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Abstract—We describe a snapshot of an adaptive charging
network (ACN) for electric vehicles at Caltech. We overview the
system design, from the power distribution system to advanced
charger design to control and communication system and the
software system that integrates the overall network. We present
a simple mathematical formulation of the charging problem. We
have collected three months’ of baseline charging data from
the Caltech ACN. We demonstrate, by simulating a charging
algorithm on the baseline data, the large potential benefit of
ACN in saving infrastructure costs.

Keywords: Electric vehicles, adaptive charger, ACN deploy-
ment, adaptive algorithms

I. INTRODUCTION

We are at the cusp of a historic transformation of our
energy system into a more sustainable form in the coming
decades. Electrification of our transportation system will be
an important component because vehicles today consume more
than a quarter of our energy and emit more than a quarter of
our energy-related carbon dioxide. Electrification will not only
greatly reduce carbon dioxide emission, but will also have a
big impact on the future smart grid. First it is a huge load,
adding stress to the grid (an electric vehicle’s power demand
can be 3 to 20 times that of an average residential house).
Second it is an extremely flexible load hence invaluable for
integrating renewable sources, such as wind and solar power,
into our electric grid. Electric vehicle (EV) adoption, though
still low, is growing rapidly in major cities around the world.
It has grown in the United States by 8x between 2011 and
2013 [1]. California has committed to have 1.5 million zero-
emission vehicles on the road by 2025. The Chinese city
Shenzhen plans to have 100% of its taxi’s be electric by 2020.
The growth of EV depends on, and will drive, the growth
of charging stations [2], [3], [4], [5]. Indeed the number of
public charging stations in the United States has increased by
7x between 2011–2013 [1], [6].

This paper presents a snapshot of our ongoing effort to
build an adaptive charging network (ACN) at one of Caltech’s
parking garages. Phase one of our implementation is complete
and the facility has been operational since mid-February
2016; see Figure 1. It has delivered more than 30MWh or

We thank Caltech’s CI2 Grant, Resnick Institute, the Emerging Technolo-
gies Coordinating Council of Utilities, the Moxie Foundation’s FLoW Rocket
Fund, and the NSF AIR award 1602119 for financial support and Karl Fredrik
Erliksson for discussions. This work was done when George Lee, Ted Lee
and Zhi Low were visitors at Caltech. Steven H. Low is a co-founder of
PowerFlex.

100,000 miles by ealry August. The system has also been
collecting baseline charging data without adaptive algorithms.
Adaptive charging algorithms have been designed and their
performance has been evaluated through simulations using the
collected data. We explain our system design in Section II; our

Fig. 1. Initial deployment of adaptive charging network (ACN) at Caltech.

charging algorithm and its preliminary performance evaluation
in Section III. We conclude in Section IV.

II. OVERALL SYSTEM DESIGN

ACN consists of 54 level-2 EV chargers spread across two
parking levels at a Caltech garage. The power distribution
system that provides electricity from the main switch panel
for the whole garage to these chargers consists of 20,000 feet
of conduits and cables, two 150kVA three-phase transformers,
54 208V/100A breakers, and four advanced grid health meters
that we designed and implemented. The schematic diagram is
shown in Figure 2(a). Each of the two 150kVA step-down
transformers for EV charging connects the main switch panel
to the EV switch panel.

The chargers are connected to the EV switch panel at
208V/80A. They are based on an open-source implementation
of EVSE (Electric Vehicle Supply Equipment) compliant with
the SAE J1772 standard; see Figure 2(b). The OpenEVSE
board manages the high voltage (208-240V AC) portion of
the system. It controls the pilot signal according to the J1772
protocol, provides GFCI protection, signals the contactor to
close to complete the AC power circuit to the EV. Live status

�������������������������������������,((( *OREDO6,3�����

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 18,2020 at 23:43:55 UTC from IEEE Xplore.  Restrictions apply. 

2016 GlobalSIP Conference:



ACN Research Portal 

2019 ACM e-Energy:



PSCC 2020 

ACN Pricing



Unbalance 3-phase modelingLecture Notes for EE/CS/EST 135

Power System Analysis
A Mathematical Approach

Steven H. Low

CMS, EE, Caltech
slow@caltech.edu

(SL: December 29, 2012
February 6, 2014
) April 26, 2015 (Zhejiang University)
October 2015 (Skoltech)
(SL: January 2017
January 2018
January 2019
) July 2019 (Melbourne University)
March 2020 (COVID)
July 2021 (Melbourne University)
May 2022 (Melbourne University)

DRAFT available at:  http://netlab.caltech.edu/book/

Corrections, questions, comments appreciated! 

http://netlab.caltech.edu/book/


Agenda

ACN: Caltech testbed
n Testbed to commercial deployment

ACN: Research Portal
n Data, Sim, Live

ACN: pricing demand charge
n Monthly billing at workplaces

Unbalanced 3-phase modeling
n Motivation, 3-phase network models



CA commitment
n 50% renewables by 2030, 100% by 2045
n 1.5M ZEV by 2025, 5M by 2030 (CA has ~15M cars)

Workplace charging

Drivers twice as likely to get EV when workplace charging is available
(EDF Renewables survey Feb 2018)

60%



Caltech ACN: physical system 



Caltech ACN: cyber system 
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3. An experimental platform that will allow safe, secure and reliable real-world testing of new

online algorithms on ACN along side the production algorithm. It captures all the compli-

cations of a physical system that are abstracted away in a simulation model, and demands

a higher degree of robustness in algorithm design and implementation. It lends credibility

to an algorithm and facilitates technology transfer to the marketplace.

2.3 Three compelling reasons
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ACN Load Management Controller 
 
 
 

Features 

• Intel Core i5, 2.4GHz processor with 500GB SSD and 
32GB of RAM 

• Fan-less, Solid State Design 

• Cellular or Hardwired Ethernet 

• Supports wired and wireless current transformers 

• Molded fiberglass reinforced polyester enclosure 

• NEMA Type 3R, 3RX/IP 24 rated 

• Thermostat controlled heating and cooling 

• UL916 and ETL certified 
 
 
 

The PF-LMC Load Management Controller (LMC) is an intelligent 

gateway running PowerFlex’s Adaptive Load Management firmware. 

The LMC simultaneously controls the output of each PowerFlex EV 

charging station, monitors building loads and communicates with the 

PFS Cloud Server, all in real time. 

In contrast to simple gateways that merely relay data from the chargers 

to the Cloud, the LMC aggregates and processes the data locally to 

minimize expensive network bandwidth, reduce overall system latency 

and ensure active charging sessions are not disrupted if network 

communications are lost. 

Another unique LMC feature is its ability to utilize the spare capacity of 

almost any building’s electrical system by monitoring the major 

electrical loads and any renewable energy sources like solar and 

storage batteries*. When extra power is available it is automatically 

assigned to the drivers that need it the most. 

The PowerFlex LMC comes custom configured to meet the specific 

requirements of your charging system. Contact your PFS sales 

representative and schedule your site evaluation or visit our website at 

www.powerflexsystems.com. 
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Figure 3: Proposed ACN Research Portal and how

it builds on existing facility.

First, it will make large datasets of high-
resolution charging data as well as a data-
driven simulator publicly available for the
first time. This will allow researchers to

build detailed statistical models, perform

data analysis of real-world charging behav-

ior, and easily and fairly compare their algo-

rithms with others using simulations driven

by detailed real data. It will also provide

a live testbed for experimentation with on-

line algorithms. Second, this is a unique op-
portunity that requires the coming together
of three different parties (PI’s Lab, Power-

Flex Systems, Caltech Facilities) to pursue.

The design and development of the proposed

Research Portal involve access, and modifi-

cation, to the PowerFlex management sys-

tem and hence require a close collaboration

between PowerFlex engineers and the PI’s

Lab. This is possible only because of our

close working relationship with PowerFlex which the PI co-founded. It is also rare for a regular

parking garage to allow experiments on their production facility. This is possible only because we

have been working closely with Caltech Facilities to design, develop, operate and support ACN

for the last two years. Finally, it leverages the hard work by these three parties over the last 2+

years, funded by Caltech, DoE, NSF, etc. Finally, the PI has a track record of conceiving, building,
and deploying one-of-a-kind research infrastructures driven by the needs of his and his colleagues’

own research.

3 Team, deliverables, timeline, budget
The project team consists of:

1. Steven Low (PI), Professor, Computing & Mathematical Sciences Department, Electrical

Engineering Department, Caltech

Low will manage the overall CRI project and work closely with Caltech Facilities and the

startup PowerFlex on the design and development of the proposed infrastructure. Low’s

team will consist of graduate students as well as experienced software engineers.

2. John Onderdonk, Director, Sustainability Programs, Facilities, Caltech

Onderdonk will work with Low’s team to ensure the design, implementation and deployment

4
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i.e., EV i cannot be charged before it arrives and at or after its
deadline. It can be charged at any rate not exceeding its peak
rate ri(t) > 0 during the period t 2 {ai, ai + 1, . . . , di � 1}
with the goal of satisfying its energy demand ei before
its deadline di. In its simplest form the power network
is abstracted as a single power limit P (t) > 0 with the
interpretation that the total charging rate at any time does
not exceed P (t). A problem instance P := (ei, ai, di, ri, i =
1, . . . , N ; P (t), t = 1, . . . , T � 1) is a collection of EVs and
a power limit. A control r := (ri(t), t = 1, . . . , T � 1, i =
1, . . . , N) is a nonnegative vector of charging rates with
ri(t) := 0 for t < ai or t � di.

Consider the optimal charging problem:

OPT: min
r�0

C(r) (1a)

subject to ri(t)  ri(t) 8i, 8t (1b)X

t

ri(t) � = ei 8i (1c)

X

i

ri(t)  P (t) 8t (1d)

where C(r) is a cost function and � is the duration of each
time interval. Constraints (1b) say that EVs i can only charge
(but not discharge to the grid) and their charging rates are
upper bounded by ri at all times. Constraints (1c) say that
the energy demands ei of all EVs i are met before their
deadlines. Constraints (1d) say that the station power limit
P (t) is respected at all times.

