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Motivation

Storage on distribution network
B Useful for renewable/DG integration
B CA mandates

O RPS: 33% by 2020, 50% by 2030

[0 3 IOUs to deploy 1.3GW battery by 2020
B At least Y2 owned by IOUs

Design question: ideal deployment ?
B Where to place and how to size
B ... to minimize line loss

B ... assuming
[0 no other constraints such as real estate
[0 optimal charging/discharging operation



~% Conclusion

Interested in design guidelines
B Structural properties of optimal solution

Placement and sizing
B (scaled) Monotone deployment is optimal

Charging/discharging schedule
B Always charge till full (when generation is highest)
B Always discharge till empty (when demand is highest)
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A continuous tree with underlying discrete tree

B Each segment (corresponding to a node in discrete
tree) can be treated like a closed interval in R

B Order and integration are well defined on each
segment

[similar to Wang Turitsyn Chertkov (2012) ODE model of feeder line for power flow solution]



&% Continuous power flow equations
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s(x) = p(x)+Jg(x) Injection at x
S(x) =P(x)+]Q(x) branch power flow at x
v(x) squared voltage magnitude



&% Continuous power flow equations
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[ power flow equations: continuous version of Baran and Wu (1989) ]



Linear approximation
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» loss is small relative to line flow
y3x » voltage magnitude ~ 1 pu

S(X, l‘) » OS()/, t)dy Assumptions

[ power flow equations: continuous version of Baran and Wu (1989) ]



Linear approximation
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Assumptions

S(x’ t) ” 0 S(y’ t)dy * Joss is small relative to line flow

y3x « voltage magnitude ~ 1 pu

S(x, Z‘) — a(x)p(t) + b(x) - u(x, t) charging rate

background injection:

« common load shape in time
 location-dependent scale & offset [Smith, Wong, Rajagopal 2012]




&% Storage model
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s(x,t)=a(x)p(t)+ b(x) - u(x,t) charging rate
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~3 Optimal placement & sizing

line flow
Enxll’; 0 07r(x) P? (x, t)dxdt energy loss

B(x) time tree

linear power
flow equation

S. L.

state of charge

budget constraint



£% Optimal placement & sizing
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B(x) time tree
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charging
rate state of charge
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&7 Optimal placement & sizing

Enxll'; 0 C) r(x) P? (X, t)dxdt energy loss

B(x) time tree
st P @ 16 0 linear power
. L (X, t) =0 ga(y)p(t)-l- b(y) _W(y’ t)a dy flow equation
y3x

0 £ b(x,t) £ B(x) state of charge

budget constraint



&7 Optimal placement & sizing

Enxll'; 0 C) r(x) P? (x,t)dxdt energy loss

B(x) time tree

S t P( ) = \ & +p ﬂb Od linear power
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y3x
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Optimal storage placement
[]

B Structural properties
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=% Linear network
compute:  b(x, 1), B(x)
|

o T

given:  g(x)p(t)+ b(x) - E (x,1)
Iz




Linear network
compute:  b(x, 1), B(x)
|

t

given: a(x)|@+ b(x) - 1111—[; (x,1)

Theorem Optimal charging schedule

Follow load shape p(t) with an offset, or OFF

B Charge when injection is highest till full
m Discharge when injection is lowest till empty

A u (2)

flatten net
injection




Linear network

| B (x)=0 | B (x)>0

0 B (x)

a(x)

Increasing in x

Theorem Optimal placement & sizing
[0 Deploy most storage far away from substation

[0 Decrease (scaled) storage capacity moving towards
substation

O ... until running out of storage budget

Every node can have distributed generation (2-way power flow)
... as long as all nodes have same load shape (with different scales & offsets)

[Tang and Low, CDC 2016]



% Tree network

Theorem
Structural properties (roughly) extend to tree

optimal placement & sizing



Tree network

Theorem
Structural properties (roughly) extend to tree

IScharge
till empty optimal schedule



=% Simulations

IEEE 123-bus test system

More realistic model
0 Nonlinear DistFlow model R
[0 Different nodes have slightly different load shapes (from scE)

Compare with optimal placement
[0 Monotone property
[0 Total loss

Optimal placement solved using SOCP relaxation of OPF



Simulations

Optimal placement & sizing from SOCP relaxation of OPF:

