Understanding Vegas. a duality model

STEVEN H. LOW

Computer Science and Electrical Engineering, California Institute of Technology,
USA

slow@caltech.edu

and

LARRY L. PETERSON and LIMIN WANG

Computer Science, Princeton University, USA

{llp,Imwang} @cs.princeton.edu

We view congestion control as a distributed primal-dual algorithm carried out by sources and links
over a network to solve a global optimization problem. We describe a multi-link multi-source model
of the TCP Vegas congestion control mechanism. The model provides a fundamental understand-
ing of delay, fairness and loss properties of TCP Vegas. It implies that Vegas stabilizes around
a weighted proportionally fair allocation of network capacity when there is sufficient buffering in
the network. It clarifies the mechanism through which persistent congestion may arise and its
consequences, and suggests how we might use REM active queue management to prevent it. We
present simulation results that validate our conclusions.

Categories and Subject Descriptors: C.2.5 [Computer Systems Organization]: Computer-communication Net-
works—Local and Wide-Area Networks; C.4 [Computer Systems Organization]: Performance of System
General Terms: Performance; Theory; Algorithms

Additional Key Words and Phrases: TCP congestion control, TCP Vegas, persistent congestion,
REM

1. INTRODUCTION
1.1 Background

TCP uses window-based flow control to pace the transmission of packets. Each source
maintains a “window size” variable that limits the maximum number of packets that can
be outstanding: transmitted but not yet acknowledged. When a window’s worth of data
is outstanding the source must wait for an acknowledgment before sending a new packet.
Two features of this general strategy are important. First, the algorithm is “self-clocking”
meaning that TCP automatically slows down the source when the network becomes con-
gested and acknowledgments are delayed. The second is that the window size variable
determines the source rate: roughly one window’s worth of packets is sent every round-
trip time. This second feature is exploited in Jacobson’s paper in 1988 [Jacobson 1988],

Partial and preliminary results have appeared in [Low et al. 2001].

The first author acknowledges the support of the Australian Research Council through Grant A49930405, NSF
through Grant ANI-0113425, and the Caltech Lee Center for Advanced Networking. The second author acknowl-
edges the support of NSF through Grant ANI-9906704, and DARPA through contract F30602—-00-2-0561.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 2002 ACM 0004-5411/2002/0100-0207 $5.00

Journal of the ACM, Vol. 49, No. 2, March 2002, Pages 207-235.

208 . S. H. Low et al.

which is based on an earlier idea in [Ramakrishnan and Jain 1990]. Jacobson proposed an
additive-increase-multiplicative-decrease algorithm to dynamically adapt the window size
to network congestion. This algorithm is implemented in TCP Reno, a varient of TCP that
includes this algorithm.

TCP Reno consists of three main mechanisms: slow-start, congestion avoidance, and
fast retransmit/fast recovery [Jacobson 1988; Stevens 1999; Peterson and Davie 2000]. A
source starts cautiously with a small window size of one packet and increments its window
by one every time it receives an acknowledgment. This doubles the window every round-
trip time and is called slow-start. When the window reaches a threshold, the source enters
the congestion avoidance phase, where it increases its window more slowly by the recip-
rocal of the current window size every time it receives an acknowledgment. This increases
the window by one packet in each round-trip time. On detecting a loss through duplicate
acknowledgments, the source retransmits the lost packet, halves its window, and re-enters
congestion avoidance. This is referred to as fast retransmit/fast recovery, to contrast it with
the source detecting the loss through a timeout, in which case it re-enters slow-start instead
of congestion avoidance.

TCP Vegas was introduced in 1994 as an alternative to TCP Reno [Brakmo and Peterson
1995]. It improves upon each of the three mechanisms of TCP Reno. The first enhancement
is a more prudent way to grow the window size during the initial use of slow-start and leads
to fewer losses. The second enhancement is an improved retransmission mechanism where
timeout is checked on receiving the first duplicate acknowledgment, rather than waiting for
the third duplicate acknowledgment (as Reno would), and leads to a more timely detection
of loss. The third enhancement is a new congestion avoidance mechanism that corrects the
oscillatory behavior of Reno. In contrast to the Reno algorithm, which induces congestion
to learn the available network capacity, a Vegas source anticipates the onset of congestion
by monitoring the difference between the rate it is expecting to see and the rate it is actually
realizing. Vegas’ strategy is to adjust the source’s sending rate (window size) in an attempt
to keep a small number of packets buffered in the routers along the path.

In this paper, we study the congestion avoidance mechanism of Vegas. It is well-known
that file sizes transported over the Internet have heavy-tail. In simple terms this means
that while most TCP connections are short (“mice”), most packets are generated by a few
long TCP connections (“elephants”). It is these elephants, not mice, that need, and can, be
effectively controlled by TCP. As will become clear later, congestion avoidance determines
the bandwidth allocation among, and the quality of service experienced by, these elephants.

1.2 Motivation and Outline

Although experimental results presented in [Brakmo and Peterson 1995], and duplicated
[Ahn et al. 1995], show that TCP Vegas achieves better throughput and fewer losses than
TCP Reno under many scenarios, at least two concerns remained: whether Vegas is stable,
and if so, whether it stabilizes to a fair distribution of resources; and whether Vegas results
in persistent congestion. In short, Vegas has lacked a theoretical explanation of why it
works.

This paper addresses this shortcoming by presenting a model of Vegas as a distributed
optimization algorithm. The basic observation is as follows. Congestion control is a dis-
tributed algorithm to share network resources among competing sources. It consists of a
source algorithm (e.g., Reno, Vegas, etc.), that dynamically adjust source rates based on
congestion in their paths, and a link algorithm (e.g., DropTail, RED, REM, etc.), that up-

Journal of the ACM, Voal. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 209

dates, implicitly or explicitly, a certain congestion measure at each link and feeds it back,
implicitly or explicitly, to sources that use this link. Different protocols use different met-
rics as congestion measure. For example, Reno uses loss probability, and as it turns out,
Vegas uses queueing delay (see below).

The key idea of the duality model in [Low and Lapsley 1999; Low 2000; Low et al.
2002] is to interpret congestion control as a distributed algorithm carried out by sources and
links over the network to solve a global optimization problem, and that different protocols
(Reno, Vegas, DropTail, RED, REM, etc.) are different ways to solve the same prototypical
problem with different objective functions.

We show in Section 2 that the objective of Vegas is to maximize the aggregate utility of
all sources subject to the capacity constraints of the network’s resources. Moreover, the
congestion avoidance mechanism of Vegas can be interpreted as an approximate gradient
projection algorithm to solve the dual problem. This model suggests that Vegas stabi-
lizes around a weighted proportionally fair allocation of network capacity when there is
sufficient buffering in the network, that is, when the network has enough buffers to ac-
commodate the extra packets the algorithm strives to keep in the network. If sufficient
buffers are not available, equilibrium cannot be reached, and Vegas reverts to Reno. The
implications on delay, loss, and fairness are explained in Section 3.

The duality model leads to a new interpretation of the Vegas algorithm, where a source
sets its rate to be proportional to the ratio of its propagation delay to queueing delay in
its path. \egas estimates propagation delay by the minimum observed round-trip time.
We prove in Section 4 that estimation error distorts Vegas utility function and can lead
to persistent queues and unfair rate allocation. We show in Section 5 that by augmenting
Vegas with appropriate active queue management (AQM) it is possible to avoid this prob-
lem. AQM serves to decouple the buffer process from the feedback required by each Vegas
source to determine its optimal sending rate. In Section 6, we present simulation results
that both serve to validate the model and to illustrate the effectiveness of this AQM.

Finally, we comment on related work in Section 7, and conclude in Section 8 with limi-
tations of the current work.

2. A MODEL OF VEGAS

This section presents a model of Vegas and shows that 1) the objective of Vegas is to
maximize aggregate source utility subject to capacity constraints of network resources,
and 2) the Vegas algorithm is a dual method to solve the maximization problem. The goal
of this effort is to better understand Vegas’ stability, loss and fairness properties, which we
discuss in Section 3.

2.1 Preliminaries

A network of routers is modeled by a set L of unidirectional links with transmission ca-
pacity ¢;, I € L, and infinite buffering space. It is shared by a set .S of sources. A source
s traverses a subset L(s) C L of links to the destination, and attains a utility Us(z,) when
it transmits at rate x, (e.g., in packets per second). Let d, be the round-trip propagation
delay for source s. For each link I, let S(1) = {s € S |l € L(s)} be the set of sources that
uses link [. By definition [€ L(s) ifand only if s € S({).

According to one interpretation of \egas, a source monitors the difference between its
expected rate and its actual rate, and increments or decrements its window by one in the
next round-trip time according to whether the difference is less or greater than a parameter

Journal of the ACM, Vol. 49, No. 2, March 2002.

210 . S. H. Low et al.

ag. |If the difference is zero, the window size is unchanged. We model this by a syn-
chronous discrete time system. Let w,(¢) be the window of source s at time ¢ and let D(t)
be the associated round-trip time (propagation plus queueing delay). We model the change
in window size of one packet per round-trip time in reality by a change of 1/D(t) per
discrete time. Thus, source s adjusts its window according to:

Vegas sour ce algorithm:

w(t) + 5l i weld) gg% < as
wo(t+1) = { wy(t) - 5l if 25 — 2 >, @)
ws (t) else

In the original paper [Brakmo and Peterson 1995], w,(t)/d; is referred to as the Ex-
pect ed rate, w,(t)/Ds as the Act ual rate, and the difference w;(t)/ds — ws(t)/Ds(t)
as DI FF. The actual implementation estimates the round-trip propagation delay d by the
minimum round-trip time observed so far. The unit of « is, say, KB/s. We will explain
the significance of a; on fairness in Section 3. The algorithm in [Brakmo and Peterson
1995] adjusts window to keep DI FF to within o, and 35 with o, < 3. We assume for
simplicity that «s = 5. This captures the essence of Vegas. The effect of using a5 < (s
on fairness is discussed in [Boutremans and Boudec 2000].

