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Motivation

Storage on distribution network

◼ Useful for renewable/DG integration

◼ CA mandates

 RPS: 33% by 2020, 50% by 2030

 3 IOUs to deploy 1.3GW battery by 2020
◼ At least ½ owned by IOUs

Design question: ideal deployment ?

◼ Where to place and how to size

◼ ... to minimize line loss

◼ ... assuming

 no other constraints such as real estate

 optimal charging/discharging operation



Conclusion

Interested in design guidelines

◼ Structural properties of optimal solution

Placement and sizing

◼ (scaled) Monotone deployment is optimal

Charging/discharging schedule

◼ Always charge till full (when generation is highest)

◼ Always discharge till empty (when demand is highest)



Continuous tree

[similar to Wang Turitsyn Chertkov (2012) ODE model of feeder line for power flow solution]

A continuous tree with underlying discrete tree

◼ Each segment (corresponding to a node in discrete 

tree) can be treated like a closed interval in R

◼ Order and integration are well defined on each 
segment



Continuous power flow equations

s(x) = p(x)+ jq(x)     injection at x

S(x) = P(x)+ jQ(x)   branch power flow at x

v(x)                            squared voltage magnitude

s(x) S(x)

v(x)



Continuous power flow equations

S(x) = s(y)- z(y)
| S(y) |2

v(y)
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y³x

ò  dy

v(x) =1+ 2Re z*(y)S(y)( )
[0,x ]

ò  dy

s(x) S(x)

v(x)

line loss

[ power flow equations: continuous version of Baran and Wu (1989) ]



Linear approximation

s(x) S(x)

S(x, t) »  s(y, t)
y³x

ò dy
Assumptions

• loss is small relative to line flow

• voltage magnitude ~ 1 pu

[ power flow equations: continuous version of Baran and Wu (1989) ]



Linear approximation

S(x, t) »  s(y, t)
y³x

ò dy

s(x) S(x)

Assumptions

• loss is small relative to line flow

• voltage magnitude ~ 1 pu

s(x, t) =a(x)p(t)+b(x) -  u(x, t)

background injection:

• common load shape in time

• location-dependent scale & offset [Smith, Wong, Rajagopal 2012]

charging rate



Storage model

s(x, t) =a(x)p(t)+b(x) -  u(x, t)

s(x) S(x)

charging rate

SoC



Optimal placement & sizing

min
b(x,t )
B(x )

 r(x)
tree

ò
time

ò  P2 (x, t)dxdt

s. t.  P(x, t) = a(y)p(t)+ b(y)-
¶b

¶t
(y, t)
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       0 £  b(x, t) £  B(x)

       B(x)dx  £  Btotal

tree

ò

energy loss

linear power

flow equation

state of charge

budget constraint

line flow
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Linear network

[Tang and Low, CDC 2016]

x = 0

b(x, t),  B(x)

a(x)p(t)+ b(x)-
¶b

¶t
(x, t)

compute:

given:

Theorem  Optimal charging schedule

Follow load shape p(t) with an offset, or OFF

◼ Charge when injection is highest till full

◼ Discharge when injection is lowest till empty

u*(t)

charge

discharge

net injection is 

flat (in time)



Linear network

[Tang and Low, CDC 2016]

x = 0

b(x, t),  B(x)compute:

given:

Theorem  Optimal charging schedule

Follow load shape p(t) with an offset, or OFF

◼ Charge when injection is highest till full

◼ Discharge when injection is lowest till empty

u*(t)

charge

discharge

flatten net 

injection

a(x)p(t)+ b(x)-
¶b

¶t
(x, t)



Linear network

[Tang and Low, CDC 2016]

x = 0

x*

B*(x)

a(x)
 increasing in x

Theorem  Optimal placement & sizing

 Deploy most storage far away from substation

 Decrease (scaled) storage capacity moving towards 
substation

 ... until running out of storage budget

B*(x) > 0B*(x) = 0

Every node can have distributed generation (2-way power flow)

... as long as all nodes have same load shape (with different scales & offsets)



Tree network

Theorem  

Structural properties (roughly) extend to tree

optimal placement & sizing

x1

*

x2

* = x3

*



Tree network

Theorem  

Structural properties (roughly) extend to tree

optimal schedule

charge

till full

discharge

till empty



Simulations

IEEE 123-bus test system

More realistic model

 Nonlinear DistFlow model

 Different nodes have slightly different load shapes (from SCE)

Compare with optimal placement

 Monotone property

 Total loss 

Optimal placement solved using SOCP relaxation of OPF



Simulations

Scaled monotone property roughly holds

Optimal placement & sizing from SOCP relaxation of OPF:



Simulations

Loss with assumptions (same load shape, linear PF) ~ optimal

7

Fig.5:O ptim al storage placem ent for the linearized and sim plified IEEE 123 node test feeder w hen p(t) has m ultiple peaks
and valleys.The radius ofeach colored solid circle is proportionalto B ⇤i /↵i,and differentcolors correspond to differentB tot.

