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Abstract—Energy use of computer communications systems
has quickly become a vital design consideration. One effective
method for reducing energy consumption is dynamic speed
scaling, which adapts the processing speed to the current load.
This paper studies how to optimally scale speed to balance mean
response time and mean energy consumption under processor
sharing scheduling. Both bounds and asymptotics for the optimal
speed scaling scheme are provided. These results show that a
simple scheme that halts when the system is idle and uses a
static rate while the system is busy provides nearly the same
performance as the optimal dynamic speed scaling. However, the
results also highlight that dynamic speed scaling provide at least
one key benefit — significantly improved robustness to bursty
traffic and mis-estimation of workload parameters.

I. INTRODUCTION

Power management is increasingly important in computer
communications systems. Not only is the energy consumption
of the internet becoming a significant fraction of the energy
consumption of developed countries [1], but cooling is also
becoming a major concern. Consequently, there is an important
tradeoff in modern system design between reducing energy use
and maintaining good performance.

There is an extensive literature on power management,
reviewed in [2]–[4]. A common technique, which is the focus
of the current paper, is dynamic speed scaling [5]–[8]. This
dynamically reduces the processing speed at times of low
workload, since processing more slowly uses less energy per
operation. This is now common in many chip designs [9],
[10]. In particular, speed scaling has been proposed for many
network devices, such as switch fabrics [11], TCP offload
engines [12], and OFDM modulation clocks [13].

This paper studies the efficacy of dynamic speed scaling
analytically. The goal is twofold: (i) to elucidate the structure
of the optimal speed scaling scheme, e.g., how should the
speed depend on the current workload? (ii) to compare the
performance of dynamic speed scaling designs with that of
designs that use static processing speeds, e.g., how much
improvement does dynamic speed scaling provide?

There are many analytic studies of speed scaling designs.
Beginning with Yao et al. [14], the focus has been on either
(i) the goal of minimizing the total energy used in order to
complete arriving jobs by their deadlines, e.g., [15], [16], or
(ii) the goal of minimizing the average response time of jobs,
i.e., the time between their arrival and their completion of
service, given a set energy/heat budget, e.g., [17]–[19].

Web settings typically have neither job completion deadlines
nor fixed energy budgets. Instead, the goal is to optimize a

tradeoff between energy consumption and mean response time.
This model is the focus of the current paper. In particular, the
performance metric considered is E[T ]+E[E]/β′, where T is
the response time of a job, E is the expected energy expended
on that job, and β′ controls the relative cost of delay.

This performance metric has attracted attention recently
[16], [20]–[22]. The related analytic work falls into two
categories: worst-case analyses and stochastic analyses. The
former provide specific, simple speed scalings guaranteed to be
within a constant factor of the optimal performance regardless
of the workload, e.g., [16], [20], [21]. In contrast, stochastic re-
sults have focused on service rate control in the M/M/1 model
under First Come First Served (FCFS) scheduling, which can
be solved numerically using dynamic programming. One such
approach [22] is reviewed in Section III-C. Unfortunately, the
structural insight obtained from stochastic models has been
limited.

Our work extends the stochastic analysis of dynamic speed
scaling. We focus on the M/GI/1 queue under Processor
Sharing (PS) scheduling, which serves all jobs currently in
the system at equal rates. We focus on PS because it is a
tractable model of current scheduling policies in CPUs, web
servers, routers, etc. Based on the model (Section II) and the
speed scaling we consider (Section III), our analysis makes
three main contributions.
• We provide bounds on the performance of dynamic speed

scaling (Section IV-A). Surprisingly, these bounds show
that even an idealized version of dynamic speed scaling im-
proves performance only marginally compared to a simple
scheme where the server uses a static speed when busy and
speed 0 when idle — at most a factor of 2 for typical pa-
rameters and often less (see Section V). Counterintuitively,
these bounds also show that the power-optimized response
time remains bounded as the load grows.

• We provide bounds and asymptotics for the speeds used
by the optimal dynamic speed scaling scheme (Sections
IV-B and IV-C). These results provide insight into how
the speeds scale with the arriving load, the queue length,
and the relative cost of energy. Further, they uncover
a connection between the optimal stochastic policy and
results from the worst-case community (Section IV).

• We illustrate through analytic results and numerical experi-
ments that, though dynamic speed scaling provides limited
performance gains, it dramatically improves robustness to
mis-estimation of workload parameters and bursty traffic
(Section VI).
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II. MODEL AND NOTATION

In order to study the performance of dynamic speed scaling,
we focus on a simple model: an M/GI/1 PS queue with
controllable service rates, dependent on the queue length. In
this model, jobs arrive to the server as a Poisson process with
rate λ, have intrinsic sizes with mean 1/µ, and depart at rate
snµ when there are n jobs in the system. Under static schemes,
the (constant) service rate is denoted by s. Define the “load”
as ρ = λ/µ, and note that this ρ is not the fraction of time
the server is busy.

