variables from (10.5).
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The nonlinear equation v j` jk = |S jk|2 in (10.4c) for the single-phase model is replaced by (10.5c)(10.5d)
in the three-phase model, reproduced here


v j S jk
SHjk ` jk

�
� 0, rank


v j S jk
SHjk ` jk

�
= 1

These equations are an implicit description and do not directly yield an update equation for a BFS al-
gorithm, as v j` jk = |S jk|2 does in the single-phase model. Instead, they imply that there exist voltage
and current phasors (V, Ĩ) that satisfy the rank-1 decomposition in (10.6). In order to compute DistFlow
variables (v,`,S) we have to compute iteratively the voltages Vj and (sending-end) line currents Ĩ jk in the
process. Here we use Ĩ jk to denote a line current to differentiate it from the terminal current I j in a device
model (see below). Therefore, instead of designing an BFS algorithm based on (10.5), we will use the
following network equations derived from (10.5) to compute

�
V, I, Ĩ

�
:

Ĩi j = �I j + Â
k: j!k

Ĩ jk (10.27a)

Vk = Vj � z jk Ĩ jk (10.27b)

All other terminal variables such as v j = VjVH
j , ` jk = Ĩ jkĨHjk, and Si j = Vi ĨHi j , can then be derived. Note

that we have replaced the power balance equation (10.5a) by the current balance equation in (10.27a). The
network equation (10.27) is the same as (10.21) with Ĩ jk = Is

jk when ym
jk = ym

k j = 0. Hence the three-phase
DistFlow model can be solved using the BFS algorithm of Chapter 10.4.1.

10.5 Linear model

10.5.1 Linear solution

We generalize the linear DistFlow model from single-phase to unbalanced multiphase radial networks.
The key assumptions in our linear approximation are:

1. The real and reactive line losses z jk` jk are much smaller than line flows S jk on each line j! k, so
that we can assume ` jk = 0 in (10.5).

2. The voltages are approximately balanced, so that we can assume

V a
j

V b
j

=
V b

j

V c
j

=
V c

j

V a
j

= ei2p/3

Recall that we adopt, without loss of generality, the graph orientation in which all lines point away from
bus 0. Then, as for the single-phase model, we set ` jk = 0 in (10.5a)(10.5b) to obtain

Â
k: j!k

diag(S jk) = diag
�
Si j
�
+ s j, j 2 N

v j� vk = z jk SHjk + S jk zHjk j! k 2 E
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where bus i := i( j) is the unique parent of bus j. Given injections s j for all non-slack buses j 2 N, the first
set of equations determines uniquely s0 and the diagonal entries of S jk, but not the off-diagonal entries of
S jk. The second assumption of balanced voltage is needed to determine the off-diagonal entries of S jk.
Specifically the assumption means that the vector Vj is determined by a scalar (say) V a

j . Let

a := e�i2p/3, a+ :=

2

4
1
a
a2

3

5 (10.28a)

Then, assuming positive sequence,

Vj = V a
j

2

4
1
a
a2

3

5 = V a
j a+ (10.28b)

This makes it possible to determine the off-diagonal entries of S jk from its diagonal entries, as follows.
Let l jk := diag(S jk) denote the vector consisting of the diagonal entries of S jk:

l jk :=

2

66664

V a
j

⇣
Ia

jk

⌘H

V b
j

⇣
Ib

jk

⌘H

V c
j

⇣
Ic

jk

⌘H

3

77775

Using (10.28), the 3⇥3 line flow matrix S jk is given by:

S jk := VjIHjk = V a
j a+

h
Ia

jk Ib
jk Ic

jk

iH

This expression says that the columns of S jk are in span(a+). The first column of the right-hand side is

a+V a
j

⇣
Ia

jk

⌘H

| {z }
[S jk]11

= a+
⇥
l jk
⇤

1

The second column is

a+V a
j

⇣
Ib

jk

⌘H
=

1
a

a+
�
aV a

j
�⇣

Ib
jk

⌘H
=

1
a

a+V b
j

⇣
Ib

jk

⌘H

| {z }
[S jk]22

=
1
a

a+
⇥
l jk
⇤

2

The third column is

a+V a
j

⇣
Ic

jk

⌘H
=

1
a2 a+

�
a2V a

j
�⇣

Ic
jk

⌘H
=

1
a2 a+V c

j

⇣
Ic

jk

⌘H

| {z }
[S jk]33

=
1

a2 a+
⇥
l jk
⇤

3
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Putting all this together define

g :=
⇥
a+

1
a a+

1
a2 a+

⇤
=

2

4
1 a2 a
a 1 a2

a2 a 1

3

5

and we can determine the line flow matrix S jk in terms of its diagonal entries:

S jk = g diag
�
l jk
�
, j! k 2 E

where diag(x) is a diagonal matrix whose diagonal consists of entries of vector x. Then the linear model
that generalizes the single phase linear DistFlow model to three-phase radial networks is (graph is oriented
so that all lines point away from bus 0):

Â
k: j!k

l jk = li j + s j, j 2 N (10.29a)

S jk = g diag
�
l jk
�
, j! k 2 E (10.29b)

v j� vk = z jk SHjk + S jk zHjk, j! k 2 E (10.29c)

where i := i( j) is the unique parent node of j.

Linear solution. Given
�
v0,s j, j 2 N

�
, (10.29) can be used to determine explicitly

�
s0,v j, j 2 N

�
and�

l jk,S jk, j! k 2 E
�
, as follows (Exercise 10.5):

s0 = �Â
j2N

s j

li j = � Â
k2T j

sk, Si j = g diag
�
li j
�
, i! j 2 E

v j = v0 � Â
(i,k)2P j

⇣
zik SHik + S jk zHik

⌘
, j 2 N

where T j is the subtree rooted at bus j, including j, and Pk is the set of lines on the unique path from bus
0 to bus k; see Figure 10.3.

10.5.2 Application example

We describe a voltage regulation algorithm adapted from [99] to illustrate the three-phase linear model.

10.6 Bibliographical notes

Algorithms for solving power flows in three-phase radial networks are developed in [61, 62, 63, 65, 67, 70].
For backward forward sweep methods for radial networks, both single-phase and three-phase networks,
see bibliographical notes in Chapter 5.6.
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Figure 10.3: Linear solution of branch flow model for unbalanced three-phase radial networks.

Chapter 10.1.

Exercise 10.1. Derive the three-phase BFM (10.1) for general networks without line charging from the
BFM (5.1) with line charging.

Chapter 10.2.

Exercise 10.2. Show that (Ab)⌦ I = (A⌦ I)(b⌦ I) where A 2 C
n⇥n, b 2 C

n, and I is the identity matrix
of size 3. (Hint: Use Lemma 9.6.)

Chapter 10.3.

Chapter 10.4.

Exercise 10.3 (Backward forward sweep). This exercise solves the same overall model as the BFS de-
scribed in Chapter 10.4.1, but here, instead of Is

jk 2 C
3 over the series impedance, we are to derive a BFS

algorithm to compute the sending-end current I jk 2 C
3 for every line j! k, as well as the nodal variable

y :=
⇣

Vj, I j, ID
j j 2 N

⌘
. It extends Exercise 5.7 from single-phase radial networks to three-phase radial

networks.

Exercise 10.4 (Backward forward sweep). Extend the BFS described in Chapter 5.4.3 from single-phase
to three-phase radial networks. This allows the inclusion of PV buses where real power and voltage
magnitudes are given instead of internal powers.
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Chapter 10.5.

Exercise 10.5 (Three-phase BFM linear solution). Given
�
v0,s j, j 2 N

�
, show that an explicit solution�

s0,v j, j 2 N,S jk, j! k 2 E
�

of (10.29) is

s0 = �Â
j2N

s j

li j = � Â
k2T j

sk, Si j = g diag
�
li j
�
, i! j 2 E

v j = v0 � Â
(i,k)2P j

⇣
zik SHik + S jk zHik

⌘
, j 2 N

where T j is the subtree rooted at bus j, including j, and Pk is the set of lines on the unique path from bus
0 to bus k.
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Chapter 11

Smooth convex optimization

In this chapter we study the following questions:

1. How to specify an optimization problem (Ch 11.1 and 11.2)?

2. How to characterize its optimal solutions and determine if one exists (Ch 11.3 and 11.4)?

3. How to compute an optimal solution iteratively when one exists (Ch 11.5)?

4. How to ensure the correctness of the computation (Ch 11.6)?

Specifically we formulate convex optimization problems (Chapter 11.1) and introduce some of the most
useful tools for convex analysis (Chapter 11.2). We develop a general theory to characterize optimal
solutions and provide sufficient conditions for their existence (Chapter 11.3). We then apply the general
theory to special classes of convex optimization problems widely used in applications (Chapter 11.4). We
describe iterative algorithms based on optimality conditions of Chapter 11.3 for solving these problems
(Chapter 11.5) and explain basic techniques for analyzing their convergence (Chapter 11.6).

Convexity is a simplifying structure that enables a rich theory on algorithm design and analysis for
convex optimization. Even though optimal power flow problems are nonconvex, convex optimization
theory is useful for two reasons. First, iterative algorithms that have been designed and analyzed for
convex problems are often used also for solving nonconvex problems. Unlike for convex problems, there
is typically no guarantee on optimality or convergence for nonconvex problems, but they often perform
well nonetheless. Second, an important method to deal with a nonconvex problem is solving its convex
relaxation where an approximate convex problem is solved instead. We will study optimal power flow
problems in Chapter 13 and their convex relaxations in Chapters 14 and 15.

11.1 Convex optimization

A convex program is defined by a convex set and a convex function. We start by defining some basic con-
cepts that are used both in this chapter on smooth convex optimization and in Chapter 17.1 on nonsmooth
convex optimization.

430
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11.1.1 Affine hull and relative interior

Consider a nonempty set X 2 R
n. A point x 2 R

n is called a closure point of X if there is a sequence
{xk 2 X}✓ X that converges to x. The closure of X , denoted by cl(X), is the set of all closure points of X .
We say that X is closed if cl(X) = X , i.e., X contains all its limit points. The closure of X is the smallest
closed set that contains X . The set X is called open if its complement is closed, i.e., {x 2 R

n : x 62 X} is
closed. It is called bounded if there exists a finite b such that kxk  b for all x 2 X .1 It is called compact
if it is closed and bounded.

An alternative approach is to define a topological space by specifying all subsets of an ambient set Y
that are open in that topological space. In this approach the empty set /0 and the ambient set Y are always
defined to be open sets in any topology. When Y := R

n := (�•,•)n, Rn is both open and closed in the
topological space regardless of topology. This is consistent with the definition above in terms of limit
points (under the usual topology induced by a norm) because, e.g., the sequence xk := (k, . . . ,k) does not
converge as k! • since it tends to (•, . . . ,•) which is not a point in Y := R

n. If Y := R
n[{�•,•}n is

an extended space under the usual topology induced by a norm, however, Rn is open but not closed.

A point x is called an interior point of X if there exists an open neighborhood of x that is contained in
X , i.e., there is e > 0 such that Be(x) := {y : ky�xk< e}✓ X . The interior of X , denoted by int(X), is the
set of all interior points of X . A point x 2 cl(X) that is not an interior point of X is called a boundary point
of X . A boundary point may or may not be in X . The set of all boundary points is called the boundary of
X .

A set Y is called an affine set if Y contains all the lines that pass through pairs of distinct points x,y2Y
with x 6= y. The affine hull of X , denoted by aff(X), is the intersection of all affine sets containing X . The
affine hull aff(X) is itself an affine set. A point x 2 X ✓ R

n is called a relative interior point of X if there
exists an open neighborhood Be(x) ✓ R

n such that Be(x)\ aff(X) ✓ X , i.e., x is an interior point of X
relative to aff(X). The set of all relative interior points of X is called the relative interior of X , denoted by
ri(X). The set X is called relatively open if ri(X) = X . A point x 2 cl(X) that is not a relative interior point
is called a relative boundary point of X . The set of all relative boundary points of X is called the relative
boundary of X .

11.1.2 Convex set

A set is called convex if, given any two points in the set, every point in between lies in the set.

Definition 11.1 (Convex set). A set D✓ R
n is convex if, given any x,y 2 D,

ax+(1�a)y 2 D, 8a 2 [0,1]

For instance for any x0 2 D there exists r > 0 such that the r-ball around x0,

Br(x0) := { x 2 D | kx� x0k2  r }
1The norm k · k defines the usual topology. Since all norms are equivalent on a finite dimensional space, these concepts

remain the same regardless of topology.



432 Draft: EE 135 Notes April 30, 2024

is contained in D, where kxk2 :=
q

x2
1 + x2

2 + · · ·+ x2
n is the Euclidean norm. Moreover Br(x0) is convex

for any r > 0, x0 2 D. The definition is illustrated in Figure 11.1.

.#
x 

.#y 

(a) Convex set.

.#
x 

.#y 

(b) Nonconvex set.

Figure 11.1: Definition of a convex set: every point in between two points in the set lies in the set.

Definition 11.2 (Convex hull). Let X ✓ R
n be a nonempty set. The convex hull of X , denoted conv(X), is

the intersection of all convex sets containing X .

The convex hull conv(X) of any set X ✓ R
n is contained in its affine hull aff(X). When X is a convex

set, the dimension of X is defined to be the dimension of aff(X).

Three types of convex sets are the most useful in engineering applications.

1. Polyhedral set H ✓ R
n. A polyhedral set is specified by affine equalities or inequalities. A hyper-

plane is a set H1 := {x 2 R
n : cTx = b} specified by an affine equality with c 2 R

n and b 2 R. A
polyhedral set, or a polyhedron, is a set H2 := {x2Rn : Ax b} specified by a finite number of affine
inequalities. We may call the intersection H1 := {x 2 R

n : Ax = b} of hyperplanes with A 2 R
m⇥n

and b 2 R
m a hyperplane or a polyhedron.

2. Second-order cone (SOC) Ksoc ✓ R
n. A second-order cone (SOC) is defined as:

Ksoc := {x 2 R
n | kxn�1k2  xn}, n� 2 (11.1)

where x =: (xn�1,xn), i.e., xn�1 denotes the subvector of x consisting of its first n�1 entries. A ball
Bxn(0) ⇢ R

n�1 is a cross section of the second-order cone defined by kxn�1k2  xn for a fixed xn.
SOC Ksoc is a special type of convex set called a cone. We will study in more detail cones, convex
cones, and second-order cones in Chapter 11.1.3.

3. Semidefinite cones Kpsd,Knsd ⇢ S
n. A real matrix X 2 R

n⇥n is symmetric if X = XT, i.e., Xi j = Xji
for all i, j = 1, . . . ,n. Let Sn ⇢ R

n⇥n denote the set of all real symmetric matrices. It is a vector
space (or linear space) over the field R of real numbers (see Appendix 25.1.1.1 for definitions of
vector space and subspace). A real matrix X is positive semidefinite (psd) if X is symmetric and
xTXx = Âi, j Xi jxix j � 0 for all x 2 R

n. Given a symmetric matrix X 2 R
n⇥n the following are

equivalent:

(a) X is positive semidefinite.
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(b) All eigenvalues of X are nonnegative.
(c) X = BBT for some matrix B 2 R

n⇥m and some natural number m.

A real matrix X is negative semidefinite (nsd) if�X is psd. We denote the set of all positive semidef-
inite matrices by Kpsd and the set of all negative semidefinite matrices by Knsd. We write X 2 Kpsd or
X ⌫ 0 to denote that X is positive semidefinite. Similarly X 2 Knsd or X � 0 denotes that X is neg-
ative semidefinite. These sets are special convex sets called semidefinite cones in the vector space
S

n ⇢ R
n⇥n over the field R. In Chapter 11.1.4 we extend these notions to the complex domain and

treat the set Sn ⇢ C
n⇥n of complex Hermitian matrices as a vector space over the field R (not C),

define the inner product in S
n, and the semidefinite cones of complex matrices in the vector space

S
n.

The proof that these three types of sets are convex is left as an exercise. Efficient algorithms exist to solve
constrained optimization problems that minimize a certain cost function over an affine set, second-order
cones, or semidefinite matrices.

Given these three basic convex sets we can create other convex sets through simple convexity-preserving
operations. Let X and Y be linear subspaces. For example X := R

n and Y := R
m.

1. Linear transformation: Let f : X! Y be linear.

(a) If A✓ X is convex then f (A) := { f (x) | x 2 A}✓ Y is convex.
(b) If B✓ Y is convex then f�1(B) = {x | f (x) 2 B}✓ X is convex.

2. Direct product: Let A✓X, B✓Y be convex. Then A⇥B := {(x,y) | x 2 A,y 2 B} is convex. In fact
the direct product of an arbitrary (e.g., uncountably many) number of convex sets is convex.

3. Finite sum: Let A,B✓ X be convex. Then A+B := {a+b | a 2 A,b 2 B} is convex. Therefore the
sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let A,B ✓ X be convex. Then the intersection A\B is convex. In fact the
intersection of an arbitrary collection of (e.g., uncountably many) convex sets is convex.

The proof that these set operations preserve convexity is left as an exercise. In contrast to intersection
the union of two convex sets can be nonconvex. Note that if A,B are convex, then A\B is convex. The
converse may not be true; e.g., A := {x : x� 0}[{x : x 0}✓ R

n and B := {x : x1 � 0}✓ R
n.

Example 11.1. Consider the ellipsoid

E := {x 2 R
n | xTAx c}

where A 2 R
n⇥n is a psd matrix and c > 0. The set E is convex because it can be derived from an

application of convexity-preserving operation on a convex set as follows. Since A is psd it can be expressed
as A := BBT for some B 2 R

n⇥m. Hence xTAx = xTBBTx = kBTxk2
2.

Let y = BTx. Then the set C := {(y, t) 2R
m+1 | kyk2  t} is a (convex) SOC. Hence the set D := {y 2

R
m | kyk2  c} is convex since it is the intersection of two convex sets:

D = C\ (Rm⇥{t = c})

Then E = f�1(D) where f (x) := BTx is a linear function from R
n to R

m. Hence E is convex as desired.
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For several important properties of convex sets see Chapter 11.2.

11.1.3 Second-order cone Ksoc in R
n

Cones in R
n. A set X ✓ R

n is called a cone if x 2 X implies that gx 2 X for all g > 0. A cone X
may not contain the origin though the closure of a nonempty cone always contains the origin. A cone
is not necessarily convex. For example X := {g1a1 : g1 � 0}[ {g2a2 : g2 � 0} for some a1,a2 2 R

n is a
cone consisting of two rays from the origin and is nonconvex unless a1 = ga2 for some g 2 R. A cone
is called pointed if x 2 C and �x 2 C implies that x = 0. Figure 11.2 shows pointed and non-pointed
cones that may be convex or not, a subspace or not. A cone K is called proper if (i) K is closed and












































































































(a) Pointed convex cone












































































































(b) Non-pointed nonconvex cone












































































































(c) Non-pointed convex cone

Figure 11.2: Cones and their affine hulls. (a) A pointed convex cone K. It is not a subspace; its affine hull
aff(K) = R

2. (b) A non-pointed nonconvex cone K. It is not a subspace; its affine hull aff(K) = R
2. (c) A

non-pointed convex cone K which is a subspace. Hence aff(K) = K.

convex; (ii) has a nonempty interior; and (iii) is pointed.2 Common examples are the nonnegative quadrant
R

n
+ := {x 2 R

n : x � 0}, the second-order cone Ksoc := {x 2 R
n : kxn�1k2  xn+1}, and the set Kpsd ⇢ S

n

of positive semidefinite matrices in the linear space S
n of Hermitian matrices.

Definition 11.3 (cone(X)). Let X ✓R
n be a nonempty set. The cone generated by X , denoted cone(X), is

the set of all nonnegative combination of vectors in X , i.e.,

cone(X) :=

(
m

Â
i=1

aixi : xi 2 X ,ai � 0, integers m > 0

)

If {a1, . . . ,an} are the column vectors of A2Rm⇥n then cone({a1, . . . ,an})✓R
m is abbreviated as cone(A).

2A proper cone K can be used to define a partial ordering on R
n through a generalized inequality �K :

x �K y , y� x 2 K

It also defines a strict partial ordering on R
n:

x �K y , y� x 2 int K

where int(K) is the interior of K. We also write x⌫K y for y�K x and x�K y for y�K x. We will usually write directly y�x2K
instead of x�K y.
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The set cone(X) is always a convex cone that contains the origin for arbitrary nonempty X . See
Figure 11.3 for examples. It therefore contains the set {gx : g � 0,x 2 X} which may not be convex, e.g.,












































































































Figure 11.3: Cones cone(X) generated by X ✓ R
n.

X := {a1,a2} with a1 6= ga2. It is not necessarily closed even if X is compact (see [100, Figure 1.2.2, p.21]
for an example). We will mostly be dealing with closed convex cones in this book.

A convex combination of x1, . . . ,xm in X is the vector x := Âm
i=1 aixi with ai � 0 and Âm

i=1 ai = 1. Any
convex combination of vectors in X is in conv(X). The next fundamental result implies the converse, e.g.,
[100, Proposition 1.2.1, p.20].

Theorem 11.1 (Carathéodory Theorem). Let X ✓ R
n be a nonempty set.

1. If x 2 conv(X) then x = Âm
i=1 aixi for some m n+1, ai > 0 with Âm

i=1 ai = 1, and xi 2 X .

2. If x 2 cone(X) then x = Âm
i=1 aixi for some m n, ai > 0 and linearly independent xi 2 X .

The convex hull conv(X) of an arbitrary set X is not necessarily closed, e.g., X = (0,1) = conv(X).
A consequence of the Carathéodory theorem is that conv(X) is compact if X is compact. Suppose x 2
conv(X) is given by x = Âm

i=1 biyi for some m > n, bi > 0 with Âm
i=1 bi = 1, and yi 2 X . At most n of

yi 2 X can be linearly independent, say, y1, . . . ,yk are linearly independent with k  n. Therefore other yi
for i > k can be written as linear combinations of y1, . . . ,yk, and we can write x = Âk

i=1 liyi with k n. The
coefficients li, however, may not form a convex combination of yi, unlike in the Carathéodory theorem.
In other words, any x 2 conv(X) can be written as a linear combination of k  n vectors yi 2 X (these yi
depend on x) and as a convex combination of m n+1 vectors xi 2 X (these xi depend on x). An example
application of the Carathéodory theorem is in Exercise 17.8.

Second-order cone. A particularly useful convex cone is the second-order cone, defined by

K :=
⇢

(x, t) 2 R
n+1 :

q
x2

1 + · · ·+ x2
n  t

�
(11.2)

It is also called the Lorentz cone or ice-cream cone. It is equivalent to K := {(x, t) 2Rn+1 : kxk2
2  t2, t �

0} or the intersection K = K̃ \H where K̃ := {(x, t) 2 R
n+1 : kxk2

2  t2} and H := {(x, t) : t � 0} is a
halfspace. While K is a convex cone, K̃ is a nonconvex cone; see Figure 11.4 and Exercise 11.4 (see
Theorem 17.9 in Chapter 17.1.4 for more properties of K). The convex set K := {(x, t) : h1(x, t)  0} is
specified by the (convex) constraint function h1(x, t) := kxk2�t (see Chapter 11.1.6 for convex functions).
Equivalently K := {(x, t) : h2(x, t) 0, t � 0} can also be specified by constraint functions that may not all
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(a) Nonconvex cone X̃ (b) Convex cone K

Figure 11.4: (a) Nonconvex cone K̃ := {(x, t) 2 R
n+1 : kxk2

2  t2}. (b) Second-order cone K = K̃\H.

be convex functions, in this case h2(x, t) := kxk2
2� t2. This has important implications on structural and

computational properties of equivalent representations of a constrained optimization; see Chapter 11.3.6.

A rotated second-order cone is the set

Kr := {(x,y,z) 2 R
n+2 : kxk2

2  yz, y� 0, z� 0} (11.3)

It can be represented as a linear transformation (a rotation) of the standard second-order cone K defined in
(11.2) using the equivalence:

kxk2
2  yz, y� 0, z� 0 ()

����


2x

y� z

�����
2
 y+ z

i.e., (w, t) = A(x,y,z) 2 K ✓ R
n+2 if and only if (x,y,z) 2 Kr for a (n+2)⇥ (n+2) nonsingular matrix A

(Exercise 11.5). Indeed

K = AKr, A =

2

4
2In 0n 0n
0Tn 1 �1
0Tn 1 1

3

5 (11.4a)

Kr = A�1K, A�1 =
1
2

2

4
In 0n 0n
0Tn 1 1
0Tn �1 1

3

5 (11.4b)

(See Corollary 17.10 in Chapter 17.1.4 for more properties of Kr.)

SOC constraint. A convex set specified in terms of a second-order cone K ✓ R
m+1 in (11.2) is

C := {x 2 R
n : (Ax+b,cTx+d) 2 K} = {x 2 R

n : kAx+bk2  cTx+d} (11.5)
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where A 2 R
m⇥n, b 2 R

m, c 2 R
n, and d 2 R. It is a convex set because C is the pre-image of a convex set

K under an affine function (see also Exercise 11.6). The constraint in (11.5) is called a second-order cone
(SOC) constraint, even though C in general may not be a cone itself. For example

• If A = 0 then C is a halfspace or hyperplane, generally not a cone.

• If c = 0 then C is an ellipsoid (d > 0), generally not a cone.

The set defined in (11.1) is a special case of (11.5) with b = 0,d = 0, c = en the unit vector with a single 1
as its nth entry, and A =

⇥
In�1 0n�1

⇤
where In�1 and 0n�1 are the identity matrix and 0 vector respectively

of size n�1.

Example 11.2 (SOC constraint). Consider C defined in (11.5) where

A :=


1 0
0 1

�
, c := a


1
1

�
, b := 0, d := 0

C = C̃\H where C̃ := {x : kAx + bk2
2  (cTx + d)2} and H := {x : cTx + d � 0} is a halfspace. Then

C̃ =
�

x 2 R
2 : xTÃx 0

 
where

Ã := ATA� ccT =


1�a �a
�a 1�a

�

whose eigenvalues are 1 and 1�2a . Therefore if a  1/2 then Ã is positive semidefinite and C̃ is convex.
Otherwise C̃ is nonconvex. In both cases C = C̃\H is convex.

For example when a = 1/2, C̃ = {x : 1
2(x1� x2)2  0} = {x : x1 = x2}. When a = 1, C̃ = {x : x1x2 �

0} = {x : x� 0}[{x : x 0}. These sets and their intersections with the halfspace H := {x : x1 +x2 � 0}
are shown in Figure 11.5.

(a) Convex C̃ (b) Nonconvex C̃

Figure 11.5: Exampel 11.2. (a) When a = 1/2, C̃ = {x : x1 = x2} is convex. (b) When a = 1, C̃ = {x :
x� 0}[{x : x 0} is nonconvex. In both cases C = C̃\H is convex.
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Similarly a convex set can be specified in terms of a rotated second-order cone Kr ✓ R
m+2 in (11.3):

Cr := {x 2 R
n : (Ax+b, cT1 x+d1, cT2 x+d2) 2 Kr } (11.6a)

= { x 2 R
n : kAx+bk2

2  (cT1 x+d1)(cT2 x+d2), cT1 x+d1 � 0, cT2 x+d2 � 0 } (11.6b)

where A 2Rm⇥n, b 2Rm, c 2Rn, and d 2R. It is a convex set because Cr is the pre-image of a convex set
Kr under an affine function. The constraints in (11.6) are also called second-order cone constraints, even
though Cr in general may not be a cone itself. This form of constraint is used in Chapter 15 to relax the
nonconvex quadratic constraint v j` jk = |S jk|2 into a second-order cone constraint v j` jk � |S jk|2.

We study some properties of SOC constraints in Chapter 17.1.4.

11.1.4 Semidefinite cone Kpsd in S
n

Numerous power system applications can be formulated as a constrained optimization problem often us-
ing complex variables in the phasor domain. Moreover some solution methods for solving these problems
give rise to constraints or variables involving matrices (see e.g. Chapter 14). Even though any optimiza-
tion problem in the complex domain can be converted into one in the real domain, it is sometimes more
convenient to use complex variables. In this subsection we define inner product on complex matrices and
dual cones in the linear space of Hermitian matrices (all these concepts apply directly to the vector space
of real symmetric matrices). We will use these concepts in Chapter 11.4.5 to define an important class of
convex optimization problems called semidefinite program and study its duality and optimality properties.

Inner product, polar cone and dual cone. For two complex matrices x 2 C
m⇥n and y 2 C

m⇥n (not
necessarily square), the (Frobenius) inner product is x · y := tr

�
yHx
�

= Â j,k x jky jk where yH = (ȳ)T is the
Hermitian transpose of matrix y, y jk is the complex conjugate of the scalar y jk and ȳ is the entrywise
complex conjugate of matrix y. If x,y 2 C

n are complex vectors, x · y = yHx reduces to the normal inner
product on C

n. It can be checked that x · y satisfies the three properties that are sometimes used to define
inner product:

1. Conjugate symmetry: x · y = y · x.

2. Linearity in the first argument: For any a,b 2 C, (a1x1 +a2x2) · y = a1(x1 · y)+a2(x2 · y).

3. Positive-definiteness: x · x > 0 if x 6= 0.

Let x2Cn⇥n be a square matrix. It is called a Hermitian matrix if x jk = x̄k j for all j,k. If x is Hermitian
its diagonal entries x j j are necessarily real. Let Sn ⇢Cn⇥n denote the set of all n⇥n Hermitian matrices.
If x,y 2 S

n then

x · y = Â
j

x j jȳ j j + Â
j<k

�
x jkȳ jk + xk jȳk j

�
= Â

j
x j jy j j + Â

j<k

�
x jkȳ jk + x̄ jky jk

�

i.e., x · y is a real number. This means that if x,y 2 S
n are Hermitian matrices then

x · y = y · x 2 R (11.7)
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We will consider Sn as a vector (or linear) space over the field R of real numbers, not over C (see Appendix
25.1.1.1 for definitions of vector space and subspace). We can then call a set K ✓ S

n of Hermitian matrices
a cone in the vector space S

n if x 2 K implies that gx 2 K for any g > 0 in the field R. As for a cone K
of vectors in R

n, a cone in S
n is not necessarily convex, e.g., K := {g1x1 : g1 � 0}[ {g2x2 : g2 � 0} is a

nonconvex set unless x1 = gx2 for some g 2R. We define the notion of dual cone in S
n (the order of inner

product in Definition 11.4 does not matter because of (11.7)).

Definition 11.4 (Cones in S
n). Consider the vector space S

n ⇢ C
n⇥n of Hermitian matrices. Let X ✓ S

n

be a nonempty set.

1. The polar cone of X is X� := {y 2 S
n : y · x 0 8x 2 X}

2. The dual cone X⇤ of X is X⇤ :=�X� = {y 2 S
n : y · x� 0 8x 2 X}.

3. A cone K is called self-dual if K⇤ = K.

The nonnegativity cone Rn
+ ⇢R

n, the second-order cone Ksoc ⇢R
n, and the positive semidefinite cone

Kpsd ⇢ S
n of positive semidefinite matrices are all self-dual proper cones (recall a proper cone is closed,

convex, pointed and has nonempty interior).

Polar and dual cones in R
n are defined in exactly the same way in Chapter 17.1.1. Their properties are

given in Proposition 17.1 there and extend directly to cones in the vector space S
n. For example for an

arbitrary nonempty set X ✓ S
n of matrices, its polar cone X� and dual cone X⇤ are closed convex cones.

If X is itself a closed convex cone then (X�)� = X . The following property of the dual cone underlies
the definition of dual problem and duality. Consider a cone K in an underlying vector space K+, e.g.,
K+ := R

n or K+ := S
n. Then the minimum value over K of the inner product with another vector y is 0 if

y 2 K⇤ and �• if otherwise. It follows directly from the definition of dual cone and therefore applies to
cones in both vector spaces Rn and S

n.

Lemma 11.2 (Duality over cone). Let K+ be a vector space with an inner product x · y = y · x which is in
R. Let K ✓ K+ be a nonempty cone. Then

min
x2K

y · x = min
x2K

x · y =

⇢
0 if y 2 K⇤

�• if y 2 K+ \K⇤

Lemma 11.2 holds whether or not the cone K is self dual or not; if K⇤ = K then we can replace K⇤ by
K in the lemma.

Remark 11.1 (Semidefinite cones in S
n). The vector space S

n can be partitioned into the cone Kpsd of
positive semidefinite matrices, the cone Knsd of negative semidefinite with Kpsd \Knsd = {0} the zero
matrix 0, and the set of indefinite Hermitian matrices (those with both positive and negative eigenvalues).
Both Kpsd and Knsd are self-dual proper cones. They are also polar cones of each other, i.e., Kpsd = K�nsd
and Knsd = K�psd.
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11.1.5 Derivative, directional derivative and partial derivative

In this subsection we review different notions of derivatives of real-valued functions f on R
n (see Chapter

25.1.9 for more details). A function can be differentiable but not convex or vice versa. We study convex
functions in Chapter 11.1.6.

Consider a real-valued function f : X ! R where X ✓ R
n is an open set. The function f is said to be

differentiable at x 2 X if there exists a vector m 2Rn such that (the limit must hold for all h 2Rn such that
h! 0)

lim
h2Rn
h!0

f (x+h)� f (x)�mTh
khk = 0

When this holds, the column vector m 2 R
n is called the gradient or derivative of f at x 2 X and denoted

by — f (x). If f is differentiable at every x 2 X then f is called differentiable on X .

At each x 2 X and for each v 2 R
n the one-sided directional derivative of f at x in the direction v is

defined as

d f (x;v) := lim
t2R
t#0

f (x+ tv)� f (x)
t

provided the limit exists, possibly ±•. Since X is open and f is real-valued, d f (x;v) if exists is always
real valued for any v 2 R

n. It can be shown that f is differentiable at x 2 X if (i) directional derivatives
d f (x;v) exist at x for all directions v 2 R

n, and (ii) d f (x;v) is a linear function of v.

At each x2 X and for the unit vector e j 2 {0,1}n that has a single 1 in its jth position, if the directional
derivatives d f (x;e j) and d f (x;�e j) exist in both directions and are equal, then they are called the partial
derivative of f at x 2 X with respect to x j and denoted by ∂ f

∂x j
(x):

∂ f
∂x j

(x) := lim
t2R
t!0

f (x+ te j)� f (x)
t

In this case f is called partially differentiable at x 2 X with respect to x j. The row vector of partial
derivatives of f at x 2 X is

∂ f
∂x

(x) :=
h

∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
i

If f is partially differentiable at all x 2 X then it is called partially differentiable on X . The partial deriva-
tive ∂ f

∂x (x) describes the behavior of f at x only along the coordinate axes whereas the derivative — f (x)
describes its behavior in all directions. If f is differentiable then it is partially differentiable, but the con-
verse does not generally hold. If f is not only partially differentiable but ∂ f

∂x (x) is also continuous at x,
then the converse holds at x 2 X . Such an f is called continuously differentiable at x. If f is continuously
differentiable at all x 2 X then it is continuously differentiable on X .

Lemma 11.3 (Differentiability and partial differentiability). Consider a real-valued function f : X ! R

where X ✓ R
n is an open set.
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1. If f is differentiable at x 2 X then it is partially differentiable at x. Moreover its gradient — f (x) is
given by

— f (x) =


∂ f
∂x

(x)
�T

2. If f is continuously differentiable at x 2 X then it is differentiable at x.

The following example shows that a partially differentiable function may not be differentiable when
the partial derivative ∂ f

∂x (x) is discontinuous at x. Indeed a partially differentiable function may not even
be continuous at all x 2 X . A continuously differentiable function is always continuous.

Example 11.3. 1. Consider f : R2! R defined by:

f (x,y) :=
⇢

0 if xy = 0
1 if x 6= 0, y 6= 0

Its partial derivative does not exist at any point, except at the origin where ∂ f
∂ (x,y)(0,0) = [0 0]. The

function f is discontinuous at (0,0) and hence cannot be differentiable at (0,0). Clearly ∂ f
∂ (x,y) is

discontinuous at the origin.

2. Consider f : R2! R defined by:

f (x,y) :=

(
xaya

x2a+y2a if (x,y) 6= (0,0)

0 if (x,y) = (0,0)

It is discontinuous at the origin along the line x = y (Exercise 11.7). Therefore the directional
derivative of f along x = y does not exist.

Hence f is differentiable at x 2 X if and only if d f (x;v) = vT— f (x) = ∂ f
∂x (x)v for all v 2 R

n. For
convex but non-differentiable functions, derivatives are generalized in Chapter 17.3.2 to subdifferentials.

For a vector-valued function f : Rn ! R
m that maps an x 2 R

n to a vector f (x) 2 R
m, the Jacobian

J(x) :=
h

∂ f
∂x (x)

i
of f at x is the m⇥n matrix whose i jth entry Ji j(x) := ∂ fi

∂x j
(x) is the partial derivative of

fi with respect to x j evaluated at x. The gradient or derivative of f at x is — f (x) := JT(x).

11.1.6 Convex function

Definition 11.5. A function f : D! R defined over a convex domain D✓ R
n is convex if, for all x,y 2 D

and all a 2 [0,1],

f (ax+(1�a)y)  a f (x)+(1�a) f (y)

It is strictly convex if the inequality is strict for x 6= y and a 2 (0,1). A function f is concave (strictly
concave) if � f is convex (strictly convex).
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f(x) 

x ∈ D
x y

α f (x)+ (1−α) f (y)

(a) Convex function.

f(x) 

x ∈ D

(b) Nonconvex function.

f(x) 

x ∈ D
x y

f y( )− f x( )
∇f x( )T y− x( )

(c) Differentiable convex function.

Figure 11.6: Definition of a convex function: The straight line connection f (x) and f (y) lies above f
between x and y. The linear approximation of a differentiable convex function f lies below f .

The definition says that the straight line connecting f (x) and f (y) lies above the function f between x and
y, as illustrated in Figure 11.6(a).

Example 11.4. If f (x) = x2 then for any x,y and a 2 [0,1]

a f (x)+(1�a) f (y)� f (ax+(1�a)y) = a(1�a)(x� y)2 > 0

for x 6= y and a 2 (0,1). Hence f is strictly convex.

Checking if a function is convex by verifying the convexity definition is often difficult. The following
theorem provides three different ways to check the convexity of a function. Consider f : D! R over
a convex domain D ✓ R

n. Let — f (x) denote the column vector of partial derivatives of f (whereas ∂ f
∂x

denotes the row vector of partial derivatives). Let

—2 f (x) :=
∂ 2 f
∂x2 :=

h
∂ 2 f

∂xi ∂x j

i

denote the n⇥n Hessian matrix.

Theorem 11.4 (Convex function). Consider a function f defined on a convex open domain D✓ R
n. The

function f is convex if and only if any one of the following holds:

1. For x 2 D and all v 2 R
n the function

g(t) := f (x+ tv) (11.8)

is convex on {t 2 R | x+ tv 2 D}.

2. For a differentiable function f ,

f (y)� f (x) � — f (x)T(y� x), 8x,y 2 D (11.9)

3. For a twice differentiable function f ,

—2 f (x) ⌫ 0, 8x 2 D

i.e., the Hessian matrix is positive semidefinite (all eigenvalues are nonnegative).
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The condition in Theorem 11.4.1 does not require differentiability of f and says that, if we take any
cross section of the surface f defined by (x,v), i.e., from x in the direction of v or �v, the corresponding
scalar function g(t) is convex. The first-order condition in Theorem 11.4.2 says that the function f always
lies above its linear approximation, i.e., f (y) is always greater than or equal to the tangent plane to f at
any point x. This is illustrated in Figure 11.6(c). The second-order condition in Theorem 11.4.3 roughly
says that the gradient at any point x is increasing around x.

Proof of Theorem 11.4. 1. Suppose f is convex. Fix any x 2 D and any v 2 R
n. We will show that

g(t) := f (x+ tv) is convex, i.e., for s < u such that x+ sv and x+uv are both in D, we have, for any
t := as+(1�a)u with a 2 [0,1],

g(t)  ag(s)+(1�a)g(u)

From Figure 11.7 we have

Figure 11.7: Proof of Theorem 11.4.1.

x+ tv = a(x+ sv) + (1�a)(x+uv)

Hence, since f is convex,

g(t) = f (x+ tv) = f (a(x+ sv) + (1�a)(x+uv))  ag(s)+(1�a)g(u)

i.e., g is convex. Conversely suppose g is convex but f is not, i.e., there exists two points x,y 2 D
and a point z := (1�a)x+ay, a 2 [0,1], in between such that

f (z) > (1�a) f (x)+a f (y)

Define g(t) := x+ tv where v := y� x. Then z = x+av and, since g is convex,

f (z) = g(a)  (1�a)g(0)+ag(1) = (1�a) f (x)+a f (y)

contradicting that f is not convex.

2. We first prove the result for a scalar differentiable function g : R! R. Then we use the result to
prove the theorem for a differentiable function f : D! R where D✓ R

n with n� 1.

Consider first g : R! R. We prove that the following are equivalent:
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(a) g is convex.

(b) g(t)�g(s)� g0(s)(t� s) for any s 6= t 2 R.

(c) g0(t)� g0(s) for any t � s in R, i.e. g has nondecreasing slope.

Suppose (a): g is convex. Fix any s, t 2D. For any a 2 [0,1] we have g(s+a(t�s)) (1�a)g(s)+
ag(t) and hence

g(t)�g(s) � g(s+a(t� s))�g(s)
a

Taking limit

lim
a#0

g(s+a(t� s))�g(s)
a(t� s)

(t� s) = g0(s)(t� s)

we have (b). Conversely suppose (b) and we want to prove (a), i.e.

ag(t)+(1�a)g(s) � g(z) � 0 (11.10)

for any z := s+a(t� s), a 2 [0,1]. Compare the difference g(t)�g(z) and g(s)�g(z) in terms of
gradient at the common point z:

g(t)�g(z) � g0(z)(t� z) and g(s)�g(z) � g0(z)(s� z)

To obtain (11.10), multiply the first inequality by a and the second inequality by 1�a and sum,
noting that t � z = (1�a)(t � s) and s� z = �a(t � s) so that the right-hand sides of these two
inequalities sum to zero. This proves (a), (b).

Now suppose (b). Fix any t � s and compare g(t)�g(s) in terms of slope at s and at t:

g0(s)(t� s)  g(t)�g(s)  g0(t)(t� s)

yielding (c). Conversely suppose (c) and fix any t � s. By the mean value theorem we have, for
some z 2 [s, t], g(t)�g(s) = g0(z)(t� s) � g0(s)(t� s), which is (b). This proves (b), (c).

Now consider f : D! R where D✓ R
n with n� 1. We use the result above on scalar functions to

prove the theorem. Suppose f is convex and fix any x,y 2 D. Define the scalar function g : R! R

by

g(s) := f (x+ sy), for s 2 R such that x+ sy 2 D (11.11)

It is easy to show that g(s) is convex. By the mean value theorem there exists an s 2 [0,1] such that

f (x+ y)� f (x) = g(1)�g(0) = g0(s)

By (c) above we have g0(s)� g0(0) = (— f (x))Ty and hence

f (x+ y)� f (x) � (— f (x))Ty

establishing (11.9). Moreover if f is strictly convex then the inequalities above are strict.
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Conversely suppose (11.9) holds. To prove the convexity of f , use the same proof above for (b))
(a). Take z := x+a(y� x) for any a 2 [0,1]. We have

f (y)� f (z) � (— f (z))T(y� z) and f (x)� f (z) � (— f (z))T(x� z)

Multiply the first inequality by a and the second inequality by 1�a and sum to obtain:

a f (y)+(1�a) f (x) � f (z) � (— f (z))T(a(y� z)� (1�a)(z� x)) = 0

proving the convexity of f . Moreover if the inequalities above are strict then f is strictly convex.

3. To prove the second-order condition, fix any x,y 2 D, and define the scalar function g(s) := f (x +
s(y� x)). Applying the second-order Taylor expansion to g:

f (y)� f (x) = g(1)�g(0) = g0(0)+
1
2

g00(s)

= (— f (x))T(y� x)+
1
2
(y� x)T—2 f (x+ s(y� x))(y� x)

for some s 2 [0,1]. If —2 f (z) ⌫ 0 for all z 2 D, then f (y)� f (x) � (— f (x))T(y� x) which is
equivalent to the convexity of f from part 2.
Conversely, suppose f is convex but —2 f (x)� 0 for some x 2 D. Then there exists a vector v 2 R

n

such that vT—2 f (x)v < 0. Since f is convex, part 1 shows that the scalar function g(t) := f (x+ tv) is
convex in t. Then the proof of part 2(c) shows that, when g is twice differentiable, g00(t)� 0 for all
t 2R such that x+ tv 2D. But g00(t) = vT—2 f (x+ tv)v and hence vT—2 f (x)v < 0 means g00(0) < 0,
contradicting that g is convex.

Theorem 11.4 provides an exact characterization for convexity. For strict convexity, the second-order
characterization is sufficient but not necessary: e.g., f (x) = x4 is strictly convex but f 00(x) = 0 at x = 0.

Corollary 11.5 (Strictly convex function). Consider a function f defined on a convex open domain D ✓
R

n.

1. The function f is strictly convex if and only if the function g(t) in (11.8) is strictly convex on
{t 2 R | x+ tv 2 D}.

2. For a differentiable function f , f is strictly convex if and only if strict inequality holds in (11.9) for
x 6= y.

3. For a twice differentiable function f , f is strictly convex if —2 f (x)� 0 for all x 2 D.

A common mistake is to confuse the second-order condition in Theorem 11.4.3 that —2 f (x) is positive
semidefinite with the condition that

xT—2 f (x)x � 0 for all x 2 D

For any x 2 D, —2 f (x)⌫ 0 if and only if

yT—2 f (x)y � 0 for all y 2 R
n

i.e., regardless of what D is, the test on —2 f (x) is for all y 2 R
n. This is illustrated in the next example.
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Example 11.5. Consider the function

f (x1,x2) = x1x2

over the domain

D :=
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

with

—2 f (x) =


0 1
1 0

�

We have

xT—2 f (x)x = 2x1x2 > 0 for all x 2 D

This however does not imply that f is strictly convex over D. The eigenvalues of —2 f (x) are 1 and�1, and
hence f is neither convex nor concave. Indeed the function value along the direction x1 = x2 corresponding
to the eigenvalue-eigenvector pair

�
1, [1 1]T

�
is given by

g(t) := f
✓

x1
x2

�
+ t ·


1
1

�◆
= (x1 + t)(x2 + t), t >�min{x1,x2}

Hence g(t) is convex in t, i.e. f is convex along x1 = x2. Along the direction x1 = �x2 corresponding to
the eigenvalue-eigenvector pair

�
�1, [1 �1]T

�
the function value is

g(t) := f
✓

x1
x2

�
+ t ·


1
�1

�◆
= (x1 + t)(x2� t), �x1  t  x2

Therefore g(t) is concave in t, i.e., f is concave along x1 =�x2. This is illustrated in Figure 11.8.

Example 11.6. We illustrate Theorem 11.4 using f (x) = logx for x > 0.

1. We have f 0(x) = x�1 and for x 6= y > 0 (such that y
x 6= 1)

f (y)� f (x) = log
y
x

<
y
x
�1 =

1
x
(y� x) = f 0(x)(y� x)

where the inequality follows from logz < z�1 for z > 0 and z 6= 1. Hence f is strictly concave by
Theorem 11.4.2.

2. To use Theorem 11.4.3 we have

f 00(x) = � 1
x2 < 0

implying strict concavity of f .
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Figure 11.8: Contour plot of f (x) = x1x2 which is neither convex nor concave over D := {(x1,x2) |x1 >
0, x2 > 0}.

Example 11.7. We illustrate the three sufficient conditions of Theorem 11.4 using the convex f : R2!R

defined by:

f (x) := f (x1,x2) := x2
1�4x1x2 +4x2

2 = (x1�2x2)
2

For the first-order condition we have

— f (x) := — f (x1,x2) = 2(x1�2x2)


1
�2

�

and hence

f (y)� f (x)�— f (x)T(y� x)
= (y1�2y2)

2� (x1�2x2)
2 � 2(x1�2x2)((y1� x1)�2(y2� x2))

= (y1�2y2)
2�2(x1�2x2)(y1�2y2)+(x1�2x2)

2

= ((y1�2y2)� (x1�2x2))
2 � 0

satisfying the condition of Theorem 11.4.2.

For Theorem 11.4.3 we have

—2 f (x) = 2


1
�2

�⇥
1 �2

⇤

Therefore —2 f (x) is positive semidefinite as

yT—2 f (x)y = 2
✓

[y1 y2]


1
�2

�◆2
� 0

for any y 2 R
2.
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For Theorem 11.4.1 we have

g(t) := f (x+ tv) = ((x1 + tv1)�2(x2 + tv2))
2 = ((v1�2v2) t +(x1�2x2))

2

which is clearly a convex function in t for any fixed x and v.

The addition, multiplication by a positive constant, and supremum operations preserve convexity.
Specifically suppose f1 and f2 are two convex functions on the same domain. Then

1. f := a f1 +b f2, a,b � 0, is convex.

2. f := max{ f1, f2} is convex. In fact f (x) := supy2Y f (x;y) is convex in x for arbitrary set Y , provided
that, for every y 2 Y fixed, f (x;y) is convex in x.

3. f (x,y) := |x| + |y| defined on R
2 is convex as it can be expressed in terms of the supremum and

addition operations ( f (x,y) = max{x,�x}+max{y,�y}).

Convex functions define another important class of convex sets. Let f : D! R where D✓ R
n. If D is

a convex set and f a convex function then for each a 2 R the level set {x 2 D | f (x) a} is convex. Let
f : D! R

m where D✓ R
n be a vector-valued function where f := ( f1, . . . , fm) with fi : D! R. Then the

set specified by:

X := {x 2 D | f (x) b} for some b 2 R
m

is convex if each fi is convex. This is because the level sets

Xi := {x 2 D | fi(x) bi}, i = 1, . . . ,m

are all convex and X = \m
i=1Xi and hence is convex since intersection preserves convexity.

An important property of a real-valued convex function is that it is continuous on the interior of its
domain. The proof of the following lemma is adapted from [100, Proposition 1.3.11]. See Lemma 17.14
for generalization to proper extended-valued convex functions. Lemma 17.14 also states that a proper
convex function over a compact set X is Lipschitz continuous on X .

Lemma 11.6 (Continuity of convex functions). Let f : X !R be a real-valued function where X ✓R
n. If

f is convex on X then it is continuous on int(X) with Lipschitz constant L := supx2∂X f kxk2.

Proof. Fix any point ȳ 2 int(X) and any sequence {yk} such that yk 6= ȳ and limk yk = ȳ. We will establish
the continuity of f at ȳ by showing

limsup
k

f (yk)  f (ȳ)  liminf
k

f (yk) (11.12)

i.e., limk f (yk) = f (ȳ). Since ȳ 2 int(X) there exists d > 0 such that the compact set Bd (ȳ)✓ X . We will
consider sufficiently large integers k such that yk 2 Bd (ȳ) for all (such) k.
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Figure 11.9: Proof of Lemma 11.6: Construction of (xk,zk) from ȳ and yk.

For the first inequality in (11.12) we will construct a sequence {(zk,ak)} with zk 2 Bd (ȳ) ✓ X for
sufficiently large k, ak 2 (0,1), yk being on the line segment joining ȳ and zk such that (see Figure 11.9)

yk = (1�ak)ȳ+akzk, zk 2 Bd (ȳ), 8 sufficiently large k (11.13a)
Dyk := yk� ȳ ! 0, ak ! 0, as k! • (11.13b)

The convexity of f then implies, for sufficiently large integers k,

f (yk)  (1�ak) f (ȳ)+ak f (zk)  (1�ak) f (ȳ)+ak f̄

where f̄ := maxy2Bd (ȳ) f (y) which is finite since f is continuous on the compact set Bd (ȳ) (see Theorem
11.14). Taking limsupk in (11.13b) therefore yields the first inequality in (11.12). To construct {(zk,ak)}
we follow the idea in Figure 11.9 and let

zk� ȳ := d Dyk

kDykk

so that kzk� ȳk= d , independent of k, and hence zk 2 Bd (ȳ). Then zk := ȳ + d Dyk
kDykk and therefore

yk := ȳ +
kDykk

d
(zk� ȳ) = (1�ak) ȳ + ak zk

with ak := kDykk/d < 1 for sufficiently large k. It can then be checked that (zk,ak) satisfies (11.13) and
establishes the first inequality in (11.12).

Similarly, for the second inequality in (11.12), let (see Figure 11.9)

xk� ȳ := �d Dyk

kDykk

so that kxk� ȳk= d , independent of k, and hence xk 2 Bd (ȳ). Then

ȳ := xk +
d

d +kDykk
(yk� xk) = bkyk + (1�bk)xk

where bk := d/(d +kDykk) < 1. Convexity of f implies

f (ȳ)  bk f (yk)+(1�b ) f (xk)  bk f (yk)+(1�b ) f̄

where f̄ := maxy2Bd (ȳ) f (y) < •. Taking liminfk on both sides yields f (ȳ) liminfk bk f (yk) = liminfk f (yk),
the second inequality in (11.12).
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11.1.7 Convex program

Consider an optimization problem of the form:

min
x2Rn

f (x) subject to x 2 X (11.14)

X ✓ R
n is called the feasible set and f : Rn ! R the objective function. An x 2 X is called a feasible

solution of (11.14). A feasible solution x⇤ that attains the minimum of f over X (i.e., f (x⇤) f (x) for all
x 2 X) is called a (global) optimal solution/optimum or a (global) minimizer. A feasible solution x⇤ that
attains the minimum of f over a neighborhood of x⇤ (i.e., f (x⇤)  f (x) for all x 2 Br(x⇤)\X for some
r > 0) is called a local optimal solution/optimum or a local minimizer.

The problem (11.14) is called a convex program/problem if f is a convex function and X is a convex
set. For instance

X := {x 2 R
n | g(x) b} for some b 2 R

m

for a vector-valued convex function g : Rn! R
m. By setting U(x) =� f (x), the following maximization

problem is also called a convex program if U(x) is a concave function and X is a convex set:

max
x2Rn

U(x) subject to x 2 X

Importance of convexity. As we will see in Chapter 11.3 the existence of optimal solutions and their
characterization may not require the cost function f to be a convex function or the feasible set X to
be a convex set. Convexity of f and X is important for efficient computation of an optimal solution.
This is because for a convex objective function, local optimality implies global optimality. Moreover
only the first-order condition is required to guarantee local optimality. Specifically, for an unconstrained
minimization problem

min
x2Rn

f (x)

a necessary condition for a point x⇤ to be a local minimizer is (assuming f is differentiable)

— f (x⇤) = 0

If f is convex then this is also sufficient for x⇤ to be globally optimal, as illustrated in Figure 11.6. For
constrained minimization problem (11.14) where X is nonempty, closed and convex, the first-order neces-
sary condition for x⇤ 2 X to be a local minimizer becomes: there is a neighborhood Br(x⇤) for some r > 0
such that

(— f (x⇤))T (x� x⇤) � 0 8x 2 Br(x⇤)\X (11.15)

i.e., moving away from x⇤ to any other feasible point x in Br(x⇤) can only locally increase the function
value f . If f is convex then this is both necessary and sufficient for x⇤ to be globally optimal. To see this,
suppose (11.15) holds but there is another x̂2 X such that f (x̂) < f (x⇤). Consider z(a) := a x̂+(1�a)x⇤.
Since X is convex z(a) is feasible for a 2 [0,1]. Since f is convex we have, for any a 2 (0,1],

f (z(a))  a f (x̂)+(1�a) f (x⇤) < f (x⇤)
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But, for small enough a > 0 so that z(a) 2 Br(x⇤), this contradicts

f (z(a)) � f (x⇤)+—T f (x⇤)(z(a)� x⇤) � f (x⇤)

where the first inequality follows from Theorem 11.4.2 and the second inequality from (11.15). Hence x⇤

is globally optimal in X .

Example 11.8 (Optimality condition for constrained optimization). Consider

min
x2R

f (x) := x2 subject to x� a

See Figure 11.10. It is clear from the figure that the unique minimizer is 0 where f 0(0) = 0 if a 0 and a

f(x) 

a1
x[%

a2
[%

∇f x2
*( ) > 0

∇f x1
*( ) = 0

Figure 11.10: Example 11.8: minx�a x2. If a 0 then the unique minimizer is x⇤1 = 0 where f 0(x⇤) = 0. If
a > 0 then the unique minimizer is x⇤2 = a where f 0(x⇤) > 0.

where f 0(a) > 0 if a > 0. We will derive this conclusion from the optimality condition (11.15) which is

f 0(x⇤)(x� x⇤) � 0, 8x� a (11.16)

First suppose a 0. If a x⇤ < 0 then f 0(x⇤) < 0 and there exists a feasible x > x⇤ where (11.16) cannot
be satisfied. Similarly if x⇤ > 0 � a then f 0(x⇤) > 0 and there exists a feasible a  x < x⇤ where (11.16)
cannot be satisfied. Hence the unique optimal is x⇤ = 0 where f 0(x⇤) = 0. Suppose next a > 0. Then
f 0(x) > 0 for any feasible x� a. Then the only way (11.16) can be satisfied is if x⇤ = a.

Therefore the optimality condition reduces for this example (for any a 2 R) to: x⇤ is optimal if and
only if there exists a p⇤ such that

x⇤ � a, p⇤ � 0, f 0(x⇤) = p⇤, p⇤(x⇤ �a) = 0

This is called the Karush-Kuhn-Tucker (KKT) condition for optimality.

11.2 Properties of convex sets and convex cones

In this section we study some of the most useful properties of convex sets and cones. For example the
Projection Theorem 11.7 is used to prove the separating hyperplane Theorems 11.8 and 11.9 which are
used to prove the Farkas Lemma (Theorem 11.10). We will also use the Projection Theorem 11.7 to prove
in Chapter 11.6 some convergence properties of optimization algorithms, use the Farkas Lemma (Theorem
11.10) to prove in Chapter 11.4.2 linear program duality, and use the separating hyperplane theorems to
prove convex duality in Chapters 17.7.2 and 17.7.3.



452 Draft: EE 135 Notes April 30, 2024

11.2.1 Projection theorem

Given a set X ✓ R
n the projection of x 2 R

n onto X is defined to be:

[x]X := argmin
y2X

kx� yk2 (11.17)

where k · k2 is the Euclidean norm. Hence [x]X is the unique point in X that is closest to x 2 R
n in the

Euclidean norm. They are illustrated in Figure 11.11.

.#x 

.#

y 

X 
z = x[ ]X

Figure 11.11: The point z := [x]X is the unique closest point to x in the convex set X under the Euclidean
norm. For all other points y 2 X , the inner product of y� z and x� z is nonpositive.

Theorem 11.7 (Projection Theorem). Suppose X ✓ R
n is a nonempty, closed and convex set.

1. For every x 2 R
n there exists a unique [x]X defined by (11.17).

2. For every x 2 R
n, z = [x]X if and only if z 2 X and (y� z)T (x� z)  0 for all y 2 X .

3. The projection mapping T : Rn! X defined by T (x) := [x]X is continuous and nonexpansive under
the Euclidean norm, i.e.,

k[y]X � [x]Xk2  ky� xk2 8x,y 2 R
n

Note that Theorem 11.7 does not require X to be bounded (compact), only closed. This is because since
X is nonempty there is an w 2 X . Hence the minimization in the projection (11.17) can be equivalently
restricted to the compact set {y 2 X |kx� yk2  kx�wk2}.

11.2.2 Separating hyperplanes

Recall that for any set X ✓ R
n, cl(X) denotes the closure of X , int(X) denotes the interior of X , ri(X)

denotes the relative interior of X , and cl(X)\ int(X) is the boundary of cl(X).

Definition 11.6. 1. A hyperplane is a set H := {x 2 R
n : aTx = b} for some a 2 R

n and b 2 R.
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2. Two sets X ,Y ✓R
n are separated by a hyperplane H = {x 2Rn : aTx = b} if each lies in a different

closed halfspace associated with H, i.e., ether

aTx  b  aTy, x 2 X , y 2 Y or aTx � b � aTy, x 2 X , y 2 Y

H is called a separating hyperplane.

3. If x⇤ is in the boundary cl(X)\ int(X) of X ✓ R
n, the hyperplane H := {x 2 R

n : aTx = aTx⇤} that
separates cl(X) (or X) and {x⇤} is called a supporting hyperplane of cl(X) (or X) at x⇤.

If point x⇤ is not in the interior of a set X then either x is not in the closure of X or x is in the boundary
of X . The next result says that such a point x⇤ can always be separated from X by a hyperplane if X is
convex. The hyperplane is a supporting hyperplane of X at x⇤ if and only if x⇤ is in the boundary of X . It
is a straightforward consequence of the Projection Theorem 11.7.

Theorem 11.8 (A point x⇤ and a convex set X). Suppose X ✓R
n is nonempty convex and x⇤ 2Rn \ int(X).

1. There exists a hyperplane that passes through x⇤ that contains X in one of its halfspaces, i.e., there
exists a nonzero a 2 R

n such that

aTx  aTx⇤, x 2 cl(X) (11.18a)

A separating hyperplane is H := {x 2 R
n : aTx = aTx⇤}.

2. If x⇤ 62 cl(X) then the inequality in (11.18a) is strict. Hence there exists b 2 (aTx̂⇤,aTx⇤) such that
the hyperplane H := {x 2 R

n : aTx = b} strictly separates cl(X) and x⇤, i.e.,

aTx < b < aTx⇤, x 2 cl(X) (11.18b)

where x̂⇤ is the projection of x⇤ onto the convex set cl(X).

Proof. To prove part 2 first and then part 1.

Part 2: x⇤ 62 cl(X). Let x̂⇤ 6= x⇤ be the projection of x⇤ onto cl(X), i.e., x̂⇤ := argminx2cl(X) kx�x⇤k2. Then
(x⇤ � x̂⇤)T(x� x̂⇤)  0 for all x 2 cl(X) by the Projection Theorem 11.7. Define the normalized (error)
vector

a :=
x⇤ � x̂⇤

kx⇤ � x̂⇤k2
6= 0 (11.19a)

Therefore

aTx  aTx̂⇤ = aTx⇤ � aT (x⇤ � x̂⇤) < aTx⇤, x 2 cl(X) (11.19b)

where the last inequality follows because aT(x⇤ � x̂⇤) = kx⇤ � x̂⇤k2 > 0. By definition, (11.19) says that
cl(X) is in a halfspace associated with the hyperplane H := {x 2 R

n : aTx = aTx⇤}, as shown in Figure
11.12(a). Another separating hyperplane is the supporting hyperplane H := {x 2 R

n : aTx = aTx̂⇤} of
cl(X) at x̂⇤ (the dashed line in 11.12(a)).
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Figure 11.12: Proof of Theorem 11.8. The vectors a,ai are in the normal cones of cl(X) at x̂⇤ and x̂i
respectively and H := {x 2 R

n : aTx = aTx⇤} is a hyperplane separating cl(X) and x⇤. In Case 1 the
separating hyperplane is nonunique: even with the same a, b can take any value in (aTx̂⇤,aTx⇤) and
{x : aTx = b} will be a seperating hyperplane. (Fig changes: ALL X should be cl(X) in figure. Separate
into two subfigures with captions: (a) Case 1: x⇤ 62 cl(X). (b) Case 2: x⇤ 2 cl(X)\ int(X).)

We now show (11.18b) by explicitly constructing a b 2 (aTx̂⇤,aTx⇤) so that H := {x 2 R
n : aTx = b}

is a separating hyperplane (see Figure 11.12(a)). We claim that we can choose any z = b x̂⇤+(1�b )x⇤

between x̂⇤ and x⇤ for some b 2 (0,1) and let b := aTz. To see this we have from (11.19b)

aTx  aTx̂⇤ = aTz�aT(z� x̂⇤) < aTz, x 2 cl(X)

proving the first half of (11.18b), where the last inequality follows because

aT(z� x̂⇤) = (1�b )aT (x⇤ � x̂⇤) = (1�b )kx⇤ � x̂⇤k2 > 0

For the second half of (11.18b) we have

aT(x⇤ � z) = baT(x⇤ � x̂⇤) > bkx⇤ � x̂⇤k2 > 0

as desired.

Part 1: x⇤ 2 cl(X) \ int(X). In view of part 1 we only need to consider x⇤ 2 cl(X) \ int(X). In this
case x̂⇤ = x⇤ and hence we cannot define a by (11.19). Take a sequence {xi} not in cl(X) such that
limi xi = x⇤. Let x̂i be the projection of xi onto the convex set cl(X), i.e., x̂i := argminx2cl(X) kx� xik2.
Then (xi� x̂i)T(x� x̂i) 0 for all x2 cl(X) by the Projection Theorem 11.7. Define the normalized (error)
vectors

ai :=
xi� x̂i

kxi� x̂ik2
, i = 1,2, . . .

Therefore

aTi x  aTi x̂i = aTi xi�aTi (xi� x̂i)  aTi xi, x 2 cl(X) (11.20)

where the second inequality follows because aTi (xi� x̂i) = kxi� x̂ik2. Since kaik= 1 the sequence {ai, i =
1,2, . . .} has a subsequence {aik ,k = 1,2, . . .} that converges to a nonzero vector a. Taking limit as k!
• in (11.20) yields aTx  aT limk xik = aTx⇤ for all x 2 cl(X) as desired. This completes the proof of
(11.18a).
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Theorem 11.9 (Two convex sets X and Y ). Suppose two disjoint sets X ,Y 2 R
n, i.e., X \Y = /0, are

nonempty convex.

1. There exists a nonzero a 2 R
n and b 2 R such that

aTx  b  aTy, x 2 cl(X), y 2 cl(Y )

i.e. X and Y are contained in different halfspaces of the hyperplane H := {x 2 R
n : aTx = b}.

2. If cl(X)\ cl(Y ) = /0, i.e., minx2cl(X) miny2cl(Y ) kx� yk2 > 0, then there exists b 2 R such that the
hyperplane H := {x 2 R

n : aTx = b} strictly separates X and Y :

aTx < b < aTy, x 2 cl(X), y 2 cl(Y )

Proof. Consider the set W := {x� y : x 2 X ,y 2 Y}. W is nonempty convex. Moreover the origin 0 62W .
Apply Theorem 11.8 to W and x⇤ = 0. Then there exists a nonzero a such that aT(x� y)  0 for all
x� y 2 cl(W ), or aTx aTy for all x 2 cl(X), y 2 cl(Y ).

When cl(X)\cl(Y ) = /0, then x⇤ 62 cl(W ) and hence Theorem 11.8 guarantees a b 2 (aTx̂⇤,aTx⇤) such
that the inequalities are strict, where x̂⇤ is the projection of x⇤ onto W .

Define the Euclidean distance between X and Y as infx2X infy2Y kx� yk2. We illustrate Theorem 11.9
by deriving explicitly a and b for the case where the distance is nonzero and there are c 2 X ,d 2 Y that
attain the distance, i.e., kc�dk2 = minx2X miny2Y kx�yk2 > 0. First we treat c as the projection of d onto
cl(X), i.e., kc�dk2 = minx2cl(X) kx�dk2. This corresponds to part 2 of Theorem 11.8 with d = x⇤ 62 cl(X).
Hence from (11.19) we have

a :=
c�d
kc�dk2

(11.21a)

Then we have from Theorem 11.8

aTx < aTd, x 2 cl(X) (11.21b)

On the other hand we can also treat d as the projection of c onto cl(Y ), i.e., kc�dk2 = miny2cl(Y ) ky�ck2.
Then we have from (11.19) a0 := d�c

kd�ck2
=�a and a

0
Ty a

0
Tc for all y 2 cl(Y ). Hence

aTy > aTc, y 2 cl(Y ) (11.21c)

Combining (11.21) we have

aTx < aTd < aTc < aTy, x 2 cl(X), y 2 cl(Y )

where the second inequality follows from aT(c� d) = kc� dk2 > 0. Therefore b can be any number in
[aTd,aTc]. In Chapter 17.1.2 we show that the normal vector a constructed in the proof of Theorem 11.8
is in the normal cone Ncl(X)(x̂⇤) of cl(X) at the projection x̂⇤ of x⇤ onto the convex set cl(X). For Theorem
11.9, the construction of a in (11.21a) is in the normal cone Ncl(Y )(d) =�Ncl(X)(c).
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11.2.3 Farkas Lemma

A very useful result is the following theorem which, e.g., underlies the strong duality of linear program-
ming. It is a simple consequence of the separating hyperplane Theorem 11.8. Recall that if {a1, . . . ,an}
are the column vectors of A 2 R

m⇥n then cone(A) :=cone({a1, . . . ,an})✓ R
m.

Theorem 11.10 (Farkas Lemma). Let A 2 R
m⇥n and b 2 R

m. Then

1. Exactly one of the following holds:3

(a) b 2 cone(A): There exists an x 2 R
n such that Ax = b and x� 0.

(b) b 62 cone(A): There exists an y 2 R
m such that yTA� 0 and yTb < 0.

2. Exactly one of the following holds:

(a) b 2 range(A): There exists an x 2 R
n such that Ax = b.

(b) b 62 range(A): There exists an y 2 R
m such that yTA = 0 and yTb 6= 0.

Proof. For part 1, according to the Carathéodory Theorem 11.1, any b 2 cone(A) can be expressed as
b = Âk

i=1 aiai for some km, ai > 0, and k linearly independent column vectors ai of A. Therefore Ax = b
for some x� 0 if and only if b 2 cone(A)✓ R

m. Suppose there exists no such x. We now prove that there
must exist y 2 R

m such that yTA � 0 and yTb < 0, by applying Theorem 11.8 to the closed convex cone
cone(A) and the point b. Since b 62 cone(A) there exists y 2 R

m such that yTb < yTz for all z 2 cone(A).4
Since 0 2 cone(A) we have yTb < 0. Moreover yTA � 0 because otherwise, if e := yTai < 0 for any
column vector ai of A, then tai 2 cone(A) for any t � 0 and yT(tai) = te !�• as t ! •, contradicting
yTb < yTz for all z 2 cone(A).

Part 2 of the theorem is a consequence the rank-nullity theorem which says that Rm can be decomposed
into two orthogonal subspaces, null(AT) and range(A) (see (25.1) in Chapter 25.1.1.2). Decompose b2Rm

into two orthogonal components b =: b1 + b2 with b1 2 null(AT) and b2 2 range(A), i.e., ATb1 = 0 and
b2 = Ax for some x 2 R

n. Either b is in range(A) (i.e., b1 = 0 and Ax = b) or there exists a nonzero
y := b1 2 null(AT) such that ATy = 0 and

yTb = yTb1 + yTb2 = kb1k2 > 0

where the last equality follows because b1 and b2 are orthogonal.

Part 1 of Theorem 11.10 is illustrated in Figures 11.13. Either b is in cone(A) or b is not. In the first
case, b = Ax for some x � 0 according to the Carathéodory Theorem 11.1, as shown in Figures 11.13(a).
Otherwise, let cone⇤(A) := {y 2 R

m : yTz � 0 8z 2 cone(A)}; see Figures 11.13(b). This is called a dual
cone of cone(A) and studied in Chapter 17.1.1. Since b is outside cone(A), there must exist an y in the
intersection of cone⇤(A) and the set {b}� := {y 2 R

m : yTb 0} (called the polar cone of {b} in Chapter
17.1.1) such that yTA� 0 and yTb < 0. Part 2 of Theorem 11.10 is illustrated in Figure 11.14.

3One clearly cannot have both because otherwise, yTAx = (yTA)x� 0 and yTAx = yTb < 0, a contradiction.
4Theorem 17.4 guarantees such an y in the dual cone cone⇤(cone(A)�b).
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Figure 11.13: Theorem 11.10.1.

Figure 11.14: Theorem 11.10.2.
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See Exercise 17.3 for an application of the Farkas Lemma to derive the polar cone of a pre-image of
the nonpositive quadrant under a linear transformation.

We next study various characterizations of optimal solutions, including the KKT condition, on which
many optimization algorithms are based.

11.3 General theory: optimality conditions

Consider the optimization problem (11.14) reproduced here:

min
x2Rn

f (x) subject to x 2 X

In this section we develop a basic theory to answer the following questions:

Q1 How to characterize optimal solutions?

Q2 When will optimal solutions exist and when will it be unique?

Associated with (11.14) is a dual problem maxµ d(µ). Q1 is important because many algorithms to com-
pute an optimal solution (studied in Chapter 11.5) are based on necessary conditions for optimality; these
conditions are often sufficient for convex programs. To answer Q1 we show in Chapter 11.3.1 that a saddle
point (x⇤,µ⇤) is optimal for both the primal and the dual problems and closes a duality gap (Saddle-point
Theorem 11.12). This characterization does not require the cost function f to be smooth (e.g. continuous
or differentiable) or convex or the feasible set X to be convex. In Chapter 11.3.2 we show that a saddle
point, not only is primal-dual optimal and closes the duality gap, but also satisfies the KKT condition
(KKT Theorem 11.13). This characterization requires the cost function f and constraint functions to be
continuously differentiable and convex (even though the feasible set X remains nonconvex if a convex
equality constraint is not affine). These results characterize the primal and dual optimal solutions but do
not ensure their existence.

For Q2 we show in Chapter 11.3.3 that continuity of the cost function f and compactness of the feasible
set X is sufficient for the existence of primal solutions x⇤ (Theorem 11.14). Strict convexity of f ensures
the uniqueness of x⇤. We show in Chapter 11.3.4 that if the primal optimal value is finite and a kind of
feasibility condition called constraint qualification is satisfied then the duality gap is zero and dual optimal
solutions exist (Slater Theorem 11.15). These results are summarized in Table 11.1.

As summarized in Table 11.1 smoothness is required for the KKT Theorem (continuously differen-
tiable cost and constraint functions) and the existence of primal optimal solutions (continuous cost func-
tion). Neither the Saddle-point Theorem 11.12 nor the Slater Theorem 11.15 requires smoothness. These
results are generalized to a nonsmooth setting in Chapter 17 when the feasible set is convex.
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Primal-dual characterization Assumptions
Th 11.12 saddle point = p-d optimality + strong duality arbitrary f and X
Th 11.13 KKT point = saddle point cont. diff. conv. cost and constr. funts.

Existence
Th 11.14 primal optimal x⇤ cont. f , compact X
Th 11.15 dual optimal l ⇤ & strong duality conv. f , affine equality, convex inequality,

finite f ⇤, Slater cond.
Co 11.16 combination of Ths 11.12, 11.13, 11.14, 11.15 intersection

Table 11.1: Summary of characterization and existence of primal and dual optimal solutions.

11.3.1 Characterization: saddle point = p-d optimality + strong duality

Primal problem. We now study the case where the feasible set X ✓ R
n is specified by a set of equality

and inequality constraints. Consider

f ⇤ := min
x2Rn

f (x) s.t. g(x) = 0, h(x) 0 (11.22)

where f :Rn!R, g :Rn!R
m and h :Rn!R

l are arbitrary real-valued functions. In particular f ,g,h are
not necessarily convex or differentiable or even continuous. We will call this problem the primal problem.

Associated with every constrained optimization problem (11.22) (at least partially) specified by equal-
ity and inequality constraints is a dual problem, defined as follows.

Dual problem. Associated with the equality constraint is the dual variable l 2 R
m and associated with

the inequality cosntraint is the dual variable µ 2 R
l
+. Define the Lagrangian function or the Lagrangian

associated with (11.22) as the function L : Rn+m+l ! R:

L(x,l ,µ) := f (x) + lTg(x) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l (11.23a)

For any (l ,µ) define the dual function by the unconstrained minimization of the Lagrangian over the
primal variable x:

d(l ,µ) := min
x2Rn

L(x,l ,µ) (11.23b)

The dual problem of (11.22) is defined to be:

d⇤ := max
l2Rm,µ2Rl

d(l ,µ) s.t µ � 0 (11.23c)

Let X := {x 2 R
n : g(x) = 0, h(x)  0} denote the primal feasible set and Y := {(l ,µ) 2 R

m+l : µ � 0}
the dual feasible set. A primal feasible point x⇤ 2 X is called primal optimal if x⇤ solves (11.22) and a
dual feasible point (l ⇤,µ⇤) 2 Y is called dual optimal if (l ⇤,µ⇤) solves (11.23). We also called such an
(x⇤,l ⇤,µ⇤) primal-dual optimal. It is important that the minimization over x in the dual problem (11.23)
is unconstrained. It converts the constrained minimization (11.22) into an unconstrained minimization
over x under certain conditions; see Remark 11.5.
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The dual problem (11.23) always provides a lower bound on the primal problem (11.22) for arbitrary
cost and constraint functions f ,g,h, even extended-valued functions.

Lemma 11.11 (Weak duality). If (x̄, l̄ , µ̄) 2 X⇥Y is a primal-dual feasible point then d(l̄ , µ̄)  f (x̄).

Proof. Since (x̄, l̄ , µ̄) is primal-dual feasible we have l̄Tg(x̄) = 0 and µ̄Th(x̄) 0 and hence L(x̄, l̄ , µ̄)
f (x̄) from (11.23a). Therefore

d(l̄ , µ̄) := min
x2Rn

L(x, l̄ , µ̄)  L(x̄, l̄ , µ̄)  f (x̄)

as desired.

The weak duality Lemma 11.11 implies in particular that the dual objective value d⇤ lower bounds the
primal objective value f ⇤:

d⇤ := max
l ,µ�0

d(l ,µ)  min
x2X

f (x) =: f ⇤ (11.24)

This holds whether or not the primal problem is convex and whether or not these values are bounded: if the
primal optimal value is f ⇤ = �• then the dual problem is infeasible; if the dual optimal value is d⇤ = •
then the primal problem is infeasible. The gap f ⇤ � d⇤ is called the duality gap. For general nonlinear
optimization the duality gap can be strictly positive, and even unbounded. If the primal problem (11.22)
is convex and a certain constraint qualification is satisfied, then the duality gap is zero (Theorem 11.15).
In this case we say strong duality holds. Before we study in Chapters 11.3.3 and 11.3.4 the existence of
primal and dual optimal solutions (x⇤,l ⇤,µ⇤) that closes the duality gap, we first characterize them.

Saddle point. For the duality gap to be zero and for the primal and dual problems to both attain their
optimal values, it is necessary and sufficient that a saddle point exists for arbitrary f ,g,h. To define a
saddle point we first claim that the primal problem can be written in terms of L:

f ⇤ = min
x

max
l ,µ�0

L(x,l ,µ) (11.25)

To prove (11.25), note that given any infeasible x 62 X := {x : g(x) = 0, h(x)  0}, it is clear that
maxl ,µ�0 L(x,l ,µ) is unbounded. Therefore

min
x

max
l ,µ�0

L(x,l ,µ) = min
x2X

max
l ,µ�0

L(x,l ,µ) (11.26a)

Fix any x 2 X . On the one hand, L(x,l ,µ) f (x) for any µ � 0, and hence

min
x2X

max
l ,µ�0

L(x,l ,µ)  min
x2X

f (x) =: f ⇤ (11.26b)

On the other hand, maxl ,µ�0 L(x,l ,µ)� L(x,l ,0) = f (x) since x 2 X , and hence

min
x2X

max
l ,µ�0

L(x,l ,µ) � min
x2X

f (x) =: f ⇤ (11.26c)
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Combining (11.26) gives

f ⇤ = min
x

max
l ,µ�0

L(x,l ,µ) = min
x2X

max
l ,µ�0

L(x,l ,µ) (11.27)

proving (11.25). Therefore weak duality (11.24) can also be expressed symmetrically in terms of the
Lagrangian L:

d⇤ := max
(l ,µ)2Y

min
x2Rn

L(x,l ,µ)  min
x2Rn

max
(l ,µ)2Y

L(x,l ,µ) =: f ⇤ (11.28)

An important feature of (11.28) is that the minimization over x is unconstrained.

Definition 11.7 (Saddle point). A point (x⇤,l ⇤,µ⇤) 2 R
n⇥Y is called a saddle point of the Lagrangian L

if it satisfies

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2Rn

L(x,l ⇤,µ⇤) (11.29)

where Y := {(l ,µ) 2 R
m+l : µ � 0}.

Remark 11.2 (Equivalent definitions of saddle point). 1. If (x⇤,l ⇤,µ⇤)2Rn⇥Y is a saddle point then
necessarily x⇤ 2 X is primal feasible because otherwise, max(l ,µ)2Y L(x⇤,l ,µ) is unbounded but
L(x⇤,l ⇤,µ⇤) is finite since f ,g,h are real-valued. Therefore, when f ,g,h are real-valued, we can
define a saddle point without loss of generality as a primal-dual feasible point (x⇤,l ⇤,µ⇤) 2 X ⇥Y
that satisfies (11.29).

2. An equivalent specification of a saddle point (x⇤,l ⇤,µ⇤) is (Exercise 11.14):

(x⇤,l ⇤,µ⇤) 2 X⇥Y, L(x⇤,l ⇤,µ⇤) = min
x2Rn

L(x,l ⇤,µ⇤), µ⇤Th(x⇤) = 0 (11.30)

i.e., max(l ,µ)2Y L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) in (11.29) can be replaced by primal feasibility and com-
plementary slackness.

Remark 11.3 (Partial dualization). The minimization over x in Definition 11.7 is unconstrained because
all constraints of (11.22) have been dualized. The constraints can also be partially dualized. Specifically
suppose (11.22) takes the form

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, g(x) = 0, h(x) 0

where X 0 ✓ R
n. The Lagrangian L is still defined by (11.23a), but the dual function is now defined to be

d(l ,µ) := minx2X 0 L(x,l ,µ) and the dual problem is

d⇤ := max
(l ,µ)2Y

min
x2X 0

L(x,l ,µ)

where Y := {(l ,µ) 2 R
m+l : µ � 0}. Instead of (11.28) and (11.29), strong duality holds if

max
(l ,µ)2Y

min
x2X 0

L(x,l ,µ) = min
x2X 0

max
(l ,µ)2Y

L(x,l ,µ)

and (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is a saddle point if

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2X 0

L(x,l ⇤,µ⇤)

All saddle point results extend to the case of partial dualization with obvious modifications (see also
Chapter 17.7).
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Remark 11.4 (Game interpretation). The weak duality (11.28) can be interpreted as a two-person game
where a player tries to maximize L(x,l ,µ) over (l ,µ) 2Y and the other player tries to minimize L(x,l ,µ)
over x 2 R

n. The inequality (11.28) expresses the second-mover advantage: the player that makes the first
move is generally disadvantaged. A saddle point (x⇤,l ⇤,µ⇤) is a Nash equilibrium of this game.

The next result Theorem 11.12 states that a saddle point (x⇤,l ⇤,µ⇤) of L solves both the primal and
the dual problems and closes the duality gap. It does not require any of the functions f ,g,h in the primal
problem (11.22) to be convex or smooth (e.g., differentiable or even continuous) or the feasible sets X ,Y
to be compact (Y is obviously not compact). It is simply a re-interpretation of a saddle point in terms of
the primal problem (11.25) and dual problem (11.23). It only characterizes a saddle point but does not
ensure its existence. We will study the existence of primal and dual optimal solutions in Chapters 11.3.3
and 11.3.4.

Theorem 11.12 (Saddle-point Theorem). Consider the primal problem (11.22) and its dual (11.23). A
point (x⇤,l ⇤,µ⇤) is a saddle point if and only if

1. It is primal-dual optimal, i.e., x⇤ is optimal for (11.22) and (l ⇤,µ⇤) is optimal for (11.23); and

2. The duality gap is zero at (x⇤,l ⇤,µ⇤), i.e.,

d(l ⇤,µ⇤) = d⇤ = f ⇤ = f (x⇤) (11.31)

In particular a saddle point (x⇤,l ⇤,µ⇤), if it exists, attains both the primal and dual objective values
( f ⇤,d⇤).

Proof. Suppose (x⇤,l ⇤,µ⇤) is a saddle point, i.e., it satisfies (11.29) in Definition 11.7. As explained in
Remark 11.2, when the functions f ,g,h are real-valued, a saddle point is necessarily a primal-feasible
point, in particular, x⇤ 2 X . Then we have

f (x⇤) = L(x⇤,l ,0)  max
(l ,µ)2Y

L(x⇤,l ,µ) = min
x2Rn

L(x,l ⇤,µ⇤) =: d(l ⇤,µ⇤)

where the second equality follows from (11.29) and the last equality follows from the definition of the
dual objective function d. Since (x⇤,l ⇤,µ⇤) 2 X ⇥Y is feasible, the weak duality Lemma 11.11 implies
that

f (x⇤) = d(l ⇤,µ⇤)

The definition of f ⇤ and d⇤ and weak duality (11.24) then imply

d(l ⇤,µ⇤)  d⇤  f ⇤  f (x⇤) = d(l ⇤,µ⇤)

which is (11.31). This also shows that (x⇤,l ⇤,µ⇤) is primal-dual optimal.

Conversely suppose (x⇤,l ⇤,µ⇤) 2 X ⇥Y is primal-dual optimal and satisfies (11.31). Since g(x) = 0
and µTh(x)  0 for any (x,l ,µ) 2 X ⇥Y , we have

L(x⇤,l ⇤,µ⇤)  max
(l ,µ)2Y

L(x⇤,l ,µ)  f (x⇤) = d(l ⇤,µ⇤) := min
x2Rn

L(x,l ⇤,µ⇤)  L(x⇤,l ⇤,µ⇤)

where the second inequality follows because g(x⇤) = 0 and h(x⇤)  0, the first equality follows from
(11.31), and the second equality follows from the definition of d. Hence all inequalities above hold with
equality, proving that (x⇤,l ⇤,µ⇤) is a saddle point, i.e., it satisfies (11.29).



Draft: EE 135 Notes April 30, 2024 463

Theorem 11.12 and (11.30) lead to a common characterization of attainment of optimality and strong
duality: (x⇤,l ⇤,µ⇤) attains primal-dual optimality and strong duality f ⇤ = d⇤ if and only if (x⇤,l ⇤,µ⇤) 2
X⇥Y is primal-dual feasible and

x⇤ 2 arg min
x2Rn

L(x,l ⇤,µ⇤), (µ⇤)T g(x⇤) = 0

Remark 11.5 (Solving dual problems). It is important that the minimization over x 2 R
n in the primal

problem (11.22) and its dual (11.23c), reproduced here:

f ⇤ := min
x2Rn

max
(l ,µ)2Y

L(x,l ,µ) (11.32)

d⇤ := max
(l ,µ)2Y

min
x2Rn

L(x,l ,µ) (11.33)

is unconstrained. We can interpret the dual problem as converting the constrained primal problem (11.22)
into an unconstrained minimization where the primal constraints are replaced by the penalty terms lTg(x)+
µTh(x) in the Lagrangian L(x,l ,µ). Given an (l ,µ) 2 Y , solving the inner unconstrained problem
minx L(x,l ,µ) can be much easier than solving (11.22), e.g., when —xL(x,l ,µ) = 0 can be solved ex-
plicitly. In this case, if strong duality holds, we can solve (11.22) by solving the dual problem (11.33).

When the primal constraints are partially dualized, as explained in Remark 11.3, the primal and dual
problems become

f ⇤ := min
x2X 0

max
(l ,µ)2Y

L(x,l ,µ)

d⇤ := max
(l ,µ)2Y

min
x2X 0

L(x,l ,µ)

Solving the dual problem is advantageous when strong duality holds and, given an (l ,µ) 2Y , solving the
inner problem minx2X 0 L(x,l ,µ) is much easier than solving (11.22).

Even if strong duality does not hold, solving the dual problem yields a lower bound on the primal
objective value f ⇤ which can be useful in practice.

Example 11.9. Power system examples to illustrate Remark 11.5.

11.3.2 Characterization: KKT point = saddle point

We now consider the primal problem (11.22) and its dual problem (11.23) under the assumption that the
cost function f and the constraint functions g,h are convex and continuously differentiable.5 While the
duality theory can be developed when some or all of the constraints are dualized (see Remark 11.3), the
KKT theory needs all constraints to be dualized.

5A function f is said to be continuously differentiable if its partial derivatives ∂ f
∂x j

(x) exist and are continuous functions of
x. See Chapter 17.3.1 or Chapter 25.1.9 for more details.
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KKT condition. The KKT condition on (x,l ,µ) associated with the primal and dual problems (11.22)(11.23)
is defined by the following system of equations:

Stationarity : —xL(x,l ,µ) = 0 (11.34a)
Primal feasibility : g(x) = 0, h(x)  0 (11.34b)
Dual feasibility : µ � 0 (11.34c)

Complementary slackness : µTh(x) = 0 (11.34d)

where —xL is the column vector whose ith entry is ∂L
∂xi

. The stationarity (11.34a) is explicitly:

Stationarity : — f (x) + —g(x)l + —h(x)µ = 0 (11.34e)

where —g(x) =
h

∂g
∂x

iT
2 R

n⇥m and —h(x) =
h

∂h
∂x

iT
2 R

n⇥l are the Jacobian of g and h respectively.

Definition 11.8 (KKT point). A primal variable x⇤ is called a stationary point and a dual variable (l ⇤,µ⇤)
a Lagrange multiplier (vector) of (11.22) if (x⇤,l ⇤,µ⇤) satisfies (11.34), i.e., if

—xL(x⇤,l ⇤,µ⇤) = 0, g(x⇤) = 0, h(x⇤) 0, µ⇤ � 0, µ⇤Th(x⇤) = 0 (11.35)

We also call such a point (x⇤,l ⇤,µ⇤) 2 X⇥Y a KKT point.

Like a saddle point, a KKT point is necessarily primal-dual feasible. If f ,g,h are convex functions then
a stationary point x⇤ is an unconstrained minimizer of L(x,l ⇤,µ⇤) over x 2 R

n. Otherwise a stationary
point x⇤ can be a local minimizer, a local maximizer or an inflection point of L(x,l ⇤,µ⇤). If f ,g,h are
convex then a primal-dual feasible (x⇤,l ⇤,µ⇤) 2 X ⇥Y satisfies the KKT condition if and only if it is a
saddle point, as proved in the next result. Note that the primal problem (11.22) is still nonconvex if g(x)
is convex but not affine and therefore Theorem 11.13 applies to nonconvex problems as long as f ,g,h are
convex (and continuously differentiable).

Theorem 11.13 (KKT Theorem). Consider the primal problem (11.22) and its dual (11.23). Suppose
f ,g,h are convex and continuously differentiable functions. Consider an arbitrary point (x⇤,l ⇤,µ⇤). The
following are equivalent:

1. (x⇤,l ⇤,µ⇤) is a saddle point.

2. (x⇤,l ⇤,µ⇤) satisfies the KKT condition (11.35).

3. (x⇤,l ⇤,µ⇤) is primal-dual optimal and closes the duality gap, i.e., d(l ⇤,µ⇤) = d⇤ = f ⇤ = f (x⇤).

Proof. As discussed above, a saddle point, a KKT point and a primal-dual optimal are necessarily primal-
dual feasible and hence we can restrict ourselves without loss of generality to (x⇤,l ⇤,µ⇤) 2 X ⇥Y . The
equivalence of the first and the third assertions is proved in Theorem 11.12 and holds for arbitrary functions
f ,g,h, not necessarily convex or continuously differentiable. To show the equivalence of the first two
assertions, since (x⇤,l ⇤,µ⇤) is primal-dual feasible, we only need to show the complementary slackness
condition (11.34d) and the stationarity condition (11.34a). As we will see complementary slackness does
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not require f ,g,h to be convex or continuously differentiable, but stationarity being a first-order condition
requires both.

Suppose (x⇤,l ⇤,µ⇤) is a saddle point, i.e.,

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x

L(x,l ⇤,µ⇤) (11.36)

We now show that the first equality implies (11.34d) and the second equality implies (11.34a). The first
equality in (11.36) reads, substituting g(x⇤) = 0 (since x⇤ 2 X),

f (x⇤) + max
(l ,µ)2Y

µTh(x⇤) = f (x⇤) + µ⇤Th(x⇤)

But max(l ,µ)2Y µTh(x⇤) = 0 since h(x⇤)  0 and µ � 0, and hence f (x⇤) = f (x⇤)+ µ⇤Th(x⇤), implying
the complementary slackness condition µ⇤Th(x⇤) = 0. It also means that L(x⇤,l ⇤,µ⇤) = f (x⇤). Hence the
second equality in (11.36) reads

f (x⇤) = min
x

L(x,l ⇤,µ⇤)

i.e., x⇤ is an unconstrained minimizer of L(x,l ⇤,µ⇤) over 2R
n. Since f ,g,h are convex and continuously

differentiable, it is necessary and sufficient that —xL(x,l ⇤,µ⇤) = 0, proving the stationarity condition
(11.34a).

Conversely suppose (x⇤,l ⇤,µ⇤) satisfies the KKT condition (11.35). We now show that the saddle
point condition (11.36) is satisfied. Since f ,g,h are convex and continuously differentiable, the stationarity
condition —xL(x,l ⇤,µ⇤) = 0 implies that L(x⇤,l ⇤,µ⇤) = minx L(x,l ⇤,µ⇤), proving the second equality
of (11.36). For the first equality, since g(x⇤) = 0 and µ⇤Th(x⇤) = 0, we have f (x⇤) = L(x⇤,l ⇤,µ⇤). Hence

L(x⇤,l ⇤,µ⇤) = f (x⇤) � max
(l ,µ)2Y

f (x⇤)+lTg(x⇤)+ µTh(x⇤) = max
(l ,µ)2Y

L(x⇤,l ,µ) � L(x⇤,l ⇤,µ⇤)

proving L(x⇤,l ⇤,µ⇤) = max(l ,µ)2Y L(x⇤,l ,µ). This completes the proof of the theorem.

Remark 11.6 (Comparison: Saddle point and KKT theorems). 1. The saddle point Theorem 11.12 holds
without requiring f ,g,h in the primal problem (11.22) to be convex or differentiable. It says that a
saddle point (x⇤,l ⇤,µ⇤) is primal-dual optimal and closes the duality gap.

2. The KKT Theorem 11.13 requires that f ,g,h are convex and continuously differentiable. It implies
that, for a primal-dual feasible point (x⇤,l ⇤,µ⇤), the saddle point condition (11.36) is equivalent to
stationarity and complementary slackness conditions:

—xL(x⇤,l ⇤,µ⇤) = 0, µ⇤Th(x⇤) = 0

The consequence of —xL(x⇤,l ⇤,µ⇤) = 0 is that x⇤ is an unconstrained minimizer of L, i.e., L(x⇤,l ⇤,µ⇤) =
minx L(x,l ⇤,µ⇤). As mentioned above, (11.22) remains nonconvex if g is convex but not affine.
Hence Theorem 11.13 applies to nonconvex programs as well.

3. Like Theorem 11.12, Theorem 11.13 only shows that a KKT point (x⇤,l ⇤,µ⇤) is primal-dual opti-
mal and closes the duality gap, but does not guarantee its existence. We now study the existence and
uniqueness of a KKT point.
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11.3.3 Existence: primal optimal solutions

In general an optimal primal solution of a constrained optimization may not exist, even when the optimal
primal value is finite, dual optimal solutions exist and strong duality holds, as the next two examples show.

Example 11.10 (Nonexistence of primal optimal). Consider

f ⇤ := inf
x2R

f (x) := x2 s.t. x > 1

Clearly the primal optimal value is finite, f ⇤ = 1, but no primal optimal x⇤ exists such that f (x⇤) = f ⇤.

The Lagrangian is L(x,µ) := x2 + µ(1� x) = x2�µx+ µ , the dual function is

d(µ) := min
x

L(x,µ) = �µ2

4
+ µ

and hence d⇤ := maxµ�0 d(µ) = d(2) = 1 = f ⇤, i.e., strong duality holds and µ⇤ = 2 attains the dual
optimal.

Theorem 11.13 says that for a feasible x̄ to be optimal, (x̄,µ⇤) must satisfy the KKT condition. In
particular 2x̄ = µ⇤ and µ⇤(1� x̄) = 0, which cannot be satisfied when µ⇤ = 2 and x̄ > 1.

The reason the primal optimal is not attained in Example 11.10 is that the primal feasible set is not
closed. The next example possesses a closed (but unbounded) feasible set and has no primal optimal
solution either.

Example 11.11 (Nonexistence of primal optimal). Consider

f ⇤ := inf
x2R

f (x) := e�x s.t. x� 0

Clearly the primal optimal value is finite, f ⇤ = 0, but no finite x⇤ 2 R exists such that f (x⇤) = f ⇤.

The Lagrangian is L(x,µ) := e�x�µx, the dual function is

d(µ) := min
x

e�x�µx =

⇢
0, µ = 0
�•, µ > 0

and hence d⇤ := maxµ�0 d(µ) = d(0) = 0 = f ⇤, i.e., strong duality holds and µ⇤ = 0 attains the dual
optimal.

Theorem 11.13 says that for a feasible x̄ to be optimal, (x̄,µ⇤) must satisfy the KKT condition. In
particular ex̄ =�µ⇤, which cannot be satisfied by any finite x̄ when µ⇤ = 0.

In the rest of this subsection we formalize the intuition from these two examples.

Consider the general optimization problem (11.14), reproduced here

min
x2Rn

f (x) subject to x 2 X (11.37)

where X ✓ R
n and f : Rn! R is an arbitrary real-valued function. The next result provides a sufficient

condition for the existence of a primal optimal solution x⇤.
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Theorem 11.14 (Existence and uniqueness of x⇤). Consider the optimization problem (11.37). Suppose
X is nonempty and compact (closed and bounded) and f is continuous on X . Then

1. An optimal solution x⇤ exists.

2. Moreover the optimal solution x⇤ is unique if f is strictly convex.

The sufficient condition in Theorem 11.14 is a consequence of the Weierstrass theorem. For an exact
condition see Theorem 17.25 in Chapter 17.6. The existence of an optimal solution x⇤ only requires f to
be continuous, not necessarily convex. Convexity is important for the efficient computation of an optimal
solution because a local first-order condition is not only necessary but also sufficient for optimality when
the cost function is a convex function and the feasible set is a convex set. Note that a real-valued convex
function is continuous on the interior of its domain, according to Lemma 11.6.

11.3.4 Existence: dual optimal solutions and constraint qualifications

Consider the primal and dual problems (11.22)(11.23) where the feasible set is specified by a set of equal-
ities and inequalities. Conditions that guarantee the existence and uniqueness of Lagrange multipliers
(l ⇤,µ⇤) are called constraint qualification conditions. We describe three of them.

Constraint qualifications. Suppose x⇤ is a local optimal of (11.22). Let Y (x⇤) be the set of Lagrange
multipliers associated with x⇤:

Y (x⇤) :=
n

(l ,µ) 2 R
m+l : (x⇤,l ⇤,µ⇤) satisfies (11.35)

o

If Y (x⇤) is nonempty then it is a convex polyhedral set whether or not (11.22) is a convex program. (Recall
that a set B✓R

n is a polyhedral set if B = {x2Rn : Ax b} for some matrix A and vector b of appropriate
sizes; see Chapter 11.1.2.)

The set Y (x⇤) of Lagrange multipliers associated with a local optimal x⇤ is nonempty if and only if the
following condition holds at x⇤:

rank
∂g
∂x

(x⇤) = m, 9x 2 N
✓

∂g
∂x

(x⇤)
◆

s.t.
∂hI(x⇤)

∂x
(x⇤)x < 0 (11.38)

where N(A) is the null space of matrix A and I(x⇤) is the set of indices of inequality constraints that are
active at x⇤ and

∂hI(x⇤)
∂x (x⇤) is the |I(x⇤|⇥n matrix of partial derivatives of hi that are active at x⇤:

I(x⇤) := {i : hi(x⇤) = 0},
∂hI(x⇤)

∂x
(x⇤) :=

✓
∂hi

∂x
(x⇤), i 2 I(x⇤)

◆

The condition (11.38) is called the Mangasarian-Fromovitz constraint qualification (MFCQ). In particular
Y (x⇤) can be empty if MFCQ is not satisfied. The second condition of MFCQ says that the local optimal
x⇤ can move infinitesimally in the direction of x and become strictly feasible.
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The second constraint qualification guarantees not only the existence, but also the uniqueness, of the
Lagrangian multiplier associated with a local optimal x⇤:

the rows of
∂g
∂x

(x⇤),
∂hI(x⇤)

∂x
(x⇤) are linearly independent (11.39)

This is called the linear independence constraint qualification (LICQ) and it guarantees that Y (x⇤) is a
singleton. Using the Farkas Lemma 11.10 it can be shown that LICQ implies MFCQ (Exercise 11.16).

Both LICQ and MFCQ presume the existence of an optimal solution x⇤ for the primal problem (11.22).
When an optimal x⇤ exists and if one of the condition is satisfied then an optimal Lagrange multiplier
(l ⇤,µ⇤) 2 Y (x⇤) exists and (x⇤,l ⇤,µ⇤) is a KKT point. Theorem 11.13 then implies that (x⇤,l ⇤,µ⇤) is a
saddle point that closes the duality gap and solves both the primal and the dual problems, when f ,g,h are
convex and continuously differentiable functions (even if g is not affine and (11.22) remains nonconvex).

We next discuss the third constraint qualification, called the Slater condition, that does not require the
existence of a primal optimal solution x⇤. We will restrict ourselves to the version of the primal problem
(11.22) where the equality constraint g(x) = 0 is affine (this is generalized in Chapter 17.7 in a nonsmooth
setting). Consider the following problem:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, h(x) 0 (11.40)

where f :Rn!R and h :Rn!R
l are real-valued functions, and A2Rm⇥n, b2Rm. Suppose h1(x), . . . ,hl̄(x)

are affine functions and hl̄+1(x), . . . ,hl(x) are nonlinear convex functions. Then the constraint qualification
is:

Slater condition: There exists x̄ such that

Ax̄ = b, hi(x̄)  0, i = 1, . . . , l̄, hi(x̄) < 0, i = l̄ +1, . . . , l (11.41)

The Slater condition is often stated as having a strictly feasible point x̄ because x̄ satisfies the nonlinear
inequality constraints strictly. If all hi(x) are affine then the Slater condition reduces to primal feasibility.

Strong duality and dual optimality. Let the Lagrangian function L : Rn+m+l ! R associated with the
primal problem (11.40) be

L(x,l ,µ) := f (x) + lT(Ax�b) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l (11.42a)

The dual function is

d(l ,µ) := min
x2Rn

L(x,l ,µ) (11.42b)

and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (11.42c)

Let X := {x 2 R
n : Ax = b, h(x) 0} denote the primal feasible set and Y := {(l ,µ) 2 R

m⇥Rl : µ � 0}
the dual feasible set.

When f ,h are convex the Slater condition ensures that strong duality and the existence of a dual optimal
solution (l ⇤,µ⇤) that attains the dual optimal value, d(l ⇤,µ⇤) = d⇤.
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Theorem 11.15 (Slater Theorem). Consider the primal problem (11.40) and its dual (11.42). Suppose the
following conditions hold:

• Convexity: f ,h are convex.

• Finite primal value: f ⇤ is finite, i.e., �• < f ⇤ < •.

• Slater condition: (11.41) holds.

Then

1. f ⇤ = d⇤.

2. There exists a dual optimal solution (l ⇤,µ⇤) with d(l ⇤,µ⇤) = d⇤.

Note that Theorem 11.15 does not require f ,h to be smooth but only convex, e.g., it may not be
continuously differentiable or even continuous. This result will be extended to a nonsmooth setting in
Chapter 17.7.1 as Theorem 17.26. A slightly simpler version, Theorem 17.27, is proved there which can
can be adapted to prove Theorem 11.15 here.

Since f ⇤ is finite, weak duality implies that the dual problem can only be finite feasible or infeasible.
The Slater condition in Theorem 11.15 guarantees that it is feasible and attained. It does not however
guarantee that the finite primal optimal is attained, i.e., there may not be a feasible x⇤ such that f (x⇤) = f ⇤

when the feasible set is not compact, as Examples 11.10 and 11.11 show. In these examples, both condi-
tions in Theorem 11.15 are satisfied and hence f ⇤ is finite, dual optimal solutions exist and strong duality
holds. If a primal optimal solution x⇤ does exist and (l ⇤,µ⇤) is the associated Lagrange multiplier, i.e.,
(x⇤,l ⇤,µ⇤) is a KKT point, then Theorem 11.13 implies that (x⇤,l ⇤,µ⇤) is also a saddle point that is
primal-dual optimal and closes the duality gap. Note that for both the Slater Theorem 11.15 and the KKT
Theorem 11.13, it is not enough for the feasible set to be convex. It has to be specified by a convex con-
straint function h(x) for these theorems to apply. We will discuss in Chapters 11.3.6 and 11.4.6 potential
issues that may arise when the convex feasible set is represented by nonconvex constraint functions.

The next example shows that the importance of the Salter condition.

Example 11.12 (Nonexistence of dual optimal solution). Consider

f ⇤ := inf
x2R

f (x) := 2x s.t. x2  0

The feasible set is {x = 0} and the Slater condition does not hold. We now show that the dual problem
is feasible, but dual optimality is not attained even though f ⇤ is finite and attained, f ⇤ = f (0) = 0, all
functions are convex, and strong duality holds.

The Lagrangian is L(x,µ) := 2x+ µx2 and the dual function d(l ) := infx2RL(x,µ) is

d(µ) =

⇢
�1/µ if µ > 0
�• if µ  0
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Hence

d⇤ := sup
µ>0

d(µ) =� inf
µ>0

1
µ

= 0

i.e., dual optimal µ⇤ does not exists in R even though d⇤ = 0 = f ⇤ = f (0).

The counterexamples to primal optimality (Theorem 11.14) and dual optimality (Slater Theorem
11.15) are summarized in Table 11.2. These examples are all primal and dual feasible. They show that
one of the (primal and dual) problems having an optimal solution generally does not guarantee the other
also has an optimal solution, except for linear programs (see Chapter 11.4.2).

Compact Primal Slater Dual Strong Example
feasible set optimality condition optimality duality

no no x⇤ yes d⇤ = d(µ⇤) finite f ⇤ = d⇤ 11.10, 11.11
yes f ⇤ = f (x⇤) no no µ⇤ finite f ⇤ = d⇤ 11.12

Table 11.2: Primal-dual feasible counterexamples to Theorems 11.14 and 11.15.

In summary Theorems 11.12 and 11.13 characterize a primal-dual optimal solution (x⇤,l ⇤,µ⇤) as a
saddle point and a KKT point that closes the duality gap. Theorems 11.14 and 11.15 provide sufficient
conditions for the existence of primal and dual solutions. These conditions combine to give the following
result.

Corollary 11.16 (Existence, uniqueness, characterizations). Consider the primal problem (11.40) and its
dual (11.42). Suppose

• Convexity and smoothness: f ,h are convex and continuously differentiable.

• Compact X : The primal feasible set X := {x 2 R
n : Ax = b, h(x) 0} is compact;

• Finite primal value: f ⇤ is finite, i.e., �• < f ⇤ < •;

• Slater condition: (11.41) holds;

Then there exists a primal-dual optimal solution (x⇤,l ⇤,µ⇤)2X⇥Y to (11.40)(11.42), i.e., both the primal
and dual optimal values are attained, f ⇤ = f (x⇤) and d⇤ = d(l ⇤,µ⇤). Moreover

1. Strong duality holds f ⇤ = d⇤.

2. (x⇤,l ⇤,µ⇤) 2 X⇥Y is a saddle point of the Lagrangian L.

3. (x⇤,l ⇤,µ⇤) 2 X⇥Y is a KKT point.

4. If f is strictly convex then the primal optimal solution x⇤ is unique.

5. If LICQ (11.39) holds, i.e., if the rows of A and
n

∂hi
∂x (x⇤) : hi(x⇤) = 0

o
are linearly independent,

then the dual optimal solution (l ⇤,µ⇤) is unique.
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11.3.5 Envelop theorems

This subsection collects several variants of envelope theorems, taken from [17, Proposition A.43, p.649],
[306], and [228, Theorems 1, 2, 3].

The following saddlepoint envelope theorem is from [306, Theorem 298]. It makes mild assumptions,
e.g., does not need convexity or differentiability (except differentiability in parameter p), and unifies
several variants.

Theorem 11.17 (Saddlepoint envelope Theorem [306]). Let X and Y be metric spaces and P✓ R
n be an

open set. Let L : X⇥Y ⇥P ! R. For each p 2 P, let (x⇤(p),y⇤(p)) 2 X⇥Y be a saddle point of L, i.e.,

L(x⇤,y; p)  L(x⇤(p),y⇤(p); p)  L(x,y⇤(p); p), x 2 X , y 2 Y (11.43)

and define the value function as

V (p) := L(x⇤(p),y⇤(p); p)

Suppose:

1. x⇤(p) and y⇤(p) are continuous functions (in particular, this assumes that there is a unique saddle
point (x⇤(p),y⇤(p)) for each p 2 P).