Let 24(t) := ws(t)/Ds(t) denote the bandwidth realized by source s at time ¢. The
window size wg(t) minus the bandwidth—delay product dsxs(¢) equals the total back-
log buffered in the path of s. Hence, multiplying the conditional in (1) by d,, we see
that a source increments or decrements its window according to whether the total backlog
ws (t) — dsxs(t) is smaller or larger than asd. This is a second interpretation of the Vegas
algorithm. We will explain a third interpretation in Section 3.1.

Note that (1) only specifies the source dynamics and does not completely describe the
network behavior, which also includes link dynamics that determine the round-trip delays
D,(t). The delay D4(t) depends not only on the window w,(t) of source s, but also on
those of other sources that are coupled through shared links.

2.2 Objective of Vegas

We now interpret the equilibrium of Vegas. Since this does not require the detailed network
dynamics, we defer their complete specification to the following subsections (see (16-19)
below).

When the algorithm converges, the equilibrium windows w* = (w¥,s € S) and the
associated equilibrium round-trip times D* = (D%, s € S) satisfy

* *

ws _ ws _
A D =a, forallsesS 2)
Ouir first result shows that Vegas sources have
Us(zs) = asdslog g (3)

as their utility functions. Moreover the objective of Vegas is to choose source rates x =
(s, € S)soasto

max Us(zs) 4)

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 211

subject to Z rs < ¢, l€L (5)
seS(1l)

The utility function U is strictly concave increasing, meaning that a Vegas source is greedy
(utility always increasing with rate) but there is a diminishing return (concavity). Con-
straint (5) says that the aggregate source rate at any link [does not exceed the capacity. We
will refer to (4-5) as the primal problem. A rate vector z that satisfies the constraints is
called feasible and a feasible x that maximizes (4) is called primal optimal (or simply op-
timal). A unique optimal rate vector exists since the objective function is strictly concave,
and hence continuous, and the feasible solution set is compact.

THEOREM 2.1. Letw* = (w?, s € S) be the equilibrium windows of Vegas and D* =
(D%, s € S) the associated equilibrium round-trip times, i.e., they satisfy (2). Suppose
packets are served first-in-first-out at all links. Then the equilibrium source rates z* =
(z%,s € S) defined by % = w? /D% is the unique optimal solution of (3-5).

Proof. By the Karush-Kuhn-Tucker theorem a feasible source rate vector z* > 0 is optimal
if and only if there exists a vector p* = (p;,l € L) > 0 such that, for all s,

asd
U =—2= > n (6)
s leL(s)

and, for all [, p; = 0 if the aggregate source rate at link [is strictly less than the capacity
ZSES(Z) xk < ¢; (complementary slackness). We now prove that the equilibrium backlog

at the links provide such a vector p*, and hence the equilibrium rates are optimal.
Let b; be the equilibrium backlog at link I. The fraction of b; that belongs to source s
under first-in-first-out service discipline is %bz‘ where ¢; is the link capacity. Hence source

*
:ES

s maintains a backlog of } -,) <=0 in its path in equilibrium. Since the window size
equals the bandwidth-delay proéuct plus the total backlog in the path, we have
wi —xids = Z Ls b ()

@]
leL(s)

Thus, from (2) we have in equilibrium (recalling z¥ = w?/D%)

w*

o= g = gi-md) = | 3 L
lEL(s)
where the last equality follows from (7). This yields (6) upon identifying
by
a

*
l

and rearranging terms. Clearly, * must be feasible since otherwise the backlog will grow
without bound, contradicting (7). Since the equilibrium backlog b = 0 at a link { if
the aggregate source rate is strictly less than the capacity, the complementary slackness
condition is also satisfied. [

2.3 Dual Problem

Theorem 2.1 asserts that if \egas converges, then the equilibrium solves the optimization
problem (3-5). The question remains whether the Vegas algorithm (1), or its more com-

Journal of the ACM, Vol. 49, No. 2, March 2002.

212 . S. H. Low et al.

plete specification in (16-19) below, indeed converges. A rigorous convergence analysis is
difficult because the update function is nonlinear and discontinuous (see a heuristic anal-
ysis in [Mo et al. 1999] for two sources sharing a single link). In this subsection and the
next, we interpret the Vegas algorithm (1) as approximately carrying out a gradient projec-
tion algorithm for the dual problem of (4-5). This gradient projection algorithm itself can
be proved to converge provided that the stepsize is sufficiently small. While this does not
imply the convergence of the approximate algorithm (1), it suggests that \egas, in tracking
the gradient projection algorithm, is likely to converge in practice to a neighborhood of the
equilibrium, as confirmed by the simulation results in Section 6. Moreover, this interpre-
tation leads to a complete model of Vegas network, explained in the next subsection.

We start by reviewing the duality approach of [Low and Lapsley 1999; Athuraliya and
Low 2000b] to solve (4-5) and introduce a scaled gradient projection algorithm to solve
the dual problem. In the next subsection, we interpret the Vegas algorithm (1) as an ap-
proximate version of this algorithm.

Associated with each link [is a dual variable p;. Define the Lagrangian of (4-5) as

[Bertsekas 1995]:
) = ZUs(iUs Zpl Z Ts—c)
s seS(1)
= Z(Us(xs) — T Z b +Zplcl-
s IEL(s) l

The objective function of the dual problem of (4-5) is D(p) := max,>¢ L(z, p) [Bertsekas
and Tsitsiklis 1989, Section 3.4.2]. Notice that the first term are separable in x4, and hence

max (Us(zs) — x5 Z Zmax) — s Z 1)
- s leL(s) leL(s)

Hence the dual problem is to choose the dual vector p = (p;,l € L) so as to

D(p Bs(p®) + 8
szl>ln Z ;plcl (8)
where
Bs(p®) = max Us(zs) — zsp® €))
=3 (10)
leL(s)

If we interpret the dual variable p; as the price per unit bandwidth at link [, then p® in
(10) is the price per unit bandwidth in the path of s. Hence z4p® in (9) represents the
bandwidth cost to source s when it transmits at rate x, Us(zs) — xsp® is the net benefit
of transmitting at rate x5, and B,(p®) represents the maximum benefit s can achieve at the
given (scalar) price p®. Given a price vector p > 0, source s can be induced to choose
the unique rate z4(p®) that maximizes (9) based only on local information. Moreover, by
duality theory [Bertsekas 1995], if the price vector p* is dual optimal (i.e., minimizes (8)),
then these individually optimal rates x4 (p**) will also be primal optimal, i.e., maximize
(4-5) as well.

In the rest of the paper, we will refer to p; as link price, p* = ZZGL(S) p; as path price
(of source s), and the vector p = (p;,1 € L) simply as price. For Vegas, the link price p;

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 213

turns out to be the queueing delay at link I; see below. An optimal p* is a shadow price
(Lagrange multiplier) with the interpretation that p; is the marginal increment in aggregate
utility >~ Us(x,) for a marginal increment in link I’s capacity ;.

An iterative gradient projection algorithm to solve the dual problem is proposed in [Low
and Lapsley 1999; Athuraliya and Low 2000b]. Note that the gradient VD(p(t)) of the
dual objective function D points in the direction of steepest ascent. To minimize D(p(t)),
prices are adjusted in the opposite direction of the gradient VD(p(t)):

pt+1) = [p(t) —vOVD(p(t))]"

Here v > 0 is a constant stepsize, © = diag (¢;,! € L) is a positive diagonal scaling
matrix, and [z]T = max{0, z}. The structure of the dual problem allows a decentralized
and distributed implementation of the above algorithm.

Let z(¢) denote the unique source rate that maximizes (9-10) with p replaced by
p(t), and z'(t) = > ses() Ts(t) denote the aggregate source rate at link I. Let p*(t) =
ZZGL(S) pi(t) denote the path price of source s. Then it can be shown (see, e.g., [Bertsekas
1995]) that the following iteration implements the gradient projection algorithm with Ve-
gas’ utility function U (z5) = asds log a4:

pu(t+1) = [pi(t) + 461 (z' (p(t) —)] * (11)
where
asdg
zs(t) = P () (12)

To interpret, note that «! (¢) represents the demand for bandwidth at link [and c; represents
the supply. Hence the price is adjusted according to the law of demand and supply: if
demand exceeds the supply, raise the price; otherwise reduce it. The algorithm in [Low
and Lapsley 1999] is a special case with the scaling factor #; = 1. The scaling factor 6,
in [Athuraliya and Low 2000b] is time-varying and chosen to approximate the inverse of
the Hessian matrix V2D(p(t)). By (12), source s sets its rate to the unique maximizer of
(9-10). This is referred to as the demand function in economics: the higher the path price
p®(t) (i.e., the more congested the path), the lower the source rate. Notice the decentralized
nature of the algorithm where each link and each source updates individually using only
local information.

The following result says that the scaled gradient projection algorithm defined by (11—
12) converges to yield the unique optimal source rates. Since Vegas can be regarded as
an approximate version of this algorithm, this theorem underlies its stability. Its proof is a
straightforward adaptation of the proof in [Athuraliya and Low 2000b] for the convergence
of an approximate Newton-algorithm to solve the dual problem (8-10), and is omitted.

THEOREM 2.2. Provided that the stepsize ~ is sufficiently small, then starting from
any initial rates 2(0) > 0 and prices p(0) > 0, every limit point (z*, p*) of the sequence
(x(¢), p(t)) generated by algorithm (11-12) is primal-dual optimal.

The proof in [Athuraliya and Low 2000b] also provides an explicit (conservative) bound on
the stepsize +y that guarantees the optimality of (z*, p*). Define L := max,cs |L(s)| and
S = maxer, |S(1)|- Inwords L is the length of a longest path used by the sources and S is
the number of sources sharing a most congested link. Suppose source rates x ;(¢) are upper
bounded so that a.ds/22(t) > ad/T? for all s, t. Specialize to the Vegas algorithm where

Journal of the ACM, Vol. 49, No. 2, March 2002.

