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Electricity gen & transportation

They consume the most energy
◼ Consumer 2/3 of all energy in US

They emit the most greenhouse gases
◼ Emit >1/2 of all greenhouse gases in US

To drastically reduce greenhouse gases
◼ Increase renewable generations

◼ Electrify transportation



EV & charging

CA 2025 goal
◼ 1.5 million zero emission cars

Accelerating growth
◼ 2011-2013: EVs have grown by 8x in US 

◼ 2011-2013: #Public charging stations grown by 7x in US

Painpoints
◼ Overcrowding, EV shuffling

source: 
Chargepoint

1st week reservation: 
325K, $14B

Tesla Model 3 (4/2016)



Publications

 Adaptive Charging Network for Electric Vehicles. Dec 2016

      George Lee, Ted Lee, Zhi Low, Steven H. Low and Christine     

 Ortega, IEEE GlobalSIP, Washington, DC

 Smoothed Least-laxity-first Algorithm for EV Charging. May 2017. 

Y. Nakahira, N. Chen, L. Chen and S. H. Low. 

       Proc  ACM e-Energy Conference, Hong Kong

 Optimal Online Adaptive Electric Vehicle Charging. July 2017

       Linqi Guo, Karl F. Erliksson and Steven H. Low. 

       Proc. IEEE PES General Meeting, Chicago, IL

 The National Electric Transportation Infrastructure Working Council 

(IWC) Meeting, San Francisco, CA, November 2016



Outline

Theory and algorithms

◼ Algorithm design

◼ Simulations and analysis

ACN testbed

◼ System design

◼ Caltech pilot



Charging model

N  EVs:  i =1,...,N

T  control intervals:  t =1,...,T

EV i :   ei,ai,di, ri( )

Power limit:  P(t)

energy
demand

(miles / kWh)

arrival /
departure

time

peak
charging
rate (kW)



Charging model

N  EVs:  i =1,...,N

T  control intervals:  t =1,...,T

EV i :   ei,ai,di, ri( )

Power limit:  P(t)

Compute: charging rates

r := (ri(t),  i =1,...,N,  t =1,...,T )



Offline optimal charging

Offline optimal problem is a linear program

charge only after ai before di 

not exceeding peak rate



Offline optimal charging

Offline optimal problem is a linear program

meet energy demand

not exceed limit;
can generalize to
linear constraints



Online LP

Offline LP is not implementable
◼ It needs future EV information

Implement Online LP
◼ Solve LP with current EVs, assuming no future arrival

◼ Update remaining energy demand after each online LP 
iteration

◼ Model-predictive control

LP(t) :      min
r³0

    Ct (r)

                 s. t.          ri (t ) £  ri (t ),        t ³ t

                           ri (t )d  = ei
t =t

T-1

å (t)

                             ri (t ) £  P
t =t

å (t ),        t ³ t



Performance: online LP

Suppose cost coefficients are uniformly monotone

C(r) := ct rit
i

å
t

å      with ct  increasing in t

Theorem

If online LP is feasible, then it attains offline 
optimal

Guo, Erliksson, L. PES GM 2017



Performance: online LP

Theorem

1. competitive ratio can be arbitrarily bad

2.  

Guo, Erliksson, L. PES GM 2017

competitive ratio £  
maxi,t cit

mini,t cit
  (cost variability)



Performance: online LP

feasibility of online LP
~ feasibility of offline LP

(averaged over all locations
and all days for each dataset)

normalized difference

normalized    difference



Performance

peak demand reduction
Caltech data (Feb – May, 2016)
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Fig. 4. O LP perform s alm ost as w ell as the offline algorithm O PT, and
significantly better than LLF.

W hile it is possible that online LP can perform m uch
w orse than offline LP, it is perhaps not surprising that their
perform ance is close in practice.This is because as soon as a
new EV arrives,itisim m ediately taken into accountby solving
an updated LP that includes the new arrival. H ence if the
average num ber ofactive EV s is m uch largerthan one and no
m ore than one EV arrive sim ultaneously,then the discrepancy
betw een online and offline LP is being continuously and
im m ediately corrected.

