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ABSTRACT
A recently proposed active queue management, CHOKe,
aims to protect TCP from UDP flows. Simulations have
shown that as UDP rate increases, its bandwidth share ini-
tially rises but eventually drops. We derive an approximate
model of CHOKe and show that, provided the number of
TCP flows is large, the UDP bandwidth share peaks at
(e+1)−1 = 0.269 when the UDP input rate is slightly larger
than the link capacity, and drops to zero as UDP input rate
tends to infinity, regardless of the TCP algorithm.

1. INTRODUCTION
TCP is believed to be largely responsible for preventing
congestion collapse while Internet has undergone dramatic
growth in the last decade. Indeed, numerous measurements
have consistently shown that more than 90% of traffic on the
current Internet is still TCP packets, which, fortunately, are
congestion controlled. Without a proper incentive structure,
however, this state of affair is fragile and can be disrupted by
the growing number of non-rate-adaptive (e.g., UDP-based)
applications that can monopolize network bandwidth to the
detriment of rate-adaptive applications. This has motivated
several active queue management schemes, e.g., [6, 2, 3, 10,
7, 9, 1], that aim at penalizing aggressive flows and ensuring
fairness. The scheme, CHOKe, of [9] is particularly inter-
esting in that it does not require any state information and
yet can provide a minimum bandwidth share to TCP flows.
The basic idea of CHOKe is explained in the following quote
from [9]:

When a packet arrives at a congested router, CHOKe

draws a packet at random from the FIFO (first in

first out) buffer and compares it with the arriving

∗Proceedings of ACM Sigmetrics, San Diego, CA,
June 2003.
†We acknowledge the support of NSF through grants
ANI-0113425 and ANI-0230967, and ARO through grant
DAAD19-02-1-0283.

packet. If they both belong to the same flow,

then they are both dropped; else the randomly chosen

packet is left intact and the arriving packet is

admitted into the buffer with a probability that

depends on the level of congestion (this probability

is computed exactly as in RED).

The surprising feature of this extremely simple scheme is
that it can bound the bandwidth share of UDP flows re-
gardless of their arrival rates. In fact, as the arrival rate
of UDP packets increases without bound, their bandwidth
share approaches zero!

An intuitive explanation is provided in [9]: “the FIFO (first-
in-first-out) buffer is more likely to have packets belonging
to a misbehaving flow and hence these packets are more
likely to be chosen for comparison. Further, packets belong-
ing to a misbehaving flow arrive more numerously and are
more likely to trigger comparisons.” As a result, aggressive
flows are penalized. This however does not explain why a
flow that maintains a much larger number of packets in the
queue does not receive a larger share of bandwidth, as in the
case of a regular FIFO buffer. In [11], a detailed differential
equation model of CHOKe is derived that clarifies the spa-
tial characteristics of a leaky buffer. It is shown there that
UDP packets are not uniformly distributed across the length
of the queue. Instead, as UDP rate increases, even though
the total number of UDP packets in the queue increase, the
spatial distribution of UDP packets becomes more and more
concentrated near the tail of the queue, and drops rapidly to
zero toward the head of the queue. When a single UDP flow
shares a link with N TCP flows, the number of UDP pack-
ets in the queue is almost N times that of a TCP flow, in
the limit as UDP input rate tends to infinity. Despite their
number, most of the UDP packets are dropped before they
advance to the head. As a result the UDP bandwidth share
drops to zero, in stark contrast to a non-leaky FIFO queue
where UDP bandwidth shares approaches 1 as its input rate
increases without bound. Though the model of [11] pro-
vides detail structural properties of TCP/CHOKe, it is too
complex to solve analytically for the maximum throughput
attainable by the UDP flow.

In this paper, we derive an approximate model of CHOKe
and use it to derive the maximum and asymptotic UDP
throughput. In Section 2 we present an algebraic model
that allows us to numerically compute performance metrics,
such as throughput, delay and loss probabilities. In Section



3, we prove analytically that, provided that the number of
TCP flows is large, the maximum bandwidth share attain-
able by the UDP flow is (e + 1)−1 = 0.269 and that this is
attained when the UDP rate is (2e−1)/(e+1) = 1.193 times
the link capacity (approximately, when the congestion based
dropping probability is small). Moreover, it drops to zero
as UDP rate increases without bound. The same results are
also obtained in [8], independently using a different method.

