The Flow of Power

Steven Low

Simons Institute: Real-time Decision Making Bookcamp Power Systems, Berkeley, January 2018

The flow of power (S Low)

- Basic concepts and models
- Power flow and optimization

The flow of information (S Meyn)Distributed control architectures

- The flow of money (K Poolla)
 - Market structures and services

from steady state to dynamics from engineering to economics

"... the level should be sufficiently elementary that an expert on the topic will be bored."

Basic concepts and models

Why smart grid? (15 mins)

Three-phase AC transmission: 3 key ideas (30 mins)

- Phasor representation
- Balanced operation
- Per-phase analysis
- Device models (30 mins)
 - Transmission line
 - Transformer
 - Generator

Power flow and optimization

Network models (10mins)

- Admittance matrix
- Power flow models

Optimal power flow problems (35mins)

- Formulation and example
- Convex relaxations
- Real-time OPF

Energy network will undergo similar architectural transformation that phone network went through in the last two decades to become the world's largest and most complex IoT

Industries will be restructured AT&T, MCI, McCaw Cellular, Qualcom Google, Facebook, Twitter, Amazon, eBay, Netflix

Infrastructure will be reshaped Centralized intelligence, vertically optimized Distributed intelligence, layered architecture

The five largest companies in 2006 ...

1 Exxon Mobil	\$540 BILLION MARKET CAP
2 General Electric	463
3 Microsoft	355
4 Citigroup	331
5 Bank of America	290

The five largest companies in 2006 ...

1 Exxon Mobil	\$540 BILLION MARKET CAP
2 General Electric	463
3 Microsoft	355
4 Citigroup	331
5 Bank of America	290

... and now (April 20, 2017)

1	Apple	\$794		
2	Alphabet (Google)	593		
3	Microsoft	506		
4	Amazon	429		
5	Facebook	414		

What will drive power network transformation ?

Electricity gen & transportation

They consume the most energy

Consume 2/3 of all energy in US (2014)

They emit the most greenhouse gases

Emit >1/2 of all greenhouse gases in US (2014)

To drastically reduce greenhouse gases

- Generate electricity from renewable sources
- Electrify transportation

World energy stats (2011)

Consumption	519 quad BTU
petroleum	34%
coal	29%
gas	23%
renewable (elec)	8%
nuclear	5%

	Consumption	519 (quad BTU)	per capita (mil BTU)
top 5 countries	China	20%	78
	US	19%	313
	Russia	6%	209
	India	5%	20
	Japan	4%	164
	total	54%	

World energy stats (2011)

Consumption	519 quad BTU
petroleum	34%
coal	29%
gas	23%
renewable (elec)	8%
nuclear	5%

	Consumption	519 (quad BTU)	CO2 emission
top 5	China	20%	27%
countries	US	19%	17%
	Russia	6%	5%
	India	5%	5%
	Japan	4%	4%
	total	54%	58%

US greenhouse gas emission 2014

Electricity generation and transportation are top-two GHG emitters (56% total)

... and they consume the most energy (66% total)

Total (2014) = 6,870 Million Metric Tons of CO2 equivalent

Source: USEPA, https://www3.epa.gov/climatechange/ghgemissions/sources/transportation.html

Source: EIA Monthly Energy Review March 2015

Monthly Energy Review

US dirty supply

US renewable generations

US wind capacity

A Growing Source

Cumulative wind power capacity in the United States, in megawatts.

Source: American Wind Energy Association

US solar capacity

US solar industry snapshot

- US installed solar capacity by mid 2015: ~23 GW
 - 784K homes and businesses
- Q2 2015 solar installation: 1.4 GW
 - □ Utility: 729 MW
 - Residential: 473 MW (70% growth yr-on-yr)
 - H1 2015: a new solar installation / 2 mins

Source: SEIA 2015 (Solar Energy Industries Association)

Annual PV additions: historic data vs IEA WEO predictions

In GW of added capacity per year - source International Energy Agency - World Energy Outlook

Power the world by solar

1980 (based on actual use) 207,368 SQUARE KILOMETERS

2008 (based on actual use) 366,375 SQUARE KILOMETERS

2030 (projection) 496,805 SQUARE KILOMETERS

- Areas are calculated based on an assumption of 20% operating efficiency of collection devices and a 2000 hour per year natural solar input of 1000 watts per square meter striking the surface.
 - These 19 areas distributed on the map show roughly what would be a reasonable responsibility for various parts of the world based on 2009 usage. They would be further divided many times, the more the better to reach a diversified infrastructure that localizes use as much as possible.
 - The large square in the Saharan Desert (1/4 of the overall 2030 required area) would power all of Europe and North Africa. Though very large, it is 18 times less than the total area of that desert.
 - The definition of "power" covers the fuel required to run all electrical consumption, all machinery, and all forms of transportation. It is based on the US Department of Energy statistics of worldwide Btu consumption and estimates the 2030 usage (678 quadrillion Btu) to be 44% greater than that of 2008.
 - Area calculations do not include magenta border lines.