D . Potential benefitofAC N

W e have collected three m onths of baseline charging data
w ithout adaptive charging algorithm s on A C N from m id-
February to m id-M ay of 2016,during w hich EV s essentially
charged at their peak rates. W e w ill evaluate the benefit of
adaptive charging by sim ulating offline LP on the charging
data.This provides an upper bound on the achievable benefit.
Since the perform ance of online LP and offline LP seem s to
be close,w e expect a sim ilar benefit w hen w e deploy online
LP in A C N .

Figure 5 show s the results ofouranalysis.The upper panel
plots the daily A C N peaks (i.e., m axt

P
iri(t)) under peak-

rate charging (in red) and that under offline LP (in green).
Specifically w e estim ate from the realcharging data the peak
rate ri of each charging session. W e then assum e every
car charges at its (constant) peak rate ri until its energy
dem and is satisfied and calculate the peak A C N charging
pow er m axt

P
i ri(t) for each day. This is plotted in red.

For the curve under offline LP,w e assum e a constant pow er
capacity P (t)⌘P .Foreach day,w e calculate the sm allestP
thatcan satisfy allEV’senergy dem ands w ithin theirdeadlines
and this is plotted in green. These num bers represent the
m inim um required pow er capacities of A C N under peak-rate
and offline LP charging policies.A s can be seen in the upper
panelofFigure 5,peak-rate charging (in red)requires an A C N
capacity about 3 tim es as high as offline LP (in green) does.
The low er panel of the figure show s the num ber of EV s in
each day.The curve show s a w eekly pattern w here there are
significantly m ore EV s on w eekdays than on w eekends.
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Fig.5. The daily peaksofthe totalcharging pow ersw ithoutadaptive charging
are about3 tim es the daily peaks ofthe totalcharging pow erunderoffline LP
(upper panel). The num ber of EV s approxim ately follow s a w eekly pattern
(low er panel).

The statistics on the data plotted in Figure 5 are given in
Table I.The required capacity to satisfy the charging dem ands

D aily A C N peak D aily A C N peak Capacity
(peak-rate charging) (offline LP) saving

m ax 85 kW 34 kW 60%
average 41 kW 16 kW –

TA BLE I
STA T IST IC S O F C A L IFO R N IA G A R A G E D A TA FE B –M A Y 2016.

under the peak-rate charging policy is 99 kW w hereas the
required capacity under offline LP is 33 kW .This represents
a saving of 67% .

IV . C O N C L U SIO N

W e have provided a snapshot of our adaptive charging
netw ork at C altech. U sing the baseline data from the first
three m onths ofdeploym ent,w e have show n thatthe potential
savings from adaptive charging in required pow er capacity is
significant(67% ).W e are continuing the developm entofA C N ,
including the com m unication system ,charging algorithm im -
plem entation, as w ellas other softw are m odules.

savings = infrastructure, demand charge 

data: g2016mtv2000 data: CAgarage2016



Karl Erliksson 2016 SURF

Conclusions
• savings increase in initial laxity
• significant savings even at low 

laxity 

Daily peak 
power

Uncontrolled 
charging ACN

Power
savings 

Caltech 85.3 kW 33.8 kW 60%

Mountain 
View

46.2 kW 28.4 kW 34%

Sunnyvale 94.0 kW 56.2 kW 29%

Adaptive charging network

savings = infrastructure, demand charge 



Data cleaning
Remaining #EVs (charging 
sessions)
• Mountain View:  44,587
• Sunnyvale: 6,466
• CA Garage: 1,309

Total: 52,362 sessions, in 
2016 (over a few months)

104 locations
>4,000 charging days



Smoothed Least laxity first (sLLF)

EV i :   ei,ai,di, ri( ),  i =1,...,N

energy
demand

(miles / kWh)

arrival /
departure

time

peak
charging
rate (kW)

Compute: charging rates at each time t:

r := (ri(t),  i =1,...,N )

no look-ahead

State at time t: remaining energy demand

e(t) := (ei(t),  i =1,...,N )