214 . S. H. Low et al.

the scaling factor is 6, = 1/c¢; (see below); suppose link capacities are lower bounded,
c; > c. Then the conclusion of Theorem 2.2 holds if

2adc

< p—
= LS7?

2.4 Vegas Algorithm

We now interpret the Vegas algorithm as approximately carrying out the scaled gradient
projection algorithm (11-12).

The algorithm takes the familiar form of adaptive congestion control: the link algorithm
(11) computes a congestion measure p;(t), and the source algorithm (12) adapts the trans-
mission rate to congestion feedback p*(¢). In order to execute this algorithm, Vegas, a
source-based mechanism, must address two issues: how to compute the link prices and
how to feed back the path prices to individual sources for them to adjust their rates. We
will see that, first, the price computation (11) is performed by the buffer process at each
link. Second, the path prices are implicitly fed back to sources through round-trip times.
Given the path price p®(t), source s carries out an approximate version of (12).

Specifically, suppose the input rate at link [from source s is x(¢) at time ¢. Then the
aggregate input rate at link [is z!(¢t) = >ses@ Ls(t), and the buffer occupancy b;(t) at
link [evolves according to:

bi(t+1) = [bi(t) +2(t) — cz]+
Dividing both sides by ¢; we have

bi(t+1) _ [b(t) +i(xl(t) e * 13)

Cl Cl Cl

Identifying p;(t) = b;(t)/c;, we see that (13) is the same as (11) with stepsize v = 1 and
scaling factor 6, = 1/¢;, except that the source rates x,(t) in 2!(t) are updated slightly
differently from (12), as explained next.

Recall from (1) that the Vegas algorithm updates the window w (¢) based on whether

ws(t) —xs(t)ds < asds OF ws(t) — zs(t)ds > asds (14)

As in the proof of Theorem 2.1, this quantity is related to the backlog, and hence the prices,
in the path:

bi(t)

ws(t) — zs(t)ds = 2s(t) Z — = z() Z p(t) = xs(t) p°(t) (15)
ler(s) leL(s)
Thus, the conditional in (14) becomes (cf. (12)):
zs(t) < asds o, zs(t) > 05 0s
pe(t) pe(t)

Hence, a Vegas source compares the current source rate x (¢) with the target rate asds /p* (¢).
The window is incremented or decremented by 1/D,(t) in the next period according as the
current source rate x(t) is smaller or greater than the target rate asds/p®(t). In contrast,
the algorithm (12) sets the rate to the target rate in one step.

In summary, we have shown that the Vegas algorithm is described by the following
nonlinear system:

Journal of the ACM, Voal. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 215

Vegas Network Model:
JF

p(t+1) = |pi(t) + 1 (z'(t) — @) for all links / (16)
a
ws(t+1) = [ws(t) +vs(t)]T forall sources s (17)
where
1 S S
vs(t) = R {Uzs(t)p°(t) < asds) — L(xzs(B)p°(t) > asds)} (18)
. Ws (t)
xs(t) = 100 (19)

Here Dy(t) = ds + p*(t) is the round-trip time of s, [2]T = max{0, z}, and the indicator
function 1(A) is 1 if A is true and 0 otherwise. This nonlinear system can be interpreted as
an approximate version of the gradient projection algorithm (11-12) for the dual problem
(8-10). The equilibrium is given by the fixed point of (16-19) and satisfies

* %S

xip*® = asds sincewv: = 0, and
2 < ¢ with equality if p; > 0

These are precisely the Karush-Kuhn-Tucker condition for the primal problem (3-5). Hence
the equilibrium maximizes aggregate utility, as explained in Theorem 2.1.

2.5 Remarks

The sufficient condition in Theorem 2.2 for stability requires that the stepsize v > 0 be
sufficiently small. The original Vegas algorithm however assumes that v = 1 (compare
(11) and (16)). We now describe a way to re-introduce ~ into the Vegas algorithm which
can then be adjusted to ensure convergence. Multiplying both sides of (13) by v > 0 and
identifying p; () = v blc(f) , we obtain

plt+1) = [p(t) + vcllw(p(t)) e

that is, by using weighted queueing delays as prices, the price update is carried out with a
stepsize of ~ that is not necessarily one. Then (15) is modified to
b (t
Fws(t) — 25(0d) = 2o() 3 A2 =)) (20)

Cl
leL(s)

Since the modification should not alter the utility functions nor the equilibrium rates, w(t)
should still be adjusted according to (18) so that, in equilibrium, p** = «d,/x* as for
~ = 1. This requirement together with (20) modifies the conditional in Vegas algorithm
from (14) to:

we(t) — 25 (t)dy < 22dy or wy(t) — zs(t)ds > “2d,
Y Y

This amounts to using an « that is 1/~ times larger, i.e., using a unit of 10KBps (say)

instead of KBps for «s. Note that ~ (or unit of o) should be the same at all sources.
Smaller ~ ensures convergence of source rates, but the convergence will be slower. The

tension between stability and responsiveness is present in any feedback control system.

Journal of the ACM, Vol. 49, No. 2, March 2002.

216 . S. H. Low et al.

A smaller ~ also leads to a larger equilibrium backlog since b;(t) = ¢pi(t)/y. This
difficulty can be overcome by introducing marking to decouple the buffer process from
price computation; see Section 5.

3. DELAY, FAIRNESS AND LOSS
3.1 Delay

The previous section describes two equivalent interpretations of the Vegas algorithm. The
first is that a Vegas source adjusts its rate so as to maintain its actual rate to be between «
and 35 KB/s lower than its expected rate, where « (typically 1/d,) and 3 (typically 3/d)
are parameters of the \egas algorithm. The expected rate is the maximum possible for the
current window size, realized if and only if there is no queueing in the path. The rationale
is that a rate that is too close to the maximum underutilizes the network, and one that is
too far indicates congestion. The second interpretation is that a Vegas source adjusts its
rate so as to maintain between «,d, (typically 1) and 3sd; (typically 3) number of packets
buffered in its path, so as to take advantage of extra capacity when it becomes available.
The duality model suggests a third interpretation. The dynamics of the buffer process at
link [implies the relation (comparing (11) and (13)):
bu(t)

Yz (t) = C—l (21)

It says that the link price p;(¢) is the queueing delay at link ! faced by a packet arrival
at time ¢. The path price p*(t) = ZleL(s) pi(t) is thus the end—to—end queueing delay
(without propagation delay). It is the congestion signal a source needs to adjust its rate,
and the source computes it by taking the difference between the round-trip time and the
(estimated) propagation delay. Then (12) implies that a \egas source sets its (target) rate to
be proportional to the ratio of propagation to queueing delay, the proportionality constant
being between « and 3. Hence the larger the queueing delay, the more severe the con-
gestion and the lower the rate. This interpretation of Vegas will be used to modify Vegas
when used with REM; see Section 5 below.

It also follows from (12) that in equilibrium the bandwidth—queueing—delay product of
a source is equal to the extra packets ad, buffered in its path:

xip™ = asds (22)

This is Little’s Law in queueing theory. The relation (22) then implies that queueing delay
p** must increase, since =¥ must decrease, with the number of sources. This is just a
restatement that every source attempts to keep some extra packets buffered in its path.

3.2 Fairness

Although we did not recognize it at the time, there are two equally valid implementations
of Vegas, each springing from a different interpretation of an ambiguity in the algorithm.
The first, which corresponds to the actual code, defines the o and 35 parameters in terms
of bytes (packets) per round-trip time, while the second, which corresponds to the prose in
[Brakmo and Peterson 1995], defines «; and 3, in terms of bytes (or packets) per second.
These two implementations have an obvious impact on fairness: the second favors sources
with a large propagation delay,

In terms of our model, the log utility function (Theorem 2.1) implies that the equilibrium
rates =* are weighted proportionally fair [Kelly 1997; Kelly et al. 1998]: for any other

Journal of the ACM, Voal. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 217

feasible rate vector x, we have
Ts — xF
Y ad, Bt <
3 X

The first implementation has s = «/d; inversely proportional to the source’s propa-
gation delay. Then the utility functions Us(zs) = asdslogaxs = alogz, are identical
for all sources, and the equilibrium rates are proportionally fair and are independent of
propagation delays. We call this implementation proportionally fair (PF).

The second implementation has identical «s = « for all sources. Then the utility func-
tions and the equilibrium rates are weighted proportional fair, with weights proportional
to sources’ propagation delays. (22) implies that if two sources r and s face the same
path price, e.g., in a network with a single congested link, then their equilibrium rates are
proportional to their propagation delays:

I*
T S

dr ds

In a network with multiple congested links, weighting the utility by propagation delay has
a balancing effect to the “beat down” phenomenon, if the propagation delay is proportional
to the number of congested links in a source’s path. We call the second implementation
weighted proportionally fair (WPF).

This contrasts with TCP Reno which attempts to equalize window [Kelly 1999; Kun-
niyur and Srikant 2000; Low 2000]:

* * * *
'err - :CSDS

and hence a source with twice the (round-trip) delay receives half as much bandwidth.
This discrimination against connections with high propagation delay is well known in the
literature, e.g., [Floyd 1991; Floyd and Jacobson 1993; Lakshman and Madhow 1997;
Mathis et al. 1997; Bonald 1998]. Indeed the same methodology developed here has been
applied in [Low 2000; Low et al. 2002] to Reno, where, by interpreting loss probability as
the dual variable, Reno is shown to have a utility function

Us(CUs) — Q tan~! ‘TS_DS

Dy V2
3.3 Loss

Provided that buffers at links [are large enough to accommaodate the equilibrium backlog
by = pjc;, a Vegas source will not suffer any loss in equilibrium owing to the feasibil-
ity condition (5). This is in contrast to TCP Reno which constantly probes the network
for spare capacity by linearly increasing its window until packets are lost, upon which
the window is multiplicatively decreased. Thus, by carefully extracting congestion infor-
mation from observed round-trip time and intelligently reacting to it, Vegas avoids the
perpetual cycle of sinking into and recovering from congestion. This is confirmed by the
experimental results of [Brakmo and Peterson 1995] and [Ahn et al. 1995].