These results are intrinsic to CHOKe and insensitive to the
specific algorithms of TCP, the round trip delay, and conges-
tion based dropping such as RED. We present ns simulations
to validate these conclusions in Section 4.

2. CHOKE MODEL
The basic idea of CHOKe is summarized in Section 1. A
flow chart describing its implementation with RED is given
in Figure 2 from [9].
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Figure 1: CHOKe flow chart from [8].

In general, one can choose more than one packet from the
queue, compare all of them with the incoming packet, and
drop those from the same flow. This will improve CHOKe’s
performance, especially when there are multiple unrespon-
sive sources. It is suggested in [9] that more drop candidate
packets be used as the number of unresponsive flows in-
crease. Here, we focus on the modeling of a single candidate
drop packet. The analysis can be extended to the case of
multiple drop candidates.

The general setup for our model and our simulations is
shown in Figure 2. There is a single bottleneck link with
capacity c packets per second. We focus on the FIFO buffer
at router R1 where packets are queued. The buffer is shared
by N TCP flows and a single UDP flow. The TCP flows
have round trip propagation delays d1, d2, . . . , dN seconds
respectively. We assume the system is stable and model its
equilibrium behavior.
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Figure 2: Network topology

2.1 Notations
Quantities (rate, backlog, dropping probability, etc) associ-
ated with the UDP flow are indexed by 0. Those associated
with TCP flows are indexed by 1, . . . , N . These are equilib-
rium quantities which we assume exist.

Recall the setting (c, N, di, i = 1, . . . , N) where c is the link
capacity, N is the number of TCP flows, and di, are the
round-trip propagation delays of TCP flows. We collect here
the definitions of all the variables and some of their obvious
properties:

bi: packet backlog from flow i, i = 0, . . . , N .

b: total backlog, b =
∑N

i=0 bi.

τ : common queueing delay. The round-trip delay for flow
i is di + τ .

r: Congestion-based dropping probability. Maximum and
asymptotic UDP throughput are insensitive to the spe-
cific algorithm, such as RED, to compute this proba-
bility, as long as it is the same for all flows. In general,
r = g(b, τ ) for some function g as a function of aggre-
gate backlog b and common queueing delay τ .

hi: The probability of incoming packets being dropped by
CHOKe for flow i, i = 0, . . . , N :

hi =
bi

b

pi: overall probability that packets of flow i, i = 0, . . . , N ,
is dropped before it gets through, either by CHOKe or
congestion based dropping:

pi = 2hi + r − 2rhi (1)

The explanation of (1) is provided below.

xi: source rate of flow i, i = 0, . . . , N . Maximum and
asymptotic UDP throughput are insensitive to the spe-
cific TCP algorithm, such as Reno or Vegas. In gen-
eral, xi = fi(pi, τ ) for some function fi as a function
of overall loss probability pi and queueing delay τ at
equilibrium, i = 1, . . . , N



We make two remarks. First, it is important to keep in mind
that x0 is the only independent variable; all other variables
listed above are functions of x0, though this is not made
explicit in the notations. Second, xi is the sending rate of
flow i. The rate at which flow i packets enter the tail of the
queue (after going through CHOKe and congestion based
dropping) is xi(1 − hi)(1 − r), and the rate at which flow i
packets exit the queue (throughput) is xi(1 − pi). Clearly,
xi(1 − pi) ≤ xi(1 − hi)(1 − r) ≤ xi.

2.2 Model
We make three key approximations in our model. The first
approximation, described next, yields an algebraic model
that allows us to numerically compute performance metrics
such as throughput, loss probabilities, and queueing delay.
The other two approximations, described in the next sec-
tion, lead to a simple method to estimate the maximum and
asymptotic UDP throughput under CHOKe.

A packet may be dropped, either on arrival due to congestion
(e.g., according to RED) or CHOKe, or after it has been
admitted into the queue when a future arrival from the same
flow triggers a comparison. We approximate the system by
one in which the order of congestion based dropping and
CHOKe is reversed: a packet is admitted with probability
1 − r, and if it is admitted, it is then compared with a
packet randomly chosen from the queue and dropped with
probability hi.

