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Motivation

Storage on distribution network

◼ Useful for renewable/DG integration

◼ CA mandates

 RPS: 33% by 2020, 50% by 2030

 3 IOUs to deploy 1.3GW battery by 2020
◼ At least ½ owned by IOUs

Design question: ideal deployment ?

◼ Where to place and how to size

◼ ... to minimize line loss

◼ ... assuming

 no other constraints such as real estate

 optimal charging/discharging operation



Conclusion

Interested in design guidelines

◼ Structural properties of optimal solution

Placement and sizing

◼ (scaled) Monotone deployment is optimal

Charging/discharging schedule

◼ Always charge till full (when generation is highest)

◼ Always discharge till empty (when demand is highest)



Continuous tree

[similar to Wang Turitsyn Chertkov (2012) ODE model of feeder line for power flow solution]

A continuous tree with underlying discrete tree

◼ Each segment (corresponding to a node in discrete 

tree) can be treated like a closed interval in R

◼ Order and integration are well defined on each 
segment



Continuous power flow equations

s(x) = p(x)+ jq(x)     injection at x

S(x) = P(x)+ jQ(x)   branch power flow at x

v(x)                            squared voltage magnitude

s(x) S(x)

v(x)



Continuous power flow equations

S(x) = s(y)- z(y)
| S(y) |2

v(y)
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ò  dy

v(x) =1+ 2Re z*(y)S(y)( )
[0,x ]

ò  dy

s(x) S(x)

v(x)

line loss

[ power flow equations: continuous version of Baran and Wu (1989) ]



Linear approximation

s(x) S(x)

S(x, t) »  s(y, t)
y³x

ò dy
Assumptions

• loss is small relative to line flow

• voltage magnitude ~ 1 pu

[ power flow equations: continuous version of Baran and Wu (1989) ]



Linear approximation

S(x, t) »  s(y, t)
y³x

ò dy

s(x) S(x)

Assumptions

• loss is small relative to line flow

• voltage magnitude ~ 1 pu

s(x, t) =a(x)p(t)+b(x) -  u(x, t)

background injection:

• common load shape in time

• location-dependent scale & offset [Smith, Wong, Rajagopal 2012]

charging rate



Storage model

s(x, t) =a(x)p(t)+b(x) -  u(x, t)

s(x) S(x)

charging rate

SoC



Optimal placement & sizing

min
b(x,t )
B(x )

 r(x)
tree

ò
time

ò  P2 (x, t)dxdt

s. t.  P(x, t) = a(y)p(t)+ b(y)-
¶b

¶t
(y, t)
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       0 £  b(x, t) £  B(x)

       B(x)dx  £  Btotal

tree

ò

energy loss

linear power

flow equation

state of charge

budget constraint

line flow
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Linear network

[Tang and Low, CDC 2016]

x = 0

b(x, t),  B(x)

a(x)p(t)+ b(x)-
¶b

¶t
(x, t)

compute:

given:

Theorem  Optimal charging schedule

Follow load shape p(t) with an offset, or OFF

◼ Charge when injection is highest till full

◼ Discharge when injection is lowest till empty

u*(t)

charge

discharge

net injection is 

flat (in time)



Linear network

[Tang and Low, CDC 2016]

x = 0

b(x, t),  B(x)compute:

given:

Theorem  Optimal charging schedule

Follow load shape p(t) with an offset, or OFF

◼ Charge when injection is highest till full

◼ Discharge when injection is lowest till empty

u*(t)

charge

discharge

flatten net 

injection

a(x)p(t)+ b(x)-
¶b

¶t
(x, t)



Linear network

[Tang and Low, CDC 2016]

x = 0

x*

B*(x)

a(x)
 increasing in x

Theorem  Optimal placement & sizing

 Deploy most storage far away from substation

 Decrease (scaled) storage capacity moving towards 
substation

 ... until running out of storage budget

B*(x) > 0B*(x) = 0

Every node can have distributed generation (2-way power flow)

... as long as all nodes have same load shape (with different scales & offsets)



Tree network

Theorem  

Structural properties (roughly) extend to tree

optimal placement & sizing

x1

*

x2

* = x3

*



Tree network

Theorem  

Structural properties (roughly) extend to tree

optimal schedule

charge

till full

discharge

till empty



Simulations

IEEE 123-bus test system

More realistic model

 Nonlinear DistFlow model

 Different nodes have slightly different load shapes (from SCE)

