Optimal Demand Response and Power Flow

Steven Low

Computing + Math Sciences Electrical Engineering Caltech

March 2012

Wind power over land (exc. Antartica) 70 – 170 TW

Solar power over land 340 TW

<u>Worldwide</u>

energy demand: 16 TW

electricity demand: 2.2 TW

wind capacity (2009): 159 GW

grid-tied PV capacity (2009): 21 GW

Source: Renewable Energy Global Status Report, 2010 Source: M. Jacobson, 2011

Source: Rosa Yang, EPRI

Current control paradigm works well today

- Low uncertainty, few active assets to control
- Centralized, open-loop, human-in-loop, worst-case preventive
- Schedule supplies to match loads

Future needs

- Fast computation to cope with rapid, random, large fluctuations in supply, demand, voltage, freq
- Simple algorithms to scale to large networks of active DER
- Real-time data for adaptive control, e.g. real-time DR

Optimal demand response

With L. Chen, L. Jiang, N. Li

Optimal power flow

With S. Bose, M. Chandy, C. Clarke, M. Farivar, D. Gayme, J. Lavaei

Automated Demand Response Saves Capacity and Energy

Electric load profile for PG&E participants on 8/30/2007

Source: Steven Chu, GridWeek 2009

Model

Results

- Uncorrelated demand: distributed alg
- Correlated demand: distributed alg
- Impact of uncertainty

Some refs:

- Kirschen 2003, S. Borenstein 2005, Smith et al 2007
- Caramanis & Foster 2010, 2011
- Varaiya et al 2011
- Ilic et al 2011

Model

Results

- Uncorrelated demand: distributed alg
- Correlated demand: distributed alg
- Impact of uncertainty

- L Chen, N. Li, L. Jiang and S. H. Low, Optimal demand response. In Control & Optimization Theory of Electric Smart Grids, Springer 2011
- L. Jiang and S. H. Low, CDC 2011, Allerton 2011

Wholesale markets
Day ahead, real-time balancing
Renewable generation
Non-dispatchable
Demand response

Real-time control (through pricing)

Each user has 1 appliance (wlog)

Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_{i}(t) \stackrel{f}{=} x_{i}(t) \stackrel{f}{=} \overline{x}_{i}(t) \qquad \overset{s}{=} x_{i}(t) \stackrel{g}{=} \overline{X}_{i}(t)$$

i

Demand at *t*: $D(t) := a x_i(t)$

Power procurement

Day-ahead power: $P_d(t)$, $c_d(P_d(t))$

capacity

Control, decided a day ahead

Power procurement

Day-ahead power: $P_d(t)$, $c_d(P_d(t))$

capacity

Control, decided a day ahead

Renewable power: $P_r(t)$, $c_r(P_r(t)) = 0$

□ Random variable, realized in real-time

Power procurement

Day-ahead power: $P_d(t)$, $c_d(P_d(t))$, $c_o(Dx(t))$

Control, decided a day ahead

Renewable power: $P_r(t)$, $c_r(P_r(t)) = 0$

energy

capacity

□ Random variable, realized in real-time

Model: LSE (load serving entity)

Power procurement

Day-ahead power: $P_d(t)$, $c_d(P_d(t))$, $c_o(Dx(t))$

capacity

energy

Control, decided a day ahead

Renewable power: $P_r(t)$, $c_r(P_r(t)) = 0$

Random variable, realized in real-time

Real-time balancing power: $P_b(t)$, $c_b(P_b(t))$

$$P_{b}(t) = D(t) - P_{r}(t) - P_{d}(t)$$

- Use as much renewable as possible
- Optimally provision day-ahead power
- Buy sufficient real-time power to balance demand

□ No network constraints

Day-ahead decision

How much power P_d should LSE buy from dayahead market?

Real-time decision (at *t*-)

- How much x_i should users consume, given realization of wind power P_r and P_d ?
- How to compute these decisions distributively? How does closed-loop system behave ?