The performance metric we consider is E[T ] + E[E]/β′,
where T is the response time of a job and E is the energy
expended on a job. It is often convenient to work with the
expected cost per unit time, instead of per job. By Little’s
law, this can be written as z = E[N ] +λE[f(s)]/β′, where N
is the number of jobs in the system and f(s) determines the
power used when running at speed s.

The remaining piece of the model is to define the form
of f(s). Prior literature, with the notable exception of [20],
has typically assumed that f is convex, and often, that f is a
polynomial, specifically a cubic. That is because the dynamic
power of CMOS is proportional to V 2f , where V is the supply
voltage and f is the clock frequency [4]. Operating at a higher
frequency requires dynamic voltage scaling (DVS) to a higher
voltage, nominally with V ∝ f , yielding a cubic relationship.

To validate the polynomial form of f , we consider data
from real 90 nm chips in Fig. 1. The voltage versus speed
data comes from the Intel PXA [23], Pentium M 770 pro-
cessor [24], and the TCP offload engine studied in [12]
(specifically the NBB trace at 75◦C in Fig 8.4.5). Interestingly,
the dynamic power use of real chips is well modeled by a
polynomial scaling of speed to power, but this polynomial is
far from cubic. In fact, it is closer to quadratic, indicating that
the voltage is scaled down less aggressively than linearly with
speed. As a result, we will model the power used by running
at speed s by

λ
f(s)
β′

=
sα

β
(1)

where α > 1 and β takes the role of β′, but has dimension
(time)−α. The cost per unit time then becomes

z = E[N ] +
sα

β
. (2)

We will often focus on the case of α = 2 to provide intuition.
Clearly, this is an idealized model since in reality only a few
discrete speeds can be used.

The impact of the workload parameters ρ, β, and α can often
be captured using one simple parameter γ = ρ/β1/α, which
is a dimensionless measure. Thus, we will state our results
in terms of γ to simplify their form. Also, it will often be
convenient to use the the dimensionless unit of speed s/β1/α.

Though we focus on dynamic power in this paper, it should
be noted that leakage power is increasingly important. It
represents 20-30% of the power use of current and near-future
chips [4]. However, analytic models for leakage are much less
understood, and so including leakage in our analysis is beyond
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Fig. 1. Dynamic power for an Intel PXA 270, a TCP offload engine, and
a Pentium M 770. The slopes of the fitted lines are 1.11, 1.66, and 1.62
respectively.

the scope of this paper and we leave the question of including
both leakage and dynamic power for future work.

III. POWER-AWARE SPEED SELECTION

When provisioning processing speed in a power-aware
manner, there are three natural thresholds in the capability
of the server.

(i) Static provisioning: The server uses a constant static
speed, which is determined based on workload charac-
teristics so as to balance energy use and response time.

(ii) Gated static provisioning: The server “gates” its clock
(setting s = 0) if no jobs are present, and if jobs are
present it works at a constant rate chosen to balance
energy use and response time.

(iii) Dynamic speed scaling: The server adapts its speed to
the current number of requests present in the system.

The goal of this paper is to understand how to choose
optimal speeds in each of these scenarios and to contrast the
relative merits of each scheme. Clearly the expected cost is
reduced each time the server is allowed to adjust its speed
more dynamically. This must be traded against the costs of
switching, such as a delay of up to tens of microseconds to
change speeds [2]. The important question is “What is the
magnitude of improvement at each level?” For our comparison,
we will use idealized versions of each scheme. In particular,
in each case we will assume that the server can be run
at any desired speed in [0,∞) and ignore switching costs.
Thus, in particular, the dynamic speed scaling is a significant
idealization of what is possible in practice. However, our
results will suggest that it provides very little performance
improvement over an ideally-tuned gated static scheme.

In this section, we will derive expressions for the optimal
speeds in cases (i) and (ii). For case (iii), we will describe a
numerical approach for calculating the optimal speeds which
is due to George and Harrison [22]. Though this numerical
approach is efficient, it provides little structural insight into
the structure of the dynamic speeds or the overall performance.
Providing such results will be the focus of Section IV.

A. The optimal static speed

The simplest system to manage power is one which selects
an optimal speed, and then always runs the processor at that
speed. This case, which we call pure static, is the least power-
aware scenario we consider, and will be used simply as a
benchmark for comparison.
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Even when the speed is static, the optimal design can be
“power-aware” since the optimal speed can be chosen so that
it trades off the cost of response time and energy appropriately.
In particular, we can write the cost per unit time (2) as

z =
ρ

s− ρ
+
sα

β
.

Then, differentiating and solving for the minimizer gives that
the optimum s occurs when s > ρ and sα−1(s−ρ)2 = βρ/α.

B. The optimal static speed for a gated system

The next simplest system is when the processor is allowed
two states: halted or processing. We model this situation with
a server that runs at a constant rate except when there are no
jobs in the system, at which point it sets s = 0, using zero
dynamic power.

To determine the optimal static speed, we proceed as we
did in the previous section. If the server can gate its clock,
the energy cost is only incurred during the fraction of time the
server is busy, ρ/s. The cost per unit time (2) then becomes

z =
ρ

s− ρ
+ ρ

sα−1

β
.

