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Preface

This book is tailored for students and researchers who are interested in both power systems and ana-
lytical tools for understanding their structural properties. It prepares students for research by equipping
them with, not only power system knowledge, but also analytical techniques and a way of thinking.

It complements several excellent texts on power system analysis, e.g., [1, 2, 3, 4, 5, 6, 7]. In terms
of topic, it develops from scratch basic power system concepts, single-phase and unbalanced three-phase
models, and theory and algorithms for power flow optimization. It focuses on steady state modeling
and analysis, as opposed to dynamics or electricity markets. In terms of style, it focuses on analytical
tools and structural properties. It does not focus on computational issues or specific applications such as
state estimation, unit commitment, economic dispatch, or voltage control, but uses these applications to
illustrate models and techniques that are widely applicable.

Some notes.

1. A key feature of this book is its extensive and systematic treatment of unbalanced three-phase mod-
eling and power flow analysis. A three-phase network consists of three-phase devices connected by
three-phase lines and transformers. Motivated by emerging applications in secondary distribution
circuits, our perspective is that most controllable devices are the single-phase devices that make up
three-phase devices in Y or D configurations. It is therefore important to model carefully the internal
voltages, currents, and powers across these single-phase devices and how they determine the termi-
nal voltages, currents, and powers that are externally observable and that interact over the network.
This is developed in Part III of the book and used to formulate three-phase optimal power prob-
lems in Part II (Chapters 9.1 and 9.2). It will become clear that the difference between single-phase
and three-phase systems mainly lies in the device models, not in network equations that relate the
terminal variables.
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Chapter 0

Introduction

0.1 How to use this book

This book can be used as a research reference. It can also be used as a textbook and we suggest possible
courses that can be constructed from this book.

Power System Analysis I. A 13-week course for senior undergraduate and beginning graduate students
that develops from scratch single-phase network models, formulates optimal power flow problems, and
uses them to model power system operations. It does not require prior power system knowledge or opti-
mization theory, but does require linear algebra and interest in or exposure to mathematical analysis. It
covers

1. Basic concepts: Kirchhoff’s laws, phasors, device models, three-phase systems, complex power
(Chapter 1).

2. Component models: transmission line (Chapter 2), transformers (Chapters 3, possibly skipping
Chapters 3.1.2, 3.1.3 and 3.1.5).

3. Network models: bus injection models (Chapter 4, possibly skipping Chapters 4.4.4 and 4.5), branch
flow models (Chapter 5, possibly skipping Chapters 5.1.2 and 5.3).

4. Example applications (Chapter 6).

5. Convex optimization: convex program (Chapters 7.1), optimality conditions and convex programs
(Chapters 7.3.1 – 7.3.4 and Chapters 7.4.1 – 7.4.3), optimization algorithms (Chapters 7.5.1 and
7.5.2), convergence analysis (Chapters 7.6.1 and 7.6.3).

6. Power system operations: unit commitment and dispatch, frequency control, economic dispatch and
locational marginal price (Chapter 8)

7. Optimal power flow: OPF in bus injection model and branch flow model (Chapter 9.1 and 9.2).

1
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Power System Analysis II. A 13-week graduate course that focuses on analytical tools for and struc-
tural properties of power systems. It prepares students for research in power systems. It assumes prior
knowledge of single-phase power networks and requires maturity in mathematical analysis. The following
coverage does not assume Power System Analysis I as a prerequisite and is self-contained at the expense
of some overlap:

1. Review: Single-phase power networks (topics from Chapters 4 and 5 depending on students’ prior
knowledge).

2. Convex optimization: convex analysis, optimality conditions, special convex programs, optimization
algorithms, convergence analysis (Chapters 7).

3. Power system operations: unit commitment and dispatch, frequency control, economic dispatch and
locational marginal price (Chapter 8).

4. Optimal power flow: OPF in BIM and BFM, NP-hardness, global optimality, techniques for scala-
bility (Chapter 9).

5. Semidefinite relaxations of OPF: SDP, chordal, SOCP relaxations of OPF, exactness conditions
(Chapters 10 and 11).

6. Nonsmooth convex optimization: normal cones and feasible sets, CPC functions and subgradients,
optimality conditions, special convex programs (Chapter 12).

7. Stochastic OPF: robust optimization, chance constrained optimization, convex scenario program,
two-stage optimization with recourse (Chapter 13).

Unbalance Three-phase Power System. A 10-week course that focuses on the analysis of unbalanced
three-phase networks. It develops rigorous from scratch three-phase component and network models,
three-phase optimal power flow and its semidefinite relaxations. It assumes prior knowledge of single-
phase power networks and basic optimization theory. The following coverage is self-contained at the
expense of some overlap with Power System Analysis I:

1. Review: Single-phase power networks (topics from Chapters 4 and 5 depending on students’ prior
knowledge).

2. Component models: mathematical properties of three-phase systems, three-phase devices in Y and
D configurations, three-phase transmission or distribution lines, three-phase transformers (Chapters
15 and 16).

3. Bus injection model: network model, three-phase analysis, balanced network (Chapter 17, possibly
skipping Chapter 17.4).

4. Branch flow model: network model, equivalence, examples, linear model (Chapter 18, possibly
skipping Chapter 18.4).

5. Review: basic convex optimization theory and algorithms (topics from Chapters 7 depending on
students’ prior knowledge).
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6. Power flow optimization: three-phase OPF, semidefinite relaxation, example applications (Chapter
19).

0.2 Overview

The book consists of three parts and an appendix.

Part I: Single-phase networks

1. Chapter 1 introduces basic concepts in modeling the steady-state behavior of an alternating current
(AC) power system, including circuit models, Kirchhoff’s laws, phasor representation, balanced
three-phase systems, per-phase equivalent, and complex power.

2. Chapter 2 develops circuit models for the terminal behavior of a balanced three-phase transmission
line that map the voltage and current at one end of the line to those at the other end.

3. Chapter 3 develops models for balanced three-phase transformers and their per-phase equivalent
and analysis techniques for circuits containing transformers, including per-unit normalization.

4. Chapter 4 uses the component models of previous chapters to construct a class of network models
we call the bus injection model (BIM). It introduces the network admittance matrix Y that relates
linearly bus voltages and current injections, its Kron reduction, and their analytical properties. It
also introduces power flow equations that relate nonlinearly bus voltages and power injections and
presents iterative algorithms for solving these equations. Finally it introduces a linearized power
flow model called the DC power flow model that is widely used for electricity market operations.

5. Chapter 5 introduces the branch flow model (BFM) for radial networks with a tree topology and
proves its equivalence to the bus injection model. It presents a fast iterative algorithm called the
backward forward sweep for solving power flow equations for radial networks. Finally it introduces
a linearized model that admits an explicit solution and bounds nonlinear power flow solutions.

6. Chapter 6 illustrates these network models through several applications.

Part II: Power flow optimization

1. Chapter 7 formulates convex optimization problems and introduces some of the most useful tools
for convex analysis. We develop a general theory to characterize optimal solutions and provide
sufficient conditions for their existence, and then apply the general theory to special classes of
convex optimization problems widely used in applications. We describe iterative algorithms for
solving convex optimization problems and basic techniques for analyzing their convergence.

2. Chapter 8 overviews three control mechanisms at different timescales, unit commitment, optimal
dispatch and frequency control, that balance power supply and demand. It also studies economic
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dispatch and locational marginal prices for electricity markets using the DC power flow model. It
motivates optimal power flow problems that are studied in detail in the remaining chapters of Part
II.

3. Chapter 9 formulates optimal power flow (OPF) problems that underly numerous power system
applications, in both the bus injection model and the branch flow model. It proves that OPF is NP-
hard but a subclass characterized by a Lyapunov-like condition can be solved efficiently to global
optimality. Finally it describes common techniques for scaling OPF solutions.

4. Chapter 10 studies the semidefinite relaxation of the nonconvex OPF problem formulated in BIM
as a quadratically constrained quadratically program. It develops the concept of partial matrices and
their positive semidefinite rank-1 completion to exploit the sparsity of large networks. Finally it
proves two sufficient conditions for exact second-order cone (SOCP) relaxations of OPF on single-
phase radial networks. Convex relaxation complements linear approximation and local iterative
algorithms as one of the main tools for dealing with the nonconvexity of OPF.

5. Chapter 11 studies the semidefinite relaxation of OPF in BFM for radial networks. It formulates
SOCP relaxation and proves its equivalence to the SOCP relaxation in BIM. Finally it proves two
sufficient conditions for exact SOCP relaxation for single-phase radial networks.

6. Chapter 12 generalizes the structural results of Chapter 7.3 to a convex but nonsmooth setting,
motivated by stochastic OPF studied in Chapter 13. It shows that convexity is fundamental, but
not smoothness, and, once the basic framework is established, the more abstract approach here that
relies only on convexity is both more natural and simpler conceptually.

7. Chapter 13 studies basic methods for stochastic optimization, robust optimization, chance con-
strained optimization, scenario programming, and two-stage optimization with recourse. A focus is
on problems (e.g., two-stage optimization) that are convex, but often nonsmooth, to which optimal-
ity conditions studied in Chapter 12 are applicable and computation algorithms studied in Chapter 7
can be adapted by replacing gradients with subgradients.

8. Chapter 14 illustrates concepts in previous chapters through several applications.

Part III: Unbalanced three-phase networks

1. Chapter 15 studies the mathematical properties that underly the behavior of unbalanced three-phase
systems and derive models of three-phase voltage sources, current sources, power sources, and
impedances in Y and D configurations.

2. Chapter 16 derives models of three-phase lines and transformers.

3. Chapter 17 uses the component models of Chapters 15 and 16 to extend the bus injection model to
the unbalanced three-phase setting. It also introduces the sequence coordinate in which sequence
networks become decoupled when there is a certain symmetry in the original phase coordinate.

4. Chapter 18 extends the branch flow model to the unbalanced three-phase setting.

5. Chapter 19 extends OPF and its semidefinite relaxations (studied in Chapters 9, 10, 11) from single-
phase to unbalanced three-phase networks.
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Part IV: Mathematical preliminaries Chapter 20 collects mathematical preliminaries used in the rest
of the book.

0.3 Notation

Let C denote the set of complex numbers, R the set of real numbers, R+ the set of nonnegative real
numbers, R� the set of nonpositive real numbers, N the set of integers and N+ the set of positive integers.
We use i to denote

p
�1. For a 2 C, Re a and Im a denote its real and imaginary parts respectively, and

ā or aH denotes its complex conjugate. For any set A ✓ C
n, convA denotes the convex hull of A. For

a 2 R, [a]+ := max{a,0}. For a,b 2 C, a b means Re a Re b and Im a Im b. We sometimes abuse
notation to use the same symbol a to denote either a complex number Rea + i Ima or a size 2 real vector
a =(Rea, Ima) depending on the context. The empty set is denoted /0.

In general scalar or vector variables are in small letters, e.g. u,w,x,y,z. Most power system quantities
however are in capital letters, e.g. S jk,Pjk,Q jk, I j,Vj. Unless otherwise specified, a vector is a column
vector and is written interchangeably as

V =

2

4
Va
Vb
Vc

3

5 or V = (Va,Vb,Vc)

A variable without a subscript usually denotes a vector with appropriate components, e.g. s := (s j, j =
0, . . . ,n), S := (S jk,( j,k) 2 E). For a vector a = (a1, . . . ,ak), a�i denotes (a1, . . . ,ai�1,ai+1,ak) without
the ai entry. For a subset A ( {1, . . . ,k}, a�A := (ai, i 62 A). For vectors x,y, x y denotes componentwise
inequality. We freely refer to x as singular if we mean the vector x or as plural if we mean its components
x1, . . . ,xn. For example we may refer to l ⇤ as a locational marginal price or locational marginal prices.

Matrices are usually in capital letters. Let M,N be index sets with m := |M|, n := |N|. An m⇥ n
matrix with ai j 2 C as its (i, j)-th entry for i 2M, j 2 N, can be written as A = (ai j, i 2M, j 2 N). Given
k := min{m,n} and scalars a1, . . . ,ak, diag(a1, . . . ,ak) is a k⇥ k diagonal matrix with ai on its diagonal.
Given an m⇥n matrix A, diag(A) := diag(A11, . . . ,Akk). We use Ā to denote the componentwise complex
conjugate of a matrix A. The transpose of a matrix A is denoted by AT and its Hermitian (or conjugate)
transpose by AH := ĀT. If a is a scalar then aH = ā is its complex conjugate. We use interchangeably
(ys)H and ysH. A matrix A is Hermitian if A = AH. A complex matrix A is positive semidefinite (or psd),
denoted by A⌫ 0, if A is Hermitian and xHAx� 0 for all x 2 C

n. A real matrix A is positive semidefinite
(or psd), denoted by A ⌫ 0, if A is symmtric and xTAx � 0 for all x 2 R

n. In particular if A ⌫ 0 then by
definition A = AH if A is complex and A = AT if A is real. 1 A is negative semidefinite (nsd) if �A is psd.
For matrices A,B, A⌫ B means A�B is psd. Let Sn be the set of all n⇥n Hermitian matrices, Sn

+ the set
of n⇥n psd matrices, and S

n
� the set of n⇥n nsd matrices.

A graph G = (N,E) consists of a set N of nodes and a set E ✓ N⇥N of edges. If G is undirected then
( j,k)2 E if and only if (k, j)2 E. If G is directed then ( j,k)2 E only if (k, j) 62 E; in this case we will use

1As explained in Definition 20.2 and Remark 20.1 of Chapter 20.1.5, for a complex matrix, xHAx� 0 for all x 2Cn implies
that A is Hermitian, so including Hermitian in the definition of psd is redundant and only for uniformity, because for a real
matrix, xTAx� 0 for all x 2 R

n does not imply A is symmetric.
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( j,k) and j! k interchangeably to denote an edge pointing from j to k. Therefore, for an undirected graph,
Â( j,k)2E x jk includes both x jk and xk j for each edge ( j,k) 2 E, whereas, for a directed graph, Â( j,k)2E x jk
includes a single term x jk for each directed edge j! k. Sometimes, we write Â( j,k)2E

�
x jk + xk j

�
instead

of Â( j,k)2E x jk to emphasize the undirected nature of the graph. By “ j ⇠ k” we mean an edge ( j,k) if
G is undirected and either j! k or k! j if G is directed. Sometimes we write j 2 G or ( j,k) 2 G to
mean j 2 N or ( j,k) 2 E respectively. A path p := ( j1, . . . , jK) is an ordered set of nodes jk 2 N so that
( jk, jk+1) 2 E for k = 1, . . . ,K�1. In that case we refer to a link or a node in the cycle by ( jk, jk+1) 2 p
or jk 2 p respectively. A cycle is a path where jK = j1. A simple cycle is a cycle that visits every node
at most once. Unless specified otherwise, we refer to j interchangeably as a node or a bus and j ⇠ k
interchangeably as a link, an edge, or a line.

Given a function f : Rn! R
m, ∂ f

∂x is the m⇥n matrix whose ( j,k) entry is


∂ f
∂x

�

jk
:=

∂ f j

∂xk
(x), j = 1, . . . ,m, k = 1, . . . ,n

and — f (x) :=
⇣

∂ f
∂x

⌘T
is its transpose. In particular if m = 1 then ∂ f

∂x is a row vector and — f (x) is a column
vector.

We use e to denote the constant limn(1 + 1/n)n and e j 2 {0,1}n the unit vector of appropriate size n
with a single 1 in the jth position. We use ln = loge to denote the natural log. When there is no confusion
we may also use log to denote ln. We overload notation and use the same letter to denote different things
depending on the context; e.g., I may mean current or the identity matrix, G may mean a graph or the
real part of an admittance matrix Y = G + iB, and x may mean a generic variable or the imaginary part
(reactance) of an impedance z = r + ix.

For the study of three-phase power systems, both balanced and unbalanced, ea := (1,0,0), eb :=
(0,1,0), ec := (0,0,1), and ef

j 2 {0,1}3n is the unit vector with a single 1 in the jf th position. The
vector 1 usually denotes the vector of all 1s of size 3 and I usually denotes the identity matrix of size 3;
they sometimes denote the vector of all 1s and the identity matrix respectively of other sizes depending on
context. We often use a := e�i2p/3. The standard balanced vector in positive sequence is a+ := (1,a,a2)
and that in negative sequence is a� := (1,a2,a). The following conversion matrices are key to the under-
standing of three-phase power systems:

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

Its properties are explained in Theorems 1.2 and 15.2. The similarity transformation to obtain symmetrical
components due to Fortescue is defined by the eigenvectors (1,a+,a�) of G.

0.4 Units

The unit of a quantity is specified usually the first time the quantity is introduced. Commonly used units
in this book are collected here for convenience. We often overload notations so that the same symbol
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may refer to different quantities depending on the context, e.g., I may denote a vector of current phasors
I = (Ii, i = 1, . . . ,n) or the identity matrix of appropriate size, V may denote a vector of voltage phasors
V = (Vi, i = 1, . . . ,n) or their unit volt.

1. voltage v(t),V : volt (V).

2. current i(t), I: ampere (A).

3. real power P : watt (W); reactive power Q : volt-ampere reactive (var); complex power S := P+ iQ,
apparent power |S|: volt-ampere (VA).

4. resistance r, reactance x = iwl or 1/iwc, impedance z := r + ix: ohm (W).

5. conductance g := r/(r2 + x2), susceptance b := x/(r2 + x2), admittance y := z�1 =: g+ ib: Siemen
(S) or mho (W�1).

6. inductance l: henry (H); magnetic flux linkage l (t) = li(t) : weber-turn (Wb-turn).

7. capacitance c: farad (F); electric charge q(t) = cv(t) : coulomb (C)

We will sometimes overload notation, e.g., l is used sometimes to denote inductance, sometimes in-
ductance per unit length, some times a line index. The meaning should be clear from the context.



Part I

Single-phase networks

8



Chapter 1

Basic concepts

This chapter introduces basic concepts in modeling the steady-state behavior of an alternating current (AC)
power system where voltages and currents are sinusoidal functions of time. For us, steady state means that
the frequencies of voltages and currents in the entire network are at their nominal value (e.g., 60 Hz in
the US, 50 Hz in China and Europe). In Chapter 1.1 we describe phasor representation of sinusoidal
voltages and currents, and introduce circuit models of devices that make up a single-phase system. In
Chapter 1.2 we explain balanced three-phase systems and how to simplify their analysis using per-phase
models. In Chapter 1.3 we define the concept of complex power for single-phase and three-phase systems,
and illustrate through an example that a three-phase system saves power and conductors compared with a
single-phase system serving the same load.

1.1 Single-phase systems

An AC system consists of generators and loads connected by transmission or distribution lines and trans-
formers. Their behavior can be described using quantities such as voltages, currents, and power which
are sinusoidal functions of time. These quantities obey laws of physics. For our purposes they are the
Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), and Ohm’s law. These laws allow us to
analyze or simulate system behavior in the time domain. For steady-state behavior it is often easier to
transform these quantities to the phasor domain, apply the corresponding physical laws in the phasor do-
main to analyze the steady state of a power network, and then translate the results back to the time domain,
as illustrated in Figure 1.1.

In this section we define voltage and current phasors, present simple models of generators, loads, and
lines using voltage sources, current sources, and impedances. We also summarize KCL, KVL and Ohm’s
law in the phasor domain. They can be used to analyze a network of these circuit elements.

9
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physical system
(v(t), i(t), p(t))

analysis/sim
(time domain)

results
(time domain)

physical laws
(time domain

KC/VL, Ohm’s)

phasor
representation

(V, L, S )

analysis/sim
(phasor domain)

results
(phasor domain)

physical laws
(phasor domain
KC/VL, Ohm’s)

Figure 1.1: Phasor representation and analysis.

1.1.1 Voltage and current phasors

The quantities of interest, voltage v(t), current i(t), and power p(t), are physical and can be empirically
measured. The potential energy gained in moving a unit of charge from point k to point j is called the
voltage, or electric potential difference, between j and k, denoted by v jk. Its SI unit (International Systems
of Units) is volt (V ), or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for
all voltages in the system under study. In that case we refer to the voltage at point j with respect to the
reference point simply as the voltage at j and denote v j0 simply by v j. Then the voltage between two
points j and k is v jk := v j� vk and represents the energy required to move a unit of charge from point k
to point j. The flow rate of electric charge through a point is called the current through that point. Its SI
unit is ampere (A), or equivalently, coulomb/second. The rate of energy transfer when a unit of charge is
moved through an electric potential difference (voltage) between two points is called electric power. Its
SI unit is watt (W ), or equivalently, joule/second. It is equal to the product of voltage and current between
these two points.

A sinusoidal voltage function is

v(t) = Vmax cos(wt +qV ) = Re
n

VmaxeiqV · eiwt
o

where Vmax is the amplitude (i.e., maximum magnitude) of the voltage v(t), w is the steady-state frequency
in radian, and qV is the phase angle. In steady state, w is assumed fixed systemwide, and hence a voltage
function is fully specified by two parameters (Vmax,qV ). This motivates the definition of voltage phasor

V :=
Vmaxp

2
eiqV volt (V)

such that

v(t) = Re
⇣p

2|V | · ei(wt+qV )
⌘

(1.1)

The period of v(t) is T := 2p/w . The magnitude of the voltage phasor

|V | :=
Vmaxp

2
is equal to the root-mean-square (RMS) value of the voltage, defined as

s
1
T

Z
T

0
v2(t)dt =

s
1
T

Z
T

0
V 2

max cos2(wt +qV )dt =
Vmaxp

2
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where we have used cos2 f = (1+ cos2f)/2.

Similarly let the sinusoidal current function be

i(t) = Imax cos(wt +qI) ampere (A)

with the corresponding current phasor

I :=
Imaxp

2
eiqI

such that

i(t) = Re
⇣p

2|I| · ei(wt+qI)
⌘

(1.2)

The RMS value of the current is |I| := Imax/
p

2.

1.1.2 Single-phase devices

Basic building blocks of an AC power system are generators that generate power, loads that consume
power, transmission and distribution lines, and transformers that connect generators and loads. These
devices can be modeled by circuit elements such as impedances, voltage sources, current sources, and
(later) power sources, as we now explain.

Impedance z. The voltage and current across a resistor r in ohm (W), an ideal inductor l in henry (H), or
an ideal capacitor c in farad (F) satisfy a linear relation, both in the time domain and in the phasor domain.
We now derive Ohm’s law in the phasor domain from its representation in the time domain.

Consider the circuit in Figure 1.2. The voltage v(t) across the resistor r and the current i(t) through it

i(t)

v(t) r , l ,c

Figure 1.2: In phasor domain the voltage V and current I across a linear circuit element z are related by
V = zI where the impedances for resistor r, inductor l, capacitor c are z = r, iwl,(iwc)�1 respectively.

are related by Ohm’s law:

v(t) = r i(t)

Using (1.1)(1.2), this is equivalent to:

Re
n

V ·
p

2eiwt
o

= Re
n

r I ·
p

2eiwt
o
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Hence Ohm’s law in the phasor domain for a resistor is:

V = r I

The current across a resistor is called in phase with the voltage.

An ideal inductor l is characterized by

v(t) = l
di(t)

dt

Substituting (1.1) and

di(t)
dt

= �w Imax sin(wt +qI) = w Imax cos(wt +qI +p/2)

we have

Re
n

V ·
p

2eiwt
o

= Re
n

iw l I ·
p

2eiwt
o

or in the phasor domain:

V = (iw l) I

The current across an inductor is said to lag the voltage by p/2 radian.

Similarly an ideal capacitor c is characterized by

i(t) = c
dv(t)

dt

Substituting (1.2) and

dv(t)
d(t)

= �w Vmax sin(wt +qV ) = w Vmax cos(wt +qV +p/2)

we have

Re
n

I ·
p

2eiwt
o

= Re
n

iw cV ·
p

2eiwt
o

or in the phasor domain:

V =
1

iw c
I

The current across a capacitor is said to lead the voltage by p/2 radian.

In summary we define the impedances of these elements, a resistor r, an ideal inductor l, and an ideal
capacitor c in the phasor domain as respectively:

zr := r, zl := iwl, zc :=
1

iwc



Draft: PSA December 13, 2024 13

Instead of impedance z, sometimes it is convenient to use its inverse, called the admittance y := z�1. The
voltage V across an impedance z (or admittance y) and the current I through it are related in the phasor
domain by

V = zI and I = yV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor r and an inductor l in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = l d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = ri(t) + l
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get
p

2V eiwt = r
p

2I eiwt + l
⇣

iw
p

2I eiwt
⌘

V = (r + iwl) I

Hence the resistor and inductor in series can be modeled in the phasor domain by an impedance z :=
r + iwl.

Voltage source (E,z). In the phasor domain, a voltage source is a circuit model with a constant internal
voltage E in series with an impedance z, as shown in Figure 1.3(a). Its external behavior is described by

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3: A voltage source (E,z) and a current source (J,y). An ideal voltage source has z = 0 and an
ideal current source has y = 0.

the relation between its terminal voltage and terminal (V, I):

V = E � zI

Hence the open-circuit (terminal) voltage V equals the internal voltage E. We often adopt an ideal voltage
source with z = 0. In this case V = E.



14 Draft: PSA December 13, 2024

Current source (J,y). In the phasor domain, a current source is a circuit model with a constant internal
current J in parallel with an admittance y, as shown in Figure 1.3(b). Its external behavior is described by
the relation between its terminal voltage and current (V, I):

I = J � yV

Hence the closed-circuit (terminal) current I equals the internal current J. We often adopt an ideal current
source with y = 0. In this case I = J.

Remark 1.1. 1. A nonideal voltage source (E,z) and a current source (J,y) are equivalent, i.e., have
the same terminal voltage and current relationship if their parameters satisfy

J =
E
z

(closed-circuit equivalent)

y := z�1 (open-circuit equivalent)

2. Ideal voltage or current sources are reasonable models as their series impedances or shunt admit-
tances can be combined with the series impedance and shunt admittances of a transmission or dis-
tribution line to which they are connected, as we will see in Chapter 2. We will therefore often use
ideal voltage and current sources in this book with series series impedances and shunt admittances.

Single-phase devices. Basic devices in a power system are generators, loads, transmission and distri-
bution lines, transformers, and other control devices. A generator can be modeled by a voltage source or
current source. A load can be modeled by an impedance (or admittance), a voltage source, or a current
source. A transmission or distribution line can be modeled by a series impedance and a shunt admittance
at each end of the line; the details are described in Chapter 2. A transformer can be modeled by a se-
ries impedance and a shunt admittance followed by voltage and current gains; the details are described
in Chapter 3. We will introduce in Chapter 1.3 the concept of complex power. This leads to a device
model that we will call a power source that generates or draws a constant power. These are summarized in
Table 1.1. They are abstract models of physical devices. For relation to a common load model, called ZIP,

Device Circuit model
Generator Voltage source, current source, power source
Load Impedance, voltage source, current source, power source
Line Impedance (Chapter 2)
Transformer Impedance, voltage/current gain (Chapter 3)

Table 1.1: Circuit elements commonly used for modeling generators, loads, lines, and transformers.

that describes how power consumed by a load depends on the voltage magnitude |V | across the load, see
Exercise 1.1. This book develops techniques for analyzing power system models constructed from these
circuit elements.
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1.1.3 KVL, KCL, Ohm’s Law, Tellegen’s theorem

Consider a circuit consisting of an interconnection of resistors, inductors, capacitors, and voltage and
current sources. An ideal voltage source between two points enforces a given voltage between these two
points. An ideal current source between two points enforces a given current between them. We now
describe Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), Ohm’s law for a general circuit
and derive a result called Tellegen’s theorem.

We represent a circuit by a connected directed graph Ĝ := (N̂, Ê) with an arbitrary orientation where
N̂ is a set of nodes and Ê ✓ N̂⇥ N̂ is a set of links. We abuse notation and use N̂ to denote both the set
of nodes and the number of nodes in N̂; the meaning should be clear from the context. We allow multiple
links between two nodes j and k. A link l that points from node j to node k is represented by l = ( j,k) or
l = j! k. Multiple links l1, . . . , lk between nodes j and k may have different orientations, e.g., l1 = j! k
and l2 = k! j. There are two variables associated with each link l = ( j,k) between nodes j and k. The
voltage across link l is denoted by Ul in the direction of l and the branch current over link l from j to k is
denoted by Jl .

A link l represents either an impedance, a voltage source, or a current source. If link l represents an
impedance then its value zl is given and the voltage Ul and branch current Jl across link l satisfies Ul = zlJl
(Ohm’s law). If link l represents a voltage source then Ul = ul is given, and if it represents a current source
then Jl = jl is given. These notations are illustrated in Figure 1.4a.

zl1

zl3 zl4

zl2

Jl4

Jl2

Jl6 = – j6

Jl1
Jl5 Jl3

Ul3Ul5 = u5 Ul4 Ul6

Ul1 Ul2
1 2

4

3

(a) Circuit












































































































(b) Incidence matrix

Figure 1.4: A circuit represented as a directed graph where each link l is either an impedance zl , a voltage
source Ul , or a current source Jl . The voltage source Ul5 = u5 and current source Jl6 = � j6 are given. Its
incidence matrix Ĉ is partitioned into Ĉ1 corresponding to the impedances, Ĉ2 corresponding to the voltage
source, and Ĉ3 corresponding to the current source.

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero:

� Â
i:i! j2Ê

Ji j + Â
k: j!k2Ê

J jk = 0 (1.3a)

For the example in Figure 1.4 this means �Jl1 + Jl2 + Jl3 + Jl4 = 0 at node 2. Kirchhoff’s voltage law
(KVL) states that voltage drops around any cycle c sum to zero. Consider a cycle c in the graph with an
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arbitrary orientation, say, clockwise. A link l in the cycle that is in the same direction as c is denoted by
l 2 c and a link l that is in the opposite direction to c is denoted by �l 2 c. Then KVL states that the
voltage drops around any cycle c sum to zero:

Â
l2c

Ul � Â
�l2c

Ul = 0 (1.3b)

For the cycle indicated in Figure 1.4(a) we have Ul1 +Ul3�Ul5 = 0.

We can represent (1.3) compactly in vector notation. Let U :=
�
Ul, l 2 Ê

�
and J :=

�
Jl, l 2 Ê

�
denote

the vectors of voltages and currents respectively across these lines. Let Ĉ 2 {�1,0,1}|N̂|⇥|Ê| be the node-
by-link incidence matrix defined by:

Ĉ jl :=

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i

0 otherwise
, j 2 N̂, l 2 Ê

See Figure 1.4 (properties of general incidence matrices are summarized in Appendix 20.2). Then Kirch-
hoff’s current law (1.3a) states that

KCL: Ĉ J = 0 (1.4a)

Kirchhoff’s voltage law is equivalent to the condition that there exist nodal voltages V 2C|N̂| (with respect
to the common reference point node 0) such that

KVL: U = ĈTV (1.4b)

i.e., given line voltages U , there must exist nodal voltages such that Ul = Vj�Vk where l = j! k, from
which (1.3b) follows. This seems intuitive and can be proved mathematically using concepts in algebraic
graph theory (Exercise 1.2). Without loss of generality we use node N̂ as the common reference point for
all voltages, i.e., we have by definition

VN̂ := 0 (1.4c)

Circuit analysis. Consider a circuit represented by an incidence matrix Ĉ. The |N̂|⇥ |Ê| incidence
matrix Ĉ is of rank |N̂|� 1 since Ĝ is connected, with span(1) as its null space (see Chapter 20.2 for
more details). Therefore (1.4) consists of |N̂|+ |Ê| linearly independent complex equations in |N̂|+ 2|Ê|
complex variables (V,U,J). To obtain another |Ê| linearly independent equations we note that across every
link l is exactly one of the following devices:

1. impedance with a given zl: Its behavior is described by Ohm’s law

Ul = zlJl (1.5a)

2. ideal voltage source with a given ul: Its behavior is described by

Ul = ul (1.5b)
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3. ideal current source with a given jl: Its behavior is described by

Jl = jl (1.5c)

In other words (1.4)(1.5) specify |N̂|+2|Ê| linearly independent equations in |N̂|+2|Ê| variables (V,U,J).
A circuit analysis problem is to solve (1.4)(1.5) for these variables. A sufficient condition is given in
Theorem 1.1 for the existence and uniqueness of solution. A necessary condition for the existence of a
solution is that the given voltage and current vectors (v, j) are consistent, e.g., if only current sources are
incident on a node k, then these given currents must satisfy KCL at node k, or if a set of voltage sources
form a cycle c then these given voltages must satisfy KVL on c.

The system (1.4)(1.5) of equations can be simplified, as follows. Partition the set E of links into three
disjoint sets E =: E1 [E2 [E3 where E1 is the set of impedances, E2 voltage sources, and E3 current
sources. Order the links such that the incidence matrix decomposes into submatrices Ĉ1,Ĉ2,Ĉ3 corre-
sponding to impedances, voltage sources, and current sources respectively (see Figure 1.4b):

Ĉ =:
⇥
Ĉ1 Ĉ2 Ĉ3

⇤

Partition the branch voltages U and branch currents J accordingly:

U :=

2

4
U1
u

U3

3

5 , J :=

2

4
J1
J2
j

3

5

where v and j are the given vectors of voltage and current sources respectively. Let Z := diag(zl,E1) be
the diagonal matrix whose entries are the given impedances zl . Then KCL and KVL are

Ĉ1J1 + Ĉ2J2 = �Ĉ3 j
U1 = ĈT

1 V, u = ĈT

2 V, U3 = ĈT

3 V

for some nodal voltages V . Use Ohm’s law U1 = Z J1 to eliminate U1 to obtain
2

664

0 Ĉ1 Ĉ2 0
ĈT

1 �Z 0 0
ĈT

2 0 0 0
ĈT

3 0 0 �IU3

3

775

2

664

V
J1
J2
U3

3

775 =

2

664

�Ĉ3 j
0
u
0

3

775 (1.6)

where IU3 is the identity matrix of compatible size with U3. The desired quantities (V,U3,J1,J2) are
solutions of (1.6) if they exist. Given J1, U1 is given by U1 = ZJ1.

Recall that we take without loss of generality node N̂ as the common reference point for nodal voltages
and assign VN̂ := 0. We can consider the (|N̂|�1)⇥ |Ê| reduced incidence matrix C obtained from Ĉ by
deleting the last row corresponding to the reference node N̂. The advantage of using C is that it has a full
row rank of |N̂|� 1. Let V�N̂ :=

�
Vj, j 6= N̂

�
be the vector of all non-reference nodal voltages. Similarly

partition C into C =: [C1 C2 C3]. Then (1.6) is equivalent to the following equation:
2

664

0 C1 C2 0
CT

1 �Z 0 0
CT

2 0 0 0
CT

3 0 0 �IU3

3

775

| {z }
M

2

664

V�N̂
J1
J2
U3

3

775 =

2

664

�C3 j
0
u
0

3

775 (1.7)



18 Draft: PSA December 13, 2024

The key feature of this model, compared with (1.6), is that it does not contain the reference node N̂.

Example 1.2. Consider the circuit in Figure 1.4 represented by the directed graph Ĝ = (N̂, Ê) with

N̂ := {1,2,3,4}
Ê := {l1 := 1! 2, l2 := 2! 3, l3 := 2! 4, l4 := 2! 4, l5 := 1! 4, l6 := 3! 4}

The incidence matrix Ĉ can be partitioned into submatrices

Ĉ1 :=

2

664

1 0 0 0
�1 1 1 1
0 �1 0 0
0 0 �1 �1

3

775 , Ĉ2 :=

2

664

1
0
0
�1

3

775 , Ĉ3 :=

2

664

0
0
1
�1

3

775

The reduced incidence submatrices are then

C1 :=

2

4
1 0 0 0
�1 1 1 1
0 �1 0 0

3

5 , C2 :=

2

4
1
0
0

3

5 , C3 :=

2

4
0
0
1

3

5

The equation (1.7) becomes:
2

6666666666664

0 0 0 1 0 0 0 1 0
0 0 0 �1 1 1 1 0 0
0 0 0 0 �1 0 0 0 0
1 �1 0 �zl1 0 0 0 0 0
0 1 �1 0 �zl2 0 0 0 0
0 1 0 0 0 �zl3 0 0 0
0 1 0 0 0 0 �zl4 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 �1

3

7777777777775

2

6666666666664

V1
V2
V3
Jl1
Jl2
Jl3
Jl4
Jl5
Ul6

3

7777777777775

=

2

6666666666664

0
0
j6
0
0
0
0
u5
0

3

7777777777775

We now discuss the existence and uniqueness of solution to (1.7).

Theorem 1.1. The matrix M in (1.7) is invertible if both of the following square matrices of sizes N̂� 1
and |E2| respectively are invertible:

C1Z�1CT

1 , CT

2

⇣
C1Z�1CT

1

⌘�1
C2

where E2 is the set of voltage sources.

If zl are real and positive then C1Z�1CT

1 is invertible since Z := diag(zl) is positive definite and C and
hence its submatrix C1 are both of full row rank. When Z is complex, C1Z�1CT

1 may not be invertible even
if zl are all nonzero and C1 is of full row rank (see discussions in Chapter 4.2.3). The matrix CT

2 is of full
row rank if and only if no voltage sources form a cycle in the circuit.
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The proof of Theorem 1.1 relies on the following fact. Let M 2 C
n⇥n and partition it into blocks:

M =


A B
D C

�

such that C 2 C
k⇥k, k < n, is invertible and the other submatrices are of matching dimensions. The

(n� k)⇥ (n� k) matrix M/C := A�BC�1D is called the Schur complement of block C of matrix M. If A
is invertible then the k⇥k matrix M/A := C�DA�1B is called the Schur complement of block A of matrix
M. Then M is nonsingular if and only if C and M/C are nonsingular. Also, M is nonsingular if and only if
A and M/A are nonsingular; see Theorem 20.4 in Appendix 20.1.3.

Proof of Theorem 1.1. We can interchange the second and third rows and interchange the second and third
column write (1.7) equivalently in terms of the matrix

M̃ =

2

664

0 C2 C1 0
CT

2 0 0 0
CT

1 0 �Z 0
CT

3 0 0 �IU3

3

775

The matrix M is nonsingular if and only if M̃ is. Since Z and IU3 are both nonsingular, M̃ is nonsingular if
and only if the Schur complement of diag(�Z,�IU3):

S :=


0 C2
CT

2 0

�
+


C1 0
0 0

�
Z�1 0

0 IU3

�
CT

1 0
CT

3 0

�
=


C1Z�1CT

1 C2
CT

2 0

�

is nonsingular. The Schur complement S is a square matrix of size (N̂� 1)+ |Ê2| where E2 is the set of
voltage sources. By assumption the (N̂� 1)⇥ (N̂� 1) matrix C1Z�1CT

1 is nonsingular. Therefore M is
nonsingular if and only if the Schur complement

S/
⇣

C1Z�1CT

1

⌘
:= �CT

2

⇣
C1Z�1CT

1

⌘�1
C2

of C1Z�1CT

1 is nonsingular.

Tellegen’s theorem An important result in circuit theory is Tellegen’s theorem that expresses a relation
between voltage drops across links and currents on these links. It is a simple consequence of Kirchhoff’s
laws and algebraic graph theory (see Chapter 20.2 for more details). Since the rank of the |N̂|⇥ |Ê|
incidence matrix Ĉ is |N̂|�1 assuming Ĝ is connected, the rank of the range space range

�
ĈT
�

is |N̂|�1
and the rank of the null space null(Ĉ) is |Ê|� |N̂|+ 1. Recall that the subspaces null(Ĉ) and range

�
ĈT
�

are orthogonal complements of each other and they span C
|Ê|, i.e., C|Ê| = null(Ĉ)� range

�
ĈT
�
. The

KCL and KVL (1.3a)(1.3b) say that the branch currents satisfy J 2 null(Ĉ) and the branch voltages satisfy
U 2 range

�
ĈT
�

respectively. Therefore

Tellegen’s theorem: JHU = 0

It is remarkable that this relation holds for any branch current vector J and branch voltage vector U , even
if they are from different networks as long as these networks have the same incidence matrix Ĉ.
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1.1.4 One-line diagram and equivalent circuit

A power system is often not specified as a circuit of the form we study in Chapter 1.1.3. Instead it is
usually specified by what is called a one-line diagram. A one-line diagram is equivalent to a circuit that
includes the common reference point for nodal voltages as an addition node. Each line in the one-line
diagram may represent a transmission line, a distribution line or a transformer, single or multi-phased. As
we will see below if a single-phase line has a equivalent P circuit then the line translates into three links
in the equivalent circuit. In this subsection we formally define one-line diagram and derive its equivalent
circuit. A one-line diagram can be analyzed by applying the method of Chapter 1.1.3 to its equivalent
circuit.

One-line diagram. A one-line diagram specifies a network topology and admittance parameters associ-
ated with the lines; see an example in Figure 1.5 for a three-bus network. Formally we define a one-line
diagram as a pair (G,Y) where G := (N,E) is a graph and Y :=

⇣
ys

jk,y
m
jk,y

m
k j, l = ( j,k) 2 E

⌘
is a set of

line parameters for every line l 2 E (we assume here a single-phase system and ys
jk = ys

k j). Each node
j 2N represents a bus in the power system. We will therefore refer to j as a bus or a node interchangeably.
Each link l 2 E represents a transmission or distribution line or a transformer. We will therefore refer to l
as a line, a link or a branch interchangeably. The line parameter ys

jk 2C is called the series admittance as-

sociated with line ( j,k) and
⇣

ym
jk,y

m
k j

⌘
2 C

2 is called its shunt admittances. We will see below how these
para eters determine the equivalent circuit of the line. There can be multiple lines between two buses,
though for notational simplicity we often assume there is a single line between each pair of buses in which
case a line l between buses j and k can be identified by ( j,k).

I1

I2 I3
V2

V1

V3
(a) Graph G = (N,E)












































































































(b) Line parameters Y

Figure 1.5: One-line diagram for a three-bus network (G,Y). It is not a circuit but has an equivalent P
circuit model.

Equivalent circuit. Associated with each node j are a nodal voltage Vj 2 C with respect to an arbitrary
but common reference point and a nodal current injection I j 2C. To derive the relation between the vectors
(V, I) of nodal voltages and currents specified by the one-line diagram, we first derive its equivalent circuit
and then apply the method of Chapter 1.1.3 to the circuit.

We illustrate this with a simple 2-bus network. The method and the conclusion extend directly to
general networks.
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Example 1.3 (Equivalent P circuit of a single line). Figure 1.6(a) specifies a one-line diagram (G,Y) for
a network consisting of two nodes 1 and 2 connected by a line l = (1,2). The nodal voltages and currents
are (V1, I1) and (V2, I2) respectively. The line parameter

�
ys

12,y
m
12,y

m
21
�

defines the equivalent circuit in

( ys12 , y
m
12 , y

m
21 )

V2V1

I1 I2

(a) One-line diagram (G,Y)

ys12

ym12 ym21

Jl4 Jl2

Ul2 = V2

Jl1 Jl3

Ul3Ul1 = V1 Ul4

Ul5
1

3

2

I1 I2

Jl5

(b) Equivalent P circuit

Figure 1.6: One-line diagram (G,Y) with two nodes 1,2 connected by a line l = (1,2) and its equivalent
P circuit. The nodal current injections (I1, I2) and the nodal voltages (V1,V2) in the one-line diagram
become current sources and branch voltages respectively between nodes 1,2 and the reference node 3 in
the P circuit.

Figure 1.6(b) called the P circuit of line l = (1,2). (We will explain the origin of the equivalent circuit
in Chapter 2.) The application of KVL, KCL, and Ohm’s law on the P circuit leads to a relation between
(I1, I2) and (V1,V2), as we now explain.

Let the directed graph Ĝ := (N̂, Ê) represent the P circuit where

N̂ := {1,2,3}, Ê := {l1 := 1! 3, l2 := 2! 3, l3 := 1! 3, l4 := 2! 3, l5 := 1! 2}

as shown in Figure 1.6(b). Note that the graph G of the one-line diagram has 2 nodes while the graph Ĝ
of its equivalent circuit has 3 nodes with node 3 being the voltage reference point. The key feature is that
the nodal current injections (I1, I2) and the nodal voltages (V1,V2) in the one-line diagram become current
sources and branch voltages respectively, between nodes 1, 2 and the reference node 3 in the P circuit (see
Figure 1.6b).

For each link l 2 Ê let Ul and Jl denote the voltage and current across line l in the direction of l. Let
U := (Ul, l 2 Ê) and J := (Jl, l 2 Ê). The devices on the links l 2 Ê are:

l1 : current source I1 with Jl1 =�I1, l2 : current source I3 with Jl2 =�I2

I3 : admittance ym
12 with Jl3 = ym

12Ul3 , I4 : admittance ym
21 with Jl4 = ym

21Ul4
l5 : admittance ys

12 with Jl5 = ys
12Ul5

The node-by-link incidence matrix Ĉ of the P circuit is

Ĉ :=

2

4
1 0 1 0 1
0 1 0 1 �1
�1 �1 �1 �1 0

3

5
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The KCL, KVL and Ohm’s law in terms of C,U,J for the P circuit in Figure 1.6(b) are:

KCL : ĈJ = 0 (1.8a)

KVL : 9 V := (V1,V2,V3) s.t. U = ĈTV (1.8b)
Ohm’s law : Jl2 = ym

12Ul2 , Jl4 = ym
21Ul4 , Ul5 = ys

12Ul5 (1.8c)

We will set the nodal voltage V3 implied by KVL to V3 := 0 since node 3 in N̂ is chosen to be the voltage
reference point. Using

Jl1 = �I1, Jl2 = �I2, V3 := 0

to eliminate branch variables (U,J) from the set (1.8) of equations leads to a relation between the nodal
currents I := (I1, I2) and voltages V := (V1,V2):

I1 = ys
12 (V1�V2)+ ym

12V1, I1 = ys
12 (V2�V1)+ ym

21V2

In vector form this is I = YV with

Y :=


ys
12 + ym

12 �ys
12

�ys
12 ys

12 + ym
21

�

The matrix Y is called the admittance matrix of the network, a single-line in this example. The admittance

matrix Y can be expressed using the submatrix C1line :=


1
�1

�
of Ĉ corresponding to line l5 with the series

admittance ys
12. Note that C1line includes every node in the equivalent circuit except the reference node 3,

i.e., C describes the connectivity between exactly the set of nodes in the original one-line diagram. If we

let Y s := [ys
12] and Y m :=


ym

12
ym

21

�
then

Y := C1lineY sCT

1line + diag(Y m)

For a general network specified by a one-line diagram (G = (N,E),Y) let V := (Vj, j 2 N) and I :=
(I j, j 2 N) denote the vectors of nodal voltages and current injections respectively. We interpret the line
parameter

⇣
ys

jk,y
m
jk,y

m
k j

⌘
of each line ( j,k) as defining a P circuit model for the line, as explained in

Example 1.3. This induces an equivalent circuit for the entire network that can be described by a directed
graph Ĝ = (N̂, Ê) constructed from G = (N,E), as follows. The set N̂ of nodes in the equivalent circuit is

N̂ := N[{|N|+1}

where the additional node N̂ := |N| + 1 is the reference point for all voltages, i.e., VN̂ := 0. For each
node j 2 N in the one-line diagram, there is a link l = j! N̂ in the equivalent circuit. Each such link
corresponds to a current source with branch current Jl =�I j. Denote this set of links by Ê1 ⇢ Ê.
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For each line l = ( j,k) 2 E parametrized by
⇣

ys
jk,y

m
jk,y

m
k j

⌘
in the one-line diagram, there are 3 links

�
ll1 , ll2 , ll3

�
in Ê in the equivalent circuit, corresponding to

ll1 = j! N̂ : shunt admittance ym
jk with Jl1 = ym

jk Ul1

ll2 = k! N̂ : shunt admittance ym
k j with Jl2 = ym

k j Ul2

ll3 = j! k : series admittance ys
jk with Jl3 = ys

jk Ul3

Let Ê2 denote the set of links corresponding to shunt admittances and Ê3 denote the set of links corre-
sponding to series admittances. Like links in Ê1, links in Ê2 are of the form l = j! N̂ and connect nodes
j 2 N to the reference node N̂. The remaining links in the equivalent circuit are exactly those in E of
the form l = j! k connecting two non-reference nodes j,k 2 N in the one-line diagram. If bus j 2 N
is connected to k j other buses k 2 N in the one-line diagram, then there will be k j links lk = j! N̂ in
the equivalent circuits, for k = 1, . . . ,k j, all between nodes j and N̂, representing shunt admittances ym

jk on
these lines. The set Ê is the disjoint union of these three types of links:

Ê = E [ Ê1[ Ê2

Their sizes are |Ê1| = |N|, |Ê2| = 2 |E|. See the two-bus network in Figure 1.6 and its equivalent P circuit
for an example.

Let C1line be the incidence matrix for the subgraph of the circuit consisting of non-reference nodes N
and links in E connecting them, i.e., C1line describes the connectivity between exactly the nodes in the
one-line diagram:

[C1line] jl :=

8
<

:

1 if l = j! k in E
�1 if l = i! j in E

0 otherwise
, j 2 N, l 2 E

Let Y s := diag
⇣

ys
jk, ( j,k) 2 E

⌘
denote the diagonal matrix of series admittances on the lines. Let Y m :=

diag
⇣

ym
j j, j 2 N

⌘
denote the diagonal matrix of total shunt admittances ym

j j := Âk:( j,k)2E ym
jk incident on

each bus j. Then the linear relation between nodal current injections and voltages found in Example 1.3:

I = YV (1.9a)

holds for the general network with the admittance matrix Y given by (Exercise 1.5)

Y = C1lineY sCT

1line + Y m (1.9b)

The relation (1.9) serves as a formal identification of a one-line diagram (G,Y) with an equivalent P
circuit. Moreover given (G,Y) we can directly write down the admittance matrix Y without going through
the circuit analysis conducted above. We therefore often refer to the one-line diagram itself as a circuit
model. This relation including the invertibility of Y will be studied in detail in Chapter 4.
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1.2 Three-phase systems

To motivate three-phase systems, consider the single-phase system in Figure 1.7(a) composed of three
identical circuits each consisting of a generator modeled as a voltage source in series with an impedance
zg, a forward conductor and a return conductor each modeled as an impedance zt , and a load modeled as
an impedance zl . The same loads can also be supplied by a three-phase system shown in Figure 1.7(b).
As we will illustrate in Chapter 1.3.3, such a three-phase system needs half as much the conductor and

zg

zt

zt

zl

zg

zt

zt

zl

zg

zt

zt

zl

(a) Single-phase system

zl

zl zl

zg

zg zg

zt

zt

zt

(b) Balanced three-phase system

Figure 1.7: A single-phase system and a balanced three-phase system that transfer power from generators
through transmission lines to loads.

incurs half as much the thermal loss as the single-phase system. In this section we explain the operation
of three-phase systems.

Three-phase sources and loads can be arranged in Y (Wye) or D (Delta) configurations. This is ex-
plained in Chapter 1.2.1. A three-phase system is balanced if all the sources are balanced, loads are iden-
tical, and transmission lines are identical and have symmetric geometry. A balanced three-phase system
has several simplifying properties. In Chapter 1.2.2 we prove a theorem that summarizes the mathemat-
ical structure of balanced three-phase systems that underlies these properties. We apply this theorem to
balanced system in Y configuration (Chapter 1.2.3) and D configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part III of this book.
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1.2.1 Y and D configurations

Three single-phase devices can be arranged in either an Y or a D configuration as shown in Figure 1.8. They

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n’

n

a

b

c

In'= I n
V n'

(a) Y configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) D configuration

Figure 1.8: Three-phase systems, not necessarily balanced, in Y and D configurations.

can be three voltage sources, three current sources, or three impedances and they may not be identical,
e.g., the three impedances may have different values.

Y configuration. For the Y configuration, the internal voltage (vector) is VY := (V an,V bn,V cn). These
voltages are called phase-to-neutral or phase voltages. The internal current (vector) IY := (Ian, Ibn, Icn)
is defined to flow from each terminal to the neutral as shown in Figure 1.8(a). The external behavior of
a three-phase device is described by what is measurable on the terminal of the device. The terminal (or
nodal or bus) voltage V := (V a,V b,V c) are voltages with respect to an arbitrary but common reference
point, and the terminal (or line) current I :=

�
Ia, Ib, Ic� is defined to be the current coming out of the device

as shown in the figure. If the common reference point is taken to be the neutral of this device then V = VY ,
i.e., the terminal voltage is the same as the phase voltage for Y configuration. Otherwise V = VY �V n1
where 1 is three-dimensional vector of all 1s. As we will see in Chapters 1.2.3 and 1.2.4, for a balanced
systems, the neutrals of all Y -configured devices are at the same voltage and therefore can serve as the
common reference point. This is not necessarily the case for an unbalanced system, which we will study
in Part III of this book.

Hence, for Y configuration, the terminal voltage and current (V, I) are determined by the internal
voltage and current

�
VY , IY� according to (when the common reference point for V is the neutral so that

V n := 0):

V = VY , I = �IY (1.10)

When the common reference is not the neutral of this device, we have V =
�
VY +V n1

�
.
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Instead of the terminal voltage V it is also common to describe the behavior of the three-phase device
in terms of its line-to-line or line voltage V line :=

�
V ab,V bc,V ca�. To relate V line to V or to VY , define the

matrices G and its transpose GT:

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5 (1.11)

We call G and GT conversion matrices. They can be interpreted as the bus-by-line incidence matrices of
the directed graphs shown in Figure 1.9. Then

1

3 2

(a) G

1

3 2

(b) GT

Figure 1.9: Directed graphs of which G and GT are incidence matrices.

2

4
V ab

V bc

V ca

3

5 =

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V a

V b

V c

3

5 =

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V an

V bn

V cn

3

5

or in vector form:

V line = GV = GVY (1.12)

This holds for both Y and D configurations and whether or not the common reference point for V is the
neutral of a Y configured device (since G1 = 0).

D configuration. For the D configuration in Figure 1.8(b), the internal voltage (vector) is the line-to-line
voltage V D := (V ab,V bc,V ca) =V line, and the internal current ID := (Iab, Ibc, Ica) is the line-to-line current.
As for the Y configuration, the terminal voltage V := (V a,V b,V c) are voltages with respect to an arbitrary
but common reference point. The terminal current is I :=

�
Ia, Ib, Ic� as shown in Figure 1.8(b). The

terminal voltage and current (V, I) is determined by the internal voltage and current
�
V D, ID� according to

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V a

V b

V c

3

5 =

2

4
V ab

V bc

V ca

3

5 ,

2

4
Ia

Ib

Ic

3

5 = �

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

| {z }
GT

2

4
Iab

Ibc

Ica

3

5

or in vector form (for arbitrary common reference point for V ):

GV = V D, I = �GTID (1.13)
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Equivalent Y configuration. For any D configuration with given internal voltage V D := (V ab,V bc,V ca)
and current ID := (Iab, Ibc, Ica), an equivalent Y configuration is one that has the same external behavior.
This means that, if VY := (V an,V bn,V cn) and IY := (Ian, Ibn, Icn) are the internal voltage and current of the
Y -equivalent then they are related to

�
V D, ID� according to (from (1.12) (1.13)):

GVY = V D, IY = GTID (1.14)

Summary. The external behavior (1.10) and (1.13) for Y and D configurations respectively as well as
their equivalence (1.14) hold for any three-phase system whether or not it is balanced. The relation (1.12)
between line-to-line voltage V line and terminal voltage V holds for Y and D configurations whether or not
the system is balanced.

The behavior of a three-phase system is determined by the mathematical properties of the conversion
matrices G and GT. When a system is balanced the conversion becomes particularly simple because the
transformation of balanced vectors under G and GT preserves their balanced nature (Corollary 1.3). We
now explain these mathematical properties and then apply them to the analysis of balanced systems in
Chapters 1.2.3 and 1.2.4.

1.2.2 Balanced vectors and conversion matrices G,GT

Definition 1.1 (Balanced vector). A vector x := (x1,x2,x3) with x j = |x j|eiq j 2 C, j = 1,2,3, is called
balanced if x j have the same magnitude and they are separated by 120�, i.e.,

|x1| = |x2| = |x3|

and either

q2�q1 =�2p
3

and q3�q1 =
2p
3

(positive sequence) (1.15a)

or

q2�q1 =
2p
3

and q3�q1 =�2p
3

(negative sequence) (1.15b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part III of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 15.1), i.e., we will call x̂ a (generalized) balanced vector if it is of the form x̂ = x + g1 and x is
balanced according to Definition 1.1, for some possibly nonzero g 2C. The bias g may models a common
reference voltage or the internal loop flow in a D configuration. We assume g = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.15a) and in a negative sequence
set if x satisfies (1.15b). Let

a := e�i2p/3
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30°
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Figure 1.10: Phase shift a := e�i2p/3 in Theorem 1.2.

Clearly a2 = ei2p/3, a3 = 1; see Figure 1.10. (Also see Exercise 1.6 for more properties of a .) Define
the vectors

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5 (1.16a)

Then a+ is a balanced vector in a positive sequence and a� is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span(a+) and the set of all balanced negative-
sequence vectors is span(a�), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

x = x1a+, y = y1a�, x1, y1 2 C (1.16b)

Note that a+ = a� where for any vector x, x is its complex conjugate componentwise. Define the matrix
F whose columns are a+,a� as well as 1 normalized:

F :=
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 (1.17)

All main properties of balanced three-phase systems originate from the mathematical properties of
the vectors a+, a� and their transformation under the matrices G,GT defined in (1.11), summarized in
Theorem 1.2. Its proof is left as Exercise 1.7. The theorem implies in particular that the transformations G
and GT preserve the balanced nature of a vector and hence ensures that the entire network stays balanced.
The key enabling property is that the voltages and currents from balanced sources are in span(a+) or
span(a�) and (a+,a�) are eigenvectors of G,GT (according to (1.18a)(1.19a)).

Theorem 1.2 (Transformation of balanced vectors by G,GT). Let a := e�i2p/3. Recall the balanced vectors
(a+,a�) defined in (1.16a), the matrices F in (1.17) and G,GT in (1.11).
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1. Suppose the entries x j of x := (x1,x2,x3) 2 C
3 have the same magnitude. Then x is balanced if and

only if x1 + x2 + x3 = 0.