Real-time (at t-)

Given P_d and realizations of P_r , choose optimal $x_i^* = x_i^* (P_d; P_r)$ to max social welfare

Day-ahead

Choose optimal P_d^* that maximizes expected optimal social welfare

available info:
$$P_d^*$$
 P_d^* x_i^*

Model

Results

- Uncorrelated demand: distributed alg
- Correlated demand: distributed alg
- Impact of uncertainty

Uncorrelated demand: T=1

Each user has 1 appliance (wlog)

Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

i

$$\underline{x}_i(t) \in x_i(t) \in \overline{x}_i(t)$$

Demand at *t*: $D(t) := a x_i(t)$

Supply cost

$$c(P_d, x) = c_d (P_d) + c_o (D(x))_0^{P_d} + c_b (D(x) - P_d)_+$$

$$D(x) := \sum_i x_i - P_r \quad \longleftarrow \text{ excess demand}$$

Supply cost

$$c(P_d, x) = c_d (P_d) + c_o (D(x))_0^{P_d} + c_b (D(x) - P_d)_+$$

$$D(x) := \sum_i x_i - P_r \qquad \text{excess demand}$$

Welfare function (random)

Welfare function (random) $W(P_d, x) = \mathop{a}\limits_{i} u_i(x_i) - c(P_d, x)$

Optimal real-time demand response $\max_{x} W(P_{d}, x) \qquad \begin{array}{c} \text{given realization} \\ \text{of } P_{r} \end{array}$

Welfare function (random)
$$W(P_d, x) = \mathop{a}\limits_{i} u_i(x_i) - c(P_d, x)$$

Optimal real-time demand response $x^*(P_d) := \arg \max_x W(P_d, x) \qquad \text{given realization} \ \text{of } P_r$

Welfare function (random)
$$W(P_d, x) = \mathop{a}\limits_{i} u_i(x_i) - c(P_d, x)$$

Optimal real-time demand response $x^*(P_d) := \arg \max_x W(P_d, x) \qquad \text{given realization} \ \text{of } P_r$

Optimal day-ahead procurement $P_d^* := \arg \max_{P_d} EW(P_d, x^*(P_d))$

Overall problem: $\max_{P_d} E \max_{x} W(P_d, x)$

Real-time DR:
$$\max_{P_d} E \max_x W(P_d, x)$$
Scheduling: $\max_{P_d} \max_x E W(P_d, x)$

Theorem

Under appropriate assumptions:

$$W_{real-time\ DR}^{*} = W_{scheduling}^{*} + \frac{Ng^{2}}{1+Ng}S^{2}$$

benefit increases with

- uncertainty S^2
- marginal real-time cost g

$$\max_{P_d} E \max_{x} W(P_d, x)$$
real-time DR

10

Active user *i* computes x_i^*

Optimal consumption

LSE computes ■ Real-time "price" m_b^*

$$: \qquad x_i^{k+1} = \left(x_i^k + \mathcal{G} \left(u_i' \left(x_i^k \right) - \mathcal{M}_b^k \right) \right)_{\underline{x}_i}^{\overline{x}_i}$$

inc if marginal utility > real-time price

LSE :

Active user *i*

$$\mathcal{M}_{b}^{k+1} = \left(\mathcal{M}_{b}^{k} + \mathcal{G}\left(\mathsf{D}\left(x^{k}\right) - y_{o}^{k} - y_{b}^{k}\right)\right)_{+}$$

inc if total demand > total supply

- Decentralized
- Iterative computation at *t*-

Theorem: Algorithm 1

Socially optimal

- Converges to welfare-maximizing DR $x^* = x^* (P_d)$
- Real-time price aligns marginal cost of supply with individual marginal utility

$$\mathcal{M}_b^* = c'\left(P_d, \mathsf{D}\left(x^*\right)\right) = u_i'\left(x_i^*\right)$$

Incentive compatible

• $x_i^* \max i's$ surplus given price \mathcal{M}_b^*

Optimal day-ahead procurement

$$\max_{P_d} EW(P_d, x^*(P_d))$$

LSE:
$$P_d^{m+1} = \left(P_d^m + \mathcal{G}^m \left(\mathcal{M}_o^m - c_d' \left(P_d^m\right)\right)\right)_+$$

calculated from Monte Carlo simulation of Alg 1 (stochastic approximation)

Theorem

Algorithm 2 converges a.s. to optimal P_d^* for appropriate stepsize g^k

Model

Results

- Uncorrelated demand: distributed alg
- Correlated demand: distributed alg
- Impact of uncertainty

Renewable power:

$$P_{r}(t;a,b) := a \times \mathcal{M}(t) + b \times V(t)$$

$$\uparrow \qquad \uparrow$$

$$\mathsf{mean} \quad \mathsf{zero-mean} \, \mathsf{RV}$$

Optimal welfare of (1+T)-period DP

$$W^*(a,b)$$

$$P_r(t;a,b) := a \times \mathcal{M}(t) + b \times V(t)$$

<u>Theorem</u>

 $\square \quad W^*(a,b) \text{ increases in } a, \text{ decreases in } b$ $\square \quad W^*(s,s) \text{ increases in } s \text{ (plant size)}$