With this approximation, the probability that a packet from
flow i is eventually dropped is given by (1). To see this, note
that every arrival from flow i can trigger either 0 packet loss,
1 packet loss due to congestion, or 2 packet losses due to
CHOKe. These events happen with respective probabilities
of (1 − hi)(1 − r), r, and (1 − r)hi. Hence, each arrival to
the buffer is accompanied by an average packet loss of

2(1 − r)hi + r + 0 · (1 − hi)(1 − r)

and hence the overall loss probability pi in (1).1 This implies
that the probability that a packet of flow i goes through the
queue without being dropped is:

1 − pi = (1 − r)(1 − 2hi) (2)

We now derive this probability from another perspective.

Consider a packet of flow i that eventually goes through the
queue without being dropped. The probability that it is
not dropped on arrival is (1 − r)(1 − hi). Once it enters
the queue, it takes τ time to go through it. In this time
period, there are on average τxi(1 − r) packets from flow
i that survive congestion based dropping and arrive at the
queue. The probability that this packet is not chosen for

1The overall loss probability for the original CHOKe algo-
rithm is (see [11]):

pi = 2hi + r − rhi

which is larger than the approximate loss probability given
by (1) because a packet that is first dropped due to conges-
tion saves a potential loss of two packets due to CHOKe.
The difference however is small since both r and hi are typ-
ically small.

comparison is
(

1 −
1

b

)τxi(1−r)

Hence, the overall probability that a packet of flow i survives
the queue is

1 − pi = (1 − r)(1 − hi)

(

1 −
1

b

)τxi(1−r)

(3)

We will equate pi in (2) and (3) to derive an equation which
is one of the (two) key equations that allow us to estimate
the maximum and asymptotic UDP throughput (see Section
3).

A simple interpretation of a leaky buffer is as follows: xi is
the source rate of flow i and xi(1 − r)(1 − hi) is the rate at
which flow i enters the queue after congestion-based drop-
ping and CHOKe. This flow splits into two flows: one even-
tually exits the queue and the other is dropped inside the
queue by CHOKe. The rate of the former flow is flow i’s
throughput xi(1 − pi) = xi(1 − r)(1 − 2hi) and the rate of
the latter flow is its leak rate xi(1 − r)hi, so that they sum
to the input rate xi(1 − r)(1 − hi). Since the link is fully
utilized, the flow throughput sum to link capacity:

x0(1 − p0) +
N

∑

i=1

xi(1 − pi) = c (4)

This completes the description of the model. In summary,
the independent variable is UDP rate x0. The dependent
variables of the model are:

• backlogs bi of flow i, i = 0, . . . , N ; total backlog b =
∑N

i=0 bi.

• congestion based dropping probability r, CHOKe drop-
ping probabilities hi, and overall dropping probabili-
ties pi, i = 0, . . . , N .

• TCP rate xi, i = 1, . . . , N .

• queueing delay τ .

The relations among these variables define our model. For
ease of reference, we reproduce these ten equations here:

1 − pi = (1 − r)(1 − 2hi), i = 0, . . . , N (5)

1 − pi = (1 − r)(1 − hi)

(

1 −
1

b

)τxi(1−r)

(6)

hi =
bi

b
, i = 0, . . . , N (7)

c = x0(1 − p0) +
N

∑

i=1

xi(1 − pi) (8)

b =

N
∑

i=0

bi (9)

xi = fi(pi, τ ), i = 1, . . . , N (TCP) (10)

r = g(b, τ ) (e.g. RED) (11)

We assume that this set of equations has a solution for
(xi, τ, r, b, b0, bi, h0, hi, p0, pi, i = 1, . . . , N), once the TCP



algorithm xi = fi(pi, τ ) and AQM algorithm r = g(b, τ ) are
specified, and that the limits of these quantities as x0 → ∞
exist.

Our goal is to compute the maximum and asymptotic values
(as x0 → ∞) of UDP throughput x0(1 − p0). We now show
that if N is large, then only three equations are needed for
this calculation (the two equations (5)–(6) for i = 0 and
a new equation (13) below that replaces (5)–(7) for i =
1, . . . , N). It suggests that these are intrinsic properties of
CHOKe and are insensitive to TCP/AQM algorithms (fi, g).