Source: Rosa Yang, EPRI

- 68 meters (residential)
- Sept 2012 (23 days)
- 240 volts
- +-5% min-228/max-252
- Hourly by meter #

SunSh

- A few "high" meters
- Larger # of low meters

Source: Leon Roose, University of Hawaii Development & demo of smart grid inverters for high-penetration PV applications

with the issues fast.

"We have leave a growing reactive of contention looking for off girld minimum," with first federate, managing partner at Kannel R and Arrest Range Commission.

Few large generators

~10K bulk generators (>90% capacity), actively controlled

Many dump loads

131M customers, 3,100 utilities, ~billion passive loads
Control paradigm: schedule supply to match demand

Centralized, human-in-the-loop, worst case, deterministic

Wind and solar farms are not dispatchable

- Many small distributed generations
- Network of distributed energy resources (DERs)

EVs, smart buildings/appliances/inverters, wind turbines, storage Control paradigm: match demand to volatile supply

Distributed, real-time feedback, risk limiting, robust

Risk: active DERs introduce rapid random fluctuations in supply, demand, power quality increasing risk of blackouts

Opportunity: active DERs enables realtime dynamic network-wide feedback control, improving robustness, security, efficiency

Caltech research: distributed control of networked DERs

- Foundational theory, practical algorithms, concrete applications
- Integrate engineering and economics
- Active collaboration with industry

Global energy demand will continue to grow

There is more renewable energy than the world ever needs

Someone will figure out how to capture and store it

There will be connected intelligence everywhere

- Cost of computing, storage, communication and manufacturing will continue to drop
- Power system will transform into the largest and most complex Internet of Things
 - Generation, transmission, distribution, consumption, storage

To develop technologies that will enable and guide the historic transformation of our power system

- Materials, devices, systems, theory, algorithms
- Control, optimization, stochastics, data, economics

min	$\operatorname{tr}\left(CVV^{H}\right)$	gen cost, power loss
over	(V, s, l)	
subject to	$s_j = \operatorname{tr}\left(Y_j^H V V^H\right)$	power flow equation
	$l_{jk} = \operatorname{tr}\left(B_{jk}^{H}VV^{H}\right)$	line flow
	\underline{s}_{j} £ s_{j} £ \overline{s}_{j}	injection limits
	\underline{l}_{jk} £ l_{jk} £ \overline{l}_{jk}	line limits
	\underline{V}_j £ $ V_j $ £ \overline{V}_j	voltage limits

- Y_j^H describes network topology and impedances
- S_j is net power injection (generation) at node j

Basic concepts and models

Why smart grid? (15 mins)

Three-phase AC transmission: 3 key ideas (30 mins)

- Phasor representation
- Balanced operation
- Per-phase analysis
- Device models (30 mins)
 - Transmission line
 - Transformer
 - Generator

adapted from

Electric(Power(Delivery(Systems(Tutorial(at(U.C.(Berkeley(September(11,(2009((Dr.(Alexandra("Sascha"(von(Meier(

Transmission lines: 190K miles Distribution lines: 73K miles (2002)

[Sascha von Meier]

Few large generators

~10K bulk generators (>90% capacity), actively controlled

Many dump loads

131M customers, 3,100 utilities, ~billion passive loads
Control paradigm: schedule supply to match demand

Centralized, human-in-the-loop, worst case, deterministic

[Sascha von Meier]

distribution substation

- Voltage, current, power, energy
- All are sinusoidal functions of time

- Voltage, current, power, energy
- All are sinusoidal functions of time

Voltage

$$v(t) = V_{\max} \cos(wt + Q_V)$$

nominal frequency North/Central Americas: 60 Hz Most other major countries: 50 Hz

- Steady state: frequencies at all points are nominal
- Reasonable model at timescales of minute and up
- Dynamic models at sec-min timescale: S Meyn's tutorial

this part of tutorial is all about steady state

- Voltage, current, power, energy
- All are sinusoidal functions of time

Voltage

- Voltage, current, power, energy
- All are sinusoidal functions of time

Voltage

$$v(t) = V_{\text{max}} \cos(wt + Q_V)$$
voltage phasor $V = \frac{V_{\text{max}}}{\sqrt{2}} e^{jQ_V}$

$$v(t) = \operatorname{Re}\left\{\sqrt{2}Ve^{jWt}\right\} = \operatorname{Re}\left\{V_{\max}e^{j(Wt+q_V)}\right\}$$

- Voltage, current, power, energy
- All are sinusoidal functions of time

Voltage

$$v(t) = V_{\max} \cos(wt + Q_V)$$
voltage $V = \frac{V_{\max}}{\sqrt{2}} e^{jQ_V}$

$$|V| = \sqrt{\frac{1}{T}} \overset{T}{\overset{}{0}} v^2(t) dt \qquad \text{RMS}$$