With ramp rate costs

Day-ahead ramp cost

Real-time ramp cost

$$s_d(t) \coloneqq f_d\left(P_d(t), P_d(t+1)\right)$$
$$s_b(t) \coloneqq f_b\left(P_b(t), P_b(t+1)\right)$$

Social welfare

Theorem

 $\square \quad W^*(a,b) \text{ increases in } a, \text{ decreases in } b$ $\square \quad W^*(s,s) \text{ increases in } s \text{ (plant size)}$

Optimal demand response ■ With L. Chen, L. Jiang, N. Li

Optimal power flow

With S. Bose, M. Chandy, C. Clarke, M. Farivar, D. Gayme, J. Lavaei

Optimal power flow (OPF)

OPF is solved routinely to determine

- How much power to generate where
- Market operation & pricing
- Parameter setting, e.g. taps, VARs
- □ Non-convex and hard to solve
 - Huge literature since 1962
 - In practice, operators often use heuristics to find a feasible operating point
 - Or solve DC power flow (LP)

Problem formulation

Carpentier 1962

Computational techniques:

- Dommel & Tinney 1968
- Surveys: Huneault et al 1991, Momoh et al 2001, Pandya et al 2008
- Bus injection model (SDP formulation):
 - Bai et al 2008, 2009, Lavaei et al 2010
 - Bose et al 2011, Sojoudi et al 2011, Zhang et al 2011
 - Lesieutre et al 2011

Branch flow model

Baran & Wu 1989, Chiang & Baran 1990, Farivar et al 2011

Models: Kirchhoff's law

SDP relaxation

Bus injection model

Conic relaxation

Branch flow model

Application

Nodes *i* and *j* are linked with an admittance $y_{ij} = g_{ij} - \mathbf{i}b_{ij}$

$$Y_{ij} = \begin{cases} y_{ii} + \sum_{j \sim i} y_{ij}, & \text{if } i = j \\ -y_{ij}, & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$

• Kirchhoff's Law: I = YV

min	$\operatorname{a} f_k(P_k^g)$	Generation cost
	$k\hat{I} G$	
over	$\left(S_k^g, \ V_k ight)$	
subject to	\underline{S}_k^g £ S_k^g £ \overline{S}_k^g	Generation power constraints
	\underline{V}_k $\mathbb{E} V_k $ \mathbb{E} \overline{V}_k	Voltage magnitude constraints
	I = YV	Kirchhoff law
	$V_k I_k^* = S_k^g - S_k^c$	Power balance

In terms of V:

 $P_{k} = \operatorname{tr} \mathsf{F}_{k} V V^{*}$ $Q_{k} = \operatorname{tr} \mathsf{Y}_{k} V V^{*}$

$$\begin{array}{ll} \min & \mathop{a}\limits^{\circ} \operatorname{tr} M_{k} V V^{*} \\ _{k\hat{1} \ G} \end{array}$$
over V
s.t. $\underline{P}_{k}^{g} - P_{k}^{d} \quad \text{ftr } \mathbb{F}_{k} V V^{*} \quad ftot{ftot} \overline{P}_{k}^{g} - P_{k}^{d}$

$$\underline{Q}_{k}^{g} - Q_{k}^{d} \quad \text{ftr } Y_{k}VV^{*} \quad \text{ft} \quad \overline{Q}_{k}^{g} - Q_{k}^{d}$$
$$\underline{V}_{k}^{2} \quad \text{ftr } J_{k}VV^{*} \quad \text{ftt} \quad \overline{V}_{k}^{2}$$

Key observation [Bai et al 2008]: OPF = rank constrained SDP

$$\min_{k \in G} \operatorname{tr} M_k W$$

over W positive semidefinite matrix

s.t.
$$\underline{P}_{k}$$
 for $F_{k}W$ for \overline{P}_{k}
 \underline{Q}_{k} for $Y_{k}W$ for \overline{Q}_{k}
 \underline{V}_{k}^{2} for $T_{k}W$ for \overline{V}_{k}^{2}
 W^{3} 0, rank $W = 1$

convex relaxation: SDP

$$\min_{k \in G} \operatorname{tr} M_k W$$

over W positive semidefinite matrix

s.t.
$$\underline{P}_{k} \in \operatorname{tr} F_{k}W \in \overline{P}_{k}$$

 $\underline{Q}_{k} \in \operatorname{tr} Y_{k}W \in \overline{Q}_{k}$
 $\underline{V}_{k}^{2} \in \operatorname{tr} J_{k}W \in \overline{V}_{k}^{2}$
 $W^{3} 0$