2. ∂L
∂ p(x,y; p) exists and is jointly continuous on X⇥Y ⇥P.

Then V is continuously differentiable and

—V (p) = —p L(x⇤(p),y⇤(p); p)

i.e., ∂V
∂ pi

(p) = ∂L
∂ pi

(x,y; p) evaluated at (x,y) = (x⇤(p),y⇤(p)).

Proof. We will prove that the directional derivative of V at each p 2 P in each direction h 2 R
n:

dV (p;h) := lim
t#0

V (p+ th)�V (p)

t

exists6 and equals ∂V
∂ p (p) · h. This is equivalent to the differentiability of f . Moreover we will show that

—V (p) is continuous on P.

Let h 2 R
n be such that [p, p + h] ⇢ P where [p, p + h] := {p + th : 0  t  1} (such h always exists

since P is open). By definition we have

V (p+h)�V (p) = L(x⇤(p+h),y⇤(p+h); p+h) � L(x⇤(p),y⇤(p); p)

6Since V (p) is not assumed to be convex, the limit in the definition of dV (p;h) may not exist.
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The saddlepoint property (11.43) then implies the inequalities in the following:

V (p+h)�V (p) = L(x⇤(p+h),y⇤(p+h); p+h) � L(x⇤(p+h),y⇤(p); p+h)| {z }
�0

(11.44a)

+ L(x⇤(p+h),y⇤(p); p+h) � L(x⇤(p+h),y⇤(p); p) (11.44b)
+ L(x⇤(p+h),y⇤(p); p) � L(x⇤(p),y⇤(p); p)| {z }

�0

(11.44c)

Since L(x,y; p) is differentiable with respect to p for each (x,y), we can apply the mean value theorem to
(11.44b) to get

V (p+h)�V (p) � ∂L
∂ p

(x⇤(p+h),y⇤(p); p1(h)) ·h

for some p1(h) 2 [p, p+h]. Similarly we have

V (p+h)�V (p) = L(x⇤(p+h),y⇤(p+h); p+h) � L(x⇤(p),y⇤(p+h); p+h)| {z }
0

+ L(x⇤(p),y⇤(p+h); p+h) � L(x⇤(p),y⇤(p+h); p)

+ L(x⇤(p),y⇤(p+h); p) � L(x⇤(p),y⇤(p); p)| {z }
0

 ∂L
∂ p

(x⇤(p),y⇤(p+h); p2(h)) ·h

for some p2(h) 2 [p, p+h]. Combining, and replacing h by th, we have

∂L
∂ p

(x⇤(p+ th),y⇤(p); p1(th)) · th  V (p+ th)�V (p)  ∂L
∂ p

(x⇤(p),y⇤(p+ th); p2(th)) · th

Hence

∂L
∂ p

(x⇤(p+ th),y⇤(p); p1(th)) ·h  V (p+th)�V (p)
t  ∂L

∂ p
(x⇤(p),y⇤(p+ th); p2(th)) ·h

Taking t # 0 and using the continuity of ∂L
∂ p we get

dV (p;h) =
∂L
∂ p

(x⇤(p),y⇤(p); p) ·h

for all p 2 P and all h 2 R
n. Hence

∂V
∂ p

(p) =
∂L
∂ p

(x⇤(p),y⇤(p); p)

exists. Moreover it is continuous since ∂L
∂ p is continuous.
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Remark 11.7. It is important that the feasible sets (X ,Y ) are independent of p. The saddlepoint property
(11.43) can still hold if the feasible sets (Xp,Yp) depend on p, i.e., for all p 2 P,

L(x⇤(p),y; p)  L(x⇤(p),y⇤(p); p)  L(x,y⇤(p); p), x 2 Xp, y 2 Yp

Yet the conclusion of Theorem 11.18 in general does not hold. This is because the inequalities in (11.44a)
and (11.44c) rely on inequalities of the form:

L(x⇤(p),y⇤(p); p)  L(x⇤(q),y⇤(p); p)

which may not hold if x⇤(q) is in Xq \Xp. This inequality will hold if x⇤(p) 2 Xq for all p,q 2 P, i.e., even
if Xp and Xq are different, every optimal point x⇤(p) is feasible for every q 2 P. See Exercise 11.18.

An important implication of Remark 11.7 is that in a two-stage stochastic program with recourse,
since the feasible set for the second-stage problem usually depends on the first-stage decision x1, the
differentiability of the value function or recourse function F(x1) in (21.11) generally does not follow
directly from envelope theorems.

The following version is the classical envelope theorem. The key condition is that the first-order
stationarity condition hold with equality, which is the reason for X to be open so that the optimal point
x⇤(p) is in the interior of X . Note that convexity is not assumed since the proof only needs the necessity
of the stationarity condition.

Theorem 11.18 (Envelope Theorem [306]). Let X ✓ R
N and P ✓ R

L be open sets. Consider the con-
strained optimization for each p 2 P:

min
x2X

f (x, p) s.t. g(x, p) = 0

with the associated Lagrange multiplier y2RM, where f : X⇥P!R and g := (g1, . . . ,gM) : X⇥P!R
M.

Let x⇤(p) denote an optimal solution and V (p) := f (x⇤(p), p) the optimal value. Define the Lagrangian

L(x,y; p) := f (x, p) + yT g(x, p)

Suppose

1. f , g1, . . . ,gM are continuously differentiable on X⇥P.

2. The conclusion of the Lagrange Multiplier Theorem holds for each p 2 P: there exist y⇤(p) 2 R
M

such that the first-order stationarity condition holds with equality:

∂L
∂x

(x⇤(p),y⇤(p); p) =
∂ f
∂x

(x⇤(p), p) + (y⇤(p))T ∂g
∂x

(x⇤(p), p) = 0

3. x⇤(p) and y⇤(p) are continuously differentiable functions (in particular, this assumes that the optimal
primal and dual solutions exist and are unique).

Then V (p) is continuously differentiable and

∂V
∂ p

(p) =
∂L
∂ p

(x⇤(p),y⇤(p); p) =
∂ f
∂ p

(x⇤(p), p) + (y⇤(p))T ∂g
∂ p

(x⇤(p), p)
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The theorem can be proved by appealing to Theorem 11.18 but a direct proof is simpler.

Proof. V (p) is continuously differentiable since f (p) and x⇤(p) are. Since x⇤(p) satisfies g(x⇤(p), p) = 0
we have

V (p) = L(x⇤(p),y⇤(p); p) = f (x⇤(p), p) + Â
m

y⇤m(p) gm(x⇤(p), p)

Differentiability assumptions yield

∂V
∂ pl

(p) = Â
n

∂ f
∂xn

(x⇤(p), p) · ∂x⇤n
∂ pl

(x⇤(p), p) +
∂ f
∂ pl

(x⇤(p), p) + Â
m

∂y⇤m
∂ pl

(p) ·gm(x⇤(p), p)

+ Â
m

y⇤m(p)

✓
Â
n

∂gm

∂xn
(x⇤(p), p) · ∂x⇤n

∂ pl
(x⇤(p), p) +

∂gm

∂ pl
(x⇤(p), p)

◆

= Â
m

∂y⇤m
∂ pl

(p) ·gm(x⇤(p), p)

| {z }
= 0 * gm(x⇤(p),p)=0

+ Â
n

✓
∂ f
∂xn

(x⇤(p), p) + Â
m

y⇤m(p)
∂gm

∂xn
(x⇤(p), p)

◆

| {z }
= 0 * stationarity

·∂x⇤n
∂ pl

(x⇤(p), p)

+
∂ f
∂ pl

(x⇤(p), p) + Â
m

y⇤m(p) · ∂gm

∂ pl
(x⇤(p), p)

Hence

∂V
∂ p

(p) =
∂ f
∂ p

(x⇤(p), p) + (y⇤(p))T ∂g
∂ p

(x⇤(p), p)

as desired.

Remark 11.8. It is important that the set X is open so that the first-order stationarity condition holds with
equality. If the feasible set Xp depends on p, then either Xp is assumed open or x⇤(p) is in the interior
of Xp. This means that if the constraint x 2 Xp is represented by h(x, p) 0, the corresponding Lagrange
multipliers will be zero at optimality so that the stationarity condition and the conclusion of the theorem
will remain unchanged.

The following result is taken from [17, Proposition A.43, p.649].

Theorem 11.19 (Danskin’s Theorem). Let X ✓R
n and f : X⇥R

m!R be a continuous function. Suppose
f (x, p) is convex in p for every x 2 X . Let

V (p) := sup
x2X

f (x, p)

1. Suppose X is compact so that a maximizer x⇤(p) always exists with V (p) = f (x⇤(p), p). Let the set
of maximizers be

X⇤(p) := {x 2 X : V (p) = f (x, p)}
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(a) The function V : Rm!R is convex and has directional derivative dV (p;h) at p in the direction
of h 2 R

m given by:

dV (p;h) := lim
t#0

V (p+ th)�V (p)

t
= max

x2X⇤(p)
d f (x,h; p)

where d f (x,h; p) := limt#0
f (x+th,p)� f (x,p)

t is the directional derivative of the function f (·, p).
(b) If X⇤(p) = {x⇤(p)} is a singleton and f (x⇤(p), ·) is differentiable in its second argument at p,

then V (p) is differentiable at p and

—V (p) = —p f (x⇤(p), p) =

✓
∂ f
∂ p j

(x⇤(p), p), j = 1, . . . ,m
◆

2. The conclusions of 1 hold if, instead of assuming X is compact, we assume that

• X⇤(p) is nonempty for every p 2 R
m; and

• For every sequence {pk} converging to some p, there exists a bounded sequence {x⇤k} of max-
imizes x⇤k 2 X⇤(p) for all k (so that {x⇤k} has a convergent subsequence).

Remark 11.9. As for Theorem 11.18, it is important that the feasible set X does not depend on p, for the
same reason discussed in Remark 11.7.

Theorem 11.19 guarantees the existence of directional derivative of V (p) if f is jointly continuous in
(x, p) and convex in p for every x 2 X . Differentiability of V however needs uniqueness of the maximizer
x⇤(p) and differentiability of f (x⇤(p), ·) at p. See [228, Theorems 1 and 2] for Envelope Theorems that
allow nonunique maximizer x⇤(p) but requires an upper bound on |∂ f (x, p)/∂ pi| uniformly in pi. The
formulation in [228, Theorems 1 and 2] also assumes that the feasible set X is independent of p.

Remark 11.10. Consider a real-valued function f : X⇥R
m! R and

g1(y) := sup
x2X

f (x,y), g2(y) := inf
x2X

f (x,y)

where X is an arbitrary subset of Rn.

Taking supremum. If f is convex in y for every x 2 X then g1(y) is convex in y as Theorem 11.19
shows. Moreover if f (x, ·) is closed for each x 2 X then g1(·) is closed as well ([100, Proposition 1.1.6,
p.13]). This is the situation e.g. when f is the Lagrangian function of a constrained optimization.

Taking partial minimization. If f (x,y) is jointly convex in (x,y) instead (this is not the case with
Lagrangian functions) then g2(y) is convex ([100, Proposition 3.3.1, p.122]). Moreover the epigraph
epi(g2(y)) := {(y,z) : z� g2(y),y2Rm} is essentially the projection of epi( f ) := {(x,y,z) : z� f (x,y),x2
X ,y 2 R

m} on the space of (y,z), except possibly for somme boundary points y when the infimum over
x 2 X is not attained in which case (y,g2(y)) are missing. Precisely

P(epi( f )) ✓ epi(g2) ✓ clP(epi( f ))

where the projection P is defined by P(S) := {(y,z) : (x,y,z) 2 S} for any subset S✓ X⇥R
m⇥R.
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11.3.6 Equivalent representations

Consider the following two convex optimization programs:

min
x2Rn

f (x) s.t. Ax = b, h1(x) 0 (11.45a)

min
x2Rn

f (x) s.t. Ax = b, h2(x) 0 (11.45b)

where f is a convex function. Suppose the feasible sets {x 2 R
n : Ax = b, h1(x) 0} and {x 2 R

n : Ax =
b, h2(x)  0} are the same, so (11.45a) and (11.45b) are equivalent representations of the same problem
in the sense that they have the same cost function f and the same convex feasible set. Equivalent repre-
sentations of the same problem can have different structural and computational properties. For example,
the dual problem, the optimal dual value and strong duality generally depend on the primal and dual rep-
resentations and may be different for different (even if equivalent) representations. If both h1(x) and h2(x)
are convex functions, the Slater condition is satisfied for both representations in (11.45), and their optimal
primal value is finite, then the Slater Theorem 11.15 applies to both representations and hence strong du-
ality holds and dual optimality is attained for both representations. In that case, even if they have different
dual problems, their optimal dual values will be the same. Since the constraint functions are convex the
optimality condition in the KKT Theorem 11.13 are sufficient for both representations.

If on the other hand h1(x) is convex but h2(x) is not, then even if the Slater condition is satisfied for
both problems and their optimal primary value is finite, the Slater Theorem 11.15 and the KKT Theorem
11.13 apply only to problem (11.45a), but neither applies to (11.45b). Indeed, for (11.45b), strong duality
may not hold and its dual problem may be infeasible, as the following example shows. We will discuss
in more detail in Chapter 11.4.6 potential issues that may arise when h1(x) is nonsmooth and h2(x) is
nonconvex, after we have derived explicitly in Chapter 11.4.4 the KKT condition for the class of problems
in the example.

Example 11.13 (Equivalent representations). Consider the equivalent representation of what is called a
second-order cone program:

f ⇤1 := min
x2Rn

fTx s.t. kxn�1k2  xn (11.46a)

f ⇤2 := min
x2Rn

fTx s.t. kxn�1k2
2  x2

n, xn � 0 (11.46b)

where f 2 R
n. Both problems have the same convex feasible set, the standard second-order cone K ✓ R

n

defined in (11.2). They arise from two equivalent representations of K using different constraint functions.
The constraint function h1(x) := kxn�1k2�xn in (11.46a) is a convex function while the constraint function
h2(x) := kxn�1k2

2� x2
n in (11.46b) is nonconvex (Exercise 11.4). If the optimal primal value f ⇤1 = f ⇤2 is

finite, the Slater Theorem 11.15 applies to problem (11.46a) (the Slater condition is always satisfied)
and hence strong duality holds and a dual optimal solution exists. The optimality condition in the KKT
Theorem 11.13 is also sufficient at x where xn�1 6= 0 and h1 is continuously differentiable. Since h2(x) is
nonconvex, neither theorem is applicable to problem (11.46b) even though its feasible set is convex.

A necessary condition for f ⇤1 = f ⇤2 to be greater than �• is fn � 0 for otherwise fTx = fnxn!�• if
xn�1 = 0 and xn! •. It can be shown (Exercise 11.24) that for problem instances where k f n�1k2  fn:

1. Both representations in (11.46) have a finite optimal primal value f ⇤1 = f ⇤2 = 0.
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2. For (11.46a), strong duality holds and dual optimality is attained.

3. For (11.46b), if 0 6= k f n�1k2  fn, then the dual problem is infeasible, i.e., the optimal dual value is
�• and hence the duality gap is nonzero (in fact unbounded).

11.4 Special convex programs

In this section we apply the general theory developed in Chapter 11.3 to special classes convex optimiza-
tion problems widely used in applications.

11.4.1 Summary: general method

Consider the convex problem (11.22) reproduced here:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, h(x) 0 (11.47)

where f : Rn ! R is a convex function, A 2 R
m⇥n, b 2 R

m and h : Rn ! R
k is a convex function. The

classes of problems studied in this section and in Chapter 17.8 using nonsmooth methods are summarized
in Figure 11.15 and the conclusions are summarize in Table 11.3.April 20, 2024: Special programs: summary

LP

11.4

SOCP

11.4

SDP

11.4

Conic 

program


17.8

Convex 

inequality


17.11

• Doublecheck chapter references after revisions

• Include convex QP?

QP

11.4

Figure 11.15: Special classes of convex problems studied in this section and Chapter 17.8 using nonsmooth
methods. (Doublecheck section references in the figure.)

The classes in Figure 11.15 differ mainly in the convex constraint h(x) 0:

1. Linear program (LP): f (x) = cTx and h(x)  0 specifies Bx + d 2 Rk
+ := {x 2 R

k : x � 0}, i.e., an
affine transformation of x is in the nonnegativity cone.

2. Quadratic program (QP): f (x) = xTQx+2cx with a positive semidefinite cost matrix Q and an affine
constraint Bx+d 2 Rk

+.

3. Second-order cone program (SOCP): h(x)  0 specifies Bx + d 2 Ksoc := {x 2 R
k : kxk�1k2  xk},

i.e., an affine transformation of x is in the second-order cone.
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f (x) h(x) 0 sufficient condition f ⇤ = d⇤ = d(l ⇤,µ⇤)
KKT, saddle pt

LP linear affine finite f ⇤ Th 11.20
QP quadratic affine feasibility (if Q� 0) Th 11.22, 11.23
SOCP convex h(x) 2 Ksoc finite f ⇤, Ax̄ = b Th 11.24, 11.25

h(x) := B̃x+ d̃ h(x̄) 2 ri(Ksoc)
SDP convex h(x) 2 Kpsd finite f ⇤, Ax̄ = b Th 11.26

h(x) := B0 +Ân
i=1 xiBi h(x̄) 2 ri(Kpsd)

Conic prog. convex h(x) 2 K finite f ⇤, Ax̄ = b Th 17.30, 17.31
h(x) := Bx+d h(x̄) 2 ri(K)

Convex prog. convex convex finite f ⇤, Ax̄ = b Exercise 17.18
h(x̄) < 0

Table 11.3: Summary: strong duality, dual optimality and KKT condition.

4. Semidefinite program (SDP): h(x) 0 specifies Bx+d 2 Kpsd ⇢ S
k, i.e., an affine transformation of

x is in the semidefinite cone.

5. Conic program: h(x) 0 specifies Bx+d 2 K ✓R
k, i.e., an affine transformation of x is in a closed

convex cone K.

6. Convex inequality: h : Rn! R
k is a convex function.

Sometimes QP is used to denote problems with a convex quadratic cost f and a conic constraint Bx+d 2K.

The theory developed in Chapter 11.3 are used to derive three types of results for these common convex
problems. The general derivation method is as follows. It is important to remember however that some of
the results in Chapter 11.3 apply to nonconvex problems as well.

1. Dual problem. Given the primal problem (11.47), define the Lagrangian function L(x,l ,µ) : Rn!
R

m+k:

L(x,l ,µ) := f (x)�lT(Ax�b)+ µh(x), x 2 R
n, (l ,µ) 2 R

m+k (11.48a)

Then the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
(l ,µ)2Rm+k

d(l ,µ) s.t. µ � 0 (11.48b)

2. Strong duality and dual optimality. Recall that (i) f and h are convex functions. Suppose (ii) the
Slater condition is satisfied, i.e., there exists x̄ with Ax̄ = b and h(x̄) < 0, and (iii) the optimal primal
value f ⇤ is finite, i.e., �• < f ⇤ < •. Then the Slater Theorem 11.15 implies strong duality and the
existence of a dual optimal solution (l ⇤,µ⇤) with µ � 0, i.e., f ⇤ = d⇤ = d(l ⇤,µ⇤). This does not
guarantee the existence of a primal optimal x⇤.

3. KKT condition and primal optimality. Recall that (i) f and h are convex functions. Suppose (ii) the
Slater condition is satisfied, i.e., there exists x̄ with Ax̄ = b and h(x̄) < 0. Then the KKT Theorem
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11.13 implies that a feasible x⇤ 2 R
n is optimal if and only if there exists dual feasible (l ⇤,µ⇤) 2

R
m+k such that

— f (x⇤) = ATl ⇤ �—h(x⇤)µ, µ⇤Th(x⇤) = 0, µ⇤ � 0 (11.48c)

where (only) the first condition is —xL(x⇤,l ⇤,µ⇤) = 0 and requires continuous differentiability of f
and h. Such a point (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and attains primal and
dual optimality, i.e., f ⇤ = f (x⇤) = d(l ⇤,µ⇤) = d⇤. Hence the KKT condition can be derived simply
by taking the derivative of L with respect to x and it is sufficient for primal-dual optimality when f
and h are convex. This method is not applicable if f or h are not continuously differentiable.

Remark 11.11 (Nonsmooth extension). Smoothness (differentiability) of the cost and constraint functions
f ,h is not important. As long as f ,h are convex functions these results hold verbatim at points of differ-
entiability and extends naturally at nondifferentiable points using a set of set-theoretic tools. These tools,
developed in Chapter 17, exploits convexity properties, are conceptually simple and can treat a larger class
of convex problems (e.g., see Theorem 11.24 and Remark 11.12).

For example consider a general conic program which, instead of an explicit convex function h(x), is
specified abstractly by a constraint Bx+d 2 K for a closed convex cone K.

1. In that case the Lagrangian dual problem can still be defined as in (11.48a)(11.48b) but with the
penalty term µh(x) replaced by µ(Bx + d) in L(x,l ,µ) and dual feasibility µ � 0 replaced by
µ 2 K⇤, where K⇤ := {µ 2 R

k : µTz � 0 8z 2 K} is called the dual cone of K defined in Chapter
17.1.1.

2. The strong duality and dual optimality result holds verbatim.

3. The KKT condition in (11.48c) is defined only at points where f and h are continuously dif-
ferentiable. It can be generalized to a nondifferentiable point using the concept of subgradient
x ⇤ 2 ∂ f (x⇤) and normal cone and takes the form (see Chapter 17.8.4):

x ⇤ = ATl ⇤+BTµ⇤, µ⇤T(Bx⇤+d) = 0, µ⇤ 2 K⇤

When K is specified explicitly, e.g., K = Ksoc, the condition µ⇤ 2K⇤ can be described in more detail
based on the primal optimal x⇤.

In the rest of this section we apply this general method to LP, SOCP and SDP. Referring to Table 11.3,
the results on strong duality, dual optimality and the KKT condition for QP are derived in Exercise 11.20
and those for convex problems specified by the convex inequality h(x) 0 are derived in Exercise 17.18.
General conic programs are studied in Chapter 17.8 using nonsmooth methods.

11.4.2 Linear program (LP)

Consider the linear program:

f ⇤ := min
x2Rn

cTx s.t. Ax� b (11.49a)
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where c 2 R
n, A 2 R

m⇥n and b 2 R
m. From (11.23) the Lagrangian L : Rn+m! R of (11.49) is

L(x,µ) :=
⇣

c�ATµ
⌘T

x + bTµ x 2 R
n, µ 2 R

m

the dual function is

d(µ) := min
x2Rn

L(x,µ) =

⇢
bTµ if ATµ = c
�• if ATµ 6= c

and the dual problem is

d⇤ := max
µ�0

d(µ) = max
µ�0

bTµ s.t. ATµ = c (11.49b)

Let X := {x 2 R
n : Ax� b} and Y := {µ 2 R

m : ATµ = c, µ � 0} be the feasible sets.

Each of the primal and dual problems in (11.49) can be finite feasible, feasible but unbounded, or
infeasible. By definition the primal problem is feasible if f ⇤ < • and the dual problem is feasible if
d⇤ >�•. Strong duality of LP implies that only four, instead of nine, scenarios are possible. Moreover a
feasible solution (x⇤,µ⇤) is optimal if and only if it satisfies complementary slackness.

Theorem 11.20 (LP duality and KKT). Consider the linear program and its dual (11.49).

1. Strong duality and primal-dual optimality. Exactly one of the following holds:

(a) If �• < f ⇤ < • or �• < d⇤ < • then both primal and dual problems attain their optimal and
strong duality holds, i.e., there exists (x⇤,µ⇤) 2 X⇥Y such that

cTx⇤ = f ⇤ = d⇤ = bTµ⇤

(b) If the primal problem is feasible but unbounded then f ⇤ = �• = d⇤, i.e., the dual problem is
infeasible.

(c) If the dual problem is feasible but unbounded then d⇤ = • = f ⇤, i.e., the primal problem is
infeasible.

(d) Otherwise, both are infeasible, i.e., f ⇤ = • and d⇤ =�•.

2. KKT characterization. A feasible x⇤ 2 X is optimal if and only if there is a µ⇤ 2 R
m such that

ATµ⇤ = c, µ⇤T(Ax⇤ �b) = 0, µ⇤ � 0

Such a point (x⇤,µ⇤) is a saddle point and a KKT point and is hence primal-dual optimal with
cTx⇤ = bTµ⇤.

Proof. Suppose f ⇤ is finite; the case of finite d⇤ is symmetric and omitted. Since f ⇤ < • there exists
x̄ 2 X and hence the Slater condition (11.41) is satisfied. The Slater Theorem 11.15 implies that there
exists a dual optimal solution µ⇤ 2 Y such that f ⇤ = d⇤ = d(µ⇤). We are left to prove that, for a linear
program, a finite f ⇤ (feasibility is insufficient) implies the existence of a primal optimal solution x⇤ 2 X
with f (x⇤) = f ⇤. This is proved in Lemma 11.21.
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If f ⇤ = �• then weak duality Lemma 11.11 implies that d⇤  f ⇤ = �•. Similarly if d⇤ = • then
f ⇤ = • by weak duality. The only case that is not covered by the three cases above is when both f ⇤ = •
and d⇤ =�•. This is possible as Example 11.15 shows.

Finally consider any primal feasible point x⇤ 2 X and a µ⇤ � 0. We can assume without loss of
generality that µ⇤ 2 Y . Then

bTµ⇤ = cTx⇤ �µ⇤T(Ax⇤ �b)  cTx⇤ (11.50)

where the first equality follows from µ⇤ 2 Y and the inequality follows from (x⇤,µ⇤) 2 X ⇥Y . If com-
plementary slackness µ⇤T(Ax⇤ � b) = 0 is satisfied then equality is attained in the inequality above, i.e.,
bTµ⇤ = L(x⇤,µ⇤) = cTx⇤. The weak duality Lemma 11.11 then implies that (x⇤,µ⇤) is primal-dual opti-
mal and closes the duality gap. Conversely suppose (x⇤,µ⇤) 2 X ⇥Y is primal-dual optimal. Then both
f ⇤ = f (x⇤) and d⇤ = d(µ⇤) are finite and therefore by part 1, strong duality holds, i.e., bTµ⇤ = cTx⇤.
This and (11.50) then imply µ⇤T(Ax⇤ � b). Such a point is a saddle-point and a KKT point according to
Theorem 11.13.

Using the Farkas Lemma (Theorem 11.10), the next result not only proves, for a linear program, a
finite f ⇤ (feasibility is insufficient) implies the existence of a primal optimal solution, but also constructs
explicitly an optimal solution x⇤ in terms of (A,b,c) (in the expression (11.52) for x⇤, I := I(c) depends
on c).

Lemma 11.21 (LP primal optimality). Consider the linear program (11.49a). If �• < f ⇤ < • then the
primal optimal is attained, i.e., there exists x⇤ 2 X such that cTx⇤ = f ⇤.

Proof. We first prove that finite f ⇤ implies that c 2 cone(AT). Otherwise, the Farkas Lemma (Theorem
11.10) implies that, if c 62 cone(AT), there exists Dx 2 R

n such that ADx � 0 and cTDx < 0. Therefore if
x̄ 2 X is feasible (x̄ exists because f ⇤ < •) then

A(x̄+aDx) � b, cT(x̄+aDx) = cTx̄+a(cTDx), 8a > 0

and hence taking a ! • shows that f ⇤ =�•, a contradiction.

Therefore c 2 cone(AT), i.e., c = ATµ⇤ for some µ⇤ := µ⇤(c)� 0. Then for any primal feasible x

cTx = µ⇤TAx � µ⇤Tb (11.51)

We now construct an optimal x⇤ 2 X that attains the lower bound in (11.51), i.e., cTx⇤ = µ⇤b. Let aTi , i =
1, . . . ,m, denote the rows of A and I := I(c) := {i : µ⇤i > 0} so that

c =: Â
i2I

µ⇤i ai

By possibly eliminating redundant ai and modifying µ⇤ we can assume without loss of generality that
{ai 2 R

n : i 2 I} are linearly independent. Decompose (A,b,c) according to the indices in I:

µ⇤ =


µ⇤I
0

�
, A =:


AI

A�I

�
, b =:


bI

b�I

�
, c = ATµ⇤ = AT

I µ⇤I
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Then µ⇤TAx = µ⇤TI AIx and µ⇤Tb = µ⇤TI bI . Since AI has full row rank we can solve AIx = bI to obtain

x⇤ := AT

I

⇣
AIAT

I

⌘�1
bI (11.52)

so that x⇤ is feasible and cTx⇤ = µ⇤TAx⇤ = µ⇤TI AIx⇤ = µ⇤TI bI = µ⇤Tb. Hence x⇤ is optimal by (11.51).

Example 11.14 (Equality and nonnegativity constraints). Adapt Theorem 11.20 to linear program of the
form:

1. f ⇤ := minx2Rn cTx s.t. Ax = b, x� 0 where c 2 R
n, A 2 R

m⇥n and b 2 R
m.

2. f ⇤ := minx2Rn cTx s.t. Ax = b, Bx+d � 0 where c2Rn, A2Rm⇥n, b2Rm, B2Rn⇥k and d 2Rk.

Solution. For part 1 the Lagrangian L : R2n+m! R of (11.49) is

L(x,l ,µ) :=
⇣

c�ATl �µ
⌘T

x + bTl x 2 R
n, l 2 R

m, µ 2 R
n

the dual function is

d(l ,µ) := min
x2Rn

L(x,l ,µ) =

⇢
bTl if ATl + µ = c
�• if ATl + µ 6= c

and the dual problem is

d⇤ = max
l2Rm,µ�0

bTl s.t. ATl + µ = c

Let X := {x 2 R
n : Ax = b,x � 0} and Y := {(l ,µ) 2 R

m+n : ATl + µ = c, µ � 0} be the feasible sets.
All the structural results of Theorem 11.20 holds. The only change is that (11.50) becomes, since Ax⇤ = b,

bTµ⇤ = cTx⇤ �µ⇤Tx⇤  cTx⇤

and hence a feasible x⇤ 2 X is optimal if and only if there exists a dual optimal (l ⇤,µ⇤) 2 R
m+n with

ATl ⇤+ µ⇤ = c, µ⇤Tx⇤ = 0, µ⇤ � 0

Part 2 can be converted to the problem in part 1 by introducing the slack variable s 2 R
k: f ⇤ :=

min(x,s)2Rn+k cTx s.t. Ax = b, Bx+d� s = 0, s� 0.

Each of the primal and dual problems can either be “bounded feasible”, “unbounded feasible”, or
“infeasible”, giving 9 cases. Weak and strong duality imply only 4 of these 9 cases are possible, as
explained in Table 11.4 and its caption. The only case where the optimal values are attained at finite x⇤ or
(l ⇤,µ⇤) is when both problems are bounded feasible.

Example 11.15 (Infinite LPs). 1. Infeasible LP pair. Consider the LP minx x such that


1
�1

�
x�


0
1

�
.

Its dual is maxµ�0 µ2 such that �µ2 = 1. Clearly neither the primal nor the dual is feasible and
hence f ⇤ = • and d⇤ =�• by definition.
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primal
bounded feasible unbounded feasible infeasible

dual
bounded feasible (x⇤,l ⇤,µ⇤) ⇥ (sd) ⇥ (sd)
unbounded feasible ⇥ (sd) ⇥ (wd) f ⇤ = d⇤ = •
infeasible ⇥ (sd) f ⇤ = d⇤ =�• d⇤ =�• < • = f ⇤

Table 11.4: Four possibilities: Strong duality in Theorem 11.20 excludes 4 possibilities labeled “⇥(sd)”.
The 5th impossibility, labeled “⇥(wd)”, violates weak duality. Optimal values are attained only in one
case.

2. Unbounded primal, infeasible dual. Consider:

f ⇤ := min
x�0
�x1 +ax2 s.t. x1� x2 = 0

where a < 1. Then the optimal primal value is f ⇤ =�• and there is no finite x that attains it. From
Example (11.14) the dual function is

d(l ,µ) :=

8
<

:
0 if


�1
a

�
=


1
�1

�
l + µ

�• otherwise

Then no (l ,µ) that satisfies µ � 0 because otherwise µ1 + µ2 = �(1�a) < 0, and hence at least
one of µ1, µ2 is negative. Therefore the dual problem is infeasible, or d⇤ :=�• = f ⇤.

11.4.3 Convex quadratic program (QP)

A quadratic program (QP) has a quadratic cost function and affine constraints and a quadratically con-
strained quadratic program (QCQP) has a quadratic cost function and quadratic constraints. In this sub-
section we study QPs that are convex.

Convex quadratic program (QP). Consider first an unconstrained convex quadratic program:

f ⇤1 := min
x2Rn

f (x) := xTQx + 2cTx (11.53)

where Q 2Rn⇥n is positive semidefinite, i.e., Q⌫ 0, and c 2Rn. The cost function f is convex if and only
if Q⌫ 0. Since Q is positive semidefinite it has a spectral decomposition

Q = ULUT =
⇥
Ur Un�r

⇤Lr 0
0 0

�
UT

r
UT

n�r

�
= UrLrUT

r (11.54a)

where r is the rank of Q, Lr is a diagonal (sub)matrix of the r positive eigenvalues of Q and the columns of
Ur 2 R

n⇥r are the corresponding r  n (real) orthonormal eigenvectors. The columns of Un�r 2 R
n⇥(n�r)

are n�r orthonormal (real) eigenvectors corresponding to the 0 eigenvalue, if any. The matrix Q is positive
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definite if r = n and positive semidefinite but not positive definite if r < n. The range space, null space
and the pseudo-inverse Q† of Q are respectively:

range(Q) = span(Ur), null(Q) = span(Un�r), Q† := UrL�1
r UT

r , r  n (11.54b)

because UT
r Un�r = 0 (see Chapter 25.1.7 on pseudo-inverse and Theorem 25.16 on orthogonal diagonal-

ization for psd matrices). If r = n then Q† = Q�1. Unconstrained convex QP can be solved explicitly, as
stated below and proved in Exercise 11.20.

Theorem 11.22 (Unconstrained convex QP). Consider the unconstrained convex QP (11.53).

1. If c 2 range(Q) then a minimizer x⇤ and the minimal value f ⇤1 are respectively:

x⇤ = �Q†c, f ⇤1 =�cTQ†c

where Q† is the pseudo-inverse of Q defined in (11.54b). Moreover the set of minimizer is x⇤ =
�Q†c+null(Q).

2. If c 62 range(Q) then f ⇤1 =�•.

3. If Q� 0 is positive definite then the unique minimizer x⇤ and the minimum value f ⇤1 are respectively:

x⇤ = �Q�1c, f ⇤1 =�cTQ�1c

In particular range(Q) = R
n and Q† = Q�1.

Consider next an affinely constrained version of (11.53):

f ⇤2 := min
x2Rn

f (x) := xTQx + 2cTx s.t. Ax = b, Bx+d � 0 (11.55)

where Q ⌫ 0, c 2 R
n, A 2 R

m⇥n, b 2 R
m, B 2 R

k⇥n and d 2 R
k. The quadratic program (11.55) reduces

to a linear program if Q = 0. We next state strong duality and the KKT condition for (11.55) when Q� 0
is positive definite. The result is proved in Exercise 11.21 for the more general case when Q ⌫ 0. When
Q� 0 let

Q̂ :=


A
B

�
Q�1 ⇥AT BT

⇤
, ĉ :=


�b
d

�
�


A
B

�
Q�1c (11.56)

Theorem 11.23 (Constrained convex QP). Suppose the QP (11.55) is feasible and Q� 0.

1. Dual problem. The dual problem is

d⇤ := �cTQ�1c � min
l2Rm,µ2Rk

+

✓⇥
lT µT

⇤
Q̂


l
µ

�
+ 2 ĉT


l
µ

�◆

where R
k
+ := {µ 2 R

k : µ � 0}.
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2. Strong duality, dual optimality, KKT condition. Strong duality holds and dual optimality is attained.
Moreover a feasible x⇤ is optimal if and only if there exists (l ⇤,µ⇤) 2 R

m+k such that µ⇤ � 0 and

x⇤ = Q�1(ATl ⇤+BTµ⇤ � c), µ⇤T(Bx⇤+d) = 0 (11.57)

Such a point is a saddlepoint and a KKT point that is primal-dual optimal and closes the duality gap,
i.e., f ⇤2 = f (x⇤) = d(l ⇤,µ⇤) = d⇤.

Exercise 11.22 studies the following convex quadratically constrained quadratic program (QCQP):

f ⇤ := min
x2Rn

f (x) := xTQ0x + 2cT0 x s.t. xTQ1x + 2cT1 x d

where Q0 � 0 is positive definite, Q1 ⌫ 0 is positive semidefinite, c0,c1 2 R
n and d 2 R. It shows that the

dual problem is:

d⇤ := � min
µ2R+

dµ + (c0 + µc1)
T(Q0 + µQ1)

�1(c0 + µc1)

strong duality holds and dual optimality is attained if f ⇤ is finite and there exists x̄ such that x̄TQ1x̄ +
2cT1 x̄ < d. In that case a feasible x⇤ is optimal if and only if there exists µ⇤ 2 R such that µ⇤ � 0 and

(Q0 + µ⇤Q1)x⇤+(c0 + µ⇤c1) = 0, µ⇤(x⇤TQ1x⇤ + 2cT1 x⇤ �d) = 0

11.4.4 Second-order cone program (SOCP)

A second-order cone program (SOCP) is a convex optimization problem where either the variable x or its
affine transformation B̃x + d̃ is in the standard second-order cone K := {x 2 R

n : kxn�1k2  xn} defined
in (11.2),

Second-order cone. Consider the convex optimization problem:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (11.58a)

where f : Rn!R is a real-valued convex function, A2Rm⇥n, b2Rm, and K ✓R
n is the standard second-

order cone defined in (11.2), reproduced here (xk := (x1, · · · ,xk) denotes the vector consisting of the first
k entries of x),

K := {x 2 R
n : kxn�1k2  xn} (11.58b)

This problem is called a second-order cone program (SOCP). It reduces to a linear program (11.49a) if
K is polyhedral (e.g., K = {x 2 R

n : x � 0}) and f is linear. In this chapter we assume f is continuously
differentiable though this is not important (see the extension to nonsmooth convex setting in Chapter
17.8.3).

To derive the dual problem of (11.58) and the KKT condition, let the Lagrangian function L :Rn+m+1!
R be

L(x,l ,µ) := f (x) � lT(Ax�b) + µ
�
kxn�1k2� xn

�
, x 2 R

n, l 2 R
m,µ 2 R
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Then the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (11.58c)

Let X :=
�

x 2 R
n : Ax = b,kxn�1k2  xn

 
and Y :=

�
(l ,µ) 2 R

m+1 : µ � 0
 

be the feasible sets.

Theorem 11.24 (SOCP duality and KKT). Consider the SOCP and its dual (11.58).

1. Strong duality and dual optimality. Suppose f ⇤ is finite, and there exists x̄ such that Ax̄ = b and
kx̄n�1k2 < x̄n. Then there exists a dual optimal solution (l ⇤,µ⇤) 2Y that closes the duality gap, i.e.,
f ⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization: [x⇤]n�1 6= 0. A primal and dual feasible point (x⇤,l ⇤,µ⇤) 2 X ⇥Y with
[x⇤]n�1 6= 0 is primal-dual optimal and closes the duality gap if and only if and

— f (x⇤) = ATl ⇤+ µ⇤
"
�[x⇤]n�1

k[x⇤]n�1k2
1

#
, µ⇤

�
k[x⇤]n�1k2� x⇤n

�
= 0 (11.59)

Such a point (x⇤,l ⇤,µ⇤) is a saddle point and a KKT point.

3. KKT characterization: [x⇤]n�1 = 0. For x⇤ with 0 = k[x⇤]n�1k2 < x⇤n, x⇤ is optimal if and only if
— f (x⇤) = ATl ⇤ for some l ⇤ 2 R

m. Finally x⇤ = 0 is optimal if and only if — f (0) = ATl ⇤+h⇤ for
some l ⇤ 2 R

m and h⇤ 2 K.

Proof. Part 1 follows from the Slater Theorem 11.15 since the constraint functions in (11.58b) are convex
functions (not just that the feasible set is a convex set). Part 2 follows from the KKT Theorem 11.13
because (11.59) in the theorem are the stationarity condition —xL(x⇤,l ⇤,µ⇤) = 0 and the complementary
slackness condition. For part 3, (11.59) does not apply at x where xn�1 = 0 because the constraint function
is not differentiable at such a point. The stated result is proved in Chapter 17.8.3 where the KKT condition
is generalized to a nonsmooth convex setting that does not require differentiability (see (17.46)).

Note that the vector
⇣
�[x⇤]n�1

k[x⇤]n�1k2
,1
⌘

in (11.59) is in K and hence similar to the case in Theorem 11.24(3).
See Remark 17.6 in Chapter 17.8.3 for the reason.

Remark 11.12. 1. Primal optimality. Unlike for a linear program a finite f ⇤ (as well as the Slater
condition) does not guarantee that the optimal value f ⇤ is attained at a finite x⇤. In particular, even
when a dual optimal solution exists that closes the duality gap under the Slater condition, there may
not be any feasible x̄ that satisfies the KKT condition; see Examples 11.10 and 11.11.

2. KKT under Slater condition. If we assume the Slater condition, i.e., there exists x̄ with Ax̄ = b and
kx̄n�1k2 < x̄n, then the KKT characterization in Theorem 11.24 can be strengthened to: a feasible
x⇤,2 X is optimal if and only if there exist (l ⇤,µ⇤) 2 Y such that (11.59) holds. Without the Slater
condition and finite f ⇤, the existence of a primal optimal x⇤ (and hence finite f ⇤) does not guarantee
the existence of a dual optimal (l ⇤,µ⇤).

3. Unimportance of smoothness. Differentiability of the cost and constraint functions are unimportant
for Theorem 11.24. The theorem holds verbatim in a nonsmooth setting as long as these functions
are convex; see Chapter 17.8.3 where the optimality condition in part 3 is derived. Figure 11.16
illustrates why the optimality condition does not depend on differentiability.
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�cn�1�2 � cn


x* = 0
f* = c�x* = 0

xn

xn�1

K

 decreasing�c

�cn�1�2 > cn


x*n � �
f* = c�x* � � �

xn

xn�1

K

 decreasing�c

Figure 11.16: Theorem 11.24: optimality condition at x⇤ = 0 where the constraint function is nondifferen-
tiable when the constraint Ax = b is absent and f (x) := cTx. Left: x⇤ = 0 and f ⇤ = 0 when c 2 K. Right:
f ⇤ =�• when c 62 K.

SOC constraint. Consider the convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, kBx+dk2  bTx+d (11.60)

where f : Rn!R is a real-valued convex function A2Rm⇥n and b2Rm, B2R(k�1)⇥n, d 2Rk�1, b 2Rn

and d 2 R. The constraint kBx + dk2  bTx + d is the second-order cone constraint studied in Chapter
11.1.3. The problem (11.60) is also called a second-order cone program (SOCP) because the quadratic
constraint says that an affine transformation of x lies in the second-order cone K. It reduces to a linear
program when B = 0 and subsumes (11.58) as a special case. In this chapter we assume f is continuously
differentiable though this is not important (see the extension to nonsmooth convex setting in Chapter
17.8.3).

To derive the dual problem of (11.58) and the KKT condition, we reduce it to the case of (11.58) with
an auxiliary variable z and an additional equality constraint. Consider the equivalent problem:

f ⇤ := min
(x,z)2Rn+k

f (x) s.t. Ax = b, z = B̃x+ d̃, kzk�1k2  zk (11.61a)

where z = (zk�1,zk) 2 R
k, f : Rn! R is a real-valued continuously differentiable convex function, A 2

R
m⇥n and b 2 R

m. Here

B̃ :=


B
bT

�
, d̃ :=


d
d

�
(11.61b)

where B2R(k�1)⇥n, d 2Rk�1, b 2Rn, d 2R. The Lagrangian L : Rn+k⇥R
m+k+1!R is: for x2Rn,z2

R
k,l 2 R

m,g 2 R
k,µ 2 R,

L(x,z,l ,g,µ) := f (x) � lT(Ax�b) � gT(B̃x+ d̃� z) + µ
⇣
kzk�1k2� zk

⌘

The dual problem is (Exercise 11.24):

d⇤ := max
l ,g

⇣
bTl � d̃Tg

⌘
+ d0(l ,g) s.t. g 2 K (11.61c)
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where

d0(l ,g) := min
x2Rn

⇣
f (x)� (ATl + B̃Tg)Tx

⌘
(11.61d)

For example when the cost function in (11.61a) is linear fTx the dual problem is (Exercise 11.25):

d⇤ := max
(l ,g)2Rm+k

bTl � d̃Tg s.t. ATl + B̃Tg = f , kgk�1k2  gk

Let X :=
�

x 2 R
n : Ax = b,kBx+dk2  bTx+d

 
and Y :=

�
(l ,µ) 2 R

m+1 : µ � 0
 

. Note that X ⇥Y
does not contain the auxiliary variable z and the corresponding dual variable g . Even though the dual
problem does not depend on µ , the complementary slackness in the KKT condition does.

Theorem 11.25 (SOCP duality and KKT). Consider the SOCP and its dual (11.61). Suppose there exists
x̄ such that Ax̄ = b and kBx̄+dk2 < bTx̄+d so that the Slater condition (11.41) is satisfied.

1. Strong duality and dual optimality. Suppose f ⇤ is finite. Then there exists a dual optimal solution
(l ⇤,g⇤,µ⇤) that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,g⇤,µ⇤).

2. KKT characterization: BTx⇤+ d 6= 0. A point x⇤ 2 X with BTx⇤+ d 6= 0 is optimal if and only if
there exist (l ⇤,µ⇤) 2 Y such that

— f (x⇤) = ATl ⇤+ µ⇤
✓
�BT(Bx⇤+d)

kBx⇤+dk2
+ b

◆
, µ⇤

⇣
kBx⇤+dk2� (bTx⇤+d )

⌘
= 0

Such a point (x⇤,l ⇤,µ⇤), together with z⇤ := B̃x⇤+ d̃ and g⇤ = µ⇤
"
�[z⇤]k�1

k[z⇤]k�1k2
1

#
2 K, is a saddle point

and a KKT point for (11.61).

3. KKT characterization: BTx⇤+d = 0. A point x⇤ 2 X with BTx⇤+d = 0 is optimal if and only if

(a) Case bTx⇤+d > 0: there exists l ⇤ 2 R
m such that — f (x⇤) = ATl ⇤.

(b) Case bTx⇤+d = 0: there exists l ⇤ 2 R
m and h⇤ 2 K such that — f (x⇤) = ATl ⇤+ B̃Th⇤.

Proof. If there exists an x̄ such that Ax̄ = b and kBx̄ + dk2 < bTx̄ + d then there exists a z̄ such that
z̄ = B̃x + d̃ and kz̄k�1k2 < z̄k. This is the Slater condition for (11.61a) and hence part 1 follows from
Theorem 11.24 since the constraint functions in (11.61a) are convex.

For part 2 we derive the stationarity condition —xL(x⇤,z⇤,l ⇤,g⇤,µ⇤) = 0 and —zL(x⇤,z⇤,l ⇤,g⇤,µ⇤) = 0
as well as the complementary slackness condition in the KKT Theorem 11.13. When zk�1 6= 0 we have

—xL(x,z,l ,g,µ) = — f (x)�ATl � B̃Tg, —zL(x,z,l ,g,µ) = g + µ

"
zk�1

kzk�1k2
�1

#

Hence the KKT condition in terms of (x⇤,z⇤) and (l ⇤,g⇤,µ⇤) is:

— f (x⇤) = ATl ⇤ + B̃Tg⇤, g⇤ = µ⇤
"
�[z⇤]k�1

k[z⇤]k�1k2
1

#
, µ⇤

⇣
k[z⇤]k�1k2� z⇤k

⌘
= 0
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Eliminating z⇤ and g⇤ yields the KKT condition in the theorem. The remaining claim follows from the
KKT Theorem 11.13.

For part 3, the KKT Theorem 11.13 assumes continuously differentiable constraint functions and is not
applicable at x⇤ with BTx⇤+d = 0. The stated result is proved in Chapter 17.8.3 where the KKT condition
is generalized to a nonsmooth convex setting that does not require differentiability (see (17.49)).

Conic program. A generalization of SOCP (11.58) and (11.60) is the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (11.62)

where f : Rn! R is a real-valued convex function, A 2 R
m⇥n, b 2 R

m, and K ✓ R
n is a general closed

convex cone. The Slater Theorem 11.15 and the KKT Theorem 11.13 are formulated in this chapter for
problems where the constraint functions are explicitly given and continuously differentiable. Even though
part of the constraints in (11.62) is not explicit, since K is a convex cone, a dual problem can be formu-
lated in terms of what is called its dual cone. We derive in Chapter 17.8.4 a sufficient condition for strong
duality and dual optimality and the KKT condition for the general conic program (11.62) where the con-
straint functions are not fully specified and the cost function f is convex but not necessarily continuously
differentiable (Theorem 17.30).

11.4.5 Semidefinite program (SDP)

Recall the vector space Sn of Hermitian matrices and the cone Kpsd of positive semidefinite matrices in S
n,

studied in Chapter 11.1.4. For two Hermitian matrices x,y 2 S
n, their inner product is x · y := tr

�
yHx
�

=
Â j,k x jky jk is a real number and satisfies x · y = y · x. Furthermore Kpsd is a proper self-dual cone.

Consider the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, h(x) 2 Kpsd (11.63a)

where f : Rn! R is a real-valued convex function, A 2 R
m⇥n, b 2 R

m, Kpsd ✓ S
k is the cone of positive

semidefinite matrices, and h : Rn! S
k is the function

h(x) := B0 +
n

Â
i=1

xiBi, Bi 2 S
k, i� 0 (11.63b)

The constraint h(x) 2 Kpsd is called a linear matrix inequality and is sometimes denoted as h(x) ⌫Kpsd 0
or simply h(x) ⌫ 0 if the underlying cone Kpsd is understood. SDP (11.63) reduces to LP if k = 1 (see
Example 11.14 of Chapter 11.4.2). It also includes SOCP (11.58a) as a special case because x 2 Ksoc if

and only if


xn [xn�1]T

xn�1 xnIn�1

�
2 Kpsd.

To define the dual problem let l 2 R
m and Z 2 K⇤psd ✓ S

k denote dual variables. The Lagrangian is

L(x,l ,Z) := f (x) � lT(Ax�b) + Z ·
 

B0 +
n

Â
i=1

xiBi

!
, x 2 R

n, l 2 R
m, Z 2 K⇤psd (11.64a)
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The dual function d(l ,Z) := minx2Rn L(x,l ,Z) is:

d(l ,Z) =
⇣

bTl + Z ·B0

⌘
+ d0(l ,Z)

d0(l ,Z) := min
x2Rn

f (x)�lTAx+Â
i

xi(Z ·Bi) (11.64b)

Hence the dual problem is

d⇤ := max
l2Rm,Z2Sk

⇣
bTl + tr(BH

0 Z)
⌘

+ d0(l ,Z) s.t. Z 2 K⇤psd (11.64c)

If f (x) = fTx then

d⇤ := max
l2Rm,Z2K⇤psd

⇣
bTl + tr(BH

0 Z)
⌘

s.t. fi = Â
j

A jil j� tr(BH

i Z), i = 1, . . . ,n

A point (x⇤,l ⇤,Z⇤) 2 R
n+m⇥S

k is a saddle point if

min
x2Rn

L(x,l ⇤,Z⇤) = L(x⇤,l ⇤,Z⇤) = max
µ2Rm,Z2K⇤psd

L(x⇤,l ,Z)

The Slater Theorem 17.26 and the generalized KKT Theorem 17.20 extend directly to the vector space
of Sn and SDP. Since Kpsd is self dual, i.e., K⇤psd = Kpsd, K⇤psd above can all be replaced by Kpsd. This
property is not important for the next theorem and therefore we continue to use K⇤psd in its statement.

Theorem 11.26 (SDP strong duality and KKT). Consider the SDP (11.63) and its dual (11.64). Suppose
there exists x̄ 2 R

n such that Ax̄ = b and h(x̄) 2 ri(Kpsd). Then

1. Strong duality and dual optimality. If f ⇤ is finite then there exists a dual optimal solution (l ⇤,Z⇤) 2
R

m⇥K⇤psd that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,Z⇤).

2. KKT characterization. A feasible x⇤ is optimal if and only if there exists a dual feasible (l ⇤,Z⇤) 2
R

m⇥K⇤psd such that

tr(h(x⇤)HZ⇤) = 0,
∂ f
∂xi

(x⇤) = Â
j

A jil j� tr(BH

i Z⇤), i = 1, . . . ,n

In this case (x⇤,Z⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

We often use the following form of the semidefinite program with inequality constraints:

d⇤ := max
Z2Kpsd

tr
⇣

BH

0 Z
⌘

s.t. tr
⇣

BH

i Z
⌘
 fi, i = 1, . . . ,n (11.65)

where Kpsd ⇢ S
k. For instances the semidefinite relaxation of optimal power flow problems in Chapter

14.1.1 takes this form. This is equivalent to problem (11.64) without the affine constraint Ax = b, noting
that K⇤psd = Kpsd. We now deduce its dual problem by introducing slack variables s := (si, i = 1, . . . ,n)
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that turn the inequality constraints in (11.65) into equality constraints. This is a common technique for
inequality constrained problems.

The problem (11.65) is equivalent to:

d⇤ := max
Z2Kpsd,s2Rn

d(Z,s) := tr
⇣

BH

0 Z
⌘

s.t. tr
⇣

BH

i Z
⌘

+ s2
i = fi, i = 1, . . . ,n

Note that s2
i can be written in terms of the matrix inner product, s2

i = sT
�
eieTi

�
s = tr

�
(eieTi )(ssT)

�
where

ei 2 {0,1}n is the unit vector with a single 1 in its ith entry. Let the Lagrangian L : Kpsd⇥R
n⇥R

n! R

be:

L(Z,s,x) := tr
⇣

BH

0 Z
⌘

+
n

Â
i=1

xi

⇣
tr(BH

i Z)+ s2
i � fi

⌘
, Z 2 Kpsd, s 2 R

n, x 2 R
n

and the dual problem f (x) := maxZ2Kpsd,s2Rn L(Z,s,x) be

f (x) = � fTx + max
Z2Kpsd,s2Rn

 
Z ·h(x) + Â

i
xis2

i

!

where h(x) is defined in (11.63b). Since the constraint Z 2 Kpsd is not dualized, the domain of L for Z
and hence the maximization over Z in f (x) is over Kpsd, not Sk. In view of Lemma 11.2, if �h(x) 2 K⇤psd
then Z ·h(x) 0 for all Z 2 Kpsd whereas if �h(x) 62 K⇤psd then there exists Z̄ 2 Kpsd such that Z̄ ·h(x) > 0.
Hence

max
Z2Kpsd,s2Rn

Z ·h(x) =

⇢
0 if �h(x) 2 K⇤psd
• otherwise

The dual function is then

f (x) =

⇢
� fTx if h(x) 2 �K⇤psd, x 0
• otherwise

(11.66a)

Since K⇤psd = Kpsd we can replace �K⇤psd by the cone Knsd of negative semidefinite matrices in S
n. Hence

the dual problem f ⇤ := minx2Rn f (x) is

f ⇤ := min
x2Rn

� fTx s.t. h(x)� 0, x 0 (11.66b)

where h(x)� 0 denotes h(x) 2 Knsd.

Recall that all eigenvalues of a matrix Z 2 Kpsd are nonnegative. The interior int(Kpsd) of Kpsd is the
set of all positive definite matrices whose eigenvalues are strictly positive.

Theorem 11.27 (SDP strong duality and KKT). Consider the SDP (11.65) and its dual (11.66). Suppose
there exists a positive definite matrix Z̄ 2 int(Kpsd) such that tr

�
BH

i Z̄
�
 fi, for i = 1, . . . ,n. Then

1. Strong duality and dual optimality. If d⇤ is finite then there exists a dual optimal solution x 2 R
n

that closes the duality gap, i.e., d⇤ = f ⇤ = f (x⇤).
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2. KKT characterization. A feasible Z⇤ 2 Kpsd is optimal if and only if there exists a dual feasible
x⇤ 2 R

n such that

h(x⇤) � 0, Z⇤ ·h(x⇤) = 0
x⇤  0, x⇤i ( fi�Z⇤ ·Bi) = 0, i = 1, . . . ,n

where h(x)� 0 denotes h(x) 2 Knsd. In this case (x⇤,Z⇤) is a saddle point that closes the duality gap
and is primal-dual optimal.

Remark 11.13. SDP includes SOCP as a special case and SOCP includes LP and convex quadratically
constrained quadratic program (QCQP) as special cases. Solving an SOCP via standard SDP is generally
much less efficient. For the SOCP in (??) the number of iterations to reduce the duality gap to a constant
fraction of itself is bounded above by O(

p
L) for SOCP and by O(

p
Âm

k=1 nk) for SDP [188]. Moreover
each iteration is much faster for SCOP than for SDP.

11.4.6 Equivalent representation and nonsmoothness

A primal problem can be formulated in different but equivalent representations, e.g., their feasible sets
may be the same but they are specified by different constraint functions. They are equivalent in the
sense that they have the same optimal primal value because they may have the same cost functions and
feasible sets. As discussed in Chapter 11.3.6, equivalent primal representations may have different dual
problems. Results such as strong duality and KKT optimality are with respect to each pair of primal
and dual representations. In this subsection we study in more detail two potential issues that may arise
with alternative representations, one due to the fact that strong duality may not hold for the alternative
representation and the other at points of nonsmoothness of the original representation.

Consider the SOCP (11.58a). Its constraint function h1(x) := kxn�1k2� xn is not differentiable at x
where xn�1 = 0. To bypass this difficulty the following formulation is often solved instead:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, kxn�1k2
2  x2

n, xn � 0 (11.67a)

where f : Rn ! R is a real-valued continuously differentiable convex function, A 2 R
m⇥n and b 2 R

m.
The alternative representation (11.67a) is equivalent to (11.58a) because they have the same feasible
set, specified by different constraint functions, and cost function. Since the constraint function h2(x) :=
kxn�1k2

2� x2
n in (11.67a) is nonconvex neither the Slater Theorem 11.15 nor the sufficient condition in the

KKT Theorem 11.13 (i.e., Theorem 11.24) applies to (11.67a) and its dual. This gives rise to two potential
issues.

First the Lagrangian L : Rn+m+2! R of (11.67a) is

L(x,l ,µ) := f (x) � lT(Ax�b) + µ1
�
kxn�1k2

2� x2
n
�
� µ2xn, x 2 R

n, l 2 R
m,µ 2 R

2

the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (11.67b)
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Since h1(x) for the original representation is convex but h2(x) for the alternative representation is non-
convex, strong duality may hold for (11.58) but not for (11.67) even if the Slater condition (11.41) is
satisfied for both. Indeed Exercise 11.24 gives an example where strong duality holds and dual optimality
is attained for (11.58) while the duality gap is unbounded and the dual problem infeasible for (11.67).

Second the constraint function h2(x) in (11.67a) is differentiable everywhere. The KKT condition for
(11.67a) can be derived to be

— f (x⇤) = ATl ⇤ �2µ⇤1

[x⇤]n�1

�x⇤n

�
+ µ⇤2 en, µ⇤2

�
k[x⇤]n�1k2

2� (x⇤n)
2� = 0 (11.68)

together with primal and dual feasibility. Here en 2 {0,1}n is the unit vector with a single 1 in the nth entry.
Consider the simple case where the constraint Ax = b is absent. At x⇤ = 0, the KKT condition (11.68)
reduces to — f (0) = µ⇤2 en for some µ⇤2 � 0. It is shown in Exercise 11.24 that there are problem instances
where — f (0) = µ⇤2 en is sufficient, but not necessary, for x⇤ = 0 to be optimal for (11.58a) (a necessary
and sufficient condition is — f (0) 2 K from Theorem 11.24) while — f (0) = µ⇤2 en is neither necessary nor
sufficient for x⇤ = 0 to be optimal for the alternative representation (11.67a) because for those problem
instances, the dual problem of (11.67a) is not well defined (infeasible).

These caveats illustrate that when we adopt an alternative representation of a convex optimization
problem, assuming finite optimal primal value:

1. It is important to check that strong duality still applies, e.g., if the cost and constraint functions
remain convex and the Slater condition continues to hold so that the Slater Theorem 11.15 and the
KKT Theorem 11.13 continue to apply.

2. If points of nonsmoothness are relevant for the application, it is important to derive optimality con-
ditions at these points using nonsmooth analysis studied in Chapter 17.

11.5 Optimization algorithms

Even though OPF can be formulated as an optimization problem in the complex domain using the complex
form of power flow equations (e.g., in (13.9) or (13.15) for single-phase OPF in BIM), in computing
a solution, it is first converted into a problem in the real domain; see Remark 13.2. OPF can also be
formulated directly in the real domain using the polar form (4.22) or the Cartesian form (4.23) of the
power flow equations. We therefore present and analyze algorithms for solving OPF in the real domain.

Consider the problem

min
x

f (x) subject to x 2 X (11.69)

where f : Rn ! R is continuously differentiable and X ✓ R
n is nonempty, closed and convex. Let the

column vector — f (x) denote the gradient of f evaluated at x, i.e., [— f (x)]i := ∂ f /∂xi, i = 1, . . . ,n. Recall
that a point x⇤ is a local minimizer if f (x⇤) is minimum on a neighborhood of x⇤, i.e., there exists r > 0
such that f (x⇤) f (x) for all x 2 Br(x⇤)\X . A necessary optimality condition for general f is: if x⇤ 2 X
is a local minimizer for (11.69) then there is a neighborhood Br(x⇤) for some r > 0 such that

(— f (x⇤))T (x� x⇤) � 0 8x 2 Br(x⇤)\X (11.70)



494 Draft: EE 135 Notes April 30, 2024

i.e., moving away from x⇤ to any other feasible point x in Br(x⇤) can only increase the function value f .
If f is a convex function (X is assumed convex) then this is both necessary and sufficient for x⇤ to be a
global minimum of (11.69). This is illustrated in Figure 11.17.

.#x 

.#
∇f x*( )

X 

x*

decreasing%
cost%

level%
sets%

Figure 11.17: Moving away from an optimal point x⇤ to any other feasible point x can only locally increase
the cost.

11.5.1 Steepest descent algorithm

Steepest descent is the most widely used class of iterative algorithms for solving optimization problems.
For (11.69), it is given by the following iteration: starting from an initial point x(0) = x0,

x(t +1) = [ x(t)� g— f (x(t)) ]X (11.71)

where g > 0 is a stepsize. Here [x]X denotes the projection of x onto the nonempty, closed and convex set
X , i.e., for any x 2 R

n,

[x]X := argmin
y2X

kx� yk2

where k · k2 is the Euclidean norm. Hence [x]X is the unique point in X that is closest to x 2 R
n in the

Euclidean norm. The steepest descent algorithm is called a first-order algorithm because it uses only
the first derivative of the objective function f . A second-order algorithm, such as the Newton-Raphson
algorithm widely used for solving optimal power flow problems, also uses the second derivative, as we
now explain.

11.5.2 Newton-Raphson algorithm

As explained in Chapter 4.4.2, Newton-Raphson is an iterative algorithm for solving nonlinear equations
F(y) = 0 where F : Rn! R

n. It computes iteratively

y(t +1) = y(t) + Dy(t) where J(y(t))Dy(t) = �F(y(t)) (11.72)
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where J(y) := ∂F
∂y (y) is the Jacobian of F at y. In this section we apply it to optimization problems where

the equation F(y) = 0 represents the KKT condition. A solution yopt of F(y) = 0 then produces an optimal
solution if the underlying optimization problem is convex. For simplicity we assume solutions exist for all
the optimization problems considered unless otherwise specified.

In this subsection we focus on solving problems with equality constraints. Specifically

1. Linear equality constrained problems. The idea is to approximate the cost function by a quadratic
function around the next iterate (to be determined). This results in a quadratic program in each
iteration whose KKT condition is a system of linear equations that can be solved analytically for the
next iterate. We will also describe another algorithm that generalizes to nonlinear constraints.

2. Nonlinear equality constrained problems. In contrast to the KKT condition of an approximating
quadratic program, the KKT condition of these problems is generally nonlinear and cannot be solved
analytically. The idea is to solve the KKT condition iteratively using the Newton-Raphson method.

3. Inequality constrained problems. The KKT condition of these problems involves inequalities and
Newton-Raphson is not directly applicable. The idea is to replace the inequality constraint by a
penalty term in the cost function to obtain an approximate problem that has no inequality constraints.

Nonlinear program with linear equality constraint. Consider the following problem with an equality
constraint:

min
x2Rn

f (x) s.t. Ax = b (11.73)

where f : Rn ! R is twice continuously differentiable and A 2 R
m⇥n. We will derive two equivalent

algorithms. The first algorithm relies on the linearity of the constraint and is generally not applicable to
problems with nonlinear constraints. It approximates the cost function f (x) by a quadratic function in
each iteration and solves the resulting quadratic program directly. The second algorithm solves the KKT
condition for (11.73) and extends directly to problems with nonlinear equality constraints.

For the first algorithm, given the current iterate x(t), approximate the cost f (x(t)+ Dx(t)) at the next
iterate by

f̂ (x(t)+Dx(t)) := f (x(t))+
∂ f
∂x

(x(t))Dx(t)+
1
2

Dx(t)T
∂ 2 f
∂x2 (x(t))Dx(t) (11.74a)

and consider the optimization over Dx(t)

min
Dx2Rn

f̂ (x(t)+Dx(t)) s.t. A(x(t)+Dx(t)) = b (11.74b)

This is a quadratic program in Dx(t) with a fixed x(t) and can be solved analytically. Let l (t) 2R
m be the

Lagrange multiplier of (11.74). If f is convex then (11.74) is a convex program and the KKT condition is
both necessary and sufficient for optimality. The KKT condition is (Exercise 11.26)

"
∂ 2 f
∂x2 (x(t)) AT

A 0

#

| {z }
K(t)


Dx(t)
l (t)

�
= �


— f (x(t))
Ax(t)�b

�

| {z }
d(x(t))

(11.75a)
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This is system of n+m linear equations in n+m unknowns (Dx(t),l (t)). The matrix K(t) on the left-hand
side of (11.75a) is called a KKT matrix. If K(t) is nonsingular7 then Dx(t) can be computed directly. If
K(t) is singular but the given vector d(x(t)) on the right-hand side is orthogonal to the null space of K(t),
then there is a subspace of solutions (Dx(t),l (t)) to (11.75a) and �K†(t)d(x(t)) is the minimum-norm
solution where K†(t) is the pseudo inverse of K(t). Neither K(t) nor d(x(t)) depends on l (t). Hence in
both cases Dx(t) can be computed from just the current iterate x(t) and (11.75a) always allows pure primal
iterations,

x(t +1) = x(t)+Dx(t) (11.75b)

for solving (11.73).

The second algorithm does not use the second-order approximation of f (x) and considers (11.73)
directly. Specifically let l 2 R

m denote the Lagrange multiplier associated with the m constraints in
(11.73). The Lagrangian is

L(x;l ) := f (x) + lT (Ax�b)

Let y := (x,l ) 2 R
n+m and define F : Rn+m! R

n+m by

F(y) :=


—x L(x,l )
—l L(x,l )

�
=


— f (x)+ATl

Ax�b

�

The KKT condition is F(y) = 0. This specifies a system of n+m nonlinear equations in n+m unknowns
(x,l ), in contrast to the linear KKT condition (11.75a) for the second-order approximation (11.74). It
generally needs to be solved iteratively. The Jacobian J(y) := ∂F

∂y of F is:

J(y) =

"
∂ 2 f
∂x2 (x) AT

A 0

#

(which is the KKT matrix K(t) in (11.75a).) Hence the Newton-Raphson iteration is


x(t +1)
l (t +1)

�
=


x(t)
l (t)

�
+


Dx(t)
Dl (t)

�
(11.76a)

where the increment Dy(t) is given by J(y(t))Dy(t) =�F(y(t)), i.e.,
"

∂ 2 f
∂x2 (x(t)) AT

A 0

#
Dx(t)
Dl (t)

�
= �


— f (x(t))+ATl (t)

Ax(t)�b

�
(11.76b)

We compare the two algorithms (11.75) and (11.76). Both algorithms solve a linear equation with
the KKT matrix K(t) in each iteration. As mentioned above, the approach of (11.75) solves the KKT
condition for the second-order approximation (11.74) directly. This is possible because the linearity of
the constraint allows a second-order approximation of only the cost function but not of the constraint,
resulting in a quadratic program that can be solved analytically. It leads to a primal algorithm that iterates

7See [101, Chapter 10.1, p.523] for equivalent conditions of the nonsingularity of the KKT matrix K(t).
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only on x(t). This is generally inapplicable if the constraint is nonlinear. The approach of (11.76), on the
other hand, solves the KKT condition F(x,l ) = 0 for the original problem (11.73) iteratively using the
Newton-Raphson algorithm. It leads to a primal-dual algorithm that updates both the primal and the dual
variables. It will be extended to problems with a nonlinear constraint in (11.78).

These two algorithms are equivalent in that both produce the same sequence of (x(t),l (t)) starting
from the same initial point. Indeed, given the current iterate (x(t),l (t)) of the primal and dual variables,
(Dx(t),Dl (t)) satisfies (11.76) if and only if (Dx(t),l := l (t) + Dl (t)) satisfies (11.75). To see this,
suppose (Dx(t),l (t)+Dl (t)) satisfies (11.75), i.e.,

"
∂ 2 f
∂x2 (x(t)) AT

A 0

#✓
Dx(t)
Dl (t)

�
+


0

l (t)

�◆
= �


—x f (x(t))
Ax(t)�b

�

which yields (11.76). Suppose the converse holds. Write the right-hand side of (11.76) as


—x f (x(t))+ATl (t)
Ax(t)�b

�
=


—x f (x(t))
Ax(t)�b

�
+

"
∂ 2 f
∂x2 (x(t)) AT

A 0

#
0

l (t)

�

which, together with (11.76), yields (11.75). The only difference between these algorithms is that (11.76)
computes Dl (t) from (x(t),l (t)) and forms l (t + 1) whereas (11.75) computes l (t + 1) directly from
x(t).

Nonlinear program with equality constraint. Consider the following problem with a possibly nonlin-
ear equality constraint

min
x2Rn

f (x) s.t. g(x) = 0 (11.77)

where f : Rn ! R and g : Rn ! R
m are twice continuously differentiable. The approach of (11.76)

generalizes directly to this problem. Let l 2 R
m denote the Lagrange multiplier associated with the m

constraints. The Lagrangian is

L(x;l ) := f (x) + lTg(x)

Let y := (x,l ) 2 R
n+m and define F : Rn+m! R

n+m by

F(y) :=


—x L(x,l )
—l L(x,l )

�
=


— f (x) + ∂g

∂x (x)
Tl

g(x)

�
(11.78a)

The KKT condition is F(y) = 0 which specifies a system of n+m nonlinear equations in n+m unknowns
(x,l ). Hence the Jacobian J(y) := ∂F

∂y of F is:

J(y) :=

"
∂ 2L
∂x2

∂ 2L
∂l∂x

∂ 2L
∂x∂l

∂ 2L
∂l 2

#
=

"
∂ 2 f
∂x2 (x) + Âk

∂ 2gk
∂x2 lk

∂g
∂x (x)

T

∂g
∂x (x) 0

#
(11.78b)

which reduces to the Jacobian in (11.76b) when g(x) = Ax�b is linear. Here ∂ 2L
∂l∂x =

⇣
∂ 2L

∂l∂x

⌘T
is n⇥m.

The Newton-Raphson algorithm for solving (11.77) is the iteration (11.72) where F(y) and its Jacobian
J(y) are given by (11.78). It is a primal-dual algorithm that iterates on both x(t) and l (t).
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When the cost function f (x) or the feasible set {x 2 R
n : g(x) = 0} is nonconvex, there is generally

no guarantee that the Newton-Raphson algorithm will converge and if it does, it will produce a local or
global optimum. In practice, for OPF problems, the algorithm often converges to a local, and even global,
optimum despite their nonconvexity.

When f and g are homogeneous quadratic functions the nonlinear program reduces to the following
QCQP with equality constraints:

min
x2Rn

1
2

xTC0x s.t.
1
2

xTClx = bl, l = 1, . . . ,m

where Cl 2 R
n⇥n, l � 0, are real symmetric matrices and bl 2 R, l � 1. Then (11.78) reduces to:

F(y) :=


—x L(y)
—l L(y)

�
=

2

6664

A(l )Tx
1
2xTC1x�b1

...
1
2xTCmx�bm

3

7775

where A(l ) := C0 +Âl llCl and

J(y) :=

"
∂ 2L
∂x2

∂ 2L
∂l∂x

∂ 2L
∂x∂l

∂ 2L
∂l 2

#
=

2

6664

A(l )T CT

1 x · · · CT
mx

xTC1
... 0

xTCm

3

7775

Nonlinear program with inequality constraint. Consider the following problem with an inequality
constraint

min
x2Rn

f (x) s.t. g(x)  0 (11.79)

where f : Rn!R and g : Rn!R
m are twice continuously differentiable. Let l 2Rm denote the Lagrange

multiplier associated with the m constraints. The KKT condition involves inequalities, of the form

—x L(x,l ) = —x f (x) +
∂g
∂x

(x)Tl = 0, —l L(x,l ) = g(x)  0

l � 0, lTg(x) = 0

The standard Newton-Raphson method cannot be applied directly to solve this system of equalities and
inequalities. There are however many Newton-like methods that have been developed for inequality con-
strained problems.

One approach is to introduce a slack variable z2Rm and convert (11.79) into a problem with a ‘simple’
inequality constraint:

min
(x,z)2Rn+m

f (x) s.t. g(x)+ z = 0, z � 0
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Algorithms for solving equality constrained problems can be modified by projecting z(t) to the nonnegative
quadrant in each iteration; see e.g. [102]. Another approach is to replace the constraint g(x)  0 in
(11.79) by a penalty term (1/t)f(x) in the cost function and solve the resulting unconstrained approximate
problem

min
x2Rn

f (x) +
1
t

f(x)

where t > 0 is a parameter that controls the accuracy of the approximation. Newton-Raphson can be
applied to solve the optimality condition — f (x) + (1/t)—f(x) = 0. This is the approach of the interior
point methods which we describe next.

11.5.3 Interior-point algorithm

Consider the following problem with an equality and an inequality constraints:

min
x2Rn

f0(x) s.t. f (x)  0, g(x) = 0 (11.80)

where f0 : Rn! R, f : Rn! R
m, and g : Rn! R

p are twice continuously differentiable. The idea is to
approximate (11.80) by an equality constrained problem by replacing the inequality constraint f (x)  0
by a penalty term in the cost function, and then solving the equality constrained problem using Newton
methods.

Log barrier function. A popular barrier function is j : R� ! R defined by:

jt(u) := �1
t

log(�u), u < 0

where t > 0 is a parameter. For each t > 0, the function jt(u) is convex increasing over its domain u < 0
and approaches • as u! 0. It is an approximation of the indicator function which takes the value 0 if
u  0 and • if u > 0. The larger the parameter t is, the more accurate the approximation will be. While
the indicator function is discontinuous, the log barrier function jt(u) is continuously differentiable over
its domain u < 0 for each t > 0.

The logarithmic barrier f : Rn! R is

f(x) := �
m

Â
i=1

log(� fi(x)) (11.81a)

over the domain

domf := {x 2 R
n : fi(x) < 0, i = 1, . . . ,m}

The log barrier f(x) grows without bound as fi(x)! 0 for any i. Its gradient and Hessian are (Exercise
??):

—f(x) =
m

Â
i=1

1
� fi(x)

— fi(x) (11.81b)

∂ 2f
∂x2 (x) = Â

i

1
f 2
i (x)

— fi(x)— fTi (x) + Â
i

1
� fi(x)

∂ 2 fi

∂x2 (x) (11.81c)
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The approximate problem. Fix any t > 0. An approximate problem to (11.80) with an equality con-
straint is

min
x2Rn

f0(x) +
1
t

f(x) s.t. g(x) = 0

It is more convenient to consider the following equivalent approximate problem (they have the same min-
imizers):

Problem(t) : min
x2Rn

t f0(x) + f(x) s.t. g(x) = 0 (11.82)

Unlike (11.80) the problem (11.82) has only equality constraints and therefore can be solved using the
Newton-Raphson algorithm defined by (11.72)(11.78). If f0 is convex and g is linear then (11.82) is a
convex problem. In that case, if the Newton-Raphson algorithm converges to a solution (x(t),l (t)), then
the solution satisfies the KKT condition and is therefore primal and dual optimal, i.e., x(t) solves (11.82)
and l (t) solves its dual. Otherwise, (11.82) is nonconvex and there is generally no guarantee that the
Newton-Raphson algorithm will converge. If it does converge, it will produce a feasible solution but there
is no guarantee that it is a local or global optimum. In practice, for OPF problems, the algorithm often
converges to a local, and even global, optimum despite nonconvexity.

A popular interior point method, called the barrier method, is based on solving a sequence of the ap-
proximate problems (11.82) with increasing t until the approximation is sufficiently accurate. To describe
it we first explain how to estimate the gap between the optimal value of the original problem (11.80) and
the objective value of a solution of its approximation (11.82).

Suboptimality gap. The theory of the barrier method is most complete for convex problems. For sim-
plicity, we make the following assumptions:

C13.1: The original problem (11.80) is convex, i.e., f0, f1, . . . , fm are convex functions and g(x) =
Ax�b for some A 2 R

p⇥n and b 2 R
p.

C13.2: For every t > 0 the approximate problem (11.82) has a unique primal solution x(t) and the
Newton-Raphson algorithm converges to x(t).

We call the optimal solution x(t) of (11.82) a central point and the set {x(t) : t > 0} of central points the
central path. The assumption of unique x(t) for each t > 0 means that there is a unique central path. In
this case the barrier method will use the Newton-Raphson algorithm to follow this unique path, as we will
see.

Let f ⇤0 denote the optimal value of the original problem (11.80). The next result shows that a central
point x(t) is a feasible solution of (11.80) with a suboptimality gap that is strictly decreasing in t > 0. A
certificate for the suboptimality gap is provided by a dual feasible solution for (11.80) associated with a
central point x(t).

Theorem 11.28 (Central point x(t)). Under assumptions C13.1 and C13.2, for each t > 0:

1. The central point x(t) is feasible for the original problem (11.80).



Draft: EE 135 Notes April 30, 2024 501

2. Its objective value is at most m/t away from the optimal value f ⇤0 , i.e.,

f0(x(t)) � f ⇤0 
m
t

In particular f0(x(t))! f ⇤0 as t! •.

Proof. Since (11.82) is convex by assumption, the optimality of x(t) means there exists an optimal dual
variable l̂ (t) 2 R

p such that
⇣

x(t), l̂ (t)
⌘

satisfies the KKT condition for (11.82):

t— f0 (x(t))+—f (x(t))+
∂gT

∂x
(x(t)) l̂ (t) = 0, g(x(t)) = Ax(t)�b = 0 (11.83a)

This follows from Theorem 17.26 in Appendix 17.7. Because of the log barrier f we must have fi(x(t)) <
0 for all i = 1, . . . ,m. This means that x(t) is also (strictly) feasible for the original problem (11.80), i.e.,
x(t) satisfies

f (x(t)) < 0, g(x(t)) = Ax(t)�b = 0 (11.83b)

We now use (11.83) to estimate the suboptimality gap of x(t). Define the Lagrangian of the original
problem (11.80)

L(x,µ,l ) := f0(x)+ µT f (x)+lTg(x)

where the dual variables are µ 2 R
m
+, l 2 R

p. Let the dual function be

d(µ,l ) := min
x2Rn

L(x,µ,l )

Define

µi(t) :=
1

�t fi(x(t))
, li(t) :=

l̂i(t)
t

and let µ(t) := (µi(t), i = 1, . . . ,m), l (t) := (li(t), i = 1, . . . , p). Since fi(x(t)) < 0, we have µi(t) > 0 and
hence (µ(t),l (t)) is dual feasible for (11.80). Dividing by t the first condition in (11.83a) and substituting
(11.81b) we have

—x L(x,µ(t),l (t)) = — f0 (x(t))+
m

Â
i=1

µi(t)— fi(x(t))+
∂gT

∂x
(x(t))l (t) = 0

which implies that x(t) minimizes L(x,µ(t),l (t)) over x. Hence the dual function evaluated at (µ(t),l (t))
is

d(µ(t),l (t)) = L(x(t),µ(t),l (t)) = f0(x(t))+ µT(t) f (x(t))+lT(t)g(x(t))

But g(x(t)) = 0 from (11.83a) and d(µ(t),l (t)) f ⇤0 from weak duality for (11.80). Hence

f0(x(t)) � f ⇤0  �
m

Â
i=1

µi(t) fi(x(t)) =
m
t

as desired.
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The barrier method. Theorem 11.28 says that, when (11.80) is convex, the central point x(t) computed
by the Newton-Raphson algorithm is feasible for the original problem (11.80) and its objective value
f0(x(t)) is at most m/t away from the optimal value f ⇤0 . This motivates the barrier method, also known as
the path-following method, that solves Problem(t) in (11.82) to compute a central point x(t), sequentially
for increasing t > 0.

Specifically the barrier method solves a sequence of the approximate problems (11.82) with increasing
t > 0, using the solution of the previous problem as the initial point for the current problem, as follows. Fix
a parameter g > 1 and solve Problem(t) in (11.82) with parameter t using the Newton-Raphson algorithm.
Geometrically increase the parameter t by multiplying it by g > 1 and solve (11.82) again starting from
the solution of the previous problem. Repeat until t is sufficiently large so that the solution produced by
Newton-Raphson is an accurate enough solution to the original problem (11.80). This method is described
more precisely as Algorithm 3. Even though optimality of the barrier method is guaranteed only when

Algorithm 3: Barrier method
Input: strictly feasible x, initial t := t0, scaling factor g > 1, tolerance e .
Output: an approximate solution x for (11.80).

1. while t  m
e do

(a) Solve Problem(t) in (11.82) to compute x(t) using the Newton-Raphson algorithm starting
from x.

(b) x x(t).

(c) t gt.

2. Return: x.

the problem is convex and the Newton-Raphson converges for each t > 0 (assumptions C13.1 and C13.2),
the method is also widely applied to problems that do not satisfy these conditions.

In principle one can solve Problem(t) in (11.82) with parameter t := m/e instead of solving a sequence
of (11.82) with increasing t as in Algorithm 3. In practice this method does not work well unless the
problem is small, the required accuracy e is moderate and a good starting point is available. Therefore the
barrier method is usually preferred.

Strictly feasible initial point. Algorithm 3 requires an initial point x that is strictly feasible for the
original problem (11.80), i.e. x satisfies

f (x) < 0, g(x) = 0

There are various methods to produce a strictly feasible point and we explain a simplest one (see [101,
Chapter 11.4] for others). When necessary, such a method can be used to compute a strictly feasible x
before the barrier method is executed. Starting from such an initial point, all subsequent iterates, across
Problem(t) for different t, will remain strictly feasible because of the log barrier f .
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Consider the feasibility problem

inf
(x,s)2Rn+1

s s.t. fi(x)  s, i = 1, . . . ,m, g(x) = 0 (11.84)

where s2Rn, and as before, f :Rn!R
m, and g :Rn!R

p are twice continuously differentiable. Suppose
we are given an initial x0 such that g(x0) = 0 and x0 2 dom( f1)\ · · ·\ dom( fm), i.e., fi(x0) < •, i =
1, . . . ,m. Then (11.84) is feasible because (x0,s0) is a feasible point with s0 := maxm

i=1 fi(x0). Note that
the feasible set is closed but not necessarily bounded and hence an optimal point of (11.84) may not exist
or the infimum may not be attained by any x.

A strictly feasible point x for (11.80) exists if and only if the optimal value sopt of (11.84) is strictly neg-
ative (can be �•). Indeed solving (11.84) either produces such an x or proves that none exists, according
to the sign of sopt (Exercise 11.27):

1. sopt < 0: An x exists that is strictly feasible for (11.80) (hence the minimum sopt of (11.84) is
attained).

2. sopt > 0: The problem (11.80) is infeasible, whether or not the minimum sopt of (11.84) is attained.

3. sopt = 0: If the minimum sopt = 0 is attained at an (xopt,sopt) then (11.80) is feasible but not strictly
feasible. Otherwise (i.e., there is no finite xopt that attains sopt = 0) then (11.80) is infeasible. In both
cases, Algorithm 3 is not applicable as a strictly feasible x does not exist.

Application to OPF.

11.5.4 Mixed integer linear program / branch and bound methods

LP relaxation.

Dual relaxation.

Branch and bound.

11.5.5 Benders decomposition

11.6 Convergence analysis

Consider the problem (11.69), reproduced here:

min
x

f (x) subject to x 2 X (11.85)

where f : Rn!R is continuously differentiable and X ✓R
n is nonempty, closed and convex. We assume:
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C11.3: The objective function f is lower bounded on X , continuously differentiable and convex.
The feasible set X is nonempty, closed and convex.

C11.3 guarantees that (11.85) is feasible and the gradient based algorithms, such as (11.71), are well
defined.

11.6.1 Convergence theorems

In this subsection we prove some basic results that are widely used for convergence analysis of constrained
optimization.

Since the feasible set X in (11.85) is not necessarily compact (bounded), the optimal may not be
attained (e.g., X =R and f (x) = e�x). Moreover the sequence (x(t), t = 0,1, . . .) generated by the gradient
projection algorithm (11.71) may not stay bounded and hence may not have any convergent subsequence
(the Bolzano-Weierstrass theorem states that a sequence (x(t), t = 0,1, . . .) has a convergent subsequence
if it is bounded). To guarantee that the gradient projection algorithm makes progress towards minimizing
f , we need:

C11.4: The gradient of f is Lipschitz continuous with a Lipschitz constant K, i.e.,

k— f (y)�— f (x)k2  K ky� xk2 8x,y 2 R
n

Note that the norm is Euclidean.8 C11.4 implies the following useful result which will be used in Theorem
11.32 to prove the optimality of gradient projection algorithm (11.71).

Lemma 11.29 (Descent Lemma.). If f : Rn! R is continuously differentiable and satisfies C11.4 then

f (x+ y)  f (x)+ yT— f (x)+
K
2
kyk2

2 8x,y 2 R
n

Proof. We estimate the difference f (x + y)� f (x) by considering the scalar function g(s) defined by the
intersection of the f (x) surface with the vertical plane at x in the direction y. Fix any x,y 2 R

n and define

g(s) := f (x+ sy) for s 2 [0,1]

Then

f (x+ y)� f (x) = g(1)�g(0) =
Z 1

0
g0(s)ds

Using

g0(s) = yT—f (x+ sy)

8In contrast, the norm that defines a contraction mapping can be arbitrary (see Definition 11.9 below).
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we have

f (x+ y)� f (x) =
Z 1

0
yT—f (x+ sy)ds

=
Z 1

0

⇣
yT—f (x) + yT (—f (x+ sy)�—f (x))

⌘
ds

 yT—f (x) +
Z 1

0
kyk2 k—f (x+ sy)�—f (x)k2 ds

 yT—f (x) + kyk2

Z 1

0
K ksyk2 ds

= yT—f (x) +
K
2
kyk2

2

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows
from condition C11.4.

When f satisfies a stronger form of convexity then the gradient projection algorithm indeed converges
and does so geometrically. This is because the stronger form of convexity (condition C11.5 below) implies
that the gradient projection algorithm is a contraction mapping, as we now explain.

Definition 11.9 (Contraction). Consider a function T : X! X from a subset X of Rn into itself. T is called
a contraction mapping or simply a contraction if there exists an a 2 [0,1) such that

kT (y)�T (x)k  aky� xk 8x,y 2 X

for an arbitrary norm k ·k.

A function T can be a contraction under a certain norm, but not under a different norm, so the proper
choice of norm is critical.

Theorem 11.30 (Contraction mapping theorem). Suppose T : X! X is a contraction mapping on a closed
subset X of Rn. Then

1. There exists a unique fixed point x⇤ such that x⇤ = T (x⇤).

2. Starting from any initial point x(0) 2 X , the contraction iteration x(t + 1) := T (x(t)) converges
geometrically to x⇤; in particular

kx(t)� x⇤k  aT kx(0)� x⇤k 8t � 0

Proof. Consider the contraction iteration x(t +1) := T (x(t)). Definition 11.9 implies

kx(t +1)� x(t)k  a kx(t)� x(t�1)k  · · ·  aT kx(1)� x(0)k
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Hence, for all t � 0 and s� 1, we have

kx(t + s)� x(t)k =

�����

s�1

Â
m=0

(x(t +m+1)� x(t +m))

�����


s�1

Â
m=0
kx(t +m+1)� x(t +m)k  kx(1)� x(0)kaT

s�1

Â
m=0

am

 aT

1�a
kx(1)� x(0)k

Since a 2 [0,1), x(t) is a Cauchy sequence and hence must converge to a point x⇤ in R
n. Since X is closed,

x⇤ 2 X . Since T is continuous,

x⇤ = lim
t

x(t +1) = lim
t

T (x(t)) = T (lim
t

x(t)) = T (x⇤)

and hence x⇤ is a fixed point of T . Moreover, the fixed point is unique for, otherwise, if x⇤ and y⇤ are both
fixed points then

ky⇤ � x⇤k = kT (y⇤)�T (x⇤)k  a ky⇤ � x⇤k

implying y⇤ = x⇤ since a 2 [0,1). This completes the proof of part 1.

For part 2, we have for all t � 1,

kx(t)� x⇤k = kT (x(t�1))�T (x⇤)k  a kx(t�1)� x⇤k

Hence kx(t)� x⇤k  aT kx(0)� x⇤k.

Suppose the cost function f is twice continuously differentiable (not just continuously differentiable
as guaranteed by condition C11.3). Then f is strictly convex if —2 f (x)� 0 for all x according to Corollary
11.5. The curvature of a strictly convex function may be arbitrarily flat, i.e., yT—2 f (x)y > 0 can be
arbitrarily close to zero. A stronger form of convexity bounds this away from zero uniformly in x, i.e., for
some a > 0, —2 f (x)⌫ aI for all x 2 R

n. Consider:

C11.5: For some a > 0, f satisfies

(— f (y)�— f (x))T (y� x) � a ky� xk2
2 8x,y 2 R

n (11.86)

We say f is strongly convex if it satisfies condition C11.5. The next result shows that it is stronger than
strict convexity.

Lemma 11.31 (Strong convexity). Let f : Rn ! R
n be continuously differentiable. If f satisfies C11.5

then f is strictly convex. Indeed (11.86) is equivalent to —2 f (x) ⌫ aI for all x 2 R
n when f is twice

continuously differentiable.
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Proof. We first use Corollary 11.5.2 to prove that if f satisfies C11.5 then f is strictly convex. As in the
proof of Lemma 11.29, fix any x,y 2 R

n and consider the (scalar) function along the path from x to y:

g(s) := f (x+ sy) for s 2 [0,1]

Then

f (x+ y)� f (x) =
Z 1

0
g0(s)ds =

Z 1

0
yT—f (x+ sy)ds

=
Z 1

0

⇣
yT—f (x) + yT (—f (x+ sy)�—f (x))

⌘
ds

� yT—f (x) +
Z 1

0

1
s

a ksyk2
2 ds

= yT—f (x) +
a
2
kyk2

2

where the inequality follows from C11.5 . Since a > 0, Corollary 11.5.2 implies the strict convexity of f .

We now show that if —2f (x)⌫ aI for all x 2 R
n then f is strongly convex, i.e., f satisfies C11.5. Fix

any x,y and let

h(s) := —f (x+ s(y� x))T(y� x)

Then

h0(s) = (y� x)T—2f (x+ s(y� x))(y� x)

and

(—f (y)�— f (x))T (y� x) = h(1)�h(0) =
Z 1

0
h0(s)ds

=
Z 1

0
(y� x)T—2f (x+ s(y� x))(y� x) ds

� a ky� xk2
2

where the inequality follows from —2f (x)⌫ aI. Hence f (x) is strongly convex.

Conversely suppose f is strongly convex. To estimate —2f (x) we have for any x,y 2 R
n

yT—2f (x)y = lim
l!0

1
l

✓
∂ f
∂x

(x+ly)� ∂ f
∂x

(x)
◆

y

� lim
l!0

1
l 2

�
a klyk2

2
�

= a kyk2
2

where the inequality follows from the strong convexity of f . Hence —2f (x) ⌫ aI as desired. This com-
pletes the proof of Lemma 11.31.

If a function f satisfies both C11.4 (Lispschit continuity of — f with parameter K) and C11.5 (strong
convexity of f with parameter a) then the proof of Lemma 11.31 and that of Lemma 11.29 show that

yT—f (x)+
a
2
kyk2

2  f (x+ y)� f (x)  yT—f (x)+
K
2
kyk2

2

A consequence is that the gradient projection algorithm (11.71) is a contraction mapping and therefore
converges geometrically to the unique optimal point, as we explain next.
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11.6.2 Steepest descent algorithm

Conditions C11.3 and C11.4 do not guarantee that the sequence (x(t), t = 0,1, . . .) generated by the gra-
dient projection algorithm has any convergent subsequence, but if it does then it converges to an optimal
point x⇤ of (11.85) provided the stepsize g is sufficiently small. This implies that, when f is strictly convex
so that the optimal point x⇤ is unique, then (x(t), t = 0,1, . . .) itself converges to x⇤.

Theorem 11.32 (Optimality of gradient projection algorithm). Suppose conditions C11.3 and C11.4 hold,
and suppose 0 < g < 2/K. If the sequence (x(t), t = 0,1, . . .) produced by the gradient projection algorithm
(11.71) has a convergent subsequence (x(tk),k = 1,2, . . .) then its limit x⇤ is an optimal solution of (11.85).

Proof. We prove the theorem in three steps. First we show the sequence ( f (x(t)), t = 0,1, . . .) of objective
values produced by the gradient projection algorithm (11.71) converges monotonically. Moreover the
difference sequence (x(t + 1)� x(t), t = 0,1, . . .) converges to zero. Specifically, by the Descent Lemma
11.29, we have

f (x(t +1))  f (x(t)) + (x(t +1)� x(t))T— f (x(t)) +
K
2
kx(t +1)� x(t)k2

2 (11.87)

Theorem 11.7.2 implies that for all t

(y� x(t +1))T ( x(t)� g— f (x(t)) � x(t +1) )  0 8y 2 X (11.88)

In particular let y = x(t) and we have, after rearranging,

(x(t +1)� x(t))T— f (x(t))  �1
g
kx(t +1)� x(t)k2

2

Substituting into (11.87) we have

f (x(t +1))  f (x(t)) �
✓

1
g
� K

2

◆
kx(t +1)� x(t)k2

2 (11.89)

Hence the sequence ( f (x(t)), t = 0,1, . . .) is strictly decreasing as long as x(t +1) 6= x(t) provided g < 2/K.
Since f is lower bounded on X (condition C11.3), the sequence ( f (x(t)), t = 0,1, . . .) is bounded and
monotone and thus converges. Rearranging (11.89), we also have

kx(t +1)� x(t)k2
2 

✓
1
g
� K

2

◆�1
( f (x(t))� f (x(t +1)))

Since f (x(t)) converges this means that the differences x(t + 1)� x(t) converge to zero (though this does
not guarantee that x(t) itself converges).

Second suppose there is a subsequence (x(tk),k = 1,2, . . .) that converges to x⇤. Consider the sequence
(x(tk +1),k = 1,2, . . .). By Theorem 11.7.3, the iteration x(t +1) = [x(t)�g— f (x(t))]X defined by (11.71)
is a projection and hence a continuous function of x(t). Hence the sequence (x(tk +1),k = 1,2, . . .), being
the image of a continuous function on x(tk), also converges. We now show that it converges to x⇤ as k!•.
Fix any e > 0. We have to show that there exists an K such that

kx(tk +1)� x⇤k2 < e 8k > K
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Since x(tk)! x⇤ there exists an K0 such that

kx(tk)� x⇤k2 <
e
2

8k > K0 (11.90a)

Step 1 above shows that x(tk +1)� x(tk) converges to zero and hence there exists K00 such that

kx(tk +1)� x(tk)k2 <
e
2

8k > K00 (11.90b)

Combining (11.90) we have for k > K := max{K0,K00}

kx(tk +1)� x⇤k2  kx(tk +1)� x(tk)k2 + kx(tk)� x⇤k2 < e

as desired.

Finally note that (11.88) holds for all t. In particular consider t = tk,k = 1,2, . . . . Taking k ! •,
(11.88) yields

✓
y� lim

k
x(tk +1)

◆T✓
lim

k
x(tk) � g lim

k
— f (x(tk)) � lim

k
x(tk +1)

◆
 0, 8y 2 X

Since f is continuously differentiable and limk x(tk) = limk x(tk +1) = x⇤, we have

g (y� x⇤ )T — f (x⇤) � 0 8y 2 X

Hence x⇤ satisfies the optimality condition (11.70) and is globally optimal since f is a convex function
over a convex set X .

As mentioned above, if the objective function f satisfies both C11.4 (Lispschit continuity of — f with
parameter K) and C11.5 (strong convexity of f with parameter a) then the mapping defined by the gradi-
ent projection algorithm (11.71) is a contraction. Theorem 11.30 then implies that the gradient projection
algorithm converges geometrically to the unique optimal solution of (11.85). In particular condition C11.4
guarantees strict descent for sufficiently small stepsize g > 0 and condition C11.5 guarantees geometric
convergence. The bound 2/K on the stepsize g in Theorem 11.32 depends only on the first-order informa-
tion (the Lipschitz constant K of the gradient — f ). The bound 2a/K2 on the stepsize g in Theorem 11.33
depends also on the second-order information a , the strength of the convexity of f .

Theorem 11.33 (Convergence rate of gradient projection algorithm). Suppose conditions C11.3–C11.5
hold. Then there is a unique optimal solution x⇤ for (11.85) and the gradient projection algorithm (11.71)
converges geometrically to x⇤, provided the stepsize g satisfies:

if a < K : 0 < g <
2a
K2

if a � K : 0 < g <
a
K2 �d or

a
K2 +d < g <

2a
K2

where d :=
p

a2�K2/K2. Then

kx(t)� x⇤k  bT kx(0)� x⇤k 8t � 0

where b :=
p

K2g2�2ag +1 2 (0,1).
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Proof. The gradient project algorithm (11.71) is the iteration x(t +1) = T (x(t)) where T : X!X is defined
by T (x) := [x� g — f (x) ]X . We will show that T is a contraction under conditions C11.4 and C11.5. Then
the assertions follow from Theorem 11.30.

We have under the Euclidean norm

kT (y)�T (x)k2
2 = k [y� g — f (y)]X � [x� g — f (x)]X k2

2

 k(y� x)� g (— f (y)�— f (x))k2
2

= ky� xk2
2 � 2g (— f (y)�— f (x))T(y� x) + g2k— f (y)�— f (x))k2

2

where the inequality above follows from the fact that the projection operation is nonexpansive (Theorem
11.7.3). Conditions C11.5 and C11.4 guarantee that (— f (y)�— f (x))T(y� x)� aky� xk2

2 and k— f (y)�
— f (x))k2

2  K2ky� xk2
2 respectively. Hence

kT (y)�T (x)k2
2 

�
1�2ag + g2K2�ky� xk2

2

Hence T is a contraction if and only if b 2(g) := 1�2ag + g2K2 2 [0,1). The function b 2(g) is shown
in Figure 11.18. Hence the condition on the stepsize g in the theorem guarantees T is a contraction with

γ

1

2α
K 2

α
K 2

β 2 (γ )

γ

(a) a < K

γ

1

2α
K 2

α
K 2

γγ

β 2 (γ )

(b) a � K

Figure 11.18: Proof of Theorem 11.33. The function b 2(g). (a) If a < K then T is a contraction for any
stepsize g 2 (0,2a/K2). (b) If a � K then T is a contraction if g 2 (0,a/K2� d) or if g 2 (a/K2 +
d,2a/K2) where d :=

p
a2�K2/K2.

parameter b (g) 2 (0,1). Theorem 11.30 then implies that x(t) converges geometrically to x⇤. Theorem
11.32 then guarantees that the unique limit point x⇤ is the optimal solution of (11.85).
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11.6.3 Newton-Raphson algorithm

11.6.4 Interior-point algorithm

11.7 Bibliographical notes

11.8 Problems

Chapter 11.1.

Exercise 11.1 (Convex sets). Prove that the following sets are convex:

1. Affine set: C = {x 2 R
n | Ax = b} where A 2 R

m⇥n and b 2 R
m, m,n� 1.

2. Second-order cone: C = {(x, t) 2 R
n+1 | kxk2  t}, n � 1. Here kxk2 :=

q
x2

1 + x2
2 + · · ·+ x2

n is the
Euclidean norm.

3. Semidefinite matrices: C = {A 2 Sn⇥n | A⌫ 0}, n� 1. where Sn⇥n is the set of symmetric n⇥n real
matrices and A⌫ 0 means xTAx� 0 for any x 2 R

n. Such a matrix is called positive semidefinite.

Exercise 11.2 (Operations preserving set convexity). Operations that preserve convexity are of fundamen-
tal importance to the convex optimization theory. Let X and Y be linear subspaces. For example X := R

n

and Y := R
m.

1. Linear transformation: Let f : X! Y be linear. Prove:

(a) If A✓ X is convex then f (A) := { f (x) | x 2 A} is convex.

(b) If B✓ Y is convex then f�1(B) = {x 2 R
n | f (x) 2 B} is convex.

2. Arbitrary direct product: Let A✓ X, B✓ Y be convex.

(a) Prove that the product space

X⇥Y := {(x,y) | x 2 X, y 2 Y}

with + and · defined by

(x1,y1)+(x2,y2) := (x1 + x2,y1 + y2) 8(x1,y1), (x2,y2) 2 X⇥Y;
l (x,y) := (lx,ly) 8l 2 R, 8(x,y) 2 X⇥Y

is also a linear space. For example, if X = R
m and Y = R

n for some m,n � 1, then X⇥Y =
R

m+n.
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(b) Prove that the direct product

A⇥B := {(x,y) | x 2 A,y 2 B}

is convex. In fact the direct product of an arbitrary number of convex sets is convex.

3. Finite sum: Let A,B✓ X be convex. Prove that the set

A+B := {a+b | a 2 A,b 2 B}

is convex. Therefore the sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let A,B ✓ X be convex. Prove that the intersection A\B is convex. In fact
the intersection of an arbitrary collection of convex sets is convex.

5. Union can be nonconvex. Let A,B ✓ X be convex. Give an example where the union A[ B is
nonconvex. [Hint: Consider X = R].

Exercise 11.3 (Carathéodory theorem). Prove Theorem 11.1.

Exercise 11.4 (Second-order cone). Show that the second-order cone

K :=
⇢

(x, t) 2 R
n+1 :

q
x2

1 + · · ·+ x2
n  t

�

is equivalent to K := {(x, t) 2R
n+1 : kxk2

2  t2, t � 0} or the intersection K = K̃\H where K̃ := {(x, t) 2
R

n+1 : kxk2
2  t2} and H := {(x, t) : t � 0} is a halfspace. Show that while K is a convex cone, K̃ is a cone

but nonconvex. In particular show that h1(x, t) := kxk2� t is a convex function while h2(x, t) := kxk2
2� t2

is nonconvex.

Exercise 11.5 (Rotated second-order cone). Show that the rotated second-order cone

Kr :=
�
(x,y,z) 2 R

n+2 : kxk2
2  yz, y� 0, z� 0

 

is a linear transformation of the standard second-order cone

K :=
�
(w, t) 2 R

n+2 : kxk  t
 

i.e., (w, t) = A(x,y,z) 2 K ✓ R
n+2 if and only if (x,y,z) 2 Kr for a (n+2)⇥ (n+2) nonsingular matrix A.

Derive A and its inverse.
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Exercise 11.6 (SOC constraint). Consider the second-order cone in Exercise 11.4:

K :=
⇢

(x, t) 2 R
n+1 :

q
x2

1 + · · ·+ x2
n  t

�

and the set defined in terms of K:

C := {x : (Ax+b,cTx+d) 2 K} = {x : kAx+bk2  cTx+d} ✓ R
m

where A 2 R
n⇥m, b 2 R

n, c 2 R
m, and d 2 R. Since C is the pre-image of an affine function on K, it is

convex.

1. Verify directly the convexity of C using the definition of convex sets.

2. Write C = C̃\H where C̃ := {x : kAx+bk2
2  (cTx+d)2} and H := {x : cTx+d � 0} is a halfspace.

Give an example where C̃ is not convex and illustrate how the intersection with H yields a convex
set.

Exercise 11.7 (Directional derivatives and differentiability). 1. Show that f (x,y) := xayb has partial
derivatives at 0 if a,b > 0 and a+b < 1, but not directional derivative along the line x = y

2. Show that

f (x,y) :=

(
xaya

x2a+y2a if (x,y) 6= (0,0)

0 if (x,y) = (0,0)

is not continuous, and hence not differentiable, at the origin.

Exercise 11.8 (Convex functions). Prove that the following functions are convex:

1. Exponential: f (x) := eax where a,x 2 R.

2. Entropy: f (x) := x lnx defined on R++ := (0,•).

3. Log-exponential: f (x1,x2) := ln(ex1 + ex2), xi 2 R.

Exercise 11.9 (Convex functions). [101, Exercise 3.6]

For each of the following functions determine if it is convex, concave, or neither.

• f (x) = ex�1 on R.

• f (x) = x1x2 on
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

.
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• f (x) = 1
x1x2

on
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

.

• f (x) = x1/x2 on
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

.

Exercise 11.10 (Strict convexity). Prove Corollary 11.5.

Exercise 11.11 (Operations preserving function convexity). Prove that addition, multiplication by non-
negative constants, and supremum operations preserve convexity. Specifically suppose f1 and f2 are two
convex functions on the same domain. Prove that:

1. f := a f1 +b f2, a,b � 0, is convex.

2. f := max{ f1, f2} is convex.

3. f (x,y) := |x|+ |y| defined on R
2 is convex. [Hint: use result in 2.]

Exercise 11.12 (Level set and convex problem). 1. Level set. Let f : C!R where C✓R
n. Prove that

the level set {x 2C | f (x)  a} is convex for any a 2 R provided that C is a convex set and f is a
convex function.

2. Convex problem. Consider

min
x

f (x) s.t. Ax = b, gi(x) 0, i = 1, . . . ,k

where A 2 R
m⇥n, b 2 R

m, k � 1, and f , g1, . . . ,gk are scalar functions defined on R
n. Prove that if

f ,g1,g2, . . . ,gk are convex then the feasible set

X := {x 2 R
n | Ax = b, gi(x) 0, i = 1, . . . ,k}

is convex.

Chapter 11.2.

Exercise 11.13.
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Chapter 11.3

Exercise 11.14 (Equivalent property of saddle point). Consider the primal problem (11.22) and its dual
(11.23) with primal feasible set X := {x 2 R

n : g(x) = 0,h(x)  0} and dual feasible set Y := {(l ,µ) 2
R

m+l : µ � 0}. Show that (x⇤,l ⇤,µ⇤) 2 R
n⇥Y is a saddle point, i.e.,

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2Rn

L(x,l ⇤,µ⇤)

if and only if

L(x⇤,l ⇤,µ⇤) = min
x2Rn

L(x,l ⇤,µ⇤), x⇤ 2 X , µ⇤Th(x⇤) = 0

Exercise 11.15 (Slater theorem). For the following problem, check that the conditions in the Slater Theo-
rem 11.15 are satisfied and derive the primal-dual optimal solution (x⇤,l ⇤):

f ⇤ := inf
x2R

f (x) := e�x s.t. x = 0

Exercise 11.16 (LICQ implies MFCQ). Suppose x⇤ is a local optimal of the constrained optimization
problem (11.22). Let Ȳ (x⇤) be the set of Lagrange multipliers associated with x⇤:

Ȳ (x⇤) :=
⇢

(l ,µ) 2 R
m+l :

∂L
∂x

(x⇤,l ,µ) = 0, g(x⇤) = 0, h(x⇤) 0, µ � 0, µTh(x⇤) = 0
�

Prove that the linear independence constraint qualification (11.39) implies the Mangasarian-Fromovitz
constraint qualification (11.38). (Hint: Use the Farkas Lemma 11.10.)