Voltage

$$v(t) = V_{\max} \cos(wt + Q_V)$$
$$V = \frac{V_{\max}}{\sqrt{2}} e^{jQ_V}$$

Current

$$i(t) = I_{\max} \cos(wt + Q_I)$$
$$I = \frac{I_{\max}}{\sqrt{2}} e^{jQ_I}$$

Resistor
$$R$$
 $v(t) = R \times i(t)$

Inductor
$$L$$
 $v(t) = L \times \frac{di}{dt}(t)$

Capacitor
$$C$$
 $i(t) = C \times \frac{dv}{dt}(t)$

these are main circuit elements to model the grid

Resistor
$$R$$
 $v(t) = R \times i(t)$
 $V = R \times I$

Inductor L

$$v(t) = L \times \frac{di}{dt}(t)$$
$$V = jWL \times I$$

Capacitor C
$$i(t) = C \times \frac{dv}{dt}(t)$$

 $V = (j\omega C)^{-1} \cdot I$

- Voltage, current, power, energy
- All are sinusoidal functions of time

Instantaneous power

$$p(t) = v(t)i(t)$$

$$= \frac{V_{\text{max}}I_{\text{max}}}{2} (\cos(q_V - q_I) + \cos(2wt + q_V + q_I))$$
average power

- Voltage, current, power, energy
- All are sinusoidal functions of time

Instantaneous power

$$p(t) = v(t)i(t)$$

$$= \frac{V_{\text{m ax}}I_{\text{m ax}}}{2} (\cos(q_V - q_I) + \cos(2wt + q_V + q_I))$$
average power
$$\text{average power}$$

$$\text{real (active) power}$$

$$S := VI^* = P + jQ$$

Steady state behavior described by algebraic equations

Instead of dynamic equations

Circuit analysis

Voltages and currents are linear

Power flow analysis

Power flow equations are nonlinear

$$p(t) = v(t)i(t)$$
$$S := VI^*$$

We will describe device and network models, and analyze them, in phasor domain

- Phasor representation
- Balanced operation
- Per-phase analysis

3 single-phase system:

single 3-phase system:

 $\bullet \quad E_{an} = 1 \setminus \boldsymbol{q}, \quad E_{bn} = 1 \setminus \boldsymbol{q} - 120^{\circ}, \quad E_{cn} = 1 \setminus \boldsymbol{q} + 120^{\circ}$

Balanced 3p impedance load

Identical impedances

Balanced 3p source

Equal in magnitude, 120 deg difference in phase

$$E_{ab} = 1 \angle \theta, \quad E_{bc} = 1 \angle \theta - 120^{\circ}, \quad E_{ab} = 1 \angle \theta + 120^{\circ}$$

Balanced 3p impedance load

Identical impedances

Balanced 3-phase system

Balanced 3p operation

- Balanced 3p sources
- Balanced 3p loads
- Balanced (identical) transmission lines

1-phase
$$p(t) = v(t)i(t)$$
, $S := VI^*$

3-phase

$$S_{3f} := V_a I_a^* + V_b I_b^* + V_c I_c^*$$

1-phase
$$p(t) = v(t)i(t)$$
, $S := VI^*$

3-phase

$$S_{3f} := V_a I_a^* + V_b I_b^* + V_c I_c^* = 3S$$

$$p_{3f}(t) := v_a(t)i_a(t) + v_a(t)i_a(t) + v_a(t)i_a(t)$$

1-phase
$$p(t) = v(t)i(t)$$
, $S := VI^*$

3-phase

$$S_{3f} := V_a I_a^* + V_b I_b^* + V_c I_c^* = 3S$$

$$p_{3\phi}(t) \coloneqq v_a(t)i_a(t) + v_b(t)i_b(t) + v_c(t)i_c(t)$$
$$= 3|V_a||I_a|\cos(\phi_V - \phi_I) = 3P$$

Advantages of balanced 3p operation

- Instantaneous power is constant in t !
- Uses ~1/2 as much materials (wires) as three 1p system
- Incurs ~1/2 as much active power loss as three 1p system

- Phasor representation
- Balanced operation
- Per-phase analysis

Important properties of balanced 3p system

• All
$$V_{\text{neutral-neutral}} = 0$$

Important properties of balanced 3p system

• All
$$V_{\text{neutral-neutral}} = 0$$

All voltages and currents are 3-phase balanced

Phases are decoupled, i.e., variables in each phase depend only on quantities in that phase

Properties:

- All $V_{\text{neutral-neutral}} = 0$
 - All voltages and currents are 3-phased balanced
 - Phases are decoupled

per-phase equivalent circuit

Equivalent 3p sources: same external behavior line-to-line voltages: $E_{ab}^{Y} = E_{ab}^{\Delta}, \ E_{bc}^{Y} = E_{bc}^{\Delta}, \ E_{ca}^{Y} = E_{ca}^{\Delta}$

Equivalent 3p sources: same external behavior line-to-line voltages: $E_{ab}^{Y} = E_{ab}^{\Delta}, \ E_{bc}^{Y} = E_{bc}^{\Delta}, \ E_{ca}^{Y} = E_{ca}^{\Delta}$

$$E_{an}^Y = rac{E_{ab}^\Delta}{\sqrt{3} \, e^{j\pi/6}}$$

$$E_{bn}^Y = \frac{E_{bc}^\Delta}{\sqrt{3} e^{j\pi/6}}$$

$$E_{cn}^Y = \frac{E_{ca}^\Delta}{\sqrt{3} e^{j\pi/6}}$$

Equivalent 3p sources: same external behavior same terminal currents on same line-to-line voltages

