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crises:

• humanitarian

• economic

• refugee

• political

• national security

Why this workshop

electricity & transportation this NSF Workshop



Average temperature

Global average temp has increased by >1C since pre-industrial time

https://ourworldindata.org/co2-and-greenhouse-gas-emissions



Average temperature

https://ourworldindata.org/co2-and-greenhouse-gas-emissions

Local temperature can be much warmer than global average



Atmospheric CO2

http://berkeleyearth.org/dv/10000-years-of-carbon-dioxide/

last 10,000 years

https://ourworldindata.org/co2-and-greenhouse-gas-emissions

previous peak

299 ppm

last 800,000 years
420 ppm



CO2 and temperature

from Antarctic ice cores

[Jess Adkins, Caltech, CS179, 2022]



CO2 emissions

previous peak

299 ppm

420 ppm

https://ourworldindata.org/co2-and-greenhouse-gas-emissions

Fossil fuel & industry emissions

Cumulative CO2

https://ourworldindata.org/grapher/cumulative-co-emissions



GHG pathways

https://ourworldindata.org/co2-and-greenhouse-gas-emissions



Net zero GHG pledges

https://ourworldindata.org/co2-and-greenhouse-gas-emissions

NET ZERO STOCKTAKE 2022: Assessing t he status and t rends of  net  zero t arget  set t ing

zerotracker.net 16

3. Global landscape of net zero targets

Key takeaways 

•  A large majority of national governments have set their own net zero targets. This in turn indicates that these 

countries have at least begun to commit to the Paris Agreement ’s long-term goal, not only in abstract global 

terms but also via national target-setting.

•  The long-term net zero goal has also been shared widely across sub-national governments and companies. 

However, our data suggests that net zero target-setting by sub-national governments and companies has not yet 

spread widely beyond high-income countries in North America, Europe and Asia.

We observe an overall increase in net zero targets in the Net Zero Tracker database since December 2020, 

as reported in the rst Taking Stock report (Black et al ., 2021). The increase is both due to new net zero 

target announcements over the course of last year and the enhanced data collection:

•  128 countries and self-governing territories (hereina er abbreviated to ‘countries’)7, up from 1248

•  235 cities, up from 115

•  115 states and regions, up from 73

•  702 companies from the Forbes 2000, up from 417. 

In total, 1,181 entities (including the EU) of 4,088 entities in the Net Zero Tracker database have a net zero 

target. The database indicates that the net zero targets by governments (including the EU and Taiwan) 

represent at least 83% of global GHG emissions (up from 61% in December 2020)9, 91% of global GDP 

(68%) and 80% of global population (52%) (see Figure 1).10

83%  91%  80%  

Emissions  GDP (PPP) Population

Figure 1: Percentage of greenhouse gas emissions (including land-use change and forestry), GDP (based on purchasing power parity, 

in 2017 constant international dol lar), and population covered by net zero pledges of countries (status of these pledges includes 

proposed, in discussion, in policy document, in law and achieved). All gures based on 2019 data. 

7.  Excluding the European Union and Taiwan. Taiwan’s national net zero target is currently not presented in the database.

8 The 124 countries reported in Taking Stock with net zero targets cannot be directly compared with this report due to di erent methodological approaches. In Taking 

Stock, we included at least 16 countries as having ‘Achieved’ a net zero target—even in the absence of an o cial announcement—if their latest NDC submission listed 

(a) their territory-wide emissions as a net carbon sink, and (b) an intent to maintain this emissions status. In this report we only count countries with declared net zero 

targets, irrespective of whether they claim in their NDC to be a net carbon sink or similar.

9. Note that the coverage of global GHG emissions estimated by organisations such as the Climate Action Tracker might be higher. Other organisations, for instance, 

may use di erent GHG emission data sources and/or treat countries with targets considered ‘proposed / in discussion’ di erently.