Exercise 11.17 (KKT condition). This problem derives the KKT condition for the constrained optimiza-
tion problem:

(P) : min
x2Rn

f (x) s.t. Ax = b, hi(x) 0, i = 1, . . . , l

where A 2 R
m⇥n, b 2 R

m, k � 1, and f , h1, . . . ,hl are scalar functions defined on R
n. Let µ 2 R

m,l 2
R

l
+ = [0,•)l , and define

L(x,l ,µ) := f (x)+lT(Ax�b)+ µTh(x)

where h(x) = (h1(x),h2(x), . . . ,hl(x))T.

1. Unconstrained optimization. Let d(l ,µ) := minx2Rn L(x,l ,µ) denote the unconstrained optimiza-
tion over x for fixed (l ,µ). Assume that Problem (P) has an optimal solution and denote it by x⇤.
Show that d(l ,µ) f (x⇤) for any l 2 R

m and µ 2 R
l
+.
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2. Dual problem. Consider the dual problem

(D) : max
(l ,µ)2Rm+l

d(l ,µ) s.t. µ � 0

Assume (D) has an optimal solution (l ⇤,µ⇤).

(a) Show that d(l ⇤,µ⇤)� f (x⇤)Âl
i=1 µ⇤i hi(x⇤) 0. It implies that Problem (D) provides a lower

bound for Problem (P). Note that this holds whether or not f ,h1, . . . ,hl are convex.

(b) Assume now f ,h1, . . . ,hl are convex and differentiable. Show that the equality is attained, i.e.,
d(l ⇤,µ⇤) = f (x⇤)+Âl

i=1 µ⇤i hi(x⇤), if and only if

—xL(x⇤,l ⇤,µ⇤) = 0

(c) Show that if there exists (x,l ,µ) such that x is feasible for (P), (l ,µ) is feasible for (D),
—xL(x,l ,µ) = 0, and µihi(x) = 0 for i = 1, . . . , l, then x solves (P) and (l ,µ) solves (D).
These are the KKT conditions.

The following problem studies Theorem 11.18 when the feasible set Xp depends on p. It shows that
the theorem generally no longer holds.

Exercise 11.18 (Saddlepoint envelope theorem). Consider the master problem:

min
x

f (x) := (x� p)2 s. t.
p
4
 x  p

2
(11.91)

for p 2 P := (0,2). Clearly the unique minimizer x⇤(p) = p/2. We study three ways to dualize the
constraints, resulting in different Lagrangian functions, feasible sets, and saddlepoints.

1. Dualize both constraints with dual variables y := (y1,y2)� 0 and the Lagrangian

L(x,y; p) := f (x) + y1

⇣ p
4
� x
⌘

+ y2

⇣
x� p

2

⌘

Exhibit that Theorem 11.18 holds.

2. Consider the form of (11.91)

min
x2Xp

f (x) := (x� p)2 s. t. x � p
4

(11.92)

with Xp := {x : x p/2}, and Lagrangian

L1(x,y1; p) := f (x) + y1

⇣ p
4
� x
⌘

Show that Theorem 11.18 does not hold because of the reason explained in Remark 11.7.
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3. Consider the following form of (11.91)

min
x2Xp

f (x) := (x� p)2 s. t. x  p
2

(11.93)

with Xp := {x : x� p/4}, and Lagrangian

L2(x,y2; p) := f (x) + y2

⇣
x� p

2

⌘

Show that Theorem 11.18 holds because x⇤(p) 2 Xq for all p,q 2 P.

Chapter 11.4.

Exercise 11.19 (Convex programs). Show how the different classes of convex problems in Figure 11.15
reduce to each other.

Exercise 11.20 (Unconstrained quadratic program). This exercise proves Theorem 11.22 step by step for
unconstrained convex QP:

f ⇤1 := min
x2Rn

f (x) := xTQx + 2cTx

where Q⌫ 0 and c 2 R
n.

1. Suppose Q � 0 is positive definite. Show that the unique minimizer x⇤ and the minimum value f ⇤1
are respectively

x⇤ = �Q�1c, f ⇤1 =�cTQ�1c

2. Suppose Q⌫ 0 but not positive definite. Let the spectral decomposition of Q be

Q = ULUT =
⇥
Ur Un�r

⇤Lr 0
0 0

�
UT

r
UT

n�r

�
= UrLrUT

r

Write Q = RTR where R := L1/2
r UT

r 2 R
r⇥n.

(a) Show that it is possible to complete the square, i.e., write

f (x) = xTRTRx+2cTx = kRx+ c̃k2
2�kc̃k2

2

if and only if c 2 range(Q). Determine c̃.
(b) Show that if c 2 range(Q) then the set of minimizers x⇤ and the minimum value f ⇤1 are respec-

tively

x⇤ = �Q†c + null(Q), f ⇤1 =�cTQ†c

where Q† := UrL�1
r UT

r is the pseudo-inverse of Q.
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(c) Show that if c 62 range(Q) then f ⇤1 = �•. (Hint: Transform to the coordinate defined by the
basis U .)

Exercise 11.21 (Constrained quadratic program). This exercise proves a slightly more general version of
Theorem 11.23 step by step for the affinely constrained convex QP:

f ⇤2 := min
x2Rn

f (x) := xTQx + 2cTx s.t. Ax = b, Bx+d � 0

where Q⌫ 0, c2Rn, A2Rm⇥n, b2Rm, B2Rk⇥n and d 2Rk. Here we replace the condition Q� 0 by the
weaker condition f ⇤2 >�• (which can be further replaced by a condition in terms of problem parameters).

1. Dual problem. Show that the Lagrangian dual problem is:

d⇤ := �cTQ†c � min
l2Rm,µ2Rk

+

✓⇥
lT µT

⇤
Q̂


l
µ

�
+ 2 ĉT


l
µ

�◆

where R
k
+ := {µ 2 R

k : µ � 0} and

Q̂ :=


A
B

�
Q† ⇥AT BT

⇤
, ĉ :=


�b
+d

�
�


A
B

�
Q†c (11.94)

2. Strong duality, dual optimality, KKT condition. Show that strong duality holds and dual optimality
is attained. Moreover a feasible x⇤ is optimal if and only if there exists (l ⇤,µ⇤) 2 R

m+k such that
µ⇤ � 0 and

ATl ⇤+BTµ⇤ �Qx⇤ = c, µ⇤T(Bx⇤+d) = 0

Exercise 11.22 (QCQP). Consider the convex quadratically constrained quadratic program (QCQP):

f ⇤ := min
x2Rn

f (x) := xTQ0x + 2cT0 x s.t. xTQ1x + 2cT1 x d

where Q0 � 0 is positive definite, Q1 ⌫ 0 is positive semidefinite, c0,c1 2 R
n and d 2 R.

1. Dual problem. Show that the Lagrangian dual problem is:

d⇤ := � min
µ2R+

dµ + (c0 + µc1)
T(Q0 + µQ1)

�1(c0 + µc1)

2. Strong duality, dual optimality, KKT condition. Suppose f ⇤ is finite and there exists x̄ such that
x̄TQ1x̄ + 2cT1 x̄ < d. Show that strong duality holds and dual optimality is attained. Moreover a
feasible x⇤ is optimal if and only if there exists µ⇤ 2 R such that µ⇤ � 0 and

(Q0 + µ⇤Q1)x⇤+(c0 + µ⇤c1) = 0, µ⇤(x⇤TQ1x⇤ + 2cT1 x⇤ �d) = 0
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Exercise 11.23 (SDP).

Exercise 11.24 (Equivalent representations: SOCP). Consider SOCP (11.58) and an alternative represen-
tation (11.67) of SOCP, reproduced here

f ⇤1 := min
x2Rn

f (x) s.t. Ax = b, kxn�1k2  xn (11.95a)

f ⇤2 := min
x2Rn

f (x) s.t. Ax = b, kxn�1k2
2  x2

n, xn � 0 (11.95b)

and suppose f (x) := fTx for some vector f 2 R
n. They are equivalent representations in the sense that

they have the same cost function and feasible set. In this exercise we show that, because the constraint
function h1(x) := kxn�1k2�xn in (11.95a) is nondifferentiable at x = 0 and the constraint function h2(x) :=
kxn�1k2

2� x2
n in (11.95b) is nonconvex, they may have very different duality and optimality properties.

Separate the first n�1 columns of A from the last column and the first n�1 entries of f �ATl from
the last:

A =:
⇥
An�1 an

⇤
, r :=


rn�1

rn

�
:=


f n�1� (An�1)Tl
fn�aTn l

�
:= f �ATl

1. Consider the SOCP (11.95a).

(a) Show that, if g(x) := akxk2�bTx, then

min
x2Rn

g(x) =

⇢
0 if kbk2  a
�• otherwise (11.96)

(b) Use (11.96) to show that the Lagrangian dual function is

d1(l ,µ) := min
x2Rn

L(x,l ,µ) =

⇢
lTb if krn�1k2  rn = µ
�• otherwise

and hence the dual problem is

d⇤1 := max
l2Rm

lTb s.t. k f n�1� (An�1)Tlk2  fn�aTn l (11.97)

2. Consider the SOCP (11.95b). Show that the Lagrangian dual function is

d2(l ,µ) := min
x2Rn

L(x,l ,µ) =

⇢
lTb if rn�1 = 0, rn = µ � 0, and µ1 = 0
�• otherwise

and hence the dual problem is

d⇤2 := max
l2Rm

lTb s.t. (An�1)Tl = f n�1, aTn l  fn

The dual problem reduces to a linear program whose feasible set is a subset (potentially a strict
subset) of that of (11.97).
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3. Strong duality and dual optimality. Consider the case where the constraint Ax = b is absent in
SOCP (11.95). Show that it is possible for strong duality to hold and dual optimality to be attained
for (11.95a) while f ⇤2 = 0 > �• = d⇤2, i.e., the duality is nonzero and dual problem infeasible for
(11.95b). (Hint: Consider problem instances where 0 6= k f n�1k2  fn.)

4. KKT condition at x⇤ = 0. Consider the case where the constraint Ax = b is absent in SOCP (11.95)
and suppose b = 0.

(a) The KKT condition at x⇤ = 0 for SOCP (11.95a) is f 2 K from Theorem 11.24. Show that
the KKT condition at x⇤ = 0 for the alternative representation (11.95b) is f = µ⇤2 en for some
µ⇤2 � 0.

(b) Show that there are problem instances where the condition f = µ⇤2 en for some µ⇤2 � 0 is suffi-
cient, but not necessary, for x⇤ = 0 to be optimal SOCP (11.95a).

(c) Show that for these problem instances, the condition f = µ⇤2 en for some µ⇤2 � 0 is not mean-
ingful for the alternative representation (11.95b) because the dual problem is infeasible (even
though the optimal primal value is finite).

Exercise 11.25 (Dual problem of SOCP). For the second-order constraint problem (11.61):

1. Derive the dual problem.

2. Show that the dual problem is

d⇤ := max
(l ,g)2Rm+k

bTl � d̃Tg s.t. ATl + B̃Tg = f , kgk�1k2  gk

when the cost function is linear fTx.

Chapter 11.5.

Exercise 11.26 (Linear equality constraint). Consider the quadratic program (11.74) over Dx(t), with a
given x(t), reproduced here:

min
Dx2Rn

f̂ (x(t)+Dx(t)) s.t. A(x(t)+Dx(t)) = b

where f̂ (x(t)+Dx(t)) := f (x(t))+
∂ f
∂x

(x(t))Dx(t)+
1
2

Dx(t)T
∂ 2 f
∂x2 (x(t))Dx(t)

Let l 2 R
m be the Lagrange multiplier associated with the linear constraint. Show that its KKT condition

is given by (11.75):
"

∂ 2 f
∂x2 (x(t)) AT

A 0

#
Dx(t)

l

�
= �


— f (x(t))
Ax(t)�b

�
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Exercise 11.27 (Interior-point method - strictly feasible point). Consider the following problem to com-
pute a strictly feasible point for (11.80):

min
(x,s)2Rn+1

s s.t. fi(x)  s, i = 1, . . . ,m, g(x) = 0 (11.98)

Assume (11.98) is feasible. Show that such a strictly feasible point exists if and only if the optimal value
sopt of (11.98) is strictly negative (possibly �•), whether or not the minimum of (11.98) is attained.

Chapter 11.6.



Chapter 12

Power system operations

The primary function of a power system is to deliver electricity reliably, and, subject to reliable operation,
economically. In Part III we study the mathematical problem of optimal power flow (OPF) that underlies
various power system operations. This chapter overviews main operational components and provides
context for OPF which will be studied in detail in subsequent chapters. In Part IV we study electricity
markets which is an integral part of network operation.

After a brief overview in Chapter 12.1 we describe three control mechanisms at different timescales
to balance power supply and demand. In Chapter 12.2 we explain the problem of unit commitment that
decides a day in advance which bulk generating units will be turn on the next day. In Chapter 12.3 we
explain the problem of optimal dispatch that decides every 5-15 minutes the generation levels of units
that are online. Both unit commitment and optimal dispatch are formulated as OPF problems. In Chapter
12.4 we explain frequency control that balances power on a second by second basis and regulates system
frequency tightly around its nominal value. Finally in Chapter 12.5 we explain security constrained OPF
that schedules responses to contingency events such as the outage of a generator, transmission line or
transformer.

12.1 Overview

12.1.1 Operation

Electricity has two important differences from most commodities such as rice and minerals. First there
is not yet large-scale energy storage in our power system so that inventory control as a means to match
supply and demand for most commodities is not applicable. Instead generation and load must be balanced
on a second-by-second basis at all points on the network. Second electricity cannot yet be routed from
generators to loads at will but must follow paths determined power flow equations. The nonlinearity of
power flow equations introduces computational challenges. These differences have strong implications on
how the network is operated and how markets are organized.

The central control problem is to balance supply and demand, continuously and everywhere, without

522
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violating operational constraints such as capacity limits of generators and loads, bounds on voltage magni-
tudes, and thermal and stability limits of transmission lines and transformers. Thermal generators such as
gas, coal and nuclear generators still generate the majority of electricity today. For example, in 2020, fos-
sil fuels generated 60.6% and nuclear generated 19.7% of all electricity in the US [116, Table 1.1]. They
are fully controllable and can produce a specified amount of electricity at a specified time and location.
Traditionally a power system operator forecasts demand, which is assumed inelastic, and schedules bulk
generators to meet the forecast demand. As we decarbonize our energy system by replacing fossil fuel
generators by wind and solar farms, our ability to control generation decreases and we must also exploit
flexibility in demand to match volatile supply. Difficulties arise from the variability and uncertainty of
undispatchable demand and supply, the need to match the speed of our control and the speed of distur-
bances, as well as random unscheduled outages of generators, loads, lines and transformers. Engineering
operation and market operation are tightly integrated in a power system. In this chapter we explain network
operation. Electricity markets will be studied in Part IV.

A transmission network is a high-voltage long-distance network that connects bulk power producers
to power consumers. These consumers are called load centers and represent aggregate loads such as
substations of a local utility company that feeds a city. The operation of a transmission network is typically
coordinated by an independent system operator that commits and dispatches generation units to meet
demand at timescales ranging from hours to minutes to seconds. Bulk generators such as gas, coal, and
nuclear generators need nontrivial amounts of time and cost to start up and shut down, e.g., the startup
time for a nuclear plant can be hours. This motivates a day-ahead market which usually closes 12–36
hours in advance of energy delivery and determines which generators will be online and their output
levels for each hour or half hour over a 24-hour horizon . This is the problem of unit commitment and
is discussed in Chapter 12.2. The commitment decisions are determined based on forecast of loads and
variable generations such as wind and solar power 12–36 hours in advance. A real-time market computes,
every 5–15 minutes in advance of energy delivery, adjustments to generation and consumption levels
relative to the schedules produced by the day-ahead market as uncertainty in consumption, generation,
and network state is resolved. This is the problem of economic dispatch and is discussed in Chapters 12.3.
Balancing on a second-by-second basis within a real-time dispatch interval takes the form of frequency
control and is discussed in Chapter 12.4.

12.1.2 Optimal power flow

The problems of day-ahead unit commitment and real-time economic dispatch can be formulated as a
constrained optimization of the form

min
u,x

c(u,x) s.t. f (u,x) = 0, g(u,x) 0

This is called an optimal power flow (OPF) problem and it is a basic building block that underlies numerous
power system applications. The optimization variable (u,x) consists of control u and network state x and
can span multiple time periods, e.g., in unit commitment problems. The cost function c and the constraint
functions f , g depend on the application under study. There are usually two types of constraint. The first is
power flow equations in various forms studied in Chapters 4 and 5 for single-phase networks and Chapters
9 and 10 for unbalanced multiphase networks. The second type of constraint consists of operational
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limits such as voltage limits, capacity limits on generators and loads, and thermal and stability limits on
transmission lines and transformers.

Part III of this book focuses on OPF especially its computational properties. In Chapters 12.2 and 12.3
we formulate unit commitment and economic dispatch as OPF problems. In Chapter 12.5 we extend the
economic dispatch problem to include system security. In Chapter ?? we present other applications of
OPF. Finally we describe in Chapter ?? popular algorithms to solve OPF and in Chapter ?? techniques for
scalable solution of large practical OPF problems.

12.2 Unit commitment

In this section we formulate the unit commitment problem as OPF. As mentioned above the problem is
typically solved by the system operator in the day-ahead market 12–36 hours in advance of energy delivery
to decide which units will be turned on for each hour or half hour over a 24-hour period. Integral to the
commitment decision is also a dispatch decision that determines the output levels of those units that will
be online. The commitment decision is made assuming that the dispatch decision will be optimized at
delivery time. This can be formulated as a two-stage optimization problem. For most day-ahead markets,
the commitment decision is binding but the dispatch decision can be binding or advisory, to be adjusted
by economic dispatch in the real-time market. We will discuss in detail the problem of optimal dispatch
in Chapter 12.3, so we will focus on formulating the commitment decision in this section.

Consider a time horizon T := {1,2, . . . ,T} and a power network represented as a graph G := (N,E)
as before. For example, each time t represents an hour and T = 24. For each period t 2 T let u(t) :=
(u j(t), j 2 N) denote controllable real and reactive power injections at time t, V (t) := (Vj(t), j 2 N) the
voltage phasor, S(t) :=

�
S jk(t),Sk j(t),( j,k) 2 E

�
the complex line flows. We call u(t) a dispatch and

x(t) := (V (t),S(t)) a network state at time t. Let u := (u(t), t 2 T ) and x := (x(t), t 2 T ). They are
complex vectors of appropriate sizes. Let k j(t) 2 {0,1} be the binary variable indicating that unit j will
be on at time t if k j(t) = 1 and off otherwise. Let k(t) :=

�
k j(t), j 2 N

�
and k := (k(t), t 2 T ).

Our OPF formulation includes only two features of the unit commitment problem. The first is injection
bounds on a unit when it is turned on. This can be expressed as the constraint:

u j(t)k j(t)  u j(t)  u j(t)k j(t), j 2 N (12.1a)

where u j(t) and u(t) j are given bounds on the active and reactive injections respectively at bus j at time
t.1 The second feature is the startup and shut down costs incurred by a bulk unit when it is turned on or
off. This can be expressed as a cost function dt that is positive when the on/off status of the unit changes:

d jt(k j(t�1),k j(t)) :=

8
<

:

startup cost if k j(t)�k j(t�1) = 1
shutdown cost if k j(t)�k j(t�1) =�1
0 if k j(t)�k j(t�1) = 0

(12.1b)

Unit commitment problems in practice include many other features. For instance, once turned on or off, a
generator must stay in the same on/off state for a minimum amount time. This can be expressed with an
additional state variable that keeps track of the time since the last on/off state change.

1All variables are complex and, by a  a where a,a 2 C, we mean separate bounds on the real and imaginary parts,
Re a Re a and Im a Im a.
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We illustrate how unit commitment can be posed as an OPF using the simplest formulation that in-
cludes only the two features in (12.1). Unit commitment is then the following two-stage optimization
problem:

min
k2{0,1}(N+1)T

Â
t

Â
j

d jt
�
k j(t�1),k j(t)

�
+ c⇤(k) (12.2a)

where the startup/shut down costs d jt are given by (12.1b). Given a commitment decision k , c⇤(k) is the
optimal dispatch cost over the entire optimization horizon:

c⇤(k) := min
(u,x)

Â
t

ct(u(t),x(t);k(t)) (12.2b)

s.t. ft(u(t),x(t);k(t)) = 0, gt(u(t),x(t);k(t)) 0, t 2 T (12.2c)
f̃ (u,x) = 0, g̃(u,x) 0 (12.2d)

Here ct is the dispatch cost, e.g., fuel cost, at time t. The constraints (12.2c) include power flow equations
and capacity limits such as (12.1a) at each time t, and the constraints (12.2d) are inter-temporal constraints
such as ramp rate limits of the form |u j(t)�u j(t�1)| r j. Hence the commitment decision k is chosen
in (12.2a) in anticipation that the dispatch decisions (u(t),x(t)) will be optimized in the second-stage
problem (12.2b)(12.2c)(12.2d). The constraint functions ft ,gt , f̃ may include uncontrollable injections,
e.g., forecast loads, as parameters as we will see in Chapter 12.3.

Remark 12.1 (Unit commitment in practice). The unit commitment problem (12.2) is nonconvex and
computationally challenging for large networks. Nonconvexity is due both to the binary variable k and
the nonlinear power flow equations. In practice these nonlinear power flow equations are usually replaced
by their linear approximations such as the DC power flow model. This reduces the problem to a mixed
integer linear program (MILP) and can often be solved within the available time. The solution (k⇤,u⇤,x⇤)
of the MILP however may not satisfy the original nonlinear constraints. Typically the nonlinear power
flow model is then used to check if the commitment and dispatch decisions (k⇤,u⇤) will produce a state x
that satisfies operational constraints such as voltage and line limits. This involves solving nonlinear power
flow equations. If operational constraints are violated, the MILP is modified and the procedure is repeated.

Active effort is underway in the R&D community and industry to scale computation methods for mixed
integer nonlinear programs to large networks, so that the OPF problem (12.2) can be applied in day-ahead
markets. See Chapter 13.5 for an example.

12.3 Optimal dispatch

After the on-off status of generating units and large controllable loads have been determined by a day-
ahead market, a real-time market computes every 5-15 minutes optimal injection levels of those units
that are online. This is the problem of optimal, or economic, dispatch. While the control, or dispatch,
interval t for unit commitment is typically an hour or half hour, the control, or dispatch, interval t for
unit commitment is 5-15 minutes. The most common, and simplest, form of the problem computes an
optimal dispatch in each control interval without taking into account decisions in future control intervals.
We hence fix a control interval and drop the time index t in our notation.
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In this section we formulate the optimal dispatch problem and discuss causes for intra-interval imbal-
ance. In the next section we describe frequency control mechanisms that balance power within a dispatch
interval.

12.3.1 OPF formulation

Consider a set of buses N and assume there is a generator or controllable load at each bus j 2 N. Let
u := (u j, j 2 N) denote the complex controllable injections, V := (Vj, j 2 N) the voltage phasors, and
S :=

�
S jk,Sk j,( j,k) 2 E

�
the complex line flows. We call u a dispatch and x := (V,S) a network state.

They are complex vectors of appropriate sizes. Let s :=
�
s j, j 2 N

�
be given complex uncontrollable

injections. For optimal dispatch the objective function c(u,x) may represent fuel cost which may be
convex quadratic in real power generation:

c(u,x) = Â
generators j

⇣
a j
�
Re(u j)

�2
+ b j Re(u j)

⌘

for some a j � 0, b j � 0.

The relation between the line flows S :=
�
S jk,( j,k) 2 E

�
and voltages V :=

�
Vj, j 2 N

�
is specified by

the power flow equation

S = S(V ) (12.3a)

where we have abused notation to use S jk to denote both a line flow and a function of voltages. For
example we can write the line flow S jk in terms of V in the complex form (4.2) reproduced here:

S jk(V ) =
⇣

ys
jk

⌘H �
|Vj|2�VjV H

k
�

+
⇣

ym
jk

⌘H
|Vj|2, ( j,k) 2 E

Sk j(V ) =
⇣

ys
jk

⌘H �
|Vk|2�VkV H

j
�

+
⇣

ym
k j

⌘H
|Vk|2, ( j,k) 2 E

where
⇣

ys
jk,y

m
jk,y

m
k j

⌘
are series and charging admittances of line ( j,k), or in polar form (see (4.22)):

Pjk(V ) =
⇣

gs
jk +gm

jk

⌘
|Vi|2 � |Vi||Vj|

⇣
gs

jk cos(q j�qk) � bs
jk sin(q j�qk)

⌘
, ( j,k) 2 E

Q jk(V ) =
⇣

bs
jk +bm

jk

⌘
|Vi|2 � |Vi||Vj|

⇣
bs

jk cos(q j�qk) + gs
jk sin(q j�qk)

⌘
, ( j,k) 2 E

where (gs
jk,b

s
jk) and (gm

jk,b
m
jk) are series and charging admittances of line ( j,k) and q j := \Vj. Simi-

larly for
�
Pk j(V ),Qk j(V )

�
in the opposite direction on line ( j,k). Different power flow equations lead to

different OPF formulations with different computational properties. Then power balance is expressed as2

u j + s j = Â
k: j⇠k

S jk, j 2 N (12.3b)

The most common operational constraints are:
2If ys

jk = ys
k j and ym

jk = ym
k j = 0 then we can model the network by a directed graph described by a node-by-line incidence

matrix C. In this case (12.3b) takes the form u+s = CS.
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• Injection limits (e.g., generator or load capacity limits):

u j  u j  u j, j 2 N (12.3c)

where u j and u j are given bounds on the active and reactive injections respectively at buses j.3

• Voltage limits:

v j  |Vj|2  v j, j 2 N (12.3d)

where v j and v j are given lower and upper bounds on the squared voltage magnitudes. We assume
v j > 0 to avoid triviality (in practice v j ⇡ 1 pu).

• Line limits: Thermal limits can be expressed as upper bounds on the magnitudes of line currents, on
the magnitudes of real and reactive line power, or on the apparent line power, as:

|S jk|  S jk, |Sk j|  Sk j, ( j,k) 2 E (12.3e)

The real-time optimal dispatch problem is then the following constrained optimization

min
u,x

c(u,x) s.t. (12.3) (12.4)

where (u,x) := (u,V,S) 2 C
2(N+1+M) and N + 1,M are the numbers of buses and lines respectively. It

is solved by the system operator for every control interval (e.g., every 5 minutes). We call u a feasible
dispatch if (u,x) := (u,V,S) satisfies (12.3) for some network state x. We call uopt an optimal dispatch
if (uopt,xopt) := (uopt,V opt,Sopt) is an optimal solution of (12.4) for some network state xopt. The key
parameter of (12.4) is the uncontrollable injection s in (12.3b). We often abuse notation and write uopt(s)
for an optimal dispatch as a function of s . We also say that the optimal dispatch uopt(s) is driven by s .

The interpretation of an optimal (uopt,xopt) is that the controllable generators and loads will produce
and consume according to the dispatch command uopt from the system operator. The injection uopt will
drive the voltage V opt and line flow Sopt on the network to a solution of the power flow equations (12.3a)
(12.3b) that satisfies the operational constraints (12.3c) (12.3d) (12.3e). In particular this should guaran-
tee power balance at all points of the network given an uncontrollable injection s . The reality is more
complicated as we will see in Chapter 12.3.2.

Remark 12.2. We have assumed without loss of generality that there is at most one controllable generator
or load at each bus with injection u j. It is straightforward to extend to the case where there are multiple
generators and loads at buses j. If there is no controllable injection at bus j then we can set u j = u j = 0 or
remove u j as an optimization variable.

Remark 12.3 (Economic dispatch in practice). The nonlinearity of power flow equations (12.3a) makes
the optimal dispatch problem (12.4) nonconvex and the standard economic theory inapplicable. Most
markets today adopt a linear approximation of (12.3a), e.g., the DC power flow model together with
methods to determine reactive injections, to compute electricity prices together with a reasonable dispatch

3All variables are complex and, by a  a where a,a 2 C, we mean separate bounds on the real and imaginary parts,
Re a Re a and Im a Im a.
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u. This problem is usually called DC OPF or economic dispatch. Given an optimal dispatch û from an
economic dispatch problem a system operator may check using AC power flow equations (12.3a) (12.3b)
whether a resulting network state x̂ := (V̂ , Ŝ) satisfies the operational constraints (12.3c) (12.3d) (12.3e),
i.e., whether (û,V̂ , Ŝ) is feasible for (12.4). If it is, then the system operator may price electricity according
to a dual optimal solution of the economic dispatch problem (see Part IV) and dispatch the injection û.
Otherwise the system operator may adjust the parameters of the DC OPF problem and repeat the cycle.
Even though this procedure may not produce an optimal solution of (12.4) it avoids the complication of
nonconvex pricing. We study economic dispatch in detail in Chapter 20.

12.3.2 Imbalance and error model

Recall that the optimal dispatch problem (12.4) is solved for every control interval. We now describe
a simple error model in order to understand how imbalance arises within a control interval even when
controllable generators and loads follow the system operator’s dispatch. In the next section we explain
frequency control mechanisms that correct the imbalance.

Suppose the uncontrollable injection (vector) s := (s(t), t 2 R+) is a continuous-time stochastic pro-
cess with the mean process m(t) := Es(t). This can model wind or solar generation or inelastic demand.
A realization s(x ) := (s(x , t), t 2 R+) of the process is indexed by x associated with a probability space,
though we may omit x and use s or s(t) to refer to a realization when there is no risk for confusion.
For each realization x and time t � 0 let u(s(x , t)) denote an actual injection that can maintain power
balance at all points of the network at time t. For instance u(s(x , t)) is an optimal dispatch driven by
the realization s(x , t), i.e., there exists a network state x(s(x , t)) such that (u(s(x , t)) ,x(s(x , t))) is an
optimal solution of the (deterministic) problem

min
(u,x):=(s,V,S)

c(x) s.t. (12.3a)(12.3c)(12.3d)(12.3e) (12.5a)

u j + s j(x , t) = Â
k: j⇠k

S jk, 8 j (12.5b)

It is of course impractical to compute such an optimal dispatch for each realization x at each time t � 0.4

Instead, a dispatch is computed by the real-time market in each discrete time period nd , n = 0,1, . . . ,
where d is the duration of each control interval, e.g., d = 5 minutes. Suppose the system operator’s
dispatch for the nth control interval is an optimal solution uopt (m̂(n)) of (12.4), or its linear approximation,
driven by a certain estimate m̂(n) of the uncontrollable injection s(x , t) over the interval. The imbalance
at time t is then the difference between the actual injection and the operator’s dispatch:

Du(x , t) := u(s(x , t)) � uopt (m̂(n)) , t 2 [nd ,(n+1)d ), n = 0,1, . . . (12.6)

The imbalance Du(x , t) can be interpreted as consisting of three errors:

Du(x , t) = D1(x , t) + D2(t) + D3(x , t)

These errors are:
4This will correspond to choosing an equilibrium injection of the dynamic model of Chapter 12.4 at each time t.
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1. Random error D1(x , t). The optimal dispatch (12.4) is a deterministic problem driven by an estimate
of the random injection s(t). If the estimate is the mean process m(t), it will lead to a random
imbalance between the actual injection and the dispatch driven by m(t), resulting in a dispatch error
D1(x , t) := u(s(x , t))� uopt(m(t)). This assumes however that it were possible to solve for an
optimal dispatch uopt(m(t)) at each time t � 0.

2. Discretization error D2(t). An optimal dispatch however is computed only in each discrete time
period nd , driven by a vector that approximates the behavior of the function m(t) over that interval.
Assume this is the time average of m(t) over [nd ,(n+1)d ):

m̄(n) :=
1
d

Z (n+1)d

nd
m(t)dt, n = 0,1, . . . (12.7)

For instance m j(t) may model the mean uncontrollable load at bus j at time t and m̄ j(n) is then its
time average over the nth interval. Approximating the continuous-time mean process m(t) by the
discrete-time process m̄(n) leads to a dispatch error D2(t) := uopt(m(t))� uopt(m̄(n)) at each time
t 2 [nd ,(n+1)d ).

3. Prediction error D3(x , t). The computation of m̄(n) needs the ensemble average m(t) over [nd ,(n+
1)d ). This is difficult because the statistics of the stochastic process s(t) may not be known ac-
curately and because the optimal dispatch for the nth control interval must be computed during
the n� 1st interval. The system operator therefore must use an estimate m̂(n) of m̄(n) in (12.3b)
when solving the optimal dispatch problem (12.4) for the nth interval. This leads to a dispatch error
D3(x , t) := uopt (m̄(n))�uopt (m̂(n)) at each time t 2 [nd ,(n+1)d ).

In general the estimate m̂(n) = m̂(x ,n) depends on the realization x and is a random variable. For
instance a common strategy is to set the estimate to be the uncontrollable injection realized in the
previous time interval

m̂(x ,n) :=
1
d

Z nd

(n�1)d
s(x , t)dt, n = 0,1, . . . (12.8)

e.g., the forecast wind energy in the next period is the actual wind energy in the current period. In
this case its mean Em̂(n) = m̄(n�1). The estimate m̂(n) may also be independent of the realization
x . This is a special case where m̂(x ,n) is a deterministic quantity for all x . For instance the forecast
of uncontrollable energy injection over the interval 7:00–7:05pm on Wednesday is the mean energy
estimated from historical data for 7:00–7:05pm on Wednesdays.

Typically the random error D1(t) tends to have zero mean. The time average of the discretization error
D2(t) over each control interval tends to be zero. This means that the energy discrepancy over each control
interval due to discretization tends to be small. If the statistics of the uncontrollable injection s(t) is slowly
time-varying then the prediction error D3(t) tends to be small. The next example describes a simple model
where these observations can be made precise.

Example 12.1. Consider a 2-bus network described by the DC power flow model. Bus 1 has an uncontrol-
lable load s := (s(t), t 2R+) with mean (m(t), t 2R+) and bus 2 has a controllable generator with output
level u(t). Suppose the generator and line capacities are high so that the injection and line limits are never



530 Draft: EE 135 Notes April 30, 2024

active. The actual generation u(s(t)) = �s(t) balances the actual load at time t. Since the DC power
flow model is lossless the optimal dispatch is simply uopt(m̂(n)) = �m̂(n) for the nth control interval. It
balances the predicted mean load over that interval. Suppose we use the prediction m̂(n) := m̂(x ,n) given
by (12.8). Then the random imbalance at time t 2 [nd ,(n+1)d ) is

Du(x , t) := u(s(t)) � uopt(m̂(n)) = �s(x , t) +
1
d

Z nd

(n�1)d
s(x ,t)dt

i.e., the imbalance at time t is the difference between the actual load at time t and the time average load
over the pervious interval.

To gain further insight into the imbalance Du(t) and the constituent errors, suppose s is a (possibly
non-stationary) white Gaussian process with mean Es(t) = m(t) and correlation function K(t, t 0) = n2 if
t = t 0 and K(t, t 0) = 0 if t 6= t 0 for t, t 0 � 0. Then, under appropriate integrability assumptions, w(t) :=R t

0 s(t)dt is a Wiener process with the property that non-overlapping increments are independent Gaussian
random variables, i.e., for any t 0 < t  t 0 < t , the random variables

w(t)�w(t 0) :=
Z t

t 0
s(s)ds and w(t)�w(t 0) :=

Z t

t 0
s(s)ds

are independent and Gaussian with means
R t

t 0m(s)ds and
R t

t 0m(s)ds respectively and variance n2(t � t 0)
and n2(t� t 0) respectively. Then the prediction given by (12.8) is

m̂(n) =
1
d

(w(nd )�w((n�1)d ))

Therefore (m̂(n),n = 0,1, . . .) are independent Gaussian random variables whose means are the time av-
erages of the mean m(t) over the previous control intervals:

E (m̂(n)) =
1
d

Z nd

(n�1)d
m(t)dt =: m̄(n�1), n = 1,2, . . .

and whose variances are time invariant:

var(m̂(n)) =
n2

d
, n = 1,2, . . .

Here m̄(n) is the time average of the mean process m(t) over the nth interval defined in (12.7). The system
operator’s dispatch uopt(m̂(n)) = �m̂(n) for the nth interval is a Gaussian random variable with mean
�m̄(n� 1) and variance n2/d . The actual load s(t) at time t is a Gaussian random variable with mean
m(t) and variance n2. Note that s(t) and m̂(n) are independent because of the independent increment
property of Wierner process. Hence the imbalance Du(t) = �s(t)+ m̂(n) at time t 2 [nd ,(n + 1)d ) is a
Gaussian random variable with mean and variance

E (Du(t)) = �m(t) + m̄(n�1), var(Du(t)) = n2
✓

1+
1
d

◆

In particular if the Gaussian process s is stationary then the imbalance Du(t) has zero mean.
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We now calculate the various errors underlying the imbalance Du(t). The random error at time t is

D1(x , t) := u(s(x , t)) � uopt (m(t)) = �s(x , t) + m(t)

which is a Gaussian random variable with zero mean and variance n2. The discretization error at time
t 2 [nd ,(n+1)d ) is

D2(t) := uopt (m(t)) � uopt (m̄(n)) = �m(t) + m̄(n)

i.e., D2(t) is the deviation of the mean process m(t) from its time average m̄(n). The prediction error is

D3(x , t) := uopt (m̄(n)) � uopt (m̂(x ,n)) = �m̄(n) + m̂(x ,n)

which is a Gaussian random variable with mean E (D3(t)) = �m̄(n)+ m̄(n� 1) and variance n2/d . The
imbalance Du(x , t) = D1(x , t)+ D2(t)+ D3(x , t). These observations are summarized in Table 12.1. We

Expression Random Var Mean Variance
Random error D1(x , t) �s(x , t)+m(t) Gaussian zero n2

Discretiz. error D2(t) �m(t)+ m̄(n) constant �m(t)+ m̄(n) 0
Prediction error D3(x , t) �m̄(n)+ m̂(x ,n) Gaussian �m̄(n)+ m̄(n�1) n2/d
Imbalance Du(x , t) D1(t)+D2(t)+D3(t) Gaussian �m(t)+ m̄(n�1) n2 (1+1/d )

Table 12.1: Example 12.1: Imbalance and underlying errors.

note the following properties:

1. As noted above, the ensemble average of the random error D1(t) is zero.

2. The time average of the discretization error D2(t) is zero over each control interval:

1
d

Z (n+1)d

nd
D2(t) = � 1

d

Z (n+1)d

nd
m(t)dt + m̄(n) = 0

3. The mean prediction error ED3(t) = �m̄(n)+ m̄(n�1) is small if the mean process m(t) is slowly
time-varying. In particular if s is stationary then the prediction error has zero mean.

Imbalance due to random error D1(t), discretization error D2(t) and prediction error D3(t) is handled
by frequency control. The operator dispatch uopt (m̂(n)) is not the actual power injection but provides
setpoints for controllable generators and loads for the nth control interval. While these setpoints û(n) are
updated every d amount of time, frequency control operates continuously to determine the actual power
injection. The definition (12.6) and (12.3b) suggest the following power flow model at a fast timescale:

uopt (m̂(n)) + Dui(t) + si(t) = Â
j:i⇠ j

Si j(t), t 2 [nd ,(n+1)d ), i 2 N
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where we have fixed a realization x and suppressed the index x . This model however is incorrect. It
ignores two important features of frequency control, the fast timescale generator and frequency dynamics
and the feedback control to maintain frequency around its nominal value (the correct equation is (12.11b)).
Before we describe in Chapter 12.4 how an optimal dispatch uopt (m̂(n)) is realized at a fast timescale, we
remark on two other sources of imbalance.

Remark 12.4. Imbalance can also result from two other types of errors:

1. Contingency error. Unanticipated outages of generators, transmission lines or transformers or the
switching on or off of large loads may occur within a control interval, creating imbalance. Unlike
other errors, such contingency events occur rarely and when they do occur, the model in the original
problem (12.4) must be updated in order to compute a new dispatch. Imbalance due to contingency
error is discussed in Chapter 12.5.

2. Modeling error. The power flow model as expressed in (12.3a) is only an approximation of the
reality. A transmission network model is highly aggregated. A bus j may represent a substation
where the uncontrollable injection s j(t) is a coarse model of the aggregate demand on the underlying
feeder. It may also represent a balancing area where the single control u j(t) is an approximation of
aggregate output of multiple generators controlled by multiple organizations. A line (i, j) may be
produced by Kron reduction and represents the connectivity between two sets of buses. Finally
network parameters such as line admittances may not be known accurately, e.g., parameters for an
aggregate model may have to be estimated experimentally, the parameters of a device may depend
on the operating condition or change due to aging. Modeling error is of a different nature than the
other errors and we assume its effect can be incorporated as randomness in s .

12.4 Frequency control

The power delivered by a thermal generator is determined by the mechanical power output of a prime
mover such as a steam turbine or water turbine. The output level is controlled by opening or closing
valves that regulate steam or water flow. For example if the load increases the valve of a generator must
open wider to increase the generated power. When there is excess supply the rotating machines in bulk
generators will speed up and the system frequency will rise. When there is a shortage the rotating machines
will slow down and the system frequency will drop. If power is not re-balanced by adjusting generators
or flexible loads, frequency excursion will continue which can disconnect generators to protect them from
damage, potentially leading to involuntary load shedding and even system collapse. Frequency deviation
from its nominal value is used as a control signal for generators, and controllable loads, that participate in
frequency control to adjust their power.

Frequency control, also referred to as automatic generation control, consists of three mechanisms
operating at timescales from seconds to minutes. A generating unit that participates in the primary con-
trol, also called droop control, uses a governor to automatically adjusts the mechanical power output of a
turbine in proportion to its local frequency deviation. Primary frequency control is decentralized. It rebal-
ances power and stabilizes the frequency to a new equilibrium value in 30 seconds or so. The secondary
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control adjusts generator setpoints around their dispatch values in order to restore system frequency to its
nominal value within a few minutes, e.g., up to 10 minutes after a contingency event. In an interconnected
power system consisting of multiple balancing areas, each managed by a single operator, the secondary
control additionally restores interchanges of tie-line power between areas to their scheduled values. The
adjustments are determined centrally within each area based on real-time measurements of tie-line flow
deviations. The dispatched setpoint and scheduled tie-line flows are determined by the tertiary control
that operates on a timescale of 5–15 minutes. They are chosen to attain economic efficiency as well as
restoring the reserve capacities deployed in primary and secondary control so that they are available for
contingency response. This is typically determined by solving an optimal dispatch problem as discussed
in Chapter 12.3.

We now present a linear dynamic model of the primary and secondary control that clarifies the relation
between system operator’s dispatch uopt(m̂(n)) for each interval and the actual (active) power generation.
A description of the physical system, including a generator, a turbine-governor system, a frequency control
system, and a voltage control system, as well as their detailed models, are beyond the scope of this book.
Our goal in this section is to use a simple model to connect optimal dispatch studied in Chapter 12.3 with
its realization at a fast timescale.

12.4.1 Assumptions and notations

Consider a control interval [nd ,(n+1)d ) for which the tertiary control has determined an optimal dispatch
uopt(m̂(n)) with the associated network state x(n) including scheduled tie-line flows. We assume that the
primary and secondary control converges on a much faster timescale than d so that the dispatch remains
unchanged and serves as the operating point for our incremental model below. We fix a random realization
x of the uncontrollable injection s(x , t). The dynamic model is deterministic with this fixed realization.
We hence omit the indices n and x in the rest of this section.

We make several simplifying assumptions:

• There is a synchronous generator at each bus that determines the frequency dynamics at the bus.
This assumption is only to simplify exposition and can be removed.

• Voltage regulation operates at a faster timescale so that voltage magnitudes |Vj| are fixed for the
analysis of frequency control. The effect of voltage regulation can be incorporated into the inertia
constant M and damping constant D of (the rotor angle transfer function of) the generator; see below.

• The rotor angles, the internal and terminal (bus) voltage phase angles of generators swing together,
i.e., the deviations of these angles from their operating points are equal at all times.

• The lines are lossless, i.e., their shunt admittances
⇣

ym
jk,y

m
k j

⌘
are zero and series admittances are

inductive ys
jk = ib jk with b jk < 0.

With these assumptions our dynamic model focuses on how active power in generating units change the
voltage angles and their derivatives, i.e., frequencies. It makes similar assumptions to those in the DC
power flow model. In fact the DC power flow describes the steady state of the dynamic model.
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The tertiary control determines active power dispatch u0
j for the generators and the associated voltage

angles q 0
j and active line flows P0

jk driven by estimates s0
j of uncontrollable real power injections. They

define the operating point around which we linearize our dynamic model. In particular they satisfy power
balance:

u0
j + s0

j = Â
k: j⇠k

P0
jk, j 2 N

Define the following variables and their perturbations around the operating point:

• u j(t) denotes the setpoint of generator j at time t. Let Du j(t) := u j(t)�u0
j denote the adjustment to

the optimal dispatch u0
j . The adjustment will be computed by the secondary frequency control.

• q j(t) denotes the (terminal) voltage angle at bus j at time t, relative to a rotating frame of the
operating-point frequency w0 (which is expected to be close but not necessarily equal to the nominal
frequency), i.e., the instantaneous voltage is v j(t) =

p
2|Vj|cos

�
w0t +q j(t)

�
. Define the incremen-

tal angle Dq j(t) := q j(t)�q 0
j .

• w j(t) denotes the voltage frequency at bus j defined to be the derivative of the phase angle w0t +
q j(t), i.e., w j(t) = w0+ q̇ j(t). Hence the frequency deviation Dw j(t) := w j(t)�w0

j satisfies Dw j(t) =

Dq̇ j(t).

• Pjk(t) denotes the line flow from bus j to bus k on line ( j,k). Let Pk j(t) :=�Pjk(t). Let DPjk(t) :=
Pjk(t)�P0

jk and similarly for DPk j(t).

• pM
j (t) denotes the mechanical power output of the prime mover (e.g., gas or water turbine). Let

PM0
j denote its value associated with the operating point

⇣
u0

j ,q 0
j ,w0,P0

jk,s
0
j , j 2 N, ( j,k) 2 E

⌘
and

DpM
j (t) := pM

j (t)�PM0
j .

• a j(t) denotes the valve position of the turbine-governor at bus j. Let a0
j denote its value associated

with the operating point
⇣

u0
j ,q 0

j ,w0,P0
jk,s

0
j , j 2 N, ( j,k) 2 E

⌘
and Da j(t) := a j(t)�a0

j .

We will remark on
⇣

a0
j , pM0

j

⌘
below when we describe the turbine-governor model. A common model of

the instantaneous line flow Pjk(t) as a function of voltage angles q(t) :=
�
q j(t), j 2 N

�
is (cf. the polar

form power flow equation (4.22a)):

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin
�
q j(t)�qk(t)

�
, ( j,k) 2 E

where
�
�b jk

�
> 0. We will adopt its linearization around the operating point as our model:

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin
�
q 0

j �q 0
k
�

| {z }
P0

jk

+ Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E
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where Tjk := |Vj||Vk|
�
�b jk

�
cos
⇣

q 0
j �q 0

k

⌘
are called stiffness coefficients. Hence

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (12.9)

The coefficient Tjk measures power exchange over line ( j,k) with respect to changes in phase angles.

The model has three components (see Figure 12.1): (i) a turbine-governor that produces the mechan-
ical power pM

j (t) based on the setpoint u j(t); (ii) a power generator that converts the mechanical power
output pM

i (t) of the turbine-governor into electric power that serves the local load �s j(t) and injects
power Âk Pjk(t) into the transmission system; and (iii) two feedback control mechanisms for primary and
secondary frequency control. It describes the dynamics of the incremental variables Dq j, Dw j, etc.

Figure 12.1: A schematic diagram of generating unit j, its setpoint u j(t), local injection s j(t), and line
power Pjk(t) to the transmission system.

12.4.2 Primary control

Turbine-governor model. A second-order model of the turbine-governor with droop control is:

Tg j ȧ j = �a j(t) + u j(t)�
Dw j(t)

R j
, j 2 N

Tt j ṗM
j = �pM

j (t) + a j(t), j 2 N

where the states a j(t) and PM
j (t) are the valve position and mechanical power output of the turbine respec-

tively. The constant R j is called a regulation constant or a droop constant. The term �w j(t)/R j increases
the valve position when the frequency drops below w0 and decreases it otherwise. This is referred to as
the droop control or the primary frequency control. This model makes several simplifying assumptions,
e.g., it ignores the saturation of the valve position a j(t), but is reasonable when the frequency deviation
Dw j(t) is small.

We define
⇣

a0
j ,P

M0
j

⌘
to be the equilibrium point, defined by ȧ j = ṗM

j = 0, when frequency deviations

Dw j(t) = 0 and setpoint u j(t) = u0
j is the optimal dispatch, i.e.,

pM0 = a0
j = u0

j , j 2 N
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Then the incremental variable
⇣

Da j,DPM
j

⌘
:=
⇣

a j�a0
j , PM

j �PM0
j

⌘
satisfies the same equations:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (12.10a)

Tt j D ṗM
j = �DpM

j (t) + Da j(t), j 2 N (12.10b)

This incremental model is what we will use. The block diagram representation of (12.10) is in Figure 12.2.

Figure 12.2: Block diagram in Laplace domain of the turbine-governor dynamic (12.10).

As we will see in Chapter 12.4.3 the setpoint adjustment Du j(t) is changed by the secondary control at
a much slower timescale (several minutes) than that of the primary control (approximately 30 secs). Hence
a quasi steady-state of (12.10) is defined by a constant value of the setpoint adjustment Du j(t) = Du j. In
this steady state, the frequency deviation Dw⇤j is generally nonzero and the incremental mechanical power
output DpM⇤

j is related to the frequency deviation by

DpM⇤
j = Da⇤j = Du j �

1
R j

Dw⇤j , j 2 N

Remark 12.5. The time constants Tgi,Tti characterize the responsiveness of the governor and turbine
respectively to a change in their input. Typical value of Tgi and Tti are approximately 0.1 second and 0.5
second respectively. Since the governor responds much faster than the turbine the model is sometimes
simplified to a first-order model

Tt j DṗM
j = �DpM

j (t) + Du j(t)�
Dw j(t)

R j
, j 2 N

Generator model. The frequency deviation Dw j(t) is determined by the rotating speed of a generator
driven by the mechanical power output pM

j (t) of the turbine. A dynamic model of the generator in terms
of the incremental variables is:

Dq̇ j = Dw j(t), j 2 N (12.11a)

MjDẇ j + D jDw j(t) = DpM
j (t) + Ds j(t) � Â

k: j⇠k
DPjk(t), j 2 N (12.11b)
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where Ds j(t) is the deviation of the uncontrollable injection from its prediction s0
j and DPjk(t) are the

incremental line flows given by (12.9). The block diagram representation of (12.11) is in Figure 12.3.
Here Mj is the inertia constant of generator j, and D j is the sum of damping constant of generator j and

Figure 12.3: Block diagram in Laplace domain of the generator dynamic (12.11). Buses adjacent to bus j
are labeled 1, . . . ,n j.

the frequency sensitivity of motor-type injection at bus j, as we now explain.

If s j(t) < 0 represents a load, a common model consists of both frequency sensitive load s1 j

⇣
w0

j +w j(t)
⌘

such as a motor and frequency insensitive load s2 j(t) due to the switching on or off of an electrical device
that draws a specified amount of power. Approximate the frequency sensitive load by its linear approxima-
tion s1 j

�
w0�+ ∂s1 j

∂w j

�
w0�Dw j(t) and write the frequency insensitive load as s2 j(t) = s0

2 j +Ds2 j(t). Then

the deviation ∂s1 j
∂w j

�
w0�Dw j(t) of the frequency sensitive load is absorbed into D jDw j(t) in (12.11b). The

uncontrollable load s j(t) is then the sum of the remaining terms:

s j(t) =
⇣

s1 j
�
w0�+s0

2 j

⌘

| {z }
s0

j

+ Ds2 j(t)| {z }
Ds j(t)

In summary the primary frequency control is modeled by (12.9) (12.10) (12.11) reproduced here:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (12.12a)

Tt j DṗM
j = �DpM

j (t) + Da j(t), j 2 N (12.12b)

MjDẇ j + D jDw j(t) = DpM
j (t) + Ds j(t) � Â

k: j⇠k
DPjk(t), j 2 N (12.12c)

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (12.12d)

Dq̇ j = Dw j(t), j 2 N (12.12e)
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This closes the droop control loop. The block diagram representation combines those in Figures 12.2 and
12.3. It is shown in Figure 12.4. The input to the system are external disturbance Ds j(t) at each each

Figure 12.4: Block diagram of primary frequency control (12.12). Buses adjacent to bus j are labeled
1, . . . ,n j.

generator j and the adjustment Du j(t) to the dispatch setpoint. Since the secondary control that updates
the setpoint operates at a much slower timescale than the primary frequency control timescale, we can
understand the behavior of the (quasi) steady state of the primary control by assuming a constant setpoint
adjustment Du j(t) = Du j.

Consider then a step disturbance in the uncontrollable injection where Ds j(t) changes at time t = 0
from 0 to a constant value Ds j. We say that x⇤ :=

�
Dw⇤,DP⇤,Dq ⇤,Da⇤,DpM⇤� is an equilibrium point of

(12.12) driven by the step change Ds and constant setpoint Du j if, at x⇤,

Dẇ j = Dȧ j = DṗM
j = 0, j 2 N

We do not require Dq̇ = 0 in the definition of equilibrium point. Indeed Dq̇ is generally nonzero when
primary control converges. Recall the bus-by-line incidence matrix C defined by:

Cjl :=

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i

0 otherwise
, j 2 N, l 2 E

The next result calculates the equilibrium frequency and line flows (its proof is left as Exercise 12.1). It
motivates secondary control discussed in Chapter 12.4.3.

Theorem 12.1 (Steady state of primary control). Suppose the network is connected. If x⇤ is an equilibrium
point of (12.12) driven by a step changes Ds and constant setpoints Du then:

1. Local frequency deviations converge to a new value equal to the total disturbance divided by the
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system damping:5

Dw⇤j = Dw⇤ := Âk (Duk +Dsk)

Âk (Dk +1/Rk)
, j 2 N

2. Line flow deviations converge to

DP⇤ = TCT L† (Du + Ds � Dw⇤d)

where T := diag(Tjk,( j,k) 2 E), L† is the pseudo inverse of the Laplacian matrix L := CTCT , and
d := (D j +1/R j, j 2 N).

Remark 12.6. 1. Intuitively the larger the disturbance or the smaller the system damping, the larger
will frequency deviation Dw⇤ be. Theorem 12.1 clarifies precisely the simple relationship among
them. Droop control R j adds to the system damping and reduces frequency deviation.

2. The theorem says that frequency can be restored to the operating-point value, i.e., Dw⇤ = 0, only if
we change the setpoints so that the total setpoint changes cancel out the total disturbances

Â
k

(Duk +Dsk) = 0

3. To restore all line flows, i.e., DP⇤ = 0, requires canceling disturbances locally at each bus,

Duk +Dsk = 0, k 2 N

The next example illustrates a benefit of interconnecting multiple areas.

Example 12.2 (Interconnected system). Consider N + 1 balancing areas each modeled as a single bus.
Suppose Du j = 0 for all areas j and that there is a step change of the uncontrollable injection where Ds j(t)
changes at time 0 from 0 to a value Ds j. Suppose Ds j are independent random variables with mean Ds̄ j
and variance n2

j . We will evaluate the equilibrium frequency deviation Dw⇤ using Theorem 12.1 when the
primary frequency control converges.

Case 1: Independent operation. Suppose these buses are not connected. Then the equilibrium frequency
deviation in each area j is

Dw⇤j =
Ds j

d j
, j 2 N

where d j := D j +1/R j with mean Ds̄ j/d j and variance n2
j /d2

j .

Case 1: Interconnected system. Suppose these buses are connected. Then the equilibrium frequency
deviation for the entire interconnected system is

Dw⇤ =
Â j Ds j

Â j d j
=

1
N +1 Â

j

Ds j

d̂

5We abuse notation to use Dw⇤ to both denote a scalar and the vector whose entries are all Dw⇤. The meaning should be
clear from the context.
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where d̂ := Â j d j/(N +1) is the average system damping. Define the average mean and variance of Ds j
respectively:

Dŝ :=
1

N +1 Â
j

Ds̄ j, n̂2 :=
1

N +1 Â
j

n2
j

Then the mean and variance of Dw⇤ are respectively

mean(Dw⇤) =
Dŝ
d̂

, var(Dw⇤) =
1

N +1
n̂2

d̂

The simple case when the random variables Ds j are i.i.d. (independently and identically distributed)
with mean Ds̄1 and variance n2

1 . Suppose also d j = d1 for all j. Then Dŝ = Ds̄1, n̂2 = n2
1 , and d̂ = d1.

Hence the mean of the interconnected system is the same as that of each area in independent operation,
but the variance is reduced by a factor of N +1. The bigger the interconnection, i.e., larger N, the smaller
the variance in equilibrium frequency deviation Dw⇤.

12.4.3 Secondary control

The first objective of the secondary control is to restore system frequency, i.e., to drive Dw(t) to zero.
The second objective is to restore line flows to their scheduled values, i.e., to drive DP(t) to zero. This
is less important and sometimes not pursued for an island system managed by a single operator. In an
interconnected system consisting of multiple areas managed by separate operators the interchanges of tie-
line power between areas have financial implications. Such a system usually operates under the principle
that (i) each area absorbs its own load changes, and (ii) scheduled tie-line flows are maintained. If each
bus in (12.12) models an entire area this requires driving DP(t) to zero.

Theorem 12.1 suggests that the objectives of the secondary control can only be achieved by adjusting
the setpoints u(t) of the generators to cancel the disturbances (see Remark 12.6). Suppose each bus j in
(12.12) represents an area and the setpoint adjustment Du j(t) represents an aggregate adjustment that will
then be shared by all generators in area j that participate in the secondary control. The adjustment is based
on the area control error (ACE) which is a weighted sum of frequency and line flow deviations:

ACE j(t) := Â
k: j⇠k

DPjk(t) + b jDw j(t), j 2 N

where b j > 0 is called a frequency bias setting. The setpoint adjustment Du j(t) integrates ACE j in order
to drive it to zero:

Du̇ j = �g j

 

Â
k: j⇠k

DPjk(t) + b jDw j(t)

!
, j 2 N (12.13)

The computation (12.13) requires real-time measurement of tie-line flow deviations DPjk(t) with all neigh-
boring areas k. This information is sent to area j’s system operator which centrally computes the aggregate
adjustment Du j(t) for the entire area using (12.13). It then dispatches in real time setpoint adjustments
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a jiDu j(t) with a ji � 0 and Âi a ji = 1 to participating generators i in area j. The weights a ji are called
participation factors.

In summary the primary and secondary frequency control in area j is modeled by the system (12.12)
(12.13). It is driven by the uncontrollable injection Ds j(t) and consists of two feedback control mech-
anisms, the droop control with regulation parameter R j and setpoint adjustment based on ACE j(t). Its
block diagram is shown in Figure 12.5.

Figure 12.5: Block diagram of primary and secondary frequency control (12.12) (12.13) in area j.

To understand the behavior of the entire interconnected system it is convenient to write (12.12) (12.13)
in vector form:

Tg Dȧ = �Da(t) + Du(t) � R�1Dw j(t) (12.14a)
Tt DṗM = �DpM(t) + Da(t) (12.14b)

MDẇ + DDw(t) = DpM(t) + Ds(t) � CDP(t) (12.14c)
DP(t) = TCT Dq(t) (12.14d)

Dq̇ = Dw(t) (12.14e)
Du̇ = �G(CDP(t) + BDw(t)) (12.14f)

where Tg,Tt ,T,G,B are diagonal gain matrices, R is the diagonal matrix of droop parameters, M,D are
diagonal matrices of generator parameters, and C is the (N +1)⇥M incidence matrix.

Consider a step change in uncontrollable injection where Ds(t) changes at time 0 from the 0 vector
to a constant vector Ds . We say that x⇤ :=

�
Du⇤,Dw⇤,DP⇤,Dq ⇤,Da⇤,DpM⇤� is an equilibrium point of

(12.14) driven by the step change Ds if, at x⇤,

Du̇ = Dẇ = Dȧ = DṗM = 0

Note that we do not require Dq̇ = 0 in the definition of equilibrium point. The next result proves that indeed
the objectives of the secondary control are achieved (its proof is left as Exercise 12.2).6 Furthermore
Dq̇ = Dw⇤ = 0 in equilibrium when frequency deviation is driven to zero.

6Even though Theorem 12.2 asserts that Dw⇤ = 0, in practice, it is possible that the frequency is not restored to w0 even
when ACE’s are driven to zero. This is because models are only approximations of reality.
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Theorem 12.2 (Steady state of secondary control). Suppose the network is connected. If x⇤ is an equilib-
rium point of (12.14) driven by a step change Ds then:

1. Frequencies are restored to w0 and Dw⇤ = 0.

2. Line flows are restored to their scheduled values P0 and DP⇤ = 0.

3. Disturbances are compensated for locally at each bus Du⇤+Ds = 0.

12.5 System security

Power system security refers to the ability to withstand large disturbances. The small random imbalances
are handled by real-time optimal dispatch and frequency control mechanisms discussed in Chapters 12.3
and 12.4 respectively. In this section we explain techniques to handle large disturbances due to contingency
events such as the loss of a bulk generator or wind or solar farm, the switching on or off of a large industrial
load, or the outage of a transmission line or transformer in the transmission network.

12.5.1 Secure operation

Contingency events are rare but their potential impacts are large. North American Electric Reliability
Corporation’s (NERC) N�1 rule states that the outage of a single piece of equipment (e.g., generator, line,
transformer) should not result in flow or voltage limit violations. As volatile generation from wind and
solar farms continues to displace thermal generators, a large deviation of such nondispatchable generation
from its predicted value may also count as a contingency event in the future. For instance the random
generation can be modeled as taking one of a finite number of values, each triggering a contingency
response if it differs significantly from its predicted value.

Secure operation is achieved through three main mechanisms: (i) analyze credible contingencies that
may lead to voltage or line limit violations, (ii) account for these contingencies in optimal commitment
and dispatch schedules, and (iii) monitor system state in real time and take corrective actions when a
contingency occurs. We summarize each of these functions.

Contingency analysis. When a generator or load contingency occurs the resulting power flows might
violate line limits and lead to transmission outages where transmission lines or transformers are discon-
nected. If reserve capacity is insufficient to re-balance generation and demand, frequency excursion will
continue which can disconnect other generators to protect them from damage, potentially leading to invol-
untary load shedding and even system collapse. When a transmission line or transformer is disconnected
power flows in the network will redistribute and line limits can be violated, potentially leading to cascad-
ing line outages. Furthermore a transmission outage results in reactive losses in the network which can
suppress voltage magnitudes, leading to voltage violations.

The impacts of these contingency events can be assessed by solving AC power flow equations that
describe the network state after each contingency. Currently this set of post-contingency equations are
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solved in the industry mostly using Newton-Raphson or the decoupled power flow methods because they
have good speed and convergence properties. Due to the large number of contingencies that must be
assessed in order to satisfy N� k security for k � 1, it is a common practice to first use the DC power
flow model to quickly screen contingencies and select a much smaller subset that result in voltage or line
limit violations for more detailed analysis using the AC power flow model, especially for contingency
scenarios where voltage magnitudes and reactive flows are important. Contingency scenarios in which
line or voltage limits are violated are called credible contingencies. Contingency screening uses the DC
power flow model often makes use of power transfer distribution factor and line outage distribution factor
analyzed in Chapter 24. These distribution factors are used to quickly estimate incremental line flow
changes due to a contingency from the pre-contingency operating point determined by the AC power flow
model. An advantage of this approach is that the impact of generator and transmission outages on the post-
contingency networks can be analyzed using the common pre-contingency topology across contingency
scenarios.

Security constrained dispatch and commitment. The credible contingencies that have been identified
in contingency analysis are taken into account in day-ahead (e.g., 12–36 hours) unit commitment and
real-time (e.g., 5–15 minutes) dispatch as well as automatic generation control (seconds to minutes). Ca-
pacities are reserved for normal operation (regulation and load-following reserves) and for contingencies
(contingency reserves).

There are two approaches to account for credible contingencies in scheduling optimal dispatch. The
preventive approach augments the optimal dispatch problem studied in Chapter 12.3 with additional con-
straints so that the network state under the optimal dispatch will satisfy operational constraints even after
contingency events. This allows the dispatch to remain unchanged until the next real-time dispatch period
even if a contingency occurs in the middle of the current period. The intra-period imbalance due to con-
tingency will be handled by the frequency control mechanisms studied in Chapter 12.4. The corrective
approach, on the other hand, will compute optimal dispatches both for normal operation and after each
contingency event. This allows the system operator to dispatch a response immediately after a contin-
gency is detected without having to wait till the next dispatch period. Both approaches can be formulated
as security constrained OPF problems; see Chapter 12.5.2.

System monitoring. A system operator’s energy management system collects and processes measure-
ments of voltages, currents, line flows, and the status of circuit breakers and switches at all transmission
substations. Other measurements such as frequencies, generator outputs, and transformer tap positions are
also measured at various locations of a transmission network, e.g., using phasor measurement units. These
measurements are used for state estimation, real-time commitment and dispatch, and automatic genera-
tion control, among other applications. Based on these measurements the system can be classified as in a
normal state, an emergency state, or after a contingency, in a restoration state, with default actions in each
of these states.
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12.5.2 Security constrained OPF

We will refer to the problem of optimal dispatch without security constraints studied in Chapter 12.3:

min
(u0,x0)

c0 (u0,x0)

s.t. f0 (u0,x0) = 0, g0 (u0,x0)  0 (12.15)

as the base or pre-contingency case. Here u0 is a vector representing controls such as real power injections
of controllable generators and loads, generator voltage magnitudes, transformer tap positions, x0 is a
vector representing the network state such as bus voltage magnitudes and angles at load buses, f0 (x0,u0)
represents linear or nonlinear power flow equations, and g0 (x0,u0) represents operational constraints such
as voltage and line flow limits, all in the base case.

Let credible contingencies be indexed by k = 1, . . . ,K. After a contingency k, the dispatch u0 remains
unchanged in the short term (e.g., 1–5 mins). The network state however changes immediately from x0
to a new system state x̃k determined by the post-contingency network and frequency control actions. The
choice of pre-contingency dispatch u0 can take the new network state into account, in three ways.

Some operational constraints such as thermal limits may be temporarily relaxed immediately after the
contingency provided corrective actions will be implemented quickly. A preventive approach chooses
u0 so that emergency operational constraints in the short term are satisfied before corrective actions take
effect. Let f̃k denote the power flow equations for the post-contingency network, and g̃k models the
emergency operational constraints after contingency k. The pre-contingency control u0 and the post-
contingency network state x̃k in the short term must satisfy:

f̃k (u0, x̃k) = 0, g̃k (u0, x̃k)  0, k = 1, . . . ,K (12.16)

A preventive security-constrained OPF (SCOPF) problem chooses an optimal control decision u0 that will
remain secure after each contingency k = 1, . . . ,K, before corrective actions are implemented, i.e., it is of
the form

min
(u0,x0, x̃k, k�1)

c0 (u0,x0) s.t. (12.15)(12.16)

In the corrective approach a new dispatch uk is applied after contingency k. In addition to changes in
injections, the corrective control uk may also include changes to network topology such as line switching
or circuit breaker actions. These changes are captured in new power flow equations fk. While f̃k in (12.16)
is determined only by the contingency, e.g., a line or generator outage, fk may include topology changes as
part of the corrective control. The operational constraints, modeled by gk, are generally different from the
pre-contingency constraints g and the emergency constraints g̃k immediately after contingency k. Besides
constraints such as voltage and line limits under control uk, gk may also include constraints due to capacity
reserves (see Chapters 21.1–21.4). The corrective control uk and the resulting network state xk therefore
must satisfy

fk (uk,gk) = 0, gk (uk,xk)  0, k = 1, . . . ,K (12.17a)

Often the corrective control uk is constrained to be close to the base control u0, e.g., because of limited
ramp rates rk of large generators or loads:

kuk�u0k  rk, k = 1, . . . ,K (12.17b)
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Then a corrective SCOPF takes the form

min
(uk,xk, k�0)

Â
k�0

wk ck (uk,xk) s.t. (12.15)(12.17)

where ck are costs that can depend on the contingency and wk � 0 are nonnegative weights.

This corrective approach ignores the emergency constraints (12.16) and assumes the system will ride
through the small delay between the time a contingency occurs and when the corrective control uk takes
effect. This allows more flexibility in the base control u0 and lowers the cost of normal operation. A
more secure and potentially more costly approach will impose both the emergency constraints as well as
constraints on the corrective control:

min
(uk,xk, x̃k+1, k�0)

Â
k�0

wk ck (uk,xk) subject to (12.15)(12.16)(12.17)

Security constrained OPF are used in both control and market applications. We focus in the next few
chapters on the control and optimization aspect of OPF. Market operation is described in Part IV of this
book.

12.6 Bibliography

There are many excellent texts on various aspects of power system operations in much more detail than this
book, e.g., [1, 3, 2]. Automatic generation control that encompasses voltage control and load frequency
control is discussed in detail in e.g. [1, Chapter 11], [120].

12.7 Problems

Exercise 12.1 (Primary frequency control). Proof Theorem 12.1.

Exercise 12.2 (Secondary frequency control). Proof Theorem 12.2.

Exercise 12.3 (Optimality of primary frequency control). Formulate underlying optimization problem
solved by primary frequency control (c.f. Changhong2014TAC).

Exercise 12.4 (Optimality of secondary frequency control). Formulate underlying optimization problem
solved by secondary frequency control (c.f. LinaCZ paper).



Chapter 13

Optimal power flow

An optimal power flow (OPF) problem is a constrained optimization that takes the form

min
u,x

c(u,x) subject to f (u,x) = 0, g(u,x) 0

The cost function c may represent generation cost, voltage deviation, power loss, or user disutility. The
variable u collects control decisions such as generator commitment, generation setpoints, transformer taps,
capacitor switch status, electric vehicle charging levels, thermostatic settings, or inverter reactive power.
The variable x collects network state such as voltage levels, line currents, or power flows. The constraint
functions f ,g describe current or power balance, generation or consumption limits, voltage or line limits,
and stability and security constraints, as well as other operational requirements. OPF is a fundamental
problem because it underlies numerous power system operation and planning applications.

In this chapter we formulate OPF generically using the device and network models studied in Parts I
and II of the book. In Chapter 13.1 we describe different device models and the resulting optimization
variables and formulate OPF in the bus injection model. In Chapter 13.2 we formulate OPF in the branch
flow model and show that it is equivalent to OPF in the bus injection model. We have seen in Chapter 12
the application of OPF to transmission system applications such as unit commitment, economic dispatch
and state estimation. In Chapter 13.3 we present example applications in distribution systems. We show
in Chapter 13.4 that OPF is NP-hard. We describe in Chapter 11.5 optimization algorithms that are often
used for solving OPF problems and in Chapter 13.5 techniques for scaling OPF solutions.

13.1 Bus injection model

In Chapter 13.1.1 we describe how to represent different devices in terms of their terminal voltage and
power injection (Vj,s j). The interaction of these terminal variables is described by power flow equations.
Different power flow equations lead to different OPF formulations with different computational properties.
We first formulate in Chapter 13.1.2 OPF in the bus injection model for single-phase networks and then
express it in Chapter 13.1.3 as a standard quadratically constrained quadratic program. Finally we extend
in Chapters 13.1.4–13.1.6 these device models and OPF formulations from single-phase to three-phase
networks.

546
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13.1.1 Single-phase devices

For simplicity we will assume voltages are defined with respect to the ground and every single-phase
device is connected between its terminal and the ground. We will model the devices we encounter by one
of the following:

1. Voltage source j: An ideal voltage source j fixes its voltage Vj 2 C if it is uncontrollable and it
adjusts Vj if it is controllable. Its current and power injections

�
I j,s j

�
are then determined by the

interaction with other devices through the network equation I = YV or power flow balance.

2. Current source j: An ideal current source fixes its current I j 2 C if it is uncontrollable and it
adjusts I j if it is controllable. Its terminal voltage and power injection

�
Vj,s j

�
are then determined

through network equations. An example of current source (load) is an electric vehicle charger whose
charging current is controllable.

3. Power source j: An ideal power source fixes its power injection s j 2 C if it is uncontrollable and
adjusts s j if it is controllable. Its voltage and current

�
Vj, I j

�
are then determined through network

equations.

4. Impedance j: An impedance z j fixes the relationship between its voltage and current Vj = �z jI j
where the negative sign indicates that I j is defined in the direction of ground-to-terminal.

The bus injection model focuses on the terminal voltages and power injections
�
Vj,s j

�
of these devices

and describe their interaction over a network through power flow equations. We now formulate OPF for
single-phase systems.

13.1.2 Single-phase OPF

Consider a single-phase network modeled as an undirected graph G := (N,E) where there are N +1 buses
j 2 N and M lines in E. Each line ( j,k) 2 E is characterized by admittances

⇣
ys

jk,y
m
jk,y

m
k j

⌘
2 C

3. We now
explain the variables, power flow equations, cost function, and constraints that define an OPF problem.
As we will see the OPF formulation (13.5) below does not require assumption C4.1 that ys

jk = ys
k j. It can

therefore accommodate single-phase transformers that have complex turns ratios.

Simple OPF. Without loss of generality we first make the following assumptions and present a simplest
OPF formulation:

1. The OPF involves only voltage sources and power sources.

2. There is exactly one single-phase device (voltage or power source) at each bus j. We will then
interchangeably refer to j as a bus or a device.

We will explain below how to relax these assumptions. We now describe the optimization variable, cost
function, and constraints that define a simple OPF.
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Under the assumptions above, associated with each bus j is its bus (nodal) voltage Vj and power
injection s j. The vectors V := (Vj, j 2 N) and s := (s j, j 2 N) are the optimization variables. The cost
function C0(V,s) may represent the cost of generation (e.g. in economic dispatch), estimation error (e.g.
in state estimation), line loss (e.g. in volt/var control in distribution systems), and user disutility (e.g., in
demand response). For instance to minimize a weighted sum of real power generations we can use

C0(V,s) := Â
j:gens

c j Re(s j)

To minimize the total real power loss over the network we can use

C0(V,s) := Â
j

Re
�
s j
�

There are two type constraints on (V,s). The first is power flow equations, the complex form of which
is derived in Chapter 4.2 as follows. The sending-end line currents from buses j to k in terms of V and
that from buses k to j are given in (4.1a) and reproduced here:

I jk(V ) = ys
jk(Vj�Vk) + ym

jk Vj, Ik j(V ) = ys
k j(Vk�Vj) + ym

k j Vk, ( j,k) 2 E (13.1)

The sending-end complex power flow from buses j to k and that from buses k to j are respectively (from
(4.2)):

S jk(V ) := VjIHjk(V ) =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2, ( j,k) 2 E (13.2a)

Sk j(V ) := VkIHk j(V ) =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 ( j,k) 2 E (13.2b)

The bus injection model in complex form is therefore (from (4.20a)):

s j = Â
k: j⇠k

S jk(V ) := Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N (13.3)

where ym
j j := Âk: j⇠k ym

jk are the total shunt admittances incident on buses j. Instead of the complex form
(13.3), we can also use the polar form or the Cartesian form of power flow equations.

The second type of constraints on (V,s) is operational constraints. We will consider only three con-
straints:

1. Injection limits: These can represent generation or load capacity limits and take the form:

smin
j  s j  smax

j , j 2 N (13.4a)

where smin
j , smax

j 2 C are given bounds on the injections at buses j.

2. Voltage limits: These are limits on voltage magnitudes:

vmin
j  |Vj|2  vmax

j , j 2 N (13.4b)

where vmin
j , vmax

j 2 R are given lower and upper bounds on the squared voltage magnitudes. We
assume v j > 0 to avoid triviality.
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3. Line limits: Thermal limits can be expressed in terms of line currents
�
I jk(V ), Ik j(V )

�
in (13.1):

���ys
jk(Vj�Vk) + ym

jk Vj

���
2
 `max

jk ,
���ys

k j(Vk�Vj) + ym
k j Vk

���
2
 `max

k j , ( j,k) 2 E (13.4c)

which are quadratic inequalities in V .

Alternatively line limits can be expressed in terms of complex line power:

Smin
jk  S jk(V )  Smax

jk , Smin
k j  Sk j(V )  Smax

k j , ( j,k) 2 E

or in terms of apparent power:

|S jk(V )|  Smax
jk , |Sk j(V )|  Smax

k j , ( j,k) 2 E

where
�
S jk(V ),Sk j(V )

�
are given by (13.2). The limits on apparent power can be expressed in terms

of a degree four polynomial in V which can be converted into quadratic constraints with additional
variables (see Exercise 13.7).

Depending on the application there can be many more constraints, e.g., stability and security constraints,
ramp limits, limits on battery state of charge and charging rates. For illustration purpose we will mostly
restrict ourselves to these three types of constraints.

A simple OPF problem in the bus injection model is then

min
(V,s)

C0(V,s) s.t. (13.3)(13.4) (13.5)

Since the constraints (13.3)(13.4c) do not require assumption C4.1 that ys
jk = ys

k j, the OPF formulation
(13.5) can accommodate single-phase transformers that have complex turns ratios.

Remark 13.1 (Uncontrollable parameters and reference voltage). This is a general formulation that allows
the power injection s j and voltages Vj at every bus j to be optimization variables. If there is practically
no bound on the injection at bus j then smin

j := �•� i• or smax
j := • + i• which removes the lower or

upper bound on the function s j(V ) of V . On the other hand the inequality constraints also allow the case
where a quantity is not an optimization variable but a parameter, by setting smin

j = smax
j to the specified

value. For instance s j(V ) = smin
j = smax

j may represent a given uncontrollable constant-power load or a
given renewable generation. For the slack bus 0, unless otherwise specified, we always assume V0 := 1\0�
pu so that vmin

0 = vmax
0 = 1 and smin

0 =�•� i•, smax
0 = •+ i•. Therefore we sometimes replace j 2 N in

(13.3)(13.4) by j 2 N.

Other devices. Single-phase devices other than voltage and power sources can also be included in the
OPF formulation. For instance an electric vehicle charger can be modeled by a current source. If it is
controllable then its current I j is an additional optimization variable and it imposes a quadratic equality
constraint on (Vj,s j, I j):

s j = VjIHj



550 Draft: EE 135 Notes April 30, 2024

If the current source is uncontrollable with a fixed I j, then the constraint above is a linear constraint on
(Vj,s j). An impedance z j introduces a quadratic equality constraint on (Vj,s j):

s j =

��Vj
��2

zHj

A nodal admittance y j, such as a capacitor tap, can be incorporated by including the the variable y j and
quadratic equality constraint on (Vj,s j,y j):

s j = yHj
��Vj
��2

We assume in the OPF formulation (13.5) that each bus j has a single device with nodal variable�
Vj,s j

�
. If multiple devices are connected to bus j in parallel with power injections s jk, k = 1, . . . ,Kj, they

introduce additional variables
�
s jk,k = 1, . . . ,Kj

�
and impose the linear constraint

s j = Â
k

s jk

Hence other devices can be incorporated and they impose a local equality constraint at each bus j.
If the devices at bus j are controllable, an additional optimization variable u j (e.g., I j of a controllable
current source) will be introduced and the local constraint is of the form

f j
�
u j,Vj,s j

�
= 0, j 2 N (13.6a)

Otherwise, they do not introduce any additional variable at bus j (e.g., impedance z j) but only a local
constraint of the form f j(Vj,s j) = 0 which can be considered a special case of (13.6a). When an additional
optimization variable u j is introduced, there may also be an operational constraint on u j of the form

g j
�
u j
�
 0, j 2 N (13.6b)

This constraint is vacuous if no u j is introduced.

Most applications indeed involve other variables in addition to (Vj,s j). For example, the unit com-
mitment problem in Chapter 12.2 includes binary variables to indicate if a unit will be on or off. In
distributed energy resource optimization, battery charging rates and their states of charge as well as the
temperature setpoint of a thermostat may be additional variables. In volt/var control that optimizes over
the reactive power output of an inverter given its real power input, the reactive power needs to satisfy a
sector constraint. For single-phase networks, however, we will focus on the simple OPF (13.5) and study
its computational properties. In particular we will omit variables u j and the associated local constraints
(13.6).

OPF in terms of V only. We can treat the power flow equation (13.3) as defining s j(V ) as a function of
V :

s j(V ) = Â
k: j⇠k

S jk(V ) := Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N (13.7)
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where ym
j j := Âk: j⇠k ym

jk are the total shunt admittances incident on buses j. Using (13.1)(13.2)(13.7)
for single-phase networks, we can express powers and currents

�
s j,S jk, I jk

�
in terms of voltages V and

formulate OPF as an optimization over V only.

For instance the cost function to minimize a weighted sum of real power generations is:

C0(V ) := Â
j:gens

c j Re(s j(V )) = Â
j:gens

c j Re

 

Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2

!

The cost function to minimize the total real power loss over the network is:

C0(V ) := Â
j

Re
�
s j(V )

�
= Â

j
Re

 

Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2

!

The total real power loss equals the total thermal (r|I|2) loss in the network lines if line shunt admittances
are reactive, i.e., if ym

jk and ym
k j are pure imaginary:

C0(V ) := Â
( j,k)2E

r jk |Is
jk(V )|2

where r jk := Re
⇣

zs
jk

⌘
= Re

✓⇣
ys

jk

⌘�1
◆

is the series resistance of the line and Is
jk(V ) := ys

jk(Vj�Vk) is

the current through the series impedance of the line. All these costs are quadratic functions of V (Exercise
13.6).

For operational constraints, the voltage limits (13.4b) and the line limits (13.4c) are already quadratic
inequalities in V . We can use (13.7) to express the injection limits smin

j  s j(V )  smax
j also as quadratic

inequalities in V :

smin
j  Â

k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2  smax

j , j 2 N (13.8)

If we use the polar form (4.22) BIM then the injection limits become:

pmin
j 

 
N

Â
k=0

g jk

!
|Vj|2 � Â

k 6= j
|Vj||Vk|

�
g jk cosq jk�b jk sinq jk

�
 pmax

j , j 2 N

pmin
j 

 
N

Â
k=0

b jk

!
|Vj|2 � Â

k 6= j
|Vj||Vk|

�
b jk cosq jk +g jk sinq jk

�
 qmax

j , j 2 N

For notational simplicity only, we will mostly use the complex form (13.8) as injection limits.

The simple OPF (13.5) can be equivalently formulated in terms of V only:

min
V

C0(V ) s.t. (13.4b)(13.4c)(13.8) (13.9)

As mentioned before, this formulation does not require assumption C4.1 that ys
jk = ys

k j and hence can
accommodate single-phase transformers that have complex turns ratios.
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13.1.3 OPF as QCQP

As we have seen above the constraints in OPF (13.9) are quadratic in V . We now explain how to express
(13.9) as a quadratically constrained quadratic program (QCQP).

QCQP. A QCQP is the following problem:

min
x2Cn

xHC0x (13.10a)

s.t. xHClx  bl, l = 1, . . . ,L (13.10b)

where x 2Cn is a vector, Cl 2 Sn for l = 0, . . . ,L, are Hermitian matrices so that xHClx are real values, and
bl 2R are given scalars. If Cl , l = 0, . . . ,L, are positive semidefinite (psd) then (13.10) is a convex QCQP.
Otherwise it is generally nonconvex. If xopt is optimal for (13.10), so is �xopt.

The inequality constraints (13.10b) can include equality constraints (a = b, a b, b a). Sometimes
equality constraints are specified explicitly as in

min
x2Cn

xHC0x

s.t. xHClx  bl, l = 1, . . . ,L
xHC̃lx = b̃l, l = 1, . . . , L̃

Remark 13.2 (Real QCQP). In computing a solution of (13.10), the QCQP is first converted into a prob-
lem in the real domain (we study common algorithms for solving OPF in Chapter 11.5). Indeed the
complex QCQP (13.10) is equivalent to the following QCQP in the real domain of twice the dimension
(Exercise 13.4):

min
y2R2n

yTD0y s.t. yTDly  bl, l = 1, . . . ,L

where

y :=


Re(x)
Im(x)

�
, Dl :=


Re(Cl) �Im(Cl)
Im(Cl) Re(Cl)

�
, l = 0,1, . . . ,L

The problem (13.10) is called a homogeneous QCQP because each term, called a monomial, in the
polynomial xHClx is of degree 2. An inhomogeneous QCQP contains monomials with degree 1 and takes
the form

min
x2Cn

xHC0x +
⇣

cH0 x+ xHc0

⌘
(13.11a)

s.t. xHClx +
⇣

cHl x+ xHcl

⌘
 bl, l = 1, . . . ,L (13.11b)

Note that
�
cHl x+ xHcl

�
are real numbers. This problem can be homogenized by introducing a scalar

complex variable t 2 C. The idea can be illustrated using a scalar complex variable x 2 C. The following
characterizations are equivalent:

|x|2 +
⇣

cHx+ xHc
⌘
 b () |x+ ct|2 � |c|2|t|2  b, |t|2 = 1
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The second characterization with t consists of a homogeneous quadratic equality and inequality in (x, t).
A solution for t is t = eiq for any q 2 R and hence

|x+ ct|2 � |c|2|t|2 = |x|2 +
⇣

xHceiq + cHe�iq x
⌘

Therefore these two characterizations are equivalent in that, if (x, t) 2 C
2 satisfies the second character-

ization, then their product xeiq satisfies the first if t = eiq . The extension of this idea to vector variable
x2Cn can be used to homogenize (13.11). Consider the following homogeneous QCQP with equality and
inequality constraints:

min
x2Cn, t2C

⇥
xH tH

⇤C0 c0
cH0 0

�
x
t

�
(13.12a)

s.t.
⇥
xH tH

⇤Cl cl
cHl 0

�
x
t

�
 bl, l = 1, . . . ,L (13.12b)

⇥
xH tH

⇤0 0
0 1

�
x
t

�
= 1 (13.12c)

Problem (13.12) is equivalent to (13.11) in the sense that, if (xopt, topt) 2 C
n+1 is optimal for (13.12), then

their product xopttopt = xopteiq opt
is optimal for (13.11) when topt = eiq opt

.

We will hence study, without loss of generality, homogeneous QCQP (13.10) with inequality con-
straints.

Remark 13.3 (Real QCQP). If the variable x is in R
n instead of C

n and Cl are n⇥ n real symmetric
matrices, l = 0, . . . ,L, then (13.10) is a real homogeneous QCQP:

min
x2Rn

xTC0x s.t. xTClx  bl, l = 1, . . . ,L

A real inhomogeneous QCQP

min
x2Rn

xTC0x +
⇣

cT0 x+ xTc0

⌘

s.t. xTClx +
⇣

cTl x+ xTcl

⌘
 bl, l = 1, . . . ,L

is equivalent to the following real homogeneous QCQP

min
x2Rn, t2R

⇥
xT t

⇤C0 c0
cT0 0

�
x
t

�

s.t.
⇥
xT t

⇤Cl cl
cTl 0

�
x
t

�
 bl, l = 1, . . . ,L

⇥
xT t

⇤0 0
0 1

�
x
t

�
= 1

in that, if (xopt, topt) 2Rn+1 is optimal for the homogeneous QCQP, then xopttopt is optimal for the original
nonhomogeneous QCPQ where xopttopt = xopt if topt = 1 and xopttopt =�xopt if topt =�1.



554 Draft: EE 135 Notes April 30, 2024

Remark 13.4 (Linear and bilinear cost or constraints). For any l � 0, Cl = 0 corresponds to a linear cost or
constraint. It can be homogenized in exactly the same way above, i.e., (13.12) allows any of the matrices
Cl to be zero. For example, in the scalar case n = 1, a linear constraint is homogenized through

cHx + xHc  b () cHxtH + cxHt  b, |t|2 = 1 (13.13a)

As before, if (x, t) is a solution to the second inequality then xt is a solution to the first inequality. Note
that the two linear terms must be complex conjugates of each other so that they sum to a real number. For
a linear inequality dHx b where b := br + ibi is complex, we can rewrite it as two real inequalities:

1
2

⇣
dHx+ xHd

⌘
 br,

1
2i

⇣
dHx� xHd

⌘
 bi (13.13b)

The first inequality takes the form of (13.13a) with c := d/2. The second inequality takes the form of
(13.13a) with c :=�d/2i.

A block bilinear term of the form xHCy can be homogenized as follows. For any variables (x,y) 2C
2n

and any matrices C,D 2 C
n⇥n

xHCy + yHDx =
⇥
xH yH

⇤0 C
D 0

�
x
y

�
(13.14)

Note that C and D may not be Hermitian of each other so that the product xHCy+yHDx may be a complex
number. Its real and imaginary parts can be written as quadratic forms of (x,y) in terms of the following
Hermtian matrices respectively:

F :=
1
2


0 C +DH

CH +D 0

�
, Y :=

1
2i


0 C�DH

�CH +D 0

�

We emphasize that we convert QCQPs to their homogenized form mainly so that we can focus only
on homogeneous QCQP in our study of structural properties. In computation, one may not convert an
inhomogeneous constraint, especially a linear constraint, into a homogeneous quadratic constraint.

Example 13.1 (Polynomial cost or constraints). A polynomial can be expressed as a quadratic with aux-
iliary variables. Write the following as quadratic constraints:

1.
�
|Vj|2�1

�2  e .

2. a0x3 +a1x2 +a2x a with ai,x 2 C.

Solution.

1. We have
�
|Vj|2�1

�2  e if and only if there exist t j 2 C such that
�
Vj, t j

�
satisfies

��t j�1
��2  e, t j = |Vj|2

which are quadratic equality and inequality constraints that can be homogenized as discussed above.
Note that t j = V 2

j is not a quadratic form when
�
Vj, t j

�
are complex.
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2. Let x =: y + iz with y,z 2 R. First convert the constraint into two real polynomial constraints in y
and z, each of the form

Â
(i, j):i+ j=3

bi jyiz j + Â
(i, j):i+ j=2

ci jyiz j + Â
(i, j):i+ j=1

di jyiz j  b

for some real coefficients bi j,ci j,di j and real b . To write this as a quadratic constraint in (y,z) 2R2,
introduce auxiliary variables t = y2, u = z2. Then write y3 = ty, y2z = tz, yz2 = yu, z3 = uz. These
quadratic expressions can then be homogenized as discussed above.

OPF as QCQP. We now assume the cost function C0(V ) := VHC0V is a quadratic form in V for some
positive semidefinite matrix C0. We can then express OPF (13.9) as a QCQP, by deriving the cost matrices
Cl underlying the quadratic constraints (13.4b)(13.4c)(13.8).

1. Injection limits: To express the injection s j in (13.8) as a quadratic form, use I = YV to write

s j = Vj IHj =
⇣

eHj V
⌘⇣

eHj I
⌘H

= eHj VVHYHe j

where e j is the (N +1)-dimensional vector with 1 in the jth entry and 0 elsewhere. Since tr(AB) =
tr(BA), we have1

s j = tr
⇣

eHj VVHYHe j

⌘
= tr

⇣⇣
YHe jeHj

⌘
VVH

⌘
=: VHYH

j V

where Yj := e jeHj Y is an (N + 1)⇥ (N + 1) matrix with its jth row equal to the jth row of the
admittance matrix Y and all other rows equal to the zero vector. Yj is not Hermitian so that VHYH

j V
is in general a complex number. Its real and imaginary parts can be expressed in terms of the
Hermitian and skew Hermitian components of YH

j defined as:

F j :=
1
2

⇣
YH

j +Yj

⌘
and Y j :=

1
2i

⇣
YH

j �Yj

⌘

Then F j and Y j are Hermitian matrices and (Exercise 13.2)

Re(s j) = VHF jV and Im(s j) = VHY jV

They will be upper and lower bounded by

pmin
j := Re smin

j and pmax
j := Re smax

j

qmin
j := Im smin

j and qmax
j := Im smax

j

These quantities will be used to rewrite below OPF as a standard QCQP of the form (13.10).
1The inner product of two complex matrices is defined to be A · B := tr(AHB) = Âi, j Ai jBi j and is not equal to tr(AB) =

Âi, j Ai jB ji unless A is Hermitian; see Exercise 13.1.
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2. Voltage limits: Let Jj := e jeHj denote the Hermitian matrix with a single 1 in the ( j, j)th entry and
0 everywhere else. Then squared voltage magnitude |Vj|2 = VHJjV is a quadratic form. It will be
lower and upper bounded by vmin

j and vmax
j in (13.4b) respectively.

3. Line limits: For the first set of constraints in (13.4c), use (13.1) to write

I jk = ys
jk(Vj�Vk) + ym

jkVj =
⇣

ys
jk(e j� ek)

T + ym
jk eTj

⌘
V

Hence |I jk|2 = VHŶjkV , which will be upper bounded by `max
jk , where

Ŷjk :=
⇣

ys
jk(e j� ek)

T + ym
jk eTj

⌘H⇣
ys

jk(e j� ek)
T + ym

jk eTj
⌘

The matrix Ŷjk is Hermitian and hence VHŶjkV is indeed a real number. Similarly for bounds on
|Ik j|2.

Putting all this together, OPF (13.9) can be written as a standard QCQP

OPF : min
V2CN+1

VHC0V (13.15a)

s.t. pmin
j  VHF jV  pmax

j , j 2 N (13.15b)

qmin
j  VHY jV  qmax

j , j 2 N (13.15c)

vmin
j  VHJjV  vmax

j , j 2 N (13.15d)

VHŶjkV  `max
jk , ( j,k) 2 E (13.15e)

VHŶk jV  `max
k j , ( j,k) 2 E (13.15f)

This form will be used to derive a convex relaxation in Chapter 14.2. As mentioned above the OPF
formulation here does not require assumption C4.1 that ys

jk = ys
k j, and hence can accommodate single-

phase transformers that have complex turns ratios.

Instead of (13.15f), line limits are sometimes expressed in terms of line power flows. The next example
shows how to express such limits on real and reactive line flows as quadratic constraints. See Exercise 13.7
on how to express limits on apparent powers |S jk(V )|, |Sk j(V )| as inhomogeneous quadratic constraints.

Example 13.2 (Quadratic line power limit). Use (13.2) to write the line limit

Smin
jk  S jk(V ) Smax

jk , Smin
k j  Sk j(V ) Smax

k j , ( j,k) 2 E (13.16)

in terms of quadratic forms in V .

Solution. We will rewrite the first constraint in (13.16) on S jk(V ) as a quadratic constraint; the constraint
on Sk j(V ) can be similarly converted. Using the expression of I jk, S jk(V ) in quadratic form is:

S jk(V ) = VjIHjk =
⇣

eHj V
⌘⇣

ys
jk(e j� ek)

TV + ym
jk eTj V

⌘H

= eHj
⇣

VVH

⌘✓⇣
ys

jk + ym
jk

⌘H
e j �

⇣
ys

jk

⌘H
ek

◆

= tr
⇣

Ỹjk

⇣
VVH

⌘⌘
=: VHỸjkV
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where

Ỹjk :=
✓⇣

ys
jk + ym

jk

⌘H
e j �

⇣
ys

jk

⌘H
ek

◆
eHj (13.17a)

Ỹjk is not Hermitian and hence VHỸjkV is a complex number. Define the Hermitian and skewed Hermitian
components of Ỹjk:

F̃ jk :=
1
2

⇣
ỸH

jk + Ỹjk

⌘
and Ỹ jk :=

1
2i

⇣
ỸH

jk� Ỹjk

⌘
(13.17b)

so that

Re
�
S jk
�

= VHF̃ jkV and Im
�
S jk
�

= VHỸ jkV (13.17c)

Hence the constraint Smin
jk  S jk(V ) Smax

jk becomes a pair of quadratic constraints:

Re
⇣

Smin
jk

⌘
 VHF̃ jkV  Re

⇣
Smax

jk

⌘

Im
⇣

Smin
jk

⌘
 VHỸ jkV  Im

⇣
Smax

jk

⌘

We can also write down the entries of matrix Ỹjk explicitly using (4.2):

S jk(V ) := VjIHjk =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2

=
⇣

ys
jk + ym

jk

⌘H
|Vj|2 +

⇣
�ys

jk

⌘H
VjVH

k =: VHỸ s jkV

where, since VHỸjkV = Âm,n [Ỹjk]mnVH
m Vn,

⇥
Ỹjk
⇤

mn :=

8
>>><

>>>:

⇣
ys

jk + ym
jk

⌘H
m = n = j

⇣
�ys

jk

⌘H
m = k, n = j

0 otherwise

13.1.4 Three-phase devices

A key assumption underlying our OPF formulation is that all controllable devices are the single-phase
devices that make up three-phase devices. Therefore internal variables u j are optimization variables (i.e.,
VY/D

j for voltage sources, IY/D
j for current sources,

⇣
sY/D

j , ID
j

⌘
for power sources). Their values deter-

mine the terminal variables (Vj, I j,s j) through conversion rules. These terminal variables interact over the
network through either the current balance equation I = YV or the power balance equation, but they are
typically not directly controllable. In this chapter we mostly use the power balance equation to relate the
terminal voltages and power injections (Vj,s j). We therefore use the conversion rules (and external mod-
els of impedances) of Chapter 7.3 to relate an internal variable u j of a three-phase device j to its terminal
voltage and power (Vj,s j).
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1. Voltage source u j := VY/D
j : An ideal voltage source introduces its internal voltage VY/D

j 2 C
3 as an

additional optimization variable and a linear constraint to relate it to the terminal voltage Vj (from
the conversion rules (7.8) and (7.9a)):

Y configuration: Vj = VY
j + gY

j 1 (13.18a)

D configuration: GVj = V D
j (13.18b)

We assume here that the neutral voltage gY
j := V n

j of a Y -configured device is a given parameter.
For example, gY

j = 0 if the neutral of the Y -configured device directly grounded and all voltages are
defined with respect to the ground.

2. Current source u j := IY/D
j : An ideal current source introduces its internal current IY/D

j 2 C
3 as an

additional optimization variable and a quadratic constraint to relate IY/D
j to the terminal variables�

Vj,s j
�

(from the conversion rules (7.8) and (7.10c)):

Y configuration: s j = �diag
⇣

VjIYH
j

⌘
(13.18c)

D configuration: s j = �diag
⇣

VjIDH
j G

⌘
(13.18d)

3. Power source u j :=
⇣

sY/D
j , IY/D

j

⌘
: For an ideal power source, we assume that the internal power and

current
⇣

sY/D
j , IY/D

j

⌘
are additional optimization variables. We assume the neutral voltage gY

j := V n
j

of a Y -configured power source is a given parameter. They are related to terminal voltage and power�
Vj,s j

�
according to the conversion rules (7.8) and (7.10c):

Y configuration: s j = �diag
⇣

VjIYH
j

⌘
, s j = �sY

j � gY
j IY

j (13.18e)

D configuration: s j = �diag
⇣

VjIDH
j G

⌘
, sD

j = diag
⇣

GVjIDH
j

⌘
(13.18f)

For a Y -configured power source, if gY
j = 0, then additional optimization variable is sY

j and the
conversion rule reduces to

Y configuration: s j = �sY
j

4. Impedance
⇣

zY
j ,gY

j

⌘
or zD

j : An impedance, if not controllable, does not introduce addition optimiza-
tion variable but imposes an additional constraint on the terminal variables (Vj,s j) (from (7.19a)
and Theorem 7.4):

Y configuration: s j = �diag
⇣

Vj
�
Vj� gY

j 1
�H yYH

j

⌘
(13.18g)

D configuration: s j = �diag
⇣

VjVH

j Y DH
j

⌘
(13.18h)

where yY/D
j :=

⇣
zY/D

j

⌘�1
, Y D

j := GTyDG. The neutral voltage gY
j := V n

j is usually a fixed parameter.
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The conversion rule (13.18) takes the form f Y/D
j
�
Vj,s j,u j

�
= 0. Note the structural similarity between Y

and D configurations when gY
j := V n

j = 0. Once an optimal solution
⇣

V opt
j ,sopt

j ,uopt
j

⌘
of an OPF problem is

chosen, other internal variables for each device j can be derived (possibly requiring additional information
e.g. b j of an ideal voltage source).

Remark 13.5 (Implicit optimization over (g j,b j)). The constraint (13.18b) for a D-configured device
does not determined the terminal voltage Vj uniquely and therefore an optimal Vj also determines an
optimal zero-sequence voltage gD

j := 1
31TVj. If gD

j is given instead, then (13.18b) should be replaced by
Vj = G†V D

j + g j1. Similarly for other devices, e.g., D-configured impedance.

Optimization over ID
j in current source and power source implicitly chooses an optimal zero-sequence

current b j := 1
31Tb D

j . If b j is given then it imposes an additional constraint through the conversion rule
ID

j =�1
3GI j +b j1 (and express I j in terms of

�
Vj,s j

�
).

13.1.5 Three-phase OPF

We still assume without loss of generality that there is a single three-phase device connected to each bus j.
We now generalize the single-phase OPF formulation (13.5) to the three-phase setting. A key assumption
underlying our formulation is that all controllable devices are the single-phase devices that make up three-
phase devices. A three-phase OPF problem is defined by its optimization variables, its device model with
operational constraints, its network equations and constraints, as well as its cost function. We describe
them in turn.

Optimization variables. There are two types of optimization variables (u,x). The internal variable u :=
(u j, j 2 N) represents controllable quantities of the three-phase devices such as the internal voltage VY/D

j

of a voltage source or the internal power sY/D
j of a power source. The terminal variable x :=

�
Vj,s j, j 2 N

�

represents the terminal voltages and power injections. These variables interact over the network through
either the current balance equation I =YV or the power balance equation, but they are typically not directly
controllable.

Device models. The device models are described in Chapter 13.1.4 with internal variables u j that depend
on the types of devices and their configurations:

1. Voltage source u j := VY/D
j .

2. Current source u j := IY/D
j .

3. Power source u j :=
⇣

sY/D
j , IY/D

j

⌘
.

4. Impedance
⇣

zY
j ,gY

j

⌘
or zD

j .
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These internal variables u j are related to terminal voltages and powers x j :=
�
Vj,s j

�
according to (13.18).

The conversion rule (13.18) is local at each bus j and takes the form f Y/D
j
�
u j,Vj,s j

�
= 0.

The operational constraints on the internal variables u j are:

1. Voltage source u j := VY/D
j :

vY/Dmin
j  diag

⇣
u juHj

⌘
 vY/Dmax

j (13.19a)

2. Current source u j := IY/D
j :

diag
⇣

u juHj
⌘
 `

Y/Dmax
j (13.19b)

3. Power source u j := (u j1,u j2) :=
⇣

sY/D
j , IY/D

j

⌘
:

sY/Dmin
j  u j1  sY/Dmax

j , diag
⇣

u j2 uHj2
⌘
 `

Y/Dmax
j (13.19c)

These constraints are local at each bus j and takes the form gY/D
j
�
u j
�
 0.

Power flow equations and constraints. The power flow equations relate the terminal variables x :=
(V,s) (from (9.12)):

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (13.20)

which directly extend the single-phase equations (13.3). This constraint is global as it couples voltages
and powers (Vj,s j) at all buses j.

The operational constraints on x := (V,s) are the same as (13.4) for single-phase OPF, except that the
variables and their bounds are 3-dimensional vectors, rather than scalars, for three-phase networks:

injection limits: smin
j  s j  smax

j , j 2 N (13.21a)

voltage limits: vmin
j  diag

⇣
VjVH

j

⌘
 vmax

j , j 2 N (13.21b)

line limits: diag
⇣

I jk(V ) IHjk(V )
⌘
 `max

jk , diag
⇣

Ik j(V ) IHk j(V )
⌘
 `max

k j , ( j,k) 2 E (13.21c)

where
�
I jk(V ), Ik j(V )

�
in (13.21c) are given by (8.8a) reproduced here:

I jk(V ) = ys
jk
�
Vj�Vk

�
+ ym

jk Vj, Ik j(V ) = ys
k j
�
Vk�Vj

�
+ ym

k j Vk

The constraint (13.21a) can be due to limits on the busbar to which the three-phase device is connected.
The constraints (13.21a)(13.21b) are local at each bus j but (13.21c) is global.
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Cost function. As for single-phase OPF, the cost function C0(u,x) may represent generation cost, real
power loss, estimation error, voltage deviations, or user disutility, depending on applications. For instance
to minimize the cost of real power generations we can use

C0(u,x) := C0(u,V,s) := Â
gens. j

c j 1TRe
⇣

sY/D
j

⌘

Other example costs include estimation error in state estimation, and user disutility in demand response.

Define the feasible set

V3p := {(u,x) := (u,V,s) | (u,x) satisfies (13.18)(13.19)(13.20)(13.21)} (13.22a)

Then the simple OPF formulation in the three-phase setting is

min
(u,x)

C0(u,x) s.t. (u,x) 2 V3p (13.22b)

Since the constraints (13.20)(13.21c) do not require assumption C9.1 that ys
jk = ys

k j, the OPF formulation
(13.22) can accommodate three-phase transformers whose admittance matrices Y are not block symmetric,
e.g., transformers in DY and Y D configurations.

Remark 13.6 (Uncontrollable parameters). As for single-phase OPF, the formulation (13.22) allows the
case where a quantity is not an optimization variable but a given parameter. For instance a given un-
controllable constant-power load or a given renewable generation at bus j can be represented by setting
sY/D

j = sY/D min
j = sY/D max

j to the specified value.

Structurally the three-phase OPF (13.22) takes the form with x := (V,s):

min
(u,x)

C0(u,x) (13.23a)

s.t. f Y/D
j
�
u j,Vj,s j

�
= 0, gY/D

j
�
u j
�
 0, j 2 N (13.23b)

f (x) = 0, g(x)  0 (13.23c)

where (13.23b) represents the conversion rule (13.18) and operational constraint (13.19) on the internal
variable u, and (13.23c) represents the power flow equation (13.20) and operational constraint (13.21)
on the terminal variable x := (V,s). The local constraints (13.23b) generalize (13.6) from single-phase
systems to three-phase systems.

13.1.6 Three-phase OPF as QCQP

The three-phase OPF (13.22) can be written as a QCQP in (V,u), following the same process for the
single-phase OPF. Specifically we treat the power flow equation (13.20) as defining the terminal powers
s j(V ) as functions of V . This allows us to eliminate s from (13.23), as well as the power flow equation
f (V,s) = 0 in (13.23c).
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Operational constraints as quadratic forms. First we reduce the two constraints in (13.23c) into a
single constraint in V of the form

g(V,s(V ))  0

where g consists of quadratic forms in V . The operational constraints (13.21) on the terminal variables
(V,s) can be converted into quadratic forms in V following the same derivation in Chapter 13.1.3, but
applied to the single-phase equivalent circuit.

1. Injection limits: Let Y 2 C
3(N+1)⇥3(N+1) denote the single-phase equivalent admittance matrix. De-

fine the matrix Y f
j := ef

j efH
j Y where ef

j 2 {0,1}3(N+1) is the unit vector with a single 1 at the ( j,f)th
entry and 0 elsewhere. Define the Hermitian and skew Hermitian components of Y fH

j :

Ff
j :=

1
2

⇣
Y fH

j +Y f
j

⌘
and Yf

j :=
1
2i

⇣
Y fH

j �Y f
j

⌘
(13.24a)

Then

pf
j := Re

⇣
sf

j

⌘
= VHFf

j V and qf
j := Im(sf

j ) = VHYf
j V

Then the injection limits become

pf min
j  VHFf

j V  pf max
j , qf min

j  VHYf
j V  qf max

j , j 2 N (13.24b)

2. Voltage limits: Let Jf
j := ef

j

⇣
ef

j

⌘H
denote the 3(N +1)⇥3(N +1) diagonal Hermitian matrix with

a single 1 in the ( jf , jf)th entry and 0 everywhere else. Then terminal voltage limits are

vf min
j  VHJf

j V  vf max
j , j 2 N (13.24c)

3. Line limits: The same derivation as that for single-phase OPF shows that the limit on the sending-end
current If

jk in the phase-a line is (Exercise 13.8)

���If
jk

���
2

:= VH Ŷ f
jk V  `f max

jk , ( j,k) 2 E (13.24d)

where Ŷ f
jk := ỸH

jk Ef Ỹjk is a 3(N +1)⇥3(N +1) matrix and Ỹjk is a 3⇥3(N +1) matrix given by

Ỹjk :=
⇣
(e j� ek)

T⌦ ys
jk + eTj ⌦ ym

jk

⌘

Here e j 2 {0,1}N+1 and ef 2 {0,1}3 are unit vectors of different sizes with a single 1 at the jth
and f th position respectively, Ef := ef efT, and I is the 3⇥ 3 identity matrix. The matrix Ŷjk is

Hermitian and hence VHŶ f
jkV is indeed a real number. Similarly for

���If
k j

���
2
.
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Conversion rules as quadratic forms. Next we reduce the equality constraints f Y/D
j
�
u j,Vj,s j

�
= 0 in

(13.23b) into constraints in (u,V ) of the form

f Y/D
j
�
u j,V,s j(V )

�
= 0, j 2 N

where f Y/D
j consist of quadratic forms in (u j,V ). Here s j(V ) :=

⇣
sa

j(V ),sb
j(V ),sc

j(V )
⌘

and

sf
j (V ) = VH

⇣
Y fH

j

⌘
V = VH

⇣
Ff

j + iYf
j

⌘
V, f 2 {a,b,c}, j 2 N (13.25)

where Y f
j := ef

j efH
j Y and Ff

j and Yf
j are defined in (13.24a). This transforms the original local constraints

into global constraints since the function s j(V ) depends on Vk at all neighbors k of j.