Compare with optimal placement

 Monotone property

 Total loss 

Optimal placement solved using SOCP relaxation of OPF



Simulations

Scaled monotone property roughly holds

Optimal placement & sizing from SOCP relaxation of OPF:



Simulations

Loss with assumptions (same load shape, linear PF) ~ optimal

7

Fig.5:O ptim al storage placem ent for the linearized and sim plified IEEE 123 node test feeder w hen p(t) has m ultiple peaks
and valleys.The radius ofeach colored solid circle is proportionalto B ⇤i /↵i,and differentcolors correspond to differentB tot.

Fig.6:Load profiles thatdeviate from the com m on load shape.
The lightcolored curves represent p(t)+ δpi(t).

W e carry out this experim ent on three instances of δpi(t),
and the results are show n in Table I. It can be seen that,
the differences betw een the loss reduction w ith B̂ ⇤i and the
optim al loss reduction are very sm all, show ing that B̂ ⇤i is a
very good suboptim al solution to the m ore realistic situations
w ith load profile deviations and nonlinear D istFlow m odel.
These sim ulation results suggestthat,although in practice the
background injections at each bus do not exactly follow the
sam e shape and the nonlinearD istFlow m odelism ore accurate
in characterizing the pow er flow ,Theorem 1 and Theorem 3,
w hich are derived by assum ing allloads have the sam e shape
and using the linearized D istFlow m odel,are stillvery useful.

V I. C O N C L U SIO N

W e studied the problem of optim al placem ent of energy
storage in distribution netw orks.W e m odeled the distribution
netw ork as a continuous tree w ith the linearized D istFlow

TA B LE I:C om parison of Loss R eduction

B tot = 1 M W h

Loss reduction w ith B̂ ⇤i O ptim al loss reduction

Instance 1 45.457 kW h 45.484 kW h

Instance 2 45.037 kW h 45.054 kW h

Instance 3 46.303 kW h 46.323 kW h

B tot = 0.5 M W h

Loss reduction w ith B̂ ⇤i O ptim al loss reduction

Instance 1 32.123 kW h 32.148 kW h

Instance 2 31.828 kW h 31.846 kW h

Instance 3 32.546 kW h 32.556 kW h

B tot = 0.25 M W h

Loss reduction w ith B̂ ⇤i O ptim al loss reduction

Instance 1 19.639 kW h 19.640 kW h

Instance 2 19.485 kW h 19.489 kW h

Instance 3 19.880 kW h 19.882 kW h

m odel,and form ulated the problem as an optim alpow er flow
problem .W e theoretically analyzed the structure ofthe optim al
solution w hen all loads have the sam e shape. Especially,w e
show ed that storage devices should be placed near the leaves
of the netw ork and far from the substation, and the scaled
capacity exhibits a certain m onotonic pattern. Then w e used
sim ulations to show thatthese theoretical results stillhold (or
approxim ately hold)w hen som e assum ptions ofthe theory are
rem oved.

Som e interesting future directions related to this paper are

1) Studying how the optim alplacem entchanges w hen B tot
varies for generalradialnetw orks.W e have proved that
B ⇤(x) increases and ⇠̀ m oves tow ards the substation
as B tot increases for linear netw orks, and sim ulation
suggests thatthis also holds forgeneralradialnetw orks.
W e expectthata related theory forradialnetw orks could
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Power flow models

i j k
yij

real & reactive power

s j

conductance & 

susceptance

Vi
voltage

phasor

s j  = y jk
H

k:k~ j

å Vj
2

-VjVk
H( )          s

j
,Vj ÎC

Given s, find V that satisfies



Power flow models

i j k
yij = gij - ibij

real & reactive power

s j = p j + iq j

conductance & 

susceptance

Vi =Vi
x + iVi

y

voltage

phasor

Given (p,q), find (Vx, Vy) that satisfies



Power flow models

i j k
yij = gij - ibij

real & reactive power

s j = p j + iq j

conductance & 

susceptance

Vi = Vi e
iqi

voltage

phasor

In polar form (can be reparametrized into quadratic equations):