10. All states and regions with net zero targets reported in the Net Zero Tracker database are in a country with a national net zero target. A few exceptions include 

regions in Mexico and Poland.

% coverage of net zero GHG pledges (Oxford 2022)

(2019: coverage = 16% GDP)



CO2 and GDP

https://ourworldindata.org/grapher/consumption-co2-per-capita-vs-gdppc

https://ourworldindata.org/grapher/world-gdp-over-the-last-two-millennia

x-axis is not time:

energy inequality



GHG and energy use

https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf

Energy use emitted 82% of total greenhouse gas emissions in US in 2021 (EPA)

16  DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021 

ES.3  Overview of Sector Emissions and Trends 1 

Figure ES-11 and Table ES-3 aggregate emissions and sinks by the sectors defined by the UNFCCC reporting 2 
guidelines and methodological framework in the IPCC Guidelines to promote comparability across countries. Over 3 
the thirty-two-year period of 1990 to 2021, total emissions from the Industrial Processes and Product Use and 4 
Agriculture sectors grew by 41.1 MMT CO2 Eq. (12.2 percent), and 50.8 MMT CO2 Eq. (9.4 percent), respectively. 5 
Emissions from the Energy and Waste sectors decreased by 155.6 MMT CO2 Eq. (2.9 percent) and 66.8 MMT CO2 6 
Eq. (28.3 percent) respectively. Over the same period, net carbon (C) sequestration in the LULUCF sector 7 
decreased by 106.8 MMT CO2 (11.4 percent decrease in total net C sequestration), while emissions from the 8 
LULUCF sector (i.e., CH4 and N2O) increased by 19.9 MMT CO2 Eq. (34.4 percent). 9 

Figure ES-11:  U.S. Greenhouse Gas Emissions and Sinks by IPCC Sector/Category  10 

  11 

Table ES-3:  Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by IPCC 12 
Sector/Category (MMT CO2 Eq.) 13 
           

 IPCC Sector/Category 1990  2005  2017 2018 2019 2020 2021 

Energy 5,368.2   6,351.8   5,418.8  5,589.7  5,458.3  4,893.8  5,212.5  

Industrial Processes and Product Use 335.7   356.1   359.1  362.2  366.8  363.2  376.8  

Agriculture 538.4   567.0   601.2  617.8  603.3  586.0  589.3  

Waste 236.0   192.1   170.9  173.7  176.0  171.5  169.2  

Total Gross Emissionsa (Sources) 6,478.3   7,466.9   6,550.0  6,743.4  6,604.4  6,014.5  6,347.7  

LULUCF Sector Net Totalb (881.0)  (781.1)  (774.2) (765.1) (704.0) (776.2) (754.2) 

Net Emissions (Sources and Sinks)c 5,597.3   6,685.8   5,775.8  5,978.3  5,900.3  5,238.3  5,593.5  

 

a Total emissions without LULUCF. 
b The LULUCF Sector Net Total is the sum of all LULUCF CH4 and N2O emissions to the atmosphere plus LULUCF net carbon 

stock changes in units of MMT CO2 Eq. 
c Net emissions with LULUCF. 

Notes: Total emissions presented without LULUCF. Net emissions are presented with LULUCF. Totals may not sum due to 

independent rounding. Parentheses indicate negative values or sequestration. 



Electricity generation & transportation in US:
◼ Consume 65% of all energies in 2021 (US EPA)

◼ Emit 53% of all greenhouse gases in 2021 (US EPA)

Electricity gen & transportation

2021 consumption: fossil 79.0%; renewables 12.5% (US EPA)

Total consumption: 97.3 Quads (LLNL)

https://flowcharts.llnl.gov/sites/flowcharts/files/2022-09/Energy_2021_United-States.pdf
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#transportation

both numbers are lower than 2019 numbers by only ~2% !