The cost function C(r) can represent electricity cost or rev-
enue to the garage, or maximum charging delay (makespan),
or asset utilization, or system robustness, etc. For instance to
minimize cost when electricity prices change over time, e.g.,
in time-of-day pricing, let c := (c(t), t = 1, . . . , T � 1) be the
price at time t. Then the cost function can be:

C(r) :=
T�1X

t=1

c(t)
X

i

ri(t)

Another approach is to (i) encourage charging EVs as fast
as possible, and (ii) giving priority to EVs that have smaller
flexibility. The first feature can be implemented by using an
cost that is increasing in time, for each EV. For example,

C(r) :=
X

i

X

t

(t� ai) ci ri(t)

where ci are constants that measure EV i’s flexibility. The
costs (t � ai)ci for EV i increases linearly in t, encouraging
charging at higher rates at small t � ai. A choice of ci is i’s
lack of laxity on arrival defined as (assuming ri are constant
over {ai, . . . , di � 1}):

ci :=
ei

(di � ai)ri

We assume the laxity ci lies in (0, 1]. If ci = 1 then EV i’s
demand can be satisfied only if it is charged at its peak rate
ri at all t = ai, . . . , di � 1. If ci > 1 then it is infeasible
to satisfy EV i’s energy demand by its deadline. If ci > cj
then it is more important to minimize

P
t(t � aj)rj(t) than

P
t(t� ai)ri(t) and therefore the algorithm tends to allocate

higher charging rates rj(t) to EV j at smaller t.
A problem instance P is feasible if there exists a charging

rate vector r that satisfies (1b)–(1d). In that case, an offline op-
timal r⇤ exists that minimizers (1). Such a control however is
generally not implementable (non-causal) because its solution
requires information on all future EV arrivals. OPT serves as
a lower bound on the cost achievable by any online (causal)
charging algorithms.

B. Online linear program
When C(r) is a linear function, our optimization prob-

lem is a linear program. At any time t, let V (t) :=
(ei(t), di, ri(t), i = 1, . . . , N(t)) denote the set of EVs
currently in the charging infrastructure and let P (t) be the
power limit. Here di is i’s departure time and ei(t) is its
remaining energy demand at time t. Let rt := (ri(⌧), ⌧ =
t, . . . , di�1, i = 1, . . . , N(t)) denote the charging rate vector
from t onward. Consider the online optimal charging problem
at each time t:

OLP(t): min
rt�0

C(rt) (2a)

s. t. ri(⌧)  ri(⌧), 8i, 8⌧ � t (2b)
T�1X

⌧=t

ri(⌧) � = ei(t), 8i (2c)

X

i

ri(⌧)  P (⌧), 8⌧ � t (2d)

At any time t, the optimization module constructs the online
linear program OLP(t) (2) and solves for the optimal charging
rate vector rt⇤ := (r⇤i (t), . . . , r

⇤
i (T � 1), i = 1, . . . , N(t)). It

then charges EV i at rate r⇤i (t). At time t+1, with a possibly
different set of EVs due to new arrivals and departures, it
constructs a new OLP(t+1) with remaining energy demands,
and the cycle repeats.

In fact, it is not necessary to solve an online LP at every
time t because the latest LP provides the “optimal” charging
rates not only at ⌧ = t, but all subsequent periods ⌧ > t until
new EVs arrive. Therefore it suffices to solve an LP only when
EVs arrive and use its solution between EV arrivals.

If at any time t, the online LP (2) is infeasible, then it is
not possible to satisfy all remaining energy for all EVs before
their deadlines. In that case the EVs will be charged according
to Least-Laxity First: EVs with smaller laxities at that time are
charged at their peak rates until the power distribution capacity
P (t) is reached.

C. Online LP vs offline LP
Figure 4 shows the simulation of Online LP (OLP) and

Least-Laxity First (LLF) in comparison with the offline LP
for OPT. The EV data that we used are based on the 2010–
2012 dataset from [19] that provides us with about 4,000
problem instances. The number of these problem instances
that are feasible under OLP and LLF, normalized by the
number of feasible instances under offline LP (theoretical
max), are shown in Figure 4(a), as the problem flexibility

Model predictive 
control: QCQP Highly customizable QCQP

• objectives: cost, PV, asap, regularizatn
• constraints: energy, deadlines, capacities
• determine charging rates for all EVs



First deployment Feb 19, 2016

Online optimization of electric vehicle charging
n Enables mass deployment at lower capital & operating costs
n First pilot @Caltech: 54 adaptive programmable chargers
n 2x 150kVA transformers, breakers, grid sensors, etc

main 
panel

transformer
& subpanelscharger

debugging



2020

The ACN Research Portal has three parts:
(1) ACN-Data: a dataset of over 80,000 EV charging sessions (March 2021)
(2) ACN-Sim: an open-source, data-driven simulation environment
(3) ACN-Live: a framework for field testing algorithms on physical hardware

March 2021: ACN includes a total of 207 level-2 EVSEs and six DC Fast Chargers (DCFC), 
and covers seven sites at Caltech, NASA’s Jet Propulsion Laboratory, a LIGO research facility, 
and an office building in Northern California.



Caltech ACN

Caltech ACN snapshot Sept 17, 2018

today’s 
energy delivered

charging station utilization power utilization

energy delivered & impact to date

peak power



Caltech ACN

Spatial utilization snapshot (June 1 – August 31, 2018)

total
per 
day

per 
space remark

#parking spaces 53

#days (June 1 – Aug 31, 2018) 92 inc. weekends

#charging sessions 6,103 66 115 >1 session /space/day 

occupancy (space-day) 3,374 37 64 69% occupancy

energy delivered (kWh) 54,562 593 1,029 11 kWh /space/day

#hours occupied 28,407 309 536 5.8 hours /space/day



• CA Garage operational since 2016
• Delivered 1 GWh (by July 2020, CA)
• Equivalent to 3.2M miles, 1,000 tons 

of avoided CO2e

Caltech ACN



• CA Garage operational since 2016
• Delivered 1 GWh (by July 2020, CA)
• Equivalent to 3.2M miles, 1,000 tons 

of avoided CO2e

Caltech ACN

PowerFlex Systems - We Know EV Charging!

PROJECT 
DEVELOPMENT FINANCING TURN KEY EPC PROJECT 

COMMISSIONING
ASSET 

MANAGEMENT/O&M

UL-LISTED LOAD 
MANAGEMENT SYSTEM

ELECTRIC MILES 
DELIVERED SAFELY

EV CHARGING 
STATIONS DEPLOYED

| 3

Feb 2020

(US wide)



NREL, Golden CO

Source: PowerFlex, June 2019

PowerFlex Confidential & Proprietary

National Renewable Energy Laboratory (NREL) [120 deployed]

120 EVSEs



Bay Area high schools

Source: PowerFlex, June 2019

PowerFlex Confidential & Proprietary

Mountain View Los Altos UHSD [52 deployed]

PowerFlex Confidential & Proprietary

Los Altos SD [180 deployed]

DCFC

Onsite PV



Deployment in CA

PowerFlex deployment, Sept 2018



Adaptive charging

Caltech Jan 2018



PV charging rate
(EVSE)

Real-time tracking of PV 
generation at JPL 
(10/2016)

Online tracking



Duck Curve & DCM

NREL: demand charge mitigation (Nov 2018)
• Fill Duck Curve valley and maintain net load 

between 30 kW – 40 kW
• On weekdays: building load is much higher 

and much more volatile

building – PV  (weekday)

building – PV + EV

building – PV  (weekend)

Weekend Duck Curve: building load (10kW) – PV 



COVID hit

March 16 Monday, 2020

weekdays weekdays



Incubation to tech transferEnergy mgt research

2010 2016 2017 2019

Scalable business

Commercialization: timeline

PF: EV + 
solar + 
storage

2021



Business case: lower capital cost

CA CEC & IOU incentive program estimated
~$15k/charger (inc. make ready)

CEC 3/2018 Staff Report

PowerFlex case study: <$3k/charger
(inc. make ready)

2/2020



Business case: lower operating cost

| 13

EDF-Athena: Longer Dwell time = Max Smart Charging

Max Delivery: Load management delivered as 
much power as desired within the 75kW constraint

Peak Reduction: Reduced Peak by 40% (72kW to 
42kW) while still delivering same amount of energy

10am Floodgates: Charging maximized to 
transformer limits during 10am-2pm to optimize 
for incentives for consuming surplus solar energy 

LCFS Curve Following: Charging optimized under 
LCFS Time-of-Use Value curve
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EDF-Athena: Longer Dwell time = Max Smart Charging
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42kW) while still delivering same amount of energy
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3 ways to reduce operating cost
• Demand charge reduction
• Price arbitrage on ToU tariff 
• Increasing LCFS revenue
• EDF – Athena (San Diego, CA)



Business case: grid services

demand response

2/2020
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ACN Research Portal 

2019 ACM e-Energy:



Caltech ACN



ACN research portal

• ACN-Data

• ACN-Sim

• ACN-Live (HW-in-the-loop)

Adaptive Charging Network

ACN-Data ACN-Sim

Constraints

ACN-Live

D
at

a

Control 
Signals

Simulation
Scenarios

Algorithm 
Validation

Lee, Li, Low. ACN-Data: analysis and applications of an open EV charging Dataset 
ACM e-Energy, June 2019

Lee, Johansson, Low. ACN-Sim: an open-source simulator for data-driven EV charging research
IEEE SmartGridComm, October 2019



ACN-Data
Caltech, JPL, Bay Area office

n 80,000+ EV charging sessions (March 2021)

n Publicly available: ev.caltech.edu
n Growing daily

Real fine-grained data for
n Modeling user behavior
n Evaluating charging algorithms
n Evaluating charging facilities
n Evaluating grid impacts



How much flexibility to users have?
LAX(i) := session

duration
minimum 

charging time-

80% of session have 
laxity > 1 hour

13

User flexibility 

laxity   :=   session duration  - min charging time

User flexibility



ACN flexibility 
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User behavior 

Figure 1

Data Records

The Data Records section should be used to explain each data record associated with this work, including the repository
where this information is stored, and to provide an overview of the data files and their formats. Each external data record
should be cited numerically in the text of this section, for example1, and included in the main reference list as described
below. A data citation should also be placed in the subsection of the Methods containing the data-collection or analytical
procedure(s) used to derive the corresponding record. Providing a direct link to the dataset may also be helpful to readers
(https://doi.org/10.6084/m9.figshare.853801).

Tables should be used to support the data records, and should clearly indicate the samples and subjects (study inputs), their
provenance, and the experimental manipulations performed on each (please see ’Tables’ below). They should also specify the
data output resulting from each data-collection or analytical step, should these form part of the archived record.

Technical Validation

This section presents any experiments or analyses that are needed to support the technical quality of the dataset. This section
may be supported by figures and tables, as needed. This is a required section; authors must present information justifying the
reliability of their data.

Outline

• Compare integral of the chargingCurrent timeseries with the energyDelivered field

• Validate that all fallback values have been flagged

• Ensure no gaps in the timeseries

• Compare distributions with existing datasets

• Compare offset from pilot determine if some stations have calibration issues???

• Compare output of ACN-Sim with these inputs to actual aggregate power draw.