Let

ea := (1,0,0), eb := (0,1,0), ec := (0,0,1), Ef := ef efH 2 C
3⇥3 (13.26a)

e j 2 {0,1}N+1, ef
j 2 {0,1}3(N+1), f 2 {a,b,c} (13.26b)

where e j has a single 1 in the jth position and ef
j has a single 1 in the jf th position. Then Vj 2 C

3 can be
written in terms of V 2 C

3(N+1) as follows:

Vj =
�
e j⌦ I

�HV =
⇣

eHj ⌦ I

⌘
V, V f

j = efH
j V, f 2 {a,b,c} (13.27)

where I is the identity matrix of size 3.

We now use (13.25)(13.26)(13.27) to convert the conversion rules f Y/D
j in (13.18) into inhomogeneous

quadratic forms in (u j,V ). They can then be homogenized using the identity (13.14) in Remark 13.4.

1. Voltage source u j := VY/D
j : Application of (13.27) to the conversion rules (13.18a) (13.18b) leads to

the following linear constraints in (u j,V ):

Y configuration:
⇣

eHj ⌦ I

⌘
V = u j + gY

j 1 (13.28a)

D configuration: G
⇣

eHj ⌦ I

⌘
V = u j (13.28b)

where gY
j := V n

j is assumed given (e.g., gY
j = 0).

2. Current source u j := IY/D
j : The conversion rules (13.18c)(13.18d) for a current source are equivalent

to the following inhomogeneous quadratic equations in (u j,V ) (Exercise 13.9):

Y configuration: sf
j (V ) = �uHj

⇣
eHj ⌦Ef

⌘
V (13.28c)

D configuration: sf
j (V ) = �uHj

⇣
eHj ⌦ (GEf )

⌘
V (13.28d)

where s j(V ) is given in (13.25) and e j is defined in (13.26b).
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3. Power source u j :=
⇣

sY/D
j , IY/D

j

⌘
: For a Y -configured power source let u j =: (u j1,u j2) where u j1 :=

sY
j and u j2 := IY

j . Then the conversion rule (13.18e) is equivalent to the following inhomogeneous
quadratic equations in (u j,V ) (Exercise 13.10):

Y : sf
j (V ) = �uHj2

⇣
eHj ⌦Ef

⌘
V, s j(V ) = �u j1� gY

j u j2, f 2 {a,b,c} (13.28e)

where s j(V ) is given in (13.25) and gY
j := V n

j is assumed given (e.g., gY
j = 0).

For a D-configured power source let u j =: (u j1,u j2) where u j1 := sD
j and u j2 := ID

j . Then the con-
version rule (13.18f) is equivalent to the following inhomogeneous quadratic equations in (u j,V ):

D : sf
j (V ) = �uHj2

⇣
eHj ⌦ (GEf )

⌘
V, ufj

j1 = uHj2
⇣

eHj ⌦
⇣

Ef G
⌘⌘

V, fj 2 {ab,bc,ca}
(13.28f)

where s j(V ) is given in (13.25).

4. Impedance
⇣

zY
j ,gY

j

⌘
or zD

j : The equality constraints imposed by an impedance
⇣

zY
j ,gY

j

⌘
or zD

j are
equivalent to the following inhomogeneous quadratic equations in V (Exercise 13.11):

Y configuration: sf
j (V ) = VH

⇣⇣
e jeHj

⌘
⌦
⇣

yYH
j Ef

⌘⌘
V � gYH

j

⇣
eHj ⌦

⇣
1HyYH

j Ef
⌘⌘

V

(13.28g)

D configuration: sf
j (V ) = �VH

⇣⇣
e jeHj

⌘
⌦
⇣

Y DH
j Ef

⌘⌘
V (13.28h)

where gY
j := V n

j is assumed given (e.g., gY
j = 0), Y D

j := GTyDG and yD
j :=

⇣
zD

j

⌘�1
.

Note the structural similarity between Y and D configurations when gY
j := V n

j = 0

Three-phase OPF as QCQP. We have thus eliminated the power flow equation f (V,s) = 0 and ex-
pressed the operational constraint g(V,s(V )) 0 and conversion rules f Y/D

j
�
u j,Vj,s j(V )

�
= 0 as quadratic

forms in (u,V ) in (13.23). This shows that (13.23) is equivalent to:

min
(u,V )

C0(u,V,s(V )) (13.29a)

s.t. (13.24) (13.28), gY/D
j
�
u j
�
 0, j 2 N (13.29b)

where s(V ) is given by (13.25) and gY/D
j
�
u j
�
 0 are given in (13.19). All constraints in (13.29b) are

inhomogeneous quadratic constraints which can be homogenized. This will express the problem (13.29)
as a standard QCQP, assuming the cost function C0 can also be expressed as a quadratic form in (u,V ).
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13.2 Branch flow model

The device models are the same as those for the bus injection model and described in Chapter 13.1.1 for
single-phase networks and Chapter 13.1.4 for three-phase networks. OPF in the branch flow model differs
only in the variables and power flow equations.

The branch flow model is most useful for radial networks, both single-phased and three-phased, on
which we will focus. For simplicity we assume through this section:

• zs
jk = zs

k j, or equivalently ys
jk = ys

k j, for every line ( j,k) (assumption C5.1 for single-phase BFM and
assumption C10.1 for three-phase BFM).

• ym
jk = ym

k j = 0 for every line ( j,k) (see Remark 13.8 for the case of nonzero ym
jk, ym

k j). This is a rea-
sonable assumption on distribution lines where ym

jk and ym
k j are typically much smaller in magnitude

than the series admittance ys
jk.

These two assumptions allow us to assume G = (N,E) is directed and includes branch variables in only
one direction. We denote a line in E from bus j to bus k either by ( j,k) 2 E or j! k. It is characterized
by its series impedance z jk := zs

jk. Without loss of generality we take bus 0 as the root of the tree.

13.2.1 Single-phase OPF

Associated with each line ( j,k) are branch variables (` jk,S jk). Let (s,v) := (s j,v j, j 2 N) and (`,S) :=
(` jk,S jk, j! k 2 E). Let x := (s,v,`,S) in R

3(N+1+M) with M = N since G is a tree. In particular we use
the model (5.7) with the down orientation (all lines point away from bus 0), reproduced here:

Â
k: j!k

S jk = Si j� zi j`i j + s j, j 2 N (13.30a)

v j� vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j! k 2 E (13.30b)

v j` jk = |S jk|2, j! k 2 E (13.30c)

where, in (13.30a), bus i := i( j) denotes the unique adjacent node of j on the path from node 0 to node j,
with the understanding that when j = 0 then Si0 := 0 and `i0 := 0. The vector v includes v0 and s includes
s0. The injection, voltage and line limits can be expressed in terms of the BFM variable x:

smin
j  s j  smax

j , vmin
j  v j  vmax

j , ` jk  `max
jk , j 2 N, ( j,k) 2 E (13.30d)

Let the cost function in the branch flow model be C(x). Let the feasible set be

T := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (13.30)} (13.31a)

Then the optimal power flow problem in the branch flow model is:
OPF:

min
x

C(x) subject to x 2 T (13.31b)
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We assume the cost functions C(x) here and C0(V ) in the single-phase OPF problem (13.9) or (13.15) in
the bus injection model represent the same function but in terms of different variables. Since T ⌘ V by
Theorem 5.3, the single-phase OPF problem (13.31) in the branch flow model is equivalent to (13.9) or
(13.15) in the bus injection model.

Remark 13.7 (Current sources and impedances). The model (13.30) includes only voltage and power
sources whose controllable variables are v j and s j respectively. A current source will introduce its cur-
rent I j 2 C as an additional variable and an equality constraint |s j|2 = v j|I j|2 that relate I j to (s j,v j). An
impedance z j will introduce an equality constraint s j = v j/zHj on (s j,v j). If z j is controllable, e.g., rep-
resenting a switched capacitor, then z j is an additional variable. For simplicity we restrict ourselves to
voltage and power sources only.

Remark 13.8 (With shunt admittances). The feasible set T is based on the DistFlow equations (13.30a)–
(13.30c) that assume zero shunt admittances on the lines. Radial networks mostly model distribution
systems where the shunt admittances ym

jk and ym
k j are typically much smaller in magnitude than the series

admittance ys
jk.

An OPF problem that includes line shunts can be based on the power flow model (5.5) that includes
branch variables ` :=

�
` jk,`k j,( j,k) 2 E

�
, S :=

�
S jk,Sk j,( j,k) 2 E

�
in both directions. The feasible set is

Xtree := {x : (s,v,`,S) 2 R
9N+3 | x satisfies (5.5), (13.30d)}

and the OPF problem is:

min
x

C(x) subject to x 2 Xtree

This is studied in Exercise 13.13.

13.2.2 Three-phase OPF

We now extend the single-phase OPF (13.31) to the three-phase setting. We make the same assumptions
ys

jk = ys
k j and ym

jk = ym
k j = 0 as for single-phase OPF. We describe the three-phase optimization variables,

device models, power flow equations, operational constraints, and the cost function that define an OPF
problem. As in BIM, a key assumption underlying our formulation is that all controllable devices are the
single-phase devices that make up three-phase devices. Both BIM and BFM use the same device models
and their operational constraints. Their difference lies in the power flow equations that, for BFM, include
line variables as well.

Optimization variables. There are two types of optimization variables (u,x). The internal variable
u := (u j, j 2 N) represents controllable quantities of the three-phase devices, as in BIM. The variable x
represents both the terminal variables (e.g., a nodal voltage Vj) as well as the line variables (e.g., a line
power S jk). The variables x interact over the network through the power balance equation.

Device models. The device models for three-phase BFM are the same as those for three-phase BIM.
They are described in Chapter 13.1.4 with the operational constraints (13.19) on the internal variables u j,
j 2 N.
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Power flow equations and constraints. Power flow equations relate the following terminal variables
and line variables:

s j 2 C
3, v j 2 S

3
+, Vj 2 C

3, j 2 N

` jk 2 S
3
+, S jk 2 C

3⇥3, Ĩ jk 2 C
3, j! k 2 E

where S
n
+ ✓ C

n⇥n is the set of of n⇥ n complex (Hermitian and) positive semidefinte matrices. Let s :=
(s j, j 2 N),v := (v j, j 2 N), ` := (` jk,( j,k) 2 E), S := (S jk,( j,k) 2 E). Here (s,v,`,S) directly generalize
the corresponding variables in the single-phase model. The voltage phasor V :=

�
Vj, j 2 N

�
is needed to

express the conversion rule (13.18) for three-phase devices and the line current phasor Ĩ :=
�
Ĩ jk, j! k 2 E

�

is introduced for convenience. Let x := (s,v,`,S,V, Ĩ).

The power flow equations we use are (10.5) in Chapter 10.2, reproduced here, augmented with (13.32e):

Â
k: j!k

diag(S jk) = diag
�
Si j� zi j`i j

�
+ s j, j 2 N (13.32a)

v j� vk =
⇣

z jk SHjk +S jkzHjk
⌘
� z jk ` jk zHjk, j! k 2 E (13.32b)


v j S jk
SHjk ` jk

�
⌫ 0, j! k 2 E (13.32c)

rank


v j S jk
SHjk ` jk

�
= 1, j! k 2 E (13.32d)

v j = VjVH

j , ` jk = Ĩ jkĨHjk, S jk = VjĨHjk, j! k 2 E (13.32e)

where bus i := i( j) is the unique parent of bus j in (13.32a). Given matrices
�
v j,` jk,S jk

�
, the vectors�

Vj, Ĩ jk
�
, j 2 N, j! k 2 E, are determined uniquely up to a reference angle. These constraints are global.

Remark 13.9. The equation (13.32e) and (13.32c)(13.32d) are equivalent, and therefore redundant, up to
an arbitrary reference angle. We keep (13.32c)(13.32d) in the three-phase OPF formulation for the purpose
of semidefinite relaxation studied in Chapter 15.

The operational constraints on x are the three-phase version of the (13.30d):

injection limits: smin
j  s j  smax

j , j 2 N (13.33a)

voltage limits: vmin
j  diag

�
v j
�
 vmax

j , j 2 N (13.33b)

line limits: diag
�
` jk
�
 `max

jk , ( j,k) 2 E (13.33c)

The constraint (13.33a) can be due to limits on the busbar to which the three-phase device is connected.
All constraints in (13.33) are local at each bus j or on each line ( j,k).

Cost function. Let C(u,x) denote the cost function. For instance to minimize the thermal loss in the
network we can use

C(u,x) := Â
( j,k)2E

diagT
�
z jk
�

diag
�
` jk
�
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OPF. We assume V0 2 C
3 is given and impose v0 = V0VH

0 . Let the feasible set be

T3p :=
n
(u,x) := (u,s,v,`,S,V, Ĩ) | (u,x) satisfies (13.18)(13.19)(13.32)(13.33),v0 = V0VH

0

o

(13.34a)

Then the three-phase OPF problem is:

min
u,x

C(u,x) subject to (u,x) 2 T3p (13.34b)

By Theorems 10.1 and 10.2, The feasible set T3p of the three-phase OPF (13.34) in BFM is equivalent to
the feasible set V3p of the three-phase OPF (13.22) in BIM. Hence these problems are equivalent, provided
their cost functions C(u,x) and C0(u,x) are the same.

13.3 Applications of OPF

13.4 NP hardness

Since the feasible set V of OPF is generally a nonconvex set, OPF formulated in (??) or (13.15) is a
nonconvex problem and has been shown to be NP-hard.

13.5 Techniques for scalability

Practical OPF problems can be difficult to solve. This can be due to the sheer number of variables and con-
straints relative to available solution time. It can also arise from the nonsmoothness or the nonconvexity of
the objective or constraint functions that often lead to numerical issues. The nonsmoothness or nonconvex-
ity can take different forms, e.g., nonlinear power flow equations, discrete variables, nondifferentiability
of the objective or constraint functions, complementary or disjunctive constraints. All of these features are
embodied in security constrained OPF (SCOPF). Practical solutions for a large-scale optimization prob-
lem require not only the understanding of basic optimization theory, but also the development of many
heuristics tailored to the structure of the specific problem.

In this section we illustrate these computational challenges and some solution techniques through an
SCOPF problem proposed by the US Advanced Research Projects Agency - Energy (ARPA-E) in a multi-
year Grid Optimization (GO) Competition. The GO Competition aims to accelerate the development
of algorithms and software for solving large OPF problems. It was staged as a series of challenges.
Challenge 1, which was conducted over the course of 2019, focused on real-time SCOPF [128]. We
will present some of the techniques used by the top three winners of the GO Challenge 1 in addressing
the scalability, nonconvexity, and nonsmoothness of SCOPF [129, 130, 131]. As we will see effective
treatment of complementarity constraints, efficient contingency screening, and robust parallelization of
computation have proved to be essential in devising a practical solution.

Even though these techniques are introduced for concreteness in the context of large-scale SCOPF,
they are much more widely applicable.
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13.5.1 SCOPF formulation

The detailed SCOPF formulation is described in the official specification [128]. We present a highly
simplified version to illustrate the main algorithmic ideas in [129, 130, 131] to overcome some of the
computational challenges.

Constraints. We start by formulating the constraints of the GO Challenge 1 problem. It can sometimes
be difficult to exactly satisfy equality and inequality constraints in a realistic problem. This can be due to
modeling or numerical errors, not just the lack of computational resources. Energy management systems
in practice however must recommend a decision even when it is impossible to satisfy all constraints of the
model. One way to deal with this is to allow some constraint violations in order to practically eliminate
infeasibility, but penalize them in the objective.

Let k = 0 denote the base case and k = 1, . . . ,K denote contingencies, though we will often refer
to the base case also as contingency k = 0. Let

�
pu

ki,q
u
ki
�

denote uncontrollable loads (or generations)
and (pki,qki) denote controllable generation levels at buses i 2 N in contingencies k � 0. For notational
simplicity we assume without loss of generality that there is exactly one uncontrollable injection and one
controllable generator at each bus i. We impose the standard voltage and generation limits:

vki  |Vki| vki, pi  pki  pi, qi  qki  qi, k � 0, i 2 N (13.35)

where vki  vki, pi  pi, and qi  qi are given constants.

For each line (i, j) 2 E, let
�
Pk,i j,Qk,i j

�
denote the sending-end real and reactive power from buses i

to j and
�
Pk, ji,Qk, ji

�
denote the sending-end line power in the opposite direction in contingencies k � 0.

Instead of exact real and reactive power balance at bus i, we impose

pki � pu
ki = Â

j: j⇠i
Pk,i j + s p+

ki � s p�
ki ,

⇣
s p+

ki ,s p�
ki

⌘
� 0, k � 0, i 2 N (13.36a)

qki � qu
ki = Â

j: j⇠i
Qki + sq+

ki � sq�
ki ,

⇣
sq+

ki ,sq�
ki

⌘
� 0, k � 0, i 2 N (13.36b)

where the nonnegative variables
⇣

s p+
ki ,s p�

ki

⌘
are slack variables for real power violations and

⇣
sq+

ki ,sq�
ki

⌘

are slack variables for reactive power violations. These slack variables will be penalized in the objective
as we will see below.

With a slight abuse of notation we use (Pk,i j(qk, |Vk|),Qk,i j(qk, |Vk|)) to denote the line power as func-
tions of voltage magnitudes and angles in contingencies k � 0 defined by:

Pk,i j(qk, |Vk|) =
�
gs

i j +gm
i j
�
|Vki|2 � |Vki||Vk j|

�
gs

i j cos(qki�qk j) � bs
i j sin(qki�qk j)

�
(13.37a)

Qk,i j(qk, |Vk|) =
�
bs

i j +bm
i j
�
|Vki|2 � |Vki||Vk j|

�
bs

i j cos(qki�qk j) + gs
i j sin(qki�qk j)

�
(13.37b)

where
⇣

gs
i j,b

s
i j

⌘
and

⇣
gm

i j,b
m
i j

⌘
are series and shunt admittances of line (i, j). Similarly for

�
Pk, ji(qk, |Vk| ,

Qk, ji(qk, |Vk|)
�

in the opposite direction on line (i, j). Then we impose the constraints

(Pk,i j,Qk,i j) = (Pk,i j(qk, |Vk|),Qk,i j(qk, |Vk|)), k � 0, (i, j) 2 E (13.37c)
(Pk, ji,Qk, ji) = (Pk, ji(qk, |Vk|),Qk, ji(qk, |Vk|)), k � 0, (i, j) 2 E (13.37d)
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Line limits are expressed in terms of apparent power and the sending-end voltage magnitudes, on both
ends of the lines (i, j) 2 E:

q
P2

k,i j +Q2
k,i j  Pmax

k,i j |Vki| + s e
k,i j, k � 0, (i, j) 2 E (13.38a)

q
P2

k, ji +Q2
k, ji  Pmax

k,i j |Vk j| + s e
k,i j, k � 0, (i, j) 2 E (13.38b)

s e
k,i j � 0, k � 0, (i, j) 2 E (13.38c)

where Pmax
k,i j are given parameters and s e

k,i j are slack variables that measure line limit violations.

When contingency k � 1 occurs the generators will adjust their real and reactive power to rebalance.
This may be necessary even if the contingency is a transmission outage, i.e, the disconnection of a line or
a transformer, instead of a generator outage, because the redistribution of line flows may result in different
amounts of losses that need to be compensated for by these generators. Moreover the outage may also
lead to deviation of tie-line flows from their scheduled values and hence nonzero area control error that
must be corrected. The rebalancing is carried out at a fast timescale by frequency control mechanisms (see
Chapter 12.4). The effect of the frequency control actions is modeled as follows. The real power at the
generators is adjusted proportionally within their generation capacities:

pki = [p0i + ai Dk]
pi
pi

, k � 1, i 2 N (13.39a)

where p0i are the output levels of generators i in the base case k = 0,
⇣

pi, pi

⌘
are their lower and upper

capacity limits, Dk are the total real power contingency response, and ai � 0 are called the participation
factors of generators i with Âi ai = 1. (If generator i does not participate in contingency response then
ai = 0.) Here, for real scalars x, a  b, we define [x]ba := max(a,min(x,b)). The reactive power of
generators i is adjusted within their capacity limits in an attempt to restore the voltage magnitudes |Vki| to
their pre-contingency values, as expressed in:
n

qi  qki  qi, |Vki| = |V0i|
o
[
n

qki = qi, |Vki|� |V0i|
o
[ {qki = qi, |Vki| |V0i|} , k � 1, i 2 N

(13.39b)

Variables. To simplify notation define the following nodal vector variables for each contingency:

(pk,qk, |Vk|,qk) :=
�

pki,qki, |Vki|,qki, i 2 N
�
, s p+

k :=
⇣

s p+
ki , i 2 N

⌘
, k � 0 (13.40a)

and similarly for
⇣

s p�
k ,sq+

k ,sq�
k

⌘
. Define the following branch variables for each contingency:

(Pk,Qk) :=
�
Pk,i j,Qk,i j,Pk, ji,Qk, ji, (i, j) 2 E

�
, s e

k :=
⇣

s e
k,i j, (i, j) 2 E

⌘
, k � 0 (13.40b)
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Let

sk :=
⇣

s p+
k ,s p�

k ,sq+
k ,sq�

k ,s e
k

⌘
, k � 0 (13.40c)

xk := (pk,qk, |Vk|,qk, Pk,Qk, sk) , k � 0 (13.40d)
yk := (xk,Dk) , k � 1 (13.40e)

The vector x0 collects base-case decisions and yk collect responses to contingencies k � 1.

SCOPF formulation. The SCOPF problem in the GO Challenge 1 takes the form:

min Â
i

cg
i (p0i) + dc0(s0) + (1�d )

1
|K| Â

k�1
ck(sk) (13.41a)

over x0,(yk, k � 1) (13.41b)
s.t. (13.35)(13.36)(13.37)(13.38)(13.39) (13.41c)

where cg
i (p0i) are the generation costs at buses i in the base case, c0(s0) and ck(sk) are the penalty

functions for constraint violations in the base case k = 0 and contingencies k � 1 respectively, defined as:

ck (sk) := Â
i2N

⇣
cp

ki

⇣
s p+

ki +s p�
ki

⌘
+ cq

ki

⇣
sq+

ki +sq�
ki

⌘⌘
+ Â

(i, j)2E
ce

k,i j

⇣
s e

k,i j

⌘
, k � 0 (13.41d)

and d 2 [0,1] is the weight to trade off the penalty in the base case against the average contingency penalty.
The functions cp

ki, cq
ki, ce

k,i j, k � 0, are convex piecewise linear, each with three segments of increasing
slopes.

Two-stage formulation. The problem (13.41) can also be treated as a two-stage optimization where the
first-stage optimization is over the base-case decision x0 and the second-stage optimization is over the
contingency response yk in each contingency k � 1. It can be rewritten as

min
x0

Â
i

cg
i (p0i) + dc0(s0) + (1�d )

1
|K| Â

k�1
rk (x0) (13.42a)

s.t. (13.35)(13.36)(13.37)(13.38) with k := 0 (13.42b)

where the recourse functions from the second-stage optimization are: for j � 1,

r j (x0) := min
y j

c j
�
s j
�

(13.43a)

s.t. (13.35)(13.36)(13.37)(13.38)(13.39) with k := j (13.43b)

where the penalty functions ck(sk) are defined in (13.41d). The second-stage problem is used for contin-
gency evaluation.

Remark 13.10 (Key structures of SCOPF). 1. Even though the capacity limits on (pki,qki) are already
enforced in (13.35), they are explicitly included in (13.39) because we may approximate (13.39) to
enhance scalability.
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2. The constraints (13.35) and (13.36) are linear. The constraint (13.37) is smooth but nonconvex. The
constraints (13.38) (13.39) are nonsmooth and computationally difficult especially for interior-point
methods (e.g., Ipopt [132]) used by all three teams [129, 130, 131]. All three teams devise methods
to effectively handle these nonsmooth constraints.

3. The constraints (13.35) (13.36) (13.37) (13.38) apply to both the base case k = 0 and contingencies
k � 1, but (13.39) where complementarity constraints must be dealt with applies only to contingen-
cies k � 1 and hence only appears in the second-stage problem (13.43). As noted above (13.39)
models the steady-state effect of frequency control actions after a contengency.

4. All constraints except (13.39) are separable in k. The constraint (13.39) couples the base case
variables x0 and contingency response yk for each k. The SCOPF problem is therefore highly paral-
lelizable and this is exploited by all three teams.

13.5.2 Computational challenges

The GO Challenge 1 includes a real-time SCOPF test where a base case decision x0 must be computed
within 10 or 45 minutes depending on the category of competition. It includes another test that computes
contingency responses given the base-case decision x0 with a time limit corresponding to 2 seconds per
contingency.

The problem (13.41) does not include unit commitment decisions or switched devices such as trans-
former taps, capacitor banks and switchable transmission lines. They are included in Challenge 2 of the
GO Competition that was conducted in 2021 and introduce discrete variables that add to the computational
difficulty. We now discuss three main types of computational challenges of (13.41): large problem size,
nonconvexity, and nonsmoothness.

Large problem size. For a network with G generators and M transmission lines or transformers2, if we
are to evaluate security against the outage of every single generator or line/transformer, it can increase the
number of constraints by a factor of G + M under N�1 security. If the dispatch has to be secure against
N�k security then the number of constraints will be increased by a factor of (G+M)!/(k!(G+M�k)!).
For example the largest network used in the GO Challenge 1 has 30,000 buses, 3,526 generators, 32,020
transmission lines, 3,373 transformers [131, Table EC.1], yielding G + M = 3,526 + 32,020 + 3,373 =
38,919. This would have increased the number of constraints by 4 orders of magnitude under N�1 secu-
rity, or almost 9 orders of magnitude under N�2 security ((G+M)!/(k!(G+M� k)!) = 757,324,821).
The GO Competition adopts N � 1 security and specifies about 16,000 contingency scenarios which is
still an increase of 4 orders of magnitude. For real-time SCOPF any practical solution must include meth-
ods to efficiently rank contingencies and solve an approximate problem with only a few highly ranked
contingencies.

2The official GO Challenge 1 formulation models transformers with slightly different capacity limits than (13.38).
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Nonconvexity. The constraints (13.37) are nonconvex. Nonconvexity implies that, in general, OPF prob-
lems are NP-hard and the best one can hope for is computing a local optimal. All three teams let the
underlying interior-point solver (Ipopt [132]) handle nonconvexity. Methods to deal with nonconvexity
through convex relaxations are explained in Chapters ??–??. A challenge with semidefinite relaxations is
the difficulty in scalaing these methods to large problems.

Nonsmoothness. Interior-point solvers, which all three winning teams use, by default require the prob-
lem to be smooth. The constraints (13.38) and (13.39) are computationally challenging. The difficulty
can be illustrated from various angles by considering several equivalent representations. In particular they
can be represented as nonsmooth constraints (as in (13.38) and (13.39a)), as logical constraints (as in
(13.39b)), as complementarity constraints, or as mixed integer constraints. As we will see below effective
treatment of (13.39) is an important component of all three teams’ solutions.

1. Nonsmooth constraints. The function on the left-hand side of the constraint (13.38) is nondifferen-
tiable at (Pk,i j,Qk,i j) = (0,0). Indeed along (say) Pk,i j = 0 the constraint is equivalent to following
piecewise affine constraint:

��Qk,i j
��  Pmax

k,i j |Vki| + sk,i j,

The constraint (13.39a) is nondifferentiable at pki = pi or pki = pi.

2. Logical constraints. The logical constraint (13.39b) is disjunctive and computationally inconvenient.
The other two constraints can also be expressed as a disjunctive constraints. For example (13.39a)
is equivalent to:

{pi  pki  pi, pki = p0i +aiDk} [ {p0i +aiDk  pi = pki} [ {pki = pi  p0i +aiDk}

3. Complementarity constraints. The constraints (13.38) and (13.39) can be reformulated as comple-
mentarity constraints. Introduce two slack variables r�ki � 0, r+

ki � 0. Then (13.39a) is equivalent to
(Exercise 13.18):

pki +r+
ki �r�ki = p0i +aiDk, 0  r�ki ? pki� pki � 0, 0  r+

ki ? pki� pki � 0
(13.44a)

where, for scalars a,b2R, “0 a? b� 0” means “a� 0,b� 0,ab = 0”. Note that the set {(a,b)2
R

2 : 0 a? b� 0} is a nonconvex set. Similarly the constraint (13.39b) is equivalent to (Exercise
13.19):

|Vki|+ µ+
ki �µ�ki = |V0i|, 0  µ�ki ? qki�qki � 0, 0  µ+

ki ? qki�qki � 0
(13.44b)

with slack variables
�
µ�ki ,µ+

ki
�
.
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4. Mixed integer constraints. The constraint (13.39a) is equivalent to the following big-M mixed inte-
ger constraints:

pi  pki  pi, zki,zki 2 {0,1}
pki� pi  Mzki, pki� (p0i +aiDk)  M(1� zki)

pi� pki  Mzki, (p0i +aiDk)� pki  M(1� zki)

where M is a sufficiently large constant and (z,z) are auxiliary binary variables (Exercise 13.18).
The constraint (13.39b) is equivalent to (Exercise 13.19):

qi  qki  qi, zki,zki 2 {0,1}
qki�qi  Mzki, |V0i|� |Vki|  Mzki, |Vki|� |V0i|  M(1� zki)

qi�qki  Mzki, |Vki|� |V0i|  Mzki, |V0i|� |Vki|  M(1� zki)

Some properties of the complementarity and big-M mixed integer constraints are studied in Exercise
13.14–13.19.

Remark 13.11 (Linear complementarity problem). Given a matrix M 2 R
m⇥n and vector q 2 R

m the
standard linear complementarity problem LCP(M,q) is to find vectors z,w 2 R

m such that

z� 0, w� 0, zTw = 0, w = Mz+q

A sufficient condition for the existence and uniqueness of such a solution (z,w) is that M satisfies xTMx� 0
for all x 2 R

m whether or not M is symmetric.3 M being positive definite or symmetric is however not
necessary (Exercise 13.17). We can eliminate the variable w to write LCP(M,q) as finding z such that

z� 0, Mz+q� 0, zT(Mz+q) = 0

LCP arises, e.g., from the KKT condition of a quadratic program (Exercise 13.14). The equations (13.44a)
can be transformed into a standard linear complementarity problem (Exercise 13.16).

13.5.3 Computational techniques

We now describe some of the techniques used in each of the three winning teams of the GO Challenge 1
[129, 130, 131] in dealing with the computational challenges discussed in Chapter 13.5.2.

Besides algorithmic techniques, efficient software implementation is also critical, especially how to
effectively use multi-core platforms for parallel computation, how to detect and reduce numerical insta-
bility, and how to handle software failures such as solver divergence or convergence to an infeasible point
even when the problem is provably feasible. For example, the number of nonlinear subproblems that needs
to be solved in [129] can be as high as 100,000, each with 2,000,000 variables and constraints. Software
implementation issues in such a large-scale computational regime are highly nontrivial.

3For a matrix M over the field R, we define M to be positive (semi)definite only for symmetric M; see Definition 25.2 in
Chapter 25.1.3 and the discussion there.
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We will however focus only on algorithmic techniques. The approach of [129] approximates the
second-stage recourse function rk(x0) by an explicit quadratic function that is iteratively computed. The
approach of [130] continuously and iteratively evaluates contingencies quickly and includes only the top
three contingencies in the SCOPF problem in each iteration. The approach of [131] uses smooth approxi-
mation of constraint (13.39) and develops an ADMM-based algorithm to exploit the problem’s distributed
structure. All three teams use an off-the-shelf interior-point optimization solver. Our description is a
highly simplified version of [129, 130, 131] that illustrates some of the ideas.

13.5.3.1 Approximating recourse function rk(x0) [129]

The approach of [129] uses the two-stage formulation (13.42) (13.43) of the SCOPF problem. A two-stage
problem is computationally difficult because an explicit form of the second-stage recourse function rk(x0)
is generally not available. The key idea of [129] is to approximate rk(x0) as an explicit polynomial function
r̂k(x0;pk) where pk is a scaling factor in the approximation to be computed in each iteration, so that the
(approximate) first-stage problem and the second-stage problem can be solved iteratively according to a

Meta algorithm: for t = 0,1, . . . , repeat until a stopping criterion is satisfied (pk(0) = 0, i.e., start with
the base case):

1. Given r̂k(x0;pk(t)), approximate rk(x0) by r̂k(x0;pk(t)) in (13.42) and solve the approximate first-
stage problem to obtain an optimal solution x0(t +1);

2. Given x0(t +1), solve the second-stage problem (13.43) to obtain pk(t +1) and construct r̂k(x0;pk(t +
1)).

Two main algorithmic techniques are used to simplify the two subproblems in the meta algorithm: (i) Con-
tingency screening to quickly identify and include only contingencies that are likely to have large recourse
costs rk(x0); and (ii) Dealing with the nonsmoothness of (13.38) (13.39) through relaxation. We now
explain each of these ideas: approximating rk(x0), contingency screening, and handling nonsmoothness.

Approximating rk(x0). Recall that the GO Challenge 1 considers only N�1 security, so there is exactly
a single device (a generator or line) that is disconnected in each contingency. If the device in contingency
k � 1 is a generator then index it by i(k) and let

�
p0i(k),q0i(k)

�
denote the real and reactive power it

generates in the base case. Its recourse function rk(x0) is approximated by

r̂k(x0;pk) := pk ·
⇣

p2
0i(k) + q2

0i(k)

⌘2
(13.45a)

where pk is a constant to be determined. If the disconnected device in contingency k � 1 is a line then
index it by (i(k), j(k)). Let (P0,i(k) j(k),Q0,i(k) j(k)) denote the sending-end line power from bus i(k) to bus
j(k) and let (P0, j(k)i(k),Q0, j(k)i(k)) denote the sending-end line power in the opposite direction. Then its
recourse function rk(x0) is approximated by

r̂k(x0;pk) := pk ·
⇣

max
n

P2
0,i(k) j(k) + Q2

0,i(k) j(k), P2
0, j(k)i(k) + Q2

0, j(k)i(k)

o⌘2
(13.45b)

i.e., r̂k(x0;pk) is a polynomial in the greater of the apparent sending-end line power. The approximation
(13.45a) is motivated by three observations; the motivation for (13.45b) is similar. First the generation
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cost in SCOPF tends to select generators with lowest marginal costs and schedule them to produce at
their upper capacity limits in the base case unless this is prevented by network congestion where some
line limits are active. This suggests that pre-contingency injection of the disconnected generator i(k) is a
good approximation for the penalty s j in the second-stage problem. This observation is also used in [131]
for fast contingency evaluation. Second the recourse cost rk(x0) tends to be an increasing function of the
pre-contingency generation levels of the disconnected generator. Moreover the rate of increase tends to be
steep and local. Replacing the second-stage problem (13.43) with the convex polynomial r̂k(x0;pk) greatly
simplifies the SCOPF problem (13.42) (13.43).

Contingency screening. Recall that each contingency is defined by the outage of a generator or line. To
reduce the number of contingencies in the first-stage problem (13.42), [129] first considers using machine
learning to rank contingencies according to their impact on the objective value, but found it difficult to
generalize machine learning models to networks that have not been seen in the training dataset. It does not
adopt other ranking approaches that may be sophisticated but too computationally intensive for real-time
applications. Instead it chooses a subset g of generators with the largest generation capacities and a subset
e of lines with the largest line limits to define the set of credible contingencies such that |g| + |e| is no
more than the number of parallel processors available for contingency screening. This simple heuristic
has been found to produce some false positives (contingencies that seem impactful but are not) but no
false negatives (contingencies that seem harmless but are not). Only the set K̂ of contingencies defined by
this set of devices are included in the objective and constraints.

Approximating nonsmooth constraint (13.38) and costs ck(sk). Instead of (13.38a), consider the
smooth constraint:

P2
k,i j +Q2

k,i j 
⇣

Pmax
k,i j |Vki| + s e

k,i j

⌘2
, k � 0, (i, j) 2 E

This constraint is nonconvex but the log-barrier function

log
✓⇣

Pmax
k,i j |Vki| + s e

k,i j

⌘2
� P2

k,i j � Q2
k,i j

◆

is convex. In fact, it is a self-concordant barrier function for the second-order cone and is used to eliminate
the nonsmooth constraint (13.38a). The constraint (13.38b) is treated similarly. Specifically the problem
(13.42) (13.43) is modified by removing (13.38) and adding log-barrier penalty functions c̃k(xk) to the
objective for each credible contingency:

c̃k(xk) := Â
(i, j)2E

log
✓⇣

Pmax
k,i j |Vki|+s e

k,i j

⌘2
�P2

k,i j�Q2
k,i j

◆
+

Â
(i, j)2E

log
✓⇣

Pmax
k, ji |Vk j|+s e

k,i j

⌘2
�P2

k, ji�Q2
k, ji

◆
, k 2 {0}[ K̂ (13.46)

Recall that the constraint violation functions cp
ki(s) in (13.41d) are piecewise linear and hence non-

smooth. They are approximated by quadratic functions ĉp
ki(s) := ap

ki s2 + bp
ki s for appropriate constants
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�
ap

ki,b
p
ki
�
. Similarly for the functions cq

ki(s), ce
k,i j(s). The nonsmooth penalty function ck(sk) in (13.41d)

is replaced by the quadratic function

ĉk (sk) := Â
i2N

⇣
ĉp

ki

⇣
s p+

ki +s p�
ki

⌘
+ ĉq

ki

⇣
sq+

ki +sq�
ki

⌘⌘
+ Â

(i, j)2E
ĉe

k,i j

⇣
s e

k,i j

⌘
, k � 0 (13.47)

These three types of approximations (13.45) (13.46) (13.47) reduce the first-stage problem (13.42) to
a much simpler approximate problem with an explicit recourse function (given pk):

min
x0

Â
i

cg
i (p0i) + d ĉ0(s0) + (1�d )

1
|K̂| Â

k2K̂

r̂k (x0;pk) + d̃0 c̃0(x0) (13.48a)

s.t. (13.35)(13.36)(13.37) with k := 0 (13.48b)

where the approximate base-case penalty function ĉ0(s0) is defined in (13.47), the approximate recourse
functions r̂k(x0;pk) are defined in (13.45), the line limit penalty functions c̃0(x0) are defined in (13.46) for
k = 0, and d̃0 is an appropriate weight. In particular the nonsmooth constraint (13.38) is replaced by the
penalty c̃k(xk) for k = 0.

Relaxing nonsmooth constraint (13.39). The nonsmooth constraint (13.39) that describes contingency
response appears only in the second-stage problem (13.43), not the approximate first-stage problem (13.48).
Hence (13.39) affects only step 2 of the meta algorithm that determines pk and the approximation r̂k(x0;pk).
Indeed pk is determined iteratively as follows. After obtaining an optimal solution x0 in step 1 of the meta
algorithm by solving the approximate first-stage problem (13.48), solve an approximate version of the
second-stage problem (13.43) to obtain an (approximate) optimal rk(x0) and set

pk(x0) :=
rk(x0)⇣

p2
0i(k) + q2

0i(k)

⌘2

for pk in (13.45a); similarly for pk in (13.45b). Repeat the cycle until some stopping criterion is satisfied.

We now explain how to solve an approximate version of the second-stage problem (13.43) given a
first-stage solution x0. As in (13.48), the approximation of (13.43) replaces ck(sk) by its quadratic ap-
proximation ĉk(sk) defined in (13.47) and replaces the nonsmooth constraint (13.38) by the log-barrier
penalty function c̃k(xk) defined in (13.46) in the objective. The additional feature is how to handle the
nonsmooth constraint (13.39).

For this purpose, [129] uses the complementarity representation (13.44). For scalars a,b 2 R, a com-
plementarity constraint 0 a? b� 0 can be approximated by the Fischer-Burmeister function f(a,b) :=
a + b�

p
a2 +b2 so that 0  a ? b � 0 if and only if f(a,b) = 0. A standard way to handle the comple-

mentarity constraint is to replace it with the Fischer-Burmeister function as a penalty term in the objective.
Even though the function f is convex and Lipschitz continuous, a difficulty is that it is not differentiable at
(0,0). Finding a solution

�
pki, r+

ki ,r
�
ki
�

that satisfies (13.44a) is called a linear complementarity problem
(see Remark 13.11). There are algorithms to solve such problems exactly, but [129] finds this approach
numerically unstable for the SCOPF problem.
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At the end [129] relaxes the complementarity condition 0 a? b� 0 to the constraints

a � 0, b � 0, ab  e(a�a)(b�b)

where e � 0 is a small constant, a,a are lower and upper bounds respectively on a, and b,b are correspond-
ing bounds on b. The nonlinear relaxation is exact if e = 0 but numerical issues may arise if e is too small.
To apply this relaxation to the linear complementarity constraint (13.44a), let D and D with D < 0 < D be
apriori lower and upper bounds on Dk for all k 2 K̂ (e.g., D can be the upper limit of the largest generator).
Then 0 r�ki �aiD and 0 r+

ki  aiD. Hence the nonlinear relaxation of (13.44a) is

pki +r+
ki �r�ki = p0i +aiDk, k � 1, i 2 N (13.49a)

0  r�ki , r�ki

⇣
pki� pki

⌘
 �e aiD

⇣
pi� pi

⌘
, k � 1, i 2 N (13.49b)

0  r+
ki , r+

ki (pki� pki)  e aiD
⇣

pi� pi

⌘
, k � 1, i 2 N (13.49c)

Similarly the relaxation of (13.44b) is

|Vki|+ µ+
ki �µ�ki = |V0i|, k � 1, i 2 N (13.49d)

0  µ�ki , µ�ki

⇣
qki�qki

⌘
 e (vki� v0i)

⇣
qi�qi

⌘
, k � 1, i 2 N (13.49e)

0  µ+
ki , µ+

ki (qki�qki)  e (v0i� vki)
⇣

qi�qi

⌘
, k � 1, i 2 N (13.49f)

These relaxations are used in the approximate version of the second-stage problem.

Overall algorithm. Putting all these together, the overall algorithm in [129] for solving an approxima-
tion of the SCOPF is as follows.

1. Initialization: pk := 0 for all k 2 K̂ (no contingencies).

2. Iterate until stopping criterion:

(a) Given
�
pk,k 2 K̂

�
, solve (13.48) to obtain an optimal x0.

(b) Given x0, for each contingency j 2 K̂:

i. Solve (recall that y j denotes contingency response and is defined in (13.40e))4

r̃ j (x0) := min
y j

ĉ j
�
s j
�

+ d̃ jc̃ j(x j)

s.t. (13.35)(13.36)(13.37)(13.49) with k := j

where ĉ j(s j) and c̃ j(x j) are defined in (13.47) and (13.46) respectively with k = j.

4The method in [129] includes an algorithm that recovers from a solution y j of the relaxation here a contingency response
that is feasible for the original second-stage problem (13.43). This algorithm can be repeatedly used to generate a feasible
solution to the original SCOPF problem (13.41).
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ii. If contingency j is due to the disconnection of generator i := i( j) then

p j :=
r̃ j(x0)�

p2
0i + q2

0i
�2

iii. If contingency j is due to the disconnection of line (i, l) := (i( j), l( j)) then

p j :=
r̃ j(x0)⇣

max
n

P2
0,il + Q2

0,il, P2
0,li + Q2

0,li

o⌘2

3. Return: a first-stage decision x0, second-stage decisions yk and their associated costs r̃k(x0), k 2 K̂.

13.5.3.2 Fast contingency selection [130]

The approach of [130] focuses on continuously and iteratively evaluate contingencies and include only
the top three contingencies in the solution of SCOPF (13.41) in each iteration. This requires techniques
to handle complementarity constraints, evaluate contingencies quickly, remove dominated contingencies,
and effectively parallelize the solution of a master problem and contingency evaluation.

One can eliminate a large number of variables and equality constraints by substituting these equalities
into the cost and constraint functions. For instance eliminating line flow variables

�
Pk,i j,Qk,i j

�
using

(13.37) can reduce the problem size by the number of lines times the number of contingencies. This
however will greatly increase the density of the constraint Jacobian. The team has decided to keep these
variables and let the (interior-point) optimization solver to exploit sparsity. Like [129], [130] also uses the
squared version of the line limit (13.38) because of its smoothness. It uses complementarity constraints to
represent contingency responses (13.39).

Handling complementarity constraints. The second-stage problem is solved during contingency eval-
uation. The complementarity constraints representing the contingency responses are handled using an
active set method. Note that each complementary constraint in (13.44) involves an injection variable
c 2 [c,c] (e.g., pki,qki), a linear condition h (e.g., pki� (p0i +aiDk)), and a slack variable r . It takes the
form: h +r = 0 and one of the following linear constraint:

• c = c and r  0.

• c = c and r � 0.

• c 2 [c,c] and r = 0.

The strategy for solving the second-stage problem (13.43) is based on active set prediction, as follows: (i)
For each complementarity constraint, predict which of these three conditions holds at optimality; (ii) Re-
place each complementarity constraint by the predicted linear constraints and solve the resulting second-
stage problem; (iii) update the prediction based on the multiplier values obtained from the solution in step
(ii). The process is repeated until a certain stopping criterion is attained.
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For instance, suppose step (i) predicts that c = c and r  0 and the second-stage problem is solved in
step (ii) with these constraints in place of complementarity constraints. If the Lagrange multiplier l > 0
corresponding to the constraint r  0 is positive and �r/l is close to zero (say, 0 <�r/l < 10�6), then
the constraint r  0 is considered active and the prediction is changed in the next iteration.

Another method that [130] tried for handling a complementarity constraint 0 a? b� 0 is to replace
it by the constraint (a,b)� 0 and a penalty term b (ab) in the cost function. The team has found however
that this approach does not work well for their approach.

Fast contingency selection. The approach of [130] uses three main contingency selection techniques:

1. Initial ranking using ML. Initial contingency ranking uses supervised learning to predict the impor-
tance of a contingency on overall cost based on various features, such as different expressions of
generation levels and line power, generator ratings, degrees of buses, etc. It finds that the apparent
line power

max
nq

P2
0,i(k) j(k) + Q2

0,i(k) j(k),
q

P2
0, j(k)i(k) + Q2

0, j(k)i(k)

o

has the best predictive power. This is consistent with the intuition used to approximate the recourse
function rk(x0) in [129] (cf. (13.45b)).

2. Contingency evaluation. Each contingency k identified by the initial ranking as credible is then
evaluated more carefully by solving the second-stage problem (13.43), in two steps.

First, given a first-stage decision x0, an upper bound on the second-stage cost rk(x0) is computed by
solving a reduced problem with only the power flow equations and linear constraints associated with
complementarity constraints predicted by the active set method described above. In particular this
reduced problem does not include any operational constraints. Only if this upper bound exceeds a
certain threshold will a full evaluation of the contingency be carried out by solving the second-stage
problem using the active set method.

3. Dominated contingency. Inclusion of the constraints due to contingency j may cause the constraints
due to other contingencies k to be automatically (possibly approximately) satisfied. To identify these
constraints, let smax

k be the largest entry of the vector sk defined in (13.40c), i.e., smax
k is the largest

slack variable measuring the violation of power balance or a line limit in contingency k. We say
that contingency k is dominated by contingency j if smax

j > smax
k . Only contingencies that are not

dominated by another contingency are included in the solution of the master problem (13.41).

Overall algorithm. Putting all these techniques together, the overall algorithm of [130] is as follows
(see Figure 13.1).

1. Initialization:

• Solve the SCOPF problem (13.41) without contingency with flat start: p0 := p0, q0 := 0,
|V0| := (v0 + v0)/2, |q0| := 0, P0 = Q0 = 0.
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Figure 13.1: Overall algorithm of [130] to compute the first-stage optimal solution x⇤0.

• Given the first-stage solution x0, use machine learning model to produce an initial contingency
priority list.

• Perform fast evaluation of contingencies in the order of the current priority list for up to 1
minute by solving a reduced second-stage problem with active set iterations. Update the prior-
ity list.

2. Iterate until time limit (10 minutes):

• Perform full evaluation of contingencies in the order of the current priority list for 30 seconds
and update the priority list.

• Include only the top three contingencies in the SCOPF problem (13.41), avoiding dominated
contingencies, and solve it with the complementarity constraints replaced by the same active
sets identified for these contingencies during contingency evaluation.

• Meanwhile continue to evaluate contingencies in parallel until a solution of the approximate
SCOPF problem is obtained. Specifically each contingency is first evaluated by solving a
reduced second-stage problem with active set iterations. If its cost upper bound exceeds a
threshold then it is further evaluated by solving the full second-stage problem with active set
iterations.

• Update the priority list.

3. Return a first-stage decision x⇤0.

4. Given x⇤0, evaluate every contingency in parallel using fast evaluation with active set iterations fol-
lowed by a full evaluation if its cost upper bound exceeds a threshold. Return second-stage decisions
yk and their associated costs rk(x0), k � 1.
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13.5.3.3 Smoothed ADMM algorithm [131]

The approach of [131] employs four main ideas: a smooth approximation of the nonsmooth constraint
(13.39), a two-level distributed algorithm based on ADMM, an algorithm to solve the second-stage prob-
lem for contingency responses, and an efficient parallel computation structure. In the following we explain
the first three ideas.

Smooth approximation of (13.39). The function f (x) := max(0,x), x 2 R, can be approximated by the
smooth function

f e(x) := e ln
⇣

1+ ex/e
⌘

, e > 0

See Figure 13.2. Indeed f e(x) upper bounds f (x) with f e(x)� e ln2  f (x) < f e(x) for all x 2 R. This

Figure 13.2: The nonsmooth functions f (x) := max(0,x), g(x) := min(0,x) and their smooth approxima-
tions. See Exercise 13.20 for more properties.

method leads to a smooth approximation of h(x) := max(a,min(x,b)) given by

he(x) := a + e ln

 
1 +

e(b�a)/e

1 + e(b�x)/e

!

See Exercise 13.20 for approximations of max(a,x), min(x,b) and max(a,min(x,b)).

Applying this to the contingency response (13.39a) reproduced here:

pki = [p0i + ai Dk]
pi
pi

, k � 1, i 2 N
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gives the smooth approximation

pe
ki(pi) := pi + e ln

 
1 +

e(pi�pi)/e

1 + e(pi�pi)/e

!
, k � 1, i 2 N (13.50)

To apply this method to (13.39b) reproduced here:

n
qi  qki  qi, |Vki| = |V0i|

o
[
n

qki = qi, |Vki|� |V0i|
o
[ {qki = qi, |Vki| |V0i|} , k � 1, i 2 N

let Rki be the set of (qki, |Vki|) that satisfy this constraint. Then (qki, |Vki|) 2 Rki if and only if there exist
slack variable

�
µ�ki ,µ+

ki
�

such that

|Vki| + µ+
ki � µ�ki = |V0i| (13.51a)

min
⇣

µ�ki , qki�qki

⌘
 0 (13.51b)

min
�
µ+

ki , qki�qki
�
 0 (13.51c)

qki  qki  qki,
�
µ�ki ,µ+

ki
�
� 0 (13.51d)

Here (13.51a) (13.51d) are linear constraints in
�
qki, |Vki|,µ�ki ,µ+

ki
�

but (13.51b) (13.51c) are nonconvex
constraints. We can visualize this in Figure 13.3 that shows the set

{(x,y) : min(x,y) a} = {(x,y) : x a or y a}

Using Exercise 13.20, we can approximate min(x,y) by y� e ln
⇣

1+ e(y�x)/e
⌘

and relax (13.51) to:5

Figure 13.3: The set {(x,y) : min(x,y) a} is nonconvex. The set {(x,y) : min(x,y) = a} consists of two
lines x = a and y = a.
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|Vki| + µ+
ki � µ�ki = |V0i| (13.52a)

µ�ki � e ln
✓

1+ exp
1
e

⇣
µ�ki �qki +qki

⌘◆
 0 (13.52b)

µ+
ki � e ln

✓
1+ exp

1
e
�
µ+

ki �qki +qki
�◆

 0 (13.52c)

qki  qki  qki,
�
µ�ki ,µ+

ki
�
� 0 (13.52d)

Let Re
ki be the set of (qki, |Vki|) such that there exist slack variables

�
µ�ki ,µ+

ki
�

so that (qki, |Vki|,µ�ki ,µ+
ki )

satisfies (13.52). Then it is shown in [131] that Re
ki is a relaxation of Rki and approaches Rki as e ! 0.

Specifically, for each k � 1, i 2 N, we have (Exercise 13.21):

Rki ✓ Re
ki (13.53a)

sup
(qki,|Vki|)2Re

ki

inf
(q0ki,|V

0
ki|)2Rki

��(qki, |Vki|) � (q0ki, |V 0ki|)
�� ! 0 as e ! 0 (13.53b)

While choosing a small e gives a better approximation of the feasible set, a small e may also cause
numerical issues since the second derivative d2

dx2 f e(0) of the approximation f e(x) of f (x) := max(0,x)
evaluated at x = 0 diverges as e ! 0.

ADMM-based distributed algorithm. As mentioned above, the base case k = 0 and the contingencies
k � 1 are decoupled only through the first-stage decision x0 in the constraint (13.39) that appears in the
set of second-stage problems (13.43), one for each contingency k � 1. By introducing a local copy x0

k
of x0 for each contingency subproblem these second-stage problems are decoupled and can therefore be
computed in parallel, with a consensus constraint that all local copies equal to x0 at optimality. Hence the
SOCP problem (13.41) can be equivalently reformulated into the form

min f0(x0) + Â
k�1

fk
�
x0

k ,yk
�

(13.54a)

over x0,
�
x0

k ,yk, k � 1
�

(13.54b)

s.t. x0 2 X0,
�
x0

k ,yk
�
2 Xk, k � 1 (13.54c)

x0
k = x0, k � 1 (13.54d)

where the constraint x0 2 X0 means that x0 satisfies (13.35)–(13.38), and the constraint
�
x0

k ,yk
�
2 Xk

means that yk satisfies (13.35)–(13.38) and
�
x0

k ,yk
�

satisfies the smooth approximations (13.50) (13.52)
of (13.39). This is a form that is suitable for distributed solution using the standard ADMM (alternating
direction method of multipliers).

To explain ADMM consider the general optimization problem

min
x2Rn, y2Rp

f (x) + g(y) (13.55a)

s.t. x 2 X , y 2 Y (13.55b)
Ax + By = c (13.55c)

5The right-hand sides of (13.52b) (13.52c) are further relaxed from 0 to e ln2 in [131].
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where A 2 R
m⇥n, B 2 R

m⇥p and c 2 R
m are given. The key features of (13.55) that make it amenable to

distributed solution are that the objective function in (13.55a) is separable in the variables x and y, and
the possibly nonlinear constraints (13.55b) are separable in x and y. The only coupling between x and
y is through the linear constraints (13.55c). For this type of separable problems, ADMM combines the
distributed structure of dual decomposition with better convergence properties of augmented Lagrangian
methods.

Specifically define the augmented Lagrangian function that relaxes the coupling constraint:

Lr(x,y,l ) := f (x) + g(y) + lT (Ax+By� c) +
r
2
kAx+By� ck2

2

The ADMM algorithm is

xt+1 := argmin
x2X

Lr (x, yt , lt) (13.56a)

yt+1 := argmin
y2Y

Lr (xt+1, y, lt) (13.56b)

lt+1 := lt + r (Axt+1 +Byt+1� c) (13.56c)

The subproblems (13.56a) (13.56b) can be solved in parallel, given the dual variable lt . These two sub-
problems are coordinated by the dual update (13.56c). It is important that the subproblem (13.56b) uses
xt+1 instead of xt (this is called one pass of a Gauss-Seidel method) and that the stepsize for the dual
update is r; see Exercise 13.22.

While the example (13.55) involves two variables x and y that are almost decoupled except for the
linear coupling constraint, the SCOPF (13.54) has K + 1 variables x0 and

�
x0

k ,yk,k � 1
�

with K coupling
constraints (13.54d). Given the Lagrange multipliers lk associated with these K coupling constraints, the
K + 1 subproblems that optimize over x0 and

�
x0

k ,yk,k � 1
�

can be computed in parallel as in (13.56a)
(13.56b). The algorithm of [131] applies this idea to SCOPF (13.54) with two main refinements. First
it relaxes the coupling constraint (13.54d) with a slack variable zk for each contingency k � 1 which is
penalized in the objective function with a term bkzkk2

2. As a result the solution returned by the ADMM
algorithm may violate by a large amount the coupling constraint and is therefore infeasible for the original
SCOPF. The second refinement is an outer loop where the weight b on the penalty is increased if the worst
violation maxk�1 kzkk across contingencies is too large and the approximate SCOPF is solved again using
ADMM. The outer loop terminates when maxk�1 kzkk is small enough (and the stationarity condition
is sufficiently satisfied). Even though the problem is nonconvex it is proved in [131] that the two-level
ADMM algorithm with both the inner and outer loops converges under the condition that each inner-loop
iteration (13.56a) (13.56b) produces sufficient descent.

Solving second-stage problem (13.43). After a base-case solution x⇤0 is obtained using the two-level
ADMM algorithm, [131] solves for second-stage solutions y⇤k for each contingency k � 1, in two steps.
For each k� 1, it first solves an approximate version of (13.43) in which the nonsmooth constraint (13.39)
has been replaced by its smooth approximations (13.50) (13.52). If the resulting solution (ŷk, D̂k) violates
(13.39) by a significant amount (because e is not small enough), then it uses the solution (ŷk, D̂k) to define
a set of linear constraints to replace the smooth approximations (13.50) (13.52) and solve the approximate
second-stage problem again to obtain the final second-stage solution y⇤k and its cost rk(x⇤0).
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Specifically, for the nonsmooth constraint (13.39a), use the solutions x⇤0 and (ŷk, D̂k) to partition the set
of generators that remain connected in contingency k into three groups,

N̂ p� := {i : p⇤0i +aiD̂k  pi +n}, N̂ p+ := {i : p⇤0i +aiD̂k � pi�n}

and their complements. Here n > 0 is a violation threshold. Then, instead of (13.50), the following linear
constraints are used to approximate the nonsmooth constraint (13.39a):

pki = pi, aiDk  pi� p⇤0i, i 2 N̂ p�

pki = pi, aiDk � pi� p⇤0i, i 2 N̂ p+

pi  pki  pi, aiDk = pki� p⇤0i, i 62 N̂ p�[ N̂ p+

Similarly, instead of (13.52), a set of linear constraints defined by x⇤0 and (ŷk, D̂k) can be used to ap-
proximate the nonsmooth constraint (13.39b). Then (13.43) is solved approximately with the nonsmooth
constraint (13.39) replaced by these linear constraints to obtain y⇤k and rk(x⇤0). These linear constraints are
an inner approximation of (13.39) and hence the cost rk(x⇤0) is an upper bound on the optimal second-stage
cost.

Overall algorithm. In summary the overall algorithm of [131] is as follows.

1. Solve SCOPF for a base-case solution x⇤0 using the two-level ADMM algorithm with smooth ap-
proximations (13.50) (13.52) and fast contingency screening.

2. Given x⇤0, use fast contingency screening to sort contingencies into a priority list.

3. For each contingency k in the order of the priority list, solve the second-stage problem (13.43)
approximately for y⇤k and its cost rk(x⇤0), using the smooth approximations (13.50) (13.52) followed
by another solve using linear approximations if necessary.

13.6 Bibliographical notes

As for most chapters, this section is now a placeholder with references collected in a somewhat random
fashion during the writing of the text. Major rewrite later.

There has been a great deal of research on OPF since Carpentier’s first formulation in 1962 [133]. An
early solution appears in [134] and extensive surveys can be found in e.g. [135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 57, 148]. It is nonconvex and has been shown to be NP-hard in general
[149, 123, 124].

Many references for 3-phase OPF: e.g. [96, 97, 150]

There are many excellent texts on optimization theory especially for convex problems, e.g., [104, 101,
100]. Optimization texts with power system applications include [151, 152]. In particular Chapter 11.5.3
mostly follows the presentation in [101, Chapter 11]. A popular interior-point solver for OPF problems is
[153].
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OPF has been shown to be NP-hard in general [149, 123, 124, 125, 126]. [127] surveys combinatorial
OPF and proves approximation results and conditions for exactness (when there are no discrete variables).
It shows that OPF with discrete injections cannot be efficiently approximated. The hardness results com-
plement those in [121, 122, 123, 124]; see [127, Chapter 5] and its Section 5.6 for comparison.

[154] shows that, by dualizing clique tree conversion, a class of nonconvex problems, including OPF
problems, the per-iteration cost of an interior-point method is linear O(n) in time and in memory, so an
e-accurate and e-feasible iterate is obtained after O(

p
n log(1/e)) iterations in O(n1.5 log(1/e)) time.

13.7 Problems

Chapter 13.1

Exercise 13.1 (Inner product and trace). Let A,B 2 C
n⇥n be square complex matrices. The inner product

of A,B is defined to be A ·B := tr(AHB). Show that:

1. tr(AB) = tr(BA).

2. A ·B := tr(AHB) = tr(AB) if A is Hermitian. The converse does not necessarily hold.

3. If A and B are both Hermitian then A ·B = B ·A.

Exercise 13.2 (Hermitian components). Let A 2 C
n⇥n and x 2 C

n. Define the Hermitian and skewed
Hermitian components of A:

Br :=
1
2

⇣
A+AH

⌘
, Bi :=

1
2i

⇣
A�AH

⌘

Show that

1. Br and Bi are both Hermitian for arbitrary A, so that xHBrx and xHBix are both real numbers.

2. Moreover xHAx = xHBrx+ ixHBix.

Exercise 13.3 (Skew-symmetric and Hermitian matrices). Show that:

1. If C 2 R
n⇥n is a skew symmetric matrix (i.e., CT =�C) then xTCx = 0 for any x 2 R

n.

2. If C 2 C
n⇥n is a Hermitian matrix (i.e., CH = C) then xHCx 2 R for any x 2 C

n.

3. If C 2 C
n⇥n be a Hermitian matrix, then tr(CX) 2 R for any rank-1 matrix X 2 C

n⇥n (psd or nsd).

4. Let C := Cr + iCi where Cr,Ci 2 R
n⇥n. If C is Hermitian then CT

r = Cr and CT
i =�Ci.
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Exercise 13.4 (Real QCQP). Consider the complex QCQP

min
x2Cn

xHC0x s.t. xHClx  bl, l = 1, . . . ,L

where x 2 C
n is a vector, Cl 2 S

n for l = 0, . . . ,L, are Hermitian matrices. Show that it is equivalent to the
real QCQP of twice the dimension:

min
y2R2n

yTD0y s.t. yTDly  bl, l = 1, . . . ,L

where

y :=


Re(x)
Im(x)

�
, Dl :=


Re(Cl) �Im(Cl)
Im(Cl) Re(Cl)

�
, l = 0,1, . . . ,L

Note that Dl are symmetric matrices.

Exercise 13.5 (Homogenization). Let x,a,b 2 C
n.

1. Let e j 2 {0,1}n be the unit vector with a single 1 at the jth position. Show that the set of inequalities
a j  x j  b j, j = 1, . . . ,n, is equivalent to the following set of homogeneous quadratic inequalities
in (x̂, t) with x := x̂t: for j = 1, . . . ,n,

Re(a j) 


x̂
t

�H 0 z j
zH

j 0

�
x̂
t

�
 Re(b j), Im(a j) 


x̂
t

�H 0 iz j
�izH

j 0

�
x̂
t

�
 Im(b j)

(13.57a)

1 


x̂
t

�H0 0
0 1

�
x̂
t

�
 1 (13.57b)

where z j = e j/2.

2. Let c j 2Cn for j = 1, . . . ,n. Show that the set of inequalities a j cHj x b j, j = 1, . . . ,n, is equivalent
to (13.57) with z j = e j/2 replaced by z j = c j/2.

Exercise 13.6 (Single-phase OPF: power losses as quadratic form). For each line ( j,k) 2 E, let its admit-
tances be ys

jk = gs
jk + ibs

jk and ym
jk = gm

jk + ibm
jk. Suppose ys

jk = ys
k j and gs

jk � 0, gm
jk � 0 (these conditions

are satisfied if ( j,k) models a transmission line).

1. Define the total real power loss as:

C0(V ) := Â
j

Re
�
s j(V )

�
= Â

j
Re

 

Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2

!

Show that C0(V ) is a quadratic form C0(V ) = VHC0V where the cost matrix C0 := 1
2
�
YH +Y

�
is

the Hermitian component of the admittance matrix Y . Conclude that C0 is a positive definite matrix
when gm

jk +gm
k j > 0 for at least one line ( j,k) 2 E.



Draft: EE 135 Notes April 30, 2024 589

2. Suppose ym
jk = ym

k j = 0. Define the total thermal loss as:

C0(V ) := Â
( j,k)2E

rs
jk |I jk(V )|2 = Â

( j,k)2E
rs

jk

���ys
jk(Vj�Vk)

���
2

where zs
jk = rs

jk + ixs
jk := 1/ys

jk. Show that C0(V ) is a quadratic form C0(V ) = VHC0V where the
cost matrix C0 = Re(Y ) when ym

jk = ym
k j = 0. Conclude that C0 is a positive semidefinite matrix.

3. Suppose ym
jk = ym

k j = 0. Show that the total real power loss in part 1 reduces to the total thermal loss
in part 2.

Exercise 13.7 (Single-phase OPF: quadratic line limit). Consider the line limit

|S jk(V )|2  S2
jk, |Sk j(V )|2  S2

k j, ( j,k) 2 E

where

S jk(V ) := VjIHjk(V ) =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2, ( j,k) 2 E

Sk j(V ) := VkIHk j(V ) =
⇣

ys
jk

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 ( j,k) 2 E

Show that the line limit can be written as an inhomogeneous quadratic form.

Exercise 13.8 (3-phase OPF: line limit). Show that the line limit in three-phase OPF is
���If

jk

���
2

:= VH Ŷ f
jk V  `f max

jk

where Ŷ f
jk := ỸH

jk Ef Ỹjk is a 3(N +1)⇥3(N +1) matrix and Ỹjk is a 3⇥3(N +1) matrix given by

Ỹjk :=
⇣
(e j� ek)

T⌦ ys
jk + eTj ⌦ ym

jk

⌘

Here e j 2 {0,1}N+1 and ef 2 {0,1}3 are unit vectors of different sizes with a single 1 at the jth and f th

position respectively, Ef := ef efT, and I is the 3⇥3 identity matrix. Similarly for
���If

k j

���
2
.

Exercise 13.9 (3-phase OPF as QCQP: current source). Show that the conversion rules (13.18c)(13.18d)
for a current source are equivalent to the following inhomogeneous quadratic forms:

Y configuration: s j(V ) = �uHj
⇣

eHj ⌦Ef
⌘

V (13.58)

D configuration: s j(V ) = �uHj
⇣

eHj ⌦ (GEf )
⌘

V (13.59)

where s j(V ) is given by (13.25).
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Exercise 13.10 (3-phase OPF as QCQP: power source). Recall the quadratic form s j(V ) given by (13.25).

1. Y -configured power source: Let u j =: (u j1,u j2) where u j1 := sY
j and u j2 := IY

j be the optimization
variable. Show that the conversion rule (13.18e) is equivalent to the following inhomogeneous
quadratic equations in (V,u j):

Y : sf
j (V ) = �uHj2

⇣
eHj ⌦Ef

⌘
V, s j(V ) = �u j1� gY

j u j2, f 2 {a,b,c}

2. D-configured power source: Let u j =: (u j1,u j2) where u j1 := sD
j and u j2 := ID

j be the optimiza-
tion variable. Show that the conversion rule (13.18f) is equivalent to the following inhomogeneous
quadratic equations in (V,u j):

D : sf
j (V ) = �uHj2

⇣
eHj ⌦ (GEf )

⌘
V, ufj

j1 = uHj2
⇣

eHj ⌦
⇣

Ef G
⌘⌘

V, fj 2 {ab,bc,ca}

Exercise 13.11 (3-phase OPF as QCQP: impedance). Show that the equality constraints imposed by an
impedance

⇣
zY

j ,gY
j

⌘
or zD

j are equivalent to the following inhomogeneous quadratic equations in V :

Y configuration: sf
j (V ) = VH

⇣⇣
e jeHj

⌘
⌦
⇣

yYH
j Ef

⌘⌘
V � gYH

j

⇣
eHj ⌦

⇣
1HyYH

j Ef
⌘⌘

V

D configuration: sf
j (V ) = �VH

⇣⇣
e jeHj

⌘
⌦
⇣

Y DH
j Ef

⌘⌘
V

where the neutral voltage gY
j := V n

j is given (e.g., gY
j = 0) and Y D

j := GTyDG.

The next exercise studies a Y -configured power source when the optimization variable is taken to be
u j := sY

j instead of u j := (sY
j , I

Y
j ). It suggests that the formulation in the text that uses u j := (sY

j , I
Y
j ) as the

optimization variable seems simpler.

Exercise 13.12 (3-phase OPF as QCQP: power source). For a Y -configured ideal power source, suppose
the optimization variable is the internal power (only) u j := sY

j and its neutral voltage gY
j := V n

j is given. If
gY

j = 0 then s j =�sY
j . Suppose gY

j 6= 0.

1. Show that u j is related to the terminal voltage and current
�
Vj,s j

�
as:

s j = �diag

 
V f

j

V f
j � gY

j

,f = a,b,c

!
u j

2. Y configuration: Show that the conversion rule in part 1 is equivalent to the following set of inho-
mogeneous equality constraints on

⇣
V,u j,w

f
j ,f 2 {a,b,c}

⌘
2 C

12(N+1)+3: for each j 2 N,

VH

⇣
gY

j Y fH
j

⌘
V = uHj

⇣
ef efH

j

⌘
V + wfH

j

⇣
Y fH

j

⌘
V, f 2 {a,b,c}

ejH
k wf

j = VH

⇣
ef

j ejH
j

⌘
V, k 2 N, f ,j 2 {a,b,c}
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where wf
j 2 C

3(N+1) is an auxiliary variable, one for each f 2 {a,b,c}. For each j 2 N, this is a set

of 9(N +1)+3 quadratic equations in
⇣

V,u j,w
f
j ,f 2 {a,b,c}

⌘
.

Chapter 13.2.

Exercise 13.13 (DistFlow with nonzero shunt admittances). Formulate single-phase OPF with generalized
DistFlow model with nonzero shunt admittances

⇣
ym

jk,y
m
k j

⌘
.

Chapter 13.5 Given a matrix M 2Rm⇥n and vector q2Rm the standard linear complementarity problem
LCP(M,q) is to find vectors z,w 2 R

m such that

z� 0, w� 0, zTw = 0, w = Mz+q (13.60a)

or, equivalently, to find z such that

z� 0, Mz+q� 0, zT(Mz+q) = 0 (13.60b)

Complementarity constraints arise frequently in OPF problems (see Chapter 13.5.2). The next few exer-
cises are on linear complementarity problems.

Exercise 13.14 (Linear complementarity problem). 1. Consider the quadratic optimization:

min
x2Rn

1
2

xTQx + cTx s.t. Ax  b, x � 0 (13.61a)

Show that solving the associated KKT condition is a standard LCP.

2. Consider the quadratic optimization without the nonnegativity constraint on x:

min
x2Rn

1
2

xTQx + cTx s.t. Ax  b (13.61b)

If Q is positive definite show that solving the associated KKT condition is a standard LCP.

Exercise 13.15 (Linear complementarity problem). Suppose A,B 2 R
n⇥n are square matrices and a,b 2

R
n. Consider

0  Az+a ? Bz+b � 0 (13.62)

Show that if A is nonsingular then (13.62) is a standard LCP.
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Exercise 13.16 (Linear complementarity problem). Show that the system of equations in (y,r�,r+):

y+r+�r� = x, 0  r� ? y�a � 0, 0  r+ ? a� y � 0 (13.63)

where a < a is equivalent to a standard LCP.

Exercise 13.17 (Linear complementarity problem). Let

M :=


1 1
�1 0

�
, q :=


�1
1

�

Solve the LCP(M,q): find x := [x1 x2]T such that

x � 0, Mx+q � 0, xT(Mx+q) = 0

Note that there exists a unique solution even though M is neither positive definite nor symmetric.

Exercise 13.18 (SCOPF: nonsmooth constraints). Consider the nonsmooth constraint y = [x]aa := max{a,min{x,a}}
on variables (x,y) 2 R

2 where a < a are given constants.

1. Show that it is equivalent to the following complementarity constraints:

y+r+�r� = x, 0  r� ? y�a � 0, 0  r+ ? a� y � 0

where (r�,r+) are slack variables. Finding a solution (y,r�,r+) to this system of equations is a
linear complementarity problem; see Exercise 13.16.

2. Show that it is equivalent to the following set of big-M mixed integer constraints:

a  y  a, z,z 2 {0,1} (13.64a)
y�a  Mz, y� x  M(1� z) (13.64b)
a� y  Mz, x� y  M(1� z) (13.64c)

where M is a sufficiently large constant and (z,z) are auxiliary binary variables. What value of (z,z)
will result in infeasibility?

3. Show that it is also equivalent to:

x�a  Mz, a� x  M(1� z) (13.65a)
a� x  Mz, x�a  M(1� z) (13.65b)

together with (the nonlinear equality)

(y�a)(1� z) + (y�a)(1� z) + (y� x)zz = 0, z,z 2 {0,1} (13.65c)

What value of (z,z) will result in infeasibility?
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Exercise 13.19 (SCOPF: nonsmooth constraints). Consider the following disjunctive constraint on (q,V )2
R

2:
�

q q q, V = V0
 
[
�

q = q, V �V0
 
[ {q = q, V V0}

where q < q.

1. Show that it is equivalent to:

V + µ+�µ� = V0, 0  µ� ? q�q � 0, 0  µ+ ? q�q � 0

where (µ�,µ+) are slack variables. Unlike the complementarity problem in Exercise 13.18.1, the
equality constraint here involves another variable V , not q.

2. Show that it is equivalent to:

q  q  q, z,z 2 {0,1}
q�q  Mz, V0�V  Mz V �V0  M(1� z)

q�q  Mz, V �V0  Mz V0�V  M(1� z)

where M is a sufficiently large constant and (z,z) are auxiliary binary variables.

Exercise 13.20 (Smooth approximation). This problem considers smooth approximations of max(a,x)
and min(a,x).

1. Let f (x) := max(0,x) and its approximation f e(x) := e ln
⇣

1+ ex/e
⌘

for x 2 R and e > 0. For any
e > 0 show that f e(x)� e ln2 f (x) < f e(x) for all x 2 R.

2. What is the corresponding approximation for f̃ (x) := max(a,x) for any a 2 R?

3. Let g(x) := min(0,x). Justify its approximation ge(x) :=�e ln
⇣

1+ e�x/e
⌘

for x2R and e > 0. For
any e > 0 show that ge(x) < g(x) ge(x)+ e ln2 for all x 2 R.

4. What is the corresponding approximation for g̃(x) := min(x,b) for any b 2 R?

5. What is the approximation for h(x) := max(a,min(x,b)) for a < b if we apply the approximations
for f̃ e and g̃e?

Exercise 13.21 (Smooth approximation). Prove the properties (13.53).
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Exercise 13.22 (ADMM). Consider the problem

min
x2Rn, y2Rp

f (x) + g(y) (13.67a)

s.t. x 2 X , y 2 Y (13.67b)
Ax + By = c (13.67c)

with the augmented Lagrangian

Lr(x,y,l ) := f (x) + g(y) + lT (Ax+By� c) +
r
2
kAx+By� ck2

2

and the ADMM algorithm:

xt+1 := argmin
x2X

Lr (x, yt , lt) (13.68a)

yt+1 := argmin
y2Y

Lr (xt+1, y, lt) (13.68b)

lt+1 := lt + r (Axt+1 +Byt+1� c) (13.68c)

Suppose the objective functions f and g are closed proper convex and differentiable.

1. Write down the first-order optimality condition.

2. Show that the Gauss-Siedel step (13.68b) and the choice of the step size r for the dual update ensure
that (xt ,yt ,lt) satisfies one of the two stationarity conditions in part 1 in every iteration t.

3. Show that (under appropriate assumptions) ADMM converges, i.e.,

• The other stationarity condition is satisfied as t! •.

• Axt +Byt� c! 0 as t! •.

• f (xt)+g(yt) converges to the optimal value as t! •.



Chapter 14

Semidefinite relaxations: BIM

Chapter 12 motivates optimal power flow (OPF) problems through various control decisions in power
system operations. Chapter 13 studies generic OPF as a nonconvex constrained optimization problem. In
particular we have formulated OPF as a nonconvex quadratically constrained quadratic program (QCQP)
and shown that it is NP-hard in general. Numerous methods have been proposed for solving OPF in
different applications. Algorithms such as those discussed in Chapter 11.5 have been used for computing a
local solution of the nonconvex OPF (often called AC OPF because of the nonlinear power flow equations).
Instead of the nonconvex problem, its linear or convex approximations have also been solved. For instance
DC OPF is a linear program approximation of the nonconvex problem that is widely used for dispatching
generators in electricity markets. In this and the next chapters we study a convex approximation, called
semidefinite relaxation, of OPF.

There is a rich theory and extensive empirical experiences in applying semidefinite relaxation to many
engineering problems. Due to nonconvexity of OPF, algorithms typically computes a local optimal without
assurance on the quality of the solution. A semidefinite relaxation provides the ability to check if a feasible
solution is globally optimal. If it is not, the solution of a relaxation provides a lower bound on the minimum
cost and hence a bound on how far any feasible solution is from optimality. Unlike approximations, if a
relaxed problem is infeasible, it is a certificate that the original OPF is infeasible. In Chapter 14.1 we define
semidefinite relaxation of QCQP in general and explain how to use the concept of partial matrices and their
psd rank-1 completion to reduce the computational complexity of the semidefinite relaxation for large
sparse networks. In Chapter 14.2 we apply these results to formulate single-phase OPF as QCQP in the
bus injection model. In Chapters 14.3 and 14.4 we describe two sufficient conditions for the semidefinite
relaxation of OPF to be exact for single-phase radial network. In Chapter 14.5 we extend semidefinite
relaxations of OPF to unbalanced three-phase networks.

14.1 Semidefinite relaxations of QCQP

OPF is formulated in (13.15) as a standard homogeneous QCQP. The computational difficulty arises from
the nonconvex feasible set of OPF. Informally one can regard a relaxation of OPF as minimizing the same
cost function over a convex superset (though in a lifted space). Different choices of convex supersets lead

595
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to different relaxations, but they all provide lower bounds to OPF. If an optimal solution of a relaxation
happens to lie in the feasible set of the original OPF problem, then it is optimal for the original OPF. In
this case we say the relaxation is exact. In this section we describe three types of semidefinite relaxation
of OPF and explain equivalence relations among them. In the next section we present sufficient conditions
that guarantee exact relaxations

14.1.1 SDP relaxation

Since these methods are not restricted to OPF, we will discuss them using the general QCQP formulation
(13.10), reproduced here:

min
x2Cn

xHC0x (14.1a)

s.t. xHClx  bl, l = 1, . . . ,L (14.1b)

Using xHClx = tr
�
ClxxH

�
we can rewrite (14.1) as

min
X2Sn,x2Cn

tr(C0X)

s.t. tr(ClX)  bl, l = 1, . . . ,L

X = xxH

Any positive semidefinite (psd) rank-1 matrix X 2 S
n⇥n
+ has a spectral decomposition X = xxH for some

x 2 C
n; see Chapter 25.1.6. The factor x is unique up to a rotation, i.e., x satisfies X = xxH if and only if

xe jq does for any q 2 R. Hence (14.1) is equivalent to the following problem where the optimization is
over the set Sn of Hermitian matrices X :

min
X2Sn

tr(C0X) (14.2a)

s.t. tr(ClX)  bl, l = 1, . . . ,L (14.2b)
X ⌫ 0, rank(X) = 1 (14.2c)

Recall that tr(ClX) = Â j,k[Cl] jkXk j = Â j,k[Cl] jkXH

jk where the second equality follows when X is Her-
mitian. While the objective function and the constraints in (14.1) are quadratic in x, they are linear in X
in (14.2a)(14.2b). The constraint X ⌫ 0 in (14.2c) is convex (Sn

+ is a convex cone). The rank constraint
in (14.2c) is the only nonconvex constraint. These two problems are equivalent in the sense that, given a
feasible (or optimal) solution x to QCQP (14.1), there is an X := xxH that is feasible (or optimal) to the
semidefinite program (14.2). Conversely, given an X that is feasible (or optimal) to (14.2), a solution x to
(14.1) can be recovered through rank-1 factorization X = xxH. It is in this sense that we also say that the
feasible sets of (14.1) and (14.2) are equivalent. This is referred to as lifting the original QCQP problem
from n dimensional space C

n to the higher-dimensional space of n⇥n Hermitian matrices.

Removing the rank constraint (14.2c) results in a semidefinite program (SDP):

min
X2Sn

tr(C0X) (14.3a)

s.t. tr(ClX)  bl, l = 1, . . . ,L (14.3b)
X ⌫ 0 (14.3c)
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See Chapter ?? for more details of the convex problem SDP. We call (14.3) a semidefinite relaxation or
an SDP relaxation of QCQP (14.1) because the feasible set of the equivalent problem (14.2) is a subset of
the feasible set of SDP (14.3). A strategy for solving QCQP (14.1) is to solve SDP (14.3) for an optimal
matrix Xopt and check its rank. If rank(Xopt) = 1 then Xopt is feasible and hence optimal for (14.2) as well
and an optimal solution xopt of QCQP (14.1) can be recovered from Xopt through spectral decomposition
Xopt = xopt(xopt)H. If rank Xopt > 1 then, in general, no feasible solution of QCQP can be directly obtained
from Xopt but the optimal objective value of SDP provides a lower bound on that of QCQP.

14.1.2 Partial matrices and completions

Even though the relaxation (14.3) is a convex problem computing its solution can still be challenging if
the problem size n is large. If the underlying network is sparse, much more efficient relaxations can be
used. To develop these ideas precisely, the key is to study the feasible sets of QCQP and its relaxations.

We start with the concept of partial matrices and their completions. An instance of QCQP (14.1)
is specified by a set of matrices and scalars (C0,Cl,bl, l = 1, . . . ,L). We assume the matrices Cl, l =
0,1, . . . ,L, are Hermitian so that xHClx are real. They define an underlying undirected graph F := (N,E)
with n nodes and m edges where distinct nodes j and k are adjacent (i.e., ( j,k) 2 E) if and only if there
exists an l 2 {0,1, . . . ,L} such that [Cl] jk = [Cl]

H

k j 6= 0. Assume without loss of generality that the graph F
is connected. For any x 2C

n note that the quadratic forms xHClx depends on |x j|2 and on xHj xk if and only
if ( j,k) 2 E is a link in F , i.e., if and only if there exists an l such that the coefficient of xHj xk is nonzero.
Indeed

xHClx = Â
j,k

[Cl] jk xHj xk = Â
j

[Cl] j j |x j|2 + 2 Â
( j,k)2E

Re
⇣
[Cl] jk xHj xk

⌘

where the last equality follows from [Cl]k jxHk x j = [Cl]
H

jkxHk x j =
⇣
[Cl] jk xHj xk

⌘H
since Cl is Hermitian. Hence

the constraints xHClx  bl do not depend on xHj xk if ( j,k) 62 E for any l, and Xjk of the lifted variable X
are not directly constrained by tr(ClX)  bl if ( j,k) 62 E. This can be used to relax the psd and rank-1
constraints on the entire matrix X using the concept of partial matrices, greatly simplifying computation
when the underlying graph F of the QCQP is sparse.

A partial matrix XF is a set of 2m+n complex numbers defined on F := (N,E):

XF :=
�

[XF ] j j, [XF ] jk, [XF ]k j : nodes j 2 N and links ( j,k) 2 E
 

XF can be interpreted as a matrix with entries partially specified by these complex numbers. The ( j,k)th
entry of XF that does not correspond to an edge in F is not specified. If F is a complete graph (in which
there is an edge between every pair of vertices) then XF is a fully specified n⇥n matrix. A completion X
of XF is any fully specified n⇥n matrix that agrees with XF on graph F , i.e.,

[X ] j j = [XF ] j j, [X ] jk = [XF ] jk, [X ]k j = [XF ]k j, j 2 N, ( j,k) 2 E

Given an n⇥ n matrix X we use XF to denote the submatrix of X on F, i.e., the partial matrix consisting
of the entries of X defined on graph F . If q is a clique (a fully connected subgraph) of F then let XF(q)
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denote the fully-specified principal submatrix of XF defined on q, i.e., if the clique q has k nodes then X(q)
is a k⇥ k matrix and, for every node j and link ( j,k) in the clique q,

[X(q)] j j := [XF ] j j, [X(q)] jk := [XF ] jk, [X(q)]k j := [XF ]k j

We extend the definitions of Hermitian, psd, and rank-1 for matrices to partial matrices, as follows. A
partial matrix XF is Hermitian, denoted by XF = XH

F , if [XF ]k j = [XF ]Hjk for all ( j,k) 2 F ; it is psd, denoted
by XF ⌫ 0, if XF is Hermitian and the principal submatrices XF(q) are psd for all cliques q of F ; it is
rank-1, denoted by rank(XF) = 1, if the principal submatrices XF(q) are rank-1 for all cliques q of F . We
say XF is 2⇥2 psd (rank-1) if, for all edges ( j,k) 2 F , the 2⇥2 principal submatrices

XF( j,k) :=

[XF ] j j [XF ] jk
[XF ]k j [XF ]kk

�

are psd (rank-1). The condition XF( j,k) ⌫ 0 is equivalent to: the matrix XF( j,k) is Hermitian, i.e.,
XF( j,k) = XF( j,k)H, its diagonal entries [XF ] j j, [XF ]kk are real, and

[XF ] j j � 0, [XF ]kk � 0, [XX ] j j[XX ]kk �
��[XF ] jk

��2

This is a second-order cone (see (??)). The condition rank(XF( j,k)) = 1 is equivalent to XF( j,k) is not a
zero matrix and

[XF ] j j [XF ]kk =
��[XF ] jk

��2

We extend the trace operation to partial matrices XF :

tr(ClXF) := Â
j2N

[Cl] j j [XF ] j j + Â
( j,k)2E

�
[Cl] jk [XF ]k j + [Cl]k j [XF ] jk

�

If both Cl and XF are Hermitian then [Cl]k j[XF ] jk =
�
[Cl] jkXk j

�H and hence

tr(ClXF) = Â
j2N

[Cl] j j [XF ] j j +2 Â
( j,k)2E

Re
�
[Cl] jk [XF ]k j

�

is a real scalar.

We call F a chordal graph if either F has no cycle or all its minimal cycles (ones without chords) are
of length three. A chordal extension c(F) of F is a chordal graph that contains F , i.e., c(F) has the same
vertex set as F but an edge set that is a superset of F’s edge set. In that case we call the partial matrix Xc(F)
a chordal extension of the partial matrix XF . Every graph F has a chordal extension, generally nonunique.
In particular a complete supergraph of F is a trivial chordal extension of F . Chordal graphs are important
for us because of the result [155, Theorem 7] that every psd partial matrix has a psd completion if and only
if the underlying graph is chordal. When a positive definite completion exists, there is a unique positive
definite completion, in the class of all positive definite completions, whose determinant is maximal. Before
extending this to rank-1 partial matrices, we present an example.
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Figure 14.1: Example 14.1: (a) Partial matrix XF . (b)(c) Two chordal extensions Xc(F) and their overlap-
ping maximal cliques.
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Example 14.1 (Partial matrices and definitions). Consider the graph F and the partial matrix XF in Figure
14.1(a). XF is Hermitian if x jk = xHk j. The only cliques in F consist of two nodes that are adjacent, and
hence XF is psd if it is 2⇥ 2 psd and XF is rank-1 if it is 2⇥ 2 rank-1. XF is not chordal as it contains a
cycle of length greater than 3.

Figure 14.1(b) and (c) depict two chordal extensions c(F) of F and their corresponding partial matrices
Xc(F). The chordal extension in Figure 14.1(b) has 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5).
These cliques share two nodes, 2 and 3. The corresponding cliques are outlined in Xc(F)(q1) in the figure
with the overlapping entries shaded in green. The chordal extension in Figure 14.1(c) has 3 maximal
cliques, outlined and shaded in blue in Xc(F)(q2).

Consider the following conditions on n⇥n matrices X and partial matrices Xc(F) and XF :

X ⌫ 0, rank(X) = 1 (14.4a)
Xc(F) ⌫ 0, rank(Xc(F)) = 1 (14.4b)

XF( j,k)⌫ 0, rank(XF( j,k)) = 1, ( j,k) 2 E (14.4c)

We say that a partial matrix XF satisfies the cycle condition if for every cycle c in F

Â
( j,k)2c

\[XF ] jk = 0 mod 2p (14.5)

where x = f mod 2p means x = f +2kp for some integer k. For instance if \[XF ] jk represent the voltage
phase differences across lines ( j,k) then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle c. The next theorem implies that XF has a psd rank-1 completion X if and only if XF
has a chordal extension Xc(F) that is psd rank-1, if and only if XF is 2⇥2 psd rank-1 on F and satisfies the
cycle condition (14.5). 1

Theorem 14.1 (Rank-1 characterization). Fix a connected graph F := (N,E) with n := |N| nodes. Con-
sider any chordal extension c(F) of F . Suppose Xj j > 0,

⇥
Xc(F)

⇤
j j > 0 and [XF ] j j > 0, j 2 N, for the

matrix X and submatrices XF and Xc(F) below. Then

(1) Given a n⇥n matrix X that satisfies (14.4a), its submatrix Xc(F) satisfies (14.4b).

(2) Given a partial matrix Xc(F) that satisfies (14.4b), its submatrix XF satisfies (14.4c) and the cycle
condition (14.5).

(3) Given a partial matrix XF that satisfies (14.4c) and the cycle condition (14.5), there is a completion
X of XF that satisfies (14.4a).

Informally Theorem 14.1 says that (14.4a) is equivalent to (14.4b) which is equivalent to (14.4c)(14.5).
It implies in particular that, for a chordal graph, X is psd rank-1 if and only if the principal submatrix X(q)
of X is psd rank-1 for every maximal clique q of the graph. It characterizes a property of the full matrix
X (that X is psd and rank-1) in terms of its submatrices Xc(F) and XF . This is important because the
submatrices are typically much smaller than X for large sparse networks and much easier to compute. The
theorem thus allows us to solve smaller problems in terms of partial matrices as we now explain.

1The theorem also holds with psd replaced by negative semidefinite.
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14.1.3 Feasible sets

To develop semidefinite relaxations of QCQP we start by studying their feasible sets. Fix Cl , l = 0,1, . . .L,
and its underlying graph F . Define the feasible set of the QCQP (14.1) as:

V := {x 2 C
n |xHClx  bl, l = 1, . . . ,L} (14.6)

Given an x 2 V, it defines a unique (up to a rotation) psd rank-1 matrix X := xxH and therefore a unique
psd rank-1 partial matrix XF that satisfies tr(ClXF)  bl . The converse is not always true: given a partial
matrix XF that is psd rank-1 and satisfies tr(ClXF) bl , it is not always possible to recover an x in V. This
is possible if and only if XF has a psd rank-1 completion X that satisfies tr(ClX) bl . We now characterize
the set of partial matrices from which x 2 V can be recovered.

Define the set of Hermitian matrices:

X := { X 2 S
n | X satisfies tr(ClX) bl, l = 1, . . . ,L, (14.4a) } (14.7a)

Fix a connected graph F . Fix any chordal extension c(F) of F and define the set of Hermitian partial
matrices Xc(F):

Xc(F) := { Xc(F) | Xc(F) satisfies tr
�
ClXc(F)

�
 bl, l = 1, . . . ,L, (14.4b) } (14.7b)

Finally define the set of Hermitian partial matrices XF :

XF := { XF |XF satisfies tr(ClXF) bl, l = 1, . . . ,L, (14.4c)(14.5) } (14.7c)

Note that the definition of psd for partial matrices implies that Xc(F) and XF are Hermitian partial matrices.

Theorem 14.1 implies that given a partial matrix Xc(F) 2 Xc(F) or a partial matrix XF 2 XF there is a
psd rank-1 completion X 2 X. Moreover the completion X is unique.

Corollary 14.2 (Uniqueness of rank-1 completion). Fix a connected graph F . Given a partial matrix
Xc(F) 2 Xc(F) or XF 2 XF there is a unique psd rank-1 completion X 2 X.

The corollary implies that, given any Hermitian partial matrix XF 2 XF , the set of all completions of
XF consists of a single psd rank-1 matrix and infinitely many indefinite or non-rank-1 matrices.

We say two sets A and B are equivalent, denoted A ⌘ B, if there is a bijection between them. Even
though X,Xc(F),XF are different kinds of spaces, Theorem 14.1 and Corollary 14.2 imply that they are all
equivalent to the feasible set of QCQP (14.1).

Theorem 14.3 (Equivalence). V⌘ X⌘ Xc(F) ⌘ XF .

Since the cost function xHC0x of (14.1) depends on X only through the partial matrix XF , Theorem
14.3 suggests three problems that are equivalent to QCQP (14.1): for X̂ 2

�
X,Xc(F),XF

 
,

min
X

C(XF) subject to X 2 X̂ (14.8)
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Specifically, given an optimal solution Xopt in X, it can be decomposed into Xopt = xopt(xopt)H where xopt

is unique up to an arbitrary reference angle. Then xopt is in V and an optimal solution of QCQP (14.1).
Alternatively given an optimal solution Xopt

F 2XF or Xopt
c(F) 2Xc(F), Corollary 14.2 guarantees that it has a

unique psd rank-1 completion Xopt in X from which an optimal xopt 2 V can be recovered. This suggests
solving the QCQP (14.1) by computing Xopt

F or Xopt
c(F) instead of Xopt because both of them are typically

much smaller in size than Xopt for a large sparse network.

Given a partial matrix XF 2 XF (or Xc(F) 2 Xc(F)), however, there is a more direct construction of a
feasible solution x 2 V of QCQP than through its completion, as we will see in Chapter 14.1.4.

Remark 14.1 (Graph F̂ underlying QCQP). Note that the feasible sets V,X,Xc(F),XF defined in (14.6)
(14.7) depend only on the constraint matrices Cl , l = 1, . . . ,L, but not on the cost matrix C0. Equivalence
among these sets will therefore hold if we replace F in Theorem 14.1, Corollary 14.2 and Theorem 14.3
with a subgraph F̂ that is induced by Cl only for l � 1, i.e., two nodes j and k in F̂ are adjacent if and only
if [Cl] jk 6= 0 for some l 2 {1, . . . ,L}.

The matrix F is needed for the proper definition of cost function. For the optimization problems in
(14.8) to be equivalent, we need to compute the partial matrices XF and Xc(F). The partial matrices XF̂ will
have missing terms [XF̂ ] jk in the cost function if ( j,k) is in F but not in F̂ , i.e., if [C0] jk 6= 0 but [Cl] jk = 0
for all l � 1. Similarly for Xc(F̂).

14.1.4 Semidefinite relaxations and solution recovery

Hence solving QCQP (14.1) is equivalent to solving (14.8) over any of X,Xc(F),XF for an appropriate
matrix variable. The difficulty with solving (14.8) is that the feasible sets X, Xc(F), and XF are still
nonconvex due to the rank-1 constraint and the cycle condition (14.5). Their removal leads to SDP, chordal,
and SOCP relaxations of QCQP (14.1) respectively.

Semidefinite relaxations. Relax X, Xc(F) and XF to the following convex supersets:

X
+ := {X 2 S

n | XF satisfies tr(ClX) bl, l = 1, . . . ,L, X ⌫ 0}
X

+
c(F) := {Xc(F) | XF satisfies tr

�
ClXc(F)

�
 bl, l = 1, . . . ,L, Xc(F) ⌫ 0}

X
+
F := {XF | XF satisfies tr(ClXF) bl, l = 1, . . . ,L, XF( j,k)⌫ 0, ( j,k) 2 E}

These feasible sets are defined for different (partial) matrices and differ in the definition of psd. Remark
14.1 applies to these relaxed feasible sets regarding the underlying graph and the corresponding partial
matrices.

The following problems are semidefinite relaxations of QCQP (14.1) with different sizes and tightness:
QCQP-sdp:

min
X

C (XF) subject to X 2 X
+ (14.9a)

QCQP-ch:

min
Xc(F)

C (XF) subject to Xc(F) 2 X
+
c(F) (14.9b)
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QCQP-socp:

min
XF

C (XF) subject to XF 2 X
+
F (14.9c)

Solution recovery. When the semidefinite relaxations OPF-sdp, OPF-ch, OPF-socp are exact, i.e., if
their optimal solutions X sdp, Xch

c(F), X socp
F happen to lie in X, Xc(F), XF respectively, then an optimal

solution xopt 2V of the original QCQP can be recovered from these solutions. Indeed the recovery method
works not just for an optimal solution, but any feasible solution that lies in X, Xc(F) or XF . Moreover, given
an X 2 X or an Xc(F) 2 Xc(F), the construction of x depends on X or Xc(F) only through their submatrix
XF . We hence describe a method for recovering an x 2V from an XF , which may be a partial matrix in XF
or the submatrix of a (partial) matrix in X or Xc(F). The solution x is unique if F is connected and, say,
\x1 is fixed.

Let T be an arbitrary spanning tree of F rooted at bus 1. Let P j denote the unique path from bus 1 to
bus j in T with orientation pointing away from bus 1. Set |x1| :=

p
[XF ]11 and \x1 to an arbitrary value.

For j = 2, . . . ,n,

|x j| :=
q

[XF ] j j, \x j := \V1 � Â
(i,k)2P j

\ [XF ]ik

Then, on link ( j,k), \x j �\xk = \ [XF ] jk and [XF ] jk = x jxHk since XF is 2⇥ 2 psd rank-1. It can be
checked that x is in the feasible set V of QCQP, i.e., xHClx bl , l = 1, . . . ,L (Exercise 14.1). This method
for recovering x from XF is generally more efficient than computing the psd rank-1 completion X of XF
and factorizing X , as suggested in Theorem 14.3, and is used in the proof of Theorem 14.1 (see Chapter
14.1.6).

14.1.5 Tightness of relaxations

Recall that V⌘X⌘ Xc(F) ⌘ XF (Theorem 14.3). Since X✓X
+, Xc(F) ✓X

+
c(F), XF ✓X

+
F , the relaxations

OPF-sdp, OPF-ch, OPF-socp all provide lower bounds on OPF (13.9) OPF-socp is the simplest computa-
tionally. OPF-ch usually requires heavier computation than OPF-socp but much lighter than OPF-sdp for
large sparse networks (even though OPF-ch can be as complex as OPF-sdp in the worse case [157, 158]).
The relative tightness of the relaxations depends on the network topology. For a general network that may
contain cycles, OPF-ch is as tight a relaxation as OPF-sdp and they are strictly tighter than OPF-socp. For
a tree (radial) network the hierarchy collapses and all three are equally tight. We now make this precise.

Consider the relaxed feasible sets X+, X+
c(F) and X

+
F . Consider two sets A and B and the corresponding

cost functions CA : A ! R and CB : B ! R. For instance A := C
n, B := S

n, CA(x) := tr
�
CxxH

�
and

CB(X) := tr(CX) for a given Hermitian matrix C. We say that A is an effective subset of B with respect
to the cost functions CA,CB, denoted by A v B, if, given any a 2 A, there is a b 2 B that has the same
cost CA(a) = CB(b). We say A is similar to B with respect to the cost functions CA,CB, denoted by
A ' B, if A v B and B v A. Note that A ⌘ B implies A ' B but the converse may not hold. Even though
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effective subset and similarity are defined with respect to some cost functions CA,CB, we often omit the
cost functions when their existence is understood and unimportant for the discussion, and simply say A is
an effective subset of B or A is similar to B.

The following result says that feasible set of QCQP (14.1) is an effective subset of the feasible sets of
its relaxations; moreover these relaxations have similar feasible sets when the network is radial.

Theorem 14.4 (Tightness of relaxations). 1. Vv X
+ ' X

+
c(F) v X

+
F .

2. If F is a tree then Vv X
+ ' X

+
c(F) ' X

+
F .

The reason X
+
c(F) is similar, but not equivalent, to X

+ is that psd completions of a psd submatrix
X 2 X

+
c(F) are generally nonunique. In contrast, the psd rank-1 completion of a psd rank-1 submatrix

X 2 Xc(F) is unique according to Corollary 14.2.

Let Cqcqp,Csdp,Cch,Csocp be the optimal values of QCQP (14.1), QCQP-sdp (14.9a), QCQP-ch (14.9b),
QCQP-socp (14.9c) respectively. Theorem 14.3 and Theorem 14.4 directly imply

Corollary 14.5. 1. Cqcqp �Csdp = Cch �Csocp.

2. If F is a tree then Cqcqp �Csdp = Cch = Csocp.

Remark 14.2 (Tightness). Theorem 14.4 and Corollary 14.5 imply that for radial networks one should
always solve QCQP-socp, not QCQP-sdp or QCQP-ch, since it is the tightest and the simplest relaxation of
the three. For networks that contain cycles there is a tradeoff between QCQP-socp and QCQP-ch/QCQP-
sdp: the latter is tighter but requires heavier computation. Between QCQP-ch and QCQP-sdp, QCQP-ch is
preferable as they are equally tight but QCQP-ch is usually much faster to solve for large sparse networks.

Theorem 14.1 through Corollary 14.5 apply to any chordal extension c(F) of F . The choice of c(F)
does not affect the optimal value of the chordal relaxation but determines its complexity. Unfortunately the
optimal choice that minimizes the complexity of QCQP-ch is NP-hard to compute. This difficulty is due
to two conflicting factors in choosing a c(F). Recall that the constraint Xc(F) ⌫ 0 in the definition of X+

c(F)

consists of multiple constraints that the principal submatrices Xc(F)(q) ⌫ 0, one for each maximal clique
q of c(F). When two cliques q and q0 share a node their submatrices Xc(F)(q) and Xc(F)(q0) share entries
that must be decoupled by introducing auxiliary variables and equality constraints on these variables. The
choice of c(F) determines the number of these submatrices Xc(F)(q) and their sizes as well as the number
of auxiliary variables and decoupling constraints. On the one hand if c(F) contains few cliques q then
the submatrices Xc(F)(q) tend to be large and expensive to compute (e.g. if c(F) is the complete graph
then there is a single clique, but Xc(F) = X and QCQP-ch is identical to QCQP-sdp). On the other hand
if c(F) contains many small cliques q then there tends to be more overlap and chordal relaxation tends to
require more decoupling constraints. Hence choosing a good chordal extension c(F) of F is important but
nontrivial.

Example 14.2. Example of chordal extension, chordal relaxations, decoupling overlap variables, etc.
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14.1.6 Proofs

Proof of Theorem 14.1: Rank-1 characterization. We will prove (1)) (2)) (3)) (1). If X is psd
rank-1 then all its principle submatrices are psd and of rank 1 (the submatrix cannot be of rank 0 because,
by assumption, Xj j > 0 for all j 2 N). This implies that its submatrix Xc(F) is psd and rank-1. Hence (1)
) (2).

Fix a partial matrix Xc(F) that is psd and rank-1 and consider its submatrix XF . Since each link ( j,k)2E
is a clique of c(F) the 2⇥2 principle submatrix XF( j,k) is psd and rank-1. Therefore to prove that (2))
(3), it suffices to show that XF satisfies the cycle condition (14.5). We now prove the following statement
by induction on k: for all cycles c := ( j1, . . . , jk) of length 3 k n in c(F), such that the lines ( ji, ji+1)2 c
with jk+1 := j1, we have

k

Â
i=1
\ [XF ] ji ji+1

= 0 mod 2p (14.10)

For k = 3, a cycle c := (n1,n2,n3) is a clique of c(F) and therefore the following principle submatrix of
Xc(F):

Xc(F)(n1,n2,n3) :=

2

4
[Xc(F)]n1n1 [Xc(F)]n1n2 [Xc(F)]n1n3

[Xc(F)]n2n1 [Xc(F)]n2n2 [Xc(F)]n2n3

[Xc(F)]n3n1 [Xc(F)]n3n2 [Xc(F)]n3n3

3

5

defined on the cycle is psd rank-1. Hence Xc(F)(n1,n2,n3) = xxH for some x := (x1,x2,x3) 2 C
3. Then

3

Â
i=1
\ [XF ] ji ji+1

= \
h⇣

x1xH2
⌘⇣

x2xH3
⌘⇣

x3xH1
⌘i

= 0 mod 2p

Suppose (14.10) holds for all cycles in c(F) of length up to k > 3. Consider now a cycle ( j1, . . . , jk+1) of
length k +1 in c(F). Since c(F) is chordal there is a chord, say, ( j1, jl) 2 E for some 1 < l < k +1. Since
both cycles ( j1, . . . , jl) and ( j1, jl, . . . , jk+1) satisfy (14.10) we have

l�1

Â
i=1
\ [XF ] ji ji+1

+ \ [XF ] jl j1 = 0 mod 2p

\ [XF ] j1 jl +
k+1

Â
i=l
\ [XF ] ji ji+1

= 0 mod 2p

where jk+2 := j1. Since XF is Hermitian, \ [XF ] jl j1 = �\ [XF ] j1 jl and hence adding the above equations
yields

k+1

Â
i=1
\ [XF ] ji ji+1

= 0 mod 2p

proving (14.10) for k +1. This completes the proof of (2)) (3).
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For (3)) (1), fix any partial matrix XF that is 2⇥2 psd rank-1 and satisfies the cycle condition (14.5).
We now construct a psd rank-1 completion X of XF , by constructing a vector x 2 C

n such that X = xxH.
Let

|x j| :=
q

[XF ] j j, j 2 {1, . . . ,n}

For the angles \x j, note that the graph F need not be connected. For each connected component, pick
an arbitrary spanning tree for that connected component, and assume its nodes are indexed by {1, . . . ,k}.
Without loss of generality let \x1 = 0�. Going down the spanning tree from node 1, we have \x j�\xk =
[XF ] jk and hence set

\x j := � Â
(i,i0)2P j

\ [XF ]ii0 , j 2 {1, . . . ,k}

where P j is any path from node 1 to node j in that spanning tree. This is well defined because XF satisfies
the cycle condition (14.5). This defines x j for all j2 {1, . . . ,n}. Clearly X = xxH is a psd rank-1 completion
of XF . This completes the proof.

Proof of Corollary 14.2: Uniqueness of rank-1 completion. The proof of Theorem 14.1 shows that
given a partial matrix Xc(F) 2Xc(F), the (unique) submatrix XF of Xc(F) has a psd rank-1 completion X 2X.
Therefore to prove the corollary it suffices to prove that any partial matrix XF 2XF has a unique psd rank-1
completion X 2X. To this end fix an XF 2XF and suppose there are two psd rank-1 completions X := xxH

and X̂ := x̂x̂H in X. Since XF = X̂F we have

��x j
�� =

��x̂ j
�� =

q
[XF ] j j, j 2 N, q j � qk = q̂ j � q̂k = \ [XF ] jk , ( j,k) 2 E

In particular CTq = CTq̂ where C is the |N|⇥ |E| incidence matrix of the graph G := (N,E):

Cjl :=

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i

0 otherwise
, j 2 N, l 2 E

This means that CT
�
q̂ �q

�
= 0 and hence, since the graph F is connected and hence the null space of C

is span(1), q̂ = q + g1 for any g 2 R. Therefore x̂ = xeig . This implies that

X̂ = x̂x̂H =
⇣

xeig
⌘⇣

xeig
⌘H

= X

i.e., the psd rank-1 completion is unique.