2. The columns of F are orthonormal. Both F and F are complex symmetric, i.e., FT = F and FT
= F ,

where F is the complex conjugate of F componentwise. Hence

F�1 = FH = F =
1p
3

⇥
1 a� a+

⇤

3. G is a normal matrix, GGT = GTG. (Note that GGT = GTG are Laplacian matrices of the graphs in
Figure 1.9.)

4. Spectral decomposition of G:

(a) The eigenvalues and eigenvectors of G are

G1 = 0, Ga+ = (1�a)a+, Ga� = (1�a2)a� (1.18a)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

(b) Therefore the spectral decomposition of G is:

G = F

2

4
0

1�a
1�a2

3

5F (1.18b)

5. Spectral decomposition of GT:

(a) The eigenvalues and eigenvectors of GT are

GT1 = 0, GTa� = (1�a)a�, GTa+ = (1�a2)a+ (1.19a)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

(b) Therefore the spectral decomposition of GT is:

GT = F

2

4
0

1�a
1�a2

3

5F (1.19b)

The following corollary of the theorem is repeatedly used in the analysis of balanced systems. It says
that the transformation of a balanced vector x under G and GT reduces to a scaling by (1�a) and (1�a2)
respectively.

Corollary 1.3. For any balanced positive-sequence vector x 2 C
3 and g 2 C, we have

1. G(x+ g1) = (1�a)x.
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2. GT(x+ g1) = (1�a2)x.

3. GGT(x+ g1) = GTG(x+ g1) = 3x.

Informally a three-phase system is called balanced if all voltages and currents are balanced vectors in,
say, positive-sequence sets. The main consequence of the corollary is the following. A three-phase system
consists of voltage sources, current sources, and impedances connected by lines. The voltage and current
at any point in the system are induced by the internal voltages of voltage sources and the internal currents
of current sources. When these sources are balanced positive-sequence sets, their internal voltages and
currents are in span(a+) and a+ is an eigenvector of G and GT. This means that the transformation of bal-
anced voltages and currents under G,GT reduces to a scaling of these variables by their eigenvalues 1�a
and 1�a2 respectively. Since the voltage and current at every point in the system are linear combinations
of transformed source voltages and source currents, transformed by G, GT and line admittance matrices,
they remain in span(a+) when the sources are balanced and the lines are identical and phase-decoupled.
This is the key property that enables balanced sources to induce balanced voltages and currents through-
out the network, leading to per-phase analysis of three-phase systems. A formal statement and its proof
have to wait till Chapter 17 (Theorem 17.7) when we develop a general model of unbalanced three-phase
system. In this chapter we will use the corollary to analyze example circuits to build intuition.

1.2.3 Balanced systems in Y configuration

Figure 1.11 shows the Y configuration of voltage sources and impedance loads. The loads are said to be
balanced if their impedances z are identical. An ideal three-phase voltage source in Y configuration is

a

c b

Ean

Ecn Ebn
n

(a) Balanced sources

a

c b

z

zz

n

(b) Balanced loads

Figure 1.11: Balanced three-phase (a) voltage source EY and (b) impedance zY := diag(z,z,z) in Y config-
uration.

specified by its internal voltage (vector) EY :=
�
Ean,Ebn,Ecn� in the phasor domain between the terminals

a,b,c and the neutral n respectively. It is called balanced if EY is a balanced vector according to Definition
1.1, i.e.,

positive sequence: Ean = 1\q , Ebn = 1\q �120�, Ecn = 1\q +120�

or

negative sequence: Ean = 1\q , Ebn = 1\q +120�, Ecn = 1\q �120�
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where their magnitudes are normalized to 1. See Figure 1.12(a) where q = 0. For a balanced voltage source

Im

ReEan

Ecn

Ebn

(a) Phase voltages

Eca

30°

Im

Re

√3̄

Ean

Eab

Ecn

Ebc

Ebn

(b) Phase and line voltages

Figure 1.12: A balanced three-phase source in Y configuration. (a) Its phase voltage (vector) EY :=�
Ean,Ebn,Ecn� is a balanced vector. (b) Its line voltage E line = GEY = (1�a)EY .

in a positive sequence, the instantaneous voltages in the time domain reach their maximum values in the
order abc. We sometimes call abc in such an order a positive sequence and the voltages

�
Ean,Ebn,Ecn a

(balanced) positive-sequence set. Whether a voltage source is in a positive or negative sequence depends
only on how one labels the wires. Therefore, unless otherwise specified, we will always consider abc to be
a positive sequence. If there are multiple three-phase sources connected to the same network their phase
sequences must be the same.

Theorem 1.2 implies the following properties of a balanced positive-sequence voltage source:

1. Sum to zero: Ean +Ebn +Ecn = 0

2. All voltages and currents are in a balanced positive sequence, i.e., all are in span(a+).

3. Phases are decoupled.

Sum to zero. The first property follows from Theorem 1.2.1, or more directly, EY = a+Ean and hence
1TEY =

⇣
1Ta+

⌘
Ean = 0.

Line voltage V line is balanced. The second properties is due to the fact that a+ is an eigenvector of
G,GT. Specifically the line voltage E line :=

�
Eab,Ebc,Eca� across the terminals is given by E line = GEY

from (1.12)). This implies 1TE line = Eab +Ebc +Eca = 0. Moreover Corollary 1.3 implies

E line = GEY = (1�a)EY
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Hence E line is in a balanced positive sequence if EY is, i.e., Ebc = e�i2p/3 Eab and Eca = ei2p/3 Eab. Since
1�a =

p
3eip/6 we have

Eab =
p

3eip/6 Ean, Ebc =
p

3eip/6 Ebn, Eca =
p

3eip/6 Ecn

This is illustrated in Figure 1.12(b).

Balanced systems are phase-decoupled. We start by analyzing the simple circuit in Figure 1.13(a)
when a balanced three-phase load is connected to a balanced three-phase positive-sequence voltage source
in Y configuration. We will show that

1. The neutral-to-neutral voltage is zero, Vnn0 = 0.

2. The internal voltage and current across the impedances are in a balanced positive sequence.

The most important implication is that the phases are decoupled, i.e., the variables in each phase depend
on quantities only in that phase, and can be analyzed separately. We will illustrate through examples that
these conclusions hold in more general balanced systems than the simple circuit in Figure 1.13(a). A full
understanding of phase decoupling and per-phase analysis is postponed till Part III of this book where a
balanced system is studied in the context of general unbalanced systems.

a'a

c b c' b'

z

zz

Ean

Ecn Ebn
n n'

Ia

Ib

Ic

(a) Balanced three-phase system

zEan

Ia a'a

n n'

(b) Equivalent per-phase system

Figure 1.13: Balanced three-phase source and load in Y configuration and its per-phase model.

Referring to Figure 1.13(a) let

• EY :=
�
Ean,Ebn,Ecn� and V 0Y :=

⇣
V a0n0 ,V b0n0 ,V c0n0

⌘
denote the internal voltages from terminals to

neutrals, and I0Y :=
⇣

Ia0n0 , Ib0n0 , Ic0n0
⌘

denote the internal current between the terminals a0,b0,c0 and
the neutral n0 across the identical impedances z.

• V :=
�
V a,V b,V c� denote the terminal voltage (vector), with respect to an arbitrary and common

reference point, not necessarily the neutral n or n0;
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• V n and V n0 denote the neutral voltages with respect to the common reference point.

Given the balanced positive-sequence voltage EY and balanced impedances z, we wish to show that V n =
V n0 , that V 0Y , I0Y are in a balanced positive sequence, and that phases are decoupled.

Solution. KVL, KCL, and Ohm’s law imply

EY = V �V n1, V 0Y = V �V n01, V 0Y = z I0Y , 1TI0Y = 0 (1.21)

Therefore EY �V 0Y =
⇣

V n0 �V n
⌘

1 and hence (since 1TEY = 0)

1T
�
EY �V 0Y

�
=
⇣

V n0 �V n
⌘

1T1 =) 3
⇣

V n0 �V n
⌘

= �1TV 0Y = �z
⇣

1TI0Y
⌘

= 0

showing that the voltage across the neutrals Vnn0 = 0. Substituting it into (1.21) yields (denoting y := z�1)

V 0Y = EY +
⇣

V n�V n0
⌘

1 = EY , I0Y = yV 0Y = yEY

Hence both V 0Y and I0Y are in a balanced positive sequence. Moreover the phases are decoupled in that
Vfn0 and Ifn0 , f = a0,b0,c0, depend only on Efn but not on voltages on other phases.

In view of Theorem 1.2.1, the terminal voltage V is not balanced unless V n = V n0 = 0, i.e., the neutral
is taken as the common reference point for voltages, because

1TV = 1T
�
EY +V n1

�
= 3V n

Remark 1.2. 1. Since Vnn0 = 0, even if n and n0 are connected, the current on that wire will be zero.
We can therefore either assume n and n0 are connected or disconnected in our analysis, whichever is
more convenient.

2. Since the currents are balanced, Ia + Ib + Ic = 0 or ia(t)+ ib(t)+ ic(t) = 0 at all times t, the currents
flow from and return to the sources only via the wires connecting the sources to the loads, and no
additional physical wires are necessary for return currents. This halves the amount of required wire
compared with three separate single-phase circuits; see Chapter 1.3.3.

As a consequence, each phase of the balanced system is decoupled and equivalent to the circuit in
Figure 1.13(b). We can therefore analyze the phase a equivalent circuit; see Chapter 1.2.5. The voltages
and currents in phase b and phase c circuits will be the corresponding phase a quantities shifted by �120�
and 120� respectively, assuming the three-phase source is of positive sequence.

These conclusions hold for more general circuits than that in Figure 1.13(a), as Example 1.4 shows.

Example 1.4 (Balanced three-phase system in Y configuration). Figure 1.14 shows a balanced three-
phase source of positive sequence supplies two sets of balanced three-phase loads in parallel through
balanced transmission lines. The transmission lines have a common admittance t and all loads have a
constant admittance l, as shown in the figure. Suppose the neutrals are connected by lines with a common
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a1 a2a0

c0 b0 c1 b1 c2 b2

l l

t t

t

yy

t

t t

l l l l

Ean

Ecn Ebn
n0 n1 n2

One line diagram: 

Figure 1.14: Balanced three-phase system in Y configuration (Example 1.4).

admittance y. Denote the internal voltages and currents in stage k = 1,2, by VY
k := (V aknk ,V bknk ,V cknk) and

IY
k := (Iaknk , Iaknk , Iaknk) respectively. Denote the terminal voltages and currents from stage k� 1 to stage

k, k = 1,2, by Vk := (V ak�1ak ,V bk�1bk ,V ck�1ck) and Ik := (Iak�1ak , Iak�1bk , Iak�1ck) respectively.

Suppose y 6= 0, t = y/µ , and l = y/µ2 for some real number µ 6= 0. Prove that

1. Vn0n1 = Vn1n2 = 0.

2. For k = 1,2, all voltages and currents VY
k ,Vk, IY

k , Ik are balanced positive-sequence sets.

3. The phases are decoupled, i.e.,

EY
0 = V1 + VY

1

VY
1 = V2 + VY

2

where EY
0 := (Ea0n0 ,Eb0n0 ,Ec0n0).

This implies that the three phases of the balanced system in Figure 1.14 are decoupled and can be studied
by analyzing the per-phase circuit shown in Figure 1.15 where the line admittances connecting the neutrals
are set to zero.

l zEan

a0 a2a1

n0 n2n1

t t

Figure 1.15: The per-phase equivalent circuit of the balanced system in Figure 1.14 in Y configuration.
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Solution:

1. We will apply Ohm’s law and Kirchhoff’s current and voltage laws (KCL and KVL) to derive two
linear equations in (Vn0n1 ,Vn1n2) and show that Vn0n1 = Vn1n2 = 0 is the only solution to these equa-
tions. By Ohm’s law across each admittance, the currents are in terms of voltages:

IY
k = lVY

k , Ik = tVk, k = 1,2 (1.22)

This allows us to eliminate currents IY
k , Ik and express KCL and KVL in the following in terms only

of voltages VY
k ,Vk.

Making use of (1.22), apply KCL at node (a1,b1,c1) to obtain

tV a0a1 = lV a1n1 + tV a1a2 , tV b0b1 = lV b1n1 + tV b1b2 , tV c0c1 = lV c1n1 + tV c1c2

and similarly for KCL at nodes (a2,b2,c2). This in vector form is

tV1 = lVY
1 + tV2 (1.23a)

tV2 = lVY
2 (1.23b)

Apply KCL at nodes (n0,n1,n2) to obtain

t
⇣

1TV1

⌘
+ yV n0n1 = 0

l
⇣

1TVY
1

⌘
+ yV n0n1 = yV n1n2

l
⇣

1TVY
2

⌘
+ yV n1n2 = 0

where 1 := (1,1,1) is the column vector of all 1’s. Hence, since y/t = µ and y/l = µ2, we have

1TV1 = �µV n0n1 , 1TVY
1 = �µ2V n0n1 + µ2V n1n2 , 1TVY

2 = �µ2V n1n2 (1.24)

Finally, apply KVL around the loops from stage 0 to stage 1 to obtain

Ea0n0 = V a0a1 +V a1n1�V n0n1 , Eb0n0 = V b0b1 +V b1n1�V n0n1 , Ec0n0 = V c0c1 +V c1n1�V n0n1

and similarly for loops from stage 1 to stage 2. This in vector form is

EY
0 = V1 + VY

1 � V n0n11 (1.25a)
VY

1 = V2 + VY
2 � V n1n21 (1.25b)

where EY
0 := (Ea0n0 ,Eb0n0 ,Ec0n0). Substitute (1.23b) into the last equation to eliminate V2:

VY
1 =

✓
1
µ

+1
◆

VY
2 � V n1n21 (1.25c)
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To obtain a system of equations that involves only (V n0n1 ,V n1n2), multiply (1.25) by 1T and apply
(1.24) to obtain (using 1TE0 = 0 since the sources are balanced):


µ2 + µ +3 �µ2

�µ2 2µ2 + µ +3

�
V n0n1

V n1n2

�
=


0
0

�
(1.26)

We now argue that the determinant of the matrix in (1.26) is nonzero, and hence V n0n1 = V n1n2 = 0.
Let B := µ2 + µ +3. Then

determinant = B(B+ µ2)�µ4

If determinant is zero then

B = �µ2

2

⇣
1±
p

5
⌘

By the definition of B := µ2 + µ +3 we therefore have

(3±
p

5)µ2 + 2µ + 6 = 0

It is easy to check that no real number µ satisfies this equation, and hence V n0n1 = V n1n2 = 0.

2. We now prove that (VY
k ,Vk) are balanced positive-sequence sets. Since V n1n2 = 0, (1.25c) implies

VY
2 =

µ
µ +1

VY
1 (1.27)

Substitute this and (1.23b) into (1.23a) to obtain

V1 =
1
µ

VY
1 +

1
µ

VY
2 =

2µ +1
µ(µ +1)

VY
1

Substitute into (1.25a) to get

EY
0 =

2µ +1
µ(µ +1)

VY
1 + VY

1

Hence

VY
1 =

µ(µ +1)

µ2 +3µ +1
E0 and V1 =

µ(2µ +1)

µ2 +3µ +1
E0

Hence V1,VY
1 are balanced positive-sequence sets since E0 is. Furthermore V2,VY

2 are balanced
positive-sequence sets from (1.27) and (1.23b). Then (1.22) implies that all currents (IY

k , Ik) are
balanced positive-sequence sets.

3. To show that the phases are decoupled, substitute V n0n1 = V n1n2 = 0 in (1.25a)(1.25b).

This completes the proof.
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Remark 1.3 (Phase-decoupling of lines). 1. A key enabling property that allows the balanced nature
of voltages and currents to propagate from one node to the next is the assumption that three-phase
lines are phase-decoupled (see Example 1.4 and Exercise 1.10). This assumption is valid only if the
lines are symmetric and the sources and loads are balanced such that currents and charges both sum
to zero in these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase model
of transmission lines should be used; see Part III of this book.

2. If the lines are symmetric but the sources or loads are unbalanced then variables of different phases
are coupled. A similarity transformation can be used to transform the system to a so called sequence
coordinate in which the lines become decoupled and single-phase analysis can then be applied in
the sequence coordinate; see Chapter 17 in Part III of this book.

1.2.4 Balanced systems in D configuration

Figure 1.16 shows the D configuration of a balanced voltage source and a balanced impedance. An ideal

Ebc

Eca Eab

a

c b

(a) Balanced source

a

c b

z

z z

(b) Balanced load

Figure 1.16: Balanced three-phase (a) voltage source ED and (b) impedance zD in D configuration.

voltage source in D configuration is specified by its line voltage ED :=
�
Eab,Ebc,Eca�. It is balanced if

ED is a balanced vector according to Definition 1.1, i.e., assuming positive sequence:

Ebc = e�i2p/3 Eab, Eca = ei2p/3 Eab

A balanced three-phase system in D configuration enjoys the same properties as such a system in Y con-
figuration in Chapter 1.2.3 does. In particular the line voltages sum to zero (see Figure 1.12(b)):

Eab +Ebc +Eca = 0

The three-phase voltages and currents in a balanced system in D configuration driven by balanced three-
phase positive-sequence sources are balanced positive sequences. Moreover the phases are decoupled. We
illustrate this in the next example.

Example 1.5 (Balanced three-phase system in D configuration). Figure 1.17 shows a balanced three-phase
source connected to a balanced three-phase load through balanced transmission lines in D configuration.
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a1a0

c0 b0 c1 b1
Eb0c0

Ec0a0 Ea0b0

t

t

t

l

l l

Figure 1.17: Example 1.5.

The transmission lines have identical admittance t 6= 0 and the loads are of constant admittance l 6= 0. Sup-
pose the internal voltage ED := (Ea0b0 ,Eb0c0 ,Ec0a0) is in a positive sequence. Denote the terminal current
by I := (Ia0a1 , Ib0b1 , Ic0c1), the terminal voltage by V := (V a0a1 ,V b0b1 ,V c0c1), and the line-to-line voltage
by U := (V a1b1 ,V b1c1 ,V c1a1). We will show that I,V,U are in balanced positive sequences, provided the
ratio

µ :=
t
l
6= �3

Solution. Apply KCL at nodes a1,b1,c1 to get (cf. (1.13)):

I = l GTU = t V (1.28)

where GT is defined in (1.11). Apply KVL to get

ED = U + GV (1.29)

where G is defined in (1.11). Eliminate V from (1.28) and (1.29) to get

ED =
1
µ

⇣
µI + GGT

⌘
U =

1
µ

2

4
µ +2 �1 �1
�1 µ +2 �1
�1 �1 µ +2

3

5U (1.30)

where µ := t/l and I is the identity matrix of size 3. The matrix µI + GGT has a determinant of µ(µ +3)2

and hence is nonsingular provided µ 6= 0,�3. Since ED is a balanced positive-sequence matrix we have
⇣

µI + GGT

⌘
U = µ Eab a+

It therefore suffices to show that a+ is an eigenvector of µI + GGT with an associated eigenvalue l , for
then

U = µ Eab
⇣

µI + GGT

⌘�1
a+ =

µ Eab

l
a+
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showing that U is also a balanced positive-sequence voltage (note that if Ax = lx for a nonsingular matrix
A then A�1x = 1

l x). To show that a+ is an eigenvector of µI + GGT, we apply Theorem 1.2 to get
⇣

µI + GGT

⌘
a+ = µ a+ + G(1�a2)a+ =

�
µ + (1�a)

�
1�a2��a+ = (µ + 3)| {z }

l

a+

as desired. This shows that U is indeed a balanced positive-sequence voltage. Indeed

U =
µ

µ +3
ED

To show that phase voltages V are also a balanced positive sequence and decoupled, use (1.28) and
Corollary 1.3 to get

V =
1
µ

GTU =
1
µ
�
1�a2�U =

1�a2

µ +3
ED

Hence V is in a balanced positive sequence. The expression I = tV from (1.28) then implies that the phase
current I is also in a balanced positive sequence and that the phases are decoupled.

D and Y transformation. A balanced D-configured system also has a per-phase equivalent circuit. We
now explain how to transform between D and Y configuration. This is the first step in per-phase analysis
of balanced three-phase system described in Chapter 1.2.5 where all balanced devices in D configuration
are transformed into their equivalent Y configuration, the per-phase circuit of the Y -equivalent network is
then analyzed and the result translated back to the original system with D-configured devices. The validity
of this procedure is formally proved in Chapter 17.3.4.

As explained in Chapter 1.2.1, given any balanced internal voltage V D := (V ab,V bc,V ca) and current
ID := (Iab, Iac, Iaa) in D configuration, an equivalent Y configuration is one that has the same external
behavior, i.e., the internal voltage VY := (V an,V bn,V cn) and current IY := (Ian, Ian, Ian) of the Y -equivalent
satisfy (1.14) reproduced here

GVY = V D, IY = GTID

Assume the neutral of the Y equivalent voltage source is the reference for all voltages and V n = 0. Since
VY and ID are balanced vectors, Corollary 1.3 implies

(1�a)VY = V D, IY = (1�a2)ID

Hence the Y -equivalent of
�
Y D, ID� is

VY =
1

1�a
V D =

1p
3eip/6

V D, IY =
�
1�a2� ID =

p
3

eip/6 ID (1.31a)

This implies in particular that a voltage source ED in D configuration has an equivalent Y -configured
voltage source with EY := (1�a)�1ED. It also implies that a current source JD in D configuration has an
equivalent Y -configured current source with JY := (1�a2)JD =

p
3e�ip/6 JD.
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z∆
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Figure 1.18: D-Y transformation of balanced loads: zY = zD/3.

Consider a balanced three-phase impedance zD 2 C in D configuration as shown in Figure 1.18(a). An
Y -equivalent is a balanced impedance zY 2 C as shown in Figure 1.18(b) so that their external behavior is
the same, i.e., the terminal currents I are the same when the same line-to-line voltage V line is applied to
both impedances. Let V D 2C

3 and ID 2C
3 be the internal voltage and current across the impedance zD in

D configuration. Let ZD := diag
�
zD,zD,zD�. Then V D = ZDID and

V line = V D = ZDID, I = �GTID = �(1�a2)ID

where the last equality follows from Corollary 1.3. Hence, for D-configured impedance, the line-to-line
voltage V line is related to the terminal current I according to

V line = � 1
1�a2 ZD I

For the Y -equivalent, let VY 2 C
3 and IY 2 C

3 be its internal voltage and current across the impedance zY

in Y configuration. Let ZY := diag
�
zY ,zY ,zY�. Then VY = ZY IY and Corollary 1.3 implies

V line = GVY = (1�a)ZY IY , I = �IY

Hence, for Y -configured impedance, the line-to-line voltage V line is related to the terminal current I ac-
cording to

V line = �(1�a)ZY I

The relationships between the line-to-line voltage V line and the terminal current I for both the D-configured
impedance and its Y -equivalent will be identical if and only if

zY =
zD

(1�a)(1�a2)
=

zD

3
(1.31b)

The corresponding admittances yY :=
�
zY��1 and yD :=

�
zD��1 are related by yY = 3yD.

1.2.5 Per-phase analysis for balanced systems

A balanced three-phase system consists of balanced three-phase sources and loads connected by balanced
(identical) transmission lines. Given a balanced three-phase system with all sources and loads in Y config-
uration, assuming there is no mutual inductance between phases, then
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• all the neutrals are at the same potential;

• all phases are decoupled;

• all corresponding network variables are in balanced sets of the same sequence as the sources.

These properties lead to equivalent per-phase circuits, as explained in Chapter 1.2.3. Even though we have
only illustrated these properties for simple systems, they hold more generally. They allow us to study such
a system by analyzing a single phase, say, phase a. The corresponding variables in phases b and c lags
those in phase a by 120� and 240� respectively when abc is a positive sequence, and by 240� and 120�
respectively when abc is a negative sequence.

When some or all of the sources and loads are in D configuration, the phases are still decoupled
and can be analyzed separately. To obtain the equivalent per-phase circuit, however, we first transform
each D-configured device into an equivalent Y -configured device using the transformation (1.31a) for
voltage sources and (1.31b) for impdances. We then analyze the equivalent circuit that consists of only
Y -configured devices. Finally we translate the results for equivalent Y configuration back to the corre-
sponding quantities in D configuration.

We emphasize that these transformations hold only in the balanced case with balanced sources, identi-
cal impedances, and symmetric transmission lines. Moreover the equivalence of these two configurations
is with respect to their external behavior (V ab, Ia, etc); for internal behavior, we have to analyze the original
circuit; see Example 1.6.

In summary, the procedure for per-phase analysis is:

1. Convert all sources and loads in D configuration into their equivalent Y configurations using (1.31a)
for sources and (1.31b) for loads.

2. Solve for the desired phase a variables using phase a circuit with all neutrals connected.

3. For positive-sequence sources, the phase b and c variables are determined by subtracting 120� and
240� respectively from the corresponding phase a variables. For negative-sequence sources, add
120� and 240� instead.

4. If variables in the internal of a D configuration are desired, derive them from the original circuits.

This procedure is formally justified in Chapter 17.3.4. We illustrate it with an example.

Example 1.6 (Per-phase analysis). Consider the balanced three-phase system shown in Figure 1.19.
The three-phase sources are a balanced positive sequence in D configuration with line voltage Eab =p

3eip/6Ean, etc. The D-configured loads are balanced with identical admittances l1, and the Y-configured
loads are balanced with identical admittances l2. The transmission lines are modeled by admittances t1 and
t2. Find the current i1(t) and voltage v2(t) in the diagram. Assume 3l1l2 +3l1t2 + l2(t1 + t2)+ t1t2 6= 0.

Solution. First we convert the D sources to their equivalent Y sources using (1.31a) and D loads to their
equivalent Y loads using (1.31b). The result is shown in the upper panel of Figure 1.19(b). Then we
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One line diagram: 

(a) Balanced three-phase system

Ean

a0 a2a1

n0 n2n1
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c b

Ean

n0
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c1 b1

a2

c2 b2

t1
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t2

t2

t2

t2

l2

l2

l2 l2

3l1

3l1

n1 n2

(b) Equivalent per-phase system

Figure 1.19: Balanced three-phase system and its per-phase equivalent circuit. The balanced three-phase
loads have admittances l1 and l2, and the transmission lines have admittances t1 and t2.
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construct the equivalent per-phase circuit with all neutrals n,n1,n2 connected, as shown in the lower panel
of Figure 1.19(b).

We analyze the per-phase circuit to solve for voltages

V1 := V a1n1 and V2 := V a2n2

Applying KCL to nodes a1 and a2 we get

t1 (Ean�V1) = 3l1V1 + t2 (V1�V2)

t2 (V1�V2) = l2V2

Hence


3l1 + t1 + t2 �t2
t2 �(l2 + t2)

�
V1
V2

�
=


t1Ean

0

�

By assumption, the determinant

D := �(3l1l2 +3l1t2 + l2(t1 + t2)+ t1t2)

is nonzero. Hence

V1
V2

�
=

1
D


�(l2 + t2) t2
�t2 3l1 + t1 + t2

�
t1Ean

0

�
=
�t1Ean

D


l2 + t2

t2

�
(1.32)

Since V a2n2 = V2, we get:

v2(t) =
p

2 |V2| cos(wt +\V2)

where w is the steady-state system frequency and V2 is given by (1.32). To calculate

i1(t) =
p

2 |Ia1c1 | cos(wt +\Ia1c1) (1.33)

we use (1.31a) to first get

V a1b1 =
p

3eip/6V1

where V1 is given by (1.32). Hence

Ia1b1 = l1V a1b1 =
p

3 l1 eip/6V1

Since the sources are a positive sequence we have

Ia1c1 = �Ia1a1 = �Ia1b1 ei2p/3 = �
p

3ei5p/6 3l1V1 = 3
p

3e�ip/6 l1V1

where V1 is given by (1.32). Substituting Ia1c1 into (1.33) yields i1(t).
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Vcn

n

a

c b

|Van| = 120V

|Vbn| = 120V

|Vab| = 208V

(a) 208Y/120V 3-phase Y

d

a

c

b

|Vad| = 120V

|Vbd| = 120V

|Vbc| = 240V
|Vcd| = 208V

|Vab| = 240V

(b) 240V split phase D

Figure 1.20: Common distribution transformer configurations.

1.2.6 Example configurations and line limits

The secondary sides of three-phase distribution transformers in the US are commonly configured as shown
in Figure 1.20. For our purposes we can treat them as balanced three-phase sources. Figure 1.20(a) shows
the secondary side of a typical 5-wire three-phase transformer in Y configuration. Three phase wires
(labeled a,b,c) and a neutral wire (labeled n) are shown. The fifth wire, not shown, is the earth ground
wire, typically connected to neutral. A different voltage magnitude can be supplied to a load depending
on how it is connected. The voltage magnitude between a phase wire and the neutral is 120V and that
between a pair of phase wires is 120

p
3V = 208V.

Figure 1.20(b) shows a 5-wire transformer in D configuration with one of the phases center-tapped to
provide three voltage levels. Four phase wires (labeled a,b,c,d) are shown but an earth ground wire is not
shown. The voltage magnitude between wires ad or bd is 120V, whereas that between wire cd is 208V
(derive this). The line-to-line voltage magnitude is 240V.

Line limits. Figure 1.21(a) shows a Y -configured voltage source connected to a set of loads in D configu-
ration. The voltage source is the secondary side of a three-phase 208Y/120V transformer shown in Figure
1.20(a). The voltage magnitude across each load is the line-to-line voltage 208V. Figure 1.21(b) shows the
electric panel arrangement to connect the loads to the voltage source. The dot in the first row indicates that
the wires numbered 1 and 2 are connected to phase a, the dot in the second row indicates that the wires
numbered 3 and 4 are connected to phase b, the dot in the third row indicates that the wires numbered 5 and
6 are connected to phase c, and so on. Therefore the load connected between wires 1 and 3 is connected
between phase a and phase b lines (see the corresponding labels on the loads in Figure 1.21(a)). Similarly
for the load connected between wires 2 and 4, and other loads connected between different phases.

We are interested in the currents J0 := (Ia0a1 , Ib0b1 , Ic0c1) supplied by the three-phase source to the
loads. Suppose the wires connecting the three-phase source to the loads are rated at Imax. Then we require
that the current magnitude in each phase be bounded by Imax:

|I p0 p1 |  Imax, p = a,b,c (1.34)
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(b) Panel ar-
rangement

Figure 1.21: (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase panel used to
connect loads in parallel to the voltage source.

Suppose the loads are not impedance loads, but constant current loads that draw specified currents. Let
the current drawn by the load in Figure 1.21(a) between wires 1 and 3 be Ia1b1 , that between wires 9 and
11 be Ib1c1 , that between wires 5 and 7 be Ic1a1 . In general, let the load currents in the kth three-phase load
be Ik := (Iakbk , Ibkck , Ickak). We now derive bounds on the load currents (Ik,k = 1, . . . ,K) that enforce the
line limits (1.34).

Before proceeding, we mention as an example application the smart charging of electric vehicles where
each load is a vehicle. We are to design an algorithm that determines the charging rate, i.e., current
magnitude |I pkqk |, for each vehicle to optimize certain objective subject to capacity constraints such as
(1.34) and other constraints. Such an algorithm can be applied periodically, e.g., every minute, to update
the charging rates. Note that in this kind of applications, the system is unbalanced since the loads |I pkqk |
are generally not identical across phases, but here we ignore the effect of wires connecting these devices.

Applying KCL at nodes (a1,b1,c1) we have

2

4
Ia0a1

Ib0b1

Ic0c1

3

5

| {z }
J0

=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

| {z }
GT

2

4
Ia1b1

Ib1c1

Ic1a1

3

5

| {z }
I1

+

2

4
Ia1a2

Ib1b2

Ic1c2

3

5

| {z }
J1

where Jk := (Iakak+1 , Ibkbk+1 , Ickck+1), k = 0, . . . ,K�1, are the line currents from stage k to stage k + 1. In
general we have

Jk = GTIk + Jk+1, k = 0, . . . ,K�1
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Hence the total supply currents are given by

J0 = GT (I0 + I1 + · · ·+ IK) (1.35)

when there are K three-phase constant current loads. Note that this expression does not require that the
loads are balanced. In particular, if a load (say) Iakbk is absent, then we set Iakbk = 0 in (1.35).

Let the total load current in each leg of the D configuration be denoted by

Iab :=
K

Â
k=1

Iakbk , Ibc :=
K

Â
k=1

Iakck , Ica :=
K

Â
k=1

Iakak (1.36)

Then (1.35) can be written in terms of the total load currents as:
2

4
Ia0a1

Ib0b1

Ic0c1

3

5 =

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

2

4
Iab

Ibc

Ica

3

5

The line limits (1.34) are therefore

|Ia0a1 | = |Iab� Ica|  Imax

|Ib0b1 | = |Ibc� Iab|  Imax

|Ic0c1 | = |Ica� Ibc|  Imax

Enforcing line limits requires one to know not just the magnitudes of the load currents, but also their
phases in order to compute their sums. As explained in the caption of Figure 1.22, these inequalities are

Im

Re
øa0a1

Ia0a1
Ica

Iab

Figure 1.22: Ia0a1 = Iab� Ica. Hence by the cosine rule |Ia0a1 |2 =
��Iab
��2 + |Ica|2 � 2

��Iab
�� |Ica| cosf where

fa0a1 := \Ica�\Iab is the angle between Iab and Ica.

equivalent to:

|Iab|2 + |Ica|2 � 2 |Iab| |Ica| cosfa0a1  (Imax)2 (1.38a)

|Ibc|2 + |Iab|2 � 2 |Ibc| |Iab| cosfb0b1  (Imax)2 (1.38b)

|Ica|2 + |Ibc|2 � 2 |Ica| |Ibc| cosfc0c1  (Imax)2 (1.38c)

If we know the angles fp0 p1 , p = a,b,c, between the total load currents (Iab, Ibc, Ica) in each leg of the D
configuration, then (1.38) are convex quadratic constraints on the magnitudes of (Iab, Ibc, Ica). We next
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consider several special cases and derive simple bounds on the magnitudes (|Iakbk |, |Ibkck |, |Ickak |) of the
individual load currents that will enforce (1.38).

Assumption 1: Current phasors Iakbk have the same, and known, phase angle qab for all k; similarly for
Ibkck and Ickak . From (1.36) we have

Iab := eiqab
K

Â
k=1

���Iakbk
��� , Ibc := eiqbc

K

Â
k=1

���Ibkck
��� , Ica := eiqca

K

Â
k=1

|Ickak |

and constraints (1.38a) become
 

K

Â
k=1

���Iakbk
���

!2

+

 
K

Â
k=1

|Iakak |
!2

� 2

 
K

Â
k=1

���Iakbk
���

! 
K

Â
k=1

|Iakak |
!

cosfa0a1  (Imax)2 (1.39)

where cosfa0a1 := qca�qab is known. Similarly for constraints (1.38b) and (1.38c). These are quadratic
constraints in the magnitudes (|Iakbk |, |Iakck |, |Iakak |) of the individual load currents that will enforce (1.38),
given the angles fp0 p1 , p = a,b,c, between the load currents in different legs of the D configuration.

Assumption 2: In addition to Assumption 1, the angles fp0 p1 = 120�, for p = a,b,c. Then cosfp0 p1 =�1/2
and (1.39) becomes

 
K

Â
k=1

���Iakbk
���

!2

+

 
K

Â
k=1

|Iakak |
!2

+

 
K

Â
k=1

���Iakbk
���

! 
K

Â
k=1

|Iakak |
!
 (Imax)2 (1.40)

Similarly for constraints (1.38b) and (1.38c).

Assumption 3 (balanced case): All load currents have the same magnitude and the phases of currents on
different legs of the D differ by 120�. That is, assuming positive sequence, for all k = 1, . . . ,K, we have

Iakbk = I eiqab , Ibkck = I eiqbc , Ickak = I eiqca

where I is the common magnitude of the load currents, and

qab�qbc = 120�, qbc�qca = 120�, qca�qab = 120�

Then the constraint (1.40) reduces to 3K2I2  (Imax)2, or a bound on the common magnitude I of individ-
ual load currents

I  Imax
p

3K
(1.41)

Linear bounds. Many applications operate in unbalanced conditions, e.g., adaptive electric vehicle charg-
ing where the magnitudes |I pkqk | of the load currents are to be determined and generally different. In these
cases there are two difficulties with the line limits (1.39) and (1.40). First the angles (qab,qbc,qca) may
not be known. Second even when these angles are known, the constraints are quadratic which can be com-
putationally too expensive to implement in real time in inexpensive devices. In this case, we can impose
linear constraints which are simpler but more conservative.
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Take phase a as an example. Since |Ia0a1 | = |Iab� Ica|  |Iab| + |Ica|, a simple limit on the load
currents that enforces |Ia0a1 | Imax is to require

|Iab| + |Ica|  Imax

i.e., the sum of the magnitudes of the total load currents in legs ab and ca should be less than the current
rating Imax. From (1.36) we have

��Iab
�� =

��Âk Iakbk
��  Âk |Iakbk |. Hence a simple linear bound on the

load current magnitudes is:

K

Â
k=1

⇣
|Iakbk | + |Iakak |

⌘
 Imax (1.42)

The constraints on phases b and c are similar.

For a balanced system we can easily assess how conservative the bound (1.42) is compared with the
exact limit (1.41) on the load currents. In the balanced case the bound (1.42) reduces to

I  Imax

2K

Hence it is
p

3/2⇠ 87% of that in (1.41), i.e., it is conservative by ⇠ 13% for a balanced system.

1.3 Complex power

1.3.1 Single-phase power

Instantaneous power. When a voltage v(t) is applied across two ports and a current i(t) flows between
them, as shown in Figure 1.23(a), energy is delivered to the network that connects the ports. We define the
instantaneous power supplied as:

p(t) := v(t)i(t) =
VmaxImax

2
(cos(qV �qI)+ cos(2wt +qV +qI)) (1.43)

Since the last term inside the bracket of (1.43) is sinusoidal with twice the nominal frequency w the
average power delivered is

1
T

Z T

0
p(t)dt =

VmaxImax

2
cos(qV �qI)

where T := 2p/w .

Complex power. Define the complex power in terms of the voltage and current phasors as:

S := V I⇤ =
VmaxImax

2
ei(qV�qI) = |V ||I|eif (1.44)

where I⇤ denotes the complex conjugate of I. See Figures 1.23(b) and (c). Here f := qV � qI is called
the power factor angle and cosf is called the power factor (PF). Power engineers often says leading or
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Figure 1.23: Definition of power
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Figure 1.24: Power factor angles f and power factor cosf .
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lagging power factor: here lagging means current I lags voltage V so that f > 0. A leading power factor
has f < 0. A unity power factor means f = 0. Figure 1.24 shows four complex powers

S1 := P+ iQ, S2 := P� iQ, S3 := �P+ iQ, S2 := �P� iQ

with power factor angles f1 := q , f2 := �q , f3 := p�q , and f4 := �p + q respectively. Here P,Q > 0
and q 2 [0,p]. Their power factors are

cosf1 =
Pp

P2 +Q2
= cosf2, cosf3 =

�Pp
P2 +Q2

= cosf4

Therefore power factor cosfi does not differentiate between S1 and S2. Power engineers specify S1 as
power factor cosq lagging (f1 > 0 and therefore Q1 := Q > 0) and S2 as power factor cosq leading
(f2 < 0 and Q2 := �Q < 0). Similarly S3 has a power factor �cosq lagging (f3 > 0 and Q3 := Q > 0)
and S4 has a power factor �cosq leading (f4 < 0 and Q4 :=�Q < 0). For example “a load draws 100kW
at a power factor of 0.707 leading” means that the real power Re(S) = 100 kW and cosf = 1p

2
. Since the

power factor is leading, f =�45� and S = 100� j100 kVA .

Note that S is not a phasor because
p

2|S| cos(wt + f) is not the instantaneous power in the time
domain. This complex quantity is important in power flow analysis in the phasor domain, as we will see.
The real part of S

P := |V ||I|cosf

is called the active or real power and its unit is W (watt). The imaginary part of S

Q := |V ||I|sinf

is called the reactive power and its unit is var (volt-ampere reactive). We write both S = P + jQ and
S = |V ||I|eif . The magnitude |S| = |V ||I| is called the apparent power and its unit is VA (volt-ampere).
Given an active power P and a power factor cosf , the complex power S is given by (since P = |S| cosf )

S =
P

cosf
eif

i.e. the complex power is completely determined by the active power P and the power factor angle f .
Power is balanced at every node in a network. If I jk and S jk are sending-end current and power respectively
from node j to node k, then power balance at node j means Âk S jk = 0. This is a consequence of KCL
Âk I jk = 0 and the definition of branch power S jk := VjI⇤jk.

Relation between instantaneous and complex power. The complex power S in the phasor domain
is related to the instantaneous power in the time domain as follows. We can use (1.43) to express the
instantaneous power p(t) in terms of active power P and reactive power Q as (Problem 1.11):

p(t) = P + Pcos2(wt +qI)�Qsin2(wt +qI) (1.45)

It is then clear that the active power P is equal to the average power delivered (in the time domain):

P =
1
T

Z T

0
p(t)dt

as the last two terms in (1.45) average to zero over a cycle T . The reactive power Q determines the
magnitude of the instantaneous power p(t).
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Power delivered to an impedance. The current and voltage across an impedance z is related by Ohm’s
law, V = zI and hence

|z| =
|V |
|I| and \z = qV �qI =: f

Therefore from (1.44)

S = z|I|2 = |z||I|2eif

and

P = |z||I|2 cosf and Q = |z||I|2 sinf

The active and reactive power for the three passive elements are given in Table 1.2.

|z| f = \z P Q
Resistor z = r r 0 r|I|2 0
Inductor z = iwl wl p/2 0 wl|I|2
Capacitor z = (iwc)�1 (wc)�1 �p/2 0 �(wc)�1|I|2

Table 1.2: Power delivered to RLC elements.

Therefore the power delivered to a resistor is active (Q = 0). The instantaneous power p(t) := v(t)i(t)
is

p(t) := ri2(t) = rI2
max cos2 (wt +qI) = P(1+ cos2(wt +qI))

which is (1.45). Table 1.2 also implies that the complex power delivered to an inductor or a capacitor is
reactive. Substituting into (1.45), the instantaneous power p(t) to a purely reactive load depends only on
the reactive power Q:

p(t) =

⇢
�Qsin2(wt +qI) for inductor z = jwl

Qsin2(wt +qV ) for capacitor z = ( jwc)�1

i.e., the net (average) power delivered to the load is zero and the instantaneous power is sinusoidal with
twice the frequency and has an amplitude Q.

Example 1.7. Suppose z = jwl (inductance) or z = ( jwc)�1 (capacitance). Prove directly in time domain
that the average delivered power is 0 and the amplitude of the instantaneous power is Q.

Solution: Suppose power is delivered to an inductor z = jwl. Let the current be i(t) = Imax cos(wt +qI).
Then the voltage v(t) across the inductor is given by

v(t) = l
di
dt

(t) = �wl Imax sin(wt +qI)
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and therefore

p(t) = v(t)i(t) = �wl I2
max sin(wt +qI)cos(wt +qI)

= �wl
I2
max
2

sin2(wt +qI) = �wl |I|2 sin2(wt +qI)

= �Q sin2(wt +qI)

where the last equality follows from Q = |z||I|2 sin\z = wl|I|2 since\z = p
2 . Moreover the average power

delivered is

P =
1
T

Z
T

0
p(t)dt = 0

The case of capacitor load z = ( jwc)�1 is similar and omitted (see Exercise 1.13).

1.3.2 Three-phase power

Under balanced three-phase operation, the total instantaneous power delivered is constant and the total
complex power is 3 times the per-phase complex power.

Indeed, for a balanced three-phase positive-sequence source, we have

V bn = V an e�i2p/3, Ian = Ian e�i2p/3 and V cn = V an ei2p/3, Ian = Ian ei2p/3

Hence

S3f = V anIanH +V bnIanH +V cnIanH = 3V anIanH = 3S

where S := V anIanH is the per-phase complex power.

For instantaneous power, we have from (1.43), for a balanced three-phase positive-sequence source,

p3f (t) := va(t)ia(t)+ vb(t)ib(t)+ vc(t)ic(t)
= |V a||Ia|(cosf + cos(2wt +qV +qI))

+ |V a||Ia|(cosf + cos(2wt +(qV �2p/3)+(qI�2p/3)))

+ |V a||Ia|(cosf + cos(2wt +(qV +2p/3)+(qI +2p/3)))

= 3|V a||Ia|cosf + |V a||Ia|(cosq(t) + cos(q(t)�4p/3) + cos(q(t)+4p/3))

= 3P

where q(t) := 2wt +qV +qI and P is the per-phase active power. Here the last equality follows from

cosx+ cos(x�4p/3)+ cos(x+4p/3) = Re
⇣

eix + ei(x�4p/3) + ei(x+4p/3)
⌘

and
⇣

eix + ei(x�4p/3) + ei(x+4p/3)
⌘

=
⇣

eix + ei(x+2p/3) + ei(x�2p/3)
⌘

= 0

where the last equality follows from Theorem 1.2.
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1.3.3 Advantages of three-phase power

There are two main advantages of balanced three-phase systems over a system with a single phase or that
with other polyphases.

First it offers several benefits to motor operation. The total instantaneous power p3f (t) = 3P delivered
is constant over time in a balanced three-phase system. On a generator or motor this produces a constant
mechanical torque, reducing vibrations, noise, wear and tear, and other mechanical issues. A three-phase
system can also self-start an induction motor.

In contrast, the instantaneous power

p1f (t) = P + |V ||I|cos(2wt +qV +qI) =: P+ |V ||I|cosq(t)

in a single-phase system, where q(t) := 2wt + qV + qI , is a sinusoidal signal with twice the system fre-
quency. This is the case also with a two-phase system where the instantaneous power is

p2f (t) = |V a||Ia|(cosf + cos(2wt +qV +qI))+ |V a||Ia|(cosf + cos(2wt +(qV +p)+(qI +p)))

= |V a||Ia|(2cosf + cosq(t)+ cos(q(t)+2p))

= P + 2|V a||Ia|cosq(t)

It can be shown that for K � 3, a balanced K-phase system has pKf (t) = KP independent of t (Exercise
1.12). Even though a balanced four-phase system also has time-invariant instantaneous power, its design
is more complex than a three-phase system.

Second a three-phase system typically saves materials and thermal loss (r|I2|) compared with a single-
phase system that serves the same load. For example, it is clear that the single-phase system that consists
of three identical subsystems shown in Figure 1.7(a) needs twice as much transmission line and incurs
twice as much thermal loss in transmission as the balanced three-phase system in Figure 1.7(b), since the
balanced three-phase system has zero return current and hence does not need a neutral line.

The following example compares a balanced three-phase system with a single one-phase circuit with
a higher ampacity, as opposed to three identical subcircuits in Figure 1.7(a), to supply the same load. The
same conclusion holds that the three-phase system needs half as much conductor and incurs half as much
transmission loss.

Example 1.8 (Single-phase vs three-phase systems). Consider two systems that deliver a specified ap-
parent power |S| at a specified voltage magnitude |V | to a constant power load, as shown in Figure 1.25.
The distance between the generation and the load is d. The first system is single-phased and the second
system is balanced three-phased. Compare the required amount of wire and thermal loss in the line in
these systems.

The line has an impedance z := r+ jx per unit length where the resistance r per unit length is inversely
proportional to the area of the line with proportionality constant r . The current density limit of the line is
d in ampere per unit area.

Solution. A single-phase system requires two cables, one for return current, each carrying a current of
magnitude |I1f | = |S|/|V |. This is illustrated in Figure 1.25 with z0 = z. A balanced three-phase sys-
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I
z  = r + jx

z0 = z or 0

|V||S|

Figure 1.25: A system that delivers power |S| to a load at voltage |V |. The distance between the generation
and the load is d. The line has an impedance z := r + jx per unit length.

tem requires three cables, each carrying a per-phase apparent power of |S|/3 and a per-phase current of
magnitude |I3f | = |S|/(3|V |). The per-phase equivalent circuit is illustrated in Figure 1.25 with z0 = 0.

For the single-phase system the required cross-sectional area of the cable is

A1f :=
|I1f |

d
=

|S|
d |V |

Hence the amount of material (volume of the cable) required is

m1f := 2A1f d = 2
d|S|
d |V |

Moreover the resistance per-unit length of the cable is

r1f :=
r

A1f
=

rd |V |
|S|

and hence the active power loss in the cable is

l1f := 2r1f |I1f |2d =
2rd |V |

|S| · d|S|2

|V |2 = 2
rdd|S|

|V |

For the balanced three-phase system the required cross-sectional area of the cable in each phase is

A3f :=
|I3f |

d
=

|S|
3d |V |

Hence the amount of material required is

m3f := 3A3f d =
d|S|
d |V | =

1
2

m1f

Moreover the resistance r3f per unit length of the cable is

r3f :=
r

A3f
=

3rd |V |
|S|
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and hence the active power loss in the cable is

l3f := 3r3f |I3f |2d =
9rd |V |

|S| · d|S|2

9|V |2 =
rdd|S|

|V | =
1
2

l1f

i.e., the balanced three-phase system uses half as much material and incurs half as much loss as the single-
phase system.

Remark 1.4. 1. Example 1.8 also shows that thermal loss r|I|2 is inversely proportional to |V |. Intu-
itively a higher load voltage |V | requires a smaller load current |I| to deliver the same amount of
power |S|, resulting in a smaller thermal loss in the grid.

2. It is shown in Exercise 2.7 that, given a desired load power, the active line loss is inversely propor-
tional to the square |V |2 of the load voltage magnitude, rather than |V | derived here. This is because,
in Exercise 2.7, the line resistance is given and independent of load power and voltage |V |, whereas,
here, the line resistance r3f is chosen to be proportional to |V | (reducing the dependence of line loss
r3f |I3f |2 from |V |2 to |V |).

3. Note that V is the voltage drop across the load, not the voltage drop across transmission line z which
is zdI = zdS⇤/V ⇤. In the case of balanced three-phase system (where z0 = 0 in Figure 1.25), if the
load power S and voltage V are specified then the required squared voltage magnitude at the source
is

|zdI + V |2 =

����zd
S⇤

V ⇤
+ V

����
2

= |V |2 + d|z|2 |S|2

|V |2 + 2dRe(z⇤S)

4. In practice most three-phase systems do include a grounded neutral line to carry unbalanced current
during asymmetrical conditions, e.g., due to line faults, and reduce voltage transients during line
switching or lightning events. Since the unbalanced current is much smaller than the phase currents,
the neutral line is typically much smaller in size and ampacity and therefore much cheaper.

1.4 Bibliographical notes

There are many excellent textbooks on basic power system concepts, e.g., [1, 2, 3, 4]. Many materials in
this chapter follow [1]. The example comparing the savings of single-phase and three-phase systems is
from [4]. Circuit theory is a well established field. For general circuit analysis using KCL and KVL, see,
e.g., [8, Chapter 12]. The connection with algebraic graph theory is recently surveyed in [9].

1.5 Problems

Chapter 1.1.



56 Draft: PSA December 13, 2024

Exercise 1.1 (ZIP load model). A common load model, called ZIP, assumes that the real and reactive
power (p,q) consumed by a load depends on the voltage magnitude |V | across the load:

p := a2|V |2 +a1|V |+a0, q := a02|V |2 +a01|V |+a00

for some real numbers (a0,a1,a2) and (a00,a
0
1,a
0
2). This can be equivalently described in terms of the

complex power s := p+ iq consumed by the load, as 1

s := b2|V |2 +b1|V |+b0 (1.46a)

where bi = ai + ia0i. Instead of the complex power s, a ZIP model may describe how the apparent power
|s| consumed by the load depends on |V |:

|s| := c2|V |2 + c1|V |+ c0 (1.46b)

for some real numbers (c0,c1,c2). Given a ZIP load, specified either by (1.46a) or (1.46b), show that its
power consumption is equivalent to the sum of power consumed by a constant impedance z, a constant
current device (source) J, and a constant power device (source) s , and express the parameters (z,J,s) of
these devices in terms of the parameters of the ZIP load.

Exercise 1.2 (KVL). Prove that Kirchhoff’s voltage law (1.3b) is equivalent to (1.4b). (Hint: See Ap-
pendix 20.2 and use Theorem 20.35.1 and Theorem 20.35.2.)

Exercise 1.3 (Circuit analysis). Consider a 3-node 3-link circuit specified by:

incidence matrix Ĉ :=

2

4
1 0 1
�1 1 0
0 �1 �1

3

5 , impedances z12 = z23 = 1, voltage source v13

Use (??) to determine the currents J1 := (J12,J23,J13), voltages U1 := (U12,U23) and nodal voltages V :=
(V1,V2), assuming without loss of generality that node 3 is the reference node with V3 := 0.

Exercise 1.4 (Circuit analysis). For the three-bus network in Figure 1.5, derive the current balance equa-
tion (1.9a) by analyzing the equivalent circuit using KCL, KVL, and Ohm’s law, as explained in Chapter
1.1.4. Draw the equivalent circuit.

Exercise 1.5 (One-line diagram and P circuit). Derive (1.9) I =YV from the one-line diagram of a general
network by analyzing its equivalent circuit.
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Figure 1.26: Properties of a from [10, Fig. 3, p.9].
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Chapter 1.2.

Exercise 1.6 (a := e�i2p/3). Prove the following properties of a := e�i\120� (see Figure 1.26):

1. a2 = a , a3 = 1, a4 = a , ak = ak mod 3 where a denotes the complex conjugate of a.

2. 1+a +a2 = 0.

3. 1�a =
p

3\30�, 1�a2 =
p

3\�30�.

4. 1+a =�a2 = 1\�60�, 1+a2 =�a = 1\60�.

5. a+ = a�, a� = a+.

Exercise 1.7 (Proof of Theorem 1.2). Let a := e�i2p/3. Recall the matrices F defined in (1.17) and G in
(1.11), reproduced here:

F :=
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 , G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

1. Suppose the entries x j of x := (x1,x2,x3) 2 C
3 have the same magnitude. Then x is balanced if and

only if x1 + x2 + x3 = 0.

2. The columns of F are orthonormal. Both F and F are complex symmetric, i.e., FT = F and FT
= F ,

where F is the complex conjugate of F componentwise. Hence

F�1 = FH = F =
1p
3

⇥
1 a� a+

⇤

3. G is a normal matrix, GGT = GTG.

4. Spectral decomposition of G:

(a) The eigenvalues and eigenvectors of G are

G1 = 0, Ga+ = (1�a)a+, Ga� = (1�a2)a� (1.47)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.

1The power consumption may depend also on the frequency. During transient, this dependence can be made explicit by the
time-domain model

s(t) :=
�
a2|v(t)|2 + a1|v(t)| + a0

�
(1+a3Dw(t))

where s(t) := v(t)i(t) is the instantaneous power in the time-domain and Dw(t) is the deviation from the nominal frequency
during transient.
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(b) Therefore the spectral decomposition of G is:

G = F

2

4
0

1�a
1�a2

3

5F

5. Spectral decomposition of GT:

(a) The eigenvalues and eigenvectors of GT are

G1 = 0, Ga� = (1�a)a�, Ga+ = (1�a2)a+ (1.48)

where 1�a =
p

3eip/6 and 1�a2 =
p

3e�ip/6.
(b) Therefore the spectral decomposition of GT is:

GT = F

2

4
0

1�a
1�a2

3

5F (1.49)

Exercise 1.8. Show that the voltage magnitude |V cd| = 208V in the split-phase Delta transformer in Figure
1.20(b), assuming the system is a balanced three-phase positive sequence.

Exercise 1.9. Consider the balanced three-phase system in Y configuration shown in Figure 1.27. Show

a

c b

n0 n1

z1

z1

z1

z

l1l1

l1Ean

EbnEcn

One line diagram: 

Figure 1.27: Balanced three-phase system in Y configuration where the impedances z,z1, l1 are given.

that V n0n1 = 0 provided z 6=�(z1 + l1)/3.2

2Suppose the impedances z,z1, l1 all have positive resistance, which is the case in practice. Then this condition is automat-
ically satisfied. If 3z =�(z1 + l1) holds, however, then V n0n1 can take any value and Kirchhoff’s laws will be satisfied because
In0n1 + Ia + Ib + Ic = 0 will always be satisfied for any value of V n0n1 .
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Exercise 1.10 (Balanced Y loads). Consider the balanced three-phase system in Y configuration shown
in Figure 1.28 where a three-phase voltage source in positive sequence supplies m three-phase loads in
parallel. All transmission lines have a common admittance T = 1 and all loads have a common admittance

a0

c0 b0

Ea0n0

Ec0n0 Eb0n0

n0 n1

a1

c1 b1

am

cm bm

ll

l

nm

t

t

t

t

t

t

ll

l

One line diagram: 

Figure 1.28: Balanced three-phase system in Y configuration where a three-phase voltage source in posi-
tive sequence supplies m three-phase loads in parallel.

L. Consider the following 10m variables:

• a voltage and a current for each phase at each stage k = 1, . . . ,m:

Ṽk :=

2

4
V aknk

V bknk

V cknk

3

5 and Ĩk :=

2

4
Iaknk
Ibknk
Icknk

3

5 , k = 1, . . . ,m

for a total of 6m variables.

• a current for each phase from stage k�1 to stage k:

J̃k�1,k :=

2

4
Iak�1ak
Ibk�1bk
Ick�1ck

3

5 , k = 1, . . . ,m

for a total of 3m currents.

• a voltage between neutrals from stage k�1 to stage k: V nk�1nk , k = 1, . . . ,m, for a total of m voltages.

1. Show that V nk�1nk = 0 for k = 1, . . . ,m.

2. Show that

V aknk = bk Ea0n0 , V bknk = bk Eb0n0 , V cknk = bk Ec0n0 , k = 1, . . . ,m
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where bk is:

bk :=
rk

1rm
2 (r2�1)� rk

2rm
1 (r1�1)

rm
2 (r2�1)� rm

1 (r1�1)

and r1,r2 are given by:

r1,2 =
1
2

⇣
(L+2)±

p
L(L+4)

⌘
(1.50)

(Hint: Derive a recursion on Ṽk across stages k and solve the difference equation for each phase
a,b,c separately.)

3. Show that Ṽk, Ĩk, J̃k�1,k are balanced positive-sequence sets for k = 1, . . . ,m.

Chapter 1.3.

Exercise 1.11. Show that the instantaneous power in the time domain can be expressed in terms of real
and reactive powers in the phasor domain:

p(t) = |V ||I|(cosf + cos(2wt +qV +qI))

= P (1+ cos2(wt +qI))�Q sin2(wt +qI)

where f := qV �qI is the power factor angle, P := |V ||I|cosf is the real power and Q := |V ||I|sinf is the
reactive power.