Power flow solutions

Given s, find x that satisfies

F(x) = s

s, x ÎRnwhere                      and                            is quadraticF :Rn®Rn

Different power flow equations lead to different F
• Different solution properties

• Different computational efficiencies



Power flow solutions

Given s, find x that satisfies

F(x) = s

s, x ÎRnwhere                      and                            is quadraticF :Rn®Rn

JF (x)Let                denote its Jacobian

JF (x)[ ]
ij

:=
¶Fi

¶x j
(x)



Power flow solutions

Classical algorithms
◼ Newton-Raphson, Gauss-Seidel, …

◼ Advantage: simple

◼ No guarantee: convergence, solution with desired 
properties, or all solutions

Homotopy-based algorithms
◼ Can find all PF solutions

◼ Computationally very expensive

Ours: compromise of 2 methods
◼ Characterize PF solution region with desirable 

properties (operation regime)

◼ Prove there is at most one solution in the region

◼ Fast computation to find the unique solution if exists 
or certify none exists in the region



contraction

JF (x)

Let                be nonempty, closed, convex, over which 

1.    is    -strongly positive definite, i.e.

1.       is  -bounded, i.e., 

DÍRn

sym JF (x)( ) ³dI,    x ÎD

d

L2

JF (x)
2
£ D,      x ÎD

JF (x)

implying  F  is over D

•    -strongly monotone

•    -Lipschitz (because F is quadratic) 
d
D

L2
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Theorem

◼ There is at most one PF solution in D 

how to efficiently find it if exists, or certify otherwise ?

contractionL2

JF (x)

Let                be nonempty, closed, convex, over which 

1.    is    -strongly positive definite, i.e.

1.       is  -bounded, i.e., 

DÍRn

sym JF (x)( ) ³dI,    x ÎD

d

L2

JF (x)
2
£ D,      x ÎD

JF (x)



Theorem

◼    is a contraction over    with rate 

 and a unique fixed point 

◼ If                then     is the unique PF 

solution in D

◼  -approx solution can be computed in  

◼ Otherwise, there is no PF solution in D

Consider

contractionL2

T (x) := PD x -
d

D2
(F(x)- s)
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2log
diam(D)
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÷ fixed point iterations

1-d2 / D2
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Consider

Application

◼ Let      be desirable operation regime

◼ Compute     s.t.            and         satisfies 
conditions 1 and 2 over

◼ Compute 

◼ If fixed point            then it is the unique 
desirable PF solution

◼ Otherwise, there is no PF solution in 

Solution strategy

T (x) := PD x -
d

D2
(F(x)- s)
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D JF (x)
D

x(t +1) :=T(x(t)),   x(0) ÎD

D

voltage magnitudes

close to nominal 

values

line currents

lower than capacities
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• Instead of solving

 solve, for invertible     ,

• Maximize monotonicity region       by choice of 

Enhancement through scaling

F(x) = s

Example

WF(x) =WsW

WD

Optimally choose W  by solving :

max
W

min
zÎRn , xÎD

  zTsym WJF (x)( ) z

Instead of checking if d  := min
zÎR

n
, xÎD

  zTsym JF (x)( ) z  >  0

Optimal W* yields largest monotonicity region D
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contraction

JF (x)

Let                                            .    Suppose, over     , 

1.    is row   -diagonally dominant, i.e.

1.       is  -bounded, i.e., 

D := x ÎRn li £ xi £ ui{ }

d

JF (x)
¥
£D,      xÎD

JF (x)

L¥

D

,      x ÎD

T (x) := PD x -
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D
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Consider

contraction

Theorem

◼    is a contraction over    with rate 

 and a unique fixed point 

◼ If                then     is the unique PF 

solution in D

◼ Otherwise, there is no PF solution in D

T D

x*

F x*( ) = s x*

L¥

T (x) := PD x -
1

D
(F(x)- s)
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1-d / D

Theorem suggests a similar solution strategy



Performance

monotone op method 

succeeds when 

Newton-Raphson fails

IEEE 14-bus network IEEE 39-bus network



Conclusion

PF solution through contraction 
◼ Characterize PF solution region with desirable 

properties

◼ Prove there is at most one solution in the region

◼ Fixed-point iteration computes efficiently…

◼ … either finds the unique solution or certifies none 
exists in the region
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