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Abstract—We propose an online linear program (OLP) based
algorithm for scheduling electric vehicle (EV) charging. To
determine the charging rates in each control period, OLP solves
a linear program based only on EVs currently in the charging
facility, assuming no future EV arrivals. We prove that OLP
achieves the offline optimal where all future EV arrivals are
assumed to be known in advance, provided the cost coefficients
are uniformly monotone. For general cost functions, we prove
that the competitive ratio is upper bounded by the variability in
the cost coefficients. We demonstrate the performance of OLP
using real charging data from Google and Caltech’s Adaptive
Charging Network.

I. INTRODUCTION

A. Motivation and summary
We are at the cusp of a historic transformation of our

energy system into a more sustainable form in the coming
decades. Electrification of our transportation system will be an
important component because vehicles today consume more
than a quarter of energy in the US and emit more than a
quarter of energy-related carbon dioxide [1]. Electrification
will not only greatly reduce greenhouse gas emission, but will
also have a big impact on the future grid because electric
vehicles are large but flexible loads. It is widely believed that
uncontrolled EV charging may stress the distribution grid and
cause voltage instability, but well controlled charging can help
stabilize the grid and integrate renewables, e.g., [2], [3].

We have developed and deployed an Adaptive Charging
Network (ACN) at Caltech that consists of around 50 level-2
EV chargers that are capable of real-time sensing, communi-
cation, and control; see [4]. We have proposed there a simple
linear program (LP) model of EV charging where, given all
EVs’ arrival times, departure times and energy demands over
a given control horizon, our goal is to satisfy all EVs’ energy
demands before their deadlines without exceeding the power
capacity of the electrical infrastructure. This model defines an
offline LP-based algorithm which needs the full knowledge of
all future EV arrivals and serves as a performance benchmark.
It also motivates an online LP (OLP) algorithm that, in each
control period, computes the charging rates for all existing
EVs assuming there will be no future arrivals. An intriguing
observation is made in [4] based on simulations that OLP
behaves very similarly to its offline version. We review this
setup in Section II.
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We prove in Section III that when the costs are uniformly
monotone, OLP is indeed guaranteed to achieve the offline
optimal even though OLP uses no knowledge about the future.
We present a counterexample in Section IV that shows that
OLP in general can perform arbitrarily poorly compared with
offline optimal. We prove however that the competitive ratio is
upper bounded by the variability of the cost coefficients. We
simulate our algorithms on real charging data from Google
and Caltech’s ACN deployment. We present in Section V
the simulation results that suggest that OLP can reduce peak
demand by 30%–70%. We conclude in Section VI.

B. Related work
There is a large literature on EV charging, see [5]–[22] for

example, and we can only comment on a few most related
works. The benefits of controlled EV charging are well known,
e.g., to reduce the need for new power plants by filling in the
valleys of background demand [8], [9], [12] or help regulate
frequency and renewable integration [16], [17].

Centralized algorithms are proposed in [2], [6], [12] to mini-
mize the grid operation expenditure. Distributed algorithms are
proposed in [8]–[10], [12] for demand valley filling. An online
extension is proposed in [8], whose optimality, however, is not
guaranteed in general. A joint optimal power flow and charging
optimization problem is studied in [11]. The economic impact
of EV integration on the grid are studied in [9], [12], [18].

Usually the design of adaptive charging mechanisms can
be formulated as a convex optimization problem and thus
be efficiently solved [8], [9], [11], [14], [15], [19]. However,
these algorithms are offline in the sense that they require the
information of all EVs at the beginning of scheduling. Such
design is not implementable and cannot adapt to varying EV
arrival patterns in real time.

Several online algorithms for different EV charging prob-
lems have been proposed prior to our work. Online scheduling
of EV charging using a combination of renewable energy
and energy from the grid is studied in [15]. A similar set-
ting is formulated as a multi-processor deadline scheduling
problem in [14], for which the optimal scheduler maximizes
the competitive ratio against the best offline scheduler. In [19],
online algorithms to minimize peak procurement from the grid
incorporating predictions with uncertainty are studied.