Proof of Theorem 14.4: Tightness of relaxations. First Vv X
+ v X

+
c(F) v X

+
F follows from Theorem

14.3 and the definitions of X
+, X+

c(F), X
+
F (recall that by assumption the cost function C depends on

V,X ,Xc(F) only through the submatrix XF ). Since c(F) is chordal, [155, Theorem 7] implies that every
Xc(F) in X

+
c(F) has a psd completion X in X

+, i.e., X+
c(F) v X

+. Hence X
+ ' X

+
c(F).
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Suppose F is a tree and consider any chordal extension c(F). We need to show that X+
F v X

+
c(F), i.e.,

given any XF 2 X
+
F there is a Xc(F) 2 X

+
c(F) with the same cost. Since F is itself chordal, [155, Theorem

7] implies that XF has a psd completion X in X
+. The submatrix Xc(F) of X defined on c(F) is the desired

partial matrix in X
+
c(F) with the same cost. This proves X

+
F v X

+
c(F) and hence X

+
F ' X

+
c(F) for radial

networks.

14.1.7 Strong SOCP relaxations: mesh network

1. Strong SOCP relaxations are proposed and their relation with SOCP and SDP relaxations are studied
in [163].

2. SDP, SOCP and strong SOCP relaxations are applied to a two-stage robust AC OPF problem, and
column-and-constraint generation method of [114, 164] are used to solve these relaxations.

3. Check out LIngling Fan’s recent paper: A sparse Convex AC OPF Solver and Convex Iteration
Implementation Based on 3-Node Cycles Minyue Ma, Lingling Fan, Zhixin Miao, Bo Zeng, Hossein
Ghassempour.

14.2 Single-phase OPF

In this section we apply the results of Chapter 14.1 to single-phase OPF problems in the bus injection
model. In Chapter 14.2.1 we write OPF (13.15) as a standard QCQP but expressed in terms of the partial
matrix defined on the network graph G. Its semidefinite relaxations then follow from (14.9). In Chapter
14.2.2 we define exact relaxation of OPF. Sufficient conditions for exact relaxations of OPF for radial
networks will be studied in Chapters 14.3 and 14.4. In Chapter 14.5 we extend semidefinite relaxations of
OPF to unbalanced three-phase networks.

14.2.1 Semidefinite relaxations

Constraints. Recall the undirected connected graph G = (N,E) that models a power network with N +1
buses and M lines. Given a voltage vector V 2 V define the partial matrix WG := WG(V ):

[WG] j j := |Vj|2, j 2 N; [WG] jk := VjVH

k =: [WG]Hk j, ( j,k) 2 E

It can then be shown that the constraints in OPF (13.15) as a QCQP can be written in terms of the partial
matrix WG as:

pmin
j  tr

�
F jWG

�
 pmax

j (14.12a)

qmin
j  tr

�
Y jWG

�
 qmax

j (14.12b)

vmin
j  tr

�
JjWG

�
 vmax

j (14.12c)

tr
�
ŶjkWG

�
 `max

jk (14.12d)

tr
�
Ŷk jWG

�
 `max

k j (14.12e)
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Cost function. Common cost functions can also be expressed in terms of the partial matrix WG. For
example if the cost is a weighted sum of real generation power then

C(WG) = Â
j:gens

c j Re(s j) = Â
j:gens

c j tr
�
F jWG

�

In particular the real line loss in the network is:

C(WG) = Â
j

Re(s j) = Â
j

tr
�
F jWG

�

We present a less obvious example.

Example 14.3 (Cost function). Consider the problem of minimizing the total deviation of squared voltage
magnitudes from their squared nominal values a j 2 R

min
V2CN+1 Â

j

⇣��Vj
��2�a j

⌘2
s.t. V 2 V (14.13)

where the feasible set V is defined by quadratic constraints in terms of the partial matrix WG: V 2V if and
only if

VHClV = tr(ClWG)  bl, l = 1, . . . ,L

with some matrices Cl and real numbers bl such that [Cl] jk = 0 if ( j,k) 62 E. Even though the cost function
is not a quadratic form in terms of WG, show that the problem can be equivalently expressed as a QCQP
in terms of WG with additional variables and constraints.

Solution. The cost function is Â j

⇣��Vj
��4 � 2a j

��Vj
��2 + a2

j

⌘
. We can omit the constants a2

j in the cost and
hence (14.13) is equivalent to the following problem:

min
V2CN+1 Â

j

⇣��Uj
��2 � 2a jUj

⌘
s. t. V 2 V, Uj =

��Vj
��2 , j 2 N (14.14a)

Let V :=
�
Vj, j 2 N

�
2CN+1, U :=

�
Uj, j 2 N

�
2CN+1, a :=

�
a j, j 2 N

�
, and e j 2 {0,1}N+1 with a single

1 at the jth entry and 0 elsewhere. In terms of the variable x := (V,U) 2C
2(N+1), we will rewrite (14.14a)

as an inhomogeneous QCQP of the form:

min
x2C2(N+1)

xHC0x +
⇣

cH0 x+ xHc0

⌘
s. t. V 2 V, xHCjx +

⇣
cHj x+ xHc j

⌘
= 0, j 2 N (14.14b)

Indeed

Â
j

⇣��Uj
��2 � 2a jUj

⌘
= UHU �

�
aHU +UHa

�

��Vj
��2 � Uj = VH

⇣
e jeHj

⌘
V � 1

2

⇣
eHj Uj +UH

j e j

⌘
, j 2 N
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since a j and Uj =
��Vj
��2 are real numbers. Therefore (14.14a) is an inhomogeneous QCQP of the form

(14.14b) with

C0 :=


0 0
0 IN+1

�
, c0 :=


0
�a

�

Cj :=


e jeHj 0
0 0

�
, c j :=


0
�1

2e j

�
, j 2 N

where IN+1 is the identity matrix of size N + 1. Since the cost function and the new constraints depends
on V only through |Vj|2, in particular, it does not depend on VjVH

k , j 6= k, the problem (14.14b) depends
only on WG. Indeed WG appears only in the term VH

⇣
e jeHj

⌘
V = tr

⇣⇣
e jeHj

⌘
VVH

⌘
= tr

⇣⇣
e jeHj

⌘
WG

⌘
.

As explained in Chapter 13.1.3, the inhomogeneous QCQP (14.14b) is equivalent to the following
homogeneous QCQP with an auxiliary scalar variable t 2 C:

min
x2C2(N+1), t2C

⇥
xH tH

⇤C0 c0
cH0 0

�
x
t

�

s. t. V 2 V

⇥
xH tH

⇤Cj c j
cHj 0

�
x
t

�
= 0, j 2 N

⇥
xH tH

⇤0 0
0 1

�
x
t

�
= 1

in the sense that, if (xopt, topt) 2C2N+3 is optimal for the homogeneous QCQP, then their product xopteiq opt

is optimal for the inhomogeneous problem (14.14b) when topt = eiq opt
.

Henceforth we will abuse notation and use C0 to denote the cost function both as a function C0(V ) of
a voltage vector V 2 C

N+1 and as a function C0(WG) of a partial matrix WG. When the cost is quadratic
then C0 also denotes the cost matrix as in C0(V ) := VHC0V or C0(WG) := tr(C0WG).

OPF and relaxations. Recall the OPF problem (13.15) as a QCQP, reproduced here

min
V

C0(V ) s.t. V 2 V :=
n

V 2 C
N+1 | VHClV  bl, l = 1, . . . ,L

o
(14.15)

where the constraint matrices Cl are given explicitly in (14.12). Define the set of Hermitian matrices:

W := { W 2 S
N+1 | W satisfies (14.12) with WG replaced by W , (14.4a) }

Fix any chordal extension c(G) of G and define the set of Hermitian partial matrices Wc(G):

Wc(G) := { Wc(G) | Wc(G) satisfies (14.12) with WG replaced by Wc(G), (14.4b) }

Finally define the set of Hermitian partial matrices WG:

WG := { WG |WG satisfies (14.12)(14.4c)(14.5) }



610 Draft: EE 135 Notes April 30, 2024

Then Theorem 14.3 implies that OPF (14.15) is equivalent to

min
W

C0(WG) s.t. W 2 Ŵ

where Ŵ is any one of the equivalent feasible sets W,Wc(G),WG. Its semidefinite relaxation relaxes Ŵ to
semidefinite cones:

W
+ := { W 2 S

N+1 | WG satisfies (14.12), W ⌫ 0 }
W

+
c(G) := { Wc(G) | WG satisfies (14.12), Wc(G) ⌫ 0 }

W
+
G := { WG |WG satisfies (14.12), WG( j,k)⌫ 0, ( j,k) 2 E }

i.e., the semidefinite relaxations of OPF (14.15) is:

min
W

C0(WG) s.t. W 2 Ŵ
+

where Ŵ
+ is any one of the feasible sets W

+,W+
c(G),W

+
G . Explicitly, these semidefinite relaxations are

(c.f. (14.9)):
OPF-sdp:

min
W2SN+1

C0(WG) s.t. tr(ClW )  bl, l = 1, . . . ,L, W ⌫ 0 (14.16a)

OPF-ch:

min
Wc(G)

C0(WG) s.t. tr
�
ClWc(G)

�
 bl, l = 1, . . . ,L, Wc(G) ⌫ 0 (14.16b)

OPF-socp:

min
WG

C0(WG) s.t. tr(ClWG)  bl, l = 1, . . . ,L, WG( j,k) ⌫ 0, ( j,k) 2 E (14.16c)

where Cl are given explicitly in (14.12).

As discussed in Remark 14.2, if the network graph G is a tree, then we should solve OPF-socp to
compute the partial matrix WG because it will be as tight as OPF-sdp that computes the entire matrix W ,
but much simpler computationally. Otherwise we can solve OPF-ch to compute Wc(G) corresponding to a
chordal extension c(G) of G which is usually much simpler than OPF-sdp for large sparse network but as
tight.

Example 14.4 (Two-bus network).

14.2.2 Exact relaxation: definition

Consider the single-phase OPF (14.15) as a standard QCQP and its semidefinite relaxations (14.16).

Definition 14.1 (Strong exactness). We say that
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1. OPF-sdp (14.16a) is exact if every optimal solution W sdp of OPF-sdp is psd rank-1;

2. OPF-ch (14.16b) is exact if every optimal solution W ch
c(G) of OPF-ch is psd rank-1, i.e., the principal

submatrices W ch
c(G)(q) of W ch

c(G) are psd rank-1 for all maximal cliques q of the chordal extension
c(G) of graph G;

3. OPF-socp (14.16c) is exact if every optimal solution W socp
G of OPF-socp

• is 2⇥ 2 psd rank-1, i.e., the 2⇥ 2 principal submatrices W socp
G ( j,k) are psd rank-1 for all

( j,k) 2 E; and

• satisfies the cycle condition (14.5).

To recover an optimal solution V opt of OPF (14.15) from an optimal solution W sdp or W ch
c(G) or W socp

G of
its relaxations, see Chapter 14.1.4. The strong exactness notion in Definition 14.1 is convenient because it
ensures that any algorithm that solves an exact relaxation always produces a globally optimal solution to
the OPF problem. If exactness were defined to mean that an optimal solution of OPF can be recovered from
some, but not necessarily all, optimal solutions of its relaxation, then an algorithm may not be guaranteed
to produce an optimal solution of OPF by solving its relaxation. This strong notion of exactness is however
more stringent than necessary under the sufficient exactness conditions of Chapters 14.3 and 14.4 for radial
networks. See Remark 14.3 after Theorem 14.6 and Remark 14.4 after Theorem 14.9 (and Remarks 15.1
and 15.3 for BFM). These conditions guarantee that an optimal solution to OPF can always be recovered
from any optimal solution of OPF-socp for radial networks, even when the OPF-socp is not exact under
Definition 14.1.

In the rest of this chapter we present sufficient conditions for exact semidefinite relaxations when the
network is radial, i.e., the network graph is a tree. We restrict our discussion to single-phase networks
though exactness conditions exist in the literature for three-phase radial networks.

14.3 Exactness condition: linear separability

Theorem 14.4 implies that, for a single-phase radial network whose graph G is a tree, if SOCP relaxation
is exact then SDP and chordal relaxations are also exact. We hence focus on the exactness of OPF-socp
(14.16c). Since the cycle condition (14.5) is vacuous for radial networks, OPF-socp (14.16c) is exact if all
of its optimal solutions are 2⇥2 rank-1. To avoid triviality we assume OPF (14.15) is feasible.

We will first present a general result on the exactness of the SOCP relaxation of general QCQP on a
tree graph G and then apply it to OPF-socp (14.16c) for single-phase radial networks.
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14.3.1 Sufficient condition for QCQP

Fix an undirected graph G = (N,E) where |N| = n and E ✓ N ⇥N. Fix Hermitian matrices Cl 2 S
n,

l = 0, . . . ,L, defined on G, i.e., [Cl] jk = 0 if ( j,k) 62 E. Consider QCQP:

min
x2Cn

xHC0x (14.17a)

s.t. xHClx bl, l = 1, . . . ,L (14.17b)

where bl 2R, l = 1, . . . ,L, and its SOCP relaxation where the optimization variable ranges over Hermitian
partial matrices XG:

min
XG

tr(C0XG) (14.18a)

s.t. tr(ClXG) bl, l = 1, . . . ,L (14.18b)
XG( j,k)⌫ 0, ( j,k) 2 E (14.18c)

The following result can be regarded as an extension of [169] on the SOCP relaxation of QCQP from the
real domain to the complex domain. Consider: 2

C14.1: The cost matrix C0 is positive definite.

C14.2: For each link ( j,k)2E there exists an a jk such that\ [Cl] jk 2 [ai j,ai j +p] for all l = 0, . . . ,L.

Condition C14.2 is illustrated in Figure 14.2. Let Copt and Csocp denote the optimal values of QCQP
(14.17) and SOCP (14.18) respectively.

Theorem 14.6. Suppose G is a tree and C14.2 holds. Then Copt = Csocp and an optimal solution of QCQP
(14.17) can be recovered from every optimal solution of SOCP (14.18).

Remark 14.3 (Strong exactness). The proof of Theorem 14.6 prescribes a simple procedure to recover an
optimal solution of QCQP (14.17) from any optimal solution xsocp of its SOCP relaxation (14.18), whether
or not xsocp is 2⇥ 2 rank-1. Hence the SOCP relaxation may not be exact according to our definition of
exactness, i.e., some optimal solutions of (14.18) may be 2⇥2 psd but not 2⇥2 rank-1, but our exactness
condition still guarantees that an optimal solution of QCQP can be recovered from xsocp. If the objective
function is strictly convex however then the optimal solution sets of QCQP (14.17) and SOCP (14.18) are
indeed equivalent and the SOCP is exact under our definition.

Corollary 14.7. Suppose G is a tree and C14.1–C14.2 hold. Then SOCP (14.18) is exact.

2All angles should be interpreted as “mod 2p”, i.e., projected onto (�p,p].
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14.3.2 Application to OPF

We now apply Theorem 14.6 to our OPF problem (13.15). To simplify illustration we ignore the branch
constraints (13.15e)(13.15f) and consider:

min
x2Cn

VHC0V

s.t. VHF jV  pmax
j , VH(�F j)V �pmin

j (14.19a)

VHY jV  qmax
j , VH(�Y j)V �qmin

j (14.19b)

VHJjV  vmax
j , VH(�Jj)V �vmin

j

for some Hermitian matrices C0,F j,Y j,Jj where j 2 N. Condition C14.2 depends only on the off-
diagonal entries of C0, F j, Y j (Jj are diagonal matrices). It implies a simple pattern on the power
injection constraints (14.19a)(14.19b). Write the series admittances in terms of its real and imaginary
parts ys

jk =: gs
jk + ibs

jk with gs
jk > 0,bs

jk < 0. (Note that C14.2 does not depend on the shunt admittances⇣
ym

jk,y
m
k j

⌘
.) Then we have

[Fk]i j =

8
><

>:

1
2Yi j = �1

2(gs
i j + ibs

i j) if k = i
1
2YH

i j = �1
2(gs

i j� ibs
i j) if k = j

0 if k 62 {i, j}

[Yk]i j =

8
><

>:

�1
2i Yi j = 1

2(bs
i j� igs

i j) if k = i
1
2iY

H
i j = 1

2(bs
i j + igs

i j) if k = j
0 if k 62 {i, j}

Hence for each line ( j,k) 2 E the relevant angles for C14.2 are those of [C0] jk and

⇥
F j
⇤

jk = �1
2

⇣
gs

jk + ibs
jk

⌘
, [Fk] jk = �1

2

⇣
gs

jk� ibs
jk

⌘

⇥
Y j
⇤

jk =
1
2

⇣
bs

jk� igs
jk

⌘
, [Yk] jk =

1
2

⇣
bs

jk + igs
jk

⌘

as well as the angles of �[F j] jk,�[Fk] jk and �[Y j] jk,�[Yk] jk. These quantities are shown in Figure 14.2
with their magnitudes normalized to a common value and explained in the caption of the figure.

Condition C14.2 applied to OPF (14.19) takes the following form (see Figure 14.2):

C14.2’: For each link ( j,k) 2 E there is a line in the complex plane through the origin such that
[C0] jk as well as those ±[Fi] jk and ±[Yi] jk corresponding to finite lower or upper bounds on (pi,qi),
for i = j,k, are all on one side of the line, possibly on the line itself.

Let Copt and Csocp denote the optimal values of OPF and OPF-socp respectively.

Corollary 14.8. Suppose G is a tree and C14.2’ holds.
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Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Figure 14.2: Condition C14.2’ for OPF on a line ( j,k) 2 E. The quantities ([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk)
on the left-half plane correspond to finite upper bounds on (p j, pk,q j,qk) in (14.19a)(14.19b);
(�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half plane correspond to finite lower bounds on
(p j, pk,q j,qk).

1. Copt = Csocp. Moreover an optimal solution V opt of OPF can be recovered from every optimal
solution X socp

G of OPF-socp.

2. If, in addition, C14.1 holds then OPF-socp is exact.

It is clear from Figure 14.2 that condition C14.2’ cannot be satisfied if there is a line where both the real
and reactive power injections at both ends are both lower and upper bounded (8 combinations as shown in
the figure). C14.2’ requires that some of them be unconstrained. When the cost function is convex, this is
the same as requiring that the constraints be inactive at optimality (see Exercise 14.3). The result proved
in [165] also includes constraints on real branch power flows and line losses. Corollary 14.8 includes
several sufficient conditions in the literature for exact relaxation as special cases. Referring to Figure
14.2, the load over-satisfaction condition in [166, 170] corresponds to the red line in the figure being the
Im-axis that excludes all quantities on the right-half plane. The sufficient condition in [171, Theorem 2]
corresponds to the red line in the figure that allows a finite lower bound on the real power at one end of
the line, i.e., p j or pk but not both, and no finite lower bounds on reactive powers q j and qk.

14.3.3 Proofs

We now prove Theorem 14.6 and Corollary 14.7, following [168]. It is equivalent to the argument of [167]
and simpler than the original duality proof in [165].
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Proof of Theorem 14.6. Fix any partial matrix XG that is feasible for SOCP (14.18). We will construct
an x 2 C

n that satisfies

xHClx  tr ClXG, l = 0,1, . . . ,L

i.e., x is feasible for QCQP (14.17) and has an equal or lower cost than XG. Since the minimum cost of
QCQP is lower bounded by that of its SOCP relaxation this means that an optimal solution x 2 C

n of
QCQP (14.17) can be obtained from every optimal solution XG of SOCP (14.18).

Now XG( j,k)⌫ 0 for every ( j,k) 2 E implies that [XG] j j � 0 for all j 2 N and

[XG] j j [XG]kk �
��[XG] jk

��2 , ( j,k) 2 E

Case 1: XG is 2⇥ 2 psd rank-1. Suppose [XG] j j[XG]kk = |[XG] jk|2 for all ( j,k) 2 E. We will construct
an x 2 C

n that is feasible for QCQP and has an equal cost. To construct such an x let |x j| :=
p

[XG] j j,
j 2 N. Recall that G is a (connected) tree with node 1 as its root. Let \x1 := 0. Traversing the tree
starting from the root the angles can be successively assigned: given \x j at one end of a link ( j,k), let
\xk :=\x j�\[XG] jk at the other end. Given any XG which is 2⇥2 psd rank-1, angles \x j can always be
consistently assigned if and only if G is a tree. (If G contains cycles then XG must also satisfy the cycle
condition according to Theorem 14.1).

With this x constructed from XG we have, for l = 0,1, . . . ,L,

xHClx = Â
j,k

[Cl] jk xHj xk = Â
j,k

[Cl] jk |x j| |xk|ei(\xk�\x j) = Â
j,k

[Cl] jk
��[XG] jk

�� e�i\[XG] jk = tr(ClXG)

where the last equality follows from tr(ClXG)s = Â j,k [Cl] jk [XG]Hjk. Hence x is feasible for QCQP (14.17)
and has the same cost as XG.

Case 2: XG is 2⇥2 psd but not 2⇥2 rank-1. Suppose [XG] j j[XG]kk > |[XG] jk|2 for some ( j,k). We will

1. Construct an X̂G that is 2⇥2 psd rank-1.

2. Show that C14.2 implies

tr ClX̂G  tr ClXG, l = 0,1, . . . ,L (14.20)

Then an x 2 C
n can be constructed from X̂G as in the case above and step 2 ensures that for l = 0,1, . . . ,L

xHClx = tr ClX̂G  tr ClXG

i.e., x is feasible for QCQP (14.17) and has an equal or lower cost than XG.

To construct such an X̂G let [X̂G] j j = [XG] j j, j 2 N. For each line ( j,k) 2 E let

[X̂G] jk� [XG] jk =: r jke�i( p
2�a jk)
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for some r jk > 0 to be determined and a jk in assumption C14.2. For X̂G to be 2⇥2 psd rank-1 we need to
choose r jk > 0 such that [X̂G] j j[X̂G]kk =

��[X̂G] jk
��2 for all ( j,k) 2 E, i.e.,

[XG] j j [XG]kk =
���[XG] jk + r jke�i( p

2�a jk)
���
2

or

r2
jk +2br jk� c = 0

where

b := Re
⇣
[XG] jk ei( p

2�a jk)
⌘

, c := [XG] j j [XG]kk�
��[XG] jk

��2 > 0

Therefore setting r jk :=
p

b2 + c�b > 0 yields an X̂G that is 2⇥2 psd rank-1.

To show that X̂G is feasible for SOCP (14.18) and has an equal or lower cost than XG, we have for
l = 0,1, . . . ,L,

tr ClX̂G� tr ClXG = tr
�
Cl
�
X̂G�XG

��
= Â

( j,k)2E
[Cl] jk

�
[X̂G] jk� [XG] jk

�H

= 2 Â
j<k

Re
⇣
[Cl] jk · r jk ei( p

2�a jk)
⌘

= 2 Â
j<k

��[Cl] jk
�� r jk cos

⇣
\[Cl] jk +

p
2
�a jk

⌘
 0

where the last inequality follows because assumption C14.2 implies

p
2
 \[Cl] jk + p

2 �a jk 
3p
2

and therefore cos
�
\[Cl] jk + p

2 �a jk
�
 0. This completes the proof.

Proof of Corollary 14.7. C14.1 implies that the objective function of SOCP (14.18) is strictly con-
vex and hence has a unique optimal solution. Suppose XG is an optimal solution of SOCP (14.18) but
[XG] j j[XG]kk > |[XG] jk|2 for some ( j,k), i.e., XG is 2⇥ 2 psd but not 2⇥ 2 psd rank-1. Then the above
constructs another feasible solution X̂G with equal cost. This contradicts the uniqueness of the optimal
solution of SOCP (14.18), and hence XG must be 2⇥2 psd rank-1.

14.4 Exactness condition: small angle differences

The sufficient conditions in [171, 172, 173] require that the voltage angle difference across each line be
small. We explain the intuition using a result in [172] for an OPF problem where |Vj| are fixed for all
j 2 N and reactive powers are ignored. Under these assumptions, as long as the voltage angle difference
is small, the power flow solutions form a locally convex surface that is the Pareto front of its relaxation.
This implies that the relaxation is exact.
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14.4.1 Sufficient condition

Consider the simple case where voltage magnitudes |Vj| are fixed, reactive powers are ignored, and line
charging admittances are assumed zero ym

jk = ym
k j := 0. Recall that y jk = g jk + ib jk with g jk > 0,b jk < 0.

Let Vj = |Vj|eiq j and suppose |Vj| are given. Consider

min
p,P,q

C(p) (14.21a)

s.t. pmin
j  p j  pmax

j , j 2 N (14.21b)

q min
jk  q jk  q max

jk , ( j,k) 2 E (14.21c)

p j = Â
k:k⇠ j

Pjk, j 2 N (14.21d)

Pjk = |Vj|2g jk� |Vj||Vk|g jk cosq jk� |Vj||Vk|b jk sinq jk, ( j,k) 2 E (14.21e)

where q jk := q j�qk are the voltage angle differences across lines ( j,k).

We comment on the constraints on angles q jk in (14.21). When the voltage magnitudes |Vi| are fixed,
constraints on real power flows, branch currents, line losses, as well as stability constraints can all be
represented in terms of q jk. Indeed a line flow constraint of the form |Pjk|  P jk becomes a constraint
on q jk using the expression for Pjk in (14.21e). A current constraint of the form |I jk|  I jk is also a
constraint on q jk since |I jk|2 = |y jk|(|Vj|2 + |Vk|2�2|VjVk|cosq jk). The line loss over ( j,k)2 E is equal to
Pjk +Pk j which is again a function of q jk. Stability typically requires |q jk| to stay within a small threshold.
Therefore given constraints on branch power or current flows, losses, and stability, appropriate bounds
q jk,q jk can be determined in terms of these constraints, assuming |Vj| are fixed.

We can eliminate the branch flows Pjk and angles q jk from (14.21). Since |Vj|, j 2 N, are fixed we
assume without loss of generality that |Vj| = 1 pu. Define the injection region

Pq :=

(
p 2 R

n

�����p j = Â
k:k⇠ j

�
g jk�g jk cosq jk�b jk sinq jk

�
, j 2 N, q min

jk  q jk  q max
jk , ( j,k) 2 E

)

Let Pp := {p 2 R
n | pmin

j  p j  pmax
j , j 2 N}. Then (14.21) is:

OPF:

min
p

C(p) subject to p 2 Pq \Pp (14.22)

This problem is hard because the set Pq is nonconvex. To avoid triviality we assume OPF (14.22) is
feasible. For a set A let convA denote the convex hull of A. Consider the following problem that relaxes
the nonconvex feasible set Pq \Pp of (14.22) to a convex superset:
OPF-socp:

min
p

C(p) s.t. p 2 conv(Pq ) \ Pp (14.23)

We will show below that (14.23) is indeed an SOCP. It is said to be exact if every optimal solution of
(14.23) lies in Pq \Pp and is therefore also optimal for (14.22).
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We say that a point x 2 A✓R
n is a Pareto optimal point in A if there does not exist another x0 2 A such

that x0  x with at least one strictly smaller component x0j < x j. The Pareto front of A, denoted by O(A),
is the set of all Pareto optimal points in A. The significance of O(A) is that, for any increasing function,
its minimizer, if exists, is necessarily in O(A) whether A is convex or not. If A is convex then xopt is a
Pareto optimal point in O(A) if and only if there is a nonzero vector c := (c1, . . . ,cn)� 0 such that xopt is
a minimizer of cTx over A [101, pp.179–180].

Assume

C14.3: C(p) is strictly increasing in each p j.

C14.4: For all ( j,k) 2 E, tan�1 b jk
g jk

< q min
jk  q max

jk < tan�1 �b jk
g jk

.

says that (14.23) is exact provided q jk are suitably bounded.

Theorem 14.9. Suppose G is a tree and C14.3–C14.4 hold.

1. Pq \Pp = O(conv(Pq ) \ Pp).

2. The problem (14.23) is an SOCP. Moreover it is exact.

Remark 14.4 (Strong exactness). Condition C14.3 is needed to ensure that every optimal solution of
OPF-socp (14.23) is optimal for OPF (14.22). If C(p) is nondecreasing but not strictly increasing in all
p j, then Pq \Pp ✓O(conv(Pq ) \ Pp) and OPF-socp may not be exact according to our definition. Even
in that case it is possible to recover an optimal solution of OPF from any optimal solution of OPF-socp
(see Exercise 14.9).

14.4.2 Proof: 2-bus network

We now illustrate the geometric insight by proving the theorem for the case of a single line, following
[172]. The case of a tree network is proved in Chapter 14.8.

Proof of Theorem 14.9: 2-bus network. Consider two buses j and k connected by a line with admit-
tance y jk = g jk + ib jk with g jk > 0,b jk < 0. Recall that we assume voltage magnitudes |Vj| = 1 pu are
fixed for buses j = 1,2, zero charging admittances, and we ignore reactive powers. Since p j = Pjk and
pk = Pk j we will work with P := (Pjk,Pk j). Then

Pjk := Pjk(q jk) := g jk�g jk cosq jk�b jk sinq jk

Pk j := Pk j(q jk) := g jk�g jk cosq jk +b jk sinq jk

where q jk := q j�qk, or in vector form

P�g jk1 = A


cosq jk
sinq jk

�
(14.24)
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where 1 := [1 1]T and A is an invertible (indeed negative definite) matrix:

A :=

�g jk �b jk
�g jk b jk

�

The proof will proceed in four steps:

1. We show that P traces out an ellipse in R
2 as q jk ranges over [�p,p]. Since the feasible set is a

subset of ellipse, it is nonconvex.

2. We show that condition C14.4 restricts the feasible set to the lower half of the ellipse.

3. We show that condition C14.3 implies that the Pareto front of the feasible set of the relaxed problem
(14.23) coincides with the feasible set. This implies that the relaxation is exact.

4. Finally we show that the relaxation (14.23) is an SOCP.

Step 1: P that satisfies (14.24) is an ellipse. In general the set of points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M (see Exercise 14.4). To see that P describes an
ellipse, write v := [cosq jk sinq jk]

T = A�1 �P�g jk1
�
. Hence kvk2

2 = 1, yielding

(P�g jk1)T
⇣

AAT

⌘�1
(P�g jk1) = 1 (14.25)

Hence P is an ellipse centered at g jk1. From (14.24), the ellipse P passes through the origin when q jk = 0,
as shown in Figures 14.3. Since the feasible set is a subset of the ellipse P (without the interior), it is
nonconvex.

Step 2: condition C14.4 restricts the feasible set to the lower half of the ellipse. Let pmin
jk denote the

minimum Pjk(q jk) and pmin
k j the minimum Pk j(q jk) on the ellipse as shown in the figure. They are attained

when q jk takes the values

q min
jk := tan�1 b jk

g jk
and q min

k j := tan�1 �b jk

g jk

respectively (Exercise 14.7). The condition q min
jk  q jk  q min

k j restricts P(q jk) to the darkened segment of
the ellipse in Figures 14.3. Recall the sets

Pq := { p | p = P,P satisfies (14.24) for q jk  q jk  q jk }, Pp := {p | p p p}

and the feasible set Pq \ Pp of OPF (14.22). Condition C14.4 ensures q min
jk  q jk  q min

k j and hence
restricts both Pq and the feasible set Pq \Pp to the lower half of the ellipse.
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Pjk

Pkj

π kj
min

π jk
min

2gjk

2bjk−

Figure 14.3: The feasible set of OPF (14.22) for the two-bus network is a subset of an ellipse without
the interior, hence nonconvex. OPF-socp (14.23) includes the interior of the ellipse and is hence convex.
If the cost function C is strictly increasing in (Pjk,Pk j) then the Pareto front of the SOCP feasible set
will lie on the lower part of the ellipse, O(Pq ) = Pq , and hence OPF-socp is exact. The points P :=
(Pjk(q jk),Pk j(qk j)) = 0 when q jk = 0, Pjk = pmin

jk when q jk = q min
jk , and Pk j = pmin

k j when q jk = q min
k j .

The implication is that, under condition C14.3 that the cost function C is strictly increasing in the
injections (p j, pk) = (Pjk,Pk j), the nonconvex feasible sets Pq and Pq \ Pp coincide with the Parento
fronts of their respectively convex hulls, i.e.,

Pq = O(conv Pq ), Pq \Pp = O(conv(Pq \Pp)) (14.26)

The first property is used in the proof of Theorem 14.9 for a tree network in Chapter 14.8.

Step 3: condition C14.3 implies that Pq \Pp =O(conv(Pq )\Pp). Unfortunately the convex hull conv(Pq \
Pp) in (14.26) of the intersection of two sets generally does not have a simple algebraic representation. The
feasible set conv(Pq )\Pp of the relaxation OPF-socp (14.23) is the intersection of two convex hulls and is
more amenable to computation. It is however a superset of conv(Pq \Pp). To illustrate their relationship
denote the points P(q jk) :=

�
Pjk(q jk),Pk j(q jk)

�
attained at q jk and q jk by

�
p jk,pk j

�
:= P(q jk),

�
p jk,pk j

�
:= P(q jk) (14.27)

The set Pq is the ellipse segment between these two points
�
p jk,pk j

�
and

�
p jk,pk j

�
. As shown in Figure

14.4, the relationship between these two convex sets is:

conv(Pq )\Pp ◆ conv(Pq \Pp)

Even though these two sets are generally different, it is clear from the figure that, if the cost function C(p)
is strictly increasing in each p j (condition C14.3), then they share the same Pareto front, i.e.,

O(conv(Pq )\Pp) = O(conv(Pq \Pp)) = Pq \Pp

where the last equality follows from (14.26). This proves the first claim of Theorem 14.9.
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p
j
, p

k( )

conv Pθ ∩Pp( )

p
j
, p

k( )

conv(Pθ ) ∩  Pp

π jk,π kj( )

π jk,π kj( )

π jk,π kj( )

π jk,π kj( )

Pareto)op2mal)

Figure 14.4: conv(Pq \Pp)✓ conv(Pq )\Pp.

Step 4: (14.23) is an SOCP and it is exact. To show that the feasible set conv(Pq )\Pp of OPF-socp is a
second-order cone, we will show that it is the intersection of a second-order cone with several affine sets.
First, from (14.25), the solid ellipse including the interior is the set of P satisfying

1 �
�
P�g jk1

�T
(AAT)�1 �P�g jk1

�

This is a second-order cone t2 � (P� g jk1)T(AAT)�1(P� g jk1) intersecting with the affine set t = 1.
Second the set conv(Pq ) is the intersection of this second-order cone with the following half space (see
Figure 14.5)):

Pk j  pk j +
pk j�pk j

p jk�p jk

�
Pjk�p jk

�

where (p jk,pk j) and (p jk,pk j) are defined in (14.27). Finally intersecting this set with the affine set Pp
produces the feasible set conv(Pq )\Pp of OPF-socp. Hence the problem (14.23) is indeed an SOCP for
the two-bus case.

In summary, the SOCP relaxation of OPF (14.22) enlarges the feasible set Pq \ Pp to the convex
superset conv(Pq )\Pp. Under condition C14.3, every minimizer lies in its Pareto front and hence in the
original nonconvex feasible set Pq \Pp, as proved in Step 3.

We have hence proved Theorem 14.9 for the two-bus case.

We illustrate the purpose of condition C14.4. If there are no constraints on the injections p, then SOCP
relaxation (14.23) is exact under condition C14.3 due to Pq = O(conv Pq ) in (14.26). As illustrated in
Figure 14.6, upper bounds p on power injections p do not affect exactness whereas lower bounds p do.
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Pjk

Pkj

π jk,π kj( )

π jk,π kj( )

Pkj = π kj +µ Pjk −π jk( )

µ :=
π kj −π kj

π jk −π jk

Figure 14.5: The set conv(Pq ) is the intersection of the ellipse, including its interior, and a half-space.

p
j
, p

k( )

Pareto)front)

(a) Exact relaxation with constraint

p
j
, p

k( )

Pareto)front)

(b) Inexact relaxation with constraint

Figure 14.6: With lower bounds p on power injections, the feasible set of OPF-socp (14.23) is the shaded
region. (a) When the feasible set of OPF (14.22) is restricted to the lower half of the ellipse (small |q jk|),
the Pareto front remains on the ellipse itself, Pq \Pp = O(conv(Pq ) \ Pp), and hence the relaxation is
exact. (b) When the feasible set of OPF includes upper half of the ellipse (large |q jk|), the Pareto front
may not lie on the ellipse if p is large, making the relaxation not exact.
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The purpose of condition C14.4 is to restrict the angle q jk in order to eliminate the upper half of the
ellipse from Pq .

We close this subsection by illustrating the importance of tree topology.

Remark 14.5 (Tree topology). The tree topology allows the extension of the argument for a single line to
a radial network with multiple lines, in two ways. First let F jk

q denotes the set of branch power flows on
each line ( j,k) 2 E:

F
jk
q := { (Pjk,Pk j) | (Pjk,Pk j) satisfies (14.24) for q jk  q jk  q jk }

If the network is a tree, the set Fq of branch power flows on all lines is simply the product set, Fq =

’
( j,k)2E

F
jk
q , because given any (q jk,( j,k) 2 E) there is always a (unique) (q j, j 2 N) that satisfies q jk =

q j�qk. (This is equivalent to the cycle condition (??).) If the network has cycles then this is not possible
for some vectors (q jk,( j,k) 2 E) and Fq is no longer a product set of F jk

q .

Second the power injections p are related to the branch flows P by a linear transformation Pq = AFq
for some (N + 1)⇥2M dimensional matrix A. Matrix A has full row rank and it can be argued that there
is a bijection between Pq and Fq using the fact that the graph is a tree. We can therefore freely work with
either p 2 Pq or the corresponding P 2 Fq . See the detailed proof in Chapter 14.8.

When the network is not radial or |Vj| are not constants, then the feasible set can be much more
complicated than ellipsoids [24, 25, 26, 173].

14.5 Three-phase OPF

Consider the three-phase OPF (13.22), reproduced here:

min
(u,V )

C0(u,V,s(V )) s.t. (13.18)(13.19)(13.20)(13.21) (14.28)

where the device models are given by (13.18)(13.19) and the power flow equations and constraints are
given by (13.20)(13.21). In this section we reformulate these constraints to derive an SDP relaxation of
three-phase OPF in the bus injection model.

14.5.1 Reformulation

We first reformulate the network equations and constraints (13.20) (13.21) as constraints on terminal
variables. We then reformulate the device models (13.18) (13.19) as constraints on internal variables.

The power flow equations (13.20) are reproduced here:

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (14.29)
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Consider the 3(N +1)⇥3(N +1) matrix W = VVH and its 3⇥3 submatrices Wj j and Wjk defined by:

Wj j = VjVH

j , j 2 N, Wjk = VjVH

k , ( j,k) 2 E (14.30)

Then (14.29) is equivalent to the following equation that is linear in W :

s j = Â
k: j⇠k

diag
✓�

Wj j�Wjk
�⇣

ys
jk

⌘H
+ Wj j

⇣
ym

jk

⌘H◆
, j 2 N (14.31a)

The operational constraints (13.21) can be expressed also as linear functions of (s,W ):

injection limits: smin
j  s j  smax

j , j 2 N (14.31b)

voltage limits: vmin
j  diag

�
Wj j
�
 vmax

j , j 2 N (14.31c)

line limits: diag
�
` jk
�
Wj j,Wjk,Wkk

��
 `max

jk , ( j,k) 2 E (14.31d)

diag
�
`k j
�
Wj j,Wk j,Wkk

��
 `max

k j , ( j,k) 2 E (14.31e)

where, using I jk(V ) =
⇣

ys
jk + ym

jk

⌘
Vj� ys

jkVk and Ik j(V ) =
⇣

ys
k j + ym

k j

⌘
Vk� ys

k jVj,

` jk
�
Wj j,Wjk,Wkk

�
:=
⇣

ys
jk + ym

jk

⌘
Wj j

⇣
ys

jk + ym
jk

⌘H
�2Re

⇣⇣
ys

jk + ym
jk

⌘
Wjk ysH

jk

⌘
+ ys

jkWkk ysH
jk

`k j
�
Wj j,Wk j,Wkk

�
:=
⇣

ys
k j + ym

k j

⌘
Wkk

⇣
ys

k j + ym
k j

⌘H
�2Re

⇣⇣
ys

k j + ym
k j

⌘
Wk j ysH

k j

⌘
+ ys

k jWj j ysH
k j

Here the lower and upper bounds in (14.31b) – (14.31e) are 3-dimensional complex or real vectors. Instead
of the quadratic equations (14.30) we use the following equivalent specification that is easy to convexify:

W ⌫ 0, rank(W ) = 1 (14.32)

Therefore the power flow equations and constraints (13.20)(13.21) are equivalent to the linear constraints
(14.31) and the convex and nonconvex constraints in (14.32). These constraints are global. When deriving
the semidefinite relaxation of the three-phase OPF (14.28), we will omit the nonconvex rank-1 constraint
in (14.32).

We apply the same method to convexify the device models (13.18)(13.19). To simplify notation we
assume:

• Only three-phase voltage and power sources are included, in Y or D configurations.

• The neutrals of all Y -configured devices are directly grounded and all voltages are defined with
respect to the ground, so that all neutral voltages gY

j := V n
j = 0.

From Chapter 13.1.4 the conversion rules (13.18) are:

1. Voltage source VY/D
j 2 C

3:

Y configuration: Vj = VY
j

D configuration: GVj = V D
j
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We reformulate this using a matrix variable u j := WY/D
j 2 C

3⇥3, as follows:

Y configuration: Wj j = WY
j , WY

j ⌫ 0, rank
�
WY

j
�

= 1 (14.33a)

D configuration: GWj jGT = W D
j , W D

j ⌫ 0, rank
⇣

W D
j

⌘
= 1 (14.33b)

Note that Wj j is the 3⇥3 principal submatrix of the 3(N +1)⇥3(N +1) matrix W associated with
the vector V of terminal voltages while WY/D

j is a 3⇥3 matrix associated with the internal voltage

VY/D
j of device j. The conditions (14.33a)(14.33b) ensure that there exists VY/D

j , unique up to a

rotation, so that WY/D
j = VY/D

j

⇣
VY/D

j

⌘H
.

The operational constraints (13.19a) on the internal voltage magnitudes can be expressed as a linear
function of the internal variable u j := WY/D

j :

vY/Dmin
j  diag

�
u j
�
 vY/Dmax

j (14.33c)

where the lower and upper bounds
⇣

vY/Dmin
j ,vY/Dmax

j

⌘
2 C

6 are given vectors.

2. Power source
⇣

sY/D
j , IY/D

j

⌘
2 C

6:

Y configuration: s j = �diag
⇣

VjIYH
j

⌘
, s j = �sY

j

D configuration: s j = �diag
⇣

VjIDH
j G

⌘
, sD

j = diag
⇣

GVjIDH
j

⌘

We reformulate this using three 3⇥3 matrix variables u j :=
⇣

sY/D
j ,XD

j ,`D
j

⌘
, as follows:

Y configuration: s j = �sY
j (14.33d)

D configuration: s j = �diag
⇣

XD
j G
⌘

, sD
j = diag

⇣
GXD

j

⌘
(14.33e)

0 �


Wj j XD
j

XDH
j `D

j

�
, 1 = rank


Wj j XD

j
XDH

j `D
j

�
(14.33f)

For a D-configured power source, the conditions (14.33e)(14.33f) ensure that there exist Vj and ID
j

so that Wj j = VjVH
j , `D

j = ID
j IDH

j , and XD
j = VjIDH

j .

The operational constraints (13.19c) on the internal powers and currents can be expressed as linear
functions of the internal variable u j :=

⇣
sY/D

j ,XD
j ,`D

j

⌘
:

sY/Dmin
j  sY/D

j  sY/Dmax
j , diag

⇣
`D

j

⌘
 `Dmax

j (14.33g)

where the lower and upper bounds are given vectors.
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Therefore the conversion rules (13.18) and the internal operational constraints (13.19) of the device models
are equivalent to the constraints (14.33). These constraints are local at each bus j. The rank-1 constraints
in (14.33a)(14.33b)(14.33f) are nonconvex and the other constraints are convex (or linear). These rank-1
constraints will be omitted to derive a SDP relaxation of the three-phase OPF (13.22).

Let s 2 C
N+1 denote the terminal power injections and W 2 C

3(N+1)⇥3(N+1) denote the terminal vari-
able associated with terminal voltages. Let u := (u j, j 2 N) denote the internal variables defined by

u j :=

8
<

:
WY/D

j if device j is a voltage source⇣
sY/D

j ,XD
j ,`D

j

⌘
if device j is a power source

Finally we assume the terminal voltage V0 at bus 0 is given and imposes the constraint W00 =V0VH

0 . Putting
all this together the three-phase OPF (14.28) is equivalent to

min
(u,s,W )

C0(u,s,W ) s.t. W00 = V0VH

0 , (14.31)(14.32)(14.33) (14.34)

where V0 2 C
3 is given.

14.5.2 SDP relaxation

Define the 6⇥ 6 matrix M(A,B,C), as a function of 3⇥ 3 Hermitian matrices A,C, and a 3⇥ 3 arbitrary
matrix B, by

M (A,B,C) :=


A B
BH C

�
(14.35)

Then M (A,B,C) is Hermitian and the matrix in (14.33f) is M
⇣

Wj j,XD
j ,`D

j

⌘
.

Omitting the rank-1 constraints in (14.33a)(14.33b)(14.33f) yields an SDP relaxation of (14.34):

min
(u,s,W )

C0(u,s,W ) (14.36a)

s.t. W00 = V0VH

0 , (14.31), W ⌫ 0 (14.36b)

Wj j = WY
j , WY

j ⌫ 0, j 2 NY
v (14.36c)

GWj jGT = W D
j , W D

j ⌫ 0, j 2 ND
v (14.36d)

s j = �sY
j , j 2 NY

p (14.36e)

s j = �diag
⇣

XD
j G
⌘

, j 2 ND
p (14.36f)

sD
j = diag

⇣
GXD

j

⌘
, M

⇣
Wj j,XD

j ,`D
j

⌘
⌫ 0, j 2 ND

p (14.36g)

where V0 2 C
3 is given and M

⇣
Wj j,XD

j ,`D
j

⌘
is defined in (14.35).
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Let (uopt,sopt,W opt) denote an optimal solution of the SDP relaxation (14.36). We say (14.36) is exact
if the psd matrices of every optimal solution (uopt,sopt,W opt) are of rank 1, i.e., rank(W opt) = 1 and

rank
⇣

WY opt
j

⌘
= 1, rank

⇣
W Dopt

j

⌘
= 1, rank

⇣
M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘⌘
= 1 (14.37)

If rank(W opt) = 1 then all its principal submatrices W opt
j j are of rank 1 and therefore, by (14.36c)(14.36d),

WY opt
j and W Dopt

j are of rank 1 as well. The following result from [174, Lemma 1] implies that, in that

case, XDopt
j is of rank 1, but `Dopt

j and hence M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘
may not be of rank 1.

Lemma 14.10 (Rank of M(A,B,C)). Consider the matrix M(A,B,C) defined in (14.35). Suppose M(A,B,C)⌫
0 and rank(A) = 1. Then

1. A is psd rank-1.

2. B is rank-1 but may not be psd.

3. C is psd but may not be rank-1.

Hence M(A,B,C) may not be of rank 1.

Proof. Since M(A,B,C)⌫ 0 it can be decompose as

M (A,B,C) :=


A B
BH C

�
=


M1
M2

�⇥
MH

1 MH

2
⇤

with A = M1MH

1 , B = M1MH

2 , and C = M2MH

2 . Moreover M(A,B,C)⌫ 0 implies that its principle subma-
trices A and C are both psd. Hence A is psd rank-1.

Therefore there exists a vector x (unique up to a rotation) such that A = xxH. This means that the
columns of M1 are in span(x), i.e., M1 = xyH for some vector y with yHy = 1. Hence B = M1MH

2 =

x(M2y)H, i.e., B is of rank 1, but not necessarily psd. The psd submatrix C can however take the form
C = zzH+KKH with z := M2y for arbitrary matrix K. The resulting M(A,B,C) remains psd, but not rank-1
unless K = 0 or the columns of K are in span(z).

Indeed the matrix M(A,B,C)⌫ 0 in Lemma 14.10 takes the form

M(A,B,C) =


x
z

�⇥
xH zH

⇤
+


0 0
0 KKH

�

for arbitrary matrix K. The lemma has three implications on the exactness of SDP relaxation (14.36). First
if there are no D-configured power sources, then (14.36) is exact if every optimal solution (uopt,sopt,W opt)
of (14.36) satisfies rank(W opt) = 1. Second if there are D-configured power sources in ND

p , then rank(W opt) =
1 is not sufficient to guarantee exactness because the last condition in (14.37) may not be satisfied. Third,
however, any optimal optimal solution (uopt,sopt,W opt) with rank(W opt) = 1 is sufficient for recovering
an optimal solution of OPF (14.34), even if `Dopt

j in uopt
j and hence M

⇣
W opt

j j ,XDopt
j ,`Dopt

j

⌘
may not be of
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rank 1, provided the cost C0(u,s,W ) does not depend on `D
j (e.g., C0 depends only on

⇣
s j,s

Y/D
j

⌘
) [174,

Theorem 1]. This is because Lemma 14.10 guarantees that there exists vectors
⇣

V opt
j , IDopt

j

⌘
2 C

6 such

that, since W opt is psd rank 1 and M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘
⌫ 0,

W opt
j j = V opt

j

⇣
V opt

j

⌘H
, XDopt

j = V opt
j

⇣
IDopt

j

⌘H
, j 2 ND

p (14.38a)

Then consider the point (ũ,sopt,W opt) obtained from (uopt,sopt,W opt) by replacing `Dopt
j in uopt

j by

˜̀D
j := IDopt

j

⇣
IDopt

j

⌘H
, j 2 ND

p (14.38b)

It can then be checked that (ũ,sopt,W opt) is feasible for OPF (14.34). Since the cost C0 is independent of
˜̀D
j , (ũ,sopt,W opt) is also optimal for OPF (14.34).

Remark 14.6 (Strong exactness). As discussed in Remarks 14.3 and 14.4, even when a relaxation is not
exact under our definition, an optimal solution of the original OPF problem may still be recoverable from
an optimal solution of its relaxation under certain conditions. Theorems 14.6 and 14.9 provide two such
conditions for single-phase radial network. The discussion above shows that rank(W opt) = 1 is sufficient
for recovering an optimal solution of the original three-phase OPF (14.34) from an optimal solution of its
SDP relaxation (14.36)

The method (14.38) to recover an optimal solution (ũ,sopt,W opt) of OPF (14.34) from an optimal
solution of its relaxation may not work well in practice because of inevitable numerical errors. Even if
W opt

j j is close to being rank-1, i.e., its second largest eigenvalue is several orders of magnitude smaller than
its largest eigenvalue, XD

j can be far from being rank-1, e.g., its largest eigenvalues are multiple and of the
same magnitude (see [174, Remark 1]). In this case IDopt

j may not be obtained from XDopt
j using (14.38a).

Two methods are suggested in [174] to address this numerical issue. The first method substitutes V opt
j

obtained from W opt
j j = V opt

j

⇣
V opt

j

⌘H
into (14.36g):

sDopt
j = diag

✓⇣
GV Dopt

j

⌘⇣
IDopt

j

⌘H◆
=) IDopt

j :=
⇣

diag
⇣

GV Dopt
j

⌘⌘�1
sDopt

j

where for a vector x, x is its componentwise complex conjugate and diag(x) is the diagonal matrix with
x as its diagonal entries. The second method adds l Â j tr

⇣
`D

j

⌘
to the cost function of the SDP relaxation

(14.36) for a positive but small weight l > 0. This produces an optimal solution in which `Dopt
j tends to

be of low rank.

14.5.3 Radial network

A special case that is particularly simple is a network where
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• all three-phase devices are either voltage or power sources in Y configuration;

• all voltages are defined with respect to the ground and the neutral voltages gY
j := V n

j of all these
Y -configured devices are gY

j := 0.

In this case the internal variables can be simply expressed in terms of terminal variables, VY
j =Vj, IY

j =�I j,

and sY
j =�s j, and the operational constraints gY/D

j
�
u j
�
 0 on u j are included in the network constraints

(13.24). Hence the internal variable u can be eliminated from the QCQP (13.29) which then consists of
only network constraints (13.24) and no device models, as follows:

min
V

C0(V,s(V )) s.t. (13.24) (14.39)

We now study the semidefinite relaxation of (14.39) when the network graph G is a tree.

Consider a network graph G := (N,E) with N +1 buses. Suppose each line ( j,k) 2 E is characterized
by three 3⇥ 3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Recall its single-phase equivalent circuit described in

Chapter 9.1.2 by a graph G3f :=
⇣

N3f
,E3f

⌘
where N3f contains 3(N +1) nodes identified by jf , j 2 N,

f 2 {a,b,c}. There is a link ( jf ,kf 0) in E3f if and only if the ( jf ,kf 0) entry Y ff 0
jk of the three-phase

admittance matrix Y is nonzero.

Even when G is a tree (i.e., the three-phase network is radial), its single-phase equivalent G3f contains
cycles. The key observation is that G3f is a chordal graph. To see this, note that G3f has a maximal clique
with 6 nodes consisting of the set

n
jf ,kf 0 2 N3f : f ,f 0 2 {a,b,c}

o
of buses if and only if ( j,k) is a line

in G. See Figure 14.7 for an example. Two nodes jf and kf 0 in the equivalent circuit G3f are adjacent

Figure 14.7: The graph G3f of the single-phase equivalent circuit of a radial network with three buses
i, j,k connected by (three-wire) three-phase lines.

either because of a physical line between buses j and k in the graph G (in which case f = f 0) or because
of electromagnetic interactions across phases f and f 0 (in which case f 6= f 0). Indeed G3f consists of a
macro tree in which every link in the macro tree is such a clique and these are the only cliques in G3f .
This means that G3f is a chordal graph.

Theorem 14.4 suggests solving the chordal relaxation of (14.39). It computes a (N + 1)⇥ (N + 1)
Hermitian partial matrix WG3f :

WG3f :=
⇣

[WG3f ]
ff
j j , jf 2 N3f

, [WG3f ]
ff 0
jk ,( jf ,kf 0) 2 E3f

⌘
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The set of maximal cliques of G3f correspond to the following 6⇥6 principal submatrices of WG3f :

WG3f ( j,k) =


w j j w jk
wk j wkk

�
2 C

6⇥6, ( j,k) 2 E

where

w j j :=

2

4
[WG3f ]aa

j j [WG3f ]ab
j j [WG3f ]ac

j j
[WG3f ]ba

j j [WG3f ]bb
j j [WG3f ]bc

j j
[WG3f ]ca

j j [WG3f ]cb
j j [WG3f ]cc

j j

3

5 , w jk :=

2

64
[WG3f ]aa

jk [WG3f ]ab
jk [WG3f ]ac

jk
[WG3f ]ba

jk [WG3f ]bb
jk [WG3f ]bc

jk
[WG3f ]ca

jk [WG3f ]cb
jk [WG3f ]cc

jk

3

75 ,

The chordal relaxation of (14.39) is then (using (13.24)):

min
WG3f

tr(C0WG3f ) (14.40a)

s.t. pf min
j  tr

⇣
Ff

j WG3f

⌘
 pf max

j , j 2 N, f 2 {a,b,c} (14.40b)

qf min
j  tr

⇣
Yf

j WG3f

⌘
 qf max

j , j 2 N, f 2 {a,b,c} (14.40c)

vf min
j  tr

⇣
Ef

j WG3f

⌘
 vf max

j , j 2 N, f 2 {a,b,c} (14.40d)

tr
⇣

Ŷ f
jkWG3f

⌘
 `f max

jk , ( j,k) 2 E, f 2 {a,b,c} (14.40e)

tr
⇣

Ŷ f
k jWG3f

⌘
 `f max

k j , ( j,k) 2 E, f 2 {a,b,c} (14.40f)

WG3f ( j,k) ⌫ 0, ( j,k) 2 E (14.40g)

w00 = V0VH

0 (V0 is given) (14.40h)

Let W opt
G3f be an optimal solution of (14.40). If every 6⇥ 6 principal submatrix W opt

G3f ( j,k) of the partial
matrix W opt

G3f satisfies

rank
⇣

W opt
G3f ( j,k)

⌘
= 1, ( j,k) 2 E

then an optimal solution V opt of (14.39) can be uniquely recovered from W opt
G3f according to Theorem 14.3.

This is because a chordal relaxation is exact if and only if the principle submatrix W opt
G3f (q) of W opt

G3f is psd
rank-1 for every clique q of the chordal graph G3f (Theorem 14.1) and, as noted above, the only maximal
cliques of G3f are those 6-node cliques corresponding to lines ( j,k) 2 E.

The method in Chapter 14.1.4 to recover an optimal V opt from W opt
G3f applies directly here. Since

rank
⇣

W opt
G3f ( j,k)

⌘
= 1 for all ( j,k)2E, they satisfy the cycle condition (Theorem 14.1). Take any spanning

tree of G3f with root at, say, node 0a. Let
���V f

j

��� :=
q

[W opt
G3f ]

ff
j j for j 2N,f 2 {a,b,c}. Let Pf

j be the unique

path from the root 0a to the node jf . A link ( j0f 0, j00f 00) in the path P
f
j is denoted by ( j0f 0, j00f 00) 2 P

f
j .

Then for all nodes jf in the equivalent single-phase network G3f ,

\V f
j := \V a

0 � Â
( j0f 0, j00f 00)2Pf

j

\
h
W opt

G3f

if 0f 00

j0 j00
mod 2p
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14.6 Conditions for global optimality

Even though OPF is NP hard in general, heuristics seem to work very well in practice in that its semidefi-
nite relaxation tends to be exact (e.g. see simulation results in [175]) and local algorithms such as Newton-
Raphson and interior-point methods tend to produce globally optimal solutions. Conditions are studied in
[176] for such nonconvex problems to simultaneously have exact convex relaxation and no spurious local
optima. These conditions help explain the empirical experience that local algorithms for OPF tend to work
very well in practice.

14.7 Bibliographical notes

Solving OPF through semidefinite relaxation in the bus injection model is first proposed in [177] as a
second-order cone program (SOCP) for radial (tree) networks and in [178] as a semidefinite program
(SDP) for general networks. The exactness of semidefinite relaxations is first studied in [123]. By defining
a new set of variables v j := |Vj|2, R jk := |Vj||Vk|cos(q j�qk), and I jk := |Vj||Vk|sin(q j�qk) where q j :=
\Vj, [177] rewrites the bus injection model (4.22) in the polar form as a set of linear equations in these
new variables and the following quadratic equations:

v jvk = R2
jk + I2

jk

Relaxing these equalities to v jvk � R2
jk + I2

jk enlarges the solution set to a second-order cone that is equiv-
alent to W

+
G in this chapter. Partial matrices and their completions are studied in [155, 157, 158]. Ex-

ploiting graph sparsity to simplify the SDP relaxation of OPF through chordal extension is first proposed
in [159, 160, 179] and analyzed in [156, 161, 53]. Theorem 14.1 is from [53] and Corollary 14.2 is from
[156]). The sufficient condition on angle differences for exact SOCP relaxation in Chapter 14.4 is from
[171, 172] and our proof mostly follows that in [172]. The result in Chapter 14.4 assumes the voltage
magnitudes are fixed and ignores reactive powers. These assumptions are relaxed in [173] although, with-
out these assumptions, the feasible set may no longer be a convex surface that is the Pareto front of its
relaxation.

The semidefinite relaxation of three-phase OPF in Chapter 14.5 follows the idea in [150, 174].

Simulations [175] show that the SDP relaxation of OPF is often exact and adding valid inequalities and
bound tightening can further reduce the optimality gap to within 1%, though [163] also reports instances
where the optimality gap of SDP relaxation is large. The results in Chapter 14.6 are from [176].

14.8 Appendix: Proof of Theorem 14.9: tree network

We prove the theorem when the network graph is a tree, following [172].

Let F jk
q denote the set of branch power flows on each line ( j,k) 2 E:

F
jk
q := { (Pjk,Pk j) | (Pjk,Pk j) satisfies (14.24) for q jk  q jk  q jk }
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Since the network is a tree, the set Fq of branch power flows on all lines is simply the product set:

Fq := {P := (Pjk,Pk j,( j,k) 2 E) | P satisfies (14.24) for q jk  q jk  q jk,( j,k) 2 E }

= ’
( j,k)2E

F
jk
q (14.41)

because given any (q jk,( j,k) 2 E) there is always a (unique) (q j, j 2 N) that satisfies q jk = q j�qk. (This
is equivalent to the cycle condition (??).) If the network has cycles then this is not possible for some
vectors (q jk,( j,k) 2 E) and Fq is no longer a product set of F jk

q .

Since the power injections p are related to the branch flows P by p j = Âk: j⇠k Pjk, the injection region
Pq in (14.22) is a linear transformation of Fq :

Pq = AFq

for some (N + 1)⇥2M dimensional matrix A. Matrix A has full row rank and it can be argued that there
is a bijection between Pq and Fq using the fact that the graph is a tree. We can therefore freely work with
either p 2 Pq or the corresponding P 2 Fq .

To prove the second assertion of Theorem 14.9, note that the argument for the two-bus case shows that
conv(F jk

q ), ( j,k) 2 E, is the intersection of a second-order cone with an affine set. This property, together
with Lemma 14.11 below, the fact that Fq is a direct product of F jk

q , and the fact that A is of full rank,
imply that conv(Pq )\Pp is the intersection of a second-order cone with an affine set. Hence (14.23) is
indeed an SOCP for a tree network. Therefore it suffices to prove the first assertion of Theorem 14.9:

Pq \Pp = O(conv(Pq )\Pp) (14.42)

because it implies that, under C14.3, every minimizer of OPF-socp (14.23) lies in its Pareto front and
hence is feasible and optimal for OPF (14.22). Hence SOCP relaxation is exact.

We are hence left to prove (14.42). Half of the equality follows from the following simple properties
of Pareto front and convex hull (Their proof is left as Exercise 14.10).

Lemma 14.11. Let B,C ✓ R
k be arbitrary sets, D := {x 2 R

k|Mx  c} be an affine set, and M a matrix
and b a vector of appropriate dimensions.

(1) conv(MB) = M conv(B) and conv(B⇥C) = conv(B)⇥ conv(C) where for any sets A1,A2 ✓ R
k,

(x1,x2) 2 A1⇥A2 if and only if x1 2 A1 and x2 2 A2.

(2) Suppose B and C are convex and a point is Pareto optimal over a set if and only if it minimizes cTx
over the set for some c > 0.3 Then O(MB) = MO(B) and O(B⇥C) = O(B)⇥O(C).

(3) If B = O(conv B) then B\D✓O(conv(B)\D).

The next lemma says that the feasible set of OPF (14.22) is a subset of the feasible set of its SOCP
relaxation (14.23).

3In general, a point is Pareto optimal over a convex set if and only if it minimizes cTx over the set for some nonzero c� 0,
as opposed to c > 0. In that case, O(B⇥C)◆O(B)⇥O(C); c.f. Exercise 14.9.
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Lemma 14.12. Pq \Pp ✓ O(conv(Pq )\Pp).

Proof of Lemma 14.12. Recall that Fq = ’
( j,k)2E

F
jk
q and Pq = AFq . Lemma 14.11(1) implies

conv(Pq )) = conv(AFq )) = A conv(Fq ) = A ’
( j,k)2E

conv
⇣
F

jk
q

⌘

Hence their Pareto fronts satisfy

O(conv(Pq )) = O

 
A ’

( j,k)2E
conv

⇣
F

jk
q

⌘!
= A ’

( j,k)2E
O

⇣
conv

⇣
F

jk
q

⌘⌘
= A ’

( j,k)2E
F

jk
q = Pq

where the second equality follows from Lemma 14.11(2), and the third equality follows from (14.26)
where F

jk
q plays the role of Pq . Lemma 14.11(3) then implies the lemma.

Lemma 14.12 means that every optimal solution of OPF (14.22) is an optimal solution of its SOCP
(14.23). For exactness of OPF-socp (14.23) we need the converse to hold as well. The remainder of the
proof is to show this is indeed true, proving (14.42).

Lemma 14.13. Pq \Pp ◆ O(conv(Pq )\Pp).

The proof of Lemma 14.12 shows that Pq = O(conv(Pq )), so the converse of Lemma 14.11(3) would
imply Lemma 14.13. Figure 14.8 and the explanation in its caption, however, illustrate why the converse
of Lemma 14.11(3) generally does not hold. To prove Lemma 14.13 we need to exploit the structure of
Pq ,Fq ,Pp.

Proof of Lemma 14.13. Take any point p 2O(conv(Pq )\Pp). We now show that p 2 Pq \Pp. By defini-
tion of Pareto optimality, p is a minimizer of

min
p̂2conv(Pq )

cT p̂ subject to p  p̂  p

for some c > 0. This minimization is equivalent to:

min
a j,p̂ j

cTÂ
j

a j p̂ j

subject to a j � 0, Â
j

a j = 1, p̂ j 2 Pq

p  Â
j

a j p̂ j  p

We can uniquely express p and p j in terms of branch flows in Fq , p = AP and p̂ j = AP̂j. Then P is in
conv(Fq ) and a minimizer of

min
P̂2conv(Fq )

cTAP̂ subject to p  AP̂  p
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B conv(B)

D

conv(B)∩D

B =O conv(B)( )

D

conv(B)∩DB∩D⊂O conv(B)∩D( )

B∩D =O conv(B)∩D( )

Figure 14.8: The upper panel shows a set B and its convex hull conv(B) with the property that B =
O(conv(B)). The lower panel shows two affine sets D. On the left D is a hyperplane; B\D consists
of two intersection points and is a strict subset of O(conv(B)\D). On the right D is a halfspace and
B\D = O(conv(B)\D).

It suffices to prove that P 2 Fq , which then implies that p = AP 2 Pq \Pp.

The Slater’s condition holds for OPF (14.22). By strong duality there exist Lagrange multipliers l � 0
and l � 0 such that P is a minimizer of the Lagrangian:

min
P̂2conv(Fq )

⇣
cT +lT�lT

⌘
AP̂ � lT

p + lTp (14.43)

If c := cT + lT�lT � 0 and is nonzero then P 2 Fq since O(conv(Fq )) = Fq . We are left to deal with
the case where either c = 0 (in which case every point in conv(Fq ) is Pareto optimal) or there exists a j
such that c j < 0.

Since Fq = ’( j,k)2E F
jk
q , P 2 Fq if and only if (Pjk,Pk j) 2 F

jk
q . Moreover (14.43) becomes separable

by Lemma 14.11(1):

min
P̂2conv(Fq )

Â
j2N

c j Â
k: j⇠k

P̂jk ⌘ Â
( j,k)2E

min
(P̂jk,P̂k j)2conv(F jk

q )

�
c jP̂jk + ckP̂k j

�

This reduces the problem to the two-bus case:

min
(P̂jk,P̂k j)2conv(F jk

q )

�
c jP̂jk + ckP̂k j

�

If either c j > 0 or ck > 0 then it can be seen from Figures 14.3 that the minimizer (Pjk,Pk j) is in F
jk
q . We

now show that (Pjk,Pk j) 2 F
jk
q even when both c j  0 and ck  0.
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Since c > 0, any node i with ci  0 has l i > 0 and hence pi = pi. Consider the biggest subtree T that
contains link ( j,k) in which every node i has ci  0 and pi = pi. Call a node l in the subtree T a boundary
node if it is a leaf or connected to another node l0 outside T where cl0 > 0. Without loss of generality, take
one of the boundary nodes as the root of the network graph and assume this is node 0. For each line (l, i)
in the graph, node i is called the parent of node l if i lies in the unique path from l to the root node 0.

Lemma 14.14. (Pli,Pil) 2 F
li
q for every link (l, i) in the subtree T .

Proof of Lemma 14.14. Consider any P̃ that satisfies (P̃li, P̃il) 2 F
li
q for every link (l, i) 2 T and p  p̃ =

AP̃ p. We will first prove that, for every link (l, i) 2 T ,

Pli  P̃li and Pil � P̃il (14.44)

We then use this to prove that (Pli,Pil) = (P̃li, P̃il) 2 F
li
q .

Consider first a boundary node l. If l is a leaf node then, since cl  0, Pli = pl = pl  p̃l = P̃li. Then,
since Pli 2 conv(Fli

q ) and P̃li 2 F
li
q , we have Pil � P̃il; see Figure 14.9(a). Otherwise let l0 outside T be a

neighbor of l. Since cl  0 but cl0 > 0, the minimization of cl0P̂l0l +clP̂ll0 over conv(Fll0
q ) means Pll0 = p ll0;

see Figure 14.9(b). Hence Pll0 = p ll0 � P̃ll0 . This holds for all neighbors l0 of l. Hence

Pli = pl�Â
l0

Pll0  p̃l�Â
l0

P̃ll0 = P̃li

where l0 ranges over all neighbors (outside T ) of l except its parent i in T . From the region of possible
values for (Pli,Pil) in Figure 14.9(c), we conclude that Pil � P̃il . Hence the claim is true for all links (l, i)
where l is a boundary node.

Consider node i one hop away from a boundary node towards root note 0 and let its parent be node h;
see Figure 14.9(d). The above argument says that Pil � P̃il for all neighbors l of i except its parent h. This
together with pi = pi (since ci  0) implies

Pih = pi�Â
l

Pil  p̃i�Â
l

P̃il = P̃ih

and hence as before Phi � P̃hi. Propagate towards the root node 0 and (14.44) follows by induction.

We now use (14.44) to show that (Pli,Pil) 2 F
li
q for every link (l, i) in the subtree T . Now (14.44)

implies that P0l � P̃0l for all neighbors l of 0. Since node 0 has no parent, we have

Â
l

P0l = p0 = p0  p̃0 = Â
l

P̃0l

implying P0l = P̃0l for all neighbors l of node 0. This implies Pl0 = P̃l0; see Figure 14.9(a) and (c). Repeat
this argument propagating from node 0 towards the boundary nodes of the subtree T , and we conclude that
(Pli,Pil) = (P̃li, P̃il) 2 F

li
q for every link (l, i) in T . This completes the proof of Lemma 14.14.

This completes the proof of Lemma 14.13.

This completes the proof of Theorem 14.9.
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pl = pl

  Pl 'l,Pll '( )
= π l 'l,π ll '( )

possible values
of Pli,Pil( )

possible 

values of Pli, Pil( )

Pli,Pil( )

(b))(a))

(c))
Pli, Pil( )

0

i 

l

h

l’ 
subtree T  where cj ≤ 0

(d))

Figure 14.9: Illustration for the proof of Lemma 14.14.
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14.9 Problems

Chapter 14.1

Exercise 14.1 (Solution recovery). Given a partial matrix XF in XF defined in (14.7c), i.e., XF satisfies

tr(ClXF)  bl, l = 1, . . . ,L
XF( j,k)⌫ 0, rank(XF( j,k)) = 1, ( j,k) 2 E

Â
( j,k)2c

\[XF ] jk = 0 mod 2p, all cycles c in F

compute an x 2 C
n as follows. Let T be an arbitrary spanning tree of F (assumed connected) rooted at

node 1. Let P j denote the unique path from node 1 to node j in T (with orientation pointing away from
node 1). Set |x1| :=

p
[XF ]11 and \x1 to an arbitrary value. For j = 2, . . . ,n,

|x j| :=
q

[XF ] j j, \x j := \V1 � Â
(i,k)2P j

\ [XF ]ik

Prove that x 2 C
n satisfies [XF ] jk = x j xk and xHClx bl , l = 1, . . . ,L.

Chapter 14.2

Exercise 14.2 (Loss minimization and load power factor). Consider a generator supplies a load through
a transmission line. Let the complex voltage at the generator (reference) bus be fixed at V0 := 1\0� p.u.
and the transmission line be modeled as a series admittance y := g� ib. Let the required load power be
s = p + iq = |s|eif with p > 0 specified, i.e., �s is the power injection from the load bus. Let the load
voltage be V := veiq . The load current I is equal to the current through the transmission line Z since the
line charging current is assumed zero. In this problem, we let v (and p) be specified and treat (q ,f) as
variables.

1. Show that the active line loss r |I|2 = g
��1� veiq ��2 where r is the line resistance.

2. Formulate the OPF problem that minimizes active line loss.

3. Solve the OPF and show that the active line loss is uniquely minimized when the reactive power is
p tanfmin = b(1� v2).

4. Now let v (in addition to q ,f ) be an optimization variable constrained to v 2 [v�e,v+e] and solve
the OPF problem.

Since v⇡ 1, the optimal reactive power p tanfmin = b(1� v2)⇡ 0.
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Solution 14.1. The current I is given by I = y(V0�V ) and hence

r|I|2 = Re
�
z |y|2 |V0�V |2

�
= Re

✓
1
z⇤

|V0�V |2
◆

= g |1� veiq |2

Therefore the OPF problem is

min
q ,f

g |1� veiq |2 s. t. � s = y⇤
⇣

v2� veiq
⌘

To eliminate q , use the equality constraint to express eiq in terms of f :

y⇤
⇣

v2� veiq
⌘

= �s = � p
cosf

eif = �p(1+ i tanf)

Hence veiq = v2 + pz⇤(1+ i tanf). Substituting into the cost function we have the active line loss as

f (f) := g
��1� v2� p(r� ix)(1+ i tanf)

��2 = g
���1� v2� p(r + x tanf)

�
+ ip(x� r tanf)

��2

= g
⇣�

1� v2� p(r + x tanf)
�2

+ p2(x� r tanf)2
⌘

Then (using b = x/(r2 + x2) and g(r2 + x2) = r)

f 0(f) = 2pgsec2 f
�

p(r2 + x2) tanf � x(1� v2)
�

= 2pr sec2 f
�

p tanf � b(1� v2)
�

Therefore f 0(fmin) = 0 if and only if fmin satisfies

p tanfmin = b(1� v2)

Between (�p/2,p/2) this fmin is unique. Moreover f 0(f) < 0 for f < fmin and f 0(f) > 0 for f > fmin,
implying that fmin is the unique minimizer of the line loss f (f). Note that p tanf is the reactive load
power.

When v is also a variable, the loss becomes f (f ,v). Simple analysis shows that there is a unique
optimal vmin that minimizes f . The first order optimality condition provides two nonlinear equations in
(q ,v).

Chapter 14.3 The linear separability condition C14.2’ requires that some of power injections be un-
constrained even though in practice they are always bounded. The next exercise discusses under what
conditions can C14.2’ be interpreted as requiring that the bounds on these power injections be inactive at
optimality, as opposed to requiring that the optimal solutions obtained by ignoring these bounds turn out
to satisfy these bounds.

Exercise 14.3 (Linear separability). Consider the two problems:

x̂ 2 argmin
x2X

f (x) (14.45a)

x⇤ 2 argmin
x2X

f (x) s. t. g(x)  0 (14.45b)

where X ✓ R
n is convex and g : Rn! R

m is a convex function.
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1. Suppose f is strictly convex. Show that g(x̂) < 0 if and only if g(x⇤) < 0 in which case f (x̂) = f (x⇤).

2. Show that if f is nonconvex, then it is possible that both g(x⇤) < 0 and g(x̂) > 0 hold in which case
f (x̂) < f (x⇤).

Chapter 14.4 The next few problems use a two-bus example to illustrate the geometry of solutions to
the polar form power flow equations, convex relaxation and its exactness [171, 172].

Exercise 14.4 (Ellipsoid). An ellipsoid in R
k (without the interior) in standard form are the points x 2 R

k

that satisfy

xTLx = 1 (14.46a)

for a real positive definite diagonal matrix L � 0. The center of the ellipsoid is the origin 0 and the k
principal axes are the coordinate axes. This is illustrated in Figure 14.10 for k = 2. In general the set of

(a) Ellipsoid in R
2 (b) Rotation in R

2

Figure 14.10: Exercise 14.4.

points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1 (14.46b)

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M. In this exercise, we show that a general ellipsoid
(14.46b) can be obtained through simple transformations of the standard form ellipsoid (14.46a).

Given a standard form ellipsoid x 2 R
k that satisfies (14.46a).

1. Translation: Let y := x+ x0 2 R
k. Show that y is a standard form ellipsoid with its center translated

to x0. Illustrate y for k = 2.

2. Scaling: Let y := ax where a 2 R is nonzero. Show that y is a standard form ellipsoid with its size
scaled by a in all the k dimensions. Illustrate y for k = 2.
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3. Scaling and rotation: Let y := Ax. Show that y is an ellipsoid as long as A is real and invertible, i.e.,
y satisfies (14.46b) with a real (symmetric) positive definite matrix M.

4. Inverse scaling and rotation: Show that a general ellipsoid y that satisfies (14.46b) with the origin
c = 0 as its center is a standard form ellipsoid x scaled and rotated by a matrix U , i.e., y = Ux.
Derive U .

Exercise 14.5 (Rotation in R
2). Show that y = R(q)x is a rotation of x by an angle q in R

2 where

R(q) :=


cosq �sinq
sinq cosq

�

as illustrated in Figure 14.11.

1. Show that R�1(q) = R(�q) = RT(q).

2. Show that R(q) is normal and find its spectral decomposition for q 6= 0.

3. Suppose x is a standard form ellipse in R
2 that satisfies (14.46a). Show that y := R(q)x is an ellipse,

i.e., y satisfies (14.46b) with a real (symmetric) positive definite matrix M.

Figure 14.11: Exercise 14.5.

Exercise 14.6 (Geometric insight [171, 172]). Show that (14.24) can be rewritten as

1 =

����


cosq jk
sinq jk

�����
2

= P̂T

2

4
1

b2
jk

0

0 1
g2

jk

3

5 P̂ (14.47)

where P̂ 2 R
2 is related to P = (Pjk,Pk j) by


Pjk
Pk j

�
=
p

2


cos45� sin45�
�sin45� cos45�

�
· P̂ +


1
1

�

This says that P̂ defined by (14.47) is a standard form ellipse centered at the origin with its major axis of
length 2b jk on the x-axis and its minor axis of length 2g jk on the y-axis. P is the ellipse obtained from P̂
by scaling it by

p
2, rotating it by �45�, and shifting its center to (g jk,g jk), as shown in Figure ??.
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Exercise 14.7 (Geometric insight [171, 172]). Show that the two-bus network given by (14.24), repro-
duced here with subscript jk dropped:

p1 = p1(q) := g � gcosq � bsinq (14.48a)
p2 = p2(q) := g � gcosq + bsinq (14.48b)

We have shown that (p1, p2) forms an ellipse. Draw the ellipse and indicate on the ellipse values for
q where p1 and p2 attain minimum or maximum values. Conclude that the “lower half” of the ellipse
corresponds to small |q | and the “upper half” corresponds to large |q |.

Exercise 14.8 (Geometric insight [171, 172]). Consider the 2-bus network in Exercise 14.7. Let x :=
(p1, p2,q). Let c(p1, p2) be a cost function that is strictly increasing in (p1, p2), e.g., c(p1, p2) := p1 + p2.

1. Consider the OPF problem:

min
x

c(p1, p2) s.t. x 2 X1 (14.49)

where the only constraint is the power flow equation:

X1 := {x := (p1, p2,q) : x satisfies (14.48)}

The feasible set is nonconvex because it is an ellipse without its interior. Consider the convex
relaxation:

min
x

c(p1, p2) s.t. x 2 conv(X1) (14.50)

Explain why the relaxation is exact, i.e., an optimal x⇤ for (14.50) is also optimal for (14.49).

2. Consider the constraints on injections (p1, p2) and constraints on q :

X2 := {x := (p1, p2,q) 2 R
3 : q  q  q}

X3 := {x := (p1, p2,q) 2 R
3 : p j  p j  p j, j = 1,2}

Consider the OPF:

min
x

c(p1, p2) s.t. x 2 X1\X2\X3 (14.51)

and its convex relaxation:

min
x

c(p1, p2) s.t. x 2 conv(X1\X2) \ X3 (14.52)

Indicate the feasible sets of (14.51) and (14.52) projected onto (p1, p2) plane, and explain why lower
bounds (p1, p2) on the injections (p1, p2) affect the exactness of SOCP relaxation, but not the upper
bounds on (p1, p2).
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3. Explain why limiting |q | to [q ,q ] can ensure exact relaxation as long as (recall that g > 0,b < 0)

tan�1
✓

b
g

◆
 q < q  tan�1

✓
�b
g

◆

Exercise 14.9 (Condition C14.3 and Pareto front). In general, a point x⇤ is Pareto optimal over a convex
set A✓ R

k if and only if it x⇤ = argminx2A cTx for some nonzero c� 0.

1. Show that, for the two-bus network in Exercise 14.7, O(conv(Pq )\Pp) ◆ O(conv(Pq \Pp)) if
condition C14.3 does not hold.

2. Show that if condition C14.3 holds, then we can define a Pareto optimal x⇤ as x⇤ = argminx2A cTx
for some c > 0 and O(conv(Pq )\Pp) = O(conv(Pq \Pp)).

Exercise 14.10 (Convex hull and Pareto front). Prove Lemma 14.11: Let B,C ✓ R
k be arbitrary sets,

D := {x 2 R
k|Mx c} be an affine set, and M a matrix and b a vector of appropriate dimensions.

(1) conv(MB) = M conv(B) and conv(B⇥C) = conv(B)⇥ conv(C) where for any sets A1,A2 ✓ R
k,

(x1,x2) 2 A1⇥A2 if and only if x1 2 A1 and x2 2 A2.

(2) Suppose B and C are convex and a point is Pareto optimal over a set if and only if it minimizes cTx
over the set for some c > 0. Then O(MB) = MO(B) and O(B⇥C) = O(B)⇥O(C).

(3) If B = O(conv B) then B\D✓O(conv(B)\D).

Chapter 14.5.

Exercise 14.11 (Lemma 14.10 [174]). aaa



Chapter 15

Semidefinite relaxations: BFM

15.1 Introduction

In Chapter 14 we study the semidefinite relaxation of OPF in the bus injection model. In this chapter we
study the relaxation of OPF for radial networks in the branch flow model. In Chapter 15.2 we focus on
single-phase radial networks. We formulate SOCP relaxation, prove its equivalence to the SOCP relaxation
in BIM, and present two sufficient conditions for exact relaxation. In Chapter 15.3 we extend the relaxation
to unbalanced three-phase networks.

15.2 Single-phase OPF

Branch flow model, in particular the original DistFlow model of [39, 40], is mostly used to model single-
phase radial networks. In this section we describe the SOCP relaxation of DistFlow model. This model
assumes that the series impedances zs

jk = zs
k j of each line ( j,k) are equal in each direction (assumption

C5.1) and shunt admittances are zero zm
jk = zm

k j = 0. These two assumptions allow us to assume the network
graph G = (N,E) is directed and includes branch variables in only one direction (see Chapter 5.2.2 for
details). We denote a line in E from bus j to bus k either by ( j,k) 2 E or j! k. It is characterized by its
series impedance z jk := zs

jk. Without loss of generality we take bus 0 as the root of the tree.

15.2.1 SOCP relaxation

Consider the OPF formulated in Chapter 13.2.1, reproduced here (but with a different graph orientation).
Associated with each line ( j,k) are branch variables (` jk,S jk). Let (s,v) := (s j,v j, j 2 N) and (`,S) :=
(` jk,S jk, j! k 2 E). Let x := (s,v,`,S) in R

3(N+1+M) with M = N since G is a tree. Bus 0 denotes the root
of the tree. We adopt the graph orientation where every line points towards node 0. Then the DistFlow

643
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model (5.8) is:

S jk = Â
i:i! j

�
Si j� zi j`i j

�
+ s j, j 2 N (15.1a)

v j� vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j! k 2 E (15.1b)

v j` jk = |S jk|2, j! k 2 E (15.1c)

where k := k( j) (15.1a) denotes the node adjacent to j on the unique path from bus j to bus 0. The
boundary condition is: S jk := 0 when j = 0 in (15.1a) and Si j = 0, `i j = 0 when j is a leaf node.1 The
injection, voltage and line limits can be expressed in terms of the BFM variable x:

smin
j  s j  smax

j , vmin
j  v j  vmax

j , ` jk  `max
jk , j 2 N, ( j,k) 2 E (15.2)

Let the cost function in the branch flow model be C(x). Let the feasible set be

T := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (15.1)(15.2)} (15.3a)

Then an optimal power flow problem in the branch flow model is:
OPF:

min
x

C(x) subject to x 2 T (15.3b)

As remarked in Chapter 13.2.1, the model (15.1) includes only voltage and power sources whose
controllable variables are v j and s j respectively. A current source will introduce its current I j 2 C as an
additional variable and an equality constraint |s j|2 = v j|I j|2 that relate I j to (s j,v j). An impedance z j will
introduce an equality constraint s j = v j/zHj on (s j,v j). If z j is controllable, e.g., representing a switched
capacitor, then z j is an additional variable. For simplicity we restrict ourselves to voltage and power
sources only.

The constraints (15.1a)(15.1b) are linear in x. The constraint (15.1c) is however quadratic in x, making
the feasible set of OPF (15.3) nonconvex. Relaxing the equality in (15.1c) into inequality

v j` jk � |S jk|2, j! k 2 E (15.4)

results in a (convex) second-order cone. Define

T
+ := {x : (s,v,`,S) 2 R

6N+3 | x satisfies (15.1a)(15.1b)(15.4)(15.2)} (15.5a)

Then the SOCP relaxation of OPF (15.3) is:
OPF-socp:

min
x

C(x) subject to x 2 T
+ (15.5b)

We say that OPF-socp (15.5) is exact if every optimal solution xsocp of (15.5) attains equalities in (15.4) and
hence is an optimal solution of OPF (15.3). This is convenient because it ensures that any algorithm that
solves an exact relaxation always produces a globally optimal solution to the OPF problem. This notion
of strong exactness is however unnecessary under the sufficient exactness conditions of Chapters 15.2.3
and 15.2.4 for radial networks; see Remark 15.1 after Theorem 15.2 and Remark 15.3 after Theorem 15.3.
These conditions guarantee that an optimal solution to OPF can be recovered from any optimal solution
xsocp of OPF-socp whether or not xsocp attains equalities in (15.4).

1A node j 2 N is a leaf node if there is no i such that i! j 2 Ẽ.
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15.2.2 Equivalence

The single-phase OPF (15.3) is equivalent to the single-phase OPF problem (13.9) or (13.15) in the bus
injection model because their feasible sets T and V respectively are equivalent by Theorem 5.3. In this
section we show that their SOCP relaxations are equivalent as well by establishing a bijection between the
feasible sets of these relaxations.

The equivalence of the SOCP relaxations in these two models rests on the equivalence of their feasible
sets. Recall that any sets A and B are equivalent, denoted by A ⌘ B, if there is a bijection between them.
When there is a one-one correspondence between their feasible sets, a feasible point is optimal for one
problem if and only if its corresponding feasible point is optimal for the other problem. We now make this
precise.

Recall from Chapter 14.2.1 that the SOCP relaxation (14.16c) of OPF in BIM is the minimization
of C0(WG) over Hermitian partial matrices WG 2 C

2M+N+1 subject to operational and 2⇥ 2 psd con-
straints. The operational constraints are the injection limits, voltage limits, and line limits. In terms of
the partial matrix WG, they are respectively: (substituting |Vj|2 = [WG] j j and VjVH

k = [WG] jk into (13.8)
(13.4b)(13.4c)):

smin
j  Â

k: j⇠k
ysH

jk
�
[WG] j j� [WG] jk

�
 smax

j , j 2 N (15.6a)

vmin
j  [WG] j j  vmax

j , j 2 N (15.6b)
���ys

jk

���
2 �

[WG] j j +[WG]kk� [WG] jk� [WG]k j
�
 `max

jk , ( j,k) 2 E (15.6c)

The 2⇥2 psd constraint WG( j,k)⌫ 0, ( j,k) 2 E, is equivalent to

[WG] jk = [WG]Hk j, [WG] j j > 0, [WG]kk > 0, [WG] j j[WG]kk �
��[WG] jk

��2 , ( j,k) 2 E (15.6d)

Then the feasible set of the SOCP relaxation of OPF in BIM is

W
+
G := { WG 2 C

2M+N+1 | WG satisfies (15.6) } (15.7a)

and the SOCP relaxation is

min
WG

C0(WG) s.t. WG 2W
+
G (15.7b)

The feasible set of OPF-socp (15.5) in BFM is equivalent to that of (15.7) in BIM.

Theorem 15.1 (Equivalence of SOCPs). T+ ⌘W
+
G .

The theorem implies that there is a bijection g : W+
G! T

+. If the cost function in the SOCP relaxation
(15.5) in BFM and that in (15.7) in BIM are equivalent, i.e., C0(WG) = C (g(WG)), then these SOCP
relaxations are equivalent problems in the sense that W opt

G is optimal for (15.7) if and only if xopt := g(W opt
G )

is optimal for (15.5).

The proof of Theorem 15.1 below constructs a linear mapping g : W+
G ! T

+, motivated by the factor-
ization W = VVH of the psd rank-1 completion W of the partial matrix WG when WG is psd rank-1. Define
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the linear mapping g : W+
G ! T

+ with x := (s,v,`,S) = g(WG) where

s j := Â
k: j⇠k

ysH
jk
�
[WG] j j� [WG] jk

�
, j 2 N (15.8a)

v j := [WG] j j, j 2 N (15.8b)

` jk := |ys
jk|2
�
[WG] j j +[WG]kk� [WG] jk� [WG]k j

�
, j! k 2 E (15.8c)

S jk := ysH
jk
�
[WG] j j� [WG] jk

�
, j! k 2 E (15.8d)

and the mapping g�1 : T+!W
+
G with WG = g�1(x) where

[WG] j j := v j, j 2 N (15.9a)

[WG] jk := v j� zsH
jk S jk = [WG]Hk j , j! k 2 E (15.9b)

The proof below establishes that g and g�1 are indeed inverses of each other. By restricting these mappings
g and g�1 to subsets WG✓W

+
G and T✓T

+, the theorem immediately implies the equivalence of T⌘WG
and hence the equivalence of single-phase OPF (15.3) in BFM and the OPF (13.9) or (13.15) in BIM (since
WG ⌘ V).

Since we assume zm
jk = zm

k j = ym
jk = ym

k j = 0, we often omit the superscript s in zs
jk and ys

k j.

Proof of Theorem 15.1. We will prove that g and g�1 are indeed inverses of each other in three steps:
(1) g maps every point WG 2W

+
G to a point in T

+; (2) g�1 maps every point x 2 T
+ to a point in W

+
G; and

(3) g(g�1(x)) = x and g�1(g(WG)) = WG. This defines a bijection between W
+
G and T

+ and establishes
W

+
G ⌘ T

+.

Step 1: x := g(WG) 2 T+. Given a WG 2W+
G , we have to prove x := g(WG) satisfies (15.1a) (15.1b) (15.4)

(15.2). We claim that (15.2) follows from (15.8) and (15.6). Specifically the injection limit follows from
(15.8a) and (15.6a). The voltage limit follows from (15.8b) and and (15.6b). The line limit follows from
(15.8c) and (15.6c). Hence x satisfies (15.2).

To prove (15.1a), we have for j 2 N

Â
i:i! j

�
Si j� zi j`i j

�
+ s j

= Â
i:i! j

⇣
yHi j
�
[WG]ii� [WG]i j

�
� yHi j

�
[WG]ii +[WG] j j� [WG]i j� [WG] ji

�⌘
+ s j

= Â
i:i! j

⇣
�yHi j

�
[WG] j j� [WG] ji

�⌘
+ Â

i:i! j
yHji
�
[WG] j j� [WG] ji

�
+ Â

k: j!k
yHjk
�
[WG] j j� [WG] jk

�

= Â
k: j!k

S jk

where the last equality follows from yi j = y ji by assumption C5.1. To prove (15.1b), we have for j! k2E

2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk = 2Re

�
[WG] j j� [WG] jk

�
�
�
[WG] j j +[WG]kk� [WG] jk� [WG]k j

�

=
�
[WG] j j� [WG]kk

�
� [WG]Hjk +[WG]k j

= v j� vk
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where the last equality follows because the partial matrix WG is Hermitian. Finally to prove (15.4), for
each j!2 E, we have from (15.6d) [WG] j j[WG]kk � |[WG] jk|2. Hence

v j` jk =
��y jk
��2 [WG] j j

�
[WG] j j +[WG]kk� [WG] jk� [WG]k j

�

�
��y jk
��2
⇣
[WG]2j j +

��[WG] jk
��2� [WG] j j[WG] jk� [WG] j j[WG]Hjk

⌘
(15.10)

=
��S jk
��2

as desired. Hence g maps every WG 2W
+
G to an x 2 T

+.

Step 2: WG := g�1(x) 2W
+
G . Given an x 2 T

+, we have to prove that WG := g�1(x) satisfies (15.6).
Clearly (15.9a) and the voltage limit in (15.2) implies (15.6b).

To prove (15.6a), we have for each j 2 N+

Â
k:( j,k)2E

yHjk
�
[WG] j j� [WG] jk

�
= Â

i:i! j
yHji
�
[WG] j j� [WG] ji

�
+ Â

k: j!k
yHjk
�
[WG] j j� [WG] jk

�

= Â
i:i! j

yHi j

✓
v j�

⇣
vi� zHi jSi j

⌘H◆
+ Â

k: j!k
yHjk
⇣

v j�
⇣

v j� zHjkS jk

⌘⌘

= Â
k: j!k

S jk � Â
i:i! j

yHi j

⇣
vi� v j� zi jSHi j

⌘

= Â
k: j!k

S jk � Â
i:i! j

yHi j

⇣
2Re(zHi jSi j)�

��zi j
��2 `i j� zi jSHi j

⌘

where the second equality follows from (15.9) and y ji = yi j by assumption C5.1, and the last equality
follows from (15.1b). But

⇣
2Re(zHi jSi j)� zi jSHi j

⌘
=

⇣
zHi jSi j + zi jSHi j

⌘
� zi jSHi j = zHi jSi j

and hence

Â
k:( j,k)2E

yHjk
�
[WG] j j� [WG] jk

�
= Â

k: j!k
S jk � Â

i:i! j

�
Si j� zi j`i j

�
= s j

where the last equality follows from (15.1a). This and the injection limits in (15.2) imply (15.6a). To
prove (15.6c), we have for each ( j,k) 2 E, from (15.9),

��y jk
��2 �[WG] j j +[WG]kk� [WG] jk� [WG]k j

�
=
��y jk
��2
✓

v j + vk�
⇣

v j� zHjkS jk

⌘
�
⇣

v j� zHjkS jk

⌘H◆

=
��y jk
��2
⇣
�v j + vk + zHjkS jk + z jkSHjk

⌘

= ` jk

where last equality follows from (15.1b). This and the line limit in (15.2) imply (15.6c). Finally to prove
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(15.6d), note that [WG] jk = [WG]Hk j, [WG] j j > 0, and [WG]kk > 0 follow directly from (15.9). Furthermore

[WG] j j[WG]kk�
��[WG] jk

��2 = v jvk�
���v j� zHjkS jk

���
2

= v jvk�
⇣

v2
j +
��z jk
��2 ��S jk

��2�2v j Re
⇣

zHjkS jk

⌘⌘

= v j

⇣
vk� v j +2Re

⇣
zHjkS jk

⌘⌘
�
��z jk
��2 ��S jk

��2

=
��z jk
��2
⇣

v j` jk�
��S jk
��2
⌘
� 0

where last equality follows from (15.1b) and the last inequality follows from (15.4). Therefore WG( j,k)⌫
0 for all ( j,k) 2 E, as desired. This shows that g�1 maps every x 2 T

+ to a WG 2W
+
G .

Step 3: g(g�1(x)) = x and g�1(g(WG)) = WG. The proof uses (15.8)(15.9)(15.1a)(15.1b). It follows a
similar argument used in Steps 1 and 2, and is omitted. This completes the proof that g and g�1 are indeed
inverses of each other and establishes W+

G ⌘ T
+.

This completes the proof of Theorem 15.1.

15.2.3 Exactness condition: inactive injection lower bounds

Assume

C15.1: The cost function C(x) is strictly increasing in `, nondecreasing in s = (p,q), and independent
of branch flows S = (P,Q).

C15.2: For j 2 N, smin
j =�•� i•.

Popular cost functions in the literature include active power loss over the network or active power genera-
tions, both of which satisfy C15.1.

Theorem 15.2 (Inactive injection lower bounds). Suppose the network graph G is a tree and C15.1, C15.2
hold. Then the SOCP relaxation (15.5) is exact, i.e., every optimal solution xsocp of (15.5) is optimal for
OPF (15.3).

Remark 15.1 (Strong exactness). If the cost function C(x) in C15.1 is only nondecreasing, rather than
strictly increasing, in `, then C15.1, C15.2 still guarantee that all optimal solutions of OPF (15.3) are
optimal solutions of its relaxation OPF-socp (15.5), but OPF-socp may have an optimal solution xsocp

that maintains a strict inequality in (15.4) and hence is infeasible for OPF. Even though OPF-socp is not
exact under the strong notion of exactness in Definition 14.1, an optimal solution of OPF (15.3) can still
be constructed from such a solution xsocp; see explanation immediately after the proof of Theorem 15.2
below.

Remark 15.2 (Convexity). For exact relaxation, we do not require the cost function c(x) to be convex in
x; c(x) needs to be convex for (15.5) to be a convex problem.

We can allow more general constraints on power injections s j than s j  smax
j assumed in Theorem 15.2.

The injection s j can be in an arbitrary set B j that satisfies C15.2. In particular B j need not be convex nor
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even connected for OPF-socp to be exact. It (only) needs to be convex to be efficiently computable. Such
a general constraint on s is useful in many applications. For instance it allows constraints of the form
|s j|2  a, |\s j| f j that is useful for volt/var control or q j 2 {0,a} for capacitor configuration.

Proof of Theorem 15.2. Fix any optimal solution x := (s,v,`,S)2R3(M+N+1) of OPF-socp (15.5). Since
G is a tree, the cycle condition is vacuous and we only need to show that x attains equality in (15.4). For
the sake of contradiction assume this is violated on line j!k, i.e.,

v j` jk > |S jk|2 (15.11)

We will construct an x̂ that is feasible for OPF-socp and attains a strictly lower cost, contradicting the
optimality of x.

For an e > 0 to be determined below, consider the following x̂ obtained by modifying only the current
` jk and power flows S jk on line j! k and the injections s j,sk at two ends of line j! k:

ˆ̀jk := ` jk� e (15.12a)
Ŝ jk := S jk� z jke/2 (15.12b)
ŝ j := s j� z jke/2 (15.12c)
ŝk := sk� z jke/2 (15.12d)

and v̂ := v, ˆ̀il := `il and Ŝil := Sil for (i, l) 6= ( j,k), ŝi := si for i 6= j,k. By assumption C15.1 the objective
function C(x) is strictly increasing in ` and hence x̂ has a strictly lower cost than x. It suffices to show that
there exists an e > 0 such that x̂ is feasible for OPF-socp (15.5), i.e., x̂ satisfies (15.1a)(15.1b)(15.4)(15.2).
Moreover we can choose e > 0 so that x̂ attains equalities in (15.4) and is therefore feasible for OPF.

Assumption C15.2 ensures that x̂ satisfies (15.2) since z jk > 0 and e > 0. Further x̂ satisfies (15.1a)
at buses i 6= j,k, and satisfies (15.1b)(15.4) over lines (i, l) 6= ( j,k). We now show that x̂ also satisfies
(15.1a)(15.1b)(15.4) at buses j,k and over the line ( j,k).

For (15.1a) at bus j, we have from (15.12b)(15.12c)

Ŝ jk = S jk� z jk
e
2

= Â
i:i! j

�
Si j� zi j`i j

�
+ s j � z jk

e
2

= Â
i:i! j

�
Ŝi j� zi j ˆ̀i j

�
+ ŝ j

as desired. For (15.1a) at bus k, one line k! l from k towards bus 0, we have from (15.12a)(15.12b)(15.12d)

Ŝkl = Skl =
�
S jk� z jk` jk

�
+ Â

i6= j:i!k
(Sik� zik`ik) + sk

=
⇣

Ŝ jk� z jk ˆ̀jk� z jk
e
2

⌘
+ Â

i6= j:i!k

�
Ŝik� zik ˆ̀ik

�
+ sk = Â

i:i!k

�
Ŝik� zik ˆ̀ik

�
+ ŝk

as desired. This shows that x̂ satisfies (15.1a) at both buses j,k. For (15.1b) over line ( j,k), we have from
(15.12a)(15.12b)

v̂ j� v̂k = v j� vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk = 2Re

⇣
zHjkŜ jk

⌘
� |z jk|2 ˆ̀jk
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as desired. For (15.4) over line ( j,k), we have from (15.12a)(15.12b)

v̂ j ˆ̀jk�
��Ŝ jk
��2 = �

��z jk
��2

4
e2 �

⇣
v j�Re

⇣
zHjkS jk

⌘⌘
e +

⇣
v j` jk�

��S jk
��2
⌘

Hence (15.11) implies that we can always choose an e > 0 such that v̂ j ˆ̀jk =
��Ŝ jk
��2.

This completes the proof of Theorem 15.2.

Note that the construction of x̂ ensures that equalities are attained in (15.4) and therefore x̂ is feasible
for OPF (15.3), not just for its SOCP relaxation. If the cost function C(x) in C15.1 is only nondecreasing,
rather than strictly increasing, in `, then it is possible that C(x̂) =C(x) and OPF-socp (15.5) has an optimal
solution x that maintains a strict inequality in (15.4). Even in this case, the proof shows how to construct
from such an x an optimal solution x̂ for OPF (15.3) under C15.1 and C15.2.

15.2.4 Exactness condition: inactive voltage upper bounds

In this section we present a sufficient condition for the exactness of SOCP relaxation of single-phase OPF
on a radial network, when the operational constraint (15.2) is replaced by the following set of slightly
different constraints:

vmin
j  v j  vmax

j , j 2 N (15.13a)
s j 2 B j ✓ {s j 2 C |s j  smax

j }, j 2 N (15.13b)

for some given finite smax
j , j 2 N. In particular we ignore line limits, but allow the injections (s j, j 2 N)

at non-root buses to be in an arbitrary set B j that is bounded above (see Remark 15.2). We also assume v0
is given and satisfies (15.13a) and s0 is unconstrained.

Then OPF and its feasible set are:

OPF: min
x

C(x) s.t. x 2 T (15.14a)

where T := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (15.1)(15.13)} (15.14b)

Their SOCP relaxations are:

OPF-socp: min
x

C(x) s.t. x 2 T
+ (15.15a)

where T
+ := {x : (s,v,`,S) 2 R

6N+3 | x satisfies (15.1a)(15.1b)(15.4)(15.13)} (15.15b)

OPF-socp (15.15) is exact if every optimal solution xsocp of (15.15) attains equality in (15.4) and is hence
optimal for OPF (15.14).

The main sufficient condition to be presented below for exact SOCP relaxation is that the voltage upper
bounds are inactive at optimality. Before presenting it we first explain a simple intuition using a two-bus
network that motivates this condition.
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Example 15.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with impedance z :=
r + ix. Without loss of generality, let the direction of the line be from bus 1 to bus 0. Let ` be the sending-
end squared current magnitude from buses 1 to 0 (recall that S01 := 0 in (15.1a)). Suppose also without
loss of generality that v0 = 1 pu. The model in (15.1) reduces to (Exercise 15.1):

p0� r` = �p1, q0� x` = �q1, p2
0 +q2

0 = ` (15.16a)
v1� v0 = 2(rp1 + xq1) � (r2 + x2)` (15.16b)

Suppose s1 is given (e.g., a constant power load). Then the variables are w := (p0,q0,v1,`) and the
feasible set consists of solutions of (15.16). subject to additional constraints on w. The case without any

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 15.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over the
SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact.

constraint is instructive and shown in Figure 15.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (15.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:

1
|z|2 (2rp1 +2xq1 +1� vmax

1 )  `  1
|z|2
⇣

2rp1 +2xq1 +1� vmin
1

⌘

Figure 15.1 shows that the lower bound vmin
1 (corresponding to an upper bound on `) does not affect the

exactness of SOCP relaxation. The effect of upper bound vmax
1 (corresponding to a lower bound on `) is
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illustrated in Figure 15.2. As explained in the caption of the figure SOCP relaxation is exact if the upper
bound vmax

1 does not exclude the high-voltage solution c and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Figure 15.2: Impact of voltage upper bound vmax
1 on exactness. (a) When vmax

1 (corresponding to a lower
bound on `) is not binding, the power flow solution c is in the feasible set of SOCP and hence the relaxation
is exact. (b) When vmax

1 excludes c from the feasible set of SOCP, the optimal solution is infeasible for
OPF and the relaxation is not exact.

See Exercises 15.2 and 15.3 for details of feasibility and exactness of OPF-socp.

To state the exactness condition for a general radial network, recall the linear approximation of BFM
studied in Chapter 5.5.1, obtained by setting ` jk = 0 in (15.1). Given v0 and the injections ŝ := (p̂, q̂) :=
(p j,q j, j 2 N) at non-root buses, the line flow vector Slin(s) :=

⇣
Slin

jk ,( j,k) 2 E
⌘

and the voltage vector

v̂lin(s) := (vlin
j , j 2 N) at non-root buses in the linearized model are explicitly given by (from Theorem

5.4):

Slin(s) = Ĉ�1ŝ, v̂lin(s) = v0 1 + 2(Rp̂ + Xq̂) (15.17)

for some given invertible matrices Ĉ, R and X . The key property we will use is, from Corollary 5.5:

S jk  Slin
jk (s) and v j  vlin

j (s), j 2 N (15.18)

Define the 2⇥2 matrix function

A jk(S jk,v j) := I2�
2
v j

z jk
�
S jk
�T (15.19)

where I2 is the identity matrix of size 2, z jk := [r jk x jk]
T is the column vector of line impedance and

S jk := [Pjk Q jk]
T is the column vector of branch power flows, so that z jk

�
S jk
�T is a 2⇥ 2 matrix with

rank less or equal to 1. The matrices A jk(S jk,v j) describe how changes in branch power flows propagate
towards the root node 0; see comments below. Evaluate the Jacobian matrix A jk(S jk,v j) at the boundary
values:

A jk := A jk

✓h
Slin

jk (smax)
i+

, vmin
j

◆
= I2�

2
vmin

j
z jk

✓h
Slin

jk (smax)
i+◆T

(15.20)
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Here
�
[a]+

�T is the row vector [[a1]+ [a2]+] with [a j]+ := max{0,a j}.

For a radial network, for j 6= 0, every line j! k identifies a unique node k and therefore, to simplify
notation, we refer to a line interchangeably by ( j,k) or j and use A j, A j, z j etc. in place of A jk, A jk, z jk
etc. respectively. Assume

C15.3: The cost function is C(x) := ÂN
j=0Cj

�
p j
�

with C0(p0) strictly increasing in p0. There is no
constraint on s0.

C15.4: The set B j of injections satisfies v̂lin
j (s) vmax

j , j 2 N, where v̂lin
j (s) is given by (15.17).

C15.5: For each leaf node j 2 N let the unique path from j to 0 have k lines and be denoted by
P j := ((ik, ik�1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then Ait · · ·Ait0 zit0+1

> 0 for all 1  t  t 0 < k,
where A j are defined in (15.20).

Theorem 15.3. Suppose the network graph G is a tree and C15.3–C15.5 hold. Then OPF-socp (15.15) is
exact.

The proof of Theorem 15.3 is long and relegated to Appendix 15.4. It can be shown that Theorem
15.3 have the following simple and practical interpretation: OPF-socp is exact provided at least one of the
following is satisfied:

• There are no reverse power flows in the network.

• The r/x ratios on all lines are equal.

• If the r/x ratios increase in the downstream direction from the substation (node 0) to the leaves then
there are no reverse real power flows.

• If the r/x ratios decrease in the downstream direction then there are no reverse reactive power flows.

These properties are derived in [181, 182, 183] and are special cases of Theorem 15.3.

We now comment on the conditions C15.3–C15.5.

