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Summary. Generalized switch is a model of a queueing system where parallel servers are in-
terdependent and have time-varying service capabilities. It includes as special cases the model
of data scheduling in a wireless network and the input-queued cross-bar switch model. A fi-
nite setS of queues (users) are served in discrete time by a switch. Switch stateh follows a
discrete-time, finite-state Markov chain. At each time slott, the switch can choose a schedul-
ing decisionm from a finite setM , which captures the interdependency among the servers
specifying which subsets of servers can be active simultaneously. Each scheduling decision
has the associated vector of service ratesr̃m(h(t)) at which queues are served, whereh(t)
denotes the switch state at timet.

This article considers the dual scheduling algorithm that uses rate control and queue-
length based scheduling to allocate resources for a generalized switch. We first consider a
saturated system in which each user has infinite amount of data to be served. We prove the
asymptotic optimality of the dual scheduling algorithm for such a system, which says that the
vector of average service rates of the scheduling algorithm maximizes some aggregate concave
utility functions. As the fairness objectives can be achieved by appropriately choosing utility
functions, the asymptotic optimality establishes the fairness properties of the dual scheduling
algorithm. We next consider a system with exogenous arrivals, i.e., data flows of finite size
arrive at the system randomly. For such a system, we propose a modified dual scheduling
algorithm that stabilizes the system whenever the input rates are within the feasible rate region
and is then throughput-optimal, i.e., achieves100% throughput.

The dual scheduling algorithm motivates a new architecture for scheduling, in which an
additional queue is introduced to interface the user data queue and the time-varying server and
to modulate the scheduling process, so as to achieve different performance objectives. Further
research would include scheduling with Quality of Service guarantees with the dual scheduler,
and its application and implementation in various versions of the generalized switch model.

1 Introduction

We consider a general model where a setS of queues (users) are served in dis-
crete time by a generalized switch, as defined in [24]. The generalized switch can be
viewed as a discrete-time, interdependent parallel server system. The servers are in-
terdependent in that they cannot provide service simultaneously, and the dependency
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among them is reflected on the constraints that specify which subsets of servers can
be active at the same time. Switch stateh follows a discrete-time, finite-state Markov
chain. At each time slott, the switch can choose a scheduling decisionm from a finite
setM , which captures the constraints imposed by the interdependency among the
servers. Each scheduling decision has the associated vector of service ratesr̃m(h(t))
at which queues are served, whereh(t) is the switch state at timet.

The generalized switch model has many applications in communication net-
works. For example, in cellular network in the downlink, the servers correspond to
the wireless links from the base stations to the users, and the constraint is that each
base station can transmit to at most one of the users and each user can be served by
at most one of the base stations in each time slot, see e.g. [5, 12]. Other examples in-
clude multi-hop wireless network where each wireless link can be viewed as a server
and the constraints disallow simultaneous transmission of neighboring links due to
interference, see e.g. [27, 28, 29]. It also includes as a single-state special case input-
queued cross-bar switch where a server corresponds to each input-output port pair,
and the constraint is that each input port transmits to exactly one of the output ports
and each output port receives from exactly one of the input ports at any time, see e.g.
[19]. The same model can extend to handle the packet switch in wireless network,
where the switch state (i.e., wireless line rates) is supposedly time-varying.

For such a generalized switch system with time-varying state, the service rate
that can be offered to the users (queues) is both user-dependent and time-dependent.
This, on one hand, opens up the possibility to use state-aware scheduling strategies,
i.e., to exploit service variations to increase the throughput. On the other hand, the
parallel servers are interdependent, and to serve (schedule) always the user with the
highest potential rate maximizes overall throughput but usually results in the starva-
tion of some users. So, we need to trade off throughput for fairness. However, the
time-varying nature of the generalized switch, coupled with the user-dependent ser-
vice rate and unknown data arrival, makes it very challenging to design scheduling
policies to fulfil fairness and throughput requirements, as well as other performance
objectives.

There exists lots of work on scheduling with different performance objectives
for different versions of the generalized switch model. For fair scheduling, in the
context of cellular network in the downlink, one of the principal policies is the Pro-
portional Fair Scheduler of Qualcomm High Data Rate system [5, 12], which sched-
ules the user with the largest ratio of the current achievable rate to the exponentially
smoothed throughput. This scheduling algorithm has been shown to maximize the
sum of the logarithm utilities of the long-run average data rates provided to the users
[30, 15, 26], and thus achieve proportional fairness [13]. The generalization of the
proportional fair scheduling algorithm to any concave utility function for a general-
ized switch has been studied1, see e.g. [25]. Other work on fair scheduling includes,
e.g., [16, 8, 17]. For throughput-optimal scheduling that attains maximum stability
region of the system, one of the principal policies is the MaxWeight scheduling in

1 We call this type of scheduling policies the primal scheduling algorithms, since they can be
seen as the gradient algorithm to solve a concave utility maximization problem directly.
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the context of wireless network, see e.g. [27, 28, 29, 1, 22, 20, 10], and in the context
of input-queued switch, see e.g. [19]. The stability region of a scheduling policy is
the set of mean flow rate vectors such that the queue-length process is stable under
this policy. The throughput-optimal scheduling has its origin in [27, 28, 29], where
it is shown that allocating resources to maximize a queue-length-weighted sum of
rates is a stabilizing policy under any sustainable flows. However, there is no fair-
ness guarantee with throughput-optimal scheduling.

