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Zero Duality Gap in Optimal Power Flow Problem
Javad Lavaei and Steven H. Low

Abstract—The optimal power flow (OPF) problem is nonconvex
and generally hard to solve. In this paper, we propose a
semidefinite programming (SDP) optimization, which is the dual
of an equivalent form of the OPF problem. A global optimum
solution to the OPF problem can be retrieved from a solution
of this convex dual problem whenever the duality gap is zero.
A necessary and sufficient condition is provided in this paper to
guarantee the existence of no duality gap for the OPF problem.
This condition is satisfied by the standard IEEE benchmark
systems with 14, 30, 57, 118 and 300 buses as well as several
randomly generated systems. Since this condition is hard to
study, a sufficient zero-duality-gap condition is also derived. This
sufficient condition holds for IEEE systems after small resistance
(10−5 per unit) is added to every transformer that originally
assumes zero resistance. We investigate this sufficient condition
and justify that it holds widely in practice. The main underlying
reason for the successful convexification of the OPF problem can
be traced back to the modeling of transformers and transmission
lines as well as the non-negativity of physical quantities such as
resistance and inductance.

Index Terms—Power System, Optimal Power Flow, Convex
Optimization, Linear Matrix Inequality, Polynomial-Time Algo-
rithm.

I. INTRODUCTION

The optimal power flow (OPF) problem deals with finding
an optimal operating point of a power system that mini-
mizes an appropriate cost function such as generation cost
or transmission loss subject to certain constraints on power
and voltage variables [1]. Started by the work [2] in 1962, the
OPF problem has been extensively studied in the literature
and numerous algorithms have been proposed for solving
this highly nonconvex problem [3], [4], [5], including lin-
ear programming, Newton Raphson, quadratic programming,
nonlinear programming, Lagrange relaxation, interior point
methods, artificial intelligence, artificial neural network, fuzzy
logic, genetic algorithm, evolutionary programming and par-
ticle swarm optimization [1], [6], [7], [8]. A good number of
these methods are based on the Karush-Kuhn-Tucker (KKT)
necessary conditions, which can only guarantee a locally opti-
mal solution, in light of the nonconvexity of the OPF problem
[9]. This nonconvexity is partially due to the nonlinearity of
physical parameters, namely active power, reactive power and
voltage magnitude.

In the past decade, much attention has been paid to devising
efficient algorithms with guaranteed performance for the OPF
problem. For instance, the recent papers [10] and [11] propose
nonlinear interior-point algorithms for an equivalent current
injection model of the problem. An improved implementation
of the automatic differentiation technique for the OPF problem
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is studied in the recent work [12]. In an effort to convexify
the OPF problem, it is shown in [13] that the load flow
problem of a radial distribution system can be modeled as a
convex optimization problem in the form of a conic program.
Nonetheless, the results fail to hold for a meshed network,
due to the presence of arctangent equality constraints [14].
Nonconvexity appears in more sophisticated power problems
such as the stability constrained OPF problem where the
stability at the operating point is an extra constraint [15],
[16] or the dynamic OPF problem where the dynamics of
the generators are also taken into account [17], [18]. The
recent paper [19] proposes a convex relaxation to solve the
OPF problem efficiently and tests its results on IEEE systems.
Some of the results derived in the present work are related
to this well-known convex relaxation. However, [19] drops a
rank constraint in the original OPF without any justification
in order to obtain a convex formulation.

As will be shown in this paper, the OPF problem is NP-
hard in the worst case. Our recent work also proves that a
closely related problem of finding an optimal operating point
of a radiating antenna circuit is an NP-complete problem,
by reducing the number partitioning problem to the antenna
problem [20]. The goal of the present work is to exploit the
physical properties of power systems and obtain a polynomial-
time algorithm to find a global optimum of the OPF problem
for a large class of power networks.

In this paper, we suggest solving the dual of an equivalent
form of the OPF problem (referred to as the Dual OPF
problem), rather than the OPF problem itself. This dual
problem is a convex semidefinite program and therefore can be
solved efficiently (in polynomial time). However, the optimal
objective value of the dual problem is only a lower bound on
the optimal value of the original OPF problem and the lower
bound may not be tight (in presence of a nonzero duality gap)
[21]. A globally optimal solution to the OPF problem can be
recovered from a solution to the Dual OPF problem if the
duality gap is zero (i.e. strongly duality holds between these
two optimizations). In this paper, we derive a necessary and
sufficient condition to guarantee zero duality gap. Interestingly,
this condition is satisfied for all the five IEEE benchmark
systems archived at [22] with 14, 30, 57, 118 and 300 buses,
in addition to several randomly generated systems. In other
words, these practical systems can all be convexified via the
new formulation proposed here. In order to study why the
duality gap is zero for the IEEE systems, we also derive
a sufficient zero-duality-gap condition, which reveals many
useful properties of power systems. This sufficient condition
holds for IEEE systems after a small perturbation in a few
entries of the admittance matrix, in order to make the graph
corresponding to the resistive part of the power network
strongly connected.

To study the sufficient zero-duality-gap condition provided
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here, we first consider a resistive network with only resistive
and constant-active-power loads. The OPF problem in this spe-
cial case is also NP-hard. We exploit some physical properties
of power circuits and prove that the duality gap is zero for
a modified version of the OPF problem. Later on, we show
that this modified OPF problem is expected to have the same
solution as the OPF problem. The results are then extended to
general networks with no constraints on reactive loads. It is
shown that by fixing the real part of the admittance matrix Y ,
there is an unbounded region so that if the imaginary part of Y

belongs to that region, the duality gap is zero. In other words,
there is an unbounded set of network admittances for which
the duality gap is zero for all possible values of loads and
physical limits. The results are then extended to a general OPF
problem. It is worth mentioning that we have proved in [35]
that zero duality gap for the classical OPF problem studied
here implies zero duality gap for a general OPF-based problem
in which there could be more variables (such as transformer
ratios and variable shunt elements) and more constraints (such
as dynamic or contingency constraints). Hence, the results of
this work make it possible to convexify several fundamental
power problems that have been studied for about half a century.

The rest of the paper is organized as follows. The OPF
problem is formulated in Section II. A polynomial-time al-
gorithm is proposed in Section III to solve the OPF problem
and two conditions are derived to guarantee a zero duality
gap. These conditions are studied in Section IV. Various
results are illustrated in Section V through IEEE benchmark
systems and smaller examples. Concluding remarks are drawn
in Section VI. Some background on semidefinite programming
is provided in Appendix A and, finally, a few proofs are
collected in Appendices B and C.

Notations: The following notations are used in this paper:
• i : The imaginary unit.
• R : The set of real numbers.
• Re{·} and Im{·}: The operators returning the real and

imaginary parts of a complex matrix.
• ∗ : The conjugate transpose operator.
• T : The transpose operator.
• � and � : The matrix inequality signs in the positive

semidefinite sense (i.e. given two symmetric matrices A

and B, A � B implies A− B is a positive semidefinite
matrix, meaning that its eigenvalues are all nonnegative).

• Tr : The matrix trace operator.
• | · | : The absolute value operator.

II. OPF PROBLEM: FORMULATION AND COMPUTATIONAL
COMPLEXITY

Consider a power network with the set of buses N :=
{1, 2, ..., n}, the set of generator buses G ⊆ N and the set of
flow lines L ⊆ N ×N . Define the parameters of the system
as follows:
• PDk + QDk i: The given apparent power of the load

connected to bus k ∈ N (this number is zero whenever
bus k is not connected to any load).

• PGk + QGk i: The apparent power of the generator con-
nected to bus k ∈ G.

• Vk: Complex voltage at bus k ∈ N .
• Plm: Active power transferred from bus l ∈ N to the rest

of the network through line (l,m) ∈ L.
• Slm: Apparent power transferred from bus l ∈ N to the

rest of the network through line (l, m) ∈ L.
• fk(PGk) = ck2P

2
Gk

+ ck1PGk + ck0: Quadratic cost
function with given nonnegative coefficients accounting
for the cost of active power generation at bus k ∈ G.

Let V, Pg and Qg denote the unknown vectors {Vk}k∈N ,
{PGk}k∈G , and {QGk}k∈G , respectively. The classical OPF
problem aims to minimize

�
k∈G fk(PGk) over the unknown

parameters V, Pg and Qg subject to the power balance
equations at all buses and the physical constraints

P
min
k ≤ PGk ≤ P

max
k , ∀k ∈ G (1a)

Q
min
k ≤ QGk ≤ Q

max
k , ∀k ∈ G (1b)

V
min
k ≤ |Vk| ≤ V

max
k , ∀k ∈ N (1c)

|Slm| ≤ S
max
lm , ∀(l,m) ∈ L (1d)

|Plm| ≤ P
max
lm , ∀(l,m) ∈ L (1e)

|Vl − Vm| ≤ ∆V
max
lm , ∀(l,m) ∈ L (1f)

where Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k , Smax
lm , Pmax

lm ,

∆V max
lm are some given real numbers such that Smax

lm = Smax
ml

and Pmax
lm = Pmax

ml . Note that some of the constraints stated in
(1) may not be needed for a practical OPF problem, in which
case the undesired constraints can be removed by setting the
corresponding lower/upper bounds as infinity. For instance,
the line flow constraints (1d) and (1e) might not be necessary
simultaneously or the constraint (1f) could be redundant,
depending on the situation. Although not stated explicitly, we
assume throughout this work that the OPF problem is feasible
and that V = 0 does not satisfy its constraints.