3. THROUGHPUT ANALYSIS
The second key assumption we make is that N is large. Since

hi =
bi

b0 +
∑N

j=1 bj

we assume for TCP sources that hi is on the order of 1/N , so
that hi ' 0 when N is large, for i = 1, . . . , N . Then a com-
parison triggered by a TCP packet arrival seldom yields a
match. This means that, once in the queue (after congestion
based dropping), a TCP packet will never be dropped. The
overall dropping probability pi then reduces to (substitute
hi = 0 into (1)):

pi = r, i = 1, . . . , N

More importantly, this provides a simple relation between
queueing delay, throughput and backlog. Since there is no
“leaking” for TCP packets in the buffer, the throughput
rate for TCP flow i is xi(1 − pi), i = 1, . . . , N . There are
bi packets in the buffer from this TCP flow i. Then Little’s
Theorem implies:

τ =
bi

xi(1 − pi)
for i = 1, . . . , N (12)

From the condition (8) of full link utilization, the aggregate

TCP throughput is
∑N

i=1 xi(1 − pi) = c − x0(1 − p0). The

aggregate number of TCP packets in the buffer is
∑N

i=1 bi =
b − b0 = b(1 − h0). Summing the numerators and denomi-
nators on the right side of (12) over i = 1, . . . , N , we get:

τ =

∑N
i=1 bi

∑N
i=1 xi(1 − pi)

=
b(1 − h0)

c − x0(1 − p0)
(13)

This assumption makes the estimate of UDP throughput
insensitive to TCP algorithms.

Note that with this assumption, the model (5)–(11) is sim-
plified to dependent variables (xi, τ, r, b, b0, bi, h0, p0, i =
1, . . . , N), with hi = 0 and pi = r, i = 1, . . . , N , and equa-
tions with the three equations (5)–(7) for i = 1, . . . , N re-
placed by the single equation (13).

The third key approximation we make is that the total back-
log b is large so that

(

1 −
1

b

)b

' e−1

Equating 1 − pi in (5) and (6) for i = 0, we have

(

1 −
1

b

)τx0(1−r)

=
1 − 2h0

1 − h0
(14)

Substituting (13) into (14) to eliminate τ , and apply the
third approximation, we have

1 − h0

1 − 2h0
= exp

(

x0(1 − r)(1 − h0)

c − x0(1 − r)(1 − 2h0)

)

(15)

where we have used (5). This equation yields the maximum
and asymptotic UDP throughput.

Theorem 1. 1. The maximum UDP bandwidth share
is µ∗

0 = (e + 1)−1 = 0.269.

2. It is attained when the UDP input rate after congestion
based dropping is x∗

0(1 − r∗) = c(2e − 1)/(e + 1) =
1.193c.

3. In this case, the CHOKe dropping rate for UDP is
h∗

0 = (e − 1)/(2e − 1) = 0.387.

Proof. Denote UDP bandwidth share by (using (5))

µ0 := (1 − p0)
x0

c
= (1 − r)(1 − 2h0)

x0

c

Then rewrite (15) as

1 − h0

1 − 2h0
= exp

(

1 − h0

1 − 2h0
·

µ0

1 − µ0

)

(16)

Let γ(h0) denote

γ(h0) :=
1 − h0

1 − 2h0
(17)

Then (16) becomes:

γ(h0) = e
γ(h0)

µ0

1−µ0

or

µ0 =
ln γ(h0)

γ(h0) + ln γ(h0)
(18)

It is easy to check that the right-hand side has a unique
maximum at γ(h0) = e with maximum bandwidth share µ∗

0

given by

µ0 ≤ max
γ

ln γ

γ + ln γ
=

1

1 + e
=: µ∗

0 (19)

Substituting γ(h0) = e into the definition (17) of γ(h0),
the maximum UDP bandwidth share is attained when the
CHOKe dropping probability h0 for UDP is

h∗
0 =

e − 1

2e − 1
(20)

Since h0 = b0/b, this implies that 39% of the queue are UDP
packets when UDP attains the highest throughput.

Since µ∗
0 = x∗

0(1−r∗)(1−2h∗
0)/c, the UDP rate after conges-

tion based dropping, x∗
0(1 − r∗), that attains the maximum

throughput is

x∗
0(1 − r∗) =

µ∗
0c

1 − 2h∗
0



Substituting (19) and (20), we have

x∗
0(1 − r∗) =

2e − 1

e + 1
c

The next result says that the UDP throughput x0(1 − p0)
drops to zero as UDP rate x0 grows without bound, un-
der the assumption that rates xi under TCP algorithm re-
mains finite when loss probability pi becomes large, i.e.,
limpi→1 fi(pi, τ ) < ∞, i = 1, . . . , N . This assumption is
always satisfied when TCP flows are controlled not to send
packets infinitely fast when the capacity is fixed.