Exercise 1.12 (Instantaneous power). Consider a balanced K-phase system with K � 3 and for k =
0, · · · ,K�1,

vk(t) =
p

2|V |cos
✓

wt +

✓
qV + k

2p
K

◆◆
, ik(t) =

p
2|I|cos

✓
wt +

✓
qI + k

2p
K

◆◆

Show that pKf (t) := ÂK�1
k=0 vk(t)ik(t) = KP where P := (1/T )

R T
0 v0(t)i0(t)dt = |V ||I|cos(qV � qI) and

T := 2p/w .

Exercise 1.13. Suppose z = 1/iwc (capacitance). Prove directly in time domain that the average delivered
power is 0 and the magnitude of the instantaneous power is Q.

Exercise 1.14 (Power meter). A power meter measures voltage and current magnitudes (rms values)
(|V |, |I|) and instantaneous power p(t) over 1 or more period T . In addition to reporting (|V |, |I|), it
usually reports real and reactive power (P,Q), apparent power |S|, and power factor as well. Explain how
to calculate these quantities.
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Exercise 1.15. Consider Figure 1.29.

1. Shunt capacitor is VAR source: Prove that in Figure 1.29(a), S2 = S1 + iwC|V |2.

2. Short transmission line is inductive: Prove that in Figure 1.29(b), if |V2| = |V1| then S2 = SH1 .

VC

s

S1 S2

(a) Shunt capacitor is VAR source

V1

I

L

V2S1 S2

(b) Short transmission line is induc-
tive

Figure 1.29: Conservation of power



Chapter 2

Transmission line models

An electric network consists of transmission lines that transfer power from generators to loads. In this
chapter we develop models for the terminal behavior of a three-phase transmission line that map the
voltage and current at one end of the line to those at the other end, in two steps. In Chapter 2.1 we derive
inductance and capacitance parameters of a transmission line as functions of line geometry. In Chapter
2.2 we use these parameters to develop circuit models for short, medium, and long-distance transmission
lines. These line models are building blocks for network models developed in later chapters.

2.1 Line characteristics

The alternating currents in the conductors of a three-phase transmission line create electromagnetic in-
teractions among them that couple the voltages on, and currents and charges in these conductors. In a
balanced operation however the interactions are as if the phases are decoupled. This allows per-phase
analysis where, in each phase, the line can be characterized as a combination of a series impedance and a
shunt admittance parameterized by:

series impedance per meter z := r + iwl W/m
shunt admittance per meter to neutral y := g+ iwc W�1/m

In this section we present models for these per-meter line parameters (r, l) and (g,c). In the next section
we will use these parameters to derive lumped-circuit models of the line. A three-phase line consists of
multiple wires and therefore we need to derive the series inductance l and shunt capacitance c due to
currents and charges in multiple wires. The key property that will be important in our derivation is that the
set of wires carry currents in both directions so that the currents and charges in all the wires sum to zero
at all times, as expressed in (2.2) and (2.5) below.

63
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2.1.1 Series resistance r and shunt conductance g

The direct current (dc) resistance of a conductor is

rdc :=
rT

A
W/m

where rT is called the conductor resistivity at temperature T and A is the cross-sectional area of the
conductor. Hence the per-meter resistance is inversely proportional to the size of the line. The alternating
current (ac) resistance (or effective resistance) of a conductor is defined to be

rac :=
Ploss

|I|2 W/m

where Ploss is the real power loss in W and |I| is the root-mean-square of the current in A in the conductor.
The current distributes uniformly throughout the conductor’s cross-sectional area for dc. For ac, the current
density is lower at the conductor center and higher near the conductor surface. This is called the skin
effect and is more pronounced at higher ac frequencies. As frequency increases, the real power loss, and
hence the ac resistance, also increase. At 60 Hz the ac resistance is at most a few percent higher than dc
resistance. These effects are modeled by the series resistance r in W/m in transmission line models.

Shunt conductance g in W�1/m accounts for real power loss between conductors or between conduc-
tors and ground, typically due to either leakage currents at insulators or to corona. Insulator loss depends
on the environment such as moisture level. Corona occurs when a strong electric field at a conductor
surface ionizes the air, causing it to conduct. It depends on meteorological conditions such as rain. Losses
due to insulator leakage and corona are typically negligible compared to resistance loss r|I|2. It is therefore
common to assume zero shunt conductance g in transmission line models.

2.1.2 Series inductance l

Roughly, the per-meter series inductance l in henrys/m of a wire is the proportionality constant between
the current i in a meter of the wire and the total magnetic flux linkages l , i.e., l (t) = li(t), where i(t) is
in ampere and l is in webers. We now study how the per-meter series inductance l of a wire depends on
the geometry of the transmission lines.

Single conductor. Consider a straight infinitely long wire of radius r with uniform current density in the
wire with a total current i (dropping t from the notation for simplicity). The total flux linkages lR per
meter of the wire within a radius R of the wire is related to the current i and the geometry by:

lR =
µ0

2p

✓
µr

4
+ ln

R
r

◆
i

where µ0 := 4p ⇥ 10�7 weber/ampere-meter is the permeability of free space, and µr is the relative per-
meability of the wire. If the conductor is nonmagnetic (e.g. copper or aluminum), then µr ⇡ 1. The first
term is due to flux linkages inside the wire and the second term is due to flux linkages outside the wire up
to radius R. The details are explained in [1, pp.54–59].
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Multiple conductors. We will calculate approximately the per-meter total flux linkages l1 of conductor 1
that carries a current i1. The total flux linkages l1 is determined not only by current i1, but also by currents
ik from other conductors k = 2, . . . ,n, that carry currents ik and are at distances d1k from the center of
conductor 1. See Figure 2.1.

conductor 1
radius r1

current i1

ik

Rk
d1k

R1 a

Figure 2.1: Per-meter total flux linkages in a volume within a radius R1 from the center of conductor 1
due to all conductors. Conductors k carry currents ik and their centers are distances d1k from the center of
conductor 1 and Rk from point a.

Denote by R1 the distance of point a from the origin (center of conductor 1) and by Rk the distance of
the center of conductor k from point a. Then the total flux linkages of conductor 1 is

l1 = lim
R1!•

µ0

2p

 
i1
✓

µr

4
+ ln

R1

r1

◆
+

n

Â
k=2

ik ln
Rk

d1k

!
(2.1)

where ln denotes the natural log. We make the key assumption

n

Â
k=1

ik(t) = 0 at all times t (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation to load and the
lines carrying the return currents follow the same physical path by design. The implication is that the
magnetic inductances due to all the lines cancel each other at infinity. Formally, we add � lnR1 Ân

k=1 ik
into the bracket on the right-hand side of (2.1) to get

l1 = lim
R1!•

µ0

2p

 
i1
✓

µr

4
+ ln

1
r1

◆
+

n

Â
k=2

ik ln
1

d1k

!
+

µ0

2p

n

Â
k=1

ik ln
Rk

R1
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As R1! •, ln(Rk/R1)! 0. Hence

l1 =
µ0

2p

 
i1 ln

1
r01

+
n

Â
k=2

ik ln
1

d1k

!

where r01 := r1e�µr/4 is the radius of an equivalent hollow conductor with the same flux linkages as the
solid conductor of radius r. For a nonmagnetic wire, µr ⇡ 1 and r01 ⇡ 0.78r1.

In general the total flux linkages lk of conductor k depends not only on current ik but currents ik0 in
other conductors as well, and is given by

lk =

✓
µ0

2p
ln

1
r0k

◆
ik + Â

k0 6=k

✓
µ0

2p
ln

1
dkk0

◆
ik0 (2.3)

where r0k := rke�µr/4. In vector form this is

l = Li

where l := (lk,k = 1, . . . ,n), i := (ik, i = 1, . . . ,n), and the (k,k0)-th entry of the n⇥n matrix L is

lkk0 =

( µ0
2p ln 1

r0k
if k = k0

µ0
2p ln 1

dkk0
if k 6= k0

The voltage drop vk(t) between two points on conductor k that are separated by an infinitesimal distance
is related to the rate of change of the total flux linkages lk(t) (Faraday’s law), i.e.,

vk(t) =
d
dt

lk(t) = Â
k0

lkk0
d
dt

ik0(t)

This relation, in the phasor domain, is used in Chapter 2.2.1 to derive a circuit model of a transmission
line. In a circuit model, the term

lkk :=
µ0

2p
ln

1
r0k

henrys/m

is called the self-inductance per meter of conductor k and the term

lkk0 :=
µ0

2p
ln

1
dkk0

henrys/m

is called the mutual inductances per meter between conductors k and k0. The larger the conductor rk the
smaller the self-inductance lk.

2.1.3 Shunt capacitance c

Roughly, the per-meter shunt capacitance c, in farads/m, of a wire is the proportionality constant between
the charge q, in coulombs/m, in a meter of the wire and the voltage v on the surface of the wire, i.e.,
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q(t) = cv(t). We now study how the per-meter shunt capacitance c of a wire depends on the geometry of
the transmission lines.

Consider the situation in Figure 2.1 with multiple conductors. A similar analysis to that in Chapter
2.1.2 shows that the voltage, with respect to a reference at infinity, at a point on the surface of conductor k
is

vk =

✓
1

2pe
ln

1
rk

◆
qk + Â

k0 6=k

✓
1

2pe
ln

1
dkk0

◆
qk0 (2.4)

where e is the permittivity of the medium (e = 8.854⇥ 10�12 farads/meter in free space and e ⇡ 1
farad/meter in dry air). As before, rk is the radius of conductor k and dkk0 is the distance between the
centers of conductors k and k0. Here qk is the total charge per unit length of wire k in coulombs/m. In
vector form this is

v = Fq

where v := (vk,k = 1, . . . ,n), q := (qk,k = 1, . . . ,n), and the (k,k0)-th entry of the n⇥n matrix F is

fkk0 =

(
1

2pe ln 1
rk

if k = k0
1

2pe ln 1
dkk0

if k 6= k0

Taking time derivatives relates the currents in the conductors to the rate of change in a voltage on the
surface of the conductor relative to the reference, v̇ = Fi(t). Let C := F�1. The diagonal entries ckk of
C are called self-capacitances per meter of conductor k and the off-diagonal entries ckk0 of C are called
mutual capacitances per meter between conductors k and k0, in farads/m. The larger the conductor rk the
larger the self-capacitance ckk.

The key assumption (among others) in deriving (2.4) is

n

Â
k=1

qk(t) = 0 at all times t (2.5)

Compare this assumption with the assumption (2.2), and the expressions (2.3) and (2.4).

Example 2.1. The voltage vk in (2.4) is the potential, or voltage with respect to the reference at infinity,
at a point on the surface of conductor k. The voltage difference v jk between two points on the surfaces of
two parallel conductors j and k that are on a plane perpendicular to conductor j is:

v jk := v j � vk =
1

2pe

 
q j ln

dk j

r j
� qk ln

d jk

rk
+ Â

k0 6= j,k
qk0 ln

dkk0

d jk0

!

2.1.4 Balanced three-phase line

Consider the simplest model of a symmetric three-phase transmission line in balanced operation, as shown
in Figure 2.2, with the assumptions:
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1. the conductors are equally spaced at D and have equal radii r;1

2. ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. qa(t)+qb(t)+qc(t) = 0 at all times t.

D D

D

r

Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0

H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.
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Consider any point p that is equidistant from the centers of the conductors a,b,c, e.g., the point at the
center of the triangle in Figure 2.2. The potential, or the voltage relative to the reference point at infinity,
at this point p can be shown to be

vp =
1

2pe

✓
qa ln

1
dpa

+qb ln
1

dpb
+qc ln

1
dpc

◆
(2.6)

where dpa = dpb = dpc are the distances between p and the centers of the conductors. Since qa + qb +
qc = 0 we have vp = 0, and hence p has the same potential as the reference point at infinity and can
therefore be taken as the reference point. We will construct an imaginary geometric line parallel to the
conductors pass through the equidistance point from these conductors. Every point on this line is the
reference potential. By default we will pick this as the neutral potential that defines the phase-to-neutral
voltages. The current supplied to the transmission line capacitance is called the charging current and the
corresponding capacitance is also called the line charging. Figure 2.3 shows the corresponding circuit
model of a transmission line. When the phase a line-to-neutral voltage is Van the phase a charging current

a

c b

n

c

c c

F/m to neutral 

Figure 2.3: Circuit model of the cross section of a balanced three-phase transmission line.

is

Ia,charging = iwcVan A/m

from phase a conductor to neutral.

2.2 Line models

Consider a three-phase transmission line in balanced operation in sinusoidal steady state, modeled as in
Figure 2.3. A key conclusion of Chapter 2.1.4 is that for balanced three-phase lines, we can analyze each
phase separately. Consider now a transmission line on one of the phases. Let

series impedance per meter z := r + iwl W/m
shunt admittance per meter to neutral y := g+ iwc W�1/m

where the per-meter resistance r > 0 and conductance g > 0 depend on the material and size of the line,
and the per-meter inductance l > 0 and parameter c > 0 of the line can be calculated as in Chapters 2.1.2–
2.1.4. In this section we derive two equivalent models of a balanced three-phase transmission line. The
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first model represents the terminal behavior, i.e., the mapping of the voltage and current between one end
of the line and those at the other end, by a transmission matrix in (2.9) below. The second model represents
the terminal behavior of the line by a linear circuit with series impedance and shunt admittances given in
(2.14) below.

2.2.1 Transmission matrix

Distributed-element model. We start by deriving the V -I relations between two ends of a transmission line.
Figure 2.4 shows a per-phase model of a balanced three-phase line of length `. The voltages are phase
(line-to-neutral) voltages as illustrated in Figure 2.3. We will call the left end the sending end and the right
end the receiving end. When we apply a voltage V1, with respect to neutral, at the sending end driving a
current I1 towards the receiving end, the voltage drops and the current leaks from the sending end to the
receiving end so that the voltage V (x) and current I(x) at each point x of the line vary. We will derive a
relation between the sending end (V1, I1) and the receiving end (V2, I2) by solving for (V (x), I(x)) in terms
of (V2, I2) for all 0 x `.

V1

I1
zdx

V2V(x)V(x)+dV ydx

I2I(x)

dI

dx x
ℓ

Figure 2.4: Per-phase model of a balanced three-phase line of length ` with impedance parameters z,y.

To this end consider the infinitesimal segment of length dx at a distance x from the receiving end.
This segment is modeled by the circuit with series impedance zdx and shunt admittance ydx to neutral as
shown in Figure 2.4. Let the voltage and current at point x be V := V (x) and I := I(x) respectively. Let
the corresponding quantities at point x+dx be V (x)+dV and I(x)+dI. Applying Kirchhoff’s laws to the
segment, we have

dV = zI(x) dx
dI = (V (x)+dV )y dx ⇡ yV (x) dx

where the approximation results from ignoring the second-order term dV dx. Hence we have
"

dV
dx
dI
dx

#
=


0 z
y 0

�
V
I

�
(2.7)

Transmission matrix. The ordinary differential equation (2.7) can be easily solved using standard
method (see below for details), and the general solution is:


V (x)
I(x)

�
= U


egx 0
0 e�gx

�
k1
k2

�
(2.8a)
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for some constants k1,k2, where

U :=


Zc �Zc
1 1

�
and U�1 :=

1
2Zc


1 Zc
�1 Zc

�
(2.8b)

Here

Zc :=
r

z
y

Wm�1 and g :=
p

zy m�1 (2.8c)

are called the characteristic impedance and propagation constant of the line respectively. At x = 0, V (0) =
V2 and I(0) = I2. From (2.8) we have


V2
I2

�
= U


k1
k2

�

and hence

V (x)
I(x)

�
= U


egx 0
0 e�gx

�
k1
k2

�
= U


egx 0
0 e�gx

�
U�1


V2
I2

�

The sending-end voltage and current are therefore related to the receiving-end (V2, I2) as

V1
I1

�
= U


eg` 0
0 e�g`

�
U�1


V2
I2

�

Expanding, we have

V1
I1

�
=


cosh(g`) Zc sinh(g`)

Z�1
c sinh(g`) cosh(g`)

�
V2
I2

�
(2.9)

where coshx := (ex + e�x)/2 and sinhx := (ex� e�x)/2. This defines a linear mapping that maps the
voltage and current (V2, I2) at the receiving end to the voltage and current (V1, I1) at the sending end. The
matrix in (2.9) is called a transmission matrix.

The ratio V1/I1 at the sending end is called the driving-point impedance. It is the equivalent impedance
across the two sending-end terminals.

Example 2.2 (Driving-point impedance). Consider the terminal model (2.9) of a transmission line. Sup-
pose the receiving end is connected to an impedance load Zl . Show that the driving-point impedance V1/I1
is equal to the characteristic impedance Zc of the line under one of the following conditions:

• if the load is matched to the line, i.e., Zl = Zc; or

• if the line length ` grows to infinity, since the line parameters satisfy r,x,g,c > 0.

The second condition implies that as the line grows in length its impedance comes to dominate the load
impedance Zl .
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Solution. Since V2 = ZlI2, we have from (2.9) that when Zl = Zc

V1

I1
= Zc

cosh(g`)+ sinh(g`)

sinh(g`)+ cosh(g`)
= Zc

For the second case, we have from (2.9)

V1

I1
= Zc

Zl cosh(g`)+Zc sinh(g`)

Zl sinh(g`)+Zc cosh(g`)
= Zc

Zl +Zc tanh(g`)

Zl tanh(g`)+Zc

Now g =
pzy =:

p
ĝ where ĝ := (rg�w2lc)+ iw(rc+gl). Note that Imĝ > 0 and hence \ĝ 2 (0,p) and

g 2 (0,p/2). If we write g =: a + ib then a > 0. Hence

cosh(g`) =
1
2

⇣
eg` + e�g`

⌘
=

1
2

⇣
e(a+ib )` + e�(a+ib )`

⌘

sinh(g`) =
1
2

⇣
eg`� e�g`

⌘
=

1
2

⇣
e(a+ib )`� e�(a+ib )`

⌘

and

tanh(g`) =
e(a+ib )`� e�(a+ib )`

e(a+ib )` + e�(a+ib )`
=

1� e�2(a+ib )`

1+ e�2(a+ib )`
! 1 as `! •

Hence V1/I1! Zc as `! •.

Example 2.3 (Matched load). Suppose the line is terminated in its characteristic impedance Zc, i.e., V2 =
ZcI2. Then (2.9) yields

V1 = (cosh(g`)+ sinh(g`))V2 = V2 eg`

I1 = (cosh(g`)+ sinh(g`)) I2 = I2 eg`

Therefore the driving-point impedance V1/I1 is also the characteristic impedance Zc of the line. Moreover
the ratio of the receiving to sending end voltages and currents are

V2

V1
=

I2

I1
= e�g`

The ratio of the receiving power to the sending power is:

�S21

S12
=

V2I⇤2
V1I⇤1

= e�g`
⇣

e�g`
⌘⇤

Writing g =
pzy =

p
(rg�w2lc)+ iw(rc+gl) =: a + ib , we have

�S21

S12
= e�2a`

Since e�2a` is real, the powers have the same phase angle \(�S21) = \S12 =: q . This implies that the
transmission efficiency has the same ratio in terms of real power �P21 received and real power P12 sent:

�P21

P12
=
�S21 cosq
S12 cosq

= e�2a`
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Hence for an impedance load that is matched to the line impedance Zc, the transmission efficiency h
decreases exponential in the line length `. For high-voltage transmission lines, a ⇡ 0 so the loss is small
and h ⇡ 1.

Indeed, for a lossless line, r = g = 0. Then z = iwl and y = iwc. Hence

Zc =

r
z
y

=

r
l `
c`

=

r
L
C

is real, where L is the total inductance of the line and C the total capacitance of the line, and

g =
p

zy = iw
p

lc

is purely imaginary (a = 0). The transmission efficiency is h = �P21/P12 = 1. We will study lossless
lines in more detail in Chapter 2.2.4.

Solution of (2.7). First we note that even though (V, I) and the parameters (y,z) are complex variables,
the variable x (distance from terminal 2) is a real variable. Hence the ordinary differential equation (ode)
(2.7) can be solved in the same way as an ode in the real domain. To see this consider a general ode:

ż :=
dz
dt

= Mz (2.10)

where z := x+ jy 2Cn with x,y in R
n and M := A+ jB 2Cn⇥n with A,B in R

n⇥n, with the interpretation
ẋ+ jẏ = (A+ jB)(x+ jy). Rewrite this in the real domain:


ẋ
ẏ

�
=


A �B
B A

�

| {z }
M̃


x
y

�
(2.11)

Two matrices

M = A+ jB and M̃ =


A �B
B A

�

are equivalent, written M$ M̃, in the sense that for any z = x+ iy with x,y 2 R
n,


Re(Mz)
Im(Mz)

�
= M̃


x
y

�

Since

M2 =
�
A2�B2� + j (AB+BA) and M̃2 =


A2�B2 �(AB+BA)
AB+BA A2�B2

�

we have M̃2 $ M2, and by induction M̃k $ Mk for all k. Hence eM̃ $ eM. This implies that a trajectory
z(t) 2 C

n is a solution of (2.10) if and only if (x(t),y(t)) 2 R
2n with z(t) =: x(t)+ iy(t) is a solution of

(2.11). Hence solving (2.11) using M̃ in the real domain is equivalent to solving (2.10) using M directly
in the complex domain.
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We now solve the ode (2.7). Let

A :=


0 z
y 0

�

Then the eigenvalues of A are ±g where g :=pyz is the propagation constant defined in (2.8c). Recall the
characteristic impedance of the line Zc :=

q
z
y also defined in (2.8c). The corresponding eigenvectors are

(any vectors proportional to) the columns of the matrix U defined in (2.8b). Let U�1 be its inverse. Since
AU = Udiag(g,�g), if we define


Ṽ (x)
Ĩ(x)

�
:= U�1


V (x)
I(x)

�
(2.12)

then

d
dx


Ṽ
Ĩ

�
= U�1 d

dx


V
I

�
= U�1A


V (x)
I(x)

�
= U�1AU

✓
U�1


V (x)
I(x)

�◆
= diag(g,�g)


Ṽ (x)
Ĩ(x)

�

i.e., Ṽ and Ĩ are decoupled. Hence

Ṽ (x) = k1egx and Ĩ(x) = k2e�gx

for some constants k1,k2. Then (2.12) implies that the general solution of (2.7) is (2.8).

2.2.2 Lumped-element P-circuit model

If we are only interested in the terminal voltages and currents of a line, then we can represent the line by a
lumped-circuit model as shown in Figure 2.5 that consists of a series impedance Z0 and a shunt admittance
Y 0/2 at each end of the line. This is called the P model or P-circuit model of a transmission line. We now

V1

I1

V2

I2

y'
2

zdx

y'
2

Figure 2.5: Lumped-circuit P model of a transmission line.

derive the parameters (Z0,Y 0) in the P model in terms of line characteristics (Zc,g).

Applying Kirchhoff’s laws we have

I1 =
Y 0

2
V1 +

Y 0

2
V2 + I2

V1�V2 = Z0
✓

Y 0

2
V2 + I2

◆



Draft: PSA December 13, 2024 75

Hence

V1
I1

�
=


1+Z0Y 0/2 Z0

Y 0(1+Z0Y 0/4) 1+Z0Y 0/2

�
V2
I2

�
(2.13)

Comparing (2.13) and (2.9) we find that the P model in Figure 2.5 is given by:

Z0 = Zc sinh(g`) =

r
z
y

sinh(g`) = Z
sinh(g`)

g`
(2.14a)

Y 0

2
=

1
Zc

cosh(g`)�1
sinh(g`)

=
1
Zc

sinh(g`/2)

cosh(g`/2)
=

Y
2

tanh(g`/2)

g`/2
(2.14b)

where Z := z` is the total series impedance of the line and Y := y` is the total shunt admittance to neutral
of the line.

When |g`|⌧ 1 then sinh(g`)/(g`) ⇡ 1 and tanh(g`/2)/(g`/2) ⇡ 1, in which case the P model in
Figure 2.5 can be approximated by the total series impedance Z and total shunt admittance Y to neutral of
the line.

In summary each phase of a balanced three-phase transmission line can be modeled as follows:

• Long line (` > 150 miles approximately): Use either (2.9) or the P circuit model with Z0 and Y 0

given by (2.14).

• Medium line (50 < ` < 150 miles approximately): Use the P circuit model with Z := z` and Y := y`
instead of Z0 and Y 0. Here Z = R+ iwL is the total series impedance of the line and Y = iwC is the
total shunt admittance to neutral of the line. In particular, for medium lines, the shunt resistance is
negligible.

• short line (` < 50 miles approximately): Use the P circuit model with Z only and neglect Y .

2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1 are (from Kirchhoff’s
laws):

S12 := V1IH
1 =

✓
1
Z0

◆H �
|V1|2�V1V H

2
�

+

✓
Y 0

2

◆H
|V1|2

S21 := V2(�I2)
H =

✓
1
Z0

◆H �
|V2|2�V2V H

1
�

+

✓
Y 0

2

◆H
|V2|2

They are not negatives of each other because of power loss along the line. Indeed the total complex power
loss is their sum:

S12 +S21 =

✓
1
Z0

◆H
|V1�V2|2 +

✓
Y 0

2

◆H �
|V1|2 + |V2|2

�
= Z0|Is

12|2 +

✓
Y 0

2

◆H �
|V1|2 + |V2|2

�
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where Is
12 denotes the current through the series impedance Z0. The first term on the right-hand side is

loss due to series impedance and the last term are losses due to shunt admittances of the line. Suppose
Z0 = Rs + iXs and the shunt admittance is purely capacitive, i.e., Y 0 = iBm with Rs,Xs,Bm > 0. Then, over
the transmission line,

real power loss Re(S12 +S21) = Rs|Is
12|2

reactive power loss Im(S12 +S21) = Xs|Is
12|2 �

Bm

2
�
|V1|2 + |V2|2

�

Remark 2.1 (High voltage reduces line loss). Consider a load supplied by a source through a transmission
line modeled by a series impedance R+ iX and zero shunt admittances. Suppose the load draws an active
power Pload with power factor cosf at a specified voltage magnitude |Vload|. It can be shown that, given a
desired active load power Pload, the active line loss Pline is inversely proportional to the square of the load
voltage magnitude |V2| and its power factor cosf (Exercise 2.7):

Pline = R|Iload|2 = R
P2

load
|V2|2 cos2 f

Therefore a higher voltage (magnitude) reduces line loss.

Note that the higher voltage refers to the voltage |V2| across the load (and eventually the source voltage
|V1|), not the voltage across the transmission line which is |V1�V2|; see Figure 2.5. It is derived in
Example 1.8 that, given a desired load power, the active line loss is inversely proportional to the load
voltage magnitude |V2|, rather than |V2|2. This is because, in Exercise 2.7, the line resistance R is given
and independent of load power and voltage |V2|, whereas, in Example 1.8, the line resistance R is chosen
to be proportional to |V2| (reducing the dependence of line loss R|Iload|2 from |V2|2 to |V2|).

2.2.4 Lossless line

In this subsection we look at some properties of a lossless line, i.e., when r = g = 0. A lossless line is an
important model because a high-voltage transmission line typically has very small power loss compared
with the power flow on the line, and can be modeled as a lossless line. As noted above we have

Zc =

r
z
y

=

r
iwl
iwc

=

r
l
c

W

g =
p

zy =
p

(iwl)(iwc) = iw
p

lc =: ib m�1

with b := w
p

lc. Therefore the characteristic impedance Zc is purely resistive while the propagation
constant g is purely reactive. The characteristic impedance Zc is called a surge impedance for a lossless
line. This implies

cosh(gx) = cos(bx) and sinh(gx) = isin(bx)

P-circuit model. Substituting Zc and g into (2.9) the transmission matrix reduces to

V (x)
I(x)

�
=


cosh(gx) Zc sinh(gx)

Z�1
c sinh(gx) cosh(gx)

�
V2
I2

�
=


cos(bx) iZc sin(bx)

iZ�1
c sin(bx) cos(bx)

�
V2
I2

�
(2.15)
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for x 2 [0,`]. The circuit elements Z0 and Y 0 in the P circuit model of a transmission line reduces to (from
(2.14)):

Z0 = Zc sinh(g`) = iZc sin(b`) =: iX W (2.16a)
Y 0

2
=

Y
2

tanh(g`/2)

g`/2
=

Y
2

tan(b`/2)

b`/2
=: iwC0

2
W�1 (2.16b)

where Y := iwc` and C0 := c`(tan(b`/2)/(b`/2)). If ` is small then C0 ⇡ c`. When b` < p radian, both
Z0 > 0 and Y 0 > 0, i.e., the series impedance is purely inductive and the shunt admittances are purely
capacitive. In practice, for overhead lines, 1/

p
lc⇡ 3⇥108 ms�1. At 60 Hz (using b := w

p
lc)

p
b

=
p

2p(60)
p

lc
⇡ 2,500 km

Hence a lossless overhead transmission line less than 2,500 km can be modeled by the simple circuit in
Figure 2.6 where X and C0 are given in (2.16). It is a model for either a single-phase line or the phase-to-

V1

I1 jx

V2

I2

2
ωC'j

2
ωC'j

Figure 2.6: P circuit model for a lossless line with length ` < p/b .

neutral of a balanced three-phase line.

Voltage profile. Usually power must be delivered to a load at a specified nominal voltage magnitude
|V2| at the load. To see how the voltage magnitude changes along a line from the source x = ` to the load
x = 0, we determine the voltage V (x) for x 2 [0,`] using (2.15):

V (x) = V2 cos(bx) + iZc I2 sin(bx) (2.17)

Suppose the line terminates at an impedance load Zload := Rload + iXload. Then the voltage V (x) at each
point x depends on the load impedance because V2 = ZloadI2. There are four cases of load impedance:

1. No load I2 = 0: V (x) = V2 cos(bx) is real. Hence the voltage magnitude V (x) increases from the
source at x = ` to the end of the line at x = 0 as long as b` < p/2 radian.

2. Surge impedance load Zload = Zc: The voltage magnitude |V (x)| is constant. Moreover the power
delivered S(x) at every point x 2 [0,`] is real and constant |V2|2/Zc, so only real power is delivered.
See Exercise 2.4.
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3. Full load: Since I2 = V2/Zload we have

V (x) =

✓
cos(bx) + i Zc

Zload
sin(bx)

◆
V2

=

✓
cos(bx)+

ZcXload

|Zload|2
sin(bx) + i ZcRload

|Zload|2
sin(bx)

◆
V2 (2.18)

In Exercise 2.5 we derive for special cases sufficient conditions under which the voltage magnitude
|V (x)| decreases from the source at x = ` to the load Zload at x = 0.

4. Short circuit V2 = 0: V (x) = iZc I2 sin(bx). Hence the voltage magnitude |V (x)| decreases from the
source at x = ` to the load at x = 0 as long as b` < p/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude towards the load (case

no load I2 = 0

full load

SIL z load = zc 

short circuit V2 = 0

|V(x)|

x = ℓ x = 0

Figure 2.7: Voltage magnitude |V (x)| on a lossless line.

3 above) can be problematic because loads are generally designed to work with specific voltages. As
mentioned above low load voltage also increases line loss in the network. Voltages are regulated tightly
around their nominal values through various voltage compensation devices in generating units and inside
the network.

Example 2.4 (Steady-state stability limit). To derive the power delivered to a generic load we have from
(2.16) that

I2 =
V1�V2

iX
� iwC0

2
V2

Hence the complex power delivered is

�S21 = V2(I⇤2 ) = �
✓

|V2|2�V2V ⇤1
�iX

� iwC0

2
|V2|2

◆

and the real power delivered is

�P2 =
|V1||V2|

X
sind
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where d :=\V1�\V2 is the angle difference between V1 and V2. Hence the maximum power is delivered
on a lossless line if d = p/2 and the maximum power would have been |V1||V2|/X . This d = p/2 is called
the steady-state stability limit. If the load exceeds this limit, there is no solution for d for this equation. In
practice a transmission network operates with d ⌧ p/2 because a line is typically limited by three other
factors. First the voltage drop from the source to the load must be small, e.g., |V2|/|V1|� 95%. Second d
is usually limited to 30� or 35� by transient stability. Third d can be limited by the thermal rating of the
conductor insulation materials.

2.2.5 Short line

Consider a three-phase transmission line connecting two buses in balanced operation so we can analyze
each phase separately. Assume the line is short and can be modeled by a P equivalent circuit with only
a series impedance Z = R + iX and no shunt admittances. We explain some properties of complex power
transfer over this line.

Let Vi and Ii be the voltages and currents at buses i = 1,2. Let Si j, i, j = 1,2, be the sending-end
complex power from bus i to bus j, i 6= j, and Ii j be the complex current from bus i to bus j. Then

Si j = ViI⇤i j = Vi
V ⇤i �V ⇤j

Z⇤
=

1
Z⇤
�
|Vi|2�ViV ⇤j

�
(2.19)

If the voltage magnitudes |Vi|, i = 1,2, are fixed, the branch powers depend only on the power angle
qi j := qi�q j:

Si j =
1

Z⇤
⇣
|Vi|2� |Vi||Vj|e jqi j

⌘

Taking the sum of the branch powers in (2.19), the complex loss over the line is

S12 +S21 =
|V1�V2|2

Z⇤
= Z |I12|2

where I12 is the current from buses 1 to 2. In particular the real power loss is P12 +P21 = R|I12|2.

Nose curve and voltage collapse. Suppose bus 1 has a generator with a fixed V1 := |V1|\0� supplying a
load at bus 2 through a line with impedance Z. Let the power supplied to the load be �S21 = |S21|(cosf +
isinf) =: P(1+ i tanf) where P > 0 is the active load power and f is the power factor angle. The power
flow equation (2.19) hence becomes

P(1+ i tanf) = � 1
Z⇤
⇣
|V2|2� |V2| |V1|eiq21

⌘
(2.20)

where q21 :=\V2�\V1 =\V2. Voltage support is typically available on the generator side, so we assume
|V1| is fixed even when the load power varies.2 Voltage support may not be available on the load side

2An ideal voltage source whose complex bus voltage is fixed regardless of its power generation is called an infinite bus.
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and we are interested in the behavior of the load voltage |V2| as the active load power P increases while
keeping the power factor angle f constant.

Fix V1 and f . For each P, (2.20) defines two real equations in two variables |V2| and q21. For this
simple system we can analytically solve for |V2| for each P. Depending on the value of P, there may be
zero, one, or two solutions for |V2|. As P varies, the solutions |V2| trace out a curve called a nose curve.
As P increases from zero with fixed power factor angle f , there are exactly two solutions for |V2|, one
with a high voltage and the other with a low voltage. The difference between the high-voltage solution
and the low-voltage solution of |V2| decreases until they coincide. This is the point where the active load
power P = Pmax is maximum and represents the limit of power transfer from the voltage source V1 through
the transmission line Z to the load. If P increases further, real solutions for |V2| cease to exist. This
phenomenon is called voltage collapse. This is studied in Exercise 2.9. See Chapter ?? for discussions on
voltage collapse beyond the infinite bus model.

Short and lossless line R = 0. Suppose the series resistance is negligible (which is a reasonable approx-
imation for high voltage transmission lines), Z = iX . Then (2.19) reduces to

Si j = i 1
X
�
|Vi|2�ViV ⇤j

�

Hence

P12 =
|V1||V2|

X
sinq12 = �P21 (2.21)

Q12 =
1
X
�
|V1|2� |V1||V2|cosq12

�

Q21 =
1
X
�
|V2|2� |V1||V2|cosq12

�

where q12 := \V1�\V2. This has the following implications.

1. Transmission efficiency. The transmission efficiency h := �P21/P12 = 1 since there is zero real
power loss. The maximum power transfer |V1||V2|/X is proportional to voltage magnitude product.
This is another reason why transmission networks tend to operate at very high voltage levels. Indeed
doubling the voltage increases the maximum power transfer capability by fourfold.

2. DC power flow model. When voltage magnitudes are fixed, the real power depends only on the
power angle q12. When the power angle is small |q12| ⇡ 0, sinq12 ⇡ q12 and the real powers Pi j
are roughly linear in the phase angles (q1,q2). These assumptions are called the DC power flow
approximation (R = 0, fixed |Vi|, small |qi j|, ignore Qi j); see Chapter 4.6.2 for more details.

3. Decoupling. When |q12|⇡ 0, there is a decoupling between real and reactive powers:

∂P12

∂q12
= �∂P21

∂q12
=

|V1||V2|
X

cosq12 ⇡
|V1||V2|

X
∂P12

∂ |Vi|
= �∂P21

∂ |Vi|
=

|Vj|
X

sinq12 ⇡ 0
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Hence the real powers Pi j depend strongly on q12 but not on the voltage magnitudes |Vk|.
On the other hand

∂Qi j

∂q12
=

|V1||V2|
X

sinq12 ⇡ 0

i.e., the reactive powers Qi j depend weakly on the power angle q12. Moreover

∂Q12

∂ |V2|
= � |V1|

X
cosq12 < 0,

∂Q21

∂ |V2|
=

1
X

(2|V2|� |V1|cosq12)

Typically |V1| ⇡ |V2| and hence the second expression above is positive. Hence to maintain a high
load voltage |V2|, we should increase Q21 and/or decrease Q12, i.e., the load should supply reactive
power and the generation should absorb reactive power. This motivates the use of reactive power to
regulate voltage magnitudes. The decoupling property holds in a network setting as well and leads
to a fast algorithm to solve power flow problems; see Chapter 4.4.3.

4. Out-of-step generators. When generators are not synchronized, i.e., they operate with slightly dif-
ferent frequencies, the long-run average active power transmitted across a lossless line is zero. To
see this, consider voltages at buses 1 and 2 given by

v1(t) =
p

2|V1|cos(w 0t +q1)

v2(t) =
p

2|V2|cos(wt +q2)

where the frequency w 0 at bus 1 is slightly out of step, with w 0 ⇡ w . Write

v1(t) =
p

2|V1|cos(wt +q 01(t))

with a slowly-varying phase q 01(t) := q1 +(w 0 �w)t. If the phase q 01(t) varies slowly enough, we
can still use the steady-state expressions above as reasonable approximations of powers. Then the
short-term active power is given by (from (2.21)):

P12 =
|V1||V2|

X
sin
�
(w 0 �w)t +q12

�

Hence the long-term average of active power transfer is zero. This is not only ineffective, but highly
undesirable because the line current can be very large. In practice protective devices would remove
the out-of-step generator.

2.3 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]; see also [2, Chapter 4]. We develop line characteristics in Chapter 2.1 based on basic results in
physics that we do not elaborate. For example, the derivation of shunt capacitance c of a transmission line
in Chapter 2.1.3 is explained in [1, Chapters 3.7–3.8] or [2, Chapters 4.8–4.12]). The expression (2.6) for
the potential vp at the center of a balanced three-phase transmission line is from [1, Example 3.8, p. 79].
Some of the materials on lossless lines follow [2].
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2.4 Problems

Chapter 2.1.

Exercise 2.1. Consider the simplest model of a symmetric three-phase transmission line in balanced op-
eration, as shown in Figure 2.2, with the assumptions

• the conductors are equally spaced at D and have equal radii r;

• ia(t)+ ib(t)+ ic(t) = 0 at all times t;

• qa(t)+qb(t)+qc(t) = 0 at all times t.

where ik(t) are currents and qk are the total charge per unit length of wire k in coulombs/meter. Show that
the per-phase inductance per meter of the three-phase transmission line is

l =
µ0

2p
ln

D
r0

(in H/m)

where r0 := re�µr/4, and the per-phase capacitance per meter is

c =
2pe

ln(D/r)
(in F/m)

Chapter 2.2.

Exercise 2.2. Consider the per-phase transmission line model described by (2.9). We are to determine the
line characteristic impedance Zc and propagation constant g` from two measurements:

1. Open-circuit test. The load side is open-circuited so that I2 = 0 and the driving-point impedance is
measured as

Zoc :=
V1

I1

2. Short-circuit test. The load side is short-circuited so that V2 = 0 and the driving-point impedance
is measured as

Zcc :=
V1

I1

Derive Zc and g` in terms of Zoc and Zsc (sign ambiguity is fine).
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Exercise 2.3 (Lumped-circuit P model). Consider a general transmission matrix T that maps the receiving-
end voltage and current (V2, I2) to those (V1, I1) at the sending-end:


V1
I1

�
=


a b
c d

�

| {z }
T


V2
I2

�

1. Show that the transmission matrix T in (2.9) has the property ad�bc = 1.

2. Suppose b 6= 0 in T . Show that the condition ad�bc = 1 is necessary and sufficient for interpreting
the transmission matrix T as a P equivalent circuit consisting of a series impedance Z 6= 0 and shunt
admittances (line charging) Y1 and Y2 at the sending and receiving ends respectively (note that Y1
may not necessarily equal Y2).

Exercise 2.4 (Surge impedance load (SIL) on lossless line.). Consider a lossless line with r = g = 0 that
terminates in an impedance load that is equal to the characteristic (surge) impedance Zload = Zc =

p
l/c W

of the line. The power delivered by a lossless line to the resistive load Zc is called the surge impedance
loading (SIL).

1. Show that the voltage magnitude |V (x)| is constant over x 2 [0,`].

2. Calculate SIL.

Exercise 2.5 (Voltage drop along lossless line). We have derived in Chapter 2.2.4 the voltage V (x) at each
point x 2 [0,`] along a lossless line terminating at an impedance load Zload = Rload + iXload to be (from
(2.18)):

V (x) =

✓
cos(bx)+

ZcXload

|Zload|2
sin(bx) + i ZcRload

|Zload|2
sin(bx)

◆
V2

Assume b` < p/4. Prove the following:

1. If the load is purely resistive Zload = Rload then |V (x)| is an increasing function for all x 2 [0,`] (i.e.,
the voltage magnitude |V (x)| drops from the source at x = ` to the load Zload at x = 0) if and only if
Rload  Zc.

2. If the load is purely inductive Zload = iXload with Xload > 0 then |V (x)| is an increasing function for
all x 2 [0,`] if and only if

Xload 
sin(2b`)

1� cos(2b`)
Zc

3. If Zload = Rload(1+ i) then |V (x)| is an increasing function for all x 2 [0,`] if and only if

Rload 
 s

1+
1

sin2(2b`)
� cot(2b`)

!�1

Zc
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Exercise 2.6 (Voltage, reactive power compensation). Consider a generator with voltage and power in-
jection (Vj,s j) supplying a load with voltage and power injection (Vk,sk) through a transmission line
parametrized by series and shunt admittances

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Power balance at the load bus k is (with

ys
k j = ys

jk)

sk =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 (2.22)

Let ys
k j =: gs

k j + ibs
k j and ym

k j =: gm
k j + ibm

k j and suppose gs
k j � 0, bs

k j < 0 (inductive) and gm
k j � 0, bm

k j �
0 (capacitive). Let sk =: pk + iqk, and Vi =: |Vi|eiqi , i = j,k. Use (2.22) to express the receiving real
power �pk and receiving reactive power �qk in terms of the voltage magnitudes |Vj|, |Vk|, and the angle
difference qk j := qk�q j.

Suppose ym
k j = 0 (zero shunt), gs

jk = 0 (loss line), and 0 < |qk j| p/2 (power flow solution stability).

1. Show that real power is delivered to the load (i.e., �pk > 0) if and only if �p/2 qk j < 0.

2. The next few questions study the relation between load voltage magnitude |Vk| and reactive power
injection qk. Show that:

(a) For DC load (i.e., qk = 0), we must have |Vk| < |Vj|, i.e., the load voltage magnitude must be
smaller than the generator voltage magnitude.

(b) On the other hand, |Vk| = |Vj| implies that qk > 0, i.e., the load must inject reactive power to
maintain a high load voltage magnitude.

(c) If �qk > 0 (i.e., the load withdraws reactive power), then |Vk| < |Vj|cosqk j (i.e., load voltage
magnitude will be further suppressed).

3. The power factor angle is fk := tan�1 (qk/pk) and the power factor PF is cosfk. Show that

1 + tanfk tanqk j =
|Vk|

|Vj| cosqk j

When |Vk| = |Vj| cosqk j, what is the PF and is the load withdrawing or injecting real power?

4. Suppose further that Vj := 1\0� and bs
jk = �1. Suppose that the load voltage magnitude |Vk| must

lie between [1� e,1+ e].

(a) At unity power (qk = 0), find the maximum received power �pk and the corresponding load
voltage phasor Vk = |Vk|eiqk . Conclude that the maximum received real power satisfies �pk 
1
2 .

(b) Show that the maximum received real power is �pk = (1 + e) when the load must inject the
reactive power qk = (1� e)2.
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V1

I1

S12 S21

V2

I2

y
2

y
2

z

V2V1

S12 S21

z
2
y

2
y,,( )

One line diagram: 

Figure 2.8: Two buses connected by a transmission line.

Exercise 2.7 (Voltage, line loss and voltage drop). Consider two buses 1 and 2 connected by a transmission
line modeled by a per-phase P circuit model with series impedance Z and shunt admittance (line charging)
Y/2 at each end of the line, as shown in Figure 2.8. Let S12 be the sending-end complex power from buses
1 to 2 and S21 be the sending-end complex power from buses 2 to 1 (or, equivalently,�S21 is the receiving-
end complex power at bus 2). Note that the direction of load current I2 is opposite to the convention we
used in Chapter 2.2.2.

1. Calculate the complex line loss as a function of voltages (V1,V2). Can you express the complex line
loss in terms of the load voltage and current (V2, I2) instead?

2. Suppose bus 2 is connected to a load that draws a fixed active power Pload with a fixed power factor
cosf at a fixed voltage magnitude |V2|. Suppose Z = R + iX and the shunt admittance Y/2 = iB/2
is purely reactive (i.e., zero conductance). Calculate the active power loss Pline over the line in terms
of the active load power Pload, the power factor angle f , and the load voltage |V2|.

For the following subproblems, assume Y = iB = 0 (short transmission line).

3. Given the fixed active load power Pload, show that the active line loss Pline derived in part 2 of the
problem is inversely proportional to the squared load voltage |V2|2 and to the squared power factor
cos2 f .

4. Suppose now the load at bus 2 is an electric vehicle that draws an active power of Pload = 20 kW with
unity power factor at a voltage magnitude of |V2| = 200V. Calculate the ratio of the active power
loss to the active load power if R = 0.04W (wires with gauge number 6 at 100ft).

5. What is the magnitude of the voltage drop |V1�V2| across the transmission line (the series impedance
Z), relative to the load voltage |V2|, in terms of Z,Pload, |V2|,cosf?

Exercise 2.8. Consider the short-line model S12 = (Z⇤)�1 �|V1|2�V1V ⇤2
�

of a transmission line with Z :=
y�1eif that connects bus 1 and bus 2. Let V1,V2 be the complex voltages at buses 1 and 2 respectively and
assume |V1| = |V2| = 1. Let q12 := \V1�\V2.
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1. For what value of q12 is S12 real and nonzero?

2. What is the maximum real power �P21 that can be received at bus 2 and what is q12 that delivers it?

Exercise 2.9 (Nose curve and voltage collapse). Consider a voltage source with a fixed magnitude |V1|
supplying a load through a line modeled by a series impedance z := |z|eiqz with |qz| < p/2. Let the power
supplied to the load be S2 = |S2|(cosf + isinf) =: P(1+ i tanf) where P > 0 is the active load power and
f is the power factor angle. The power flow equation is:

P(1+ i tanf) = � 1
z⇤
⇣
|V2|2� |V2| |V1|eiq21

⌘
(2.23)

where q21 := \V2�\V1.

1. For each P, solve (2.23) for |V2| with |V1| and f fixed.

2. Show that |V2| behaves as follows as P increases from P = 0 with the power factor angle f kept
constant: |V2| is a nonunique rool of a polynomial equation in P. As P increases, the resulting
nonunique roots |V2| trace out a curve called the nose curve. As P keeps increasing, eventually, the
polynomial equation has no real root, which is the phenomenon of voltage collapse.

3. Find the maximum power transfer P = Pmax at which solutions for |V2| exist.



Chapter 3

Transformer models

A large electric network is composed of multiple areas that have different nominal voltage magnitudes.
These areas are connected by transformers that convert between different voltage levels. The ease of
converting between voltage levels is an important advantage of AC over DC transmission systems. It
allows, for example, the transmission network to operate at 765kV to reduce power loss and household
appliances to operate at 120V for safety. In this chapter we develop transformer models and explain how
to analyze a balanced three-phase system that contains transformers.

We start in Chapter 3.1 with models of a single-phase transformer and use them in Chapter 3.2 to
develop models of three-phase transformers in balanced operation. We describe in Chapter 3.3 how to
refer impedances from one side of a transformer to the other side. We apply this method in Chapter 3.4
to simplify per-phase analysis of circuits that contain transformers. We explain in Chapter 3.5 per-unit
normalization that further simplifies the analysis of balanced three-phase systems.

3.1 Single-phase transformer

We first model an ideal single-phase transformer by a transmission matrix and then describe circuit models
of a nonideal single-phase transformer.

3.1.1 Ideal transformer

An ideal transformer has no loss (zero resistance), no leakage flux, and the magnetic core has infinite
permeability. Let N1 be the number of turns in the primary winding, N2 that in the secondary winding, and

n :=
N2

N1
, a :=

1
n

=
N1

N2

An ideal transformer is represented schematically in Figure 3.1. We will call n the voltage gain and
its reciprocal a the turns ratio. The voltage gain n relates the voltages and currents in the primary and

87
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v1

i1 i2

v2

N1

N2n := N2

N1a := 

N1  :  N2

Figure 3.1: Single-phase ideal transformer.

secondary circuits, both at all times in the time domain:

v2(t)
v1(t)

= n,
i2(t)
i1(t)

= a

and in the phasor domain:

V2

V1
= n,

I2

I1
= a

This relation can also be written as

V1
I1

�
=


a 0
0 n

� 
V2
I2

�
(3.1)

The matrix on the right-hand side is called a transmission matrix of an ideal transformer. It maps (V2, I2)
to (V1, I1). The dot notation indicates that the currents I1, I2 are defined to be positive when one flows into
and the other out of the dotted terminals, as indicated in Figure 3.1. This notation is convenient when we
use single-phase transformers to construct three-phase transformers.

The ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤2
V1I⇤1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Nonideal transformer

A real transformer has power losses due to resistance in the windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. Figure 3.2(a) shows
elements of a (nonideal) transformer. The primary winding has N1 turns around the magnetic core and the
secondary winding has N2 turns. The mutual flux Fm due to the currents i1 and i02 links all the turns of the
primary and secondary coils. The two dots indicate that the mutual flux components due to i1 and i02 add
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Φl1

Φl2

v2v1

core

primary 
winding
N1 turns

secondary
winding
N2 turns

i1 i2'
Φm

(a) Nonideal transformer

ym

zp zs

V̂1V1 V̂2

I1 I2

N1   :   N2

Îm

V2

(b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dotted box represents an ideal transformer with a :=
N1/N2.

when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes Fl1 and Fl2 links the individual coils. The flux linkages ll1 =: Ll1i1 and ll2 =: Ll2i02 due to Fl1 and
Fl2 are proportional to the currents i1 and i02 respectively. The proportionality constants Ll1,Ll2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

l1 = ll1 +N1Fm, l2 = l21 +N2Fm

The voltages are

v1 = r1i1 +
dl1

dt
= r1i1 +Ll1

di1
dt

+N1
dFm

dt
(3.2a)

v2 = r2i02 +
dl2

dt
= r2i02 +Ll2

di02
dt

+N2
dFm

dt
(3.2b)

where r1i1 and r2i02 represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r2 = 0) and leakage fluxes (ll1 = ll2 = 0) in (3.2) and hence v1 = N1

dFm
dt and v2 = N2

dFm
dt , yielding

v1/v2 = N1/N2.

The total magnetomotive force F due to the currents i1 and i02 is proportional to the mutual flux Fm:

F = N1i1 +N2i02 = RFm (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1/(�i02) = N2/N1. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i02 = 0. The resulting primary current, denoted îm, is called the primary magnetizing current
and satisfies N1îm = RFm from (3.3).1 Define

v̂1 := N1
dFm

dt
= Lm

dîm
dt

, v̂2 := N2
dFm

dt
=

N2

N1
v̂1

1Instead of im := (R/N1)Fm, we can define i0m := (R/N2)Fm as the secondary magnetizing current when the primary circuit
is open i1 = 0. In this case the shunt admittance ym in Figure 3.4(a) will be in the secondary circuit.
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where Lm := N2
1/R. Substituting into (3.2) yields, denoting i2 :=�i02, we have

Nonideal elements: v1 = r1i1 +Ll1
di1
dt

+ v̂1, v̂1 = Lm
dîm
dt

, v2 = �r2i2�Ll2
di2
dt

+ v̂2

Ideal transformer: v̂2 =
N2

N1
v̂1, i2 =

N1

N2

�
i1� îm

�

where the last equality follows from substituting RFm = N1îm into (3.3). This set of equations in the
phasor domain is

Nonideal elements: V1 = zpI1 +V̂1, Îm = ymV̂1, V̂2 = zsI2 +V2 (3.4a)

Ideal transformer: V̂2 =
N2

N1
V̂1, I2 =

N1

N2

�
I1� Îm

�
(3.4b)

where the series impedances zp := r1 +wLl1 and zs := r2 +wLl2 model the core losses and leakage fluxes
in the primary and secondary circuits respectively, and the shunt admittance ym := 1/(wLm) = R/(wN2

1 )
models the finite permeability of the core. The model (3.4) can be interpreted as the circuit in Figure
3.2(b). Variables with hats denote internal variables.

The end-to-end behavior of the nonideal transformer can be described by a transmission matrix that
maps (V2, I2) to (V1, I1) (see Chapter 2.2.1 for the transmission matrix of a transmission line). Eliminating
the internal variables (with hats) from (3.4), the transmission matrix is given by (Exercise 3.1)


V1
I1

�
=


a0 a0zs +nzp

aym n+azsym

�
V2
I2

�
(3.5)

where n := N2/N1, a := N1/N2, and a0 := a(1 + zpym). We will refer to such a model that describes the
end-to-end behavior as an external model. An equivalent external model to the transmission matrix is an
admittance matrix that maps (V1,V2) to (I1,�I2):


I1
�I2

�
=

1
h


n+azsym �1
�1 a0

�
V1
V2

�

where h := a0zs + nzp. We will freely use either matrix for describing the end-to-end behavior of a two-
terminal device such as a transformer or a transmission line.

In the following we present three circuit models derived from that in Figure 3.2(b). Their relation is
shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a T equivalent circuit (Chapter 3.1.3). The
T equivalent circuit can be approximated by a simplified model whose parameters can be determined by
short-circuit and open-circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
a circuit consisting of two ideal transformers connected by a unitary voltage network (Chapter 3.1.5). The
unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance ym in
Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that
two circuits have the same end-to-end behavior, i.e., same transmission or admittance matrices, but their
internal variables may take different values. This is important, e.g., when we try to determine transformer
parameter values from measurements using these circuit models; the derivation should use only terminal
variables, not internal variables, as we discuss in Chapter 3.1.3.
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circuit model

T equivalent
circuit

unitary voltage
network

simplified model
≈

Figure 3.3: Relation between different circuit models of transformers.

3.1.3 T equivalent circuit

ym

zp

V1

I1 I2

N1   :   N2

V2

a2zs

Figure 3.4: T equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same transmission matrix
(3.5) and hence the same end-to-end behavior as what is called the T equivalent circuit of the transformer
shown in Figure 3.4. The difference between the models in Figure 3.2(b) and in Figure 3.4 is the position
and the scaling of the leakage impedance zs; this is called referring zs on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of zs to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V2 = 0, the internal variables V̂1 and V̂2 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

1. Short-circuit test (V2 = 0). With the secondary circuit short-circuited, the primary voltage Vsc and
primary current Isc are measured. The primary short-circuit voltage Vsc is called the impedance
voltage.
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2. Open-circuit test (I2 = 0). With the secondary circuit open, the primary voltage Voc and primary
current Ioc are measured.

To determine the parameters (zp,zs,ym) of the transmission matrix T in (3.5), note that during the short-
circuit test, the voltage on the primary side of the ideal transformer is zero. Hence

Vsc =

 
zp +

✓
ym +

1
a2zs

◆�1
!

Isc (3.6a)

During the open-circuit test, the secondary current I2 = 0 and hence there is zero current on the primary
side of the ideal transformer. Hence

Voc =

✓
zp +

1
ym

◆
Ioc (3.6b)

Since there are three unknowns (zp,zs,ym), they cannot be uniquely determined from the two equations in
(3.6). Additional measurements will be needed to determine (zp,zs,ym), e.g. measurements of separate dc
resistances in the primary and secondary circuits. Sometimes ym is assumed to be zero (open-circuited)
so that (3.6a) becomes Vsc = (zp + a2zs)Isc, yielding the total leakage impedance zp + zs. Alternatively
assuming zp = hzs with known h results in two nonlinear equations in two unknowns (zs,ym).

It may seem that we can measure the current I2 in the T equivalent circuit in Figure 3.4 during a
short-circuit test and use it to determine (zp,zs,ym), but this is not the case because it will involve internal
variables. Even though we have informally justified (3.6) using internal variables in the T equivalent
circuit, e.g., the voltage and current on the primary side of the ideal transformer, we should be careful
with this line of reasoning. A more rigorous derivation of (3.6) uses the circuit model in Figure 3.2(b), by
setting V2 = 0 in (3.4) (Exercise 3.2). In this case, even if the short-circuit current I2 is also measured, there
are 6 unknowns (V̂1,V̂2, Îm;zp,zs,ym) but only 5 equations in (3.4) and hence these unknowns cannot be
uniquely determined from just the short-circuit and open-circuit tests either. This implies that we cannot
apply the measured value of short-circuit current I2 to determine (zp,zs,ym).

3.1.4 Simplified model

In practice the shunt admittance ym is much smaller than the leakage admittances (see Example 3.1).
Specifically when |ym|⌧ 1/|a2zs| or |e| := |a2zsym|⌧ 1, we interchange ym and a2zs to obtain the sim-
plified model in Figure 3.5(a) with zl = zp + a2zs. An even simpler model assumes ym = 0, as shown in
Figure 3.5(b).

Transmission matrix. Apply KCL, KVL and Ohm’s law to the model in Figure 3.5(a) to get:

V1 = zlI1 +aV2, I1 = ym(aV2) + nI2

Hence the transmission matrix M̂ is given by

V1
I1

�
=


a(1+ zlym) nzl

aym n

�

| {z }
M̂


V2
I2

�
(3.7a)
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ym

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(a) Simplified model

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(b) ym = 0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core with zl := zp +a2zs. (b) Simplified model assuming infinite permeabilitiy.