Derive the circuit model of the power network by replacing
every transmission line and transformer with their equivalent
Π models [1]. In this circuit model, let ykl denote the mu-
tual admittance between buses k and l, and ykk denote the
admittance-to-ground at bus k, for every k, l ∈ N (note that
ykl = 0 if (k, l) �∈ L). Let Y represent the admittance matrix
of this equivalent circuit model, which is an n× n complex-
valued matrix whose (k, l) entry is equal to −ykl if k �= l and
ykk +

�
m∈N (k) ykm otherwise, where N (k) denotes the set

of all buses that are directly connected to bus k. Define the
current vector I :=

�
I1 I2 · · · In

�T as Y V. Note that
Ik represents the net current injected to bus k ∈ N .

It is shown in Appendix B that the OPF problem is NP-
hard, which implies that an arbitrary (general) OPF problem
may not be solvable in polynomial time. However, the goal of
this paper is to show that an OPF problem corresponding to
a practical power network is structured in such a way that it
might be solved efficiently in polynomial time even if it could
have multiple local minima with a nonconvex (disconnected)
feasibility region.

III. NEW APPROACH TO SOLVING OPF

By denoting the standard basis vectors in Rn as
e1, e2, ..., en, let a number of matrices be defined now for
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every k ∈ N and (l,m) ∈ L:

Yk := eke
T
k Y,

Ylm := (ȳlm + ylm)ele
T
l − (ylm)ele

T
m

Yk :=
1
2

�
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

�

Ylm :=
1
2

�
Re{Ylm + Y T

lm} Im{Y T
lm − Ylm}

Im{Ylm − Y T
lm} Re{Ylm + Y T

lm}

�

Ȳk :=
−1
2

�
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

�

Ȳlm :=
−1
2

�
Im{Ylm + Y T

lm} Re{Ylm − Y T
lm}

Re{Y T
lm − Ylm} Im{Ylm + Y T

lm}

�

Mk :=
�

ekeT
k 0

0 ekeT
k

�

Mlm :=
�

(el − em)(el − em)T 0
0 (el − em)(el − em)T

�

X :=
�

Re {V}T Im {V}T
�T

where ȳlm denotes the value of the shunt element at bus l

associated with the Π model of the line (l,m). For every k ∈
N , define Pk,inj and Qk,inj as the net active and reactive powers
injected to bus k, i.e.,

Pk,inj := PGk − PDk , ∀k ∈ G
Qk,inj := QGk −QDk , ∀k ∈ G
Pk,inj := −PDk , ∀k ∈ N\G
Qk,inj := −QDk , ∀k ∈ N\G

Lemma 1: The following relations hold for every k ∈ N
and (l, m) ∈ L:

Pk,inj = Tr
�
YkXXT

�
(2a)

Qk,inj = Tr
�
ȲkXXT

�
(2b)

Plm = Tr
�
YlmXXT

�
(2c)

|Slm|2 =
�
Tr

�
YlmXXT

� �2 +
�
Tr

�
ȲlmXXT

� �2 (2d)
|Vk|2 = Tr

�
MkXXT

�
(2e)

|Vl − Vm|2 = Tr
�
MlmXXT

�
(2f)

Proof: See Appendix C.
Extend the definitions of Pmin

k , Pmax
k , Qmin

k , Qmax
k from

k ∈ G to every k ∈ N , with Pmin
k = Pmax

k = Qmin
k =

Qmax
k = 0 if k ∈ N\G. Using Lemma 1, one can formulate

the OPF problem in terms of X as follows.
OPF problem formulated in X: Minimize

�

k∈G

�
ck2

�
Tr {YkW}+ PDk

�2

+ ck1

�
Tr {YkW}+ PDk

�
+ ck0

� (3)

over the variables X ∈ R2n and W ∈ R2n×2n subject to the
following constraints for every k ∈ N and (l,m) ∈ L

P
min
k − PDk ≤ Tr {YkW} ≤ P

max
k − PDk (4a)

Q
min
k −QDk ≤ Tr

�
ȲkW

�
≤ Q

max
k −QDk (4b)

�
V

min
k

�2 ≤ Tr {MkW} ≤ (V max
k )2 (4c)

Tr {YlmW}2 + Tr
�
ȲlmW

�2 ≤ (Smax
lm )2 (4d)

Tr {YlmW} ≤ P
max
lm (4e)

Tr {MlmW} ≤ (∆V
max
lm )2 (4f)

W = XXT (4g)

Note that the constraint |Plm| ≤ Pmax
lm in the original OPF

problem is changed to Plm ≤ Pmax
lm in order to derive

(4e). This modification can be done in light of the relations
Plm + Pml ≥ 0 and Pmax

lm = Pmax
ml . The above OPF

formulation is not quadratic in X, due to the objective function
being of degree 4 with respect to the entries of X as well as
the constraint (4d). However, one can define some auxiliary
variables to reformulate the OPF problem in a quadratic way
with respect to X . To this end, Schur’s complement formula
yields that the constraint (4d) can be replaced by




− (Slm,max)

2 Tr {YlmW} Tr
�
ȲlmW

�

Tr {YlmW} −1 0
Tr

�
ȲlmW

�
0 −1



 � 0 (5)

On the other hand, given a scalar αk for some k ∈ G,
the constraint fk(PGk) ≤ αk is equivalent to (by Schur’s
complement formula)
�

ck1Tr {YkW}− αk + ak
√

ck2 Tr {YkW}+ bk√
ck2 Tr {YkW}+ bk −1

�
� 0

(6)
where ak := ck0 + ck1PDk and bk :=

√
ck2PDk .

Using (5) and (6), one can reformulate the OPF problem
formalized in (3) and (4) in a quadratic way. This leads to
Optimization 1, which is equivalent to the OPF problem:

Optimization 1: Minimize
�

k∈G αk over the scalar vari-
ables αk’s and the matrix variables X and W subject to the
constraints (4a), (4b), (4c), (4e), (4f), (4g), (5) and (6).

The variable X can be eliminated from Optimization 1 by
using the fact that a given matrix W can be written as XXT

for some (nonzero) vector X if and only if W is both positive
semidefinite and rank 1. Hence, Optimization 2 below is an
equivalent form of Optimization 1 whose variables are only
W and αk’s for k ∈ G.

Optimization 2: This optimization is obtained from Opti-
mization 1 by replacing the constraint (4g), i.e. W = XXT ,
with the new constraints W � 0 and rank{W} = 1.

Notice that since Optimization 2 has a rank constraint, it is
nonconvex. However, removing the constraint rank{W} = 1
from this optimization makes it a semidefinite program (SDP),
which is a convex problem (see Appendix A for a brief
overview of SDP). This gives rise to Optimization 3 presented
below.

Optimization 3: This optimization is obtained from Opti-
mization 2 by removing the rank constraint rank{W} = 1.

Optimization 3 is indeed an SDP relaxation of the OPF
problem. Assume that this convex optimization problem has a
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rank-one optimal solution W opt. Then, there exists a vector
Xopt such that W opt = Xopt(Xopt)T . In that case, Xopt is
a global optimum of the OPF problem. However, since the
OPF problem is NP-hard in general, Optimization 3 does not
always have a rank-one solution. We numerically solved this
optimization problem for IEEE test systems with 14, 30, 57,
118 and 300 buses using SEDUMI and noticed that each
solution W opt obtained always has rank two. The next lemma
explains the reason why this occurs for IEEE systems.

Lemma 2: If Optimization 3 has a rank-one solution, then
it must have an infinite number of rank-two solutions.

Proof: See Appendix C.
Lemma 2 states that Optimization 3 might have a rank-

one solution that cannot be directly identified by solving it
numerically. However, using the method proposed later in this
work, one can verify that Optimization 3 always has a rank-
one solution for all aforementioned IEEE test systems. This
implies that these power systems can be convexified by a
convex relaxation technique. However, the focus of this paper
will not be on Optimization 3 due to the following reasons:
• The number of scalar variables of Optimization 3 is

quadratic with respect to n (in light of the non-sparse
structure of the matrix variable Wc). Hence, solving
this optimization problem might be expensive and time-
consuming for large values of n.

• It is hard to analytically study Optimization 3 to deter-
mine when it has a rank-one solution.

In this paper, we consider the dual of Optimization 3. To this
end, define the following dual variables for every k ∈ N and
(l, m) ∈ L:

i) λk, γ
k
, µ

k
: Lagrange multipliers associated with the

lower inequalities in (4a), (4b) and (4c), respectively.
ii) λ̄k, γ̄k, µ̄k: Lagrange multipliers associated with the up-

per inequalities in (4a), (4b) and (4c), respectively.
iii) λlm, µlm: Lagrange multipliers associated with the in-

equalities (4e) and (4f), respectively.
iv) r1

lm, r2
lm, ..., r6

lm: The matrix



r1
lm r2

lm r3
lm

r2
lm r4

lm r5
lm

r3
lm r5

lm r6
lm





is the Lagrange multiplier associated with the matrix
inequality (5).

v) r1
k, r2

k: If k ∈ G, the matrix
�

1 r1
k

r1
k r2

k

�
(7)

is the Lagrange multiplier associated with the matrix
inequality (6).