As observed in [Brakmo and Peterson 1995] and [Bonald 1998], if the buffers are not
sufficiently large, equilibrium cannot be reached, loss cannot be avoided, and Vegas reverts
to Reno. This is because, in attempting to reach equilibrium, Vegas sources all attempt to
place asd, number of packets in their paths, overflowing the buffers in the network.

Journal of the ACM, Vol. 49, No. 2, March 2002.

218 . S. H. Low et al.

This plausibly explains an intriguing observation in [Hengartner et al. 2000] where a
detailed set of experiments assess the relative contribution of various mechanisms in Ve-
gas to its performance improvement over Reno. The study observes that the loss recovery
mechanism, not the congestion avoidance mechanism, of Vegas makes the greatest contri-
bution. This is exactly what should be expected if the buffers are so small as to prevent
Vegas from reaching an equilibrium. In [Hengartner et al. 2000], the router buffer size
is 10 segments; with background traffic, it can be easily filled up, leaving little space for
Vegas’ backlog. The effect of buffer size on the throughput and retransmission of Vegas is
illustrated through simulations in Section 6 below.

4. PERSISTENT CONGESTION

This section examines the phenomenon of persistent congestion, as a consequence of both
Vegas’ exploitation of buffer process for price computation and of its need to estimate
propagation delay. The next section explains how this can be overcome by Random Expo-
nential Marking (REM) [Athuraliya and Low 2000a], in the form of the recently proposed
ECN bit [Floyd 1994; Ramakrishnan and Floyd 1999].

4.1 Coupling Backlog and Price

Vegas relies on the buffer process to compute its price p;(t) = b;(t)/¢;. The equilibrium
prices depend not on the congestion control algorithm but solely on the problem instance:
network topology, link capacities, number of sources, their routing and utility functions.
As the number of sources increases, so do the equilibrium prices and backlog (b; = pj c1).
If every source keeps asds = « packets buffered in the network, the equilibrium backlog
will be aN packets, linear in the number N of sources.

4.2 Propagation Delay Estimation

We have been assuming in our model that a source knows its round trip propagation delay
ds. In practice it sets this value to the minimum round trip time observed so far. Error
may arise when there is route change, or when a new connection starts [Mo et al. 1999].
First, when the route is changed to one that has a longer propagation delay than the current
route, the new propagation delay will be taken as increased round trip time, an indication of
congestion. The source then reduces its window, while it should have increased it. Second,
when a source starts, its observed round trip time includes queueing delay due to packets in
its path from existing sources. It hence overestimates its propagation delay d and attempts
to put more than o d, packets in its path, leading to persistent congestion.> We now look
at the effect of estimation error on stability and fairness.

Suppose each source s uses an estimate d, (t) := (1 + €,)d,(t) of its round trip prop-
agation delay d in the Vegas algorithm (1), where ¢, is the percentage error that can be
different for different sources. Naturally we assume —1 < e, < D,(t)/ds(t)—1forall ¢ so
that the estimate satisfies 0 < d,(t) < D,(t). The equilibrium windows w* = (w*,s € S)

LA remedy is suggested for the first problem in [Mo et al. 1999] where a source keeps a record of the round trip
times of the last L - N packets. When their minimum is much larger than the current estimate of propagation
delay, this is taken as an indication of route change, and the estimate is set to the minimum round trip time of the
last V packets. However, persistent congestion may interfere with this scheme. The use of Random Exponential
Marking (REM) eliminates persistent congestion and facilitates the proposed modification.

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 219

and the associated equilibrium round trip times D* = (D?, s € .S) then satisfy

wg wg
i D a, forallse S (23)

The next result says that the estimation error effectively changes the utility function from
(3) to:

Us(zs) = (14 €5)asds logxs + esdss (24)

THEOREM 4.1. Let ¢, be the percentage error in propagation delay estimation. Let

w* = (wk,s € S) be the equilibrium windows of Vegas and D* = (D%,s € S) the

associated equilibrium round trip times, i.e., they satisfy (23). Suppose packets are served

first-in-first-out at all links. Then the equilibrium source rates z* = (2%, s € S) defined by
x¥ = w?’ /D% is the unique optimal solution of (4-5) with utility functions given by (24).

Proof. The argument follows the proof of Theorem 2.1, except that (6) is replaced by

14 es)asd

U/ * — (S SYS _ *

s(xs) T + est E D (25)
s 1€L(s)

To show that the equilibrium backlog at the links provides such a vector p*, and hence the
equilibrium rates are optimal, substitute the estimated propagation delay d* = (1 + e4)d*
for the true value d% in (23) to get

* *
Wy Wy

(1+e5)ds D*

S

g =

Using wi — z3ds = 233 ¢ 15 Ui /1 We thus have

b*
1 s sds: *_ds*_sds*: _l_sds .
1+ eads = () —da}) —edal = (Y L -cd,) a
leL(s)

This yields (25) upon identifying p; = l;—ll and rearranging terms. As in the proof of
Theorem 2.1, z* must be feasible and since otherwise the backlog will grow without bound,
contradicting the complementary slackness condition must be satisfied. Hence the proof is
complete. O

The significance of Theorem 4.1 is twofold. First, it implies that incorrect propagation
delay does not upset the stability of the Vegas algorithm—the rates simply pursue a dif-
ferent equilibrium. Second, it allows us to compute the new equilibrium rates, and hence
assess the fairness, when we know the relative error in propagation delay estimation. It
provides a qualitative assessment of the effect of estimation error when such knowledge is
not available.

For example, suppose sources and s see the same path price. If there is zero estimation
error then their equilibrium rates are proportional to their weights:

apdy gdg
z @l
With error, their rates are related by
1 r rdr 1 s sds
d+eardy +€3a ved, = LFE)osds +€3a +eud, (26)
I’I‘ IS

Journal of the ACM, Vol. 49, No. 2, March 2002.

220 . S. H. Low et al.

Hence, a large positive error generally leads to a higher equilibrium rate to the detriment
of other sources. For PF implementation where «,.d, = a,d, if sources have identical
absolute error, ¢,.d, = €,d,, then source rates are proportional to 1 + €.

Although Vegas can be stable in the presence of error in propagation delay estimation,
the error may cause two problems. First, over-estimation increases the equilibrium source
rate. This pushes up prices and hence buffer backlogs, leading to persistent congestion.
Second, error distorts the utility function of the sources, leading to an unfair network equi-
librium in favor of newer sources. We illustrate this with a simple example. The example
also demonstrates an application of Theorem 4.1 and is confirmed by simulations in Sec-
tion 6.2 below.

Example: Persistent Congestion

Consider a single link with capacity ¢ pkts/ms and an infinite buffer shared by IV sources,
all with a common round trip propagation delay of d ms and parameter « pkts/ms. Hence
if all sources know the propagation delay exactly, then each will keep ad pkts in its path
in equilibrium.

Now suppose the sources activate successively. Source t,t = 1, ..., N, becomes active
at the beginning of period ¢ after sources 1, ... ,¢ — 1 have reached equilibrium. Then the
estimated propagation delay d; of source ¢ includes the queueing delay p(¢) due to sources
1,...,t—1. Inperiod 1, only source 1 is active, so source 1 estimates its propagation delay
correctly, d; = d, and generates a queueing delay of p(1) = ad/c pkts. This is the error in
propagation delay estimation by source 2, i.e., do = d+ p(1). Sources 1 and 2 generate an
equilibrium queueing delay of p(2) in period 2 that satisfies (25) in the proof of Theorem
4.1. Since z7 4+ x3 = ¢, we have

ad a(d+p(l)
p(2) * p(2)-p(1)
By induction, the equilibrium queueing delays in successive periods can be computed re-
cursively by
ad old+p(l) | ald+p2) a(d+p(t—1))

20 T 2O =p p)—=p@) T pm—pi=1) T © t=2,...,(27)
ad

p(l) = (28)

Then equilibrium queue length in period ¢ is ¢p(¢) pkts. The equilibrium rate «,,(¢) for
source n in period ¢, n = 1,...,t, is given by (from (25))
ald+p(n—1))

T,(t) = ———=

O = S0 —pm—1)

(29)
O

4.3 Remarks

We did not see persistent congestion in our original simulations of Vegas. This is most
likely due to three factors. First, and most importantly, the original implementation of Ve-
gas reverts to Reno-like behavior when there is insufficient buffer capacity in the network.
Second, our simulations did not take the possibility of route changes into consideration,
but on the other hand, evidence suggests that route changes are not likely to be a problem

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 221

in practice [Paxson 1996]. Finally, the situation of connections starting up serially is patho-
logical. In practice, connections continually come and go; hence all sources are likely to
measure a baseRTT that represents the propagation delay plus the average queuing delay.

5. VEGAS WITH REM

Persistent congestion is a consequence of Vegas’ reliance on queueing delay as a conges-
tion measure, which makes backlog indispensable in conveying congestion to the sources.
This section shows how REM (Random Exponential Marking) introduced in [Athuraliya
and Low 2000a; Athuraliya et al. 2001] can be used to correct this situation.

Our goal is to preserve the equilibrium rate allocation of Vegas without the danger of
persistent congestion described in the last section. This preserves the log utility function
and proportional fairness of Vegas. Recall the three interpretations of Vegas discussed in
Section 3.1. To preserve the equilibrium rate allocation, we use the third interpretation that
a Vegas source sets its rate to be proportional to the ratio of propagation delay to path price
as expressed by (12), except that path price is no longer the round-trip delay. Instead it is
computed and fed back using the REM algorithm, explained below. The purpose of AQM
is not to replace a loss signal due to buffer overflow by probabilistic dropping or marking,
but rather to feed back the path price.