The optimum occurs when s > ρ and

0 =
dz

ds
= − ρ

(s− ρ)2
+ ρ

(α− 1)sα−2

β
,

which is solved when

(α− 1)sα−2(s− ρ)2 = β. (3)

The optimal speed can be solved for explicitly for some α.
For example, when α = 2, sgs = ρ+

√
β. In general, define

G(γ;α) = σ s.t. σ > γ

(α− 1)σα(1− γ/σ)2 = 1. (4)

With this notation, the optimal static speed for a server which
gates its clock is sgs = β1/αG(γ;α). We call this policy the
“gated static” policy, and denote the corresponding cost zgs.

The following lemma bounds G. The proof is deferred to
Appendix A.

Lemma 1. For α ≥ 2,

γ +

√
γ2−α

α− 1
≤ G(γ;α) ≤ (α− 1)−1/α +

2
α
γ (5)

and the inequalities are reversed for α ≤ 2.

Note that the first inequality becomes tight for γα � 1 and
the second becomes tight for γα � 1. Further, when α = 2
both become equalities, giving G(γ; 2) = γ + 1.

C. Optimal dynamic speed scaling

A popular alternative to static power management is to allow
the speed to adjust dynamically to the number of requests in
the system. The task of designing an optimal dynamic speed
scaling scheme in our model can be viewed as a stochastic
control problem.

We start with the following observation, which simplifies
the problem dramatically. An M/GI/1 PS system is well-
known to be insensitive to the job size distribution. This
still holds when the service rate is queue-length dependent
since the policy still falls into the class of symmetric policies
introduced by Kelly [25]. As a result, the mean response time
and entire queue length distribution are affected by the service
distribution through only its mean. Thus, we can consider an
M/M/1 PS system. Further, the mean response time and entire
queue length distribution are equivalent under all non-size-
based service distributions in the M/M/1 queue [25]. Thus,
to determine the optimal dynamic speed scaling scheme for
an M/GI/1 PS queue we need only consider an M/M/1 FCFS
queue.

The “service rate control” problem in the M/M/1 FCFS
queue has been studied extensively [22], [26], [27]. In partic-
ular, George and Harrison [22] provide an elegant solution to
the problem of selecting the state-dependent processing speeds
to minimize a weighted sum of an arbitrary “holding” cost
with a “processing speed” cost. Specifically, the optimal state-
dependent processing speeds can be framed as the solution
to a stochastic dynamic program, to which [22] provides an
efficient numerical solution. In the remainder of this section,
we will provide an overview of this numerical approach. The
core of this approach will form the basis of our derivation of
bounds on the optimal speeds in Section IV.

We will describe the algorithm of [22] specialized to the
case considered in this paper, where the holding cost in state
n is simply n. Further, we will generalize the description to
allow arbitrary arrival rates, λ. The solution starts with an
estimate z of the minimal cost per unit time, including both the
occupancy cost and the energy cost. As in [22], [27], [28], the
minimum cost of returning from state n to the empty system
is given by the dynamic program

vn = inf
s∈A

{
1

λ+ µs

[
λ
f(s)
β′

+ n− z
]

+
µs

λ+ µs
vn−1 +

λ

λ+ µs
vn+1

}
where A is the set of available speeds. We will usually assume
A = [0,∞). With the substitution un = λ(vn − vn−1), this
can be written as [22], [28]1

un+1 = sup
s∈A

{
z − n− λf(s)

β′
+
sun
ρ

}
. (6)

Two additional functions are defined. First,

φ(u) = sup
x∈A
{ux/ρ− λf(x)/β′} (7)

Second, the minimum value of x which achieves this supre-
mum, normalized to be dimensionless, is

ψ(u) = β−1/α min{x : ux/ρ− λf(x)/β′ = φ(u)}. (8)

1Equations (6), (12) and (22) have been corrected since the version
presented at INFOCOM’09.
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Note that under (1),

φ(u) = (α− 1)
(
u

αγ

)α/(α−1)

, ψ(u) =
(
u

αγ

)1/(α−1)

.

Given the estimate of z, un satisfy

u1 = z (9a)
un+1 = φ(un)− n+ z. (9b)

The optimal value of z can be found as the minimum value
such that (un)∞n=1 is an increasing sequence. This allows z to
be found by an efficient binary search, after which un can in
principle be found recursively.

The optimal speed in state n is then given by

s∗n
β1/α

= ψ(un). (10)

This highlights the fact that γ = ρ/β1/α provides the appro-
priate scaling of the workload information because the cost z,
normalized speed sβ−1/α and variables un depend on λ, µ
and β only through γ.

Note that this “forward” approach advocated in [22] is
numerically unstable (Appendix B). We suggest that a more
stable way to calculate un is to start with a guess for large
n, and work backwards. Errors in the initial guess decay
exponentially as n decreases, and are much smaller than the
accumulated roundoff errors of the forward approach. This
backward approach is made possible by the bounds we derive
in Section IV.

