
Lyapunov-Based Stability Analysis for REM
Congestion Control
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Abstract— This paper investigates convergence properties of
basic REM flow control algorithm via Lyapunov functions. The
decentralized algorithm REM consists of a link algorithm that
updates a congestion measure, also called “price”, based on
the excess capacity and backlog at that link, and a source
algorithm that adapts the source rate to congestion in its
path. At the equilibrium of the algorithm, links are fully
utilized, and all buffers are cleared. Convergence of the
algorithm is established for single and two-link cases using
a Lyapunov argument. Extension to the general multi-link
model is discussed as well.

I. INTRODUCTION

In general, network flow control concerns adjustment of
individual transmission rates of a number of sources over a
set of links, subject to link capacity constraints. The main
purpose of flow control is to fully utilize all the links
in the network, while at the same time achieving some
sort of fairness among the sources. There are several ways
of defining fairness in a network, each one leading to a
different allocation of link capacities, see [1].

In optimization based flow control, allocation of link
bandwidths is achieved through a utility maximization prob-
lem, in which each source has a utility function reflecting
its valuation of transmitting at a certain rate. The aggregate
source utility is then maximized over transmission rates
of all sources subject to the capacity constraints. The
significance of the utility maximization model is that TCP
Reno [2] and Vegas [3], as well as several other Internet
congestion control algorithms can be interpreted within
this model by choosing appropriate utility functions. This
approach has been extensively studied in several papers,
such as [4], [5], [6], [7], [8]. Solving the utility maximiza-
tion problem directly requires coordination among possibly
all sources, and hence is impractical for the networks.
However, there exist decentralized solutions which only
use partial information from the network. One way of
obtaining a decentralized solution is to look at the dual
of the maximization problem. In [6], it has been shown
that this leads to a decentralized algorithm that consists
of a link algorithm that updates a congestion measure,
also called “price”, based on the excess capacity at that
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link, and a source algorithm that adapts the source rate to
congestion in its path. This algorithm, which is shown to
converge, has a drawback in that the backlog can be quite
large in the equilibrium. To remedy this problem, in [9],
REM (Random Exponential Marking) algorithm has been
introduced, which ensures that the buffer is cleared when
the equilibrium is reached. The convergence of this more
appealing algorithm for a multi-link network has not been
established yet. In [10], the continuous time version of REM
has been shown to be globally stable, but for the original
discrete-time case, a proof of stability is available only for
the single-link case, see [11]. The stability analysis of [11] is
based on an invariance argument which does not generalize
to multiple links. In this paper, we prove a similar stability
result for a single-link network using a Lyapunov argument.
The advantage of using a Lyapunov function is that it can
be generalized to a multi-link network. However, due to
cumbersome algebra for a network of size more than two-
links, in this paper, we only present the stability proof for
a two-link network. Extension to the multi-link case is also
discussed.

The rest of the paper is organized as follows. In Section
2, the network model is introduced. The stability analysis is
carried out in Section 3. In Section 4 we discuss modifying
the REM algorithm to make it more suitable for Lyapunov-
type stability analysis. The paper ends with the concluding
remarks of Section 4, in which we also discuss some future
research directions.

II. THE NETWORK MODEL

Consider a network N that consists of a set L =
{1, . . . , L} of links of capacity cl, l ∈ L. The network
is shared by a set S = {1, . . . , S} of sources. Source s
transmits at rate xs using a set Ls ⊆ L of links. The routing
matrix R, of dimension L× S, is defined by Rls = Xs∈Sl

,
where Sl is the set of sources using link l, and XA denotes
the indicator function of the set A.

The rate xs satisfies ms ≤ xs ≤ Ms, where ms ≥ 0
and Ms < ∞ are the minimum and maximum transmission
rates, respectively. When transmitting at rate xs, source s
attains a utility of Us(xs). It is assumed that the utility
functions Us are strictly concave increasing and twice
continuously differentiable. Associated with each link l
there is a buffer with occupancy bl. The amount of backlog
at link l satisfies 0 ≤ bl ≤ Bl, where Bl < ∞ is the
maximum buffer occupancy.