3/6

avg energy:
15 kWh

ch
ar

gi
ng

 ra
te

 ~
6 

kW

Duration and energy delivered

JPL 

avg duration : 7.2 hr
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User behavior

LEARNING-AUGMENTED NONLINEAR PREDICTIVE CONTROL WITH UNCERTAIN PREDICTIONS

(a) label 1 (b) label 2

Figure 2: 2 Figures side by side

1. MPC without using data can perform worse, especially with time-varying costs and fast-
changing power injections.

2. However, data distribution can change [reason 1: change of policy, unexpected accident;
reason 2: inaccurate user input; reason 3: renewable energy, e.g., roof-top solar panels], need
to achieve robustness

Related Work: Our work is closely related to ...
Data-driven smart charging for heterogeneous electric vehicle fleets. It uses an XGBoost model

to predict nonlinear charging profiles.
Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework.

learn a terminal cost at each time t.
Reinforcement Learning Based EV Charging Management Systems–A Review (cannot deal

with high state dimension issues.)
Dual Stochastic MPC for Systems with Parametric and Structural Uncertainty.
Regret Bounds for Adaptive Nonlinear Control

2. Background and Model

2.1. Quadratic control with nonlinear state and action-dependent uncertainty

We consider the following nonlinear control problem.

min
(u0,...,uT�1)

T�1X

t=0

(x>t Qxt + u
>
t Rut) + x

>
TQTxT

subject to : xt+1 =Axt +But + ft(xt, ut), for t = 0, . . . , T � 1,

2
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Reinforcement Learning Based EV Charging Management Systems–A Review (cannot deal

with high state dimension issues.)
Dual Stochastic MPC for Systems with Parametric and Structural Uncertainty.
Regret Bounds for Adaptive Nonlinear Control

2. Background and Model

2.1. Quadratic control with nonlinear state and action-dependent uncertainty

We consider the following nonlinear control problem.
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(u0,...,uT�1)
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>
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TQTxT
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Time series: every 5-10 secs
• pilot signal from controller
• actual current drawn by EV

TABLE I
LIST OF KEY NOTATION USED IN THE PAPER.

Used ACN-Data Fields
connectionTime Time when the user plugs in
doneChargingTime Time of the last non-zero charging current
disconnectTime Time when the user unplugs
pilotSignal Time series of pilot signals
chargingCurrent Time series of actual charging currents
userID Unique identifier of the user

Clustering Parameters
N Set of n charging sessions
T Set of T charging time slots
S Set of n charging curves
Ck Cluster indexed by k (k = 1, . . . ,K)

Sequences
pi Pilot curve for session i 2 N
si Charging curve for session i 2 N
xi Charging tail for session i 2 N
ck Tail representative for cluster Ck

plication. We conclude the paper in Section V with limitations
of this work, as well as potential extensions and applications.

II. PROBLEM FORMULATION

A. ACN-Data
An ACN typically consists of tens of level-2 chargers

controlled by a local controller that communicates wirelessly
with these chargers and servers in the cloud. An ACN is
capable of real-time measurement, communication, computing
and control. It adapts EV charging currents to driver needs
as well as capacity limits of the electric system. A typical
charging session starts when a driver plugs in her EV and
informs ACN through a mobile app the amount of energy
required (in terms of miles) and her estimated departure time.
The EV will be charged until either the requested energy
is delivered, or the battery is fully charged, or the EV is
unplugged, whichever occurs first. The charging currents of all
EVs that have not finished charging are jointly optimized and
updated every minute. Every 5 to 10 seconds, a control (pilot)
signal is sent to the EV and the actual charging current drawn
by the vehicle is measured. ACN-Data contains both session
data (user’s ID, arrival time, departure time, requested energy,
and actual energy delivered) and fine-grained charging data at
seconds resolution (time series of control signals and charging
currents). Unfortunately, the current EV charging standard does
not collect batteries’ states of charge nor EV specifications.
Table I summarizes some of the available features of ACN-Data
used in this work. Note that not all sessions contain user inputs
(i.e., the last three fields of Table 1 in [6].) In this paper we
shall focus on the claimed sessions that are associated with
user inputs.

B. Charging curves
With the terminology introduced in Table I, denote by

N := {1, . . . , n} the set of charging sessions. Each charging
session refers to the charging duration from connectionTime
to disconnectTime (see Table I). Without loss of generality,

Fig. 1. An example of a charging curve (in blue) and the corresponding pilot
curve (in orange) for a charging session with userID 409 on Oct. 13, 2018.

we assume the times series of charging currents have the same
length T and time granularity (If not, we preprocess the time
series as explained in Section III-A and pad the shorter ones
with zeros). Let T := {1, . . . , T} be the set of time slots from
connectionTime to disconnectTime. In the remaining contexts,
we refer to "time series” as the raw data and "charging curves”
the sequences with equally sampled points after preprocessing
(introduced in Section III-A), unless otherwise stated. We
first define a charging curve and its associated pilot curve.
For any session i 2 N , a charging curve si 2 T is the
sequence of actual charging currents during the session i, i.e.,
si := (si(1), . . . , si(T )). For any session i 2 N , a pilot curve
pi 2 T is the sequence of control signals during the session
i, i.e., pi := (pi(1), . . . , pi(T )). At each time t 2 T , a charger
sends a pilot signal pi(t) to the vehicle which then draws
a current si(t) that is no higher than pi(t) (both si(t) and
pi(t) are in units of Amp). Given a set of n charging curves
S := {si 2 T : i 2 N} and the associated pilot curves
P := {pi 2 T : i 2 N}, the key issue considered in this
paper is: how to classify the elements of S into different groups
and implement the classification efficiently?

Typically, a charging curve from a charging session consists
of two stages – the bulk charging stage and the absorption
stage. In the bulk stage which usually occurs before the state
of charge (SoC) reaches 80% full, the charging current is
usually equal approximately to the pilot signal and the charging
voltage steadily increases. In the absorption stage, the voltage
stays approximately at its peak level and the charging currents
decreases as the battery reaches full charge. In cases when
the available time for charging is sufficiently long, a charging
session may contain an additional stage, namely the idle stage
where the charging current is closed to zero (neglecting noise).
An example of a charging curve and its associated pilot curve
is shown in Fig. 1. It can be observed that the measured
charging current does not follow the pilot signal exactly. The
gap between the pilot signal and charging current fluctuates due
to the following reasons: (1) the maximum charging current
that the vehicle can draw being smaller than the control signal;
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Fig. 6. Visualization of K = 6 clusters for MED, ED and DTW. Tails are within the same cluster if they have the same color and the tail representatives
(medoids) are emphasized.

Fig. 7. Two-dimensional visualization of our clustering results with K = 6
clusters. Tails for different users are colored differently. The clusters’ colors
are consistent with those used in Fig. 6. The marginal probabilities p1, . . . , p6
represent the portions of charging sessions falling into the six clusters.

The training data is the same as in Section IV-A and the
testing data contains 731 tails for 1441 sessions collected from
Jan. 2019 to Aug. 2019. We use the tail representatives of
the training data obtained using our framework in Fig. 3 to
predict the behavior of the charging tails of the testing data.
Denote by s a real charging curve in the testing data and
bx the estimated tail. We consider two situations – with and
without the knowledge of userID, and the results are shown in
Table II and Table III respectively. We evaluate the prediction
quality using the following three metrics. The first metric is
the coefficient of determination (R2) (generalized in our case
for comparing two sequences of different lengths) defined as:

R
2
Predict(s, bx) := min

x

⇢
1�

Pr
t=1(xt � bxt)2Pr
t=1(xt � x̄)2

�
(6)

where the minimization is over all consecutive subsequences
x of the charging curve s that have the same length as bx and

Fig. 8. Examples of the training and testing data (tails) for four users.
Sub-figures (a) and (b) are the tails of the two users with poor prediction
performance (highlighted in blue in Table II). The poor prediction performance
is due to the fact that the tails in the training data are very different from
those in the testing data. Sub-figures (c) and (d) are examples where the
tail representatives achieve high-quality prediction performance. Tails in the
training data and those in the testing data are similar.

x̄ =
Pr

t=1 xt/n and r is the length of x and bx. It ranges from
(�1, 1] and the larger the better. A negative value indicates
that performance is worse than the arithmetic mean mean. Our
second metric is the root mean square error (RMSE) that is
useful for measuring scale-dependent prediction error. The
last metric is the mean absolute error (MAE). Similar to (6),
the last two metrics are also generalized with an additional
minimization over consecutive subsequences of charging curves
in the testing data.

Table II shows the userID -based prediction results. Each tail
representative (medoid) corresponds to each group of users.
As can be observed from the results, except for user 404 and
user 651, the tail representatives of the other 14 users can well
predict the charging tail behavior in incoming sessions for the
same user. Fig. 8 visualizes the training tails, testing tails and
tail representatives of 4 users, including the two users with
high prediction error. Note that the charging tails of user 404
exhibit two distinct groups, one is from Sep. 2018 to Dec.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

Chenxi Sun, Tongxin Li, S. H. Low and Victor Li. 
Classification of EV charging time series with selective clustering
PSCC July 2020 

Goal: learn representative battery behaviors
n Only small # of batteries used by small # drivers underlying 

35,000 charging curves
Challenge: do not know SoC

n Can only characterize tail behavior (absorption stage)
n Charging optimization, BMS actions, missing & noisy data

need to 
• extract charging tails
• cluster charging tails



Learning charging curves

Fig. 3. The classification method introduced in this paper.

3) Extraction by matching: Our third method assumes that
all charging tails from the same EV have similar properties
such as duration and shape. Before the iterative steps, suppose
that for a fixed user, we are able to obtain an initial charging
tail x(1), e.g., using the two methods above. This x(1) is used
as a “template” to extract the tails of all other charging curves
of the same user. Then, we go through the subsequences of the
charging curve that have the same length as the template, and
find a charging tail with improved noise robustness. Suppose we
obtain a tail representative x for a fixed user. For the remaining
sessions i of the same user, we minimize the Euclidean distance
dED

�
x,x(1)

i

�
over all consecutive subsequences x(1)

i of the
charging curve si that have the same length as x. In this way,
we use the three extraction rules jointly to compute the initial
tails x(1)

1 , . . . ,x(1)
n in Algorithm 1. Fig. 4 illustrates the idea

and effectiveness of this approach.
Besides speeding up the initialization, the third approach

is also used as the TE step as an approximation of the
optimization in (2). At the `-th iteration, by setting the medoid
(tail representative) c(`)k of the k-th cluster that the charging
curve xi is classified into as the template1 and using the
Euclidean distance as the distance function, we approximate
the optimization in (2) for the `-th iteration:

bx(`+1)
i = argmin

x
dED

⇣
c(`)k ,x

⌘
(4)

where the minimization is over all x 2 Xi

�
c`k

�
and Xi

�
c`k

�
is

the set containing all consecutive subsequences of the charging
curve si that have the same length as c(`)k .

1In our experiments (elaborated in Section IV), for improving efficiency, we
implement a simplified TE, wherein we focus on the medoid of the cluster that
the charging curve si for session i belongs to and remove the minimization
over k in (2). This modification does not affect the local convergence property
stated in Theorem II.1.

Fig. 4. An example of extraction by matching. The red subsequence x1 is
a template with userID 409, which is extracted from the first session s1 of
this user. The figure below visualizes the change of Euclidean distance of the
second session s2 with respect to x1. The black vertical line indicates the best
matching location in s2 for x1 and the tail x2 can be found correspondingly
despite the slight difference of both tails.

