Optimal Storage Placement and Power Flow Solution

Yujie Tang Steven Low

Caltech

Krishnamurthy Dvijotham Pacific Northwest

Stanford Nov 2016

Optimal storage placement

- Continuous network model
- Structural properties

Power flow solution

- Monotone operators
- \blacksquare L_2 contraction
- \blacksquare L_{\downarrow} contraction

Dvijotham

Chertko

arpa.e

Storage on distribution network

- Useful for renewable/DG integration
- CA mandates
 - □ RPS: 33% by 2020, 50% by 2030
 - □ 3 IOUs to deploy 1.3GW battery by 2020
 - At least ½ owned by IOUs

Design question: ideal deployment?

- Where to place and how to size
- ... to minimize line loss
 - ... assuming
 - no other constraints such as real estate
 - optimal charging/discharging operation

Interested in design guidelines

Structural properties of optimal solution

Placement and sizing

(scaled) Monotone deployment is optimal

Charging/discharging schedule

- Always charge till full (when generation is highest)
- Always discharge till empty (when demand is highest)

A continuous tree with underlying discrete tree

- Each segment (corresponding to a node in discrete tree) can be treated like a closed interval in R
- Order and integration are well defined on each segment

[similar to Wang Turitsyn Chertkov (2012) ODE model of feeder line for power flow solution]

Continuous power flow equations

$$s(x) = p(x) + jq(x)$$

$$S(x) = P(x) + jQ(x)$$

$$v(x)$$

injection at *x*branch power flow at *x*squared voltage magnitude

Continuous power flow equations

[power flow equations: continuous version of Baran and Wu (1989)]

$$S(x,t) \gg \hat{0}_{y^3x} s(y,t) dy$$

Assumptions

- loss is small relative to line flow
- voltage magnitude ~ 1 pu

[power flow equations: continuous version of Baran and Wu (1989)]

$$S(x,t) \gg \hat{0}_{y^3x} s(y,t) dy$$

Assumptions

- loss is small relative to line flow
- voltage magnitude ~ 1 pu

$$s(x,t) = \partial(x)p(t) + b(x) - u(x,t)$$
 charging rate

background injection:

- common load shape in time
- location-dependent scale & offset

[Smith, Wong, Rajagopal 2012]

$$\begin{split} s(x,t) &= \partial(x)p(t) + b(x) - u(x,t) \text{ charging rate} \\ & \qquad \uparrow \\ \frac{\partial b(x,t)}{\partial t} = u(x,t), \quad 0 \leq b(x,t) \leq B(x) \\ & \qquad \text{SoC} \end{split}$$

$\begin{array}{c} \text{line flow} \\ \underset{B(x)}{\text{min } b(x,t)} \\ \underset{B(x)}{\text{min } time } \text{tree} \end{array} \\ \begin{array}{c} \text{line flow} \\ P^2(x,t) \\ P^2(x,t) \\ dx \\ dt \end{array}$

s. t.

energy loss

linear power flow equation

state of charge

budget constraint

budget constraint

$$\min_{\substack{b(x,t)\\B(x)}} \overset{\circ}{\mathbf{0}} \quad \mathbf{r}(x) P^2(x,t) dx dt \qquad \text{energy loss}$$

s. t.
$$P(x,t) = \bigcup_{y^{3}x} \overset{\omega}{\in} \mathscr{A}(y)p(t) + b(y) - \frac{\Pi b}{\P t}(y,t) \overset{\sigma}{\div} dy$$
 flow equation
 $0 \in b(x,t) \in B(x)$ state of charge

budget constraint

$$\begin{array}{ll} \min_{\substack{b(x,t)\\B(x)}} \overset{\circ}{\underset{\text{time tree}}{}} 0 & r(x) P^2(x,t) dx dt & \text{energy loss} \\ \text{s. t. } P(x,t) = \overset{\circ}{\underset{y^{3}x}{}} \overset{\mathfrak{A}}{\underset{c}{}} 2(y) p(t) + b(y) - \frac{\P b}{\P t} (y,t) \overset{\circ}{\underset{\emptyset}{}} dy & \text{linear power flow equation} \\ \text{o f } b(x,t) & \text{f } B(x) & \text{state of charge} \\ \overset{\circ}{\underset{0}{}} B(x) dx & \text{f } B_{\text{total}} & \text{budget constraint} \end{array}$$

tree

Optimal storage placement

- Continuous network model
- Structural properties

Power flow solution

- Monotone operators
- \blacksquare L_2 contraction
- \blacksquare L_{\downarrow} contraction