 $Z^Y = \frac{Z^0}{3}$

- Convert all Delta sources and loads into Wye
- Solve phase *a* circuit with all neutrals connected for desired variables
- Phase b / c variables: subtract / add 120deg to phase a variables
- If variables internal to Delta configurations are desired, solve them from original circuit

3-phase AC transmission system

- Phasor representation
- Balanced operation
- Per-phase analysis

We will describe device and network models, and analyze them, in phasor domain, using per-phase analysis

Basic concepts and models

Why smart grid? (15 mins)

Three-phase AC transmission: 3 key ideas (30 mins)

- Phasor representation
- Balanced operation
- Per-phase analysis
- Device models (30 mins)
 - Transmission line
 - Transformer
 - Generator

P model of transmission line

- Terminal behavior $(V_2, I_2) \mapsto (V_1, I_1)$
- What do line parameters (Z', Y') depend on ?
- What about a 3-phase line ?
- What are some implications ?

Line inductance *l*

total flux linkages $l(t) = l \times i(t)$

Multiple conductors

Conditions

Symmetric 3-phase line

$$i_a(t) + i_b(t) + i_c(t) = 0$$

Multiple conductors

The phases are decoupled !

Line capacitance \boldsymbol{c}

total charge / m $q(t) = c \times v(t)$

Multiple conductors

Conditions

Symmetric 3-phase line

$$q_a(t) + q_b(t) + q_c(t) = 0$$

Multiple conductors

The phases are decoupled !

Line parameters (balanced 3p line)

- Phases are decoupled
- series impedance $z = r + jwl \quad W/m$ shunt admittance (to neutral) $y = g + jwc \quad W^{-1}/m$
- Line inductance and capacitance

$$l = \frac{\mu_0}{2\pi} \ln \frac{D}{r'} \qquad \text{H/m}$$

$$c = \frac{2\pi\varepsilon}{\ln(D/r)} \qquad \text{F/m}$$
radius r
separation D

Line resistance r / conductance g depend on wire material & size

per-phase model of phase voltage:

per-phase model of phase voltage:

P model of transmission line

Long line (l>150mi):

$$Z' = Z \times \frac{\sinh(gl)}{gl}$$
$$Y' = Y \times \frac{\tanh(gl/2)}{gl/2}$$

Long line (50<l<150mi): Z'=Z Y'=Y

Long line (I<50mi):

Z' = ZY' = 0

 $Z := z\ell$ $Y := y\ell$

High voltage min transmission line loss

Specified: required load power $\left|S_{2}\right|$ and voltage $\left|V_{2}\right|$

$$arphi \left| I \right| = \frac{\left| S_2 \right|}{\left| V_2 \right|}$$
 line loss = $R \left| I \right|^2$

Recap

- Line characteristics depend on materials, size, and geometry of 3-phase line
- Linear per-phase circuit model $(V_2, I_2) \mapsto (V_1, I_1)$
- P circuit model: series impedance + shunt admittance

Basic concepts and models

Why smart grid? (15 mins)

Three-phase AC transmission: 3 key ideas (30 mins)

- Phasor representation
- Balanced operation
- Per-phase analysis

Device models (30 mins)

- Transmission line
- Transformer
- Generator

Single-phase ideal transformer *n*

Single-phase (non-ideal) transformer

 (Z_l, Y_m) can be easily measured

Single-phase (non-ideal) transformer

Property	Gain	Configuration	Gain
Voltage gain	K(n)	YY	$K_{YY}(n) := n$
Current gain	$\frac{1}{K^*(n)}$	ľ	
Power gain	1		

Property	Gain	Configuration	Gain
Voltage gain	K(n)	YY	$K_{YY}(n) := n$
Current gain	$\frac{1}{K^*(n)}$	$\Delta\Delta$	$K_{\Delta\Delta}(n) := n$
Power gain			

Property	Gain	Configuration	Gain
Voltage gain	K(n)	YY	$K_{YY}(n) := n$
Current gain	$\frac{1}{K^*(n)}$	$\Delta\Delta$	$K_{\Delta\Delta}(n) := n$
Power gain		ΔY	$K_{\Delta Y}(n) := \sqrt{3}n \ e^{j\pi/6}$

Property	Gain	Configuration	Gain
Voltage gain	K(n)	YY	$K_{YY}(n) := n$
Current gain	$\frac{1}{K^*(n)}$	$\Delta\Delta$	$K_{\Delta\Delta}(n) := n$
Power gain		ΔY	$K_{\Delta Y}(n) := \sqrt{3}n \ e^{j\pi/6}$
		$Y\Delta$	$K_{Y\Delta}(n) := rac{n}{\sqrt{3}} e^{j\pi/6}$