IV. BOUNDS ON OPTIMAL DYNAMIC SPEED SCALING

In the prior section, we presented the optimal designs for
the cases of static, gated static and dynamic speed scaling. In
the first two cases, the optimal speeds were presented more-
or-less explicitly, however in the third case we presented only
a recursive numerical algorithm for determining the optimal
dynamic speed scaling. Even though this approach provides an
efficient means to calculate s∗n, it is difficult to gain insight into
system design. In this section, we provide results exhibiting the
structure of the optimal dynamic speeds and the performance
they achieve.

The main results of this section are summarized in Table I.
The bounds on z for arbitrary α are essentially tight (i.e.,
agree to leading order) in the limits of small or large γ. Due
to the complicated form of the general results, we illustrate the
bounds for the specific case of α = 2 to provide insight. In
particular, it is easy to see the behavior of sn and z as a func-
tion of γ and n in the case of α = 2. This leads to interesting
observations. For example, it illustrates a connection between
the optimal stochastic policy and policies analyzed in the
worst-case model. In particular, Bansal, Pruhs and Stein [21]
showed that, when nothing is known about future arrivals, a
policy that gives speeds of the form sn = (n/(α − 1))1/α

is constant-competitive, i.e., in the worst case the total cost
is within a constant of optimal. This matches the asymptotic
behavior of the bounds for α = 2 for large n. This behavior
can also be observed for general α (Lemma 7 and Theorem 4).

A. Bounds on cost
We start the analysis by providing bounds on z in this

subsection, and then using the bounds on z to bound s∗n above
and below (Sections IV-B and IV-C).

Recall that zgs is the total cost under gated static.

Theorem 2.

max
(
γα, γα(α− 1)(1/α)−1

)
≤ z ≤ zgs =

γ

G(γ;α)− γ
+ γG(γ;α)α−1

Proof: The optimal cost z is bounded above by the cost
of the gated static policy, which is simply

zgs =
γ

G(γ;α)− γ
+ γG(γ;α)α−1. (15)

Two lower bounds can be obtained as follows.
In order to maintain stability, the time-average speed must

satisfy E[s] ≥ ρ. But z > E[sα]/β ≥ (E[s])α/β by Jensen’s
inequality and the convexity of (·)α. Thus

z >
E[sα]
β
≥ ρα

β
= γα. (16)

For small loads, this bound is quite loose. Another bound
comes from considering the minimum cost of processing a
single job of size X , with no waiting time or processor sharing.
It is optimal to serve the job at a constant rate [14]. Thus

z

λ
≥ EX

[
min
s

(
X

s
+
sα

β

X

s

)]
.

The right hand side is minimized for s = (β/(α − 1))1/α

independent of X , giving z ≥ ρβ−1/αα(α− 1)(1/α)−1. Thus

z ≥ max
(
γα, γα(α− 1)(1/α)−1

)
. (17)

The form of the bounds on z are complicated, so it is useful
to look at the particular case of α = 2.

Corollary 3. For α = 2, gated static has cost within a factor
of 2 of optimal. Specifically,

max(γ2, 2γ) ≤ z ≤ zgs = γ2 + 2γ. (18)

Proof: For α = 2, G(γ; 2) = γ + 1. Hence (15) gives

zgs =
γ

(γ + 1)− γ
+ γ(γ + 1) = γ2 + 2γ, (19)

which establishes the upper bound.
The lower bound follows from substituting α = 2 into (17):

z ≥ max(γ2, 2γ). (20)

The ratio of zgs to the lower bound on z has a maximum
value of 2 at γ = 2, and hence gated static is within a factor
of 2 of the true optimal scheme.

It is perhaps surprising that such an idealized version of
dynamic speed scaling provides such a small magnitude of
improvement over a simplistic policy such as gated static. In
fact, the bound of 2 is very loose when γ is large or small.
Further, empirically, the maximum ratios for typical α are
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TABLE I
BOUNDS ON TOTAL COSTS AND SPEED AS A FUNCTION OF THE NUMBER n ≥ 1 OF JOBS IN THE SYSTEM.

For any α,

max
“
γα, γα(α− 1)(1/α)−1

”
≤ z ≤

γ

G(γ;α)− γ
+ γG(γ;α)α−1 Theorem 2 (11)

σn ≤
s∗n
β1/α

≤
„

1

α
min
σ>γ

„
n+ σα − γα

(σ − γ)
+

γ

(σ − γ)2

««1/(α−1)

Theorems 8 and 4 (12)

where σn satisfies σα−1
n ((α− 1)σn − αγ) ≥ n− (γ/(G(γ;α)− γ) + γG(γ;α)α−1

For α = 2,
max

`
γ2, 2γ

´
≤ z ≤ γ2 + 2γ Corollary 3 (13)

γ +
p
n− 2γ ≤

s∗n√
β
≤ γ +

√
n+ min

„
γ

2n
,

3

2

“γ
4

”1/3
«

Corollaries 9 and 5 (14)

For α = 2 and n < 2γ, a lower bound on sn results from linear interpolation between max(γ/2, 1) at n = 1 and γ at n = 2γ.

below 1.1 (see Fig. 3). Thus there is little to be gained by
dynamic scaling in terms of mean cost. However, Section VI
shows that dynamic scaling dramatically improves robustness.