EV i :   ei,ai,di, ri( ),  i =1,...,N

energy
demand

(miles / kWh)

arrival /
departure

time

peak
charging
rate (kW)

laxity  li(t) := (di - t) -  
ei(t)

ri

remaining
time

minimum
required

Smoothed Least laxity first (sLLF)



EV i :   ei,ai,di, ri( ),  i =1,...,N

laxity  li(t) := (di - t) -  
ei(t)

ri

Smoothed Least laxity first (sLLF)

li(t +1) = li(t)-1 + 
ri(t)

ri

Algorithm: max min laxity            at next timeli(t +1)

Nakahira, et al, e-Energy 2017



➔ water-filling algorithm

Smoothed Least laxity first (sLLF)

Theorem

sLLF rates                                  solvesr := (ri(t),  i =1,...,N)

max
r(t )

   - ri
i

å  log li (t +1)

s. t.    0 £ ri (t) £ ri

         ri (t)
i

å £ P(t)

Nakahira, et al, e-Energy 2017



Smoothed Least laxity first (sLLF)

Theorem

sLLF rates                                  are

1. Proportionally fair

2. Maxmin fair

r := (ri(t),  i =1,...,N)

li
'(t +1)- li(t +1)

li(t +1)
i

å £ 0

Nakahira, et al, e-Energy 2017

min
i

 li
'(t +1) is maximized



Smoothed Least laxity first (sLLF)

Nakahira, et al, e-Energy 2017



Outline

Theory and algorithms

◼ Algorithm design

◼ Simulations and analysis

ACN testbed

◼ System design

◼ Caltech pilot



garage loads

(lighting, fans, etc)

EV switch

panel

EV switch

panel
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800A

utility 
company

Caltech
substation

480V
225A

208V
500A

…

150 kVA EV 
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transformer

…
charger

208V
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ACN

main 
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Adaptive charging network

chargers 150kVA transformers

First pilot @Caltech garage

◼ 50+ adaptive Level 2 chargers

◼ 2x 150kVA transformers

◼ Operational since Feb 2016

main panel

debugging



(60 chargers; since 2/2016; 400K+ miles delivered, 140+ tons of GHG avoided; 3/2017)

Caltech ACN

◼ Provide target charging capacity at much lower infrastructure 
& operating costs (30% - 60% savings)

◼ Provide ancillary energy services

LP(t) :      min
r³0

    Ct (r)

                 s. t.          ri (t ) £  ri (t ),        t ³ t

                           ri (t )d  = ei
t =t

T-1

å (t)

                             ri (t ) £  P
t =t

å (t ),        t ³ t



Hardware design

… 
charger 

cloud 
servers 

access  
point 

c
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wireless & wireline network 
control & 

optimization 

(LMC) 

ACN$

network

cloud



databaseservers

facility
operator

utilities
ISO

mobile
app

learning &
prediction

station &
subscription mgt

alerts &
visualization

wireless & wireline network

OpenADR 
2.0

communication & interfaces

control &

optimization

(LMC)

Software design



Indoor or outdoor



PV charging rate
(EVSE)

Fair sharing, Aug 2016
• Real-time adaptation

DR capability, Oct 2016
• Capability to track PV
 generation in real time
• JPL demo

Adaptation
30A

24A

16A

8A



• Real-time monitoring
• Deployed on ACN cloud server

Management interface



Key benefits

Provide target charging capacity at 30%-60% 
lower costs

◼ infrastructure costs

◼ operating costs (demand charges)

Flexibility in implementing operator objectives

◼ min electricity bill

◼ min charging time

◼ max asset utilization

◼ max system robustness

Potential for providing DR/ancillary services

◼ Help distribution grid operation



. . .  