In this article, we study the dual scheduling algorithms for the generalized switch
(see [9] for preliminary results in the context of cellular network in the downlink).
These algorithms are motivated by the dual subgradient algorithm of convex opti-
mization problems [23, 6]. With an additional queue (termed M-queue) being intro-
duced for each user, the dual scheduling algorithm is a combination of rate control
(of the M-queue) and M-queue-length based scheduling. The rate control algorithm
is motivated by utility framework for TCP congestion control (see e.g. [14, 18]),
which shows that various TCP congestion control protocols can be interpreted as
distributed primal-dual algorithms to solve aggregate network utility maximization.
The queue-length based scheduling takes the form of a simple throughput-optimal
scheduling. As such, while the queue-length-based scheduling part keeps maximiz-
ing the throughput, the rate-control part modulates the scheduling process by choos-
ing appropriate utility functions, so as to achieve various performance objectives.

Section 2 presents the details of system model and the dual scheduling algorithm
for the generalized switch. In Section 3, we consider a saturated system in which
each user has infinite amount of data to be served. For such a system, fairness among
the users is presumably the most important concern. We present a dual scheduling
algorithm, which extends the algorithm studied in [11], and prove its asymptotic
optimality, which says that the vector of average service rates of the scheduling al-
gorithm maximizes some aggregate concave utilities of the users. As is well-known,
the fairness objectives can be achieved by appropriately choosing the utility func-
tions. So, the asymptotic optimality establishes the fairness properties of the dual
scheduling algorithm.

We next consider in Section 4 the system with exogenous arrivals, i.e., data flows
of finite size arrive at the system randomly. For such a system, one of the perfor-
mance properties of particular concern for any scheduling algorithm is its stability
rate region within which the flows can be stably supported and the response time
remains finite. We consider the traffic at flow level, but include packet-level dynam-
ics, i.e., the precise operation of the scheduling mechanism. We propose another dual
scheduling algorithm and show that it stabilizes the system whenever the arrival rates
are within the feasible rate region and is then throughput-optimal. Compared with
other throughput-optimal scheduling policies, the dual throughput-optimal schedul-
ing algorithm provides some weighted fairness among the users at flow level.

The dual scheduling algorithm motivates a new architecture for scheduling in
the generalized switch, in which an additional queue is introduced to interface the
user data queue and the time-varying server and to modulate the scheduling process,
so as to achieve different performance objectives such as fairness, and maximum
throughput, etc. In Section 5, we will briefly discuss some implementation issues and
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advantages of the dual scheduler, and Quality of Service scheduling in generalized
switches.

2 System Model

We consider a queueing system where a finite setS of parallel queues (users), in-
dexed bys, are served by a generalized switch. The generalized switch can be ab-
stracted as an interdependent parallel server system. The servers are interdependent
in that they cannot provide service simultaneously, and the dependency among them
is reflected on the constraints that specify which subsets of servers can be active
at the same time. For convenience, we use a “dependency” graphG to capture this
interdependency. Each vertex inG represents a server, and an edge between two ver-
tices means the corresponding servers cannot be active simultaneously. Thus, only
those servers in an independent set2 of the dependency graph can be active at the
same time. We denote the set of independent sets byM , with each element indexed
by m.

The system operates in discrete timet = 0, 1, 2, · · ·. By convention, we choose
the duration of a time slot as theunit of time, and identify timet with the unit time
interval [t, t + 1). The switch has a finite setH of states. The switch state is fixed
in one of the statesh ∈ H within a time slot but varies across slots according to an
irreducible finite-state Markov chain. Corresponding to the switch stateh, the service
rate to users is rs(h) packets per time slot when the switch servers onlys, and the
service rate vectors̃rm(h), m ∈ M that can be offered to the users are

r̃m
s (h) =

{
rs(h) if s ∈ m

0 otherwise.

By standard time-sharing argument, the feasible rate regionΠ(h) in switch stateh
is defined to be the convex hull of these rate vectors [4]

Π(h) :=

{
r̃ : r̃ =

M∑

i=1

tir̃
i(h), ti ≥ 0,

M∑

i=1

ti = 1

}
, (1)

where we slightly abuse the notation and letM also denote the size of the setM .
Let the switch state distribution bed(h), we further define the mean feasible rate
(capacity) region as

Π =

{
r : r =

∑

h∈H

d(h)r̃(h), r̃(h) ∈ Π(h)

}
. (2)

This mean rate region is a closed convex set, and is the best feasible rate region the
system can support on average.

2 An independent set of vertices is defined as a set of vertices that have no edges between
each other. An empty set is an interdependent set.



Dual Scheduling Algorithm in a Generalized Switch 5

2.1 Queue Length Dynamics

Fig.1 shows the architecture of the dual scheduler from the perspective of one user.
The system keeps separatedata queuesfor the users to buffer the data intended to
them. In addition, another queue, called M-queue, is introduced for each user. The
M-queue interfaces the data queue and the time-varying server, in that the data will
depart from the data queue to enter the M-queue, and the server will directly serve
the M-queue.

    Dual Scheduler

M−QueueData Queue

As(t)
Qs(t) sp (t)

sx (t) s(t)c

Fig. 1. The Architecture of the Dual Scheduler.

Denote the size of the data queue and M-queue for users at the beginning of the
time slott by Qs(t) andps(t) respectively, the number of arrivals to the data queue
and M-queue of users in time slott by As(t) andxs(t) respectively, and the amount
of service offered to the M-queue of users in time slott by cs(t). The evolutions of
the data queue and M-queue length for users are given by

Qs(t + 1) = Qs(t) + As(t)− xs(t) , (3)

ps(t + 1) = [ps(t) + xs(t)− cs(t)]+, (4)

where ‘+’ denotes the projection onto the set<+ of non-negative real numbers.
We further introduce a small parameterγ > 0, and for convenience, define a new

quantityqs(t) = γps(t) for each users. In Section 3 we will see thatγ characterizes
the asymptotic optimality and fairness of the dual scheduling algorithm. We callq
the scaled queue-length, since it is the M-queue length scaled byγ. By equation (4),
the evolution of the scaled queue-length is given by

qs(t + 1) = [qs(t) + γ(xs(t)− cs(t))]+. (5)

With the dual scheduling algorithm, the system controls the arrival rate into the M-
queues and determines service rates offered to the M-queues based on queue-length.