There are two ideas in REM that suit our purpose. First, REM strives to match rate
and clear buffer, leading to high utilization and low queue. With small queues, minimum
round-trip time would be an accurate approximation to propagation delay. Round trip
times however no longer convey price information to a source. The second idea of REM
allows sources to estimate their path prices from observed dropping or marking rate. We
now summarize REM; see [Athuraliya and Low 2000a; Athuraliya et al. 2001] for design
rationale, performance evaluation, and parameter setting.

Each link [updates a link price p;(¢) in period ¢ based on the aggregate input rate x!(t)
and the buffer occupancy b;(¢) at link I:

pt+1) = [pi(t) +y(ubi(t) + 2 () —)] (30)

where v > 0 is a small constant and 0 < y; < 1.2 The parameter ~ controls the rate of
convergence and 1, trades off link utilization and average backlog. Hence p;(t) is increased
when the weighted sum of backlog ;(¢) and mismatch in rate 2! (¢) — ¢;, weighted by 1, is
positive, and is reduced otherwise. In equilibrium, this weighted sum is zero (at a congested
link where equilibrium price p*! > 0), which implies both b} = 0 and z*! = ¢;. This is
because if z*! # ¢; then the queue length b7 cannot be in equilibrium. Hence z*! = ¢;.
This implies b = 0 since the weighted sum is zero. This property leads to both high
utilization and low loss and delay, as confirmed by simulation results in the next section.

To convey prices to sources, link [marks each packet arriving in period ¢, that is not al-
ready marked at an upstream link, with a probability m,(¢) that is exponentially increasing
in the congestion measure:

m(t) = 1—-¢7® (31)

2Note that if zz; = 0 then (30) reduces to (11) with scaling factor §; = 1. Hence REM (30) can be regarded
as an approximate gradient projection algorithm for the dual problem. The use of strictly positive p; is to drive
equilibrium backlog to zero.

Journal of the ACM, Vol. 49, No. 2, March 2002.

222 . S. H. Low et al.

where ¢ > 1 is a constant. Once a packet is marked, its mark is carried to the destination
and then conveyed back to the source via acknowledgment.

The exponential form is critical for multi-link network, because the end-to—end proba-
bility that a packet of source s is marked after traversing a set L(ss) of links is then

m*(t) = 1— [@=m(t)) = 1-¢77"0 (32)
leL(s)
where p*(t) = 3¢ 15 pi(t) is the path price. The end-to—end marking probability is
high when p®(¢) is large.
Source s estimates this end—to—end marking probability m*(¢) by the fraction /% (¢) of
its packets marked in period ¢, and estimates the path price p*(t) by inverting (32):

PP(t) = —logy (1 —m>(t))
where log,, is logarithm to base ¢. It then adjusts its rate using marginal utility (cf. (12)):

asd asd
xst:Ass: ssA (33)
D= 50 T “og,0-mw)
In practice a source may adjust its rate more gradually by incrementing it slightly if the
current rate is less than the target (the right hand side of (33)), and decrementing it slightly
otherwise, in the spirit of the original Vegas algorithm (1):

Vegaswith REM:
we(t) + o i - gzgg log, (1 —m*(t)) < asds
wo(t+1) = { wy(t) - 5l if - g—(g log, (1 —1m°(t)) > asds
ws(t) else

6. VALIDATION

This section presents four sets of simulation results. The first set shows that source rates
converge quickly under Vegas to the theoretical equilibrium, even in the presence of mice
traffic, thus validating our model. The second set illustrates the phenomenon of persistent
congestion discussed in Section 4. The third set shows that the source rates (windows)
under Vegas/REM behave similarly to those under plain Vegas, but the buffer stays low.
The last set shows that enough buffer space is necessary for plain Vegas to work properly.

We use the ns-2 network simulator [ns], and unless stated otherwise, configure it with
the topology shown in Figure 1. Each host on the left runs an FTP application that transfers
a large file to its counterpart on the right. We use a packet size of 1KB. The various
simulations presented in this section use different latency and bandwidth parameters, as
described below.

6.1 Equilibrium and Fairness

6.1.1 Single Link Case. We run five classes of connections across the network shown
in Figure 1. Each class has 50 flows, that is, between hosts 1a(0) and 1b(0)..., 1a(49) and
1b(49); 2a(0) and 2b(0)... and so on, for a total of 250 flows. The round trip latency for
the five classes are 15ms, 15ms, 20ms, 30ms and 40ms respectively. The shared link has
a bandwidth of 2.4Gbps, which is close to an OC-48 link, and all host/router links have a

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model

Fi

g.1. Network topology

223

bandwidth of 100Mbps. Routers maintain a FIFO (first in first out) queue with unlimited

capacity.
Average Sending Rate for Class 1a (rtt: 15 ms) PF Average Sending Rate for Class 3a (rtt: 20 ms) PF Average Sending Rate for Class 4a (rtt: 30 ms) PF
2000 _ 2000 _ 2000
? Q Q
o 1800 o 1800 o 1800
< g g
P 1600 o 1600 \ o 1600
g 140 g 10 g 10
E_:” 1200 g 1200 g 1200
2 1000 2 1000 2 1000/
o o o i
0 800 @ 800 O 800t
0 0 0 i
S 600 & 600 S 6001/
o Q0 Q0 V
> 400 > 400 > 40 [
[. o o i
E 200 theoretical optimal rate =—— E 200 E 200 theoretical optimal rate ==

 actual rate ——

theoretical optimal rate ===
L X aclqal 1a1§ e

X aclqal ratg e

0

8 10 12 14 16 18 20
Time (second)

2 4 6

TCP Vegas Sending Rate (KB/s)

0

2000
1800
1600
1400
1200
1000

N oE o o
285888
888 8

0 i§

0 2 4 6 8 10 12 14 16 18 20
Time (second)

Average Sending Rate for Class 5a (rtt: 40 ms) PF

Mol

theoretical optimal rate
L X aclqal 1a1§ e

0 2 4 6 8 10 12 14 16 18 20
Time (second)

ob
0 2 4 6 8 10 12 14 16 18 20

Time (second)

Fig. 2. Average sending rates for single link case with proportionally fair implementation. Host Class 2a is not
shown, but behaves similarly to Host Class 1a.

As described in Section 3, there are two different implementations of Vegas with dif-
ferent fairness properties. For proportional fairness, we set «s = 2 packets per RTT and
we let oy, = [, in ns-2. The model predicts that all connections receive an equal share
(1200KBps) of the bottleneck link and the simulations confirm this. This contrasts sharply
with Reno which is well known to discriminate against connections with large propagation
delays. Figure 2 plots the average sending rate of 50 flows in each class against the pre-
dicted rates (thick straight lines): all connections quickly converge to the predicted rate.
(Individual source rates have similar behavior, so we only show their averages.) Table |

Journal of the ACM, Vol. 49, No. 2, March 2002.

224 . S. H. Low et al.

summarizes other performance values,® which further demonstrate how well the model
predicts the simulation. All simulation numbers are averages among sources of each class
in equilibrium.

Average Window Size for Class 2a (rtt: 15 ms) WPF Average Window Size for Class 3a (rtt: 20 ms) WPF Average Window Size for Class 4a (rtt: 30 ms) WPF

i,

S
&

&
o
3

&
=
5

8

s

~
1=

TCP Vegas cwnd Size (KB)
&

TCP Vegas cwnd Size (KB)
T S
R
TCP Vegas cwnd Size (KB)
«

8

s
—
s

theoretical optimal window =——
actual window -

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

theoretical optimal window =——
aplual yvmdqw o

theoretical optimal window ==
aplual yvmdqw o

o o

o

Time (second) Time (second) Time (second)

Average Window Size for Class 5a (rtt: 40 ms) WPF

s 8 3

TCP Vegas cwnd Size (KB)
8

BN oW s oo @
5

s

theoretical optimal window =——
aplual yvmdqw o

0 2 4 6 8 10 12 14 16 18 20
Time (second)

s

o

Fig. 3. Average sending rates for single link case with weighted proportionally fair implementation. Host Class
la is not shown.

For weighted proportional fairness, we set a; to 2 packets per 10ms, which means each
source will have a different number of extra packets in the pipe and the optimal sending
rate will be proportional to the propagation delay. The results are shown in Figure 3, except
this time we show the average congestion windows instead of the sending rates. The other
performance numbers are in Table II, which again show that simulations closely follow
model’s predictions.

Notice that in both cases, sources with smaller round-trip times converge more rapidly
(see Figures 2 and 3). This scaling down of response by delay enhances stability in the
face of feedback delay [Paganini et al. 2001]. Moreover, the individualized scaling of
Vegas has the appealing feature that sources with low delays can respond quickly, without
compromising fairness, and it is only those sources whose fast response is destabilizing
(those with long delays) that must slow down.

6.1.2 Multi-Link Case. We also simulated a network topology with multiple links, as
shown in Figure 4. This topology is almost the same as that used in [Brakmo and Peterson
1995], except that to simplify computation, we set the bandwidth of the “backbone” to be
2.4Gbps. We now have six classes of sources (1a to 6a) and six classes of sinks (1b to
6b). Each class has 50 sources or sinks; as usual, links between a source or sink and a

3The baseRTT, for both Model and Simulation, includes round trip propagation delay and transmission time for
a packet and its acknowledgment.

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model 225

Source la 2a 3a 4a 5a
Class M S M S M S M S M S
baseRTT (ms) 15.17 | 15.17 | 15.17 | 1517 | 20.17 | 20.17 | 30.17 | 30.17 | 40.17 | 40.17
RTT w/ queueing (ms) | 16.84 | 16.88 | 16.84 | 16.88 | 21.84 | 21.88 | 31.84 | 31.9 | 41.84 | 41.87
Sending rate (KB/s) 1200 | 1221 | 1200 | 1203 | 1200 | 1193 | 1200 | 1183 | 1200 | 1169
Congestion window (pkts) | 20.2 | 204 | 202 | 20 | 262 | 26 | 382 | 38 | 50.2 | 494
Queue Model Simulation
at Routerl (pkts) 500 515
Table 1. Comparison of theoretical and simulation results for the single link case with
proportionally fair implementation. M denotes model and S denotes simulation.
Source la 2a 3a 4a 5a
Class M S M S M S M S M S
baseRTT (Ms) 1517 | 15.17 | 15.17 | 1517 | 20.17 | 20.17 | 30.17 | 30.17 | 40.17 | 40.17
RTT w/ queusing (ms) 192 | 1925 | 192 | 1925 | 242 | 243 | 342 | 343 | 442 | 44.24
Sending rate (KB/s) 7532 | 772 | 7532 | 762 1001 992 1498 | 1475 | 1994 | 1957
Congestion window (pkts) | 14.5 15 145 149 24.2 24 51.2 50.9 88.2 874
Queue Model Simulation
at Routerl (pkts) 1208.85 1200.5

Table Il. Comparison of theoretical and simulation results for the single link case with
weighted proportionally fair implementation. M denotes model and S denotes simulation.