Let x and r denote the sets of all multipliers introduced in (i-
iii) and (iv-v), respectively. Define some aggregate multipliers
for every k ∈ N as follows

λk :=
�
−λk + λ̄k + ck1 + 2

√
ck2r

1
k if k ∈ G

−λk + λ̄k otherwise
γk := −γ

k
+ γ̄k

µk := −µ
k

+ µ̄k

Furthermore, define the functions

h(x, r) :=
�

k∈N

�
λkP

min
k − λ̄kP

max
k + λkPDk + γ

k
Q

min
k

− γ̄kQ
max
k + γkQDk + µ

k

�
V

min
k

�2 − µ̄k (V max
k )2

�

+
�

k∈G

�
ck0 − r

2
k

�
−

�

(l,m)∈L

�
λlmP

max
lm

+ µlm (∆V
max
lm )2 + (Smax

lm )2 r
1
lm + r

4
lm + r

6
lm

�

and

A(x, r) :=
�

k∈N

�
λkYk + γkȲk + µkMk

�

+
�

(l,m)∈L

� �
2r

2
lm + λlm

�
Ylm + 2r

3
lmȲlm + µlmMlm

�

We propose an optimization problem in the sequel, which
plays a central role in solving the OPF problem.

Optimization 4 (Dual OPF): Maximize the linear function
h(x, r) over the vectors x ≥ 0 and r subject to the linear
matrix inequalities

A(x, r) � 0 (8a)



r1
lm r2

lm r3
lm

r2
lm r4

lm r5
lm

r3
lm r5

lm r6
lm



 � 0, ∀(l,m) ∈ L (8b)

�
1 r1

k
r1
k r2

k

�
� 0, ∀k ∈ G (8c)

The next theorem presents some important properties of
Optimization 4.

Theorem 1: The following statements hold:
i) Optimization 4 is the dual of the nonconvex problem of

Optimization 1.
ii) Optimization 4 is the dual of Optimization 3 and strong

duality holds between these optimizations. Moreover,
the matrix variable W in Optimization 3 corresponds
to a Lagrange multiplier for the inequality constraint
A(x, r) � 0 in Optimization 4.

Proof: See Appendix C.
The relationship among the OPF problem and Optimiza-

tions 1–4 are illustrated in Figure 1. This paper suggests
solving Optimization 4, which is the dual of a reformulated
OPF problem (i.e. Optimization 1) as well as the dual of a
convex relaxation of the OPF problem (i.e. Optimization 3).
Since Optimization 4 is an SDP, a globally optimization
solution to this problem can be found in polynomial time.
However, this solution can be used to retrieve a solution to the
OPF problem only if the duality gap is zero for Optimization 1,
meaning that the optimal objective values of Optimizations 1
and 4 are identical. The next theorem investigates this issue
in more details.

Theorem 2: The following statements hold:
i) The duality gap is zero for Optimization 1 if and only if

the SDP Optimization 3 has a rank-one solution W opt.
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OPF Problem 
(nonconvex)

Optimization 1 
(nonconvex)

Optimization 2 
(nonconvex)

Optimization 4 
(convex)

Optimization 3 
(convex) Equivalence:                  

strong duality

Equivalence
Equivalence:                

change of variable     
W=XXT

Rank relaxation:        
removing constraint 

rank{W}=1

Dual 
relaxation

Fig. 1. The relationship among OPF and Optimizations 1–4.

ii) The duality gap is zero for Optimization 1 if its dual (i.e.
the SDP Optimization 4) has a solution (xopt, ropt) such
that the positive semidefinite matrix A(xopt, ropt) has a
zero eigenvalue of multiplicity 2.

Proof: See Appendix C.
Due to the reasons outlined right after Lemma 2, this paper

mainly focuses on Condition (ii) (as opposed to Condition (i)),
whose usefulness will become clear later. The next corollary
explains how to recover a solution to the OPF problem
whenever this zero-duality-gap condition is satisfied.

Corollary 1: If the zero-duality-gap condition (ii) given in
Theorem 2 is satisfied, then the following properties hold:
• Given any nonzero vector

�
XT

1 XT
2

�T in the null
space of A(xopt, ropt), there exist two real-valued scalars
ζ1 and ζ2 such that Vopt = (ζ1 + ζ2i)(X1 + X2i) is a
global optimum of the OPF problem.

• Given any arbitrary solution W opt of Optimization 3, the
rank of W opt is at most 2. Moreover, if the matrix W opt

has rank 2, then the matrix (ρ1 + ρ2)EET is a rank-
one solution of Optimization 3, where ρ1 and ρ2 are the
nonzero eigenvalues of W opt and E is the unit eigenvector
associated with ρ1.

Proof: See Appendix C.
This paper suggests the following strategy for finding a

global optimum of the OPF problem.
Algorithm for Solving OPF:
1) Compute a solution (xopt, ropt) of Optimization 4, which

is the dual of an equivalent form of the OPF problem.
2) If the optimal value h(xopt, ropt) is +∞, then the OPF

problem is infeasible.
3) Find the multiplicity of the zero eigenvalue of the matrix

A(xopt, ropt) and denote it as ψ.
4) If ψ is greater than 2, it might not be possible to solve

the OPF problem in polynomial time.
5) If ψ is less than or equal to 2, then use the method

explained in Part (i) of Corollary 1 to find a globally
optimal solution Vopt.

The main complexity of the above algorithm can be traced
back to its Step 1, which requires solving the Dual OPF
problem. As mentioned earlier, this optimization is an SDP
problem and therefore can be solved in polynomial time. We
tested our algorithm on several randomly generated power
systems with all types of constraints given in (1) and observed
that this algorithm found a global optimum of the OPF
problem for all trials. Then, we considered the IEEE test
systems with 14, 30, 57, 118 and 300 buses, whose physical
constraints are in the form of (1a)-(1d), and made the following
observations:
• Optimization 3 always leads to a rank-two solution,

from which a rank-one solution can be found using the
technique delineated in Part (ii) of Corollary 1. Hence,
Part (i) of Theorem 2 yields that the duality gap is zero
for all these IEEE systems.

• Our algorithm based on the Dual OPF works after a
small perturbation of the matrix Y . More precisely, if
a small resistance (10−5) is added to each transformer
that originally has zero resistance, the graph induced
by the matrix Re{Y } will become connected for each
aforementioned IEEE system. This perturbation makes ψ

equal to 2.
Before studying why the OPF problem associated with a real

power system is expected to be solvable using the algorithm
proposed earlier, we make several important remarks below.

Remark 1: The last step of our algorithm relies on Part (i)
of Corollary 1, which states that there exist two real-valued
scalars ζ1 and ζ2 such that Vopt = (ζ1 + ζ2i)(X1 + X2i). In
order to find ζ1 and ζ2, two (linear) equations are required. The
voltage angle at the swing bus being zero introduces one such
equation. The second one can be formed by identifying the
active voltage constraints. Indeed, if µopt

k
(respectively, µ̄

opt
k )

turns out to be nonzero for some k ∈ N , then the relation
|V opt

k | = V min
k (respectively, |V opt

k | = V max
k ) must hold.

Remark 2: Optimization 4 has two interesting properties for
a practical power system. Fist, since most of the constraints
specified in (1) are likely to be inactive, the vectors xopt

and ropt are sparse. Moreover, the number of variables of
Optimization 4 is O(|L|) + O(|N |), which is expected to be
equal to O(|N |) due to the very sparse topology of real power
systems. Note that solving Optimization 4 for very large-
scale power networks might be too costly, in which case it is
recommended to use some sub-gradient techniques [19], [27].

Remark 3: Optimization 4 has the interesting property that
the given loads together with the physical limits on voltage
and power parameters only appear in the objective function,
whereas the network topology (the matrix Y ) shows up in its
linear matrix constraints. Therefore, there is a natural decom-
position between the load profile and the network topology
in Optimization 4. This useful property, besides the linearity
of Optimization 4, makes it possible to solve many more
sophisticated problems efficiently, such as the OPF problem
with stochastic and time-varying loads, and optimal network
reconfiguration for minimizing power loss.

Remark 4: Most of the algorithms proposed in the past
decade to solve the OPF problem are built on the KKT
conditions written for the original or a reformulated OPF
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problem. We highlight the differences between the Dual OPF
and the KKT conditions:
• The duality gap could be zero for an OPF problem whose

feasibility region has several disjoint components (see
Case 1 in Appendix B). Hence, the OPF problem may
have many local solutions, all of which satisfy the KKT
conditions. In contrast, a global optimum of the OPF
problem can be recovered by solving the Dual OPF when
the duality gap is zero.

• The KKT conditions are based on both primal and dual
variables (say X, x, r), whereas the Dual OPF depends
only on the dual variables (say x, r).

• There is a constraint A(x, r) � 0 in the Dual OPF,
and besides an optimal solution to the OPF problem
satisfies the relation A(xopt, ropt)Xopt = 0. The constraint
A(xopt, ropt)Xopt = 0 is part of the KKT conditions,
implying that the matrix A(x, r) should lose rank at
optimality. However, the stronger constraint A(x, r) � 0
is missing in the KKT conditions.

Indeed, it can be shown that if the constraint A(x, r) � 0
is incorporated into the KKT conditions, then the resulting
conditions are able to find a global optimum of the OPF
problem when the duality gap is zero.

IV. ZERO DUALITY GAP FOR POWER SYSTEMS

In this section, we study the zero-duality-gap condition (ii)
given in Theorem 2 in more details to justify why this
condition is expected to hold widely in practice. To this end,
we first study the OPF problem for DC networks, which
is indeed an NP-hard problem. This helps find the useful
properties of the Dual OPF problem, which will later be used
to explore the solvability of the OPF problem for AC networks.