2.2 Dual Scheduling Algorithm

We assume that each users attains a utilityUs(xs) when its arrival rate to the M-
queue isxs packets per time slot.Us(·) may be dependent of data queue sizeQs, but
is assumed to be continuously differentiable, increasing and strictly concave with
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respect toxs. In time slott, given the current M-queue lengthps(t), the maximal
arrival rate to the M-queue of users is specified as following

xs(t) = min
{

U ′
s
−1(γps(t)), αs

}
= min

{
U ′

s
−1(qs(t)), αs

}
, (6)

whereαs > maxh rs(h) is the upper bound specified on the arrival rate, and thus
xs(t) maximizesUs(xs) − qsxs over0 ≤ x ≤ αs. Note that we choose packet of
equal length as the unit of data.xs will be rounded to closest integer automatically.

We now consider service allocation. In time slott, given the current M-queue
lengthp(t), the switch selects a (physical) service rate vector3

c(t) ∈ arg max
c∈Π(h(t))

p(t)T c = arg max
c∈Π(h(t))

q(t)T c , (7)

where we will always pick an extreme point maximizer4. Equation (7) takes the
form of simple throughput-optimal scheduling as proposed in [27, 28], which sched-
ules the transmissions dynamically based only on current system backlog and switch
state.

Equations (3)-(7) define the dual scheduling algorithm. When the M-queue
length process is stable,xs will be the service rate offered to users. This schedul-
ing algorithm can be seen as motivated by the dual subgradient algorithm of con-
cave maximization problemmaxx

∑
s Us(xs), and is a combination of rate control

[14, 18] and queue-length-based scheduling. As the queue-length-based scheduling
part keeps maximizing the throughput, the rate-control part modulates the schedul-
ing process by choosing appropriate utility functions, so as to achieve various per-
formance objectives.

Given a scheduling algorithm, two of important issues that need to be addressed
are to characterize its fairness property and its stability region. The fairness property
governs the resource allocation among the competing users, and the stability region
determines the efficiency of the scheduling algorithm as a whole. We will study them
in the next two sections, respectively.

3 Asymptotic Optimality and Fairness

In this section, we consider a saturated system in which each user has infinite amount
of data to be served, i.e., the user data queue is infinitely backlogged. So, the data
queue is irrelevant and the choice of utility functionUs(·) is independent ofQs. We
will show that the dual scheduling algorithm maximizes some aggregate concave
utilities and establish its fairness properties through its asymptotic optimality.

3 We call the service rate allocated to the M-queue the physical service rate, in order to
distinguish from the service rate received by the user data queue which will bexs if M-
queue is table.

4 A point in a convex set is an extreme point if it cannot be written as a convex combination
of other points in the convex set.
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3.1 An Ideal Reference System

Before preceding, let us first define an ideal reference system problem,

max
xs≥0,cs≥0

∑
s

Us(xs) (8)

subject to x ≤ c & c ∈ Π. (9)

The first constraint says that the arrival rate to the M-queues should not exceed the
physical service rate. The second constraint says that the physical service rate should
be in the mean rate region, which is the best feasible rate region the system can
support. We will characterize the performance of the dual scheduling algorithm with
respect to this reference system.

Proposition 1. The solutionx∗ to problem (8)-(9) exists and is unique.

Proof. The proof is trivial, since the objective function is strictly concave and the
constraint set is a closed, convex set [6].

Consider the dual problem of the reference system problem (8)-(9)

min
u≥0

D(u) (10)

with partial dual function

D(u) = max
xs≥0,cs≥0

∑
s

Us(xs)− uT (x− c) (11)

subject to c ∈ Π, (12)

where we relax only the constraintx ≤ c by introducing Lagrange multiplieru.

Proposition 2. The solutionu∗ to dual problem (10) exists. Moreover, there is no
dual gap between the primal problem (8)-(9) and the dual problem (10).

Proof. The proof is trivial, since problem (8)-(9) is a convex optimization problem
[6].

Having established the properties of the ideal reference system problem and its
dual, in the next subsection we will characterize the dual scheduling algorithm with
respect to them.

Remark 1:Roughly speaking, the primal scheduling algorithm is a scheduling
policy whose vector of average service rates solving the problem

max
xs≥0

∑
s

Us(xs)

subject to x ∈ Π.

This problem is equivalent to problem (8)-(9), since mathematicallyc can be seen
as an auxiliary variable. The primal scheduling algorithm can be seen as being moti-
vated by the gradient algorithm to solve this problem [25], while the dual scheduling
algorithm can be seen as being motivated by the dual gradient algorithm to solve the
same problem.
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3.2 Stochastic Stability

Note that M-queue lengthp(t) (and scaled queue-lengthq(t)) evolves according to
a discrete-time, discrete-space Markov chain. We first show that this Markov chain
is stable, i.e., the queue-length process reaches a steady state and does not go un-
bounded to infinity. It is easy to check that the Markov chain has a countable state
space, but is not necessarily irreducible. In such a general case, the state space is
partitioned in transient setT and different recurrent classesRi. We definethe system
to be stable if all recurrent states are positive recurrent and the Markov process hits
the recurrent states with probability one[27]. This will guarantee that the Markov
chain will be absorbed/reduced into some recurrent class, and the positive recurrence
ensures the ergodicity of the Markov chain over this class.

Theorem 1.The Markov chains described by equations (4) and (5) are stable.