Remark 15.3 (Strong exactness). Condition C15.3 requires that the cost functions Cj depend only on the
injections p j. For instance, if Cj

�
p j
�

= p j, then the cost is total active power loss over the network. It
also requires that C0 be strictly increasing but makes no assumption on Cj, j > 0. Common cost functions
such as line loss or generation cost usually satisfy C15.3. If C0 is only nondecreasing, rather than strictly
increasing, in p0 then C15.3–C15.5 still guarantee that all optimal solutions of OPF (15.14) are (effec-
tively) optimal for OPF-socp (15.15), but OPF-socp may not be exact in our definition, i.e., it may also
have an optimal solution that maintains a strict inequality in (15.4). In this case the proof of Theorem 15.3
can still construct from it another optimal solution that attains equalities in (15.4) and is hence optimal for
OPF.

C15.4 is affine in the injections s := (p,q). It enforces the upper bounds on voltage magnitudes because
of (15.18). C15.5 is a technical assumption and has a simple interpretation: the branch power flow S jk
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on all branches should move in the same direction. Specifically, given a marginal change in the complex
power on line j! k, the 2⇥2 matrix A jk is (a lower bound on) the Jacobian and describes the effect of this
marginal change on the complex power on the line immediately upstream from line j! k. The product of
Ai in C15.5 propagates this effect upstream towards the root. C15.5 requires that a small change, positive
or negative, in the power flow on a line affects all upstream branch powers in the same direction. This
seems to hold with a significant margin in practice.

The exactness of SOCP relaxation does not require convexity, i.e., the cost C(x) = Ân
j=0Cj(Res j)

need not be a convex function and the injection regions B j need not be convex sets. Convexity allows
polynomial-time computation. Moreover when it is convex the exactness of SOCP relaxation also implies
the uniqueness of the optimal solution shows

Theorem 15.4 (Unique optimal of SOCP relaxation). Suppose the network graph G is a tree. Suppose the
costs Cj, j 2 N, are convex functions and the injection regions B j, j 2 N, are convex sets. If OPF-socp
(15.15) is exact then its optimal solution is unique.

Proof. Suppose x̂ and x̃ are distinct optimal solutions of the relaxation OPF-socp (15.15). Since the
feasible set of OPF-socp is convex the point x := (x̂ + x̃)/2 is also feasible for OPF-socp. Since the
cost function C is convex and both x̂ and x̃ are optimal for (15.15), x is also optimal for (15.15). The
exactness of OPF-socp then implies that x attains equality in (15.4). This contradicts Theorem 5.1 that
shows that if x̂ and x̃ are feasible, then no convex combination of x̂ and x̃ can be feasible.

15.3 Three-phase OPF

15.3.1 Reformulation

Consider the three-phase OPF (13.34) in BFM for radial networks studied in Chapter 13.2.2, reproduced
here:

min
(u,x)

C(u,x) s. t. (13.18)(13.19)(13.32)(13.33) (15.21)

where (u,x) := (u,s,v,`,S,V, Ĩ), u denotes the internal variables of three-phase devices and x denotes the
terminal variables that interact through power flow equations. The devices are modeled by the conversion
rule (13.18) and the operational constraint (13.19) on u. The power flow equation is (13.32) and the
operational constraint on x is (13.33).

To simplify notation we assume, as in Chapter 14.5.1, that:

• Only three-phase voltage and power sources are included, in Y or D configurations.

• The neutrals of all Y -configured devices are directly grounded and all voltages are defined with
respect to the ground, so that all neutral voltages gY

j := V n
j = 0.
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Then the internal variables for these devices are u := (u j, j 2 N) where

u j :=

8
<

:
vY/D

j if device j is a voltage source⇣
sY/D

j ,XD
j ,`D

j

⌘
if device j is a power source

(15.22)

The device models (13.18)(13.19) have been reformulated as (14.33) in Chapter 14.5.1, with the 3⇥ 3
matrix variables Wj j and WY/D

j in BIM replaced by v j and vY/D
j respectively in BFM.

Since the voltage phasors Vj are no longer needed to relate with internal variables u j, we can omit
the quadratic constraints (13.32e), v j = VjVH

j , ` jk = Ĩ jkĨHjk, and S jk = VjĨHjk. Let the BFM variables be
x := (s,v,`,S) where v j,` jk,S jk is each a 3⇥3 matrix. Finally we assume the terminal voltage V0 at bus 0
is given and imposes the constraint v0 = V0VH

0 . Then the three-phase OPF (15.21) can be reformulated as
follows. Let the feasible set be

T3p :=
n
(u,x) := (u,s,v,`,S) | (u,x) satisfies (13.32a)� (13.32d)(13.33)(14.33),v0 = V0VH

0

o

(15.23a)

where u is defined in (15.22). The three-phase OPF problem is equivalent to:

min
u,x

C(u,x) subject to (u,x) 2 T3p (15.23b)

15.3.2 Semidefinite relaxation

OPF (15.23) is nonconvex due to the rank-1 constraint (13.32d) in the power flow equations and the rank-
1 constraints (14.33a)(14.33b)(14.33f) in the device models. Omitting these rank-1 constraints yields a
semidefinite relaxation. Recall the function M(A,B,C) that constructs a 6⇥6 matrix from 3⇥3 matrices
A,B,C:

M (A,B,C) :=


A B
BH C

�
(15.24)

where A,C are 3⇥ 3 Hermitian matrices and B is a 3⇥ 3 arbitrary matrix. Then the psd constraints in
(13.32c) and in (14.33f) can be written in terms of M as respectively.

M
�
v j,S jk,` jk

�
=


v j S jk
SHjk ` jk

�
⌫ 0, j! k 2 E

M
⇣

v j,XD
jk,`

D
jk

⌘
=

"
v j XD

jk
XDH

jk `D
jk

#
⌫ 0, j! k 2 E
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Then the feasible set of the semidefinite relaxation is defined by the following constraints:

network: v0 = V0VH

0 , (13.32a)(13.32b), (13.33), (15.25a)
0 � M

�
v j,S jk,` jk

�
, ( j,k) 2 E (15.25b)

devices: v j = vY
j , vY

j ⌫ 0, j 2 NY
v (15.25c)

Gv jGT = vD
j , vD

j ⌫ 0, j 2 ND
v (15.25d)

s j = �sY
j , j 2 NY

p (15.25e)

s j = �diag
⇣

XD
j G
⌘

, sD
j = diag

⇣
GXD

j

⌘
, M

⇣
v j,XD

j ,`D
j

⌘
⌫ 0, j 2 ND

p

(15.25f)

where V0 2 C
3 is given. Define the feasible set as

T
+
3p := {(u,x) := (u,s,v,`,S) | (u,x) satisfies (15.25)} (15.26a)

where u is defined in (15.22). The set T+
3p is a convex superset of T3p. The semidefinite relaxation of the

three-phase OPF problem (15.23) is:

min
u,x

C(u,x) subject to (u,x) 2 T
+
3p (15.26b)

Let (uopt,xopt) denote an optimal solution of the SDP relaxation (15.26). We say (15.26) is exact if the
psd matrices of every optimal solution (uopt,xopt) are of rank 1, i.e.,

rank
⇣

M
⇣

vopt
j ,XDopt

j ,`Dopt
j

⌘⌘
= 1, rank

⇣
vY/Dopt

j

⌘
= 1, j 2 N (15.27a)

rank
⇣

M
⇣

vopt
j ,Sopt

jk ,`opt
jk

⌘⌘
= 1, ( j,k) 2 E (15.27b)

This means that (uopt,xopt) is feasible and therefore optimal for the original OPF (15.23).

Suppose rank
⇣

vopt
j

⌘
= 1. Then vY/Dopt

j is of rank 1 by (15.25c)(15.25d). Unfortunately M
⇣

vopt
j ,XDopt

j ,`Dopt
j

⌘

and M
⇣

vopt
j ,Sopt

jk ,`opt
jk

⌘
may not be of rank 1 because `Dopt

j and `opt
jk respectively may not be rank-1; see

Lemma 14.10. As discussed after Lemma 14.10, even though the SDP relaxation (15.26) may not be exact,
it is still possible to recover an optimal solution of OPF (15.23) from an optimal solution (uopt,xopt) of its
relaxation (15.26) when rank

⇣
vopt

j

⌘
= 1 for all j 2 N, if there were no numerical error.

Equivalence. When the network graph is a tree, then it can be shown that OPF OPF (15.23) and its
relaxation (15.26) in BFM are equivalent to OPF (14.34) and its relaxation (14.36) respectively in BIM
(see [174, Proposition 1]).

15.4 Appendix: Proof of Theorem 15.3: inactive voltage upper bounds

Given an optimal solution x := (s,v,`,S) that maintains a strict inequality in (15.4), v j` jk � |S jk|2 for some
line j! k 2 E, the proof of Theorem 15.2 in Section 15.2.3 constructs another feasible solution x̂ that
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incurs a strictly smaller cost, contradicting the optimality of x. The modification is over a single line over
which x maintains a strict inequality. The proof of Theorem 15.3 is also by contradiction but, unlike that of
Theorem 15.2, the construction of x̂ from x involves modifications on multiple lines, propagating from the
line that is closest to bus 0 where strictly inequality holds all the way to bus 0. The proof relies crucially
on the recursive structure of the branch flow model (15.1).

Proof of Theorem 15.3. To simplify notation we only prove the theorem for the case of a linear network
representing a primary feeder without laterals. The proof for a general tree network follows the same idea
but with more cumbersome notations; see [54] for details. We adopt the graph orientation where every line
points towards the root node 0. The notation for the linear network is explained in Figure 15.3 (we refer
to a line j! k by j and index the associated variables z jk,S jk,` jk with j). With this notation the branch

Sn,n

v0 v1 vn
zn

snsms1s0

z1

vm−1 vm

S1,1

= ≥>

Sm,m

zm

Figure 15.3: Linear network and notations. Line m in the proof is the line closest to bus 0 where the
inequality in (15.29) is strict, i.e., (15.29) holds with equality at lines j = 1, . . . ,m�1, strict inequality at
line m, and inequality at lines j = m+1, . . . ,N.

flow model (15.1) is the following recursion:

S j�1 = S j� z j` j + s j�1, j = 1, . . . ,N (15.28a)

v j�1 = v j�2Re
⇣

zHj S j

⌘
+ |z j|2` j, j = 1, . . . ,N (15.28b)

v j` j = |S j|2, j = 1, . . . ,N (15.28c)
Sn = sn, S0 := 0 (15.28d)

where v0 is given. The SOCP relaxation of (15.28c) is:

v j` j � |S j|2, j = 1, . . . ,N (15.29)

OPF on the linear network in Figure 15.3 then becomes (s0 is unconstrained by assumption C15.3):
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OPF:

min
x

C(x) :=
N

Â
j=0

Cj
�

p j
�

(15.30a)

s.t. (15.13)(15.28) (15.30b)

and its SOCP relaxation becomes:
OPF-socp:

min
x

C(x) :=
N

Â
j=0

Cj
�

p j
�

s.t. (15.13), (15.28a)(15.28b)(15.28d), (15.29) (15.31a)

For the linear network assumption C15.5 reduces:

C15.5’: A j · · ·Ak zk+1 > 0 for 1 j  k < N where A j are defined in (15.20).

Our goal is to prove OPF-socp (15.31) is exact, i.e., every optimal solution of (15.31) attains equality
in (15.29) and hence is also optimal for OPF (15.30). Suppose on the contrary that there is an optimal
solution x := (S,`,v,s) of OPF-socp (15.31) that violates (15.28c). We will construct another feasible
point x̂ := (Ŝ, ˆ̀, v̂, ŝ) of OPF-socp (15.31) that has a strictly lower cost than x, contradicting the optimality
of x.

Let m := min{ j 2N | v j` j > |S j|2} be the closest line from bus 0 where (15.28c) is violated; see Figure
15.3. Pick any em 2 (0,`m� |Sm|2/vm] and construct x̂ as follows:

1. ŝ j := s j for j 6= 0.

2. For Ŝ, ˆ̀, ŝ0:

• For j = N, . . . ,m+1: Ŝ j := S j and ˆ̀j := ` j.

• For j = m: Ŝm := Sm and ˆ̀m := `m� em.

• For j = m�1, . . . ,1:

Ŝ j := Ŝ j+1� z j+1 ˆ̀j+1 + ŝ j

ˆ̀j :=
|Ŝ j|2

v j

• ŝ0 :=�Ŝ1 + z1 ˆ̀1.

3. v̂0 := v0. For j = 1, . . . ,N,

v̂ j := v̂ j�1 +2Re
⇣

zHj Ŝ j

⌘
� |z j|2 ˆ̀j
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Notice that the denomintor in ˆ̀j is defined to be v j, not v̂ j. This decouples the recursive construction of
(Ŝ j, ˆ̀j) and v̂ j so that the former propagates from bus N towards bus 1 while the latter propagates in the
opposite direction.

By construction x̂ satisfies (15.28a), (15.28b), (15.28d), and (15.13b). We only have to prove that x̂ sat-
isfies (15.13a) and (15.29). Hence the proof of Theorem 15.3 is complete after Lemma 15.5 is established,
which asserts that x̂ is feasible and has a strictly lower cost under assumptions C15.3, C15.4, C15.5’.

Lemma 15.5. Under the conditions of Theorem 15.3 x̂ satisfies

1. C(x̂) < C(x).

2. v̂ j ˆ̀j �
��Ŝ j
��2, j 2 N.

3. v j
min  v̂ j  vmax

j , j 2 N.

To simplify notation redefine S0 := �s0 and Ŝ0 := �ŝ0. Then for j 2 N define DS j := Ŝ j � S j and
Dv j := v̂ j� v j. The key result that leads to Lemma 15.5 is:

DS j � 0 and Dv j � 0, j 2 N

The first inequality is stated more precisely in Lemma 15.6 and proved after the proof of Lemma 15.5.

Lemma 15.6. Suppose m > 1 and C15.5’ holds. Then DS j � 0 for j 2 N with Ŝ j > S j for j = 0, . . . ,m�1.
In particular ŝ0 < s0.

We now prove the second inequality together with Lemma 15.5 assuming Lemma 15.6 holds.

Proof of Lemma 15.5. 1) If m = 1 then, by construction, ŝ0 = s0� z1e1 < s0 since z1 > 0. If m > 1 then
ŝ0 < s0 by Lemma 15.6. Since ŝ = s and ŝ0 < s0 we have

C(x̂)�C(x) =
N

Â
j=0

�
Cj
�

p̂ j
�
�Cj

�
p j
��

= C0 (p̂0)�C0 (p0) < 0

as desired, since C0 is strictly increasing.

2) To avoid circular argument we will first prove using Lemma 15.6

v̂ j � v j, j 2 N (15.32)

We will then use this and Lemma 15.6 to prove v̂ j ˆ̀j � |Ŝ j|2 for all j 2 N. We then use assumption
C15.4 to prove vmin

j  v̂ j  vmax
j , j 2 N. This shows that x̂ satisfies (15.29) and (15.13a) (in addition to

(15.28a)(15.28b)(15.28d) and (15.13b)).

To prove (15.32), note that both v̂ and v satisfy (15.28b) and hence we have, for j = 1, . . . ,N,

Dv j�1 = Dv j�2Re
⇣

zHj DS j

⌘
+ |z j|2D` j (15.33)
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where D` j := ˆ̀j� ` j. From (15.28a) we have

z jD` j = DS j�DS j�1 +Ds j�1

where Ds0 := ŝ0� s0 < 0 and Ds j�1 = 0 for j > 1. Multiplying both sides by zHj and noticing that both
sides must be real, we conclude

|z j|2D` j = Re
⇣

zHj DS j� zHj DS j�1 + zHj Ds j�1

⌘

Substituting into (15.33) we have for j = 1, . . . ,N

Dv j�Dv j�1 = Re zHj DS j + Re zHj DS j�1 � Re zHj Ds j�1

But Lemma 15.6 implies that Re zHj DS j = r j DPj +x j DQ j � 0. Similarly every term on the right-hand side
is nonnegative and hence

Dv j � Dv j�1 for j = 1, . . . ,N

implying that Dv j � Dv0 = 0, proving (15.32).

We now use (15.32) to prove the second assertion of the lemma. By construction, for j = m+1, . . . ,N,

ˆ̀j = ` j �
|S j|2

v j
�

|Ŝ j|2

v̂ j

as desired, since Ŝ j = S j and v̂ j � v j. Similarly (15.29) holds for x̂ for j = m because of the choice of em.
For j = 1, . . . ,m�1, v̂ j � v j again implies

ˆ̀j =
|Ŝ j|2

v j
�

|Ŝ j|2

v̂ j

3) The relation (15.32) means

v̂ j � v j � vmin
j , j 2 N

Assumption C15.4 and (15.18) imply that

v̂ j  vlin
j (s)  vmax

j , j 2 N

This proves x̂ satisfies (15.13a) and completes the proof of Lemma 15.5.

The remainder of this subsection is devoted to proving the key result Lemma 15.6.

Proof of Lemma 15.6. By construction DS j = 0 for j = m, . . . ,n. To prove DS j > 0 for j = 0, . . . ,m� 1,
the key idea is to derive a recursion on DS j in terms of the Jacobian matrix A j(S j,v j). The intuition is
that, when the branch current `m is reduced by em to ˆ̀m, loss on line m is reduced and all upstream branch
powers S j will be increased to Ŝ j as a consequence.



Draft: EE 135 Notes April 30, 2024 661

This is proved in three steps, of which we now give an informal overview. First we derive a recur-
sion (15.35) on DS j. This motivates a collection of linear dynamical systems w in (15.37) that contains the
process (DS j, j = 0, . . . ,m�1) as a specific trajectory. Second we construct another collection of linear dy-
namical systems w in (15.38) such that assumption C15.5’ implies w > 0. Finally we prove an expression
for the process w�w that shows w� w (in Lemmas 15.7, 15.8, 15.9). This then implies DS = w� w > 0
as desired. We now make these steps precise.

Since both x and x̂ satisfy (15.28a) and ŝ j = s j for all j 2 N we have (with the redefined DS0 :=
�(ŝ0� s0))

DS j�1 = DS j� z jD` j, j = 1,2, . . . ,N (15.34)

where D` j := ˆ̀j� ` j. For j = 1, . . . ,m�1 both x and x̂ satisfy (15.28c). For these j, fix any v j � vmin
j and

consider ` j := ` j(S j) as functions of the real pair S j := (Pj,Q j):

` j(S j) :=
P2

j +Q2
j

v j
, j = 1, . . . ,m�1

whose Jacobian are the row vectors:

∂` j

∂S j
(S j) =

2
v j

[Pj Q j] =
2
v j

STj

The mean value theorem implies for j = 1, . . . ,m�1

D` j = ` j(Ŝ j)� ` j(S j) =
∂` j

∂S j
(S̃ j)DS j

where S̃ j := a jS j +(1�a j)Ŝ j for some a j 2 [0,1]. Substituting it into (15.34) we obtain the recursion,
for j = 1, . . . ,m�1,

DS j�1 = Ã j DS j (15.35a)
DSm�1 = em zm > 0 (15.35b)

where the 2⇥2 matrix Ã j is the matrix function A j(S j,v j) defined in (15.19) evaluated at (S̃ j,v j):

Ã j := A j(S̃ j,v j) := I2�
2
v j

z jS̃Tj (15.36)

which depends on (S j, Ŝ j) through S̃ j.

Note that Ã j and DS j are not independent since both are defined in terms of (S j, Ŝ j), and therefore
strictly speaking (15.35) does not specify a linear system. Given an optimal solution x of the relaxation
OPF-socp (15.31) and our modified solution x̂, however, the sequence of matrices Ã j, j = 1, . . . ,m� 1,
are fixed. We can therefore consider the following collection of discrete-time linear time-varying systems
(one for each t), whose state at time t (going backward in time) is w(t;t), when it starts at time t � t in
the initial state zt+1: for each t with 0 < t < m,

w(t�1;t) = Ãt w(t;t), t = t,t�1, . . . ,1 (15.37a)
w(t;t) = zt+1 (15.37b)
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Clearly DS j = em w( j;m�1). Hence, to prove DS j > 0, it suffices to prove w( j;m�1) > 0 for all j with
0 j  m�1.

To this end we compare the system w(t;t) with the following collection of linear time-variant systems:
for each t with 0 < t < m,

w(t�1;t) = At w(t;t), t = t,t�1, . . . ,1 (15.38a)
w(t;t) = zt+1 (15.38b)

where At is defined in (15.20) and reproduced here:

At := At

✓h
Slin

t (smax)
i+

, vt

◆
= I2�

2
vmin

t
zt

✓h
Slin

t (smax)
i+◆T

(15.39)

Note that At are independent of the OPF-socp solution x and our modified solution x̂. Then assumption
C15.5’ is equivalent to

w(t;t) > 0 for all 0 t  t < m (15.40)

We now prove, in Lemmas 15.7, 15.8, 15.9, that w(t;t) � w(t;t) and hence C15.5’ implies DS j =
em w( j;m�1)� em w( j;m�1) > 0, establishing Lemma 15.6.

Lemma 15.7. For each t = m�1, . . . ,1

Ãt�At = 2 zt dT

t

for some 2-dimensional vector dt � 0.

Proof of Lemma 15.7. Fix any t = m�1, . . . ,1. We have St  Slin
t (s) from (15.18). Even though we have

not yet proved Ŝt is feasible for OPF-socp we know Ŝt satisfies (15.28a) by construction of x̂. The same
argument as in Corollary 5.5 then shows Ŝt  Slin

t (s). Hence S̃t := atSt +(1�at)Ŝt , at 2 [0,1], satisfies
S̃t  Slin

t (s). Hence

S̃t  Slin
t (s)  Slin

t (smax) 
h
Slin

t (smax)
i+

(15.41)

Using the definitions of Ãt in (15.36) and At in (15.39) we have Ãt�At = 2ztdT
t where

dT

t :=

"⇥
Plin

t (smax)
⇤+

vmin
t

� P̃t

vt

⇥
Qlin

t (smax)
⇤+

vmin
t

� Q̃t

vt

#

Then (15.41) and vt � vmin
t impy that dt � 0.

For each t with 0 < t < m define the scalars a(t;t) in terms of the solution w(t;t) of (15.38) and dt
in Lemma 15.7:

a(t;t) := 2dT

t w(t;t) > 0 (15.42)
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Lemma 15.8. Fix any t with 0 < t < m. For each t = t,t�1, . . . ,0 we have

w(t;t)�w(t;t) =
t

Â
t 0=t+1

a(t 0;t)w(t; t 0 �1)

Proof of Lemma 15.8. Fix a t with 0 < t < m. We now prove the lemma by induction on t = t,t�1, . . . ,0.
The assertion holds for t = t since w(t;t)�w(t;t) = 0. Suppose it holds for t. Then for t� 1 we have
from (15.37) and (15.38)

w(t�1;t)�w(t�1;t) = Ãt w(t;t)�At w(t;t)

=
�
Ãt�At

�
w(t;t) + Ãt (w(t;t)�w(t;t))

= a(t;t)zt +
t

Â
t 0=t+1

a(t 0;t) Ãt w(t; t 0 �1)

= a(t;t)zt +
t

Â
t 0=t+1

a(t 0;t)w(t�1; t 0 �1)

=
t

Â
t 0=t

a(t 0;t)w(t�1; t 0 �1)

where the first term on the right-hand side of the third equality follows from Lemma 15.7 and the definition
of a(t;t) in (15.42), and the second term from the induction hypothesis. The last two equalities follow
from (15.37).

Lemma 15.9. Suppose C15.5’ holds. Then for each t with 0 < t < m and each t = t,t�1, . . . ,0,

w(t;t) � w(t;t) > 0 (15.43)

Proof of Lemma 15.9. We prove the lemma by induction on (t,t).

1. Base case: For each t with 0 < t < m, (15.43) holds for t = t , i.e., for t such that t� t = 0.

2. Induction hypothesis: For each t with 0 < t < m, suppose (15.43) holds for t  t such that 0 
t� t  k�1.

3. Induction: We will prove that, for each t with 0 < t < m, (15.43) holds for t  t such that 0 
t� t  k. For t = t� k we have from Lemma 15.8

w(t;t)�w(t;t) =
t

Â
t 0=t+1

a(t 0;t)w(t; t 0 �1)

But each w(t; t 0 �1) in the summands satisfies w(t; t 0 �1)� w(t; t 0 �1) by the induction hypothesis.
Hence, since a(t 0;t) > 0,

w(t;t)�w(t;t) �
t

Â
t 0=t+1

a(t 0;t)w(t; t 0 �1) > 0

where the last inequality follows from (15.40) and (15.42).
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This completes our induction proof.

Lemma 15.9 implies, for j = 0, . . . ,m� 1, DS j = em w( j;m� 1) > 0. This completes the proof of
Lemma 15.6.

This completes the proof of Theorem 15.3 for the linear network. For a general tree network the proof
is almost identical, except with more cumbersome notations, by focusing on a path from the root to a first
line m over which v j` j > |S j|2; see [54].

15.5 Bibliographical notes

SOCP relaxation of Chapter 15.2.1 for radial networks in the DistFlow model of [39, 40] is first proposed
in [180, 51]. Theorem 15.1 is proved in [53] and the proof presented here follows that in [57, Theorem 11].
Theorem 15.2 is from [51, Part I] which generalizes an earlier result in [180] to allow convex objective
functions, shunt elements, and line limits. Theorems 15.3 and 15.4 are from [54]. The semidefinite
relaxation of three-phase OPF in Chapter 15.3 follows the idea in [150, 174].

15.6 Problems

Chapter 15.2. The next three problems use a two-bus example to illustrate solvability of BFM, SOCP
relaxation of OPF, and the exactness of SOCP.

Exercise 15.1 (Geometric insight). Consider the 2-bus example modeled by the following DistFlow equa-
tions (line direction from bus 1 to bus 0). The power balance at bus 0 (noting that S0k := 0) and other
power flow equations over line 1! 0 are given by (15.1):

p0 � r` = �p1, q0 � x` = �q1 (15.44a)
v1 � v0 = 2(rp1 + xq1) � (r2 + x2)` (15.44b)
p2

1 + q2
1 = v1` (15.44c)

where the voltage v0 and the injections p1, q1 are given.

1. Show that (equations (15.16)):

p2
0 + q2

0 = v0` (15.45)

2. Solutions (p0,q0,v1,`) to (15.44) exist if and only if

rp1 + xq1 +
1
4
� (rq1� xp1)

2
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Exercise 15.2 (Geometric insight). For the 2-bus network in Exercise 15.1, suppose q1 = 0 and v0 = r =
x = 1 pu.

1. Show that solutions (p0,q0,v1,`) to (15.44) exist if and only if

1
2

⇣
1�
p

2
⌘
 p1 

1
2

⇣
1+
p

2
⌘

(15.46)

2. Show that for each injection value p1 that satisfies (15.46), there are two voltage solutions v1 given
by

v1 =
1
2

⇣
1+2p1⌥

p
D
⌘

=
1
2

⇣
1+2p1⌥

p
4p1(1� p1)+1

⌘

where

D := 4
�
(rp1 + xq1) � (rq1� xp1)

2� + 1

3. Show that the locus (v1, p1) that satisfies (15.44) is a (rotated) ellipse. Plot the two solutions for v1
in Part 2 as functions of p1. These two curves form the ellipse.

4. Show that the lowest voltage solution is v1 = 0 pu attained at p1 = 0 pu and the highest voltage
solution is v1 = 2 pu attained at p1 = 1 pu.

Exercise 15.3 (Feasible set and relaxation). For the 2-bus network in Exercise 15.2 with q1 = 0 and
v0 = r = x = 1 pu, suppose the injection p1 is controllable. With a slight overload of notation, let w :=
(p0,q0, p1,v1,`). Consider the OPF problem:

min
w

c(w)

s.t. p0� ` = �p1, q0� ` = 0
p2

0 + q2
0 = `

v1 � 1 = 2p1 � 2`

0.9 pu  v1  1.1 pu
pmin

1  p1  pmax
1

where the cost function c(w) is strictly increasing in `. Its SOCP relaxation replaces the quadratic equality
constraint with the convex constraint p2

0 +q2
0  `.

1. Determine the largest range R1 := [pmin
1 , pmax

1 ] over which the SOCP relaxation is exact.

2. Determine the largest range R2 := [pmin
1 , pmax

1 ] over which the SOCP relaxation is inexact. Note that
in this regime, bus 1 is generating power and causing a large amount of reverse power flow.

3. What happens if the range [pmin
1 , pmax

1 ] for injection p1 overlaps with neither R1 nor R2?
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Other OPF relaxations
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Chapter 17

Nonsmooth convex optimization

In this chapter we generalize the results of Chapter 11.3 to a convex but nonsmooth setting. Consider the
convex optimization problem

min
x2Rn

f (x) s.t. x 2 X

where f is a convex function and X ✓ R
n is a convex set. We will develop a basic theory to answer the

following questions:

Q1 How to characterize optimal solutions?

Q2 When will optimal solutions exist and when will it be unique?

We study these two questions in Chapter 11.3 where the KKT theorem (Theorem 11.13) requires the cost
and constraint functions to be continuously differentiable and the existence of primal optimal solutions
(Theorem 11.14) requires the cost function f to be continuous. In many applications, however, these
functions are convex but not differentiable everywhere, e.g., in two-stage stochastic program studied in
Chapter 18.3. We will show in this chapter that the optimality results summarized in Table 11.1 hold in a
nonsmooth setting. We will develop set theoretic tools that handles nonsmooth but convex functions. After
the basic machinery is set up this view will be seen to be more fundamental and simpler. It reveals that
smoothness is unimportant for the theory of convex optimization (though smoothness can be important for
computation).

In Chapter 17.1 we introduce several set theoretic concepts that can be viewed as linear approximations
of feasible sets and the descent direction of level sets. They will play a similar role to gradients of cost
and constraint functions in the KKT condition. In Chapter 17.2 we define an important class of extended-
valued convex functions that allows use to treat the constrained minimization of a real-valued function in
a unified manner as an unconstrained minimization of such a function. In Chapter 17.6 we use these
convex analysis tools to answer Q1 for general convex feasible set X . Specifically we characterize the
existence, convexity and compactness of primal optimal solutions of convex optimization. In Chapters
17.7 and 17.5 we use these tools to answer Q2 and Q3 respectively. Specifically we show in Chapter 17.7
that a saddle point is primal-dual optimal and closes the duality gap and provide sufficient condition for the

667
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existence of dual optimal solutions strong duality. In Chapter 17.5 we derive an exact optimality condition
for nonsmooth convex optimization in terms of a subgradient of the cost function f and the normal cone
of the feasible set X . When the feasible set X is specified by explicit equalities and inequalities so that the
normal cone of X can be computed, the optimality condition reduces to KKT conditions for primal-dual
optimality.

The topic of nonsmooth convex optimization is extensive. We only summarize key concepts and
techniques and use them to answer these questions. We often summarize basic tools from the literature
that we use to derive main results pertaining to the questions Q1, Q2, Q3. Materials in this chapter mostly
follow [100], [107] and we have not attempted to credit the original sources of these results. We include
some (but not all) of the proofs to illustrate common techniques useful for nonsmooth convex optimization.

17.1 Normal cones of feasible sets

For smooth convex optimization where the cost and constraint functions are continuously differentiable,
optimality conditions and algorithms are often based on the linear approximations of the cost and contraint
functions, e.g., the KKT condition (11.34) or the Newton-Raphson algorithm (11.74)(11.75). Indeed the
first-order optimality condition roughly says that a feasible point x⇤ 2 R

n is a minimizer if the negative
gradient�— f (x⇤) points away from a linear approximation of the feasible set at x⇤ defined by the gradients
of the constraint functions at x⇤. This characterization extends directly to nonsmooth convex optimization
even though the cost or constraint functions may no longer be differentiable. In this setting a linear
approximation of the feasible set is called a tangent cone and a feasible point x⇤ is a minimizer if there
is a negative cost subgradients that point away from the tangent cone of the feasible set at x⇤, i.e., the
subgradient is contained in the normal cone NX(x⇤) of the feasible set at x⇤ (see an optimality condition
for general nonsmooth convex optimization in Theorem 17.20 of Chapter 17.5). In this section we define
these notions. In Chapter 17.5 we study KKT conditions using normal cones NX(x⇤).

Recall the notions of relative interior, convex sets, closed convex cones, and second-order cones studied
in Chapters 11.1.1, 11.1.2 and 11.1.3.

17.1.1 Feasible direction cone and polar cone

Let x̄ 2 X ✓ R
n. The cone of feasible directions of X at x̄ (or the radial cone) is, from Definition 11.3,

cone(X� x̄) := {Âm
i=1 ai(xi� x̄) : xi 2 X ,ai � 0, integers m > 0}

1 It is the set of feasible directions x� x̄ and their convex combinations along which an infinitesimal step
from x̄ will stay in X . It is closed if and only if X is closed. The closure of cone(X� x̄) can be interpreted
as a “linear approximation” for the set X at the point x̄ 2 X in that it is the smallest convex cone that
contains all the feasible directions x� x̄ at x̄. For a smooth function f , the first-order Taylor expansion
f̂ (y) := f (x̄)+Jx(x̄)(y� x̄) approximates f locally at x̄ by a supporting hyperplane. For a “smooth” set X ,
the closed convex cone cl(cone(X� x̄)) approximates the set X locally at x̄ by a halfspace associated with

1
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the supporting hyperplane at x̄. This is illustrated in Figure 17.4 after we have defined tangent cone and
normal cone in Chapter 17.1.2.

To define a normal cone we need the notion of a polar cone.

Definition 17.1 (Polar cone and dual cone). Let X ✓ R
n be a nonempty set.

1. The polar cone of X is X� := {y 2 R
n : yTx 0 8x 2 X}.

2. The dual cone of X is X⇤ := �X� := {y 2 R
n : yTx � 0 8x 2 X}, the negative of the polar cone of

X .

3. A cone K is called self-dual if K⇤ = K.

It can be verified that X� and X⇤ are indeed cones for arbitrary X . Informally, the polar cone of X is
the set of points that is “most opposite to the entire set X” or “most away from the entire set X”. The dual
cone of X is the set that is “most aligned with the entire set X” or “closest to the entire set X”. It is used to
define the dual problem of a conic program where the nonlinear constraint is specified abstractly by x 2 K
for a general closed convex cone K; see Chapter 17.8.4. These cones are illustrated in Figure 17.1. Some












































































































(a) Polar cones X� of X












































































































(b) Dual cones X⇤ =�X� of X

Figure 17.1: Polar cones and dual cones of X ✓ R
n. For the leftmost set X which is nonconvex, both

its polar cone and dual cone contain only the origin. The other three sets X are closed convex cones and
therefore (X�)� = X .

properties of polar cones are given in the following result; see e.g. [100, Proposition 2.2.1, p.100].

Proposition 17.1. Let X ✓ R
n be a nonempty set.
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1. Its polar cone X� is closed and convex.

2. X� = [cl(X)]� = [conv(X)]� = [cone(X)]�.

3. If X ✓ Y then Y � ✓ X�.

4. If X is a nonempty cone then (X�)� = cl(conv(X)). If X is a closed convex cone then (X�)� = X .

Figure 17.1 shows the polar cones of sets X that contain the origin. For a set X whose closure cl(X)
does not contain the origin, its polar cone X� is the same as the polar cone cone�(X) of cone(X) according
to Proposition 17.1, as illustrated in Figure 17.2.












































































































Figure 17.2: Polar cone X� = cone�(X) according to Proposition 17.1.

Example 17.1. Fix an x̄ 2 X�. By definition x̄Tx  0 for all x 2 X . Can there be an x 2 X� such that
x̄Tx 0?

Solution. Yes. Consider X := {x 2 R
s : x1 > 0,x2 = 0}. Then X� = {x 2 R

2 : x1  0}. An example is
x̄ := (0,�1) 2 X� and x := (0,1) 2 X�.

17.1.2 Normal cone and tangent cone

The notion of normal cone and tangent cone is fundamental to nonsmooth optimization.

Definition 17.2. Let X ✓ R
n be a nonempty set and x̄ 2 X .

1. The normal cone of X at x̄ is the polar cone of the feasible direction cone of X at x̄:

NX(x̄) := [cone(X� x̄)]� = {y 2 R
n : yT(x� x̄) 0 8x 2 X}

2. The tangent cone of X at x̄ is:

TX(x̄) := cl(cone(X� x̄))
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Hence we define the normal cone as the polar cone of the feasible direction cone cone(X � x̄) and the
tangent cone as its closure. Proposition 17.1 then implies that they are the polar cone of each other. The
second equality in Definition 17.2 of normal cone defines (X � x̄)� which, according to Proposition 17.1,
is equal to the polar cone [cone(X� x̄)]� of the feasible direction cone of X at x̄. An equivalent definition
for tangent cone of X at x̄ is

TX(x̄) := {0}[
⇢

y 6= 0 : 9xk 2 X s.t. xk 6= x̄,xk! x̄,
xk� x̄
kxk� x̄k !

y
kyk

�

This definition is often used from which TX(x̄) = cl(cone(X� x̄)) can be derived.

Proposition 17.2. Let X ✓ R
n be a nonempty set and x̄ 2 X .

1. The polar cone, dual cone, normal cone, and tangent cone are closed and convex, even if X is neither
closed nor convex.

2. [TX(x̄)]� = NX(x̄) and TX(x̄) = [NX(x̄)]�, i.e., y 2 TX(x̄) if and only if yT(x� x̄)� 0, 8x 2 X .

3. If x̄ 2 int(X) then NX(x̄) = {0} and TX(x̄) = R
n.

While a polar cone X� and a dual cone X⇤ = �X� are sets with respect to the entire set X , a normal
cone NX(x̄) and a tangent cone TX(x̄) are set-valued functions whose values generally depend on their
argument x̄ 2 X . Note that if x̄ 2 ri(K) instead of x̄ 2 int(X) then NK(x̄) not be {0}. For example, K :=
{(x1,0) 2 R

2 : x1 � 0} and x̄ := (1,0) 2 ri(K) at which NK(x̄) = {(0,x2) : x2 2 R}. See Figure 17.3 and
its caption for a visualization of normal cones and tangent cones at different points x̄ when K is a closed
cone.

Remark 17.1 (Linear approximation and optimality). Proposition 17.2 implies that, as mentioned in Chap-
ter 17.1.1, a tangent cone TX(x̄) = cl(cone(X � x̄)) locally approximates the set X at the point x̄ 2 X by
the smallest closed convex cone containing all the feasible directions x� x̄ along which an infinitesimal
step from x̄ will stay in X . If X is “smooth” at x̄ then TX(x̄) is a halfspace associated with the supporting
hyperplane at x̄. See Figure 17.4. Its polar cone, the normal cone NX(x̄), specifies the directions x� x̄
along which an infinitesimal step from x̄ will move “most away from” or “most opposite to” X . As we
will see in Theorem 17.20 of Chapter 17.5, x̄ will be a minimizer of a constrained optimization if there is a
negative cost subgradient at x̄ in the normal cone of the feasible set at x̄, i.e., the negative cost subgradient
points most away from a linear approximation (the tangent cone) of the feasible set at x̄. This implies that
all directions in which cost can decrease must lie in NX(x̄) due to the convexity of the cost function and
that of the feasible set.

Hyperplane, polyhedron and convex cones. Recall from Chapter 11.1.2 that a hyperplane (or intersec-
tion of hyperplanes) is a set H1 := {x 2 R

n : Ax = b} specified by a finite number of affine equalities with
A 2 R

m⇥n and b 2 R
m. A polyhedral set, or a polyhedron, is a set H2 := {x 2 R

n : Ax  b} specified by
a finite number of affine inequalities. The normal cones of hyperplanes, polyhedrons, or general convex
cones are particularly useful, so we derive them here. A hyperplane H1 is not a cone unless b = 0. Its
normal cone NH1(x̄) is independent of x̄, unlike the normal cone of a polyhedron H2 or a general convex
cone. To avoid triviality we often assume implicitly these sets are nonempty.
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(a) Pointed cone: NK(x)












































































































(b) Pointed cone TK(x)












































































































(c) Non-pointed nonconvex cone












































































































(d) Non-pointed convex cone

Figure 17.3: Normal and tangent cones of closed cones K ✓ R
2. K� ✓ R

2 is the polar cone of K. (a) The
normal cones NK(x̄) and NK(x̃) at two boundary points x̄ and x̃ are different. At the origin, NK(0) = K�. At
an interior point x̄, NK(x̄) = {0}. (b) The tangent cone TK(x̄) at a boundary point x̄ is a halfspace containing
K. At the origin, TK(0) = K. This satisfies TK(0) = [NK(0)]� = [K�]� = K, verifying Proposition 17.2 and
Proposition 17.1 since the feasible direction cone cone(K� 0) = K is a closed convex cone. This is not
the case at the boundary point x̄ since cone(K� x̄) is a cone but cone(K� x̄) 6= K. At a interior point x̄,
TK(x̄) = R

2. (c) For this non-pointed nonconvex cone, at all x̄ 2 K, NK(x̄) = {0} and TK(x̄) = R
2. (d)

For this non-pointed convex cone K (which is a hyperplane in R
2), at all x̄ 2 K, NK(x̄) = K� is the normal

{y 2 R
n : yTx = 0 8x 2 K} to the hyperplane K and TK(x̄) = K.
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Figure 17.4: The tangent cones TX(x̄) = cl(cone(X� x̄)) and the normal cones NX(x̄) = cone�(X � x̄) of
X at x̄. At x̄ where the boundary of X is “smooth”, the left panel illustrates the importance of ”cl” in the
definition of TX(d̄) and why NX(x̄) is a singleton.

Theorem 17.3 (Normal cones). Given A 2 R
m⇥n, let H1 := {x 2 R

n : Ax = b} be a hyperplane and H2 :=
{x 2 R

n : Ax b} be a polyhedron. Let K+ := {x 2 R
n : x� 0} be the nonnegative quadrant, and K ✓ R

n

a convex cone. Then

1. NH1(x̄) = {y 2R
n : y = ATl for some l 2R

m} for any x̄ 2H1. Hence y 2 NH1(x̄) if and only if y is
in span(ai, i = 1, . . . ,m) where aTi are row vectors of A.

2. NH2(x̄) = {y 2 R
n : y = ATl for some l 2 R

m
+ s.t. lT(Ax̄�b) = 0} for any x̄ 2 H2.

3. NK+(x̄) = {y 2 R
n : y  0, yTx̄ = 0} for any x̄ 2 K+. In particular NK+(x̄) = {0} if x̄ is an interior

point.

4. NK(x̄) = {y 2 K� : yTx̄ = 0} for any x̄ 2 K, where K� := {y 2 R
n : yTx  0 8x 2 K} is the polar

cone of K. Hence NK(0) = K�.

Proof. 1. By definition

NH1(x̄) = {y 2 R
n : yT(x� x̄) 0 8x s.t. Ax = b}

Since x, x̄ 2 H1, A(x� x̄) = 0. Hence we can replace x� x̄ for all x 2 H1 by all x in null(A) to get

NH1(x̄) = {y 2 R
n : yTx 0 8x s.t. Ax = 0}

Since if x 2 null(A) then �x 2 null(A), we must have yTx = 0 for all x 2 null(A).2 Hence y 2
range(AT), i.e., NH1(x̄) := {y 2 R

n : y = ATl for some l 2 R
m}.

2. By definition

NH2(x̄) = {y 2 R
n : yT(x� x̄) 0 8x s.t. Ax b}

2More explicitly, for any x 2 H1 so that A(x� x̄) = 0, the vector x0 := 2x̄� x is also in H1 since Ax0 = b; moreover
A(x0 � x̄) = A(x̄� x).
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Suppose y = ATl for some l � 0 with lT(Ax̄�b) = 0. Then, for any x with Ax b,

yT(x� x̄) = lTA(x� x̄) = lT(Ax�b)  0

where the last inequality follows because l � 0 and Ax b. Therefore y 2 NH2(x̄).

Conversely suppose y 2 NH2(x̄), i.e., yT(x� x̄) 0 for all x with Ax b. Let I := I(x̄) := {i : aTi x̄ =
bi} where aTi 2 R

n are the rows of A and aTi x̄ < bi for i 62 I. If I = /0, i.e., x̄ 2 int H2, then the usual
argument shows that NH2(x̄) = {0} as claimed. Specifically there exists t with |t| > 0 such that
x := x̄ + tei 2 H2 and hence yT(x� x̄) = tyi  0 implies yi = 0 since t can be positive or negative.
We now prove the case of I 6= /0 in three steps. First there exists sufficiently small t with |t| > 0 such
that x := x̄+ tDx satisfies

aTi (x� x̄) = t aTi Dx
⇢

= 0 if i 2 I
< 0 if i 62 I

Hence Ax = Ax̄ + tADx)  b, i.e., x 2 H2. Second let AI and bI be the submatrix of A and b re-
spectively consisting of only the rows in I such that AIx = AIx̄ = bI . We can therefore apply the
argument of part 1 with A replaced by AI , i.e., if y 2 NH2(x̄) then yT(x� x̄) = tyTDx  0 for all Dx
with AIDx = 0, implying that y = AT

I lI for some lI 2R|I|, or equivalently y = ATl for some l with
li 2 R if i 2 I and li = 0 if i 62 I. In particular this implies that li(aTi x̄�bi) = 0 for i 2 I as well as
i 62 I. Finally, to show that l � 0, consider any x with Ax b. Then substituting y = ATl ,

yT(x� x̄) = lTA(x� x̄) =
⇥
lT

I 0
⇤ AI

A�I

�
(x� x̄) = lT

I AI(x� x̄) = lT

I (AIx�bI)

Hence since yT(x� x̄) 0 and AIx�bI  0, we must have lI � 0.

3. For K+ := {x 2 R
n : x� 0} we have

NK+(x̄) = {y 2 R
n : yT(x� x̄) 0 8x� 0}

If x̄ > 0 (i.e., x̄ is an interior point), then x := x̄ + te j for t 2 R with small enough |t| (where e j is
the unit vector with 1 in the jth entry and 0 elsewhere) ensures yT(x� x̄) = ty j  0. As t can be
negative or positive, we must have y j = 0. Hence NK+(x̄) = {0} if x̄ > 0. If x̄ is a boundary point of
K+ with x̄ j = 0 for j 2 J ✓ {1, . . . ,n} and x̄ j > 0 for j 62 J, then the same reason implies y 2 NK+(x̄)
will have y j = 0 for j 62 J. For j 2 J, using x := te j for any t > 0 gives yT(x� x̄) = ty j  0, i.e.,
y j  0. Putting all this together we have NK+(x̄) := {y 2 R

n : y 0, yTx̄ = 0}.

4. For a general convex cone K ✓ R
n (which includes K+ as a special case if K is closed), we have

NK(x̄) := {y 2 R
n : yT(x� x̄) 0 8x 2 K}

Since K is a cone and x̄2K, x := g x̄2K for any g > 0. Hence any y2NK(x̄) must satisfy yT(x� x̄) =
(g�1)yTx̄ 0. Since g can be chosen to be greater or smaller than 1 we must have yTx̄ = 0. Then
y satisfies yTx  0 8x 2 K, i.e., y is in the polar cone K� of K. This shows that NK(x̄) ✓ {y 2 K� :
yTx̄ = 0}. For the converse let y 2 K� with yTx̄ = 0. Then clearly yT(x� x̄)  0 for all x 2 K, i.e.,
y 2 NK(x̄).
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For a general cone K, if x̄ 2 int(K), then NK(x̄) = {0} for the same reason as in the proof above for
NK+(x̄). Part 3 is a special case of part 2 with A = I and b = 0. It is also special case of part 4 with K = K+

and K�+ = {y 2Rn : y 0}. The proof of Theorem 17.3 for H2 recall the proof of Lemma 11.21 in Chapter
11.4.2 of linar program primal optimality.

Example 17.2 (NH1(x̄) and NH2(x̄)). Let

A :=


1 1 0
0 0 1

�
, b :=


1
2

�

Then Ax = b defines the hyperplane H1 := {x 2 R
3 : x1 + x2 = 1, x3 = 2}. Its normal cone is the span of

the columns of AT independent of x̄ 2 H1:

NH1(x̄) = {y 2 R
3 : y = ATl for some l 2 R

2} =

8
<

:

2

4
l1
l1
l2

3

5 : li 2 R

9
=

;

and is illustrated in Figure 17.5.












































































































Figure 17.5: Example 17.2: normal cone NH1(x̄) of the hyperplane H1. (Fig change: (i) H! H1. (ii) Add
subfigure for H2?)

Consider the polyhedron H2 := {x 2 R
3 : x1 + x2  1, x3  2} and x̄ := (0.5,0.5,0) 2 H2. Then

I := I(x̄) = {1}. According to Theorem 17.3 its normal cone is in the cone of the columns of AT with
complementary slackness:

NH2(x̄) = {y 2 R
3 : y = ATl for some l1 � 0,l2 = 0} =

8
<

:

2

4
l1
l1
0

3

5 : l1 � 0

9
=

;

We will use normal cones to derive KKT conditions in Chapter 17.8 for convex optimization problems
widely used in applications. The intuition is that x⇤ is a minimizer if the negative cost gradient �— f (x⇤)
is in the normal cone NX(x⇤) of the feasible set X at x⇤, i.e., pointing away from the feasible set (or
equivalently — f (x⇤) is in �NX(x⇤)). Theorem 17.3 suggests that the key to the normal cone of a convex
cone K is its poplar cone K� (or its dual cone K⇤ =�K�). The condition yTx̄ = 0 in the theorem gives rise
to complementary slackness in KKT conditions, as we will see in Chapter 17.8. Table 17.1 summarizes
the tangent cones and the normal cones of some commonly encountered sets.
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Set X ✓ R
n Tangent cone TX(x̄) Normal cone NX(x̄)

cone K cl{Âi ai(x� x̄) : x 2 K, ai � 0} {y 2 K� : yTx̄ = 0}
{x : x� 0} {y : xi = 0) yi � 0} {y 0 : yTx̄ = 0}
{x : Ax = b} null(A) := {y : Ay = 0} range(AT) := {ATl : l 2 R

m}
{x : f (x) = 0} null(Jf (x̄)) := {y : Jf (x̄)y = 0} range(— f (x̄)) := {— f (x̄)l : l 2 R

m}

Table 17.1: The tangent cones TX(x̄) := cl(cone(X� x̄)) and the normal cones [cone(X� x̄)]� of common
sets. (— f (x̄) = (Jf (x̄))T.)

Geometric interpretation of separating hyperplanes. We can interpret Theorems 11.8 and 11.9 on
separating hyperplanes in terms of convex cones such as polar cones, dual cones and normal cones.
Roughly these theorems assert, for convex sets, that a certain polar cone is nonempty or the intersec-
tion of a certain polar cone and a certain dual cone is nonempty. The proofs of the theorems explicitly
construct a normal vector a in these cones that defines the separating hyperplane, even though any point a
in these cones can be used to construct the separating hyperplane (see Theorem 17.4 below).

Indeed the proofs of Theorems 11.8 and 11.9 construct a particular a that is in the normal cone
Ncl(X)(x̂⇤) of cl(X) at the projection x̂⇤ of x⇤ onto the convex set cl(X). To show this for Theorem 11.8,
for part 2. the construction in (11.19a) for a implies that aT(x� x̂⇤)  0 for all x 2 cl(X). For part
1, aT(x� x̂⇤) = limk aTik(x� x̂ik)  0 for all x 2 cl(X). Since x̂⇤ 2 cl(X) in both cases this means that
a 2 Ncl(X)(x̂⇤) with the separating hyperplane H := {x 2 R

n : aTx = aTx⇤}, as shown in Figure 11.12. For
Theorem 11.9, the construction of a in (11.21a) is in the normal cone Ncl(Y )(d) =�Ncl(X)(c).

More generally, when x⇤ 62 cl(X), other vectors a that may not be in the normal cone Ncl(X)(x̂⇤) can
also define hyperplanes that separate x⇤ from cl(X). Indeed the condition aT(x� x⇤)  0 for all x 2
cl(X) in (11.18a) of Theorem 11.8 only states that there exists a point a in the polar cone cone�(cl(X)�
x⇤) that defines a separating hyperplane. When x⇤ 2 cl(X) \ int(X), x⇤ = x̂⇤ and cone�(cl(X)� x⇤) =
Ncl(X)(x̂⇤) by Definition 17.2. This is illustrated in Figure 17.6(a). Otherwise when x⇤ 62 cl(X), x⇤ 6= x̂⇤

and cone�(cl(X)�x⇤)◆ Ncl(X)(x̂⇤) but they may not be equal. In Figure 17.6(b), for example, the vertical
line is a separating hyperplane but its normal vector a is clearly not in Ncl(X)(x̂⇤).

Theorem 11.9 says that, when X and Y are disjoint convex sets, then there exists a point z 2 R
n to

serve as the origin such that the intersection of the polar cone of cone(cl(X)� z) and the dual cone of
cone(cl(Y )� z) is nonempty. By Definition 17.1 on polar and dual cones, a point a in this intersection
satisfies

aT(x� z)  0  aT(y� z), x 2 cl(X), y 2 cl(Y )

i.e., aTx  aTz  aTy for all x 2 cl(X), y 2 cl(Y ); see the proof of Theorem 11.8. The corresponding
separating hyperplane is H := {x2Rn : aTx = b} where b := aTz. See Figure 17.7. When cl(X)\cl(Y ) = /0
Theorem 11.9 further guarantees a point a in the intersection such that the inequalities are strict. We
summarize our discussion as the following result. This geometric view implies directly the Farkas Lemma
Theorem 11.10.

Theorem 17.4 (Geometric interpretation: separating hyperplane). Suppose X ,Y ✓ R
n are both nonempty

convex.
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Figure 17.6: Geometric interpretation of Theorem 11.8. (a) When x⇤ 2 cl(X) \ int(X), x̂⇤ = x⇤ and
cone�(cl(X)� x⇤) = Ncl(X)(x̂⇤). (b) When x⇤ 62 cl(X), cone�(cl(X)� x⇤) ◆ Ncl(X)(x̂⇤) but these sets may
not be equal. (Fig change: Change into 2 subfigures and switch their order. ALL X should be cl(X) in
figure.)

Figure 17.7: Geometric interpretation of Theorem 11.9: If X and Y are disjoint and convex then there exists
a possibly new origin z such that the intersection A := cone�(cl(X)� z)\ cone⇤(cl(Y )� z) is nonempty.
(ALL X , Y should be cl(X) and cl(Y ) respectively in figure. Change c to z.)
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1. Suppose x⇤ 2 R
n \ int(X).

• The polar cone cone�(cl(X)�x⇤) of cone(cl(X)�x⇤) is nonempty. A hyperplane that separates
cl(X) and x⇤ is H := {x 2 R

n : aTx = b} where a is any point in cone�(cl(X)� x⇤) and b :=
aTx⇤.

• When x⇤ 62 cl(X) then b and a in cone�(cl(X)� x⇤) can be chosen such that

aTx < b < aTx⇤, x 2 cl(X)

Equivalently b and a in the dual cone cone⇤(cl(X)�x⇤) can be chosen such that aTx > b > aTx⇤

for all x 2 cl(X).

2. Suppose X and Y are disjoint, i.e., X \Y = /0.

• There exists a point z 2 R
n to serve as the origin such that

cone�(cl(X)� z) \ cone⇤(cl(Y )� z) 6= /0 (17.1)

i.e., the intersection of the polar cone cone�(cl(X)� z) and the dual cone cone⇤(cl(Y )� z) is
nonempty. The hyperplane that separates X and Y is H := {x 2 R

n : aTx = b} where a is any
point in the intersection in (17.1) and b := aTz.

• When cl(X)\ cl(Y ) = /0, then z and a in the intersection in (17.1) can be chosen such that

aTx < aTz < aTy, x 2 cl(X), y 2 cl(Y )

17.1.3 Affine transformation of convex cone

In this subsection we derive the polar cones and normal cones of linear and affine transformations of a
general convex cone. They will be applied in Chapter 17.1.4 to derive the normal cones of second-order
cones.

Linear transformation. Consider the linear mapping A : X !Y where A 2Rm⇥n, X ✓R
n and Y ✓R

m.
We will study the relation between the polar cones X� and Y � and that between the normal cones NX(x̄) and
NY (Ax̄). The main conclusion is that if A is square and nonsingular then X�= ATY � and NX(x̄) = ATNY (ȳ).

Specifically given a convex cone X ✓ R
n, its image under A is the set

Y := AX := {Ax 2 R
m : x 2 X}

Clearly Y is a convex cone. By definition of Y , the mapping A : X ! Y is surjective, i.e., every y 2 Y
satisfies y = Ax for some x2 X . It will be a bijection if it is also injective, i.e., for any x, x̃2 X , A(x� x̃) 6= 0
unless x = x̃. Therefore, for A to be a bijection between X and Y , it is sufficient but not necessary for A
to be square and nonsingular (e.g. for an arbitrary A 2 R

m⇥n, A and its pseudoinverse A+ are inverses of
each other between X := range(AT) and Y := range(A).).
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Theorem 17.5 (Image of linear transformation). Let X ✓ R
n be a convex cone and X� and NX(x̄) be its

polar cone and normal cone at x̄ 2 X respectively. Let Y := AX where A 2 R
m⇥n. Suppose ȳ = Ax̄ 2 Y for

an x̄ 2 X . Then

1. The polar cone Y � and the normal cone NY (ȳ) of Y at ȳ are the pre-images of the polar cone and the
normal cone of X at x̄ respectively under AT:

Y � = {y 2 R
m : ATy 2 X�} (17.2a)

NY (ȳ) = {y 2 R
m : ATy 2 NX(x̄)} = {y 2 R

m : ATy 2 X�, yTȳ = 0} (17.2b)

2. ATY � ✓ X� and ATNY (ȳ) ✓ NX(x̄). If A is square (m = n) and nonsingular then ATY � = X� and
ATNY (ȳ) = NX(x̄).

Proof. For the polar cone Y � we have by definition

Y � := {y 2 R
m : yTAx 0, 8x 2 X} =

⇢
y 2 R

m :
⇣

ATy
⌘T

x 0, 8x 2 X
�

i.e., y2Y � implies ATy2X�. This also shows that ATY � ✓X�. If A is square and invertible then X = A�1Y .
Suppose x2 X�, i.e., xTA�1y 0 for all y2Y . Then (AT)�1x2Y �. This shows that if x2 X� then x = ATy
for some y 2 Y �, i.e., ATY � ◆ X� and hence ATY � = X�.

For the normal cone NY (ȳ) we have, for any ỹ 2 NY (ȳ), ỹT(y� ȳ)  0 for y = Ax 2 Y for all x 2 X .
Then

ỹTA(x� x̄)  0 8x 2 X

i.e., ATy 2 NX(x̄). This also shows that ATNY (ȳ) ✓ NX(x̄). If A is nonsingular then X = A�1Y and
therefore the argument applied to A�1 implies that A�TNX(x̄) ✓ NY (ȳ) where A�T = (A�1)T = (AT)�1.
Hence for any x 2 NX(x̄) we have x = ATy for some y 2 NY (ȳ). This shows that ATNY (ȳ) ◆ NX(x̄) and
hence ATNY (ȳ) = NX(x̄).

Finally, the second expression in (17.2b) for NY (ȳ) follows from the application of Theorem 17.3 to
the convex cone X .

Theorem 17.5 is illustrated in Figure 17.8 for the case when A is nonsingular so that X� = ATY �. See
Example 17.3 for a case when A is singular and X� ) ATY �.

Given a convex cone Y ✓ R
m, its pre-image under A 2 R

m⇥n is the set

X := {x 2 R
n : Ax 2 Y}

Clearly X is also a convex cone, but unlike for the image of X under A, the mapping A : X ! Y is not
necessarily surjective, i.e., AX ✓ Y and AX can be a strict subset of Y (see Example 17.3). The relation
between the polar and normal cones of X and Y is similar to that in Theorem 17.5 for the image under A.
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Figure 17.8: Theorem 17.5 when A is nonsingular: linear transformation Y of a convex cone X and their
polar cones Y �,X� respectively. By Theorem 17.3, their normal cones at x̄ = 0 are NX(0) = X� and
NY (0) = Y � respectively. (Changes in figure: (i) X� should have a wider angle. (ii) X� = NX(0) and
Y � = NY (0).)

Theorem 17.6 (Pre-image of linear transformation). Let Y ✓ R
m be a convex cone. Let X := {x 2 R

n :
Ax 2 Y} be its pre-image under A 2 R

m⇥n. Suppose ȳ = Ax̄ 2 Y for an x̄ 2 X . Then X� ◆ ATY � and
NX(x̄)◆ ATNY (ȳ). If A is square (m = n) and nonsingular then X� = ATY � and NX(x̄) = ATNY (ȳ).

Proof. Given any y 2 Y �, yTỹ 0 for all ỹ 2 Y . In particular yTỹ 0 for all ỹ = Ax̃ 2 AX ✓ Y . Therefore
yTAx̃ 0 for all x̃ 2 X , i.e., ATy 2 X�. This shows ATY � ✓ X�.

Given any y 2 NY (ȳ), yT(ỹ� ȳ) 0 for all ỹ 2 Y . In particular yT(ỹ� ȳ) 0 for all ỹ = Ax̃ 2 AX ✓ Y .
Therefore yTA(x̃� x̄) 0 for all x̃ 2 X , i.e., ATy 2 NX(x̄). This shows that ATNY (ȳ)✓ NX(x̄).

If A is square and invertible then X = A�1Y . Application of Theorem 17.5 to A�1 implies that A�TX�=
Y � and A�TNX(x̄) = NY (ȳ) where A�T = (A�1)T = (AT)�1. Hence X�= ATY � and NX(x̄) = ATNY (ȳ).

Example 17.3 (Linear transformation: singular A). 1. Consider the convex cone X and its image Y un-
der a singular A:

X := {x 2 R
2 : x� 0}, A :=


1 1
1 1

�
, Y := AX = {Ax : x� 0} =

⇢
a


1
1

�
: a � 0

�

The polar cone of X is X� = {x 2 R
2 : x  0}. From Theorem 17.5 the polar cone of Y is the

pre-image of X� under AT:

Y � = {y 2 R
2 : ATy 2 X�} = {y 2 R

2 : y1 + y2  0}

We hence have

ATY � = {ATy : y 2 Y �} =

⇢
a


1
1

�
: a  0

�
( X�

These sets are illustrated in Figure 17.9(a).
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(a) Image of X










































(b) Pre-image of Y (Fig: “X�”! “X� = ATY �”)

Figure 17.9: Example 17.3. Since A is singular, (a) ATY � ( X�; (b) AX ( Y .

2. Consider the convex cone Y and its pre-image X under the singular A:

Y := {y 2 R
2 : y� 0}, A :=


1 1
1 1

�
, X := {x 2 R

2 : Ax� 0} = {x : x1 + x2 � 0}

Then Y � = {y : y 0} and

X� := {x : x1x̃1 + x2x̃2  0, x̃1 + x̃2 � 0} = {x : x1 = x2, x 0}

We also have AX = {Ax : x1 +x2 � 0} = {a(1,1) : a � 0} (Y . Even though A is singular, ATY � =
{ATy : y 0} = {a(1,1) : a  0} which is equal to X�. See Figure 17.9(b).

Part 2 of Example 17.3 is an example where ATY � = X� even though A is singular. See Exercise 17.3
for a generalization.

Affine transformation. We now generalize Theorem 17.5 and 17.6 to an affine transformation f (x) =
Ax + b where A 2 R

m⇥n and b 2 R
m. Given a convex cone X ✓ R

n let the image of X under the affine
transformation be

Yb := AX +b ✓ R
m

i.e., y 2 Yb if and only if y = Ax + b for some x 2 X . The set Yb is convex but is not a cone unless b = 0.
Therefore Theorem 17.3 is generally not applicable for deriving the normal cone of Yb. According to
Proposition 17.2, Y �b and NYb(ȳ) are always closed convex cones even when b 6= 0. The next result shows,
in particular, that the normal cone of Yb is independent of the translation by b (except for the relation
ȳ = Ax̄+b). It reduces to Theorem 17.5 when b = 0. Recall that a convex cone contains 0 if it is closed.

Theorem 17.7 (Image of affine transformation). Let X ✓ R
n be a convex cone and X� and NX(x̄) be its

polar cone and normal cone at x̄ 2 X respectively. Let Yb := AX +b where A 2 R
m⇥n and b 2 R

m.

1. If X contains 0, then the polar cone Y �b of Yb is the intersection of the pre-image of the polar cone of
X under AT and a halfspace:

Y �b = {y 2 R
m : ATy 2 X�, yTb 0}

Hence AT(Yb�b)� ✓ X� where Yb�b = {Ax : x 2 X}. If A is square (m = n) and nonsingular then
AT(Yb�b)� = X�
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2. Suppose ȳ = Ax̄ 2 Y for an x̄ 2 X . The normal cone NYb(ȳ) of Yb at ȳ is the pre-image of the normal
cone of X at x̄ under AT:

NYb(ȳ) = {y 2 R
m : ATy 2 NX(x̄)}

Hence ATNYb(ȳ)✓ NX(x̄). If A is square (m = n) and nonsingular then ATNYb(ȳ) = NX(x̄).

Proof. By definition, Y �b = {y 2 R
m : yT(Ax + b)  0 8x 2 X}. Since 0 2 X , b 2 Y and y 2 Y �b implies

yTb 0. Therefore

Y �b =

⇢
y 2 R

m :
⇣

ATy
⌘T

x+ yTb 0 8x 2 X
�
\H�(b)

where H�(b) := {y 2 R
m : yTb  0} is a halfspace. We now show that

�
ATy

�T x + yTb  0 for all x 2
X implies that

�
ATy

�T x  0, yielding the expression for Y �b in the theorem. Suppose for the sake of
contradiction that there exists ȳ 2 Y �b and x̄ 2 X such that (ATȳ)Tx̄ > 0. Since g x̄ 2 X for any g > 0 we
have limg!•(ATȳ)T(g x̄)!•, contradicting

�
ATȳ

�T
(g x̄)+ ȳTb 0. Hence, for any y 2Y �,

�
ATy

�T x 0
for all x 2 X , i.e., ATy 2 X�, as desired.

Let Ŷ := Yb�b := {Ax 2 R
m : x 2 X}. Its polar cone is

Ŷ � = {ŷ 2 R
m : ŷTAx 0, 8x 2 X}

i.e., ATŶ � = AT(Yb� b)� ✓ X�. If A is nonsingular then X = A�1(Yb� b). Since X is a convex cone,
so is Ŷ := Yb� b = AX . We can therefore apply Theorem 17.5 to X and its image Ŷ to conclude that
AT(Y �b)� = X�.

The proof of part 2 is identical to that for Theorem 17.5. For any ỹ 2 NYb(ȳ), ỹT(y� ȳ)  0 for
y = Ax+b for all x2 X . Since ȳ = Ax̄+b, we have ỹTA(x� x̄) 0 for all x2 X . Therefore ATỹ2NX(x̄) or
ATNYb(ȳ)✓NX(x̄). If A is square and nonsingular then X = A�1Yb�A�1b. Applying the result to this affine
transformation yields A�TNX(x̄) ✓ NYb(ȳ) and hence ATNYb(ȳ) ◆ NX(x̄). This proves ATNYb(ȳ) = NX(x̄)
when A is nonsingular.

Theorem 17.7 is illustrated in the next example.

Example 17.4 (Image of affine transformation). Consider the convex cone X and its affine transformation
Yb:

X := {x 2 R
2 : x� 0}, A :=


1 0
0 �1

�
, b :=


1
1

�
, Yb := AX +b = {y 2 R

2 : y1 � 1, y2  1}

The polar cone of X is X� = {x 2 R
2 : x  0}. Since 0 2 X , Theorem 17.7 implies that the polar cone of

Yb is

Y �b = {y 2 R
2 : ATy 2 X�, yTb 0} = {y 2 R

2 : y1  0, y2 � 0, y1 + y2  0}

This is illustrated in Figure 17.10. It can be seen that Yb is not a cone (since b 6= 0) but Y �b is a closed
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(a) Image of affine transformation (b) Yb � b and (Yb �
b)�

Figure 17.10: Example 17.4: while X is a cone, Yb is not. According to Theorem 17.7, X� = AT(Yb�b)�

and NX(x̄) = ATNYb(ȳ). (Change in figure (a): Change X� to X� = AT(Yb�b)�.)

convex cone. Moreover Yb�b shifts the origin to b and is a convex cone with (Yb�b)� = {y 2R
2 : ATy 2

X�} = {y 2 R
2 : y1  0, y2 � 0}. Since A is nonsingular, it can be verified that AT(Yb�b)� = X�.

At x̄ = (1,0) and ȳ = Ax̄+b = (2,1), the normal cone of the convex cone X is, from Theorem 17.3,

NX(x̄) = {x 2 X� : xTx̄ = 0} = {x 2 R
2 : x1 = 0, x2  0}

The normal cone of Yb is, from Theorem 17.7,

NYb(ȳ) = {y : ATy 2 NX(x̄)} = {y : y1 = 0, y2 � 0}

At x̄ = 0 and ȳ = Ax̄ +b = (1,1), NX(x̄) = X� and NYb(ȳ) = {y : y1  0, y2 � 0}. Since A is nonsingular,
it can be verified that ATNYb(ȳ) = NX(x̄) in both cases.

Given a convex cone Y ✓ R
m, its pre-image under an affine map is the set

Xb := {x 2 R
n : Ax+b 2 Y}

where A 2 R
m⇥n and b 2 R

m. The sets Xb and Y �b are convex but not cones unless b = 0. By definition
AXb + b ✓ Y and AXb + b can be a strict subset of Y . We will use this affine transformation in Chapter
17.1.4 to study the normal cone of the convex set defined by a second-order cone constraint where Y is a
convex cone. The relation between the polar and normal cones of Xb and Y is similar to that in Theorem
17.7 between the polar and normal cones of X and Yb.

Theorem 17.8 (Pre-image of affine transformation). Let Y ✓ R
m be a convex cone. Let Xb := {x 2 R

n :
Ax +b 2 Y}. Suppose ȳ = Ax̄ +b 2 Y for an x̄ 2 Xb. Then X�b ◆ AT(Y �b)� and NXb(x̄)◆ ATNY (ȳ). If A
is square (m = n) and nonsingular then X�b = AT(Y �b)� and NXb(x̄) = ATNY (ȳ).

Proof. Given any ỹ2 (Y�b)�, ỹTy 0 for all y2Y�b. In particular ỹTy 0 for all y = Ax2AXb✓Y�b.
Therefore ỹTAx 0 for all x 2 Xb, i.e., X�b ◆ AT(Y �b)�.

Given any ỹ 2 NY (ȳ), ỹT(y� ȳ) 0 for all y 2Y . In particular ỹT(y� ȳ) 0 for all y = Ax+b 2 AXb +
b✓ Y . Therefore ỹTA(x� x̄) 0 for all x 2 Xb, i.e., ATỹ 2 NXb(x̄). This shows that NXb(x̄)◆ ATNY (ȳ).
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If A is square and invertible then Xb = A�1(Y � b).3 Consider any x 2 X�b . Then xTx̃  0 for all
x̃ = A�1(ỹ� b) 2 Xb, ỹ 2 Y . Hence xTA�1(ỹ� b)  0 for all ỹ 2 Y , i.e., A�Tx 2 (Y � b)�. This shows
X�b ✓ AT(Y �b)�. Hence X�b = AT(Y �b)�. For NXb(x̄), since Y is a convex cone we can apply Theorem
17.7 to the affine transformation Xb = A�1Y�A�1b. Then A�TNXb(x̄) = NY (ȳ), or NXb(x̄) = ATNY (ȳ).

Theorem 17.8 is verified in the next example (compared with Example 17.4).

Example 17.5 (Image of affine transformation). Consider the convex cone Y and its pre-image under an
affine transformation Xb:

Y := {y 2 R
2 : y1 � 0, y2  0}, Xb := {x 2 R

2 : Ax+b 2 Y} = {x 2 R
2 : x1 ��1, x2 � 1}

where A,b are the same as those in Example 17.4. Neither Xb nor the set Y �b = {y 2R
2 : y1 ��1, y2 

�1} (which is Y with origin shifted to (1,1)) are cones; see Figure 17.11. By definition, y 2 (Y � b)� if









































(a) Pre-image of affine transformation (b) Y �b and (Y �b)�

Figure 17.11: Example 17.5: while Y is a cone, Xb is not. According to Theorem 17.8, X�b = AT(Y �b)�

and NXb(x̄) = ATNY (ȳ).

and only if yTỹ = ỹ1y1 + ỹ2y2  0 for all ỹ 2 Y � b, i.e., for all ỹ with ỹ1 � �1, ỹ2  �1. It can then be
checked that (Y �b)� is (consider ỹ := (�1,�1) 2 Y �b, ỹ1! • and ỹ2!�•)

(Y �b)� = {y 2 R
2 : y1 + y2 � 0, y1  0, y2 � 0}

which is a closed convex cone even though Y �b is not a cone (Proposition 17.2). Theorem 17.8 implies
that, since A is nonsingular, X�b = AT(Y � b)�, which we verify directly as follows. For y 2 (Y � b)�,
x := ATy = (y1,�y2) and hence

AT(Y �b)� = {x 2 R
2 : x1� x2 � 0, x1  0, x2  0}

On the other hand, x 2 X�b if and only if xTx̃ = x̃1x1 + x̃2x2  0 for all x̃ 2 Xb, i.e., for all x̃ with x̃1 ��1,
x̃2 � 1. It can then be checked that X�b is (consider x̃ := (�1,1) 2 Xb, x̃1! • and x̃2! •)

X�b = {x 2 R
2 : x1� x2 � 0, x1  0, x2  0}

which equals AT(Y �b)� and is a closed convex cone even though Xb is not a cone. See Figure 17.11.
3Theorem 17.5 on linear transformation is not applicable because Yb�b is not a cone unless b = 0.
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At ȳ = (1,0) and x̄ = A�1(ȳ� b) = (0,1). Theorem 17.8 implies NXb(x̄) = ATNY (ȳ), which can be
verified as follows. Since Y is a convex cone we can apply Theorem 17.3 to obtain NY (ȳ) = {y 2 Y � :
yTȳ = 0} = {y 2R

2 : y1 = 0, y2 � 0}. Hence ATNY (ȳ) = {x 2R
2 : x1 = 0, x2  0}. Since Xb is not a cone

we cannot apply Theorem 17.3 to obtain NXb(x̄). By definition x 2 NXb(x̄) if and only if xT(x̃� x̄) 0 for
all x̃ 2 Xb, i.e.,

x̃1x1 + (x̃2�1)x2  0 for all x̃ with x̃1 ��1, x̃2 � 1

Taking x̃ = (�1,1) and x̃ = (1,1) yields x1 = 0. Hence x2  0. This shows that NXb(x̄) = ATNY (ȳ),
verifying Theorem 17.8.

17.1.4 Second-order cones and SOC constraints

Second-order cones. The normal cone NK(x̄, s̄) of the second-order cone K defined in (11.2) can be de-
rived explicitly. It is the polar cone K� at the origin, the origin at an interior point, and, at a boundary point,
the line segment in the intersection of the “lower cone” K� and the hyperplane with normal (x̄/kx̄k2,1).

Theorem 17.9 (Second-order cone). Let K := {(x,s) 2 R
n+1 : kxk2  s} be the standard second-order

cone. Then

1. K is a convex cone.

2. Its polar cone is K� = {(y, t) 2 R
n+1 : kyk2 �t}.

3. Its normal cone NK(x̄, s̄) := {(y, t) 2 R
n+1} at an (x̄, s̄) 2 K is

NK(x̄, s̄) =

8
<

:

K� if (x̄, s̄) = (0,0)
{(0,0) 2 R

n+1} if kx̄k2 < s̄�
µ(x̄,�s̄) 2 R

n+1 : for some µ � 0
 

if kx̄k2 = s̄ > 0

Proof. Part 1 is left as Exercise 11.4. To verify that K� = {(y, t) 2 R
n+1 : kyk2 �t}, take any (x,s) 2 K

and (y, t) such that kyk2 �t. Then

xTy+ st  kxk2 kyk2 + st  s(�t)+ st = 0 (17.4)

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows
from definition of K. Hence (y, t) 2 K�. This shows that K� ◆ {(y, t) 2R

n+1 : kyk2 �t}. Conversely let
(y, t) 2 K�, i.e., xTy+ st  0 for all kxk2  s. Clearly (0,0) 2 K� since K� is a closed convex cone, so let
s� kxk2 > 0. Then xTy+kxk2t  0 and hence

xT

kxk2
y + t  0

Since this holds for all x (because there always exists some s > 0 such that (x,s) 2 K), we can take x = y
to conclude kyk2 + t  0. This proves part 2. Indeed K is the “upper” cone in Figure 11.4(b) and K� is the
“lower” cone.
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For part 3, application of Theorem 17.3 to part 2 yields

NK((x̄, s̄)) = {(y, t) 2 R
n+1 : kyk2 �t, x̄Ty+ s̄t = 0} (17.5)

Hence if (x̄, s̄) = (0,0) then NK((x̄, s̄)) = K�. If kx̄k2 < s̄ then (x̄, s̄) is in the interior of K and hence
NK(x̄, s̄) = {(0,0) 2Rn+1}. Consider then kx̄k2 = s̄ 6= 0. The requirement that x̄Ty+ s̄t = 0 means that the
two inequalities in (17.4) must hold with equality which is possible if and only if

y = µ x̄ for some µ 2 R, kxk2 = s̄, kyk2 = �t

Hence �t = kyk2 = |µ|kx̄k2 = |µ|s̄. Then x̄Ty + s̄t = s̄2(µ � |µ|) = 0 implies that µ � 0 since s̄ > 0.
Therefore y = µ x̄, t =�µ s̄ with µ � 0. This proves part 3. This is illustrated in Figure 17.12.

Figure 17.12: Theorem 17.9: The normal cone NK((x̄, s̄)) is the line segment on the boundary of the lower
cone K� in the direction of x̄.

We know from Theorem 17.3 that the normal cone NK(x̄, s̄) of a convex cone K are vectors in its polar
cone K� where complementary slackness holds. Theorem 17.9 describes these vectors in more detail when
K is explicitly specified as the second-order cone (note that the vector µ(x̄,�s̄) 2 K�).

Recall the relation K = AKr between a rotated second-order cone Kr defined in (11.3) and a standard
second-order cone K, where A is a nonsingular matrix defined in (11.4), reproduced here:

A =

2

4
2In 0n 0n
0Tn 1 �1
0Tn 1 1

3

5 (17.6)

For an x 2 R
n, we use xm, m  n, to denote the subvector xm := (x1, . . . ,xm) of the first m entries of x.

Since A is nonsingular, the application of Theorem 17.6 to Theorem 17.9 leads to the following result on
rotated second-order cone.

Corollary 17.10 (Rotated second-order cone). Let Kr := {x 2Rn+2 : kxnk2
2  xn+1xn+2, xn+1 � 0, xn+2 �

0} be a rotated second-order cone. Let K := AKr where A is defined in (17.6) and K� denote its polar cone.

1. Kr is a convex cone.

2. Its polar cone is

K�r = ATK� := {ATx 2 R
n+2 : kxn+1k2 �xn+2}
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3. Its normal cone NKr(x̄) = ATNK(Ax̄) at an x̄ 2 Kr is

NKr(x̄) =

8
<

:

ATK� if Ax̄ = 0
{(0,0) 2 R

n+2} if k[Ax̄]n+1k2 < [Ax̄]n+2�
µ([Ax̄]n+1,�[Ax̄]n+2) 2 R

n+2 : for some µ � 0
 

if k[Ax̄]n+1k2 = [Ax̄]n+2 > 0

SOC constraint. Consider the convex set C defined by second-order cone constraint in (11.5), repro-
duced here:

C := {x 2 R
n : (Ax+b,cTx+d) 2 K} = {x 2 R

n : kAx+bk2  cTx+d} (17.7)

where A 2 R
m⇥n, b 2 R

m, c 2 R
n, d 2 R, and K is the standard second-order cone defined in (11.2). Then

C is the pre-image of K under the affine transformation

C =
�

x 2 R
n : Ãx+ b̃ 2 K

 
where Ã :=


A
cT

�
, b̃ :=


b
d

�

The mapping f : C!K defined by f (x) = Ãx+ b̃ is generally neither surjective nor injective. For instance
if Ã is singular then f is not injective. If A = 0, C = {x : kbk2  cTx + d)} is a hyperplane and f (x) =
Ãx + b̃ 6= 0 for any x if b 6= 0, i.e., f is not surjective. Therefore Theorem 17.8 (in its current form) does
not guarantee NC(x̄) = ÃTNK(Ãx̄+ b̃) where NK(ȳ) is given by Theorem 17.9.

Example 17.6. Consider the case where A = 0 2Rm⇥n and C := {x 2Rn : kbk2  cTx+d} is a halfspace.
We know from Theorem 17.3 that its normal cone is, for any x̄ with �cTx̄ d�kbk2,

NC(x̄) =
n
�lc : l 2 R such that l � 0 with l = 0 if � cTx̄ < d�kbk2

o
(17.8)

Theorem 17.8 shows that NC(x̄)◆ ÃTNK(Ãx̄+ b̃) where

Ã :=


0
cT

�
, b̃ :=


b
d

�

and NK(ȳ)✓ R
m+1 is given by Theorem 17.9 as, writing y 2 R

m+1 as y =: (ym,ym+1) with ym 2 R
m,

NK(Ãx̄+ b̃) =

8
<

:

K� if (b,cTx̄+d) = (0,0)
{(0,0)} if kbk2 < cTx̄+d�

µ
�
b,�(cTx̄+d)

�
2 R

m+1 : for some µ � 0
 

if kbk2 = cTx̄+d > 0

and K� = {y 2 R
m+1 : kymk2 �ym+1}. (If b 6= 0 then NK(Ãx̄+ b̃) 6= K� for any x̄.)

We now verify that NC(x̄) = ÃTNK(Ãx̄+ b̃). Indeed ÃTNK(Ãx̄+ b̃) is, noting that ym+1  0,

ÃTNK(Ãx̄+ b̃) =

8
<

:

{ym+1c : ym+1 2 R�} if (b,cTx̄+d) = (0,0)
{ym+1c : ym+1 2 R�} if kbk2 = cTx̄+d > 0
{0 2 R

n} if kbk2 < cTx̄+d

which is equal to NC(x̄) in (17.8), as desired.
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17.2 CPC functions

When we allow extended-valued and discontinuous functions we can treat constrained optimization as
unconstrained optimization and develop a unified theory that covers both. In this section we define an
important class of such functions, the set of closed proper convex (CPC) functions, that we will use
extensively in deriving optimality conditions in later sections.

17.2.1 Extended-valued functions

A real-valued function f : Rn! R maps a finite vector x 2 R
n to a finite value f (x) 2 R. An extended-

valued function f : Rn! [�•,•] can take values �• and •. For a function f : X ! [�•,•] defined on
X ✓ R

n, X is called the domain of f . The effective domain of f is the set dom( f ) := {x 2 X : f (x) < •}.
For the purpose of minimization, a function f : X ! [�•,•] defined on X can always be extended to R

n

by defining

fX(x) :=
⇢

f (x) if x 2 X
• if x 2 R

n \X (17.9)

We therefore often consider f as a mapping on R
n, whose effective domain dom( f ) may be a subset of

R
n. The epigraph of f is the set epi( f ) := {(x,y) : y � f (x), x 2 R

n,y 2 R} ✓ R
n+1. In particular if

(x,y) 2 eip( f ) then y 62 {�•,•}. Therefore x 2 dom( f ) if and only if there exists y = y(x) 2 R such that
(x,y) 2 epi( f ), i.e., dom( f ) is the projection of epi( f ) onto R

n.

Consider an extended-valued function f : X ! [�•,•] where its domain X ✓ R
n. We say that f is

lower semicontinuous (lsc) at x 2 X if

f (x)  liminf
k

f (xk)

for every sequence {xk} ✓ X with xk ! x, and that f is lower semicontinuous (on X) if it is lsc at every
x 2 X . A function f is called upper semicontinuous (usc) if� f is lsc. A function is continuous if and only
if it is both lsc and usc. Note that whether f is lsc depends on its domain X . Take the indicator function
dC(x) := 0 if x 2C✓R

n and • if x 62C and suppose C is not closed. Then dC(x) : Rn! [�•,•] is not lsc
on R

n but dC(x) : C! [�•,•] is lsc on C.

Definition 17.3 (Closed proper convex (CPC) f ). Consider f : X ! [�•,•] with X ✓ R
n.

1. The function f is closed if epi( f ) is a closed set.

2. The function f is proper if there exists x 2 X such that f (x) < • (so that epi( f ) is nonempty) and
f (x) >�• for all x 2 X . In particular a real-valued function f : X ! R is proper.

3. Suppose X is convex. Then f is convex if epi( f ) is a convex subset of Rn+1.

For a function f : Rn ! [�•,•], it is closed if and only if it is lsc on R
n if and only if its level set

Vg := {x| f (x)  g} is closed for every g 2 R. For f : X ! [�•,•], it is closed if its effective domain
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dom( f ) is closed and f is lsc on dom( f ); see Exercise 17.7. The convexity definition in terms of epi( f )
reduces to the usual definition of convexity for real-valued functions. If a closed convex function f is
not proper then f cannot take any finite value: f (x) = �• if x 2 dom( f ) and f (x) = • otherwise. We
therefore consider only proper functions f : Rn! (•,•].

A proper and convex function is continuous, except possibly on its relative boundary. Indeed Lemma
11.6 is directly applicable to extended-valued functions.

Lemma 17.11 (Continuity of f ). If the extended-valued function f : Rn! (•,•] is proper and convex,
then f restricted to dom( f ) is continuous over the relative interior of dom( f ). In particular, if f : Rn! R

is a real-valued convex function, then it is continuous.

A proper convex function is Lipschitz continuous over a compact set with the norm of a maximum
subgradient as its Lipschitz constant; see Lemma 17.14.

17.2.2 Indicator function, support function and polyhedral functions

Indicator function and support function. Given a set X ✓ R
n the indicator function of X is the

extended-valued function dX : Rn! (�•,•] defined by:

dX(x) :=
⇢

0 if x 2 X
• if x 62 X (17.10a)

It is proper if and only if the set X is nonempty. It is a convex function if and only if X is a convex set.

The support function of X is sX : Rn! (�•,•] defined by:

sX(x) := sup
y2X

yTx (17.10b)

It is proper if and only if X is nonempty and supy2X yTx < • for at least one x. The sets X , cl(X), conv(X),
cl(conv(X)), conv(cl(X)) all have the same support function (Exercise 17.8):

sX(x) = scl(X)(x) = sconv(X)(x) = scl(conv(X))(x) = sconv(cl(X))(x), x 2 R
n

See Exercise 17.10 for relation between dX and sX (as well as their subdifferentials).

Theory of convexity, optimality and duality can be developed based either on real-valued functions
or on extended-valued functions. An advantage of extended-valued functions is that they allow us to
represent the minimization of a real-valued function f : Rn! R over X as an unconstrained optimization
of the extended-valued function (17.9):

min
x2Rn

fX(x) = f (x) + dX(x) (17.11)

A unified theory can then be developed for unconstrained optimization as we will see in the next sections.

Example 17.7. Derive dX(x) and sX(x) for:
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1. X := (0,1)✓ R.

2. X := {x 2 R
n : xi 2 (�1,1)}.

Solution. For X := (0,1)✓ R

dX(x) =

⇢
0 x 2 (0,1)
• x 62 (0,1)

sX(x) := sup
y2(0,1)

yx =

⇢
x x� 0
0 x < 0

For X := {x 2 R
n : xi 2 (�1,1)}

dX(x) =

⇢
0 8i xi 2 (�1,1)
• 9i s.t. xi 62 (�1,1)

sX(x) := Â
i

sup
yi2(�1,1)

yixi = Â
i

|xi| = kxk1

They are illustrated in Figure 17.13.

(a) X := (0,1)✓ R (b) X := {x 2 R
2 : xi 2 (�1,1)}

Figure 17.13: Example 17.7.

Polyhedral set and polyhedral function. Recall that a polyhedral set, or a polyhedron, is a set X := {x2
R

n : Ax  b} specified by a finite number of affine inequalities. We often assume, sometimes implicitly,
that X is nonempty to avoid triviality. Such a set is then nonempty closed and convex by definition. See
Appendix 25.1.2 for more discussions on polyhedral sets and extreme points.

We say that a proper function f : Rn! (�•,•] is a polyhedral function if if its epi( f ) is a polyhedral
set in R

n+1. Since a polyhedral set is closed nonempty convex, a polyhedral function is closed proper
convex. It can be represented as the pointwise maximum of affine functions e.g. [100, Proposition 2.3.5,
p.109].

Lemma 17.12. Let f : Rn! (�•,•] be a convex function. Then f is a polyhedral function if and only if
dom( f ) is a polyhedral set and

f (x) =
m

max
i=1

⇣
aTi x+bi

⌘
, 8x 2 dom( f )

for some ai 2 R
n, bi 2 R, and integer m > 0.

In particular an affine function is polyhedral.
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17.3 Gradient and subgradient

Consider the convex optimization

min
x2Rn

f (x) s.t. g(x) = 0, h(x) 0

where X ✓R
n is a nonempty convex set and f :Rn! (�•,•] is a proper convex extended-valued function.

For smooth optimization the KKT condition of Chapter 11.3.2 is a first-order optimality condition that
involves the gradients — f ,—g,—h of convex and continuously differentiable cost and constraint functions.
In this section we generalize gradients of differentiable functions to subgradients of convex but possibly
non-differentiable functions and develop conditions for subdifferential calculus. We use these tools in
Chapter 17.5 to generalize the KKT Theorem 11.13 of Chapter 11.3.2 to the convex nonsmooth setting.

17.3.1 Derivative, directional derivative and partial derivative

The notion of derivative, directional derivative and partial derivative defined in Chapter 11.1.5 for real-
valued functions extend directly to extended-valued functions. Consider a proper function f : X! (�•,•]
where X ✓ R

n is an open set. The function f is said to be differentiable at x 2 X if there exists a vector
m 2 R

n such that

lim
h2Rn
h!0

f (x+h)� f (x)�mTh
khk = 0

When this holds, the column vector m is called the gradient or derivative of f at x 2 X and denoted by
— f (x). If f is differentiable at every x 2 X then f is called differentiable on X .

At each x 2 X and for each v 2 R
n the one-sided directional derivative of f at x in the direction v is

defined as

d f (x;v) := lim
t2R
t#0

f (x+ tv)� f (x)
t

provided the limit exists, possibly ±•. For x 2 dom( f ), d f (x;v) can take finite values or ±•, but for x 2
ri(dom( f )), d f (x;v) if exists is always real valued for any v 2 R

n. It can be shown that f is differentiable
at x 2 X if (i) directional derivatives d f (x;v) exist at x for all directions v 2R

n, and (ii) d f (x;v) is a linear
function of v.

At each x2 X and for the unit vector e j 2 {0,1}n, if the directional derivatives d f (x;e j) and d f (x;�e j)
exist in both directions and are equal, then they are called the partial derivative of f at x 2 X with respect
to x j and denoted by ∂ f

∂x j
(x):

∂ f
∂x j

(x) := lim
t2R
t!0

f (x+ te j)� f (x)
t
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In this case f is called partially differentiable at x 2 X with respect to x j. The row vector of partial
derivatives of f at x 2 X is

∂ f
∂x

(x) :=
h

∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
i

If f is partially differentiable at all x 2 X then it is called partially differentiable on X . The partial deriva-
tive ∂ f

∂x (x) describes the behavior of f at x only along the coordinate axes whereas the derivative — f (x)
describes its behavior in all directions. If f is differentiable then it is partially differentiable, but the con-
verse does not generally hold. If f is not only partially differentiable but ∂ f

∂x (x) is also continuous at x,
then the converse holds at x 2 X . Such an f is called continuously differentiable at x. If f is continuously
differentiable at all x 2 X then it is continuously differentiable on X .

As Example 11.3 in Chapter 11.1.5 shows, a partially differentiable function may not be differentiable
when the partial derivative ∂ f

∂x (x) is discontinuous at x. Indeed a partially differentiable function may not
even be continuous at all x 2 X . A continuously differentiable function is always continuous. Moreover
Lemma 11.3 extends directly to a proper extended-valued function f : X ! (�•,•], i.e., if f is differ-

entiable then it is partially differentiable and — f (x) =
h

∂ f
∂x (x)

iT
. Conversely, f is differentiable if it is

continuously differentiable. Hence f is differentiable at x 2 X if and only if d f (x;v) = vT— f (x) = ∂ f
∂x (x)v

for all v 2 R
n. This is generalized in (17.13) below to proper convex functions that may not be differen-

tiable (but are always subdifferentiable). Moreover the directional derivative of a proper convex function
f : X ! (�•,•] always exists because ( f (x+ tv)� f (x))/t is increasing in t > 0 and hence the limit
always exists, possibly ±•. The limit d f (x;v) may be �• or • at the relative boundary of dom( f ) but is
always a finite value at an x 2 ri(dom( f )).

17.3.2 Subgradient

Recall that, for the purpose of minimization, a function f : X ! (�•,•] with X ✓ R
n can always be

represented as an extended-valued function f : Rn! (�•,•] by defining f (x) := • for x 62 X so that its
effective domain dom( f )✓ X .

Subgradient. Consider a proper convex function f : Rn! (�•,•]. A vector y 2 R
n is a subgradient of

f at x̄ 2 dom( f ) if

f (x) � f (x̄) + yT(x� x̄), 8x 2 R
n (17.12a)

The inequality must hold for all real x, not just for x 2 dom( f ), i.e., the affine function on the right-hand
side is a lower approximation of f over Rn and coincides with f at x = x̄. The set of all subgradients of a
convex function f at x̄ is the subdifferential ∂ f (x̄) of f at x̄. By convention ∂ f (x̄) = /0 if x̄ 62 dom( f ). An
equivalent definition to (17.12a) is: y 2 R

n is a subgradient of f at x̄ 2 dom( f ) if

f (x̄)� yTx̄ = min
x2Rn

⇣
f (x)� yTx

⌘
(17.12b)

i.e., x̄ 2 dom( f ) attains the minimum on the right-hand side.
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The definition (17.12) of subgradient immediately implies the following first-order optimality condi-
tion for nonsmooth convex optimization. It is used in Chapter 17.5 to derive a general optimality condition
which leads to various KKT conditions in subsequent subsections.

Corollary 17.13 (Optimality condition). Consider the unconstrained convex optimization infx2Rn f (x)
where f : Rn! (�•,•] is a proper convex function. Then x⇤ 2 R

n is optimal if and only if

0 2 ∂ f (x⇤)

If f is differentiable this reduces to — f (x⇤) = 0.

Proof. It is obvious that f (x⇤) = minx2Rn f (x) if and only if y = 0 in (17.12b), i.e., if and only if 0 2
∂ f (x⇤).

Remark 17.2 (Subgradient as certificate of optimality). 1. For unconstrained convex optimization, 02
∂ f (x⇤) is necessary and sufficient for x⇤ to be an optimal. The fact that there may be subgradients
y 2 ∂ f (x⇤) with yT(x� x⇤) 6= 0 has no bearing on the optimality of x⇤. The zero vector 0 2 ∂ f (x⇤)
is a certificate for the optimality of x⇤.

2. For constrained optimization, x⇤ is optimal if there exists a subgradient y⇤ 2 ∂ f (x⇤) such that y
⇤
T(x�

x⇤) � 0 for all feasible x because (17.12a) then implies f (x) � f (x⇤) for all feasible x. Such a
subgradient y⇤ is a certificate for the optimality of x⇤. A precise statement is Theorem 17.20 below.
Again the fact that there may be subgradients y 2 ∂ f (x⇤) with yT(x� x⇤) < 0 has no bearing on the
optimality of x⇤.

The following is taken from [100, Propositions 5.4.2 and 5.4.3]. It generalizes Lemma 11.6 for real-
valued convex functions to extended-valued convex functions.

Lemma 17.14 (Subgradient and Lipschitz continuity). Let f : Rn! (�•,•] be a proper convex function.

1. For x 2 dom( f ), ∂ f (x) is a nonempty convex compact set.

2. For x 2 ri(dom( f )), f (x) is continuous.

3. If X ✓ dom( f ) is nonempty and compact, then ∂X f :=[x2X ∂ f (x) is nonempty and bounded. More-
over f is Lipschitz continuous over X with Lipschitz constant L := supx2∂X f kxk2.

In particular if f is a real-valued convex function, then ∂ f (x) is always a nonempty convex compact
set. If f is extended-valued convex, then ∂ f (x) can be unbounded or empty at the boundary of or outside
dom( f ).

By the definition of subgradient we have, for all t 2 R, f (x + tv)� f (x) � t yTv for all subgradients
y 2 ∂ f (x). Hence

d f (x;v) � yTv, 8y 2 ∂ f (x), x 2 dom( f ), v 2 R
n

For any x 2 ri(dom( f )) the function d f (x; ·) is closed and is the support function of ∂ f (x), i.e.,

d f (x;v) = sup
y2∂ f (x)

yTv, 8x 2 ri(dom( f )), v 2 R
n (17.13)
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Hence d f (x;v) > supy2∂ f (x) yTv can only hold at a boundary point x of dom( f ) where d f (x; ·) is not a
closed function. In particular, if f : Rn! R is a real-valued function then dom( f ) = R

n and d f (x;v) =
supy2∂ f (x) yTv for all x,v 2 R

n.

Conjugate functions. Consider a convex function f : Rn! (�•,•]. Fix a x̄ 2 dom( f ). By definition
(17.12), ȳ 2 ∂ f (x̄) if and only if f (x) � f (x̄)+ ȳT(x� x̄) for all x 2 R

n. Hence ȳ 2 ∂ f (x̄) if and only if
ȳTx̄� f (x̄)� supx2Rn

�
ȳTx� f (x)

�
. But the reverse inequality clearly holds and therefore

ȳ 2 ∂ f (x̄) () ȳTx̄� f (x̄) = sup
x2Rn

⇣
ȳTx� f (x)

⌘
(17.14a)

This motivates the definition of the conjugate function f ⇤ : Rn! [�•,•] of f defined by:

f ⇤(y) := sup
x2Rn

⇣
xTy � f (x)

⌘
, y 2 R

n

Conjugate function is defined for any function f , not only convex functions. Since f ⇤ is the pointwise
supremum of affine functions of y it is closed and convex for any f . Then (17.14a) says:

ȳ 2 ∂ f (x̄) () ȳTx̄ = f (x̄)+ f ⇤(ȳ) (17.14b)

i.e., ȳ is a subgradient of f at x̄ if and only if x̄ attains the maximization in f ⇤(ȳ). When f is CPC, f ⇤⇤ = f
and the property becomes symmetric. We summarize important properties of conjugate functions and
subgradients in the following result taken from [100, Propositions 1.6.1, 5.4.3 and 5.4.4].

Theorem 17.15 (Conjugate function and subgradient). Let f : Rn! (�•,•].

1. Its conjugate f ⇤ is closed and convex.

2. If f is convex then the properness of any one of f , f ⇤, f ⇤⇤ implies the properness of the other two.
In particular if f is proper convex then f ⇤ is CPC (closed proper convex).

3. If f is CPC then f (x) = f ⇤⇤(x) for x 2 R
n.

4. Envelop theorem: If f is CPC then, for any x̄ 2 dom( f ), ȳ 2 dom( f ⇤),

x̄Tȳ = f (x̄)+ f ⇤(ȳ) () ȳ 2 ∂ f (x̄) () x̄ 2 ∂ f ⇤(ȳ)

5. Dual differentiability and optimality: If f is CPC then

(a) f ⇤(y) is differentiable at ȳ 2 int(dom( f ⇤)) if and only if f ⇤(ȳ) := supx2Rn
�
xTȳ� f (x)

�
is at-

tained at a unique x̄ 2 R
n.

(b) The set argminx2Rn f (x) of unconstrained minima of f is equal to ∂ f ⇤(0).
(c) Hence x⇤ is an unconstrained minimizer if and only if x⇤ 2 ∂ f ⇤(0) if and only if 0 2 ∂ f (x⇤).

Theorem 17.15.4 is a form of envelop theorem for CPC functions. An implication of Theorem 17.15.5
is that the dual function of a convex program is differentiable if the minimum of the Lagrangian over the
primal variable is uniquely attained.
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Example 17.8 (Differentiable functions). Consider the real-valued convex and differentiable function f :
R

n! (�•,•). The subdifferential of f at x̄ is ∂ f (x̄) = {— f (x̄)}. Then (17.14b) reduces to

—Tf (x̄)x̄ = f (x̄)+ f ⇤(— f (x̄)) = f (x̄)+ sup
x2Rn

⇣
—Tf (x̄)x� f (x)

⌘

which says that the supremum on the right-hand side is attained at x̄ when f is convex, or re-arranging,

f (x) � f (x̄)+—Tf (x̄)(x� x̄), x 2 R
n

which is a property of convexity (or definition of subgradient).

Suppose further that, for all ȳ 2 R
n, the supremum in f ⇤(ȳ) := supx2Rn(ȳTx� f (x)) is attained at

a unique x̄ so that f ⇤ is differentiable on R
n. Then the envelop theorem in Theorem 17.15 reduces to

ȳ = — f (x̄) if and only if x̄ = — f ⇤(ȳ). This says that the derivative of the conjugate function at ȳ,

f ⇤(ȳ) := sup
x2Rn

⇣
xTȳ� f (x)

⌘
= x̄Tȳ� f (x̄)

is the unique maximizer x̄. Moreover the unconstrained supremum of the concave function ȳTx� f (x) of
x is attained at x̄ that satisfies — f (x̄) = ȳ.

Indicator dX and support functions sX . It is shown in Exercise 17.10 that for any nonempty set X ✓R
n,

the conjugate of the indicator function dX is the support function sX . Since dX is proper, Theorem 17.15
implies that sX is CPC (closed proper convex) as long as X is nonempty. This however does not in itself
imply that dX is itself CPC nor dX = s⇤X . Indeed dX is CPC if and only if X is a closed nonempty convex
set, in which case the conjugate s⇤X of the support function is indeed dX . The results in Exercise 17.10 are
summarized in Table 17.2.

function f conjugate f ⇤ subdifferential ∂ f (x) condition
dX(x) sX(x) NX(x) if X is nonempty convex
dX(x) dX�(y) NX(x) if X is a nonempty convex cone
sX(x) dX(x) {y 2 R

n : xTy = sX(x)} if X is closed nonempty convex

Table 17.2: Indicator function dX(x) := 0 if x 2 X and • otherwise, support function sX(x) := supy2X yTx,
their conjugates and subdifferentials (NX(x) denotes the normal cone of X at x).

For a closed nonempty convex set X we can interpret ∂sX(x) = {y 2 R
n : xTy = sX(x)} as a form of

envelop theorem for the function sX(x) := supy2X yTx. We can also interpret it as a supporting hyperplane.
Indeed fix any x̄2X . Then x := sX(x̄) is a constant and hence ∂sX(x̄) = {y2Rn : x̄Ty = x} is a hyperplane
in R

n. Since x̄Ty x for all y 2 X , the hyperplane ∂sX(x̄) contains X in its “lower” halfspace. If there is
a finite ȳ 2 X that attains the supremum in sX(x̄) := supy2X x̄Ty, then ∂sX(x̄) is a supporting hyperplane
of X at ȳ. See Figure 17.14.
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Figure 17.14: For a nonempty closed convex X , ∂sX(x̄) is a supporting hyperplane of X at ȳ.

17.3.3 Subdifferential calculus

The subdifferential of functions of functions is fundamental. In particularly the result on the sum of func-
tions in Theorem 17.17 is used to derive an exact optimality condition for nonsmooth convex optimization
in Chapter 17.5 that underlies the KKT condition. The proof of Theorem 17.17 makes use of the follow-
ing result on the existence of a dual optimal solution that attains strong duality (even if the primal optimal
value is not attained).

Consider the convex optimization

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, Ax = b (17.15a)

where the nonempty convex set X 0 ✓ R
n is the intersection of a polyhedral set P and a convex set C:

X 0 := P \ C

A 2 R
m⇥n, b 2 R

m, and f : Rn ! (�•,•] is an extended-valued proper convex function. 4 Let the
Lagrangian function be

L(x,l ) := f (x) + lT(Ax�b), x 2 R
n, l 2 R

m

the dual function be d(l ) := infx2X 0 L(x,l ) and the dual problem be

d⇤ := sup
l2Rm

d(l ) (17.15b)

The problem (17.15) is a special case of (17.26) studied in detail in Chapter 17.7.1 when there is no explicit
inequality constraint h(x) 0. The following result is a special case of Theorem 17.26 there (whose proof
does not require Theorem 17.17). It is presented here because it is needed to prove Theorem 17.17 on
subdifferential calculus.

Theorem 17.16 (Slater Theorem). Consider the optimization problem (17.15) with a mixture of polyhe-
dral constraints. Suppose the following conditions hold:

4
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• Convexity: f is convex.

• Finite primal value: f ⇤ >�•.

• Slater condition: There exists x̄ 2 ri(dom( f ))\P\ ri(C) such that Ax̄ = b.

Then

1. f ⇤ = d⇤.

2. The set of dual optimal solutions l ⇤ with d(l ⇤) = d⇤ is nonempty and convex.

Theorem 17.17 is taken from [100, Propositions 5.4.5–5.4.6, p.192]. Its proof makes use of Theorem
17.16 and leads to the requirement of constraint qualifications. They take the form that the intersection
of the effective domains of various polyhedral functions is nonempty (if some of the functions are not
polyhedral, their effective domains are replaced by their relative interiors).

Theorem 17.17 ([100]). 1. Sum of functions. Let fi : Rn! (�•,•], i = 1, . . . ,m, be convex functions.
Suppose F(x) := Âi fi(x) is proper. If, for some m with 1  m  m, the functions fi, i = 1, . . . ,m,
are polyhedral and

�
\m

i=1 dom( fi)
� \ �

\m
i=m+1 ri(dom( fi))

�
6= /0

then F is convex and

∂F(x) = Â
i

∂ fi(x), 8x 2
m\

i=1
dom( fi)

When fi are differentiable this reduces to —F(x) = Âi — fi(x).

2. Chain rule. Let f : Rm! (�•,•] be a convex function and A 2 R
m⇥n. Suppose F(x) := f (Ax) is

proper. If

• either f is polyhedral, or
• there exists an x̃ 2 R

n such that Ax̃ 2 ri(dom( f ))

then F is convex and ∂F(x) = AT∂ f (Ax) for all x 2 R
n. When f is differentiable this reduces to

—F(x) = AT— f (Ax).

Proof. Sum of functions. Fix an x̄2
Tm

i=1 dom( fi). Then x̄2 dom(F). By Lemma 17.14, ∂ fi(x̄) and ∂F(x̄)
are nonempty convex and compact. The proof of ∂F(x̄) ◆ Âi ∂ fi(x̄) needs no assumption; its converse
does. For any ȳi 2 ∂ fi(x̄) we have

fi(x) � fi(x̄)+ ȳTi (x� x̄), x 2 R
n, i = 1, . . . ,m

Hence

F(x) := Â
i

fi(x) � F(x̄)+

 

Â
i

ȳi

!T

(x� x̄), x 2 R
n
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i.e., Âi ȳi 2 ∂F(x̄).

For the converse, suppose ȳ 2 ∂F(x̄). Then

min
x2Rn

F(x)� ȳTx � F(x̄)� ȳTx̄ 2 R (17.16)

i.e., the finite minimum on the left-hand side is attained at x̄. To apply Theorem 17.16, we write F(x) =
Âi f (xi) with the constraints xi = x 2 R

n. Then (x̄,xi = x̄, i = 1, . . . ,m) is a minimizer of the following
convex optimization:

f ⇤ = min
x,xi2Rn Â

i
fi(xi)� ȳTx s.t. xi 2 dom( fi), xi = x, i = 1, . . . ,m (17.17a)

Its dual objective function is

d(l ) := min
x2Rn,xi2dom( fi)

Â
i

fi(xi) � ȳTx �Â
i

lT

i (xi� x) (17.17b)

where l := (l1, . . . ,lm) 2 R
mn. The application of Theorem 17.16 to (17.17) implies that strong duality

holds and that any optimal dual variable l̄i yields a subgradient in ∂ fi(x̄) at x̄.