Fig.6:Load profiles thatdeviate from the com m on load shape.
The lightcolored curves represent p(t)+ δpi(t).

W e carry out this experim ent on three instances of δpi(t),
and the results are show n in Table I. It can be seen that,
the differences betw een the loss reduction w ith B̂ ⇤i and the
optim al loss reduction are very sm all, show ing that B̂ ⇤i is a
very good suboptim al solution to the m ore realistic situations
w ith load profile deviations and nonlinear D istFlow m odel.
These sim ulation results suggestthat,although in practice the
background injections at each bus do not exactly follow the
sam e shape and the nonlinearD istFlow m odelism ore accurate
in characterizing the pow er flow ,Theorem 1 and Theorem 3,
w hich are derived by assum ing allloads have the sam e shape
and using the linearized D istFlow m odel,are stillvery useful.

V I. C O N C L U SIO N

W e studied the problem of optim al placem ent of energy
storage in distribution netw orks.W e m odeled the distribution
netw ork as a continuous tree w ith the linearized D istFlow

TA B LE I:C om parison of Loss R eduction

B tot = 1 M W h

Loss reduction w ith B̂ ⇤i O ptim al loss reduction

Instance 1 45.457 kW h 45.484 kW h

Instance 2 45.037 kW h 45.054 kW h

Instance 3 46.303 kW h 46.323 kW h

B tot = 0.5 M W h

Loss reduction w ith B̂ ⇤i O ptim al loss reduction

Instance 1 32.123 kW h 32.148 kW h

Instance 2 31.828 kW h 31.846 kW h

Instance 3 32.546 kW h 32.556 kW h

B tot = 0.25 M W h

Loss reduction w ith B̂ ⇤i O ptim al loss reduction

Instance 1 19.639 kW h 19.640 kW h

Instance 2 19.485 kW h 19.489 kW h

Instance 3 19.880 kW h 19.882 kW h

m odel,and form ulated the problem as an optim alpow er flow
problem .W e theoretically analyzed the structure ofthe optim al
solution w hen all loads have the sam e shape. Especially,w e
show ed that storage devices should be placed near the leaves
of the netw ork and far from the substation, and the scaled
capacity exhibits a certain m onotonic pattern. Then w e used
sim ulations to show thatthese theoretical results stillhold (or
approxim ately hold)w hen som e assum ptions ofthe theory are
rem oved.

Som e interesting future directions related to this paper are

1) Studying how the optim alplacem entchanges w hen B tot
varies for generalradialnetw orks.W e have proved that
B ⇤(x) increases and ⇠̀ m oves tow ards the substation
as B tot increases for linear netw orks, and sim ulation
suggests thatthis also holds forgeneralradialnetw orks.
W e expectthata related theory forradialnetw orks could
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Power flow models

i j k
yij

real & reactive power

s j

conductance & 

susceptance

Vi
voltage

phasor

s j  = y jk
H

k:k~ j

å Vj
2

-VjVk
H( )          s

j
,Vj ÎC

Given s, find V that satisfies



Power flow models

i j k
yij = gij - ibij

real & reactive power

s j = p j + iq j

conductance & 

susceptance

Vi =Vi
x + iVi

y

voltage

phasor

Given (p,q), find (Vx, Vy) that satisfies



Power flow models

i j k
yij = gij - ibij

real & reactive power

s j = p j + iq j

conductance & 

susceptance

Vi = Vi e
iqi

voltage

phasor

In polar form (can be reparametrized into quadratic equations):



Power flow solutions

Given s, find x that satisfies

F(x) = s

s, x ÎRnwhere                      and                            is quadraticF :Rn®Rn

Different power flow equations lead to different F
• Different solution properties

• Different computational efficiencies



Power flow solutions

Given s, find x that satisfies

F(x) = s

s, x ÎRnwhere                      and                            is quadraticF :Rn®Rn

JF (x)Let                denote its Jacobian

JF (x)[ ]
ij

:=
¶Fi

¶x j
(x)



Power flow solutions

Classical algorithms
◼ Newton-Raphson, Gauss-Seidel, …

◼ Advantage: simple

◼ No guarantee: convergence, solution with desired 
properties, or all solutions

Homotopy-based algorithms
◼ Can find all PF solutions

◼ Computationally very expensive

Ours: compromise of 2 methods
◼ Characterize PF solution region with desirable 

properties (operation regime)

◼ Prove there is at most one solution in the region

◼ Fast computation to find the unique solution if exists 
or certify none exists in the region



contraction

JF (x)

Let                be nonempty, closed, convex, over which 

1.    is    -strongly positive definite, i.e.