Theorem 2. Suppose limpi→1 fi(pi, τ ) < ∞, i = 1, . . . , N .
As x0 → ∞, b0 → b/2 but µ0 → 0.

Proof. Note that from (5),

h0 =
1

2
·
p0 − r

1 − r
≤

1

2

since p0 ≤ 1. We argue that b0/b = h0 → 1/2 as x0 → ∞.
From (8), we have x0(1 − p0) ≤ c for all x0. Hence p0 → 1
as x0 → ∞. Hence from (5), we have

(1 − r(∞))(1 − 2h0(∞)) = 0

where (all limits exist by assumption)

r(∞) := lim
x0→∞

r and h0(∞) := lim
x0→∞

h0

Hence either r(∞) = 1 or h0(∞) = 1/2. If r(∞) = 1,
then limx0→∞ pi = r(∞) = 1, i = 1, . . . , N . This implies
that xi = fi(pi, τ ) < ∞ as x0 → ∞. The condition of
full link utilization (8) then implies that UDP throughput
x0(1 − p0) = c. This violates Theorem 1. Hence r(∞) < 1
and h0(∞) = 1/2.

Then γ → ∞ from (17), and hence, using (18), µ0 → 0.

We visualize equation (15) in Figure 3. It illustrates both
theorems above.

We close this section by presenting another way to derive the
key equation (14). The rate of flow i is xi(1−r)(1−hi) when
it first enters the tail of the queue after congestion-based
dropping and CHOKe, and it takes τ seconds for packets
to reach the head of the queue. After traveling down the
queue for t seconds, 0 ≤ t ≤ τ , the packets arrive at a
certain point y(t) ∈ [0, b], where it has been thinned by a

factor (1 − 1/b)xi(1−r)t (following the same argument that
leads to (3)) and the rate of the flow at y(t) is

x̃i(t) := xi(1 − r)(1 − hi)

(

1 −
1

b

)xi(1−r)t

Hence x̃i(t)dt is the infinitesimal volume of the fluid at the
point y(t) in the queue, and the backlog from flow i is thus

bi =

∫ τ

0

xi(1 − r)(1 − hi)

(

1 −
1

b

)xi(1−r)t

dt
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Figure 3: µ0 v.s. x0(1 − r)/c

If we approximate (1 − 1/b)b by e−b, when b is large, then
the above integral reduces to

bi

b
= (1 − hi)

(

1 − e−xi(1−r)τ/b
)

In particular, since h0 = b0/b, this implies

1 − 2h0

1 − h0
= e−x0(1−r)τ/b

This is equivalent to (14) when we approximate (1 − 1/b)b

by e−1.

4. SIMULATIONS
In this section, we present simulation results to validate our
model (5)–(11) and throughput analysis. We implemented
a CHOKe module with RED in ns-2 version 2.1b9.

4.1 TCP/AQM algorithms
The model for RED dropping probability is

r = k(b − b)

where k := pmax/(b−b) is the slope of the RED drop profile.
We chose parameters of our simulations so that the equilib-
rium queue length b always lied between the minimum queue
threshold b and the maximum queue threshold b.

We have conducted simulations with TCP NewReno,TCP
Vegas and a modified Vegas to verify that the UDP through-
put is insensitive to TCP algorithms. TCP Reno (or its vari-
ants such as NewReno or SACK) is modeled by the following
relation between the equilibrium source rate xi, the overall
dropping probability pi, and the round trip time di + τ (see
e.g., [4]):

pi =
2

2 + x2
i (di + τ )2

This is equivalent to the well-known square-root-p formula
when the loss probability is small.

For TCP Vegas, the source rate xi is related to the round trip
propagation delay di and queueing delay τ in equilibrium



according to (see [5]):

xi =
αdi

τ
(21)

where α is a protocol parameter. In equilibrium, the ith Ve-
gas source puts αdi number of packets in the queue and
hence the total number of TCP packets in the queue is
∑N

i=1 αdi. Under the large-N assumption where TCP pack-
ets are not leaked from the queue, the queueing delay, given
by (13), is then

τ =

∑N
i=1 αdi

c − x0(1 − p0)
(22)

Since x0(1 − p0) = 0 both when x0 = 0 or when x0 = ∞
(Theorem 2), queueing delay under TCP Vegas is small both
when UDP rate is small and when it is large. This interesting
prediction is verified by the simulation below.