II. PROBLEM SETUP

In this section we review the problem formulation in [4] of
optimal charging and present the OLP algorithm.

Consider a facility operator that decides the optimal charg-
ing rates for a collection of EVs N = {1, 2, · · · , N} over a
finite time horizon T = {1, 2, · · · , T}. Each EV n is specified



by its arrival time an, departure time dn, total energy demand
en and peak charging rate vector rn = (rnt, t ∈ T ). We
allow rnt to depend on time t so that the information of an
and dn can be specified as rnt = 0 for t < an or t > dn.
However, we assume rnt is a constant over t ∈ [an, dn]. Given
the EV specification, a charging profile of EV n is a vector
rn = (rnt, t ∈ T ) of charging rates such that 0 ≤ rnt ≤ rnt
for all t ∈ T and

∑T
t=1 rnt = en.

We denote by Pt the available charging power at the facility
at time t. In the optimal charging problem, the operator tries to
minimize a certain linear cost subject to feasibility constraints:

min
rn:n∈N

N∑
n=1

T∑
t=1

cntrnt

s.t.
T∑

t=1

rnt = en, n ∈ N (1a)

N∑
n=1

rnt ≤ Pt, t ∈ T (1b)

0 ≤ rnt ≤ rnt, t ∈ T , n ∈ N (1c)

where (1a) enforces the EV charging requests being satisfied,
(1b) guarantees that the total charging rate does not exceed
the capacity, and (1c) enforces the rate limits1. This is a
linear program which can be solved offline by any LP solver.
This strategy of course is not implementable as it requires
the knowledge of all future EV arrivals. It, however, provides
an upper bound to benchmark the performance of any online
algorithms. We refer to this offline LP based strategy as OPT
in the sequel.

The OLP algorithm solves an online version of the optimal
charging problem with all EVs that are currently in the facility,
pretending there will be no future arrivals. The OLP algorithm
re-solves the problem at each time slot with updated informa-
tion in a way similar to model-predictive control. Specifically,
for each t ∈ T , denoting the remaining energy demand of EV
n as ent, OLP minimizes

N∑
n=1

T∑
s=t

cnsrns

over future charging rates {rn,t+ = (rns : s ≥ t)}n∈N subject
to the remaining energy demand

T∑
s=t

rns = ent, n ∈ N

together with (1b) and (1c). After the optimal rates are
computed, OLP applies the optimal rates r∗n,t+ for the current
time period s = t to the existing EVs. OLP updates the

1This model assumes the number of charging stations is sufficient to
accommodate all EVs at all time, and therefore we do not consider admission
control in our formulation.

remaining energy demands to en(t+1) = ent−r∗nt, and repeats
the cycle. 2

Given an optimal charging problem, we denote its optimal
value computed by OPT as Coff and the objective value
achieved by OLP as Con. Since any feasible solution com-
puted by OLP is also feasible for OPT, we know in general
Coff ≤ Con. A more interesting question, which also quantifies
the potential risk of using OLP, is to determine how much we
lose due to the unavailability of future information. That is,
we need to understand in worst case how large the competitive
ratio

γ =
Con

Coff

is. It is of no surprise that the performance of OLP is closely
related to the cost functions. In fact, as we will show in Section
IV, if we impose no restrictions on the cost function, OLP can
perform arbitrarily badly. We derive in Section III and Section
IV upper bounds for the competitive ratio under assumptions
that are reasonable in many practical settings. We make the
following assumption throughout the paper:

Assumption. (Feasibility) The optimization problem (1) is
feasible for OPT.

III. UNIFORMLY MONOTONE COST

In this section we consider a class of cost functions which
encourage charging as fast as possible (see Section V-A for
simulation results) and prove in this case, OLP always has the
same performance as OPT whenever OLP is feasible.

Definition III.1. The cost function of an optimal charging
problem is said to be uniformly monotone if:

1) cnt = cmt for any n,m ∈ N and t ∈ T . For such costs,
we drop the subscript n and simply write cnt =: ct.

2) ct is strictly increasing in t.

Our main result is summarized as Theorem III.2.