Host 5a(0)~NQ.7ms

0-5mg 0.4ms

[Host 2a(0)} [Host 4a(0)}

1lms .
29ms Host 1b(0 Host 4b(0

1m:

Host 2b(0

3.1ms O Router — 2400Mbps Link

100Mbps Link

[Hoﬂ 1a(0)} [Hoﬂ 3a(0)} [Host 63(0)}

Fig. 4. Network topology for multi-link simulations.

router have a bandwidth of 200Mbps. Similar to previous simulations, an FTP application
on each “a” Host transfers a large file to its counterpart sink on the “b” Host using a packet
size of 1KB (e.g., 1a(3) to 1b(3), 5a(10) to 5b(10)). Altogether there are 300 flows, which

Journal of the ACM, Vol. 49, No. 2, March 2002.

226

S. H. Low et al.

have round trip propagation delays from 20ms to 100ms.

Source Ta 2a 3a 4a 5a 6a
Class M S M S M S M S M S M S
baseRTT (ms) 7517 | 7517 | 8017 | 80.17 | 1517 | 1517 | 60.17 | 60.17 | 20.17 | 20.17 | 100.18 | 100.18
RTT w/ queueing (ms) 7696 | 7664 | 8196 | 8162 | 1589 | 1577 | 61.23 61 20.89 | 20.76 | 10269 | 102.24
Sending rate (KB/s) 1382 1363 1382 1378 | 3618 | 3625 2236 2237 | 3618 | 3601 1000 968
Congestion window (pkts) 106.35 | 1054 | 11327 | 1138 575 57.2 136.93 | 138.1 75.6 75.3 102.69 100.7
Queue LA SF CH
(pkts) M S M [S M [S
166.0 [160.7 268.5 [259.2 166.0 [159.6
Table I11. Comparison of theoretical and simulation results for the multi-link case with proportionally fair imple-
mentation. M denotes model and S denotes simulation.
Source la 2a 3a 4a 5a 6a
Class M S M S M S M S M S M S
baseRTT (ms) 75.17 7517 | 80.17 | 80.17 | 1517 | 1517 | 60.17 | 60.17 | 20.17 | 20.17 | 100.18 | 100.18
RTT w/ queueing (ms) 85.74 855 91.12 90.8 16.4 16.3 69.5 6941 | 21.78 | 21.68 | 112.35 111.9
Sending rate (KB/s) 1463 1448 1509 1495 2819 2804 1310 1316 2775 2766 1714 1699
Congestion window (pkts) | 12547 | 1252 | 1375 | 137.3 | 4624 | 4576 | 91.04 | 9221 | 60.44 | 60.34 | 1926 | 19213
Queue LA SF CH
(pkts) M [S M [S M [S
3195 | 336.4 2748.0 | 2738 4325 | 4428

Table 1V. Comparison of theoretical and simulation results for the multi-link case with weighted proportionally
fair implementation. M denotes model and S denotes simulation.

We repeated simulations for Proportionally Fair and Weighed Proportionally Fair im-
plementations under this new setup for 20 seconds. Tables Il and IV summarize various
(average) performance values predicted from duality model and measured from simulation.
Again, the simulation measurements match our predictions very well.

6.1.3 Mice Traffic. As mentioned at the end of Section 1.1, even though most TCP
connections are mice, most packets belong to elephants. TCP aims to control elephants,
not mice. The deterministic fluid model in this paper ignores mice traffic. The next exper-
iment validates the model in the presence of mice. It shows that, indeed, the equilibrium
properties of the network are largely determined by elephants, as heavy-tail file sizes imply.

We use the same simulation configuration as in the first set of experiments, with 5 classes
of sources. Each class has 50 sources all with the same propagation delay. Of the 50
sources in each class, 10 sources are persistent FTP sources (elephants) and 40 are random
on-off sources (mice). When a random source is on, it generates a file of size that is expo-
nentially distributed with mean 1MB; the file is then transported over TCP Vegas. When
the transfer is complete, it turns off for a random period that is exponentially distributed
with mean 3 sec. With these parameters, about 20% of packets are generated by the 200
random on-off sources and 80% packets are generated by the 50 persistent FTP sources.
The Vegas parameter is a; = 2 packets per RTT, so that all persistent sources should have
the same equilibrium rate of 3 x 10% x 80%/50 = 4800 KB/s. Figure 5 shows that aver-
age sending rate of the 10 persistent FTP sources in each class (individual sending rates
behave similarly as the average) and the instantaneous queue. The elephants can be effec-
tively controlled with 20% mice traffic and converge to their equilibrium rates, although

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 227

the convergence is slower than that in earier experiments. Again, sources with smaller
delays converge faster. The propagation delays (not shown here) are accurately estimated
in the presence of mice traffic. The queue oscillates rather severely because of the random
on-off sources.

TCP Vegas Sending Rate (KB/s)

7000

6000

5000

@
@
<
o
k<1
4
E‘ 4000
3
2
& 3000
P
g |
g 2000 |
a t
£ 1000
r theoretically optimal rate ———
0 class 3a average sending rate (rtt: 20 ms) ———

7000

6000

5000

4000

3000

2000

TCP Vegas Sending Rate (KB/s)

1000

Persistent Vegas Sending Rates, Class la

theoretically optimal rate ———
class 1a average sending rate (rtt: 15 ms) ———

0 2 4 6 8 10 12 14 16 18 20
Time (second)

Persistent Vegas Sending Rates, Class 3a

Nl VIV v

0 2 4 6 8 10 12 14 16 18 20
Time (second)

Persistent Vegas Sending Rates, Class 4a

PN i O

e

H theoretically optimal rate ———
class 4a average sending rate (rtt: 30 ms) ———

0 2 4 6 8 10 12 14 16 18 20
Time (second)

Buffer Occupancy of Routerl

500
450
400
350
300
250
200
150

Queue Size (KB)

100

a
3

0

0

predicted queue size

actual queue size at Routerl ——-

i

TCP Vegas Sending Rate (KB/s)

TCP Vegas Sending Rate (KB/s)

7000

Y
3
3
3

@
3
3
3

%

4000

3000

2000

1000

7000

6000

5000

4000

3000

2000

1000 |

Persistent Vegas Sending Rates, Class 2a

M%‘f‘é A,

theoretically optimal rate ——
class 2a average sending rate (rtt: 15 ms) ———

0 2 4 6 8 10 12 14 16 18 20

Time (second)

Persistent Vegas Sending Rates, Class 5a

theoretically optimal rate ———
class 5a average sending rate (rtt: 40 ms) ———

0 2 4 6 8 10 12 14 16 18 20

Time (second)

Fig. 5. Sending rates and queue sizes for persistent flows with mice traffic.

Journal of the ACM, Vol. 49, No. 2, March 2002.

228 . S. H. Low et al.

6.2 Persistent Congestion

We next validate that Vegas can lead to persistent congestion under pathological conditions.
We choose only 5 source-sink pairs in topology of Figure 1, namely Host 1a-5a and Host
1b-5b; and set the round trip propagation delay to 10ms for all connections, the host-router
links are all 1600 Mbps, and the bottleneck link has a bandwidth of 48 Mbps. We set o, to
2 packets-per-ms, so each source strives to maintain 20 packets in their path. We assume

the routers have infinite buffer capacity.

We first hard-code the round trip propagation delay to be 10 ms for each source, thus
eliminating the error in propagation delay estimation. We then run five connections, each
starting 20 seconds after the previous connection. That is, Host 1a starts sending at time
0, 2a starts at 20s, and so on. As shown in Figure 6(a), the buffer occupancy increases
linearly in the number of sources, as expected.

Buffer Usage at Routerl (alpha 2pkts/ms)
120 T T T T T T T

Buffer Usage at Routerl (alpha 2pkts/ms)

T 500 T
buffer occupancy — 50 | buffer occupgncy — |
100 400
é w0l é 350 |
8 & %00
12} 12}
8 60 g 250
g g
o o 200 |
g OF £ 150
1} [1i}
2 100 -
50
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
time (second) time (second)
(a) Without propagation delay error (b) With propagation delay error
Fig. 6. Effect of propagation delay error on queue length.
Time la (KBI/s) 2a (KB/s) 3a (KB/s) 4a (KB/s) 5a (KB/s) Queue (pkts)
M S M S M S M S M S M S
0-20s 6000 | 5980 20 19.8
20—-40s | 2000 | 2050 | 4000 | 3920 60 59
40 - 60s 940 960 | 1490 | 1460 | 3570 | 3540 127 | 127.3
60 — 80s 500 510 730 724 | 1350 | 1340 | 3390 | 3380 238 | 2375
80-100s | 290 290 400 404 670 676 | 1300 | 1298 | 3340 | 3278 | 416 | 416.3

Table V. Equilibrium rates and queue lengths with propagation delay error. M denotes

Model and S denotes Simulation.