Electricity cost

https://ourworldindata.org/cheap-renewables-growth

LCOE

PV & on-shore wind have lowest LCOE



Li-ion battery cost

Source: https://www.iea.org/gevo2018/

Electric vehicle battery:

• 2010:   $1,000 / kWh

• 2016:   $   275 / kWh

• 2030e: $     73 / kWh (Bloomberg New Energy Finance 2016)



Some challenges

Numerous research needs/opportunities
◼ Many experts in this NSF Workshop !



Some challenges

Integration of grid & mobility
◼ Technologies, economics, deployment

Data, learning, control
◼ Unknown/unreliable models, uncertainty, scalability, multiple 

timescales, reliability

Equitable development 
◼ Per capita CO2(consumption): US(15.5t) vs Mexico(3.4t), AU(13.8t) vs 

Indonesia(2.3t), Switzerland(12.4t) vs Portugal(4.7t) (D. Kammen)

Inverter-based resources
◼ Dynamics, stability, scalability

Economics & policies
◼ NEM: PV+EV charging+storage, aggregation; hosting cap. (L. Tong)

Architecture
◼ Layering, constraints that deconstrain, RYF [John Doyle, Caltech]

Panel 1

Panels 2, 4

Panel 3
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CA commitment
◼ 50% renewables by 2030, 100% by 2045

◼ 1.5M ZEV by 2025, 5M by 2030 (CA has ~15M cars)

Workplace charging

Drivers twice as likely to get EV when workplace charging is available
(EDF Renewables survey Feb 2018)

60%



EV charging: research → impact

Theory and algorithms

1. Broad power systems research (since 2010)

Nonconvex optimization, control & dynamical systems, distributed real-time algorithms

2. Application to EV charging

Optimal decentralized protocol for EV charging (IEEE Trans. Power Systems, 2013)

Theorem: Online LP attains offline optimal (IEEE PES General Meeting, 2017)

Industry Online LP Theoret. max

28% 53% 54%

Incubation to tech transferEnergy mgt research

2010 2016 2017 2019

Scalable business

Research to impact

PF: EV + 

solar + 
storage

2021



Testbed → deployment

3. First pilot: Caltech garage (2016)

By July 2020: delivered 3M+ electric miles, avoided 1,000 tons of CO2e

4. Caltech startup: PowerFlex (2017)

Value proposition: Enable large-scale EV charging by reducing capital & operating costs

Acquired by EDF Renewables to scale business

main 
panel

transformer
& subpanelscharger

debugging

G. Lee (Co-founder)

Multiple Solutions, One Point of Contact

2

PowerFlex is a national provider of renewable energy 

infrastructure with a comprehensive suite of flexible, 

turnkey solutions designed to transform any 

organization into a clean-energy facility.

A subsidiary of

Founded in 1985, EDF Renewables 

North America is one of the largest 

renewable energy developers on the 

continent with 20 GW of wind, solar, 

storage, and electric vehicle charging 

projects developed throughout the 

U.S., Canada, and Mexico.

Sample PowerFlex EV Clients

|  PowerFlex Intro Deck 20219

Municipal Real Estate Universities

Non-profit Research Workplace Medium-duty Fleet

OEM

LA County selected PowerFlex as their 
technology solution provider for EV 
Charging Hardware and Software and 
incentive management. PowerFlex is 
working on over 30 sites with LA County

Single Platform for County to Monitor 

the entire county fleet while billing 

each department individually.

Incentive Management

Sustainability Reporting

PROJECT BENEFITS

250+ 
Level 2 

Deployed

1000+ 
Level 2 

In Construction

50+ 
DCFCs 

In Construction

PowerFlex 

EMS

PowerFlex worked with The Getty to 
deploy EV Charging infrastructure in at 
parking garages for visitors and staff.