We assume an underlying discrete time structure with no
delay and synchronous updates. Let t denote the discrete
time unit, and assume that fluid approximation for queue
lengths holds. Then, the buffer occupancy b

(t)
l at link l at

time t evolves according to

b
(t+1)
l =

[

b
(t)
l +

∑

s∈Sl

x(t)
s − cl

]Bl

0

(1)

where the notation [x]xmax

xmin
is shorthand for

[x]
xmax

xmin
=







xmin x ≤ xmin

x xmin ≤ x ≤ xmax

xmax x ≥ xmax

Our objective (the primal problem) is to choose the source
rates xs so as to:

max
ms≤xs≤Ms

∑

s∈S

Us(xs) (2)

subject to capacity constraints:
∑

s∈Sl

xs ≤ cl (3)

This flow control problem is first posed in [4], and solved
in [5] using techniques of constrained optimization. The
problem can also be solved using a penalty function ap-
proach, see [7]. Note that a unique maximizer exists, called
the primal optimal solution, since the objective function is
strictly concave, and the feasible solution set is compact.
Even though the objective function is separable in xs, the
source rates are coupled by the constraint (3). Thus, solving
the primal problem directly requires coordination among
possibly all sources and is impractical for networks. Look-
ing at the dual of the optimization problem (2)-(3), one can
obtain a gradient projection algorithm in the dual variables
that lends itself into a decentralized implementation [6]. The
Lagrangian dual of this problem is

min
pl≥0

max
ms≤xs≤Ms

∑

s∈S

Us(xs) −
∑

l∈L

pl(
∑

s∈Sl

xs − cl) (4)

where associated with each link there is a dual variable
pl, termed as “price” of link l. The solution of this dual
optimization problem can be obtained using a gradient
projection algorithm. The basic algorithm given in [6]
works as follows. At times t = 1, 2, . . ., link l receives
rates from all sources s ∈ Sl that go through it, and it
calculates the aggregate link rate y

(t)
l :=

∑

s∈Sl
x

(t)
s . With

this information, it computes the so-called link price p
(t)
l ,

which is updated according to

p
(t+1)
l = [p

(t)
l + γ(

∑

s∈Sl

x(t)
s − cl)]

∞
0 (5)

where γ > 0 is a step size. Note that this update can be
interpreted as a gradient step in the minimization of (4).
This price is communicated to all sources s ∈ Sl that
use link l. Source s upon receiving the aggregate price

q
(t)
s :=

∑

l∈Ls
p
(t)
l of all links in its path, chooses a new

transmission rate x
(t)
s by solving the maximization problem

max
ms≤xs≤Ms

Us(xs) − xsqs (6)

whose solution is trivially given by x
(t)
s = [U ′−1

s (q
(t)
s )]Ms

ms
.

Here U ′−1
s denote the inverse functions of the marginal

utility; they exist and are strictly decreasing because Us

are strictly concave increasing.
In [6], it is shown that this distributed algorithm con-

verges to the solution of the primal optimization problem
(2)-(3) if the curvatures of Us are bounded away from
zero, i.e. −U ′′

s (xs) ≥ −1/ρs > 0, ms ≤ xs ≤ Ms,
and if the step size γ satisfies 0 < γ < 2/ρL̄S̄, where
ρ = maxs∈S ρs, L̄ = maxs∈S |Ls|, and S̄ = maxl∈L |Sl|.

Note however that here prices integrate excess capacity,
which is exactly what the backlog does:

b
(t+1)
l =

[

b
(t)
l +

∑

s∈Sl

x(t)
s − cl

]Bl

0

Comparing with (5), we see that backlogs are related to
prices by bl(t) = γ−1pl(t). Thus, the backlog can be quite
large in equilibrium since γ > 0 is typically small. To
remedy this problem, in [9] the price adjustment (5) is
modified to

p
(t+1)
l = [p

(t)
l + αb

(t)
l + γ(

∑

s∈Sl

x(t)
s − cl)]

∞
0 (8)

where α > 0 is a small constant. This extra backlog term
will, if equilibrium is achieved, guarantee that bl = 0,
i.e. the buffer is cleared. The update algorithm (8) is
commonly referred to as REM, whose convergence has
not been established yet. In [10], the continuous time
version of REM has been shown to be globally stable, but
for the original discrete-time case, a proof of stability is
available only for the single-link case, see [11]. In this
paper, we generalize this proof to the multi-link case using
an appropriate Lyapunov function.