Per-phase equivalent circuit

Recap

- Four configurations: YY, DD, DY, YD
- Linear per-phase circuit model $(V_2, I_2) \mapsto (V_1, I_1)$

- V_a : term inal voltage
- E_a : open-circuit (internal) voltage

Putting everything together

Putting everything together

Power flow and optimization

Network models (10mins)

- Admittance matrix
- Power flow models

Optimal power flow problems (35mins)

- Formulation and example
- Convex relaxations
- Real-time OPF

Each line modeled as P model

- Series impedance
- Shunt admittance at each end
- They may not be equal

Y : network graph + admittances

$$y_{jj}^m := \sum_{k:j\sim k} y_{jk}^m$$

Power flow and optimization

Network models (10mins)

- Admittance matrix
- Power flow models

Optimal power flow problems (35mins)

- Formulation and example
- Convex relaxations
- Real-time OPF

$$Y_{ij} := \begin{cases} a \\ y_{ik} \\ -y_{ij} \\ 0 \end{cases} \quad \text{if } i = j \\ if \\ -y_{ij} \\ 0 \\ \text{else} \end{cases}$$

graph G: undirected

Y specifies topology of G and impedances \boldsymbol{z} on lines

$$I = YV$$
 Kirchhoff law
 $S_j = V_j I_j^*$ for all j power balance

admittance matrix:

$$\begin{array}{ll}
\stackrel{\stackrel{\stackrel{}}{\scriptstyle i}}{\scriptstyle i} & \stackrel{\stackrel{\stackrel{}}{\scriptstyle a}}{\scriptstyle j} y_{ik} & \text{if } i = j \\
\stackrel{\stackrel{\stackrel{}}{\scriptstyle i}}{\scriptstyle j} & \stackrel{\stackrel{}}{\scriptstyle i} - y_{ij} & \text{if } i \sim j \\
\stackrel{\stackrel{\stackrel{}}{\scriptstyle i}}{\scriptstyle j} & 0 & \text{else}
\end{array}$$

$$I = YV$$
 Kirchhoff law
 $S_j = V_j I_j^*$ for all j power balance

Eliminate *I* :

$$s_{j} = \mathop{\text{a}}_{k:k\sim j} y_{jk}^{*} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{*} \right) \qquad \text{for all } j$$

Complex form:

$$s_{j} = \mathop{\text{a}}_{k:k\sim j} \mathcal{Y}_{jk}^{*} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{*} \right) \qquad \text{for all } j$$

Polar form:

$$p_j = \left(\sum_{k=0}^n g_{jk}\right) |V_j|^2 - \sum_{k \neq j} |V_j| |V_k| \left(g_{jk} \cos \theta_{jk} - b_{jk} \sin \theta_{jk}\right)$$
$$q_j = \left(\sum_{k=0}^n b_{jk}\right) |V_j|^2 - \sum_{k \neq j} |V_j| |V_k| \left(b_{jk} \cos \theta_{jk} + g_{jk} \sin \theta_{jk}\right)$$

Cartesian form:

$$p_{j} = \sum_{k=0}^{n} \left(g_{jk} \left(e_{j}^{2} + f_{j}^{2} \right) - g_{jk} (e_{j}e_{k} + f_{j}f_{k}) + b_{jk} (f_{j}e_{k} - e_{j}f_{k}) \right)$$

$$q_{j} = \sum_{k=0}^{n} \left(b_{jk} \left(e_{j}^{2} + f_{j}^{2} \right) - b_{jk} (e_{j}e_{k} + f_{j}f_{k}) - g_{jk} (f_{j}e_{k} - e_{j}f_{k}) \right)$$

DC power flow

$$p_j = \sum_{k=0}^n b_{jk} |V_j| |V_k| (\theta_j - \theta_k)$$

Assumptions:

- Lossless short line
- Small angle difference
- Fixed voltage magnitude
- Ignore reactive power

Power flow and optimization

Network models (10mins)

- Admittance matrix
- Power flow models

Optimal power flow problems (35mins)

- Formulation and example
- Convex relaxations
- Real-time OPF

OPF is solved routinely for

- network control & optimization decisions
- market operations & pricing
- at timescales of mins, hours, days, ...

Non-convex and hard to solve

- Huge literature since 1962
- Common practice: DC power flow (LP)
- Also: Newton-Raphson, interior point, ...

min
$$c(x)$$
 s.t. $F(x) = 0$, $x \in \overline{x}$

mintr
$$(CVV^H)$$
gen cost, power lossover (V, s, l) subject to $s_j = \operatorname{tr} (Y_j^H V V^H)$ power flow equation $l_{jk} = \operatorname{tr} (B_{jk}^H V V^H)$ line flow $\underline{s}_j \quad \underline{\in} \quad s_j \quad \underline{\in} \quad \overline{s}_j$ injection limits $\underline{l}_{jk} \quad \underline{\in} \quad l_{jk} \quad \underline{\in} \quad \overline{l}_{jk}$ line limits $\underline{V}_j \quad \underline{\in} \quad |V_j| \quad \underline{E} \quad \overline{V}_j$ voltage limits