A. Resistive Networks with Active Loads

As can be seen in Case (ii) of Appendix B, the OPF problem
is NP-hard even if the network is resistive and there are no
reactive loads. This situation, which corresponds to DC power
distribution, is itself important because (i) the active power
loss in a power system is due to the resistive part of the
network, and (ii) the study of this case reveals important facts
about the general OPF problem. In this section, we prove zero
duality gap for DC networks under a mild assumption, which
is expected to hold in reality.

Throughout this part, assume that the power system is a
resistive network (i.e. Im{Y } = 0) and that all loads are
modeled as constant active powers. In the formulation of the
OPF problem, it was assumed that the (active) power to be
delivered to the load of bus k ∈ N must be exactly equal to
PDk (this showed up in the power balance equations). Let the
OPF problem be changed to allow delivering any power more
than PDk to the load of bus k. To this end, define PLk as the
power delivered to the load of bus k and PDk as the desired
power requested by the load of bus k. In the OPF problem,
we have the constraints

PLk = PDk , ∀k ∈ N (9)

in the power balance equations. Modify the OPF problem by
replacing the above constraints with the following

PLk ≥ PDk , ∀k ∈ N (10)

and name the resulting problem as modified OPF problem.
Note that this variant of the OPF problem allows for the over-
satisfaction of the loads. This idea has already been considered
by some other papers too (see [34] and the references given
therein). In what follows, we first study the modified OPF
problem, and then explain why the OPF and modified OPF
problems are expected to have the same solution.

Theorem 3: The duality gap is zero for the modified OPF
problem.

Proof: One can draw a digram similar to the one depicted
in Figure 1 for the modified OPF problem to obtain four
optimization problems named modified Optimizations 1–4
(note that the name “modified Dual OPF” will be used for
the modified Optimization 4). Now, it can be shown that the
modified Dual OPF problem is the same as Optimization 4
with the exception of having the extra constraints

λk ≥ 0, ∀k ∈ N (11)

Let (xopt, ropt) denote a solution to the modified Dual OPF
problem. The goal is to show that the multiplicity of the zero
eigenvalue of A(xopt, ropt) is at most two. To this end, notice
that the constraints (1b) and (1d) can be ignored due to the
absence of reactive powers in the network (note that Slk = Plk

in this case). As a result,

γk = 0, ∀k ∈ N
r
1
lm = · · · = r

6
lm = 0, ∀(l,m) ∈ L

Hence, the matrix A(xopt, ropt) can be expressed as

A(xopt
, r

opt) =
�

T (xopt, ropt) 0
0 T (xopt, ropt)

�
(12)

for some matrix T (xopt, ropt) ∈ Rn×n, where the (l, m) off-
diagonal entry of T (xopt, ropt) is equal to

Tlm(xopt
, r

opt) = −ylm

2
�
λ

opt
lm + λ

opt
ml + λ

opt
l + λ

opt
m

�
−µ

opt
lm−µ

opt
ml

if (l,m) ∈ L and is zero otherwise. On the other hand, since
resistance is a nonnegative physical quantity, it can be shown
that ylm coming from the Π model of a transmission line or
a transformer is always nonnegative. It follows from this fact
together with the inequalities (11) and xopt ≥ 0 that all off-
diagonal entries of the matrix T (xopt, ropt) are non-positive.

Assume for now that the graph of the power system is
strongly connected, meaning that there exists a path between
every two buses of the network [32]. Assume also that the
nonnegative vector (λopt

1 , ...,λ
opt
n ) is strictly positive. These as-

sumptions imply that the matrix T (xopt, ropt) is irreducible and
its off-diagonal entries are non-positive. Hence, the Perron-
Frobenius theorem yields that the smallest eigenvalue of
T (xopt, ropt) is simple, and as a result of (12), the smallest
eigenvalue of A(xopt, ropt) is repeated twice [32]. Since this
matrix is positive semidefinite, this simply implies that the
multiplicity of the zero eigenvalue of A(xopt, ropt) is at most
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2. Thus, the duality gap is zero for the modified OPF problem,
by virtue of Part (ii) of Theorem 2.

Now, suppose that the power network is strongly connected,
but the nonnegative vector (λopt

1 , ...,λ
opt
n ) is not strictly posi-

tive. Perturb the constraint (11) as

λk ≥ ε, ∀k ∈ N

for a small strictly positive number ε. Based on the above
discussion, the duality gap is zero for the perturbed modified
OPF problem and hence the perturbed modified Optimization 3
has a rank one solution, denoted by W

opt
ε (see Part (i) of

Theorem 2). Since W
opt
ε has a bounded norm (due to the

voltage constraints in the OPF problem), this matrix converges
to a rank-one solution if ε tends to zero. Hence, the modified
Optimization 3 has a rank-one solution for ε = 0 and therefore
it follows from a variant of Condition (i) given in Theorem 2
that the duality gap is zero for the modified OPF problem.
So far, it was assumed that the graph of the power system
is connected. If not, it means that the OPF problem can be
broken down into a number of decoupled OPF problems, each
associated with a connected power sub-network. The proof is
completed by repeating the aforementioned argument for each
small-sized OPF problem. �

Theorem 3 states that the duality gap becomes zero for the
OPF problem if the load constraints are changed from equality
to inequality, meaning that the over-satisfaction of the loads
is permitted. It is important to study under what conditions
the OPF and modified OPF problems have the same solution.
This is addressed in the sequel in terms of the duals of these
problems.

Lemma 3: The duals of the OPF problem and the mod-
ified OPF problem have the same solution if the vector
(λopt

1 , ...,λ
opt
n ) associated with the original (rather than the

modified) OPF problem is nonnegative.
Proof: As stated in the proof of Theorem 3, the dual of the

modified OPF problem is the same as the dual of the OPF
problem but with the additional constraints λ1, ...,λn ≥ 0.
Therefore, if the optimal solution of the dual of the OPF
problem satisfies these constraints, its means that the duals
of the OPF and modified OPF problems have an identical
solution. This completes the proof. �

The following result can be easily derived from Lemma 3
and the proof of Theorem 3.

Corollary 2: The duality gap is zero for the OPF problem if
(λopt

1 , ...,λ
opt
n ) is positive. Moreover, the sufficient zero-duality-

gap condition given in Part (ii) of Theorem 2 holds for the OPF
problem if the vector (λopt

1 , ...,λ
opt
n ) is strictly positive and the

graph of the power network is strongly connected.
Remark 5: It might happen that the vector (λopt

1 , ...,λ
opt
n ) is

not positive, while the duality gap is still zero. To account for
such cases, one can repeat the argument made above to obtain
a less conservative condition for having a zero duality gap,
which is the positivity of λ

opt
lm + λ

opt
ml + λ

opt
l + λ

opt
m for every

(l, m) ∈ L.
Assume that the OPF and modified OPF problems have

the same solution. Then, the duality gap is zero for the OPF
problem, implying that Optimization 3 can solve the OPF
problem exactly. However, in order for the algorithm proposed

here based on Optimization 4 to solve the OPF problem, two
conditions must hold. The first one is the connectivity of the
power network that holds in reality. The second one requires
that every nonnegative aggregate multiplier λ

opt
k , k ∈ N , be

strictly positive. This condition holds for a generic OPF prob-
lem because λ

opt
k being zero implies that the load constraint

PLk = PDk can be removed from the OPF problem without
changing the solution, which signifies that the given value PDk

is not important at all.
A practical power system is often maintained at a normal

condition, where if a load bus requests to receive a certain
amount of active power or more, the optimal strategy is to
deliver exactly the minimum amount of power requested. This
normal operation results from the fact that generated power
is not supposed to be sold at a negative price (note that λ

opt
k

in practice plays the role of nodal price for the load of bus
k ∈ N ). However, an abnormal operation may occur if the
physical limits in the OPF problem are so tight that the OPF
problem is over-constrained. Under this circumstance, it is
possible that the OPF and modified OPF problems achieve
different solutions. The next theorem shows that this cannot
occur if some of the constraints are removed from the OPF
problem to avoid making it over-constrained by choosing
inappropriate physical limits.

Theorem 4: Consider a non-generator bus k ∈ N\G. If the
voltage constraints (1c) and (1f) associated with bus k and
the flow constraint (1e) associated with every line connected
to this bus are removed from the OPF problem, then λ

opt
k

corresponding to this simplified OPF problem is nonnegative.
Proof: The (k, k) entry of A(xopt, ropt), under the assump-

tions made in the theorem, can be written as

λ
opt
k



ykk +
�

l∈N (k)

ykl



 (13)

The proof follows from the following facts:
• The expression given in (13) must be nonnegative due to

the positive semi-definiteness of A(xopt, ropt).
• Although ykk might be negative, the overall term ykk +�

l∈N (k) ykl is always nonnegative (note that this term
corresponds to the (k, k) entry of Y , which is the
admittance of a passive network). �

Consider a non-generator bus k. Since the load is known
at this bus, extra constraints related to this bus can make
the OPF problem infeasible or over-constrained if the limits
are not defined properly. Note that the result of Theorem 4
can be easily generalized to generator buses as well. Hence,
the multiplier λ

opt
k is expected to be nonnegative, something

which is needed in Corollary 2 to guarantee the existence of
no duality gap for the OPF problem.

In summary, in order to be able to solve the OPF problem
in polynomial time, it suffices to have either of the following
properties:
• The over-satisfaction of a load is allowed and therefore

the modified OPF problem can be solved instead.
• The physical limits of the OPF problem are not chosen in

such a way that the power system operates in an abnormal
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condition, where the active power is offered to a load at
a negative price.