Theorem Optimal charging schedule

Follow load shape p(t) with an offset, or OFF

- Charge when injection is highest till full
- Discharge when injection is lowest till empty

Theorem Optimal placement & sizing

- Deploy most storage far away from substation
- Decrease (scaled) storage capacity moving towards substation
- □ ... until running out of storage budget

Every node can have distributed generation (2-way power flow) ... as long as all nodes have same load shape (with different scales & offsets)

Theorem

Structural properties (roughly) extend to tree

optimal placement & sizing

Theorem

Structural properties (roughly) extend to tree

optimal schedule

IEEE 123-bus test system

More realistic model

Nonlinear DistFlow model

Different nodes have slightly different load shapes (from SCE)

Compare with optimal placement

- Monotone property
- Total loss

Optimal placement solved using SOCP relaxation of OPF

Optimal placement & sizing from SOCP relaxation of OPF:

Scaled monotone property roughly holds

$B_{\text{tot}} = 1 \text{ M W h}$		
	Loss reduction with \hat{B}_{i}^{κ}	0 ptim al loss reduction
Instance 1	45.457 kW h	45.484 kW h
Instance 2	45.037 kW h	45.054 kW h
Instance 3	46.303 kW h	46.323 kW h
$B_{\text{tot}} = 0.5 \text{ M W h}$		
	Loss reduction with \hat{B}_{i}^{κ}	0 ptim al loss reduction
Instance 1	32.123 kW h	32.148 kW h
Instance 2	31.828 kW h	31.846 kW h
Instance 3	32.546 kW h	32.556 kW h
$B_{\text{tot}} = 0.25 \text{ M W h}$		
	Loss reduction with \hat{B}_{i}^{κ}	0 ptim al loss reduction
Instance 1	19.639 kW h	19.640 kW h
Instance 2	19.485 kW h	19.489 kW h
Instance 3	19.880 kW h	19.882 kW h

Loss with assumptions (same load shape, linear PF) ~ optimal

Optimal storage placement

- Continuous network model
- Structural properties

Power flow solution

- Monotone operators
- \blacksquare L_2 contraction
- \blacksquare L_{\downarrow} contraction

Dvijotham

Chertkov

Given *s*, find *V* that satisfies

$$s_{j} = \mathop{\text{a}}_{k:k\sim j} \mathcal{Y}_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right)$$

$$s_{j}, V_{j} \hat{\mathbf{I}} \mathbf{C}$$

Given (p,q), find (V^x, V^y) that satisfies

$$p_{i} = \sum_{k:(i,k)\in E} \left(g_{ik} \left((V_{i}^{x})^{2} + (V_{i}^{y})^{2} \right) - g_{ik} (V_{i}^{x} V_{k}^{x} + V_{i}^{y} V_{k}^{y}) + b_{ik} (V_{i}^{y} V_{k}^{x} - V_{i}^{x} V_{k}^{y}) \right)$$

$$q_{i} = \sum_{k:(i,k)\in E} \left(b_{ik} \left((V_{i}^{x})^{2} + (V_{i}^{y})^{2} \right) - b_{ik} (V_{i}^{x} V_{k}^{x} + V_{i}^{y} V_{k}^{y}) - g_{ik} (V_{i}^{y} V_{k}^{x} - V_{i}^{x} V_{k}^{y}) \right)$$

In polar form (can be reparametrized into quadratic equations):

$$p_{i} = \left(\sum_{k=0}^{n} g_{ik}\right) |V_{i}|^{2} - \sum_{k:(i,k)\in E} |V_{i}||V_{k}| \left(g_{ik}\cos\theta_{ik} - b_{ik}\sin\theta_{ik}\right)$$
$$q_{i} = \left(\sum_{k=0}^{n} b_{ik}\right) |V_{i}|^{2} - \sum_{k:(i,k)\in E} |V_{i}||V_{k}| \left(b_{ik}\cos\theta_{ik} + g_{ik}\sin\theta_{ik}\right)$$