- Y_j^H describes network topology and impedances
- S_j is net power injection (generation) at node j

mintr
$$(CVV^H)$$
gen cost, power lossover (V, s, l) subject to $s_j = \text{tr } (Y_j^H V V^H)$ power flow equation $l_{jk} = \text{tr } (B_{jk}^H V V^H)$ line flow $\underline{s}_j \in s_j \in \overline{s}_j$ injection limits $\underline{l}_{jk} \notin l_{jk} \notin \overline{l}_{jk}$ line limits $\underline{V}_j \notin |V_j| \notin \overline{V}_j$ voltage limits

nonconvex feasible set (nonconvex QCQP)

- Y_i^H not Hermitian (nor positive semidefinite)
- C is positive semidefinite (and Hermitian)

OPF problem underlies numerous applications

nonlinearity of power flow equations → nonconvexity

Linearization

DC approximation

Convex relaxations

- Semidefinite relaxation (Lasserre hierarchy)
- QC relaxation (van Hentenryck)
- Strong SOCP (Sun)

Linearization

DC approximation

Convex relaxations

- Semidefinite relaxation (Lasserre hierarchy)
- QC relaxation (van Hentenryck)
- Strong SOCP (Sun)

Realtime OPF

- Online algorithm, as opposed to offline
- Also tracks time-varying OPF

Relaxations of AC OPF

dealing with nonconvexity

Chandy

Li (Harvard)

many others at & outside Caltech ...

Low, Convex relaxation of OPF, 2014 http://netlab.caltech.edu

 $\min_{x \in \mathbf{X}} f(x)$ **OPF**:

relaxation: $\min_{\hat{x} \in \mathbf{X}^+} f(\hat{x})$

If optimal solution $\hat{\chi}^*$ satisfies easily checkable conditions, then optimal solution χ^* of OPF can be recovered

Theorem

- Radial G: SOCP is equivalent to SDP ($v \subseteq w^* @ w_G^*$)
- Mesh G: SOCP is strictly coarser than SDP

For radial networks: always solve SOCP !

For radial networks, sufficient conditions on

- power injections bounds, or
- voltage upper bounds, or
- phase angle bounds

For radial networks, sufficient conditions on

- power injections bounds, or
- voltage upper bounds, or
- phase angle bounds

QCQP
$$(C, C_k)$$

min $\operatorname{tr}(Cxx^H)$
over $x \mid \mathbb{C}^n$
s.t. $\operatorname{tr}(C_k xx^H) \in b_k$ $k \mid K$

graph of QCQP

$$G(C, C_k)$$
 has edge (i, j) \Leftrightarrow
 $C_{ij} \neq 0$ or $[C_k]_{ij} \neq 0$ for some k

QCQP over tree $G(C, C_k)$ is a tree

 $i \sim j$: $(C_{ij}, [C_k]_{ij}, "k)$ lie on half-plane through 0

Theorem SOCP relaxation is exact for QCQP over tree

Bose et al 2012, 2014 Sojoudi, Lavaei 2013

Not both lower & upper bounds on real & reactive powers at both ends of a line can be finite

SOCP is faster but coarser than SDP

Bose, Low, Teeraratkul, Hassibi TAC 2015

EEE test systems		SDP cost	MATPOWER cost
Syst	$\operatorname{rank}(\overline{X}_0)$	J°	\overline{J}
9	1	5296.7	5296.7
30	1	576.9	576.9
118	1	129661	129661
14A	1	8092.8	9093.8
	12.4% lov	wer cost than	solution from

[Louca, Seiler, Bitar 2013]

nonlinear solver MATPOWER

Case study on an SCE feeder

- Southern California
- 1,400 residential houses, ~200 commercial buildings
- Controllable loads: EV, pool pumps, HVAC, PV inverters
- Formulated as an OPF problem, multiphase unbalanced radial network

Realtime AC OPF for tracking

Gan (FB)

Tang (Caltech) Dvijotham (DeepMind)

See also: Dall'Anese et al, Bernstein et al, Hug & Dorfler et al, Callaway et al Gan & L, JSAC 2016 Tang et al, TSG 2017

Simplify OPF simulation/solution

- Solving static OPF with simulator in the loop
- Avoid modifying GridLab-D during ARPA-E GENI (2012-15)
- Deal with nonconvexity
 - Network computes power flow solutions in real time at scale for free
 - Exploit it for our optimization/control

Track optimal solution of time-varying OPF

- Uncertainty will continue to increase
- Real-time measurements increasingly become available on seconds timescale
- Must, and can, close the loop in the future

Linearization

DC approximation

Convex relaxations

- Semidefinite relaxation (Lasserre hierarchy)
- QC relaxation (van Hentenryck)
- Strong SOCP (Sun)

Realtime OPF

- Online algorithm, as opposed to offline
- Also tracks time-varying OPF

Static OPF:

- □ Gan and Low, JSAC 2016
- □ Dall'Anese, Dhople and Giannakis, TPS 2016
- Arnold et al, TPS 2016
- □ A. Hauswirth, et al, Allerton 2016