1.       is  -bounded, i.e., 

DÍRn

sym JF (x)( ) ³dI,    x ÎD

d

L2

JF (x)
2
£D,      x ÎD

JF (x)

implying  F  is over D

•    -strongly monotone

•    -Lipschitz (because F is quadratic) 
d
D

L2
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Theorem

◼ There is at most one PF solution in D 

how to efficiently find it if exists, or certify otherwise ?

contractionL2

JF (x)

Let                be nonempty, closed, convex, over which 

1.    is    -strongly positive definite, i.e.

1.       is  -bounded, i.e., 

DÍRn

sym JF (x)( ) ³dI,    x ÎD

d

L2

JF (x)
2
£D,      x ÎD

JF (x)



Theorem

◼    is a contraction over    with rate 

 and a unique fixed point 

◼ If                then     is the unique PF 

solution in D

◼  -approx solution can be computed in  

◼ Otherwise, there is no PF solution in D

Consider

contractionL2

T (x) := PD x -
d

D2
(F(x)- s)
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F x*( ) = s x*

e

2log
diam(D)

e
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D2
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÷ fixed point iterations

1-d2 / D2
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Consider

Application

◼ Let      be desirable operation regime

◼ Compute     s.t.            and         satisfies 
conditions 1 and 2 over

◼ Compute 

◼ If fixed point            then it is the unique 
desirable PF solution

◼ Otherwise, there is no PF solution in 

Solution strategy

T (x) := PD x -
d

D2
(F(x)- s)
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D JF (x)
D

x(t +1) :=T(x(t)),   x(0) ÎD

D

voltage magnitudes

close to nominal 

values

line currents

lower than capacities
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Solution strategy
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• Instead of solving

 solve, for invertible     ,

• Maximize monotonicity region       by choice of 

Enhancement through scaling

F(x) = s

Example

WF(x) =WsW

WD

Optimally choose W  by solving :

max
W

min
zÎRn , xÎD

  zTsym WJF (x)( ) z

Instead of checking if d  := min
zÎR

n
, xÎD

  zTsym JF (x)( ) z  >  0

Optimal W* yields largest monotonicity region D
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contraction

JF (x)

Let                                            .    Suppose, over     , 

1.    is row   -diagonally dominant, i.e.

1.       is  -bounded, i.e., 

D := x ÎRn li £ xi £ ui{ }

d

JF (x)
¥
£D,      xÎD

JF (x)

L¥
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T (x) := PD x -
1

D
(F(x)- s)

æ

è
ç

ö

ø
÷Consider

L¥



contraction

JF (x)

Let                                            .    Suppose, over     , 

1.    is row   -diagonally dominant, i.e.

1.       is  -bounded, i.e., 

D := x ÎRn li £ xi £ ui{ }

d

JF (x)
¥
£D,      xÎD

JF (x)

L¥

D

,      x ÎD

T (x) := PD x -
1

D
(F(x)- s)

æ

è
ç

ö

ø
÷Consider

L¥



contraction

JF (x)

Let                                            .    Suppose, over     , 

1.    is row   -diagonally dominant, i.e.

1.       is  -bounded, i.e., 

D := x ÎRn li £ xi £ ui{ }

d

JF (x)
¥
£D,      xÎD

JF (x)

L¥

D

,      x ÎD

T (x) := PD x -
1

D
(F(x)- s)

æ

è
ç

ö

ø
÷Consider

L¥



Consider

contraction

Theorem

◼    is a contraction over    with rate 

 and a unique fixed point 

◼ If                then     is the unique PF 

solution in D

◼ Otherwise, there is no PF solution in D

T D

x*

F x*( ) = s x*

L¥

T (x) := PD x -
1

D
(F(x)- s)
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1-d / D

Theorem suggests a similar solution strategy



Performance

monotone op method 

succeeds when 

Newton-Raphson fails

IEEE 14-bus network IEEE 39-bus network



Conclusion

PF solution through contraction 
◼ Characterize PF solution region with desirable 

properties

◼ Prove there is at most one solution in the region

◼ Fixed-point iteration computes efficiently…

◼ … either finds the unique solution or certifies none 
exists in the region
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