Proof. Consider the the Lyapunov functionV (q) = ‖q−u∗‖22. By equations (5)-(7)
and defineg(q) = c(q)− x(q), we have

E[∆Vt(q)|q] = E[V (q(t + 1))− V (q(t)) | q(t) = q]
= E[V ([q(t)− γg(q(t))]+)− V (q(t)) | q(t) = q]
≤ E[V (q(t)− γg(q(t)))− V (q(t)) | q(t) = q]
= E[−γg(q(t))T (2(q(t)− u∗)− γg(q(t))) | q(t) = q]
= 2γg(q)T (u∗ − q) + γ2E[‖g(q(t))‖22 | q(t) = q]
≤ 2γg(q)T (u∗ − q) + γ2G2,

whereG is the upper bound of the norm ofg(q(t)), and

g(q) = c(q)− x(q) with c(q) ∈ argmax
c∈Π

qT c . (13)

It is easy to check thatg(q) is a subgradient5 of the dual functionD(q) at pointq,
thus

g(q)T (u∗ − q) ≤ D(u∗)−D(q) .

So,

E[∆Vt(q)|q] ≤ 2γ(D(u∗)−D(q)) + γ2G2.

Note thatD(q) is a continuous function. Let

δ = max
D(q)−D(u∗)≤γG2

‖q − u∗‖2

and defineA = {q : ‖q − u∗‖2 ≤ δ}. We can get

5 Given a convex functionf : Rn 7→ R, a vectord ∈ Rn is a subgradient off at a point
u ∈ Rn if f(v) ≥ f(u) + (v − u)T d, v ∈ Rn [23, 6].
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E[∆Vt(q)|q] ≤ −γ2G2Iq∈Ac + γ2G2Iq∈A ,

whereI is the index function. Thus, byTheorem 3.1in [27], which is a trivial exten-
sion of Foster’s criterion for irreducible chain [3], the Markov chainq(t) is stable.
Since the M-queue lengthp(t) = γq(t), the Markov chainp(t) is also stable.

The above proof shows that the distance to the optimalu∗ has negative con-
ditional mean drift for all scaled queue-length that have sufficiently large distance
to u∗, and implies that the scaled queue-length will stay nearu∗ whenγ is small
enough.

Remark 2:We can make the Markov chainp(t) irreducible over its state space,
by making the arrivalx(t) a random variable with meanmin{U ′

s
−1(γps(t)), αs}, as

that assumed in [11]. We can also make the system to reach a specific state infinitely
often with finite mean recurrence times, which will ensure that the system reduces to
one recurrent class whatever the initial state is.

3.3 Asymptotic Optimality and Fairness

In this subsection, we will prove the asymptotic optimality of the dual scheduling
algorithm in terms of dual and primal functions of the reference system problem
(8)-(9).

Theorem 2.The dual scheduling algorithm (4)-(7) converges statistically to within
a small neighborhood of the optimal valueD(u∗), i.e.,

D(u∗) ≤ D(E[q(∞)]) ≤ D(u∗) + γG2/2, (14)

whereq(∞) is a notation used to denote the state of the Markov chainq(t) in the
steady state.

Proof. The first inequalityD(u∗) ≤ D(p) always holds, sinceD(u∗) is the mini-
mum of the dual functionD(u).

Now we prove the second inequality. From the proof of Theorem 1, we have

E[∆Vt(q)|q] = E[V (q(t + 1))− V (q(t)) | q(t) = q]
≤ 2γ(D(u∗)−D(q)) + γ2G2.

Taking expectation overq, we get

E[∆Vt(q)] = E[V (q(t + 1))− V (q(t))]
≤ 2γ(D(u∗)− E[D(q)]) + γ2G2.

Taking summation fromτ = 0 to τ = t− 1, we obtain

E[V (q(t))] ≤ E[V (q(0))]− 2γ

t−1∑
τ=0

E[D(q(τ))] + 2γtD(u∗) + tγ2G2.
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SinceE[V (q(t))] ≥ 0, we have

2γ

t−1∑
τ=0

E[D(q(τ))]− 2γtD(u∗) ≤ E[V (q(0))] + tγ2G2.

From this inequality we obtain

1
t

t−1∑
τ=0

E[D(q(τ))]−D(u∗) ≤ E[V (q(0))] + tγ2G2

2tγ
.

Note thatq(t) is stationary and ergodic in some steady state by Theorem 1, and so is
D(q(t)). Thus,

lim
t→∞

1
t

t−1∑
τ=0

E[D(q(τ))] = E[D(q(∞))].

So,

E[D(q(∞))]−D(u∗) ≤ γG2/2.

SinceD(q) is a convex function, by Jensen’s inequality,

D(E[q(∞)])−D(u∗) ≤ γG2/2,

i.e., the algorithm converges statistically to withinγG2/2 of the optimal value
D(u∗).

SinceD(q) is a continuous function, Theorem 2 implies that the scaled queue-
lengthq approachesu∗ statistically whenγ is small enough.

Corollary 1. x(t) is a stable Markov chain. Moreover, the average arrival rates
E[x(∞)] ∈ Π, wherex(∞) denotes the state of the processx(t) in the steady state.

Proof. x(t) is a deterministic, finite-value function ofq(t). x(t) is a stable Markov
chain, sinceq(t) is. E[x(∞)] ∈ Π, otherwise the average scaled queue-length
E[q(∞)] will go unbounded, which contradicts to Theorem 2.