Turnkey Solution 

Utilized Facility existing electrical 

infrastructure, no service upgrades 

required

PROJECT BENEFITS

PowerFlex 

EMS

100+
Level 2 ports

40+
Level 2 Ports

3
DCFC

Phase 1 Phase 2 Phase 1

PowerFlex worked with City of Pasadena to 
deploy EV Charging infrastructure at 
downtown garages, city hall, libraries, and 
corporate offices

Turnkey Solution 

Utilized Facility existing electrical 

infrastructure, no service upgrades 

required

PROJECT BENEFITS

PowerFlex 

EMS

150+
Level 2 ports

200+
Level 2 Ports

10+
DCFC

Phase 1 Phase 2 Phase 1

Through a partnership with ABM, 
PowerFlex provided hardware and project 
implementation support to deploy the 
largest EV Charging Platform in the World

ALM Dramatically reduced 

Infrastructure Costs

Integrated EV Driver Billing Services 

PROJECT BENEFITS

PowerFlex 

EMS

1,242
Level 2 ports

15+
DCFCs

9
Parking 

Garages

EV charging: research → impact



Caltech ACN: physical system 



Caltech ACN: cyber system 

Cotrol # : Lead: Caltech PI: Low

3. An experimental platform that will allow safe, secure and reliable real-world test ing of new

online algorithms on ACN along side the product ion algorithm. It captures all the compli-

cat ions of a physical system that are abstracted away in a simulat ion model, and demands

a higher degree of robustness in algorithm design and implementat ion. It lends credibility

to an algorithm and facilitates technology transfer to the marketplace.

2.3 T hree compell ing reasons

database'
cloud'

services'

network'(IP,'cellular)'
mobile'

app'

PowerFlex'
cloud'

©  2017  P owerFle x  S ystems, In c . 

PowerFlex Systems – EV Charging Solutions for Builders  
 

 

 
 

ACN Load Management Controller 
 

 

 

Features 

• Intel Core i5, 2.4GHz processor with 500GB SSD and 

32GB of RAM 

• Fan-less, Solid State Design 

• Cellular or Hardwired Ethernet 

• Supports wired and  wireless cur rent transformers 

• Molded fiberglass reinforced poly ester enclosure 

• NEMA Type 3R, 3RX/IP 24 rated 

• Thermostat controlled heating and cooling 

• UL916 and ETL certified 

 
 

 
The PF-LMC Load Management Controller (LMC) is an intelligent 

gateway running PowerFlex’s Adaptive Load Management firmware. 

The LMC simultaneously controls the output of each PowerFlex EV 

charging station, monitors building loads and communicates with the 

PFS Cloud Server, all in real time. 

In contrast to simple gateways that merely relay data from the chargers 

to the Cloud, the LMC aggregates and processes the data locally to 

minimize expensive network bandwidth, reduce overall system latency 

and ensure active charging sessions are not disrupted if network 

communications are lost. 

Another unique LMC feature is its ability to utilize the spare capacity of 

almost any building’s electrical system by monitoring the major 

electrical loads and any renewable energy sources like solar and 

storage batteries*. When extra power is available it is automatically 

assigned to the drivers that need it the most. 

The PowerFlex LMC comes custom configured to meet the specific 

requirements of your charging system. Contact your PFS sales 

representative and schedule your site evaluation or visit our website at 

www.powerflexsystems.com. 

 

 

 
 

PF'local'
controller'

…'
Caltech'
garage'

proposed''
Research'Portal'

new'smart'grid'research'enabled'

data'acquisi2 on'
system '

experimental'
pla7 orm'

data8driven'
simulator'

Figure 3: Proposed ACN Research Portal and how

it builds on exist ing facility.

First , it will make large datasets of high-

resolution charging data as well as a data-

driven simulator publicly available for the

first time. This will allow researchers to

build detailed stat ist ical models, perform

data analysis of real-world charging behav-

ior, and easily and fairly compare their algo-

rithms with others using simulat ions driven

by detailed real data. It will also provide

a live testbed for experimentat ion with on-

line algorithms. Second, this is a unique op-

portunity that requires the coming together

of three different parties (PI ’s Lab, Power-

Flex Systems, Caltech Facilit ies) to pursue.

