Adaptive Charging Network for electric vehicles

George Lee

Steven Low

March 2017

ACN testbed

D. Chang, CIT

K. Erliksson, Lund

R. Lee, CIT

T. Lee, CIT

Z. Lee, CIT

Z. Low, Cornell

C. Ortega, CIT

ACN theory

L. Chen, Colorado

L. Chen, CIT

Y. Nakhira, CIT

Electricity gen & transportation

They consume the most energy

- Consumer 2/3 of all energy in US
- They emit the most greenhouse gases
 - Emit >1/2 of all greenhouse gases in US
- To drastically reduce greenhouse gases
 - Increase renewable generations
 - Electrify transportation

CA 2025 goal

1.5 million zero emission cars

Accelerating growth

- 2011-2013: EVs have grown by 8x in US
- 2011-2013: #Public charging stations grown by 7x in US

Painpoints

Overcrowding, EV shuffling

- Adaptive Charging Network for Electric Vehicles. Dec 2016 George Lee, Ted Lee, Zhi Low, Steven H. Low and Christine Ortega, IEEE GlobalSIP, Washington, DC
- Smoothed Least-laxity-first Algorithm for EV Charging. May 2017.
 Y. Nakahira, N. Chen, L. Chen and S. H. Low.
 Proc ACM e-Energy Conference, Hong Kong
- Optimal Online Adaptive Electric Vehicle Charging. July 2017 Linqi Guo, Karl F. Erliksson and Steven H. Low. Proc. IEEE PES General Meeting, Chicago, IL
- The National Electric Transportation Infrastructure Working Council (IWC) Meeting, San Francisco, CA, November 2016

Theory and algorithms

- Algorithm design
- Simulations and analysis

ACN testbed

- System design
- Caltech pilot

N EVs:
$$i = 1, ..., N$$

T control intervals: $t = 1, ..., T$
EV i : $(e_i, a_i, d_i, \overline{r_i})$
Power limit: $P(t)$

Compute: charging rates
$$r := (r_i(t), i = 1, ..., N, t = 1, ..., T)$$

Offline optimal problem is a linear program

Offline optimal problem is a linear program

Offline LP is not implementable

It needs future EV information

Implement Online LP

- Solve LP with current EVs, assuming no future arrival
- Update remaining energy demand after each online LP iteration
- Model-predictive control

LP(t):
$$\min_{r^{30}} C_{t}(r)$$

s.t. $r_{i}(t) \notin \overline{r_{i}}(t), \quad t^{3}t$
$$\overset{T-1}{\overset{T-1}{a}}r_{i}(t)d = e_{i}(t)$$
$$\overset{a}{\underset{t=t}{d}}r_{i}(t) \notin P(t), \quad t^{3}t$$

Suppose cost coefficients are uniformly monotone

$$C(r) := \mathop{\text{a}}_{t} c_t \mathop{\text{a}}_{i} r_{it}$$
 with c_t increasing in t

Theorem

If online LP is feasible, then it attains offline optimal

Guo, Erliksson, L. PES GM 2017

Theorem

1. competitive ratio can be arbitrarily bad

2. competitive ratio
$$\pounds \frac{\max_{i,t} c_{it}}{\min_{i,t} c_{it}}$$
 (cost variability)

normalized difference $(\%)$			
CA Garage	Mountain View	Sunnyvale	
1.24	0.18	0.36	

normalized difference
$$= \frac{P_{OLP} - P_{OPT}}{P_{Dumb} - P_{OPT}}$$

(averaged over all locations and all days for each dataset)

Adaptive charging network

Daily peak power	Uncontrolled charging	ACN	Power savings
Caltech	85.3 kW	33.8 kW	60%
Mountain View	46.2 kW	28.4 kW	34%
Sunnyvale	94.0 kW	56.2 kW	29%

savings = infrastructure, demand charge

Conclusions

- savings increase in initial laxity
- significant savings even at low laxity

Karl Erliksson 2016 SURF

Description	Quantity	Percentage (%)
EVs before cleaning	46404	100
Total EVs removed	1817	3.9
Energy demand <1 kWh	1673	3.6
Parking time $< 10 \min$	501	1.1
Parking time >12 hrs	0	0
Peak charging rate <2 kW	0	0
Peak charging rate >20 kW	0	0
Negative initial laxity	195	0.4

 Table 1: Cleaning statistics for the Mountain View data set.