Specifically X 0 in (17.15) corresponds to the convex constraint

X 0 := P\C :=
�
\m

i=1 dom( fi)
�\�

\m
i=m+1 dom( fi)

�

Clearly a (finite) primal optimal is attained at xi = x = x̄ due to (17.16). The condition in the theorem
guarantees a point xi := x̃ 2 P\ ri(C) such that xi = x := x̃. Theorem 17.16, then implies that strong
duality holds for (17.17) and there is a dual optimal solution l̄ := (l̄1, . . . , l̄m) 2 R

mn. Therefore, from
(17.17), we have

d(l̄ ) := min
x2Rn,xi2dom( fi)

Â
i

⇣
fi(xi)� l̄T

i xi

⌘
�
 

ȳ�Â
i

l̄i

!T

x

For the dual problem maxl d(l ), we must have ȳ = Âi l̄i since the minimization in d(l ) over x is uncon-
strained. Strong duality then implies

d(l̄ ) = f ⇤ = Â
i

⇣
fi(x̄) � l̄T

i x̄
⌘

where the last equality follows because ȳ = Âi l̄i and (x̄,xi = x̄, i = 1, . . . ,m) is a minimizer of (17.17a).
Since we can extend the minimization in d(l ) over xi to R

n, this implies (substituting again ȳ = Âi l̄i)

d(l̄ ) = min
xi2Rn Â

i

⇣
fi(xi)� l̄T

i xi

⌘
= Â

i
min
xi2Rn

⇣
fi(xi)� l̄T

i xi

⌘
= Â

i

⇣
fi(x̄) � l̄T

i x̄
⌘

The last equality means that, for every i, fi(x̄)� l̄T
i x̄ = minxi2Rn

�
fi(xi)� l̄T

i xi
�
, i.e., l̄i 2 ∂ fi(x̄) according

to (17.12b). This complete the proof of part 1.

Chain rule. The proof follows a similar argument as that for part 1. Clearly F is convex since f is. Fix
an x̄ 2 R

n. If Ax̄ 62 dom( f ) then x̄ 62 dom(F) and hence ∂F(x̄) = ∂ f (Ax̄) = /0 by definition. Suppose then
Ax̄ 2 dom( f ). The proof of ∂F(x)◆ AT∂ f (Ax) needs no assumptions; its converse does.
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Let x̄ 2 ∂ f (Ax̄)✓ R
m be any subgradient of f at Ax̄. Then

F(x)�F(x̄) = f (Ax)� f (Ax̄) � x̄T(Ax�Ax̄) =
⇣

x̄TA
⌘

(x� x̄), x 2 R
n (17.18)

i.e., ȳ := ATx̄ 2 R
n is in ∂F(x̄). This shows AT∂f (Ax̄)✓ ∂F(x̄).

For the converse (under the assumption in the theorem), suppose ȳ 2 ∂F(x̄). We will show that there
exists an l̄ 2Rm such that l̄ 2 ∂ f (Ax̄) and ȳ = ATl̄ . From the definition (17.12b) of subgradient we have

F(x̄)� ȳTx̄ = min
x2Rn

F(x)� ȳTx 2 R

i.e., the finite minimum of the right-hand side is attained at x̄. Hence (x̄,Ax̄) is a minimizer of the following
constrained convex optimization:

min
(x,z)2Rn+m

f (z)� ȳTx s.t. z 2 X 0 := dom( f ), z = Ax (17.19)

If f is polyhedral, then X 0 := dom( f ) =: P is a polyhedral set. Otherwise X 0 =: C is a convex set since
f is a convex function. In the former case the assumption that F is proper means that there exists x̃ 2 R

n

such that z̃ := Ax̃ 2 X 0. In the latter case the assumption in the theorem means that there exists x̃ 2Rn such
that z̃ := Ax̃ 2 ri(X 0). In both cases Theorem 17.16 implies that strong duality holds and there exists an
optimal dual variable l̄ 2 R

m that attains the dual optimal value:

min
x2Rn,z2dom( f )

⇣
f (z)� l̄Tz� (ȳ�ATl̄ )Tx

⌘
= f (Ax̄)� ȳTx̄

where the left-hand side is the dual function of (17.19) evaluated at the dual optimal point l̄ and the right-
hand side is the primal optimal value attained at (x̄,Ax̄). Since the minimization over x is unconstrained
we must have ȳ = ATl̄ . Clearly we can extend the minimization over z to R

m and hence we have

min
z2Rm

f (z)� l̄Tz = f (Ax̄)� ȳTx̄ = f (Ax̄)� l̄T(Ax̄)

i.e., l̄ 2 ∂ f (Ax̄) by definition (17.12b). This completes the proof that ∂F(x) = AT∂ f (Ax).

Theorem 17.18. 1. Finite max. Let F(x) := max{ f1(x), . . . , fm(x)} where fi : Rn!R are real-valued
(and hence proper) convex functions. For any x 2 R

n let

I(x) := {i : fi(x) = f (x)}

Then

dF(x;v) = max
i2I(x)

d fi(x;v), 8x,v 2 R
n

∂F(x) = conv(∂ fi(x) : i 2 I(x)) , 8x 2 R
n

2. Arbitrary max. Let F(x) := maxy2Y f (x,y) where f : Rn⇥Y ! R be a real-valued function where
Y ✓ Rm. Suppose for each y2Y , f (·,y) is convex and hence continuous on R

n. Fix an x̄ and suppose
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there exists a neighborhood U(x̄) of x̄ such that for each x 2U(x̄), f (x, ·) is upper semicontinuous
on Y . Let Y (x) := {y : f (x,y) = F(x)}. Then

dF(x̄;v) = sup
y2Y (x̄)

dx f (x̄,y;v), 8v 2 R
n

∂F(x̄) = cl(conv(∂x f (x̄,y) : y 2 Y (x̄)))

where dx f (x,y;v) and ∂x f (x,y) are respectively the directional derivative and subdifferential of f
with respect to x.

Remark 17.3. 1. Theorem 17.18.1 is proved in e.g. [100, Example 5.4.5, p.199]. Since fi are real-
valued convex and hence proper and continuous on dom( f ) = R

n, F is also a real-valued convex
continuous function. Since ∂ fi(x) is nonempty convex compact by Lemma 17.14, so is ∂F(x).

2. Theorem 17.18.2 is taken from [107, Proposition 4.5.2, p.76].

We next use the tools developed in Chapters 17.3.1, 17.3.2 and 17.3.3 to derive an optimality conditions
for general convex optimization, following the same structure of Chapter 11.3.

17.4 Characterization: saddle point = p-d optimality + strong du-
ality

In this section we present a primal-dual characterization of an optimal solution when some or all of the
constraints are specified explicitly and can be dualized. In smooth optimization the Saddle-point Theorem
11.12 states that a saddle point attains primal-dual optimality and strong duality. We show that this char-
acterization extends directly to the nonsmooth setting, without the machinery in Chapters 17.3.1, 17.3.2
and 17.3.3 for nonsmooth analysis.

Consider the optimization problem where the feasible set is partially specified by constraint functions:

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, g(x) = 0, h(x) 0 (17.20)

where X 0 ✓ R
n is a nonempty set and f : Rn! (�•,•], g : Rn! (�•,•]m and h : Rn! (�•,•]l are

extended-valued functions. As for the smooth case in Chapter 11.3.1, we do not assume X 0 to be a convex
set or f ,g,h to be convex functions. Therefore (17.20) is generally a nonconvex problem.

Let the Lagrangian function be

L(x,l ,µ) := f (x) + lTg(x) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l (17.21a)

the dual function be

d(l ,µ) := inf
x2X 0

L(x,l ,µ) (17.21b)
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and the dual problem be

d⇤ := sup
l ,µ�0

d(l ,µ) (17.21c)

Let X := {x 2 R
n : x 2 X 0,g(x) = 0, h(x)  0} denote the primal feasible set and Y := {(l ,µ) 2 R

m+l :
µ � 0} the dual feasible set. The primal problem (17.20) is the same as (11.22) in Chapter 11.3.1 except
the cost and constraint functions are allowed to be nonsmooth and extended-valued. The dual problem
(17.21) partially dualizes the constraints, in contrast to the dual problem (11.23). These differences are
immaterial (see Remark 11.3). The Saddle-point Theorem 11.12 applies directly in the nonsmooth setting
here.

Even though we allow the cost and constraint functions f ,g,h to be extended-valued, for simplicity,
we require a saddle point to attain a finite value of the Lagrangian L by definition.

Definition 17.4 (Saddle point for extended real-value functions). A point (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is called a
saddle point of the Lagrangian L if it satisfies

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2X 0

L(x,l ⇤,µ⇤) 2 R (17.22)

In particular this common value L(x⇤,l ⇤,µ⇤) is finite.

With this finiteness requirement, Definition 17.4 is equivalent to Definition 11.7 for real-valued func-
tions f ,g,h, and Theorem 11.12 on primal-duality optimality and strong duality extends directly to the
nonsmooth setting.

Theorem 17.19 (Saddle-point Theorem 11.12). Consider the primal problem (17.20) and its dual (17.21).
A point (x⇤,l ⇤,µ⇤) is a saddle point that satisfies (17.22) if and only if

1. It is optimal-dual optimal, i.e., x⇤ is optimal for (17.20) and (l ⇤,µ⇤) is optimal for (17.21).

2. The duality gap is zero at (x⇤,l ⇤,µ⇤), i.e.,

d(l ⇤,µ⇤) = d⇤ = f ⇤ = f (x⇤) (17.23)

In particular a saddle point (x⇤,l ⇤,µ⇤), if it exists, attains both the primal and dual objective values
( f ⇤,d⇤).

Proof. The proof of Theorem 11.12 does not use any smoothness properties of the cost and constraint
functions f ,g,h, except that they are real-valued. In particular, when (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is a saddle
point, the proof there uses Remark 11.2 to deduce that x⇤ 2 X is primal feasible. This conclusion still
holds here due to the finiteness requirement in Definition 17.4. Since the weak duality lemma 11.11
applies to extended-valued functions, it can be checked that the argument in the proof of Theorem 11.12
goes through in the nonsmooth setting.
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17.5 Characterization: generalized KKT condition

Consider the convex optimization

min
x2Rn

f (x) s.t. x 2 P\C (17.24)

where P ✓ R
n is a nonempty polyhedral set, C ✓ R

n is a nonempty convex set, and f : Rn! (�•,•] is
a proper convex extended-valued function. In particular f may not be differentiable, though subgradients
always exist since f is convex. We now derive an exact characterization of primal optimal solutions when
they exist. As we will see in Chapter 17.8, when the feasible set P\C is specified explicitly by equality and
inequality constraints, the characterization reduces to the KKT condition for nonsmooth convex problems.

Corollary 17.13 in Chapter 17.3.2 says that a vector x⇤ is an unconstrained minimizer of an extended-
valued convex function f if and only if 0 2 ∂ f (x⇤). For constrained minimization (17.24) this condition
is generalized to the existence of a subgradient y⇤ 2 ∂ f (x⇤) such that �y⇤ is in the normal cone NX(x⇤)
of the feasible set P\C at x⇤. Constrained optimization also requires a constraint qualification which is a
kind of feasibility condition, e.g., dom( f )\P\ ri(C) is nonempty if f is polyhedral. If f is not polyhedral
then dom( f ) is replaced by ri(dom( f )).

Theorem 17.20 (Generalized KKT condition). Consider the convex optimization (17.24). Suppose one
of the following constraint qualifications holds, depending on whether f is polyhedral:

1. ri(dom( f ))\P\ ri(C) 6= /0;

2. f is polyhedral and dom( f )\P\ ri(C) 6= /0;

Then x⇤ 2 P\C is optimal for (17.24) if and only if

0 2 ∂ f (x⇤) + NP(x⇤) + NC(x⇤) (17.25a)

i.e., there exists a subgradient y⇤ 2 ∂ f (x⇤) such that �y⇤ 2 NP(x⇤)+NC(x⇤), or equivalently

y⇤T (x� x⇤) � 0, 8x 2 P\C (17.25b)

Proof. The proof is from [100, Proposition 5.4.7, p.195]. The problem (17.24) is equivalent to the uncon-
strained minimization:

min
x2Rn

f (x) + dP(x) + dC(x)

where the indicator function dX 0(x) = 0 if x 2 X 0 and • if x 62 X 0. Corollary 17.13 in Chapter 17.3.2 says
that x⇤ 2P\C is optimal if and only if 02 ∂ ( f (x⇤)+dP(x⇤)+dC(x⇤)). The stated constraint qualifications
allow us to apply the result on the sum of functions in Theorem 17.17 to conclude that x⇤ 2P\C is optimal
if and only if

0 2 ∂ f (x⇤) + ∂dP(x⇤) + ∂dC(x⇤) = ∂ f (x⇤) + NP(x⇤) + NC(x⇤)

where the second equality follows from Table 17.2.
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Theorem 17.20 characterizes an optimal solution x⇤ but does not guarantee its existence. See Examples
11.10 and 11.11 in Chapter 11 for cases where primal optimal solutions do not exist even though the
constraint qualifications in Theorem 17.20 are satisfied. In both examples the feasible set is not compact,
but the primal optimal objective values are finite, strong duality holds, and dual optimal solutions exist.
As discussed in Remark 17.2 we only need one subgradient y⇤ 2 ∂ f (x⇤) to certify the optimality of x⇤

and does not require yT(x� x⇤) � 0 to hold for all y 2 ∂ f (x⇤). The theorem is proved by reducing
the constrained minimization (17.24) to an unconstrained minimization using the indicator function dX .
It illustrates the simplicity of argument based on the set theoretic concepts of nonsmooth optimization
introduced in Chapter 17.1 and the concept of subdifferentials introduced in Chapters 17.3.2 and 17.3.3.

Remark 17.4 (Real-valued f ). 1. When f : Rn ! R is real-valued then ri(dom( f )) = dom( f ) = R
n

and the constraint qualifications in Theorem 17.20 reduce to

P\ ri(C) 6= /0

whether or not f is polyhedral.

2. If the cost function f is differentiable then y⇤ and ∂ f (x⇤) in the optimality condition in (17.25) can
be replaced by — f (x⇤).

Similarly for other duality and optimality conditions.

When the feasible set X := P\C is a general convex set X , Theorem 17.20 on the characterization of
(primal) optimal solutions and Theorem 17.25 on its existence are almost all that we can say without more
knowledge about X . When X is at least partially specified by affine equalities and convex inequalities,
we characterize saddle points and strong duality in Theorem 17.19 of Chapter 17.4 and the existence of
dual optimal solutions in the Slater Theorem 17.26 of Chapter 17.7.1. When the feasible set X is fully
specified, all constraints can be dualized. When the normal cones NP(x⇤) and NC(x⇤) can be explicitly
derived, such as those in Theorems 17.3, 17.9 and Corollary 17.10, the exact optimality condition (17.25)
reduces to KKT conditions; see Chapter 17.8.

17.6 Existence: primal optimal solutions

Theorem 17.20 of Chapter 17.5 provides an exact characterization of primal optimal solutions and the
Saddle-point Theorem 17.19 of Chapter 17.4 characterizes saddle points as primal-dual optimal solutions
that close the duality gap. They do not ensure that primal or dual optimal solutions exist. For smooth op-
timization Theorem 11.14 states that the primal optimal value is attained if the cost function is continuous
and the feasible set is compact. It is a consequence of the Weierstrass theorem. In this section we extend
this result to a nonsmooth setting where the continuity of the cost function is replaced by the closedness
of f (recall that a function f : Rn! [�•,•] is closed if and only if f is lsc on R

n).

A function f : Rn! (�•,•] is called radially unbounded if limk f (xk) = • for every sequence {xk}
with kxkk ! •. All nonempty level sets of a radially unbounded function are bounded. The next result
from [100, Proposition 3.2.1, p.119] provides a sufficient condition for the existence of optimal solutions
x⇤ 2 R

n for unconstrained optimization.
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Theorem 17.21 (Weierstrass Theorem). Consider

min
x2Rn

f (x)

where f : Rn! (�•,•] is closed and proper. If any of the following conditions holds:

1. dom( f ) is bounded; or

2. There exists g 2 R such that the level set Vg := {x : f (x) g} is nonempty and bounded; or

3. f is radially unbounded;

then the set X⇤ ✓ R
n of unconstrained minima of f is nonempty and compact.

A constrained optimization of f over a nonempty closed subset X ✓ R
n can be turned into an uncon-

strained optimization of the extended-valued function fX(x) : Rn! [�•,•] defined in (17.11). An opti-
mality condition then follows immediately from Theorem 17.21 and the fact that fX is closed if dom( f ) is
closed and f is lower semicontinuous on dom( f ) (Exercise 17.7).

Corollary 17.22 (Sufficient optimality condition). Consider

min
x2Rn

f (x) s.t. x 2 X

where X ✓R
n is nonempty and f : Rn!R is real-valued (and therefore proper). If X is closed, f is lower

semicontinuous at every x 2 X , and one of the following holds:

1. X is bounded; or

2. There exists g 2 R such that the level set Vg := {x : f (x) g} is nonempty and bounded; or

3. f is radially unbounded;

then the set X⇤ ✓ X of minima of f over X is nonempty and compact.

CPC function f . Theorem 17.21 and Corollary 17.22 guarantee that the minimum of f is attained (at a
finite point in R

n) when there is a nonempty level set that is bounded. When level sets are not bounded,
the set X⇤ of constrained minima can be exactly characterized if f is not only closed and proper but also
convex and X is closed and convex. The key idea is that x cannot wander to infinity within a level set Vg
while staying within its feasible set X . We now make this intuition precise.

Definition 17.5 (Recession cone). Let X ✓ R
n be a nonempty convex set.

1. A vector d 2 R
n is a direction of recession of X if x+ad 2 X for all x 2 X and all a � 0.

2. The recession cone of X , denoted by rc(X), is the set of all directions of recession of X .
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Lemma 17.23. [100, Proposition 1.4.1; p.43] Let X ✓ R
n be a nonempty closed convex set. Then

1. rc(X) is closed and convex.

2. d 2 rc(X) as long as there exists one x 2 X such that x+ad 2 X for all a � 0.

3. rc(X) contains a nonzero direction if and only if X is unbounded.

The next result allows us to define the direction of recession for a closed proper convex (CPC) function
f in terms of its level set.

Lemma 17.24. [100, Proposition 1.4.5; p.51] Consider a closed proper convex function f : Rn! (�•,•]
and its level sets

Vg := { x : f (x) g }, g 2 R

Then:

1. All nonempty level sets Vg have the same recession cone rc(Vg) = {d : (d,0) 2 rc(epi( f ))}.

2. If one nonempty level set Vg is compact, then all level sets are compact.

In view of the lemma we can define, for a CPC function f : Rn ! (�•,•], the recession cone of f
as rc( f ) := rc(Vg) for any nonempty level set Vg . A vector d 2 rc( f ) is called a direction of recession of
f . The next result from [100, Proposition 3.2.2; p.120] characterizes exactly the set X⇤ of minima of a
constrained optimization.

Theorem 17.25. [100, Proposition 3.2.2; p.120] Consider

min
x2Rn

f (x) s.t. x 2 X

where X ✓ R
n is nonempty closed and convex, f : Rn ! (�•,•] is closed proper convex, and X \

dom( f ) 6= /0. The set X⇤ ✓ X of minima of f over X is nonempty, convex and compact if and only if
X and f have no common nonzero direction of recession.

If X and f in Theorem 17.25 do have common nonzero directions of recession, then either the optimal
solution set is empty or else it is nonempty and unbounded. This is because for any common nonzero
direction d of recession in rc(X)\ rc( f ), there is a feasible point x 2 X such that x + ad remains in X
and in the level set Vg as a ! •. Moreover this holds for all nonempty level sets Vg by Lemma 17.24.
Therefore either limg!�•Vg 6= /0 (limit exists because Vg are nested) or Vg = /0 for small enough g . In the
former case there is a d 2 rc(X)\ rc

�
limg!�•Vg

�
and the primal solution is not attained, e.g., X = R,

f (x) = x and d = �1. Otherwise there is a smallest g0 for which Vg0 6= /0 and the primal optimal solution
set is nonempty and unbounded since the intersection of rc(X) and rc(Vg0) is nonempty (Exercise 17.12),
e.g., X = R, f (x) = max{0,x} and d =�1.
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17.7 Existence: dual optimal solutions and strong duality

In Chapter 17.6 we study the existence of primal optimal solutions (Corollary 17.22 and Theorem 17.25).
In this section we study dual optimality. In smooth optimization the Slater Theorem 11.15 states that a
dual optimal solution exists and strong duality holds if the optimal primal value is finite (even if it is not
attained) and the Slater condition is satisfied. We extend this assertion to the nonsmooth setting in Chapter
17.7.1 and provide a detailed proof in 17.7.2 and 17.7.3 (which also proves Theorem 11.15). These results
are mostly adapted from [100, Chapters 4 and 5].

17.7.1 Slater Theorem

Consider the convex optimization (17.20) where the feasible set is specialized to be the intersection of a
polyhedral set and a convex set and the equality constraint g(x) = 0 is polyhedral:

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, Ax = b, h(x) 0 (17.26a)

where the nonempty convex set X 0 ✓ R
n is the intersection of a polyhedral set P and a convex set C:

X 0 := P \ C

A 2 R
m⇥n, b 2 R

m, and f : Rn ! (�•,•] and h : Rn ! (�•,•]l are extended-valued proper convex
functions. 5 Suppose, for some l with 0  l̄  l, hi, i = 1, . . . , l̄, are polyhedral functions. In contrast to
(17.20) the polyhedral equality constraint Ax = b ensures that the feasible set of (17.26a) is convex.

Let the Lagrangian function be

L(x,l ,µ) := f (x) + lT(Ax�b) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l

the dual function be

d(l ,µ) := inf
x2X 0

L(x,l ,µ)

and the dual problem be

d⇤ := sup
l ,µ�0

d(l ,µ) (17.26b)

The following result from [100, Proposition 5.3.6, p.175] extends the Slater Theorem 11.15 to the nons-
mooth setting (see also Exercise 17.16).

Theorem 17.26 (Slater Theorem). Consider the optimization problem (17.26) with a mixture of polyhe-
dral and nonpolyhedral constraints. Suppose the following conditions hold:

• Convexity: f ,h are convex.

5
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• Finite primal value: f ⇤ >�•.

• Slater condition: There exists x̄ 2 ri(dom( f ))\P\ ri(C) such that Ax̄ = b, hi(x̄)  0, i = 1, . . . , l̄,
and hi(x̄) < 0 for i = l̄ +1, . . . , l.

Then

1. f ⇤ = d⇤.

2. The set of dual optimal solutions (l ⇤,µ⇤) with d(l ⇤,µ⇤) = d⇤ is nonempty.

6

Remark 17.5 (Real-valued functions). When f and h are real-valued the constraint qualification for strong
duality in Theorem 17.26 can be slightly weakened to [100, Proposition 5.3.6, p.175]:

1. There exists x̃ 2 P\ ri(C) such that Ax̃ = b and hi(x̃) 0, i = 1, . . . , l̄; and

2. There exists x̄ 2 P\C such that Ax̄ = b, hi(x̄) 0, i = 1, . . . , l̄, and hi(x̄) < 0 for i = l̄ +1, . . . , l.

Instead of the problem (17.26) where the constraints are explicitly decomposed into polyhedral con-
straints x 2 P and Ax = b and (possibly nonpolyhedral) convex constraints x 2 C and h(x)  0, we will
prove Theorem 17.26 in the following simpler form:

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, h(x) 0 (17.27a)

where X 0 ✓R
n is a nonempty convex set, and f : Rn! (�•,•] and h : Rn! (�•,•]l are proper convex

extended-valued functions. Let the Lagrangian function be

L(x,µ) := f (x) + µTh(x), x 2 R
n, µ 2 R

l

the dual function be

d(µ) := inf
x2X 0

L(x,µ)

and the dual problem be

d⇤ := sup
µ�0

d(µ) (17.27b)

This problem is equivalent to (17.26) since X 0 can take the form X 0 = P\C for a convex set C and Ax = b
is equivalent to Ax  0,Ax � 0. For simplicity, however, we will prove the following version where the
Slater condition is less refined than that in Theorem 17.26.

6
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Theorem 17.27 (Slater theorem). Consider the convex optimization problem and its dual (17.27). Suppose
the following conditions hold:

• Convexity: f ,h are convex.

• Finite primal value: f ⇤ >�•.

• Slater condition: one of the following constraint qualifications holds:

CQ1 : There exists x̄ 2 dom( f )\X 0 such that h(x̄) < 0;7 or
CQ2 : The functions hi, i = 1, . . . , l, are affine and there exists x̄ 2 ri(dom( f ))\ ri(X 0) such that

h(x̄) 0.

Then

1. f ⇤ = d⇤.

2. The set of dual optimal solutions µ⇤ with d(µ⇤) = d⇤ is nonempty.

3. If CQ1 holds then this set of optimal µ⇤ is nonempty, convex and compact.

Theorem 17.27 is taken from [100, Propositions 5.3.1, 5.3.2, p.168] with a small modification that
allows f and g to be extended-valued functions. Due to weak duality d⇤  f ⇤, finite f ⇤ means that the
dual problem is either finite feasible or infeasible. The constraint qualification CQ1 or CQ2 in the theorem
ensures strong duality and the existence of dual optimal solutions. 8

The proof of Theorem 17.27 illustrates the typical arguments in this type of results. In particular it
shows how constraint qualifications ensures that a nonvertical separating hyperplane exists between two
disjoint convex sets. The normal vector of the hyperplane defines a dual optimal solution. We next develop
over Chapters 17.7.2 and 17.7.3 the proof of Theorem 17.27, adapted from [100, Chapters 4 and 5].

17.7.2 MC/MC problems

The proof of strong duality relies on the following geometric idea. Let M ✓ R
n+1 be a nonempty set and

let (u,w) with u 2 R
n and w 2 R denote a variable in R

n+1. Define the primal problem:

Primal (minimum common) : w⇤ := inf
(0,w)2M

w (17.28a)

where w⇤ := • if (0,w) 62M for any w 2 R. As we will see below duality expresses the situation where
there exists a nonvertical hyperplane that contains the set M in its “upper” closed halfspace; see Figure
17.15. The normal to the hyperplane defines a dual optimal solution. To describe this, recall that a
hyperplane in the (u,w)-space specified by a normal (µ,1) 2 R

n+1 and an w-intercept x 2 R is given by

{(u,w) 2 R
n+1 : µTu+w = x}

7CQ1 is customarily called the Slater condition.
8
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(a) Nonconvex M










































































































 (b) Convex M

Figure 17.15: The primal and dual problems (17.28) defined by the nonempty set M. Their optimal values
are (w⇤,d⇤) respectively. The normal (µ⇤,b ⇤ := 1) of the nonvertical hyperplane attains the dual optimal
solution µ⇤, i.e., d(µ⇤) = d⇤. (a) Nonzero duality gap d⇤ < w⇤ when M is not convex. (b) Zero duality
gap d⇤ = w⇤ when M is convex even though M is nonconvex. In both cases, 0 2 ri(DM) which ensures that
b ⇤ > 0 (nonvertical hyperplane).

We desire µTu+w� x for all (u,w)2M, corresponding to containing M in the “upper” halfspace. Hence
define

d(µ) := inf
(u,w)2M

µTu + w

and the dual problem:

Dual (maximum crossing) : d⇤ := sup
µ2Rn

d(µ) (17.28b)

If the normal to the hyperplane is (µ,0), i.e., b ⇤ = 0 in Figure 17.15, then the hyperplane is vertical and
there is no finite maximum crossing d⇤. It is straightforward to show weak duality: d⇤  w⇤ (Exercise
17.13).

It is easier to work with the positive extension M of M defined by:

M := M + {(0,w) : w� 0} = {(u,w) 2 R
n+1 : w� w̄ for some (u, w̄) 2M} (17.29)

because M ignores nonconvexity in the “upper” part of M which does not affect the minimization in
(17.28a). We can define (17.28) equivalently by replacing M with M:

Primal (minimum common) : w⇤ := inf
(0,w)2M

w (17.30a)

Dual (maximum crossing) : d⇤ := sup
µ2Rn

d(µ) (17.30b)

where d(µ) := inf(u,w)2M µTu+w.
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The starting point for our proof is the following condition from [100, Propositions 4.4.1 and 4.4.2,
p.150] for d⇤ = w⇤ and the existence of a dual optimal solution µ⇤. Constraint qualifications in convex
optimization such as the Slater condition arise from the requirement in the next lemma that the origin be
in the relative interior of the projection of M (or M) onto the u-space; see Figure 17.15 and its caption.
Specifically, define DM to be the projection of M on to the u-space:

DM := {u 2 R
n : (u,w) 2M for some w 2 R} (17.31)

We may write D for DM if M is understood from the context. Then the relative interior of M and that of
DM are related as:

ri(M) = {(u,w) 2 R
n+1 : u 2 ri(DM), w > w̄ for some (u, w̄) 2M}

Lemma 17.28 (MC/MC strong duality). Suppose

• Finite primal value: w⇤ >�•.

• Convexity: M is convex.

• Constraint qualification: 0 2 ri(DM).

Then

1. d⇤ = w⇤ in (17.30).

2. There exists a dual optimal solution µ⇤ 2 R
n with d(µ⇤) = d⇤.

3. If 0 2 int(DM) then the set of dual optimal solutions is nonempty, convex and compact.

Note that the lemma only requires M to be convex, even if M is not. It guarantees that the dual optimal
value d⇤ is attained at some µ⇤ 2 R

n, but does not guarantee that the primal optimal value w⇤ is attained
even though w⇤ is finite, i.e., (0,w⇤) may be in cl(M) but not in M. The lemma is proved by constructing
a nonvertical proper separating hyperplane defined by its normal (µ⇤,1) that establishes the existence of
an optimal dual vector µ⇤ (the hyperplane is called proper if it does not fully contain the convex set M).
The requirement 02 ri(DM) ensures that the hyperplane is nonvertical so that the maximum crossing point
is finite. We provide the proof of parts 1 and 2 of Lemma 17.28 from [100, Propositions 4.4.1, p.150] to
illustrate the main ingredients of duality proofs. It shows the critical role of the constraint qualification
0 2 ri(DM). Part 3 of the lemma is proved in [100, Proposition 4.4.2, p.151] and omitted.

Proof of Lemma 17.28, parts 1 and 2. We prove the lemma in four steps.

Step 1: (0,w⇤) 62 ri(M). We claim that w⇤ is finite, i.e., �• < w⇤ < •, and (0,w⇤) 62 ri(M). The first
inequality follows from the first assumption of the lemma. The constraint qualification says that there
exists w̄ such that (0, w̄) 2 M, and hence w⇤ := inf(0,w)2M w  w̄ < •. This confirms that w⇤ is finite.
We claim that (0,w⇤) 62 ri(M) because otherwise, (17.31) implies that w⇤ > w̄ for some (0, w̄) 2 M, a
contradiction.
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Step 2: H separating (0,w⇤) from and not containing M. The separating hyperplane Theorem 11.8 then
implies that there exists a hyperplane that passes through (0,w⇤) and separates (0,w⇤) from M (Theorem
11.8 extends easily to the case where int(X) is replaced by ri(X)). Specifically there exists (µ,b ) 2 R

n+1

such that

bw⇤  µTu+bw, 8(u,w) 2M

Moreover the separating hyperplane H := {(u,w) 2 R
n+1 : µTu+bw = bw⇤} does not fully contain the

convex set M (follows from [100, Proposition 1.5.5, p.74]). This means that

bw⇤  inf
(u,w)2M

µTu+bw < sup
(u,w)2M

µTu+bw (17.32)

Step 3: b > 0. We claim that b > 0. Clearly b cannot be negative because otherwise, since there exists
(0, w̄) 2M (constraint qualification in the lemma), the definition (17.29) of M implies that (0, w̄+w0) 2M
as w0 ! •. Hence inf(u,w)2M

�
µTu+bw

�
 b (w̄ + w0)! �•, contradicting (17.32). Suppose for the

sake of contradiction that b = 0. Then (17.32) implies

0  inf
(u,w)2M

µTu  inf
u2DM

µTu

Since 0 2DM from the constraint qualification, this infimum is attained at the origin u = 0 over the convex
set DM (DM is convex since it is a projection of the convex set M). But 0 2 ri(DM), which is possible
only if µTu is constant (and equal to 0) over DM, for otherwise the minimum will be attained at a relative
boundary point of the convex set DM. This contradicts the strict inequality in (17.32) with b = 0, i.e.,
it contradicts the fact that the separating hyperplane H does not fully contain the convex set M. Hence
b > 0.

Step 4: strong duality and dual optimality. Since b > 0, we can renormalize to define the hyperplane by
µ⇤ := µ/b and b ⇤ = 1. Substitute b ⇤ = 1 into (17.32) to get

w⇤  inf
(u,w)2M

µ⇤Tu+w =: d(µ⇤)  d⇤

where the last inequality follows from the definition (17.30b) of d⇤. Weak duality w⇤ � d⇤ then implies
that w⇤ = d⇤. This also shows d(µ⇤) = d⇤, i.e., the dual optimal is attained at µ⇤. This completes the proof
of parts 1 and 2 of the lemma.

From the proof of the lemma the set of all optimal dual variables µ⇤ that attains strong duality is

Q⇤ =

(
µ⇤ 2 R

n : d(µ⇤) := inf
(u,w)2M

µ⇤Tu+w = w⇤
)

(17.33)

Therefore every dual optimal µ⇤ 2 Q⇤ defines a hyperplane H := {(u,w) 2 R
n+1 : µ⇤Tu + w = w⇤} that

passes through (0,w⇤) and separates it from cl(M) (which resides in the “upper” halfspace of H) in a way
that there is a point (u,w) 2 cl(M) that lies on H. 9 See Figure 17.16.

Lemma 17.28 applies to an arbitrary nonempty set M ✓ R
n. The formulation of the primal and dual

problems (17.30) is very general. In the following we will apply the lemma to prove strong duality of
constrained convex optimization by specifying M in terms of the cost and constraint functions f ,h.

9



712 Draft: EE 135 Notes April 30, 2024

Figure 17.16: Every dual optimal µ⇤ 2Q⇤ defines a hyperplane H that passes through (0,w⇤) and separates
it from cl(M). The yellow region shows all the hyperplanes defined by Q⇤.

17.7.3 Slater Theorem: proof

We now prove Theorem 17.27 with an explicit description of dual optimal solutions. Let X 0 ✓ R
n be a

nonempty convex set and f : Rn ! (�•,•] and h : Rn ! (�•,•]l be proper convex extended-valued
functions. Consider the convex optimization problem (17.27), reproduced here:

Primal: f ⇤ := inf
x2Rn

f (x) s.t. x 2 X 0, h(x) 0 (17.34a)

Dual: d⇤ := sup
µ�0

d(µ) (17.34b)

where d(µ) := infx2X 0 L(x,µ) and L(x,µ) := f (x)+ µTh(x), x 2 R
n, µ 2 R

l , is the Lagrangian. We can
treat the dual function d : Rl ! [�•,•] as an extended-valued function defined as

d(µ) :=
⇢

infx2X 0 f (x)+ µTh(x), µ � 0
�•, otherwise (17.34c)

The feasible set is X := {x 2 X 0 : h(x) 0}✓ R
n. The dual function d(µ) is always concave for arbitrary

f and h.

To apply Lemma 17.28 define

M := {(u,w) 2 R
l+1 : u� h(x), w� f (x) for some x 2 X 0} = M (17.35a)

and its projection onto the u-space:

DM := {u 2 R
l : (u,w) 2M for some w 2 R} = {u 2 R

l : u� h(x) for some x 2 X 0} (17.35b)

The extended set M defined by X 0 differs slightly from M in Figure 17.15 in that u 2 R
l extends to the

“right” indefinitely; see Figure 17.17. In the result below constraint qualifications imply that the primal
problem (17.34a) is feasible so that M = M is nonempty. Indeed if x̄ is a feasible point for (17.34a) then
(0, f (x̄)) 2M. Moreover M is convex since X 0 is a convex set and f ,h are convex functions.
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(a) Nonconvex M












































































































(b) Convex M

Figure 17.17: The (u,w) space is defined by the feasible set X which defines M = M (cf. M in Figure
17.15). (Figure change: Rn! R

l .)

The primal and dual problems (17.30) in terms of M are then

Primal: f ⇤ := inf
(0,w)2M

w (17.36a)

Dual: d⇤ := sup
µ2Rl

d(µ) (17.36b)

where the dual function d(µ) := inf(u,w)2M µTu + w can also be equivalently described in terms of M.
Indeed the problems in (17.36) are equivalent to those in (17.34) in the sense that an optimal primal-dual
solution of one problem can be mapped into an optimal primal-dual problem of the other and they attain
the same optimal values (Exercise 17.14). In particular, we can restrict µ to be nonnegative in (17.36b)
and then the two definitions of d(µ) are equivalent because

inf
(u,w)2M

µTu+w = inf
x2X 0

µTh(x)+ f (x), µ � 0

When f ⇤ is finite (�• < f ⇤ < •) define

Q⇤ := {µ 2 R
l : µ � 0, f (x)+ µTh(x) � f ⇤,8x 2 X 0} (17.37)

The next result proves Theorem 17.27. It shows that Q⇤ is the set of all optimal dual variables µ⇤ � 0 that
attain strong duality, d(µ⇤) � f ⇤, and provides conditions for Q⇤ to be nonempty, convex and compact.
The proof shows how a constraint qualification in terms of h ensures that the requirement 0 2 ri(DM) in
Lemma 17.28 is satisfied.

Theorem 17.29 (Slater Theorem 17.27). Consider the convex optimization problem and its dual (17.34).
Suppose the following conditions hold:

• Convexity: f ,h are convex.
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• Finite primal value: f ⇤ >�•.

• Slater condition: one of the following constraint qualifications holds:

CQ1 : There exists x̄ 2 dom( f )\X 0 such that h(x̄) < 0; or

CQ2 : The functions hi, i = 1, . . . , l, are affine and there exists x̄ 2 ri(dom( f ))\ ri(X 0) such that
h(x̄) 0.

Then

(a) f ⇤ = d⇤ in (17.34).

(b) Q⇤ defined in (17.37) is the set of all dual optimal µ⇤ with d(µ⇤) = d⇤. It is nonempty and convex.

(c) If CQ1 holds then Q⇤ is nonempty, convex and compact.

We first prove Theorem 17.29 under CQ1 for a general convex function h, by verifying the three
conditions in Lemma 17.28. Under CQ2 for an affine function h, the requirement 0 2 ri(DM) in Lemma
17.28 may not hold and we will modify the proof for the case of CQ1. The proof for the first case is based
on [100, Proposition 5.1.1, p.160] and that for the second case is based on [100, Proposition 4.5.1, p.154].

Proof of CQ1: Assume 9x̄ 2 dom( f )\X 0 such that h(x̄) < 0. We verify the three conditions in Lemma
17.28:

1. f ⇤ > �•: This holds by assumption. Indeed f ⇤ is finite (�• < f ⇤ < •) because x̄ 2 dom( f ) and
CQ1 implies f ⇤  f (x̄).

2. Convex M = M: Let (u1,w1), (u2,w2) 2 M. Then there exists x1,x2 2 X 0 such that

ui � h(xi), wi � f (xi) i = 1,2

The convexity of h implies that for any a 2 [0,1]

au1 +(1�a)u2 � ah(x1)+(1�a)h(x2) � h(ax1 +(1�a)x2)

Similarly the convexity of f implies aw1+(1�a)w2� f (ax1+(1�a)x2). This means a(u1,w1)+
(1�a)(u2,w2) is in M, proving the convexity of M.

3. 0 2 int(DM): We will use h(x̄) < 0 to show that 0 2 int(DM) and hence 0 2 ri(DM) where DM is the
projection of M onto the u-space defined in (17.35b). Now 0 2 int(DM) if and only if there exists
e > 0 such that kuk< e implies u2DM. Since all norms are equivalent in a finite dimensional space,
we will use kuk• := max j |u j|. Let e := �maxi{hi(x̄)} > 0. Then max j |u j| < e implies for all j,
u j > �e = maxi{hi(x̄)} � h j(x̄). Therefore (u,w) 2M where w := f (x̄) < • (since x̄ 2 dom( f )),
and hence u 2 DM. This shows that 0 2 int(DM).



Draft: EE 135 Notes April 30, 2024 715

Lemma 17.28 then implies that

d⇤ = f ⇤, 9µ⇤ 2 R
m s.t. d⇤ = d(µ⇤) = inf

(u,w)2M
µ⇤Tu+w (17.38)

We next show that µ⇤ is dual optimal, i.e., it satisfies (17.38), if and only if µ⇤ 2Q⇤ defined in (17.37).
Let µ⇤ be a dual optimal solution. First, as discussed above (Exercise 17.14), we must have µ⇤ � 0. Then
for any x 2 X 0, (h(x), f (x)) 2M and therefore, since µ⇤ � 0, we have

(µ⇤)Th(x)+ f (x) � inf
(u,w)2M

(µ⇤)Tu+w = d⇤ = f ⇤

where the two equalities follow from (17.38). Hence µ⇤ 2 Q⇤. Conversely if µ⇤ 2 Q⇤ then d(µ⇤) � f ⇤

by (17.37). Weak duality then implies (17.38), i.e., µ⇤ is dual optimal. Finally, since we have proved
0 2 int(DM), not just 0 2 ri(DM), Lemma 17.28 implies that Q⇤ is not only nonempty, but also convex and
compact.

This completes the proof of Theorem 17.29 for the case of CQ1.

Proof of CQ2: Assume h j are affine and 9x̄ 2 ri(dom( f ))\ ri(X 0) such that h(x̄) 0. In this case, the third
condition 0 2 int(DM) in Lemma 17.28 may not hold, but we will modify the proof of Lemma 17.28 to
establish (17.38) directly. The rest of the proof is then the same as that for the case of CQ1.

Following the proof of Lemma 17.28 we establish (17.38) in four steps (key difference being Step 2).

Step 1: f ⇤ is finite.. By assumption �• < f ⇤. Using (17.34a) for f ⇤ := infx2X 0,h(x)0 f (x), we have
f ⇤  f (x̄) < • since x̄ in CQ2 is in dom( f ) and is feasible. Hence f ⇤ is finite, i.e., �• < f ⇤ < •.

Step 2: Separating hyperplane. Substitute h(x) = Ax�b for some A 2 R
l⇥n and b 2 R

l into the definition
(17.35a) of M = M:

M = M := {(u,w) 2 R
l+1 : u� Ax�b, w� f (x) for some x 2 X 0}

The key to the proof is a clever decomposition of M as a Minkowski sum of a convex set C✓R
l+1 defined

by the convex function f and a polyhedral set P✓R
l+1 defined by the affine functions h, as follows. With

the view of a slack variable v := u� (Ax�b)� 0, we can write M = C +P where

C := {(Ax�b,w) : w� f (x) for some x 2 X 0}, P := {(v,0) : v� 0}

M = C +P because (u,w) 2M if and only if u = Ax�b+ v for some v� 0.

Guided by the sets C and P (see Step 4 below), we define the convex set C̃ ✓ R
l+1 and the polyhedral

set P̃✓ R
l+1 (since f ⇤ is finite):

C̃ := {(Ax�b,w) : w > f (x) for some x 2 X 0}, P̃ := {(v, f ⇤) : v 0}

(When X 0 is open, C̃ = ri(C). More generally, when restricted to x 2 ri(X 0), Ĉ := {(Ax� b,w) : w >
f (x) for some x 2 ri(X 0)} is ri(C).) We claim that C̃\ P̃ = /0 because otherwise if (ṽ, f ⇤) 2 C̃\ P̃ then
there exists an x̃ 2 X 0 such that

ṽ = Ax̃�b  0, f ⇤ > f (x̃)
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contradicting that f is uniformly lower bounded by f ⇤ on its feasible set.

The separating hyperplane Theorem 11.9 then implies that there exists a hyperplane that separates C̃
and P̃, i.e., 9(µ,b ) 2 R

l+1 such that

sup
(v, f ⇤)2P̃

µTv+b f ⇤  inf
(u,w)2C̃

µTu+bw

Moreover the separating hyperplane does not fully contain the convex set C̃ (follows from [100, Proposi-
tion 1.5.7, p.77] since ri(C̃)\ P̃ = /0). This means that

sup
(v, f ⇤)2P̃

µTv+b f ⇤  inf
(u,w)2C̃

µTu+bw < sup
(u,w)2C̃

µTu+bw (17.39)

This corresponds to (17.32) in the proof of Lemma 17.28. The remaining Steps 3 and 4 follow the same
idea there, working with C̃, P̃ and the decomposition of M = C + P here instead of M directly in Lemma
17.28.

Step 3: b > 0. We claim that b > 0. Clearly b cannot be negative because otherwise, since (0, f (x̄)) 2M
(where x̄ is the point in CQ2), the definition (17.35a) of M implies that (0, f (x̄) + w0) 2 M as w0 ! •.
Hence inf(u,w)2M

�
µTu+bw

�
 b ( f (x̄) + w0) ! �•, contradicting (17.39). Suppose for the sake of

contradiction that b = 0. Then (17.39) implies

sup
(v, f ⇤)2P̃

µTv  inf
(u,w)2C̃

µTu  µTv̄

where v̄ := Ax̄� b with x̄ being the point in CQ2. Here the last inequality follows because the point
(v̄, f (x̄)) is in C̃. But v̄ 0 and hence (v̄, f ⇤) 2 P̃. Therefore

µTv̄  sup
(v, f ⇤)2P̃

µTv  inf
(u,w)2C̃

µTu  µTv̄

i.e., all inequalities above must hold with equality. Therefore v̄ := Ax̄� b attains the minimization of
µTu over the projection D̃ := {u = Ax� b : (u,w) 2 C̃} of C̃ onto the u-space. Since CQ2 says that
x̄ 2 ri(dom( f ))\ ri(X 0), v̄ := Ax̄�b is in ri(D̃). This is possible only if µTu is constant (and equal to µTv̄)
over D̃, for otherwise the infimum will be attained at a relative boundary point of the convex set D̃. This
contradicts the strict inequality in (17.39), i.e., it contradicts the fact that the separating hyperplane does
not fully contain the convex set C̃.

Step 4: strong duality and dual optimality. Since b > 0, we can renormalize to define the hyperplane by
µ⇤ := µ/b and b ⇤ = 1. Substitute b ⇤ = 1 into (17.39) to get

sup
v0

µ⇤Tv+ f ⇤  inf
(u,w)2C̃

µ⇤Tu+w

f ⇤  inf
(u,w)2C̃

inf
v0

µ⇤T(u� v) + w

= inf
(u,w)2C

inf
(v,0)2P

µ⇤T(u+ v) + w

= inf
(u,w)M

µ⇤Tu+w =: d(µ⇤)  d⇤

where the first equality uses the fact that the infimum of µ⇤Tu+w over C̃ or C is the same. Weak duality
f ⇤ � d⇤ then implies that f ⇤ = d⇤. This also shows d(µ⇤) = d⇤, i.e., the dual optimal is attained at µ⇤.
This establishes (17.38). The rest of the proof is the same as that for the case of CQ1.
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17.8 Special convex programs

In this section we apply the general theory developed in Chapters 17.4–17.7 to special classes convex
optimization problems widely used in applications. In particular we apply the Slater Theorem 17.26 and
the generalized KKT Theorem 17.20 to derive conditions for strong duality, dual optimality and the KKT
conditions for some of the problem classes in Figure 11.15 of Chapter 11.4.1 (specifically linear program,
second-order cone program, conic program, and convex program specified by a general convex inequality).
It extends some of the results of Chapter 11.4 for differentiable problems to a nonsmooth setting.

17.8.1 Summary: general method

Consider the convex problem:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 X ✓ R
n (17.40)

where f : Rn! R is a convex function, A 2 R
m⇥n, b 2 R

m and X is a nonempty closed convex set that
may be specified explicitly as h(x)  0 for a convex function h : Rn! R

k. The problems studied in this
section is summarized in Figure 11.15 and the conclusions are summarize in Table 11.3 of Chapter 11.4.1.
A general analysis method is also described in Chapter 11.4.1 for smooth problems. Here we summarize
how to adapt that method to the nonsmooth setting using concepts of subgradients, normal cones and dual
cones. The key difference is the approach to derive the KKT condition without differentiability and for
abstract specifications of the feasible set X .

1. Dual problem. Given the primal problem (17.40), if X is explicitly specified, e.g., by a convex
inequality h(x)  0, then the Lagrangian function L and the dual problem are defined by (11.48a)
(11.48b) in Chapter 11.4.1. Otherwise if X is specified by Bx + d 2 K for a closed convex cone K
then the Lagrangian can be defined in terms of its dual cone K⇤:

L(x,l ,µ) := f (x)�lT(Ax�b)+ µ(Bx+d), x 2 R
n, l 2 R

m, µ 2 K⇤ ✓ R
k

The dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
(l ,µ)2Rm+k

d(l ,µ) s.t. µ 2 K⇤

This is derived in Chapter 17.8.4.

2. Strong duality and dual optimality. This does not require differentiability and the results hold ver-
batim in the nonsmooth setting using Theorem 17.26.

3. KKT condition and primal optimality. Suppose X is specified by Bx+d 2K for a closed convex cone
K. Without differentiability the KKT condition cannot be derived simply from —xL(x⇤,l ⇤,µ⇤) = 0
as done in (11.48c) of Chapter 11.4.1. Instead we convert (17.40) into an unconstraint problem

f ⇤ := min
x2Rn

f (x)+dH(x)+dK(x)
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where H := {x 2 R
n : Ax = b}. Recall that (i) f is a convex function. Suppose (ii) the Slater

condition is satisfied, i.e., there exists x̄ 2 ri(dom f )\ ri(K) with Ax̄ = b (dom f = R
n if we assume

f is real-valued). Then the generalized KKT Theorem 17.20 implies that x⇤ is optimal if and only if
there exists a subgradient x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and µ⇤ 2 R
k such that

x ⇤ 2 �NH(x⇤)�NK(x⇤)

Using Theorem 17.3 on normal cones the KKT condition is equivalent to

x ⇤ = ATl ⇤+BTµ⇤, µ⇤T(Bx⇤+d) = 0, µ⇤ 2 K⇤

Indeed the conditions µ⇤ 2 K⇤ and µ⇤T(Bx⇤+d) = 0 define a vector µ⇤ in�NK(Bx⇤+d) according
to Theorem 17.3 for a general convex cone K. When K is specified explicitly, e.g., K is the second-
order cone, these conditions define the vector µ⇤ more specifically based on the primal optimal
x⇤.

In the rest of this section we apply this general method to common convex programs.

17.8.2 Linear program (LP)

Consider the linear program:

f ⇤ := min
x2Rn

cTx s.t. Ax = b, x� 0 (17.41a)

where A 2 R
m⇥n, b 2 R

m and c 2 R
n. Let H := {x 2 R

n : Ax = b} and K := {x 2 R
n : x � 0}. Theorem

11.20 and Example 11.14 in Chapter 11.4.2 for smooth optimization show that if either the optimal primal
or the optimal dual value is finite then both the primal and dual problems attain their optimal, strong
duality holds, and a primal and dual feasible solution is optimal if and only if it satisfies complementary
slackness. In this subsection we derive the same result using Theorem 17.20 to illustrate the simplicity of
the set-theoretic approach for the nonsmooth setting.

For strong duality and the existence of primal and dual optimal solutions, the dual problem of (17.41a)
is derived in Example 11.14 to be:

d⇤ := max
l ,µ�0

bTµ s.t. ATl + µ = c (17.41b)

where l 2Rm, µ 2Rn. Let X := {x2Rn : Ax = b,x� 0} and Y := {(l ,µ)2Rm+n : ATl +µ = c, µ � 0}
be the feasible sets. If either f ⇤ or d⇤ is finite then the Slater condition of Theorem 17.26 (or Slater
Theorem 11.15) is satisfied. The exact same proof for part 1 of Theorem 11.20 shows that there exists a
primal-dual optimal solution (x⇤,l ⇤,µ⇤) 2 X⇥Y that closes the duality gap, i.e.,

cTx⇤ = f ⇤ = d⇤ = bTl ⇤

For KKT characterization, rewrite (17.41a) as an unconstrained optimization of an extended-valued
function:

min
x2Rn

cTx + dH(x) + dK(x) (17.41c)
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Since the objective function f (x) := cTx is real-valued and polyhedral, dom( f ) = R
n. Application of

Theorem 17.20 then says that x⇤ 2 R
n is optimal if and only if

�c 2 ∂ (dH(x⇤)+dK(x⇤)) = ∂dH(x⇤)+∂dK(x⇤)

where the equality follows from Theorem 17.17, provided (17.41) is feasible (H\K 6= /0). Since ∂dX(x) =
NX(x) from Table 17.2, x⇤ is optimal if and only if

�c 2 NH(x⇤)+NK(x⇤)

From Theorem 17.3 in Chapter 17.1.3,

NH(x⇤) = {y 2 R
n : y = ATl for some l 2 R

m}
NK(x⇤) = {y 2 R

n : y 0, yTx⇤ = 0}

Substituting these normal cones into the condition c 2 �NH(x⇤)�NK(x⇤) leads to KKT condition for
linear program: a feasible x⇤ is optimal if and only if there exists a (l ⇤,µ⇤) 2 R

m+n such that

ATl ⇤+ µ⇤ = c, µ⇤Tx⇤ = 0, µ⇤ � 0 (17.42)

Such a point (x⇤,l ⇤,µ⇤) is a saddle point and a KKT point and is hence primal-dual optimal with cTx⇤ =
bTµ⇤. Since the constraint qualification in Theorem 17.20 reduces to feasibility for a linear program, the
KKT characterization (17.42) requires only feasibility of the linear program (17.41). Strong duality and
the existence of primal and dual optimal solutions requires, in addition, f ⇤ >�• (or �• < d⇤ < •).

Example 17.9 (NH\K(x) = NH(x)+NK(x)). This example illustrates the property that the normal cone of
the intersection H \K is the sum of the normal cones (see Figure 17.18 and its caption):

NH\K(x) = NH(x)+NK(x)

As noted above, if (17.41) is feasible, then we have

∂ (dH(x⇤)+dK(x⇤)) = ∂dH(x⇤)+∂dK(x⇤)

according to Theorem 17.17. The normal cone property hence follows since the effective domain H \K
of the objective function in (17.41c) is feasible.

17.8.3 Second-order cone program (SOCP)

Second-order cone. Recall the second-order cone program (SOCP):

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (17.43a)

where f : Rn!R is a real-valued convex function (not necessarily differentiable), A2Rm⇥n, b2Rm, and
K ✓ R

n is the standard second-order cone defined in (11.2), reproduced here (xk := (x1, · · · ,xk) denotes
the vector consisting of the first k entries of x),

K := {x 2 R
n : kxn�1k2  xn} (17.43b)
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(a) At a relative interior point x̄ of H \K.
























(b) At a relative boundary point x̄ of H \K

Figure 17.18: Normal cones in Theorem 17.3 satisfy NH\K(x̄) = NH(x̄)+NK(x̄) at all points x̄ 2 H \K.

and studied in Theorem 17.9. The Lagrangian L : Rn+m+1! R of (17.43a)(17.43b) is

L(x,l ,µ) := f (x) � lT(Ax�b) + µ
�
kxn�1k2� xn

�
, x 2 R

n, l 2 R
m,µ 2 R

the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (17.43c)

Theorem 11.24 on strong duality, dual optimality and the KKT condition for SOCP in Chapter 11.4.4
for smooth convex optimization holds verbatim in the nonsmoonth setting. Indeed, strong duality and
dual optimality follow from the Slater Theorem 17.26. We now derive the KKT condition. It illustrates
both how nonsmooth analysis handles points of nondifferentiability and the simplicity of the set-theoretic
approach here.

We again rewrite SOCP (17.43a)(17.43b) as an unconstrained optimization of an extended-valued
function:

min
x2Rn

f (x) + dH(x) + dK(x)

where H := {x2Rn : Ax = b}. Since f is real-valued, ri(dom( f )) =R
n and hence the constraint qualifica-

tions in Theorem 17.20 reduces to the Slater condition H\ ri(K) 6= /0 (Remark 17.4). Under this condition
Theorem 17.20 says that x⇤ 2 H \K is optimal if and only if there exists a x ⇤ 2 ∂ f (x⇤) such that

�x ⇤ 2 ∂ (dH(x⇤)+dK(x⇤)) = ∂dH(x⇤)+∂dK(x⇤) = NH(x⇤)+NK(x⇤) (17.44)

(The first equality follows from Theorem 17.17 under the Slater condition H \ ri(K) 6= /0 and the second
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equality follows from ∂dX(x) = NX(x) in Table 17.2.) Theorems 17.3 and 17.9 in Chapter 17.1 then give

NH(x⇤) = {x 2 R
n : x = ATl for some l 2 R

m}

NK(x⇤) =

8
<

:

{x 2 R
n : kx n�1k2 �xn} if x⇤ = 0

{0 2 R
n} if k[x⇤]n�1k2 < x⇤n�

µ([x⇤]n�1,�x⇤n) 2 R
n : for some µ � 0

 
if k[x⇤]n�1k2 = x⇤n > 0

(17.45a)

Substituting these normal cones into (17.44) leads to the following KKT condition. Suppose the SOCP
(17.43) satisfies the Slater condition H \ ri(K) 6= /0. We separate three cases according to NK in (17.45a):
A feasible x⇤ 2 H \K is optimal if and only if there exist x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and

1. If 0 k[x⇤]n�1k2 < x⇤n: such that

x ⇤ = ATl ⇤ (17.46a)

which is the same as the KKT condition in Theorem 11.24. Note that (17.46a) applies naturally to x⇤

with [x⇤]n�1 = 0 and x⇤n > 0 where the constraint function h(x) := kxn�1k2� xn is nondifferentiable
and proves part of Theorem 11.24(3).

2. If 0 < k[x⇤]n�1k2 = x⇤n: there exists µ⇤ 2 R+ such that

x ⇤ = ATl ⇤ + µ⇤

�[x⇤]n�1

x⇤n

�
(17.46b)

which is the same as the KKT condition in Theorem 11.24 with µ⇤ there replaced by µ⇤x⇤n =
µ⇤k[x⇤]n�1k2. Note that µ⇤(�[x⇤]n�1,x⇤n) is a vector in K as in the next case.

3. If 0 = k[x⇤]n�1k2 = x⇤n, i.e., x⇤ = 0: there exists h̃ 2 K� := {h 2 R
n : khn�1k2  �hn} such that

�x ⇤ = AT(�l ⇤)+ h̃ . This is equivalent to: x⇤ = 0 is optimal if and only if there exist x ⇤ 2 ∂ f (0),
l ⇤ 2 R

m and h⇤ 2 K such that

x ⇤ = ATl ⇤+h⇤ (17.46c)

Note that b = Ax⇤ = 0. The condition (17.46c) proves part of Theorem 11.24(3) where smooth
analysis is not applicable because of nondifferentiability of the constraint function.

Here we assume the Slater condition and the conclusion is slightly stronger than that in Theorem 11.24
(see Remark 11.12).

Remark 17.6 (h⇤ 2K for SOCP). Note that all the KKT conditions in (17.46) are of the form x ⇤= ATl +
h⇤ for some h⇤ 2 K. This is due to (17.44) that requires x ⇤ 2 �NH(x⇤)�NK(x⇤) and Theorem 17.3 that
says that NK(x⇤)✓ K� is a subset of the polar cone K�. Hence h⇤ is in the dual cone K⇤ =�K� = K since
the second-order cone is self-dual. Indeed the conditions in (17.46) specialize the description h⇤ 2 K⇤ and
h⇤Tx⇤ = 0 in Theorem 17.3 for a general convex cone K to the case of second-order cone based on x⇤.
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SOC constraint. Recall the second-order cone program (SOCP):

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, kBx+dk2  bTx+d (17.47)

where f : Rn!R is a real-valued convex function (not necessarily differentiable), A 2R
m⇥n and b 2R

m,
B 2 R

(k�1)⇥n, d 2 R
k�1, b 2 R

n and d 2 R. The constraint kBx + dk2  bTx + d is the second-order
cone constraint studied in Chapter 11.1.3. It is a convex constraint but does not necessarily defines a
cone. Theorem 11.25 in Chapter 11.4.4 on strong duality, dual optimality and the KKT condition holds
verbatim in the nonsmoonth setting here. The strong duality and dual optimality follow from the Slater
Theorem 17.26. The analysis reduces the SOC constraint in (17.47) to the conic constraint in (17.43)
with an auxiliary variables z and an additional linear equality constraint (see (11.61) in Chapter 11.1.3 for
details):

zk�1 = Bx+d, zk = bTx+d , kzk�1k2  zk

We now derive the KKT condition in Theorem 11.25 using Theorem 17.20 to illustrate how points of
nondifferentiability are handled. To rewrite SOCP (17.47) as an unconstrained optimization let

B̃ :=


B
bT

�
, d̃ :=


d
d

�

and

H̃1 := {(x,z) 2 R
n+k : Ax = b} =: H1⇥R

k, H1 := {x 2 R
n : Ax = b}

K̃ := {(x,z) 2 R
n+k : kzk�1k2  zk} =: R

n⇥K, K := {z 2 R
k : kzk�1k2  zk}

H2 := {(x,z) 2 R
n+k : z = B̃x+ d̃}

with normal cones NH̃1
(x,z) = NH1(x)⇥{02Rk} and NK̃(x,z) = {02Rn}⇥NK(z). Rewrite SOCP (17.47)

as:

min
(x,z)2Rn+k

f (x) + dH̃1
(x,z) + dK̃(x,z) + dH2(x,z)

The constraint qualification in Theorem 17.20 reduces to the Slater condition H̃1\ ri(K̃)\H2 6= /0 (Remark
17.4). Under this condition Theorem 17.20 says that (x⇤,z⇤) 2 H̃1\ K̃\H2 is optimal if and only if there
exists a x ⇤ 2 ∂ f (x⇤) such that

�


x ⇤
0

�
2 NH̃1

(x⇤,z⇤)+NK̃(x⇤,z⇤)+NH2(x
⇤,z⇤) =


NH1(x

⇤)
0

�
+


0

NK(z⇤)

�
+NH2(x

⇤,z⇤) (17.48)

Theorems 17.3 and 17.9 in Chapter 17.1 give

NH1(x
⇤) = {x 2 R

n : x = ATl for some l 2 R
m}

NK(z⇤) =

8
<

:

{h 2 R
k : khk�1k2 �hk} if z⇤ = 0

{0 2 R
k} if k[z⇤]k�1k2 < z⇤k�

µ([z⇤]k�1,�z⇤k) 2 R
k : for some µ � 0

 
if k[z⇤]k�1k2 = z⇤k > 0
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Now NH2(x
⇤,z⇤) =

�
(x ,h) 2 R

n+k : x = B̃Tg, h =�g for some g 2 R
k and hence

NH2(x
⇤,z⇤) =

n
(B̃Tg,�g) 2 R

n+k : for some g 2 R
k
o

Substituting these normal cones into (17.48) leads to the following KKT condition. Suppose the SOCP
(17.47) satisfies the Slater condition that there exists x̄ such that Ax̄ = b and kBx̄ + dk2 < bTx̄ + d . We
separate three cases according to NK: A feasible x⇤ is optimal if and only if there exists x ⇤ 2 ∂ f (x⇤),
l ⇤ 2 R

m, and

1. If 0 kBx⇤+dk2 < bTx⇤+d : such that (g⇤ = 0)

x ⇤ = ATl ⇤ (17.49a)

which is the same as the KKT condition in Theorem 11.25 but also allows x⇤ with Bx⇤+d = 0 and
bTx⇤+d > 0 where the constraint function h(x) := kBx+dk2�(bTx⇤+d ) is nondifferentiable and
proves part of Theorem 11.25(3).

2. If 0 < kBx⇤+dk2 = bTx⇤+d : there exist g⇤ 2R
k and µ⇤ 2R+ such that �x ⇤ = ATl ⇤+ B̃Tg⇤ and

g⇤ = µ⇤([z⇤]k�1,�z⇤k) where z⇤ = B̃x⇤+ d̃. Eliminating g⇤ and z⇤ yields: A feasible x⇤ is optimal if
and only if there exists x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and µ⇤ 2 R+ such that

x ⇤ = ATl ⇤ + µ⇤
⇣
�BT(Bx⇤+d)+b (bTx⇤+d )

⌘
(17.49b)

This is the same as the KKT condition in Theorem 11.25 with µ⇤ there replaced by µ⇤(bTx⇤n +d ).

3. If 0 = kBx⇤+dk2 = bTx⇤+d : there exist g⇤ 2 R
k and h̃ 2 K� := {h 2 R

k : khk�1k2 �hk} such
that�x ⇤= AT(�l ⇤)+ B̃Tg⇤ and g⇤= h̃ . Eliminating g⇤ yields: x⇤ with 0 = kBx⇤+dk2 = bTx⇤+d
is optimal if and only there exist x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and h⇤ 2 K such that

x ⇤ = ATl ⇤+ B̃Th⇤ (17.49c)

The condition (17.49c) proves part of Theorem 11.25(3) where smooth analysis is not applicable
because of nondifferentiability of the constraint function at x⇤ where 0 = kBx⇤+dk2 = bTx⇤+d .

17.8.4 Conic program and convex inequality

In this subsection we derive conditions for strong duality and dual optimality and the KKT condition for
conic programs and for convex programs specified by a general convex inequality.

Conic feasible set. A generalization of SOCP (17.43) is the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (17.50)

where f : Rn ! R is a real-valued convex function, A 2 R
m⇥n, b 2 R

m, and K ✓ R
n is a closed convex

cone. Even though K ✓ R
n in (17.50) is not explicitly specified by convex inequalities, but because K is
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a convex cone, we can formulate the Lagrangian dual problem using the dual cone of K. Recall the polar
cone K� and the dual cone K⇤ of K in Definition 17.1:

K� := {x 2 R
n : xTx 0 8x 2 K} (17.51a)

K⇤ := �K� := {x 2 R
n : xTx� 0 8x 2 K} (17.51b)

Let the dual variables be l 2 R
m and µ 2 K⇤ the dual cone. Define the Lagrangian function to be

L(x,l ,µ) := f (x) � lT(Ax�b) � µTx, x 2 R
n, l 2 R

m, µ 2 K⇤ ✓ R
n

The dual function is

d(l ,µ) := min
x2Rn

L(x,l ,µ) = lTb + d0(l ,µ), l 2 R
m, µ 2 K⇤ ✓ R

n

where

d0(l ,µ) := min
x2Rn

⇣
f (x)� (ATl + µ)Tx

⌘
(17.52a)

Then the dual problem is:

d⇤ := max
l2Rm,µ2K⇤

lTb + d0(l ,µ) (17.52b)

For a linear program where f (x) = fTx, d0(l ,µ) = 0 if f = ATl + µ and �• otherwise in which case
the dual problem becomes:

d⇤ := max
l2Rm,µ⇤2K⇤

lTb s.t. f = ATl + µ

We can extend the Slater Theorem 17.26 to the more general formulation of dual problem (17.52) to
provide a condition for strong duality and dual optimality.

For KKT characterization, we again let H := {x 2Rn : Ax = b} and rewrite the primal problem (17.50)
as an unconstrained convex optimization:

min
x2Rn

f (x) + dH(x) + dK(x)

The constraint qualification in Theorem 17.20 reduces to the Slater condition H \ ri(K) 6= /0. Under this
condition Theorem 17.20 says that x⇤ 2 R

n is optimal if and only if there exists x ⇤ 2 ∂ f (x⇤) such that

�x ⇤ 2 ∂ (dH(x⇤)+dK(x⇤)) = NH(x⇤)+NK(x⇤) (17.53a)

where we have used Theorem 17.17 and Table 17.2. From Theorem 17.3 in Chapter 17.1.2,

NH(x⇤) = {x 2 R
n : x = ATl for some l 2 R

m} (17.53b)

NK(x⇤) = {µ� 2 K� ✓ R
n : µ�Tx⇤ = 0} (17.53c)

where K� is the polar cone of K in (17.51a). Substituting these normal cones into (17.53a) leads to the
KKT condition for conic program (17.50) in terms of the dual cone K⇤ of K in (17.51b).10 In summary,
provided that the Slater condition H \ ri(K) 6= /0, the Slater Theorem 17.26 and the generalized KKT
Theorem 17.20 directly imply the following result for the general conic program.

10The definition of the dual problem (17.52) does not require K to be a convex cone, but the normal cone expression (17.53c)
holds only if K is a convex cone.
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Theorem 17.30 (Strong duality and KKT for conic program). Consider the conic program (17.50) and its
dual (17.52). Suppose there exists x̄ 2 ri(K) such that Ax̄ = b. Then

1. Strong duality and dual optimality. If f ⇤ is finite then there exists a dual optimal solution (l ⇤,µ⇤) 2
R

m⇥K⇤ that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization. A feasible x⇤ is optimal if and only if there exists a subgradient x ⇤ 2 ∂ f (x⇤),
a dual feasible (l ⇤,µ⇤) 2 R

m⇥K⇤ such that

x ⇤ = ATl ⇤+ µ⇤, µ⇤Tx⇤ = 0

In this case (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

Remark 17.7. The conditions µ⇤ 2 K⇤ and µ⇤Tx⇤ = 0 define a vector µ⇤ in �NK(Bx⇤+ d) according to
Theorem 17.3 for a general convex cone K. When K is specified explicitly, these conditions define the
vector µ⇤ more specifically based on the primal optimal x⇤. For example see Theorem 11.24 or Chapter
17.8.3 when K := {x 2 R

n : kxn�1k  xn} is the second-order cone.

Conic constraint. A generalization of SOCP (17.47) is the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, Bx+d 2 K (17.54a)

where f : Rn!R is a real-valued convex function, A 2R
m⇥n, b 2R

m, B 2R
n⇥k, d 2R

k and K ✓R
k is a

closed convex cone. The feasible set may not be a cone but (17.54) is still called a conic program because
an affine transformation of x is in a closed convex cone. The dual problem can be shown to be (Exercise
17.17):

d⇤ := max
(l ,µ)2Rm+k

d(l ,µ) :=
⇣

bTl �dTµ
⌘

+ d0(l ,µ) s.t. µ 2 K⇤ ✓ R
k (17.54b)

where d0(l ,µ) := minx2Rn f (x)� (ATl + BTµ)Tx. It reduces to (17.52a)(17.52b) when B = In the
identity matrix of size n and d = 0. When f (x) = fTx, d0(l ,µ) = 0 if f = ATl +BTµ and �• otherwise
in which case the dual problem becomes:

d⇤ := max
l2Rm, µ2K⇤

lTb�dTµ s.t. f = ATl +BTµ

Theorem 17.30 on strong duality, dual optimality and the KKT characterization extends to problem (17.54)
(Exercise 17.17). The KKT condition in the next theorem reduces to that in Theorem 17.30 when B = Ik
and d = 0.

Theorem 17.31 (Strong duality and KKT for conic program). Consider the conic program and its dual
(17.54). Suppose the Slater condition is satisfies, i.e., there exists x̄ such that Ax̄ = b and Bx̄ + d 2 ri(K).
Then

1. Strong duality and dual optimality. If f ⇤ is finite then there exists a dual optimal solution (l ⇤,µ⇤) 2
R

m⇥K⇤ that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,µ⇤).
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2. KKT characterization. A feasible x⇤ is optimal if and only if there exists a subgradient x ⇤ 2 ∂ f (x⇤),
a dual feasible (l ⇤,µ⇤) 2 R

m⇥K⇤ such that

x ⇤ = ATl ⇤+BTµ⇤, µ⇤T(Bx⇤+d) = 0

In this case (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

Convex inequality constraint. A generalization of the conic programs (17.50) and (17.54) is the general
convex program whose feasible set is convex but not necessarily of the form Bx+d 2 K:

min
x2Rn

f (x) s.t. Ax = b, h(x) 0

where f : Rn!R is a convex function, A 2R
m⇥n, b 2R

m and h : Rn!R
k is a convex function. If f and

h are continuously differentiable then the KKT condition is given by the KKT Theorem 11.13. Otherwise
the derivation of the KKT condition using the nonsmooth method of this chapter is left as Exercise 17.18.

17.9 Bibliographical notes

17.10 Problems

Chapter 17.1.

Exercise 17.1 (Normal cone of dual cone). Let K ✓ R
n be a convex cone and NK(x̄) be its normal cone

at x̄ 2 K. Let K� and K⇤ := �K� denote the polar cone and the dual cone respectively of K. Show that if
x̄ 2 K⇤ then NK⇤(x̄) =�NK(x̄).

Exercise 17.2 (Image of linear transformation of convex cone). Given a convex cone X ✓R
n let Y := AX

for some matrix A 2R
m⇥n, i.e., y 2Y if and only if y = Ax for some x 2 X . Show that the two expressions

in Theorem 17.5 for the normal cone of Y at a ȳ = Ax̄ 2 Y with x̄ 2 X :

N1(ȳ) = {y 2 R
m : ATy 2 NX(x̄)}

N2(ȳ) = {y 2 R
m : ATy 2 X�, yTȳ = 0}

are equivalent.

Exercise 17.3 (Pre-image of linear transformation of convex cone). Let Y ✓ R
m be a convex cone and X

be its pre-image under a possibly singular matrix A, i.e.,

X := {x 2 R
n : Ax 2 Y}

where A 2 R
m⇥n.
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1. Show that X� ◆ ATY �.

2. If Y := {y 2 R
m : y  0} is the nonpositive quadrant, show that X� ✓ ATY �. (Hint: use Farkas

Lemma (Theorem 11.10).)

Exercise 17.4 (Pre-image of linear transformation of convex cone). Consider the convex cone Y and its
pre-image X under a singular matrix A:

Y := {y 2 R
2 : y1 � y2 � 0}, A :=


1 1
1 1

�
, X := {x 2 R

2 : Ax 2 Y}

1. Derive X�, Y � and compare ATY � and X�.

2. Derive NY (ȳ) and NX(x̄) where ȳ = Ax̄ 2 Y for x̄ = (0,0),(1,�1),(1,1).

Exercise 17.5 (Image of affine transformation of convex cone).

Exercise 17.6 (Feasible direction and normal cones). The feasible direction cone and the normal cone of
a set X ✓ R

n at x̄ 2 X are defined as:

DX(x̄) := cone(X� x̄) := {g(x� x̄) : x 2 X ,g � 0}
NX(x̄) := [DX(x̄)]� = {y 2 R

n : yT(x� x̄) 0 8x 2 X}

Let H := {x2Rn : Ax = b} where A2Rm⇥n and C✓R
n be a convex cone. Show that the feasible direction

cone and the normal cone of these sets at an x̄ in these sets are respectively:

1. DH(x̄) = {y 2 R
n : Ay = 0}. Hence NH(x̄) = {y 2 R

n : y = ATl , l 2 R
m}.

2. DC(x̄) = {y = x� g x̄ : x 2C, g � 0} and NC(x̄) = {y 2C� : yTx̄ = 0} where C� is the polar cone of
C.

Chapter 17.2.

Exercise 17.7 (Closedness and lsc of f ; [100].). 1. For a function f : Rn ! [�•,•], show that it is
closed if and only if it is lsc on R

n if and only if its level set Vg := {x| f (x) g} is closed for every
g 2 R.

2. For f : X ! [�•,•] where X ✓ R
n, show that it is closed if its effective domain dom( f ) is closed

and f is lsc on dom( f ).
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3. Consider a real-valued function f : X ! R
n where X ✓ R

n is nonempty. Extend f to the extended
real-valued function fX(x) : Rn! [�•,•] defined by

fX(x) :=
⇢

f (x) if x 2 X
• if x 62 X

Show that fX is closed (on R
n) if the effective domain dom( f ) is closed and f is lower semicontin-

uous on dom( f ).

Exercise 17.8 (Support function sX(x)). The support function of X is the extended real-valued function:

sX(x) := sup
y2X

yT x

It is proper if and only if X is nonempty and supy2X yT x < • for at least one x. For a nonempty set X ,
show that X , cl(X), conv(X), cl(conv(X)), conv(cl(X)) all have the same support function, i.e.

sX(x) = scl(X)(x) = sconv(X)(x) = scl(conv(X))(x) = sconv(cl(X))(x), x 2 R
n (17.55)

Exercise 17.9 (Conjugate functions). Prove Theorem 17.15.

Exercise 17.10 (dX , sX and their subdifferentials). Fix any nonempty subset X ✓ R
n. Consider the ex-

tended real-valued indicator function and support function defined respectively by:

dX(x) :=
⇢

0 if x 2 X
• if x 62 X , sX(x) := sup

y2X
yT x

the polar cone X� := {y : yTx 0 8x2 X}, and the normal cone NX(x̄) := cone�(X� x̄) = {y : yT(x� x̄)
0 8x 2 X} of X at x̄ 2 X . Show that:

1. The conjugate d ⇤X(y) of the indicator function dX(x) is d ⇤X(y) = sX(y).

2. If X is a cone then d ⇤X(y) = dX�(y), i.e., the support function of a cone is an indicator function of its
polar cone.

3. Suppose X is a convex set. Then subdifferential ∂dX(x) = NX(x).

4. Suppose X is a closed nonempty convex set. The conjugate of the support function s⇤X(x) = dX(x).

5. [100, Example 5.4.3, p.190] Suppose X is a closed nonempty convex set. The subdifferential
∂sX(x) = {y 2 R

n : yT x = sX(x)}.
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Chapter 17.3.

Exercise 17.11 (Subdifferential and normal cone). Consider the second-order cone program:

f ⇤ := min
x2Rn

f (x) s.t. x 2 K := {x 2 R
n : kxn�1k2  xn}

where f : Rn! R is a real-valued convex function (not necessarily differentiable) and K is the standard
second-order cone. Show, using the definition of subgardient and ∂dK(0) = NK(0) = K� (Exercise 17.10
and Theorem 17.9), that x⇤ = 0 is optimal if and only if there exists x 2 ∂ f (0) such that x 2 K.

Chapter 17.4.

Chapter 17.5.

Chapter 17.6.

Exercise 17.12 (Primal optimal solutions.). Suppose X and f in Theorem 17.25 have a common nonzero
direction of recession. If the level sets Vg = /0 for small enough g , show that:

1. There is a smallest g0 for which Vg0 6= /0.

2. The primal solution set is unbounded.

Chapter 17.7.

Exercise 17.13 (Weak duality). Let M ✓ R
n+1 be a nonempty set, not necessarily convex, and define the

following pair of problems:

w⇤ := inf
(0,w)2M

w

d⇤ := sup
µ2Rn

d(µ)

where d(µ) := inf(u,w)2M µT u+w and w⇤ := • if (0,w) 62M. Show that d⇤  w⇤.

Exercise 17.14 (Equivalent formulations). Suppose the primal problem (17.34a) is feasible. Show that
the problems in (17.36) are equivalent to those in (17.34), assuming there is a feasible point x̄ 2 dom( f )\
X 0 \{x : h(x) 0}.
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Exercise 17.15 (Nonlinear Farkas lemma). Suppose X ✓ R
n, f : X ! (�•,•] and g : X ! (�•,•]m

satisfy the conditions in Lemma 17.29, and, in particular, they satisfy the first constraint qualification:
9x̄ 2 dom( f )\X such that g(x̄) < 0. Recall the definition (17.34c) of the dual function:

d(µ) :=
⇢

infx2X f (x)+ µTg(x), µ � 0
�•, otherwise

Define

Q := {µ 2 R
m : µ � 0, f (x)+ µTg(x) � a,8x 2 X}

(Since f ⇤ � a, Q⇤ ✓ Q.) Show that

1. �d(µ) is a closed proper convex (CPC) function over Rm.

2. Q is nonempty, convex and compact.

(Hint: Use Lemma 17.29.)

Exercise 17.16 (Nonlinear Farkas lemma). 1. Extend the nonlinear Farkas Lemma 17.29 to allow g to
be a mixture of polyhedral and nonpolyhedral convex constraints. Prove your extension.

2. Use the extension to prove Theorem 17.26.

Chapter 17.8.

Exercise 17.17 (Conic program). Consider the conic program (17.54) reproduced here:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, Bx+d 2 K

where f : Rn!R is a real-valued convex function, A 2R
m⇥n, b 2R

m, B 2R
n⇥k, d 2R

k and K ✓R
k is a

closed convex cone.

1. Derive its dual problem.

2. Prove Theorem 17.31.

Exercise 17.18 (Convex inequality constraints). Consider the convex optimization

min
x2Rn

f (x) s.t. Ax = b, h(x) 0 (17.56)
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where f : Rn!R is a convex function, A2Rm⇥n, b2Rm and h : Rn!R
k are convex functions. Suppose

the Slater condition is satisfied, i.e., there exists x̄ with Ax̄ = b and h(x̄) < 0, and that the primal optimal
value is finite.

If f and h are continuously differentiable then the KKT Theorem 11.13 says that a feasible x⇤ is optimal
if and only if there exist (l ⇤,µ⇤) 2 R

m+k such that µ⇤ � 0 and

— f (x⇤)+ATl ⇤+—h(x⇤)µ⇤ = 0, µ⇤Th(x⇤) = 0 (17.57)

Suppose h is continuously differentiable but f is not. Use the nonsmooth method of this chapter to show
that the KKT condition is (17.57) with — f (x⇤) replaced by any subgradient x ⇤ 2 ∂ f (x⇤). (Hint: The
normal cone NM(x̄) of M := {x : g(x) = 0} is the range space {—g(x̄)x : for some x 2Rm} of the gradient
of g : Rn! R

m from Table 17.1.)
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Chapter 25

Appendix: mathematical preliminaries

In this chapter we review some basic concepts in linear algebra, algebraic graph theory and optimization
that we have used in this book. There are numerous excellent books on each of these topics and our goal is
not to be comprehensive or systematic in coverage, but to collect concepts and properties used throughout
this book in one place for convenience of the readers who have already had exposures to these topics.

More details (on semidefinite relaxations) and can be found in, e.g., [101, 299, 188, 157, 158, 300,
169, 155].

25.1 Linear algebra

25.1.1 Vector spaces, basis, rank, nullity

25.1.1.1 Vector spaces, subspaces, span

This subsection mostly follows [33, Chapter 0]. We restrict ourselves mostly to finite vector spaces.
Underlying a vector space is its field F , which is a set of scalars that is closed under two binary operations,
called “addition” (a+b) and “multiplication” (ab). Most often, F =R or C for us, but in general F can be
the set of rational numbers, or a set of integers modulo a specified prime number, etc. The two operations
must be associative and commutative, and each must have an identity element in the set; inverses must
exist in the set for all elements under addition and for all elements except the additive identity under
multiplication; multiplication must distribute over addition.

Definition 25.1 (Vector space). A vector space V , or linear space, over a field F is a set V of objects,
called vectors, that is closed under two binary operations:

• vector addition: + : V ⇥V ! V denoted by x+ y;

• scalar multiplication: · : F ⇥V ! V denoted by a · x =: ax;

and satisfies the following properties: for all x,y,z 2 V and a,b 2 F ,

910
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1. Associativity of vector addition: x+(y+ z) = (x+ y)+ z.

2. Commutativity of vector addition: x+ y = y+ x.

3. Identity element of vector addition: There exists 0 2 V , called the zero vector, such that x+0 = x.

4. Inverse elements of vector addition: There exists �x 2 V , called the additive inverse of x, such that
x+(�x) = 0.

5. Associativity of scalar multiplication: a(bx) = (ab)x.

6. Identity element of scalar multiplication: There exists 1 2 F , called the multiplicative identity in F
such that 1x = x.

7. Distributivity of scalar multiplication over vector addition: a(x+ y) = ax+by.

8. Distributivity of scalar multiplication over field addition: (a+b)x = ax+bx.

A subspace of a vector space V over a field F is a subset of V that is itself a vector space over F with the
same binary operations as in V .

If F = R then V is called a real vector space. If F = C then V is called a complex vector space. Given
F and an integer n the set V := Fn of n-tuples with components from F forms a vector space over F
where the vector addition “+” is defined by componentwise addition: [x + y]i = xi + yi. The vector space
Fn is important because any finite dimensional vector space can be identified with Fn for some integer n
(see Example 25.1 and the next subsection for a formal definiteion). Note that Rn is a real vector space
(V = R

n over F = R) while C
n is both a real vector space (V = C

n over F = R) and a complex vector
space (V = C

n over F = C).

A vector space V is however not restricted to V = Fn. An important finite dimensional vector space
over F is the set Mm,n(F) of m ⇥ n matrices whose entries [M]i j 2 F for any finite m and n. We can
vectorize A 2 Mm,n(F) and treat A as a vector in V = Fmn, but we will mostly treat A as an array of
scalars in V = Fm⇥n. Note that matrix multiplication is not involved in the definition of V = Fm⇥n as a
vector space (it can be treated as a composition of linear transformations when a matrix is viewed as a
linear transformation from Fn to Fm; see below). If m = n we abbreviate Mm,n(F) to Mm,n. If F = C we
abbreviate Mm,n(C) to Mm,n.

The components xi of vectors x 2 V may not be from F . Possibly infinite dimensional examples
include: the set of polynomials with real or with complex coefficients (of up to a specified degree or of
arbitrary degree) is a real or complex vector space respectively; the set of real-valued or complex-valued
functions on subsets of R or C is a real or complex vector space respectively.

If S ✓ V is a nonempty subset of the vector space V over a field F then span(S) is the intersection of
all subspaces of V that contain S. It consists of all linear combinations of finitely many vectors in S:

span(S) = {a1x1 + · · ·+akxk : x1, . . . ,xk 2 S, a1, . . . ,ak 2 F, k = 1,2, . . .}
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It can be checked that span(S) is always a subspace whether or not S is a subspace. S is said to span V
if span(S) = V . Let S1 and S2 be subspaces of a vector space over a field F . The sum of S1 and S2 is the
subspace

S1 +S2 := span{S1 [S2} = {x+ y : x 2 S1, y 2 S2}

If S1 \S2 = {0} then S1 +S2 is called a direct sum and we write it as S1 �S2. Every vector z 2 S1 �S2 can
be uniquely written as z = x+ y with x 2 S1 and y 2 S2.

Example 25.1. Consider S := {1, t, t2, . . . , tn�1}. Even though S is not a vector space its span

span(S) = {a0 +a1t + · · ·+an�1tn�1 : a0, . . . ,an�1 2 F}

is an n-dimensional vector space V that can be identified with Fn where x 2 V is defined by xi = ai,
i = 0, . . . ,n�1.

25.1.1.2 Basis, dimension, linear transformation, rank and nullity

A finite set of vectors x1, . . . ,xk in a vector space V over a field F is linearly dependent if and only if
there are scalars a1, . . . ,ak 2 F , not all zero, such that a1x1 + · · ·+akxk = 0 2 V . The vectors x1, . . . ,xk are
linearly independent if they are not linearly dependent. A linearly independent set B := {v1,v2, . . . ,} ✓ V
of vectors that spans the vector space V is called a basis. Any vector x 2 V can be uniquely expressed as
a linear combination of the basis, i.e., x = Âk akvk for a unique set of scalars ak 2 F , k = 1,2, . . . . If there
is a positive integer n such that B := {v1, . . . ,vn} is a basis of V , then all bases of V consists of exactly n
vectors and n is the dimension of V , denoted by dimV . This is because adding any vector to a basis will
render it linearly dependent and removing any vector from the basis will prevent it from spanning V . In
this case V is finite dimensional. If no such integer n exists then V is infinite dimensional. For an infinite
dimensional vector space, there is a one-to-one correspondence between the vectors in any two bases. A
subspace of a (finite) n-dimensional vector space has dimension no more than n; it is a proper subspace if
its dimension is strictly less than n.

The real vector space Rn has dimension n. The complex vector space Cn has dimension n over the field
F = C but dimension 2n over the field F = R. A basis of a vector space Fn is a set of vectors {v1, · · · ,vn}
such that any vector x 2 Fn can be expressed as a linear combination of vectors in the basis, i.e., x = Ba
for some a 2 Fn where the columns of B are the vectors {v1, · · · ,vn}. If the basis vectors are orthogonal,
i.e., vHj vk = 0 for j 6= k, then the basis is called an orthogonal basis. If the basis vectors are both orthogonal
and of unit Euclidean norm (kv jk2 = 1 for all j), then the basis is called an orthonormal basis. The basis
{e1, · · · ,en} of Fn in which the n-vector ei has a 1 in its ith entry and 0s elsewhere is called the standard
basis or the unit basis. It is an orthonormal basis. Two vector spaces U and V over the same filed F is
called isomorphic if there is an invertible function f : U ! V such that f (ax+by) = a f (x)+b f (y) for all
x,y 2U and a,b 2 F . Then f is called an isomorphism. Any n-dimensional real vector space is isomorphic
to R

n and any n-dimensional complex vector space is isomorphic to C
n.

Let V be a finite-dimensional vector space and let S1,S2 be two given subspaces of V . Then

dim(S1 \S2) + dim(S1 +S2) = dimS1 + dimS2
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Hence

dim(S1 \S2) � dimS1 + dimS2 � dimV

since S1 +S2 := span{S1 [S2} ✓V . By induction we have dim(S1 \ · · ·\Sk) � dimS1 + · · ·+dimSk �(k�
1)dimV . If d := dimS1 + · · ·+dimSk � (k �1)dimV � 1 then S1 \ · · ·\Sk contains at least d � 1 linearly
independent vectors. For example, for the vector space V := R

3 and subspaces S1,S2 defined by two
non-parallel planes, their intersection S1 \ S2 is a line in V and has a dimension at least 2 + 2 � 3 = 1.
In fact its dimension is exactly 1 because S1 + S2 = V . If S3 is a plane that is not parallel to S1 or
S2, dim(S1 \ S2 \ S3) � 2 + 2 + 2 � (2)(3) = 0. It is exactly 0 (their intersection is a point) because
S1 +S2 +S3 = V .

We can view a matrix Mm,n(F) as a vector in the vector space Fmn, or an array of scalars F in the vector
space Fm⇥n. A third perspective is to view a matrix A 2 Mm,n(F) as a linear transformation A : Fn ! Fm

mapping x to Ax. Then

• The domain of A is Fn.

• The range of A is the subspace range(A) := {Ax 2 Fm : x 2 Fn} ✓ Fm. The dimension of range(A)
is called the rank of A, denoted by rank(A).

• The null space of A is the subspace null(A) := {x 2 F
n : Ax = 0} ✓ Fn. The dimension of null(A) is

called the nullity of A, denoted by nullity(A).

The span range(A) is also called the column space of A. Similarly {yTA : y 2 Fm} is called the row space
of A. The rank-nullity theorem states that

rank(A) + nullity(A) = n = rank
⇣

AH

⌘
+ nullity(A) (25.1)

where the last equality holds if F =C or R and follows since rank(A) = rank
�
AH

�
. Note that range

�
AH

�
✓

Fn whereas range(A) ✓ Fm.

Henceforth we use Mm,n := Mm,n(C) to denote the set of m⇥n matrices whose elements are in C. We
abbreviate them to Mn := Mn(C) if m = n and use M := M(C) when m and n are arbitrary. Similarly for
Mm,n(R), Mn(R) and M(R) for matrices whose elements are in R. We often write A 2C

m⇥n (or A 2R
m⇥n)

and call A a complex (or real) matrix to mean a matrix A in M (or M(R)) of size m⇥n.

25.1.2 Polyhedral set and extreme point

We follow [100, Chapter 2] and define a polyhedral set X ✓ R
n as a nonempty set specified by a finite

number of affine inequalities:

X := {x 2 R
n : Ax  b}

for a given A 2 R
m⇥n and b 2 R

m. Hence a polyhedral set is nonempty closed and convex. An important
characterization of a polyhedral set is the following result e.g. [100, Proposition 2.3.3, p.106].
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Theorem 25.1 (Minkowski-Weyl representation). A set X ✓R
n is polyhedral if and only if there is a finite

set {v1, . . . ,vm} and a finitely generated cone K := cone(a1, . . . ,ak) such that

X = conv(v1, . . . ,vm) + cone(a1, . . . ,ak)

i.e.

X =

(
x 2 R

n : x =
m

Â
i=1

aivi + y, ai � 0,Â
i

ai = 1, y 2 K

)

Given a nonempty convex set X ✓ R
n a vector x 2 X is an extreme point if there does not exist y 6= x,

z 6= x, and a 2 (0,1) such that x = az + (1 � a)y, or equivalently, if x is not a convex combination of
other vectors in X that are distinct from x. Several facts are useful. An interior point cannot be an extreme
point and an open set has no extreme points. A cone may have at most one extreme point, the origin. A
polyhedral set has at most finitely many extreme points, and the minimum of a linear program is attained
at an extreme point of its polyhedral feasible set. A polyhedral set may not possess any extreme points
e.g. X = {(x1,x2) : x1 = x2}. The following result from [100, Propositions 2.1.5 and 2.1.3, p.98] provides
an exact characterization of the existence of extreme points for polyhedral sets.

Lemma 25.2. 1. Let X := {x 2R
n : Ax  b} for some A 2R

m⇥n and b 2R
m be a polyhedral set. Then

X has an extreme point if and only if A has n linearly independent rows, i.e., rank A = n.

2. Let X ✓ R
n be a closed convex set. If for some A 2 R

m⇥n of rank n and b 2 R
m we have Ax  b for

all x 2 X . Then X has at least one extreme point.

A convex set that is compact is the convex hull of its extreme points; see e.g. [107, Theorem 2.3.4,
p.111]. Carathéodory theorem then implies that every vector is a convex combination of at most n + 1
extreme points. These constituent extreme points, however, may be different for different vectors.

Lemma 25.3. Let X ✓ R
n be convex and compact. Then

1. X = conv{extreme points of X}.

2. If x 2 X then x = Ân+1
i=1 aivi where ai 2 [0,1] and Âi ai = 1, and vi are extreme points of X .

25.1.3 Schur complement and matrix inversion formula

25.1.3.1 Schur complement

Let M 2 C
n⇥n and partition it into blocks:

M =


A B
D C

�
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such that C 2 C
k⇥k, k < n, is invertible and the other submatrices are of appropriate dimensions. The

(n� k)⇥ (n� k) matrix M/C := A�BC�1D is called the Schur complement of block C of matrix M. If A
is invertible then the k⇥k matrix M/A := C �DA�1B is called the Schur complement of block A of matrix
M.

Example 25.2 (Gaussian elimination). Schur complement arises from applying Gaussian elimination to a
system of linear equations such as:


A B
D C

� 
x
y

�
=


b1
b2

�
,


Ax+By
Dx+Cy

�
=


b1
b2

�

When C is invertible, Gaussian elimination expresses y in terms of x by multiplying the second equation
by BC�1 and subtracting the result from the first equation. This corresponds to multiplying the equations
on the left by a block lower-triangular matrix:


In�k �BC�1

0 C�1

�
A B
D C

�
x
y

�
=


A�BC�1D 0

C�1D Ik

�
x
y

�
=


b̂1
b̂2

�
(25.2a)

where


b̂1
b̂2

�
:=


b1 �BC�1b2

C�1b2

�

If the Schur complement of C is invertible then the solutions for (x,y) can be read off equation (25.2a) as

x =
�
A�BC�1D

��1 b̂1 = (M/C)�1 b̂1

y = �C�1Dx + b̂2 = �C�1D(M/C)�1 b̂1 + b̂2

This means that


A�BC�1D 0
C�1D Ik

��1
=


(M/C)�1 0

�C�1D(M/C)�1 Ik

�
(25.2b)

Gaussian elimination can be represented as


In�k �BC�1

0 Ik

� 
A B
D C

� 
In�k 0

�C�1D Ik

�
=


A�BC�1D 0

0 C

�
(25.3)

This equation implies (since det(M1M2) = det(M1)det(M2))

det(M) = det(C) det(M/C)

rank(M) = rank(C) + rank(M/C)

Theorem 25.4 (Schur complement). Let M 2 C
n⇥n be partitioned as above with nonsingular C. Let

M/C := A�BC�1D be the Schur complement of C of matrix M.
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1. M is nonsingular if and only if M/C is nonsingular (given C is nonsingular).

2. det(M) = det(C) det(M/C).

3. rank(M) = rank(C) + rank(M/C).

4. M is positive definite if and only if C and M/C are positive definite.

5. If M and C are invertible, then M/C is invertible and

M�1 =


(M/C)�1 �(M/C)�1 BC�1

�C�1D(M/C)�1 C�1 +C�1D(M/C)�1 BC�1

�

6. If M and A are invertible, then M/A := C �DA�1B is invertible and

M�1 =


A�1 +A�1B(M/A)�1DA�1 �A�1B(M/A)�1

�(M/A)�1DA�1 (M/A)�1

�

Proof. Assertions 1, 2, 3 follow from (25.3). Example 25.2 shows that (from (25.2a)):


In�k �BC�1

0 C�1

� 
A B
D C

�
=


A�BC�1D 0

C�1D Ik

�
(25.4)

M is singular if and only if there exists a nonzero vector (x,y) in null(M). Since the first matrix on the
left-hand side of (25.4) is of full rank, this is equivalent to:


A�BC�1D 0

C�1D Ik

�
x
y

�
= 0 , (A�BC�1D)x = 0, y = C�1Dx

Hence M is singular if and only if A � BC�1D is singular. Applying det(M1M2) = det(M1)det(M2) to
(25.4) we have det(M) = det(C) det(A�BC�1D) = det(C) det(M/C).

To prove 4, we have from (25.2)


A B
D C

��1 
In�k �BC�1

0 C�1

��1
=


A�BC�1D 0

C�1D Ik

��1
=


(M/C)�1 0

�C�1D(M/C)�1 Ik

�

Hence


A B
D C

��1
=


(M/C)�1 0

�C�1D(M/C)�1 Ik

�
In�k �BC�1

0 C�1

�

=


(M/C)�1 �(M/C)�1 BC�1

�C�1D(M/C)�1 C�1D(M/C)�1 BC�1 +C�1

�

The last assertion can be proved in the same way by eliminating x instead of y in Example 25.2; see
Exercise 25.3.

Let I := {i1, . . . , ik} ✓ {1, . . . ,n}, J := { j1, . . . , jl} ✓ {1, . . . ,n}, and AIJ denote the submatrix obtained
from deleting rows not in I and columns not in J.
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• If k = l, i.e., AIJ is square, then the minor MIJ of A is the determinant of the submatrix AIJ .

• If I = J, then AIJ is called a principal submatrix and MIJ a principal minor of A.

• If I = J = {1, . . . ,k} with k  n, then AIJ is called a leading principal submatrix of order k and MIJ
a leading principal minor of order k.

Theorem 25.5 (Slyvester’s criterion). Suppose A is Hermitian. Then

1. A is positive definite if and only if all its leading principal minors are positive. This involves n
determinants: those of the upper left 1⇥1 matrix, upper left 2⇥2 matrix, . . . , det(A).

2. A is positive semidefinite if and only if all its principal minors are nonnegative. This involves✓
n
1

◆
+

✓
n
2

◆
+ · · ·+

✓
n
n

◆
determinants.

25.1.3.2 Matrix inversion lemma

A useful identity is the matrix inversion lemma or Sherman-Morrison-Woodbury formula. Let A 2 C
n⇥n,

B 2 C
n⇥k, C 2 C

k⇥k and D 2 C
k⇥n. Suppose A, C and the k ⇥ k matrix

Ĉ := C�1 +DA�1B (25.5a)

are invertible. Then

(A+BCD)�1 = A�1 � A�1 �
BĈ�1D

�
A�1 (25.5b)

An important case is when k ⌧ n. Then the k⇥k matrix C is much smaller than A and the multiplication
of C by B and D on the left and right respectively produces an n⇥n matrix BCD of the right size for addition
with A. Similarly reversing the order of multiplication produces a much smaller k ⇥ k matrix DA�1B for
addition with C�1 to produce the matrix Ĉ in (25.5a). We can thus view the role of (B,D) as transforming
between sizes n and k to simplify the inversion of large matrices. In many applications BCD represents a
low-rank update of A in a dynamical system or an additive noise to a transmitted signal A so that A+BCD
is the received signal. Suppose A�1 has been precomputed. Then Ĉ is much smaller and easier to invert
than A + BCD. The matrix inversion formula allows us to compute the inverse of the updated or noisy
matrix A+BCD in terms of A�1 and Ĉ�1 when they exist.

Many special cases are useful. For instance when A = In and C = Ik we have:

(In +BD)�1 = In � B(Ik +DB)�1 D

Note that BD is n ⇥ n while DB is k ⇥ k and hence the inverse on the right-hand side can be much easier
to compute than that on the left-hand side. Using the push-through identity (see Exercise 25.4) this is
equivalent to:

(In +BD)�1 = In � (In +BD)�1 BD = In � BD(In +BD)�1
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When k = n and B = D = In we have the inversion formula for sum of two matrices:

(A+C)�1 = A�1 � A�1 �
C�1 +A�1��1 A�1

Merging A�1 �
C�1 +A�1��1 A�1 we have Hua’s identity:

(A+C)�1 = A�1 �
�
A+AC�1A

��1

25.1.4 Change of basis, diagonalizability, Jordan form

Recall that we can interpret any m ⇥ n complex matrix M as a linear transformation that maps a vector
x 2 C

n to a vector y = Mx 2 C
m, where the basis in the domain C

n is the standard basis consisting of
the columns of the n ⇥ n identity matrix In and the basis in the range C

m is the standard basis consisting
of the columns of Im. Suppose we want to change the basis of the domain to (the columns of) an n ⇥ n
nonsingular matrix V and the basis of the range to (the columns of) an m⇥m nonsingular matrix U . What
is the new matrix M̃ that represents the same linear map with respect to the new bases?

25.1.4.1 Similarity transformation

Since V and U are bases of Cn and C
m respectively we can express a ny x 2 C

n in terms of V and any
vector y 2 C

m in terms of U as

Inx = V x̃ and Imy = U ỹ

Hence the linear transformation M that maps any vector x 2 C
n to a vector y = Mx 2 C

m with respect to
the standard bases implies

U ỹ = y = Mx = MV x̃

Hence

ỹ = U�1MV| {z }
M̃

x̃

This means that any vector x̃ in the domain C
n with respect to the new basis U is mapped to the (same)

vector ỹ in the range C
m with respect to the new basis V by the matrix

M̃ := U�1MV or M = UM̃V

For the special case where n = m and the new bases for the domain and the range are the same, U = V ,

M̃ = U�1MU (25.6)

i.e., the new matrix M̃ represents the linear transformation under the new basis U . The mapping of M
to U�1MU is called a similarity transformation of M by the nonsingular similarity matrix U . This is
illustrated in Figure 25.1.
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Figure 25.1: Change of bases. The new matrix M̃ = U�1MU is similar to the original matrix M when
n = m and U = V .

25.1.4.2 Diagonalizabilty and Jordan form

For the case where n = m and U = V , if the basis U in (25.6) is such that M̃ = L is diagonal then the
diagonal entries li of L are the eigenvalues of M with the ith columns ui of U as their corresponding
eigenvectors, since

MU = UL or Mui = liui, i = 1, . . . ,n

M is said to be diagonalizable in this case, i.e., by definition, M is diagonalizable if it is similar to a
diagonal matrix L.

Not all n⇥n matrix M over the complex field is diagonalizable through a similarity transformation. We
see above that M is diagonalizable if M has n linearly independent eigenvectors. Indeed having n linearly
independent eigenvectors is also necessary for M’s diagonalizability.1 When M has fewer than n linearly
independent eigenvectors, M is not similar to a diagonal matrix, but to a Jordan form, i.e., there exists an
invertible matrix V such that

V �1MV = J :=

2

64
J1

. . .
Jm

3

75

where Ji, i = 1, . . . ,m, are Jordan blocks of M:

Ji :=

2

6664

li 1

li
. . .
. . . 1

li

3

7775

1A square matrix M 2C
n⇥n is said to be unitarily diagonalizable if U�1 =UH in (25.6). It can be shown that any M 2C

n⇥n

is unitarily diagonalizable if and only if it is normal (MM⇤ = M⇤M); see Chapter 25.1.6.
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To compute the columns of V , consider Jordan block Ji and suppose without loss of generality that it
corresponds to columns 1,2, . . . ,ki. Equate these ki columns on both sides of MV = V J to get

M

2

4
| | |

v1 v2 · · · vki
| | |

3

5 =

2

4
| | |

v1 v2 · · · vki
| | |

3

5

2

6664

li 1

li
. . .
. . . 1

li

3

7775

Therefore v1 is the eigenvector corresponding to the eigenvalue li and can be computed from

(M �liIn)v1 = 0 (25.7a)

The other columns v2, . . . ,vki are not eigenvectors. They satisfy Mv j = v j�1 +liv j, j = 2, . . . ,ki, and can
be computed from

(M �liIn)v j = v j�1, j = 2, . . . ,ki (25.7b)

Multiplying both sides by M �liIn yields (M �liIn)2v j = v j�2. Repeated multiplications then imply that
the columns v1, . . . ,vki satisfy:

(M �liIn)v1 = 0 (v1is eigenvector)
(M �liIn)

2v2 = 0 (v j are generalized eigenvectors, j = 2, . . . ,ki)
...

(M �liIn)
kivki = 0

The characteristic polynomial p(x) := det(xIn �M) of M can be expressed in terms of the eigenvalues li:

p(x) := det(xIn �V JV �1) = det
�
V (xIn � J)V �1� = det(xIn � J) =

m

’
i=1

det(xIki � Ji)

where Ji is the ith Jordan block of size ki ⇥ki, and Iki is the identity matrix of the same size. Since a Jordan
block is upper triangular we have

det(xIki � Ji) = (x�li)
ki

and hence

p(x) =
m

’
i=1

(x�li)
ki

There can be more than one Jordan block whose diagonal entries are the repeated eigenvalue li. Let
q be the number of distinct eigenvalues l j, j = 1, . . . ,q, and let m j be the number of Jordan blocks corre-
sponding to the distinct eigenvalue l j, so that m = Âq

j=1 m j. Then the characteristic polynomial can also
be expressed in terms of distinct eigenvalues as:

p(x) =
m

’
i=1

(x�li)
ki =

q

’
j=1

m j

’
i=1

(x�l j)
ki

For each distinct eigenvalue l j, there are two quantities of interest:
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1. geometric multiplicity of l j: This is the number m j of Jordan blocks corresponding to l j. It is the
dimension of the null space of M �l jIn since each such block yields a single eigenvector of M.

2. algebraic multiplicity of l j: This is the sum Âm j
i=1 ki of the sizes ki of all these Jordan blocks. It is

the maximum degree of the factor x�l j in the characteristic polynomial p(x) of M.

Hence for each distinct eigenvalue l j

algebraic multiplicity
m j

Â
i=1

ki � geometric multiplicity m j

We summarize implications of algebraic and geometric multiplicities on the diagonalizability of M in the
following theorem.

Theorem 25.6. With the notations above,

1. For each distinct eigenvalue l j, algebraic multiplicity = geometric multiplicity = m j if and only
if all Jordan blocks corresponding to l j have sizes ki = 1. In this case, there are m j eigenvectors
corresponding to l j, they are linearly independent, and the null space of M � l jIn has dimension
m j.

2. M is diagonalizable if and only if algebraic multiplicity = geometric multiplicity for all eigenval-
ues, if and only if all Jordan blocks have sizes 1 and hence all superdiagonal entries are zero, if and
only if M has n linearly independent eigenvectors.

3. As a special case, M is diagonalizable if M has n distinct eigenvalues (and hence all Jordan blocks
are of size 1, m j = ki = 1 = algebraic multiplicity = geometric multiplicity).

25.1.5 Special matrices

Definition 25.2 (Square matrices). 1. A real or complex matrix A 2 F
n⇥n, with F = R or C, is sym-

metric if AT = A, skew-symmetric if AT = �A, and orthogonal if AT = A�1.

2. A complex matrix A 2 C
n⇥n is Hermitian if AH = A, skew-Hermitian if AH = �A, and unitary if

AH = A�1.

3. A complex matrix A 2 C
n⇥n is normal if AAH = AHA. If A is real, this reduces to AAT = ATA.

4. Positive semidefiniteness.

• A complex matrix A 2 C
n⇥n is positive semidefinite (psd) (or positive definite (pd)) if xHAx is

real and nonnegative (or real and positive) for all x 2 C
n.

• A real symmetric matrix A 2 R
n⇥n is positive semidefinite (psd) (or positive definite (pd)) if

xTAx � 0 (or xTAx > 0) for all x 2 R
n.

• A complex or real matrix A is negative semidefinite (nsd) (or negative definite (nd)) if �A is
psd (or pd). It is indefinite if there are vectors y,z 2 F 2 {C,R} such that y⇤Ay < 0 < z⇤Az.
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Remark 25.1. 1. A real orthogonal matrix or a unitary matrix has columns (or rows) that are an or-
thonormal list of vectors; indeed they are orthonormal basis of Rn or Cn. A complex orthogonal
matrix however is generally not unitary and their columns (or rows) are generally not orthonormal.