A second interesting observation about Corollary 3 is that
the expected response time under these power aware schemes
remains bounded as the arrival rate λ grows. Specifically,
by (16),

E[T ] =
z

λ
− E[s2/β]

λ
≤ 2
µ
√
β
.

This is a marked contrast to the standard M/GI/1 queue.

B. Upper bounds on the optimal dynamic speeds
We now move to providing upper bounds on the optimal

dynamic speed scaling scheme.

Theorem 4. For all n and α,

un ≤ γ
n+ σα − γα

σ − γ
+

γ2

(σ − γ)2
(21)

for all σ > 0, whence

s∗n
β1/α

≤
(

1
α

min
σ>γ

(
n+ σα − γα

σ − γ
+

γ

(σ − γ)2

))1/(α−1)

. (22)

In particular, for σ = γ + n1/α,

un ≤ n(α−1)/α γ (1 + (1 + γ)α) + γ2 (23)

which is concave in n.

Proof: As explained in [28], (6) can be rewritten as

un = ρmin
sn

[
sαn/β + n+ un+1 − z

sn

]
. (24)

Unrolling the dynamic program (24) gives a joint minimization
over all sn

un = ρmin
sn

1
sn

[
sαn/β + n− z

+ ρmin
sn+1

1
sn+1

[
sαn+1/β + (n+ 1)− z + un+2

] ]

= min
si,i≥n

∞∑
i=n

 i∏
j=n

ρ

sj

 (sαi /β + i− z) . (25)

An upper bound can be found by taking any (possibly
suboptimal) choice of sn+i for i ≥ 1, and bounding the
optimal z. Taking si = σβ1/α > 0 for all i ≥ n gives

un ≤ min
σ>0

γ

σ

∞∑
j=0

(γ
σ

)j
(σα + (n+ j)− z)

= γmin
σ>0

[
n+ σα − z
σ − γ

+
γ

(σ − γ)2

]
.

Since z ≥ γα from (17), equation (21) follows. With (10),
this establishes (22).

For n = 0, (23) holds since u0 = 0. Otherwise, it follows
from the inequality σα = n(1 + γn−1/α)α ≤ n(1 + γ)α and
the fact that n−2/α ≤ 1.

By specializing to the case when α = 2, we can provide
some intuition for the upper bound on the speeds.

Corollary 5. For α = 2,

s∗n
β1/α

≤
√
n+ γ + min

(
γ

2n
,

3
2

(γ
4

)1/3
)
. (26)

Proof: Factoring the difference of squares in the first term
of (21) and canceling with the denominator yields

un ≤
γn

σ − γ
+
[
2γ2 + γ(σ − γ)

]
+

γ2

(σ − γ)2
. (27)

One term of (27) is increasing in σ, and two are decreasing.
Minimizing pairs of these terms gives upper bounds on un.

A first bound can be obtained by setting σ−γ =
√
n, which

minimizes the sum of the first two terms, and gives

un ≤ 2γ
√
n+ 2γ2 +

γ2

n
.

By (10), this gives a bound on the optimal speeds of

s∗n√
β
≤
√
n+ γ +

γ

2n
. (28)

A second bound comes by minimizing the sum of the second
and third terms, when σ − γ = (2γ)1/3. This gives

un ≤
γn

(2γ)1/3
+ 2γ2 + γ(2γ)1/3 +

γ2

(2γ)2/3
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which, upon division by 2γ, gives

s∗n√
β
≤ n

2

(
1

2γ

)1/3

+ γ +
3
2

(γ
4

)1/3

. (29)

The minimum of the right hand sides of (28) and (29) is a
bound on sn.

The result then follows from the fact that

3
2

(γ
4

)1/3
≤ γ

2n
⇒ n

2

(
1

2γ

)1/3

≤
√
n,

which follows from taking the square root of the first inequal-
ity and rearranging factors.

C. Lower bounds on the optimal dynamic speeds

Finally, we prove lower bounds on the dynamic speed
scaling scheme. We begin by bounding the speed used when
there is one job in the system. The following result is an
immediate consequence of Corollary 3 and (9a).

Corollary 6. For α = 2,

max
(γ

2
, 1
)
≤ s∗1√

β
≤ γ

2
+ 1. (30)

Observe that the bounds in (30), like those in Corollary 3,
are essentially tight for both large and small γ, but loose for
γ near 1, especially the lower bound.

Next, we will prove a bound on s∗n for large n.

Lemma 7. For sufficiently large n,

s∗n
β1/α

>

(
n

α− 1

)1/α

. (31)

Proof: Rearrange (9b) as

un
αγ

=
(
n− z + un+1

α− 1

)(α−1)/α

≥
(

n

α− 1

)(α−1)/α

where the inequality uses the fact that the un is non-
decreasing [22] hence unbounded as n is unbounded,
whence un+1 − z > 0 for large n. Applying s∗n =
β1/α(un/(αγ))1/(α−1) gives (31).