C. Tail clustering

Time series clustering is a well-studied problem; see [7]
for a review and [8] for a detailed experimental comparison.
One of the main problems considered in the literature is
determining the distance/similarity between time series. Based
on their own applications, a variety of similarity distance
metrics have been proposed, including the Euclidean distance
[9] for stock price movements clustering, the edit distance
[10] for trajectory clustering and the cross correlation [11]
for electrocardiogram time series clustering, etc. However,
most of the existing metrics require that the two sequences
have the same length. As an exception, dynamic time warping
(DTW) [12] is able to calculate the distance between two
sequences with different lengths. However, it is computationally
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Fig. 2. Architecture of ACN-Sim along with related sub-modules Signals,
Algorithms, and ACN-Data.

tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many

run()

Execute events in queue up 
to current timestep

Recompute
Schedule? Call scheduling algorithm

Send pilot signals for
current time to EVSEs

Collect actual charging rates

Simulation finished

Update state and increment 
timestep

Update stored charging 
schedule

Pass pilot signal through
EV to Battery 

EventQueue
Empty?

Yes

No

Yes

No

Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each

physical system / 
simulation models 
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tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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Figure 2.13: (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase panel used to
connect loads in parallel to the voltage source.

in Figure 2.12(a). The voltage magnitude across each load is the line-to-line voltage 208V . Figure 2.13(b)
shows the electric panel arrangement to connect the loads to the voltage source. The dot in the first row
indicates that the wires numbered 1 and 2 are connected to phase a, the dot in the second row indicates
that the wires numbered 3 and 4 are connected to phase b, the dot in the third row indicates that the wires
numbered 5 and 6 are connected to phase c, and so on. Therefore the load connected between wires 1
and 3 is connected between phase a and phase b lines (see the corresponding labels on the loads in Figure
2.13(a)). Similarly for the load connected between wires 2 and 4, and other loads connected between
different phases.

We are interested in the currents J0 := (Ia0a1 , Ib0b1 , Ic0c1) supplied by the three-phase source to the loads.
Suppose the wires connecting the three-phase source to the loads are rated at Imax. Then we require that
the current magnitude in each phase be bounded by Imax:

��Ip0 p1

��  Imax, p = a,b,c (2.21)

Suppose the loads are not impedance loads, but constant current loads that draw specified currents. Let
the current drawn by the load in Figure 2.13(a) between wires 1 and 3 be Ia1b1 , that between wires 9 and
11 be Ib1c1 , that between wires 5 and 7 be Ic1a1 . In general, let the load currents in the kth three-phase load
be

Ik :=
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numbered 5 and 6 are connected to phase c, and so on. Therefore the load connected between wires 1
and 3 is connected between phase a and phase b lines (see the corresponding labels on the loads in Figure
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Suppose the wires connecting the three-phase source to the loads are rated at Imax. Then we require that
the current magnitude in each phase be bounded by Imax:
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p

vuutX

i2V

�����
X

t2T
ri(t)� ei

�����

p

where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e

j�i

�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)
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X
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Aliri(t)e
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�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.

Charging model

N  EVs:  i =1,...,N
T  control intervals:  t =1,...,T
EV i :   ei,ai,di, ri( )
Power limit:  P(t)

Compute: charging rates
r := (ri (t),  i =1,...,N,  t =1,...,T )
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)
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X

i2V
Aliri(t)e
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�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.

subject to

max
!

$
"

𝛼"𝑢" 𝑟

7

inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)
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�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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Fig. 2. Architecture of ACN-Sim along with related sub-modules Signals,
Algorithms, and ACN-Data.

tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many

run()

Execute events in queue up 
to current timestep

Recompute
Schedule? Call scheduling algorithm

Send pilot signals for
current time to EVSEs

Collect actual charging rates

Simulation finished

Update state and increment 
timestep

Update stored charging 
schedule
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e

j�i

�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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where p � 1. This is the p-norm of the difference between
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no effect.
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simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e

j�i

�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.

Model predictive control:



Pricing design

Pricing design: recover cost for site hosts
n Energy
n Externality: system peak (demand charge) 
n Externality: infrastructure congestion 

Charging design
n Must adapt to system state in real time
n Objectives must be customized for site hosts

Key idea: decouple charging and pricing
n Drivers receive energy in time, at minimum payments
n Charging is socially optimized by MPC
n Site host fully recovers electricity cost



Offline optimal pricing

At end of month
n Compute ex post session price 𝛼!∗

n Driver pays: ∑! 𝛼!∗𝑒!

energy delivered 
in session 𝑖

sum over driver’s 
sessions 

start with conclusion …

No uncertainty nor need for ToU tariff or demand forecasts



Pricing design

peak power

time-varying tariff $/kWh

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,q�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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demand charge $/kWh

1.  What is min system electricity cost to meet demand ?

2.  How to fairly allocate system cost to drivers ?



Pricing design

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,q�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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Pricing min system cost:

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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Pricing design

Fairly (incentive compatibly) allocate system cost to EVs

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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Pricing design

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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• Driver & time dependent prices

Fairly (incentive compatibly) allocate system cost to EVs

This achieves pricing goals: recovers
• Energy cost
• Congestion rents
• Demand charge EV 𝑖 is responsible for

Driver pays for each session i

Π'∗ ∶= $
)

𝜋'∗ 𝑡 𝑟'∗(𝑡)



Pricing design

Theorem

1. Demand charge:  𝑃 = ∑$ 𝛿$∗

2. Time-invariant session price 𝛼!∗:

3. Cost recovery:  

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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Design principle:

EVs that cause peak will pay 

• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
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X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):
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i :=
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i (t) r

⇤
i (t) =
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↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
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⇤
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= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus
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⇧⇤
i � Cmin =
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⇤
lt +

X

t,i

r̄i(t)�
⇤
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is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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Π)∗ = 𝛼)∗ 𝑒)

Congestion rents

EVs pay min cost



Pricing design

Theorem

1. Demand charge:  𝑃 = ∑$ 𝛿$∗

2. Time-invariant session price 𝛼!∗:

3. Cost recovery:  

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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Design principle:

EVs that cause peak will pay 

• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =
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↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
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= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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Π)∗ = 𝛼)∗ 𝑒)

Congestion rents

EVs pay min cost



Pricing design

Theorem

1. Demand charge:  𝑃 = ∑$ 𝛿$∗

2. Time-invariant session price 𝛼!∗:

3. Cost recovery:  

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

Design principle:

EVs that cause peak will pay 

• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).
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⇧⇤
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X

i

⇧⇤
i � Cmin
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maxt

P
i r

⇤
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P
t �

⇤
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i (t) = ↵⇤

i if r⇤i (t) > 0
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⇧⇤
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X

t

⇡⇤
i (t) r

⇤
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X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei
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X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.
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energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤
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⇡⇤
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only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
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time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
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clt�
⇤
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X
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r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
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Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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At end of month
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Motivation
Most papers implicitly assume single-phase 

n Balanced 3-phase systems have single-phase 
equivalents

Single-phase models applicable for most purposes
n Transmission system applications
n For illustrating basic ideas and analysis of most 

algorithms (unbalanced 3-phase models structurally 
similar to 1-phase models) 

Unbalanced 3-phase modeling needed
n When control & optimization are explicitly on single-

phase devices making up a 3–phase devices
n For implementation in real systems when phases are 

not balanced



Motivation

• Many models assume terminal currents 𝐼#$% , 𝐼#$& , 𝐼#$' are controllable 
(optimization vars)

• Extension to 3-phase setting is straightforward:
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these matrices represent electromagnetic coupling between phases. This generalizes (8.30b)(8.30c) from
a single-phase model to a three-phase model.

Example 8.4 (External vs internal variables). Figure 8.12 shows a three-phase voltage source connected
to a three-phase impedance load through the line in Figure 8.11. As the figure highlights, the voltages

Figure 8.12: A voltage source connected to an impedance load through the line in Figure 8.11.

(Vj,Vk) and currents (I jk, Ik j) in (8.33a) are terminal voltages and currents regardless of whether the three-
phase devices connected to terminals j and k are in Y or D configuration. The relation between the terminal
variables and internal variables are derived in Chapters 8.3.2 and 8.3.3.

The terminal variable
�
Vj, I j,s j

�
at each bus j satisfies both the external device model and the line

model (8.33):

0 = f ext
j

�
Vj, I j

�
, s j = diag

⇣
VjIHj

⌘

I j = I jk
�
Vj,Vk

�
, s j = diag

�
S jk

�
Vj,Vk

��

In particular the nodal balance equation (8.33) relate
�
Vj, I j,s j

�
to the terminal voltage Vk at bus k.

Remark 8.10 (Three-wire model). We will mostly use three-wire line models (8.33) for simplicity, but
all analysis extends to four-wire models (including a neutral line) or five-wire models (including a neutral
line and the ground return) almost without change with proper definitions that include neutral and ground
variables; see Example 9.5 in Chapter 9.2 and Exercise 9.3.

In most practical situations the series impedance matrix zs
jk is symmetric, i.e.,

⇣
zs

jk

⌘ff 0

=
⇣

zs
jk

⌘f 0f
,

f ,f 0 = a,b,c, meaning that the coupling between phases f and f 0 does not depend on direction. It is also
common in practice that the shunt admittance matrices ym

jk and ym
k j are symmetric. Formally, we assume

throughout this chapter:

C8.2: zs
jk is symmetric and invertible. Moreover zs

jk = zs
k j.

C8.3: ym
jk and ym

k j are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. Assumption C8.2 implies that ys
jk is

symmetric and ys
jk = ys

k j (Exercise 8.20).

𝑉#
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%

𝑉#
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&
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'
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% , 𝐼$#

%
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&
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Motivation

1-phase: 𝐼#$ , 𝑉#% ∈ ℂ . 𝑦#$
(/* ∈ ℂ

3-phase: 𝐼#$ , 𝑉#% ∈ ℂ+. 𝑦#$
(/* ∈ ℂ+×+
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these matrices represent electromagnetic coupling between phases. This generalizes (8.30b)(8.30c) from
a single-phase model to a three-phase model.

Example 8.4 (External vs internal variables). Figure 8.12 shows a three-phase voltage source connected
to a three-phase impedance load through the line in Figure 8.11. As the figure highlights, the voltages

Figure 8.12: A voltage source connected to an impedance load through the line in Figure 8.11.

(Vj,Vk) and currents (I jk, Ik j) in (8.33a) are terminal voltages and currents regardless of whether the three-
phase devices connected to terminals j and k are in Y or D configuration. The relation between the terminal
variables and internal variables are derived in Chapters 8.3.2 and 8.3.3.