‘ B, =1 MWh

‘ Bioy = 0.5 MWh

® B =025MWh

Scaled monotone property roughly holds



Simulations

Btot = 1MWh
Loss reduction w ith B | Optimal loss reduction

Instance 1 45.457 kW h 45.484 kW h
Instance 2 45.037 kW h 45.054 kW h
Instance 3 46.303 kW h 46.323 kW h

Btot: 0.5 MW h

Loss reduction w ith A | Optimal loss reduction

Instance 1 32.123 kW h 32.148 kW h
Instance 2 31.828 kW h 31.846 kW h
Instance 3 32.546 kW h 32.556 kW h

Btot: 0.25 MW h

Loss reduction w ith B | Optimal loss reduction

Instance 1 19.639 kW h 19.640 kW h
Instance 2 19.485 kW h 19.489 kW h
Instance 3 19.880 kW h 19.882 kW h

Loss with assumptions (same load shape, linear PF) ~ optimal
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Power flow models

real & reactive power

S

| J
V. | Vs
! conductance &
voltage susceptance
phasor

Given S, find V that satisfies

s, = éy;i(‘V,‘z—V,VkH) S

kik~j



Power flow models

real & reactive power

=p. +ig.
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Vo= yr iy e S
i i i conductance &
voltage susceptance
phasor

Given (p,Q), find (V*, W) that satisfies

S (o (V7 + (V7)) = g VEVE + VRV + b VIVE = VW)
k:(i,k)eE
S (i (V7 + () = b (VEVE + VIVE) = gl VIVE = VIV

k:(i,k)eE

pi =



Power flow models

real & reactive power

=p. +10.
SJ p] qu
i o — ob J 1 k
i i conductance &
voltage susceptance
phasor

In polar form (can be reparametrized into quadratic equations):

pi = (Z,%k:) M\z — Z |Vz'HVk\(Qz'k:COS@ik—bikSineik)
k=0 k:(

i,k)EE

¢ = (szk) Vi|? — Z Vil Vi| (bix, cos O + gir sin Oy,
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1.k)eE



=% Power flow solutions

Given S, find X that satisfies
F(x)=s

where S,xTR” and F':R"” — R” is quadratic

Different power flow equations lead to different F
 Different solution properties
 Different computational efficiencies



&% Power flow solutions

Given S, find X that satisfies
F(x)=s

where S,xTR” and F':R" — R" is quadratic

Let JF(x) denote its Jacobian

/- ()], =




Power flow solutions

Classical algorithms
B Newton-Raphson, Gauss-Seidel, ...
B Advantage: simple

B No guarantee: convergence, solution with desired
properties, or all solutions

Homotopy-based algorithms
B Can find all PF solutions
B Computationally very expensive

Ours: compromise of 2 methods

B Characterize PF solution region with desirable
properties (operation regime)
B Prove there is at most one solution in the region

B Fast computation to find the unique solution if exists
or certify none exists in the region



L, contraction

Let D < R" be nonempty, closed, convex, over which

1. J.(x) isd -strongly positive definite, i.e.
sym(J,.(x))3al, x1D

implying F is over D
« (-strongly monotone



&7 L, contraction

Let D < R" be nonempty, closed, convex, over which

1. J.(x) isd -strongly positive definite, i.e.
sym(J,.(x))3al, x1D
1. J.(x) isL, -bounded, i.e.,
HJF()C)H2 <D, xeD

implying F is over D

« (-strongly monotone
* D-Lipschitz (because F is quadratic)



%1 L, contraction
Let D < R" be nonempty, closed, convex, over which

1. J.(x) isd -strongly positive definite, i.e.
sym(J,.(x))3al, x1D
1. J.(x) isL, -bounded, i.e.,
HJF()C)H2 <D, xeD

Theorem
B There is at most one PF solution in D

how to efficiently find it if exists, or certify otherwise ?