Thedesign and development of theproposed

Research Portal involve access, and modifi-

cat ion, to the PowerFlex management sys-

tem and hence require a close collaborat ion

between PowerFlex engineers and the PI ’s

Lab. This is possible only because of our

close working relat ionship with PowerFlex which the PI co-founded. It is also rare for a regular

parking garage to allow experiments on their product ion facility. This is possible only because we

have been working closely with Caltech Facilit ies to design, develop, operate and support ACN

for the last two years. Finally, it leverages the hard work by these three part ies over the last 2+

years, funded by Caltech, DoE, NSF, etc. Finally, the PI has a track record of conceiving, building,

and deploying one-of-a-kind research infrastructures driven by the needs of his and his colleagues’

own research.

3 Team, deliverables, t imeline, budget

The project t eam consists of:

1. Steven Low (PI), Professor, Comput ing & Mathemat ical Sciences Department, Elect rical

Engineering Department , Caltech

Low will manage the overall CRI project and work closely with Caltech Facilit ies and the

startup PowerFlex on the design and development of the proposed infrast ructure. Low’s

team will consist of graduate students as well as experienced software engineers.

2. John Onderdonk, Director, Sustainability Programs, Facilit ies, Caltech

Onderdonk will work with Low’s team to ensure the design, implementat ion and deployment

4

Garage

IP/cellular

servers databasePF cloud

Mobile app

Model predictive 

control: QCQP

Highly customizable QCQP

• objectives: cost, PV, asap, regularization

• constraints: energy, deadlines, capacities

• determine charging rates for all EVs

s.t.

max
𝑟



𝑣

𝛼𝑣𝑢𝑣 𝑟



Caltech ACN: open research tool

• ACN-Data

• ACN-Sim

• ACN-Live (HW-in-the-loop)

Adaptive Charging Network

ACN-Data ACN-Sim

Constraints

ACN-Live

D
a

ta

C
o

n
tro

l 
S

ig
n

a
ls

Simulation
Scenarios

Algorithm 
Validation

Lee, Li, Low. ACN-Data: analysis and applications of an open EV charging Dataset 

ACM e-Energy, June 2019

Lee, Johansson, Low. ACN-Sim: an open-source simulator for data-driven EV charging research

IEEE SmartGridComm, October 2019

open-sourced and extensible



ACN research portal

ev.caltech.edu
Zach Lee
zlee@powerflex.com



Lessons learnt

Smart EV charging

◼ R&D to extract untapped value intrinsic to EV charging

◼ Critical to maintain broad theory research 

◼ Translation of energy R&D is hard

Workplace energy systems

◼ Large untapped value in current system

◼ Bigger & more complicated system, more expensive 
infrastructure, more difficult & diverse technical 
challenges



Caltech energy systems

Caltech microgrid

• ~200,000-people city

• >100 commercial-size 

buildings

• 3 grid interconnections

• 4 substations

• 20 MW peak load

• 2.1 MW onsite solar

• 4 MW NG fuel cells

• 12.5 MW gas co-gen

• Chilled water 

distribution

• Fossil-based steam 

and HW distribution



Opportunities
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Central Plant Study and Concepts
Campus Load Profile
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Figure 1: (a) Caltech elect ricity consumpt ion is met 100% on an annual basis by onsite

generat ion from 2017–2020 [1]. (b) Caltech’s annual cooling and heat ing loads show a large

fract ion of simultaneous demand [2].

MTCO2e against the Climate Act ion Goal of 51,000 MTCO2e. This corresponds to 385

pounds of CO2e per research dollar, down 29% since 2019 [1]. Of this emission, 92% is

due to elect ricity, heat ing and cooling loads on campus (Figure 2 right panel). Campus
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Figure 2: Caltech’s GHG emissions [1]. Left : Climate Act ion Plan: goals and actuals. Right :

2020 emissions profile.

decarbonization therefore largely amounts to decarbonizing its energy system.