Overview	of	project	objec2ves	

2	

	

C ontrollable D E R

⇡
⇡

P in
f

D istribution feeder f Transm ission system

P 0

distribution
grid

transmission
grid

PF cloud

min
xi (t ),t=1,...,T

  fi(x(t), t;yi (t))
t

å

   s. t.     gi(xi(t), yi (t)) £ 0

ACN input

utility input

ISO input

min
xi (t ),t=1,...,T

  fi(x(t), t;yi (t))
t

å

   s. t.     gi(xi(t), yi (t)) £ 0

utilities

min
xi (t ),t=1,...,T

  fi(x(t), t;yi (t))
t

å

   s. t.     gi(xi(t), yi (t)) £ 0

ISO markets

driver
input

ACN

PF cloud 
input

driver
input

ACN

PF cloud 
input



Karl Erliksson 2016 SURF

Simulation tool
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Fig. 4. O LP perform s alm ost as w ell as the offline algorithm O PT, and
significantly better than LLF.

W hile it is possible that online LP can perform m uch
w orse than offline LP, it is perhaps not surprising that their
perform ance is close in practice.This is because as soon as a
new EV arrives,itisim m ediately taken into accountby solving
an updated LP that includes the new arrival. H ence if the
average num ber ofactive EV s is m uch largerthan one and no
m ore than one EV arrive sim ultaneously,then the discrepancy
betw een online and offline LP is being continuously and
im m ediately corrected.

D . Potential benefitofAC N

W e have collected three m onths of baseline charging data
w ithout adaptive charging algorithm s on A C N from m id-
February to m id-M ay of 2016,during w hich EV s essentially
charged at their peak rates. W e w ill evaluate the benefit of
adaptive charging by sim ulating offline LP on the charging
data.This provides an upper bound on the achievable benefit.
Since the perform ance of online LP and offline LP seem s to
be close,w e expect a sim ilar benefit w hen w e deploy online
LP in A C N .

Figure 5 show s the results ofouranalysis.The upper panel
plots the daily A C N peaks (i.e., m axt

P
iri(t)) under peak-

rate charging (in red) and that under offline LP (in green).
Specifically w e estim ate from the realcharging data the peak
rate ri of each charging session. W e then assum e every
car charges at its (constant) peak rate ri until its energy
dem and is satisfied and calculate the peak A C N charging
pow er m axt

P
i ri(t) for each day. This is plotted in red.

For the curve under offline LP,w e assum e a constant pow er
capacity P (t)⌘P .Foreach day,w e calculate the sm allestP
thatcan satisfy allEV’senergy dem ands w ithin theirdeadlines
and this is plotted in green. These num bers represent the
m inim um required pow er capacities of A C N under peak-rate
and offline LP charging policies.A s can be seen in the upper
panelofFigure 5,peak-rate charging (in red)requires an A C N
capacity about 3 tim es as high as offline LP (in green) does.
The low er panel of the figure show s the num ber of EV s in
each day.The curve show s a w eekly pattern w here there are
significantly m ore EV s on w eekdays than on w eekends.
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Fig.5. The daily peaksofthe totalcharging pow ersw ithoutadaptive charging
are about3 tim es the daily peaks ofthe totalcharging pow erunderoffline LP
(upper panel). The num ber of EV s approxim ately follow s a w eekly pattern
(low er panel).

The statistics on the data plotted in Figure 5 are given in
Table I.The required capacity to satisfy the charging dem ands

D aily A C N peak D aily A C N peak Capacity
(peak-rate charging) (offline LP) saving

m ax 85 kW 34 kW 60%
average 41 kW 16 kW –

TA BLE I
STA T IST IC S O F C A L IFO R N IA G A R A G E D A TA FE B –M A Y 2016.

under the peak-rate charging policy is 99 kW w hereas the
required capacity under offline LP is 33 kW .This represents
a saving of 67% .

IV . C O N C L U SIO N

W e have provided a snapshot of our adaptive charging
netw ork at C altech. U sing the baseline data from the first
three m onths ofdeploym ent,w e have show n thatthe potential
savings from adaptive charging in required pow er capacity is
significant(67% ).W e are continuing the developm entofA C N ,
including the com m unication system ,charging algorithm im -
plem entation, as w ellas other softw are m odules.

savings = infrastructure, demand charge 
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