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7a). When ym = 0 the relation
(3.7a) can be equivalently expressed in terms of an admittance matrix Y :


I1
�I2

�
=

1
zl


1 �a
�a a2

�

| {z }
Y


V1
V2

�
(3.7b)

When zl = ym = 0 the model (3.7a) reduces to (3.1) for an ideal transformer.

Approximation to T equivalent circuit. We now justify the model in Figure 3.5(a) with zl = zp +a2zs
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when ym is small. Let M and M̂
denote that transmission matrices in (3.5) and (3.7a) respectively. Their difference is

M̂�M =


a(1+ zlym) nzl

aym n

�
�


a(1+ zpym) a(1+ zpym)zs +nzp
aym n+azsym

�
= e


a �nzp
0 �n

�

where e := a2zsym. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance ym due to the primary magnetizing current takes the form ym = (ixm)�1 = �ibm with bm > 0.
The leakage impedance zp takes the form zp = rp + ixp with rp > 0 and xp > 0; similarly for zs. Suppose
zp = hzs for some real number h > 0 and |e|⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

kM̂�Mk
kMk < |e| ⌧ 1

where the matrix norm kAk is the sum norm kAk := Âi, j |Ai j|, or the l1 vector norm when the n⇥n matrix
A is treated as a vector in C

n2
(see Appendix 20.1.8.3 for matrix norms). Note that for a < 1, the model

parameters (zl,ym) should be on the high voltage side. When the shunt admittance is neglected ym = 0,
these two models are the same, i.e., M̂ = M.

Parameter determination. The parameters (zl,ym) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7a), can be uniquely determined from two simple tests:
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1. Short-circuit test (V2 = 0). With the secondary circuit short-circuited, the primary voltage Vsc and
current Isc are measured. Then, from Figure 3.5,

zl =
Vsc

Isc

The primary short-circuit voltage Vsc is called the impedance voltage.

2. Open-circuit test (I2 = 0). With the secondary circuit open, the primary voltage Voc and current Ioc
are measured. Then Voc = (zl +1/ym)Ioc and hence

1
ym

=
Voc

Ioc
� Vsc

Isc

Example 3.1 (Parameter determination). Consider a single-phase distribution (stepdown) transformer with
the following ratings: 2.9 MVA, 7.2 kV / 240 V. Construct the equivalent circuit model in Figure 3.5 from
the following test results:

1. Short-circuit test (V2 = 0). With the secondary circuit short-circuited, a voltage |Vsc| = 500V is
applied to the primary circuit that causes the rated primary current |Is

1| to flow.

2. Open-circuit test (I2 = 0). With the secondary circuit open, the rated voltage |Voc| = 7.2kV is
applied to the primary circuit. This caused a current of |Ioc| = 7A to flow in the primary circuit.

Assume zl = ixl and ym = (ixm)�1. Determine xl and xm.

Solution. In the short-circuit test the secondary voltage V2 = 0. Hence the voltage on the primary side
of the ideal transformer is zero and the shunt reactance xm is effectively short-circuited, leaving only the
leakage reactance xl in the primary circuit. Since the rated primary current is |Isc| = 2.9MVA/7.2kV =
403A, we have |Vsc| = |Isczl| = |Isc|xl . Hence xl = 500V/403A = 1.24 W.

In the open-circuit test the secondary current I2 = 0 and hence there is zero current on the primary
side of the ideal transformer (see Figure 3.5). Hence |Voc| = |Ioc(zl + 1/ym)| = |Ioc|(xl + xm), and xm =
|Voc|/|Ioc|� xl = 7.2kV/7A�1.24 = 1.03kW.

As expected, |ym|⌧ 1/|zl|.

In transformer ratings, the ratio of secondary open-circuit voltage to the primary open-circuit voltage
is usually taken to be the voltage gain n, even though more precisely it should be

V2

V1
= n · 1/ym

zl +1/ym

In practice the resistances due to core losses are much smaller than the reactances due to leakage fluxes
and finite permeability of the core so that zl ⇡ ixl and ym ⇡�ibm. Moreover bm⌧ 1/xl . For Example 3.1

V2

V1
= n

xm

xl + xm
=

1.03kW
1.03kW+1.24W

' n
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Parameter determination from transformer ratings when ym := 0. If ym := 0 then the model param-
eter is just the leakage impedance zl in the primary circuit, which can be determined from the short-circuit
test, zl = Vsc/Isc. Moreover its magnitude can be determined from typical transformer ratings, as follows.

A typical specification of a three-phase transformer includes:

• Three-phase power rating |S3f |.

• Rated primary line-to-line voltage |Vpri| and rated primary line current |Ipri|.

• Rated secondary line-to-line voltage |Vsec| and rated secondary line current |Isec|.

• Impedance voltage b on the primary side, per phase, as a percentage of the rated primary voltage.
The shunt admittance is assumed zero.

As mentioned above, the impedance voltage is the voltage drop across the leakage impedance zl on the
primary side of each single-phase transformer in a short-circuit test. The b specification means that
the voltage needed on the primary side to produce the rated primary current across each single-phase
transformer is b , as a percentage of the rated primary voltage. We emphasize that the short-circuit voltage
and current needed to derive zl should be those across each single-phase transformer, which depends on
the configuration of the primary circuit. If the primary circuit is in D configuration then the short-circuit
voltage and current on the primary side of the single-phase transformer are (assuming balanced positive
sequence):

D configuration: |Vsc| = |Vab| = b |Vpri|, |Isc| = |Iab| =

����
Iprip

3
eip/6

����

If the primary circuit is in Y configuration then the short-circuit voltage and current on the primary side of
the single-phase transformer are:

Y configuration: |Vsc| = |Van| = b
����

Vprip
3eip/6

���� , |Isc| = |Ian| = |Ipri|

Since zl = Vsc/Isc we therefore have,

D configuration: |zl| =

p
3b |Vpri|
|Ipri|

; Y configuration: |zl| =
b |Vpri|p

3|Ipri|
(3.8a)

We reiterate that Vpri denotes the line-to-line voltage even for Y configuration; otherwise |zl| = b |Vpri|/|Ipri|
for Y configuration if the rated voltage Vpri is line-to-neutral.

Sometimes the primary line current |Ipri| is not specified directly. In that case zl can be determined
from the power and voltage ratings (|S3f |, |Vpri|), as follows. If the primary circuit is in D configuration
then the short-circuit voltage and current on the primary side of the single-phase transformer are (assuming
balanced positive sequence):

D configuration: |S3f | = 3|Sf | = 3|Vab| |Iab|

|Vsc| = |Vab| = b |Vpri|, |Isc| = |Iab| =
|S3f |
3|Vpri|
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Note that |S3f |
3|Vpri| is the rated primary current produced in the short-circuit test. If the primary circuit is in Y

configuration then the short-circuit voltage and current on the primary side of the single-phase transformer
are:

Y configuration: |S3f | = 3|Sf | = 3|Van| |Ian|

|Vsc| = |Van| = b
����

Vprip
3eip/6

���� , |Isc| = |Ian| =
|S3f |

3
��� Vprip

3eip/6

���
=

|S3f |p
3|Vpri|

Since zl = Vsc/Isc we therefore have,

D configuration: |zl| =
3b |Vpri|2

|S3f | ; Y configuration: |zl| =
b |Vpri|2

|S3f | (3.8b)

As mentioned above, Vpri denotes the line-to-line voltage even for Y configuration; otherwise |zl| =
3b |Vpri|2/|S3f | for Y configuration if the rated voltage Vpri is line-to-neutral.

Figure 3.6: The transformer ratings.

Example 3.2 (Transformer ratings). Figure 3.6 shows a typical specification of a three-phase transformer
in DY configuration:

• Three-phase power rating |S3f | = 150kVA.

• Rated primary line-to-line (high) voltage |Vpri| = 480V in D configuration with rated primary line
current |Ipri| = 180A.

• Rated secondary line-to-line (low) voltage |Vsec| = 208Y/120V in Y configuration with rated sec-
ondary line current |Isec| = 416A. This notation means that the secondary side is Y -configured with
a line-to-line voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings. Determine the magnitude |zl| of the leakage impedance of the transformer.
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Solution. The primary side is in D configuration and hence we have

|S3f | = 3 |Sab| = 3 |Vab Īab| = 3 |Vpri| |Iab|

Since (assuming balanced positive sequence)

Ia = Iab� Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

we have |Ipri| =
p

3 |Iab|. Hence

|S3f | =
p

3 |Vpri| |Ipri|

The rated line-to-line voltage |Vpri| = |Vab| = 480V. The rated line current |Ipri| = |Ia| = 180A. Hence
p

3 |Vpri| |Ipri| =
p

3 ·480 ·180 = 149.65 kVA

which is approximately the power rating |S3f | = 150 kVA.

The secondary side is in Y configuration and hence we have

|S3f | = 3 |San| = 3 |Van Īan| = 3
��� Vsecp

3eip/6

��� |Isec| =
p

3 |Vsec| |Isec|

where the third equality follows since Vsec = Vab = Van

⇣p
3eip/6

⌘
is the line-to-end voltage. The rated

secondary line-to-line voltage is |Vsec| = 208V and the line current |Isec| = 416A, and hence
p

3 |Vsec| |Isec| =
p

3 ·208 ·416 = 149.87kVA

which is approximately the power rating 150 kVA.

From (3.8a) the magnitude |zl| of the leakage impedance of each single-phase transformer is (b is the
impedance voltage on the primary side)

|zl| =

p
3b |Vpri|
|Ipri|

=

p
3 ·5.45% ·480V

180A
= 0.2517W

Distribution system transformers. In the US, single-phase or three-phase stepdown transformers are
typical in the distribution system. The most common three-phase system voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude) and hence the
line-to-neutral voltage is |Van| = 12.47/

p
3 = 7.2kV. A typical primary side current rating is |Ian| = 400A.

Hence the total (three-phase) rated apparent power is |S3f | = 3|Van||Ian| = (3)(7.2)(400) = 8.6MVA.
Other common distribution system voltages and their total power at 400A are shown in Table 3.1. The
advantages of a higher-voltage system include:

• It can carry more power for a given ampacity.
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line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|Vab| |Van| |S3f |
4.8 2.8 3.3

12.47 7.2 8.6
22.9 13.2 15.9
34.5 19.9 23.9

Table 3.1: Typical distribution system voltages (line-to-line) and their total (three-phase) power rating at
400A current.

• It has a smaller voltage drop for a given level of power flow, requiring fewer voltage regulators and
capacitor banks for voltage support (see Exercise 2.7.5).

• It has a smaller line loss for a given level of power flow (see Exercise 2.7).

• It can cover a larger service area since it has a smaller voltage drop and a smaller line loss. Roughly,
for the same load density, the area covered increases linearly with voltage.

• It requires fewer substations since it covers a larger service area, which can be a big cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.

• Crew safety is a bigger concern with a higher voltage.

• Higher voltage equipment costs more, from transformers to cables to voltage regulators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary phases and
the other end connects to the transformer case which is connected to the neutral wire of the three-phase
system and also earth ground. On the secondary side, the 240V is center-tapped and the center neutral
wire is grounded, making the two ends “hot” with respect to the center tap. These three wires run down
the service drop to the meter and electric panel of a house. This is shown in Figure 3.7. Connecting a
load between either hot wire and the neutral gives 120V while connecting it between both hot wires gives
240V. Note that the transformer is single-phase. This is the split-phase 120/240 V system typical in the
US.

3.1.5 Model with unitary voltage network

Single-phase two-winding transformer. As far as the end-to-end behavior is concerned, the transformer
model in Figure 3.2(b) is equivalent to the model in Figure 3.8(a) where the ideal transformer with turns
ratio N1/N2 is replaced by two ideal transformers in series with turns ratios N1 and 1/N2. Referring the
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240V

120V

120V

abcn

Figure 3.7: A common single-phase distribution transformer in the US.
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V1
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(a) Equivalent model
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I1

N1  :  1 1  :  N2

I2

V2

z1 z2

y0

unitary voltage network

(b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

leakage impedances (zp,zs) and shunt admittance ym to the other sides of the ideal transformers using
(3.14) in Chapter 3.3, this model is equivalent to the one in Figure 3.8(b) where

y0 := N2
1 ym, z1 :=

zp

N2
1
, z2 :=

zs

N2
2

(3.9)

The network between the two ideal transformers is sometimes referred to as a unitary voltage network
because the nominal voltage of the network is 1 pu if the scaled nominal voltages V nom

1 /N1 = V nom
2 /N2

on both sides of the (nonideal) transformer is used as the voltage base for per-unit normalization (per-unit
normalization is studied in Appendix 3.5). Note that no nodes in the transformer models may be grounded.
The main advantage of modeling a nonideal transformer this way is that the unitary voltage network can
be generalized from the simple network in Figure 3.8(b) to a more general network that can be used to
model nonstandard transformers with multiple windings; see below.

We now derive the admittance matrix that maps (V1,V2) to (I1,�I2). First focus on the unitary voltage
network, shown in Figure 3.9, where y1 := 1/z1 = N2

1 yp, y2 := 1/z2 = N2
2 ys with yp := 1/zp, ys := 1/zs.

Variables with hats denote internal variables.2 The variables (V̂0,V̂1,V̂2) are defined as voltage drops as
shown in the figure and (Î0, Î1, Î2) are the current injections at these nodes with Î0 := 0. Then

Î1 = y1(V̂1�V̂0), Î2 = y2(V̂2�V̂0), Î0 + Î1 + Î2 = y0V̂0 (3.10)

2The explicit separation of internal variables (e.g., V̂i, Îi) and terminal variables (e.g., Vi, Ii) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapters 15 and 16.
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y0

y2y1

V̂0V̂1 V̂2

Î2Î1
Î0 := 0

Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 4)
2

4
Î0
Î1
Î2

3

5 =

2

4
y0 + y1 + y2 �y1 �y2
�y1 y1 0
�y2 0 y2

3

5

2

4
V̂0
V̂1
V̂2

3

5

Since Î0 = 0 we can eliminate V̂0 and derive the Kron-reduced admittance matrix Yuvn that maps (V̂1,V̂2)
to (Î1, Î2). Let Î := (Î1, Î2) and V̂ := (V̂1,V̂2). Then Î = YuvnV̂ where Yuvn is the Schur complement of
y0 + y1 + y2 (see Appendix 20.1.3.1 for details of Schur complement):

Yuvn :=


y1 0
0 y2

�
� 1

Â2
i=0 yi


y1
y2

�⇥
y1 y2

⇤
=

1
Âi yi


y1(y0 + y2) �y1y2
�y1y2 y2(y0 + y1)

�
(3.11a)

Next connect the two ideal transformers to each side of the unitary voltage network; see Figure 3.8(b).
Let I := (I1,�I2) and V := (V1,V2). The conversion between internal variables (V̂ , Î) and terminal variables
(V, I) is V̂ = MV and Î = M�1I where

M :=


1/N1 0
0 1/N2

�
(3.11b)

Substituting into Ĵ = YuvnÛ we obtain the relation between the terminal variables V to I:

I = (MYuvnM)V (3.11c)

where MYuvnM is called the admittance matrix of the transformer. It can be shown that (3.11) is equivalent
to the T equivalent circuit (3.5) (Exercise 3.4). As a consequence the model parameters (y0,y1,y2) cannot
be uniquely determined by just the short-circuit and open-circuit tests.

We often do not know the numbers N1, N2 of turns of the primary and secondary windings respectively,
but can determine the turns ratio a := N1/N2 from the specified rated voltages. The admittance matrix
MYuvnM can also be written in terms of the turns ratio a (Exercise 3.5):

YYY := MYuvnM =
ypys

a2ym +a2yp + ys


1+a2ym/ys �a
�a a2(1+ ym/yp)

�
(3.11d)

If y0 = ym = 0 then both (3.5) and (3.11) are equivalent to the simplified model in Figure 3.5(b). In this case
the model parameter is just the leakage impedance zl in the primary circuit, which can be determined from
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standard power ratings as described above. Recall that zl = zp + a2zs and hence the leakage admittance in
the simplified model is

yl =
1
zl

=
1

1/yp + a21/ys
=

ypys

a2yp + ys

Indeed, when ym = 0, the admittance matrix YYY is the same for both the simplified model and the unitary
voltage network model, from (3.11d):

YYY = MYuvnM = yl


1 �a
�a a2

�

which is the same as (3.7b).

Multi-winding transformers. The single-phase circuit model in Figure 3.8(b) can be generalized in
two ways, or a combination. First, multiple copies of the single-phase model can be connected in D or
Y configuration on each side to create models for three-phase transformers. This is derived in detail in
Chapter 16.3 for unbalanced three-phase systems. Second, the unitary voltage network can be generalized
to model nonstandard transformers with more than two windings. As an illustration we now use this
approach to model a split-phase transformer.

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages (V̂0,V̂1,V̂2,V̂3) and

y0

y1
I1 I2

I3

unitary voltage network

V1

V2

V3

N1  :   1 1  :  N3

1  :  N2

y2

V̂3

V̂2

y3

Î2Î1

Î3V̂1 V̂0

Figure 3.10: Single-phase split-phase transformer.

currents (Î0, Î1, Î2, Î3) on the unitary voltage network are defined in the figure. The admittance matrix that
maps these voltages to currents is given by:

2

664

Î0
Î1
Î2
Î3

3

775 =

2

664

Â3
i=0 �y1 �y2 �y3
�y1 y1 0 0
�y2 0 y2 0
�y3 0 0 y3

3

775

2

664

V̂0
V̂1
V̂2
V̂3

3

775
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Let V̂ := (V̂1,V̂2,V̂3) and Î := (Î1, Î2, Î3). Since Î0 = 0 we can eliminate V̂0 to relate Î = YuvnV̂ where Yuvn
is the Kron-reduced admittance matrix:

Yuvn :=

2

4
y1 0 0
0 y2 0
0 0 y3

3

5 � 1
Â3

i=0 yi

2

4
y1
y2
y3

3

5⇥y1 y2 y3
⇤

=
1

Âi yi

2

4
y1(y0 + y2 + y3) �y1y2 �y1y3
�y2y1 y2(y0 + y1 + y3) �y2y3
�y3y1 �y3y2 y3(y0 + y1 + y2)

3

5 (3.12a)

This extends in a straightforward manner Yuvn in (3.11) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in Figure 3.10. The
terminal voltages V := (V1,V2,V3) and currents I := (I1,�I2,�I3), as well as the internal current Î3 into
the third winding, are defined in the figure. Let M := diag(1/N1,1/N2,1/N3). Then V̂ = MV and, using
I2 + I3 + Î3 = 0,

Î = M�1

2

4
I1
�I2
Î3

3

5 = M�1

2

4
I1
�I2
�I2� I3

3

5 =: M�1AI

where

A :=

2

4
1 0 0
0 1 0
0 1 1

3

5 (3.12b)

Substituting into Î = YuvnV̂ we obtain the relation between the terminal variables V to I:

I = A�1 (MYuvnM)V (3.12c)

3.2 Balanced three-phase transformers

In this section we develop models for a balanced three-phase transformer and derive its per-phase equiva-
lent.

3.2.1 Ideal transformers

The primary and secondary circuits of a three-phase transformer can be arranged in four different config-
urations: YY , DD, DY , Y D. Figure 3.11(a) shows a primary three-phase winding in Y configuration and
its schematic diagram. The winding on the first magnetic core goes from terminal a to neutral n and then
connects with the neutral terminals on the second and third magnetic cores. It matches the connectivity
in the schematic diagram where the windings are indicated by the thick lines. Figure 3.11(b) shows a
secondary three-phase winding in D configuration and its schematic diagram. In both diagrams, the wind-
ings go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal
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I1
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(a) Primary winding in Y configuration

I2
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b
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a
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(b) Secondary winding in D configuration

Figure 3.11: Primary and secondary windings in Y and D configurations respectively. The thick lines in
the schematic diagrams represent transformer windings.

c on the third magnetic core. The winding of an ideal three-phase transformer in YY configuration and
its schematic digram are shown in Figure 3.12(a). The parallel lines in the schematic diagram indicate
corresponding primary and secondary windings in the single-phase transformers. Similarly the winding
of an ideal three-phase transformer in DD configuration and its schematic digram are shown in Figure
3.12(b), and those for DY and Y D configurations are shown in Figure 3.13. The different configurations
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Figure 3.12: Ideal three-phase transformers in YY and DD configurations. The parallel lines in the
schematic diagram indicate corresponding primary and secondary windings.

of three-phase transformer banks can also be represented compactly as in Figure 3.14 (see its caption for
details).

Recall that the internal voltages and currents are denoted by VY
j := (V an

j ,V bn
j ,V cn

j ) 2 C
3. IY

j :=
(Ian

j , Ibn
j , Icn

j ) 2C
3 for Y configuration and V D

j := (V ab
j ,V bc

j ,V ca
j ) 2C

3, ID
j := (Iab

j , Ibc
j , Ica

j ) 2C
3 for D con-

figuration (see Figure 3.11). The terminal voltages and currents are denoted by Vj := (V a
j ,V b

j ,V c
j ) 2 C

3

and I j := (Ia
j , I

b
j , I

c
j ) 2 C

3, with the current I1 flowing into the primary side of the transformer and I2 flow-
ing out of its secondary side. The external behavior of an ideal three-phase transformer is defined by the
ratio of the line-to-line voltages on the secondary and the primary sides, and the ratio of the line currents
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Figure 3.13: Ideal three-phase transformers in DY and Y D configurations. The parallel lines in the
schematic diagram indicate corresponding primary and secondary windings.
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Figure 3.14: Compact representation of ideal three-phase transformers in (a) YY , DD configurations and
(b) DY , Y D configurations. For instance, in the YY configuration, the vertical arrow represents the vector
V an in the complex plane. The arrow from b to a (not shown) represents the vector V ab. The parallel lines
in the diagram indicate corresponding primary and secondary windings.
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on the secondary and the primary sides. We refer to these ratios as its external model. The phases of a
balanced transformer are decoupled and therefore it can be represented by its phase a model, called its
per-phase equivalent.

The external model of an ideal balanced three-phase transformer and its per-phase equivalent can be
derived using the following procedure:

1. Internal model. Derive the internal voltage and current gains based on the pairing of primary and
secondary windings in different configurations (see Figures 3.12 and 3.13):

YY : VY
2 = nVY

1 , �IY
2 = aIY

1 (3.13a)

DD: V D
2 = nV D

1 , �ID
2 = aID

1 (3.13b)

DY : VY
2 = nV D

1 , �IY
2 = aID

1 (3.13c)

Y D: V D
2 = nVY

1 , �ID
2 = aIY

1 (3.13d)

2. Conversion rules. Apply the conversion rules (1.12) (1.13) to express line-to-line voltages and line
currents on both sides in terms of the internal voltages and currents respectively:

Y config: V line
j = GVY

j = (1�a)VY
j =

p
3eip/6VY

j , I j = ±IY
j (3.13e)

D config: I j = ± GTID
j = ± (1�a2) ID

j = ±
p

3e�ip/6 ID
j , V line

j = V D
j (3.13f)

where we have assumed the balanced voltages VY
j and currents ID

j are in positive sequence, i.e., in
span(a+), and used Corollary 1.3.

3. External model. Derive the line-to-line voltage gains K(n) 2 C and line current gains 1/K̄(n) 2 C

for the three-phase transformer by eliminating the internal variables from the internal model in Step
1 and the conversion rule in Step 2:

V line
2 = K(n)V line

1 , I2 =
1

K̄(n)
I1 (3.13g)

The fact that the voltage gain K(n) is a scalar means that the phases of a balanced three-phase trans-
former are decoupled. The results for different configurations are given in Table 3.2 (see Example
3.3 for derivation).

Property Gain
Voltage gain K(n)
Current gain 1

K̄(n)

Power gain 1
Sec zl referred to pri zl

|K(n)|2

Configuration Gain
YY KYY (n) := n
DD KDD(n) := n
DY KDY (n) :=

p
3n eip/6

Y D KY D(n) := np
3

e�ip/6

Table 3.2: Ideal complex transformer properties.
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4. Per-phase equivalent. The YY -equivalent of a balanced three-phase transformer is a balanced trans-
former in YY configuration that has the same external model, i.e., they have the same voltage gain
K(n) and current gain 1/K̄(n) given in (3.13g). Since the phases are decoupled, the per-phase equiv-
alent is the phase a model of the YY -equivalent, i.e., a single-phase transformer with voltage gain
K(n). See Example 3.3.

Example 3.3 (External models and per-phase equivalents). In this example we apply the method outlined
above to derive the external models of ideal balanced three-phase transformers in YY , DD, DY and Y D
configurations as well as their per-phase equivalents.

1. YY configuration. To derive the external model, eliminate the internal variables from (3.13a)–
(3.13f):

V line
2 = (1�a)VY

2 = (1�a)nVY
1 = nV line

1

I2 = �IY
2 = aIY

1 = aIY
1

giving the voltage gain KYY (n) := n and the current gain 1/K̄YY (n) := 1/n =: a. The per-phase
equivalent is simply an ideal single-phase transformer with voltage gain KYY (n) := n.

2. DD configuration. Similarly the external model is, from (3.13a)–(3.13f):

V line
2 = V D

2 = nV D
1 = nV line

1

I2 = �(1�a2)ID
2 = (1�a2)aID

1 = aI1

giving the same gains KDD(n) := n and 1/K̄DD(n) := a as those for the YY configuration. Hence the
per-phase equivalent is also an ideal single-phase transformer with voltage gain KDD := n.

3. DY configuration. The external model is, from (3.13a)–(3.13f):

V line
2 = (1�a)VY

2 = (1�a)nV D
1 = (1�a)nV line

1

I2 = �IY
2 = aID

1 =
a

1�a2 I1 =
a

1� ā
I1

giving the voltage gain KDY (n) := (1�a)n and current gain 1/K̄DY (n) := a(1�a)�1. Hence the
per-phase equivalent is an ideal single-phase transformer with voltage gain KDY (n) := (1�a)n =p

3eip/6n. The DY configuration has several advantages (e.g., a gain of
p

3 in addition to the gain n
due to turns ratio) and is the most commonly adopted transformer in practice.

4. Y D configuration. The external model is, from (3.13a)–(3.13f):

V line
2 = V D

2 = nVY
1 =

n
1�a

V line
1

I2 = �(1�a2)ID
2 = (1�a2)aIY

1 = (1�a2)aI1 = (1� ā)aI1

giving the voltage gain KY D(n) := n/(1�a) and current gain 1/K̄Y D(n) := (1� ā)a. Hence the
per-phase equivalent is an ideal single-phase transformer with voltage gain KY D(n) := n/(1�a) =
n/(
p

3eip/6).
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Hence the voltage gain K(n) and the current gain 1/K̄(n) given in Table 3.2 apply to line volt-
ages/currents in both the original transformer and its YY equivalent. For D configuration on the primary or
secondary side, its Y -equivalent in terms of the line voltage V line

j and line current I j can be derived from
(3.13e)(3.13f) (also explained in (1.31a)). Specifically the Y -equivalent of (V D

j , ID
j ) is

VY eq
j =

1
1�a

V D
j =

1p
3eip/6

V D
j , IY eq

j = ±
�
1�a2� ID

j = ±
p

3
eip/6 ID

j

Using the per-phase equivalent of an ideal balanced transformer (i.e., phase a model of an equivalent
transformer in YY configuration), we conclude that its complex power gain is 1:

�S2

S1
:=

V an
2 (�Īan

2 )

V an
1 (Īan

1 )
= K(n)

1
K(n)

= 1

It often simplifies per-phase analysis of a balanced system to refer series impedances and shunt admittances
on one side to the other side of a transformer. This is explained in Chapter 3.3. In particular, a secondary
series impedance zl is referred to the primary as zl/|K(n)|2 according to (3.14) below. When terminated
in a symmetric three-phase impedance load zload on the secondary side so that V an

2 = zloadIan
2 (using YY -

equivalent), the per-phase driving-point impedance on the primary side is:

V an
1

Ian
1

=
V an

2 /K(n)

Ian
2 K̄(n)

=
zload

|K(n)|2

These relations are also summarized in Table 3.2.

3.2.2 Nonideal transformers

In this section we first present circuit models of (nonideal) three-phase transformers and then their per-
phase equivalent circuits after all D-configured transformers have been converted into their Y -equivalents.
Each non-ideal single-phase transformer is modeled using the simplified model studied in Chapter 3.1.4.

Per-phase equivalent circuits. Figure 3.15(a) shows a model of balanced three-phase (nonideal) transform-
ers in YY configuration and Figure 3.15(b) shows its per-phase equivalent circuit. The per-phase circuit is
identical to that in Figure 3.5(a). Figure 3.16(a) shows a model of balanced three-phase transformers in
DD configuration. Its YY equivalent and per-phase circuit are identical to those in Figure 3.15 except that
the equivalent leakage impedance zl/3 is one-third of the value in the original DD circuit and the shunt
admittance 3ym is three times the value in the original DD circuit. This can be verified by checking the
secondary open-circuit equivalent and the secondary short-circuit equivalent of the original DD circuit.
Figure 3.17 shows a model of balanced three-phase transformers in DY configuration and its per-phase
equivalent circuit. Finally Figure 3.18 shows the model for Y D configuration and its per-phase circuit.

Hence balanced three-phase transformers in YY , DD, DY and Y D configurations all have the same per-
phase equivalent circuit, with appropriate values for their leakage impedance and shunt admittance and
the corresponding (complex) transformer gains K(n).
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Figure 3.15: Model of three-phase transformers in YY configuration and its per-phase equivalent circuit.
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Figure 3.16: Model of three-phase transformers in DD configuration and its per-phase equivalent circuit.
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Figure 3.17: Model of three-phase transformers in DY configuration and its per-phase equivalent circuit.
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Figure 3.18: Model of three-phase transformers in Y D configuration and its per-phase equivalent circuit.

3.3 Equivalent impedance in transformer circuit

In this subsection we explain how to derive an “equivalent” impedance when looking into the terminal,
either on the primary side or on the secondary side of a transformer. Consider the singe-phase equiva-
lent circuit of a balanced three-phase transformer. A series impedance zs in the secondary circuit of the
transformer can be equivalently replaced by a series impedance zp in the primary circuit, and vice versa,
provided they are related by:

zp =
zs

|K(n)|2 or equivalently zs = |K(n)|2 zp (3.14a)

The first operation in (3.14a) is called referring zs in the secondary to the primary. The second operation
is called referring zp in the primary to the secondary. A shunt admittance ys in the secondary circuit of the
transformer can be equivalently replaced by a shunt admittance yp in the primary circuit, and vice versa,
provided they are related by:

yp = |K(n)|2 ys or equivalently ys =
yp

|K(n)|2 (3.14b)

These operations will be used as a shortcut in the analysis of circuits that contain transformers the same
way we use the Thévenin equivalent of impedances in series or in parallel; see Chapter 3.4.

Here “equivalence” means that the external behavior remains unchanged when a series impedance or
a shunt admittance on one side is referred to the other. Specifically we consider two kinds of external
behavior. In the first case, explained in Chapter 3.3.1, the external behavior is the transmission matrix
that maps (V2, I2) to (V1, I1). In the second case, explained in Chapter 3.3.2, the external behavior is the
driving-point impedance on one side of the transformer when the other side is connected to an impedance.
We next derive (3.14) as a simple consequence of Kirchhoff’s and Ohm’s laws.

3.3.1 Transmission matrix

Consider the per-phase transformer circuits in Figure 3.19 of a balanced three-phase system, one with a
series impedance in the secondary circuit and the other in the primary circuit. Let Ts and Tp denote the
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V1

I1 I2

V2K(n)
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transformer

(a) Series impedance zs in the secondary circuit.

V1

I1 I2

V2K(n)

zp

ideal
transformer

(b) Series impedance zp in the primary circuit.

Figure 3.19: Referring series impedance in the secondary to the primary.

transmission matrices that maps (V2, I2) to (V1, I1) in Figure 3.19(a) and Figure 3.19(b) respectively. We
claim that the relation (3.14a) between series impedances zp and zs ensures that Ts = Tp. It is in this sense
that we say these two circuits are equivalent.

To show that Ts = Tp let (V, I) denote the voltage and current at the secondary terminal of the ideal
transformer in Figure 3.19(a). Then V = V2 + zsI and I = I2, or


V
I

�
=


1 zs
0 1

�
V2
I2

�

Hence

V1
I1

�
=


K�1(n) 0

0 K̄(n)

�
1 zs
0 1

�
V2
I2

�
=


K�1(n) K�1(n)zs

0 K̄(n)

�

| {z }
Ts


V2
I2

�

Similarly, for the circuit in Figure 3.19(b), we have

V1
I1

�
=


1 zp
0 1

�
K�1(n) 0

0 K̄(n)

�
V2
I2

�
=


K�1(n) K̄(n)zp

0 K̄(n)

�

| {z }
Tp


V2
I2

�

Hence Ts = Tp if and only if (3.14a) holds.

The relation (3.14b) between shunt admittances yp and ys ensures that the transmission matrix for the
circuit in Figure 3.20(a) is the same as that in Figure 3.20(b). This is left as Exercise 3.8. The operations in
(3.14) can be repeatedly applied to a circuit involving multiple impedances and admittances, as illustrated
in the next example.

Example 3.4. A combination of a series impedance zs and a shunt admittance ys in the secondary circuit,
as shown in Figure 3.21(a), can be referred to the primary one element at a time, starting from the element
that is closest to the ideal transformer. The transformer gain is K(n) = n = 1/a := N2/N1. Referring
the series impedance zs to the primary yields the equivalent circuit in Figure 3.21(b) with an equivalent
primary impedance a2zs. Referring then the shunt admittance ys to the primary yields the equivalent circuit
in Figure 3.21(c) with an equivalent shunt admittance n2ys.
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(a) Shunt admittance ys in the secondary circuit.
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ideal
transformer
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(b) Shunt admittance yp in the primary circuit.

Figure 3.20: Referring shunt admittance in the secondary to the primary.
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ideal
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(c) Refer ys to the primary.

Figure 3.21: Referring (zs,ys) in the secondary to the primary.

3.3.2 Driving-point impedance

In the second case the external behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current I flows between
these two terminals through the network. The ratio V/I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.22. For two impedances z1,z2 in series depicted in Figure 3.22(a), the Thévenin equiv-
alent impedance zeq is defined such that the two networks in Figure 3.22(a) have the same driving-point
impedance:

V
I

= z1 + z2 =: zeq (3.15a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted in Figure 3.22(b) is
defined to be:

V
I

=

✓
1
z1

+
1
z2

◆�1
=: zeq (3.15b)

These are simple consequences of Kirchhoff’s and Ohm’s laws. Repeated application of (3.15) reduces a
cascade of impedances in parallel and series into a single equivalent impedance that preserves the driving-
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1
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1+( )–1

(b) Impedances in parallel

Figure 3.22: (a) Thévenin equivalent zeq of two impedances z1,z2 in series. (b) Thévenin equivalent zeq of
two impedances z1,z2 in parallel.

point impedance.

When such a network contains not just impedances, but also transformers, the relation (3.14) allows
us to reduce it to a single Thévenin equivalent impedance with the same driving-point impedance. As we
explain below, the key element of this procedure is the driving-point impedance seen from two terminals
of one side of a single-phase transformer when the other side is connected to an impedance zeq that may
be the Thévenin equivalent of a network of impedances. This yields an equivalent network where the
transformer and zeq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.14) and (3.15) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance z2,eq as shown in Figure 3.23(a), the transformer and the impedance
z2,eq can be replaced by the Thévenin equivalent impedance z2,eq/|K(n)|2 in the sense that the driving-
point impedance V1/I1 on the primary side is the same in both circuits in Figure 3.23(a). This is the same
operation that refers z2,eq in the secondary to the primary expressed in (3.14a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.10. Similarly when the primary side is connected

V1

I1

ideal
transformer

K(n) z2,eq V1

I1

z2,eq|K(n)|2
1

(a) V1/I1 on the primary side

V2

I2

ideal
transformer

K(n)z1,eq V2

I2

|K(n)|2z1,eq

(b) V2/I2 on the secondary side

Figure 3.23: Driving-point impedances

to an impedance z1,eq as shown in Figure 3.23(b), the transformer and the impedance z1,eq can be replaced
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by the Thévenin equivalent impedance |K(n)|2 z1,eq in the sense that the driving-point impedance V2/I2
on the secondary side is the same in both circuits in Figure 3.23(b). This is the same operation that refers
z1,eq in the primary to the secondary expressed in (3.14a) (Exercise 3.10).

We caution that the shortcut (3.14) and (3.15) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.8 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.5 (V1/I1 on the primary side.). Consider the network in Figure 3.24(a) where the secondary
side is connected to a network whose Thévenin equivalent is z2,eq. What is the driving-point impedance
V1/I1? We first derive the driving-point impedance directly using Kirchhoff’s and Ohm’s laws. We then

V1

I1 I1' I2'

V1' V2'

ideal
transformer

K(n) z2,eq

z1,eq

y1,eq

(a) Transformer circuit

V1

I1

z2,eq|K(n)|2
1

z1,eq

y1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.24: Driving-point impedance V1/I1 on the primary side.

use the result to verify the shortcut expressed in (3.14) and (3.15).

Circuit analysis. We have for the primary circuit

V1
I1

�
=


1+ z1,eq y1,eq z1,eq

y1,eq 1

�
V 01
I01

�

Hence

V1
I1

�
=


1+ z1,eq y1,eq z1,eq

y1,eq 1

�
K�1(n) 0

0 K̄(n)

�
V 02
I02

�

Substituting V 02 = z2,eq I02 we have

V1
I1

�
=


1+ z1,eq y1,eq z1,eq

y1,eq 1

�
|K(n)|�2 0

0 1

�
z2,eq

1

�
K̄(n) I02

=


1+ z1,eq y1,eq z1,eq

y1,eq 1

�
z2,eq/|K(n)|2

1

�
K̄(n) I02

Hence the driving-point impedance is

V1

I1
=

(1+ z1,eq y1,eq)
�
z2,eq/|K(n)|2

�
+ z1,eq

y1,eq
�
z2,eq/|K(n)|2

�
+1

= z1,eq +

✓
y1,eq +

1
z2,eq/|K(n)|2

◆�1
(3.16)
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It is the Thévenin equivalent on the primary side of a network consisting of impedances, admittances,
as well as an ideal transformer. The Thévenin equivalent (3.16) has a simple interpretation, as we now
explain.

Shortcut.. Use (3.14a) to refer z2,eq in the secondary to the primary, we can replace the ideal transformer
and z2,eq by the equivalent impedance z2,eq/|K(n)|2 and arrive at the equivalent circuit in Figure 3.24(b)
seen from the primary side. The application of (3.15) then yields the driving-point impedance (3.16).

Example 3.6 (V2/I2 on the secondary side.). Consider the circuit in Figure 3.25(a) where the primary
side is connected to the impedance z1,eq. Use (3.14a) to refer z1,eq in the primary to the secondary, we

V2

I2

ideal
transformer

K(n)z1,eq

z2,eq

y2,eq

(a) Transformer circuit

V2

I2z2,eq

y2,eq|K(n)|2z1,eq

(b) Equivalent circuit seen on the
secondary side

Figure 3.25: Driving-point impedance V2/I2 on the secondary side.

can replace the ideal transformer and z1,eq by the equivalent impedance |K(n)|2 z1,eq and arrive at the
equivalent circuit in Figure 3.25(b) seen from the secondary side. The application of (3.15) then yields the
driving-point impedance:

V2

I2
=

✓
y2,eq +

1
z2,eq + |K(n)|2 · z1,eq

◆�1
(3.17)

3.4 Per-phase analysis

In this section we apply the techniques developed in the previous sections in the analysis of a balanced
three-phase power system consisting of generators, transformers, transmission lines, and loads, in a mix
of Y and D configurations. We first explain how to obtain a per-phase equivalent circuit of the system and
then illustrate, through an example, the per-phase analysis using the shortcut (3.14) and (3.15). Finally we
discuss a circuit that contains parallel paths to which the shortcut is not applicable. We explain why the
end-to-end complex transformer gains on these paths should be equal.
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3.4.1 Analysis procedure

We have explained in Chapter 1.2.5 how to convert all sources, series impedances, shunt admittances in
D configurations into their equivalent Y configurations and obtain a per-phase equivalent circuit. Chapter
3.2.1 shows that an ideal balanced three-phase transformer has a per-phase equivalent model specified
by a complex voltage gain K(n) that relates the voltages and currents on two sides of the transformer.
Chapter 3.2.2 shows how to incorporate the transformer series impedance and shunt admittance into the
per-phase model for both Y and D configurations. Chapter 3.3.1 explains how to refer series impedances
and shunt admittances on one side to the other and Chapter 3.3.2 explains how to use this shortcut to
simplify circuit analysis the same way we use Thévenin equivalent of impedances in series or in parallel.
Putting everything together the procedure for per-phase analysis of a balanced three-phase system is as
follows:

1. Convert all sources and loads in D configuration into their Y equivalents using (1.31a) for sources
and (1.31b) for loads.

2. Convert all ideal transformers in D configuration into their Y equivalents with voltage gains K(n)
given in Table 3.2.

3. Obtain the phase a equivalent circuit by connecting all neutrals.

4. Solve for the desired phase a variables. Use Thévenin equivalent of series impedances and shunt
admittances in a network containing transformers to simplify the analysis when applicable, e.g., for
a radial system.

5. Obtain variables for phases b and c by subtracting (or adding) 120� and 240� from the phase a
variables for positive-sequence (negative-sequence) sources. If variables in the internal of the D
configurations are desired, derive them from the original circuits.

We illustrate this procedure in the next example.

Example 3.7. Consider the balanced system described by the one-line diagram in Figure 3.26(a) where a
three-phase generator is connected to a stepup three-phase transformer bank (primary on the left) in DY
configuration, which is connected through a three-phase transmission line to a stepdown transformer bank
(primary on the right) in DY configuration, and then to a load. The terminal line voltage of the generator
is Vline. The transmission line is modeled by a series impedance zline and the load is assumed to be an
impedance zload. The transformer banks are made up of identical single-phase transformers each specified
by a series impedance of 3zl and a turns ratio of a := 1/n.

Find the generator current, the transmission line current, the load current, the load voltage, and the
complex power delivered to the load in terms of the given parameters.

Solution. The per-phase equivalent circuit is shown in Figure 3.26(b). Note that the stepdown DY trans-
former near the load has its primary side on the right and secondary side on the left so that, going from
left to right, the voltage (current) angle is shifted down (down) by 30� and their magnitudes scaled down
(up) by

p
3n; see Exercise 3.6. The primary sides of both the stepup and stepdown transformers have been
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Vline

z line

z load
Y Y∆ ∆

(a) One-line diagram

1 : √3̄n

transformer T1 transmission line transformer T2

√3̄n : 1

z load e i�/6 e i�/6

z line

V2 V3

I1 I2 I3zl zl

V1

(b) Per-phase circuit

Figure 3.26: Example 3.7.

converted from D to its Y equivalent, with an equivalent series impedance zl that is 1/3 of the original
impedance 3zl . The phase voltage of the generator in the per-phase equivalent circuit is

V1 :=
Vlinep
3eip/6

Our solution strategy is as follows. We will use (3.14) and (3.15) to refer all the (load, transformer, and
transmission line) impedances to the primary side of the stepup transformer. This calculates the driving-
point impedance seen at the generator. Given generator phase voltage V1, we can derive the generator
current I1. We then propagate this towards the load to calculate the other quantities.

Let K(n) :=
p

3neip/6. Going from right to left, we cross the stepdown transformer T2 from the primary
to the secondary. Referring the impedance z1,eq := zload + zl on the primary to the secondary (see Figure
3.23(b)), the equivalent impedance at the right-end of the transmission line is

|K(n)|2 (zload + zl)

Hence the equivalent impedance at the secondary side of the stepup transformer T1 is

z2,eq := zline + |K(n)|2 (zload + zl)

Referring this impedance to the primary side of T1 (see Figure 3.23(a)), the driving point impedance at the
generator is:

V1

I1
= zl +

1
|K(n)|2 ·

�
zline + |K(n)|2 (zload + zl)

�

= 2zl +
zline

|K(n)|2 + zload
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Hence the primary side of T1 sees the series impedance zl of the two transformers, a scaled down version
of the line impedance zline, and the load zload, all in series. Note that, seen from the generator, the load zload
goes through a stepdown transformer and a stepup transformer and therefore the scaling effects of these
two transformers are canceled out.

Given the bus voltage V1 of the generator, the generator current is then

I1 =
V1

2zl + zline
|K(n)|2 + zload

The transmission line current is

I2 =
I1

K̄(n)
=

V1

K̄(n)
⇣

2zl + zline
|K(n)|2 + zload

⌘

The load current is

I3 = K̄(n) I2 = I1

i.e., the effects of stepup and stepdown transformers cancel each other and the load current is equal to the
generator current. The load voltage is

V3 = zload I3 = zload I1 = V1 · zload

2zl + zline
|K(n)|2 + zload

Hence V3 relates to V1 according to the voltage-divider rule where V1 is the voltage drop across the series
of impedances 2zl +

zline
|K(n)|2 + zload and V3 is the voltage drop across zload. The complex power delivered to

the load is

V3 Ī3 = zload ·

�����
V1

2zl + zline
|K(n)|2 + zload

�����

2

= zload · |Vline|2

3
���2zl + zline

|K(n)|2 + zload

���
2

Simplified per-phase diagram for external behavior. In Example 3.7, only the transmission line cur-
rent I2 that is in between the pair of transformers depends on the connection-induced phase shift eip/6 in
the complex transformer gain K(n). Outside the pair of transformers, the driving point impedance V1/I1,
the generator current I1, the load current I3, the load voltage V3, and the power delivered to the load do
not. They depend only on |K(n)|2. This is the case even if we use the more detailed P model of the
transmission line instead of the short-line model used here. Indeed, suppose the series impedance zline in
Figure 3.26(b) is replaced by the transmission matrix in (2.9) or (2.13)(2.14) as in Figure 3.27(a). Then
the voltage and current (V1, I1) on the left is related to the voltage and current (V2, I2) by


V1 |K(n)|eip/6

I1 |K(n)|�1 eip/6

�
=


A B
C D

�
·


V2 |K(n)|eip/6

I2 |K(n)|�1 eip/6

�


V1 |K(n)|

I1 |K(n)|�1

�
=


A B
C D

�
·


V2 |K(n)|
I2 |K(n)|�1

�
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V1

I1 I2

V2[
transmission

line

A
C

B
D

e i�/6e i�/6 ]
1 : √3̄n √3̄n  : 1

(a) Transmission line P-model

V1

I1 I2

V2[
transmission

line

A
C

B
D]

1 : √3̄n √3̄n  : 1

(b) Equivalent circuit without connection-induced phase shift

Figure 3.27: P-model of transmission line in place of the series impedance zline model in Figure 3.26(b).

Therefore the external behavior is as if the connection-induced phase shift eip/6 is absent, as shown in
Figure 3.27(b). This motivates a simplified per-phase diagram for external behavior that ignores all the
connection-induced phase shifts of transformers as long as every path contains stepup and stepdown trans-
forms in pairs and wired in opposite directions. This is generally true for radial networks in practice where
no transmission lines nor transformers are in parallel. Radial networks are a special case of a normal sys-
tem that we discuss next.

3.4.2 Normal system

A system is called normal if, in the per-phase equivalent circuit, the product of the complex ideal trans-
former gains around every loop is 1. Equivalently, on each parallel path,

1. the product of ideal transformer gain magnitudes is the same, and

2. the sum of ideal transformer phase shifts is the same.

Normal systems have a normalization that greatly simplifies analysis which we will discuss in Chapter
3.5. The following example motivates such a system.

Example 3.8 (Loop flows). Consider a generator and a load connected by two three-phase transformer
banks in parallel forming a loop as shown in Figure 3.28(a). The transformer in the upper path is charac-
terized by a series impedance and a complex gain K1. The transformer in the lower path is characterized
by the same series impedance and a possibly different complex gain K2. Suppose line-to-neutral voltage
of the generator bus is Vgen, the series impedance zl of the transformer and the load impedance zload in the
per-phase equivalent circuit are given, as shown in Figure 3.28(b). Derive the currents Iload, I01, I

0
2 in terms

of Vgen,zl,zload. Discuss the implications when

1. K2 = K1. This is the case if both transformer banks are YY -configured.

2. K2 = K1 eiq . This is the case if the upper transformer bank is YY -configured with a voltage gain of
n but the lower transformer bank is DY -configured with a voltage gain of n/

p
3 and q = p/6.

3. K2 = k · K1, k > 0. This is the case if both transformer banks are YY -configured but with different
turns ratios.
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load
gen

zl'

zl'

1 : K1

1 : K2

(a) Transmission line P-model

zl

zl
z loadVloadVgen

Iload

I2'

I1'I1
K1

K2
I2

(b) Equivalent circuit

Figure 3.28: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.14) and (3.15) to refer the impedances zload and zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I01, I
0
2, I1, I2. The five equations that relate them are

Iload = I01 + I02
zload Iload = K1 ·

�
Vgen � zl I1

�

zload Iload = K2 ·
�
Vgen � zl I2

�

I0j =
I j

K̄ j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I01, I

0
2 we have

zload

✓
I1

K̄1
+

I2

K̄2

◆
= K1 ·

�
Vgen � zl I1

�

zload

✓
I1

K̄1
+

I2

K̄2

◆
= K2 ·

�
Vgen � zl I2

�

or


zl + zload|K1|�2 zload(K1 K̄2)�1

zload(K̄1 K2)�1 zl + zload|K1|�2

�
·


I1
I2

�
=


Vgen
Vgen

�

Inverting the matrix, we obtain

I1 =
Vgen

zl + zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

zl + zload (|K1|�2 + |K2|�2)
·a2
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where

a1 = 1 +
zload

zl
· K1�K2

K1 |K2|2

a2 = 1 +
zload

zl
· K2�K1

|K1|2 K2

Hence

I01 =
I1

K̄1
=

Vgen

zl + zload (|K1|�2 + |K2|�2)
· a1

K̄1

I02 =
I2

K̄2
=

Vgen

zl + zload (|K1|�2 + |K2|�2)
· a2

K̄2

and

Iload = I01 + I02 =
Vgen

zl + zload (|K1|�2 + |K2|�2)
·
✓

1
K̄1

+
1

K̄2

◆

where we have used

a1

K̄1
+

a2

K̄2
=

✓
1

K̄1
+

zload

zl
· K1�K2

|K1|2 |K2|2

◆
+

✓
1

K̄2
+

zload

zl
· K2�K1

|K1|2 |K2|2

◆
=

1
K̄1

+
1

K̄2

1. When K2 = K1, then a1 = a2 = 1 and

I01 = I02 =
Vgen

zl + zload (2 |K1|�2)
· a1

K̄1
=

K1Vgen

|K1|2zl + 2zload

and

Iload =
Vgen

|K1|2zl + 2zload| {z }
I0

·2K1 = I0 ·2K1 (3.18)

2. When K2 = K1 eiq , then, for i = 1,2,

I0i =
Vgen

zl + zload (2 |K1|�2)
· ai

K̄i
=

Vgen

|K1|2zl + 2zload
· (ai Ki)

Since a1 K1 + a2 K2 = K1 +K2 = K1 (1+ eiq ) and |K1| = |K2|, we have

Iload =
Vgen

|K1|2zl + 2zload
·
⇣

1+ eiq
⌘

K1 = I0

⇣
1+ eiq

⌘
K1

Hence Iload reduces to the load current in (3.18) when the transformer gains are equal with q = 0.
When the transformer gains K1 and K2 are not in phase,

�
1+ eiq� can be much smaller than 2 and

the current |Iload| that enters the load can be much smaller than the currents |I0i |, i = 1,2. In particular

|Iload|
|I01|

=
|1+ eiq |

|a1|
and

|Iload|
|I02|

=
|1+ eiq |

|a2|
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To appreciate the issue, take K1 = 10, K2 = 10eip/6, Vgen = 8 kV, zl = j0.05W, zload = 800\0�W.
Then

I01 = 3,754.99 \�164.85 A
I02 = 4,527.24 \14.88 A

Iload = I01 + I02 = 772.50 \13.57 A
|Iload|
|I01|

= 20.57%,
|Iload|
|I02|

= 17.06%

Hence |I01| and |I02| are much larger than |Iload|. The interpretation is that most of the current loops
between the two transformer banks without entering the load. This is undesirable because the cir-
culating current serves no purpose and heats up the transformers. The problem arises because the
connection-induced phase shifts in the two parallel paths are different. In practice we will not par-
allelize these transformers.
The complex generation power and load power are respectively

Sgen := Vget(Ī1 + Ī2) = 182.98 \70.97� MVA
Sload := zload|Iload|2 = 59.68 \0� MVA

Again the apparent load power is a small fraction of the apparent generation power. However, since
the transformers have zero resistance, their real powers are the same:

Pgen = Pload = 59.68 MW

3. When K2 = k ·K1, we have

I01 =
K1 Vgen

|K1|2zl + (1+ k�2) zload
·a1

I02 =
K1 Vgen

|K1|2zl + (1+ k�2) zload
· a2

k

Iload =
Vgen

|K1|2zl + (1+ k�2) zload
·
✓

1+
1
k

◆
K1

Hence
|Iload|
|I01|

=
1+ k�1

|a1|
and

|Iload|
|I02|

=
1+ k
|a2|

If we take K1 = 10, K2 = 20, Vgen = 8 kV, zl = j0.05 W, zload = 800\0� W. Then

I01 = 3,260.76 \76.40 A
I02 = 3,213.39 \�86.58 A

Iload = I01 + I02 = 959.23 \�2.29 A
|Iload|
|I01|

= 29.42%,
|Iload|
|I02|

= 29.85%

Again |I01| and |I02| are much larger than |Iload| and there is a large loop flow between the transformer
banks. This time the problem arises because the voltage gains in the two parallel paths are different.
In practice we will not parallelize these transformers.
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3.5 Appendix: Per-unit normalization

In this appendix we describe a normalization method that will simplify the analysis of balanced three-
phase systems. For a normal system where all connection-induced phase shifts of transformers can be
ignored in the per-phase equivalent circuit, the system after normalization will contain no transformers
if there is no off-nominal transformer in the original system. For general systems, normalization may
simplify the equivalent circuit and per-phase analysis, but the system after normalization may contain ideal
transformers with real or complex voltage gains. Normalization was important before the widespread use
of powerful computers because it simplifies computation significantly. It is less important today, and some
people argue, sometimes more error-prone than worth the effort.

We are usually interested in four types of generally complex quantities: power S, voltages V , currents
I, and impedances Z and functions of these quantities. We will choose base values for these quantities and
define the quantities in per unit as:

quantity in p.u. :=
actual quantity

base value of quantity

The base values are chosen to be real positive values and have the same units as the corresponding actual
quantities. For example a power base SB will be in unit VA when it serves as the base value for complex
power, W for real power, var for reactive power. Hence the per-unit quantities generally have different
magnitudes from, but always the same phase as, the corresponding actual quantities. Furthermore they
are dimensionless. The base values are chosen so that the per-unit quantities behave exactly as the actual
quantities do, as we now explain.

Consider a power network that consists of multiple areas connected by transformers. It represents
either a single-phase system or the per-phase equivalent circuit of a balanced three-phase system. The
nominal voltage magnitudes are the same within each area and those in neighboring areas are related by
transformer turns ratios. It is common to choose the power base value S1B for the entire network and the
voltage base value V1B for one of the areas, say, area 1. For example the base value V1B can be chosen
to be the nominal voltage magnitude for area 1 and the base value SB can be the rated apparent power of
one of the transformers in area 1, so that its rated voltage is 1 pu and the rated power is 1 pu. The base
values for all other quantities in the entire network are then calculated from these two values (SB,V1B) so
that these base values satisfy:

• Kirchhoff’s laws within each area;

• ideal transformer gains across areas;

• three-phase relations.
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We derive in Chapter 3.5.1 the base values within area 1 and in Chapter 3.5.2 the base values of other areas
connected by transformers to area 1. In Chapter 3.5.3 we describe the normalization of off-nominal trans-
formers. In Chapter 3.5.4 we describe how to calculate base values of three-phase quantities in a balanced
three-phase system. In Chapter 3.5.5 we summarize the procedure for per-unit per-phase analysis.

3.5.1 Kirchhoff’s and Ohm’s laws

Consider a single-phase system or the per-phase equivalent circuit of a three-phase system. Start with area
1 for which we have the power base SB in VA (or W or var for real and reactive powers respectively) for
the entire network, and the voltage base V1B in V . The base values I1B,Z1B of currents and impedances
respectively are calculated as:

I1B :=
SB

V1B
A, Z1B :=

V 2
B

SB
W (3.19)

so that the base values satisfy the Kirchhoff’s laws:

V1B = Z1BI1B V, SB = V1BI1B VA

Since

V1

V1B
=

Z1I1

Z1BI1B
,

S1

SB
=

V1I⇤1
V1BI1B

the per-unit quantities satisfy Kirchhoff’s laws as the actual quantities do:

V1pu = Z1pu I1pu, S1pu = V1pu I⇤1pu

We can therefore perform circuit analysis using the per-unit quantities instead of the actual quantities. We
can convert the result of the analysis back to the original quantities by multiplying the per-unit quantities
by their base values.

Extensions to other related quantities are straightforward. For example SB is also the base value for
real power in W and reactive power in var so that

P1pu :=
P1

SB
, Q1pu :=

Q1

SB

and S1pu = P1pu + jQ1pu. ZB is the base value for resistances and reactances so that

R1pu :=
R1

Z1B
, X1pu :=

X1

Z1B

and Z1pu = R1pu + jX1pu. Similarly Y1B := 1/Z1B in W�1 is the base value for admittances Y1 := 1/Z1 =
G� jB in W�1 as well as conductances G and susceptances B also in W�1.
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3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a transformer. We choose
the bases for different sides of the transformer in a way that respects the transformer gains. Consider the
circuit in Figure 3.29(a) where areas 1 and 2 are connected through a transformer with a voltage gain
K(n). If it is a single-phase system then K(n) = n, the reciprocal of the turns ratio. If it is the per-phase
equivalent of a balanced three-phase system then K(n) may be complex if the transformer is not in YY or
DD configuration. Given the bases (SB,V1B, I1B,Z1B) for area 1 calculated in Chapter 3.5.1, the bases for

V1

I1 I2

V2Ṽ1

Ĩ1

ym

zl

K(n)

(a) In standard unit

V1pu

I1pu Ĩ1pu =  I2pu

Ṽ1pu =V2puympu

zlpu

(b) In per unit

Figure 3.29: Per-phase equivalent circuit of balanced three-phase transformers with gain K(n).

the other side of the transformer are calculated according to:

V2B := |K(n)|V1B V, I2B :=
I1B

|K(n)| A, Z2B := |K(n)|2 Z1B W (3.20)

The base power value remains SB = V1BI1B = V2BI2B for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.29(a), the per-unit quantities (Ṽ1pu, Ĩ1pu) at the input and the per-unit quantities
(V2pu, I2pu) at the output of the ideal transformer satisfy (a := 1/n)

Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)

|K(n)|
V2B

= V2pu e� j\K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K⇤(n)I2

|K(n)|I2B
= I2pu e� j\K(n)

This also implies that the per-unit power S̃1pu := Ṽ1puĨ⇤1pu = V2puI⇤2pu = S2pu. If \K(n) can be taken as
zero then on the input side of the transformer, (Ṽ1pu, Ĩ1pu, S̃1pu) can be replaced by (V2pu, I2pu,S2pu), i.e.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu,Vipu, Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.29(b) where the ideal transformer has disappeared. The voltage gain angle \K(n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in YY or DD configuration, or (iii) it
is a normal system where the connection induced phase shift \K(n) can be ignored for external behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
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if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e j\K(n); see Example 3.10.