Given *s*, find *x* that satisfies

$$F(x) = s$$

where $s, x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^n$ is quadratic

Different power flow equations lead to different F

- Different solution properties
- Different computational efficiencies

Given *s*, find *x* that satisfies

$$F(x) = s$$

where $s, x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^n$ is quadratic

Let $J_F(x)$ denote its Jacobian $\left[J_F(x)\right]_{ij} := \frac{\P F_i}{\P x_i}(x)$

Classical algorithms

- Newton-Raphson, Gauss-Seidel, ...
- Advantage: simple
- No guarantee: convergence, solution with desired properties, or all solutions

Homotopy-based algorithms

- Can find all PF solutions
- Computationally very expensive

Ours: compromise of 2 methods

- Characterize PF solution region with desirable properties (operation regime)
- Prove there is at most one solution in the region
- Fast computation to find the unique solution if exists or certify none exists in the region

Let $D \subseteq \mathbf{R}^n$ be nonempty, closed, convex, over which

1. $J_F(x)$ is *d*-strongly positive definite, i.e. $sym(J_F(x)) \stackrel{3}{\rightarrow} dI, x \stackrel{1}{\rightarrow} D$

implying F is over D

d-strongly monotone

Let $D \subseteq \mathbf{R}^n$ be nonempty, closed, convex, over which

- 1. $J_F(x)$ is *d*-strongly positive definite, i.e. $sym(J_F(x)) \stackrel{3}{\rightarrow} dI, x \stackrel{1}{\rightarrow} D$
- 1. $J_F(x)$ is L_2 -bounded, i.e., $\left\|J_F(x)\right\|_2 \leq \mathsf{D}, \quad x \in D$

implying F is over D

- *d*-strongly monotone
- D-Lipschitz (because F is quadratic)

Let $D \subseteq \mathbf{R}^n$ be nonempty, closed, convex, over which

- 1. $J_F(x)$ is *d*-strongly positive definite, i.e. $sym(J_F(x)) \stackrel{3}{\rightarrow} dI, x \stackrel{1}{\rightarrow} D$
- $\begin{array}{ll} 1. \ J_F(x) & \text{is}_{L_2} \text{-bounded, i.e.,} \\ & \left\|J_F(x)\right\|_2 \leq \text{D}, \quad x \in D \end{array}$

<u>Theorem</u>

There is at most one PF solution in D

how to efficiently find it if exists, or certify otherwise ?

Theorem

T is a contraction over D with rate $\sqrt{1 - d^2} / D^2$ and a unique fixed point x^*

<u>Theorem</u>

- T is a contraction over D with rate $\sqrt{1 d^2} / D^2$ and a unique fixed point x^*
- If $F(x^*) = s$ then x^* is the unique PF solution in D
- $e^{-\text{approx solution can be computed in}}$ $2\log\left(\frac{\text{diam}(D)}{e}\right) / -\log\left(1 - \frac{d^2}{D^2}\right)$ fixed point iterations

<u>Theorem</u>

- T is a contraction over D with rate $\sqrt{1 d^2} / D^2$ and a unique fixed point x^*
- If $F(x^*) = s$ then x^* is the unique PF solution in D
- θ -approx solution can be computed in $2\log\left(\frac{\operatorname{diam}(D)}{\theta}\right) / -\log\left(1 - \frac{d^2}{D^2}\right)$ fixed point iterations
- Otherwise, there is no PF solution in D

Application
Let
$$\tilde{D}$$
 be desirable operation regime

e.g.

$$\tilde{D} := \left\{ V \in \mathbb{C}^{n} \left| \underline{v}_{i} \leq |V_{i}| \leq \overline{v}_{i}, |y_{ij}| \left| V_{i} - V_{j} \right| \leq \ell_{ij} \right\}$$
voltage magnitudes
close to nominal
values
line currents
lower than capacities

<u>Application</u> Let \tilde{D} be desirable operation regime

Consider
$$T(x) := \mathsf{P}_D \left(x - \frac{\sigma}{\mathsf{D}^2} (F(x) - s) \right)$$

Application Let \tilde{D} be desirable operation regime

Compute D s.t. $\tilde{D} \subseteq D$ and $J_F(x)$ satisfies conditions 1 and 2 over D