Theorem III.2. Assume the cost function is uniformly mono-
tone. Let

{
roff
n

}
n∈N be an optimal solution computed by OPT,

and let {ron
n }n∈N be an optimal solution computed by OLP.

Then for any t ∈ T ,

N∑
n=1

roff
nt =

N∑
n=1

ron
nt (2)

provided OLP is feasible at every t.

Corollary III.3. Assume the cost function is uniformly mono-
tone. Then we have Coff = Con, i.e., OLP achieves the same
performance as OPT, provided OLP is feasible at every t.

We remark that when the cost function is uniformly mono-
tone, there are usually infinitely many optimal solutions, for
either OPT or for each step of OLP. However, Theorem III.2
tells us that the performance of OLP is independent of which
exact optimal solution is computed by OLP at each time step.

2In principle, OLP only needs to re-solve the charging problems every time
a new EV arrives. In practice, however, the rate r∗nt is only a control signal
to EV n that allows it to charge up to r∗nt and the car may draw strictly less
power for a variety of reasons. It is therefore desirable that OLP re-solves the
charging problem at every t and updates the remaining energy demands using
actual energy delivered r̂nt at time t: en(t+1) = ent − r̂nt. We ignore this
detail here and assume r̂nt = r∗nt.



Before proving this theorem, we first characterize the op-
timal solutions to general optimal charging problems. The
proofs of the following lemmas are provided in [23] and
omitted here.

Lemma III.4. Let {rn}n∈N be an optimal solution to (1) with
uniformly monotone cost. Then

N∑
n=1

rn1 = min

{
P1,

N∑
n=1

min {en, rn1}

}

Lemma III.5. Let {rn}n∈N be an optimal solution to (1) with
uniformly monotone cost. Then for each t ∈ T , there does not
exist partial charging rates {r̃n,t− = (r̃ns : s ≤ t)}n∈N such
that

N∑
n=1

r̃ns =

N∑
n=1

rns, s ≤ t− 1 (3)

and

N∑
n=1

min

{
en −

t−1∑
s=1

r̃ns, rnt

}
>

N∑
n=1

min

{
en −

t−1∑
s=1

rns, rnt

}
(4)

Proof of Theorem III.2. We only sketch the proof here in light
of space limitation; see [23] for details.

The proof is by induction. Consider t = 1. Put

R1 := min

{
P1,

N∑
n=1

min {en, rn1}

}

to be the maximum aggregate charging rate. Applying Lemma
III.4 to the optimal charging problem (1), we conclude∑N

n=1 r
off
n1 = R1. Applying Lemma III.4 to the optimal

charging problem (1) where all EVs with an ≥ 2 are removed,
we conclude

∑N
n=1 r

on
n1 = R1. As a result, we know (2) is true

for t = 1.
Now assume (2) holds for any s < t. Define

R
off
t := min

{
Pt,

N∑
n=1

min

{
en −

t−1∑
s=1

roff
ns, rnt

}}
(5)

and

R
on
t := min

{
Pt,

N∑
n=1

min

{
en −

t−1∑
s=1

ron
ns, rnt

}}
(6)

to be the maximum aggregate charging rate for OPT and
OLP, respectively. By applying Lemma III.4 and Lemma III.5
properly, we conclude

N∑
n=1

roff
nt = R

off
t = R

on
t =

N∑
n=1

ron
nt

Therefore we see (2) is also true at t. The induction step is
then justified.

IV. GENERAL COST FUNCTION

In this section we consider general cost functions and give
a sequence of problem instances with γ → ∞. This implies
that OLP can perform arbitrarily badly in the full generality of
cost functions. We then devise a general performance bound
which provides satisfactory guarantees when the problem data
exhibits enough regularity.
Example 1. In this example, we construct a sequence of prob-
lem instances where the EV characteristics are very regular
while OLP can still perform arbitrarily badly. We fix an integer
L < T and consider the following cost function:

ct =


2 t < L

1 L ≤ t < T

l t = T

where l is a positive integer to be decided and assume there
are T − L+ 1 many EVs. EV i arrives at t = i and leaves at
t = i + L − 1 so is present for L time slots. For simplicity,
we choose en = Pt = rnt = 1 for all n, t.