The terminal variable
�
Vj, I j,s j

�
at each bus j satisfies both the external device model and the line

model (8.33):

0 = f ext
j

�
Vj, I j

�
, s j = diag

⇣
VjIHj

⌘

I j = I jk
�
Vj,Vk

�
, s j = diag

�
S jk

�
Vj,Vk

��

In particular the nodal balance equation (8.33) relate
�
Vj, I j,s j

�
to the terminal voltage Vk at bus k.

Remark 8.10 (Three-wire model). We will mostly use three-wire line models (8.33) for simplicity, but
all analysis extends to four-wire models (including a neutral line) or five-wire models (including a neutral
line and the ground return) almost without change with proper definitions that include neutral and ground
variables; see Example 9.5 in Chapter 9.2 and Exercise 9.3.

In most practical situations the series impedance matrix zs
jk is symmetric, i.e.,

⇣
zs

jk

⌘ff 0

=
⇣

zs
jk

⌘f 0f
,

f ,f 0 = a,b,c, meaning that the coupling between phases f and f 0 does not depend on direction. It is also
common in practice that the shunt admittance matrices ym

jk and ym
k j are symmetric. Formally, we assume

throughout this chapter:

C8.2: zs
jk is symmetric and invertible. Moreover zs

jk = zs
k j.

C8.3: ym
jk and ym

k j are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. Assumption C8.2 implies that ys
jk is

symmetric and ys
jk = ys

k j (Exercise 8.20).
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3-wire line model
With shunt admittances
Each line is characterized by 


• Series admittance 


• Shunt admittances 


Terminal voltages  and terminal currents  satisfy


ys
jk := (zs

jk)
−1

(ym
jk , ym

kj)

(Vj, Vk) (Ijk, Ikj)
Ijk = ys

jk (Vj − Vk) + ym
jkVj

Ikj = ys
jk (Vk − Vj) + ym

kjVk

Steven Low     Caltech    3-phase line
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This has exactly the same form as (8.28a), except that the variables and admittances are vectors and
matrices respectively. It generalizes (8.28a) from a single-phase model to a three-phase model. We will
hence characterize a line ( j,k) by its series and shunt admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. The three-wire

line model (8.31a) is illustrated in Figure 8.6.

Figure 8.6: A three-wire line characterized by 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

(SL: Add example/exercise from [64, Section 1.A.2] where the shunt admittance ym
jk takes a particular

form that models 3 capacitors in D configuration with each terminal grounded through another capacitor,
so ym

jk itself is an admittance matrix.)

Example 8.4 (External vs internal variables). Figure 8.7 shows a three-phase voltage source connected to
a three-phase impedance load through the line in Figure 8.6. As the figure highlights, the voltages (Vj,Vk)

Figure 8.7: A voltage source connected to an impedance load through the line in Figure 8.6.

and currents (I jk, Ik j) in (8.31a) are terminal voltages and currents regardless of whether the three-phase
devices connected to terminals j and k are in Y or D configuration. The relationship between the terminal
variables and internal variables are derived in Chapters 8.3.1 and 8.3.2.

To describe the relationship between the sending-end line power and the voltages
�
Vj,Vk

�
, define the

matrices S jk,Sk j 2 C
3⇥3 by

S jk := Vj
�
I jk

�H
= Vj

�
Vj �Vk

�H⇣
ys

jk

⌘H

+ VjVH

j

⇣
ym

jk

⌘H

(8.31b)

Sk j := Vk
�
Ik j

�H
= Vk

�
Vk �Vj

�H⇣
ys

jk

⌘H

+ VkVH

k

⇣
ym

k j

⌘H

(8.31c)
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these matrices represent electromagnetic coupling between phases. This generalizes (8.30b)(8.30c) from
a single-phase model to a three-phase model.

Example 8.4 (External vs internal variables). Figure 8.12 shows a three-phase voltage source connected
to a three-phase impedance load through the line in Figure 8.11. As the figure highlights, the voltages

Figure 8.12: A voltage source connected to an impedance load through the line in Figure 8.11.

(Vj,Vk) and currents (I jk, Ik j) in (8.33a) are terminal voltages and currents regardless of whether the three-
phase devices connected to terminals j and k are in Y or D configuration. The relation between the terminal
variables and internal variables are derived in Chapters 8.3.2 and 8.3.3.

The terminal variable
�
Vj, I j,s j

�
at each bus j satisfies both the external device model and the line

model (8.33):

0 = f ext
j

�
Vj, I j

�
, s j = diag

⇣
VjIHj

⌘

I j = I jk
�
Vj,Vk

�
, s j = diag

�
S jk

�
Vj,Vk

��

In particular the nodal balance equation (8.33) relate
�
Vj, I j,s j

�
to the terminal voltage Vk at bus k.

Remark 8.10 (Three-wire model). We will mostly use three-wire line models (8.33) for simplicity, but
all analysis extends to four-wire models (including a neutral line) or five-wire models (including a neutral
line and the ground return) almost without change with proper definitions that include neutral and ground
variables; see Example 9.5 in Chapter 9.2 and Exercise 9.3.

In most practical situations the series impedance matrix zs
jk is symmetric, i.e.,

⇣
zs

jk

⌘ff 0

=
⇣

zs
jk

⌘f 0f
,

f ,f 0 = a,b,c, meaning that the coupling between phases f and f 0 does not depend on direction. It is also
common in practice that the shunt admittance matrices ym

jk and ym
k j are symmetric. Formally, we assume

throughout this chapter:

C8.2: zs
jk is symmetric and invertible. Moreover zs

jk = zs
k j.

C8.3: ym
jk and ym

k j are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. Assumption C8.2 implies that ys
jk is

symmetric and ys
jk = ys

k j (Exercise 8.20).
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(a) Voltage source












































































































(b) Current source












































































































(c) Power source












































































































(d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

• Terminal currents 𝐼#$ are externally observable, but often not directly 
controllable 

• If only internal currents 𝐽#
%& , 𝐽#

&' , 𝐽#
'% of current source are directly 

controllable, then need a 3-phase device model to convert between 
internal & terminal vars



Motivation

Similarly for power sources or voltage sources

Draft: EE 135 Notes January 4, 2023 323

these matrices represent electromagnetic coupling between phases. This generalizes (8.30b)(8.30c) from
a single-phase model to a three-phase model.

Example 8.4 (External vs internal variables). Figure 8.12 shows a three-phase voltage source connected
to a three-phase impedance load through the line in Figure 8.11. As the figure highlights, the voltages

Figure 8.12: A voltage source connected to an impedance load through the line in Figure 8.11.

(Vj,Vk) and currents (I jk, Ik j) in (8.33a) are terminal voltages and currents regardless of whether the three-
phase devices connected to terminals j and k are in Y or D configuration. The relation between the terminal
variables and internal variables are derived in Chapters 8.3.2 and 8.3.3.

The terminal variable
�
Vj, I j,s j

�
at each bus j satisfies both the external device model and the line

model (8.33):

0 = f ext
j

�
Vj, I j

�
, s j = diag

⇣
VjIHj

⌘

I j = I jk
�
Vj,Vk

�
, s j = diag

�
S jk

�
Vj,Vk

��

In particular the nodal balance equation (8.33) relate
�
Vj, I j,s j

�
to the terminal voltage Vk at bus k.

Remark 8.10 (Three-wire model). We will mostly use three-wire line models (8.33) for simplicity, but
all analysis extends to four-wire models (including a neutral line) or five-wire models (including a neutral
line and the ground return) almost without change with proper definitions that include neutral and ground
variables; see Example 9.5 in Chapter 9.2 and Exercise 9.3.

In most practical situations the series impedance matrix zs
jk is symmetric, i.e.,

⇣
zs

jk

⌘ff 0

=
⇣

zs
jk

⌘f 0f
,

f ,f 0 = a,b,c, meaning that the coupling between phases f and f 0 does not depend on direction. It is also
common in practice that the shunt admittance matrices ym

jk and ym
k j are symmetric. Formally, we assume

throughout this chapter:

C8.2: zs
jk is symmetric and invertible. Moreover zs

jk = zs
k j.

C8.3: ym
jk and ym

k j are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. Assumption C8.2 implies that ys
jk is

symmetric and ys
jk = ys

k j (Exercise 8.20).
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Current source. Figure 8.7 shows a single-phase current source specified by an internal current J and a
shunt admittance y and the three-phase current sources in Y and D configurations studied in this section.
Their external models are, from (8.15b) and (8.23a):

single-phase: I = �(J + yV )

Y -configuration: I = �A
�
JY + yYV

�
, A := I� zn

1+ zn
⇣

1TyY 1
⌘yY 11T

D-configuration: I = �
⇣

GTJD + Y DV
⌘

, Y D := GTyD G












































































































(a) Single-phase












































































































(b) Y configuration












































































































(c) D configuration

Figure 8.8: Comparison of single-phase and three-phase power sources.

Power source. Figure 8.8 shows a single-phase power source specified by an internal power s and the
three-phase power sources in Y and D configurations studied in this section. Their external models are,
from (8.17c) and (8.25d):

single-phase: s = �s

Y -configuration: s = �
⇣

sY + zn
⇣

IIT
⌘

1
⌘

D-configuration: s = �diag
⇣

V IDHG
⌘

, sD = diag
⇣

GV IDH
⌘

Impedance. Figure 8.9 shows a single-phase impedance specified by z and the three-phase power sources
in Y and D configurations studied in this section. Their external models are, from (8.19b) and (8.27a):

single-phase: V = �zI

Y -configuration: V = �ZY I, ZY := zY + zn 11T

D-configuration: I = �Y DV, Y D := GTyDG

8.3.6 Summary

The external models of three-phase devices are summarized in Table 8.2 and will be used to compose
network models in Chapters 9 and 10.
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Fig. 5. Aggregate power draw and line-currents at the primary and secondary
side of the transformer when running single-phase and three-phase LLF algo-
rithms on the Caltech ACN with a 70 kW transformer capacity. Shading in
the lower plots denote each phase while the black dotted line denotes the
power/current limit. The experiment is based on data from the Caltech ACN
on September 5, 2018 and uses a 5 minute timestep.

ACN from September 2018. To demonstrate the effect of
infrastructure models, we conduct this experiment with single-
phase and three-phase models, as shown in Fig. 6. Here we
can see that in the single-phase case, EDF, LLF, and MPC
(with objective (6a)) all perform near optimally,3 exceeding
the performance of Round Robin and FCFS by up to 8.6%.
However, the subplot on the right tells a different story. Here
we see that the MPC algorithm can match the offline optimal
performance as before, while EDF and LLF both underper-
form. In fact, in the highly constrained regime, Round Robin
outperforms EDF and LLF despite having less information
about the workload. We attribute these results to the impor-
tance of phase-balancing in three-phase systems, which has
been historically under-appreciated in the managed charging
literature.

