Optimal Power Flow: online algorithm, fast dynamics

Steven Low

August 2016

OPF relaxation

Bose (UIUC)

Chandy

Farivar

Gan (FB)

Lavaei (UCB)

Gan (FB)

Dvijotham (PNNL)

Tang

Dynamics

Bialek (Skoltech)

Li (Harvard)

Mallada (JHU)

Topcu (Austin)

Zhao (NREL)

Solar power over land: > 20x world energy demand

network of billions of active distributed energy resources (DERs)

DER: PV, wind tb, EV, storage, smart bldg / appl

System dynamics and controls at different timescales

• require different models

OPF is solved routinely for

- network control & optimization decisions
- market operations & pricing
- at timescales of mins, hours, days, ...

Non-convex and hard to solve

- Huge literature since 1962
- Common practice: DC power flow (LP)
- Also: Newton-Raphson, interior point, ...

min
$$c(x)$$
 s.t. $F(x) = 0$, $x \in \overline{x}$

Optimal power flow (OPF)

OPF problem underlies numerous applications

nonlinearity of power flow equations → nonconvexity

How to deal with nonconvexity of power flows?

Two ideas

1. exact semidefinite relaxation

Tutorial: L, Convex relaxation of OPF, 2014 http://netlab.caltech.edu

How to deal with nonconvexity of power flows?

Two ideas

- 1. exact semidefinite relaxation
- 1. use grid as implicit power flow solver

Large network of DERs

- Real-time optimization at scale
- Computational challenge: power flow solution
- Online optimization [feedback control]
 - Network computes power flow solutions in real time at scale for free
 - Exploit it for our optimization/control
 - Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control

Semidefinite relaxations of OPF

- Power flow models
- Offline algorithms

Tutorial: L, Convex relaxation of OPF, 2014 http://netlab.caltech.edu

Online OPF

Power flow models

Load-side frequency control Zhao, Topcu, Li, L, TAC 2014

Dynamic models

Online OPF

B) Dvijotham (PNNL)

Tang

 $\min_{x \in \mathbf{X}} f(x)$ **OPF**:

relaxation: $\min_{\hat{x} \in \mathbf{X}^+} f(\hat{x})$

But traditional algorithms are all offline unsuitable for real-time optimization of network of distributed energy resources

 $\min_{x \in \mathbf{X}} f(x)$ **OPF**:

relaxation: $\min_{\hat{x} \in \mathbf{X}^+} f(\hat{x})$

We will compare our online algorithm to relaxation wrt optimality and speed

min $c_0(y) + c(x)$ over x, y s. t. F(x, y) = 0

power flow equations

$\begin{array}{ll} \min & c_0(y) + c(x) \\ \text{over } x, \ y \\ \text{s. t. } F(x, y) = 0 & \text{power flow equations} \\ & y \ \exists \ \overline{y} & \text{operational constraints} \\ & x \ \widehat{l} \ X := \{ \underline{x} \ \exists \ x \ \exists \ \overline{x} \} \text{ capacity limits} \end{array}$

min $c_0(y(x)) + c(x)$ $\boldsymbol{\chi}$ s. t. $y(x) \in \overline{y}$ $x \hat{I} \quad X := \{ \underline{x} \in x \in \overline{x} \}$

$$\min_{x} c_0(y(x)) + c(x)$$

s. t. $y(x) \in \overline{y}$
 $x \mid X := \{ \underline{x} \in x \in \overline{x} \}$

add barrier function to remove operational constraints

$$\begin{array}{ll} \min & L(x, y(x); \ m) \\ \text{over} & x \stackrel{\frown}{i} X \end{array}$$

L: nonconvex

$$\begin{array}{ll} \min & L(x, y(x); \ m) \\ \text{over} & x \mid X \end{array}$$

gradient projection algorithm:

$$\begin{aligned} x(t+1) &= \stackrel{\acute{e}}{\underset{E}{\oplus}} x(t) - h \frac{\P L}{\P x}(t) \stackrel{i}{\underset{V}{\Downarrow}}_{X} & \text{active control} \\ y(t) &= y(x(t)) & \text{law of physics} \end{aligned}$$