Note that the model (21)–(22) of Vegas assumes a Droptail
router that has a large enough buffer capacity to accom-
modate the

∑N
i=1 αdi packets that Vegas sources attempt

to keep in the network, so that there are no packet loss in
equilibrium; see [5]. RED and CHOKe dropping violates
this assumption. As a result, Vegas reacts more or less like
Reno: halving its window on each drop and increases it by
one packet per round trip time.

We present simulation results with three TCP implementa-
tions, NewReno, Vegas, and modified Vegas. In modified
Vegas, the source does not halve its sending window when
there is a loss. In all our simulations large buffer capacity
is used so that all packet drops are due to RED or CHOKe.
Since modified Vegas uses only queueing delay as conges-
tion feedback, the equilibrium behavior of modified Vegas
matches well the model (21)–(22). We will see that the
throughput share µ0 as a function of UDP rate x0(1 − r)/c
is insensitive to these TCP implementations.

Our simulations focus on TCP Vegas both to show that
UDP throughput is insensitive to TCP algorithm and be-
cause TCP Vegas scales better than TCP Reno with respect
to link capacity, especially under CHOKe. This is because
CHOKe increases the overall loss probability, limiting the
achievable rate of TCP Reno. Since TCP Vegas sets its rate
based on queueing delay, it does not have this limitation.

4.2 Simulation setup
We simulated the network in Figure 2 to study the equi-
librium behavior of CHOKe. There is a single bottleneck
link from router R1 to router R2 shared by N = 100 TCP
sources and one UDP source. The UDP source sends data
at a constant rate. The link capacity is fixed at c = 15Mbps
for all simulations. We use RED+CHOKe as the queue
management with RED parameters: (min th b = 20 pack-
ets, max th b = 1020 packets, pmax = 0.1). Packet size is
1KBytes. The simulation time is 20 seconds.

The original Vegas implementation in ns-2 works poorly in
a lossy environment, for two reasons. First the implemen-
tation estimates RTT naively by setting it to the difference
between sending time of a packet and receiving time of its
ACK. When packets are lost, the ACK may be a duplicate
ACK or it may be triggered by the retransmitted packet.

A more sophisticated estimation is required when losses are
frequent. Second, when there are multiple losses in the same
round trip time, which is not infrequent since CHOKe drops
two packets every time a comparison yields a match, the Ve-
gas implementation often incurs timeout and slow-start.

As a consequence, we implemented a modified Vegas mod-
ule in ns-2 based on the NewReno code which better handles
losses. There are three major changes. First, we do not es-
timate RTT with duplicate ACKs, especially with the first
and second duplicate ACKs when fast retransmit/fast re-
cover phase is not yet entered. Second we use the NewReno’s
fast retransmit and fast recovery code to deal with multiple
losses. Third, we change the Vegas code such that it only
response to queueing delay not loss. These changes should
not affect the equilibrium behavior of the TCP algorithms.

In our simulations, we vary UDP sending rate x0 from 0.1c =
1.5Mbps to 10c = 150Mbps. We measure the following
quantities, and compare with the numerical solutions of (5)–
(11):

1. Normalized UDP bandwidth share µ0 = x0(1 − p0)/c.

2. aggregate queue size b

3. round-trip time di + τ

The results illustrate both the equilibrium behavior of CHOKe
and the accuracy of our analytical model. They show the
ability of CHOKe to protect TCP flows and agree with those
aggregate measurements of [9]. We next discuss these results
in detail.

4.3 Simulation results
We show two sets of results. The first set presents measure-
ments of buffer size, queueing delay and throughput share
using the modified Vegas with N identical flows. It vali-
dates our model. The second set validates Theorems 1 and
2, and confirms that UDP share µ0 is insensitive to TCP
algorithms, RED parameters, and round trip delay.

4.3.1 Equilibrium properties
Since extensive simulation results have been previously re-
ported in [9] and [11] with TCP Reno, we focus here on
modified Vegas which matches model (21)–(22) well.

In the simulations of modified Vegas in this subsection, a
common round trip delay d = 100ms is used. We set α
such that each source tries to put αd = 2 packets in the
buffer. The system is stable and converges to a steady state
(modulo random fluctuations) very quickly. A sample queue
size and congestion window are given in Figure 4, for UDP
rate x0 = 15Mbps, one of the data points in Figure 5.