In addition to comparing algorithms, the curves in Fig. 6
can also inform charging systems’ design when accounting
for the online algorithm used. For example, we can see that
if a host wants to deliver >99% of charging demand using
MPC, a 70 kW transformer would be sufficient, assuming an
unbalanced three-phase system. Alternatively, if an existing
transformer can only support 40 kW of additional demand,
a host could expect to meet approximately 85% of demands
without an upgrade.

C. Time Series Inspection

ACN-Sim also allows us to examine the charging profile of
individual EVs, as shown in Fig. 7. Here we can see a quali-
tative difference between the algorithms. For example, FCFS
behaves similarly to Uncontrolled charging but is delayed as
the EV must wait its turn in the queue. For EDF and LLF,
charging can be interrupted when EVs with earlier deadlines
arrive or as an EV’s laxity evolves over time. Oscillations
in the LLF plot result from an increase in laxity as the EV
charges, which can decrease its standing in the queue, causing

3Here optimally is defined as the maximum amount of energy which could
be delivered subject to constraints. It is found by solving (5) with perfect
foresight for all EVs in the simulation. We use U(r) = ∑

i∈V̂all,t∈T ri(t).

Fig. 6. Comparison of percentage of energy delivered as a function of trans-
former capacity for single-phase (left) and three-phase (right) systems. Stars
represent the offline optimal, which is an upper bound based on perfect future
information. The simulation runs from Sept. 1 through Oct. 1, 2018, with a
timestep of 5 minutes. To generate events, we use ACN-Sim’s integration with
ACN-Data to get real charging sessions from the Caltech ACN, assuming the
ideal battery model. We also use the included Caltech ACN charging network
model with ideal EVSEs and use its optional transformer_cap argument
to limit the infrastructure capacity. In the left plot, MPC, EDF, and LLF are
nearly coincident, as are Round Robin and FCFS. Similarly, in the right plot,
EDF and LLF overlap in most cases.

Fig. 7. Comparison of charging profiles for one EV on September 13, 2018
with a 70 kW transformer capacity.

it to stop charging temporarily. These oscillations are gen-
erally bad for user experience, preventing LLF from being
used widely for smart charging. The smoothed LLF algorithm
proposed in [37] adapts the LFF algorithm to prevent these
oscillations. Round Robin, MPC, and the offline optimal are
quite different. Each EV charges steadily but at a rate below
its maximum as congestion in the system necessitates shar-
ing charging capacity. Here both MPC and the offline optimal
use objective (6a). With this tariff schedule, on-peak rates run
from 12 - 6 pm. Offline Optimal finishes charging this user
before this peak period. Meanwhile, MPC charges briefly in
during the peak hours.

D. Grid Integration

The load profiles generated by ACN-Sim can also be used
to evaluate the impact that large-scale EV charging has on

[Lee et al (2021), ACN-Sim, TSG]

Left panel: Actual 3-phase currents violate capacity constraints if “single-phase
constraints” are used (ACN-Sim based on Caltech ACN on Sept 5, 2018 data)

“single-phase constraints” : ∑! 𝑟! 𝑡 ≤ 𝑅 (no phase line constraints for lack of phase info)

SOC constraints

SOC constraints
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Figure 8.1: A simple model of a three-phase system consisting of a source connected through a line to a
load.
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(b) D configuration

Figure 8.2: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal variables of a generic single-terminal device are shown in Figure 8.2 and defined as
follows:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3, (V n, In,sn) 2 C
3:

line-to-neutral voltages, currents, and power across the single-phase devices in Y configuration. By
definition san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with
respect to a common reference point) is denoted by V n and is generally nonzero. A Y -configured
device may or may not have a neutral line which may or may not be grounded and the grounding
impedance zn may or may not be zero. When present, the current on the neutral line is denoted by In

in the direction coming out of the device. The Kirchhoff current law dictates that In = Âf Ifn. The

internal power across the neutral impedance is sn :=
⇣

V n �V n0
⌘

In where In denotes the complex

conjugate of In. The term V nIY , in contrast, is the vector power delivered across the neutral and the
common reference point (e.g., the ground).
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Figure 8.1: A simple model of a three-phase system consisting of a source connected through a line to a
load.
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Figure 8.2: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal variables of a generic single-terminal device are shown in Figure 8.2 and defined as
follows:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3, (V n, In,sn) 2 C
3:

line-to-neutral voltages, currents, and power across the single-phase devices in Y configuration. By
definition san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with
respect to a common reference point) is denoted by V n and is generally nonzero. A Y -configured
device may or may not have a neutral line which may or may not be grounded and the grounding
impedance zn may or may not be zero. When present, the current on the neutral line is denoted by In

in the direction coming out of the device. The Kirchhoff current law dictates that In = Âf Ifn. The

internal power across the neutral impedance is sn :=
⇣

V n �V n0
⌘

In where In denotes the complex

conjugate of In. The term V nIY , in contrast, is the vector power delivered across the neutral and the
common reference point (e.g., the ground).
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Key question

How to derive external models of 3-phase devices


1. Voltage/current/power sources, impedances


2. … in  configurations


3. … with or without neutral lines, grounded or ungrounded, zero or nonzero 
grounding impedances

Y/Δ

Steven Low    Caltech    Key question 

Propose a simple and unified method to derive external models

 (1-phase device: internal models)

(conversion rules: int  ext)→



Internal variables
 configurationY

Internal voltage, current, power across single-phase devices:


 ,  ,  
VY :=
Van

Vbn

Vcn
IY :=

Ian

Ibn

Icn
sY :=

san

sbn

scn
:=

VanIan

VbnIbn

VcnIcn
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Figure 8.2: Overall network model of the system in Figure 8.1.

This section derives those relationships that hold for all single-terminal devices. It also overviews different
component models and how they can be composed into an overall network model. The remaining sections
of this chapter will derive the internal and external models of these devices.

8.2.1 Single-terminal device: internal behavior

(a) Y configuration (b) D configuration

Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.

neutral voltage (wrt common reference pt) 

neutral current (away from neutral) 


Device may or may not be grounded, and neutral impedance  may or may not be zero

Vn ∈ ℂ
In ∈ ℂ

zn



Internal variables
 configurationΔ

Internal voltage, current, power across single-phase devices:


,  ,  VΔ :=
Vab

Vbc

Vca
IΔ :=

Iab

Ibc

Ica
sΔ :=

sab

sbc

sca
:=

VabIab

VbcIbc

VcaIca
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Figure 8.2: Overall network model of the system in Figure 8.1.

This section derives those relationships that hold for all single-terminal devices. It also overviews different
component models and how they can be composed into an overall network model. The remaining sections
of this chapter will derive the internal and external models of these devices.

8.2.1 Single-terminal device: internal behavior

(a) Y configuration (b) D configuration

Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.



Terminal variables
Terminal voltage, current, power (for both  and ) to reference:


 ,  ,  


•  is with respect to an arbitrary common reference point, e.g. 
the ground


•  and  are in the direction out of the device

Y Δ

V :=
Va

Vb

Vc
I :=

Ia

Ib

Ic
s :=

sa

sb

sc
:=

VaIa

VbIb

VcIc

V

I s
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Figure 8.2: Overall network model of the system in Figure 8.1.

This section derives those relationships that hold for all single-terminal devices. It also overviews different
component models and how they can be composed into an overall network model. The remaining sections
of this chapter will derive the internal and external models of these devices.

8.2.1 Single-terminal device: internal behavior

(a) Y configuration (b) D configuration

Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.
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component models and how they can be composed into an overall network model. The remaining sections
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Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.



Internal vs external model

1. External model   =   Internal model + Conversion rule

• External model: relation between 

• Devices interact over network only through their terminal vars


2. Internal model : relation between 

• Independent of  or  configuration

• Depends only on behavior of single-phase devices

• Voltage/current/power source, impedance


3. Conversion rule : converts between internal and terminal vars

• Depends only on  or  configuration

• Independent of type of single-phase devices

(V, I, s)

(VY/Δ, IY/Δ, sY/Δ)
Y Δ

Y Δ

Steven Low    Caltech    Device model

270 EE 135 Notes May 14, 2022

Figure 8.2: Overall network model of the system in Figure 8.1.

This section derives those relationships that hold for all single-terminal devices. It also overviews different
component models and how they can be composed into an overall network model. The remaining sections
of this chapter will derive the internal and external models of these devices.

8.2.1 Single-terminal device: internal behavior

(a) Y configuration (b) D configuration

Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.
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Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
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The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.



Conversion rule
 configurationY

Converts between internal and terminal variables



V = VY + Vn1, I = − IY, s = − (sY + VnIY)
1"I = − 1"IY = − In
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This section derives those relationships that hold for all single-terminal devices. It also overviews different
component models and how they can be composed into an overall network model. The remaining sections
of this chapter will derive the internal and external models of these devices.
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Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.

Device may or may not be grounded, and neutral impedance  may or may not be zero


Special case: if , then 

zn

Vn = 0 V = VY, I = − IY



Conversion rule
 configurationΔ

In vector form


VΔ = ΓV, I = − Γ$IΔ
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voltage

terminal

voltage

terminal

current

internal

current

Convert between internal vars and external vars


Vab
Vbc
Vca

= [
1 −1 0
0 1 −1

−1 0 1]
Γ

Va
Vb
Vc

,
Ia
Ib
Ic

= − [
1 0 −1

−1 1 0
0 −1 1]

Γ$

Iab
Ibc
Ica
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can serve as the common reference point. This is not necessarily the case for an unbalanced system, which
we will study in Chapter 8.

Hence, for Y configuration, the terminal voltage and current (V, I) are determined by the internal
voltage and current

�
VY , IY �

according to (when the common reference point for V is the neutral):

V = VY , I = �IY (1.7)

Instead of the terminal voltage V it is also common to describe the behavior of the three-phase device
in terms of its line-to-line or line voltage V line := (Vab,Vbc,Vca). To relate V line to V , define the matrices G
and its transpose GT:

G :=

2

4
1 �1 0
0 1 �1

�1 0 1

3

5 , GT :=

2

4
1 0 �1

�1 1 0
0 �1 1

3

5 (1.8)

We call G and GT conversion matrices. They can be interpreted as the bus-by-line incidence matrices
of the directed graphs shown in Figure 1.7 (properties of general incidence matrices are summarized in

(a) G (b) GT

Figure 1.7: Directed graphs of which G and GT are incidence matrices.

Appendix 25.2). Then
2

4
Vab
Vbc
Vca

3

5 =

2

4
1 �1 0
0 1 �1

�1 0 1

3

5

| {z }
G

2

4
Va
Vb
Vc

3

5

or in vector form:

V line = GV (1.9)

This holds for both Y and D configurations and whether or not the common reference point for V is the
neutral of a Y configured device.