Lagrange

multipliers

 $A(I_k, M_k, g_k) := \underset{k \in G}{\overset{\circ}{a}} M_k + \underset{k}{\overset{\circ}{a}} (I_k F_k + M_k Y_k + g_k J_k)$

Theorem

- If A^{opt} has rank n-1 then
- $\square W^{opt}$ has rank 1, SDP relaxation is exact
- Duality gap is zero
- \Box A globally optimal V^{opt} can be recovered

All IEEE test systems (essentially) satisfy the condition!

J. Lavaei and S. H. Low: Zero duality gap in optimal power flow problem. Allerton 2010, TPS 2011

Suppose

- □ tree (radial) network
- no lower bounds on power injections

Theorem

- A^{opt} always has rank n-1
- $\square W^{opt}$ always has rank 1 (exact relaxation)
- □ OPF always has z∉red duality gap

□ Globally optimal solvable efficiently

S. Bose, D. Gayme, S. H. Low and M. Chandy, OPF over tree networks. Allerton 2011

Suppose

- □ tree (radial) network
- no lower bounds on power injections

Theorem

- A^{opt} always has rank n-1
- $\square W^{opt}$ always has rank 1 (exact relaxation)
- □ OPF always has z∉r®^t duality gap

□ Globally optimal solvable efficiently

Also: B. Zhang and D. Tse, Allerton 2011 S. Sojoudi and J. Lavaei, submitted 2011

$\begin{array}{ccc} \mathsf{QCQP} (C, C_k) \\ \min & x^* C x \\ \text{over} & x \widehat{|} \mathbf{C}^n \\ \text{s.t.} & x^* C_k x \widehat{|} b_k & k \widehat{|} K \end{array}$

graph of QCQP

$$G(C, C_k)$$
 has edge $(i, j) \Leftrightarrow$
 $C_{ij} \neq 0$ or $[C_k]_{ij} \neq 0$ for some k

QCQP over tree $G(C, C_k)$ is a tree

$\begin{array}{c} \mathsf{QCQP}(C,C_k) \\ \min & x^*Cx \\ \text{over} & x \mid \mathbf{C}^n \\ \text{s.t.} & x^*C_k x \in b_k \quad k \mid K \end{array}$

Semidefinite relaxation
minmintr CWover $W^3 0$ s. t.tr $C_k W \in b_k$ $k \mid K$

Key assumption $(i, j) \mid G(C, C_k) : 0 \notin \text{ int conv hull } \left(C_{ij}, [C_k]_{ij}, "k\right)$

Theorem

Semidefinite relaxation is exact for QCQP over tree S. Bose, D. Ga

S. Bose, D. Gayme, S. H. Low and M. Chandy, submitted March 2012

OPF over radial networks

<u>Theorem</u>

- A^{opt} always has rank n-1
- W^{opt} always has rank 1 (exact relaxation)
- □ OPF always has z∉re^tduality gap
- Clobally antimal colyable officiantly

OPF over radial networks

<u>Theorem</u>

- A^{opt} always has rank n-1
- $\square W^{opt}$ always has rank 1 (exact relaxation)
- □ OPF always has z∉re^tduality gap
- Clobally optimal colvable officiently

SDP relaxation

Bus injection model

Conic relaxation

Branch flow model

Application

Kirchhoff's Law:
$$S_{ij} = \mathop{a}\limits^{\circ} S_{jk} + Z_{ij} |I_{ij}|^2 + S_j^c - S_j^g$$

line load - gen
loss

Kirchhoff's Law:
$$S_{ij} = \mathop{\text{a}}_{k:j\sim k} S_{jk} + Z_{ij} \left| I_{ij} \right|^2 + S_j^c - S_j^g$$

Ohm's Law:
$$V_j = V_i - Z_{ij}I_{ij}$$
 $S_{ij} = V_iI_{ij}^*$

 $\min \left\| \stackrel{\circ}{\underset{i \sim j}{a}} r_{ij} l_{ij} + \stackrel{\circ}{\underset{i}{a}} a_i v_i \right\|_{ij}$ $l_{ij} := \left| I_{ij} \right|^2$ real power loss