Next, we let the sources discover their propagation delays. As shown in Figure 6(b),
buffer occupancy grows much faster than linearly in the number of sources (notice the dif-
ferent scales in the figure). We have also applied Theorem 4.1 (see (27-29) in the Example)

Journal of the ACM, Voal. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 229

baseRTT (ms) | Hostla | Host2a | Host3a | Host4a | Hostba
no error 10.18 10.18 10.18 10.18 10.18
w/ error (M) 10.18 1351 20.18 312 49.80
w/ error (S) 10.18 13.36 20.17 315 49.86

Table VI. BaseRTTs. M denotes Model and S denotes Simulation.

to calculate the equilibrium rates, queue size, and baseRTT (estimated propagation de-
lay). The predicted and measured numbers are shown in Tables V and VI. They match
very well, further verifying our model.

As Table V shows, distortion in utility functions not only leads to excess backlog, it also
strongly favors new sources. Without estimation error, sources should equally share the
bandwidth. With error, when all five sources are active, x1 : 9 : 23 : x4 : x5 = 1: 1.4 :
2.3:4.5:11.6.

6.3 Vegas + REM

We next implement REM at Routerl in Figure 1, which updates link price every 1ms ac-
cording to (30). We adapt Vegas to adjust its rate (congestion window) based on estimated
path prices, as described in Section 5. Vegas makes use of packet marking only in its
congestion avoidance phase; its slow-start behavior stays unchanged.*

We use the same network setup as in Section 6.2. The bottleneck link also has a band-
width of 48Mbps. Host-router links are 1600Mbps and «, is 2 pkts-per-ms. In order to
verify our new mechanism in different situations, this time we let sources (Host1-5a) have
a round trip latency of 10ms, 10ms, 20ms, 10ms, 30ms respectively. REM parameters are:
¢ =11, 4, =0.5,~=0.005.

As before, the 5 connections start serially at 20s intervals. Figure 7 plots the congestion
window size of the five connections and buffer occupancy at Routerl. As expected, each
of the five connections converges to its equilibrium value predicted by duality model (thick
straight lines). Source rates oscillate more severely when fewer sources are active (e.g.,
Hostla during time 0 - 20s). This is a consequence of the log utility function; see [Athu-
raliya and Low 2000a]. As more sources become active (40 - 100s), oscillation becomes
smaller and convergence faster. REM eliminates the super-linear growth in queue length of
Figure 6(b) while maintaining high link utilization (90% to 96%). As a result propagation
delay can be accurately estimated, as shown in Table VII.

baseRTT (ms) | Hostla | Host2a | Host3a | Host4a | Hostba
Model 10.18 10.18 20.18 10.18 30.18
Simulation 10.18 10.18 20.18 10.18 30.19

Table VII. baseRTT in Vegas+REM.

6.4 Effect of Buffer Capacity

Our model and all previous simulations assume an infinite buffer capacity. The next sim-
ulation studies the effect of buffer capacity on the performance of Vegas and Reno. It

4During slow-start, Vegas keeps updating the variable fraction 72 (t), but does not use it in window adjustment.

Journal of the ACM, Vol. 49, No. 2, March 2002.

230 S. H. Low et al.

Vegas+REM: Window sizes for Host1a (Weighted Proportionally Fair)

Vegas+REM: Window sizes for Host2a (Weighted Proportionally Fair)

80 T T T T T T 40 T T T T T T
theoretical equilibrium window s theoretical equilibrium window s
O T I 35 A
60 30
@ @
X 50 X 25
® ®
N N
@ @
z 40 z 20
3 3
2 2
£ 30 £ 15
B B
20 10
10 5
0 R 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

time (second)

time (second)

Vegas+REM: Window sizes for Host3a (Weighted Proportionally Fair)

window size KB

0 10 20 30 40

Vegas+REM: Window sizes for Host4a (Weighted Proportionally Fair)

50

60 70 80 90 100

time (second)

Vegas+REM: Window sizes for Host5a (Weighted Proportionally Fair)

35 T T T T T T 70 T T T T T T
theoretical equilibrium window s theoretical equilibrium window s
30 60
25 50
@ @
4 4
8 20 g 40
@ @
g H
S5 S 3
£ £
B B
10 20
5 10
0 . . . 0 .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

time (second)

time (second)

queue size KB

40
time (second)

Fig. 7. Vegas+REM with link utilizations of 90%(0-20s), 96%(20-40s), 93%(40-60s), 91%(60-80s), and 90%(80-

100s).

confirms our discussion in Section 3.3 and offers a plausible explanation for the intrigu-
ing observation that the congestion avoidance mechanism of Vegas contributes little to its

50

60

Vegas+REM Buffer Occupancy Routerl --> Router2 (alpha = 2pkts/ms)

actual queue size

70 80 90 100

throughput and retransmission improvement over Reno.

In [Hengartner et al. 2000], TCP Vegas is decomposed into several individual mecha-
nisms and the effect of each on performance is assessed by taking the approach of a 2*
factorial design with replications. This work deploys a useful methodology and provides

Journal of the ACM, Vol. 49, No. 2, March 2002.

Goodput vs. Buffer Size

Understanding Vegas: a duality model

Retransmission vs. Buffer Size

140

Goodput KB/s

Vegas ——

Retransmission KB

Vegas ——
Reno —x--

Buffer Size(pks)

(a) Goodput

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Buffer Size(pkts)

(b) Retransmission

231

Retransmission in Congestion Avoidance vs. Buffer Size

Retransmission KB

0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
Buffer Size(pkts)

(c) Retransmission in CA

Fig. 8. Effect of buffer capacity on performance. All numbers are averages of 100 flows over a 50s period. For
Vegas, o = 1, B = 3 packet per RTT.

insights into the relative importance of different algorithms in Vegas. However, the final
conclusion that Vegas” more aggressive recovery mechanism has the largest effect on per-
formance, while its congestion avoidance mechanism contributes little, could be limited by
the fact that in that setup, the bottleneck router only has a 10 packet queue, which could be
easily filled up by background traffic. As a result, without enough buffer for its backlog,
Vegas reverts to Reno and the changes to its recovery mechanism then stand out as the
largest contributor to performance. If buffer space is enough, Vegas will maintain a steady
sending rate without any retransmission.

To validate our claim, we simulate the same topology as in [Hengartner et al. 2000],
which is similar to Figure 1, but the bottleneck link has a capacity of 6000 KB/sec. There
are 100 persistent TCP flows from Hostla to Host1b with round trip propagation delay of
50ms. We run two sets of simulations, one with 100 Reno flows and the other with 100
Vegas flow, and compare the performance of Reno and Vegas at different buffer sizes. All
host-router links are 10Mbps Ethernet. To isolate the effect of buffer size on the behavior
of congestion avoidance mechanism, we omit the background traffic in our simulations.
Such long transfers minimize the effect of other mechanisms such as slow-start on the
performance and our measurements are based on the first 50 seconds of the transfer. We
set a, = 1 and 3, = 3 pkts-per-round-trip for Vegas so that the total equilibrium queue

Journal of the ACM, Vol. 49, No. 2, March 2002.

232 . S. H. Low et al.

length should be between 100 to 300 packets. Figure 8 shows the goodput®, retransmission
and retransmission during congestion avoidance of these 100 flows as a function of buffer
size at Routerl. It confirms that Vegas has a steady sending rate and no retransmissions as
long as the buffer sizes exceeds a threshold. In contrast, retransmission remains significant
for Reno even at large buffer sizes.

This simulation illustrates that TCP Vegas’ congestion avoidance mechanism will only
get its full benefit when the network has enough buffer space to hold Vegas’ backlog. In
that case, Vegas will have a stable send rate and no retransmission, and the performance
advantage, although not as pronounced, can be ascribed to Vegas’ congestion avoidance
mechanism. When buffer space is small, Vegas’ cwnd behaves like Reno’s and Vegas’
recovery mechanism plays a larger role in the performance difference. It is worth noting,
however, that there is a danger in trying to isolate the contributions of recovery mechanism
and congestion avoidance. The recovery mechanism was designed to retransmit more ag-
gressively than Reno, while the congestion avoidance mechanism was designed primarily
to reduce loss (not increase throughput), and hence, provide balance against the effects of
the recovery mechanism.

7. RELATED WORK

The optimal flow control problem (4-5) is formulated in [Kelly 1997]. It is solved using a
penalty function approach in [Kelly et al. 1998; Kunniyur and Srikant 2000] and extended
in [Mo and Walrand 2000] and [La and Anantharam 2000]. The problem is solved using
a duality approach in [Low and Lapsley 1999] leading to an abstract algorithm whose
convergence has been proved in asynchronous environment. A practical implementation
of this algorithm is proposed in [Athuraliya and Low 2000a]. The duality approach is
extended to multirate multicast setting in [Kar et al. 2001].

The idea of treating source rates as primal variables and congestion measures (queueing
delay in Vegas) as dual variables, and TCP/AQM as a distributed primal-dual algorithm to
solve (4-5), with different utility functions, is extended in [Low 2000; Low et al. 2002] to
other schemes, such as Reno/DropTail, Reno/RED, and Reno/REM. The utility functions
of these schemes are derived.

In [Mo and Walrand 2000] a network is modeled by a set of inequalities which, in our
context, are the feasibility condition (5), the Karush-Kuhn-Tucker condition for the con-
strained optimization (4-5), and the relation between window and backlog. One of the
main results of [Mo and Walrand 2000] is a proof, using fixed point theory, that, given
window sizes, there exists a unique rate vector that satisfies these inequalities. An alter-
native proof is to observe that the set of inequalities define the optimality condition for
the strict convex program (3-5), implying the existence of a unique solution. Theorem
2.1 is first proved in [Mo and Walrand 2000]; our proof has a somewhat more intuitive
presentation.

A single-link dynamical system model of Vegas is used in [Bonald 1998] to show that,
in the case of homogeneous propagation delay, the system converges to a set where each
source keeps between «, and (3, packets in the link. The proof relies on an interesting
contraction property that says that the difference between window sizes of any two sources

5Here, ‘goodput’ is the total number of non-duplicate packets acknowledged divided by simulation duration. The
maximum is less than the link capacity of 60KB/s both because of retransmission and because of under-utilization
during slow-start.

Journal of the ACM, Voal. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 233

can only decrease over time.