D configuration. For the D configuration in Figure 1.6(b), the internal voltage (vector) is the line-to-line
voltage V D := (Vab,Vbc,Vca) = V line, and the internal current ID := (Iab, Ibc, Ica) is the line-to-line current.
As for the Y configuration, the terminal voltage V := (Va,Vb,Vc) are voltages with respect to an arbitrary

 is incidence matrix of:Γ



Conversion matrices
Fortescue matrix F

Spectral decomposition: 




where 





and 

Γ = FΛF, Γ# = FΛF

Λ :=
0

1 − α
1 − α2

, F := 1
3

1 1 1
1 α α2

1 α2 α

α := e−i2π/3
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of , Γ Γ#

Pseudo-inverses:    Γ† = 1
3 Γ#, Γ#† = 1

3 Γ



Conversion rule
 configurationΔ

1. Converts between internal and terminal voltages & currents





2. Given : terminal voltage  


•  : zero-sequence terminal voltage (fixed by reference voltage)


3. Given : internal current  


•  : zero-sequence internal current (does not affect terminal current)


4. Relation between  and  through  :


VΔ = ΓV, I = − Γ$IΔ

VΔ V = 1
3 Γ$VΔ + γ 1, γ ∈ ℂ

γ := 1
3 1TV

I IΔ = − 1
3 ΓI + β 1, β ∈ ℂ

β := 1
3 1TIΔ

s sΔ (V, IΔ)
s = − diag (VIΔ'Γ), sΔ = diag (ΓVIΔ')
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Figure 8.2: Overall network model of the system in Figure 8.1.

This section derives those relationships that hold for all single-terminal devices. It also overviews different
component models and how they can be composed into an overall network model. The remaining sections
of this chapter will derive the internal and external models of these devices.

8.2.1 Single-terminal device: internal behavior

(a) Y configuration (b) D configuration

Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.

(no direct relation between  and )s sΔ



3-phase device models

1. External model   =   Internal model + Conversion rule

• External model: relation between 


• Internal model: relation between 


2. Both internal and external models depend on device type

• Voltage source 

• Current source

• Power source

• Impedance


3. … in  and  configurations

(V, I, s)
(VY/Δ, IY/Δ, sY/Δ)

Y Δ
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component models and how they can be composed into an overall network model. The remaining sections
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Figure 8.3: Internal and external variables associated with a single-terminal device in Y and D configura-
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The internal behavior of a single-terminal device shown in Figure 8.3 is described in terms of its
internal variables:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3 : line-to-neutral
voltages, currents, and power across the single-phase devices in Y configuration. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with respect to a
common reference point) is denoted by V n and is generally nonzero. A Y -configured device may or
may not have a neutral line which may or may not be grounded (Figure 8.3 shows the case where
the device is grounded through an impedance zn). When present, the current on the neutral line is
denoted by In in the direction away from the neutral.
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• VY :=
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Voltage source :  configuration(EΔ, zΔ) Δ
External model

1. Internal model


 


2. Conversion rule for  configuration





3. Two (asymmetric) relations between terminal vars  


• Given , 1st relation uniquely determines   (hence  as well)


• Given , 2nd relation determines  up to zero-sequence voltage  

VΔ = EΔ + zΔ IΔ

Δ
VΔ = ΓV, I = − Γ$IΔ

(V, I)
V I (VΔ, IΔ)
I V γ

Steven Low    Caltech    Device model

288 EE 135 Notes May 18, 2022

8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.

independent of  configY/Δ



Voltage source :  configuration(EΔ, zΔ) Δ
External model

1. Internal model


 


2. Conversion rule for  configuration





3. Two (asymmetric) relations between terminal vars  


• Given , 1st relation uniquely determines   (hence  as well)


• Given , 2nd relation determines  up to zero-sequence voltage  

VΔ = EΔ + zΔ IΔ

Δ
VΔ = ΓV, I = − Γ$IΔ

(V, I)
V I (VΔ, IΔ)
I V γ
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Asymmetry is because  contains more info ( ) than  does (which contains no info 

about zero-sequence current  )

V γ I
β := 1

3 1$IΔ
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In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
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internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).
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1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.

independent of  configY/Δ



Voltage source :  configuration(EΔ, zΔ) Δ
External model

1. Given 





,    


2. Given  with ,





V,
I = (Γ#yΔ) EΔ − YΔ V

YΔ := Γ#yΔ Γ =
yab + yca −yab −yca

−yab yab + ybc −ybc

−yca −ybc yca + ybc

yΔ := (zΔ)−1

I 1#I = 0
V = Γ̂EΔ − ZΔI + γ1, 1#I = 0

Γ̂ := 1
3 Γ# (& − 1

ζ
z̃Δ 1#), ZΔ := 1

9 Γ#zΔ (& − 1
ζ

1 z̃Δ#) Γ
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Voltage source :  configuration(EΔ, zΔ) Δ
External model

Comparison


Single-phase :  


Three-phase : 


    


V = E − zI

V = Γ̂EΔ − ZΔI + γ1, 1%I = 0
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Chapter 4

Other devices

This chapter is now a random collection of devices often encountered in power flow models. Needs major
revision later.

4.1 Generator

A circuit model of a round-rotor generator is shown in Figure 4.1 (upper panel). It models a generator as
a voltage source with a constant open-circuit internal voltage Ea in series with an impedance zs = r + ix

network#Ea

+

−

Ia

Va

+

−

zs

network#Is

Ia

Va

+

−

ys

equiv#generator#model#

z#
z#

Figure 4.1: Per-phase circuit model of a round-rotor generator with an open-circuit internal voltage Ea
and series impedance zs (upper panel). The generator as a voltage source can be equivalently modeled as
a current source Is i n parallel with a shunt admittance ys (lower panel).

consisting of a winding resistance r and a synchronous reactance x. Given a generator (Ea,zs), its terminal
voltage and current (Va, Ia) are related by

Va = Ea � zsIa

156

E

I

V

1-phase device
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8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.

rotated

internal voltage 

voltage drop due to

equivalent impedance



Current source :  configuration(JΔ, yΔ) Δ
External model

1. Internal model


 

2. Conversion rule





3.   External model


    


where (as before):  

IΔ = JΔ + yΔ VΔ

VΔ = ΓV, I = − Γ$IΔ

⟹
I = − (Γ$JΔ + YΔ V)

YΔ := Γ$yΔ Γ =
yab + yca −yab −yca

−yab yab + ybc −ybc

−yca −ybc yca + ybc
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8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.



Current source :  configuration(JΔ, yΔ) Δ
External model

4. Comparison


Single-phase :  


Three-phase :   


     

I = J − yV
I = − Γ$JΔ − YΔ V

YΔ := Γ$yΔ Γ
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Chapter 4

Other devices

This chapter is now a random collection of devices often encountered in power flow models. Needs major
revision later.

4.1 Generator

A circuit model of a round-rotor generator is shown in Figure 4.1 (upper panel). It models a generator as
a voltage source with a constant open-circuit internal voltage Ea in series with an impedance zs = r + ix

network#Ea

+

−
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+

−
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network#Is
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+

−

ys

equiv#generator#model#

z#
z#

Figure 4.1: Per-phase circuit model of a round-rotor generator with an open-circuit internal voltage Ea
and series impedance zs (upper panel). The generator as a voltage source can be equivalently modeled as
a current source Is i n parallel with a shunt admittance ys (lower panel).

consisting of a winding resistance r and a synchronous reactance x. Given a generator (Ea,zs), its terminal
voltage and current (Va, Ia) are related by

Va = Ea � zsIa
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Note: directions of  are oppositeJ
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8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.



Voltage & current sources: comparison

1. Voltage source specifies  which does not uniquely determine 
terminal voltage  


• 


• due to arbitrary zero-sequence voltage 


2. Current source specifies  which uniquely determines terminal 
current 


• 


•  contains its zero-sequence current 

EΔ

V
V = Γ̂EΔ − ZΔI + γ1, 1%I = 0

γ := 1
3 1%V

JΔ

I
I = − (Γ%JΔ + YΔ V)
JΔ β := 1

3 1%JΔ
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8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.
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In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.
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Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.



Impedance :  configurationzΔ Δ
External model

1. Internal model


 

2. Conversion rule





3.   External model


Given ,  


Given ,   


                

VΔ = zΔ IΔ

VΔ = ΓV, I = − Γ$IΔ

⟹
V I = − YΔV := − (Γ$yΔΓ) V

I V = − ZΔI + γ1, 1$I = 0

ZΔ := 1
9 Γ$zΔ (& − 1

ζ
1 z̃Δ$) Γ

Steven Low    Caltech    Device model

As for voltage source, the asymmetry is 
because  contains more info ( ) than  doesV γ I

288 EE 135 Notes May 19, 2022

8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.



Impedance :  configurationzΔ Δ
External model

4. Comparison


Single-phase :  


Three-phase : 

    


V = − zI ∈ ℂ
V = − ZΔI + γ1, 1%I = 0
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8.3.2 Single-terminal devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).

Internal specification. The three-phase devices we study are shown in Figure 8.5.

(a) Voltage source (b) Current source

(c) Power source (d) Impedance

Figure 8.5: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.

1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.

voltage drop due to

equivalent impedance



Power source :  configurationσΔ Δ
External model

1. Internal model


 

2. Conversion rule





3.   External model through 





sΔ = σΔ

VΔ = ΓV, I = − Γ$IΔ

⟹ (V, IΔ)
s = − diag (VIΔ&Γ), σΔ = diag (ΓVIΔ&)
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to the internal model of each device to derive its external models (8.8).
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1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.



Power source :  configurationσΔ Δ
External model

4. Comparison


Single-phase :  


Three-phase : 


    


    

s = σ
s = − diag (VIΔ#Γ), σΔ = diag (ΓVIΔ#)
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In this subsection we first present parameters of the same single-phase devices studied in Chapter 8.3.1,
but arranged in D rather than Y configuration. For each device we then specify its internal behavior. These
internal models generalize (8.4) for ideal devices. Finally we apply the general conversion rule (8.6) (8.7)
to the internal model of each device to derive its external models (8.8).
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1. Voltage source
�
ED,zD�

. A three-wire voltage source in D configuration as shown in Figure 8.5(a)
is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.



Overview
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line/transformer 

models

nodal

current/power


balance
network models

single-phase or 3-phase

key difference 
3-phase device models

and transformer models 

are far subtler because

of  configurationsY/Δ
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Figure 8.1: A simple model of a three-phase system consisting of a source connected through a line to a
load.

8.1.1 Internal and terminal variables











































































































(a) Y configuration












































































































(b) D configuration

Figure 8.2: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal variables of a generic single-terminal device are shown in Figure 8.2 and defined as
follows:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3, (V n, In,sn) 2 C
3:

line-to-neutral voltages, currents, and power across the single-phase devices in Y configuration. By
definition san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with
respect to a common reference point) is denoted by V n and is generally nonzero. A Y -configured
device may or may not have a neutral line which may or may not be grounded and the grounding
impedance zn may or may not be zero. When present, the current on the neutral line is denoted by In

in the direction coming out of the device. The Kirchhoff current law dictates that In = Âf Ifn. The

internal power across the neutral impedance is sn :=
⇣

V n �V n0
⌘

In where In denotes the complex

conjugate of In. The term V nIY , in contrast, is the vector power delivered across the neutral and the
common reference point (e.g., the ground).