To simplify notation, for each source s, we denote the
inverse of its marginal utility U ′−1

s restricted to [ms,Ms]
as

fs(qs) := [U ′−1
s (qs)]

Ms

ms
(9)

The overall system is this described by the following set of
equations

b
(t+1)
l =

[

b
(t)
l + y

(t)
l − cl

]Bl

0
(10)

p
(t+1)
l =

[

p
(t)
l + αb

(t)
l + γ(y

(t)
l − cl)

]∞

0
(11)

Let (b∗, p∗) be an equilibrium point of this system, and
let q∗ = RT p∗ be the equilibrium source prices, x∗ = f(q∗)
the equilibrium source rates, and y∗ = Rx∗ the equilibrium
link rates. Clearly, we must have that b∗ = 0. p∗, on the
other hand, need not be zero, indeed its nonzero components
correspond to links where y∗

l = 0, i.e. where the capacity



constraint is active (bottleneck links). It is shown in [6] that
the equilibrium is a saddle point of (4); therefore it follows
from duality theory that x∗ must be the unique global
optimum of the primal problem (2)-(3); therefore y∗, q∗ are
also unique. However, p∗ need not be unique, because in
general capacity constraints might not be independent. In
order to obtain a unique equilibrium price, we make the
assumption that the routing matrix R is of full row rank.
This assumption guarantees that, for a given vector q of
aggregate source prices, there is a unique vector p of source
prices satisfying q = RT p.

III. CONVERGENCE ANALYSIS

We start our analysis with some simplifying assumptions
and definitions. Recall that source functions fs(·) are strictly
decreasing on (ms,Ms). We make the following assump-
tion on these functions.

Assumption 3.1: The maximum and minimum rates of
decrease for the source function fs(·) are independent of s,
and are given by R, and r, respectively.

This assumption is not overly restrictive, since for the
maximum rate of decrease we can simply pick

R = max
s

Rs

where Rs = maxp≥0 |f ′
s(p)| is the maximum rate of

decrease of source s. Similarly for the minimum rate of
decrease we can pick

r = min
s

rs

where rs = minp≥0 |f
′
s(p)| is the minimum rate of decrease

of source s. Note that Assumption 3.1 assumes more than
Lipschitz continuity of fs(·), it also guarantees a minimum
rate of decrease, i.e. no flat parts in the graph of fs(·).

Define Ω as the set of possible states in buffer-
length/price space:

Ω = {(b, p) : bl ≥ 0, pl ≥ 0, l = 1, . . . , L}

Note that we omitted the upper bound Bl from the buffer
length, because stability of bl would imply boundedness.
This operation, in effect amounts to setting Bl = ∞. We
assume that the initial condition of the system lies in Ω,
i.e. (b(0), p(0)) ∈ Ω. This initial condition induces an initial
rate vector through (9), where each fs lies between ms and
Ms. Let us introduce index vectors for links to keep track
of the positivity constraints imposed on the states. Define
for (b, p) ∈ Ω,

I− = {l : pl + αbl + γ(yl − cl) ≤ 0}

I+ = {l : pl + αbl + γ(yl − cl) ≥ 0}

J− = {l : bl + yl − cl ≤ 0}

J+ = {l : bl + yl − cl ≥ 0}

Clearly, these sets are not mutually exclusive, a particular
link may belong to more than one of these sets. To motivate
the analysis for the multi-link case, we first discuss the
single-problem in detail.

A. Single-Link Case

Consider the case in which there is a single-link, and a
single source1. The system then evolves according to

b(t+1) =
[

b(t) + x(t) − c
]∞

0

p(t+1) =
[

p(t) + αb(t) + γ(x(t) − c)
]∞

0

with the equilibrium point b∗ = 0, and x∗ = f(p∗) = c.
We first show that [p(t) + αb(t) + γ(x(t) − c)] is always
nonnegative, thus eliminating the need for the saturation
analysis for p(t). Let (b, p) ∈ Ω, be any point along the
trajectories of these updates. We denote the next state by
(b̄, p̄). Clearly, if f(p) > c, i.e. p < p∗, we have p + αb +
γ(f(p) − c) ≥ 0. Suppose f(p) ≤ c. Then,

p + αb + γ(f(p) − c) ≥ (p − p∗) + γ(f(p) − c)

Using Assumption 3.1, if 0 < γ < 1
R

we infer that

(p − p∗) + γ(f(p) − f(p∗)) ≥ 0

as claimed.
Now, consider a candidate Lyapunov function that is

separable in the states (b, p), i.e. V (b, p) = V1(b) + V2(p).
We will show that such a function cannot be a Lyapunov
function for this system. Consider the initial state when p is
at equilibrium, p = p∗, and b > 0. The next state then will
be b̄ = b, and p̄ = p∗ +αb. Thus, the buffer length remains
the same, while the link price increases. The first difference
of a separable V along the trajectories of the system equals

∆V = ∆V1 + ∆V2 = V1(b̄) − V1(b) + V2(p̄) − V2(p)

= V1(b) − V1(b) + V2(p
∗ + αb) − V2(p

∗)

= V2(p
∗ + αb) > 0

since V2(p) must vanish at p = p∗, and is positive elsewhere
by definition. Hence, we conclude that no separable V
would work as a Lyapunov function for the system.