Time-varying OPF:

- □ Dall'Anese and Simonetto, TSG 2016
- □ Wang et al, TPS 2016
- □ Tang, Dvijotham and Low, TSG 2017
- □ Tang and Low, CDC 2017

Earlier relevant work on voltage control

□ Survey: Molzahn et al, TSG 2017

min $c_0(y) + c(x)$ over x, y s. t. F(x, y) = 0

power flow equations

$\begin{array}{ll} \min & c_0(y) + c(x) \\ \text{over } x, \ y \\ \text{s. t. } F(x, y) = 0 & \text{power flow equations} \\ & y \ \exists \ \overline{y} & \text{operational constraints} \\ & x \ \widehat{l} \ X := \{ \underline{x} \ \exists \ x \ \exists \ \overline{x} \} \text{ capacity limits} \end{array}$

$$\min_{x} c_0(y(x)) + c(x)$$

s. t. $y(x) \in \overline{y}$
 $x \mid X := \{ \underline{x} \in x \in \overline{x} \}$

<u>Theorem</u> [Huang, Wu, Wang, & Zhao. TPS 2016] For DistFlow model, controllable (feasible) region

$$\left\{ x \middle| y(x) \in \overline{y}, x \mid X \right\}$$

is convex (despite nonlinearity of y(x))

$$\min_{x} c_0(y(x)) + c(x)$$

s. t. $y(x) \in \overline{y}$

 $x \hat{I} \quad X := \{ \underline{x} \in x \in \overline{x} \}$

add barrier or penalty function to remove operational constraints

$$\begin{array}{ll} \min & f(x, y(x); \ m) \\ \text{over} & x \stackrel{\frown}{\mid} X \end{array}$$

- Explicitly exploits network as power flow solver
- Naturally tracks changing network conditions

Motivation

Problem formulation

Static OPF

- 1st order algorithm
- Optimality properties

Time-varying OPF

- 2nd order algorithm
- Tracking performance
- Distributed implementation

[Gan & Low, JSAC 2016]

[Tang, Dj, & Low, TSG 2017]

[Tang & Low, CDC 2017]

$$\begin{array}{ll} \min & f(x, y(x); \ m) \\ \text{over} & x \stackrel{\frown}{\downarrow} X \end{array}$$

gradient projection algorithm:

$$\begin{aligned} x(t+1) &= \stackrel{\acute{\theta}}{\underline{\theta}} x(t) - h \frac{\P f}{\P x}(t) \stackrel{i}{\underline{\theta}}_{X} & \text{active control} \\ y(t) &= y(x(t)) & \text{law of physics} \end{aligned}$$

[Gan & Low, JSAC 2016]

Under appropriate assumptions

- x(t) converges to set of local optima
- if #local optima is finite, x(t) converges

Assume:
$$p_0(x)$$
 convex over X
 $v_k(x)$ concave over X

$$A := \{ x \hat{I} \ X : v(x) \pounds a\overline{v} + (1-a)\underline{v} \}$$

<u>Theorem</u>

If co{local optima} are in A then

- x(t) converges to the set of global optima
- x(t) itself converges a global optimum if #local optima is finite

Assume:
$$p_0(x)$$
 convex over X
 $v_k(x)$ concave over X

$$A := \left\{ x \hat{I} \ X : v(x) \pounds a\overline{v} + (1-a)\underline{v} \right\}$$

<u>Theorem</u>

- Can choose *a* s.t.
 - $A \rightarrow$ original feasible set

If SOCP is exact over X, then assumption holds

Incidentally, this turns out to be the convergence condition in Arnold, et al, "Model-Free Optimal Control of VAR Resources in Distribution Systems: An Extremum Seeking Approach,"

any original any local feasible pt optimum slightly away from X boundary

 $f(x^*) - f(\hat{x}) \quad \text{f} \quad \checkmark \quad \gg 0$

Informally, a local minimum is almost as good as any strictly interior feasible point

Simulations

# bus	CVX		IPM		error	speedup
	obj	time(s)	obj	time(s)	UIIUI	specdup
42	10.4585	6.5267	10.4585	0.2679	-0.0e-7	24.36
56	34.8989	7.1077	34.8989	0.3924	+0.2e-7	18.11
111	0.0751	11.3793	0.0751	0.8529	+5.4e-6	13.34
190	0.1394	20.2745	0.1394	1.9968	+3.3e-6	10.15
290	0.2817	23.8817	0.2817	4.3564	+1.1e-7	5.48
390	0.4292	29.8620	0.4292	2.9405	+5.4e-7	10.16
490	0.5526	36.3591	0.5526	3.0072	+2.9e-7	12.09
590	0.7035	43.6932	0.7035	4.4655	+2.4e-7	9.78
690	0.8546	51.9830	0.8546	3.2247	+0.7e-7	16.12
790	0.9975	62.3654	0.9975	2.6228	+0.7e-7	23.78
890	1.1685	67.7256	1.1685	2.0507	+0.8e-7	33.03
990	1.3930	74.8522	1.3930	2.7747	+1.0e-7	26.98
1091	1.5869	83.2236	1.5869	1.0869	+1.2e-7	76.57
1190	1.8123	92.4484	1.8123	1.2121	+1.4e-7	76.27
1290	2.0134	101.0380	2.0134	1.3525	+1.6e-7	74.70
1390	2.2007	111.0839	2.2007	1.4883	+1.7e-7	74.64
1490	2.4523	122.1819	2.4523	1.6372	+1.9e-7	74.83
1590	2.6477	157.8238	2.6477	1.8021	+2.0e-7	87.58
1690	2.8441	147.6862	2.8441	1.9166	+2.1e-7	77.06
1790	3.0495	152.6081	3.0495	2.0603	+2.1e-7	74.07
1890	3.8555	160.4689	3.8555	2.1963	+1.9e-7	73.06
1990	4.1424	171.8137	4.1424	2.3586	+1.9e-7	72.84