Theorem 3.Let P (x) be the primal function of the reference system problem (8)-
(9). The dual scheduling algorithm (4)-(7) converges statistically to within a small
neighborhood of the optimal valueP (x∗), i.e.,

P (x∗) ≥ P (E[x(∞)]) ≥ P (x∗)− γG2

2
. (15)

Proof. The first inequalityP (x∗) ≥ P (E[x(∞)]) holds, sinceE[x(∞)] ∈ Π.
Now we prove the second inequality. By equation (5), we have
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E[||q(t + 1)||22|q(t)]
= E[||[q(t)− γg(q(t))]+||22|q(t)]
≤ E[||q(t)− γg(q(t))||22|q(t)]
= ||q(t)||22 − 2γg(q(t))T q(t) + γ2E[||g(q(t))||22|q(t)]
= ||q(t)||22 + 2γ

∑
s

Us(xs(t))− 2γ
∑

s

(Us(xs(t))− qs(t)xs(t))

−2γ
∑

s

qs(t)cs(t) + γ2E[||g(p(t))||22|q(t)]

≤ ||q(t)||22 + 2γ
∑

s

Us(xs(t))− 2γ
∑

s

(Us(x∗s)− qs(t)x∗s)

−2γ
∑

s

qs(t)cs(t) + γ2E[||g(p(t))||22|q(t)]

= ||q(t)||22 + 2γP (x(t))− 2γP (x∗s)

−2γ
∑

s

qs(t)(cs(t)− x∗s) + γ2E[||g(q(t))||22|q(t)]

≤ ||q(t)||22 + 2γP (x(t))− 2γP (x∗) + γ2E[||g(q(t))||22|q(t)]
≤ ||q(t)||22 + 2γP (x(t))− 2γP (x∗) + γ2G2,

whereg(q) is defined as in equation (13), the second inequality follows from the
fact thatxs(t) is the maximizer ofmaxxs(Us(xs) − qsxs), and the third inequality
follows from the fact thatc(t) is the maximizer in equation (13) andx∗ ∈ Π.

Taking expectation overq, we get

E[||q(t + 1)||22] ≤ E[||q(t)||22] + 2γE[P (x(t))]− 2γP (x∗) + γ2G2.

Applying the inequalities recursively, we obtain

E[||p(t)||22] ≤ E[||p(0)||22] + 2γ

t−1∑
τ=0

(E[P (x(τ))]− P (x∗)) + tγ2G2.

SinceE[||p(t)||22] ≥ 0, we have

2γ

t−1∑
τ=0

(E[P (x(τ))]− P (x∗)) ≥ −E[||p(0)||22]− tγ2G2.

From this inequality we obtain

1
t

t−1∑
τ=0

E[P (x(τ))]− P (x∗) ≥ −E[||p(0)||22]− tγ2G2

2tγ
.

Note thatx(t) is stationary and ergodic in some steady state by Corollary 1. Thus,

lim
t→∞

1
t

t−1∑
τ=0

E[P (x(τ))] = E[P (x(∞))].
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So,

E[(P (x(∞))]− P (x∗) ≥ −γG2

2
.

SinceP is a concave function, by Jenson’s inequality,

P (E[x(∞)])− P (x∗) ≥ −γG2

2
,

i.e., the algorithm converges statistically to withinγG2/2 of the optimal value
P (x∗).

SinceP (x) is a continuous function, Theorems 3 implies that the average arrival
rates to the M-queues approaches the optimal of the ideal reference system (8)-(9)
whenγ is small enough. Note that, when the M-queue length is stable,x will be
the service rates offered to the users. Theorem 2 and 3 shows that, surprisingly, the
vector of average service rates offered by the dual scheduling algorithm (4)-(7) ap-
proximately solves the ideal reference system problem, which is to maximize the
aggregate concave utilities over the best feasible rate region that the network can
support.

As is well-known, the fairness objectives can be achieved by appropriately choos-
ing the concave objective functions. So, the asymptotic optimality establishes the
fairness properties of the dual scheduling algorithm. For example, if we choose loga-
rithm utility functionUs(xs) = log(xs), the dual scheduler will achieve proportional
fairness [13, 11].

4 Throughput-optimal Scheduling

The results presented in last section assume a saturated system in which each user has
infinite amount of data to be served. In reality, however, data flows of finite size arrive
at the system for each user according to some arrival process. For such a system, one
of the properties of particular concern for a scheduling algorithm is its stability rate
region within which the flows can be stably supported and the response time remains
finite, since it characterizes the throughput performance of the scheduling algorithm
as a whole. In this section, we will consider a scheduling policy which maximizes
the system throughput while providing some weighted fairness among users at flow
level.

We will model the traffic in the system at the level of flows. We assume that
the arrival process of data flows for each users is a stationary point process with
intensityνs, and the size of the flows to be served is drawn independently from a
general distribution with mean1/µs and finite second moment. We denote byρs =
νs/µs the traffic intensity offered to users. The data queue length (unfinished work)
Q(t) is a stochastic process which increases as new flows come and decreases as
date is transferred into the M-queues. We are concerned with the stability ofQ(t),
and derive conditions on the traffic intensityρ for which, starting from any initial
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state, the amount of data (or number of the flows) to be served remains finite with
probability1. Obviously, the following condition is necessary

ρ ∈ int(Π), (16)

where int(Π) denotes the interior of convex setΠ. This condition for stability is not
sufficient for general scheduling policies. We call a scheduling algorithmthroughput-
optimal if condition (16) is also sufficient under this algorithm.

4.1 Throughput Optimality and Fairness

We would like the dual scheduling algorithm discussed in last section to be a
throughput-optimal policy. However, fairness and maximum throughput are not
directly compatible performance objectives. On one hand, as we can see in e.g.
[27, 28, 29], there is no guarantee of fairness with throughput-optimal scheduling. On
the other hand, fair scheduling may not be stable for some flows within the feasible
rate region, see e.g. the discussion in [2] for proportional fair scheduling algorithm in
cellular network in the downlink. The main reason why the fair scheduling may not
be a stabilizing policy is because it is usually traffic-independent. For example, in
proportional fair scheduling algorithm, the scheduling decision is made based on the
current achievable rate and the mean throughput but not on the real traffic intended
to the users.