Part 2



3-wire line model
With shunt admittances
Each line is characterized by 


• Series admittance 


• Shunt admittances 


Terminal voltages  and terminal currents  satisfy


ys
jk := (zs

jk)
−1

(ym
jk , ym

kj)

(Vj, Vk) (Ijk, Ikj)
Ijk = ys

jk (Vj − Vk) + ym
jkVj

Ikj = ys
jk (Vk − Vj) + ym

kjVk
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This has exactly the same form as (8.28a), except that the variables and admittances are vectors and
matrices respectively. It generalizes (8.28a) from a single-phase model to a three-phase model. We will
hence characterize a line ( j,k) by its series and shunt admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. The three-wire

line model (8.31a) is illustrated in Figure 8.6.

Figure 8.6: A three-wire line characterized by 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

(SL: Add example/exercise from [64, Section 1.A.2] where the shunt admittance ym
jk takes a particular

form that models 3 capacitors in D configuration with each terminal grounded through another capacitor,
so ym

jk itself is an admittance matrix.)

Example 8.4 (External vs internal variables). Figure 8.7 shows a three-phase voltage source connected to
a three-phase impedance load through the line in Figure 8.6. As the figure highlights, the voltages (Vj,Vk)

Figure 8.7: A voltage source connected to an impedance load through the line in Figure 8.6.

and currents (I jk, Ik j) in (8.31a) are terminal voltages and currents regardless of whether the three-phase
devices connected to terminals j and k are in Y or D configuration. The relationship between the terminal
variables and internal variables are derived in Chapters 8.3.1 and 8.3.2.

To describe the relationship between the sending-end line power and the voltages
�
Vj,Vk

�
, define the

matrices S jk,Sk j 2 C
3⇥3 by

S jk := Vj
�
I jk

�H
= Vj

�
Vj �Vk

�H⇣
ys

jk

⌘H

+ VjVH

j

⇣
ym

jk

⌘H

(8.31b)

Sk j := Vk
�
Ik j

�H
= Vk

�
Vk �Vj

�H⇣
ys

jk

⌘H

+ VkVH

k

⇣
ym

k j

⌘H

(8.31c)



3-wire line model
With shunt admittances
Each line is characterized by 


• Series admittance 


• Shunt admittances 


Terminal voltages  and terminal power  satisfy


ys
jk := (zs

jk)
−1

(ym
jk , ym

kj)

(Vj, Vk) (Sjk, Skj)
Sjk := Vj (Ijk)

"
= Vj (Vj − Vk)

"
(ys

jk)
"

+ VjV"
j (ym

jk)
"

Skj := Vk (Ikj)
"

= Vk (Vk − Vj)
"

(ys
jk)

"
+ VkV"

k (ym
kj)

"
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Figure 8.7: A voltage source connected to an impedance load through the line in Figure 8.6.

and currents (I jk, Ik j) in (8.31a) are terminal voltages and currents regardless of whether the three-phase
devices connected to terminals j and k are in Y or D configuration. The relationship between the terminal
variables and internal variables are derived in Chapters 8.3.1 and 8.3.2.

To describe the relationship between the sending-end line power and the voltages
�
Vj,Vk

�
, define the

matrices S jk,Sk j 2 C
3⇥3 by

S jk := Vj
�
I jk

�H
= Vj

�
Vj �Vk

�H⇣
ys

jk

⌘H

+ VjVH

j

⇣
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Sk j := Vk
�
Ik j

�H
= Vk

�
Vk �Vj

�H⇣
ys
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⌘H

+ VkVH

k

⇣
ym
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Network equation
Nodal current balance

3-phase sending-end currents:





2. Nodal current balance:


Ijk = ys
jk (Vj − Vk) + ym

jk Vj, Ikj = ys
jk (Vk − Vj) + ym

kj Vk

Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk(Vj − Vk) + ∑

k:j∼k
ym

jk Vj

= ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk
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ym
jj := ∑

k:j∼k
ym

jk

Series and shunt admittances

• 1-phase : scalars

• 3-phase :  (3-wire)  or   (4-wire) matrices3 × 3 4 × 4
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ym
jj := ∑

k:j∼k
ym

jk

Series and shunt admittances

• 1-phase : scalars

• 3-phase :  (3-wire)  or   (4-wire) matrices3 × 3 4 × 4



In terms of    admittance matrix 




where 





3(N + 1) × 3(N + 1) Y
I = Y V

Yjj := ∑
k:j∼k

ys
jk + ym

jj

Yjk := − ys
jk

Steven Low     EE/CS/EST 135    Caltech

ym
jj := ∑

k:j∼k
ym

jk

 matrices3 × 3

 matrices3 × 3

 vector3(N + 1)

 is complex (block-) symmetric [if network contains no 3-phase transformers in  nor  confg]

It is admittance matrix of single-phase equivalent
Y ΔY YΔ

Network equation
Nodal current balance



Nodal power balance


 
sj = ∑
k:j∼k

diag (Vj(Vj − Vk)H(ys
jk)

H
+ VjVH

j (ym
jk)

H)
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generalizes single-phase:


sj = ∑
k:j∼k

( |Vj |
2 − VjVH

k ) (ys
jk)

H
+ |Vj |

2 (ym
jj )

H

sj = diag (VjI#
j )

Network equation
Nodal power balance



Overall model
Device + network

1. Network model relates terminal vars 

• Nodal current balance (linear): 


• Nodal power balance (nonlinear): 


• Either can be used


2. Device model for each 3-phase device 


• Internal model  + conversion rules


• External model  with internal parameters


• Either can be used

• Power source models are nonlinear; other devices are linear

(V, I, s)
I = YV

sj = ∑
k:j∼k

diag (Vj(Vj − Vk)#ys#
jk + VjV#

j ym#
jk )

(VY/Δ
j , IY/Δ

j , sY/Δ
j , γj, βj)

(Vj, Ij, sj, γj, βj)
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General 3-phase analysis
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• NY/D
i : buses with impedances in Y or D configurations.

• NY/D
p : buses with ideal power sources in Y or D configurations.

The internal and external models of these ideal devices are given in Tables 8.3 and 8.4, and reproduced in
Table 9.1. The specification of each type of device, including

�
g j,b j

�
, is discussed in Chapter 9.2.1 and

Buses j Specification External model Vars Internal vars
NY

v VY
j := EY

j , g j Vj = EY
j + g j1 I j IY

j = �I j
ND

v V D
j := ED

j , g j,b j, Vj = G†ED
j + g j1 I j ID

j = �GT†I j +b j1
NY

c IY
j := JY

j ,g j I j = �JY
j Vj VY

j = Vj � g j1
ND

c ID
j := JD

j I j = �GTJD
j Vj V D

j = GVj, g j := 1
31TVj

b j := 1
31TID

j
NY

i zY
j , g j I j = �yY

j
�
Vj � g j1

� �
Vj, I j

�
VY

j = Vj � g j1, IY
j = �I j

ND
i zD

j , b j I j = �Y D
j Vj

�
Vj, I j

�
V D

j = GVj, g j := 1
31TVj

Vj = �ZD
j I j + g j1, 1TI j = 0 ID

j = �GT†I j +b j1
NY

p sY
j , g j sY

j = �diag
⇣�

Vj � g j1
�

IHj
⌘ �

Vj, I j
�
,
⇣

V D
j , ID

j

⌘
,b j

ND
p sD

j , g j sD
j = diag

⇣
GVjIDH

j

⌘ �
Vj, I j

�
,
⇣

V D
j , ID

j

⌘
,b j

Table 9.1: Internal and external models of three-phase sources and impedances from Tables 8.3 and 8.4.
The three-phase analysis problem is: given the specification in blue, compute the remaining unknowns in
black.

Remark 9.1.

The three-phase analysis problem is: given devices specified in Table 9.1 connected by three-phase
lines with given admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine both terminal and internal variables

�
Vj, I j,s j

�
,

⇣
VY/D

j , IY/D
j ,sY/D

j

⌘
, and

�
g j,b j

�
at every bus j. The general solution strategy, at least for problems that do

not involve power sources, is to use the external models in Table 9.1 and network equations to compute
terminal voltages and currents

�
Vj, I j

�
. The internal variables

⇣
VY/D

j , IY/D
j

⌘
as well as

�
g j,b j

�
can then be

determined by the conversion rules, as summarized in the last column of Table 9.1.

We now describe this solution strategy in detail. We first consider the case where each device is either
an ideal voltage source, an ideal current source, or an impedance. We then consider the case that includes
power sources as well.

Without power sources. Given specification (in blue) of voltage sources, current sources, and impedances
in Table 9.1, our objective is to compute the remaining voltages, currents and powers using the external
models in the table as well as the current balance equation I = YV in (9.1) or (9.2). Specifically let
Nv := NY

v [V D
v , Nc := NY

c [V D
c , and Ni := NY

i [V D
i be the set of buses with, respectively, voltage sources,

current sources, and impedances. With a slight abuse of notation define the following (column) vectors of

Calculate: remaining variables

Given: 3-phase devices & their specifications

• Voltage/current/power sources, impedances

• … in  configurationY/Δ

Solution:

• Write down device+network model

• Solve numerically 

Variables at bus :


• External vars : 


• Internal vars : 

j
(Vj, Ij, sj), γj

(VYΔ
j , IY/Δ

j , sY/Δ
j ), βj
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Remark 9.1.

The three-phase analysis problem is: given devices specified in Table 9.1 connected by three-phase
lines with given admittance matrices
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, and
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not involve power sources, is to use the external models in Table 9.1 and network equations to compute
terminal voltages and currents
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�
. The internal variables
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j

⌘
as well as

�
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�
can then be

determined by the conversion rules, as summarized in the last column of Table 9.1.

We now describe this solution strategy in detail. We first consider the case where each device is either
an ideal voltage source, an ideal current source, or an impedance. We then consider the case that includes
power sources as well.

Without power sources. Given specification (in blue) of voltage sources, current sources, and impedances
in Table 9.1, our objective is to compute the remaining voltages, currents and powers using the external
models in the table as well as the current balance equation I = YV in (9.1) or (9.2). Specifically let
Nv := NY

v [V D
v , Nc := NY

c [V D
c , and Ni := NY

i [V D
i be the set of buses with, respectively, voltage sources,

current sources, and impedances. With a slight abuse of notation define the following (column) vectors of

General 3-phase optimization
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Min: cost (controllable variables & state)


Given: 3-phase devices & uncontrollable quantities

• Voltage/current/power sources, impedances

• … in  configurationY/Δ

Solution:

• Write down device+network model

• Write down additional constraints

• Solve numerically 

Variables at bus :


• External vars : 


• Internal vars : 

j
(Vj, Ij, sj), γj

(VYΔ
j , IY/Δ

j , sY/Δ
j ), βj
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