Consider
$$T(x) := P_D \left(x - \frac{\partial}{D^2} (F(x) - s) \right)$$

Application

- Let \tilde{D} be desirable operation regime
- Compute D s.t. $\tilde{D} \subseteq D$ and $J_F(x)$ satisfies conditions 1 and 2 over D
- Compute $x(t+1) := T(x(t)), x(0) \hat{I} D$

Consider
$$T(x) := \mathsf{P}_D\left(x - \frac{\partial}{\mathsf{D}^2}(F(x) - s)\right)$$

Application

- Let \tilde{D} be desirable operation regime
- Compute D s.t. $\tilde{D} \subseteq D$ and $J_F(x)$ satisfies conditions 1 and 2 over D
- Compute $x(t+1) := T(x(t)), x(0) \hat{I} D$
- If fixed point $x^* \in \tilde{D}$ and $F(x^*) = s$ then it is the unique desirable PF solution

Consider
$$T(x) := \mathsf{P}_D\left(x - \frac{\partial}{\mathsf{D}^2}(F(x) - s)\right)$$

Application

- Let \tilde{D} be desirable operation regime
- Compute D s.t. $\tilde{D} \subseteq D$ and $J_F(x)$ satisfies conditions 1 and 2 over D
- Compute $x(t+1) := T(x(t)), x(0) \hat{I} D$
- If fixed point $x^* \in \tilde{D}$ and $F(x^*) = s$ then it is the unique desirable PF solution
- Otherwise, there is no PF solution in D

• Instead of solving F(x) = s

solve, for invertible W, WF(x) = Ws

- Maximize monotonicity region D by choice of W

Example

Instead of checking if $\mathcal{O} := \min_{z \in \mathbf{R}^n, x \in D} z^T \operatorname{sym}(J_F(x)) z > 0$

Optimally choose *W* by solving :

$$\max_{W} \min_{z \in \mathbf{R}^{n}, x \in D} z^{T} \operatorname{sym}(WJ_{F}(x)) z$$

Optimal W^* yields largest monotonicity region D

Introduction

Contractive operator method

*L*₂ contraction
 *L*_¥ contraction

Let
$$D := \{ x \mid \mathbf{R}^n | l_i \in x_i \in u_i \}$$
. Suppose, over D ,

1. $J_F(x)$ is row *d*-diagonally dominant, i.e. $[J_F(x)]_{ii} \ge \sum_{k:k \neq i} |[J_F(x)]_{ik}| + \delta, \quad x \mid D$

Let
$$D := \{ x \mid \mathbf{R}^n | l_i \in x_i \in u_i \}$$
. Suppose, over D ,

/

1

- 1. $J_F(x)$ is row *d*-diagonally dominant, i.e. $[J_F(x)]_{ii} \ge \sum_{k:k \neq i} |[J_F(x)]_{ik}| + \delta, \quad x \mid D$
- 1. $J_F(x)$ is L_{\natural} -bounded, i.e., $\|J_F(x)\|_{\infty} \leq \mathsf{D}, \quad x \in D$

Let
$$D := \{ x \mid \mathbf{R}^n | l_i \in x_i \in u_i \}$$
. Suppose, over D ,

- 1. $J_F(x)$ is row *d*-diagonally dominant, i.e. $[J_F(x)]_{ii} \ge \sum_{k:k \neq i} |[J_F(x)]_{ik}| + \delta, \quad x \mid D$
- 1. $J_F(x)$ is L_{\natural} -bounded, i.e., $\|J_F(x)\|_{\infty} \leq \mathsf{D}, \quad x \in D$

Consider
$$T(x) := P_D\left(x - \frac{1}{D}(F(x) - s)\right)$$

<u>Theorem</u>

- T is a contraction over D with rate 1 d/Dand a unique fixed point x^*
- If $F(x^*) = s$ then x^* is the unique PF solution in D
- Otherwise, there is no PF solution in D

Theorem suggests a similar solution strategy

PF solution through contraction

- Characterize PF solution region with desirable properties
- Prove there is at most one solution in the region
- Fixed-point iteration computes efficiently...
- either finds the unique solution or certifies none exists in the region