CVR (conservation voltage reduction)

$$\begin{array}{ll} \min & \underset{i \sim j}{a} r_{ij} l_{ij} + \underset{i}{a} \partial_i v_i \\ \text{over} & (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \notin s_i^g \notin \overline{s}_i^g \\ & \underline{v}_i \notin v_i \notin \overline{v}_i \end{array}$$

Kirchhoff's Law:
$$S_{ij} = \mathop{\text{a}}_{k:j\sim k} S_{jk} + Z_{ij} \left| I_{ij} \right|^2 + S_j^c - S_j^g$$

Ohm's Law: $V_j = V_i - Z_{ij}I_{ij}$

$$\begin{array}{ll} \min & \underset{i \sim j}{\overset{\alpha}{\rightarrow}} r_{ij} I_{ij} + \underset{i}{\overset{\alpha}{\rightarrow}} \partial_i v_i \\ \text{over} & (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \notin s_i^g \notin \overline{s}_i^g & \underline{s}_i \notin s_i^c \\ \underline{v}_i \notin v_i \notin \overline{v}_i \\ V_i \notin \overline{v}_i & \text{demands} \end{array}$$

$$\begin{array}{ll} \text{Kirchhoff's Law:} & S_{ij} = \underset{k:j \sim k}{\overset{\alpha}{\rightarrow}} S_{jk} + z_{ij} \left| I_{ij} \right|^2 + s_j^c - s_j^g \\ \text{Ohm's Law:} & V_j = V_i - z_{ij} I_{ij} \\ \end{array}$$

 $S_{ij} = V_i I_{ij}$

$$\begin{array}{ll} \min & \underset{i \sim j}{\overset{\alpha}{\rightarrow}} r_{ij} I_{ij} + \underset{i}{\overset{\alpha}{\rightarrow}} \partial_i v_i \\ \text{over} & (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \triangleq s_i^g \triangleq \overline{s}_i^g & \underline{s}_i \triangleq s_i^c \\ \underline{v}_i \triangleq v_i \triangleq \overline{v}_i \\ \text{Var control} \\ \text{Kirchhoff's Law:} & S_{ij} = \underset{k:j \sim k}{\overset{\alpha}{\rightarrow}} S_{jk} + z_{ij} \left| I_{ij} \right|^2 + s_j^c - s_j^g \\ \text{Ohm's Law:} & V_j = V_i - z_{ij} I_{ij} \\ \end{array}$$

l IJ

Kirchhoff's Law:
$$S_{ij} = \mathop{\text{a}}_{k:j\sim k} S_{jk} + Z_{ij} \left| I_{ij} \right|^2 + S_j^c - S_j^g$$

Angles of I_{ij} , V_i eliminated ! Points relaxed to circles

$$|V_{i}|^{2} = |V_{j}|^{2} + 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) - (r_{ij}^{2} + x_{ij}^{2})|I_{ij}|^{2}$$

$$|I_{ij}|^{2} = \begin{cases} \frac{\partial}{\partial t}P_{ij}^{2} + Q_{ij}^{2} \ddot{0} \\ \frac{\partial}{\partial t}P_{ij}^{2} + Q_{ij}^{2} \ddot{0} \\ \frac{\partial}{\partial t}P_{ij}^{2} & \frac{\partial}{\partial t}P_{ij}^{2} \\ \frac{\partial}{\partial t}P_{ij}^{2}$$

989

rks

$$P_{ij} = \mathop{a}\limits_{k:j \sim k} P_{jk} + r_{ij} \left| I_{ij} \right|^{2} + p_{j}^{c} - p_{j}^{g}$$

$$Q_{ij} = \mathop{a}\limits_{k:j \sim k} Q_{jk} + x_{ij} \left| I_{ij} \right|^{2} + q_{j}^{c} - q_{j}^{g}$$

$$\left| V_{i} \right|^{2} = \left| V_{j} \right|^{2} + 2 \left(r_{ij} P_{ij} + x_{ij} Q_{ij} \right) - \left(r_{ij}^{2} + x_{ij}^{2} \right) \left| I_{ij} \right|^{2}$$

$$\left| I_{ij} \right|^{2} = \mathop{k r}\limits_{e} \frac{R_{ij}^{2} + Q_{ij}^{2} \ddot{0}}{\left| V_{i} \right|^{2} \dot{g}} \xrightarrow{k}$$
Baran and Wu 1989 for radial networks