Given the above consideration, a throughput-optimal scheduling policy should be
traffic-dependent. This motivates us to consider scheduling algorithm whose vector
of service ratesx solves the following utility maximization

max
xs≥0,cs≥0

∑
s

QsUs(xs) (17)

subject to x ≤ c & c ∈ Π, (18)

whereUs(·) is again independent of the data queue lengthQs. However, we cannot
solve problem (17)-(18) directly, since the system only knows the current switch
state but not its statistics.

By the assumptions about the data flows for each user, the arrival to the data
queuesAs(t) is i.i.d. across time slots and with meanρs = E[As(t)] and finite sec-
ond moment. The evolution of unfinished workQ(t) and the modified dual schedul-
ing algorithm are given by,

Qs(t + 1) = [Qs(t) + As(t)− xs(t)]+, (19)

qs(t + 1) = [qs(t) + γ(x̃s(t)− cs(t))]+, (20)

xs(t) = min{U ′
s
−1(qs(t)/Qs(t)), αs}, (21)

c(t) ∈ arg max
c∈Π(h(t))

q(t)T c , (22)

where x̃s(t) = min{Qs(t) + As(t), xs(t)}. Equation (20)-(22) is the modified
dual scheduling algorithm motivated by the utility maximization (17)-(18). It makes
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scheduling decision based only on current backlog and switch state. Note that, if
the unfinished workQ(t) freezes, this algorithm will solve the utility maximization
approximately.

4.2 Optimality Proof

It is easy to verify that the pair(Q(t), q(t))6 evolves according to a discrete-time,
discrete-space Markov chain. The following theorem proves the stability of this
Markov chain under any sustainable flows, and show that the modified dual schedul-
ing algorithm is a throughput-optimal scheduling policy.

Theorem 4.The Markov chainY (t) = (Q(t), q(t)) is stable iff traffic condition (16)
is satisfied.

Before we prove Theorem 4, let first introduce two lemmas. Consider Lyapunov
function

V (Y ) = V1(Y ) + V2(Y ),

whereV1(Y ) =
∑

s bsQ
2
s =

∑
s U ′

s((1+ε)ρs)Q2
s, andV2(Y ) =

∑
s

q2
s

γ . ε is a small
positive constant that will be decided later on. Note thatbs = U ′

s((1 + ε)ρs) > 0,
sinceUs(·) is an increasing function. Also, note thatU ′

s(·) is a decreasing function.

Lemma 1. For anyρ ∈ int(Π), there exists aε > 0 such that the following inequality
holds,

E[V1(Y (t + 1))− V1(Y (t))|Y (t)]

≤ −2ε
∑

s

bsρsQs(t) + 2
∑

s

qs(t)((1 + ε)ρs − xs(t)) + T1,

whereT1 is a positive constant.

Proof. For anyρ ∈ int(Π), there exists a small numberε > 0 such that(1 + ε)ρ ∈
int(Π), sinceΠ is a closed convex set and0 ∈ Π. By equation (19), we have

E[V1(Y (t + 1))− V1(Y (t))|Y (t)]

=
∑

s

bsE[([Qs(t) + As(t)− xs(t)]+)2 −Q2
s(t)|Y (t)]

≤
∑

s

bsE[(Qs(t) + As(t)− xs(t))2 −Q2
s(t)|Y (t)]

=
∑

s

bsE[2Qs(t)(As(t)− xs(t))|Y (t)] +
∑

s

bsE[(As(t)− xs(t))2|Y (t)]

6 Throughout this section, for convenience, we will use scaled quene-lengthq(t) rather than
the M-queue lengthp(t) to establish the stability and optimality properties of the dual
scheduling algorithm. This makes no difference, sinceq(t) is p(t) scaled by a constant and
all the properties ofq(t) carry top(t) and vice versa.
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≤
∑

s

2bsQs(t)(ρs − xs(t)) + T1

= −
∑

s

2εbsρsQs(t) +
∑

s

2bsQs(t)((1 + ε)ρs − xs(t)) + T1 . (23)

Here the positive constantT1 is the upper bound of
∑

s bsE[(As(t)−xs(t))2|Y (t)].
This can be achieved sincexs(t) is upper bounded byαs and E[A2

s(t)] is also
bounded.

Now we consider the second term in (23). If(1 + ε)ρs ≥ xs(t),

2bsQs(t)((1 + ε)ρs − xs(t))
≤ 2Qs(t)U ′

s(xs(t))((1 + ε)ρs − xs(t))
= 2qs(t)((1 + ε)ρs − xs(t)),

where the first inequality follows from the fact thatU ′
s(·) is a decreasing function,

and the last equality follows from the factxs(t) ≤ (1+ε)ρs < αs and equation (21).
If (1 + ε)ρs < xs(t),

2bsQs(t)((1 + ε)ρs − xs(t))
= 2qs(t)((1 + ε)ρs − xs(t)) + 2(bsQs(t)− qs(t))((1 + ε)ρs − xs(t))
≤ 2qs(t)((1 + ε)ρs − xs(t)) + 2(Qs(t)bs −Qs(t)U ′

s(x(t)))((1 + ε)ρs − xs(t))
≤ 2qs(t)((1 + ε)ρs − xs(t)),

where the first inequality follows from the equation (21), and the last inequality fol-
lows from the fact thatU ′

s(·) is a decreasing function.
So, in any case, we get

E[V1(Y (t + 1))− V1(Y (t))|Y (t)]

≤ −2ε
∑

s

bsρsQs(t) + 2
∑

s

qs(t)((1 + ε)ρs − xs(t)) + T1 .