Figure 5 illustrates the effect of UDP rate x0 on queue size
and queueing delay under modified Vegas. Each of the fig-
ures shows three curves: measurements from ns-2 simula-
tions, numerical solution of the complete model (5)–(11),
and that based on the simplified model described at the be-
ginning of Section 3. The difference between the numerical
solutions of the complete model and that of the simplified
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Figure 4: Example queue size and congestion win-
dow under modified Vegas
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Figure 5: Effect of UDP rate x0 on queue size
and queuing delay under modified Vegas. N = 100,
d = 100ms, c = 15Mbps, x0 = 0.1c to 10c, simulation
duration = 20sec.



model is negligible. The error between simulation results
and the numerical solutions is always less than 5 percent.

When UDP rate x0 is small, the queue size is close to Nαd =
200pkts. The aggregate queue length b steadily increases as
UDP rate x0 rises. It will approach 400pkts if there were no
RED dropping because when UDP rate is very large, UDP
packets take up half of the queue (see proof of Theorem 2)
and there are about Nαd = 200 Vegas packets in the buffer
(N = 100 is large). With RED dropping, the value is slightly
less than 400pkts. As discussed in Section 4.1, the queueing
delay is small both when x0 = 0.1c and when x0 = 10c.

The UDP bandwidth share is shown in Figure 6. Similarly
there are three curves from ns-simulation, complete model,
and simplified model. The curve corresponding to the sim-
plified model is marked as “Intrinsic UDP bandwidth share”,
and is the same curve in Figure 3, because its calculation
does not depend on specific TCP algorithm fi, or AQM algo-
rithm g, or delay values. It is calculated using equation (15).
The complete model matches the simulation better, but the
prediction from the intrinsic curve is also acceptable.
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Figure 6: UDP bandwidth share µ0 v.s. UDP rate
after RED dropping x0(1 − r)/c

4.3.2 Throughput share
The second set of results, shown in Figure 7, illustrates
the UDP bandwidth share for three TCP implementations:
NewReno, modified Vegas, and original Vegas. Each subfig-
ure has two curves: from simulation, and from the simplified
model. The curves from the model are the same curve in Fig-
ure 3, and hence different TCP implementations yield simi-
lar simulation curves. The 100 sources have various propa-
gation delays with 10 sources at each of the 50, 60, . . . , 140ms
delay values. Figure 8 shows the corresponding curves for
the original Vegas when all sources have the same delay of
100ms. Comparing Figures 6, 7, and 8, we see that the
throughput share is sensitive neither to TCP implementa-
tion nor propagation delay. Theorems 1 and 2 predict that
the UDP bandwidth share peaks at around 0.269 and tends
to zero as x0 increases. Simulation shows a slightly smaller
peak UDP share. The discrepancy is probably due to the
approximations we made in our model.

Finally, the UDP bandwidth share with a different slope of
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(b) Modified Vegas: di = 50, 60, . . . , 140ms
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Figure 7: UDP bandwidth share µ0 as a function of
UDP rate after RED dropping x0(1 − r)/c. N = 100,
c = 15Mbps.
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Figure 8: UDP bandwidth share µ0: Original Vegas,
di = 100ms for all sources, N = 100, c = 15Mbps.

RED’s drop profile is shown in Figure 9. The RED param-
eters are : (min th b = 20 packets, max th b = 420 packets,
pmax = 0.1). Here we have modified b from 1020 to 402 to
get a steeper slope of the drop profile than used in earlier
simulations. The sources are NewReno with the same delay
values as the previous set of simulations. It shows that the
bandwidth share is almost independent of RED parameters.
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Figure 9: UDP bandwidth share µ0: different RED
configuration, NewReno.

5. CONCLUSION
We have developed an analytical model of CHOKe which is
not only much simpler to solve numerically than the previous
model of [11], but also allows us to compute analytically the
maximum and asymptotic throughput. In particular, we
prove that UDP bandwidth share peaks at (e+1)−1 = 0.269
when UDP rate is slightly larger than link capacity, and
drops to zero when UDP rate approaches infinity.

The models and results here and in [11] complement each

other. Here, we compute the macroscopic properties of
CHOKe. The differential equation model of [11] provides
detail spatial characters of a leaky buffer that explain the
mechanism through which these properties are produced.
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