To further reduce Caltech’s CO2e emission and fulfill the Climate Act ion Goal will require

the ret irement of the 12.5 MW co-generat ion plant on campus. It is not possible to make up

the short fall from onsite clean renewable generat ions due to the lack of space. The short fall

must be made up by power delivered by PWP grid to campus.

2 Proposed research

Our goal is to develop technologies that help workplaces achieve 24/ 7/ 365 carbon neut rality,

i.e., to at tain carbon neut rality (or net zero emission) on an hourly basis at the minimum total

energy cost . The key to achieving our goal is the holist ic opt imizat ion of Caltech’s energy

system, integrat ing the operat ion of the elect ric, cooling and heat ing systems.

2

Energy is a 92%-opportunity to 

reduce GHG

Simultaneous heating and cooling demands

Caltech Facilities, 2020 Sustainability Report

Christman & Warring 2022

Co-gen generated 78% of 

electricity consumed in 2020
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Central Plant Study and Concepts
Campus Load Profile
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Figure 1: (a) Caltech elect ricity consumpt ion is met 100% on an annual basis by onsite

generat ion from 2017–2020 [1]. (b) Caltech’s annual cooling and heat ing loads show a large

fract ion of simultaneous demand [2].

MTCO2e against the Climate Act ion Goal of 51,000 MTCO2e. This corresponds to 385

pounds of CO2e per research dollar, down 29% since 2019 [1]. Of this emission, 92% is

due to elect ricity, heat ing and cooling loads on campus (Figure 2 right panel). Campus
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Figure 2: Caltech’s GHG emissions [1]. Left : Climate Act ion Plan: goals and actuals. Right :

2020 emissions profile.

decarbonization therefore largely amounts to decarbonizing its energy system.

To further reduce Caltech’s CO2e emission and fulfill the Climate Act ion Goal will require

the ret irement of the 12.5 MW co-generat ion plant on campus. It is not possible to make up

the short fall from onsite clean renewable generat ions due to the lack of space. The short fall

must be made up by power delivered by PWP grid to campus.

2 Proposed research

Our goal is to develop technologies that help workplaces achieve 24/ 7/ 365 carbon neut rality,

i.e., to at tain carbon neutrality (or net zero emission) on an hourly basis at the minimum total

energy cost . The key to achieving our goal is the holist ic opt imizat ion of Caltech’s energy

system, integrat ing the operat ion of the elect ric, cooling and heat ing systems.

2

Further reduction needs to retire campus co-gen 



Basic idea

Integrate and holistically optimize operation of 
electric, heating & cooling systems

◼ They operate independently today

◼ HRCs to provide net heating & cooling demand

Exploit storage (batteries & thermal) and HRCs to 
shape electricity demand

◼ To adapt to random fluctuations in demand, prices & 
CO2 intensity

◼ Greatly reduces capital and operating costs for 24/7 
CO2 neutrality



Campus decarbonization 

Infrastructure (Caltech Admin/Facilities)

◼ Retiring co-gen, electrify hot & chilled water, HRCs, 
thermal storage, batteries, tunnels & pipes

Data (Caltech testbed)

◼ Comprehensive reliable data on electric, cooling & 
heating systems, cost & emission data

Theory, algorithms & prototypes (focus of R&D)

◼ Theory & algorithms for real-time learning, control & 
optimization of DERs

◼ Software prototypes (Digital Twin)

Pilot & deployment 

◼ Work with Caltech Facilities

◼ Work with industry



R&D: theory, algorithms, prototypes

Expected outcomes:
• DER live testbed: PV, building, EV, storage, monitoring system (meters & software)

• Theory & algorithms for learning, control, and optimization of networked DERs

• Software prototypes of some algorithms

Layer R&D

Control Optimization-based decision 
making for planning and operation 
in uncertainty