This result highlights the connection between the optimal
stochastic policy and prior policies analyzed in the worst-case
model that we mentioned at the beginning of this section.
Specifically, combining (31) with (23) and (10) shows that
speeds chosen to perform well in the worst-case are asymptot-
ically optimal (for large n) in the stochastic model. However,
note that the probability of n being large is small.

Next, we can derive a tighter, albeit implicit, bound on the
optimal speeds.

Theorem 8. The scaled speed σn = s∗n/β
1/α satisfies

σα−1
n

(
(α− 1)σn − αγ

)
≥ n− γ

G(γ;α)− γ
− γG(γ;α)α−1.

Proof: Note that un ≤ un+1 [22]. Thus by (9b)

un ≤
α− 1

(αγ)α/(α−1)
uα/(α−1)
n − n+ z. (32)

By (10), this can be expressed in terms of s∗n as

αγ

(
s∗n
β1/α

)α−1

≤ (α− 1)
(s∗n)α

β
− n+ z

whence (
s∗n
β1/α

)α−1(
(α− 1)

s∗n
β1/α

− αγ
)
≥ n− z

and the result follows from (15) since z ≤ zgs.
For α = 2, the above theorem can be expressed more

explicitly as follows.

Corollary 9. For α = 2 and any n ≥ 2γ,

s∗n
β1/α

≥ γ +
√
n− 2γ. (33)

Proof: For α = 2, (32) can be solved explicitly, giving

un ≥ 2γ2 +
√

4γ4 + 4γ2(n− z),

since un ≥ 0. By (10),

s∗n
β1/α

≥ γ +
√

(n− z) + γ2 (34)

and substituting z ≤ 2γ + γ2 from (18) gives the result.
There are two important observations about the above

corollary. First, the corollary only applies when s∗ ≥ ρ, and
hence after the mode of the distribution. However, it also
proves that the mode occurs at n ≤ 2γ. Second, the corollary
only applies when n ≥ 2γ. In this case, we can simplify the
upper bound on sn in (28) and combine it with (33) to obtain:√

n− 2γ + γ ≤ s∗n√
β
≤
√
n+ γ +

1
4
. (35)

When this form holds, it is tight for large n and/or large γ.
Finally, note that in the case when n < 2γ the only

bounds we have on the optimal speeds are s∗n ≥ s∗1 ≥√
βmax(γ/2, 1), which follow from Corollary 6 and the fact

that s∗n is increasing in n [22]. The following lemma proves
that an improved lower bound can be attained by interpolating
linearly between max(γ/2, 1) and γ.

Lemma 10. The sequence un is strictly concave increasing.

Proof: Let P (n) be the proposition

un+1 − un ≥ un − un−1. (36)

Strict concavity of (un) is equivalent to there being no n for
which P (n) holds. Since (un) is non-decreasing [22] and there
exists an upper bound on (un), (23), with gradient tending to
0, it is sufficient to show that P (n) implies P (n + 1). If so,
then any local non-concavity would imply convexity from that
point onwards, in which case its long-term gradient would be
positive and bounded away from zero and hence un would
eventually violate the upper bound (23).

By (9b), un+1 − un = φ(un) − φ(un−1) − 1. With this
identity, P (n) is equivalent to

φ(un)− φ(un−1)− (un − un−1) ≥ 1.
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This implies un−1 6= un and(
φ(un)− φ(un−1)

un − un−1
− 1
)

(un − un−1) ≥ 1. (37)

Note that the first factor is positive, since the second factor is
positive. Since φ is convex, there is a subgradient g defined
at each point. This gives(

φ(un)− φ(un−1)
un − un−1

)
≤ g(un) ≤

(
φ(un+1)− φ(un)

un+1 − un

)
.

This and (36) imply that both of the factors of (37) in-
crease when going from P (n) to P (n + 1), establishing
P (n + 1), and the strict concavity of (un). Since it is also
non-decreasing [22], the result follows.

V. COMPARING STATIC AND DYNAMIC SCHEMES

To this point, we have only provided analytic results. We
now use numerical experiments to contrast static and dynamic
schemes. In addition, these experiments will illustrate the
tightness of the bounds proven in Section IV on the optimal
dynamic speed scaling scheme.

We will start by contrasting the optimal speeds under each
of the schemes. Figure 2 compares the optimal dynamic speeds
with the optimal static speeds. Note that the bounds on the
dynamic speeds are quite tight, especially when the number
of jobs in the system, n, is large. For reference, the modes
of the occupancy distributions are about 1 and 5, close to the
points at which the optimal speed matches the static speeds.
Note also that the optimal rate grows only slowly for n much
larger than the typical occupancy. This is important since the
range over which DVS is possible is limited [4].