OPF-ar

Linear objective

min $\operatorname{\mathring{a}} r_{ij}l_{ij} + \operatorname{\mathring{a}} \partial_i v_i$ i~ i over (S, l, v, s^g, s^c) s. t. $P_{ii} = \overset{\circ}{a} P_{ik} + r_{ii}l_{ii} + p_i^c - p_i^g$ k:*i~k* $Q_{ii} = \breve{a} Q_{ik} + x_{ii} l_{ij} + q_{i}^{c} - q_{i}^{g}$ k:j~k $v_{i} = v_{j} + 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) - (r_{ij}^{2} + x_{ij}^{2})l_{ii}$ Linear constraints $l_{ij} = \oint_{ij}^{i} \frac{P_{ij}^{2} + Q_{ij}^{2} \ddot{0}}{V_{i}} \frac{\dot{z}}{0},$ $S_i \stackrel{f}{\in} S_i^g \stackrel{f}{\in} \overline{S_i}$ Quadratic equality $v_i \in v_i \in \overline{v}_i$, $S_i \stackrel{c}{\in} \overline{S_i}^c$

)PF-cr

min $\operatorname{\mathring{a}} r_{ij}l_{ij} + \operatorname{\mathring{a}} a_i v_i$ i~ i over (S, l, v, s^g, s^c) s. t. $P_{ij} = \tilde{a} P_{jk} + r_{ij} l_{ij} + p_j^c - p_j^g$ k:*j~k* $Q_{ii} = \check{a} Q_{ik} + x_{ii} l_{ii} + q_i^c - q_i^g$ k:*i~k* $v_{i} = v_{j} + 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) - (r_{ii}^{2} + x_{ij}^{2})l_{ii}$ $l_{ij} \stackrel{3}{\stackrel{\text{de}}}}}}}}}}}}} \frac{2}{\nu}}$ $\underline{S}_i \stackrel{f}{\in} S_i^g \stackrel{f}{\in} \overline{S}_i$

Quadratic inequality

 $\underline{v}_i \in v_i \in \overline{v}_i$,

 $S_i \stackrel{c}{\vdash} S_i^c$

Theorem

Both relaxation steps are exact

- OPF-cr is convex and exact
- Phase angles can be uniquely determined

OPF-ar has zero duality gap

M. Farivar, C. Clarke, S. H. Low and M. Chandy, Inverter VAR control for distribution systems with renewables. SmartGridComm 2011

What about mesh networks ??

M. Farivar and S. H. Low, submitted March 2012

$$\begin{array}{ll} \min & \underset{i \sim j}{a} r_{ij} l_{ij} + \underset{i}{a} \partial_i v_i \\ \text{over} & (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \notin s_i^g \notin \overline{s}_i^g \\ & \underline{v}_i \notin v_i \notin \overline{v}_i \end{array}$$

Kirchoff's Law:
$$S_{ij} = \mathop{\text{a}}_{k:j\sim k} S_{jk} + Z_{ij} \left| I_{ij} \right|^2 + S_j^c - S_j^g$$

Ohm's Law: $V_j = V_i - Z_{ij}I_{ij}$

Convexification of mesh networks

OPF
$$\min_{x} f(\hat{h}(x))$$
 s.t. $x \mid \mathbf{X}$
OPF-ar $\min_{x} f(\hat{h}(x))$ s.t. $x \mid \mathbf{Y}$

OPF-ps
$$\min_{x,f} f(\hat{h}(x))$$
 s.t. $x \hat{I} \overline{\mathbf{X}}$

Theorem

- $\overline{\mathbf{X}} = \mathbf{Y}$
- Need phase shifters only outside spanning tree

Radial networks computationally simple

- Exploit tree graph & convex relaxation
- Real-time scalable control promising

Mesh networks can be convexified

- Design for simplicity
- Need few phase shifters (sparse topology)

Motivation

Static capacitor control cannot cope with rapid random fluctuations of PVs on distr circuits

Inverter control

- Much faster & more frequent
- IEEE 1547 does not optimize
 VAR currently (unity PF)

Load and Solar Variation

Distribution of System State (Solar vs Load) 0.9 0.8 0.2 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.8 0.9 Solar Output Level (%) **Empirical distribution**

of (load, solar) for Calabash

Improved reliability

Implication: reduced likelihood of violating voltage limits or VAR flow constraints

Energy savings

Summary

RESULTS FOR SOME VOLTAGE TOLERANCE THRESHOLDS

Voltage Drop	Annual Hours Saved Spending	Average Power
Tolerance(pu)	Outside Feasibility Region	Saving (%)
0.03	842.9	3.93%
0.04	160.7	3.67%
0.05	14.5	3.62%

- More reliable operation
- Energy savings