£y L, contraction
Consider T'(x) =P (x - —(F(x) S)j

Theorem

B 7'is a contraction over D with rate \/1— d | D?
and a unique fixed point x



L, contraction
Consider T'(x) =P (x - —(F(x) S)j

Theorem

B 7'is a contraction over D with rate \/1—0’2 /| D*
and a unique fixed point X

mIf x*) =5 then x is the unique PF
solution in D

B CEapprox solution can be computed in

2Iog(dlam(D)j/—log(l—gj fixed point iterations

e




L, contraction
Consider T'(x) =P (x - —(F(x) S)j

Theorem

B 7'is a contraction over D with rate \/1—0’2 /| D*
and a unique fixed point X

mIf x*) =5 then x is the unique PF
solution in D

B CEapprox solution can be computed in

2Iog(dlam(D)j/—log(l—gj fixed point iterations

e

B Otherwise, there is no PF solution in D




&% Solution strategy
Consider T'(x) =P (x——(F(x) S)j

Application
B Let D be desirable operation regime
e.g.
D= {VEC <V, yl.le.—Vj‘SZij}
voltage magnitudes line currents
close to nominal lower than capacities

values



&% Solution strategy
Consider T'(x) =P (x——(F(x) S)j
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B Let D be desirable operation regime




&% Solution strategy
Consider T'(x) =P (x——(F(x) S)j

Application
B Let D be desirable operation regime

B Compute D s.t. DC D and J.(x) satisfies
conditions 1 and 2 over D



&% Solution strategy
Consider T'(x) =P (x——(F(x) S)j

Application
B Let D be desirable operation regime

B Compute D s.t. DC D and J.(x) satisfies
conditions 1 and 2 over D

m Compute x(t+1):=T(x(z)), x(O) T D

V)



Solution strategy
Consider T'(x):=P (x——(F(x) S)j

Application
B Let D be desirable operation regime

B Compute D s.t. DC D and J.(x) satisfies
conditions 1 and 2 over D

m Compute x(t+1):=T(x(z)), x(O) T D

B If fixed point x €D and FQX*):S then it is
the unique desirable PF solution



Solution strategy
Consider T'(x):=P (x——(F(x) S)j

Application

Let D be desirable operation regime

Compute D s.t. DC D and J,(x) satisfies
conditions 1 and 2 over D

Compute x(z+1):=T(x(z)), x(0) T D

If fixed point x €D and FQx*) =s thenitis
the unique desirable PF solution

Otherwise, there is no PF solution in D



Enhancement through scaling

- Instead of solving F'(x) =s
solve, for invertible W/, WEF(x)=Ws

« Maximize monotonicity region /) by choice of W/

Example

Instead of checking if @:= _min  z'sym(J.(x))z > 0

zIR", xID

Optimally choose W by solving:

. T
max_min_ - z'sym (WJ,(x))z

Optimal W* yields largest monotonicity region [
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Contractive operator method
[]

m [, contraction
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&7 L, contraction
Let D::{xTR”

ll.£xl.£ul.}. Suppose, over D,

1. J.(x) is rowg-diagonally dominant, i.e.
()] 2 Z [Jr(2)]yl +90, x 1D

k:k#£1



L, contraction
et D={xTR’

ll.£xl.£ul.}. Suppose, over D,

1. J.(x) is rowg-diagonally dominant, i.e.
Jr(@)y = Y [Ur@)]lyl + 6, xTD

k:k#£1
1. J.(x) isL,-bounded, i.e.,
HJF(X)HOO <D, xeD



&7V L, contraction

Let D= {xTR”

ll.£xl.£ul.}. Suppose, over D,

1. J.(x) is rowg-diagonally dominant, i.e.
()] 2 Z [Jr(2)]yl +90, x 1D

k:k#£1
1. J.(x) isL,-bounded, i.e.,
HJF(X)HOO <D, xeD

Consider T'(x):=P, (x - %(F (x)- S)j



Ky L, contraction
Consider T'(x):=P, (x - %(F (x)- S)j

Theorem
m 7 is a contraction over D with rate 1-4d/D
and a unique fixed point x

m If F(x*) =5 then x is the unique PF
solution in D

B Otherwise, there is no PF solution in D

Theorem suggests a similar solution strategy
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=% Conclusion

PF solution through contraction

B Characterize PF solution region with desirable
properties

B Prove there is at most one solution in the region
Fixed-point iteration computes efficiently...

B .. either finds the unique solution or certifies none
exists in the region
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