Lemma 2.

E[V2(Y (t + 1))− V2(Y (t))|Y (t)] ≤ 2
∑

s

qs(t)(xs(t)− cs(t)) + T2 ,

whereT2 is a positive constant, andc(t) = argmaxc∈Π q(t)T c .

Proof. By equation (20), we have

E[V2(Y (t + 1))− V2(Y (t))|Y (t)]

=
∑

s

1
γ

E[([qs(t) + γ(x̃s(t)− cs(t))]+)2 − q2
s(t)|Y (t)]

≤
∑

s

1
γ

E[(qs(t) + γ(xs(t)− cs(t)))2 − q2
s(t)|Y (t)]
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= 2
∑

s

E[qs(t)(xs(t)− cs(t))|Y (t)] +
∑

s

γE[(xs(t)− cs(t))2|Y (t)]

= 2
∑

s

qs(t)(xs(t)− cs(t)) +
∑

s

γE[(xs(t)− cs(t))2|Y (t)]

= 2
∑

s

qs(t)(xs(t)− cs(t)) + T2 .

Here the positive constantT2 is the upper bound of
∑

s γE[(xs(t) − cs(t))2|Y (t)].
This can be achieved since bothxs(t) andcs(t) are bounded.

With Lemmas 1 and 2, we are ready to prove Theorem 4.

Proof. For anyρ ∈ int(Π), there exists a small numberε such that(1 + ε)ρ, (1 +
2ε)ρ ∈ int(Π). Thus, by Lemmas 1 and 2, for any arrival processA(t) with meanρ
we have

E[V (Y (t + 1))− V (Y (t))|Y (t)]

≤ −2ε
∑

s

bsρsQs(t) + 2
∑

s

qs(t)((1 + ε)ρs − xs(t)) + T1

+2
∑

s

qs(t)(xs(t)− cs(t)) + T2

= −2ε
∑

s

bsρsQs(t) + 2
∑

s

qs(t)((1 + ε)ρs − cs(t)) + T

= −2ε
∑

s

bsρsQs(t)− 2ε
∑

s

ρsqs(t) + T

+2
∑

s

qs(t)((1 + 2ε)ρs − cs(t))

≤ −2ε
∑

s

bsρsQs(t)− 2ε
∑

s

ρsqs(t) + T,

whereT = T1 +T2, and the last inequality follows from the fact thatc(t) maximizes
q(t)T c overc ∈ Π.

We can see that when||Y (t)||2 is large enough, the conditional mean drift of
Lyapunov functionV (Y (t)) is negative. Thus, byTheorem 3.1in [27], the Markov
chainY (t) is stable.

Theorem 4 shows that the system is stable under any sustainable flowρ ∈ int(Π).
So, the modified dual scheduling algorithm is a throughput-optimal policy. Note that
we prove the throughput optimality under a very general assumption of the flow ar-
rival process, while most similar results assume a Poisson arrival with exponentially
distributed file size. Also, the above stability result is independent of the value of
parameterγ, while in section 3 the parameterγ characterizes the optimality of the
dual scheduling algorithm.
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4.3 Flows with Exponentially Distributed Size

If the flow lengths are exponentially distributed with parameter1/µs, the system can
be modelled by a Markov chain(n(t), q(t)), wherens(t) is the number of active data
flows for users by the beginning of time slott. Similarly, we would like the vector
of service ratesx provided by the scheduling algorithm solves the following utility
maximization

max
xs≥0,cs≥0

∑
s

nsUs(xs) (24)

subject to x ≤ c & c ∈ Π. (25)

Let as(t) denote the number of new flows of users arriving in time slott,
and ds(t) the number of flows that complete data transfer in time slott. Thus,
E[as(t)] = νs andE[ds(t)|n(t), q(t)] = µsxs(t). Motivated by the dual subgradient
algorithm for the above utility maximization, the evolution ofn(t) and the modified
dual scheduling algorithm are given by

ns(t + 1) = ns(t) + as(t)− ds(t) , (26)

qs(t + 1) = [qs(t) + γ(xs(t)− cs(t))]+, (27)

xs(t) = min{U ′
s
−1(qs(t)/ns(t)), αs} , (28)

c(t) ∈ arg max
c∈Π(h(t))

q(t)T c . (29)

Considering Lyapunov functionV (n, q) =
∑

s bsn
2
s/µs +

∑
s q2

s/γ and follow-
ing the same procedure as that in the proof of Theorem 4, we can directly obtain the
following theorem.

Theorem 5.The Markov chain(n(t), q(t)) is stable iff traffic condition (16) is sat-
isfied.

This theorem shows that the system is stable under any sustainable flowρ ∈
int(Π). So, the modified dual scheduling algorithm (27)-(29) is a throughput-optimal
policy. Compared to other throughput-maximum policy, the modified dual schedul-
ing algorithm has the advantage of providing some short-term fairness. To see this,
note that equations (27)-(29) are dual subgradient algorithm. If the number of active
flows ns for each user freezes, the above scheduling algorithm will solve the util-
ity maximization (24)-(25). Butns is time-varying, and the system cannot achieves
the asymptotic optimality before the change ofns. Nonetheless, at the level of flows
whose time-scale is large comparing to the duration of the time slot, the algorithm
will provide some level of fairness, since the system evolves along the gradient di-
rection to the optimal.