We proceed in a similar manner to calculate the base values (SB,ViB, IiB,ZiB) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area
satisfy the Kirchhoff’s laws, as long as the per-unit quantities in area 1 satisfy the Kirchhoff’s laws and
those in other areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer gain magnitudes is the
same, and (ii) the sum of ideal transformer phase shifts is the same. As discussed above these properties
prevent loop flows between transformers, as illustrated in Example 3.8. Note that in Figure 3.28(b) of that
example, the secondary-side voltages of the two ideal transformers are the same but their primary-side
voltages are different when K2 = K1e jq with q 6= 0. The first property also ensures that the calculation
(3.20) of base values across areas is consistent, i.e., does not depend on the order in which the areas are
chosen for calculation; see Exercise 3.13.

Example 3.9 (Single-phase system). Consider the single-phase system in Figure 3.30 where the voltage
source has a nameplate rated voltage magnitude of v V and a nameplate rated power of s VA. Calculate

1  :  N1 N2  :  1

area 1 area 2 area 3

zl zlz line

z load yve jθ

Figure 3.30: Single-phase system for Example 3.9 with a rated voltage magnitude of v in V and a rated
apparent power of s in VA.

the base values for the system.

Solution. Let the base value for power be SB := s in VA for the entire system and the base value for voltage
in area 1 (where the voltage source is) be V1B := v in V . Then the base values for currents and impedances
in area 1 are respectively:

I1B :=
s
v

A and Z1B :=
v2

s
W
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The base values in area 2 connected by the first transformer with a voltage gain n1 are:

V2B := n1V1B = n1 v V

I2B :=
I1B

n1
=

s
n1v

A

Z2B := n2
1 Z1B =

(v1v)2

s
W, Y2B :=

1
Z2B

=
s

(v1v)2 W�1

The base values in area 3 connected by the second transformer are:

V3B :=
V2B

n2
=

n1

n2
v V

I3B := n2 I2B =
n2

n1

s
v

A

Z3B :=
1
n2

2
Z2B =

n2
1

n2
2

v2

s
W, Y3B :=

1
Z3B

=
n2

2
n2

1

s
v2 W�1

3.5.3 Off-nominal transformer

Power systems employ two types of regulating transformers. The first type regulates voltage magnitudes,
e.g., through variable taps on some of its windings that control the number of turns and hence the voltage
gain. Such a transformer is usually connected at the end of a line to regulate the voltage magnitude at a
node. Its turns ratio may be variable and different from the ratio of the voltage bases in its primary and
secondary areas. The second type regulates phase angle displacement between two nodes. Their voltage
gains may be complex K(n) = r\f where f may be variable and cannot be omitted in normalization.
These transformers are said to be off-nominal. They will not disappear under per-unit normalization but
will appear as a transformer with a different (normalized) voltage gain, as we now explain.

Consider an ideal transformer with a possibly complex voltage gain V2
V1

=: K(n) as shown in Figure
3.31(a). Suppose the ratio of the voltage base in area 2 to that in area 1 is V2B

V1B
=: r . Since

V1

I1 I2

1  :  K(n)

V2

(a) Off-nominal transformer (stan-
dard unit)

V1

I1

1  :  1  :  ρ

I2

V2

K(n)
ρ

(b) Equivalent transformer in series (stan-
dard unit)

1  :  K(n)
ρ

V1pu

I1pu I2pu

V2pu

(c) Per-unit equivalent circuit

Figure 3.31: Normalization of an off-nominal transformer.
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V2 = K(n)V1 =
K(n)

r
·rV1

the transformer is equivalent to two ideal transformers in series with voltage gains r and K(n)/r respec-
tively as shown in Figure 3.31(b). Since the first transformer has an voltage gain of r , it disappears in
per-unit normalization and hence the per-unit equivalent circuit of the original transformer has a gain re-
duced by r as shown in Figure 3.31(c). For instance for a phase shifting transformer with voltage gain
K(n) = r\f its voltage gain in the per-unit circuit will be 1\f .

Example 3.10 (Normalization with connection-induced phase shifts). Consider a balanced three-phase
ideal transformer in DY or Y D configuration with a complex voltage gain K(n). Let the bases for one side
of the transformer be (SB,V1B, I1B,Z1B). Choose the bases for the other side according to (3.20). Suppose
we cannot ignore the connection-induced phase shift. Then the per-unit equivalent circuit of the ideal
transformer will be an off-nominal phase shifting transformer with a gain K(n)

|K(n)| = \K(n) as shown in
Figure 3.32.

V1

I1 I2

1  :  e i   K(n)

V2

Figure 3.32: Normalization when connection-induced phase shifts cannot be ignored.

As we will see in Chapter 4.2 a nonideal transformer, whether in standard unit or per unit, can be
represented by a phase impedance matrix for power flow analysis.

3.5.4 Three-phase quantities

In Chapters 3.5.1–3.5.3 we explain how to choose bases for a single-phase system. They are also applica-
ble to the per-phase equivalent of a three-phase system where the voltages and currents are line-to-neutral
voltages and line-to-neutral currents. Suppose the base values (S1f

B ,V 1f
B , I1f

B ,Z1f
B ) for a single-phase sys-

tem are given. When single-phase devices (sources, loads, impedances, transformers) are connected to
form a balanced three-phase system, three-phase quantities are created for which base values need to
be defined. For instance the ratings of a three-phase transformer are always specified in terms of three-
phase power and line-to-line voltages. In this subsection we will derive these base values, in terms of
(S1f

B ,V 1f
B , I1f

B ,Z1f
B ), in a way that respects three-phase relations. The main issue is to define the meaning

of these base values and the relation they intend to capture in Y and in D configurations.

Let (S1f ,V 1f , I1f ,Z1f ) denote respectively the power generated or consumed by a single-phase device,
the voltage across and current through the device, and the impedance of the device. We are interested in the
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following three-phase quantities. The three-phase power S3f is defined to be the sum of power generated
or consumed by each device in either Y or D configuration. The line-to-line voltages V ll and terminal (line)
currents I3f are external quantities. In an Y configured three-phase device, a line-to-neutral voltage V ln

and a three-phase impedance Z3f are equal to the voltage V 1f and impedance Z1f respectively associated
with each single-phase device. For a D configured three-phase device V ln and Z3f are defined to be the
line-to-neutral voltage and the impedance respectively in its Y equivalent circuit. As explained in Chapter
1 these quantities are related to the corresponding single-phase quantities according to:3

S3f = 3S1f , V ll =
p

3eip/6V ln (3.21a)

I3f =

⇢
Ian = I1f for Y configuration
Iab� Ica =

p
3e� jp/6I1f for D configuration

(3.21b)

V ln =

(
V 1f for Y configuration⇣p

3e jp/6
⌘�1

V 1f for D configuration
(3.21c)

Z3f =

⇢
Z1f for Y configuration
Z1f/3 for D configuration (3.21d)

Motivated by the three-phase relations (3.21) we define the base values (S3f
B ,V ll

B , I3f
B ,V ln

B ,Z3f
B ) for the

three-phase quantities (S3f ,V ll, I3f ,V ln,Z3f ) in terms of the single-phase base values (S1f
B ,V 1f

B , I1f
B ,Z1f

B )
as follows:

S3f
B := 3S1f

B , V ll
B :=

p
3V ln

B (3.22a)

I3f
B :=

(
I1f
B for Y configurationp

3 I1f
B for D configuration

(3.22b)

V ln
B :=

(
V 1f

B for Y configuration�p
3
��1V 1f

B for D configuration
(3.22c)

Z3f
B :=

(
Z1f

B for Y configuration
Z1f

B /3 for D configuration
(3.22d)

In light of (3.19) we could also have defined the base values I3f
B and Z3f

B in terms of S3f
B and V ll

B as (see
Exercise 3.14):

I3f
B :=

S3f
Bp

3V ll
B

, Z3f
B :=

�
V ll

B
�2

S3f
B

(3.22e)

These definitions replace (3.22b) and (3.22d) and are applicable for both Y and D configurations (note that
V ll

B are different functions of V 1f
B for Y and D configurations).

With these base values the per-unit quantities satisfy the following relations (see Exercise 3.15):

S3f
pu = S1f

pu , V ll
pu = V ln

pu, Z3f
pu = Z1f

pu (3.23a)
���I3f

pu

��� =
���I1f

pu

��� ,
���V ln

pu

��� =
���V 1f

pu

��� (3.23b)

3
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Therefore in per unit, the three-phase power, voltage, current and impedance equal their per-phase quan-
tities (at least in magnitude). In particular when one says that the voltage magnitude is 1 pu, it means that
the line-to-line voltage magnitude is 1 pu (i.e., equal to its base value V ll

B which is
p

3V 1f
B for Y configura-

tion and V 1f
B for D configuration), and the phase voltage magnitude is 1 pu (i.e., equal to its base value V ln

B

which is V 1f
B for Y configuration and

�p
3
��1V 1f

B ). We sometimes need not specify whether a per-unit
voltage is line-to-line or line-to-neutral, or whether a per-unit power is single-phase or three-phase. In D
configuration the line-to-neutral voltage V ln

pu is related to single-phase voltage V 1f
pu according to

V ln
pu :=

V ln

V ln
B

=

⇣p
3eip/6

⌘�1
V 1f

�p
3
��1V 1f

B

= e�ip/6V 1f
pu

Similarly for line currents I3f
pu and I1f

pu .

The next example illustrates the calculation of three-phase bases from single-phase bases. It shows
in particular that impedances, including transformer parameters, will have the same per-unit values in
single-phase or three-phase circuits and regardless of Y or D configuration.

Example 3.11 (Three-phase system). Consider a single-phase distribution transformer with nameplate
ratings of

• Power rating (1f ): 50 kVA;

• Voltage ratio: 408 V – 120 V;

• Transformer parameter: Xl = 0.1 pu, Xm = 100 pu (referred to the primary).

They are used to build three-phase transformer banks in YY , DD, DY or Y D configurations. Find the per-
unit normalization “induced” by the nameplate ratings and the impedance diagram of the per-phase circuit
in per unit.

Solution. The nameplate-induced base for the single-phase transformer is such that the power rating is
1pu and voltage rating is 1pu. Hence

S1f
B := 50kVA, V 1f

1B := 408V, V 1f
2B := 120V

Therefore the current bases are

I1f
1B :=

S1f
B

V 1f
1B

=
50kVA
408V

= 122.55A, I1f
2B :=

S1f
B

V 1f
2B

=
50kVA
120V

= 416.67A

Since S = |V |2/Z, the impedance base for the single-phase transformer induced by the nameplate ratings
is:

Z1f
1B =

⇣
V 1f

1B

⌘2

S1f
B

=
(408V)2

50kVA
= 3.33W, Z1f

2B =

⇣
V 1f

2B

⌘2

S1f
B

=
(120V)2

50kVA
= 0.29W
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Hence the actual transformer reactances Xl and Xm in W in the single-phase system are:

Xl = (0.1)Z1f
1B = 0.333W, Xm = (100)Z1f

1B = 333W

Consider now a three-phase transformer bank obtained from connecting three of these single-phase
transformers. We consider first the base values for the primary side; the base values for the secondary
side can be similarly chosen. What we will find is that if we choose our bases (S3f

B ,V ll
B , I3f

B ,Z3f
B ) accord-

ing to (3.22), then the impedance diagram of the per-phase equivalent circuit is independent of Y or D
configuration.

Case 1: primary side in Y configuration. From (3.22), the base values of the three-phase power and
line-to-line voltage induced by the nameplate ratings are

S3f
B := 3S1f

B = 3(50) = 150kVA

V ll
1B :=

p
3V 1f

B =
p

3(408) = 706.68V

These three-phase quantities are used as the power and voltage ratings on the three-phase transformer
nameplate. Hence a line voltage of 1 pu corresponds to the rated primary voltage (706.68 V) on the
nameplate. The base values for the terminal currents and impedances are:

I3fY
1B := I1f

1B = 122.55 A, Z3fY
1B := Z1f

1B = 3.33W

It can be checked that (S3f
B ,V ll

B , I3f
B ,Z3f

B ) as defined indeed satisfy three-phase relations:

I3fY
1B =

S3f
Bp

3V ll
1B

, Z3fY
1B =

�
V ll

B
�2

S3f
B

Since Z3fY
1B = Z1f

1B , Xl = 0.1pu and Xm = 100pu as before for the three-phase transformer.

Case 2: primary side in D configuration. From (3.22), the base values of the three-phase power and
line-to-line voltage induced by the nameplate ratings are

S3f
B := 3S1f

B = 3(50) = 150kVA, V ll
1B := V 1f

B = 408V

The terminal current and the impedance bases are:

I3fY
1B :=

p
3 I1f

1B =
p

3(122.55) = 212.26 A, Z3fD
1B =

Z1f
B
3

=
3.33

3
= 1.11 W

To convert the transformer circuit model in D configuration to its equivalent Y configuration, the trans-
former reactances are reduced by a factor of 3, i.e., XY

l = Xl/3 and XY
m = Xm/3. Hence the transformer

reactances in pu are:

XY
lpu :=

XY
l

Z3f
1B

=
Xl/3

Z1f
1B/3

=
Xl

Z1f
1B

= 0.1 pu

XY
mpu :=

XY
m

Z3f
1B

=
Xm/3

Z1f
1B/3

=
Xm

Z1f
1B

= 100 pu
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as expected.

In summary, with the three-phase base values defined in (3.22), the transformer reactances Xl and Xm
remain the same in pu regardless of how the single-phase transformers are connected into a three-phase
transformer bank. The impedance diagram of its per-phase circuit is shown in Figure 3.33.

V1pu V2pu

I2puI1pu

jxmpu

jxlpu

Figure 3.33: Impedance diagram of a three-phase transformer bank.

3.5.5 Per-unit per-phase analysis

Consider a balanced three-phase normal system. Recall that the nameplate ratings of three-phase trans-
formers are specified in terms of their three-phase power and line-to-line voltages. The procedure for
per-unit per-phase analysis is summarized as follows:

1. For a single-phase system, pick a power base S1f
B for the entire system and a voltage base V ln

1B in one
of the areas, e.g., induced by the nameplate ratings of one of the single-phase transformers.

2. For a balanced three-phase system, pick a three-phase power base S3f
B and line-to-line voltage base

V ll
1B induced by the nameplate ratings of one of the three-phase transformers in area 1 (choose either

the primary or secondary circuit as area 1). Then choose the power and voltage bases for the per-
phase equivalent circuit of the balanced three-phase system according to (3.22a):

S1f
B :=

S3f
B
3

and V 1f
1B :=

V ll
1Bp
3

S1f
B will be the power base for the entire per-phase circuit.

3. Calculate the current and impedance bases in that area by:

I1B :=
S1f

B

V 1f
1B

and Z1B :=

⇣
V 1f

1B

⌘2

S1f
B

4. Calculate the base values for voltages, currents, and impedances in areas i connected to area 1 by
the magnitudes ni of the transformer gains (assuming area 1 is the primary side of the transformers):

V 1f
iB := niV

1f
1B , V ll

iB := niV ll
1B IiB :=

1
ni

I1B, ZiB := n2
i Z1B

Continue this process to calculate the voltage, current, and impedance base values for all areas.
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5. For real, reactive, apparent power in the entire system, use S1f
B as the base value. For resistances and

reactances, use ZiB as the base value in area i. For admittances, conductances, and susceptances, use
YiB := 1/ZiB as the base value in area i.

6. Draw the impedance diagram of the entire system, and solve for the desired per unit quantities.

7. Convert back to actual quantities if desired.

3.6 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]. Some of the materials on per-unit normalization, e.g., off-nominal regulating transformer
in Chapter 3.5.3, follow [2]. [11] describes a rigorous approach that treats per-unit normalization as a
similarity transformation of a dynamical system in the time domain. The per-unit normalization presented
in this chapter represents the steady-state of the per-unit dynamical system of [11].

3.7 Problems

Chapter 3.1.

Exercise 3.1 (T model of transformer). For the T equivalent circuit of transformer in Figure 3.34, show
that the transmission matrix is given in (3.5). If ym = 0 then

V1

I1 I2

N1  :  N2

V2Û1 ym

zp
nI2

aV̂2

a2zs

Figure 3.34: Exercise 3.1: T equivalent circuit of transformer with n := N2/N1 and a := N1/N2.


V1
I1

�
=


a n

�
zp +a2zs

�

0 n

�
V2
I2

�

which is the same as the transmission matrix in (3.7a).

Exercise 3.2 (T model of transformer). Given the primary voltages and primary currents (Vsc, Isc) and
(Voc, Ioc) of a short-circuit and open-circuit tests respectively, derive (3.6), reproduced here:

Vsc =

 
zp +

✓
ym +

1
a2zs

◆�1
!

Isc, Voc =

✓
zp +

1
ym

◆
Ioc (3.24)
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from (3.4), reproduced here:

Nonideal elements: V1 = zpI1 +V̂1, Îm = ymV̂1, V̂2 = zsI2 +V2 (3.25a)

Ideal transformer: V̂2 =
N2

N1
V̂1, I2 =

N1

N2

�
I1� Îm

�
(3.25b)

where the series impedances

Exercise 3.3 (Simplified model). Consider the transformer model in Figure 3.5 and its transmission matrix
M̂ in (3.7a). This question shows that when the shunt admittance matrix ym is small compared with the
series admittances zs, M̂ is a good approximation the transmission matrix M in (3.5). Let e := a2zsym.

1. Show that their difference is M̂�M = e


a �nzp
0 �n

�
.

2. Suppose zp = hzs = h(rs + ixs) for some real number h > 0 with rs > 0 and xs > 0, ym =�ibm with
bm > 0, and |e|⌧ 1. Show that kM̂�Mk

kMk < |e|⌧ 1, where kAk denotes the sum norm kAk := Âi, j |Ai j|.

Exercise 3.4 (Unitary voltage network). Show that the T equivalent circuit described by (3.5) is equivalent
to the transformer model I = (MYuvnM)V given by (3.11).

Exercise 3.5 (Unitary voltage network). Show that, instead of the numbers N1, N2 of turns of the primary
and secondary windings respectively, the admittance matrix MYuvnM in (3.11) can equivalently be written
in terms of the turns ratio a := N1/N2:

MYuvnM =
ypys

a2ym +a2yp + ys


1+a2ym/ys �a
�a a2(1+ ym/yp)

�

Chapter 3.2.

Exercise 3.6 (DY and Y D configurations). Consider ideal balanced three-phase transformers in DY and Y D
configurations shown in Figure 3.14(b). Show that an Y D transformer with single-phase voltage gains 1/n
is equivalent to a DY transformer with single-phase voltage gains n with its primary and secondary sides
switched.
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Exercise 3.7 (Nonideal DY transformer). Consider a balanced three-phase transformers in DY configura-
tion and its per-phase equivalent circuit shown in Figure 3.17. Show that the transmission matrix of the
per-phase equivalent circuit is given by:


V an

1
Ia
1

�
=


K�1

DY (n)(1+ zlym) K̄DY (n)(zl/3)
K�1

DY (n)(3ym) K̄DY (n)

�
V an

2
Ia
2

�

where KDY (n) :=
p

3n eip/6.

Exercise 3.8 (Referring shunt admittance in one side to the other). Show that the transmission matrix for
the circuit in Figure 3.20(a) is the same as that in Figure 3.20(b) provided that the relation (3.14b) between
shunt admittances yp and ys holds.

Exercise 3.9 (Transmission matrix). Consider a balanced three-phase ideal transformer with a complex
gain K(n) connected to a balanced three-phase series impedance zs and a balanced three-phase shunt
admittance ys on the secondary side. The per-phase equivalent circuit is shown in Figure 3.35(a). Show

V2

I2I1

V1 V

I

ysK(n)

zs

ideal
transformer

(a) (zs,ys) in the secondary

V1

I1 I2

V2yp

zp

K(n)

ideal
transformer

(b) (zp,yp) in the primary

Figure 3.35: Referring (zs,ys) on the secondary to the primary for an ideal transformer with a complex
gain K(n).

directly that transmission matrix of the circuit in Figure 3.35(a) is the same as that in Figure 3.35(b)
provided the relation (3.14) between impedances/admittances (zp,yp) and (zs,ys) holds.

.

Exercise 3.10 (Driving-point impedance). Refer to Figure 3.23.

1. Show that the driving-point impedance V1/I1 on the primary side is the same in both circuits in
Figure 3.23(a).

2. Show that the driving-point impedance V2/I2 on the secondary side is the same in both circuits in
Figure 3.23(b).
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Exercise 3.11 (Driving-point impedance on primary side). Suppose the secondary sides of the (equivalent)
circuits in Figure 3.35 are connected to an identical load Zload so that V2 = Zload I2 in both circuits.

1. Show that the driving-point impedances on the primary side of the circuit in Figure 3.35(a) is:

V1

I1
=

1
|K(n)|2

 
Zs +

1
Ys +Z�1

load

!
(3.26a)

The term in the bracket is the Thévain equivalent impedance in the secondary circuit, seen from the
output of the ideal transformer.

2. Show that the driving-point impedances on the primary side of the circuit in Figure 3.35(b) is:

V1

I1
= Zp +

1
Yp + |K(n)|2 Z�1

load
(3.26b)

3. Show that (3.26a) and (3.26b) are equivalent provided that (Zp,Yp) and (Zs,Ys) satisfy (3.14).

Exercise 3.12. Consider the balanced three phase system in Figure 3.36 where the line-to-line voltage of
the three-phase generator in D configuration is Vgen. The 3f transformer consists of single-phase trans-
formers in DY configuration. Each single-phase transformer is modeled by a series impedance Zl (and
negligible shunt admittance) on the primary side followed by an ideal transformer with turn ratio n. The
transmission line is modeled by a P-model with a series impedance Zs and a shunt admittance Ym/2 at each
end of the line. The transmission line is connected to a balanced 3f impedance load in Y configuration
with an impedance Zload in each phase.

Vgen
z load

Y∆

transmission
line1 : n

zl

z line 2
ym

2
ym,,( )

Figure 3.36: A three-phase generator in D configuration connected to a three-phase DY transformer and
then to a three-phase load in Y configuration through a three-phase AC transmission line.

1. Draw the equivalent per-phase circuit.

2. Derive the complex power delivered to the load Zload in each phase.

Exercise 3.13 (Bases across transformers). For a normal system, on each parallel path in its per-phase
equivalent circuit, the product of ideal transformer gain magnitudes is the same. Show that this property
allows us to consistently define base values between two neighboring areas using (3.20). (Hint: Show that
around any loop, (3.20) holds only if the product of voltage gain magnitudes around the loop is 1.)
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Exercise 3.14 (Terminal current and three-phase impedance bases). Show the definition (3.22b) (3.22d)
for base values I3f

B and Z3f
B respectively are equivalent to definition (3.22e).

Exercise 3.15 (Per unit properties). Prove the per-unit properties (3.23).

Exercise 3.16 (Caltech ACN: transformers). Figure 3.37 shows the layout of the Adaptive Charging Net-
work (ACN) for electric vehicles (EVs) in a Caltech garage. The Caltech ACN consists of two three-phase

Figure 3.37: Caltech Adaptive Charging Network (ACN) layout.

stepdown transformers in DY configuration with D on the primary side. Each of these transformers is con-
nected to an electric panel, to which charging stations and subpanels are connected. Figure 3.38(a) shows
the two three-phase transformers and the two electric panels. Figure 3.38(b) shows the ratings of each of

(a) Transformers and panels (b) Transformer ratings

Figure 3.38: (a) The two 150 kVA transformers and two electric panels in Caltech ACN to which charging
stations and electric subpanels are connected. (b) The transformer ratings.

the three-phase transformers:
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• Power rating 150 kVA (three-phase).

• Primary (high voltage) side: 480V in Delta configuration with rated line current of 180A.

• Secondary (low voltage) side: 208Y/120V in Wye configuration with rated line current of 416A.

• Impedance voltage (percentage impedance): b = 5.45% on the primary side (the shunt admittance
is negligible).

The impedance voltage is the voltage drop across the series impedance Zl on the primary side of the
transformer in a short-circuit test, as a percentage of the rated primary voltage. In a short-circuit test the
secondary side is short-circuited. The b specification means that the voltage needed on the primary side
to produce a rated primary current is b times the rated primary voltage.

Verify that the rated line currents on the primary and secondary sides are consistent with the power
rating and voltage ratings. Determine the magnitude |Zl| of the series impedance of the transformer and
draw the circuit model of the three-phase transformer.

Exercise 3.17 (Caltech ACN: estimating distribution line impedances). Suppose the transformer in Exer-
cise 3.16 is connected to a three-phase voltage source with a line voltage of |Vline| = 480V on the primary
side through a three-phase distribution line modeled by a series impedance Zline,1, and to a three-phase load
on the secondary side through another three-phase distribution line modeled by a series impedance Zline,2,
as shown in Figure 3.39. Suppose the system is balanced. The load is a three-phase constant-current load

Vline
load

Y∆

distribution
line

distribution
line 1 : n

zl

z line,2z line,1

Figure 3.39: The three-phase transformer is connected to a three-phase voltage source and a three-phase
load through two three-phase lines.

in D configuration with a known current Iload from phase a to phase b. The voltage is measured to be V2
across the load between phase a and phase b. The phase a voltage on the secondary side of the transformer
(before the distribution line) is measured to be Van.

Determine the distribution line impedances Zline,1 and Zline,2 in terms of the line voltage |Vline|, the
series impedance Zl of the transformer, and the complex gain K(n) of the ideal DY transformer, as well as
the measured voltages V2,Van and current Iload. Assume without loss of generality that the voltage source
has Vab = |Vline|\0� and the sources are in positive sequence.

Exercise 3.18 (Caltech ACN: network design). This problem considers the deployment costs of different
network designs for ACN. Referring to Figure 3.38(a), the output (secondary side) of each of the 150 KVA
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transformers is connected to the input of one of the two electric panels. A wire connects a circuit breaker
in the panel to an electric vehicle (EV) charger or a subpanel and these wires are housed in conduits. We
consider the network that connects all the EV chargers to one of the two panels in Figure 3.38(a). In
this network, the main components are wires, conduits, and subpanels and the types and sizes of these
hardware determine the deployment costs, both parts and labor. The types and sizes depend on the current
limit (ampacity) of each wire segment required to carry the current to chargers it supplies and the distance
of that wire segment. Consider an idealized layout in Figure 3.40 where the network connects a total of nk
EV chargers to the electric panel. These chargers are clustered into n groups. Each group i is associated

0 1 2 n
(D,A1)

(d,a) (d,a) (d,a)

(D,A2) (D,An)

EV1 EVk EV1 EVk EV1 EVk
(a) Design 1

EV1 EVk EV1 EVk EV1 EVk

0 1 2 n
(D,A1)

(d,a) (d,a) (d,a)

(D,A2) (D,An)

(b) Design 2

Figure 3.40: Caltech ACN network design.

with a junction i = 1, . . . ,n as shown in the figure. Every group consists of k identical chargers labeled by
EV1, . . . ,EVk. Each charger can draw a maximum current of I (in A).

Design 1. The first design runs a wire from the electric panel at junction 0 directly to each charger
following the path labeled in black in Figure 3.40(a). Let (D,Ai) denote the distance and the cross-sectional
area of the wire between each junction i�1 to i. Let (d,a) denote the distance and the cross-sectional area
of the wire from a junction to every EV in its group. The cross-sectional area of a wire depends on the
maximum current it needs to supply. We assume the maximum current that can be drawn by any charger
is the same, and therefore the wires from a junction to any EV in its group all have the same size a. The
wire size Ai between junctions i�1 and i depends on the layout. In design 1, Ai = a for all i. This will be
different in design 2 (see below).

For example, the wire connecting EV1 in group 1 goes from junction 0 (electric panel) to junction 1 to
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the charger, as shown in blue, and has a total length of D+d and size a. The wire connecting EVk in group
n goes from junction 0 to junctions 1, . . . ,n, to the charger, and has a total length of nD+d and size a.

Design 2. In this design a single wire of length D and size A1 connects the electric panel at junction 0 to an
electric subpanel at junction 1; see Figure 3.40(b). Then k wires each of length d and size a connects the
k chargers in group 1 to the subpanel. A single wire of length D and size A2 < A1 connects the subpanel
at junction 1 to a subpanel at junction 2, and k wires each of (d,a) then connects the k chargers in group
2, and so on.

For both design 1 and design 2, the cross-sectional area of the wire used for any segment of the layout
depends on the maximum current (called the ampacity of the wire in ampere) that it needs to carry. That
is, the wire sizes a,Ai above are functions a(x) where x is the ampacity. See below for an example of
a(x).

Deployment costs. The total deployment cost (parts and labor) involve mainly three types of hardware.

1. Wire. The cost of deploying a wire of length l and cross-sectional area a is denoted by the function
Cw(l ,a).

2. Conduit. The cost Cc(l ,a) of deploying a conduit of length l that carries wires with a total cross-
sectional areas a has two components:

Cc (l ,a) := Cc1 (l ,a) + Cc2 (a)

The first component Cc1(l ,a) depends on the length l and total wire size a , the longer and larger
the conduit, the higher the cost. The second component Cc2(a) depends only on the total wire size
a and is usually a step function: when the total wire size exceeds a threshold, a special machine is
needed to deploy the conduit at an extra cost. In Design 1, all wires that share the same segment
(say) between junctions i� 1 to i will be housed in the same conduit. For example, the conduit
between junction 1 and junction 2 will carry (n� 1)k wires. We assume that if a conduit carries
wires of areas a1, . . . ,am, then the total wire size is simply its sum a := Âm

i=1 ai.

3. Subpanel. For simplicity we assume every subpanel (in design 2) has the same cost cs.

Assumptions on cost functions. Assume the cost functions take the following form:

Cw(l ,a) := cw l a, Cc1(l ,a) := cc l a, Cc2(a) = b 1(a � t) (3.27a)

Figure 3.41(a) shows the wire size dependence a(x) on ampacity x from (a version of) the American
Wire Gauge (AWG) standard. Based on the data, Figure 3.41(b) shows that a(x) can be well approximated
by a quadratic function

a(x) := x2 +0.6x+4 (3.27b)

with x in A and a(x) in mm2. The quadratic term represents the fact that the thermal power loss due
to a current I0 through a wire with resistance r is roughly rI2

0 . Doubling the current means that the
resistance must be scaled down by a factor of 4 in order to maintain the same heat loss. Since r is inversely
proportional to the cross-sectional area of the wire, this requires a wire with 4 times the area.
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AWG"#" ""
area"

(mm^2)" ""
ampacity"

(enclosed,"A)"
10   5.269   33 
8   8.347   46 
6   13.332   60 
4   21.156   80 
2   33.593   100 
1   42.429   125 
0   53.456   150 

00   67.491   175 
000   84.949   200 

0000   107.146   225 

(a) AWG table

y#=#0.9558x2#+#0.5749x#+#3.7561#

0.000#

20.000#

40.000#

60.000#

80.000#

100.000#

120.000#

33# 46# 60# 80# 100# 125# 150# 175# 200# 225#

area"(mm^2)"vs"ampacity"(A)"

(b) AWG plot

Figure 3.41: (a) American Wire Gauge (AWG) standard: dependence of wire cross-sectional area a(x) on
ampacity x. (b) The data for a(x) in the table can be approximated by the quadratic function in (3.27b).
The black solid line is the plot of the data and the orange dashed line is the quadratic fit.

1. Evaluate the total cost of network design 1 and design 2.

2. Prove that design 1 is always less expensive than design 2 as long as the maximum current I that can
be drawn by a charger is at least 2A.4

Exercise 3.19 (Caltech ACN: network design). This problem generalizes problem 3.18 to show that design
2 is more expensive even for very general cost functions and wire size dependency. Suppose the cost
functions Cw(l ,a),Cc1(l ,a),Cc2(a) and the dependency of wire size a(x) on its ampacity satisfy the
following conditions:

C1: For any fixed a , Cw(l ,a) is linear in l . For any fixed l , Cw(l ,a) linear and increasing in a .

C2: Cc1(l ,a) is increasing in a for any fixed l . Cc2(a) is increasing in a .

C3: There is an ampacity set X such that for all x 2 X , a(ix)� ia(x) for any integer i� 1.

Prove that design 2 is more expensive for any ampacity x 2 X .

It can be easily verified that the cost functions and a(x) in (3.27) satisfy these conditions. In particular
the ampacity set X in condition C3 is X = {x� 2A}. Therefore the conditions C1–C3 allow a much larger
set of cost functions and a(x) than (3.27).

We now interpret these conditions to illustrate that they are realistic. Condition C1 says that the total
deployment cost (parts and labor) grows linearly in wire length l and in wire size a . If either one doubles,
the cost exactly doubles. Condition C2 says that regardless of its length, both the first and second cost

4Currently a level-2 EV charger typically has a current limit of 32A or higher.
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components of the conduit increase as the cross-sectional area of the conduit increases. Finally condition
C3 implies in particular that, for any ampacity x in X , doubling the ampacity more than doubles the cost.
As explained immediately after (3.27b), since thermal loss is quadratic in ampacity, the required wire size
satisfies this condition. The proof reveals that this is the key condition that makes design 2 more expensive
than design 1, i.e., it is always cheaper to use more and longer small wires because the wire size grows
faster than linearly in ampacity.

Exercise 3.20 (Caltech ACN: network design). Problem 3.19 shows that, under very general and realistic
conditions, design 2 is always more expensive than design 1. This assumes that, in design 2, the ampacity
of the wire between junction i� 1 and i must be the sum of the ampacities of all the downstream wires
supplying groups i, i+1, . . . ,n. In practice however it is unlikely all the EV chargers in these groups will
draw maximum currents simultaneously and therefore it is reasonable to install a smaller ampacity between
junction i�1 and i, i.e., each subpanel can be over-subscribed. Discuss over-subscription conditions under
which design 2 is less expensive than design 1 (open-ended problem).



Chapter 4

Bus injection models

In previous chapters we introduce mathematical models of basic power system components. In this and the
next chapter we use these component models to describe a power network consisting of an interconnection
of components such as generators, loads, transmission and distribution lines, and transformers. In Chapter
4.1 we summarize the component models from previous chapters. In Chapter 4.2 we explain how to model
a power network by a matrix that linearly relates nodal current injections to nodal voltages of the network.
In Chapter 4.3 we present power flow equations that relate nodal power injections and nodal voltages. In
Chapter 4.4 we discuss classical solution methods. In Chapter 4.6 we study a linearized model, called the
DC power flow model, that is widely used in power systems applications such as electricity markets.

4.1 Component models

sV

The component models summarized in this section will be used to construct network models in Chap-
ters 4.2 and 4.3.

4.1.1 Single-phase sources and impedance

In Chapters 1.1.2 and 1.3.1 we describe circuit models of single-phase single-terminal devices. They are
also per-phase models of balanced three-phase devices. Associated with each device j is its terminal
voltage, current, and power (Vj, I j,s j) 2 C

3. There is an arbitrary reference point with respect to which
all voltages are defined. If the common reference point is taken to be the ground then voltage Vj is the
voltage drop between terminal j and the ground. The current from terminal j flows from the terminal to
the reference point (see Figure 4.1). Such a single-terminal device is characterized by relations between
the terminal variables (Vj, I j,s j).

1. Voltage source
�
E j,z j

�
. This is a device with a constant internal voltage E j in series with an

impedance z j as shown in Figure 1.3(a). Its external model is the relation Vj = E j� z jI j between its

142
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terminal voltage and current
�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
E j�Vj

�H
/zHj between

the terminal variables
�
Vj,s j

�
.

2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj�y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj� y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj� z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj
��2 /zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk , Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j)2C3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.
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IV relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj�Vk) + ym

jk Vj, Ik j = ys
k j(Vk�Vj) + ym

k j Vk (4.1a)

This defines a matrix Yline for a line that maps terminal voltages to sending-end currents:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�

| {z }
Yline


Vj
Vk

�
(4.1b)

where we have used the fact that ys
jk = ys

k j to obtain a symmetric Yline. The off-diagonal entries of Yline
are the negatives of the series admittances while the diagonal entries are the sum of series and shunt
admittances. As we will see this structure holds for general networks.

In general the sending-end currents
�
I jk, Ik j

�
are not negative of each other when the shunt admit-

tances are nonzero. Since ys
jk = ys

k j, their sum represents the total current loss along the line due to shunt
admittances:

I jk + Ik j = ym
jkVj + ym

k jVk 6= 0

Thermal limits on branch current flows should be imposed on both |I jk| and |Ik j|:

|I jk| =
���ys

jk(Vj�Vk) + ym
jk Vj

���  Imax
jk

|Ik j| =
���ys

k j(Vk�Vj) + ym
k j Vk

���  Imax
k j

not just on
���ys

jk(Vj�Vk)
��� unless the shunt admittances are zero.

sV relation. The sending-end line power flows from terminals j to k and that from terminals k to j are
respectively (using (4.1a)):

S jk := VjIHjk =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2 (4.2a)

Sk j := VkIHk j =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 (4.2b)

They are not negatives of each other because of power loss along the line. Since ys
jk = ys

k j, the total
complex power loss is:

S jk +Sk j =
⇣

ys
jk

⌘H ��Vj�Vk
��2 +

⇣
ym

jk

⌘H
|Vj|2 +

⇣
ym

k j

⌘H
|Vk|2 (4.3)

The first term on the right-hand side is loss due to series impedance and the last two terms are losses due
to shunt admittances of the line. Thermal limits on branch power flows should be imposed on both |S jk|
and |Sk j|:

|S jk| =

����
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2

����  Smax
jk

|Sk j| =

����
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2

����  Smax
k j
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not just on
����
⇣

ys
jk

⌘H �
|Vj|2�VjVH

k
����� and

����
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘���� unless the shunt admittances are zero.

If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (4.3) and (4.1a) and using ys

jk = ys
k j, we have

S jk +Sk j = zs
jk ·
���ys

jk

���
2 ��Vj�Vk

��2 = zs
jk
��I jk
��2

because I jk = ys
jk(Vj�Vk) = �Ik j when the shunt elements are zero and ys

jk = ys
k j. This is not the case

otherwise.

4.1.3 Single-phase transformer

In Chapters 3.1 and 3.2 we describe circuit models of a single-phase transformer. They are also per-phase
models of balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its
voltage gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the
per-phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ỹs

jk and shunt admittance ỹm
jk

in the primary circuit, as shown in Figure 4.2(a).

Vj

Ijk , Sjk Skj , Ikj

1  :  K(njk)

Vk

reference
point

ỹ s
jk

ỹm
jk

(a) Non-ideal transformer

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

(b) P circuit model (real n jk)

Figure 4.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

that the direction of Ik j at terminal k is opposite to that in Chapter 3. The behavior of the transformer in
Figure 4.2 is characterized by the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�

or that between (Vj,Vk) and line powers
�
S jk,Sk j

�
, which we now summarize.

Real voltage gain K(n jk) = n jk. Using Kirchhoff’s and Ohm’s laws and transformer gains we have

I jk = ỹs
jk
�
Vj�a jkVk

�
, I jk = ỹm

jk a jkVk +n jk(�Ik j) (4.4a)
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where a jk := 1/n jk. This defines a matrix Ytransformer for the single-phase transformer:


I jk
Ik j

�
=

"
ỹs

jk �a jk ỹs
jk

�a jk ỹs
jk a2

jk

⇣
ỹs

jk + ỹm
jk

⌘
#

| {z }
Ytransformer


Vj
Vk

�
(4.4b)

Since transformer gains n jk are real, Ytransformer is symmetric and their terminal behavior can be modeled
by a P circuit, the same way a transmission line is. Specifically Ytransformer can be rewritten in terms of
admittances

⇣
ys

jk,y
m
jk,y

m
k j

⌘
of a P circuit:

Ytransformer :=


ys
jk + ym

jk �ys
jk

�ys
jk ys

jk + ym
k j

�
(4.5a)

where

ys
jk := a jk ỹs

jk, ym
jk := (1�a jk)ỹs

jk, ym
k j := a jk(a jk�1)ỹs

jk +a2
jk ỹm

jk (4.5b)

as illustrated in Figure 4.2(b). In particular the shunt admittances ym
jk and ym

k j of the P circuit model are
different unless (1� a2)ỹs

jk = a2ỹm
jk. Moreover (ym

jk,y
m
k j) are generally nonzero even if the transformer

shunt admittance ỹm
jk = 0.

Complex voltage gain K(n). A physical transformer always has a real voltage gain n. The per-phase
model of three-phase transformer in a balanced setting however can have a complex voltage gain K(n) as
we have seen in Chapter 3.2. In that case �nIk j in the above derivation should be replaced by KH

jk(n)Ik j,
leading to:


I jk
Ik j

�
=

"
ỹs

jk �ỹs
jk/Kjk(n)

�ỹs
jk/K̄ jk(n)

⇣
ỹs

jk + ỹm
jk

⌘
/|Kjk(n)|2

#

| {z }
Ytransformer


Vj
Vk

�

In this case the matrix Ytransformer is not symmetric. This means that the terminal behavior of the trans-
former does not have an equivalent P circuit model and we have to use the admittance matrix Ytransformer
for power flow analysis. In this case the transformer is characterized by two pairs of admittances, (ys

jk,y
m
jk)

from j to k and (ys
k j,y

m
k j) in the opposite direction, defined by transformer parameters

⇣
K(n), ỹs

jk, ỹ
m
jk

⌘
.

Equivalently, the admittance matrix Ytrans f ormer is not symmetric and takes the form:

Ytransformer :=


ys
jk + ym

jk �ys
jk

�ys
k j ys

k j + ym
k j

�
(4.6a)

where

ys
jk :=

ỹs
jk

Kjk(n)
, ym

jk :=
✓

1� 1
Kjk(n)

◆
ỹs

jk (4.6b)

ys
k j :=

ỹs
jk

K̄ jk(n)
, ym

k j :=
1�Kjk(n)

|Kjk(n)|2 ỹs
jk +

1
|Kjk(n)|2 ỹm

jk (4.6c)
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The admittance matrix reduces to (4.5) when K(n) = n. The relation between powers (S jk,Sk j) and volt-
ages (Vj,Vk) is the same as for transmission and distribution lines, even though ys

jk and ys
k j may not be

equal:

S jk := VjIHjk =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2

Sk j := VkIHk j =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2

where the admittances are given in (4.6). If ys
jk 6= ys

k j then the line loss is not given by (4.3).

4.2 Network model: IV relation

In this section we explain how to use the component models of Chapter 4.1 to model a single-phase
network consisting of generators and loads connected by a network of transmission or distribution lines
and transformers. We will construct an equivalent circuit consisting of ideal voltage and current sources
connected by a network of series and shunt admittances. The nodal current injections I are linearly related
to nodal voltages V through a matrix Y called an admittance matrix, I = YV . This relation represents
the Kirchhoff’s laws and the Ohm’s law. In this section we derive the admittance matrix Y and study its
properties.

We start in Chapter 4.2.1 with a few examples and present in Chapter 4.2.2 our abstract line model. In
Chapter 4.2.3 we define the admittance matrix Y for a general network and study sufficient conditions for
the invertibility of Y . In Chapter 4.2.4.1 we explain Kron reduction of an admittance matrix Y and study
the invertibility of a Kron-reduced admittance matrix. In Chapter 4.2.5 we present a common method
for solving I = YV numerically. When the network graph is a tree, called a radial network, a reduced
admittance matrix is always invertible and we derive explicitly its inverse in Chapter 4.2.6.

4.2.1 Examples

In this subsection we derive the admittance matrix Y of a single-phase network shown in Figure 4.3 where:

1. The generator on the left end is modeled as a current source with parameters (I1,y1).

2. The non-ideal single-phase transformer has a real voltage gain n, a series admittance ỹs and shunt
admittance ỹm in the primary circuit.

3. The transmission line is modeled as a series admittance y (and zero shunt admittances).

4. The motor load on the right end is modeled as another current source (I2,y2).

We will derive the admittance matrix Y for the overall system in two steps.
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generator

load

transmission line
transformer

Figure 4.3: One-line diagram of a generator supplying a load through a transformer and a transmission
line.

V1

I1 = I13 I23 = I2

V2

I31 I32

V3

y

I3 = 0

1  :  n

ỹm

ỹ s

Figure 4.4: A non-ideal transformer in series with a transmission line.

Example 4.1 (Non-ideal transformer and transmission line). Figure 4.4 shows the circuit model of the
non-ideal transformer in series with the transmission line. To determine the admittance matrix that relates
(I1, I2) to (V1,V2), we introduce an additional network node 3 between the transformer and the transmission
line y with an auxiliary voltage V3 and an auxiliary injection current I3 at node 3, as shown in the figure.

Since the voltage gain n is real, use the transformer model (4.4b) and the line model (4.1) to get


I13
I31

�
=


ỹs �a ỹs

�a ỹs a2 (ỹs + ỹm)

�
V1
V3

�
,


I32
I23

�
=


y �y
�y y

�
V3
V2

�

Kirchhoff’s current law at each node gives:

I1 = I13, 0 = I3 = I31 + I32, I2 = I23

Eliminating branch currents relates nodal currents (I1, I2, I3) to nodal voltages (V1,V2,V3) through matrix
Y1:

2

4
I1
I2
I3

3

5 =

2

4
ỹs 0 �aỹs

0 y �y
�aỹs �y y+a2 (ỹs + ỹm)

3

5

| {z }
Y1

2

4
V1
V2
V3

3

5 (4.7)

The matrix Y1 is complex symmetric and is therefore an admittance matrix that can be represented as a P
circuit as shown in Figure 4.5 where ys

13 := aỹs, ym
13 := (1�a)ỹs and ym

31 := a(a�1)ỹs +a2ỹm.

Example 4.2 (Overall system). Finally the circuit model of the overall system that includes the two current
sources that model the generator and the load is shown in Figure 4.6(a). The only changes to the admittance
matrix, compared with the admittance matrix Y1 in (4.7), are the additional shunt admittances y1,y2 at
nodes 1 and 2 respectively. They should be added to the first two diagonal entries of Y1. The overall
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V1

I1= I13 I23= I2

V2

I31 I32

ym13

ys13

ym31 V3

y

I3= 0

transformer line

Figure 4.5: P circuit model of the system in Figure 4.4.

V1 V2
y

y1 y2 I2I1

generator load

(a) One-line diagram

ys13

y1 y2ym13 ym31

V2V3V1

I1 I2

y

generator transformer line load

(b) Equivalent circuit model

Figure 4.6: Generator, transformer, transmission line and load.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):

2

4
I1
I2
0

3

5 =

2

4
ỹs + y1 0 �aỹs

0 y+ y2 �y
�aỹs �y y+a2 (ỹs + ỹm)

3

5

2

4
V1
V2
V3

3

5

The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.4.1.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) of N + 1 nodes and
M lines, where N := {0}[N, N := {1,2, . . . ,N} and E ✓ N⇥N. Each node j in N may represent a bus
and each edge ( j,k) in E may represent a transmission or distribution line or transformer. We also write
j ⇠ k instead of ( j,k) 2 E. We use “bus, node, terminal” interchangeably and “line, branch, link, edge”
interchangeably.

For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances

⇣
ys

jk,y
m
jk

⌘
2C

2 from j to k and
⇣

ys
k j,y

m
k j

⌘
2C

2 from k

to j; see Figure 4.7. We call
⇣

ys
jk,y

s
jk

⌘
the series admittances and

⇣
ym

jk,y
m
jk

⌘
the shunt admittances of line
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j k
Vj VkIjk ,Sjk

Ij , sj
Skj , Ikj

sk , Ik
( ysjk , y

m
jk ) , ( yskj , y

m
kj )

Figure 4.7: Network graph and notations.

( j,k). They define the relation between
�
Vj,Vk

�
and

�
I jk, Ik j

�
:

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
k j(Vk�Vj) + ym

k jVk (4.8a)

or in matrix form:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

k j ys
k j + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(4.8b)

We emphasize that the series admittances ys
jk and ys

k j may be different and therefore this general model
may not have a P circuit representation. It can model a single-phase transmission or distribution line,
a single-phase transformer, or the per-phase model of a balanced three-phase transformer with a real or
complex voltage gain, as summarized in Chapters 4.1.2 and 4.1.3. Specifically when ( j,k) models a trans-
mission or distribution line, the line parameters (ys

jk = ys
k j,y

m
jk,y

m
k j) are the series and shunt admittances

of the transmission or distribution line. When ( j,k) models a transformer, the line parameters (ys
jk,y

m
jk)

and (ys
k j,y

m
k j) are given by (4.6) in terms of transformer voltage gain and leakage and shunt admittances

(K(n), ỹs
jk, ỹ

m
jk). Note that ys

k j and ys
jk may be different, and (ym

jk,y
m
k j) are generally different and nonzero

even if the transformer shunt admittance ỹm
jk = 0. When the voltage gain K(n) = n is real, (4.6) reduces to

(4.5) with ys
k j = ys

jk. As we have seen in Example 4.2, a line ( j,k) in the graph G, the matrix Yjk may also
contain generator and load impedances.

We will often restrict ourselves to the special case where the following assumption holds:

C4.1: The series admittances ys
jk = ys

k j for every line ( j,k) 2 E.

In this case (4.8) reduces to

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
jk(Vk�Vj) + ym

k jVk (4.9a)

or in terms of Yjk:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(4.9b)
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Since Yjk is symmetric, it has a P circuit representation and behaves like a transmission or distribution
line (though with generally different ym

jk and ym
k j). We characterize such a line by three admittances⇣

ys
jk,y

m
jk,y

m
k j

⌘
. As noted above, this model cannot be used as the per-phase model of a balanced three-

phase transformer in DY or Y D configuration that has a complex voltage gain K(n). It is however widely
applicable, e.g., when the network does not contain transformers with complex voltage gains or when used
in per unit systems where (nominal) transformers disappear. We therefore often adopt this model and will
explicitly state it as assumption C4.1 when we use it.

4.2.3 Admittance matrix Y and its properties

In bus injection models we are interested in nodal variables (Vj, I j,s j)2C3, j 2N, where Vj is the complex
voltage at bus j with respect to an arbitrary but fixed common reference point, e.g., the ground. Here I j
and s j are the complex nodal current and power injections respectively into the network at bus j. These
nodal variables are related by s j = VjIHj for each bus j 2 N. As mentioned above the current and power
injections can be interpreted as flowing from terminal j to the common reference point in the circuit model.
In this section we construct the admittance matrix Y that linearly relates nodal voltages V to nodal current
injections I and study its properties.

4.2.3.1 Admittance matrix Y

The nodal current injections I := (I j, j 2 N) and voltages V := (Vj, j 2 N) are linearly related. The ad-
mittance matrix Y relates, not the line currents, but the net nodal current injections I to nodal voltages V .
Applying (4.8) to KCL I j = Âk: j⇠k I jk at each node j, we have1

I j = Â
k: j⇠k

I jk =

 

Â
k: j⇠k

ys
jk + ym

j j

!
Vj � Â

k: j⇠k
ys

jkVk, j 2 N (4.10a)

where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (4.10b)

In vector form, this is I = YV where the matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(4.10c)

We refer to Y that maps nodal voltages to nodal current injections as an admittance matrix, or a network
admittance matrix or bus admittance matrix. Equation (4.10c) prescribes a way to write down the admit-
tance matrix Y by inspection of the network connectivity and line admittances: its off-diagonal entries are

1If there is a load attached to bus j with shunt admittance ysh
j , then the net injection becomes I j�ysh

j Vj = Âk: j⇠k I jk instead
of I j on the left-hand side of (4.10a).
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the negatives of series admittances
⇣

ys
jk,y

s
k j

⌘
in each direction on line ( j,k) while its diagonal entries are

the sum of the series and shunt admittances incident on the corresponding buses. Note that Yjk and Yk j may
not be equal if ( j,k) models a transformer. If we restrict ourselves to the special where ys

jk = ys
k j for all

( j,k) 2 E (assumption C4.1) then each line ( j,k) has a P circuit representation and the admittance matrix
Y is complex symmetric. It is not Hermitian unless Y is a real matrix.

Example 4.3. Consider the three-bus network shown in Figure 4.8. Under condition C4.1, each line ( j,k)

I1 I2

I3

V2V1

V3

( ys12 , y
m
12 , y

m
21 )

( ys13 , y
m
13 , y

m
31 ) ( ys23 , y

m
23 , y

m
32 )

I12 I21

I13

Figure 4.8: Three-bus network of Example 4.3.

is modeled by a P circuit with series and shunt admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. The sending-end branch current

from bus j to bus k is I jk and that from bus k to bus j is Ik j. Applying Kirchhoff’s current law and Ohm’s
law at bus 1 gives

I12 = ys
12(V1�V2) + ym

12V1

I13 = ys
13(V1�V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

where

ys
jk = ys

k j, ym
j j := Â

k: j⇠k
ym

jk

Again the off-diagonal entries of the admittance matrix Y are given by the series admittances on the lines:

Yjk :=
⇢
�ys

jk if j ⇠ k ( j 6= k)
0 otherwise

and the diagonal entries of Y by the sum of series and shunt admittances incident on buses j:

Yj j := Â
k: j⇠k

ys
jk + ym

j j
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Under Assumption C4.1, the admittance matrix Y given in (4.10) can also be expressed in terms of
more elementary matrices. Fix an arbitrary orientation for the graph G := (N,E) so that a line l = j! k 2
E is now considered pointing from bus j to bus k. Let C 2 {�1,0,1}|N|⇥|E| be the bus-by-line incidence
matrix defined by:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

(4.11)

Let Ds
y := diag

�
ys

l , l 2 E
�

be the |E|⇥ |E| diagonal matrix with the series admittances ys
l as its diagonal

entries. Let Dm
y := diag

⇣
ym

j j, j 2 N
⌘

be the |N|⇥ |N| diagonal matrix with the total shunt admittances ym
j j

in (4.10b) as its diagonal entries. Then the admittance matrix in (4.10c) is, when ys
jk = ys

k j,

Y = C Ds
yC

T + Dm
y (4.12)

Clearly the matrix CDs
yCT has zero row and column sums. It verifies that Y is symmetric but not Hermitian

unless Ds
y and Dm

y are real matrices. This representation can be used to study the inverse of Y ; see Exercise
4.7.

Bus 0 is often called the slack bus. Its voltage is fixed and we sometimes assume that V0 = 1\0� per
unit (pu), i.e., the voltage drop between bus 0 and the reference point is 1\0�. A bus j 2 N can have a
generator, a load, both or neither and

�
I j,s j

�
are the net current and power injections (generation minus

load) at bus j, as the next remark shows.

Remark 4.1 (Nodal devices). Our notation for current injection I j suggests that there is a single device at
each bus j. This simplifies notation and loses no generality. If there are multiple devices connected to bus
j, e.g., a non-ideal voltage source

⇣
E j,zv

j

⌘
, a non-ideal current source

⇣
Jj,yc

j

⌘
, and a bus shunt admittance

ya
j or equivalently its impedance zi

j =
⇣

ya
j

⌘�1
, as shown in Figure 4.9. then I j is the net current injection

networkVj

Ej
Jj

bus j

zj
v

yj
c yj

a

Figure 4.9: Multiple devices connected to the same bus.

from bus j to the rest of the network:

I j =
E j�Vj

zv
j| {z }

voltage source

+
�
Jj� yc

jVj
�

| {z }
current source

� ya
jVj|{z}

shunt admittance
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This assumes all voltages are defined with respect to the ground and if a single-phase device is the per-
phase model of a three-phase Y configured device, then its neutral is grounded directly. Then (4.10a)
becomes

E j�Vj

zv
j

+
�
Jj� yc

jVj
�
� ya

jVj =

 

Â
k: j⇠k

ys
jk + ym

j j

!
Vj � Â

k: j⇠k
ys

jkVk, j 2 N

In the rest of this subsection we collect some analytical properties of the admittance matrix Y , partic-
ularly on their invertibility. Invertibility is of interests because given I 2 C

N+1 we may be interested in
inverting Y to obtain V 2 C

N+1 from I = YV as discussed in Chapter 4.2.5. The inverse Zbus := Y�1 is
called a bus impedance matrix or an impedance matrix and is useful for fault analysis (which we will not
cover in this book). The admittance matrix Y can be constructed easily by inspection of a network graph
or its one-line diagram as specified by (4.10c). It inherits the sparsity structure of the network graph. The
impedance matrix Z on the other hand cannot be easily inferred from the one-line diagram and is usually
dense even for a sparse network. LU decomposition can be used for both computing Z and solving V from
I = YV (see Chapter 4.2.5).

We first consider the case where the shunt admittances of lines are negligible, i.e., ym
j j = 0 for all j 2N,

so that all row sums of Y are zero. In this case Y is not invertible and we present its pseudo-inverse. We
then discuss sufficient conditions under which Y with nonzero shunt admittances is invertible. We often
assume C4.1 holds in this section and will explicitly state it where it is needed.

4.2.3.2 Pseudo-inverse and Takagi decomposition

Suppose ym
j j = 0 for all j 2 N so that Y has zero row (and hence column) sums.2 Then Y is not invertible.