Although the speed of the optimal scheme differs signif-
icantly from that of gated static, the actual costs are very
similar, as predicted by the remark after Corollary 3. This
is shown in Fig. 3. The bounds on the optimal speed are also
very tight, both for large and small γ. Part (a) shows that the
lower bound is loosest for intermediate γ, where the weights
given to power and response time are comparable. Part (b)
shows that the gated static (i.e., the upper bound) has very
close to the optimal cost.

In addition to comparing the total cost of the schemes, it
is important to contrast the mean response time and mean
energy use. Figure 4 shows the breakdown. A reference load
of ρ = 3 with delay-aversion β = 1 and power scaling α = 2
was compared against changing ρ for fixed γ, changing β for
fixed ρ and changing α. Note γ = 3 was chosen to maximize
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Fig. 2. Rate vs n, for α = 2 and different energy-aware-load, γ.
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Fig. 3. Cost z vs energy-aware-load γ.

the ratio of zgs/z. The second scenario shows that when γ
is held fixed, but the load ρ is reduced and delay-aversion
is reduced commensurately, the energy consumption becomes
negligible.

VI. ROBUST POWER-AWARE DESIGN

We have seen both analytically and numerically that (ide-
alized) dynamic speed scaling only marginally reduces the
cost compared to the simple gated static. This raises the
question of whether dynamic scaling is worth the complexity.
This section illustrates one reason: robustness. Specifically,
dynamic schemes provide significantly better performance in
the face of bursty traffic and mis-estimation of workload.

We focus on robustness with respect to the load, ρ. The
optimal speeds are sensitive to ρ, but in reality this parameter
must be estimated, and will be time-varying.

It is easy to see the problems mis-estimation of ρ causes for
static speed designs. If the load is not known, then the selected
speed must be satisfactory for all possible anticipated loads.
Consider the case that it is only known that ρ ∈ [ρ, ρ̄]. Let
z(ρ1|ρ2) denote the expected cost per unit time if the arrival
rate is ρ1, but the speed was optimized for ρ2. Then, the robust
design problem is to select the speed ρ′ such that

min
ρ′

max
ρ∈[ρ,ρ̄]

z(ρ|ρ′).

The optimal design is to provision for the highest foreseen
load, i.e., maxρ∈[ρ,ρ̄] z(ρ|ρ′) = z(ρ̄|ρ′). However, this is
wasteful in the typical case that the load is less than ρ̄.
The fragility of static speed designs is illustrated in Fig. 5,
which shows that when speed is underprovisioned, the server is
unstable, and when it is overprovisioned the design is wasteful.

Optimal dynamic scaling is not immune to mis-estimation
of ρ, since s∗n is highly dependent on ρ. However, because
the speed adapts to the queue length, dynamic scaling is more
robust. Figure 5 shows this improvement.

This robustness is improved further by the speed scaling
scheme, which we term “linear”, that scales the server speed
in proportion to the queue length, i.e., sn/β1/α = n. Note
that under this scaling the queue is equivalent to an M/GI/∞
queue with homogeneous servers. Figure 5 shows that linear
scaling provides significantly better robustness than the opti-
mal dynamic scheme; indeed, the “optimal” scheme is only
optimal for designs with ρ ∈ [7, 14]; even then, its cost is
only slightly lower than that of linear scaling. The (significant)
price that linear scaling pays is that it requires very high
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Fig. 4. Breakdown of E[T ] and E[sα], for several scenarios.
processing speed when the occupancy is high, which may not
be supported by the hardware.

We now compare the robustness analytically in the case of
α = 2. First, we will show that if ρ is known, the cost of the
linear scheme is exactly the same as the cost of the gated static
scheme, and thus within a factor of 2 of optimal (Theorem 11).
Then, we will show that when the target load differs from the
actual load, the linear scheme significantly reduces the cost
(Theorem 12). In particular, the linear scaling scheme has cost
independent of the difference between the design and actual
ρ. In contrast, the cost of gated static grows linearly in this
difference, as seen in Fig. 5.

Theorem 11. When α = 2, zgs = zlin. Thus, zlin ≤ 2z.

Proof: If the speed in state n is kn then

E[N ] =
ρ

k
E[s2

n] =
∞∑
n=0

(kn)2 (ρ/k)n

n!
e−ρ/k = ρk + ρ2,

and so the total cost is optimized for k =
√
β. In this case,

zlin = E[N ] +
E[s2

n]
β

=
ρ√
β

+
(

ρ√
β

+
ρ2

β

)
= γ2 + 2γ,

which is identical to the cost for gated static. By Corollary 3,
this is within a factor of 2 of z.

Theorem 12. Consider a system designed for target load ρ′

that is operating at load ρ = ρ′ − ε. When α = 2,

zlin =
ρ2

β
+ 2

ρ√
β

(38)

zgs = zlin +
ρ

β

(
ε2√
β + ε

)
. (39)

Proof: The optimal rates for the linear policy are sn =
n
√
β, independent of ρ′. Thus its cost is always (38).