2. All Hermitian (symmetric), skew-Hermitian (skew-symmetric), or unitary complex matrices are
normal, but the converse is not generally true. A real symmetric matrix is normal, but a complex
symmetric matrix may or may not be normal (see Chapter 25.1.6.4). If A is both triangular and
normal, then A is diagonal.

3. A complex Hermitian (skew-Hermitian) matrix behaves like a real symmetric (skew-symmetric)
matrix, e.g., they have real eigenvalues and are normal matrices. It therefore has a spectral decom-
position according to Theorem 25.13. A complex Hermitian matrix has real diagonal entries.

4. A complex symmetric matrix may or may not be normal. It therefore may or may not have a spectral
decomposition (Theorem 25.13). It always have a singular value decomposition (Theorem 25.11)
and a Takagi decomposition (Theorem 25.17), and these are generally different decompositions.

5. Our definition of psd (or pd) requires symmetry for real matrices, but does not require Hermitian for
complex matrices. This is because, for a complex matrix A 2 C

n⇥n, A is psd (or pd) if and only if
A is Hermitian and its eigenvalues are nonnegative (or positive), so our Definition 25.2 for complex
matrices implies Hermitian. For a real matrix A 2 R

n⇥n, on the other hand, A can satisfy xT Ax � 0
for all x 2 R

n but not be symmetric (as long as its symmetric component (A + AT )/2 is psd or pd).
Following [33, Definition 4.1.11, p. 231], we therefore restrict our definition to real symmetric
matrices. Then A is psd (or pd) if and only if all its eigenvalues are nonnegative (or positive) [33,
Theorem 4.1.10, p.231].

Theorem 25.7 (Eigenvalues). 1. A matrix A, real or complex, is invertible if and only if all its eigen-
values are nonzero.

2. If a matrix A is real symmetric or complex Hermitian, then all its eigenvalues are real.

3. A matrix A, real or complex, is psd (pd) if and only if AH = A and all its eigenvalues are real and
nonnegative (positive).

Definition 25.3 (Diagonal dominance). A matrix A 2 C
n⇥n is diagonally dominant if

|Aii| � Â
j: j 6=i

|Ai j| for all rows i

A is strictly diagonally dominant if the inequalities are strict for all rows i.

The Geršgorin disc theorem states that all eigenvalues of a matrix A 2 C
n⇥n lie in the union of n discs

[n
i=1

(
z 2 C

n : |z�Aii|  Â
j: j 6=i

|Ai j|
)
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If A is strictly diagonally dominant then the origin is outside Geršgorin discs, i.e., all eigenvalues of A are
nonzero. The geometry of the Geršgorin discs also implies the following property.

Theorem 25.8. 1. A strictly diagonally dominant matrix is invertible (but not necessarily positive def-
inite).

2. Suppose A 2 C
n⇥n is Hermitian with (real) nonnegative diagonal entries Aii � 0.

• If A is diagonally dominant then it is positive semidefinite.
• If A is strictly diagonally dominant then it is positive definite and invertible.

Proof. Part 1 follows from the Geršgorin disc theorem. For part 2, for any x 2 C
n we have

x⇤Ax = Â
i, j

Ai jx⇤
i x j = Â

i

 
Aii|xi|2 + Â

j: j 6=i
Ai j x⇤

i x j

!

Substitute Aii � Â j: j 6=i |Ai j| (diagonal dominance) to get

x⇤Ax � Â
i

Â
j: j 6=i

�
|Ai j||xi|2 + Ai j x⇤

i x j
�

= Â
(i, j):i6= j

�
|Ai j||xi|2 + |A ji||x j|2 + Ai j x⇤

i x j +A ji x⇤
j xi
�

Since A ji = A⇤
i j (A is Hermitian) we have

x⇤Ax � Â
(i, j):i 6= j

|Ai j|
�
|xi|2 + |x j|2 � |x⇤

i ||x j|� |x⇤
j ||xi|

�
= Â

(i, j):i6= j
|Ai j|

�
|xi|� |x j|

�2 � 0

If A is strictly diagonally dominant then the inequality is strict and therefore A is positive definite.

Unitary matrices have the following properties (e.g. [33, Theorem 2.1.4, p.84]).

Lemma 25.9. Consider a complex matrix U 2 Mn := Mn(C). The following are equivalent:

• U is unitary.

• UHU = I.

• The columns of U are orthornormal.

• UH is unitary.

• UUH = I.

• The rows of U are orthornormal.

• kUxk2 = kxk2 for all x 2 C
n where k ·k2 is the Euclidean norm.

In fact, the Euclidean norm is the only vector norm that is unitarily invariant, i.e., kUxk = kxk for all
x 2 C

n and all unitary matrices U with keik = 1; see Chapter 25.1.8.1.

Recall that a unitary matrix is normal because UUH = UHU = I, and hence unitarily diagonalizable
(Theorem 25.13).
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Lemma 25.10. Suppose U 2 Mn := Mn(C) is unitary and symmetric. Then

1. If U = diag(a1, · · · ,an) is diagonal then a j = eiq j for some q j 2 R
n.

2. Spectral decomposition. There exist real orthogonal matrix Q 2 R
n⇥n and real q1, · · · ,qn in [0,2p)

such that

U = Q diag
⇣

eiq1 , · · · ,eiqn
⌘

| {z }
L

QT =: QLQT

where l j := eiq j are the eigenvalues of U and the columns of Q are an orthonormal set of corre-
sponding (real) eigenvectors of U .

3. It has a square root, i.e., there is a unitary symmetric matrix B := QL1/2 QT such that Q = B2.

For proof that U is unitarily diagonalizable, i.e., U = QLQ, see Corollary [33, 2.5.18, p.139]. The
existence of the square root B relies on the fact that U is unitarily diagonalizable whose eigenvalues
l j satisfy |l j| = 1, so that BBH = I. Lemma 25.10 justifies the interpretation of a unitary matrix as a
rotation operator, i.e., the product Ux rotates the vector x without expanding its Euclidean norm, kUxk =
kQLQxk = kLQxk = kQxk = kxk.

25.1.6 SVD, spectral decompositions, complex symmetric matrices

In this subsection we review the various matrix decompositions and their relationship, as shown in Figure
25.2.

25.1.6.1 Singular value decomposition for any matrix

Consider a complex matrix A 2C
m⇥n. Suppose there exists a real value s � 0 and nonzero vectors v 2C

m,
w 2 C

n such that

Aw = s v (25.8)

In this case, (s ,v,w) are called respectively a singular value, associated left singular vector and right
singular vector of A. The next result says that every matrix A has m orthonormal left singular vectors
v1, . . . ,vm 2 C

m, n orthonormal right singular vectors w1, . . . ,wn 2 C
n, and at most q := min{m,n} strictly

positive singular values s1, . . . ,sq. Like eigenvalues the singular values si are unique. Like eigenvectors,
left and right singular vectors (vi,wi) are generally not unique. As we will see below, they are eigenvectors
of AAH and AHA respectively; but the converse may not hold, i.e., not every eigenvector of AAH and that
of AHA may satisfy (25.8). For example, if (vi,wi) are singular vectors of unit Euclidean norm, so are
(eiq vi, eiq wi) for any q 2 R. Moreover the matrix A can be factorized as follows [33, Theorem 2.6.3,
p.150].
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Figure 25.2: Matrix decompositions. Correction: For complex symmetric A, the unitary factor U in Takagi
factorization is generally not eigenvectors of AAH.
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Consider an m ⇥ n matrix S and a diagonal matrix Sq = diag(s1, · · · ,sq) of size q := min{m,n}. We
will abuse notation and call S diagonal, even if m 6= n, if S is of the form:

S =

8
>><

>>:

Sq if m = n⇥
Sq 0

⇤
if n > m = q

Sq
0

�
if m > n = q

(25.9)

Theorem 25.11 (Singular value decomposition). For any matrix A 2 C
m⇥n, there exists unitary matrices

V 2 C
m⇥m and W 2 C

n⇥n, and a real diagonal matrix S 2 R
m⇥n of the form in (25.9) with

s1 � s2 · · · � sq � 0

such that

AW = V S or A = V SWH (25.10)

with V �1 = VH and W�1 = WH. Moreover

1. The nonzero singular values of A are the positive square roots of the eigenvalues of AAH (or equiva-
lently of AHA):

si = +
q

li(AAH) = +
q

li(AHA), i = 1, . . . ,q

2. If r  q of the q singular values si are positive, then A is of rank r and

A =
r

Â
i=1

si viwH

i

3. If V and W are unitary matrices such that A = V SWH then

• the columns of V are an orthonormal set of eigenvectors of AAH because AAH = V S2VH, and

• the columns of W are an orthonormal set of eigenvectors of AHA because AHA = WS2WH;

but the converse does not necessarily hold.

If A is real then V and W can be taken as real orthogonal matrices.

The rank of A is the number its positive singular values, which is no less than (and can be greater than)
the number of its nonzero eigenvalues of A. As we will see below (Theorem 25.13) rank(A) is equal to
the number of nonzero (generally complex) eigenvalues if A is normal.

Theorem 25.11 does not provide a method to compute the unitary factors (V,W ) in the singular value
decomposition (25.10). This is because not every pair of orthonormal sets of eigenvectors of AAH and AHA
respectively may be the unitary factors (V,W ) in (25.10) when the eigenvalues associated with AAH or
with AHA are not distinct. We describe how to compute unitary factors (V,W ) in (25.10) when A is square
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(m = n) (see [33, Theorem 2.6.3, p.150] for details). When A is not normal, AAH and AHA are not equal,
but they are unitarily similar since they have the same eigenvalues, i.e., there exists a unitary matrix Y
such that AHA = Y (AAH)YH. Moreover YA is normal and hence it has a spectral decomposition according
to Theorem 25.13, YA = XLXH where L := diag(l1, · · · ,ln) consists of the eigenvalues of YA and the
columns of X are an arbitrary orthonormal set of corresponding eigenvectors of YA. Let li = |li|eiqi ,
Sq := diag(|l1|, · · · , |ln|), D := diag

�
eiq1 , · · · ,eiqn

�
so that L = SqD. Then, since YA = XSqDXH, we

have

A =
⇣

YHX
⌘

| {z }
V

Sq

⇣
DXH

⌘

| {z }
WH

(25.11)

i.e., V := YHX and W := XDH. We illustrate this in the next example.

Example 25.3. Consider A :=


0 1
1 0

�
. Show that

1. Not arbitrary orthonormal sets of eigenvectors of AAH and AHA can be the unitary matrices (V,W )
in the SVD (25.10).

2. Compute (V,W ) according to the prescription (25.11). (Since A is real symmetric and hence normal,
an alternative way to compute a (possibly different) pair (V,W ) is given in Theorem 25.16; see
Example 25.4.)

Solution. The matrices AAH and AHA are

AAH = AHA = A2 =


1 0
0 1

�
= I

Therefore the eigenvalues of AAH and those of AHA are 1 and S = I. Moreover every vector x is an eigen-
vector of AAH and of AHA, but not arbitrary orthonormal sets of eigenvectors can be (V,W ) in SVD (25.10).
For instance, if Q is any unitary matrix (and hence its columns are an orthonormal set of eigenvectors of
AAH and of AHA), V = W = Q does not satisfy (25.10):

QSQH = QQH = I 6= A

It is therefore necessary that V and W are different matrices in (25.10).

To compute (V,W ) using (25.11), we choose Y = I to be the identity matrix that relates AAH and AHA
through unitary similarity, i.e., AHA = I = Y (AAH)YH. Next we compute the spectral decomposition of
YA: the eigenvalues of YA = A are l1 := 1, l2 := �1 with corresponding orthonormal set of eigenvectors
(unique up to a rotation)

x1 :=
1p
2


1
1

�
, x2 :=

1p
2


1

�1

�

Hence

YA = A = XLXH =
1
2


1 1
1 �1

� 
1 0
0 �1

� 
1 1
1 �1

�
=


0 1
1 0

�



928 Draft: EE 135 Notes April 30, 2024

Then D := diag
�
eiq1 ,eiq2

�
= diag(1,�1) and hence

Sq := diag(|l1|, |l2|) = I, V := YHX =
1p
2


1 1
1 �1

�
, W := XDH =

1p
2


1 �1
1 1

�

It can be verified that indeed A = V SqWH.

Suppose m  n but rank(A) =: r < m. For a given V in the theorem, even though A = V SWH, W
defined by WH := S†VHA generally does not satisfy the singular value decomposition (25.10) because in
that case V SWH = V S

�
S†VHA

�
6= A because V SS†VH 6= Im; see Exercise 25.7. Here S† is obtained from

S by replacing its positive singular values si by 1/si and taking the transpose.

The set of singular values making up S is unique. The unitary factors (V,W ) is non-unique, but given
a pair, all possible pairs can be related, according to the following result from [33, Theorem 2.6.5, p.152].

Theorem 25.12 (Uniqueness of (V,W )). Let A 2 C
m⇥n have a singular value decomposition A = V SWH

as in Theorem 25.11. Then

1. A = V̂ SŴ for some unitary matrices (V̂ ,Ŵ ) if and only if there are unitary block-diagonal matrices
Ṽ and W̃ such that

V̂ = VṼ , Ŵ = WW̃

2. If A is square (m = n) and nonsingular then Ṽ = W̃ .

Properties of singular values.

1. Matrix transpose and conjugate: si(A) = si(AT ) = si(AH) = si(A).

2. Unitary transformation: for any unitary matrices U and V , si(A) = si(UAV ). In particular si(A) =
si(UA) = si(AV ) (setting V = I or U = I).

3. Interlacing properties:

• If B denote A with one of its rows or columns deleted, then

si+1(A)  si(B)  si(A)

• If B denote A with one of its rows and columns deleted, then

si+2(A)  si(B)  si(A)

• If B denote any (m� k)⇥ (n� l) submatrix of A, then

si+k+l(A)  si(B)  si(A)
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4. Singular values of A+B: for any A,B 2 C
m⇥n

• Âk
i=1 si(A+B)  Âk

i=1 (si(A)+si(B)), k = min{m,n}.
• si+ j�1(A+B)  si(A)+s j(B), i+ j �1  min{m,n}.

5. Singular values of AB: for any A,B 2 C
m⇥n

• sn(A)si(B)  si(AB)  s1(A)si(B).
• ’k

i=1 si(AB)  ’k
i=1 si(A)si(B).

6. Singular value and eigenvalues: For any matrix A 2 C
n⇥n

• If A is normal, then si(A) = |li(A)|, i = 1, . . . ,n. (Note that li(A) 2 C.)
Proof: Spectral theorem gives A =ULUH; hence AAH =ULLUH =U |L|2UH. Hence |li(A)|2
are eigenvalues of AAH, implying si(A) =

p
li(AAH) = |li(A)|.

• Weyl’s theorem: Assume eigenvalues satisfy |l1(A)| � · · · � |ln(A)|. Then

k

’
i=1

|li(A)| 
k

’
i=1

si(A), k = 1, . . . ,n

Consider the set of complex square matrices, i.e., m = n. Every square matrix A 2 C
n⇥n is similar to a

Jordan form J, i.e., there exists an invertible matrix P 2 C
n⇥n such that

A = PJP�1

A is said to be diagonalizable if its Jordan form J =: L is diagonal. Therefore A is diagonalizable if and
only if A has n linearly independent eigenvectors; see Theorem 25.6. In that case the columns of P are
these eigenvectors, L has the corresponding eigenvalues on its diagonal, and AP = PL.

25.1.6.2 Spectral decomposition for normal matrices

Recall that A is normal if AAH = AHA and that all unitary, Hermitian, or skew-Hermitian matrices are
normal (the converse is not generally true). For any matrices A,B 2 C

n⇥n, if BA = I then B is unique and
B = A�1. This is because A being nonsingular means that Ax = b and xT A = bT has a unique solution x
for any b 2 C

n; take b to be each column of I.

Normal matrices are exactly those that are unitarily diagonalizable to which the spectral theorem
applies [33, Theorem 2.5.3, p.133].

Theorem 25.13 (Spectral theorem for normal matrices). A complex square matrix A 2 C
n⇥n is normal

if and only if it is unitarily diagonalizable, i.e., there exists a unitary matrix U 2 C
n⇥n and a complex

diagonal matrix L 2 C
n⇥n with

A = ULUH =
n

Â
i=1

liuiuHi (25.12)

where



930 Draft: EE 135 Notes April 30, 2024

1. the diagonal entries of L = diag(l1, . . . ,ln) are eigenvalues of A (generally complex);

2. the columns of U are an arbitrary orthonormal set of corresponding eigenvectors of A.

Hence if A is normal, then rank A = number of nonzero eigenvalues and the sum in (25.12) becomes

A = ULUH =
rank A

Â
i=1

liuiuHi

Hence while A is diagonalizable if and only if it has n linearly independent eigenvectors, A is unitarily
diagonalizable (or equivalently normal) if and only if it has an orthonormal set of n eigenvectors.

The eigenvalues L of A in Theorem 25.13 are unique, but the eigenspace of A always has more than
one orthonromal basis. Since two basis U and V can always be related by a unitary matrix, we have the
following uniqueness result from [33, Theorem 2.5.4, p.134].

Theorem 25.14 (Uniqueness of unitary U). Let A 2 C
n⇥n be normal with spectral decomposition A =

ULUH where U is unitary and L is diagonal matrix consisting of the eigenvalues of A. Then

1. A = V LVH for a unitary matrix V if and only if there is a block-diagonal unitary matrix W such that
U = VW .

2. In particular, if A has n distinct eigenvalues then W is a diagonal unitary matrix of the form W =
diag

�
eiq1 , · · · ,eiqn

�
.

3. Two normal matrices A and B are unitarily similar, i.e., A = WBWH for some unitary matrix W , if
and only if they have the same eigenvalues.

For a normal matrix A the eigenvalues li are complex in general. A normal matrix A is Hermitian if
and only if all its eigenvalues are real. If A is Hermitian then the eigenvalues are real [301, Theorem 4.1.5,
p.171].

Theorem 25.15 (Spectral theorem for Hermitian matrices). A complex square matrix A 2 C
n⇥n is Her-

mitian if and only if it is unitarily diagonalizable with real eigenvalues, i.e., there exist a unitary matrices
U 2 C

n⇥n and a real diagonal matrix L 2 R
n⇥n with

A = ULUH =
n

Â
i=1

liuiuHi (25.13)

where

1. L =diag(l1, . . . ,ln) is real and consists of the eigenvalues of A;
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2. the columns of U are an arbitrary orthonormal set of corresponding eigenvectors of A.

Hence if A is Hermitian, then rank A = number of nonzero eigenvalues and the sum in (25.13) becomes

A = ULUH =
rank A

Â
i=1

liuiuHi

Moreover, if A is real and symmetric then U above can be taken as real and orthogonal.

To explain the last statement let A be a real symmetric matrix. First a Hermitian matrix A has real
eigvenvalues l because if v are the corresponding eivenvectors, then Av = lv and hence vHAv = lkvk2.
Taking Hermitian transpose shows vHAHv = vHAv = l̄kvk2 where l̄ denotes the complex conjugate of l .
Therefore l̄ = l , i.e., l is real. Next for eigenvector v, take the Hermitian transpose of Av = lv we have
vHAH = vHA = lvH since l is real. If A is real symmetric then taking the transpose we have Av̄ = l v̄
where v̄ is the componentwise complex conjugate of v. Therefore if v is an eigenvector of a real symmetric
matrix A corresponding to the real eigenvalue l then so is its complex conjugate v̄ as well as the real vector
v+ v̄, i.e., the eigenvector of A can be taken to be real.

For general matrices, about the only characterization of its eigenvalues is that they are roots of the char-
acteristic polynomial (see the discussion leading up to Theorem 25.6). For Hermitian matrices, however,
the spectral theorem leads to a variational characterization of eigenvalues [301, Theorem 4.2.2, p.176]. If
A 2 C

n⇥n is Hermitian then

lmin  xHAx
xHx  lmax, 8x 2 C

n

and

lmin = min
x 6=0

xHAx
xHx

and lmax = max
x 6=0

xHAx
xHx

Theorem 25.15 implies that A is positive semidefinite if and only if A is Hermitian and all its eigen-
values are (real and) nonnegative, and that A is positive definite if and only if A is Hermitian and all its
eigenvalues are (real and) positive.

25.1.6.3 SVD and unitary diagonalization

Consider a normal matrix A 2 C
n⇥n. Since AAH = AHA, they have the same eigenvectors. This does not

mean, in general, that W = V in a singular value decomposition A = V SWH. Indeed, if W = V then it
is necessary that A = V SVH is positive semidefinite, but a normal A may not be positive semidefinite.
The eigenvalues of a normal matrix are complex, those of a Hermitian matrix are real, and those of a
positive semedefinite matrix are real and nonnegative. The following relationship between singular value
decomposition of a normal matrix A and its unitary diagonalization is proved in Exercise 25.9.

Theorem 25.16 (SVD and unitary diagonalization). Consider a normal matrix A 2 C
n⇥n and let A =

ULUH be a unitary diagonalization of A described in Theorem 25.13 where L := diag(li) has the eigen-
values li 2C of A on its diagonal and the columns of U are an arbitrary orthonormal set of corresponding
eigenvectors. Write li = |li|eiqi for some qi 2 R; set qi = 0 if li = 0. Let D := diag(eiq1 , . . . ,eiqm). Then
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1. V := U,S := |L|,W := UDH form a singular value decomposition A = V SWH of A.

2. The pseudo-inverse of A is A† := UL†UH where the diagonal matrix L† is obtained from L by
replacing nonzero li 2 C by their reciprocals.

3. A is Hermitian if and only if D in W is a real matrix, i.e., eiqi = 1 or �1.

4. A is positive semidefinite if and only if V =W :=U and S := L forms a singular value decomposition
A = V SWH = ULUH, i.e., SVD and unitary diagonalization of A coincide.

The theorem also prescribes a way to compute a singular value decomposition A = V SW when A is
normal. In this case we can take the columns of V to be an arbitrary orthonormal set of eigenvectors of A
(which will also be eigenvectors of AA⇤). This may not be the case if A is not normal and the more general
method prescribed by (25.11) is needed to compute SVD (see Example 25.3). The theorem is illustrated
in the following example.

Example 25.4. Use Theorem 25.16 to compute the SVD of the normal matrix A in Example 25.3.

Solution. Clearly A = AH = AT = Ā and A is real symmetric and hence normal. Its eigenvalues are li = ±1
with corresponding eigenvectors in the columns of U in the unitary diagonalization:

A = ULUH :=
1p
2


1 1
1 �1

�
1

�1

�
1 1
1 �1

�
1p
2

Note that A is not positive semidefinite and therefore W 6= U in the singular value decomposition of A.
According to Theorem 25.16, the angle matrix D = diag(1,�1) and the unitary factors (V,W ) in the SVD
A = V SWH are given by

S := |L| = I, V := U =
1p
2


1 1
1 �1

�
, W := UDH =

1p
2


1 �1
1 1

�

which agrees with those computed in Example 25.3. (The decomposition in these two examples agree
because the matrix Y in Example 25.3 has been chosen to be Y = I so that YA = A.)

25.1.6.4 Complex symmetric matrices

Consider a complex symmetric matrix A 2 C
n⇥n with A = AT. Then AH = Ā where Ā is the matrix

obtained from A by taking its complex conjugate componentwise. A is not Hermitian unless A is a real
matrix. The following result, from [33, Corollary 2.6.6, p.153], is called the Takagi’s factorization for
complex symmetric matrices.

Theorem 25.17 (Takagi’s decomposition). A complex matrix A 2 C
n⇥n is symmetric A = AT if and only

if there is a unitary matrix U 2 C
n⇥n and a real nonnegative diagonal matrix S :=diag(s1, . . . ,sn) such

that

A = USUT (25.14)

where S consists of the nonnegative square roots of the eigenvalues of AĀ.
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The columns of the unitary matrix U in (25.14) are generally neither the singular vectors nor the eigen-
vectors of A; see the proof below. A Takagi decomposition of a complex symmetric matrix A is therefore
generally different from its singular value decomposition. A Takagi decomposition of a real symmetric
matrix may not have real factors. In contrast, its spectral decomposition in terms of its eigenvalues, rather
than singular values, can always use real orthogonal factors according to Theorem 25.15.

We provide a sketch of the proof from [33, Corollary 2.6.6, p.153].

Proof sketch of Theorem 25.17. Let a singular value decomposition of A be A = V SWH according to The-
orem 25.11. Since A = AT we have A = V SWH = W̄SV̄H where (V̄ ,W̄ ) are componentwise complex
conjugate of (V,W ). The uniqueness Theorem 25.12 then implies the existence of unitary block-diagonal
matrices (Ṽ ,W̃ ) such that

V̄ = WṼ , W̄ = VW̃ (25.15a)

Indeed, according to Autonne’s uniqueness theorem ([33, Theorem 2.6.5, p.152]), Ṽ and W̃ can be taken
to have identical blocks except the last block corresponding to the diagonal zero-block in (25.9). Specifi-
cally suppose A has rank r and d distinct positive singular values s1 > s2 > · · · > sd > 0 with (algebraic)
multiplicities n1, · · · ,nd . Then r := Âd

i=1 ni  n. We can separate the diagonal of the n ⇥ n matrix S into
d +1 diagonal blocks of diagonal submatrices siIni and 0n�r:

S = diag(s1In1 , · · · ,sdInd ,0n�r) (25.15b)

where Ik denotes the identity matrix of size k and 0k denotes the k ⇥ k zero matrix. (If A is of full rank
r = n then the zero block 0n�r is absent.) Then Autonne’s uniqueness theorem ([33, Theorem 2.6.5, p.152])
implies that A = V SWH = W̄SV̄H if and only if there are unitary matrices Vi of sizes ni and Vd+1,Wd+1 of
size n� r such that

Ṽ = diag(V1, · · · ,Vd,Vd+1) , W̃ = diag(V1, · · · ,Vd,Wd+1) (25.15c)

and V̄ = WṼ , W̄ = VW̃ . But Ṽ = WHV̄ =
�
VHW̄

�T
= W̃T and hence Vi = VT

i are symmetric matrices
for i = 1, . . . ,d.

Lemma 25.10 then implies that there exist unitary symmetric matrices Ri 2 C
ni⇥ni such that Vi = R2

i
for i = 1, · · · ,d. Substitute this and (25.15) into A = W̄SV̄H, we have A = W̄SVT = VW̃SVT. But (taking
Wd+1 := In�r)

W̃S = diag
�
R2

1, · · · ,R2
d, In�r

�
·diag(s1In1 , . . . ,sdInd ,0n�r) =: RSR

where R := diag(R1, · · · ,Rd, In�r). Hence

A = V (W̃S)VT = V (RSR)VT = (V R)| {z }
U

S (V R)T| {z }
UT

where the last equality uses the symmetry of R. This completes the proof.

A complex symmetric matrix A 2 C
n⇥n may or may not be normal. Complex symmetric matrices are

useful for power systems because the admittance matrix Y (see Chapter 4.2) are complex symmetric, and
generally not Hermitian. See Exercise 9.23 for a complex symmetric matrix that is not diagonalizable (and
hence not normal). See Exercise 9.24 for a complex symmetric matrix that is normal and hence unitarily
diagonalizable, and Exercise 4.2 for characterizations of symmetric and normal matrices.
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25.1.7 Pseudo-inverse

Consider a matrix A 2 C
m⇥n. Let null(A) denote the null space (also called kernel) of A, i.e., null(A) :=

{x 2C
n : Ax = 0}. Let range(A) denote the range space (also called column space) of A, i.e., range(A) :=

{y 2 C
m : y = Ax for some x 2 C

n}. In this subsection we treat A as a mapping from C
n to C

m and
AH a mapping from C

m to C
n. Then null(A) and range(AH) are linear spaces and they are orthogonal

complements of each other because, if x1 2 null(A) and x2 2 range(AH) so that x2 = AHy for some y, then

xH2 x1 = yHAx1 = 0

We denote this fact by the notation C
n = range(AH) � null(A), as shown in the upper panel of Figure

25.3(a). This implies

dim(range(AH)) + dim(null(A)) = n (25.16)

The rank of a matrix A 2C
m⇥n, denoted rank A, is the largest number of linearly independent columns

of A, or equivalently the largest number of linearly independent rows of A. By definition rank A =
dim(range(A)). A square matrix A 2 C

n⇥n is called nonsingular if rank A = n; it is called singular if
rank A < n. Some simple facts are collected in the following.

Theorem 25.18. 1. For any A 2 C
m⇥n, rank A = rank AH = rank AT = rank Ā.

2. For any A 2 C
m⇥n, rank A  min{m,n}.

3. If A 2 C
m⇥m and C 2 C

n⇥n are nonsingular, then for any B 2 C
m⇥n, rank B = rank ABC, i.e., left

or/and right multiplication by a nonsingular matrix does not change rank.

4. For any A 2 C
m⇥n, rank A + dim(null(A)) = n. This follows from substituting rank AH = rank A

into (25.16).

If we consider the matrix A 2 C
m⇥n as a mapping from C

n to C
m and restrict it to A : range(AH) !

range(A), then A is surjective and injective (see Exercise 25.10). Hence an inverse always exists from
range(A) ! range(AH). We will denote this inverse by A†; see Figure 25.3(b). Let A = V SWH be its
singular value decomposition and let rank A = r  min{m,n}. We will show that

A† = WS†VH (25.17)

where S† is a real diagonal n⇥m matrix of rank r obtained from the m⇥n diagonal matrix S by replacing
the (positive) singular values si by 1/si and taking the transpose. When r = m = n, S† =diag

⇣
1

s1
, . . . , 1

sn

⌘
=

S�1 so that A† = A�1 since

A†A =
⇣

WS�1VH

⌘⇣
V SWH

⌘
= In

In general A†A 6= In but the next result shows that A†A equals In plus a matrix whose columns are in
null(A). Specifically, let A 2 C

m⇥n with rank A = r  min{m,n}. Let A = V SWH be its singular value
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Figure 25.3: (a) Decomposition of Cn into orthogonal complements null(A) and range(AH) and C
m into or-

thogonal complements null(AH) and range(A). (b) A and A† are bijective between range(AH) and range(A)
inverses of each other. (c) A†A projects x 2 C

n onto range(AH) and AA† projects y 2 C
m onto range(A).

See Theorem 25.19.
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decomposition. Decompose the various matrices such that

S =

2

6664

2

64
s1

. . .
sr

3

75 0

0 0

3

7775
=:


Sr 0
0 0

�
, V =:

⇥
Vr Vm�r

⇤
, W =:

⇥
Wr Wn�r

⇤

where Sr is r ⇥ r diagonal matrix, the matrices Vr 2 C
m⇥r and Wr 2 C

n⇥r consist of the first r columns of
V and W respectively, and the matrices Vm�r 2 C

m⇥(m�r) and Wn�r 2 C
n⇥(n�r) consist of the remaining

columns of V and W respectively. Then

A =
⇥
Vr Vm�r

⇤
Sr 0
0 0

�
WH

r
WH

n�r

�
= VrSrWH

r

A† =
⇥
Wr Wn�r

⇤
S�1

r 0
0 0

�
VH

r
VH

m�r

�
= WrS�1

r VH

r

and AH = WrSrVH
r . Hence the range spaces of A,A†,AH depend only on the nonzero singular values

and the first r columns of V and W . The remaining columns Vm�r,Wn�r span their null spaces and can
be interpreted as a measure of how different the pseudo-inverse A† is from an inverse, as the following
theorem shows. The theorem is illustrated in Figures 25.4 and 25.3(c).

Figure 25.4: Orthogonal decomposition of Cn and C
m using singular value decomposition of matrix M.

Theorem 25.19. With the notations above,

1. A† := WS†VH satisfies (In denotes the n⇥n identity matrix)

A†A = In � Wn�rWH

n�r

AA† = Im � Vm�rVH

m�r

2. null(A) = range(Wn�r) and range(AH) = range(Wr).
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3. null(AH) = range(Vm�r) = null(A†) and range(A) = range(Vr).

4. A†A is the orthogonal projection of x 2 C
n onto range(AH). In �A†A is the orthogonal projection of

x 2 C
n onto null(A), i.e., if x̂ := (In �A†A)x then Ax̂ = 0.

5. Similarly AA† is the orthogonal projection of y 2 C
m on to range(A) and Im �AA† is the orthogonal

projection of y 2 C
m onto null(AH).

6. AA†A = A, A†AA† = A†, and AHAA† = AH.

Proof. We have

A†A =
⇥
Wr Wn�r

⇤
S�1

r 0
0 0

�
VH

r
VH

n�r

�
·
⇥
Vr Vn�r

⇤
Sr 0
0 0

�
WH

r
WH

n�r

�

=
⇥
Wr Wn�r

⇤
Ir 0
0 0

�
WH

r
WH

n�r

�
= WrWH

r

Even though WH =W�1, WH
r is not the inverse of Wr (unless r = n 6= m) since Wr is not even square. Since

WWH =
⇥
Wr Wn�r

⇤
WH

r
WH

n�r

�
= WrWH

r + Wn�rWH

n�r = In

we have

A†A = In � Wn�rWH

n�r

Similarly AA† = Im � Vm�rVH
m�r.

To show that null(A) = range(Wn�r) consider any x 2 C
n. Since columns of W are an orthonormal

basis of Cn we can write x = Â j b jw j for some b j 2 C where w j are columns of W . Then

Ax = V SWHÂ
j

b jw j = V SÂ
j

b j

2

64
wH

1 w j
...

wH
n w j

3

75 = V S

2

64
b1
...

bn

3

75 = V

2

6664

s1b1
...

srbr
0n�r

3

7775

where 0n�r is the zero vector of size n � r. Since V is nonsingular and s j > 0, Ax = 0 if and only if
b1 = · · · = br = 0. Hence null(A) = range(Wn�r) if and only if x 2 range(Wn�r). That range(AH) =
range(Wr) follows from AH = WSTVH = WrSrVH

r .

The proof of null(A†) = range(Vm�r) follows the same argument and is presented in the matrix notation
as follows. Any y 2 C

m can be written in terms of the columns of V , i.e., y = Vrbr +Vm�rbm�r for some
br,bm�r. Then

A†y = WrS�1
r VH

r (Vrbr +Vm�rbm�r) = WrS�1
r VH

r Vrbr

since VH
r Vm�r = 0r⇥(m�r). Hence A†y = 0 if and only if br = 0 and y = Vm�rbm�r. This means null(A†) =

range(Vm�r). Since AH = WrSrVH
r the same argument shows that null(AH) = range(Vm�r).
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The remaining assertions follow from parts 1, 2, 3. For example

AA†A = A
⇣

In � Wn�rWH

n�r

⌘
= A � AWn�rWH

n�r = A

Similarly A†AA† = A†, and AHAA† = AH.

We remark on some implications of Theorem 25.19.

Remark 25.2 (Ax = b). 1. The theorem implies that A† in (25.17) and A are inverses of each other
when restricted to range(AH) and range(A) (see Exercise 25.11). Therefore, even though (V,W )
in the singular value decomposition are generally not unique, A† is uniquely defined. Treated as a
mapping from C

m to C
n, A† is called a pseudo-inverse of A.

2. There is a solution x for Ax = b if and only if b is in range(A) or equivalently b is orthogonal to null
(AH), in which case the set of solutions is given by

x = A†b + w, w 2 null(A) = range(Wn�r)

Moreover A†b is the solution to Ax = b with the smallest Euclidean norm kxk2 = kA†bk2 +kwk2.

3. Consider Ax = b when b is not in range(A) and therefore there is no x that satisfies this equation.
The theorem says that x̂ = A†b is a ‘best estimate’ of x from b in that Ax̂ equals the projection of b
onto range(A) and the estimation error b � Ax̂ = (Im � AA†)b is the projection of b onto null(AH).
This achieves the minimum estimation error under the Euclidan norm; see Exercise 25.14.

4. Theorem 25.19.6 is easy to understand given Lemmas 25.19.4 and 25.195. Consider any vector
y 2 C

m. The operation AA† removes y’s component in the null space of AH. We can first project
y to range(A) to obtain AA†y and then map it back into C

n to A†(AA†y). Since AA†y is already in
range(A) over which A† is an inverse of A, this operation should be the same as A†, i.e., A†AA†y =
A†y for all y. Similarly the projection operation A†A to range(AH) followed by the mapping A is the
same operation as the mapping A.

For general matrix A 2 C
m⇥n, its pseudo-inverse is given in terms of its singular value decomposition

by (25.17). For special matrices the next result provide some explicit formulae.

Corollary 25.20. Consider a matrix A 2 C
m⇥n with rank A = r  min{m,n}. Let A = V SWH be its

singular value decomposition and A† = WS†VH be its pseudo-inverse.

1. If m = n and A is positive semidefinite then A+Vn�rVH
n�r is invertible and

A† =
⇣

A+Vn�rVH

n�r

⌘�1
�Vn�rVH

n�r

2. If r = m  n then A† = AH
�
AAH

��1.

3. If r = n  m then A† =
�
AHA

��1 AH.
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4. If r = m = n then A† = A�1.

Proof. Since A is positive semidefinite its singular value decomposition coincides with its spectral decom-
position according to Theorem 25.16.3, so

A = V SWH = V LVH = VrLrVH

r

where V is a unitary matrix whose columns are orthonormal eigenvectors of A, L := diag(li) is the diag-
onal matrix of eigenvalues

l1 � · · · � lr > 0 = lr+1 = · · · = ln

and matrices are decomposed as before:

L =:


Lr 0
0 0

�
, V =:

⇥
Vr Vn�r

⇤
, x =:


xr

xn�r

�
2 C

n

To show that A +Vn�rVH
n�r is invertible consider any x 2 C

n in the null space of A expressed in terms of
the basis V as x = Va =: Vrar +Vn�ran�r. We have

(A+Vn�rVH

n�r)x =
⇣

VrLrVH

r +Vn�rVH

n�r

⌘
(Vrar +Vn�ran�r) = VrLrar + Vn�ran�r

where we have used VH
r Vn�r = 0. Hence

(A+Vn�rVH

n�r)x =
⇥
Vr Vn�r

⇤
Lrar
an�r

�
= V


Lrar
an�r

�

Since V and Lr are nonsingular, (A +Vn�rVH
n�r)x = 0 if and only if a = 0, proving the nonsingularity of

A+Vn�rVH
n�r.

To show that A† =
�
A+Vn�rVH

n�r
��1 �Vn�rVH

n�r we will prove that A† +Vn�rVH
n�r is the inverse of

A+Vn�rVH
n�r. We have (using again VrVH

n�r = 0)
⇣

A† +Vn�rVH

n�r

⌘⇣
A+Vn�rVH

n�r

⌘
=

⇣
VrL�1

r VH

r +Vn�rVH

n�r

⌘⇣
VrLrVH

r +Vn�rVH

n�r

⌘

= VrVH

r + Vn�rVH

n�r = V VH = In

as desired.

If If r = m  n then Vr = V and

S =:
⇥
Sr 0

⇤
, W =:

⇥
Wr Wn�r

⇤

Then A = V SWH = V SrWH
r and hence AAH =

�
V SrWH

r
��

WrSrVH
�
= V S2

rVH is invertible since WH
r Wr =

Ir. Since V is unitary we have
�
AAH

��1
= V S�2

r VH. Hence

AH

⇣
AAH

⌘�1
=

⇣
WrSrVH

⌘⇣
V S�2

r VH

⌘
= WrS�1

r VH = WS†VH = A†

The case of r = n  m is similarly proved in Exercise 25.12. If r = m = n then S† = S�1 so that A† = A�1

since A†A =
�
WS�1VH

��
V SWH

�
= In.
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Consider a partitioned matrix A = [B C]. In general A† 6=


B†

C†

�
. 2 Several expressions for A† in

terms of B† and C† are derived in [302] under various necessary and sufficient conditions. The particularly
simple case is the following result from [302, Corollary 1.4].

Lemma 25.21. Suppose A = [B C]. Then

A† =


B†

C†

�

if and only if (I �BB†)C = C (i.e., if and only if C is in null(BH)).

25.1.8 Norms and inequalities

25.1.8.1 Vector norms

This subsection mostly follows [33, Chapter 5].

Definition 25.4 (Normed linear space). Let V be a vector space over the field F with F = R or C. A
function k ·k : V ! R is a norm, or vector norm, on V if, for all x,y 2 V and all c 2 F ,

1. Positivity: kxk � 0 and kx| = 0 if and only if x = 0.

2. Homogeneity: kcxk = |c|kxk.

3. Triangular inequality: kx+ yk  kxk+kyk.

The real or complex vector space together with a norm (V,k ·k) is called a normed linear space or normed
vector space.

Examples of vector norms on V = C
n include: for any x 2 C

n,

• Sum norm (l1 norm): kxk1 := Âi |xi|.

• Euclidean norm (l2 norm): kxk2 :=
p

Âi |xi|2.

• Max norm (l• norm):kxk• := maxi |xi|.

• lp norm: kxkp := (Âi |xi|p)1/p, p � 1.

It can be shown that kxk• = limp!• kxkp for all x 2C
n. We therefore often define lp norms for p 2 [1,•].

The Euclidean norm, and positive scalar multiples of the Euclidean norm, are the only norms on C
n that
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Figure 25.5: The boundaries of unit balls for l1, l2 and l• norms.

are unitarily invariant: kUxk2 = kxk2 for any x 2 C
n and any unitary matrix U 2 C

n⇥n (Exercise 25.17).
The unit balls B := {x 2 R

2 : kxk  1} for l1, l2 and l• norms are shown in Figure 25.5.

An example of infinite dimensional normed vector spaces is the set C[a,b] of all continuous real or
complex-valued functions f : [a,b] ! R or f : [a,b] ! C on the real interval [a,b]. The Lp norms on
C[a,b] are

• L1 norm: k f k1 :=
R b

a | f (t)|dt.

• L2 norm: k f k2 :=
qR b

a | f (t)|2dt.

• Lp norm: k f kp :=
⇣R b

a | f (t)|pdt
⌘1/p

, p � 1.

• L• norm: k f k• := max{| f (x)| : x 2 [a,b]}.

There are two important properties of finite dimensional real or complex vector spaces V (i.e., F = R

or C) that do not necessarily hold for infinite dimensional vector spaces. First all norms are equivalent in
the sense that, given two norms k ·ka and k ·kb on a finite dimensional vector space V , there exist cm,cM
such that (e.g., [33, Corollary 5.4.5, p.327])

cm kxka  kxkb  cM kxka , x 2 V (25.18)

This means that if a sequence {xi} ✓ V converges in some norm, it converges in all norms. For lp norms
the best bounds are [33, Problem 5.4.P3, p.333]: for 1  p1 < p2 < •,

kxkp2  kxkp1  n
⇣

1
p1

� 1
p2

⌘

kxkp2

2Let the singular value decompositions of B and C be B = V1S1WH

1 and C = V2SWH

2 . We can write

A =
⇥
V1 V2

⇤
S1 0
0 S2

�
WH

1 0
0 WH

2

�

However
�
V MWH

�†
= WM†VH only if V and W are unitary [302, Lemma 1]. The matrix [V1 V2] is not unitary.
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For example kxk2  kxk1 
p

nkxk2, kxk•  kxk1  nkxk•, kxk•  kxk2 
p

nkxk• (see Figure 25.5).
In contrast, for an infinite dimensional vector space such as C[a,b], a sequence { fk} of functions in C[a,b]
may converge under the L1 norm, remains bounded under L2 norm, but diverge under the L• norm (un-
bounded k fkk•).

Second a sequence {xi} ✓ V converges to a vector in a finite dimensional vector space V if and only
if it is a Cauchy sequence, i.e., for any e > 0 there exists a positive integer N(e) such that kxi � x jk  e
for any i, j � N(e). A normed linear space V is said to be complete with respect to its norm k ·k if every
sequence in V that is a Cauchy sequence with respect to k ·k converges to a point in V . Therefore all finite
dimensional real or complex vector spaces are complete with respect to any norm, but infinite dimensional
normed vector spaces, such as C[a,b] with the L1 norm, may not be complete.

Definition 25.5 (Inner product space). Let V be a (finite or infinite dimensional) vector space over the
field F with F = R or C. A function h·, ·i : V ⇥V ! F is an inner product if, for all x,y,z 2 V and all
c 2 F ,

1. Positivity: hx,xi � 0 and hx,xi = 0 if and only if x = 0.

2. Additivity: hx+ y,zi = hx,zi+ hy,zi.

3. Homogeneity: hcx,yi = chx,yi.

4. Hermitian property: hx,yi = hx,yi.

where a denotes the complex conjugate of a 2 F . The real or complex vector space together with an inner
product (V,h·, ·i) is called an inner product space.

Note that regardless of F = R or C, a norm in Definition 25.4 takes value in R whereas an inner
product in Definition 25.5 takes value in F . Implicit in the nonnegativity property is that, while hx,yi 2 F ,
hx,xi 2 R. The function defined on C

n by hx,yi := xHy 2 F := C is an inner product called the Euclidean
inner product. Let M 2 F

n⇥n be a positive definite matrix and define the function hx,yiM := yHMx. Then
h·, ·iM is also an inner product.

If h·, ·i is an inner product on a real or complex vector space V , then the function k · k : V ! [0,•)
defined by kxk := hx,xi1/2 is a norm on V . Such a norm is said to be derived from an inner product.
The Euclidean norm k · k2 is a norm derived from the Euclidean inner product. An inner product space
is therefore also a normed linear space with its derived norm. Not all norms are derived from an inner
product, e.g., k ·k1, k ·k• are not derived norms.

Inner products are defined for infinite dimensional vector spaces as well. For example an inner product
on the vector space C[a,b] of all continuous real or complex-valued functions on the real interval [a,b] is

h f ,gi :=
Z b

a
f (t)g(t)dt, f ,g 2 C[a,b]

The L2 norm k f k2 :=
qR b

a | f (t)|2dt defined above is derived from the inner product h f , f i.



Draft: EE 135 Notes April 30, 2024 943

25.1.8.2 Cauchy-Schwartz inequality, Hölder’s inequality, dual norm

We now present an extremely useful inequality, the Cauchy-Schwarz inequality, and two generalizations.

Cauchy-Schwartz and Hölder’s inequalities. The Cauchy-Schwarz inequality is an important property
of all inner products on any finite or infinite dimensional vector space. The inequality holds regardless
of whether the norm on the vector space is derived from the inner product. Hence hx,xi, hy,yi on the
right-hand side of (25.19) may not be the squared norms on V .

Theorem 25.22 (Cauchy-Schwarz inequality). Let (V,h·, ·i) be an inner product space over a field F with
F = R or C. Then

|hx,yi|2  hx,xihy,yi, x,y 2 V (25.19)

with equality if and only if x = ay for some a 2 F (i.e., x and y are linearly dependent).

Proof. To prove the Cauchy-Schwarz inequality suppose without loss of generality y 6= 0 (the inequality
holds if x = y = 0). Let z := hy,yix � hx,yiy. Then, since ha1u1 + a2u2,b1v1 + b2v2i = a1b1hu1,v1i +
a1b2hu1,v2i+a2b1hu2,v1i+a2b2hu2,v2i,

0  hz,zi = hhy,yix�hx,yiy, hy,yix�hx,yiyi
= hy,yi2hx,xi � hx,yihy,yihy,xi = hy,yi

�
hx,xihy,yi � |hx,yi|2

�

which implies the inequality since hy,yi > 0.

Cauchy-Schwarz inequality has numerous applications. One example is the following bounds on sam-
ples in terms of their sample mean and standard deviation. Let x1, . . . ,xn be n given real numbers with
sample mean µ and sample standard deviation s defined by:

µ :=
1
n Â

i
xi, s :=

 
1
n Â

i
(xi � µ)2

!1/2

It can then be shown that (Exercise 25.18)

µ � s
p

n�1  xi  µ + s
p

n�1, i = 1, . . . ,n

with equality for some i if and only if xp = xq for all p,q 6= i.

Hölder’s inequalities. A generalization of the Cauchy-Schwarz inequality is Hölder’s inequality. Hölder’s
inequality holds for general Lp spaces (the vector space of measurable functions f for which its Lp norm
is finite), but we will restrict ourselves to V = R

n or Cn with lp norms.
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Theorem 25.23 (Hölder’s inequality). Consider the vector space V = Fn with F = R or C with lp norms,
p 2 [1,•]. Then for any p,q � 1 such that 1

p + 1
q = 1 (with the interpretation that if p = 1 then q = •)

n

Â
i=1

|xiyi|  kxkp kykq , x, y 2 V (25.20)

with equality if and only if xp := (xp
i , i = 1, . . . ,n) and yq := (yq

i , i = 1, . . . ,n) are linearly dependent, i.e.,
xp = ayq for some scalar a 2 F .

The theorem can be proved by applying the following property to the convex function f (x) = xp for
p > 1: for all ai � 0, Ân

i=1 ai = 1, for all xi,

f

 
n

Â
i=1

aixi

!


n

Â
i=1

ai f (xi)

Setting p = q = 2 leads to the Cauchy-Schwarz inequality

���xHy
��� 

n

Â
i=1

|xiyi| 
 

n

Â
i=1

x2
i

!1/2 n

Â
i=1

y2
i

!1/2

= kxk2 kyk2, x, y 2 V

with equality if and only if the vectors x and y are linearly dependent (xp = ayq , x = a1/pyq/p). Note
that this inequality is weaker than Hölder’s inequality, though the Cauchy-Schwarz inequality holds for
general inner products on arbitrary vector spaces with arbitrary norms.

Dual norm. Another generalization of the Cauchy-Schwarz inequality holds with dual norm, as we
define now. Consider any norm k · k on the vector space V = Fn with F = R or C. Define its dual norm
k ·k⇤ by: for any x 2 Fn

kxk⇤ := max
y:kyk=1

RexHy = max
y:kyk=1

���xHy
��� (25.21)

The maximization is attained since inner product is continuous and the feasible set is compact. (If we
think of xH as an 1⇥n matrix then kxk⇤ is the matrix norm induced by the general vector norm k ·k on F

n;
see below.)

A very useful inequality is

RexHy 
���xHy

���  kxkkyk⇤ 8x,y 2 F
n (25.22)

which follows directly from the definition of the dual norm. It says that the absolute inner product of any
two vectors are upper bounded by the product of the norm of one of the vectors and its dual norm of the
other vector. For the Euclidean norm k · k2 this is the Cauchy-Schwarz inequality, but (25.22) holds for
any norm. Comparing this with Hölder’s inequality (25.20), the left-hand side of (25.22) is smaller than
that of (25.20),

��xHy
�� Âi |xiyi|. The norms on the right-hand side of (25.22) are not restricted to lp norms

as those in (25.20) are. Indeed we now use Hölder’s inequality to show that lp and lq norms are the dual



Draft: EE 135 Notes April 30, 2024 945

of each other if 1/p + 1/q = 1, and hence kxkkyk⇤ reduces to the norms in Hölder’s inequality if k · k is
an lp norm.

To simplify exposition we allow p,q with 1/p+1/q = 1 to take values in [1,•] with the interpretation
that if p = 1 then q := •.

Lemma 25.24. Let p,q 2 [1,•] and 1/p+1/q = 1. The lp norm and the lq norm are dual of each other.

Proof. We prove the case of 1 < p < •; the case of p = 1 or p = • follows a similar idea. Fix a pair
1 < p,q < • with 1/p+1/q = 1. Hölder’s inequality implies, for all x 2 Fn,

kxkq � max
y:kykp=1

Â
i

|xiyi| � max
y:kykp=1

���xHy
��� = kxk⇤

Therefore kxkq � kxk⇤, the dual norm of k ·kp. To prove the reverse inequality we have from (25.22)

kxk⇤ � (kykp)
�1
���xHy

��� =

 

Â
i

|yi|p

!�1/p �����Âi
xiyi

����� , 8y 2 F
n

Choose

yi := |xi|q/p xi

|xi|

so that the inequality becomes (using q = 1+ q
p )

kxk⇤ �
 

Â
i

|xi|q
!�1/p

Â
i

|xi|1+q/p =

 

Â
i

|xi|q
! 1

q

= kxkq

Hence kxk⇤ = kxkq when k ·k = k ·kp.

In light of Lemma 25.24, examples of (25.22) include:
���xHy

���  kxkp kykq
�

p�1 +q�1 = 1
�

���xHy
���  kxk2 kyk2 (p = q = 2, Cauchy-Schwarz inequality)

kxk2
2  kxk1 kxk• (y := x, p = 1,q = •)

A crucial fact for the vector space V = R
n or Cn is that the dual of a dual norm is the original norm,

i.e., k ·k⇤⇤ = k ·k for an arbitrary norm k ·k on V (see [33, Theorem 5.5.9, p.338]). For the special case of
lp norms, this is implied by Lemma 25.24. Moreover the only lp norm that is its own dual is the Euclidean
norm k ·k2 ([33, Theorem 5.4.17, p.331]). This fact and a remarkable property of dual norm specialized to
R

n are used in Chapter 25.1.10 to prove a mean value theorem for vector-valued functions (Lemma 25.34).
Specifically, for the vector space V = R

n, it is shown in Chapter 25.1.10 that, given any x 2 R
n, there is

a normalized y⇤(x) 2 R
n with ky⇤(x)k⇤ = 1 such that the norm kxk is attained by their inner product,

kxk = xTy⇤(x). Similarly, there exists an y(x) with ky(x)k = 1 such that kxk⇤ = xTy(x). This is remarkable
because it says that any norm k · k and its dual norm are always attained by the Euclidean inner product
even if k ·k may not be a derived norm, e.g., k ·k1, k ·k•.



946 Draft: EE 135 Notes April 30, 2024

25.1.8.3 Matrix norms

This subsection mostly follows [33, Chapter 5.6]. The set Mm,n := Mm,n(C) of all m⇥n complex matrices
is a vector space whether we view an element A 2 Mmn as a vector in V = C

mn over field F = C or R or
an array of numbers in V = C

m⇥n over F = C or R. A matrix norm on Mmn therefore follows the same
definition as in Definition 25.4.

Definition 25.6 (Matrix norm). A function k ·k : Mm,n ! R is a matrix norm, or simply a norm, if, for all
complex matrices A,B 2 Mm,n, c 2 C,

1. Positivity: kAk � 0 and kAk = 0 if and only if A = 0.

2. Homogeneity: kcAk = |c|kAk.

3. Triangular inequality: kA+Bk  kAk+kBk.

A key difference between the vector spaces Cmn and C
m⇥n is that matrix multiplication is defined for

elements A,B of Cm⇥n. We would therefore like to estimate the ‘size’ of a matrix product AB in terms of
the ‘sizes’ of A and B. This is done by matrix norms k ·k that also satisfies a fourth property:

4. Submultiplicativity: kABk  kAkkBk when A and B have compatible sizes (e.g., m = n) and the
norms are properly defined for AB, A and B.

Not all matrix norms are submultiplicative. Some authors include submultiplicativity in the definition of
matrix norm when restricted to square matrices (m = n), e.g., [33, Chapter 5.6]. In the following we first
discuss a special class of matrix norms, called induced norms, that are not only submultiplicative, but also
have a certain minimality property. Then we discuss vector norms that are lp norms on the vector space
Cn2

. They may or may not be submultiplicative. See Figure 25.6.

Figure 25.6: Matrix norms.

Induced norms. A widely used matrix norm k · km,n on Mm,n(C) is an induced norm, induced by any
vector norms k ·kn and k ·km on Cn and Cm respectively, defined by: for A 2 Mm,n,

kAkm,n := max
x:kxkn=1

kAxkm = max
x:x 6=0

kAxkm

kxkn
(25.23)

It is sometimes called an operator norm. Every induced norm is submultiplicative: for A 2C
m⇥n, B 2C

n⇥k

with arbitrary norms k ·km, k ·kn, k ·kk on C
m, Cn, Ck respectively,

kABkm,k = max
x:x 6=0

kBxk6=0

kABxkm

kxkk
= max

x:x 6=0
kBxk6=0

kABxkm

kBxkn

kBxkn

kxkk
 max

y:y6=0

kAykm

kykn
max
x:x 6=0

kBxkn

kxkk
= kAkm,n kBkn,k

It also satisfies the additional properties:
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1. kIkm,n = 1 for the identity matrix I.

2. kAxkm  kAkm,nkxkn for any A 2 C
m⇥n and any x 2 C

n (follows from submultiplicativity).

3. kAkm,n = max{|yHAx| : kxk = kyk⇤ = 1, x 2 C
n,y 2 C

m}.

Examples of induced norms on Mm,n are norms induced by the lp norm on both C
n and C

m:

kAkp := max
x:kxkp=1

kAxkp = max
x:x 6=0

kAxkp

kxkp

Theorem 25.25. Let A 2 Mm,n a m ⇥ n complex matrix. Then the induced norms k · k1, k · k2 and k · k•
satisfy:

1. Max column sum (induced by l1 norm): kAk1 = max j Âi |Ai j|.

2. Max row sum (induced by l• norm):kAk• = maxi Â j |Ai j|.

3. Spectral norm (induced by l2 norm): kAk2 = smax(A) =
q

lmax
�
AHA

�
where smax(A) is the largest

singular value of A and lmax
�
AHA

�
� 0 is the largest eigenvalue of the positive semidefinite matrix

AHA.

4. If A is square and nonsingular then kA�1k2 = 1/smin(A), the reciprocal of the smallest singular
value of A.

5. kAHAk2 = kAAHk2 = kAk2
2.

6. kAk2 = max{|yHAx| : kxk2 = kyk2 = 1, x 2 C
n,y 2 C

m}.

A norm k ·k is unitarily invariant if kAk = kUAVk for all A 2 Mn and for all unitary matrices U,V 2 Mn.
It is self-adjoint if kAk = kAHk for all A 2 Mn. The following result shows that the spectral norm is the
only induced norm that is unitarily invariant and self-adjoint [33, Theorems 5.6.34, 5.6.35].

Lemma 25.26. Let k ·k be a submultiplicative matrix norm on Mn. The following are equivalent:

1. k ·k is the spectral norm.

2. k · k is an induced norm that is unitarily invariant, i.e., kAk = kUAVk for all A 2 Mn and for all
unitary matrices U,V 2 Mn.

3. k ·k is an induced norm that is self-adjoint, i.e., kAk = kAHk for all A 2 Mn.
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Other matrix norms. We can also view a complex matrix A 2 Mm,n as a vector in C
mn and treat the

lp norms on C
mn as matrix norms on Mm,n. We sometimes refer these norms as vector norms on Mm,n.

Examples include

• l1 norm: kAksum := Âi, j |Ai j|.

• l2 or Frobenius norm: kAkF :=
�
Âi, j |Ai j|2

�1/2.

• l• norm: kAkmax := maxi, j |Ai j|.

The Frobenius inner product on complex matrices in Mm,n is defined to be

hA,BiF := tr BHA =
m

Â
i=1

n

Â
j=1

Bi jAi j

It is simply the Euclidean inner product when we view a matrix A 2 Mm,n as a vector in C
mn. The Forbenius

norm is then derived from the Frobenius inner product, kAkF :=
p

hA,AiF .

They satisfy the following properties

Theorem 25.27. Let A 2 Mn be a n⇥n complex matrix.

1. k · ksum and k · kF are submultiplicative matrix norms, but k · kmax is a matrix norm that is not sub-
multiplicative.

2. The Frobenius norm is given by

kAkF =
���tr

⇣
AAH

⌘���
1/2

=
r

Â
i

s2
i (A) =

r
Â

i
li

�
AAH

�

where si(A) denote the singular values of A and li(AAH) denote the eigenvalues of the positive
semidefinite matrix AAH.

3. kAkF = kAHkF = kUAVkF for any unitary matrices U,V 2 Mn (unitarily invariant).

Hence while the spectral norm k · k2 is the only unitarily invariant and the only self-adjoint induced
norm (Lemma 25.26), the Frobenius norm k · kF is a unitarily invariant and self-adjoint norm that is not
induced by a vector norm on C

n.

Since Mn is a finite dimensional vector space over field F = C or R, all matrix norms, whether or not
they are submultiplicative, are equivalent in the sense of (25.18) and therefore have the same convergence
sequences. In particular a matrix norm that is not submultiplicative is equivalent to every submultiplicative
matrix norm, and vice versa. Moreover any vector norm on Mn becomes a submultiplicative matrix norm
when scaled up sufficiently [33, Theorems 5.7.8, 5.7.11, pp. 372].

Lemma 25.28. 1. Given any matrix norm N(·) (e.g., a vector norm) on Mn and any submultiplicative
matrix norm k ·k on Mn, there exists finite positive constants cm,cM such that

cmkAk  N(A)  cMkAk, A 2 Mn (25.24)

2. Let N(·) be a vector norm on Mn and c(N) := maxN(A)=1=N(B) N(AB). Then gN(·) is a submulti-
plicative matrix norm on Mn if and only if g � c(N)
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Spectral radius, matrix norm and convergence. Induced norms have a certain minimality property
among matrix norms. This can be useful, e.g., in analyzing iterative algorithms of the form x(t + 1) =
Ax(t). We now describe the relationship between the spectral radius r(A) of a matrix A, its matrix kAk,
and convergence properties of Ak and Â jk A j.

Theorem 25.29 (Spectral radius, singular values, norms). Let k ·k be a submultiplicative matrix norm on
Mn and A 2 Mn. Let li and si be the eigenvalues and singular values of A respectively with

|l1| � · · · � |ln|, s1 � · · · � sn

Let r(A) := |l1| denote the spectral radius of A.

1. |l1|  s1 and |ln| � sn > 0, i.e., |li| 2 [sn,s1].

2. For all i, 1/kA�1k  |li|  r(A)  kAk if A is nonsingular.

3. Given any e > 0 there is a submultiplicative matrix norm k · k such that r(A)  kAk  r(A)+ e .
Moreover

r(A) = inf{kAk : k ·k is an induced norm}

In Theorem 25.29, 1 is proved in [33, Theorem 5.6.9], 2 follows from 1 by taking k ·k to be the spectral
norm, and 3 is proved in [33, Lemma 5.6.10, p.347]. See Exercise 25.22 for details.

As mentioned above Mn is a finite dimensional vector space over field F = C or R, convergence of
matrices is defined in the same way as the convergence of elements in any normed vector space (V,k ·k),
i.e., a sequence {xk} ✓ V converges to a limit x 2 V if kxk � xk ! 0 as k ! •.

Definition 25.7 (Matrix convergence). We say a sequence {Ak} ✓ Mn (or a power series {Â jk A j} ✓ Mn)
converges if there exists a matrix A 2 Mn such that Ak ! A (or Â jk A j ! A) as k ! • with respect to the
underlying matrix norm k ·k, i.e., if limk!• kAk �Ak = 0 (or limk!• kÂ jk A j �Ak = 0).

All matrix norms, whether or not they are submultiplicative, are norms on Mn and therefore equivalent
in the sense of (25.18). Hence if Ak converges under a norm, it converges under all norms.

Theorem 25.30 (Sequence convergence). Let k ·k be a submultiplicative matrix norm on Mn and A 2 Mn.
Let r(A) denote the spectral radius of A.

1. If kAk < 1 then limk!• Ak = 0, i.e.,
��[Ak]i j

�� ! 0 as k ! • for all i, j.

2. r(A) < 1 if and only if limk!• Ak = 0.

3. Gelfand formula: r(A) = limk!• kAkk1/k.

In Theorem 25.30, 1 is proved in [33, Lemma 5.6.11] and uses the fact that if Ak converges then it
converges under the vector norm kAkmax := maxi, j |Ai j|, and 2 is proved in [33, Lemma 5.6.12] and says
that, unlike kAk < 1, r(A) < 1 is both necessary and sufficient for the convergence of limk!• Ak. Theorem
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25.30.3 holds not only for multiplicative matrix norms, but also for any matrix norm, including vector
norms [33, Corollary 5.6.14, Theorem 5.7.10]. It follows from the fact that, under a submultiplicative
matrix norm, Ã := (r(A) + e)�1A has spectral radius strictly less than 1 and converges for any e > 0,
implying that kAkk1/k  r(A)+ e for sufficiently large k. On the other hand r(A)  kAkk1/k and hence
r(A) = limk!• kAkk1/k. Extension to norms that are no submultiplicative makes use of (25.24).

Remark 25.3. We often want to establish kAk < 1 for some matrix norm in order to prove convergence
of sequences or power series of A. We are therefore interested in a minimal matrix norm k · k, i.e., a
submultiplicative norm on Mn such that the only submultiplicative norm N(·) on Mn with N(A)  kAk for
all A 2 Mn is N(·) = k · k. It can be shown that a submultiplicative matrix norm on Mn is minimal if and
only if it is an induced norm [33, Theorem 5.6.32, p.356].

The sum Sk := Âk
j=0 a j of a finitely many complex numbers a j 2 C does not depend on the order in

which a j are summed. An infinite series S := limk!• Sk = Â•
j=0 a j may, e.g., S := 1 � 1 + 1 � 1 + · · ·

where the partial sums Sk oscillate between 1 and �1. This motivates a stronger notion of conver-
gence. Specifically an infinite sum Â•

j=0 a j of complex numbers a j 2 C is said to converge absolutely
if limk!• Âk

j=0 |a j| = a for some real number a 2 R.

Definition 25.8 (Series convergence). Considered a norm vector space (Mn,k ·k). We say a power series
{Â jk A j} ✓ Mn

1. converges if there exists a matrix A 2 Mn such that Â jk A j ! A as k ! •, i.e., if limk!• kÂ jk A j �
Ak = 0.

2. converges absolutely if there exists a matrix A 2 Mn such that Â jk A j ! A) as k ! • with respect
to the underlying matrix norm k ·k, i.e., if limk!• kÂ jk A j �Ak = 0.

For a complex power series S(z) := limk!• Âk
j=0 a jz j, it is known that there is a radius of convergence

R � 0, possibly •, such that the power series converges absolutely for |z| < R, diverges if |z| > R, and may
converge or diverge if |z| = R. For any complex n ⇥ n matrix A 2 Mn and any submultiplicative matrix
norm k ·k we have

�����Â
k

akAk

�����  Â
k

|ak|kAkk  Â
k

|ak|kAkk

where the first inequality is due to the triangular inequality and the second due to submultiplicativity.
This means that a matrix power series Â•

k=0 akAk converges absolutely if there exists a matrix norm k · k
such that kAk < R, the radius of convergence for Âk akzk, i.e., see Exercise 25.24. Such a norm exists if
and only if r(A) < R because, given any e > 0, there exists a (submultiplicative) matrix norm k · k with
r(A)  kAk  r(A)+e [33, Lemma 5.6.10, p.347]. This fact and some corollaries are summarized in the
next result [33, pp.350-351].

Theorem 25.31 (Series convergence). Let A 2 Mn.

1. Let R be the radius of convergence of a scalar power series Â•
k=0 akzk. The matrix power series

Â•
k=0 akAk converges if r(A) < R, which holds if there exists a multiplicative matrix norm k · k on

Mn such that kAk < R.
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Let k ·k be a submultiplicative matrix norm on Mn.

2. If kI �Ak < 1 then A is nonsingular and

A�1 =
•

Â
k=0

(I �A)k

3. If kAk < 1 then I �A is nonsingular and

(I �A)�1 =
•

Â
k=0

Ak

4. If kIk = 1 (e.g., if k ·k is an induced norm) and kAk < 1 then

1
1+kAk  k(I �A)�1k  1

1�kAk

The theorem is proved in Exercise ??.

25.1.9 Differentiability, complex differentiability, analyticity

Differentiability of real-valued functions. A real-valued function f : R!R is said to be differentiable
at x 2 R if the limit

f 0(x) := lim
h2R
h!0

f (x+h)� f (x)
h

(25.25)

exists. If f 0(x) exists, it is called the gradient or derivative of f at x 2 R. If f is differentiable at every
x 2 X ✓R then f is called differentiable on X . The straight line {h 2R : f (x)+ f 0(x)h} can be interpreted
as a linear approximation of f at x in the sense that the error e(h) is smaller than linear, i.e.,

lim
h!0

e(h)

h
:= lim

h!0

f (x+h)� ( f (x)+ f 0(x)h)

h
= 0

We use this to generalize differentiability to Rn: a real-valued function f : Rn ! R is said to be differen-
tiable at x 2 R

n if there exists a vector m 2 R
n such that

lim
h2Rn
h!0

f (x+h)� f (x)�mTh
khk = 0

When this holds, m is called the gradient or derivative of f at x 2 R
n and denoted — f (x). If f is differen-

tiable at every x 2 X ✓R
n then f is called differentiable on X . If f is differentiable with respect to x j 2R,

when all other xk,k 6= j are held fixed, then it is called partially differentiable at x 2 R
n with respect to x j.

The derivative is called the partial derivative of f at x with respect to x j and denoted ∂ f
∂x j

(x):

∂ f
∂x j

(x) := lim
t2R
t!0

f (x+ te j)� f (x)
t
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where e j 2 R
n is the unit vector with 1 in the j position and 0 elsewhere. The row vector of partial

derivatives of f at x 2 R
n is

∂ f
∂x

(x) :=
h

∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
i

The partial derivative ∂ f
∂x (x) describes the behavior of f at x only along the coordinate axes whereas the

derivative — f (x) describes its behavior in all directions. If f is differentiable then it is partially differen-
tiable, but the converse does not generally hold.

Theorem 25.32. If f : Rn ! R is differentiable at x 2 R
n then it is partially differentiable at x (i.e., ∂ f

∂x (x)
exists). Moreover its gradient — f (x) is given by

— f (x) =
∂ f
∂x

(x)T

The following example shows that the converse may not hold.

Example 25.5. Consider f : R2 ! R defined by:

f (x,y) :=
⇢

0 if xy = 0
1 if x 6= 0, y 6= 0

Its partial derivative does not exist at any point, except at the origin where ∂ f
∂ (x,y)(0,0) = [0 0]. The function

f is discontinuous at (0,0) and hence cannot be differentiable at (0,0).

The partial derivative ∂ f
∂x (x) in Example 25.5 exists at the origin but is not continuous at 0. If f : X !R

is partially differentiable on an open set X ✓ R
n and ∂ f

∂x (x) is continuous on X (i.e., the partial derivative
∂ f
∂x (x) exists and is continuous at every x 2 X), then f is called continuously differentiable on X .

Theorem 25.33. If f : X !R is continuously differentiable on an open set X ✓R
n, then it is differentiable

on X .

Complex differentiability of complex-valued functions. A complex-valued function f :C!C is com-
plex differentiable at z 2 C if

f 0(z) := lim
h2C
h!0

f (z+h)� f (z)
h

(25.26)

exists. When f 0(z) exists we will call it the complex derivative (or derivative) of f at z 2C. Note that f 0(z)
is generally a complex number. If f is complex differentiable at every z 2 Z ✓ C then f is holomorphic
on Z.

Even though complex differentiability in (25.26), looks similar to differentiability in (25.25), (25.26)
is a much stronger notion because h must approach 0 from all directions in the complex plane. To see this
we can reformulate a complex-valued function and complex differentiability in R

2 where f : C ! C is
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written in terms of its real and imaginary parts, f (x,y) =: fr(x,y)+ i fi(x,y) where x,y 2 R. Then (25.26)
implies, taking h = t(1+ i0) and h = t(0+ i) respectively,

f 0(x,y) = lim
t2R
t!0

f (x+ t,y)� f (x,y)
t(1+ i0)

= lim
t2R
t!0

✓
fr(x+ t,y)� fr(x,y)

t
+ i fi(x+ t,y)� fi(x,y)

t

◆

f 0(x,y) = lim
t2R
t!0

f (x+ t,y)� f (x,y)
t(1+ i0)

= lim
t2R
t!0

✓
fr(x,y+ t)� fr(x,y)

it
+ i fi(x,y+ t)� fi(x,y)

it

◆

Hence if f =: fr + fi is holomorphic on Z then it must satisfy

∂ fr

∂x
=

∂ fi

∂y
,

∂ fi

∂x
= �∂ fr

∂y

on Z. These equations are called the Cauchy-Riemann equations.

Analyticity. A real-valued function f : X ! R on an open set X ✓ R is said to be real analytic on X if
at every point x0 2 X there is a neighborhood Bd (x0) := {x 2 X : |x� x0| < d} around x0 such that

f (x) =
•

Â
k=0

ak(x� x0)
k, x 2 Bd (x0) (25.27a)

Equivalently f is real analytic on X if it is infinitely differentiable so that the Taylor series around every
point x0 2 X converges to f (x) for all x 2 Bd (x0), i.e.,

f (x) =
•

Â
k=0

f (k)(x0)

k!
(x� x0)

k, x 2 Bd (x0) (25.27b)

The neighborhood Bd (z0) is called the region of convergence for (25.27). A function f defined on a subset
of R is said to be real analytic at x 2 R if there is a neighborhood Bd (x) of x on which f is real analytic.

A complex-valued function f : Z ! C on an open set Z ✓ C is said to be complex analytic on Z or
analytic on Z if at every point z0 2 Z there is a neighborhood Bd (z0) := {z 2 Z : |z � z0| < d} around z0
such that

f (z) =
•

Â
k=0

ak(z� z0)
k, z 2 Bd (z0) (25.28a)

Equivalently f is analytic on Z if it is infinitely differentiable so that the Taylor series around every point
z0 2 Z converges to f (z) for all z 2 Bd (z0), i.e.,

f (z) =
•

Â
k=0

f (k)(z0)

k!
(z� z0)

k, z 2 Bd (z0) (25.28b)

A function f defined on a subset of C is said to be analytic at z 2 C if there is a neighborhood Bd (z) of z
on which f is analytic.

An important property of holomorphic function is: f : C ! C is holomorphic on an open set Z ✓ C if
and only if it is complex analytic on Z.
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25.1.10 Mean value theorems

When restricted to the vector space R
n endowed with any norm k ·k, the definition of dual norm k ·k⇤ in

(25.21) reduces to: for any x 2 R
n,

kxk⇤ := max
y:kyk=1

xTy = max
y:kyk=1

���xTy
��� (25.29)

The maximization is attained since inner product is continuous and the feasible set is compact. Hence
there is a normalized y(x) 2 R

n that satisfies

xTy(x) = kxk⇤ and ky(x)k = 1 (25.30a)

Recall a crucial fact that, for the vector space V = R
n or Cn, the dual of a dual norm is the original norm,

i.e., k ·k⇤⇤ = k ·k for an arbitrary norm k ·k on V (see [33, Theorem 5.5.9, p.338]). Therefore, given any
x 2 R

n, there exists an y⇤(x) 2 R
n such that

xT y⇤(x) = kxk and ky⇤(x)k⇤ = 1 (25.30b)

because

kxk = kxk⇤⇤ = max
y:kyk⇤=1

xT y = xT y⇤(x)

where y⇤(x) is a maximizer (which clearly exists).3 Remarkably, for Rn, (25.30) says that both the norm
and its dual norm of any vector can be attained by the inner product of the vector with another vector, for
any norm that may not be derived from an inner product, e.g., k ·k1, k ·k•.

We now use (25.22) and (25.30b) to prove the mean value theorem for vector-valued functions.

Lemma 25.34. Consider any differentiable function f : Rn ! R
m. Given any x,y,w in R

n we have

wT ( f (y)� f (x)) = wT ∂ f
∂x

(z)(y� x) (25.31a)

k f (y)� f (x)k 
����

∂ f
∂x

(z)
���� ky� xk (25.31b)

where z := ax + (1 � a)y for some a 2 [0,1], k · k is any norm, and for matrix, it denotes the induced
norm.

Proof of Lemma 25.34. Fix any x,y,w in R
n. Let z(a) := (1 � a)x + ay for a 2 [0,1] so that z(0) = x

and z(1) = y, and z(a) traces the straight path from x to y. Define the function

g(a) := gw(a) := wT f (z(a))

3For the p-norm the dual is the q-norm with p�1 +q�1 = 1 (see Lemma 25.24) and

(y(x))i :=
xp�1

i

kxkp�1
p

sign((xi)
p)

so that xT y(x) = kxkp and ky(x)kq = 1.
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as a function of a 2 [0,1]. Since g is from R to R the standard mean value theorem implies that

g(1)�g(0) = g0(b )

for some b 2 [0,1] that depends on w. Since g(0) = wT f (x) and g(1) = wT f (y) this becomes (using chain
rule)

wT ( f (y)� f (x)) = wT ∂ f
∂x

(z(b ))(y� x)

proving (25.31a).

To prove (25.31b), use (25.30b) to choose w 2 R
n such that4

wT ( f (y)� f (x)) = k f (y)� f (x)k and kwk⇤ = 1

Substituting this w into (25.31a) yields

k f (y)� f (x)k = wT ( f (y)� f (x)) = wT ∂ f
∂x

(z(b ))(y� x)

 kwk⇤ ·
����

∂ f
∂x

(z(b ))(x� y)
����


����

∂ f
∂x

(z(b ))

���� ·kx� yk

proving (25.31b). In the above, the first inequality follows from (25.22) and the second inequality follows
from the definition of the induced norm of ∂ f

∂x . This completes the proof of Lemma 25.34.

25.2 Algebraic graph theory

Consider a directed graph G = (N,E) with |N| = N + 1 and |E| = M with an arbitrary orientation. Let C
denote the (N +1)⇥M incidence matrix defined by:

C jl =

8
<

:

1 if l = j ! k for some bus k
�1 if l = i ! j for some bus i
0 otherwise

Let the N ⇥ M matrix C denote the reduced incidence matrix of G obtained from C by removing its first
row. If G has c connected components, then rank C = N + 1 � c. In particular if G is connected then

4 If the norm k ·k is Euclidean then the argument below simplifies to: setting w := f (y)� f (x) in (25.31a) yields

k f (y)� f (x)k2
2 = ( f (y)� f (x))T ∂ f

∂x
(z(b ))(y� x)

 k f (y)� f (x)k2 ·
����

∂ f
∂x

(z(b ))

����
2
ky� xk2

proving (25.31b). This is done in [303].
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rank C = N. Indeed C can be written as a block diagonal matrix with the kth diagonal block Ck being the
incident matrix of the kth connected component that has nk vertices. It can be proved that rank Ck = nk �1.

We take R
N+1 as the node space of G and it has a simple structure. The null space null

⇣
CT
⌘

consists

of all q 2 R
N+1 such that CT q = 0. This implies that q i = q j if (i, j) 2 E is a link, i.e., a vector q is

in null(C) if and only if q i takes the same value at every node in the same connected component. In
particular, if G is connected, then null

⇣
CT
⌘

is span(1) and therefore its orthogonal complement range(C)

has dimension N and consists of all vectors p 2 R
N+1 such that 1T p = 0. See Figure 25.7.

We take RM as the edge space of G.5 Since rank CT
= rank C = N for a connected G, null(C) = M�N;

see Figure 25.7. A cycle in G is a set of edges in E that forms a cycle subgraph. Given a cycle s in G,
pick an orientation for s , say, clockwise. Define the indicator function (vector) z(s) as

zl(s) =

8
><

>:

+1 if edge l is in s and has the same orientation as s
�1 if edge l is in s and has the opposite orientation as s
0 otherwise

Partition N into two nonempty disjoint subsets N1 and N2. A cut in G is a set of edges in E each of which
has one endpoint in N1 and the other endpoint in N2. Given a cut k in G, pick an orientation, say, from N1
to N2. Define the indicator function (vector) z(k) as

zl(k) =

8
><

>:

+1 if edge l is in k and has the same orientation as k
�1 if edge l is in k and has the opposite orientation as k
0 otherwise

Both the vectors z(s) and z(k) are in {0,1,�1}M. Given a partition of N into N1 and N2, the indicator
function z(k) of the cut can be expressed as

z(k) := ±1
2

 

Â
i2N1

ci � Â
i2N2

ci

!

where ci are the ith rows of C. This means that z(k) is in the range space of CT , and hence is orthogonal
to the kernal of C, i.e., if Cz̃ = 0 then zT (k)z̃ = 0. Call the null space of C the cycle subspace of G and its
orthogonal complement the cut subspace of G; see Figure 25.7.

Fix any spanning tree T of G. For each edge l of G not in T , there is a unique cycle consisting of l
and only edges in T ; denote this cycle by cyc(T, l). For each edge l of T , there is a unique cut consisting
of l and only edges not in T ; denotes this cut by cut(T, l). Give cyc(T, l) and cut(T, l) the orientations
that coincide with the orientation of l in G. These definitions are illustrated in Figure 25.8. The following
properties of the edge space of G are illustrated in Figure 25.7.

Theorem 25.35 (Edge space R
M of G). 1. The cycle subspace null(C) is a vector space of dimension

M �N; z(s) 2 null(C) for any cycle s .
5All results in this section extend to the case where the edge space is CM instead.
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range ̅'! : dim = ,
{- cut 1, 3 : 3 ∈ 1}

null ̅' : dim = 6 − ,
{- cyc 1, 3 : 3 ∈ 9\1}

ℝ! ℝ"#$

̅"

̅"! range ̅' : dim = ,
{ ; ∶ =!; = 0 }

null ̅'! : dim = 1
span(1)

Figure 25.7: The edge space of a connected graph G is RM = null(C)� range
⇣

CT
⌘

. The cycle subspace

null(C) has dimension M �N with a basis {z(cyc(T, l)) : l 2 G\T}, and the cut subspace range
⇣

CT
⌘

has

dimension N with a basis {z(cut(T, l)) : l 2 T}. The vertex space is RN+1 = null
⇣

CT
⌘

� range(C) with
dimension N and 1.



958 Draft: EE 135 Notes April 30, 2024

(a) Graph and spanning tree T (in purple) (b) Node-edge incidence matrix

T

l = 3

T
1

2
3

4

5 D =

1      1      1      0      0
−1    0      0      0      1
0   −1     0   −1   −1
0      0   −1     1      0

"

#

$
$
$
$

%

&

'
'
'
'

(c) dim(cycle space) = 2;  

T

(d) dim(cut space) = 3; 
l̂ = 4

z cyc T, l̂( )( ) = (0,−1,1,1, 0) z cut T, l( )( ) = (0, 0,1,−1,0)

̅"

Figure 25.8: (a) A connected graph with a spanning tree T . (b) 4 ⇥ 5 incidence matrix C. (c) The cycle
subspace null(C) with dimension 2, one for each edge not in the spanning tree T , and an example basis
vector z(cyc(T, l)) 2 null(C). (d) The cut subspace range(CT

) with dimension 3, one for each edge in
T , and an example basis vector z(cut(T, l)) 2 range(CT

). The examples z(cyc(T, l)) and z(cut(T, l)) are
indeed orthogonal.
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2. Given a spanning tree T , the set {z(cyc(T, l)) : l 2 G\T} forms a basis that spans null(C).

3. The cut subspace range
⇣

CT
⌘

is a vector space of dimension N; z(k) 2 range
⇣

CT
⌘

for any cut k .

4. Given a spanning tree T , the set {z(cut(T, l)) : l 2 T} forms a basis that spans range
⇣

CT
⌘

.

5. The edge space of G is the orthogonal direct sum of its cycle subspace and cut subspace, i.e.,
R

M = null(C)� range
⇣

CT
⌘

and zT
s zk = 0 for any zs 2 null(C) and zk 2 range

⇣
CT

⌘
.

Theorem 25.36. 1. (Poincaré 1901) Any square submatrix of the incidence matrix C of a graph G has
determinant equal to 0,+1, or �1.

2. Let F ✓ E with |F | = N. Let CF be an N ⇥N submatrix of C, consisting of the intersection of those
N columns of C corresponding to the N edges in F and any N rows of C. Then CF is invertible if
and only if the subgraph induced by F is a spanning tree of G.

3. (Inverse of CT ) Let T be a spanning tree of G. Let CT denote the corresponding N ⇥ N submatrix.
Then

⇥
C�1

T
⇤

li = ±1 if edge l is in the unique path in T joining node i and the reference node 0
corresponding to the row excluded from CT . Otherwise

⇥
C�1

T
⇤

li = 0.

A basis for the cycle subspace null(C) and that of the cut subspaces range
⇣

CT
⌘

can be explicitly

determined in terms of the incidence matrix C, as follows. Partition C such that columns 1, . . . ,N are the
edges of a spanning tree T of G. Partition C as (node 0 is the reference bus):

C =


CT C�T
d0T d�0T

�
(25.32a)

By Theorem 25.36, CT is invertible and its N rows form a basis since T is a spanning tree of G. Let Zs
denote the M ⇥(M �N) matrix whose columns are the basis {z(cyc(T, l)) | l 2 G\T} of the cycle subspace
null(C), written as (possibly after rearranging the columns):

Zs =


ZT

IM�N

�
(25.32b)

The lower submatrix of Zs is IM�N because these rows correspond to edges not in the spanning tree T and
the orientations of the cycles have been chosen so that they coincide with the orientation of these edges.
By the definition of Zs we have the important topological relation C Zs = 0. Using (25.32) we have

ZT = �C�1
T C�T

From Theorem 25.36.3, each column of ZT corresponds to a directed edge i ! j not in the spanning tree
T , and its nonzero entries correspond to edges on the unique path between node i and node j in T . Hence
a basis for the cycle subspace is given by the columns of

Zs =


�C�1

T C�T
IM�N

�
(25.33a)
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Note that Theorem 25.36 implies that C�1
T has integral entries, so Z also has integral entries. Similarly,

we can explicitly determine the cut matrix. Let Zk denote the M ⇥N matrix whose columns are the basis
{z(cut(T, l)) | l 2 T} of the cut subspace range

⇣
CT

⌘
, written as (possibly after rearranging the columns):

Zk =


IN

Z�T

�

Since every column of Kk belongs to the orthogonal complement of null(C), we have ZT
s Kk = 0. Hence

Z�T = CT
�T C�T

T

where M�T := (M�1)T = (MT )�1 for any invertible matrix M and the basis for the cut space is

Zk =


IN

CT
�T C�T

T

�
(25.33b)

Since Zs = �C�1
T C�T and Zk = CT

�T C�T
T we have ZT

s + Zk = 0(M�N)⇥N . This implies for l 2 T and
l̂ 2 G\T that

l 2 cyc(T, l̂) , l̂ 2 cut(T, l)

Example 25.6. For the graph in Figure 25.8 we have

Zs =

2

66664

0 1
�1 �1
1 0
1 0
0 1

3

77775
and Zk =

2

66664

1 0 0
0 1 0
0 0 1
0 1 �1

�1 1 0

3

77775

One can verify that, indeed, ZT
s +Zk = 0.

This structure can be used to understand loop flows in the DC power flow model. We call a line flow
vector P a loop flow if it satisfies power balance with zero injections, i.e., CP = 0. Hence Ps is a loop flow
if and only if it is in the cycle subspace null(C) of G, i.e., Ps = Zs a for some vector a 2 R

M�N . Given
any balanced injection vector p with Â j p j = 0, the line flows P that satisfy p = CP are not unique. If P
satisfies p = CP, so does P+Ps for any loop flow Ps . See Remark ??.

A matrix is called totally unimodular if any square submtrix has determinant equal to 0,+1, or �1.
Hence Theorem 25.36.1 implies that the incidence matrix D of any directed graph G is totally unimodular.

Theorem 25.37. Given any (directed) graph G,

1. D is totally unimodular.
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2. If A is a totally unimodular matrix and b is an integral vector, then, for any c, the solution of the
linear program

min
x

cT x subject to Ax  b

has an optimal solution which is integral, provided a finite solution exists.

The significance of the theorem is that many optimization problem on graphs have LP formulations
where A is the incidence matrix or its variant, e.g. max flow, shortest path problems.

Tree: reduced incidence matrix. Consider the (n + 1) ⇥ m incidence matrix C of a (connected) tree
graph defined by

Cjl =

8
<

:

1 if l = j ! k for some bus k
�1 if l = i ! j for some bus i
0 otherwise

Denote by cT
0 the first row of C corresponding to node 0 and by Ĉ the n ⇥ n submatrix consisting of the

remaining rows of C so that

C =:

� cT

0 �
Ĉ

�

Then the Ĉ is full rank and its inverse Ĉ�1 is given by

⇥
Ĉ�1⇤

l j =

8
<

:

�1 l 2 P j
1 �l 2 P j
0 otherwise

Here “l 2 P j” means a directed line l that points away from bus 0 and is in the unique path P j from bus 0
to bus j, and “�l 2 P j” means a directed line l in P j that points towards bus 0. Moreover Ĉ�T c0 = �1.
See Exercise 5.9.

25.3 Semidefinite relaxations

25.3.1 Graph, partial matrix and completion

Consider a graph G = (N,E) with N := {1, . . . ,n}. G can either be undirected or directed with an arbitrary
orientation. Two nodes j and k are adjacent if j ⇠ k 2 E. A complete graph is one where every pair of
nodes is adjacent. A subgraph of G is a graph F = (N0,E 0) with N0 ✓ N and E 0 ✓ E. A clique of G is a
complete subgraph of G. A maximal clique of G is a clique that is not a subgraph of another clique of G.

By a path connecting nodes j and k we mean either a set of distinct nodes ( j,n1, . . . ,ni,k) such that
( j ⇠ n1),(n1 ⇠ n2), . . . ,(ni ⇠ k) are edges in E or this set of edges, depending on the context. A cycle
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(n1, . . . ,ni) is a path such that (n1 ⇠ n2), . . . ,(ni ⇠ n1) are edges in E. By convention we exclude a pair of
adjacent nodes ( j,k) as a cycle. G is connected if there is a path between every pair of nodes. G is k-vertex
connected or k-connected, k = 1, . . . ,n, if it remains connected after removing fewer than k nodes. G is
k-edge-connected, k = 1, . . . ,n, if it remains connected after removing fewer than k edges. Hence if G is
k-connected (k-edge-connected) then it is j-connected ( j-edge-connected), j  k. A connected component
of G is a subgraph of G that is connected.

A cycle in G that has no chord (an edge connecting two nodes that are non-adjacent in the cycle) is
called a minimal cycle. G is chordal if all its minimal cycles are of length 3 (recall that an edge ( j,k) is
not considered a cycle). A chordal extension of G is a chordal graph on the same set of nodes as G that
contains G as a subgraph. Every graph has a chordal extension; e.g. the complete graph on the same set
of nodes is a trivial chordal extension.

Fix a graph G = (N,E) with N := {1, . . . ,n} and E ✓ N ⇥ N. For our purposes here we assume G
is undirected so that ( j,k) 2 E if and only if (k, j) 2 E. Suppose the matrices Cl in (14.3), l = 0, . . . ,L,
are all defined on G, i.e., for all l, [Cl] jk = 0 if ( j,k) 62 E. Then given any n ⇥ n matrix X , tr ClX = tr
ClXG where XG is the submatrix of X defined by G. Conversely, given a partial matrix XG that satisfies
(14.3b), any completion X of XG satisfies (14.3b). Even though both the objective function (14.3a) and
the constraints (14.3b) depend only on the partial matrix XG, the constraint X ⌫ 0 in (14.3c) depends also
on entries not in XG. Indeed the number of complex variables in X is n2 while the number of complex
variables in XG is only n + 2|E|, which is much smaller than n2 if G is large but sparse. Hence instead of
solving for a full psd matrix X directly as in SDP (14.3) we would like to compute a partial matrix XG that
has a psd completion X that satisfies (14.3b)–(14.3c). If the completion X is rank-1 then it also solves the
problem (14.2) and hence yields a solution to the original QCQP (13.10) through spectral decomposition
of X . Theorem 14.1 provides an exact characterization of when this is possible.

To solve the QCQP (13.10), Theorem 14.1 suggests the following strategy that exploits the sparsity
of graph G: instead of solving SDP (14.3) for a psd matrix Xopt 2 S

n
+, solve for a psd partial matrix Xopt

F
defined on a chordal extension F of G. If the solution Xopt

F turns out to be rank-1 as well then an optimal
solution xopt of QCQP (13.10) can be recovered from Xopt

F (see Section ??).

Two questions naturally arise in this approach: (i) How to formulate a semidefinite relaxation based
on a given a chordal extension F of G? (ii) How to choose a good chordal extension F of G so that the
resulting relaxation can be solved efficiently? We next illustrate the issues involved in these two questions
through an example. See [157, 158] for more details.

25.3.2 Chordal relaxation

Fix a graph G = (N,E). Let F = (N,E 0) be a chordal extension of G with E 0 ◆ E. Let q1, . . . ,qK be the set
of maximal cliques of F and X(qk),k = 1, . . . ,K, be the set of principal submatrices of X defined on these
cliques. Consider the following problem where the optimization variable is the Hermitian partial matrix
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WF 2 C
n+2|E 0| defined on the chordal extension F :

min
XF=XH

F

tr C0XG (25.34a)

subject to tr ClXG  bl, l = 1, . . . ,L (25.34b)
XF(qk) ⌫ 0, k = 1, . . . ,K (25.34c)

We call this problem a chordal relaxation of QCQP (13.10). Recall that we assume Cl , l = 0, . . . ,L, are
all defined on G, i.e., [Cl] jk = 0 if ( j,k) 62 E. This implies that trClX = trClXF = trClXG. Then chordal
relaxation (25.34) is equivalent to SDP (14.3) in the sense that given any feasible solution XF of (25.34),
there is a psd completion X that is feasible for (14.3) and has the same cost, and vice versa. This is a
consequence of [155, Theorem 7] that says every psd partial matrix has a psd completion if and only if the
underlying graph is chordal. See also Theorem 14.4 and Corollary 14.5.

The first step in constructing the chordal relaxation (25.34) is to list all the maximal cliques qk. Even
though listing all maximal cliques of a general graph is NP-hard it can be done efficiently for a chordal
graph. This is because a graph is chordal if and only if it has a perfect elimination ordering [304] and
computing this ordering takes linear time in the number of nodes and edges [305]. Given a perfect elim-
ination ordering all maximal cliques qk can be enumerated and XF(qk) constructed efficiently [157]. For
optimal power flow problems the computation depends only on the topology of the power network, not on
operational data, and therefore can be done offline.

We now show that (25.34) is indeed an SDP by converting it into the standard form (14.3) with the
introduction of auxiliary variables, following the procedure described in [157]. This conversion also illus-
trates the difficulty in choosing a good chordal extension F (see Remark 25.4 below).

The (fully specified) matrices XF(qk) in (25.34c) can be treated as principal submatrices of an n ⇥ n
matrix X . They may not however be integrated directly into a common n ⇥ n matrix variable X because
different XF(qk) may share entries. We now explain the issue and its resolution using the example in Figure
1. They are the same in the general case with more cumbersome notations; see [157, 158]. Suppose we
have chosen the chordal extension F in Figure 25.9(b) with two overlapping cliques q1 and q2 as explained
in the caption of the figure. To decouple the two matrices XF(q1) and XF(q2), define the 3⇥3 matrix

X 0(q1) :=

2

4
x11 x12 x13
x21 u22 u23
x31 u32 u33

3

5

where the decoupling variables u jk are constrained to be:

u jk = x jk for j,k = 2,3 (25.35)

The constraints (25.34c) are replaced by

X 0
F(q1) ⌫ 0 and XF(q2) ⌫ 0 (25.36)

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�
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Figure 25.9: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F
and its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes,
2 and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.
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Then the chordal relaxation (25.34) can be written in the standard form (14.3) in terms of these 7 ⇥ 7
block-diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (25.37a)

subject to tr C0
lX

0  bl, l = 1, . . . ,L (25.37b)
tr C0

rX
0 = 0, r = 1,2,3,4 (25.37c)

X 0 ⌫ 0 (25.37d)

for appropriate choices of C0
l , l = 0, . . . ,L. The constraint X 0 ⌫ 0 in (25.37d) is equivalent to the require-

ment (25.36) on its submatrices and C0
r in (25.37c) is chosen to enforce the requirement (25.35). Hence

the chordal relaxation (25.34) is indeed an SDP.

Remark 25.4. There are two conflicting factors in choosing a good chordal extension F . First an F that
contains fewer number of maximal cliques q generally involves larger cliques, leading to larger submatri-
ces XF(q); for example the complete graph F has a single maximal clique but the corresponding XF(q) = X
has n2 entries and the chordal relaxation (25.34) offers no computational advantage over solving (in fact
it is exactly) the original SDP (14.3). This argues for a chordal extension F with smaller, possibly more,
maximal cliques q. Second, however, having more maximal cliques q tends to require more decoupling
variables u jk. Every decoupling variable u jk introduces an extra equality constraint in (25.37c), thus in-
creasing the required computational effort. For instance the transformed problem based on the chordal
extension in Figure 25.9(b) involves 2 maximal cliques of sizes 3 and 4, and 4 additional equality con-
straints in (25.37c). The transformed problem based on the chordal extension in Figure 25.9(c), on the
other hand, requires 3 maximal cliques each of size 3, and 8 additional equality constraints.

In summary even though the ambient dimension of the new variable X 0 is generally larger than that
of the original n ⇥ n matrix variable X (7 ⇥ 7 as opposed to 5 ⇥ 5 for the example in Figure 25.9(b)), the
chordal relaxation (25.34) can typically be solved much more efficiently than SDP (14.3) if G is large
and sparse; for OPF examples, see [161, 53]. Choosing a good chordal extension F of G is important but
nontrivial. See [157, 158] for methods to compute efficient chordal extensions and sparse SDP solutions.

25.4 Bibliographical notes

There are many excellent texts on linear algebra. Most of the materials in Chapter 25.1.6 can be found in
[301, Chapter 7.3] for singular value decomposition and properties of singular values, in [301, Chapters
2.5, 4.1] for spectral theorems for normal and Hermitian matrices, and [301, Chapter 4.4.] for complex
symmetric matrices. The basic notions of algebraic graph theory in Chapter 25.2 mostly follow [307].

There are many classic texts on nonsmooth convex analysis and optimization (e.g. Rockafellar, Clarke,
...). The materials in Section ?? mostly follow [100, Chapter 5], [107]. Books on nonsmooth analysis
include [108, 107, 109] with [108] focuses more on control theory for applications of nonsmooth analysis
and [107, 109] more on nonsmooth convex optimization. The emphasis of [107] is on R

n whereas that of
[109] is on infinite dimensional vector spaces.
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25.5 Problems

Chapters 25.1.3–25.1.6.

Exercise 25.1 (Matrix sum and product). Let A,B 2 C
n⇥n.

1. Show that if A,B are nonsingular then AB is nonsingular but A+B can be singular.

2. Show that if A � 0 and B � 0 then A + B � 0 but AB may not be positive definite. Show that if
AB = BA or if A and B have the same set of eigenvectors then AB � 0. Give an example of A � 0
and B � 0 that share the same set of eigenvectors and hence AB � 0. (Hint: AB = BA if and only if
A and B are simultaneously diagonalizable.)

3. AB = BA is only sufficient for AB � 0. Suppose A � 0, B � 0, and AB 6= BA. Give an example of
A,B where AB � 0 and another example where AB 6� 0.

Exercise 25.2 (Quadratic). Let M = A + iB where A,B 2 R
n⇥n and a = r + ie where r,e 2 R

n. Show
that, if M is (complex) symmetric, then

aHMa = (rTAr + eTAe) + i(rTBr + eTBe)

Show that, if M is (complex) symmetric, then

1. If A � 0 then M�1 exists and Re(M�1) � 0.

2. If B � 0 then M�1 exists and Im(M�1) � 0.

Exercise 25.3 (Schur complement). Let M 2 C
n⇥n and partition it into blocks:

M =


A B
D C

�

such that A 2 C
(n�k)⇥(n�k), k < n, and the other submatrices are of appropriate dimensions. If M and A

are invertible then

M�1 =


A�1 +A�1B(M/A)�1DA�1 �A�1B(M/A)�1

�(M/A)�1DA�1 (M/A)�1

�

where M/A := C �DA�1B is the Schur complement of A of matrix M.

Exercise 25.4 (Push-through identities). Let A 2 C
n⇥n, B 2 C

n⇥k and C 2 C
k⇥n. Then

1. (In +BC)�1B = B(Ik +CB)�1 provided the inverses exist.
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2. (A+BC)�1B = B(A+CB)�1 provided n = k, AB = BA and the inverses exist.

Note that when k ⌧ n, Ik +CB can be much easier to invert than In +BC.

Exercise 25.5. Find the singular value decomposition, pseudo-inverse A†, null(A), range(A), null(AT ) and
range(AT ) of the following:

1. A =


a
b

�
.

2. A = [1 2].

3. A =


1 1
0 0

�
.

4. A =


1 1
1 1

�
.

Discuss the existence and uniqueness of solutions to Ax = b given b.

Exercise 25.6. Consider A =


1 1
1 �2

�
. Let B :=


1
1

�
and C :=


1

�2

�
so that A = [B C]. Show that

A† = A�1 6=


B†

C†

�
.

Exercise 25.7 (Singular value decomposition). On the uniqueness of the unitary matrix W in Theorem
25.11, suppose m  n but rank(A) =: r < m. For a given V given in Theorem 25.11, show that W defined
by W ⇤ := S†V ⇤A generally does not satisfy the singular value decomposition (25.10). Here S† is obtained
from S by replacing its positive singular values si by 1/si and taking the transpose.

Exercise 25.8 (Singular value decomposition). Let x 2 C
n be an n ⇥ 1 matrix. Compute a singular value

decomposition of x.

Exercise 25.9 (SVD and unitary diagonalization). Prove Theorem 25.16.
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Chapter 25.1.7.

Exercise 25.10 (Pseudo-inverse of A). Consider a matrix A 2 C
m⇥n as a mapping A : Cn ! C

m and its
Hermitian transpose A⇤ : Cm ! C

n. Show that the mapping A restricted from range(A⇤) to range(A) is
surjective and injective. This means that an inverse, denoted A† : range(A) ! range(A⇤), always exists for
any matrix A.

Exercise 25.11 (Pseudo-inverse of A). For the mapping A in Exercise 25.10, show that A† = WS†V ⇤, i.e.,
A and A† are inverse of each other when restricted to range(A⇤) and range(A).

Exercise 25.12 (Pseudo-inverse of A). Consider a matrix A 2 C
m⇥n with rank A = r  min{m,n}. Let

A = V SW ⇤ be its singular value decomposition and A† = WS†V ⇤ be its pseudo-inverse. Prove (Corollary
25.20.3): If r = n  m then A† = (A⇤A)�1 A⇤.

Exercise 25.13 (Pseudo-inverse of A). Consider a matrix A 2C
m⇥n with rank A = r  min{m,n}. Instead

of using the formula A† = WS†V ⇤, use the fact that A† and A are inverse of each other when restricted to
range(A⇤) and range(A) to prove:

1. If r = m  n then A† = A⇤ (AA⇤)�1.

2. If r = n  m then A† = (A⇤A)�1 A⇤.

Exercise 25.14 (Pseudo-inverse and norm minimization). Consider a matrix A 2R
m⇥n with rank A = m 

n. Show that the pseudo-inverse solution A†b of Ax = b is the optimal solution of the quadratic program

min
x2Rn

1
2

kxk2
2 s.t. Ax = b

Optimization problems often have multiple equivalent formulations that involve different variables and
constraints. The next two exercises explore the relationship between these equivalent constraints and their
Lagrange multipliers when the constraints are affine. See also Exercise 20.3 on equivalent formulations of
economic dispatch with reduced model.

Exercise 25.15 (Equivalent constraints). Consider the equations A1x = b1 and A2x = b2 with x 2 R
n,

A1 2 R
m⇥n, A2 2 R

k⇥n, b1 2 R
m, b2 2 R

k, and m may not be equal to k. Suppose

• Feasibility: b1 2 range(A1) and b2 2 range(A2) so solutions for these equations always exist.

• Equivalence: x satisfies A1x = b1 if and only if it satisfies A2x = b2.
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Remark 25.2 implies that the solution set of A1x = b1 is given by

X1 := {x : x = A†
1b1 +w1, w1 2 null(A1)}

and the solution set of A2x = b2 is given by

X2 := {x : x = A†
2b2 +w2, w2 2 null(A2)}

Show that there is a bijection between X1 and X2.

Exercise 25.16 (Equivalent constraints). Consider the setup in Exercise 25.15 and the equivalent problems

min
x

f (x) subject to A1x = b1 [l1] (25.38)

min
x

f (x) subject to A2x = b2 [l2] (25.39)

with Lagrange multipliers l1,l2 respectively. Suppose f is differentiable (not necessarily convex). Let
(x⇤,l ⇤

1 ) be a primal-dual optimal point with zero duality gap for (25.38) and (x⇤,l ⇤
2 ) be a primal-dual

optimal point with zero duality gap for (25.39). Show that AT
1 l ⇤

1 = AT
2 l ⇤

2 .

Chapter 25.1.8.

Exercise 25.17 (Euclidean norm). Show that the Euclidean norm k ·k2 on C
n is the only unitarily invariant

norm with keik = 1. Positive scalar multiples of Euclidean norms are also unitarily invariant with keik not
necessarily 1.

Exercise 25.18 (Cauchy-Schwarz inequality). Let x1, . . . ,xn be n given real numbers with sample mean µ
and sample standard deviation s defined by:

µ :=
1
n Â

i
xi, s :=

 
1
n Â

i
(xi � µ)2

!1/2

It can then be shown that (Exercise 25.18)

µ � s
p

n�1  xi  µ + s
p

n�1, i = 1, . . . ,n

with equality for some i if and only if xp = xq for all p,q 6= i.
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Exercise 25.19 (Hölder’s inequality). Prove Theorem 25.23 on the vector space V = Cn or Rn with lp
norms (Hölder’s inequality): For any p,q � 1 such that 1

p + 1
q = 1

n

Â
i=1

|xiyi|  kxkp kykq , x, y 2 V

with equality if and only if xp := (xp
i , i = 1, . . . ,n) and yq := (yq

i , i = 1, . . . ,n) are linearly dependent, i.e.,
xp = ayq for some scalar a 2 F .

Exercise 25.20 (Induced norms). Let A 2 Mm,n be a m⇥n complex matrix. Prove Theorem 25.25:

1. Max column sum (induced by l1 norm): kAk1 = max j Âi |Ai j|.

2. Max row sum (induced by l• norm):kAk• = maxi Â j |Ai j|.

3. Spectral norm (induced by l2 norm): kAk2 = smax(A) =
q

lmax
�
AHA

�
where smax(A) is the largest

singular value of A and lmax
�
AHA

�
� 0 is the largest eigenvalue of the positive semidefinite matrix

AHA.

4. If A is square and nonsingular then kA�1k2 = 1/smin(A), the reciprocal of the smallest singular
value of A.

5. kAHAk2 = kAAHk2 = kAk2
2.

6. kAk2 = max{|yHAx| : kxk2 = kyk2 = 1, x 2 C
n,y 2 C

m}.

Exercise 25.21 (Vector norms on matrices). Prove Theorem 25.27: Let A 2 Mn be a n⇥n complex matrix.

1. k · ksum and k · kF are submultiplicative matrix norms, but k · kmax is a matrix norm that is not sub-
multiplicative.

2. The Frobenius norm is given by

kAkF =
���tr

⇣
AAH

⌘���
1/2

=
r

Â
i

s2
i (A) =

r
Â

i
li

�
AAH

�

where si(A) denote the singular values of A and li(AAH) denote the eigenvalues of the positive
semidefinite matrix AAH.

3. kAkF = kAHkF = kUAVkF for any unitary matrices U,V 2 Mn (unitarily invariant).
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Exercise 25.22 (Spectral radius, singular values, norms). Let A 2 Mn. Let k · k be a submultiplicative
matrix norm on Mn and A 2 Mn. Let li and si be the eigenvalues and singular values of A respectively
with

|l1| � · · · � |ln|, s1 � · · · � sn

Let r(A) := |l1| denote the spectral radius of A. Prove Theorem 25.29:

1. |l1|  s1 and |ln| � sn > 0, i.e., |li| 2 [sn,s1].

2. For all i, 1/kA�1k  |li|  r(A)  kAk if A is nonsingular.

3. Given any e > 0 there is a submultiplicative matrix norm k · k such that r(A)  kAk  r(A)+ e .
Moreover

r(A) = inf{kAk : k ·k is an induced norm}

Exercise 25.23 (Sequence convergence). Let k ·k be a submultiplicative matrix norm on Mn and A 2 Mn.
Let r(A) denote the spectral radius of A. Prove Theorem 25.30:

1. If kAk < 1 then limk!• Ak = 0, i.e.,
��[Ak]i j

�� ! 0 as k ! • for all i, j.

2. r(A) < 1 if and only if limk!• Ak = 0.

3. Gelfand formula: r(A) = limk!• kAkk1/k.

Exercise 25.24 (Series convergence). Suppose there exists a matrix norm k · k such that kAk < R where
R is the radius of convergence for the power series Âk akzk. Show that the matrix power series Âk akAk

converges absolutely, i.e., limk!• |ak|kAkk

Chapter ??.
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