Note that if neither of the above properties is satisfied, the
duality gap can still be zero due to the condition proposed in
Remark 5.

B. General Networks with No Reactive-Load Constraints
As before, consider the modified OPF problem obtained by:

(i) replacing the equality constraint (9) with the inequality
constraint (10), and (ii) ignoring the apparent line flow limits
and taking only the active line flow limits into account.
Assume that the matrix Y is complex, but any arbitrary
(positive/negative) amount of reactive power can be injected
to each bus k ∈ N . In this case, the constraints (1b) can
be ignored. On the other hand, one can write the matrix
A(xopt, ropt) as

A(xopt
, r

opt) =
�

T (xopt, ropt) T̄ (xopt, ropt)
−T̄ (xopt, ropt) T (xopt, ropt)

�
(14)

for some real matrices T (xopt, ropt), T̄ (xopt, ropt) ∈ Rn×n. It
can be concluded from the above relation and (12) that the
matrix T̄ (xopt, ropt) becomes nonzero in the transition from
resistive to general networks. Unlike the symmetric matrix
T (xopt, ropt), the matrix T̄ (xopt, ropt) is skew-symmetric and
therefore it cannot have only positive entries. This is an
impediment to exploiting the Perron-Frobenius theorem. In
what follows, we build on Theorem 3 to bypass this issue.

Given a small number ε > 0, consider the Dual OPF
problem (Optimization 4) subject to the extra constraints

�x� ≤ 1
ε
, �r� ≤ 1

ε
, ε ≤ λk ≤

1
ε
, ∀k ∈ N (15)

where � ·� is a vector norm. This optimization corresponds to
the dual of a perturbed version of the modified OPF problem,
which is referred to as ε-modified OPF problem in this paper.
Note that when ε goes to zero, the solution of this problem
approaches that of the original modified OPF problem. To
derive the next theorem, with no loss of generality, assume that
the resistive part of the power network is strongly connected.

Theorem 5: Given ε > 0, consider an arbitrary matrix
G ∈ Rn×n, which satisfies all necessary properties for being
the real part of the admittance matrix of a power network.
There exists an unbound open set TG in Rn×n such that for
every Ḡ ∈ TG, the duality gap is zero for the ε-modified OPF
problem with Y = G + Ḡi, regardless of the specific values
of the loads and limits in the constraints (1).

Proof: Write Y as G+ Ḡi, where G is a known matrix and
Ḡ is a matrix variable. Now, the matrix A(x, r) depends on
the variable Ḡ, in addition to x and r. To account for this
dependence explicitly, we use the notation A(x, r, Ḡ) instead
of A(x, r). Let C denote the set of all triple (x, r, Ḡ) such that

i) A(x, r, Ḡ) as well as the matrices given in (8b) and (8c)
are all positive semidefinite.

ii) The dimension of the null space of A(x, r, Ḡ) is at least 3.
iii) The relations x ≥ 0 and (15) are satisfied.
The way C is defined makes it a closed semi-algebraic set (note
that the set C can be described by a number of polynomial

inequalities). Recall that C belongs to the space associated
with the variable (x, r, Ḡ). Project this set on the subspace
corresponding to its variable Ḡ and denote the resulting subset
as CG. Define TG as the complement of CG. Note that TG

contains every matrix Ḡ for which there does not exist a
vector (x, r) such that Conditions (i–iii) given above are all
satisfied. One can observe that the sufficient zero-duality-gap
condition given in Theorem 2 is satisfied for the ε-modified
OPF problem with Y = G+Ḡi as long as Ḡ ∈ TG. The proof
of this theorem follows from the facts given below:
• Since C is closed and bounded (due to the relations given

in (15)), the projection set CG is closed as well. Therefore,
the complement of CG, i.e. TG, is an open set.

• Consider a diagonal matrix Ḡ. It can be verified that the
matrix T̄ (x, r, Ḡ) is zero in this case, Thus, the matrix
A(x, r, Ḡ) has the block-diagonal structure (12), meaning
that the non-resistive part of the network has disappeared.
Hence, it can be inferred from the proof of Theorem 3
that the duality gap is zero in this case. As a result, Ḡ

must belong to TG.
• The set of diagonal matrices is unbounded. �
As done in the preceding subsection, the OPF and modified

OPF problems are expected to have the same solution; other-
wise the power system may not work in a normal condition.
Note that the condition provided in Theorem 4 to guarantee
the same solution for the OPF and modified OPF problems
still holds for a general network with no constraints on reactive
loads. In this subsection, we perturbed the modified OPF prob-
lem and defined an ε-modified OPF problem. Theorem 5 states
that for every Re{Y } (that could be arbitrarily large or small),
there exists an open, unbounded region for Im{Y } such that
the algorithm proposed in this paper can find a global optimum
of the ε-modified OPF problem with Y = Re{Y }+Im{Y }i in
polynomial time. The importance of this result is as follows:
when the duality gap is zero for a topology Y , then the ε-
modified OPF problem corresponding to every possible load
profiles and physical limits can be convexified.

C. General Networks

In this part, we combine the ideas presented in the last
two subsections to study the OPF problem associated with
a general network. For simplicity in the presentation, remove
the constraints |Slm| ≤ Smax

lm (where (l,m) ∈ L), because of
its similarity to the constraint |Plm| ≤ Pmax

lm . Consider the
matrix A(xopt, ropt), which can be expressed as

A(xopt
, r

opt) =
�

T (xopt, ropt) T̄ (xopt, ropt)
−T̄ (xopt, ropt) T (xopt, ropt)

�

where T (xopt, ropt) is symmetric and T̄ (xopt, ropt) is skew-
symmetric. As observed in both the resistive case and the
general case with no reactive-load constraints, the duality gap
can be pushed towards zero if the off-diagonal entries of
T (xopt, ropt) are all non-positive. In what follows, we first
study the sign structure of T (xopt, ropt).

As carried out in Subsection IV-A, define PDk + QDk i as
the apparent power requested by load k ∈ N and PLk +QLk i
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as the apparent power delivered to load k ∈ N . In the original
OPF problem, the equalities

PLk = PDk , QLk = QDk , ∀k ∈ N (16)

must hold. If these equalities are replaced by the inequalities

PLk ≥ PDk , QLk ≥ QDk , ∀k ∈ N (17)

then the optimal solutions λ
opt
k and γ

opt
k corresponding to

the dual of the modified OPF problem will both become
nonnegative. On the other hand, the (k, l) ∈ L entry of
T (xopt, ropt) can be obtained as

Tkl(xopt
, r

opt) =− Re{ykl}
2

�
λ

opt
kl + λ

opt
kl + λ

opt
k + λ

opt
l

�

+
Im{ykl}

2
�
γ

opt
k + γ

opt
l

�
− µ

opt
kl − µ

opt
kl

(18)

With no loss of generality, assume that there exists no phase
shifting transformer in the power system (for the analysis
presented next, one may need to replace every phase shifting
transformer with the model proposed in [35]). Due to the
particular models of transmission lines and transformers as
well as the non-negativity of resistance and capacitance, the
matrix Y has the following two properties:
P1) The off-diagonal entries of the real part of Y are non-

positive.
P2) The off-diagonal entries of the imaginary part of Y are

nonnegative.
It follows from these properties and the relation (18) that
the off-diagonal entries of T (xopt, ropt) are non-positive if
λ

opt
k , γ

opt
k ≥ 0, ∀k ∈ N , or equivalently if the equality

load constraints (16) are replaced by the inequality load
constraints (17). Unlike λ

opt
1 , ..., , λ

opt
n that are expected to be

all nonnegative, a few of γ
opt
1 , ..., , γ

opt
n might become negative.

Indeed, it is known that the injection of a negative reactive
power to a bus might reduce the optimal generation cost,
especially when there exists a large capacitor bank at the same
bus.

Hence, the sufficient condition λ
opt
k , γ

opt
k ≥ 0, ∀k ∈ N ,

for guaranteeing a nice sign structure on T (xopt, ropt) does
not always hold. Now, we wish to study a less conservative
sufficient condition here. It follows from (18) that the off-
diagonal entries of T (xopt, ropt) are non-positive if

Re{ykl}
2

�
λ

opt
kl + λ

opt
kl + λ

opt
k + λ

opt
l

�

− Im{ykl}
2

�
γ

opt
k + γ

opt
l

�
≥ 0

(19)

for every (k, l) ∈ L. This condition is satisfied for IEEE
benchmark systems. The interpretation of this condition for
a single line (k, l) ∈ L is as follows:
• Define a modified OPF with the following active/reactive

load constraints

PLm = PDm , QLm = QDm , ∀m ∈ N\{k, l}
PLm ≥ PDm , QLm ≥ QDm , ∀m ∈ {k, l}

where the load over-satisfaction at buses k and l must
obey the relations

PLk − PDk = PLl − PDl = τ × Re{ykl}
QLk −QDk = QLl −QDl = τ × Im{−ykl}
max{Plm, Pml} ≤ P

max
lm − τ × Re{ykl}

for some nonnegative number τ .
• The dual of the above modified OPF problem can be

obtained from the Dual OPF by incorporating the extra
constraint (19).

• If optimal τ becomes zero, then the OPF and modified
OPF problems will have the same solution, meaning that
the (k, l) entry of T (xopt, ropt) is non-positive.