When EV n = 1 arrives, OLP would assign it to the slot
t = L. When EV n = 2 arrives, OLP would put the EVs n = 1
and n = 2 to t = L and t = L+1 in some order. Following this
process, it is clear by the time EV n = T −L+1 arrives, the
only possible choice is to assign it to t = T . This all together
incurs cost Con = T − L + l. For the offline algorithm, EV
n = 1 can simply be assigned to slot t = 1, so that all the
remaining EVs can be shifted ahead by one time slot. This
gives Coff ≤ T − L+ 2 and we have

lim inf
l→∞

γl = lim inf
l→∞

Con

Coff
≥ lim

l→∞

T − L+ l

T − L+ 2
=∞

This example tells us even if the EV characteristics are
simple enough, it is still possible that OLP performs poorly
when there is no restriction on the cost functions. This
motivates us to define the following regularity metric.

Definition IV.1. The price variation of a cost function is
defined to be

V =
maxn,t cnt

minn,t:cnt>0 cnt

The price variation provides an upper bound on the OLP
competitive ratio. The following proposition is proved in [23].

Proposition IV.2. For any cost function, we have:

γ ≤ V

provided OLP is feasible at every t.

This bound is tight in the sense that we can design a
sequence of problem instances whose competitive ratio ap-
proaches V . It implies that when the cost coefficients do not
vary too much, for instance when cnt are retail electricity
prices for which V is typically small, the performance of OLP
is guaranteed to be close to offline optimal.



TABLE I
POWER SAVINGS FROM OLP WITH DIFFERENT COST FUNCTIONS.

Cost Function OLP Power Savings
MTV(2016-
01-14)

Caltech(2016-
02-17)

Caltech(2016-
03-01)

1 40% 55% 69%
2 40% 55% 69%
3 36% 42% 55%

V. EVALUATION

In this section, we present simulation results demonstrating
the performance of OLP using real charging data. The majority
of the data is from Google’s charging facilities in Mountain
View and Sunnyvale, and we also include about three months
of data collected from Caltech’s ACN deployment3. The
overall data covers more than 52,000 charging sessions from
104 different locations over more than 4,000 charging days.
We examine the power capacity savings by applying OPT and
OLP over the data sets. That is, we would like to determine
the minimal P such that OPT or OLP is still feasible when we
choose Pt = P for all t ∈ T .4 The power savings is defined
to be the ratio between saved power capacity and original
peak power without adaptive charging. We demonstrate that
in the case of uniformly monotone costs, OLP achieves the
same performance as OPT up to negligible numerical errors
in majority cases, and the growth of such error with respect
to system load is moderate. This confirms Corollary III.3 and
demonstrates the numerical stability of OLP in practice.

A. Impact of cost function
For the OPT algorithm, the cost function does not affect the

feasible region of the charging problem and thus any choice
of cost function would lead to the same power savings. This,
however, is not true in general for OLP due to the possibility
of myopic assignment to future slots, as demonstrated by
Example 1. It is thus of interest to see how the different choice
of cost functions impact the performance of OLP. We mainly
examine three cost functions:

1) cnt = t (1− `nt), where `nt is the laxity defined as

`nt = 1− ent∑
s≥t rns

This metric measures how flexible the EV is in terms
of future scheduling and has been widely studied for
example in [15]. This cost function encourages charging
as fast as possible and prioritizes EVs with low laxity.

2) cnt = t. This cost function only encourages charging as
fast as possible.

3) cnt = 1. This cost function does not distinguish current
and future slots. OLP is free to choose any feasible point
at each step.

The power savings for three sets of charging data are shown for
the different choices of cost functions in Table I. One can see
that cost functions 1 and 2 perform equally and are superior
to cost function 3. It is also observed in the simulation that

3The Google data as far is confidential. For ACN data, real-time statis-
tics is available at http://ev.caltech.edu/. The ACN deployment is not fully
implemented yet and we rely on numerical simulations here.