Its pseudo-inverse always exists and can be obtained through singular value decomposition (see Chapter
20.1.6 for singular value decomposition and Chapter 20.1.7 for pseudo-inverse). Let Ȳ denote the com-
ponentwise complex conjugate of Y , i.e., [Ȳ ] jk =

�
Yjk
�H. Then Y = YT = (Ȳ )H. Let the singular value

decomposition of Y be

Y = USWH

where S := diag(s0, · · · ,sN) is a (N + 1)⇥ (N + 1) real nonnegative diagonal matrix whose diagonal
entries s j � 0, called the singular values of Y , are the nonnegative square roots of the eigenvalues of YȲ ,
and U,W 2 C

(N+1)⇥(N+1) are unitary matrices (see discussion after Theorem 20.11 in Chapter 20.1.6 for
their derivation). The pseudo-inverse of Y is then

Y † := WS†UH

where S† is the real nonnegative diagonal matrix obtained from S by replacing the nonzero singular values
s j by 1/s j.

2If Y were real symmetric with zero row sums, then its rank is N and its null space is span(1) when the network is connected.
This property may not hold when Y is complex symmetric; see Exercise 4.2 for a sufficient condition for this property.
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If null(Y ) =span(1) then, for each current vector I with 1TI = 0, there is a subspace of solutions to
I = YV given by

V = Y †I + g1, g 2 C

parametrized by g . Hence V is unique up to an arbitrary reference voltage. For example the solution
V = Y †I corresponds to a solution with g = 0. Alternatively g can be chosen so that V0 = 1\0� at bus 0.
If null(Y ) �span(1) then I needs to be orthogonal to all vectors in null(Y ) for I = YV to have a solution
for V .

Under assumption C4.1, Y is symmetric. Since it is generally not Hermitian, it may not be unitarily
diagonalizable. A matrix is unitarily diagonalizable if and only if it is normal (Theorem 20.13 in Appendix
20.1.6). Y may or may not be normal. See Exercise 4.3 for sufficient conditions under which Y is normal
and hence unitarily diagonalizable. Even when Y is not normal, it can still be diagonalized but the unitary
matrix U may consist of neither the singular vectors nor the eigenvectors of Y , according to Theorem
20.17 in Appendix 20.1.6.

Theorem 4.1 (Takagi decomposition of Y ). Suppose ym
j j = 0 for all j 2N and condition C4.1 holds. There

exists a unitary matrix U 2 C
(N+1)⇥(N+1) and a real nonnegative diagonal matrix S :=diag(s1, . . . ,sN+1)

such that Y = USUT where the diagonal entries s j � 0 of S are the singular values of Y .

Since UT 6= UH in general, the Takagi decomposition is generally different from the singular decom-
position of Y and therefore Y † is generally not equal to US†UT.

4.2.3.3 Inverse of Y

In this subsection we derive the inverse of Y , assuming it is invertible, in terms of its real and imaginary
parts when either is invertible. Using the result in this subsection we will study conditions under which Y
is invertible in Chapter 4.2.3.4.

Let Y =: G + iB with G,B 2 R
(N+1)⇥(N+1). Let Z := R + iX with R,X 2 R

(N+1)⇥(N+1). By definition
Y�1 exists and is equal to Z if and only if there exist unique (R,X) such that ZY = Y Z = I, the identity
matrix. Consider

Y Z = (G+ iB)(R+ iX) = (GR�BX)+ i(BR+GX) = I

or


G �B
B G

�

| {z }
M


R
X

�
=


I
0

�
(4.13a)

Therefore Y�1 exists if and only if the matrix M :=


G �B
B G

�
is nonsingular. Suppose G is nonsingular.

According to Theorem 20.4 in Appendix 20.1.3.1, M is nonsingular if and only if the Schur complement
M/G := G+BG�1B of G is nonsingular (given that G is nonsingular). Moreover the inverse of M is

M�1 =


(M/G)�1 (M/G)�1BG�1

�G�1B(M/G)�1 G�1�G�1B(M/G)�1BG�1

�
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Hence if both G and M/G are nonsingular, then Y is nonsingular and, from (4.13a), its inverse Z := R+ iX
is given by


R
X

�
=


(M/G)�1

�G�1B(M/G)�1

�
=


(G+BG�1B)�1

�G�1B(G+BG�1B)�1

�
(4.13b)

Suppose B is nonsingular. Then (4.13a) can be written equivalently as


B G
G �B

�

| {z }
M0


R
X

�
=


0
I

�
(4.14a)

Applying again Theorem 20.4 in Appendix 20.1.3.1, M0 is nonsingular if and only if the Schur complement
M0/B :=�B�GB�1G of B is nonsingular (given that B is nonsingular). Moreover the inverse of M0 is

M0�1 =


B�1 +B�1G(M0/B)�1GB�1 �B�1G(M0/B)�1

�(M0/B)�1GB�1 (M0/B)�1

�

Hence if both B and M0/B are nonsingular, then Y is nonsingular and, from (4.14a), its inverse Z := R+ iX
is given by


R
X

�
=


�B�1G(M0/B)�1

(M0/B)�1

�
=


B�1G(B+GB�1G)�1

�(B+GB�1G)�1

�
(4.14b)

To recap, Y is invertible when both G and M/G are invertible or when both B and M0/B are invertible.
When neither G nor B is invertible, Y = G+ iB may still be invertible though its inverse Z := R+ iX is not
given by (4.13b) or (4.14b) (Exercise 4.4).

4.2.3.4 Properties of Y

We now use (4.13)(4.14) to study the invertibility of Y . Nonzero shunt admittances do not guarantee the
invertibility of Y . A strictly diagonally dominant matrix is invertible (Theorem 20.8 in Appendix 20.1.3).
Shunt admittances however does not guarantee strict diagonal dominance, i.e., |Yii| > Â j: j 6=i |Yi j| may not
hold for some i. This can be the case for a transmission line since the susceptances of line charging
admittances and those of series admittances are typically of different signs. Strict diagonal dominance is
however only sufficient for invertibility and a network of transmission lines typically has an invertible Y
(see Remark 4.3). We now discuss two sufficient conditions for Y to be invertible.

The first sufficient condition builds on (4.13) and (4.14). It ensures both G and M/G are nonsingular,
or both B and M0/B are nonsingular. Recall that a real matrix A is positive definite, denoted A� 0, if A is
symmetric and vTAv > 0 for all real vectors v (See Remark 20.1 in Appendix 20.1.5). A positive definite
matrix is nonsingular since all its eigenvalues are strictly positive. A real matrix A is negative definite,
denoted A� 0, if �A� 0.

Theorem 4.2. Consider a complex symmetric matrix Y = G+ iB (i.e., Y satisfies condition C4.1).
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1. If Re(Y )� 0 then Y�1 exists, is symmetric, and Re(Y�1)� 0.

2. If Im(Y )� 0 then Y�1 exists, is symmetric, and Im(Y�1)� 0.

Proof. For part 1, suppose Re(Y ) = G � 0. The Schur complement M/G of G is, from (4.13a), M/G :=
G + BG�1B. Since B = BT and G,G�1 are positive definite, M/G := G + BG�1B � 0. Therefore both G
and M/G are nonsingular, and hence Y is nonsingular according to Theorem 20.4 in Appendix 20.1.3.1.
It also implies that Re(Y�1)� 0 since, from (4.13b), Re(Y�1) = (M/G)�1 which is positive definite since
M/G is.

Finally if Z := Y�1 then Z is the unique matrix such that Y Z = ZY = I where I is the identity matrix.
Then

ZTYT = YTZT = ZTY = Y ZT = I

Hence ZT = Y�1. Since inverse is unique, ZT = Z, i.e., Y�1 is (complex) symmetric.

Part 2 follows the same argument and is left as Exercise 4.5. (Also see Exercise 4.6 for an alternative
proof of the nonsingularity of Y .)

Remark 4.2 (Generalization). Theorem 4.2 holds with small modifications as long as either Re(Y ) or
Im(Y ) is not indefinite. Specifically if Y is complex symmetric then

1. Y�1 exists and is symmetric if (a) Re(Y )� 0; or (b) Re(Y )� 0; or (c) Im(Y )� 0; or (d) Im(Y )� 0.

2. (a) If Re(Y )� 0 then Re(Y�1)� 0; and (b) if Re(Y )� 0 then Re(Y�1)� 0.

3. (a) If Im(Y )� 0 then Im(Y�1)� 0; and (b) if Im(Y )� 0 then Im(Y�1)� 0.

The second set of sufficient conditions for the invertibility of Y is in terms of the series admittances ys
jk

and shunt admittances ym
jk. These conditions ensure either Re(Y ) or Im(Y ) is either positive or negative

definite, and hence Y is nonsingular by Theorem 4.2 and Remark 4.2.

Let Y = G+ iB, i.e., for all ( j,k) 2 E,

ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk, ym
k j =: gm

k j + ibm
k j

Recall ym
j j := Âk: j⇠k ym

jk and let gm
j j := Âk: j⇠k gm

jk, bm
j j := Âk: j⇠k bm

jk. Previous discussion implies that, for
Y to be invertible, it is necessary to have at least one nonzero shunt element. Additional conditions on⇣

gs
jk,g

m
jk,g

m
k j

⌘
are needed to guarantee invertibility, as follows.

C4.2: For all lines ( j,k) 2 E, gs
jk,g

m
jk,g

m
k j are nonnegative.

C4.3a: For all buses j 2 N, gm
j j := Âk:k⇠ j gm

jk 6= 0, i.e., for all j, there exists a line ( j,k) 2 E such that
gm

jk 6= 0.
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C4.3b: For all lines ( j,k)2 E, gs
jk 6= 0. Furthermore there exists a line ( j0,k0)2 E such that gm

j0k0 6= 0.

Condition C4.2 can be replaced by: for all lines ( j,k) 2 E, all nonzero gs
jk,g

m
jk,g

m
k j have the same sign, and

the invertibility conditions below will still hold with obvious modifications. Indeed if gs
jk,g

m
jk,g

m
k j are all

nonpositive then the proof below shows that Re(Y )� 0 (see Remark 4.2).

Theorem 4.3. Suppose the network is connected and the admittance matrix Y satisfies condition C4.1. If
C4.2 and one of C4.3a and C4.3b hold, then

1. Re(Y )� 0.

2. Y�1 exists, is symmetric, and Re(Y�1)� 0.

Proof. Recall that Re(Y ) =: G 2 R
(N+1)⇥(N+1) is given by G jk =�gs

jk if j ⇠ k, Âi: j⇠i(gs
ji +gm

ji) if j = k,
and 0 otherwise. Hence for any nonzero vector r 2 R

N+1 we have

rTGr = Â
j
Â
k

r jrkG jk = Â
j

 

Â
k: j⇠k
�r jrkgs

jk + r2
j Â

i: j⇠i
(gs

ji +gm
ji)

!

= Â
( j,k)2E

�
r2

j �2r jrk +r2
k
�

gs
jk + Â

j2N
r2

j gm
j j

= Â
( j,k)2E

�
r j�rk

�2 gs
jk + Â

j2N
r2

j gm
j j

Every summand is nonnegative by C4.2. Moreover if C4.3a holds then the second summation is strictly
positive since r 6= 0. If C4.3b holds then for the first summation to be zero, r j = rk. Since the network
is connected this implies r j = r1 for all j. Then the second summation becomes Â j r2

j gm
j j � r2

1 gm
j0k0 > 0

since r 6= 0. Therefore Re(Y ) = G� 0. Theorem 4.2 then completes the proof.

Instead of
⇣

gs
jk,g

m
jk,g

m
k j

⌘
conditions on

⇣
bs

jk,b
m
jk,b

m
k j

⌘
can also ensure the invertibility of Y .

C4.4: For all lines ( j,k) 2 E, bs
jk,b

m
jk,b

m
k j are nonpositive.

C4.5a: For all buses j 2 N, bm
j j := Âk:k⇠ j bm

jk 6= 0, i.e., for all j, there exists a line ( j,k) 2 E such that
bm

jk 6= 0.

C4.5b: For all lines ( j,k)2 E, bs
jk 6= 0. Furthermore there exists a line ( j0,k0)2 E such that bm

j0k0 6= 0.

As before C4.2 can be replaced by: for all lines ( j,k) 2 E, all nonzero bs
jk,b

m
jk,b

m
k j have the same sign, and

the invertibility conditions below will still hold with obvious modifications.

Theorem 4.4. Suppose the network is connected and the admittance matrix Y satisfies condition C4.1. If
C4.4 and one of C4.5a and C4.5b hold, then

1. Im(Y )� 0.
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2. Y�1 exists, is symmetric, and Im(Y�1)� 0.

Proof. The proof is similar to that for Theorem 4.3. For Im(Y ) =: B, for any nonzero real vector r , the
same calculation yields

rTBr = Â
( j,k)2E

�
r j�rk

�2 bs
jk + Â

j2N
r2

j bm
j j

Every summand is nonpositive by C4.4. Moreover if C4.5a holds then the second summation is strictly
negative since r 6= 0. If C4.5b holds then for the first summation to be zero, r j = r1 for all j since the
network is connected. Then the second summation becomes Â j r2

j bm
j j  r2

1 bm
j0k0 < 0 since r 6= 0. Therefore

Im(Y ) = B� 0. Theorem 4.2 then completes the proof.

Remark 4.3 (Transmission line). A transmission line ( j,k) typically has nonnegative series conductance
gs

jk � 0 and negative series susceptance bs
jk < 0 (inductive line). Its shunt conductances gm

jk � 0 are usually
nonnegative, but shunt susceptances bm

jk � 0 are usually nonnegative (capacitive).

1. Hence the conditions in Theorem 4.3 are usually satisfied for transmission lines (but not for trans-
formers; see Example 4.4).

2. Since bs
jk < 0 but bm

jk � 0 for a typical transmission line, condition C4.4 in Theorem 4.4 is usually
not satisfied.

Remark 4.4 (Distribution feeder test systems). 1. The validity of Re(Y�1)� 0 has been checked on a
set of test distribution feeders in [12, Section VI] ....

The conditions in Theorems 4.3 and 4.4 are sufficient but not necessary. The next example shows
that, even though Condition C4.2 in Theorem 4.3 is usually not satisfied for a transformer, the admittance
matrix may nonetheless be nonsingular.

Example 4.4 (Sufficiency only). Consider Example 4.1. An alternative solution approach is to introduce
an internal node 3 on the primary side of the ideal transformer, not the secondary side as in Example 4.1.
3 Then the parameters of lines (1,3) and (2,3) are

(ys
13,y

m
13,y

m
31) := (ỹs,0, ỹm)

(ys
23,y

m
23,y

m
32) := (ny,(1�n)y,n(n�1)y)

where n is the voltage gain of the transformer, y is the series admittance of the line and (ỹs, ỹm) are the
series and shunt admittances of the transformer. The admittance matrix is therefore

Y =

2

4
ỹs 0 �ỹs

0 y �ny
�ỹs �ny ỹs + ỹm +n2y

3

5

3
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Let the admittances be of the form:

y =: gs + ibs, ỹs =: g̃s + ib̃s, ỹm =: ib̃m

and suppose gs, g̃s > 0, bs, b̃s  0, and b̃m � 0. We now show that the admittance matrix Y does not satisfy
condition C4.2 in Theorem 4.3, but Y is invertible if and only if b̃m > 0.

We have

ys
13 = ys

31 = g̃s + ib̃s, ys
23 = ys

32 = ngs + inbs

ym
11 = 0, ym

22 = (1�n)gs + i(1�n)bs, ym
33 = n(n�1)gs + i

�
n(n�1)bs + b̃m�

Hence condition C4.1 is satisfied but C4.2 is not since gm
23 := (1�n)gs and gm

32 := n(n�1)gs have opposite
signs unless n = 1. For any complex symmetric matrix Ŷ with line parameters (ŷs

jk, ŷ
m
jk, ŷ

m
k j), for any

nonzero vector aH, one can show (Exercise 4.9)

aHŶ a =

0

@ Â
( j,k)2E

ĝs
jk
��a j�ak

��2 + Â
j2N

ĝm
j j |a j|2

1

A+ i

0

@ Â
( j,k)2E

b̂s
jk
��a j�ak

��2 + Â
j2N

b̂m
j j |a j|2

1

A

Hence

Re
⇣

aHY a
⌘

=
�
g̃s|a1�a3|2 +ngs|a2�a3|2

�
+
�
(1�n)gs|a2|2 +n(n�1)gs|a3|2

�

= g̃s|a1�a3|2 + gs|a2�na3|2

Therefore

Re
⇣

aHY a
⌘

= 0 if and only if a1 = a3 =
a2

n
(4.15)

On the other hand

Im
⇣

aHY a
⌘

=
�
b̃s|a1�a3|2 +nbs|a2�a3|2

�
+
�
(1�n)bs|a2|2 +

�
n(n�1)bs + b̃m� |a3|2

�

= bl|a1�a3|2 + bs|a2�na3|2 + b̃m|a3|2

In light of (4.15), if b̃m > 0 then aHY a = 0 if and only if a1 = a2 = a3 = 0. Hence if b̃m > 0 then Y is
invertible.

Conversely if b̃m = 0 then there exists nonzero a 2 C
3 with aHY a = 0. Exercise 4.8 says that, since

Y is complex symmetric (but not Hermitian), this does not necessarily imply Y a = 0 and hence may not
imply that Y is singular. Using the admittance matrix given above, however, it can be verified that, when
ym = ib̃m = 0, a :=

⇥
1 n 1

⇤T is indeed an eigenvector of Y corresponding to zero eigenvalue. Hence
Y is singular if the (only) shunt element b̃m in the model is zero, even when ym

22 and ym
33, which originate

from the effect of an ideal transformer, are nonzero.

4.2.4 Kron reduction Y/Y22 and its properties

In many applications we are interested in the relation between the current injections and voltages at only
a subset Nred ⇢ N of the buses. For example we are interested in the external behavior of a system defined
by the relationship between currents and voltages of the end devices. In this subsection we define Kron
reduction that describes the relation between the nodal voltages and current injections at buses in Nred and
study its properties.
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4.2.4.1 Kron reduction Y/Y22

Denote the number of buses in Nred also by Nred. Without loss of generality we can partition the buses such
that I1 2CNred denotes the first Nred current injections and I2 the remaining N +1�Nred current injections.
Similarly partition the voltages into (V1,V2) with V1 2 C

Nred , V2 2 C
N+1�Nred . Partition the admittance

matrix Y so that


I1
I2

�
=


Y11 Y12
Y21 Y22

�

| {z }
Y


V1
V2

�

If Y22 is invertible then we can eliminate V2 by substituting V2 =�Y�1
22 Y21V1 +Y�1

22 I2 to obtain

�
Y11�Y12Y�1

22 Y21
�

V1 = I1 � Y12Y�1
22 I2 (4.16)

The Nred⇥Nred matrix Y/Y22 :=Y11�Y12Y�1
22 Y21 is the Schur complement of Y22 of matrix Y (see Appendix

20.1.3 for its properties). It can be interpreted as the admittance matrix of the reduced network consisting
only of buses in Nred and describes the effective connectivity and line admittances of the reduced network.
The quantity I1�Y12Y�1

22 I2 describes the effective current injections at these buses. This is called a Kron
reduction of network G. If Y is complex symmetric, its Kron reduced admittance matrix Y/Y22 is also
complex symmetric and hence satisfies Assumption C4.1 (Exercise 4.10). Two buses j and k are adjacent
in the Kron-reduced network, i.e., [Y/Y22] jk 6= 0, if and only if j and k are adjacent in the original graph
(i.e., Yjk 6= 0) or if there is a path in the original graph that connects j and k.

Example 4.5 (Kron reduction). Consider the network shown in Figure 4.10(a). Under condition C4.1 its

1

2 3

4

(a) Original network

1

2 3

(b) Kron reduced network

Figure 4.10: Kron reduction: Nred := {1,2,3} with internal bus 4. While the original network is a tree, the
Kron reduced network is fully connected.

admittance matrix Y is (0 and symmetric entries are omitted for simplicity)

Y :=

2

664

ys
14 + ym

11 �ys
14

ys
24 + ym

22 �ys
24

ys
34 + ym

33 �ys
34

Â j ys
j4 + ym

44

3

775
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with Y22 := Â j ys
j4 + ym

44. The Schur complement Y/Y22 of Y22 is

Y11 � Y12Y�1
22 Y21

=

2

4
ys

14 + ym
11

ys
24 + ym

22
ys

34 + ym
33

3

5 � 1
Y22

2

4
�ys

14
�ys

24
�ys

34

3

5⇥�ys
14 �ys

24 �ys
34
⇤

=

2

664

ys
14

Y22

�
ys

24 + ys
34
�
+
�
ym

11 + g ys
14
� �ys

14ys
24

Y22

�ys
14ys

34
Y22

ys
24

Y22

�
ys

14 + ys
34
�
+
�
ym

22 + g ys
24
� �ys

24ys
34

Y22
ys

34
Y22

�
ys

14 + ys
24
�
+
�
ym

33 + g ys
34
�

3

775

where g := ym
44/Y22 = ym

44/
⇣

Â j ys
j4 + ym

44

⌘
. The Kron reduced network corresponding to Y/Y22 is fully

connected as shown in Figure 4.10(b).

The effective current injections in the Kron reduced network are
2

4
I1
I2
I3

3

5 � Y12Y�1
22 I3 =

2

4
I1
I2
I3

3

5 +

2

4
ys

14
ys

24
ys

34

3

5 I3

Y22

An admittance matrix Y has zero row, and hence column, sums if and only if all line charging admit-
tances are zero, ym

jk = ym
k j = 0 for ( j,k) 2 E. In that case the Kron-reduced admittance matrix Y/Y22 also

has zero, and hence column, sums (Exercise 4.10). The converse may not hold.

Given current injections I = (I1, I2), we can obtain V1 in terms of the Schur complement Y/Y22 and the
effective current injections:

V1 =
�
Y11�Y12Y�1

22 Y21
��1 �I1 � Y12Y�1

22 I2
�

In many applications current injections I2 = 0. For example the buses in N\Nred represent internal buses
without generators or loads (see Example 4.1). Then (4.16) reduces to:

I1 =
�
Y11�Y12Y�1

22 Y21
�

| {z }
Y/Y22

V1

and the reduced network is described by the Schur complement Y/Y22 that directly relates V1 and I1.

4.2.4.2 Properties of Y22

We now study sufficient conditions for the existence of Kron reduction, i.e., of Y22. The principal submatrix
Y22 may not be strictly diagonal dominant nor invertible.4 The situation is similar to the invertibility of Y
and Theorems 4.3 and 4.4 to Y22 and their proofs extend directly to its submatrix Y22.

4This is in contrast to the Laplacian matrix Y = L in the DC power flow model for which a strict principal submatrix is
always strictly diagonally dominant and hence invertible. See Chapter 4.6.2.
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Let A ( N denote the set of buses corresponding to Y22 and assume A is a strict subset of N. For
the rest of this subsection denote the ( j,k) entry of a matrix M by M[ j,k], e.g., Y [ j,k],Y22[ j,k]. Note
that the indices j,k of Y22 take values in A, e.g., if Y22 corresponds to the last n buses, they run from
N� n + 2, . . . ,N + 1, not 1, . . . ,n. The argument is similar to that for the invertibility of Y . By definition
Y22 is singular if and only if zero is an eigenvalue of Y22. 5 If l is an eigenvalue and a 2 C

n is a
corresponding eigenvector then

aHY22a = Â
j2A

Â
k2A

Y [ j,k]aH

j ak = l ||a||22 (4.17)

where || · ||2 denotes the Euclidean norm. Hence for Y22 to be invertible it is sufficient, but not necessary,
that aHY22a 6= 0 for all nonzero vectors a 2 C

n (see Exercise 4.8). We have from (4.10c)

Y22[ j, j] = Â
k 62A:( j,k)2E

ys
jk + Â

k2A:( j,k)2E
ys

jk + ym
j j, j 2 A

Substituting this and Y [ j,k] =�ys
jk for j ⇠ k into (4.17) we have

aHY22a = Â
j2A

  

Â
k 62A:( j,k)2E

ys
jk + Â

k2A:( j,k)2E
ys

jk + ym
j j

!
|a j|2 � Â

k2A:( j,k)2E
ys

jk aH

j ak

!

= Â
j,k2A:( j,k)2E

⇣
ys

jk|a j|2� ys
jkaH

j ak� ys
k ja

H

k a j + ys
k j|ak|2

⌘
+ Â

j2A

 

Â
k 62A:( j,k)2E

ys
jk + ym

j j

!
|a j|2

= Â
j,k2A:( j,k)2E

ys
jk
��a j�ak

��2 + Â
j2A

 

Â
k 62A:( j,k)2E

ys
jk + ym

j j

!
|a j|2

where the third equality uses from ys
jk = ys

k j when condition C4.1 holds. The first term sums over links in
the subgraph induced by A. The second term sums over links between the subgraph induced by A and that
by N \A. Recall ys

jk =: gs
jk + ibs

jk and ym
j j =: gm

j j + ibm
j j. Then

Re
⇣

aHY22a
⌘

= Â
j,k2A:( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2A

 

Â
k 62A:( j,k)2E

gs
jk + gm

j j

!
|a j|2 (4.18a)

Im
⇣

aHY22a
⌘

= Â
j,k2A:( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2A

 

Â
k 62A:( j,k)2E

bs
jk + bm

j j

!
|a j|2 (4.18b)

The subgraph corresponding to Y22 may consist of multiple connected components Ci✓A. Each connected
component Ci is a disjoint set of buses that are connected to each other and to no buses outside Ci such
that [iCi = A. Let

G j := Â
k 62A:( j,k)2E

gs
jk + gm

j j, B j := Â
k 62A:( j,k)2E

bs
jk + bm

j j, j 2 A (4.19a)

5
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Then we can rewrite (4.18) in terms of the connected components Ci and G j,B j:

Re
⇣

aHY22a
⌘

= Â
i

 

Â
j,k2Ci:( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2Ci

G j|a j|2
!

(4.19b)

Im
⇣

aHY22a
⌘

= Â
i

 

Â
j,k2Ci:( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2Ci

B j|a j|2
!

(4.19c)

These expressions are similar to rTGr and rTBr in the proofs of Theorems 4.3 and 4.4 respectively.
Hence Theorems 4.3 and 4.4 extend directly to Y22 as stated in the next two results.

Consider the following conditions on the conductances gs
jk and G j:

C4.6: For all lines ( j,k) 2 E, gs
jk � 0 and for all buses j 2 N, G j � 0.

C4.7a: For all buses j 2 N, G j 6= 0,

C4.7b: For all lines ( j,k) 2 E, gs
jk 6= 0. Furthermore on each connected component Ci there exists a

bus ji 2Ci such that G ji 6= 0.

Conditions C4.6 can be changed to gs
jk,G j having the same sign.

Theorem 4.5. Suppose the admittance matrix Y satisfies condition C4.1. If C4.6 and one of C4.7a and
C4.7b hold, then the strict principal submatrix Y22 satisfies

1. Re(Y22)� 0.

2. Y�1
22 exists, is symmetric, and Re

�
Y�1

22
�
� 0.

Proof. The proof is similar to that for Theorem 4.3. Condition C4.6 implies that every summand in (4.19b)
is nonnegative. Moreover if C4.7a holds then the second summation is strictly positive if a 6= 0. If C4.7b
holds then for the first summation to be zero, a j = ak for all j,k in each connected component Ci. Then
the second summation becomes, on each Ci, Â j2Ci G j|a j|2 � G ji |a ji |2 > 0 unless a j = a ji = 0 for all
j 2Ci. Therefore Re

�
aHY22a

�
> 0 if r 6= 0, i.e., Re(Y22) � 0. Since Y22 is symmetric Theorem 4.2 then

completes the proof.

Consider the following conditions on the susceptances bs
jk and B j:

C4.8: bs
jk  0 for all lines ( j,k) 2 E and B j  0 for all buses j 2 N.

C4.9a: For all buses j 2 N, B j 6= 0,

C4.9b: For all lines ( j,k) 2 E, bs
jk 6= 0. Furthermore on each connected component Ci there exists a

bus ji 2Ci such that B ji 6= 0.

Conditions C4.8 can be changed to bs
jk,B j having the same sign respectively.
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Theorem 4.6. Suppose the admittance matrix Y satisfies condition C4.1. If C4.8 and one of C4.9a and
C4.9b hold, then the strict principal submatrix Y22 satisfies

1. Im(Y22)� 0.

2. Y�1
22 exists, is symmetric, and Im

�
Y�1

22
�
� 0.

The invertibility conditions in Theorems 4.5 and 4.6 for the submatrix Y22 are less restrictive than those
in Theorems 4.3 and 4.4 for Y , as we explain in Remark 4.5. Therefore if conditions of Theorem 4.3 or
4.4 are satisfied then Y�1, Y�1

22 and Y/Y22 all exist.

Remark 4.5 (Transmission line). As discussed in Remark 4.3, for a transmission line, we usually have
gs

jk � 0, bs
jk < 0, gm

j j � 0 and bm
j j � 0.

1. If all lines ( j,k) have strictly positive conductances, then conditions C4.6 and C4.7b are satisfied.
This is the case even with zero shunt admittances ym

jk = ym
k j = 0 in which case Y has zero row sums

and is singular.

2. For C4.8, even though bs
jk and bm

j j have opposite signs, the shunt susceptances bm
jk are typically much

smaller than the series susceptances bs
jk such that usually B j in (4.19a) has the same sign as bs

jk.
Hence both C4.8 and C4.9a are likely to be satisfied since bs

jk are usually nonzero for transmission
lines.

When shunt admittances ym
jk = ym

k j = 0. When ym
jk = ym

k j = 0 for all lines ( j,k) 2 E a symmetric admit-
tance matrix Y has zero row and column sums and is hence singular. In this case G j and B j in (4.19a)
becomes

G j := Â
k 62A:( j,k)2E

gs
jk, B j := Â

k 62A:( j,k)2E
bs

jk, j 2 A

Hence Theorems 4.5 and 4.6 imply the following simple conditions for the invertibility of a strict principal
submtirx Y22 of Y .

Corollary 4.7. Suppose the admittance matrix Y satisfies condition C4.1 and ym
jk = ym

k j = 0 for all lines
( j,k) 2 E. Consider the strict principal submatrix Y22.

1. If gs
jk > 0 for all lines ( j,k) 2 E then Y�1

22 exists and is symmetric. Moreover both Re(Y22)� 0 and
Re
�
Y�1

22
�
� 0.

2. If bs
jk < 0 for all lines ( j,k) 2 E then then Y�1

22 exists and is symmetric. Moreover Im(Y22) � 0 but
Im
�
Y�1

22
�
� 0.

For a real symmetric Laplacian matrix L with zero row and column sums (which is the admittance
matrix of the DC power flow model studied in Chapter 4.6), Theorem 4.13 shows that any strict principal
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submatrix L22 is nonsingular. See Remark 4.9 for connection of the invertibility conditions of Corollary
4.8 for complex symmetric matrices Y to that in Theorem 4.13 for real symmetric Laplacian matrix L.

When not all gs
jk are strictly positive and not all bs

jk are strictly negative, then neither Re(Y22)� 0 nor
Im(Y22) � 0 may hold. It turns out however that Re(Y22)� Im(Y22) � 0 as long as gs

jk � 0 and bs
jk  0

because they cannot be zero simultaneously, i.e., zs
jk 6= 0 if ( j,k) 2 E. This implies the nonsingularity of

Y22, as the following result from [14] shows.

Theorem 4.8. Suppose the admittance matrix Y satisfies condition C4.1 and ym
jk = ym

k j = 0 for all lines
( j,k) 2 E. If gs

jk � 0 and bs
jk  0 for all lines ( j,k) 2 E then the strict principal submatrix Y22 satisfies

1. Re(Y22)⌫ 0, Im(Y22)� 0, but Re(Y22)� Im(Y22)� 0.

2. Y�1
22 exists and is symmetric.

Proof. Write Y =: G+ iB and Y22 =: G22 + iB22. Denote the ( j,k) element of a matrix M by M[ j,k], e.g.,
Y [ j,k], G22[ j,k], etc. Since ym

jk = ym
k j = 0 for all lines ( j,k) 2 E and hence Y has zero row (and column)

sums, each row of G22 and B22 are diagonally dominant:

|G22[ j, j]| =

����� Â
k 62A:( j,k)2E

gs
jk + Â

k2A:( j,k)2E
gs

jk

����� � Â
k2A:( j,k)2E

gs
jk = Â

k2A:k 6= j
|G22[ j,k]| , j 2 A

|B22[ j, j]| =

����� Â
k 62A:( j,k)2E

bs
jk + Â

k2A:( j,k)2E
bs

jk

����� � Â
k2A:( j,k)2E

�bs
jk = Â

k2A:k 6= j
|B22[ j,k]| , j 2 A

Since G22 and B22 are real and symmetric their eigenvalues are all real. The Geršgorin disc theorem states
that all eigenvalues of a real matrix M 2 R

n⇥n lie in the union of n discs

[n
i=1

(
z 2 C

n : |z�Mii| Â
j: j 6=i

|Mi j|
)

Therefore all eigvenvalues of the G22 are nonnegative and those of B22 are nonpositive, i.e., G22 ⌫ 0 and
B22 � 0, since G22 and B22 are real symmetric. This implies that G22�B22 ⌫ 0.

We now show that, indeed, G22�B22 � 0 because the network is connected and A ⇢ N is a strict
subset. Since G22�B22 is real symmetric, consider, for any nonzero real vector r ,

rT(G22�B22)r = Â
j2A

Â
k2A

r j(G22[ j,k]�B22[ j,k])rk

= Â
j2A

Â
k2A:( j,k)2E

r j(�gs
jk +bs

jk)rk + Â
j2A

r2
j

 

Â
k2A:( j,k)2E

(gs
jk�bs

jk) + Â
k 62A:( j,k)2E

(gs
jk�bs

jk)

!

= Â
j,k2A:( j,k)2E

�
r j�rk

�2
(gs

jk�bs
jk) + Â

j2A
r2

j (G j�B j)

where the third equality uses gs
jk = gs

k j and bs
jk = bs

k j from C4.1. Here G j�B j = Âk 62A:( j,k)2E(gs
jk� bs

jk)

for j 2 A and the summation is not vacuous because the network is connected and A ( N. For every line
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( j,k) 2 E, ys
jk 6= 0 and hence gs

jk�bs
jk > 0 since gs

jk � and bs
jk � 0. This implies G j�B j > 0 as well for

all j 2 A. Therefore for rT(G22�B22)r > 0 for any real vector r 6= 0, i.e., G22�B22 � 0.

Finally we use G22�B22 � 0 to show that Y22 is nonsingular (it is clear that Y�1
22 is symmetric if it

exists). If Y22 is singular then it has a nonzero eigenvector a = r + ie corresponding to the zero eigenvalue
and hence

0 = Y22a = (G22 + iB22)(r + ie) = (G22r�B22e) + i(G22e +B22r)

Therefore

G22r�B22e = 0, B22r +G22e = 0

To solve for (r,e), subtract the second equation from the first to get (G22�B22)r = (G22 +B22)e . Since
G22�B22 � 0 we have r = (G22�B22)�1(G22 +B22)e . Substituting into the first equation we have

0 =
�
G22(G22�B22)

�1(G22 +B22)�B22
�

e
=
�
G22(G22�B22)

�1G22 +G22(G22�B22)
�1B22�B22

�
e

But G22(G22 � B22)�1B22 � B22 = (G22� (G22�B22))(G22 � B22)�1B22 = B22(G22 � B22)�1B22 and
hence

0 =
�
G22(G22�B22)

�1G22 +B22(G22�B22)
�1B22

�
e

Multiplying on the left by eT we have

0 = eT
�
G22(G22�B22)

�1G22 +B22(G22�B22)
�1B22

�
e

which implies e = 0 since (G22�B22)�1 � 0. But then r = (G22�B22)�1(G22 +B22)e = 0 and therefore
a = r + ie = 0, contradicting that the eigenvector a is nonzero. Hence Y22 is nonsingular.

4.2.4.3 Properties of Y/Y22

Theorem 4.2 extends directly to the Schur complement Y/Y22 := Y11�Y12Y�1
22 YT

12.

Theorem 4.9. Consider a complex symmetric matrix Y =:

Y11 Y12
YT

12 Y22

�
(i.e., Y satisfies condition C4.1).

Suppose Y22 is nonsingular.

1. If Re(Y )� 0, then (Y/Y22)�1 exists and is symmetric. Moreover Re(Y/Y22)� 0 and Re
�
(Y/Y22)�1��

0.

2. If Im(Y )� 0, then (Y/Y22)�1 exists and is symmetric. Moreover Im(Y/Y22)� 0 but Im
�
(Y/Y22)�1��

0.
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Proof. Since Y is symmetric, Y�1
22 and Y/Y22 are symmetric as well (Exercise 4.10). From Theorem 20.4

in Appendix 20.1.3.1, Y is nonsingular if and only if Y/Y22 is nonsingular, given that Y22 is nonsingu-
lar. If Re(Y ) � 0 or Im(Y ) � 0, Theorem 4.2 implies that Y�1 exists and Re(Y�1) � 0 or Im(Y�1) � 0
respectively. Hence Y/Y22 is nonsingular if Re(Y )� 0 or Im(Y )� 0.

Write Y�1 in terms of the Schur complement Y/Y22 (from Theorem 20.4):

Y�1 =


(Y/Y22)�1 �(Y/Y22)�1Y12Y�1

22
�Y�1

22 YT

12(Y/Y22)�1 A

�

where A := Y�1
22 +Y�1

22 YT

12(Y/Y22)�1Y12Y�1
22 . If Re(Y ) � 0 then Theorem 4.2 implies that Re(Y�1) �

0. Hence all the principal submatrices of Re(Y�1) are (symmetric and) positive definite. In particular
Re
�
(Y/Y22)�1�� 0. But (Y/Y22)�1 is symmetric and therefore Theorem 4.2 implies that Re(Y/Y22)� 0.

If on the other hand Im(Y ) � 0, then Theorem 4.2 implies that Im(Y�1) � 0. Hence its princi-
pal submatrix Im

�
(Y/Y22)�1� � 0. But (Y/Y22)�1 is symmetric and therefore Remark 4.2 implies that

Im(Y/Y22)� 0.

4.2.5 Solving I = YV

Suppose we are given I 2 C
N+1 and want to determine V 2 C

N+1 from I = YV . In Chapter 4.2.3.4 we
study sufficient conditions under which Y is invertible. For large networks taking the inverse of Y can be
difficult computationally even when it exists. In this section we present a common method for solving
I = YV using LU factorization of Y , i.e., factorize Y into Y = LU where L is a lower triangular matrix with
all diagonal entries being 1 and U an upper triangular matrix. Any square matrix A 2 C

n⇥n has an LU
factorization after possibly an appropriate re-ordering of the rows, i.e., there exists a permutation matrix P
such that PA = LU for some L,U . If A is invertible then it admits an LU factorization without permutation
(i.e., A = LU for some L,U) if and only if all its leading principal minors are nonzero.6 In that case, the
LU factorization is unique. For a singular A, necessary and sufficient conditions for the existence and
uniqueness of LU factorization are known but are more involved.

Possibly after an appropriate permutation of Y (such that e.g. Y11 6= 0), we can compute the entries of
L and U recursively. From

2

666664

Y00 Y01 Y02 · · · Y0N
Y10 Y11 Y12 · · · Y1N
Y20 Y21 Y22 · · · Y2N

...
...

... . . . ...
YN0 YN1 YN2 · · · YNN

3

777775
=

2

666664

1 0 0 · · · 0
L10 1 0 · · · 0
L20 L21 1 · · · 0

...
...

... . . . ...
LN0 LN1 LN2 · · · 1

3

777775

2

666664

U00 U01 U02 · · · U0N
0 U11 U12 · · · U1N
0 0 U22 · · · U2N
...

...
... . . . ...

0 0 0 · · · YNN

3

777775

6Consider a matrix A2Cn⇥n. Let I := {i1, . . . , ik}✓ {1, . . . ,n}, J := { j1, . . . , jl}✓ {1, . . . ,n}, and AIJ denote the submatrix
obtained from deleting rows not in I and columns not in J.

• If k = l, i.e., AIJ is square, then the minor MIJ of A is the determinant of the submatrix AIJ .

• If I = J, then AIJ is called a principal submatrix and MIJ a principal minor of A.

• If I = J = {1, . . . ,k} with k  n, then AIJ is called a leading principal submatrix of order k and MIJ a leading principal
minor of order k.
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we proceed as follows:

1. The 0th row of U is set to the 0th row of Y since L00 = 1:

U0 j = Y0 j, j = 0, . . . ,N

2. To compute row-1 entry L10 of L, we have

Y10 = L10U00 ) L10 =
Y10

U00

To compute row-1 entries U1 j of U , we have for columns j = 1, . . . ,N,

Y1 j = L10U0 j +U1 j ) U1 j = Y1 j�L10U0 j

3. In general, to compute row-i entries Li j of L (i = 2, . . . ,N), we have for columns j = 0, . . . , i�1,

Yi0 = Li0U00 ) Li0 =
Yi0

U00

Yi1 = Li0U01 +Li1U11 ) Li1 =
1

U11
(Yi1�Li0U01)

...
...

Yi(i�1) =
i�2

Â
j=0

Li jUj(i�1) +Li(i�1)U(i�1)(i�1) ) Li(i�1) =
1

U(i�1)(i�1)

 
Yi(i�1)�

i�2

Â
j=0

Li jUj(i�1)

!

To compute row-i entries Ui j of U (i = 2, . . . ,N), we have for columns j = i, . . . ,N,

Yii =
i�1

Â
j=0

Li jUji +Uii ) Uii = Yii�
i�1

Â
j=0

Li jUji

Yi(i+1) =
i�1

Â
j=0

Li jUj(i+1) +Ui(i+1) ) Ui(i+1) = Yi(i+1)�
i�1

Â
j=0

Li jUj(i+1)

...
...

YiN =
i�1

Â
j=0

Li jUjN +UiN ) UiN = YiN�
i�1

Â
j=0

Li jUjN

Once the factorization is obtained we have I = YV = LUV . Hence, given I, V can be solved in two
steps from:

I = LṼ (4.20a)
Ṽ = UV (4.20b)

In step 1, Ṽ is solved using (4.20a) by forward substitution (compute Ṽ1 then Ṽ2 and so on). In step 2, V is
solved using (4.20b) by backward substitution (compute Vn then Vn�1 and so on).
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Example 4.6. Suppose

Y =

2

4
2(0.5� j)+ j0.5 �0.5+ j �0.5+ j
�0.5+ j (0.5� j)+ j0.1 0
�0.5+ j 0 (0.5� j)+ j0.2

3

5

Then

Y =

2

4
1 0 0

�0.6154+ j0.0769 1 0
�0.6154+ j0.0769 �1.6763+ j0.8960 1

3

5

2

4
1� j1.5 �0.5+ j �0.5+ j

0 0.2692� j0.2462 �0.2308+ j0.6538
0 0 0.4682+ j1.1566

3

5

Given I, V can be obtained in two steps: solve for Ṽ from:
2

4
I1
I2
I3

3

5 =

2

4
1 0 0

�0.6154+ j0.0769 1 0
�0.6154+ j0.0769 �1.6763+ j0.8960 1

3

5

2

4
Ṽ1
Ṽ2
Ṽ3

3

5

and then solve for V from:
2

4
Ṽ1
Ṽ2
Ṽ3

3

5 =

2

4
1� j1.5 �0.5+ j �0.5+ j

0 0.2692� j0.2462 �0.2308+ j0.6538
0 0 0.4682+ j1.1566

3

5

2

4
V1
V2
V3

3

5

4.2.6 Radial network

Suppose

• The network graph G is a (connected) tree.

• Assumption C4.1 holds (i.e., ys
jk = ys

k j) and ym
jk = ym

k j = 0 for all ( j,k) 2 E.

Distribution systems are mostly radial, i.e., its graph G is a tree. The second assumption is reasonable if all
( j,k) model distribution lines (not transformers) where shunt admittances (ym

jk,y
m
k j) are often negligible.

Inverses of reduced incidence and admittance matrices (Ĉ,Ŷ ). Under these assumption the admit-
tance matrix Y is complex symmetric and has zero row and column sums. Such a matrix is sometimes
called a complex Laplacian matrix. From (4.12), we can write

Y = C Ds
yC

T (4.21)

where the incidence matrix C is defined in (4.11) and the N⇥N diagonal matrix Ds
y := diag

�
ys

l , l 2 E
�

of series admittances ys
l is nonsingular. Clearly C is singular. The null space null(CT) = span(1) and its

(N +1)⇥N pseudo-inverse is (CT)† = C
�
CTC

��1 (Exercise 5.2). Hence Y is nonsingular with null(Y ) =
span(1). Consider the reduced incidence matrix Ĉ obtained from C by removing its row corresponding
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to the reference bus 0 and the reduced admittance matrix Ŷ obtained from Y by removing the row and
column corresponding to the reference bus 0. We now show that, for a radial network, both of the N⇥N
matrices Ĉ and Ŷ are invertible. Moreover the inverse Ŷ�1 has a very useful structure.

Denote by cT0 the first row of the incidence matrix C corresponding to bus 0 and by Ĉ the N ⇥N
submatrix consisting of the remaining rows of C:

C =:


cT0
Ĉ

�
(4.22a)

The submatrix Ĉ is called the reduced incidence matrix. Then

Y =


cT0
Ĉ

�
Ds

y
⇥
c0 ĈT

⇤
=


cT0 Ds

yc0 cT0 Ds
yĈT

ĈDs
yc0 ĈDs

yĈT

�
=:

Y00 Y01
Y10 Ŷ

�
(4.22b)

Hence the N⇥N reduced admittance matrix is Ŷ = ĈDs
yĈT. Suppose the lines are directed with an arbitrary

orientation. Let T j denote the subtree rooted at bus j, including j, and P j denote the unique path from bus
0 to bus j. Buses k in T j are called descendants of j. If k 2 T j and they are adjacent, ( j,k) 2 E, then j
is called a parent of k. We use “l 2 P j” to mean a directed line l in P j that points away from bus 0, and
“�l 2 P j” to mean a directed line l in P j that points towards bus 0. The proof of the next theorem is left
as Exercise 4.11.

Theorem 4.10 (Radial network: inverses of Ĉ and Ŷ ). Consider a radial network for which G is a (con-
nected) tree. Suppose assumption C4.1 holds (i.e., ys

jk = ys
k j) and ym

jk = ym
k j = 0 for all ( j,k) 2 E.

1. The reduced incidence matrix Ĉ is nonsingular and

⇥
Ĉ�1⇤

l j =

8
<

:

�1 l 2 P j
1 �l 2 P j
0 otherwise

(4.23)

Furthermore Ĉ�Tc0 =�1 where Ĉ�T :=
�
ĈT
��1.

2. The reduced admittance matrix Ŷ is nonsingular and Ẑ := Ŷ�1 = Ĉ�TDs
zĈ�1, i.e.,

Ẑ jk = Â
l2P j\Pk

zs
l = Â

l2P j\Pk

1/ys
l (4.24)

where Ds
z := diag

⇣
1/ys

jk,( j,k) 2 E
⌘

. Hence Ẑ jk is the sum of impedances on the common segment
of the unique paths from the reference bus 0 to buses j and k.

3. Suppose i is a parent of j, i.e., (i, j) 2 E and j 2 Ti. Then

Ẑ jk� Ẑik =

⇢
zs

i j if k 2 T j
0 if k 62 T j
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Remark 4.6. 1. The nodal voltages and currents (V̂ , Î) at non-reference buses are not related by Î =
ŶV̂ . From (4.22b) they are related by

Î =
�
ĈDs

yc0
�⇣

cT0 Ds
yc0

⌘�1
I0 +

✓
Ŷ �

�
ĈDs

yc0
�⇣

cT0 Ds
yc0

⌘�1⇣
cT0 Ds

yĈ
T

⌘◆

| {z }
Y/Y00

V̂

If the current injection I0 = 0 then Î = (Y/Y00)V̂ where the N⇥N matrix Y/Y00 is the Kron reduction
of Y studied in Chapter 4.2.4.1.

2. Corollary 4.8 and Theorem 4.8 says roughly that, for a general network, sufficient conditions for
a strict leading submatrix Y22, such as Ŷ , to be nonsingular are gs

jk > 0 for all lines ( j,k) 2 E or
gs

jk � 0, bs
jk  0 for all ( j,k) 2 E. In the former case, Re(Y22) � 0 whereas in the latter case,

Re(Y22)� Im(Y22) � 0. Theorem 4.10 shows that, for a radial network, Ŷ is always nonsingular,
even though the positive definite properties may not hold.

3. The nonsingularity of Ŷ and the simple structure of its inverse Ẑ originate from the inverse Ĉ�1

in (4.23) of the reduced incidence matrix Ĉ of a tree graph, and are independent of whether the
“weight matrix” Ds

y is real or complex, positive or not, as long as Ds
y is nonsingular. It therefore

applies to the real Laplacian matrix L := CBCT of the DC power flow model of Chapter 4.6.2, the
linear DistFlow model of Chapter 5.4.2 (see Theorem 5.3), and the linearized polar-form power
flow model of Chapter 6.7. The expression (4.24) for Ẑ = Ŷ�1 is particularly useful for various
applications in radial networks. We illustrate its application for voltage control in Chapter 6.1 and
topology identification in Chapter 6.2.

Radiality condition. Many applications can be formulated as a constrained optimization problem, e.g.,
state estimation, voltage regulation, feeder reconfiguration, or topology identification. Some of these ap-
plications involve computing an operational network from a set of possibilities, e.g. feeder reconfiguration
and topology identification. A common setup in these applications assumes that a typically meshed infras-
tructure network is given. Some of the lines contain switches that can be opened or closed. The switches
are configured so that at any time the operational network is a spanning tree that connects all nodes. Let
there be N + 1 nodes and M � N + 1 lines in the infrastructure network, and assume without loss of gen-
erality that every line has a switch that can be configured. Our goal is to identify/optimally choose the set
of switches that are/should be closed. As part of an optimization problem, this can be specified as two
constraints:

• The number of switches that are closed should be exactly N.

• The resulting network should be connected.

These two conditions ensure that the resulting graph is a (connected) tree.

A convenient way to specify the second condition is the following linear constraint from [16] on
the reduced incidence matrix Ĉ of the resulting network, defined in (4.22a), among an arbitrary set of
(N + 1)⇥N incidence matrices C. It says that a network is a (connected) tree if and only if there is a
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power flow solution when all non-reference buses inject a unit of power into the network. This property is
used in [16] for joint optimization of feeder reconfiguration and volt/var control on a distribution grid.

Lemma 4.11 (Connectivity). Suppose a network G has N +1 buses and N lines with a reduced incidence
matrix Ĉ. It is connected (i.e., a tree) if and only if there exists a line flow P 2 R

N such that ĈP = 1.

Proof. Exercise 4.11 shows that if the network is radial and connected then Ĉ is invertible, and therefore
P = Ĉ�11 is well defined. Conversely suppose there exists P that satisfies ĈP = 1. Since there are N + 1
buses and only N lines, the network is connected if and only if it is a tree. Suppose then the network is
not connected. Consider a maximal connected component that does not contain the reference bus 0, and
let N1 ( N denote its nodes. Without loss of generality we can partition Ĉ into a block-diagonal matrix
according to nodes in N1 and those in its complement N0 := N \N1:

Ĉ =:

Ĉ0 0
0 Ĉ1

�

where Ĉ1 is the (full) incidence matrix of the maximal connected component N1. Since CT1 = 0 we have
ĈT

1 11 = 0 (whereas ĈT

0 10 may not be the zero vector as Ĉ0 is the reduced incidence matrix of the subgraph
N0 that contains bus 0). This means that 11 is in the null space of ĈT

1 and therefore orthogonal to the range
space of Ĉ1, i.e., there does not exist any P1 such that Ĉ1P1 = 11. This contradicts ĈP = 1 for some P.

4.2.7 Summary

We have explained how to model a power network as a graph with lines parameterized by admittances
(ys

jk,y
m
jk) and (ys

k j,y
m
k j). This can be described by an admittance matrix Y which is complex symmetric

if and only if ys
jk = ys

k j. The equation I = YV expresses nodal current balance due to KCL. We derive
structural properties of Y and its Kron reduction Y/Y22, especially sufficient conditions under which Y is
invertible and Y/Y22 exists. Finally we have shown that the reduced admittance matrix Ŷ of a connected
radial network is always invertible, because the reduced incidence matrix Ĉ is always invertible, and its
inverse Ŷ�1 has a simple structure that we will use in Chapters 6.1 and 6.2 for voltage control and topology
identification respectively.

4.3 Network models: sV relation

In Chapter 4.2 we model a power network by its admittance matrix Y that relates linearly the nodal current
injections and voltages, I = YV . This is simple as it involves linear equations only. Given (V, I) the
power injection at each node j can be computed as s j = VjIHj . All other quantities, such as line power
flows or real power loss over a network, can be computed from V (Exercise 4.12). In many applications
however loads and generators are not specified as current or voltage sources. They may be described
instead in terms of power injections or removals. For instance, for electric vehicle charging, the travel
need is specified in terms of the number of miles required which translates to the amount of energy in
kWh required that must be delivered by a deadline. For example it requires roughly 3 kWh for an electric
vehicle to travel 10 miles. Hence a charging facility is often characterized by its power requirement to



174 Draft: PSA December 13, 2024

support a certain electric vehicle charging capacity. In this section we present power flow equations that
describe the relation between nodal power injections s j and voltages Vj on the network. As we will see
this involves nonlinear equations which are much more difficult to solve.

We often use s j to denote both the complex number p j + iq j 2 C and the real pair (p j,q j) 2 R
2

depending on the context.

4.3.1 Complex form

The bus injection model (BIM) in its complex form is defined by power balance s j = Âk: j⇠k S jk at each
node j where S jk are sending-end line powers from j to its neighbors k. Given line admittances (ys

jk,y
m
jk)

and (ys
k j,y

m
k j), the power flows on line ( j,k) 2 E are

S jk := VjIHjk =
⇣

ys
jk

⌘H⇣
|Vj|2�VjVH

k

⌘
+
⇣

ym
jk

⌘H
|Vj|2 (4.25a)

Sk j := VkIHk j =
⇣

ys
k j

⌘H⇣
|Vk|2�VkVH

j

⌘
+
⇣

ym
k j

⌘H
|Vk|2 (4.25b)

This leads to the power flow equations that relate power injections and voltages:

s j = Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N (4.26a)

where, from (4.10b), the total shunt admittance ym
j j := Âk: j⇠k ym

jk associated with bus j is the sum of shunt
admittances ym

jk of all lines ( j,k) incident on bus j. We can also express (4.26a) in terms of the elements
of the admittance matrix Y as

s j =
N

Â
k=0

YH

jk VjVH

k , j 2 N (4.26b)

where Y is given by:

Yjk =

8
><

>:

�ys
jk, j ⇠ k ( j 6= k)

Âi: j⇠i

⇣
ys

ji + ym
ji

⌘
j = k

0 otherwise
(4.26c)

When the total shunt admittance ym
j j = Âi: j⇠i ym

ji = 0, (4.26a) reduces to

s j = Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
, j 2 N

For convenience we include V0 in the vector variable V := (Vj, j 2 N) with the understanding that V0 :=
1\0� is fixed. There are N +1 equations in (4.26a) in 2(N +1) complex variables (s j,Vj, j 2 N).

This model does not require assumption C4.1.
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Remark 4.7 (Nodal devices). If bus j in Remark 4.1 includes, in addition, a power source with a fixed
power injection s p

j , then s j is the net bus injection (assuming all neutrals are grounded and all voltages
are defined with respect to the ground):

s j = �
⇣

zvH
j

⌘�1⇣
|Vj|2�VjEH

j

⌘

| {z }
voltage source

+ Vj
�
Jj� yc

jVj
�H

| {z }
current source

� yaH
j |Vj|2| {z }

shunt admittance

+ s p
j|{z}

power source

and (4.26a) becomes:

�
⇣

zvH
j

⌘�1⇣
|Vj|2�VjEH

j

⌘
+ Vj

�
Jj� yc

jVj
�H � yaH

j |Vj|2 + s p
j

= Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N

4.3.2 Polar form

We may alternatively treat (4.26) as 2(N + 1) equations in 4(N + 1) real variables (p j,q j, |Vj|,q j, j 2
N) where s j := p j + iq j are the complex injections and Vj := |Vj|eiq j are the complex voltages. Let
ys

jk =: gs
jk + ibs

jk denote the series admittance and ym
jk =: gm

jk + ibm
jk the shunt admittance of line ( j,k) from

j to k, and similarly (ys
k j,y

m
k j) in the opposite direction. As discussed in Remark 4.5, if ( j,k) models

a transmission or distribution line then usually gs
jk � 0, bs

jk < 0 (inductive line), gm
jk � 0, but bm

jk � 0
(capacitive shunt). Moreover bs

jk +bm
jk  0 typically since |bm

jk| is usually much smaller than |bs
jk|.

Substituting all this into (4.26) the admittance matrix is defined by

Yjk =

8
><

>:

�(gs
jk + ibs

jk), j ⇠ k ( j 6= k)

Âi: j⇠i

⇣
gs

ji +gm
ji

⌘
+ iÂi: j⇠i

⇣
bs

ji +bm
ji

⌘
j = k

0 otherwise

and the power flow equations become:

s j = Â
k:k⇠ j

⇣
(gs

jk +gm
jk)� i(bs

jk +bm
jk)
⌘��Vj

��2 � Â
k:k⇠ j

⇣
gs

jk� ibs
jk

⌘��Vj
�� |Vk| eiq jk j 2 N

where q jk := q j�qk is the voltage phase angle difference across each line ( j,k) 2 E. Then we can write
(4.26a) in the polar form:

p j = Â
k:k⇠ j

⇣
gs

jk +gm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk cosq jk +bs
jk sinq jk

⌘
, j 2 N (4.27a)

q j = � Â
k:k⇠ j

⇣
bs

jk +bm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk sinq jk�bs
jk cosq jk

⌘
, j 2 N (4.27b)

This model does not require assumption C4.1.
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4.3.3 Cartesian form

The power flow equations (4.26) or (4.27) can also be reformulated in the real domain by writing Vj in
terms of its real and imagineary components (c j,d j), i.e., Vj =: c j + id j. Then (4.27) becomes (using
c j = |Vj|cosq j and d j = |Vj|sinq j)

p j = Â
k:k⇠ j

⇣
gs

jk +gm
jk

⌘�
c2

j +d2
j
�
� Â

k:k⇠ j

⇣
gs

jk(c jck +d jdk)+bs
jk(d jck� c jdk)

⌘
, j 2 N (4.28a)

q j = �Â
k:k⇠ j

⇣
bs

jk +bm
jk

⌘�
c2

j +d2
j
�
� Â

k:k⇠ j

⇣
gs

jk(d jck� c jdk)�bs
jk(c jck +d jdk)

⌘
, j 2 N (4.28b)

These are 2(N + 1) quadratic equations in 4(N + 1) variables (p j,q j,c j,d j, j 2 N). This model does not
require assumption C4.1.