Table 2: Cleaning statistics for the Sunnyvale data set.

Description	Quantity	Percentag	e (%)
EVs before cleaning	6614	100	
Total EVs removed	148	2.2	
Energy demand <1 kWh	126	1.9	
Parking time $< 10 \min$	30	0.5	
Parking time >12 hrs	0	0	Table
Peak charging rate <2 kW	0	0	Decer
Peak charging rate >20 kW	0	0	
Negative initial laxity	32	0.5	

Remaining #EVs (charging sessions)

- Mountain View: 44,587
- Sunnyvale: 6,466
- CA Garage: 1,309

Total: 52,362 sessions, in 2016 (over a few months)

104 locations >4,000 charging days

Table 3: Cleaning statistics for the California Garage data

Description	Quantity	Percentage
EVs before cleaning	1384	100
Total EVs removed	75	5.4
Energy demand <1 kWh	64	4.6
Parking time $<10 \text{ min}$	21	1.5
Parking time >12 hrs	0	0
Peak charging rate <2 kW	2	0.1
Peak charging rate >20 kW	0	0
Negative initial laxity	11	0.8

State at time *t*: remaining energy demand $e(t) := (e_i(t), i = 1, ..., N)$

Compute: charging rates at each time *t*:

$$r := (r_i(t), i = 1, ..., N)$$

no look-ahead

laxity
$$l_i(t) := (d_i - t) - \frac{e_i(t)}{\overline{r_i}}$$

remaining minimum required

EV *i*:
$$(e_i, a_i, d_i, \overline{r_i}), i = 1, ..., N$$

laxity
$$l_i(t) := (d_i - t) - \frac{e_i(t)}{\overline{r_i}}$$

$$l_i(t+1) = l_i(t) - 1 + \frac{r_i(t)}{\overline{r_i}}$$

Algorithm: max min laxity $l_i(t+1)$ at **next** time

Nakahira, et al, e-Energy 2017

Theorem

sLLF rates $r := (r_i(t), i = 1, ..., N)$ solves

$$\max_{r(t)} \quad \mathop{a}_{i}^{\circ} - \overline{r_{i}} \, \log l_{i}(t+1)$$
s. t.
$$0 \notin r_{i}(t) \notin \overline{r_{i}}$$

$$\mathop{a}_{i}^{\circ} r_{i}(t) \notin P(t)$$

$$_{i}$$

→ water-filling algorithm

Theorem

sLLF rates $r := (r_i(t), i = 1, ..., N)$ are

1. Proportionally fair

$$a_{i} \frac{l'_{i}(t+1) - l_{i}(t+1)}{l_{i}(t+1)} \in 0$$

2. Maxmin fair

$$\min_{i} l'_{i}(t+1) \text{ is maximized}$$

Nakahira, et al, e-Energy 2017

Nakahira, et al, e-Energy 2017

Theory and algorithms

- Algorithm design
- Simulations and analysis

ACN testbed

- System design
- Caltech pilot

Adaptive charging network

First pilot @Caltech garage

- 50+ adaptive Level 2 chargers
- 2x 150kVA transformers
- Operational since Feb 2016

chargers

150kVA transformers

main panel

debugging

- Provide target charging capacity at much lower infrastructure & operating costs (30% - 60% savings)
- Provide ancillary energy services

Hardware design

Indoor or outdoor

Adaptation

Fair sharing, Aug 2016

Real-time adaptation

DR capability, Oct 2016

- Capability to track PV generation in real time
- JPL demo

Management interface

- Real-time monitoring
- Deployed on ACN cloud server

Key benefits

Provide target charging capacity at 30%-60% lower costs

- infrastructure costs
- operating costs (demand charges)

Flexibility in implementing operator objectives

- min electricity bill
- min charging time
- max asset utilization
- max system robustness

Potential for providing DR/ancillary services

Help distribution grid operation

Simulation tool

Karl Erliksson 2016 SURF

Backup Slides

<u>ACN benefit</u> Caltech data (Feb – May, 2016)

	Daily ACN peak (peak-rate charging)	Daily ACN peak (of f line LP)	Capacity saving
m ax	85 kW	34 kW	60%
average	41 kW	16 kW	–

savings = infrastructure, demand charge