Motivated by the counter-example, we introduce the
candidate Lyapunov function:

V (b, p) = (p − p∗)2 + 2M(p − p∗)b + Nb2

where M,N are constants to be determined. This is a
quadratic form in (p − p∗) and b, so it is positive definite
if N > 0, and N > M2. Also, V (b, p) = 0 implies
b = 0, p = p∗, i.e. the function V only vanishes at the
equilibrium. Furthermore, being a quadratic V is radially
unbounded. We proceed by taking the first difference of
V (b, p) along the trajectories of the system:

∆V (b, p) = V (b̄, p̄) − V (b, p)

We need to distinguish between four cases depending on
which one of the sets I−, I+, J−, J+, the single-link l
belongs. We have already shown that l cannot belong to
the set I−, which leaves us with two cases.

1Multiple sources can be lumped into a single source with an equivalent
utility function, see [11]



Case I (l ∈ I+, J−): In this case, we have p̄ = p+αb+
γ(x − c) ≥ 0, and b̄ = 0, since b + y − c ≤ 0. Thus,

−
1

γ
(p + αb) ≤ (x − c) ≤ −b (19)

Substituting the state equation into ∆V (b, p), we obtain

∆V (b, p) = (p − p∗ + αb + γ(x − c))2 − (p − p∗)2

−2M(p − p∗)b − Nb2

Using (19) and Assumption 3.1, we bound ∆V (b, p) from
above as follows:

∆V (b, p) ≤ α2b2 + γ2R2(p − p∗)2 + 2αb(p − p∗)

−2αγb2 − 2γr(p − p∗)2 − 2M(p − p∗)b

−Nb2

≤ (α2 − 2αγ − N)b2 + 2(α − M)(p − p∗)b

+γ(γR2 − 2r)(p − p∗)2

This is a quadratic in b and (p − p∗), and is nonnegative
definite if

0 < γ <
2r

R2

and

α2 − 2αγ − N < 0

which is satisfied if 0 < α < 2γ. We also require

γ(α2 − 2αγ − N)(γR2 − 2r) > 4(α − M)2

to take care of the cross-term (p − p∗)b .
Case II (l ∈ I+, J+): Now, both b̄l and p̄l are nonnega-

tive. Expanding out the ∆V (b, p) yields

∆V (b, p) = (p − p∗ + αb + γ(x − c))2 − (p − p∗)2

+2M(p − p∗ + αb + γ(x − c))(b + x − c)

−2M(p − p∗)b + N(b + x − c)2 − Nb2

We have

∆V (b, p) ≤ α(α + 2M)b2

+(γ2 + N + 2γM − 2γr − 2Mr)(x − c)2

+2(αM + γM + N + αγ + 2αR)(x − c)b

which is negative-definite, if α < −2M , M < 0, and

0 < γ < −(M − r) +
√

M2 − N + r2

Combining both cases, we conclude that the algorithm
is asymptotically stable for the single link case, if the
controller gains (α, γ) are chosen appropriately.
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Fig. 1. Two-Link Case

B. Two-Link Case

Consider the two-link, three-source network shown in
Figure 1. We will show that a Lyapunov function similar
to one given for the single-link case works for two links.
For this purpose, let us first consider the direct extension
of V (b, p) of the preceding section.

V (b, p) =

2
∑

l=1

[

(pl − p∗l )
2 + 2M(pl − p∗l )bl + Nb2

l

]

As it turns out this function does not monotonically decrease
along the trajectories of the system. To obtain a negative
drift in V (b, p) we need to consider all cross terms between
(p1−p∗1), (p2−p∗2), b1, and b2 which results in the following
candidate Lyapunov function:

V (b, p) = (p1 − p∗1)
2 + 2M(p1 − p∗1)b1 + Nb2

1

+(p2 − p∗2)
2 + 2M(p2 − p∗2)b2 + Nb2

2

+2C(p1 − p∗1)(p2 − p∗2) + 2Db1b2

+2P (p1 − p∗1)b2 + 2Q(p2 − p∗2)b1

where M,N,P,Q,C,D are constants to be determined. It
is not immediately clear that V is positive definite, but
conditions can be imposed on the weights M,N,P,Q,C,D
so that V is indeed positive definite. Let us first concentrate
on the terms