- Explicitly exploits network as power flow solver
- Naturally tracks changing network conditions

$$\begin{array}{ll} \min & L(x, y(x); \ m) \\ \text{over} & x \mid X \end{array}$$

gradient projection algorithm:

$$x(t+1) = \stackrel{\acute{e}}{\underset{e}{\oplus}} x(t) - h \frac{\P L}{\P x}(t) \stackrel{i}{\underset{v}{\downarrow}}_{X}$$

$$y(t) = y(x(t))$$

active control

law of physics

<u>Results</u>

- 1. Optimality
- 2. Tracking performance

Under appropriate assumptions

- x(t) converges to set of local optima
- if #local optima is finite, x(t) converges

Assume:
$$p_0(x)$$
 convex over X
 $v_k(x)$ concave over X

$$A := \{ x \hat{I} \ X : v(x) \pounds a\overline{v} + (1 - a)\underline{v} \}$$

<u>Theorem</u>

If co{local optima} are in A then

- x(t) converges to the set of global optimal
- x(t) itself converges a global optimum if #local optima is finite

Assume:
$$p_0(x)$$
 convex over X
 $v_k(x)$ concave over X

$$A := \left\{ x \hat{I} \ X : v(x) \pounds a\overline{v} + (1-a)\underline{v} \right\}$$

<u>Theorem</u>

- Can choose *a* s.t.
 - $A \rightarrow$ original feasible set
- If SOCP is exact over *X*, then assumption holds

 $L(x^*) - L(\hat{x}) \quad \text{f. } r \gg 0$

Informally, a local minimum is almost as good as any strictly interior feasible point

$$R(x, x^*) :=$$

dynamic regret

$$\overset{T}{\underset{t=1}{\overset{T}{\underset{t=1}{\circ}}} c_0(y(x), g_t) + c(x, g_t)$$
 cost of Alg
-
$$\overset{T}{\underset{t=1}{\overset{T}{\underset{t=1}{\circ}}} c_0(y(x^*), g_t) + c(x^*, g_t)$$
 optimal cost

$$R(x, x^{*}) := \overset{T}{\underset{regret}{\circ}} c_{0}(y(x), g_{t}) + c(x, g_{t}) \quad \text{cost of Alg}$$

$$\overset{t=1}{\underset{t=1}{\overset{T}{\circ}}} c_{0}(y(x^{*}), g_{t}) + c(x^{*}, g_{t}) \quad \text{optimal cost}$$

Theorem

$$R(x, x^{*}) := \begin{cases} \overset{T}{\stackrel{o}{\circ}} c_{0}(y(x), g_{t}) + c(x, g_{t}) & \text{cost of Alg} \\ \\ \overset{t=1}{\stackrel{T}{\circ}} c_{0}(y(x^{*}), g_{t}) + c(x^{*}, g_{t}) & \text{optimal cost} \\ \\ \overset{t=1}{\stackrel{d}{\circ}} c_{0}(y(x^{*}), g_{t}) + c(x^{*}, g_{t}) & \text{optimal cost} \end{cases}$$

<u>Theorem</u>

- If rate of drifting is $o\left(\sqrt{T}\right)$ then per-step $R(x, x^*)$ is asymptotically bounded by $\overline{\delta}$ (local min)
- Can made $\overline{\delta}$ arbitrarily small at cost of computation

Simulations

# bus	CVX		IPM		error	speedup
	obj	time(s)	obj	time(s)	CITOI	specuup
42	10.4585	6.5267	10.4585	0.2679	-0.0e-7	24.36
56	34.8989	7.1077	34.8989	0.3924	+0.2e-7	18.11
111	0.0751	11.3793	0.0751	0.8529	+5.4e-6	13.34
190	0.1394	20.2745	0.1394	1.9968	+3.3e-6	10.15
290	0.2817	23.8817	0.2817	4.3564	+1.1e-7	5.48
390	0.4292	29.8620	0.4292	2.9405	+5.4e-7	10.16
490	0.5526	36.3591	0.5526	3.0072	+2.9e-7	12.09
590	0.7035	43.6932	0.7035	4.4655	+2.4e-7	9.78
690	0.8546	51.9830	0.8546	3.2247	+0.7e-7	16.12
790	0.9975	62.3654	0.9975	2.6228	+0.7e-7	23.78
890	1.1685	67.7256	1.1685	2.0507	+0.8e-7	33.03
990	1.3930	74.8522	1.3930	2.7747	+1.0e-7	26.98
1091	1.5869	83.2236	1.5869	1.0869	+1.2e-7	76.57
1190	1.8123	92.4484	1.8123	1.2121	+1.4e-7	76.27
1290	2.0134	101.0380	2.0134	1.3525	+1.6e-7	74.70
1390	2.2007	111.0839	2.2007	1.4883	+1.7e-7	74.64
1490	2.4523	122.1819	2.4523	1.6372	+1.9e-7	74.83
1590	2.6477	157.8238	2.6477	1.8021	+2.0e-7	87.58
1690	2.8441	147.6862	2.8441	1.9166	+2.1e-7	77.06
1790	3.0495	152.6081	3.0495	2.0603	+2.1e-7	74.07
1890	3.8555	160.4689	3.8555	2.1963	+1.9e-7	73.06
1990	4.1424	171.8137	4.1424	2.3586	+1.9e-7	72.84

frequency control

Bialek (Skoltech)