Notice that the modified OPF problem defined above allows
the reactive load at bus k to be over-satisfied, but enforces extra
consumption of both active and reactive loads at buses k, l and
reduces the maximum flow limit on line (k, l). Therefore, it
is very likely to obtain τ opt = 0 due to these penalties for
load over-satisfaction (note that the imposed over-satisfaction
of active load often leads to more power loss). The above
modified OPF problem is defined to ensure the non-positivity
of only the (k, l) entry of T (xopt, ropt). A similar modified
OPF can be defined corresponding to all off-diagonal entries
of T (xopt, ropt).

So far, the reason why the off-diagonal entries of
T (xopt, ropt) are expected to be non-positive is investigated.
Having assumed the presence of this sign structure on
T (xopt, ropt), consider the matrix

�
T (xopt, ropt) T̄ (xopt, ropt)× ω

−T̄ (xopt, ropt)× ω T (xopt, ropt)

�
(20)

for a given real number ω. As argued in the proof of Theo-
rem 3, the smallest eigenvalue of the above matrix is repeated
twice when ω = 0. Hence, there exists an interval [0,ωmax]
(where ωmax > 0) such that the smallest eigenvalue of the
matrix (20) is repeated twice for every ω belonging to this
interval. Now, note that if ωmax > 1, then the zero-duality-
gap condition given in Theorem 2 is satisfied. This happens
whenever T̄ (xopt, ropt) is sufficiently smaller than T (xopt, ropt)
with respect to a suitable measure on their entries. As can
be justified intuitively and verified in simulations, this is the
case for practical systems operating at normal a condition,
including the IEEE test systems.

It is noteworthy that Theorem 5 can be generalized to a
general network (with arbitrary constraints) to deduce that
there exists a large set for Y such that the ε-modified OPF
problem has zero duality gap with respect to all network
topologies Y in that region.

D. Power Loss Minimization
In this subsection, we consider the loss minimization prob-

lem, as an important special case of the OPF problem. This
corresponds to the assumption fk(PGk) = PGk for every
k ∈ G. Most of the results to be presented here can be extended
to a general OPF problem. With no loss of generality, assume
that Re{Y } has exactly one zero eigenvalue, implying that
(i) the graph associated with the resistive part of the network
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is strongly connected [32], and (ii) every load modeled as a
shunt admittance has no resistive part. Notice that the power
loss in a power system can be reduced by either increasing
the voltage limits or decreasing the resistance of transmission
lines. The next lemma investigates an ideal case where the
power loss is zero.

Theorem 6: If the active power losses in the transmission
lines were zero at optimality, then there would exist an optimal
dual point (xopt, ropt) satisfying the relations

r
opt = 0, λ

opt
k = 1, γ

opt
k = µ

opt
k = λ

opt
lm = µ

opt
lm = 0

for every k ∈ N and (l,m) ∈ L. Moreover, this dual solution
satisfies the zero-duality-gap condition (ii) given in Theorem 2.
Proof: Consider a specific point (x, r) defined as r = 0 and

λk = γ
k

= γ̄k = µ
k

= µ̄k = λlm = µlm = 0

λ̄k :=
�

0 if k ∈ G
1 otherwise

for all k ∈ N and (l,m) ∈ L. It is straightforward to verify
that h(x, r) =

�
k∈N PDk . On the other hand, since the

OPF problem is feasible and the total power loss is zero,
the optimal objective value of the OPF problem is equal
to the total demand. This shows that the objective value of
the Dual problem at (x, r) is identical to the optimal value
of the OPF problem. Hence, to prove that (x, r) is a dual
solution, it suffices to show that (x, r) is a feasible point of
this optimization problem. To this end, it can be verified that

λk = 1, γk = 0, µk = 0, ∀k ∈ N

and hence

A(x, r) =
�

Re{Y } 0
0 Re{Y }

�

Therefore, A(x, r) is positive semidefinite and has a zero
eigenvalue of multiplicity 2. This means that (xopt, ropt) =
(x, r) is indeed a maximizer of Optimization 4 for which the
sufficient zero-duality-gap condition (ii) given in Theorem 2
holds. �

Theorem 6 studies a special type of the OPF problem in
an ideal case of no power loss, and presents an optimal dual
solution explicitly from which it can be seen that the duality
gap is zero. However, active power loss is nonzero, but small,
in practice. In that case, if the Lagrange multipliers λ

opt
k , γ

opt
k

and µ
opt
k are treated as nodal prices for active and reactive

powers as well as voltage levels, it can be argued that the
optimal point in a lossy case is likely to be close enough
to the dual solution given in Theorem 6 so that the matrix
A(xopt, ropt) will still have two zero eigenvalues. In other
words, it is expected that a small power loss in the transmission
lines does not create a nonzero duality gap.

V. POWER SYSTEM EXAMPLES

This section illustrates our results through two examples.
Example 1 uses the IEEE benchmark systems archived at
[22] to show the practicality of our result. Since the systems
analyzed in Example 1 are so large that the specific values of
the optimal solutions cannot be provided in the paper, some
smaller examples are analyzed in Example 2 with more details.

The results of this section are attained using the following
software tools:
• The MATLAB-based toolbox “YALMIP” (together with

the solver “SEDUMI”) is used to solve the Dual OPF
problem (i.e. Optimization 4), which is an SDP prob-
lem [29].

• The software toolbox “MATPOWER” is used to solve the
OPF problem in Example 1 for the sake of comparison.
The data for the IEEE benchmark systems analyzed
in this example is extracted from the library of this
toolbox [30].

• The software toolbox “PSAT” is used to draw and analyze
the power networks given in Example 2 [31].

A. Example 1: IEEE Benchmark Systems
Consider the OPF problems associated with IEEE systems

with 14, 30, 57, 118 and 300 buses, where
• There are constraints on the voltage magnitude, active

power and reactive power at every bus as well as the
apparent power at every line.

• The objective function is either the total generation cost
or the power loss.

In simulations, we observed that the necessary and sufficient
zero-duality-gap condition (i) given in Theorem 2 is always
satisfied for all these systems. However, since the main algo-
rithm proposed here is based on the sufficient zero-duality-
gap condition (ii) delineated in Theorem 2, we studied this
condition for IEEE systems and noticed that the condition is
always satisfied after a small perturbation of Y , as discussed
below. Due to space restrictions, the details will be provided
only in one case: the loss minimization for the IEEE 30-bus
system.

Consider the OPF problem for the IEEE 30-bus system,
where the objective is to minimize the total power generated
by the generators. When Optimization 4 is solved, the four
smallest eigenvalues of the matrix

A(xopt
, r

opt) =
�

T (xopt, ropt) T̄ (xopt, ropt)
−T̄ (xopt, ropt) T (xopt, ropt)

�

would be obtained as 0, 0, 0, 0. Since the number of zero
eigenvalues is 4, condition (ii) in Theorem 2 is violated. To
explore the underlying reason, consider the circuit of this
power system that is depicted in Figure 2. The circuit is
composed of three regions connected to each other via some
transformers. This implies that if each line of the circuit is
replaced by its resistive part, the resulting resistive graph
will not be connected (since the lines with transformers are
assumed to have no resistive parts). Thus, the graph induced
by Re{Y } is not strongly connected. Although this does not
create a nonzero duality gap, it causes our sufficient duality-
gap condition to be violated (see Corollary 2). This is an issue
with all the IEEE benchmark systems. This can be easily fixed
by adding a little resistance to each transformer, say on the
order of 10−5 (per unit). After this modification to the real part
of Y , the four smallest eigenvalues of the matrix A(xopt, ropt)
turn out to be 0, 0, 0.0053, 0.0053; i.e. the zero eigenvalues
resulting from the non-connectivity of the resistive graph have
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(a)

Fig. 2. The circuit of the IEEE 30-bus system taken from [22].

disappeared. Now, Condition (ii) in Theorem 2 is satisfied and
therefore the vector of optimal voltages can be recovered using
the algorithm described after Theorem 2.

To illustrate the discussions made in Section IV, we note
that (for every k ∈ N )

λ
opt
k ∈ [1, 1.1466], γ

opt
k ∈ [−0.0062, 0.1443],

µ
opt
k ∈ [−0.0216, 0]

Hence
• λ

opt
k ’s are all positive and around 1.

• γ
opt
k ’s are all but one nonnegative, and besides they are

around 0 .
• µ

opt
k ’s are all very close to 0.

Moreover, the maximum absolute values of the entries of
T̄ (xopt, ropt) is 0.1844, whereas the average absolute values of
the nonzero entries of T (xopt, ropt) is 4.2583. This confirms the
claim in Section IV-C that the matrix T̄ (xopt, ropt) is expected
to be negligible compared to T (xopt, ropt).

The computation on the IEEE benchmark examples were
all finished in a few seconds and the number of iterations
for each example was between 5 and 20. Note that although
Optimization 4 is convex and there is no convergence problem
regardless of what initial point is used, the number of iterations
needed to converge mainly depends on the choice of starting
point. It is worth mentioning that when different algorithms
implemented in Matpower were applied to these systems, some
of the constraints are violated at the optimal point probably

due to the relatively large-scale and non-convex nature of the
OPF problem. However, no constraint violation have occurred
by solving the dual of the OPF problem due to its convexity.