V1 = (p1 − p∗1)
2 + (p2 − p∗2)

2

as it would be representative of the other terms in the
sum constituting V (b, p). The first difference of V1 equals
(assuming 1, 2 ∈ I+)

∆V1 = (p1 − p∗1 + αb1 + γ(x0 + x1 − c1))
2

+(p2 − p∗2 + αb2 + γ(x0 + x2 − c2))
2

−(p1 − p∗1)
2 − (p2 − p∗2)

2

which can be written as

∆V1 = (αb1 + γ(x0 + x1 − c1))
2

+(αb2 + γ(x0 + x2 − c2))
2

+2αγb1(x0 + x1 − c1) + 2αγb2(x0 + x2 − c2)

+2α(p1 − p∗1)b1 + 2α(p2 − p∗2)b2

+2γ(p1 − p∗1)(x0 + x1 − c1)

+2γ(p2 − p∗2)(x0 + x2 − c2)



Now, the last two terms of this sum can be converted into
a sum over individual sources, i.e.

2γ(p1 − p∗1)(x0 + x1 − c1)

+2γ(p2 − p∗2)(x0 + x2 − c2)

= 2γ(p1 − p∗1 + p2 − p∗2)(x0 − x∗
0)

+2γ(p1 − p∗1)(x1 − x∗
1)

+2γ(p2 − p∗2)(x2 − x∗
2)

= 2γ(q0 − q∗0)(x0 − x∗
0)

+2γ(q1 − q∗1)(x1 − x∗
1)

+2γ(q2 − q∗2)(x2 − x∗
2)

where each term is negative since

(xs − x∗
s) = (fs(qs) − fs(q

∗
s ))

and fs(·) are strictly decreasing. Following along the same
lines, other terms of ∆V can be decomposed into sums over
sources as well.

As a result, ∆V will consist of two sums of quadratics.
The first sum will be over the links (links 1 and 2 in our
case), and it will contain quadratic terms of

(y1 − c1), (y2 − c2), (p1 − p∗1), (p2 − p∗2), b1, b2

while the second sum will be over the sources (sources 0, 1,
and 2 in our case), and this sum will contain quadratic terms
of the variables

(x0−x∗
0), (x1−x∗

1), (x2−x∗
2), (q0−q∗0), (q1−q∗1), (q2−q∗2)

The overall drift ∆V can in turn be made non-negative
definite through an appropriate choice of the controller gains
(α, γ). The analysis of this case is rather involved, hence
omitted in the conference version of the paper, see [13] for
details.

C. Multi-Link Case

For the multi-link case we propose a similar candidate
Lyapunov function that contains cross terms of all (pl −
p∗l )’s and bl’s. Nevertheless, the computation of the first
difference of this Lyapunov function along the trajectories
of the system is rather cumbersome. The stability analysis
of the system in the multi-link case is still an open problem.

IV. MODIFYING REM

In this section, we discuss slight modifications to the
REM algorithm that could make stability analysis for
multiple-links more tractable. The main difficulty in the
Lyapunov-based stability analysis arises from the coupling
between the link rates through the price updates. One
possibility to avoid this coupling is to add a new state xs

for each source in the network, and update it according to

x(t+1)
s = fs(q

(t)
s ) (29)

This amounts to updating, both prices (the dual variables),
and rates (the primal variables) at the same time to achieve
convergence to the global maximum of (2) subject to (3).

In [8], this update along with the price update is called
the primal-dual algorithm, and it can be shown that it is
globally asymptotically stable in the continuous-time case.
A slightly modified version of (29) is

x(t+1)
s = (1 − β)x(t)

s + βfs(q
(t)
s ) (30)

where 0 < β < 1 is a relaxation constant.
Either one of the rate updates (29)-(30) can be used in

conjunction with the price updates (10), and the buffer-
length equation (11) to simplify the stability analysis.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed stability of REM al-
gorithm for multi-link networks. We have taken a direct
Lyapunov approach, and have shown that the gains (α, γ)
need to be picked sufficiently small to ensure stability,
though picking them too small may result in a slow
rate of convergence. An area of future research may be
to investigate the optimal choice of these parameters to
balance between the conflicting goals of robust stability
margins and fast convergence. Several other extensions
of this work are possible. For example, the stability of
REM in the presence of delay needs to be addressed,
as communication/processing/queuing delay is present in
any communication network. Also, it may be interesting
to investigate stability properties of the algorithm under
asynchronous updates.
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