Li (Harvard)

Mallada (JHU)

Topcu (Austin)

Zhao (NREL)

Zhao, Topcu, Li, L, TAC 2014 http://netlab.caltech.edu

- All buses synchronized to same nominal frequency (US: 60 Hz; Europe/China: 50 Hz)
- Supply-demand imbalance → frequency fluctuation

2011 Southwest blackout

Ubiquitous continuous load-side control can supplement generator-side control

- faster (no/low inertia)
- more reliable (large #)
- better localize disturbances
- reducing generator-side control capacity

How to design load-side frequency control ?

How does it interact with generator-side control ?

Literature: load-side control

Original idea & early analytical work

- Schweppe et al 1980; Bergin, Hill, Qu, Dorsey, Wang, Varaiya ...
- Small scale trials around the world
 - D.Hammerstrom et al 2007, UK Market Transform Programme 2008
- Early simulation studies
 - Trudnowski et al 2006, Lu and Hammerstrom 2006, Short et al 2007, Donnelly et al 2010, Brooks et al 2010, Callaway and I. A. Hiskens, 2011, Molina-Garcia et al 2011

Analytical work – load-side control

- Zhao et al (2012/2014), Mallada and Low (2014), Mallada et al (2014), Zhao and Low (2014), Zhao et al (2015)
- Simpson-Porco et al 2013, You and Chen 2014, Zhang and Papachristodoulou (2014), Ma et al (2014), Zhao, et al (2014),

Recent analysis – generator-side/microgrid control:

Andreasson et al (2013), Zhang and Papachristodoulou (2013), Li et al (2014, 2016), Burger et al (2014), You and Chen (2014), Simpson-Porco et al (2013), Hill et al (2014), Dorfler et al (2014)

loads: damping or uncontrollable

i : region/control area/balancing authority

$$\dot{\theta}_{i} = \omega_{i}$$

$$M_{i}\dot{\omega}_{i} = -D_{i}\omega_{i} + p_{i} - \sum_{e}C_{ie}P_{e}$$

$$P_{ij} = b_{ij}\sin(\theta_{i} - \theta_{j}) \qquad \forall i \rightarrow j$$

Generator bus: $M_i > 0$ Load bus: $M_i = 0$

$$\begin{aligned} \dot{\theta}_i &= \omega_i \\ M_i \dot{\omega}_i &= -D_i \omega_i + p_i - \sum_e C_{ie} P_e \\ P_{ij} &= b_{ij} \sin\left(\theta_i - \theta_j\right) \qquad \forall i \to j \end{aligned}$$

Generator bus: p_i is real power injection Load bus: p_i is controllable load

$$\begin{aligned} \dot{\theta}_{i} &= \omega_{i} \\ M_{i}\dot{\omega}_{i} &= -D_{i}\omega_{i} + p_{i} - \sum_{e} C_{ie}P_{e} \\ P_{ij} &= b_{ij}\sin(\theta_{i} - \theta_{j}) \qquad \forall i \rightarrow j \\ \end{aligned}$$

$$\begin{aligned} \text{generator bus:} \qquad \dot{p}_{i} &= -\frac{1}{\tau_{bi}}(p_{i} + a_{i}) \\ \text{primary control } p_{i}^{c}(t) &= p_{i}^{c}(W_{i}(t)) \\ \text{e.g. freq droop } p_{i}^{c}(W_{i}) &= -b_{i}W_{i} \qquad \dot{a}_{i} &= -\frac{1}{\tau_{gi}}(a_{i} + p_{i}^{c}) \end{aligned}$$

$$\dot{\theta}_{i} = \omega_{i}$$

$$M_{i}\dot{\omega}_{i} = -D_{i}\omega_{i} + p_{i} - \sum_{e} C_{ie}P_{e}$$

$$P_{ij} = b_{ij}\sin(\theta_{i} - \theta_{j}) \quad \forall i \rightarrow j$$
Load bus:

how to design feedback control ?_

$$\begin{aligned} \dot{\theta}_i &= \omega_i \\ M_i \dot{\omega}_i &= -D_i \omega_i + p_i - \sum_e C_{ie} P_e \\ P_{ij} &= b_{ij} \sin\left(\theta_i - \theta_j\right) \qquad \forall i \to j \end{aligned}$$