4This can be done using bisection search by making P an optimization
variable.

(a) 14 EVs without adaptive charging.

(b) 14 EVs with adaptive charging (OPT). 73% less power capacity required.

(c) 14 EVs with adaptive charging (OLP). 73% less power capacity required.

Fig. 1. Example profiles illustrating the power savings with and without
adaptive charging algorithms.

cost function 1 typically creates oscillatory charging rates due
to the tendency to equalize the laxity of different EVs. Such
oscillatory behaviour is generally undesirable for charging
stations and EVs. Consequently, cost function 2 is the best
choice in terms of OLP performance as well as implementation
based on these datasets. We thus deploy the cost function
ct = t for all the following simulations.

B. Power capacity savings

We now demonstrate the power capacity savings through
coordinated adaptive charging compared to charging EVs
individually, and illustrate that OLP achieves the same perfor-
mance as OPT when the cost function is uniformly monotone.
In Fig. 1, the aggregate power consumption of 14 EVs as
a function of time is shown for the case without adaptive
charging, with OPT adaptive charging and with OLP adaptive
charging, respectively. In this particular case, one can see
that 73% less power capacity is required to meet the energy
demand if adaptive charging is applied, regardless of whether
OPT or OLP is used. Adaptive algorithms manage to schedule
the charging rates so that the power consumption is more
constant over time so that the peak power is significantly
reduced. It can also be observed that the aggregate charging
rates are always the same between OPT and OLP at each
time slot, confirming Theorem III.2, even though the individual
charge rates roff

nt and ron
nt may differ, e.g., between 600 mins

and 700 mins in Fig. 1(b) and (c).



Fig. 2. Histogram of difference in daily power savings between OLP and
OPT.

TABLE II
OFFLINE-ONLINE PERFORMANCE GAP UNDER DIFFERENT SYSTEM LOADS.

Number of EVs Average difference in power savings
Caltech Campus Mountain View Sunnyvale

> 0 0.72% 0.078% 0.14%
> 5 0.84% 0.12% 0.23%
> 10 0.89% 0.12% 0.23%
> 15 0.96% 0.15% 0.24%
> 20 0.96% 0.18% 0.17%

C. Offline-online performance gap
To assess the overall performance of OLP against OPT,

we examine the histogram of the difference in daily power
capacity savings obtained by running OPT and OLP, as shown
in Fig. 2. In this figure, all days from the data set were included
and the histogram has been normalized so that the height of the
bins sums to 1 for each data set. One can see from the figure
that in majority of the data sets, OLP and OPT performed
equally, and the performance gap is well bounded by 2% over
95% of the whole data set. This verifies the optimality of OLP
as shown in Corollary III.35.

Intuitively, OLP is more prune to such numerical errors
when the system is heavily loaded. It is therefore useful to
see how different system load levels impact the performance
degradation of OLP. In Table II, the average daily difference
in power savings for OPT and OLP are calculated and cat-
egorized by the number of EVs that was connected to the
system. The first row includes all days, while the second row
only includes days with number of EVs greater than 5, etc.
One can see from the simulation results that the performance
degradation of OLP with respect to system load is very
moderate.

VI. CONCLUSION

In this paper, we study an online EV charging algorithm
based on linear programming (OLP) in terms of its perfor-
mance against offline optimal for different cost functions. Real

5Noticeable performance gap appears when our assumption about the OLP
feasibility is violated.

charging data from Google and Caltech Adaptive Charging
Network is used to demonstrate the performance of OLP for
uniformly monotone costs and illustrate the numerical stability
of OLP in practical settings.

It is interesting to see whether the myopic decision made by
OLP can be improved by incorporating future predictions, say
through Bellman equation in an infinite horizon setting. OPT
has access to exact future predictions, while the prediction
for OLP can suffer from infinitely large errors. They thus
form the extreme points on the spectrum of model prediction
uncertainty. We are still investigating the fundamental online-
offline gap or the average-case performance degradation when
predictions of different level with uncertainty are available.
The feasibility problem for OLP under different cost functions
is also an important part for our future work.
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