Learning 
(Digital 
Twin)

Data-driven continuous learning, 
identification & tracking of system 
models & current states

Data
(Meter 
Caltech)

Testbed to provide real-time 
comprehensive & reliable data

Open problems (examples)

• Data-driven stochastic optimization

• Data-driven real-time OPF

• Network identification

• Aggregate flexibility & control



DER testbed

Substation 3 (16.5kV/2.4kV/480V)
• Buildings

• Rooftop PVs

• Fuel cells

• EV chargers

e1 e2 e3 e4 e5
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electric room metering cabinet meters, CTs 3p voltage tapsdigital circuit diagram



Network identification

Learning 𝑌 from data

◼ Numerous control & optimization schemes assume 𝑌 is known

◼ But 𝑌 often unavailable or unreliable in distribution systems (e.g., 
Caltech does not know 𝑌)

◼ Little is known about analytical properties of 𝑌 (e.g., invertibility 
only published in [Yuan et al 2022, Torizo & Molzahn 2022, Low 2022])

State of the art
◼ Full measurement: many schemes based on regressions, entropy, 

sparse recovery, graph processing, …

◼ With hidden nodes (for radial networks) ?



Network identification with hidden nodes

Learning  with hidden nodesY
Exact identification for radial networks

Learning admittance matrix Y

Can we identify  from  ?  

Theorem: Yes !

Y Y

Suppose we can exactly recover  from  at  
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Ḡ1 := G(Ȳ1)
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graph

Exactly recover both topology and impedances for radial nks  

Constructive proof

Lemma

Kron-reduced admittance matrix ത𝑌 exists, if lines are 

resistive & inductive

(Note that 𝑌 is complex symmetric !)

At each time 𝑡 :
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Ȳ22 := Y11,22 − Y12,21X 22,11Y T
12,21
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Ḡ := G(Ȳ )
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Ȳ1 := Y11 − diag{ 1T Y11}

Y11,11 Y11,12

Y11,22 X

Y11,11 Y11,12

Y11,11 Y11,12
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[Yuan et al 2022]

for radial networks ?
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Ḡ1 := G(Ȳ1)
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Controllable DER

⇡
⇡

Pin
f

Distribution feeder f Transmission system

P0

distribution
grid

transmission
grid

aggregator

min
xi (t ),t=1,...,T

  fi(x(t), t;yi (t))
t

å

   s. t.     gi(xi(t), yi (t)) £ 0

microgrid input

utility input

ISO input

min
xi (t ),t=1,...,T

  fi(x(t), t;yi (t))
t
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   s. t.     gi(xi(t), yi (t)) £ 0
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min
xi (t ),t=1,...,T
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   s. t.     gi(xi(t), yi (t)) £ 0
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user
input

microgrid

aggregator
input

microgrid

user
input

aggregator
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More broadly: 

Difficulties:
• Game theoretic behavior

• Unknown/partially known 

models

• Partial state information

• Distributed alg. at scale

• Real-time feedback

• Uncertainty



Lessons learnt
Most papers implicitly use single-phase models 

◼ Balanced 3-phase systems have single-phase 
equivalents

Single-phase models applicable for many purposes

◼ Transmission system applications

◼ For illustrating basic ideas and analysis of most 
algorithms (unbalanced 3-phase models structurally 
similar to 1-phase models) 

Unbalanced 3-phase modeling needed

◼ When control & optimization are explicitly on single-
phase devices making up a 3–phase device

◼ For implementation in real systems when phases are 
not balanced



Lessons learnt

• Many models assume terminal currents 𝐼𝑗𝑘
𝑎 , 𝐼𝑗𝑘

𝑏 , 𝐼𝑗𝑘
𝑐 are controllable 

(optimization vars)

• Extension to 3-phase setting is straightforward
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Lessons learnt