Note that throughout this section, we consider the system traffic at flow level, but
include packet level dynamics, i.e., the precise operation of scheduling mechanism.
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We may also assume “the separation of time-scale”7, i.e., the modified dual schedul-
ing algorithm (27)-(29) works at fast time scale and achieves resource sharing objec-
tive (24)-(25) perfectly at flow level. Under this assumption,n(t) is an irreducible
Markov chain, and we can choose Lyapunov functionV (n(t)) =

∑
s bsn

2
s/µs to

prove that the algorithm is a throughput-optimal policy.

Theorem 6.Under the assumption of the separation of time-scale, the Markov chain
n(t) is stable iff traffic condition (16) is satisfied.

Proof. Let x denote the maximizer of the problem (24)-(25). For anyρ ∈ int(Π),
there exists a small numberε such that(1 + ε)ρ ∈ int(Π). So,

∑
s nsUs(xs) ≥∑

s nsUs((1 + ε)ρs). Note thatUs(·) is a strictly concave function, thus

∑
s

nsbs(xs − (1 + ε)ρs)

≥
∑

s

nsUs(xs)−
∑

s

nsUs((1 + ε)ρs) ≥ 0 . (30)

Now consider the conditional drift of Lyapunov FunctionV (n),

E[V (n(t + 1))− V (n(t))|n(t)]

= 2
∑

s

bs

µs
E[ns(t)(as(t)− ds(t))|n(t)] +

∑
s

bs

µs
E[(as(t)− ds(t))2|n(t)]

≤ 2
∑

s

bsns(t)(ρs − xs) + T3,

where positive constantT3 is the upper bound of
∑

s
bs

µs
E[(as(t) − ds(t))2|n(t)].

Thus,

E[V (n(t + 1))− V (n(t))|n(t)]

≤ −2ε
∑

s

bsρsns(t) + T3 + 2
∑

s

bsns(t)((1 + ε)ρs − xs)

≤ −2ε
∑

s

ρsbsns(t) + T3 ,

where the last inequality follows from equation (30). Thus, by Foster’s criterion [3],
the Markov chainn(t) is stable.

Remark 3:Many throughput-optimal scheduling algorithms for different versions
of the generalized switch model have been proposed, see e.g. [27, 28, 29, 19, 1, 22,
24, 10]. Most of these scheduling policies maximize

∑
s fs(Qs(t))xs, wherefs(·)

is a explicitly or implicitly-defined function of backlogQs, in order to achieve dif-
ferent performance objectives or implement different scheduling criteria. However,

7 Due to its analytical tractability, most researches on user-level performance of scheduling
algorithms assume a separation of time-scale, see e.g. [8, 7].
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to our knowledge there does not exist any throughput-optimal policy which maxi-
mizes

∑
s Qs(t)Fs(xs), whereFs(·) is a function of service ratexs. It is possible to

achieve different performance objectives by different choices ofFs(·). In the modi-
fied dual scheduling algorithm, we can say that we introduce M-queue to modulate
the scheduling, which implicitly defines a functionFs(·). This modulation will defi-
nitely change the dynamics of the scheduling process, and to provide some weighted
fairness among the users at flow level is a such consequence. It is interesting to fur-
ther study the related issues.

5 A New Scheduling Architecture

The dual scheduling algorithm motivates a new architecture for scheduling in the
generalized switch (please see Fig.1 for a pictorial depiction). In this new architec-
ture, a queue, termed M-queue, is introduced to interface the user data queue and the
time-varying server. Data will depart from the data queue to enter the M-queue, and
the generalized switch serves directly the M-queue. Through controlling the arrival
process to the M-queue (or the departure process from the data queue), we can mod-
ulate the scheduling process, in order to achieve different performance objectives
such as fairness, and maximum throughput, etc.

The dual scheduler would not incur much additional complexity. M-queues are
distributed at each user, and can be “virtual” or be implemented as physical queues.
The control of the M-queue arrival process is also distributed at each user and de-
pends on only the “local” queue length of each user. The dual scheduler provides
some advantages over other scheduling algorithms. For example, in the cellular net-
work in the downlink, even though the primary scheduling algorithm can achieve
fair resource allocation, it requires to estimate the average throughput of the users,
while with the dual algorithm we only need to simply measure the M-queue length.
Also, the dynamics of the M-queue (p(t) andx(t)) is feedback-controlled, and thus
will be relatively smooth, comparing with the dynamics of the switch. So, the dual
scheduler can provide a relatively reliable and smooth service to the users, and can
behave as a good interface between higher layer protocols and the scheduling at the
link layer and ensure a better performance of the higher-layer protocols such as that
of TCP congestion control.

To provide Quality of Service in generalized switches is a difficult problem. In
the context of wireless networks, the interdependence of wireless links in combina-
tion with the time-varying nature of wireless channel makes QoS scheduling fairly
challenging and the available results are mostly on stability guarantees. In the context
of input-queued cross-bar switch, input buffering makes scalable switch design pos-
sible but makes QoS guarantees very challenging and again most available results are
on maximizing the throughput, see e.g. [21] for a review. The dual scheduler might
be promising in providing QoS in generalized switches, through carefully designing
the M-queue arrival process. Further study is needed on related issues.
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6 Conclusions

In this article, we consider the dual scheduling algorithm for a generalized switch.
For a saturated system, we prove the asymptotic optimality of the dual scheduling
algorithm and thus establish its fairness properties. For a system with exogenous
arrivals, we propose a modified dual scheduling algorithm, which is throughput-
optimal while providing some weighted fairness among the users at the level of flows.

The dual scheduling algorithm motivates a new architecture for scheduling, in
which an additional queue is introduced to interface the user data queue and the
time-varying server and to modulate the scheduling process, so as to achieve differ-
ent performance objectives. Further research stemming out of this article includes
scheduling with Quality of Service guarantees with the dual scheduler, and its appli-
cation and implementation in various versions of the generalized switch model.
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