4.3.4 Types of buses

Each set of power flow equations (4.26)(4.27)(4.28) is a set of 2(N+1) nonlinear real equations in 4(N+1)
real variables (p j,q j, |Vj|,q j, j2N) Given any 2(N +1) of these real variables, these equations can be used
to solve for the remaining 2(N +1) real variables. There can be zero, unique or multiple solutions. Solving
for these solutions is the power flow or load flow problem (Chapter 4.4).

A popular formulation of the power flow problem uses the polar form where each bus j is classified
into one of three types based on which two of the four real variables (p j,q j, |Vj|,q j) are specified:

• PV bus. This is a bus where the real power injection p j and the voltage magnitude |Vj| are specified
and the reactive power injection q j and voltage angle q j are to be determined. It usually models a
bus with a conventional generator.

• PQ bus. This is a constant-power bus where the injection (p j,q j) is specified and the complex
voltage |Vj|e jq j is to be determined. It usually models a load but can also model a renewable
generator with undispatchable generation.

• Slack bus. Bus 0 is taken as a slack bus where V0 = |V0|\0� is specified and the injection s0 =
(p0,q0) is to be determined. This is usually used for mathematical convenience to avoid an ill
specified power flow problem that has no solution.

A slack bus (or a set of slack buses) is needed because power needs to be balanced over the network. For
example if the resistance of every line is zero then Â j p j must be zero. If all buses are PV or PQ buses
then all active powers p j are specified; if the specified values do not satisfy power balance then the set of
power flow equations will have no solution. This is resolved by taking an arbitrary bus (denoted by bus
0 here) as a slack bus with its power injection s0 unspecified in order to balance power. For instance a
distribution system with a substation at bus 0 and N constant power loads or generations can be modeled
by a slack bus and N PQ buses with V0 and (p j,q j, j 2 N) specified. The power flow problem solves the
power flow equations for the N complex voltages (Vj, j 2 N), and the power injection s0 (see Chapter 4.4).
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For optimal power flow problems p j and |Vj| on generator buses or s j on load buses can be variables
as well. For instance economic dispatch optimizes real power generations p j at generator buses; demand
response optimizes demands s j at load buses; and volt/var control optimizes reactive powers q j at capacitor
banks, tap changers, or inverters. We will discuss optimal power flow problems in Part II of the book.

4.4 Computation methods

Suppose we are given a set of power flow equations in the bus injection model. Suppose 2(N + 1) of the
4(N +1) real variables are specified and we are interested in solving for the remaining variables. We now
present four solution methods. These methods do not require assumption C4.1.

An important application of iterative algorithms for solving a system of equations is in optimization
where the system of equations specify an optimality condition (e.g. the KKT condition). We will therefore
postpone the convergence analysis of iterative algorithms to Chapter 7.6 after we have introduced a basic
theory of and popular algorithms for optimization.

4.4.1 Gauss-Seidel algorithm

Consider the power flow equations (4.26a) in the complex form. To illustrate the basic idea consider first
the case with a slack bus and load buses only.

Case 1: Given V0 and (s1, . . . ,sN), determine s0 and (V1, . . . ,VN). The power flow equations are:

s0 = Â
k

YH

0k V0VH

k (4.29a)

s j = Â
k

YH

jk Vj VH

k , j 2 N (4.29b)

Once we have computed (V1, . . . ,VN), s0 can be evaluated using (4.29a). Hence the main task is to compute
(V1, . . . ,VN) from (4.29b). We have from (4.29b):

sHj
VH

j
= Yj jVj +

N

Â
k=0
k 6= j

YjkVk, j 2 N

Rearrange to obtain

Vj =
1

Yj j

0

B@
sHj
VH

j
�

N

Â
k=0
k 6= j

YjkVk

1

CA =: f j (V1, . . . ,VN) , j 2 N

Hence a power flow solution V := (V1, . . . ,VN) is a fixed point of f := ( f1, . . . , fN) with

V = f (V )
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The Gauss algorithm is the standard fixed point iteration V (t +1) = f (V (t)), or

V1(t +1) = f1 (V1(t), . . . ,VN(t))
V2(t +1) = f2 (V1(t), . . . ,VN(t))

...
VN(t +1) = fn (V1(t), . . . ,VN(t))

Starting from an initial vector V (0) (e.g., Vj(0) = 1\0� pu for all j), the Gauss algorithm produces a
sequence V (1),V (2), . . . . If the sequence converges to a limit V lim then V lim is a fixed point of f and a
power flow solution.

When V2(t + 1) is to be computed, V1(t + 1) is already known and can be used in the computation of
V2(t +1), and so on. This is the Gauss-Seidel algorithm where the latest value Vi(t +1) is used to compute
Vj+1(t +1) for j > i:

V1(t +1) = f1 (V1(t),V2(t), . . . ,VN(t))
V2(t +1) = f2 (V1(t +1),V2(t), . . . ,VN(t))

...
VN(t +1) = fN (V1(t +1), . . . ,VN�1(t +1),VN(t))

Case 2: Given (V0,V1, . . . ,Vm) and (sm+1, . . . ,sN), determine (s0,s1, . . . ,sm) and (Vm+1, . . . ,VN). In this
case, first determine (Vm+1, . . . ,VN) from the reduced set of power flow equations (4.29b) for j = m +
1, . . . ,N, using the same algorithm. Then determine (s0,s1, . . . ,sm) given (V0, . . . ,VN).

The Gauss-Seidel algorithm is simple and does not require the evaluation of any derivatives. If the
function f is a contraction mapping then it has a unique fixed point V lim and the Gauss or Gauss-Seidel
algorithm converges geometrically to V lim. The formal definition and convergence properties of a con-
traction mapping are studied in Chapter 7.6.1 (but see Exercise 4.13 for an example). Otherwise there is
no guarantee that the algorithms will converge, but if it does, it produces a fixed point which is a power
flow solution V lim. Whether it converges can depend on the choice of the initial vector V (0), as the next
example shows. The convergence of Gauss-Seidel algorithm is studied in Chapter 7.6.2.

Example 4.7 (Fixed-point iteration). Take for an example x = f (x) := x2 for x 2 R as shown in Figure
4.11. It has two fixed points xlim = 0 or 1. The fixed point iteration x(t + 1) = f (x(t)) = x2(t) converges
to xlim = 0 if the initial point x(0) 2 (�1,1) and diverges to positive infinity if |x(0)| > 1. The fixed point
xlim = 0 is stable in the sense that the iterate x(t) converges back to the origin after a small perturbation.
The fixed point xlim = 1 is unstable in the sense that x(t) leaves and will not return after a small perturbation
in the positive direction.

4.4.2 Newton-Raphson algorithm

The Newton-Raphson algorithm is popular for iteratively solving the equation

f (x) = 0
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x*= 0 x1x2 x0

f (x) = x2

y = x

x

(a) Convergence

x1 x2x0

f (x) = x2

y = x

x

(b) Divergence

Figure 4.11: The fixed point iteration x(t + 1) = f (x(t)) := x2(t) is not a contraction mapping and its
convergence depends on the initial point x(0) = x0.

where x 2 R
n and f is a vector-valued function f : Rn ! R

n. The iteration is motivated by the Taylor
series expansion of f . Suppose we have computed x(t) and wish to determine the next iterate x(t +1) =:
x(t)+Dx(t). The Taylor series of f around x(t) is

f (x(t)+Dx(t)) = f (x(t)) + J(x(t))Dx(t) + higher-order terms

where J(x(t)) is the Jacobian of f evaluated at x(t):

J(x) :=
∂ f
∂x

(x) =

2

664

∂ f1
∂x1

(x) · · · ∂ f1
∂xn

(x)
...

...
...

∂ fn
∂x1

(x) · · · ∂ fn
∂xn

(x)

3

775

If we ignore the higher-order terms in the Taylor expansion and set f (x(t +1)) = 0 then we have

J(x(t))Dx(t) = � f (x(t)) (4.30)

This is illustrated in Figure 4.12. If J(x(t)) is invertible then Dx(t) = �J�1(x(t)) f (x(t)), yielding the
Newton-Raphson iteration:

x(t +1) = x(t) � J�1(x(t)) f (x(t)) (4.31)

In practice we usually do not evaluate the inverse J�1(x(t)) except for very small systems. Instead we
solve the linear equation (4.30) for Dx(t). The next iterate is then x(t +1) = x(t)+Dx(t).

We now apply this method to solve the power flow equations in the polar form. To illustrate the idea
we consider the case where every bus in the network is either the slack bus (with V0 specified and s0
unknown), a PV bus (with (p j, |Vj|) specified and (q j,q j) unknown), or a PQ bus (with (p j,q j) specified
and (q j, |Vj|) unknown). The idea can be extended to more general cases. As mentioned before, (p j,q j)
can be evaluated directly from the power flow equations once all (q j, |Vj|) are determined. Hence the main
task is to solve for those (q j, |Vj|) that are not specified.
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x (t +2)
x (t +1)

x (t)

f (x)

f̂ (x) = f (x(t))+J(x(t))(x−x(t))

x

Figure 4.12: Newton-Raphson algorithm: The next iterate x(t + 1) is obtained by approximating f by its
linear approximation at x(t) and setting the linear approximation f̂ (x) = 0.

Let Npq ✓ N be the set of PQ buses where |Vj| (as well as q j) are unknown. We abuse notation and use
Npq to also denote the number |Npq| of buses in Npq. Let

q := (q j, j 2 N)

|V | := (|Vj|, j 2 Npq)

i.e., q collects all unknown phase angles and |V | collects all unknown voltage magnitudes. Rewrite (4.27)
as (right-hand sides are given constants):

p j(q , |V |) = p j, j 2 N
q j(q , |V |) = q j, j 2 Npq

where we have abused notation to use (p j,q j) to denote both power injections and as functions of (q , |V |)
given by:

p j(q , |V |) := Â
k:k⇠ j

⇣
gs

jk +gm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk cosq jk +bs
jk sinq jk

⌘
(4.32a)

q j(q , |V |) := � Â
k:k⇠ j

⇣
bs

jk +bm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk sinq jk�bs
jk cosq jk

⌘
(4.32b)

where q jk := q j�qk. Define the function f : RN+Npq ! R
N+Npq by

f (q , |V |) :=


Dp(q , |V |)
Dq(q , |V |)

�
:=


p(q , |V |)� p
q(q , |V |)�q

�
(4.33)

where p := (p j, j 2 N), q := (q j, j 2 Npq) are constants and

p(q , |V |) :=

2

64
p1(q , |V |)

...
pN(q , |V |)

3

75 , q(q , |V |) :=

2

64
q1(q , |V |)

...
qNpq(q , |V |)

3

75
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Our goal is to compute a root of f (q , |V |) = 0 iteratively. The Jacobian of f is the (N +Npq)⇥ (N +Npq)
matrix

J(q , |V |) :=

" ∂ p
∂q

∂ p
∂ |V |

∂q
∂q

∂q
∂ |V |

#
(4.34)

Hence the Newton-Raphson algorithm is:

1. Choose an initial point (q(0), |V |(0)).

2. Iterate until converge (or the maximum number of iterations has been reached):

(a) Solve (Dq(t),D|V |(t)) from

J (q(t), |V |(t))


Dq(t)
D|V |(t)

�
= �


Dp(q(t), |V |(t))
Dq(q(t), |V |(t))

�
(4.35)

(b) Set


q(t +1)
|V |(t +1)

�
:=


q(t)
|V |(t)

�
+


Dq(t)

D|V |(t)

�

The right-hand side of (4.35) is defined in (4.33) and represents the mismatch in injections at iteration
t. This mismatch is used to compute the increment (Dq(t),D|V |(t)) that updates the current iterate
(q(t), |V |(t)).

The Newton-Raphson algorithm is widely used in industry to compute power flow solution and solve
optimal power flow problems. It converges, typically quadratically, to a solution if it starts close to a
solution; see Kantorovich Theorem in Exercise 4.15. Like the Gauss-Seidel algorithm, it may not converge
if the initial point is far away from a solution. The convergence of the Newton-Raphson algorithm is
analyzed in Chapter 7.6.4.

Remark 4.8. Usually the injection q j at a PV bus j must be constrained within a range. After solving
for (q , |V |) and evaluating the resulting q j at bus j, if it hits or exceeds its limit then q j is set to the limit
and bus j is re-classified as a PQ bus with |Vj| (as well as q j) to be determined. The updated power flow
equations are then re-solved for the remaining unknown quantities.
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4.4.3 Fast decoupled algorithm

We now take a closer look at the Jacobian J in (4.34). Using (4.32) it can be shown that the diagonal
blocks are (Exercise 4.16):

∂ p j

∂qk
=

8
>><

>>:

�|Vj||Vk|
⇣

gs
jk sinq jk�bs

jk cosq jk

⌘
, j ⇠ k, j,k 2 N

�q j(q , |V |) �
⇣

Âi:i⇠ j bs
ji +bm

ji

⌘
|Vj|2, j = k, j 2 N

(4.36a)

∂q j

∂ |Vk|
=

8
>><

>>:

�|Vj|
⇣

gs
jk sinq jk�bs

jk cosq jk

⌘
, j ⇠ k, j,k 2 Npq

q j(q ,|V |)
|Vj| � Âi:i⇠ j

⇣
bs

ji +bm
ji

⌘
|Vj|, j = k, j 2 Npq

(4.36b)

and the off-diagonal blocks are:

∂ p j

∂ |Vk|
=

8
>><

>>:

�|Vj|
⇣

gs
jk cosq jk +bs

jk sinq jk

⌘
, j ⇠ k, j 2 N,k 2 Npq

p j(q ,|V |)
|Vj| + Âi:i⇠ j

⇣
gs

ji +gm
ji

⌘
|Vj|, j = k, j,k 2 Npq

(4.36c)

∂q j

∂qk
=

8
>><

>>:

|Vj||Vk|
⇣

gs
jk cosq jk +bs

jk sinq jk

⌘
, j ⇠ k, j 2 Npq,k 2 N

p j(q , |V |) � Âi:i⇠ j

⇣
gs

ji +gm
ji

⌘
|Vj|2, j = k, j 2 Npq

(4.36d)

Hence the sparsity of the network graph induces a sparse Jacobian matrix J.

Moreover if line losses and angle differences q jk are small then it is reasonable to approximate gs
jk =

gm
jk = 0 and sinq jk = 0 for all ( j,k) 2 E. In this case it can be verified that the off-diagonal blocks are

approximately zero (Exercise 4.16), i.e.,

∂ p j

∂ |Vk|
⇡ 0 and

∂q j

∂qk
⇡ 0, 8 j,k

This means that the voltage magnitudes and the real power injections (at the same or different buses)
are approximately decoupled, and the voltage angles and the reactive power injections are approximately
decoupled. This motivates a fast decoupled algorithm where an approximate Jacobian Ĵ matrix with the
off-diagonal blocks of J set to zero is used in place of J in the Newton-Raphson’s algorithm (step 2):

Ĵ(q , |V |) :=

"
∂ p
∂q 0
0 ∂q

∂ |V |

#

Then equation (4.35) to compute the increments in the Newton-Raphson algorithm is replaced by the
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following equations that decouple active and reactive power:

∂ p
∂q

(q(t), |V |(t)) Dq(t) = �Dp(q(t), |V |(t)) (4.37a)

∂q
∂ |V |(q(t), |V |(t)) D|V |(t) = �Dq(q(t), |V |(t)) (4.37b)

There are other properties of J one can exploit to obtain symmetric matrices that saves storage and
computation in executing the exact Newton-Raphson algorithm; see [1, p. 350–351]. The fast decoupled
algorithm (4.37) can be further simplified with more approximations; see [1, p. 353–354].

4.4.4 Holomorphic Embedding Load-flow Method (HELM)

We now explain a solution method from [20] for solving power flow equations that adopts a very different
approach from those in Chapters 4.4.1, 4.4.2 and 4.4.3.

Holomorphic functions. A complex-valued function f : C! C is complex differentiable at z 2 C if

f 0(z) := lim
h2C
h!0

f (z+h)� f (z)
h

(4.38)

exists. When f 0(z) exists we will call it the complex derivative or derivative of f at z2C. Note that f 0(z) is
generally a complex number. If f is complex differentiable at every z2 Z✓C then f is called holomorphic
on Z. Complex differentiability in (4.38) is a much stronger notion than differentiability of real-valued
functions because h must approach 0 from all directions in the complex plane; see Chapter 20.1.9 for
details. The most important property of holomorphic functions is that they are (complex) analytic, i.e.,
they can be expressed as a power series. Specifically a complex-valued function f : Z!C on an open set
Z ✓ C is holomorphic on Z if and only if at every point z0 2 Z there is a neighborhood Bd (z0) := {z 2 Z :
|z� z0| < d} around z0 such that

f (z) =
•

Â
k=0

ak(z� z0)
k, z 2 Bd (z0) (4.39)

wher ak = f (k)(z0)
k! , i.e., f (z) can be expressed as a Taylor series on Bd (z0). The neighborhood Bd (z0) is

called the region of convergence for (4.39).

Power flow equations. Suppose the voltage phasor V0 at bus 0 and power injections s := (s j, j 2 N) at
buses j 6= 0 are given. Bus 0 is referred to as a slack bus where its voltage V0 is specified and its power
injection s0 is a variable. Our goal is to compute a solution V := (Vj, j 2 N) 2 C

N to the complex-form
power flow equations:

N

Â
k=0

YjkVk =
s̄ j

V̄j
, j 2 N (4.40)
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where Yjk are the jkth entries of the admittance matrix Y 2 C
(N+1)⇥(N+1) and for a 2 C, ā denotes its

complex conjugate. Here is a summary of the HELM procedure (see [20] for details).

Holomorphic embedding Introduce a new variable l 2C and embed (4.40) in C
N+1 so that the voltage

V := V (l ) := (Vj(l ), j 2 N) becomes a vector function of l , i.e., consider the polynomial equations

Yj0V0 +
N

Â
k=1

YjkVk(l ) =
l s̄ j

V̄j(l̄ )
, j 2 N (4.41)

Note that the denominator on the right-hand side is V̄j(l̄ ), not V̄j(l ), in order for Vj(l ) to be a holomorphic
function. Instead of solving (4.40) for V , HELM solves (4.41) rewritten as:

Yj0V0 +
N

Â
k=1

YjkVk(l ) =
l s̄ j

Ṽj(l )
, Ȳj0V̄0 +

N

Â
k=1

ȲjkṼk(l ) =
l s j

Vj(l )
, j 2 N (4.42a)

Ṽj(l ) = V̄j(l̄ ), j 2 N (4.42b)

for two sets of complex-valued functions (V (l ),Ṽ (l )) := (Vj(l ),Ṽj(l ), j 2 N).

At l = 0, (4.42a) reduces to

Yj0V0 +
N

Â
k=1

YjkVk(0) = 0, Ȳj0V̄0 +
N

Â
k=1

ȲjkṼk(0) = 0, j 2 N

Decomposing the admittance matrix Y =:

W00 WT

10
W10 W11

�
according to V0 and V := (Vj, j 2N) where W00 2C

and W11 2 C
N⇥N , the system of equations above becomes

W11V (0) = �V0W10, W̄11Ṽ (0) = �V̄0W̄10

where W̄11 and W̄10 are the componentwise complex conjugates of W11 and W10 respectively. If W11 is
nonsingular then the unique solution is

V (0) = �V0W�1
11 W10, Ṽ (0) = �V̄0W̄�1

11 W̄10 (4.43)

Note that the solution (V (0),Ṽ (0)) satisfies (4.42b) as well. This is the solution driven by the given voltage
source V0 at bus 0 and zero injections at other buses.

The solution to the original power flow equation (4.40) corresponds to a solution (V (l ),Ṽ (l )) of
(4.42) at l = 1. HELM uses a continuation method to compute this solution, starting from (V (0),Ṽ (0))
in (4.43).

Power series. To show that the functions (Vj(l ),Ṽj(l ), j 2 N) are holomorphic, Gröbner basis can be
used to express Ṽ1,(V2,Ṽ2), . . . ,(VN ,ṼN) in terms of V1 and reduce (4.42a) to a polynomial equation in V1:

P(V1) :=
M

Â
k=0

pk(l )V k
1 = 0 (4.44)
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The degree M of the polynomial in (4.44) is generally exponential in the number N of original variables.
This defines an algebraic curve which then implies that (Vj(l ),Ṽj(l ), j 2 N) are indeed holomorphic
functions everywhere except at a finite number of points.

Therefore, for each j 2N, we can write Vj(l ) and 1/Vj(l ) as power series in a neighborhood of l = 0,
from (4.39),

Vj(l ) =
•

Â
i=0

a jil i,
1

Vj(l )
=

•

Â
i=0

b jil i, j 2 N (4.45)

for some sequences (a ji, i� 0, j 2N) and (b ji, i� 0, j 2N). Hence 1/Ṽj(l ) =
�
1/Vj(lH)

�H
= Â•

i=0 b̄ jil i.
Substituting into (4.42) we have

Yj0V0 +
N

Â
k=1

Yjk

•

Â
i=0

akil i = l s̄ j

•

Â
i=0

b̄ jil i, j 2 N (4.46a)

or in vector form

V0W10 +
•

Â
i=0

(W11ai)l i =
•

Â
i=0

�
s̄� b̄i

�
l i+1 (4.46b)

where s := (s j, j 2 N) is the vector of injections at buses j 6= 0, and for i � 0, ai := (a ji, j 2 N) and
bi := (b ji, j 2 N) are N-dimensional column vectors of coefficients. For two vectors x and y, x� y is
the column vector of componentwise products, i.e., (x� y) j := x jy j. We can compute these coefficients
(ai,bi, i� 0) iteratively from (4.46), as follows. Setting l := 0, (4.46) yields, when W11 is nonsingular,

V0W10 + W11a0 = 0, =) a0 = �V0W�1
11 W10 (4.47a)

Differentiating successively (4.46b) with respect to l and setting l := 0 yields

W11a1 = s̄� b̄0, · · · , W11ai = s̄� b̄i�1, · · · , (4.47b)

Since Vj(l )
�
1/Vj(l )

�
= 1 for all l , we have 1 =

�
Â•

i=0 a jil i��Â•
i=0 b jil i� for all l for j 2N, or in vector

form

1N =

 
•

Â
i=0

ail i

!
�
 

•

Â
i=0

bil i

!

where 1N is the column vector of all 1s of size N. Hence

1N = a0�b0 + (a0�b1 +a1�b0)l + (a0�b2 +a1�b1 +a2�b0)l 2 + · · ·

= Â
i�0

 
i

Â
k=0

ak�bi�k

!
l i, 8l (4.47c)

Since (4.47c) holds for all l , the coefficients of l i must be equal on both sides for all i� 0. From (4.47) we
can obtain (ai,bi, i� 0) iteratively: a0 from (4.47a) and then b0 from (4.47c) by equating the coefficients
of l 0:

a0 = �V0W�1
11 W10, b0 = 1N↵a0 (4.48a)



186 Draft: PSA December 13, 2024

where, for two vectors x and y, x↵ y is the column vector of componentwise division, i.e., (x↵ y) j :=
x j/y j. For i � 1, we have from (4.47b) and (4.47b) by equating the coefficients of l i, assuming W11 is
nonsingular,

ai = W�1
11
�
s̄� b̄i�1

�
, bi = �

 
i

Â
k=1

ak�bi�k

!
↵a0, i� 1 (4.48b)

With the coefficients (ai, i� 0) = (a ji, j 2 N, i� 0) from (4.48), the solution Vj(l ) is given by (4.45) as a
power series in l . In practice only an approximation V̂j(l ) := ÂK

i=0 a jil i of Vj(l ) with a finite number of
terms is computed.

Analytic continuation. We are interested in V (l ) := (Vj(l ), j 2 N) at l = 1. Even though, for l 2
Bd (0) in the region of convergence around l = 0,

Vj(l ) =
•

Â
i=0

a jil i, j 2 N

and we have the coefficients (ai, i � 0) = (a ji, j 2 N, i � 0) from (4.48), the radius d of convergence is
typically much smaller than 1 so we may not be able to simply substitute l = 1 into the power series as the
infinite sum may not converge. To deal with this, Padé approximation is used to approximate the power
series. Padé approximation approximates a power series by a rational function and typically has much
better convergence properties than a power series (Taylor series). The power solution Vj(l ) is computed
as the analytic continuation of the Padé approximation, starting from Vj(0) in (4.43). See [20] for details.

Example 4.8 (Two-bus system [20]).

4.5 Properties of power flow solutions

Example 4.9 (Two-bus network). Consider two buses 1 and 2 connected by a line with admittance y =
g + ib with g > 0,b < 0. Assume zero charging admittances, and we ignore reactive powers. Assume
V1 := 1\0� and V2 = eiq , i.e., voltage magnitudes are fixed at 1 pu. Then the real power injections (p1, p2)
depend on q according to the power flow equations in polar form are:

p1 := p1(q) := g � gcosq � bsinq (4.49a)
p2 := p2(q) := g � gcosq + bsinq (4.49b)

or in vector form

P�g1 = A


cosq
sinq

�
(4.50)

where 1 := [1 1]T and A is an invertible (indeed negative definite) matrix:

A :=

�g �b
�g b

�

Show that, as q ranges from 0 to 2p , (p1(q), p2(q)) traces out an ellipse.
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4.6 Linear power flow model

4.6.1 Laplacian matrix L

In this section we collect some basic properties of graph Laplacian matrix L that are useful in the analysis
of linearized models such as the DC power flow model (4.55). In this section, L is taken to be a real
symmetric matrix with zero row and column sums. It is the admittance matrix of the linearized power
flow models. These properties are extensively used in, e.g., electricity market (Chapter 8.4), voltage
control (Chapter 6.1), topology identification (Chapter 6.2), cascading failure, and other power system
applications where a linearized model is applicable.

Consider a graph G := (N,E) where N := {1, . . . ,n} is a set of n nodes and E ✓ N⇥N is a set of
m := |E| lines. For an undirected graph we refer to its line by ( j,k) 2 E or j⇠ k 2 E. We assume there are
no self-loops, i.e., ( j, j) 62 E for any j 2 N. We sometimes endow the graph with an arbitrary orientation
in which case we refer to a line in E by ( j,k), j ⇠ k, or j ! k interchangeably. With respect to this
graph orientation, let C 2 {�1,0,1}n⇥m denote the node-by-line incidence matrix defined in (4.11) and
reproduced here:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

Unless otherwise specified we usually assume G is connected.

Associated with each line l := ( j,k) 2 E is a parameter bl and let B := diag(bl, l 2 E). A key property
we assume is that bl > 0 for all l 2 E, so B is positive definite and invertible. The Laplacian matrix L
associated with G is defined to be

L := CBCT (4.51a)

Since the Laplacian matrix L is symmetric it is often simpler to treat G as an undirected graph when
working with L. The entries of L are given by (Exercise 4.17):

L jk :=

8
<

:

�b jk ( j,k) 2 E
Âi:i⇠ j bi j j = k
0 otherwise

(4.51b)

The defining properties of the Laplacian matrix L are:

• It is real symmetric. For notational convenience we define, for each ( j,k) 2 E, both b jk and bk j with
b jk = bk j.

• All row sums, and column sums, are zero.

• bl > 0 for all l 2 E.

For the DC power flow model studied in Chapter 4.6.2, row/column sums are zero because the shunt
admittances (ỹm

jk, ỹ
m
k j) are assumed zero, and b jk > 0 becasuse b jk := �b̃s

jk|Vj||Vk| where b̃s
jk < 0 are the

series line susceptances and |Vj| are given voltage magnitudes.
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This leads to the following important property from which many other properties of L follow.

Lemma 4.12. For all x 2 R
n we have xTLx = Â( j,k)2E b jk(x j� xk)

2 � 0.

Proof. We have from (4.51)

xTLx = Â
j
Â
k

L jkx jxk = Â
j

x j

 

Â
i:i⇠ j

bi jx j + Â
k: j⇠k
�b jkxk

!
= Â

(i, j)2E
bi j
�
x2

i �2xix j + x2
j
�

= Â
(i, j)2E

bi j (xi� x j)
2

where the third equality follows because we have defined both b jk = bk j for each ( j,k) 2 E.

An immediate consequence of the lemma is a set of useful properties in Theorem 4.13. Before pre-
senting them we review the concept of pseudo-inverse (see Appendix 20.1.7 for more details).

Spectral decomposition and pseudo-inverse. An arbitrary complex matrix A 2 C
n⇥n has a singular

value decomposition

A = V SWH

where S = diag(s j, j = 1, . . . ,n) is a diagonal matrix of singular values s j � 0, and V and W are unitary
matrices whose columns are orthonormal sets of eigenvectors of AAH and AHA respectively (Theorem
20.11 in Appendix 20.1.6.1). The pseudo-inverse of A is defined to be

A† := WS†VH

where S† is a diagonal matrix obtained by replacing the positive s j by 1/s j in S. The main properties of
pseudo-inverse are summarized in Theorem 20.19 and Corollary 20.20 in Appendix 20.1.7.

If A 2 C
n⇥n is a normal matrix then it has a spectral decomposition

A = ULUH = Â
j

l ju juHj

where li 2 C are complex eigenvalues of A and the columns (u j, j = 1, . . . ,n) of the unitary matrix U are
an orthonormal basis of Cn (Theorem 20.15 of Appendix 20.1.6.2). If A 2 C

n⇥n is positive semidefinite
(necessarily Hermitian), then the eigenvalues l j � 0 are real and nonnegative. Moreover Theorem 20.16
shows that the singular value decomposition coincides with the spectral decomposition of A, i.e., A =
V SWH =ULUH and s j = l j � 0. If A2Rn⇥n is a real positive semidefinite matrix (necessarily symmetric
by definition), then U can be taken as a real and orthogonal matrix. In this case

A† = UL†UT = Â
j:l j>0

1
l j

u juTj
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where L† is a diagonal matrix obtained by replacing the positive l j by 1/l j in L. Let rank A = n� k and

0 = l1 = · · · = lk < lk+1  · · · ln

Then

A = ULUT = Â
j>k

l ju juTj , A† = UL†UT = Â
j>k

1
l j

u juTj (4.52)

Theorem 4.13 (Laplacian matrix L). Suppose the graph G = (N,E) consists of K � 1 connected compo-
nents. Consider its Laplacian matrix L defined in (4.51).

1. L is positive semideifinite.

2. L is of rank n�K with the null space of L spanned by vectors that have x j = xk for all buses j,k in
the same connected component. In particular if G is connected (K = 1) then L is of rank n�1 with
span(1) as its null space.

3. Suppose the graph G is connected, i.e., K = 1. Then

• The pseudo-inverse L† of L is given by

L† =

✓
L+

1
n

11T
◆�1

� 1
n

11T =
N

Â
j=2

1
l j

v jvTj (4.53)

where 0 = l1 < l2  · · · ln are the eigenvalues of L and v j are the corresponding eigenvec-
tors.

• Both L and L† are symmetric and have zero row (and hence column) sums.

• We have

LL† = L†L = In �
1
n

11T

where In is the identity matrix of size n. Hence for all x 2 R
n with 1Tx = 0, we have L†Lx = x

and LL†x = x.

4. Suppose the graph G is connected, i.e., K = 1. Then

• Any k⇥ k principal submatrix M of L is positive definite and hence invertible, k  n�1.

• Moreover both M and its inverse M�1 are symmetric.

Proof. 1. Lemma 4.12 implies that L is positive semidefinite since bl > 0 for all l 2 E.

2. First we claim that v is in the null space of L if and only if vTLv = 0. To see the sufficiency, we
have from (4.52) that vTLv = Â j l j(uTj v)2. Hence vTLv = 0 implies that uTj v = 0 for all j such that
l j > 0, i.e., v 2 null(L) since (u j,8 j) forms a basis of Rn. Suppose v 2 null(L). Lemma 4.12 then
implies that vi = v j for all buses i, j in the same connected component. If Nk ✓ N, k = 1, . . . ,K, are
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connected components of the graph G, then an orthonormal basis of the null space consists of K
orthogonal vectors vk whose entries are:

vk
i :=

1(i 2 Nk)p
|Nk|

, i = 1, . . . ,n, k = 1, . . . ,K

where 1(·) is the indicator function. Hence the null space of L has a dimension of K. Since
dim(null(L)) + rank(L) = n, rank(L) = n�K.

3. Suppose now K = 1. By definition, L is symmetric and has zero row sums. That L† = Â j�2(1/l j)v jvTj
follows directly from (4.52). The formula (4.53) for L† is proved in Exercise 4.18. The formula im-
plies that L† is also symmetric. Its row sum is

L†1 =

 ✓
L+

1
n

11T
◆�1
� 1

n
11T
!

1 =

✓
L+

1
n

11T
◆�1

1 � 1

To show that this is zero multiply both sides by L+ 1
n11T to get:

✓
L+

1
n

11T
◆

L†1 = 1 �
✓

L+
1
n

11T
◆

1 = 1 � 1 = 0

Since L+ 1
n11T is nonsingular, L†1 must be a zero vector, i.e., row sums of L† are all zero.

Finally, since v j are orthonormal eigenvectors of L, we have from (4.53)

LL† = L Â
j�2

1
l j

v jvTj = Â
j�2

v jvTj = In�
1
n

11T

where the last equality follows because Â j�1 v jvTj = In and v1 = 1/
p

n. Similarly

L†L =

 

Â
j�2

1
l j

v jvTj

!
L = Â

j�2
v jvTj = In�

1
n

11T

4. Consider a k⇥ k principal submatrix M of L with k  n�1. Without loss of generality we assume
M consists of the first k rows and columns of L. As in Lemma 4.12 we have for any nonzero x 2 R

k

xTMx =
k

Â
i=1

k

Â
j=1

Li jxix j =
k

Â
i=1

Liix2
i + Â

ik
Â
jk
i 6= j

Li jxix j

= Â
ik

0

B@Â
j0k
i⇠ j0

bi j0 + Â
j0>k
i⇠ j0

bi j0

1

CAx2
i + Â

ik
Â
jk
i⇠ j

�bi jxix j

= Â
(i, j)2E
i, jk

bi j
�
x2

i �2xix j + x2
j
�

+ Â
ik

Â
j0>k
i⇠ j0

bi j0x2
i

= Â
(i, j)2E
i, jk

bi j (xi� x j)
2 + Â

ik
Â
j0>k
i⇠ j0

bi j0x2
i > 0 (4.54)
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where the second to last equality follows because bi j = b ji and the inequality follows because G is
connected, k < n, and x 6= 0. Hence M is positive definite and hence invertible.

Since L is symmetric, so is the k⇥k principal submatrix M. The inverse of any symmetric nonsingu-
lar matrix is symmetric. To see this, first note that if M is a nonsingular square matrix and MM̂ = I,
then M̂ is unique because the jth column M̂j of M̂ is uniquely determined by MM̂j = e j. Since the
inverse of M satisfies MM̂ = I, M̂ must be the inverse. If M is symmetric then MM̂T = (M̂MT)T =
(M̂M)T = I where the last equality follows because M̂ is an inverse of M. This means that M̂T is
also an inverse of M and hence M̂T = M̂, i.e., the inverse of M is symmetric.

Hence a strict principal submatrix M of L is always positive definite and invertible, but it is not nec-
essarily strictly diagonally dominant (only diagonally dominant) even though b jk > 0 for all ( j,k) 2 E
because strict diagonal dominance requires Â j 6=i |Mi j| < |Mii| for all rows i. The theorem is illustrated in
Exercise 4.19.

Remark 4.9 (Comparison with complex symmetric admittance matrix). To summarize:

1. For a complex symmetric admittance matrix Y , a strict principal submatrix Y22 is not always nonsin-
gular. Theorems 4.5 and 4.6 provide sufficient conditions (Re(Y22) � 0 or Im(Y22) � 0) for a strict
principal submatrix Y22 to be nonsingular.

2. For a complex symmetric admittance matrix Y for a connected radial network, a principal submatrix
Ŷ corresponding to removing any leaf node is always nonsingular and Ŷ�1 has a simple structure,
according to Theorem 4.10. By induction, this holds for any strict principal submatrix Y22 if the
reduced network graph remains a (connected) tree.

3. For a real symmetric Laplacian matrix L with zero row and column sums, any strict principal
submatrix M is nonsingular, according to Theorem 4.13. This is because all off-diagonal entries
L jk = �b jk, j 6= k, are nonzero and of the same sign, resulting in a positive definite M (when
b jk > 0). Otherwise, it is possible for a real symmetric matrix Y with zero row sums whose off-
diagonal entries Yjk may be of different signs to have a rank strictly less than n� 1 (see Exercise
4.2).

Indeed one can interpret Corollary 4.8 as an extension of the result here to a complex symmetric
admittance matrix. Corollary 4.8 shows that, for a complex symmetric admittance matrix Y with zero row
and column sums, if gs

jk > 0 for all ( j,k) 2 E or if bs
jk < 0 for all ( j,k) 2 E, then indeed Re(Y22) � 0

or Im(Y22) � 0 respectively, and therefore Y22 is nonsingular. The proof that Re(Y22) � 0 or Im(Y22) � 0
is essentially the same as that for Theorem 4.13 for a real Laplacian matrix (compare (4.54) and (4.19)).
In this sense we can regard the conditions Re(Y22) � 0 or Im(Y22) � 0 in Theorems 4.5 and 4.6 as the
generalization of sign definiteness of off-diagonal entries Yjk for a complex symmetric admittance matrix
Y .
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4.6.2 DC power flow model

We again model a power network by a connected graph G = (N,E) of N + 1 nodes and M lines, where
N := {0}[N, N := {1,2, . . . ,N} and E ✓N⇥N. Each line ( j,k)2 E is characterized by series admittance
and shunt admittances (ỹs

jk, ỹ
m
jk) and (ỹs

k j, ỹ
m
k j). In this section we assume ỹs

jk = ỹs
k j (assumption C4.1) and

ỹm
jk = ỹm

k j = 0. A popular linearized model, called the DC power flow model, makes the following additional
assumptions:

• Line losses are negligible, i.e., the series conductances g̃s
jk⇡ 0, so ỹs

jk⇡ ib̃s
jk. The series susceptances

b̃s
jk < 0.

• Voltage angle differences are small across each line, i.e., sin(q j�qk)⇡ q j�qk for all lines ( j,k)2E.

• Voltage magnitudes |Vj| are given and fixed for all buses j 2 N.

• Ignore reactive power, so the variables in the DC power flow model are (p j,q j, j 2 N).

The DC power flow model is widely used in the industry, e.g., in economic dispatch of generators. The
assumptions are reasonable for many problems in transmission networks where the voltage magnitudes
are high and real power losses are small. The last two assumption in the model are justified because
on transmission networks where loss is low, there is decoupling between voltage angle q j and reactive
power qk and between voltage magnitude |Vj| and real power pk; see Chapter 4.4.3. Hence it is implicitly
assumed that reactive power injections qk can be chosen to stabilize the voltage magnitudes |Vj| separately
from the determination of (p j,q j, j 2 N). These assumptions are not suitable for distribution systems
where voltages are much lower, the ratio of line resistance to reactance is high, and reactive power is often
used to stabilize voltages. The linear branch flow model of Chapter 5.4 is more suitable for distribution
systems.

Under these assumptions, the DC power flow model is defined by (substituting g̃ jk = 0, ỹm
jk = ỹm

k j = 0
and replace sinq jk with q j�qk in (4.27a)):

p j = Â
k: j⇠k

(�b̃s
jk|Vj||Vk|)(q j�qk) =: Â

k: j⇠k
bl(q j�qk) j 2 N (4.55a)

where bl :=�b̃s
jk|Vj||Vk| > 0 where |Vj|, |Vk| are given voltage magnitudes. Clearly Â j p j = Â j Âk bl(q j�

qk) = 0. This is a consequence of the lossless assumption g̃s
jk = 0 and ỹm

jk = ỹm
k j = 0.7

We can write the DC model (4.55a) in vector form, as follows. Let B = diag(bl, l 2 E) � 0 be the
(weighted) susceptance matrix. Let p := (p j, j 2 N) be the power injections at buses in N. Let q :=
(q j, j 2 N) be the voltage phase angles at these buses. Let P := (Pl, l 2 E) be the real power flows on line
l. The DC power flow model is specified by the following equations in (p,P,q):

p = CP, P = BCTq (4.55b)

7For the special case of the flat voltage profile Vj = V flat for all j 2 N where V flat is a common nominal voltage, e.g.,
V flat = 1\0�, (4.55a) is also the linearization of the polar form power flow equation (4.27a) around the flat voltage profile and
the resulting injections (pflat,qflat) = (0,0); see Exercise 6.5.
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Eliminate P to relate voltage angles q directly to injections p:

p = CBCTq =: Lq

where the (N + 1)⇥ (N + 1) matrix L := CBCT is the Laplacian matrix of the graph G. This is (4.55a).
When G is connected, L has rank N and the null space is span(1) (Theorem 4.13). Hence, given an injection
vector p that is orthogonal to span(1), i.e., power is balanced over the network 1Tp = Â j2N p j = 0, the
DC power flow equation (4.55b) has a subspace of solutions (P,q) given by:

P = BCTL† p, q = L† p + a1, a 2 R (4.55c)

For example we can choose a so that q0 = 0 at bus 0. It is important that the line flows P are unique
regardless of the choice of q because CT1 = 0. The models (4.55a), (4.55b) and (4.55c) are equivalent
models.

There is yet another way to specify the DC power flow model. Let Ĉ denote the N ⇥M reduced
incidence matrix obtained from C by removing the row corresponding to the reference bus 0. Let L̂ :=
ĈBĈT be the reduced Laplacian matrix. Hence L̂ can be obtained from L by removing its row and column
corresponding to bus 0. Then L̂ is of rank N and invertible according to Theorem 4.13. Let p̂ := (p j, j 2N)
and q̂ := (q j, j 2 N) be the power injections and voltage angels at non-reference buses. Then, given any
p̂, the solution of (4.55b) can also be expressed in terms of L̂�1 and (p̂, q̂) at non-reference buses as:

P = BĈTL̂�1 p̂, q̂ = L̂�1 p̂ (4.55d)

This solution is unique and assumes that bus 0 is the angle reference bus, i.e., q0 := 0. It is a special case of
the solution (4.55c) in terms of the pseudo-inverse L† with a chosen so that q0 = 0. The solution (4.55c) is
therefore more flexible since it works for any reference bus whereas L̂ in (4.55d) generally changes when
a different bus is chosen as a reference. We will mostly use L† in our analysis. The next result formally
states this relation; in particular, it shows that the line flow P is independent of the choice of the angle
reference bus or L̂.

Lemma 4.14. Consider the DC power flow model (4.55). For any injections p with 1Tp = 0 we have

P = BĈTL̂�1 p̂ = BCTL† p, q̂ = L̂�1 p̂ (4.56)

when q0 := 0. This implies CTL† p = ĈTL̂�1 p̂ and CTL†C = ĈTL̂�1Ĉ.

Proof. Write

C =


cT0
Ĉ

�
, p =


p0
p̂

�
, q =


q0
q̂

�

where cT0 is the first row of C corresponding to bus 0. Then

L =


cT0 Bc0 cT0 BĈT

ĈBc0 L̂

�
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with L̂ = ĈBĈT and the power flow equations (4.55b) become:

p0 = c0BcT0 q0 + c0BCTq̂ , p̂ = ĈBcT0 q0 + L̂ q̂ (4.57a)

P = B
⇥
cT0 ĈT

⇤q0
q̂

�
= BcT0 q0 + BĈTq̂ (4.57b)

The power flow solution (4.56) corresponds to choosing a in (4.55c) so that q0 = 0 (P = BCTL† p is
independent of the choice of a because L†1 = 0). Hence (4.57) implies P = BCTL† p = BĈTL̂�1 p.

Finally equating P in (4.55) and (4.57) gives B�1P = CTL† p = ĈTL̂�1 p̂ for any p with 1Tp = 0.
Substituting p := Cj and p̂ := Ĉ j to be the jth columns of C and Ĉ respectively (which satisfies 1Tp = 0),
we have CTL†Cj = ĈTL̂�1Ĉ j. Since this holds for all j we have CTL†C = ĈTL̂�1Ĉ. This completes the
proof.

The quantities in the lemma are illustrated in Exercise 4.20. The lemma is generalized in Chapter
8.4.3.4 to the case where there can be a reference bus for angle and a different reference (slack) bus for
pricing electricity (both are taken to be bus 0 here). It is shown in Theorem 8.3 that the line flows P, and
the optimal dispatch and LMP (p⇤,l ⇤) are independent of the choices of reference buses.

Remark 4.10 (Loop flow and uniqueness of P). We call a line flow vector P a loop flow if it satisfies
power balance with zero injections, i.e., CP = 0. Hence Ps is a loop flow if and only if it is in the null
space of C. Given any balanced injection vector p with Â j p j = 0, the line flows P that satisfy p = CP
are not unique. If P satisfies p = CP, so does P + Ps for any loop flow Ps . The DC power flow model
(4.55b) requires both p = CP and P = BCTq . The second equation ensures that loop flow Ps = 0 and the
line flows P in a DC power flow solution are unique. To see this, suppose both (P,q) and (P+Ps , q̃) are
power flow solutions, i.e., they satisfy

p = CP, P = BCTq
p = C(P+Ps ), P+Ps = BCTq̃

This implies CPs = 0 and B�1Ps = CT(q̃ �q) and hence Ps and B�1Ps are in orthogonal subspaces, i.e.,
PT

s
�
B�1Ps

�
= 0 yielding Ps = 0 since B is positive definite.

Power loss. The DC power flow model assumes zero real power loss. It is possible to augment the basic
equation (4.55) by adding a loss term, as the next example shows.

Example 4.10 (Loss in linear mdoel). Suppose ỹs
jk = ỹs

k j for all lines ( j,k) 2 E (assumption C4.1) and
ỹm

jk = ỹm
k j = 0. Write Vj := |Vj|eiq j and ỹs

jk =: g̃s
jk + ib̃s

jk. Then the total real power loss over a network is
given by (Exercise 4.12):

c(q) := Â
j2N

p j = Â
j!k2E

g̃s
jk
��Vj�Vk

��2 = Â
j!k2E

g̃s
jk
�
|Vj|2 + |Vk|2�2|Vj||Vk|cosq jk

�

where q jk := q j�qk. As in the DC power flow model (4.55) we assume here voltage magnitudes |Vj| are
fixed and the total loss c is a function of the voltage angles q .
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Recall the flat voltage profile where V flat
j = µeiq flat

for all j 2 N, so that the resulting power injection
is
�

pflat,qflat�= (0,0). To compute the Taylor expansion of c(q) around the flat voltage profile we have:

c(q flat) = 0
∂c
∂qi

(q flat) = Â
i!k2E

2µ2g̃s
ik sinq flat

ik + Â
j!i2E

�2µ2g̃s
ji sinq flat

ji = 0

∂ 2c
∂qi∂q j

(q flat) =

8
>><

>>:

�2µ2g̃s
i j cosq flat

i j = �2µ2g̃s
i j if i! j 2 E

�2µ2g̃s
ji cosq flat

ji = �2µ2g̃s
ji if j! i 2 E

Âk:(i,k) or (k,i)2E 2µ2g̃s
ik if i = j

0 otherwise

Hence the second derivative ∂ 2c
∂q 2 is a real symmetric Laplacian matrix with zero row and column sums,

and is therefore positive semidefinite. Let gl := 2µ2g̃s
l for l 2 E and G := diag(gl, l 2 E). Define

Lloss :=
∂ 2c
∂q 2 (q flat) = CGCT (4.58a)

where C is the incidence matrix of the network graph. Then a loss term can be taken as the second-
order Taylor expansion of c(q) around the flat voltage profile (the perturbation variable q now denotes the
deviations from q flat):

ĉ(q) = c(q flat) +
∂c
∂q

(q flat)q +
1
2

qTLlossq =
1
2

qTLlossq (4.58b)

Since the matrix Lloss in (4.58a) is positive semidefinite the loss ĉ(q) is a convex quadratic function of q .

4.6.3 Distribution factors

4.7 Bibliographical notes

The description of LU decomposition to solve I = YV and algorithms to compute power flow solutions are
adapted from [1]. For properties of complex symmetric matrices such as the admittance matrix Y , see [39,
Chapter 4.4]. For invertibility of Y , the first part of Theorem 4.2 is from [25, Lemma 1] though we have
used properties of Schur complement to simplify its proof. See also [13, ?].

The DC power flow model has been widely used in applications, e.g., for formulating DC OPF [40, 41].

The use of Newton-Raphson algorithm for solving power flow problems is first proposed in [42]. An
implementation at BPA is reported in [43] with major improvements, especially a heuristic to optimize
the order of Gaussian elimination of the Jacobian matrix in solving J(x(t))Dx(t) =� f (x(t). A method is
introduced in [44] that computes a new voltage solution V 0 = V +Âl i jlkl(e jl � ekl) to I = Y 0V 0 in terms of
the old voltage solution V to I = YV when the admittance matrix changes from Y to Y 0 (line changes). The
quantities i jlkl are called compensation currents and are computed from using the old admittance matrix
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Y . This method, well explained in [45], has the advantage of not having to factorize new matrix Y 0 into
its LU decomposition when relatively few number of lines are changed. The Fast Decoupled algorithm is
proposed in [40].

4.8 Problems

Chapter 4.2

Exercise 4.1 (Ideal transformer and transmission line). Consider the cascade in the one-line diagram of
Figure 4.13(a) of an ideal transformer with voltage gain n and a transmission line modeled by a series
admittance y (and zero shunt admittances). Show that its external behavior is equivalent to that of the P

V1 V2

1 : n

y

nV1

aI1 I2I1

(a) One-line diagram

V1

I1

V2

I2
ny

n(n−1)y (1−n)y

(b) Equivalent P circuit model

Figure 4.13: An ideal transformer with turns ratio a = n�1 followed by a transmission line modeled by a
series admittance y.

circuit model in Figure 4.13(b).

Exercise 4.2 (Real Laplacian matrix). Suppose the n⇥n admittance matrix Y of a connected graph is real
symmetric with zero row sums (e.g., Y is the admittance matrix of a DC network), i.e., Yjk = Yk j for all
j 6= k and Yj j =�Âk: j 6=k Yjk for all j.

1. If Yjk have the same sign for all ( j,k) 2 E, show that rank Y = n� 1 and hence Y is not invertible
and null(Y ) = span(1).

2. If Yjk have the same sign for all ( j,k) 2 E, show that the (n�1)⇥ (n�1) matrix Y 0 obtained from
Y by removing the jth row and column, for any j, has rank n�1 and is hence invertible.

3. If Yjk may have different signs for ( j,k) 2 E, give a counterexample to part 1.

Exercise 4.3 (Unitary diagonalizability of Y ). Suppose condition C4.1 holds. Let the bus admittance
matrix Y := G+ iB where G and B are real matrices (whose rows may not sum to zero).

1. Show that Y is normal (i.e., YY H = Y HY ) and hence unitarily diagonalizable if and only if G and B
commute, or if and only if BG is symmetric.
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2. Suppose all lines have the same RX ratio, i.e., for some real a , bs
jk = ags

jk for all ( j,k) 2 E and
bm

j j = agm
j j for all j 2 N (or all shunt elements are zero). Show that Y is normal. (Hint: Use part 1.)

Exercise 4.4 (Inverse of Y ). Consider a complex matrix A =: G+ iB where G,B 2 R
n⇥n. Show that, even

if both G and B are singular, its inverse A�1 =: R+ iX may exist though not given by the formulae (4.13b)
or (4.14b). This is the case even if G and B are symmetric.

Exercise 4.5 (Invertibility of Y ). Prove part 2 of Theorem 4.2.

Exercise 4.6 (Invertibility of Y , [25]). This is an alternative proof from [25, Lemma 1] of (part of) Theorem
4.2: a complex symmetric matrix Y is nonsingular if Re(Y ) � 0 or if Im(Y ) � 0. Prove the claim by
showing that there exists no nonzero vector a such that Y a = 0.

Exercise 4.7 (Invert Y using matrix inversion lemma). Recall that, under condition C4.1, the admittance
matrix Y can be written in terms of the incidence matrix C as (from (4.12)):

Y = C Ds
yC

T + Dm
y

where Ds
y := diag

�
ys

l , l 2 E
�

and Dm
y := diag

⇣
ym

j j, j 2 N
⌘

. Suppose ys
l 6= 0 for all l and ym

j j 6= 0 for all j so
that the diagonal matrices Y s and Y m are invertible.

1. Show that Y is invertible if and only if the M⇥M matrix

Ê :=
�
Ds

y
��1

+CT
�
Dm

y
��1C

is invertible.

2. If Y is invertible then

Y�1 =
�
Dm

y
��1 � (Dm)�1

⇣
C
�
Ê
��1CT

⌘�
Dm

y
��1

(Hint: For part 1 use the property that a matrix is nonsingular if and only if a principal submatrix and its
Schur complement are both nonsingular, according to Theorem 20.4 in Appendix 20.1.3. For part 2 use
the matrix inversion lemma in Appendix 20.1.3.2.)

Exercise 4.8 (Invertibility of complex symmetric vs psd matrices). Let A 2 C
n⇥n.

1. Prove that A is invertible if vHAv 6= 0 for all nonzero v 2 C
n.
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2. Show that the converse is not true by providing a counterexample A that is Hermitian (including
real symmetric) and a counterexample A that is complex symmetric. (Hint: Consider 2⇥2 diagonal
matrices.)

3. Suppose A is (Hermitian and) positive semidefinite. Then the following are equivalent:

• A is invertible

• vHAv 6= 0 for all nonzero v 2 C
n.

• A is positive definite.

4. Why Lemma 4.12 applies to real Laplacian matrices but not complex Laplacian matrices?

Exercise 4.9 (Alternative proof of Theorem 4.3). Consider the complex symmetric admittance matrix
Y 2C(N+1)⇥(N+1). Let l be an eigenvalue of Y and a 2CN+1 a corresponding eigenvector. Then aHY a =
l ||a||2 where || · || denotes the Euclidean norm. A sufficient (but not necessary) condition for Y to be
invertible is that aHY a 6= 0 for all nonzero vectors a 2 C

N+1. Let ys
jk =: gs

jk + ibs
jk, ym

j j =: gm
j j + ibm

j j.

1. Suppose condition C4.1 holds. Show that

aHY a =

0

@ Â
( j,k)2E

gs
jk
��a j�ak

��2 + Â
j2N

gm
j j |a j|2

1

A+ i

0

@ Â
( j,k)2E

bs
jk
��a j�ak

��2 + Â
j2N

bm
j j |a j|2

1

A

2. Show that the conditions in Theorem 4.3 imply that aHY a > 0 for all nonzero vectors a 2 C
N+1.

Exercise 4.10 (Kron reduction). Suppose condition C4.1 holds so that an admittance matrix Y is complex
symmetric. Consider its Kron-reduction Y/Y22 (assume Y22 is invertible):

Y =:

Y11 Y12
YT

12 Y22

�
, Y/Y22 := Y11 � Y12Y�1

22 YT

12

1. Show that Y�1
22 and Y/Y22 are symmetric.

2. Show that if Y has zero row (and hence column) sums, i.e., ym
jk = ym

k j = 0 for ( j,k) 2 E, so does
Y/Y22.

3. Show that the converse does not necessarily hold. (Hint: Consider Example 4.5.)

Exercise 4.11 (Radial Network: inverses of Ĉ and Ŷ ). Prove Theorem 4.10. (Hint: Let B be the matrix
defined in (4.23) and verify directly that ĈB equals the identity matrix. Use part 1 to derive Ẑ jk.)
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Chapter 4.3

Exercise 4.12 (Real power loss). Let (p j, j 2 N) denote the real nodal power injections. For each line
( j,k) 2 E, let its series and shunt admittances be ys

jk = gs
jk + ibs

jk and ym
jk = gm

jk + ibm
jk, and similarly

for (ys
k j,y

m
k j). Define the total real power loss over the network, as a function of V : injection L1(V ) :=

Â j p j(V ). Suppose ys
jk = ys

k j for all ( j,k) 2 E (assumption C4.1).

1. Show that

L1(V ) = Â
( j,k)2E

⇣
gs

jk
��Vj�Vk

��2 + gm
jk
��Vj
��2 + gm

k j |Vk|2
⌘

If C4.1 does not hold, why will the loss depend also on series subsceptances (bs
jk,b

s
k j)?

2. A popular concept is the thermal loss on transmission or distribution lines. Define the total thermal
loss as:

L2(V ) := Â
( j,k)2E

rs
jk |I jk(V )|2

where zs
jk = rs

jk + ixs
jk := 1/ys

jk and I jk(V ) is the sending-end current on line ( j,k) from j to k. Show
that L1(V ) reduces to L2(V ) when gm

jk = gm
k j = 0.

Chapter 4.4

Exercise 4.13 (Gauss algorithm). Consider solving for the roots of

g(x) = ax2� x (4.59)

i.e., finding x such that g(x) = 0. An x is a root of g if and only if it is a fixed point of f (x) := ax2, i.e., if
and only if x = f (x). The Gauss algorithm computes a fixed point of f (x) by performing the fixed-point
iteration:

x(t +1) := f (x(t)) (4.60)

Let X ✓ R be closed and convex and suppose f maps X into X . We say f is a contraction mapping on X
if there exists an a 2 [0,1) such that

| f (y)� f (x)|  a |y� x|, for all x,y 2 X (4.61)

If f is a contraction mapping on X then there is a unique fixed point x⇤ 2 X and the fixed-point iteration
(4.60) always converges to x⇤, starting from any initial point x(0) 2 X .

1. What are the roots of g in (4.59)?
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2. Whenever |a| < 1, f maps X := [�1,1] into X . Show that f is a contraction mapping on X if and
only if |a| < 1/2. In that case, what is the root of g that (4.60) computes?

3. Show that (4.60) converges to x⇤ = 0 if and only if x(0) satisfies |ax(0)| < 1, in which case the
convergence is quadratic (i.e., the error ratio |x(t +1)|/|x2(t +1)| = |a| a constant).

4. Use part 3 to argue that f being a contraction mapping is not necessary for the Gauss algorithm
(4.60) to compute a root of g? What is the advantage, if any, if f is indeed a contraction mapping?

Exercise 4.14 (Newton algorithm). The Newton algorithm solves iteratively for x 2Rn such that g(x) = 0
where g : Rn! R

n. In each iteration, it approximates g by its linearization at the current iterate x(t) and
moves to x(t + 1) where the linearization vanishes. Show that if g is linear, g(x) = Ax + b where A is
invertible, then the Newton algorithm solves g(x) = 0 in one step wherever it starts.