Motivation

Problem formulation

Static OPF

[Gan & Low, JSAC 2016]

Dynamic OPF

- 2nd order algorithm
- Tracking performance
- Distributed implementation

[Tang, Dj, & Low, TSG 2017]

[Tang & Low, CDC 2017]

See also: Dall'Anese and Simonetto, TSG 2016 Wang et al, TPS 2016

realtime OPF algorithms can track time-varying OPF well

realtime OPF algorithms can track time-varying OPF well

$$\min_{x} c_0(y(x)) + c(x)$$
s. t. $y(x) \notin \overline{y}$
 $x \restriction X$

$$\begin{array}{l} \min_{x} & c_0(y(x), \mathcal{G}_t) + c(x, \mathcal{G}_t) \\ \text{s. t.} & y(x, \mathcal{G}_t) \in \overline{y} \\ & x \mid X \end{array} \right\} \begin{array}{l} \text{drifting} \\ \text{OPF} \end{array}$$

$$\begin{array}{ll} \min & f_t(x, y(x); \ \mathcal{M}_t) \\ \text{over} & x \ \hat{l} \ X_t \end{array}$$

Quasi-Newton algorithm:

$$x(t+1) = \stackrel{\acute{e}}{\underline{\theta}} x(t) - h(H(t))^{-1} \frac{\P f_t}{\P x} (x(t)) \stackrel{\check{u}}{\underline{\theta}}_{X_t}$$

active control

y(t) = y(x(t))

law of physics

[Tang, Dj & Low, 2017]

$$\begin{array}{ll} \min & f_t(x, y(x); \ \mathcal{M}_t) \\ \text{over} & x \ \hat{l} \ X_t \end{array}$$

Computing $\chi(t+1)$ by solving convex QP:

$$\min_{x} \left(\nabla f_t(x(t)) \right)^T (x - x(t)) + \frac{1}{2} (x - x(t))^T \frac{B_t(x(t))}{B_t(x(t))} (x - x(t))$$

e.g. approx Hessian
s. t. $x \in X_t$

[Tang, Dj & Low, 2017]

error :=
$$\frac{1}{T} \mathop{a}\limits_{t=1}^{T} \|x^{\text{online}}(t) - x^{*}(t)\|$$
 control error
(assuming $x^{\text{online}}(0) = x^{*}(0)$)

error :=
$$\frac{1}{T} \mathop{a}_{t=1}^{T} \|x^{\text{online}}(t) - x^*(t)\|$$

Theorem

error
$$\leq \frac{\theta}{\sqrt{I_m/I_M} - \theta} \cdot \frac{1}{T} \sum_{t=1}^{T} \left(\left\| x^*(t) - x^*(t-1) \right\| + D_t \right)$$

avg rate of drifting
• of optimal solution
• of feasible set

error :=
$$\frac{1}{T} \mathop{a}_{t=1}^{T} \|x^{\text{online}}(t) - x^*(t)\|$$

Theorem

error
$$\leq \frac{\theta}{\sqrt{I_m/I_M} - \theta} \cdot \frac{1}{T} \sum_{t=1}^T \left(\left\| x^*(t) - x^*(t-1) \right\| + D_t \right)$$

error in Hessian approx

[Tang, Dj, & Low, TSG 2017]

error :=
$$\frac{1}{T} \mathop{a}_{t=1}^{T} \|x^{\text{online}}(t) - x^*(t)\|$$

Theorem

error
$$\leq \frac{\theta}{\sqrt{I_m/I_M} - \theta} \cdot \frac{1}{T} \sum_{t=1}^{T} \left(\left\| x^*(t) - x^*(t-1) \right\| + D_t \right)$$

"condition number"
of Hessian
[Tang, Dj, & Low, TSG 2017]

Implement L-BFGS-B

- More scalable
- Handles (box) constraints X

Simulations IEEE 300 bus

IEEE 300 bus

IEEE 300 bus

Large network of DERs

- Real-time optimization at scale
- Computational challenge: power flow solution

Online optimization [feedback control]

- Network computes power flow solutions in real time at scale for free
- Exploit it for our optimization/control
- Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control