A model of Vegas with a single link, two sourcesand o« < 3 isused in [Mo et al. 1999] to
show that, in equilibrium, each source maintains between « and 5 number of packets in the
path, and that Vegas does not favor sources with short delays (their model corresponds to
the proportionally fair model here; see Section 3.2). The problem of persistent congestion
due to propagation delay estimation is discussed but no analysis is presented. We assume
« = (3 and consider a multi-link multi-source optimization model whose solution yields an
equilibrium characterization from which rates, queue sizes, delay, and fairness properties
can be derived. This model also clarifies the precise mechanism through which persistent
congestion can arise, its consequences and a cure.

A single link model and simulations are also used in [Boutremans and Boudec 2000] to
investigate the effect of persistent congestion on fairness both in the case when o = 3 and
a < (3. They conclude that over-estimation of propagation delay leads to (unfairly) larger
equilibrium rate in both cases. When o = (3, there is a unique equilibrium rate vector,
whereas when a < (3, the equilibrium rates can be any point in a set depending on detail
dynamics such as the order of connection start times, making fairness harder to control.
They hence suggest that « be set equal to 3 in practice, but do not propose any solution to
reduce error in propagation delay estimation.

8. CONCLUSIONS

We have shown that TCP Vegas can be regarded as a distributed optimization algorithm to
maximize aggregate source utility over their transmission rates. The optimization model
has four implications. First it implies that Vegas measures the congestion in a path by
end-to—end queueing delay. A source extracts this information from round trip time mea-
surement and uses it to optimally set its rate. The equilibrium is characterized by Little’s
Law in queueing theory. Second, it implies that Vegas has a log utility function and hence
the equilibrium rates are weighted proportionally fair. Third, it clarifies the mechanism,
and consequences, of potential persistent congestion due to error in the estimation of prop-
agation delay. Finally, it suggests a way to eliminate persistent congestion using REM that
keeps buffer low while matching rate. We have presented simulation results that validate
our conclusions.

Even though we have shown that the Vegas algorithm tracks a gradient projection algo-
rithm that is stable, we have not provided a formal stability proof for the Vegas algorithm
itself. The Vegas algorithm, modeled by (16-19) as a discrete-time nonlinear system with
a discontinuous update function, is hard to analyze. It becomes still harder if we include
feedback delays. Indeed, the discontinuity in the rate update (18) suggests that the system
may converge to a neighborhood of the equilibrium point and circulate around it. It would
be interesting to characterize the size of this equilibrium set in terms of protocol and net-
work parameters. Finally, by using a static model (4-5), the formulation assumes that the
duration of a flow is much larger than the timescale of algorithm convergence. It would be
useful to extend it to a more dynamic model where sources of finite durations arrive and
depart randomly, as in [de Veciana et al. 2001].

Acknowledgment. We are grateful to Sanjeewa Athuraliya, Nick Maxemchuk, and the
anonymous reviewers for their helpful comments.

Journal of the ACM, Vol. 49, No. 2, March 2002.

234 . S. H. Low et al.

REFERENCES

NS network simulator. http://www. isi.edu/nsnam/ns/.

AHN, J. S., DANZIG, P. B., LIU, Z., AND YAN, L. 1995. Evaluation of TCP Vegas: emulation and experiment.
In Proceedings of SIGCOMM’95.

ATHURALIYA, S., LI, V. H.,, Low, S. H., AND YIN, Q. 2001. REM: active queue management. IEEE Net-
work. Extended version in Proceedings of ITC17, Salvador, Brazil, September 2001. http://netlab.
caltech.edu.

ATHURALIYA, S. AND Low, S. H. 2000a. Optimization flow control, Il: Implementation. Submitted for publi-
cation, http://netlab.caltech._edu.

ATHURALIYA, S. AND Low, S. H. 2000b. Optimization flow control with Newton-like algorithm. Journal of
Telecommunication Systems 15, 3/4, 345-358.

BERTSEKAS, D. 1995. Nonlinear Programming. Athena Scientific.

BERTSEKAS, D. P. AND TSITSIKLIS, J. N. 1989. Parallel and distributed computation. Prentice-Hall.

BONALD, T. 1998. Comparison of TCP Reno and TCP Vegas via fluid approximation. In Workshop on the
Modeling of TCP. http://www.dmi .ens.fr/\%7Emistral/tcpworkshop.html.

BOUTREMANS, C. AND BOUDEC, J. Y. L. 2000. A note on the fairness of tcp vegas. In Proceedings of
International Zurich Seminar on Broadband Communications. 163-170.

BRAKMO, L. S. AND PETERSON, L. L. 1995. TCP Vegas: end to end congestion avoidance on a global Internet.
IEEE Journal on Selected Areas in Communications 13, 8 (October), 1465-80. http://cs.princeton.
edu/nsg/papers/jsac-vegas.ps.

DE VECIANA, G., LEE, T.-J., AND KONSTANTOPOULOS, T. 2001. Stability and performance analysis of
networks supporting elastic services. IEEE/ACM Transactions on Networking 9, 1 (February), 2-14.

FLoyD, S. 1991. Connections with multiple congested gateways in packet—switched networks, Part I: one-way
traffic. Computer Communications Review 21, 5 (October).

FLoyD, S. 1994. TCP and Explicit Congestion Notification. ACM Computer Communication Review 24, 5
(October).

FLOYD, S. AND JACOBSON, V. 1993. Random early detection gateways for congestion avoidance. IEEE/ACM
Trans. on Networking 1, 4 (August), 397-413. ftp://ftp.ee.lbl.gov/papers/early.ps.gz.
HENGARTNER, U., BOLLIGER, J., AND GROSS, T. 2000. TCP Vegas revisited. In Proceedings of IEEE Infocom.
JACOBSON, V. 1988. Congestion avoidance and control. Proceedings of SIGCOMM’88, ACM. An updated

version is available via ftp://ftp.ee.lbl _gov/papers/congavoid.ps.Z.

KAR, K., SARKAR, S., AND TASSIULAS, L. 2001. Optimization based rate control for multirate multicast
sessions. In Proceedings of IEEE Infocom.

KELLY, F. P. 1997. Charging and rate control for elastic traffic. European Transactions on Telecommunications 8,
33-37. http://www.statslab.cam.ac.uk/"frank/elastic.html.

KELLY, F. P. 1999. Mathematical modelling of the Internet. In Proc. 4th International Congress on Industrial
and Applied Mathematics. http://www.statslab.cam.ac.uk/~frank/mmi .html.

KELLY, F. P., MAULLOO, A., AND TAN, D. 1998. Rate control for communication networks: Shadow prices,
proportional fairness and stability. Journal of Operations Research Society 49, 3 (March), 237-252.

KUNNIYUR, S. AND SRIKANT, R. 2000. End-to—end congestion control schemes: utility functions, random
losses and ECN marks. In Proceedings of IEEE Infocom. http://www. ieee-infocom.org/2000/
papers/401.ps.

LA, R. AND ANANTHARAM, V. 2000. Charge-sensitive TCP and rate control in the Internet. In Proceedings of
IEEE Infocom. http://www. ieee-infocom.org/2000/papers/401._ps.

LAKSHMAN, T. V. AND MADHOW, U. 1997. The performance of TCP/IP for networks with high bandwidth—
delay products and random loss. IEEE/ACM Transactions on Networking 5, 3 (June), 336-350. http:
//www . ece .ucsb.edu/Faculty/Madhow/Publications/ton97.ps.

Low, S. H. 2000. A duality model of TCP flow controls. In Proceedings of ITC Specialist Seminar on IP Traffic
Measurement, Modeling and Management. http://netlab.caltech.edu.

Low, S. H. AND LAPSLEY, D. E. 1999. Optimization flow control, I: basic algorithm and convergence.
IEEE/ACM Transactions on Networking 7, 6 (December), 861-874. http://netlab.caltech.edu.

Low, S. H., PAGANINI, F., AND DOYLE, J. C. 2002. Internet congestion control. IEEE Control Systems
Magazine.

Journal of the ACM, Vol. 49, No. 2, March 2002.

Understanding Vegas: a duality model . 235

Low, S. H., PETERSON, L., AND WANG, L. 2001. Understanding Vegas: a duality model. In Proceedings of
ACM Sigmetrics. http://netlab.caltech.edu/pub.html.

MATHIS, M., SEMKE, J., MAHDAVI, J., AND OTT, T. 1997. The macroscopic behavior of the TCP conges-
tion avoidance algorithm. ACM Computer Communication Review 27, 3 (July). http://www.psc.edu/
networking/papers/model_ccr97.ps.

Mo, J., LA, R., ANANTHARAM, V., AND WALRAND, J. 1999. Analysis and comparison of TCP Reno and
Vegas. In Proceedings of IEEE Infocom.

Mo, J. AND WALRAND, J. 2000. Fair end-to-end window-based congestion control. IEEE/ACM Transactions
on Networking 8, 5 (October), 556-567.

PAGANINI, F., DOYLE, J. C., AND Low, S. H. 2001. Scalable laws for stable network congestion control. In
Proceedings of Conference on Decision and Control. http://www.ee.ucla.edu/ paganini.

PAXSON, V. 1996. End-to-end routing behavior in the Internet. In Proceedings of SIGCOMM’96, ACM.

PETERSON, L. L. AND DAVIE, B. S. 2000. Computer Networks: A Systems Approach, 2nd ed. Morgan Kauf-
mann.

RAMAKRISHNAN, K. K. AND FLOYD, S. 1999. A Proposal to add Explicit Congestion Notification (ECN) to
IP. RFC 2481.

RAMAKRISHNAN, K. K. AND JAIN, R. 1990. A binary feedback scheme for congestion avoidance in computer
networks. ACM Transactions on Computer Systems 8, 2 (May), 158-181.

STEVENS, W. 1999. TCP/IP illustrated: the protocols. Vol. 1. Addison—Wesley. 15th printing.

Received

Journal of the ACM, Vol. 49, No. 2, March 2002.