B. Example 2: Small Systems

The IEEE test systems in the previous example operate in a
normal condition at which the optimal bus voltages are close
to each other in both magnitude and phase. This example
illustrates that the sufficient zero-duality-gap condition (ii)
given in Theorem 2 is satisfied even in the absence of such
a normal operation. Consider three distributed power systems,
referred to as Systems 1, 2 and 3, depicted in Figure 3. Note
that Systems 2 and 3 are radial, while System 1 has a loop.
The detailed specifications of these systems are provided in
Table I in per unit for the voltage rating 400 kV and the
power rating 100 MVA, in which z̄lm and ȳlm denote the
series impedance and the shunt admittance of the Π model of
the transmission line connecting buses l, m ∈ {1, 2, 3, 4}. The
goal is to minimize the active power injected at slack bus 1
while satisfying the constraints given in Table II.

Optimization 4 is solved for each of these systems, and
it is observed that the zero-duality-gap condition derived in
this work always holds. A globally optimal solution of the
OPF problem recovered from the solution of Optimization 4
is provided in Table III (Ploss and Qloss in the table represent
the total active and reactive power losses, respectively). It
is interesting to note that although different buses have very



12

TABLE I
PARAMETERS OF THE SYSTEMS GIVEN IN FIGURE 3.

Parameters System 1 System 2 System 3
z̄12 0.05 + 0.25i 0.1 + 0.5i 0.10 + 0.1i
z̄13 0.04 + 0.40i None None
z̄23 0.02 + 0.10i 0.02 + 0.20i 0.01 + 0.1i
z̄14 None None 0.01 + 0.2i
ȳ12 0.03i 0.01i 0.03i
ȳ13 0.025i None None
ȳ23 0.01i 0.01i 0.01i
ȳ14 None None 0.01i

TABLE II
CONSTRAINTS TO BE SATISFIED FOR THE SYSTEMS GIVEN IN FIGURE 3.

Constraints System 1 System 2 System 3
PD2 + QD2 i 0.95 + 0.4i 0.7 + 0.02i 0.9 + 0.02i
PD3 + QD3 i 0.9 + 0.6i 0.65 + 0.02i 0.6 + 0.02i
PD4 + QD4 i None None 0.9 + 0.02i

V max
1 1.05 1.4 1

disparate voltage magnitudes and phases, the duality gap is still
zero. The optimal solution of Optimization 4 is summarized
in Table IV to demonstrate that the Lagrange multipliers
corresponding to active and reactive power constraints are
positive.

As another scenario, let the desired voltage magnitude at the
slack bus of System 1 be changed from 1.05 to 1. It can be
verified that the optimal value of Optimization 4 becomes +∞,
which simply implies that the corresponding OPF problem is
infeasible.

We repeated several hundred times this example by ran-
domly choosing the parameters of the systems given in Fig-
ure 3 over a wide range of values. In all these trials, the algo-
rithm prescribed in Section III always found a globally optimal
solution of the OPF problem or detected its infeasibility.

TABLE III
PARAMETERS OF THE OPF PROBLEM RECOVERED FROM THE SOLUTION

OF OPTIMIZATION 4.

Recovered System 1 System 2 System 3
Parameters

V opt
1 1.05∠0◦ 1.4∠0◦ 1∠0◦

V opt
2 0.71∠−20.11◦ 1.10∠−25.73◦ 0.78∠−10.58◦

V opt
3 0.68∠−21.94◦ 1.08∠−31.96◦ 0.76∠−16.31◦

V opt
4 None None 0.95∠−10.82◦

P opt
loss 0.2193 0.1588 0.3877

Qopt
loss 1.2944 0.7744 0.5343

TABLE IV
LAGRANGE MULTIPLIERS OBTAINED BY SOLVING OPTIMIZATION 4 FOR

THE SYSTEMS GIVEN IN FIGURE 3.

Lagrange Multipliers System 1 System 2 System 3
λopt
2 1.3809 1.4028 1.7176

λopt
3 1.4155 1.4917 1.7900

λopt
4 None None 1.0207

γopt
2 0.4391 0.2508 0.1764

γopt
3 0.4955 0.2633 0.1858

γopt
4 None None 0.0061

µopt
1 0.0005 0.0001 0.0005

VI. CONCLUSIONS

This paper is concerned with the optimal power flow (OPF)
problem that has been studied for about half a century and
is notorious for its high nonconvexity. We have derived the
dual of a reformulated OPF problem as a convex (SDP)
optimization, which can be solved efficiently in polynomial
time. We have provided a necessary and sufficient condition
under which the duality gap is zero and hence a globally
optimal solution to the OPF problem can be recovered from
a dual optimal solution. This condition is satisfied for the
IEEE benchmark systems with 14, 30, 57, 118 and 300 buses.
Since this condition is hard to study, a sufficient zero-duality-
gap condition is also proposed. We justify why this sufficient
condition might hold widely in practice. The main underlying
reasons for zero duality gap are (i) the particular modeling of
transmission lines and transformers, and (ii) the non-negativity
of physical quantities such as resistance and inductance.

As expected and already reported in [19], local-search
algorithms converge faster than SDP algorithms for solving
an OPF problem. However, the SDP problem derived here can
be useful for addressing many problems such as: (i) finding
a globally optimal solution, (ii) verifying whether a locally
optimal solution is globally optimal, (iii) solving emerging
optimization problems in smart grids where the existing local-
search algorithms may not work well [35], and (iv) identifying
the number of solutions of a power flow problem. Note that the
current SDP solvers cannot handle OPF problems with several
thousand buses efficiently. However, the authors have observed
that those SDP problems can be reduced to second-order-cone
programs, which can be solved in less than a minute for OPF
problems with as many as 10,000 buses. The details of this
result and some other by-products of the convexification of
the OPF problem are currently under study.
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APPENDIX

A. LMI and SDP Optimization Problems

The area of convex optimization has seen remarkable
progress in the past two decades, particularly in linear ma-
trix inequalities (LMIs) and semidefinite programming (SDP)
where the goal is to minimize a linear function subject to
some LMIs [21], [23]. The book [24] describes several difficult
control problems that can be cast as LMI/SDP problems. The
recent advances in this field have been successfully applied
to different problems in other areas, e.g. circuit and com-
munications [25], [26]. A powerful property in semidefinite
programming is that the dual of an SDP optimization problem
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Fig. 3. Figures (a), (b) and (c) depict Systems 1, 2 and 3 studied in Example 2, respectively.

is again an SDP problem and, moreover, strong duality often
holds [23].

Given the scalar variables x1, ..., xn, consider the problem
of minimizing

a1x1 + a2x2 + · · ·+ anxn (21)

subject to the LMI constraint

A0 + A1x1 + · · ·+ Anxn � 0 (22)

where a1, ..., an are given real numbers and A0, ..., An are
given symmetric matrices in Rn0×n0 , for some natural num-
ber n0. Notice that the objective of the above optimization
problem is a linear scalar function, and its constraint is an
LMI. The above optimization problem is referred to as an
SDP problem, which belongs to the category of convex opti-
mization problems that can be solved efficiently. To write the
Lagrangian for the above optimization problem, a Lagrange
multiplier should be introduced for the inequality (22). In
light of the generalized Lagrangian theory, the multiplier
associated with the inequality (22) is a symmetric matrix W in
Rn0×n0 that must be positive semidefinite. The corresponding
Lagrangian will be as follows:

n�

k=1

akxk + Tr

�
W

�
A0 +

n�

k=1

Akxk

��

Note that the trace operator performs the multiplication be-
tween the expression in the constraint (22) and its associated
Lagrange multiplier. Minimizing the above Lagrangian over
x1, ..., xn and then maximizing the resulting term over W � 0
lead to the optimization problem of maximizing

Tr{WA0}

subject to the constraints

Tr{WAk}+ ak = 0, k = 1, 2, ..., n

for a symmetric matrix variable W � 0. This optimization
problem is the dual of the initial optimization problem formu-
lated in (21) and (22). If some mild conditions (such as Slater’s
conditions) hold, then the duality gap between the solutions
of these two optimization problems becomes zero, meaning
that the optimal objective values obtained by these problems
will be identical. In this case, it is said that “strong duality”

holds; otherwise, only “weak duality” holds in which case the
optimal value of the dual problem is only a lower bound on the
optimal value of the original problem. One can refer to [21]
and [23] for detailed discussions on LMI and SDP problems.

B. NP-Hardness of OPF Problems
Consider two extremely special (artificial) instances of the

OPF problem in the sequel:
• Case 1: This case corresponds to the situation where G =
N and

fk(PGk) = PGk , ∀k ∈ G
V

min
k = V

max
k = 1, ∀k ∈ N

P
min
k = Q

min
k = −∞, ∀k ∈ G

P
max
k = Q

max
k = +∞, ∀k ∈ G

S
max
lm = P

max
lm = ∆V

max
lm = ∞, ∀(l,m) ∈ L

The above setting makes the power balance equations
together with the constraints (1a), (1b), (1d), (1e) and
(1f) all disappear. It is straightforward to verify that the
OPF problem reduces to

min
V

�
Re{V∗

Y V}+
�

k∈N
PDk

�

s.t. |Vk| = 1, ∀k ∈ N
(23)

Note that if the lower limit Pmin
k chosen as −∞ is

not allowed to be less than zero, one can choose PDk

sufficiently large so that the OPF problem again turns
into the above optimization problem. Observe that the
feasibility region of this OPF problem in the space of
V is a connected, but nonconvex, set (the nonconvexity
comes from the fact that this region encloses the origin
but does not contain it).