Suppose the system is in steady state Then: disturbance in gen/load ...

$$\begin{aligned} \dot{\theta}_i &= \omega_i \\ M_i \dot{\omega}_i &= -D_i \omega_i + p_i - \sum_e C_{ie} P_e \\ P_{ij} &= b_{ij} \sin\left(\theta_i - \theta_j\right) \qquad \forall i \to j \end{aligned}$$

Control goals

Zhao, Topcu, Li, Low TAC 2014 Mallada, Zhao, Low Allerton, 2014

- Rebalance power & stabilize frequency
- Restore nominal frequency
- Restore scheduled inter-area flows
- Respect line limits

$$\begin{aligned} \dot{\theta}_i &= \omega_i \\ M_i \dot{\omega}_i &= -D_i \omega_i + p_i - \sum_e C_{ie} P_e \\ P_{ij} &= b_{ij} \sin\left(\theta_i - \theta_j\right) \qquad \forall i \to j \end{aligned}$$

Control goals (while min disutility)

Zhao, Topcu, Li, Low TAC 2014 Mallada, Zhao, Low Allerton, 2014

- Rebalance power & stabilize frequency
- Restore nominal frequency
- Restore scheduled inter-area flows
- Respect line limits

Design control law whose equilibrium solves:

$\min_{d,P}$	$\mathop{\text{a}}_{i} c_{i}(d_{i})$		load disutility
s. t.	$P_i^m - d_i = \mathop{a}\limits^{\bullet} C_{ie} P_e$	node <i>i</i>	power balance
	$\overset{e}{\underset{i \in N_{k}}{a}} \overset{e}{\underset{e}{a}} C_{ie} P_{e} = \hat{P}_{k}$	area k	inter-area flows
	\underline{P}_e £ P_e £ \overline{P}_e	line e	line limits

Control goals (while min disutility)Rebalance power & stabilize frequency

freq will emerge as Lagrange multiplier for power imbalance

- Restore nominal frequency
- Restore scheduled inter-area flowsRespect line limits

Design control (G, F) s.t. closed-loop system

- is asymptotically stable
- has equilibrium that is optimal

Idea: exploit system dynamic as part of primal-dual algorithm for modified opt

- Distributed algorithm
- Control goals in equilibrium
- Stability analysis

load contro

$\min_{d,P}$	$\mathop{\text{a}}_{i} c_{i}(d_{i})$	
s. t.	$P_i^m - d_i = \mathop{a}\limits^{\circ} C_{ie} P_e$	node <i>i</i>
	$\mathop{\text{a}}_{i\hat{1}} \mathop{\text{a}}_{N_k} \mathop{\text{a}}_{e}^{e} C_{ie} P_e = \hat{P}_k$	area <i>k</i>
	\underline{P}_e £ P_e £ \overline{P}_e	line e

Summary: control architecture

Primary load-side frequency control (linear PF)

- completely decentralized
- <u>Theorem</u>: globally stable dynamic, optimal equilibrium

Zhao, Topcu, Li, Low. TAC 2014

Summary: control architecture

Secondary load-side frequency control (linear PF)

- communication with neighbors
- <u>Theorem</u>: globally stable dynamic, optimal equilibrium

Mallada, Zhao, Low. Allerton 2014

Summary: control architecture

With generator-side control, nonlinear power flow

- load-side improves both transient & eq
- <u>Theorem</u>: stable dynamic, optimal equilibrium

Zhao, Mallada, Low. CISS 2015

Dynamic simulation of IEEE 39-bus system

Fig. 2: IEEE 39 bus system : New England

- Power System Toolbox (RPI)
- Detailed generation model
- Exciter model, power system stabilizer model
- Nonzero resistance lines

Similar shape but local frequencies differ more, higher control effort, slightly longer settling time

AGC blind to line limits

Unified Control enforces line limits

Large network of DERs

- Real-time optimization at scale
- Computational challenge: power flow solution
- Online optimization [feedback control]
 - Network computes power flow solutions in real time at scale for free
 - Exploit it for our optimization/control
 - Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control