The optimal speed for gated static in this case is sn =
ρ′+
√
β for n 6= 0. When operated at actual load ρ, this gives

E[N ] =
ρ√

β + ρ′ − ρ
E[s2]
β

=
ρρ′

β
+

ρ√
β

and

zgs =
E[s2]
β

+ E[N ] =
ρ2 + ερ

β
+

ρ√
β

+
ρ√
β + ε

.

We can further relate zgs to zlin by

zgs − zlin =
ερ

β
+

ρ√
β + ε

− ρ√
β

=
ερ

β
− ερ√

β(
√
β + ε)
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Fig. 5. Cost at load ρ = 10, when speeds are designed for “design ρ”, using
β = 1, α = 2.

from which (39) follows.
This insensitivity to design load mirrors worst-case analysis.

The Optimum Available scaling [14], which designs for ρ = 0,
is O(1) worst-case competitive [5]. However, Fig 5 suggests
that linear scaling is much better than designing for ρ = 0.
Tighter bounds are known for sn = n1/α [16], [20], but those
are still looser than Theorem 11.

VII. CONCLUDING REMARKS

Speed scaling is an important method for reducing energy
consumption in computer communication systems. Intrinsi-
cally, it trades off the mean response time and the mean energy
consumption, and this paper provides insight into this tradeoff
using a stochastic analysis.

Specifically, in the M/GI/1 PS model, both bounds and
asymptotics for the optimal speed scaling scheme are provided.
These bounds are tight for small and large γ and provide
a number of insights, e.g., that the mean response time is
bounded as the load grows under the optimal dynamic speed
scaling and that the optimal dynamic speeds in the stochastic
model match (for large n) dynamic speed scalings that have
been shown to have good worst-case performance.

Surprisingly, the bounds also illustrate that a simple scheme
which gates the clock when the system is idle and uses a
static rate otherwise provides performance within a factor of 2
of the optimal dynamic speed scaling. However, the value of
dynamic speed scaling is also illustrated — dynamic speed
scaling schemes provide significantly improved robustness
to bursty traffic and mis-estimation of workload parameters.
The dynamic scheme that optimizes the mean cost is no
longer optimal when robustness is considered: a scheme that
scales speeds linearly with n provides significantly improved
robustness while increasing cost only slightly.

There are a number of related directions in which to extend
this work. For example, we have only considered dynamic
power consumption, which can be modeled as a polynomial
of the speed. However, the contribution of leakage power is
growing and an important extension is to develop models of
total power use that can be used for analysis. Also, it will be
very interesting to extend the analysis to scheduling policies
beyond PS. For example, given that the speed can be reduced
if there are fewer jobs in the system, it is natural to suggest
scheduling according to Shortest Remaining Processing Time
first (SRPT), which is known to minimize the number of jobs
in the system [29].
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APPENDIX A
BOUNDS ON G(γ;α)

Proof of Lemma 1: Let k1 satisfy

σ = G(γ;α) = (α− 1)−1/α + k1γ. (40)

Substituting the identity (a+ b)α = aα(1 + b/[(a+ b)− b])α
and (40) into (4) gives

1 = (α− 1)(α− 1)−α/α
(

1 +
k1γ

σ − k1γ

)α (
1− γ

σ

)2

,

which is solved for (1 − k1γ/σ)α/2 = 1 − γ/σ. Thus, for
α ≥ 2,

1− αk1

2
γ

s
≤ 1− γ

s
,

with the inequality reversed for α ≤ 2. For small γ, this
inequality tends to equality. Hence k1 ≥ 2/α for α ≥ 2,
and k1 ≤ 2/α for α ≤ 2 and the second inequality in (5) is
accurate to leading order in γ.

Similarly, substituting G(γ;α) = γ + k2. into (4) gives

x = (α− 1)(γ + k2)α
(

1− γ

γ + k2

)2

= (α− 1)(γ + k2)α−2k2
2.

This is solved for

k2 =

√
γ2−α

α− 1
− ε2.

For α ≥ 2, 0 ≤ ε2 → 0 as k2/ρ → 0, which shows that
the first inequality of (5) is an upper bound. For α ≤ 2, 0 ≥
ε2 → 0 as k2/ρ → 0, which shows that the first inequality
of (5) is a lower bound. The requirement k2 � γ is then
γ �

√
γ2−α/(α− 1) or equivalently γα � 1/(α− 1).

APPENDIX B
NUMERICAL CONSIDERATIONS OF OPTIMAL SCALING

Let ûn and ẑ be numerical estimates of un and z, with
errors ∆n = ûn− un and δ = ẑ− z, and consider how errors
propagate under (9b). If z is known exactly, then ∆n+1 =
φ(ûn)− φ(un) giving

|∆n+1| > φ′(min(un, ûn))|∆n|

since φ is convex. If φ′(u) = α(u/(αγ))1/(α−1) > 1, then
the error grows exponentially if ŷn+1 is calculated from ŷn,
but decreases exponentially if calculation instead starts from a
large n and works backwards using (24). Working backwards
requires an initial condition to replace (9a). It is sufficient to
choose an initial estimate such as (33).