• Case 2: This case is obtained from Case 1 by including
the extra assumption Im{Y } = 0 and changing the limits
Qmin

k = −∞ and Qmax
k = +∞ to Qmin

k = Qmax
k = 0

for every k ∈ G. With no loss of generality, suppose that
the voltage angle at bus 1 is equal to 0. Then, the OPF
problem can be written as

min
V

�
V∗

Y V +
�

k∈N
PDk

�

s.t. Vk ∈ {−1, 1}, ∀k ∈ N
(24)
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The feasibility region of this problem is a discrete set
with an exponential number of points in terms of n.

The optimization problems given in (23) and (24) are both
NP-hard [33]. Hence, the OPF problem is NP-hard as well,
due to its special (artificial) Cases 1 and 2 being NP-hard.
Note that although the NP-harness of the OPF problem was
proved here by focusing on the voltage constraints, one can
come to the same conclusion by only considering the active
or reactive constraints. Indeed, Lemma 1 presented earlier
in this work shows that these constraints introduce indefinite
quadratic constraints, which again make the OPF problem NP-
hard [33].

C. Proofs
In this subsection, we prove Lemmas 1-2, Theorems 1-2

and Corollary 1.

Proof of Lemma 1: In order to prove (2a), one can write:

Pk,inj = Re{VkI
∗
k} = Re{V∗

eke
∗
kI} = Re{V∗

YkV}

= XT

�
Re{Yk} −Im{Yk}
Im{Yk} Re{Yk}

�
X

=
1
2
XT

�
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

�
X

= XT YkX = Tr
�
YkXXT

�

The inequality (2b) can be derived similarly. On the other
hand, the technique used above can be exploited to show that

S
∗
lm = V

∗
l (Vlȳlm) + V

∗
l (Vl − Vm) ylm = VYlmV∗

= Tr
�
YlmXXT

�
− Tr

�
ȲlmXXT

�
i

Inequalities (2c) and (2d) follow immediately from the above
equality. The remaining inequalities in (2) can be proved
similarly. �

Proof of Lemma 2: Assume that W opt is a rank-one
solution of Optimization 3. Write this matrix as Xopt(Xopt)T

for some vector Xopt, and define Xopt
1 and Xopt

2 in such a way
that Xopt =

�
(Xopt

1 )T (Xopt
2 )T

�T . It can be verified that
the matrix

1
2
Xopt(Xopt)T

+
1
2

�
Xopt

1 ω1 −Xopt
2 ω2

Xopt
1 ω2 + Xopt

2 ω1

� �
Xopt

1 ω1 −Xopt
2 ω2

Xopt
1 ω2 + Xopt

2 ω1

�T

is a solution of Optimization 3 for every real numbers ω1

and ω2 such that ω2
1 + ω2

2 = 1. The proof is completed by
noting that the above matrix has rank 2 for generic values of
(ω1,ω2). �

Proof of Part (i) of Theorem 1: Consider the Lagrange
multipliers introduced before Optimization 4 with the only
difference that the multiplier

�
1 r1

k
r1
k r2

k

�

given in (7) should be replaced by a general matrix
�

r0
k r1

k
r1
k r2

k

�

(indeed, we do not yet know that r0
k = 1.) The Lagrangian for

Optimization 1 can be written as (after some simplifications)

Tr
�
A(x, r)XXT

�
+ h(x, r) +

�

k∈G
(1− r

0
k)αk

To obtain the dual of Optimization 1, the Lagrangian should
first be minimized over X and αk’s, and then be maximized
over the Lagrange multipliers. Observe that
• The minimum of

�
1− r0

k

�
αk over the variable αk is −∞

unless r0
k = 1, in which case the minimum is zero.

• The minimum of the term

Tr
�
A(x, r)XXT

�

over X is −∞ unless A(x, r) is positive semidefinite, in
which case the minimum is zero.

The proof follows immediately from these observations. �
Proof of Part (ii) of Theorem 1: One can derive the

dual of Optimization 3 by means of the standard procedure
outlined in Appendix A (see [21] and [24] for more details).
This leads to Optimization 4, where its variable W plays the
role of the Lagrange multiplier for the matrix constraint (8a)
in Optimization 3. The details are omitted for brevity. In
what follows, we will show that strong duality holds between
Optimizations 3 and 4. Since these optimizations are both
semidefinite programs and hence convex, it suffices to prove
that Optimization 4 has a finite optimal objective value and
a strictly feasible point (Slater’s condition). Since the OPF
problem is feasible and equivalent to Optimization 1, Opti-
mization 1 has a finite optimal value. Optimization 4 is its dual
by Part (i) of Theorem 1, and is therefore upper bounded by
the finite optimal value of Optimization 1 (weak duality). To
show that Optimization 4 has a strictly feasible point, consider
the point (x, r) given below

λk =
�

ck1 + 1 if k ∈ G
1 otherwise , λ̄k = 1, λlm = ε

γ
k

= γ̄k = 1,

µ
k

= 1, µ̄k = 2, µlm = 1,

r
1
k = 0, r

2
k = 1,

r
1
lm = r

4
lm = r

6
lm = 1, r

2
lm = r

3
lm = r

5
lm = 0

(25)

for k ∈ N and (l,m) ∈ L, where ε is some positive number.
Then λk = γk = 0 and µk = 1. Now, observe that
• The variable x whose entries are specified in (25) is

strictly positive componentwise.
• The relations




r1
lm r2

lm r3
lm

r2
lm r4

lm r5
lm

r3
lm r5

lm r6
lm



 = I � 0

�
1 rl1

rl11 rl2

�
= I � 0

hold.
• We have

h(x, r) = I + ε

�

(l,m)∈L

Ylm +
�

(l,m)∈L

Mlm
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Since Mlm is positive semidefinite, h(x, r) becomes
strictly positive definite for sufficiently small values of ε.

In light of the above observations, (x, r) given in (25) is a
strictly feasible point of Optimization 4 for an appropriate
value of ε. Hence, strong duality holds. �

Proof of Part (i) of Theorem 2: Recall that the following
properties hold for Optimizations 1–4:
• The optimal (objective) values of Optimizations 1 and

2 are the same, due to the equivalence between these
optimizations.

• The optimal values of Optimizations 3 and 4 are identical,
due to strong duality.

These properties yield that the duality gap for Optimization 1
is equal to the difference between the optimal values of
Optimizations 2 and 3. The proof is completed by noting that
this difference is zero if and only if Optimization 3 has a
rank-one solution.

Proof of Part (ii) of Theorem 2: Let W opt denote a solution
of Optimization 3. It follows from Part (ii) of Theorem 1 and
the KKT conditions that

Tr
�
A(xopt

, r
opt)W opt� = 0 (26)

Denote the nonzero eigenvalues of W opt as ρ1, ..., ρf and
their associated unit eigenvectors as E1, ..., Ef for some
nonnegative integer f . By writing W opt as

�f
l=1 ρlElE

T
l , it

can be conduced from (26) and the positive semi-definiteness
of W opt and A(xopt, ropt) that

A(xopt
, r

opt)El = 0, ∀l ∈ {1, ..., f}

This implies that the orthogonal eigenvectors E1, ..., Ef all
belong to the null space of A(xopt, ropt), which has dimension
2. Hence, f is less than or equal to 2. On the other hand,
if f = 1, then Optimization 3 has a rank-one solution and
consequently the duality gap is zero for Optimization 1 (see
Part (i) of Theorem 2). Therefore, assume that f is equal to
2. It can be shown that there exist two matrices T (x, r) and
T̄ (x, r) such that

A(x, r) =
�

T (x, r) T̄ (x, r)
−T̄ (x, r) T (x, r)

�
(27)

Decompose E1 as
�

ET
11 ET

12

�T for some vectors
E11, E12 ∈ Rn. It can be inferred from the above equation
that

�
−ET

12 ET
11

�T is in the null space of A(xopt, ropt) as
well. Since this vector is orthogonal to E1, the vector E2 must
be equal to ±

�
−ET

12 ET
11

�T . Thus, one can write

W
opt = ρ1

�
E11

E12

� �
ET

11 ET
12

�

+ ρ2

�
−E12

E11

� �
−ET

12 ET
11

� (28)

Consider now the rank-one matrix

(ρ1 + ρ2)
�

E11

E12

� �
ET

11 ET
12

�
(29)

Since W opt given in (28) satisfies the constraints of Optimiza-
tion 3 and also maximizes its objective function, it is easy to
verify that the rank-one matrix in (29) is also a solution of

Optimization 3. In other words, Optimization 3 has a rank-
one solution, which makes the duality gap for Optimization 1
equal to zero (in light of Part (i) of Theorem 2). �

Proof of Corollary 1: As can be deduced from the proof
of Part (ii) of Theorem 2, since

�
XT

1 XT
2

�T belongs to
the null space of A(xopt, ropt), the vector

�
XT

2 −XT
1

�T

is also is in the null space of the same matrix. Now, recall
that Optimization 3 has a rank-one solution W opt that is
decomposable as Xopt(Xopt)T , where Xopt is a solution of
Optimization 1. In light of the relation (26), Xopt belongs to
the null space of A(xopt, ropt) and hence there exist two real
numbers ζ1 and ζ2 such that

Xopt = ζ1

�
X1

X2

�
+ ζ2

�
−X2

X1

�

or equivalently

Vopt = (ζ1 + ζ2i)(X1 + X2i)

This completes the proof of Part (i) of Corollary 1. Part (ii) of
this corollary follows immediately from the proof of Part (ii)
of Theorem 2. The details are omitted for brevity. �
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