1-phase: 𝐼𝑗𝑘 , 𝑉𝑗
𝑎 ∈ ℂ . 𝑦𝑗𝑘

𝑠/𝑚
∈ ℂ

3-phase: 𝐼𝑗𝑘 , 𝑉𝑗
𝑎 ∈ ℂ3. 𝑦𝑗𝑘

𝑠/𝑚
∈ ℂ3×3

𝑉𝑗
𝑎, 𝐼𝑗𝑘

𝑎
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Lessons learnt

𝑉𝑗
𝑎, 𝐼𝑗𝑘

𝑎

𝑉𝑗
𝑏, 𝐼𝑗𝑘

𝑏

𝑉𝑗
𝑐, 𝐼𝑗𝑘

𝑐

• Terminal currents 𝐼𝑗𝑘 are externally observable, but often not directly 

controllable 

• If only internal currents 𝐽𝑗
𝑎𝑏, 𝐽𝑗

𝑏𝑐 , 𝐽𝑗
𝑐𝑎 of current sources are directly 

controllable, then need a 3-phase device model to convert between 

internal & terminal vars

𝑉𝑘
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Lessons learnt

Similarly for power sources or voltage sources

𝑉𝑗
𝑎, 𝐼𝑗𝑘
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𝑐



Lessons learnt: example

[Lee et al (2021), ACN-Sim, TSG]

Left panel: Actual 3-phase currents violate capacity constraints if “single-phase

constraints” are used (ACN-Sim based on Caltech ACN on Sept 5, 2018 data)

“single-phase constraints” : σ𝑖 𝑟𝑖 𝑡 ≤ 𝑅 (no phase line constraints for lack of phase info)

SOC constraints

SOC constraints



Overview: 3-phase modeling



Key question

Will use 3-phase voltage source in     configuration to illustrateΔ



Internal & terminal vars
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Internal vs external model
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Conversion rule



Conversion matrices Γ & Γ𝑇



Conversion rule



Conversion rule



Conversion rule



Conversion rule



Example: transformers

unified & modular characterization



Overall model: device + network



Unbalance 3-phase modeling

DRAFT available at:  http://netlab.caltech.edu/book/

Corrections, questions, comments appreciated! 

http://netlab.caltech.edu/book/


Backup slides



Why Caltech

Caltech energy system is large & complex
◼ Energy needs of ~5,000 population correspond to ~20,000 people 

(CA), peak (electric): 20MW [Caltech Facilities, 2021] 

◼ Stanford: 30K population correspond to 33,000 households (CA); 
peak (integrated energy system): 40MW [de Chalendar et al, 2019] 

◼ More technical challenges to overcome

◼ Invaluable live testbed for R&D and validation

Caltech system is representative of large campuses
◼ With district heating and cooling systems (more popular in EU, China, 

Russia, Japan)

◼ e.g., Stanford, PNNL (both pursuing campus decarbonization)

◼ Stanford’s integrated system: first-of-a-kind [de Chalendar et al, 2019] 



Example path

We need to develop interfaces

• With Facilities: DER

• With Solea Energy: trading

Warehouses
◼ Consumes 6 kWh/sqft-year, but can 

generate 90 kWh/sqft-year of PV

◼ US has 10B sqft of warehouse space

◼ Can generate 100 GW PV (~10% of 
total 1TW of US rooftop PV capacity)

◼ $6B/year annual electricity cost

◼ $150B microgrid infrastructure 
market ($15M / 1M sqft warehouse)

Value proposition
◼ DER opt technology can save 10% 

of annual electricity cost 
($600M/year)

◼ … and 2% of capital cost ($3B)

◼ Emission reduction by 80-100%

Co-PI on Solea led DoE GRIP proposal (submitted March 2023) 

distr. grid services

𝜇grid

OS

DERs

(PV, EV, bldg., EV, 

fuel cells, H2O)

CO2 minimization

energy trading

cost min

green H2

Caltech 

team

Solea

Energy 
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