Exercise 4.15 (Kantorovich Theorem). The Newton algorithm converges if the initial point is close to a
solution. This is made precise by the Kantorovich Theorem. Consider g : D! R

n where D ✓ R
n is an

open convex set. Suppose g is differentiable on D and —g is Lipschitz on D, i.e., there is an L such that

k—g(y)�—g(x)k  Lky� xk, for all x,y 2 D

where [—g(x)]i j := ∂gi
∂x j

(x). Suppose x0 2 D and that —g(x0) is invertible. Let

b �
���(—g(x0))

�1
��� , h �

���(—g(x0))
�1 g(x0)

���

h := bhL, r :=
1�
p

1�2h
h

h

The Kantorovich Theorem says that if the closed ball Br (x0)✓ D and h 1/2 then the Newton iteration

x(t +1) := x(t) � (—g(x(t)))�1 g(x(t))

converges to a solution x⇤ of g(x) = 0 in the closed ball Br (x0).

1. Apply the Kantorovich Theorem to g(x) := ax2� x to prove that the Newton iterates converge to a
root of g if the initial point x0 satisfies either of the following conditions, assuming a > 0:

x0 
1

2a

✓
1� 1p

2

◆
or x0 �

1
2a

✓
1+

1p
2

◆

Which root will the Newton iteration compute in each case?

2. The Kantorovich Theorem provides only a sufficient condition for convergence of the Newton iter-
ates. Show that, for g(x) := ax2� x, as long as x0 6= (2a)�1 = minx g(x), the Newton iterates will
converge. (Hint: use part 1.)
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Exercise 4.16 (Fast decoupled algorithm). 1. Use (4.32) to prove (4.36).

2. Show that if gs
jk = gm

jk = 0 and sinq jk = 0 for all ( j,k) 2 E then the Jacobian reduces to the approx-

imating block-diagonal matrix Ĵ(q , |V |) :=

"
∂ p
∂q 0
0 ∂q

∂ |V |

#
.

Chapter 4.6

Exercise 4.17 (Laplacian matrix L). Show that the entries of Laplacian matrix L := CBCT are given by:

Li j :=

8
<

:

�bi j i⇠ j (i 6= j)
Âk⇠i bik i = j
0 otherwise

Exercise 4.18 (Pseudo-inverse of a psd matrix). Consider an positive semidefinite (and necessarily Her-
mitian) matrix A 2 C

n⇥n with rank n� k. Let its eigenvalues be

0 = l1 = · · · = lk < lk+1  · · ·  ln

and a set of corresponding orthonormal eigenvectors be u1, . . . ,un. Then A = ULUT and A† = UL†UT

where the columns of U are ui. Show that

A† =

 
A + Â

ik
uiuTi

!�1

� Â
ik

uiuTi (4.62)

(Hint: Use (4.52) to verify the inverse of A+Âik uiuTi .)

Exercise 4.19 (Laplacian matrix L). Consider the Laplacian matrix

L :=


1 �1
�1 1

�

Compute its spectral decomposition, L†, LL† and L†L.

Exercise 4.20 (DC power flow model). Consider the 3-bus network shown in Figure 4.14. Assuming the
(weighted) susceptance matrix B = I3 is the identity matrix.

1. Write down the incidence matrix C and reduced incidence matrix Ĉ using the graph orientation
shown in the figure and bus 0 as the reference bus.
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2. Write down the Laplacian matrix L and its pseudo-inverse L†, the reduced Laplacian matrix L̂ and
its inverse L̂�1.

3. Write down the line flows P in terms of the injections p with Â j p j = 0, and evaluate P when
p = (2,�1,�1).

4. Suppose the injection is changed from p = (2,�1,�1) to p̃ = (2,0,�2). Calculate the new line
flows P̃.

0

1 2

Figure 4.14: Exercise 4.20.

Exercise 4.21 (DC power flow model).



Chapter 5

Branch flow models: radial networks

In Chapter 5.1 we introduce branch flow models for radial networks with a tree topology. They are useful
for modeling distribution systems as most distribution systems are radial. Whereas bus injection models
of Chapter 4 consist of only nodal variables (nodal voltages and nodal power or current injections), branch
flow models involve also branch power flows and branch currents. In Chapter 5.2 we prove their equiva-
lence by first extending branch flow models to general networks with cycles. Branch flow models are most
useful for radial networks where they enjoy two important advantages: a fast iterative algorithm studied
in Chapter 5.3, called the backward forward sweep, for power flow computation, and a linearized model
studied in Chapter 5.4 that admits an explicit solution and bounds on nonlinear branch powers and voltage
magnitudes.

Except in Chapter 5.2 or otherwise specified we will focus in this chapter on radial networks without
cycles.

5.1 BFM for radial networks

5.1.1 Line model

We use the same line model as that in Chapter 4.2.2 where a power network with N +1 buses and M lines
is represented as a connected undirected graph G = (N,E) where N := {0}[N, N := {1,2, . . . ,N} and
E ✓ N⇥N; see Figure 4.7. For each bus j 2 N let Vj denote its voltage phasor and s j its complex power
injection. For each line ( j,k) 2 E, let (I jk, Ik j) denote the sending-end line currents from buses j to k and
buses k to j respectively. Similarly let (S jk,Sk j) denote the sending-end line power flows in each direction.
Let V := (Vj, j 2 N), s := (s j, j 2 N), I := (I jk, Ik j,( j,k) 2 E), and S := (S jk,Sk j,( j,k) 2 E).

Each line ( j,k) 2 E is characterized by two pairs of series and shunt admittances,
⇣

ys
jk,y

m
jk

⌘
2 C

2

from j to k and
⇣

ys
k j,y

m
k j

⌘
2 C

2 from k to j. It may model a transmission or distribution line, a single-
phase transformer, the per-phase model of a three-phase transformer in balanced setting, and may contain
admittances of sources and loads. Specifically when ( j,k) models a transmission or distribution line, the

203
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line parameters (ys
jk = ys

k j,y
m
jk,y

m
k j) are the series and shunt admittances of the transmission or distribution

line. When ( j,k) models a transformer, the line parameters (ys
jk,y

m
jk) and (ys

k j,y
m
k j) are given by (4.6) in

terms of transformer voltage gain and leakage and shunt admittances (K(n), ỹs
jk, ỹ

m
jk). Hence ys

k j and ys
jk

may be different, and (ym
jk,y

m
k j) are generally different and nonzero even if the transformer shunt admittance

ỹm
jk = 0. Let zs

jk :=
⇣

ys
jk

⌘�1
and zs

k j :=
⇣

ys
k j

⌘�1
.

We will often restrict ourselves to the special case where the series admittances are equal ys
jk = ys

k j, and

characterize a line by three admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. This model can be represented as a P circuit and

behaves like a transmission or distribution line though with generally different ym
jk and ym

k j; see Figure 5.1.
It is not suitable as the per-phase model of a balanced three-phase transformer in DY or Y D configuration

ymjk ymkj

y sjk= yskj
Ikj ,SkjSjk , Ijk

Vj Vk

sj sk

Figure 5.1: Line model under assumption C5.1.

that has a complex voltage gain K(n), but is still widely used as an approximation.

As in Chapter 4.2.2 we label the following assumption and will explicitly state it when it is required:

C5.1: The series admittances ys
jk = ys

k j or equivalently the series impedances zs
jk = zs

k j for every line
( j,k) 2 E.

In this section we assume the network graph G is a (connected) tree.

5.1.2 With shunt admittances

Transformers are important devices in a distribution system, especially three-phase transformers in DY
or Y D configuration whose per-phase equivalent circuit does not satisfy assumption C5.1. Their shunt
admittances ym

jk and ym
k j may not be negligible even when the transformer shunt admittance ỹm

jk = 0 (see
(4.6)). This motivates a branch flow model that includes shunt admittances and allows ys

jk 6= ys
k j.

The key feature of a branch flow model for radial networks is that it does not involve phase angles of
voltage and current phasors. For each bus j let

• s j := (p j,q j) and s j := (p j + iq j) represent the real and reactive power injections at bus j. Let
s := (s j, j 2 N).1

1We abuse notation and use s to denote both the complex power injection s = (p+ iq) and the real pair s = (p,q), depending
on the context. Similarly for S = (P+ iQ) and S = (P,Q), and for z = (r + ix) and z = (r,x).
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• v j represent the squared voltage magnitude at bus j. Let v := (v j, j 2 N).

For each line ( j,k) let

• ` jk represent the squared magnitude of the sending-end current from bus j to bus k, and `k j represent
the squared current magnitude from k to j. Let ` := (` jk,`k j,( j,k) 2 E).

• S jk = (Pjk,Q jk) and S jk = Pjk + iQ jk represent the sending-end real and reactive branch power flow
from bus j to bus k, and Sk j represent the sending-end power from k to j. Let S := (S jk,Sk j,( j,k) 2
E).

We will introduce power flow equations below in terms of the real vector x := (s,v,`,S)2R3(N+1)+6M that
does not involve voltage and current phase angles as variables. The vector v includes v0 and s includes s0.
The angle information is however embedded in, and can be recovered from, x; see (5.11) below.

Define for each ( j,k) 2 E

a jk := 1+ zs
jk ym

jk, ak j := 1+ zs
k j ym

k j

Note that a jk = ak j if and only if zs
jk ym

jk = zs
k j ym

k j and a jk = ak j = 1 if and only if ym
jk = ym

k j = 0 since
|zs

jk| 6= 0. A branch flow model for radial networks that allows shunt admittances of lines is:

s j = Â
k: j⇠k

S jk, j 2 N (5.1a)

|a jk|2v j� vk = 2Re
⇣

a jk z̄s
jkS jk

⌘
� |zs

jk|2` jk, ( j,k) 2 E (5.1b)

|ak j|2vk� v j = 2Re
⇣

ak j z̄s
k jSk j

⌘
� |zs

k j|2`k j, ( j,k) 2 E (5.1c)
��S jk
��2 = v j ` jk,

��Sk j
��2 = vk `k j, ( j,k) 2 E (5.1d)

ā jkv j � z̄s
jkS jk =

⇣
āk jvk � z̄s

k jSk j

⌘H
, ( j,k) 2 E (5.1e)

These equations express four properties that a power flow solution x := (s,v,`,S) satisfies:

1. Power balance: (5.1a) enforces power balance at each bus and is the consequence of KCL.

2. Ohm’s law and KCL: (5.1b) and (5.1c) originates from the Ohm’s law and KCL I jk = ys
jk(Vj�Vk)+

ym
jkVj and similarly for Ik j in the opposite direction; see (5.22) in the proof of Theorem 5.2.

3. Apparent power: (5.1d) defines the apparent powers and is obtained from S jk =VjIHjk and Sk j =VkIHk j.

4. Cycle condition: We call (5.1e) a cycle condition and it ensures that the line angles implied by a
power flow solution x can indeed be realized by nodal voltage angles; see Chapter 5.1.4. It says

VjVH

k =
⇣

VkVH
j

⌘H
where (Vj,Vk) are not part of the model but can be recovered from a power flow

solution (see (5.24) in the proof of Theorem 5.2).
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The complex notation in (5.1) is only a shorthand for a system of 2(N +1)+6M = 8N +2 real equa-
tions in the vector x of 3(N +1)+6M = 9N +3 real variables (recall that M = N for a tree). For instance
(5.1a) is a shorthand for p j = Âk: j⇠k Pjk and q j = Âk: j⇠k Q jk and (5.1d) is a shorthand for v j` jk = P2

jk +Q2
jk

and vk`k j = P2
k j + Q2

k j. All equations are linear in x except (5.1d) which are quadratic. Given (2N + 1) of
these variables (e.g., given v0 = 1 and non-slack bus injections (p j,q j), j 2 N), the power flow problem
is to determine the remaining 7N +2 real variables from these equations. There can be zero, one or more
than one solutions. In this example there are more (nonlinear) equations than the number of variables,
but see Example 5.6 for a linear example where the resulting set of equations is not linearly independent.
As mentioned above, this model does not require assumption C5.1 and allows nonzero shunt admittances
(ym

jk,y
m
k j), and therefore is suitable for modeling transformers as well as distribution lines (see Example

5.1).

Example 5.1 (Two buses connected by a transformer). Consider two buses j and k connected by a trans-
former characterized by its voltage gain K (possibly complex, e.g., K =

p
3neip/6), a series admittance ỹs

and a shunt admittance ỹm. The bus injection model of this 2-bus network is given by (4.26a) in complex
form. Derive the branch flow model (5.1) in terms of transformer parameters (K, ỹs, ỹm). (We will show in
Chapter 5.2 that the branch flow model and the bus injection model are equivalent.)

Solution. The abstract line parameters in terms of the transformer parameters are given by (4.6) reproduced
here:

ys
jk :=

ỹs

K
, ym

jk :=
✓

1� 1
K

◆
ỹs,

ys
k j :=

ỹs

K̄
, ym

k j :=
1

|K|2 ((1�K)ỹs + ỹm) ,

Define z̃s := (ỹs)�1 and ã := 1+ z̃sỹm. Then

zs
jk := (ys

jk)
�1 = Kz̃s, zs

k j := (ys
k j)
�1 = K̄z̃s, a jk = K, ak j = ã/K

For a single line we can substitute S jk = s j and Sk j = sk and the branch flow model (5.1) becomes:

v j� vk

.
|K|2 = 2Re

⇣
(z̃s)H s j

⌘
� |z̃s|2 ` jk

|ã/K|2 vk� v j = 2Re
⇣

ã (z̃s)H sk

⌘
� |Kz̃s|2 `k j

��s j
��2 = v j ` jk, |sk|2 = vk `k j

v j� (z̃s)H s j =
�
ã/|K|2

�
vk� z̃ss̄k

This is a system of 6 real (nonlinear) equations in 8 real variables (s j,sk,v j,vk,` jk,`k j).

5.1.3 Without shunt admittances

Consider a radial network where lines have zero shunt admittances and hence a jk = ak j = 1. Moreover
we suppose assumption C5.1 holds. This is a reasonable model if ( j,k) models a (short) transmission line
or a distribution line. It may be unsuitable if ( j,k) models a transformer because, as noted above, the
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shunt admittances (ym
jk,y

m
k j) corresponding to a single-phase nonideal transformer are generally nonzero

(see Example 5.1).

A consequence of substituting zs
jk = zs

k j and ym
jk = ym

k j = 0 into (5.1) for all lines ( j,k)2 E is the relation
between the sending-end power flows S jk and Sk j (see Exercise 5.3):

S jk + Sk j = zs
jk` jk, ` jk = `k j (5.2)

It says that the sum of sending-end power flows is equal to the complex line loss across the series
impedance zs

jk. Hence �Sk j = S jk� zs
jk` jk is the receiving-end power from j to k. For each line ( j,k) 2 E,

we can use (5.2) to eliminate from (5.1) the branch variables (`k j,Sk j) in the direction k to j. This leads
to a simpler set of equations based on a directed, rather than undirected, graph G, as we now explain. In
particular the linear cycle condition (5.1e) becomes vacuous.

In this subsection we assume G = (N,E) is directed. We denote a line in E from bus j to bus k either
by ( j,k) 2 E or j! k 2 E. Associated with each line j! k 2 E are branch variables (` jk,S jk). It is
important to remember that, unlike models in the previous sections, (`k j,Sk j) in the opposite direction are
not defined in the models in this subsection, unless otherwise specified. Let (s,v) := (s j,v j, j 2 N) and
(`,S) := (` jk,S jk, j! k 2 E). In particular the vector v includes v0 and s includes s0. Let x := (s,v,`,S)

in R
3(N+1+M) with M = N since G is a tree. To simplify notation we sometimes omit the superscript on

zs
jk and write z jk = (r jk,x jk) =

⇣
ys

jk

⌘�1
as the series impedance of line ( j,k). Then the branch flow model

(5.1) reduces to what is called the DistFlow equations as follows:

Â
k: j!k

S jk = Â
i:i! j

�
Si j� zs

i j`i j
�
+ s j, j 2 N (5.3a)

v j� vk = 2Re
⇣

z̄s
jkS jk

⌘
� |zs

jk|2` jk, j! k 2 E (5.3b)

v j` jk = |S jk|2, j! k 2 E (5.3c)

This model is first proposed in [46, 47] for radial networks and is the most commonly used branch flow
model in the literature. These equations express the same properties as (5.1) and can be derived by substi-
tuting (5.2) into (5.1) to eliminate (`k j,Sk j) on each line j! k 2 E (Exercise 5.4):

1. Power balance: (5.1a) reduces to (5.3a).

2. Ohm’s law: (5.1b)(5.1c) reduce to (5.3b).

3. Apparent power: (5.1d) reduces to (5.3c).

4. Cycle condition: (5.1e) becomes vacuous under assumption C5.1 and when ym
jk = ym

k j = 0.

Comparing with (5.1), the inclusion of nonzero shunt admittances (ym
jk,y

m
k j) introduces two requirements

in modeling: the need for line variables in both directions and for the cycle condition (5.1e).

Despite the complex notation, (5.3) is a set of 2(N + 1 + M) real equations in 3(N + 1 + M) real
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variables x = (pi,qi,vi,` jk,Pjk,Q jk) and a shorthand for:

Â
k: j!k

Pjk = Â
i:i! j

�
Pi j� ri j`i j

�
+ p j, j 2 N

Â
k: j!k

Q jk = Â
i:i! j

�
Qi j� xi j`i j

�
+q j, j 2 N

v j� vk = 2
�
r jkPjk + x jkQ jk

�
� (r2

jk + x2
jk)` jk, j! k 2 E

v j` jk = P2
jk +Q2

jk, j! k 2 E

Since M = N, there are (4N + 2) equations in (6N + 3) real variables. Given (2N + 1) of these variables
(e.g., given v0 = 1 and non-slack bus injections (p j,q j), j 2 N), the power flow problem is to determine
the remaining 4N +2 variables from these equations. There can be zero, one or more than one solutions.

This model can also be written compactly in vector form in terms of the (N +1)⇥N incidence matrix
C defined as:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

(5.4)

Let C+ := max{C,0} and C� := min{C,0} denote the matrices containing only the source nodes and
destination nodes respectively of the (directed) lines. Then (5.3) is:

s = CS +C�z`

CTv = 2Re
⇣

zHS
⌘
� z̄z`

|S|2 = diag
⇣

C+v`T
⌘

where z := diag(z jk, j! k 2 E), z̄ is the componentwise complex conjugate of the diagonal matrix z, and
|S|2 is the vector |S|2 := (|S jk|2, j! k 2 E).

Example 5.2 (Graph orientation). Intuitively nodal injections and voltages (s,v) should not depend on the
orientation of the graph while branch currents and powers (`,S) do, since branch variables are defined only
in the direction of the lines, not in the opposite direction. We can formally relate the power flow solutions
defined for opposite graph orientations. Specifically, consider the opposite orientation where the direction
of every line is reversed from that in (5.3). The resulting power flow equations are:

Â
k: j!k

Ŝ jk = Â
i:i! j

�
Ŝi j� zs

i j
ˆ̀i j
�
+ ŝ j, j 2 N (5.5a)

v̂k� v̂ j = 2Re
⇣

z̄s
jkŜk j

⌘
� |zs

jk|2 ˆ̀k j, k! j 2 E (5.5b)

v̂k ˆ̀k j = |Ŝk j|2, k! j 2 E (5.5c)

An example is the down and up orientations below. Then it can be shown that (5.3) and (5.5) are equivalent
in the sense that there is a bijection g such that x is a power flow solution of (5.3) if and only if x̂ := g(x)
is a power flow solution of (5.5) (Exercise 5.5). Indeed x̂ = g(x) is given by:

ŝ j := s j, v̂ j := v j, ˆ̀k j := ` jk, Ŝk j := �
⇣

S jk� zs
jk` jk

⌘
(5.6)
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Without loss of generality we take bus 0 as the root of the tree. Two particularly convenient graph
orientations are where every line points away from bus 0 and where every line points towards bus 0; see
Figure 5.2. For every bus j there is a unique node i that is adjacent to j on the path from bus 0 to bus j.

i

0

j

k

(a) Down orien-
tation

i

0

j

k

(b) Uporienta-
tion

Figure 5.2: Graph orientations for radial networks.

We present two equivalent sets of power flow equations, one for each graph orientation.

Down orientation: lines point away from bus 0. When all lines point away from bus 0, the DistFlow
equations (5.3) reduce to:

Â
k: j!k

S jk = Si j� zs
i j`i j + s j, j 2 N (5.7a)

v j� vk = 2Re
⇣

z̄s
jkS jk

⌘
� |zs

jk|2` jk, j! k 2 E (5.7b)

v j` jk = |S jk|2, j! k 2 E (5.7c)

where, in (5.7a), Si j� zi j`i j is the receiving-end power at bus j from i, and bus i := i( j) denotes the unique
adjacent node of j on the path from node 0 to node j, with the understanding that when j = 0 then Si0 = 0
and `i0 = 0. When j is a leaf node2, all S jk = 0 in (5.7a).

Up orientation: lines point towards bus 0. When the graph orientation is opposite to that in Case 1,
BFM is specified by the following equations in x := (s,v,`,S) 2 R

3(2N+1):

S ji = Â
k:k! j

⇣
Sk j� zs

k j`k j

⌘
+ s j, j 2 N (5.8a)

vk� v j = 2Re
⇣

z̄s
k jSk j

⌘
� |zs

k j|2`k j, k! j 2 E (5.8b)

vk`k j = |Sk j|2, k! j 2 E (5.8c)
2A node j is a leaf node if there exists no k such that j! k 2 E.
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where i := i( j) in (5.8a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by S ji = 0 in (5.8a) when j = 0 and Sk j = 0,`k j = 0 in (5.8a) when j is
a leaf node. For an advantage of this orientation see Remark 5.2.

5.1.4 Angle recovery

We now explain how to obtain voltage and current angles (\Vj,\I jk) from a power flow solution x of
(5.1). It applies to a solution x of the DistFlow equations (5.3), (5.7) or (5.8) with a jk := 1 in (5.9).

Given any x define the vector b (x) 2 R
2M of line angles as a function of x by

b jk(x) := \
⇣

ā jkv j� z̄s
jkS jk

⌘
, ( j,k) 2 E (5.9a)

bk j(x) := \
⇣

āk jvk� z̄s
k jSk j

⌘
, ( j,k) 2 E (5.9b)

It can be shown that, if x is a power flow solution of (5.1), then (b jk(x),bk j(x)) are voltage angle differences
across line ( j,k) (Exercise 5.1), i.e.,

b jk(x) = \Vj�\Vk, bk j(x) = \Vk�\Vj, ( j,k) 2 E (5.10)

This implies in particular that b jk(x) =�bk j(x), even in the absence of assumption C5.1.

Recall the (N +1)⇥N incidence matrix C defined in (5.4). It is proved in Theorem 5.2 below that the
cycle condition (5.1e) is equivalent to:

9q 2 R
N+1 s.t. b (x) = CTq (5.11a)

where b (x) := (b jk(x),( j,k) 2 E). When the network graph G is a (connected) tree, its incidence matrix
CT has rank N = M. The null space of CT is span(1) and its pseudo-inverse

�
CT
�†

=C
�
CTC

��1 (Exercise
5.2 shows that CT has full row rank and its pseudo-inverse is therefore given by Corollary 20.20.2 of
Appendix 20.1.7). Given a power flow solution x of (5.1), a solution of (5.11a) is therefore

q = C
⇣

CTC
⌘�1

b (x) + f1 (5.11b)

for an arbitrary angle f 2 R. The angle f can be fixed by choosing (say) bus 0 as a reference for voltage
angles, i.e., setting q0 := 0. An equivalent way to compute q is to use (5.10) iteratively. Let P j denote the
unique path from bus 0 to bus j in the directed graph with orientation pointing away from bus 0. Set \q0
to an arbitrary value. For j = 1, . . . ,N +1,

\q j := \q0 � Â
(i,k)2P j

\bik (5.11c)

The voltage and current phasors can then be recovered from (5.10) and (5.11a)(5.11b). Pick any
solution q(x) in (5.11b), and without loss of generality, we can project it to q j(x) 2 (�p,p]. The voltage
and current phasors (V, I) can then be obtained in terms of x as:

Vj := pv j eiq j(x), I jk :=
q

` jk ei(q j(x)�\S jk) (5.11d)

where \S jk := tan�1(Q jk/Pjk) is the power factor angle.
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5.1.5 Power flow solutions

In this section we first illustrate the solution of the branch flow model (5.8) using a simple two-bus network.
The power flow solutions in the example lie on the surface of an ellipse. We prove that this feature of
hollow solution set is general.

Example 5.3 (Two buses connected by a line). Consider two buses 0 and 1 connected by a line character-
ized by a series impedance z = r + ix and zero shunt admittances. The power balance at bus 0 (noting that
S0k := 0) and the other DistFlow equations over line 1! 0 are given by:

p0 � r` = �p1, q0 � x` = �q1 (5.12a)
v1 � v0 = 2(rp1 + xq1) � (r2 + x2)` (5.12b)
p2

1 + q2
1 = v1` (5.12c)

where the voltage v0 and the injections p1, q1 are given. Suppose r = x = 1, v0 = 1pu and q1 = 0.

1. Show that power flow solutions (p0,q0,v1,`) exist if and only if

1
2

⇣
1�
p

2
⌘
 p1 

1
2

⇣
1+
p

2
⌘

2. For each injection value p1 that satisfies the condition in part 1, find (p0,q0,v,`) and show in partic-
ular that there are two voltage solutions v1 given by

v1 =
1
2

⇣
1+2p1⌥

p
D
⌘

where D := 4p1(1� p1)+1.

3. Show that the locus (v1, p1) that satisfies (5.12) is a (rotated) ellipse. Plot the two solutions for v1 in
Part 2 as functions of p1. These two curves form the ellipse.

4. Show that the lowest voltage solution is v1 = 0 pu attained at p1 = 0 pu and the highest voltage
solution is v1 = 2 pu attained at p1 = 1 pu.

Solution.

1. Since (p1,q1,v0) are given and we are to solve for (p0,q0,v1,`), substitute v1 from (5.12b) into
(5.12c) to get (noting q1 = 0 and v0 = r = x = 1):

2`2� (1+2p1)`+ p2
1 = 0 (5.13)

There is a solution for ` if and only

(1+2p1)
2 � 8p2

1 = 1+4p1�4p2
1 � 0

or if and only if

1
2

⇣
1�
p

2
⌘
 p1 

1
2

⇣
1+
p

2
⌘
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2. Let D := 4p1(1� p1)+1. We have from (5.13)

` =
1
4

⇣
1+2p1 ±

p
D
⌘

Hence

p0 = `� p1 =
1
4

⇣
1�2p1 ±

p
D
⌘

q0 = ` =
1
4

⇣
1+2p1 ±

p
D
⌘

v1 = 1+2p1�2` =
1
2

⇣
1+2p1⌥

p
D
⌘

3. The set of points x 2 R
n that satisfy

(x� c)T A(x� c) = xT Ax � 2cT x +kck2 = 1

is an ellipse if c 2 R
n and A is a real (symmetric) positive definite matrix. Substitute v1` = p2

1 + q2
1

into (5.12b) to get v1�1 = 2p1�2 p2
1

v1
, i.e.,

�
2p2

1�2p1v1 + v2
1
�
� v1 = 0

⇥
p1 v1

⇤ 2 �1
�1 1

�
p1
v1

�
�
⇥
0 1

⇤p1
v1

�
= 0

⇥
p1 v1

⇤ 8 �4
�4 4

�

| {z }
A


p1
v1

�
� 2

⇥
0 2

⇤
| {z }

cT


p1
v1

�
+ 1 = 1

Since A � 0 is positive definite, (p1,v1) traces out an ellipse. It is shown in Figure 5.3 as the high
voltage solution and the low voltage solution for v1 as functions of p1.

Figure 5.3: High and low voltage solutions v1 as functions of injection p1.

4. The figure confirms that the lowest voltage solution is attained at v1 = 0 pu (point A when p1 = 0)
and the highest voltage is attained at v1 = 2 pu (point B when p1 = 1 pu). This can also be proved
analytically, as follows.
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Let u(p1) and u(p1) denote the low voltage solution and the high voltage solution respectively:

u(p1) :=
1
2

⇣
1+2p1 �

p
4p1(1� p1)+1

⌘

u(p1) :=
1
2

⇣
1+2p1 +

p
4p1(1� p1)+1

⌘

Their derivatives are:

u0(p1) := 1 � 1�2p1p
4p1(1� p1)+1

u0(p1) := 1 +
1�2p1p

4p1(1� p1)+1

Therefore u0(p1) = 0 if and only if

1�2p1 =
p

4p1(1� p1)+1 (5.14)

Taking square on both sides (which may introduce spurious solution for p1), u0(p1) = 0 only if

p1(p1�1) = 0

i.e., p1 = 0 or 1. Clearly, p1 = 1 does not satisfy (5.14) and hence is not a solution. Moreover it can
be checked that u0(0) = 0, u(p1) is decreasing for p1  0 and increasing for p1 � 0. Hence p1 = 0
is a minimum and u(0) = 0 pu.

Similarly u0(p1) = 0 if and only if

2p1�1 =
p

4p1(1� p1)+1 (5.15)

Taking square on both sides, u0(p1) = 0 only if

p1(p1�1) = 0

i.e., p1 = 0 or 1. Clearly, p1 = 0 does not satisfy (5.15) and hence is not a solution. Moreover it can
be checked that u0(1) = 0, u(p1) is increasing for p1  1 and decreasing for p1 � 1. Hence p1 = 1
is a maximum and u(1) = 2 pu.

For the two-bus network in Example 5.3 power flow solutions, when projected onto the (p1,v1) co-
ordinate, form an ellipse without the interior. This feature of hollow solution set is generally true for the
DistFlow model (5.3), (5.7), or (5.8) as the following result shows. Let

Xdf := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (5.3)}

Theorem 5.1 (Hollow solution set). Suppose the network graph G is connected. If x̂ and x̃ are distinct
power flow solutions in Xdf with the same voltage v̂0 = ṽ0 at the root bus 0, then no convex combination
of x̂ and x̃ can be in Xdf. In particular Xdf is nonconvex.
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Proof. Suppose x̂ 6= x̃ are distinct power flow solutions in Xdf. Fix any a 2 (0,1) and consider x :=
ax̂+(1�a)x̃. We now show that if x 2 Xdf then x̂ = x̃, contradicting that x̂ and x̃ are distinct.

Suppose x 2 Xdf. In particular v j` jk = |S jk|2 by (5.3c). Substituting x := (x̂+ x̃)/2, we have

1
4
(v̂ j + ṽ j)( ˆ̀jk + ˜̀jk) =

1
4
��Ŝ jk + S̃ jk

��2 , j! k 2 E

Substituting v̂ j ˆ̀jk = |Ŝ jk|2 and ṽ j ˜̀jk = |S̃ jk|2 yeilds

v̂ j ˜̀jk + ṽ j ˆ̀jk = 2 Re
⇣

ŜHjkS̃ jk

⌘
(5.16a)

The right-hand side satisfies

2 Re
⇣

ŜHjkS̃ jk

⌘
 2 |S̃ jk||Ŝ jk| (5.16b)

with equality if and only if \Ŝ jk = \S̃ jk (mod 2p). The left-hand side of (5.16a) is

v̂ j ˜̀jk + ṽ j ˆ̀jk = h j |S̃ jk|2 + h�1
j |Ŝ jk|2 � 2 |S̃ jk||Ŝ jk| (5.16c)

with equality if and only if h j|S̃ jk| = |Ŝ jk|, where for j 2 N, h j := v̂ j/ṽ j. But (5.16) implies that equalities
are attained in both (5.16b) and (5.16c), and hence

h jS̃ jk = Ŝ jk and h j ˜̀jk = ˆ̀jk, j 2 N (5.17)

(The second equation in (5.17) follows from (5.16c): h j ˜̀jk + ˆ̀jk = 2|S̃ jk||Ŝ jk|/ṽ j = 2
q

h j ˜̀jk ˆ̀jk and squar-
ing both sides yields the equation.) Define h0 := v̂0/ṽ0 = 1. Then for each line j! k 2 E we have, using
(5.3b),

hk =
v̂k

ṽk
=

v̂ j�2Re(zHjkŜ jk)+ |z jk|2 ˆ̀jk

ṽ j�2Re(zHjkS̃ jk)+ |z jk|2 ˜̀jk

=
h j

⇣
ṽ j�2Re(zHjkS̃ jk)+ |z jk|2 ˜̀jk

⌘

ṽ j�2Re(zHjkS̃ jk)+ |z jk|2 ˜̀jk
= h j

where the third equality follows from (5.17). This implies, since the network graph G is connected, that
h j = h0 = 1 for all j 2 N, i.e. v̂ j = ṽ j, j 2 N.

We have thus shown that Ŝ = S̃, ˆ̀ = ˜̀, v̂ = ṽ, and hence, by (5.3a), ŝ = s̃, i.e., x̂ = x̃. This completes
the proof.

This property of the power flow solution set is illustrated vividly in several numerical examples in
[48, 27, 28, 29]. It is used in Theorem 11.1 of Chapter 11.3 to prove that if any convex relaxation of OPF
on a radial network is exact in a strong sense, then the optimal solution of the relaxation is unique.
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5.2 Equivalence

The branch flow models for radial networks are (5.1) with shunt admittances and without assumption C5.1
and the DistFlow equations(5.3), (5.7) and (5.8), when shunt admittances are zero and assumption C5.1
holds. They are defined by different sets of power flow equations from the bus injection model (4.26a)
studied in Chapter 4.3, reproduced here:

s j = Â
k: j⇠k

⇣
ys

jk

⌘H ⇣
|Vj|2�VjVH

k

⌘
+
�
ym

j j
�H |Vj|2, j 2 N (5.18)

Yet all of them are models of Kirchhoff’s and Ohm’s laws. In this section we show that these models are
equivalent in a precise sense.

To this end we first extend the branch flow model (5.1) to general networks. We then use these gener-
alized branch flow models, (5.19) and (5.20) below, as a bridge to relate BFM (5.1), (5.3), (5.7), (5.8) for
radial networks to BIM (5.18) for general networks.

5.2.1 Extension to general networks

Complex form. The branch flow model for a general network possibly with cycles in the complex form
is defined by the following power flow equations in the variables (s,V, I,S)2C2(N+1)+4M (from (4.1)(4.2)):

s j = Â
k: j⇠k

S jk, j 2 N (5.19a)

I jk = ỹ jkVj� ys
jkVk, Ik j = ỹk jVk� ys

k jVj, ( j,k) 2 E (5.19b)

S jk = Vj IHjk, Sk j = Vk IHk j, ( j,k) 2 E (5.19c)

where in (5.19b),

ỹ jk := ys
jk + ym

jk, ỹk j := ys
k j + ym

k j

Equation (5.19a) imposes power balance at each bus, (5.19b) describes the Ohm’s law and KCL, and
(5.19c) defines branch power in terms of the associated voltage and current. For convenience we include
V0 in the vector variable V := (Vj, j 2 N) with the understanding that V0 := 1\0� is fixed. This model
does not require assumption C5.1 and allows nonzero shunt admittances (ym

jk,y
m
k j). It serves as a bridge

between the bus injection model (5.18) in complex form and the branch flow models in the real domain.
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Real form. The following branch flow model relaxes the angles of voltages and currents and are appli-
cable to general networks:

s j = Â
k: j⇠k

S jk, j 2 N (5.20a)

��a jk
��2 v j� vk = 2Re

✓
a jk

⇣
zs

jk

⌘H
S jk

◆
�
���zs

jk

���
2
` jk, ( j,k) 2 E (5.20b)

��ak j
��2 vk� v j = 2Re

✓
ak j

⇣
zs

k j

⌘H
Sk j

◆
�
���zs

k j

���
2
`k j, ( j,k) 2 E (5.20c)

��S jk
��2 = v j ` jk,

��Sk j
��2 = vk `k j, ( j,k) 2 E (5.20d)

9q 2 R
N+1 s.t. b jk(x) = q j�qk, bk j(x) = qk�q j, ( j,k) 2 E (5.20e)

where b jk(x) and bk j(x) are defined in (5.9) and reproduced here:

b jk(x) := \
✓

aH

jk v j�
⇣

zs
jk

⌘H
S jk

◆
, bk j(x) := \

✓
aH

k j vk�
⇣

zs
k j

⌘H
Sk j

◆

Compared with (5.1) for radial networks, the model (5.20) differs only in its cycle condition: the linear
cycle condition (5.1e) for radial networks becomes a nonlinear cycle condition (5.20e) for general net-
works. It ensures that the line angles b (x) := (b jk(x),( j,k) 2 E) implied by a power flow solution x
of (5.20) is consistent with voltage angles in model (5.19). Since (5.20e) implies that b (x) = CTq and
b jk(x) =�bk j(x), the nodal voltage angles q are also given by (5.11).

The model (5.20) does not require assumption C5.1 and allows nonzero shunt admittances (ym
jk,y

m
k j).

Let x := (s,v,`,S) = (p j,q j,v j,` jk,`k j,Pjk,Pk j,Q jk,Qk j, j 2 N, ( j,k) 2 E). Then (5.20) is a set of 2(N +
1)+6M real equations in the 3(N +1)+6M real variables in x and N +1 variables in q . The power flow
problem is: given 2(N + 1) of these variables (e.g., (p j,q j, j 2 N) and (v0,q0)), determine the remaining
2(N + 1) + 6M variables from (5.20). Equations (5.20d) are quadratic, the cycle condition (5.20e) is
nonlinear, and the rest are linear in x. The major simplification for radial networks is the replacement
of the nonlinear cycle condition (5.20e) for general networks by the linear cycle condition (5.1e). When
shunt admittances are assumed zero and assumption C5.1 holds, then the cycle condition becomes vacuous
for radial networks as in the DistFlow equations.

5.2.2 Equivalence of BFM and BIM

Let the set of solutions (s,V ) of BIM be:

V := V(q0) := {(s,V ) 2 C
2(N+1) | (s,V ) satisfies (5.18)}

where we have fixed a reference angle \V0 = q0. Let the sets of solutions of BFM be:

X̃ := X̃(q0) := {x̃ : (s,V, I,S) 2 C
2(N+1)+4M | x̃ satisfies (5.19)}

Xmeshed := Xmeshed(q0) := {x : (s,v,`,S) 2 R
3(N+1)+6M) | x satisfies (5.20)}

Xtree := Xtree(q0) := {x : (s,v,`,S) 2 R
3(N+1)+6M | x satisfies (5.1)}

Xdf := Xdf(q0) := {x : (s,v,`,S) 2 R
3(N+1+M) | x satisfies (5.3) under C5.1 and ym

jk = ym
k j = 0}
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where a reference angle \V0 = q0 is fixed so that voltage phasors can be uniquely recovered from power
flow solutions in Xmeshed(q0), Xtree(q0) and Xdf(q0). We say two sets A and B are equivalent, denoted by
A⌘ B, if there is a bijection between them. The equivalence of these power flow models is clarified in the
following theorem and illustrated in Figure 5.4.

sj = ∑
k:j�k

Sjk, Sjk
2 = vj �jk, Skj

2 = vk �kj

�jk
2

vj � vk = 2 Re (�jk (zs
jk)

�
Sjk) � zs

jk

2
�jk

�kj
2

vk � vj = 2 Re (�kj (zs
kj)

�
Skj) � zs

kj

2
�kj

��
jk vj � (zs

jk)
�

Sjk = (��
kj vk � (zs

kj)
�

Skj)
�

�tree

∑
k:j�k

Sjk = ∑
i:i�j

(Sij � zs
ij�ij) + sj

vj � vk = 2 Re (zs�
jk Sjk) � |zs

jk |2 �jk

vj�jk = |Sjk |2

 
ys
jk = ys

kj
ym

jk = ym
kj = 0

�df

sj = ∑
k:j�k

Sjk, Sjk
2 = vj �jk, Skj

2 = vk �kj

�jk
2

vj � vk = 2 Re (�jk (zs
jk)

�
Sjk) � zs

jk

2
�jk

�kj
2

vk � vj = 2 Re (�kj (zs
kj)

�
Skj) � zs

kj

2
�kj

�� � �N+1 s.t. �jk(x) = �j � �k, �kj(x) = �k � �j

sj = ∑
k:j�k

(ys
jk)

�
( |Vj |

2 � VjV�
k ) + (ym

jj )
�

|Vj |
2

�

sj = ∑
k:j�k

Sjk,

Ijk = ỹjkVj � ys
jkVk, Ikj = ỹkjVk � ys

kjVj

Sjk = Vj I�
jk, Skj = Vk I�

kj

�̃
�meshed

radial 
network

Figure 5.4: Equivalence of BFM and BIM. Proof focuses on X̃⌘ Xmeshed and Xmeshed ⌘ Xtree.

Theorem 5.2 (Equivalence). Suppose the network G is connected.

1. V⌘ X̃⌘ Xmeshed.

2. If G is a tree then Xmeshed ⌘ Xtree.

3. Suppose ys
jk = ys

k j (assumption C5.1) and ym
jk = ym

k j = 0 for all lines ( j,k). If G is a tree then
Xtree ⌘ Xdf.

Proof. Part 1: V⌘ X̃⌘Xmeshed. It is obvious V⌘ X̃ since, given (s,V ) 2V, define I by (5.19b) and S by
(5.19c) and the resulting (s,V, I,S) 2 X̃. Conversely given (s,V, I,S) 2 X̃, substituting (5.19b)(5.19c) into
(5.19a) shows (s,V ) 2 V. Clearly these two mappings are the inverses of each other.

To show X̃⌘ Xmeshed, fix an x̃ := (s,V, I,S) 2 X̃. Define (v,`) by:

v j := |Vj|2, ` jk := |I jk|2, `k j := |Ik j|2 (5.21)

We now show that x := (s,v,`,S) 2 Xmeshed. That x satisfies (5.20a) follows from (5.19a). Taking the
squared magnitude on both sides of (5.19c) gives (5.20d). For (5.20b) rewrite the first equation in (5.19b)
as

Vk = a jk Vj � zs
jk

✓
S jk

Vj

◆H

(5.22)
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where we have substituted I jk := SHjk/VH
j from (5.19c). Taking the squared magnitude on both sides gives

vk =
��a jk

��2 v j +
���zs

jk

���
2
` jk � 2Re

✓
a jk

⇣
zs

jk

⌘H
S jk

◆

which is (5.20b). Similarly (5.20c) can be derived from the second equation in (5.19b). From (5.19b) and
(5.19c) we have

VjVH

k = aH

jk|Vj|2 �
⇣

zs
jk

⌘H
S jk, VkVH

j = aH

k j|Vk|2 �
⇣

zs
jk

⌘H
Sk j

The definitions of b jk(x) and bk j(x) in (5.9) then imply that b jk(x) =\Vj�\Vk =�bk j(x) and hence the
cycle condition (5.20e) holds with q j := \Vj. This shows x 2 Xmeshed.

Conversely fix an x := (s,v,`,S) 2 Xmeshed, i.e., x satisfies (5.20). Since b jk(x) defined in (5.9) satisfy
(5.20e), i.e., b (x) = CTq for some q , we can construct (V, I) from x as:

Vj := pv j eiq j , I jk :=
q

` jk ei(q j�\S jk) (5.23)

We now verify that x̃ := (s,V, I,S) satisfies (5.19). Clearly (5.19a) is (5.20a). For (5.19c), we have from
(5.20d) and the construction (5.23) of (V, I) that

|S jk| =
���VjIHjk

��� , \S jk = \Vj�\I jk

Hence S jk = VjIHjk. Similarly Sk j = VkIHk j. We next show that (5.19b) follows from (5.20b)(5.20c). First

note that (5.19b) is equivalent to zs
jk
�
S jk/Vj

�H
= a jkVj � Vk which is equivalent to

VjVH

k = aH

jk v j � zsH
jk S jk (5.24)

We now show that (5.20b) implies that the quantities on both sides of (5.24) have equal magnitudes and
angles, thus establishing their equality. For their angles, the definition of b jk(x) in (5.9) implies

\
⇣

aH

jk v j � zsH
jk S jk

⌘
= b jk(x) = q j � qk = \

⇣
VjVH

k

⌘

where the last two equalities follow from the construction (5.23) of Vj,Vk. The squared magnitude of the
right-hand side of (5.24) is

���aH

jk v j � zsH
jk S jk

���
2

=
��a jk

��2 v2
j � 2v j Re

⇣
a jk zsH

jk S jk

⌘
+
���zs

jk

���
2 ��S jk

��2

= v j

✓��a jk
��2 v j � 2Re

⇣
a jk zsH

jk S jk

⌘
+
���zs

jk

���
2
` jk

◆
= v jvk

which is the squared magnitude of the quantity on the left-hand side of (5.24). The second equality above
follows from |S jk|2 = v j` jk from (5.20d) and the last equality follows from (5.20b). Similarly for Ik j in
the opposite direction and hence (5.19b) follows from (5.20b)(5.20c). This proves x̃ 2 X̃. Finally the
mappings defined by (5.21) and (5.23) are inverses of each other, given a fixed reference angle \V0 = q0.
We hence conclude X̃⌘ Xmeshed.
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Part 2: Xmeshed ⌘ Xtree. Suppose G is a tree. We will show that x := (s,v,`,S) satisfies (5.20) if and only
if it satisfies (5.1). It suffices to show that x satisfies (5.20e) if and only if it satisfies (5.1e). Suppose x
satisfies (5.20e) which implies that b jk(x) =�bk j(x). Using (5.9) we have

\
⇣

aH

jk v j � zHjk S jk

⌘
= b jk(x) = �bk j(x) = �\

⇣
aH

k j vk � zHk j Sk j

⌘

i.e., the quantities on both sides of (5.1e) have equal angles. We now show that they have equal magnitudes
as well. Indeed

���aH

jk v j � zHjk S jk

���
2

=
��a jk

��2 v2
j +
��z jk
��2 |S jk|2�2Re

⇣
a jk zHjk v j S jk

⌘
= v j vk

where the last equality follows from multiplying both sides of (5.1b) by v j and then substituting (5.1d).
Similarly

���aH

k j vk � zHk j Sk j

���
2

= vk v j =
���aH

jk v j � zHjk S jk

���
2

This shows that aH

jk v j � zHjk S jk =
⇣

aH

k j vk � zHk j Sk j

⌘H
. Hence x satisfies (5.1e). Conversely suppose x sat-

isfies (5.1e). Adopt an arbitrary orientation of the network graph and define b jk(x) :=\
⇣

aH

jk v j� zHjk S jk

⌘

for each directed line j! k (only). Since G is a tree, the (N + 1)⇥N incidence matrix C has a full col-
umn rank of N and therefore q := C

�
CTC

��1 b (x)+ f1 as given by (5.11b) exists and is unique given a
reference angle q0. Moreover q is a solution to (5.20e) since (5.1e) implies that bk j(x) = �b jk(x). This
shows that Xmeshed ⌘ Xtree.

Part 3: Xtree ⌘ Xdf. This can be proved by substituting (5.2) into (5.1) to eliminate (`k j,Sk j) from (5.1)
(see Exercise 5.4).

Given the bijection between the solution sets of BIM and BFM, any result in one model is in principle
derivable in the other. Some results however are much easier to state or derive in one model than the
other. For instance BIM, which is widely used in transmission network problems, allows a much cleaner
formulation of semidefinite program (SDP) relaxation (see Chapter 10). BFM for radial networks has a
convenient recursive structure that allows a more efficient computation of power flows and leads to a useful
linear approximation; see Chapters 5.3 and 5.4. The sufficient condition for exact relaxation in Chapter
?? provides intricate insights on power flows that are hard to formulate or prove in BIM. BFM for radial
networks seems to be much more stable numerically than BIM as the network size scales up. Finally,
since BFM directly models branch flows S jk and currents I jk, it is easier to use for some applications. One
should freely use either model depending on which is more convenient for the problem at hand.

5.3 Backward forward sweep

General iterative methods for solving power flow equations are studied in Chapter 4.4. These methods can
be used not only for solving bus injection models but also branch flow models of this chapter. Tree topol-
ogy however induces a spatially recursive structure in power flow equations and this structure allows an



220 Draft: PSA December 13, 2024

efficient computation method for solving power flow equations, called a backward forward sweep (BFS),
that is unique to radial networks. The Newton-Raphson algorithm of Chapter 4.4.2 needs to compute Ja-
cobian or solve a linear system in each iteration, a significant computational burden for large networks.
The Fast Decoupled Algorithm of Chapter 4.4.3 reduces the computational effort of the Newton-Raphson
algorithm, but assumes line losses are small, which is a good approximation for high-voltage transmis-
sion networks but not for distribution systems. In contrast BFS is simple, accurate, and tends to converge
quickly in practice.

An outline of BFS is as follows. A power flow solution is partitioned into two groups of variables x
and y. Starting from an initial vector y, the components xi can be successively computed starting from
leaf nodes and propagating towards the root (backward sweep). Given the newly updated vector x, the
components yi are then updated successively starting from the root and propagating towards the leaf nodes
(forward sweep). A BFS method iterates on a backward sweep followed by a forward sweep, until conver-
gence. It can be interpreted as a special Gauss-Seidel algorithm that exploits a spatially recursive structure
enabled by tree topology.

Different BFS algorithms differ in their choices of variables x and y and the associated power flow
equations. In the following we first provide in Chapter 5.3.1 a general formulation of BFS and then illus-
trate in Chapters 5.3.2 and 5.3.3 BFM algorithms using the complex form BFM and the DistFlow model.
Their convergence of these two algorithms will be analyzed in Chapter 7.6 as examples of convergence
analysis of iterative algorithms.

5.3.1 General BFS

The method of backward forward sweep can be interpreted as a Gauss-Seidel algorithm studied in Chapter
4.4.1 to compute a fixed point, with two special features.

Outer loop. First it partitions a power flow variable into two vectors x2Fn1 and y2Fn2 where F is either
C or R. BFS consists of an outer loop which updates (x(t),y(t)) from (x(t� 1),y(t� 1)) and, for each
outer iteration, two inner loops, one updating successively each component xi(t) using the Gauss-Seidel
method with components of y(t�1) held fixed and the other updating successively each component yi(t)
using the Gauss-Seidel method with the newly updated x(t) held fixed. We represent the outer iteration as
a fixed-point iteration:

Outer loop: x(t) := f (x(t); y(t�1)), y(t) := g(x(t); y(t)) (5.25a)

where f : Fn1+n2 ! Fn1 and g : Fn1+n2 ! Fn2 . By this notation we mean that each outer iteration in
(5.25a) is computed iteratively in two inner loops that update components x j(t) and then y j(t) in turn,
always using the latest available values, i.e.,

Inner loop 1: x j(t) := f j(x1(t), . . . ,x j�1(t),x j(t�1), . . . ,xn1(t�1); y(t�1)), j = 1, . . . ,n1
(5.25b)

Inner loop 2: y j(t) := g j(x(t); y1(t), . . . ,y j�1(t),y j(t�1), . . . ,yn2(t�1)), j = 1, . . . ,n2
(5.25c)
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Inner loops (backward and forward sweeps). Second the inner loops make use of a spatially recursive
structure enabled by the tree topology. Specifically the partitions x and y are chosen so that, given a vector
y, the update function f j in (5.25b) for each component x j depends only on (x1, . . . ,x j�1), but not other
components of x. This means that, starting from xk(t) at leaf nodes k and propagating towards the root of
the tree, x j(t) at nodes at successive layers are updated according to (backward sweep):

x j(t) := f j(x1(t), . . . ,x j�1(t); y(t�1)), j = 1, . . . ,n1

Similarly, given an x, the update function g j in (5.25c) for each component y j depends only on (y1, . . . ,y j�1).
Starting from the root and propagating towards leaf nodes, y j(t) are updated successively according to
(forward sweep):

y j(t) := g j(x(t); y1(t), . . . ,y j�1(t)), j = 1, . . . ,n2

We can visualize the two inner loops using the tree topology. Consider a tree network G := (N,E)
where N := {0,1, . . . ,N} with its root at bus j = 0 (instead of j = 1). Fix any graph orientation (it is
sometimes convenient to use the up orientation if v0 is fixed and s0 is variable). Due to the tree topology
we can always identify variables associated with a line j! k, such as the line current I jk or power flow
S jk, by either the from node j or the to node k depending on the design of ( f ,g) (see Chapters 5.3.2 and
5.3.3).

Typically the partitioning of variables into (x,y) and the update functions ( f ,g) are designed so that
x j depends only on xk at its child nodes k (i.e., k is adjacent to j and farther away from the root than j
regardless of the graph orientation). More generally let T�j denote the set of buses in the subtree rooted at
bus j, not including j. Let xT�j :=

�
xk,k 2 T�j

�
denote the variables xk in the subtree T�j . We say that the

function f := ( f j,8 j) is spatially recursive if, given y, f j depends only on xT�j , but not other components
of x:

x j = f j

⇣
xT�j ; y

⌘
, j 2 N

This means that, at each outer iteration t, starting from the leaf nodes and propagating towards the root
(bus 0) in the reverse breadth-first search order, x j can be successively updated given vector y(t�1):

Backward sweep at t: x j(t) := f j

⇣
xT�j (t); y(t�1)

⌘
, j 2 N

as illustrated in Figure 5.5(a). The recursion is initialized at leaf nodes j where T�j := /0 so that x j(t) :=
f j ( /0,y(t�1)) =: f j(y(t�1)) with a given y(0) for outer iteration t = 0.

Similarly (x,y) and ( f ,g) are chosen so that, given x, the components y j depends only on yi in the path
from the root to j, not on variables at other buses further away from the root. Specifically let P�j denote
the set of buses in the unique path from the root to bus j, including the root bus 0 but not including j. Let
yP�j :=

�
yi, i 2 P�j

�
. The function g := (g j,8 j) is spatially recursive if, given x, g j depends only on yP�j , but

not other components of y:

y j = g j

⇣
x; yP�j

⌘
, j 2 N, y0 given
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j

0

spatial initialization
xk(t) := fk (y(t−1)) , y(0) given 

Tº
j

xj(t) := fj (x   (t) ; y(t−1))Tºj

(a) Backward sweep

j

y0
spatial initialization
yi(t) := gi (x(t) ; y0)

yj(t) := gj(x(t) ; y   (t))Pºj

Pº
j

(b) Forward sweep

Figure 5.5: General backward forward sweep.

At each outer iteration t, starting from the children of the root and propagating towards leaf nodes, y j can
be successively updated given vector x(t):

Forward sweep at t: y j(t) := g j

⇣
x(t); yP�j (t)

⌘
, j 2 N

as illustrated in Figure 5.5(b). The recursion is initialized at children i of the root bus 0 where P�i := {0}
so that yi(t) := gi (x(t); y0(t)) := gi (x(t); y0) for all outer iterations t, given y0.

Summary. Let x := (x j, j 2N) and y := (y j(t), j 2N). A pair (x,y) is a power flow solution if it satisfies
the following power flow equations that have a spatially recursive structure:

x j = f j

⇣
xT�j ; y

⌘
, j 2 N, y j = g j

⇣
x; yP�j

⌘
, j 2 N (5.26a)

T�i = /0 for all leaf nodes j y0 given (5.26b)

A BFS algorithm is a special Gauss-Seidel algorithm that computes a fixed point of (5.26) in which each
outer iteration t consists of two inner loops:

Backward sweep at t: x j(t) := f j

⇣
xT�j (t); y(t�1)

⌘
, j 2 N (5.27a)

Forward sweep at t: y j(t) := g j

⇣
x(t); yP�j (t)

⌘
, j 2 N (5.27b)

starting from the spatial initial conditions in (5.26b) and given temporal initial conditions y(0) and y0(t) =
y0 for all t. A more detailed description is in Algorithm 1. If the algorithm converges and the update
functions ( f ,g) are continuous then the limit point is a fixed point of (5.26) and therefore a power flow
solution. An advantage of BFS is that it does not need to calculate derivatives of power flow equations and
tends to converge quickly in practice.

The design of BFS boils down to the choice of ( f ,g) and the partitioning (x,y) that define the power
flow equations in (5.26). Given ( f ,g) with the spatial recursive structure in (5.26), the iterative algorithm is
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defined by the inner loops (5.27). These design choices are not unique and may have different convergence
properties. We will study two examples in Chapters 5.3.2 and 5.3.3. Most BFS algorithms compute line
currents or power flows in the backward sweep and voltages in the forward sweep. Typically the voltage at
the substation (the root of the tree) is specified and that the line current or power out of a leaf node is zero.
These two boundary conditions mean that the computation of line currents or powers must start from the
leaf nodes and propagate backward, while that of voltages must start from the root and propagate forward.

Algorithm 1: Backward forward sweep
Input: ( f j,T�j , j 2 N), (g j,P�j , j 2 N), y0 and y(0).
Output: a solution (x,y) of (5.26).

1. Initiatization:

• T�j := /0 for all leaf notes j.

• y0(t) y0 for t = 0,1, . . . .

• t 0.

2. while stopping criterion not met do

(a) t t +1;

(b) Backward sweep: for j starting from leaf nodes and iterating towards bus 0 do

x j(t)  f j

⇣
xT�j (t); y(t�1)

⌘
, j 2 N

(c) Forward sweep: for j starting from children of bus 0 and iterating towards leaf nodes do

y j(t)  g j

⇣
x(t); yP�j (t)

⌘
, j 2 N

3. Return: x := x(t), y := y(t).

Remark 5.1. 1. We assume for notational simplicity that each x j or y j is a scalar, but the description
remains unchanged if x j and y j are vectors and the update functions f j and g j are vector-valued; see
Example 5.4 below.

2. If ( f j,g j) in (5.26a) depend not only on (xT�j ,yP�j ), but also on (x j,y j), then the update functions
( f j,g j) in (5.27) become:

x j(t) = f j

⇣
xT�j (t),x j(t�1); y(t�1)

⌘
, j 2 N

y j(t) := g j

⇣
x(t); yP�j (t),y j(t�1)

⌘
, j 2 N

i.e., f j only needs its own state and the state xk at its child nodes, but not at upstream nodes and
similarly for g j.
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3. In most applications, T�j contains only the children of j and P�j contains only the parent of j.

In the next two subsections we illustrate this general BFS formulation using the complex form BFM
(5.19) of Chapter 5.2.1 and the DistFlow model (5.8) of Chapter 5.1.3. The convergence of these two BFS
algorithms will be analyzed in Chapter 7.6 as applications of general convergence analysis of iterative
algorithms for solving systems of equations. These equations often arise as optimality conditions (e.g. the
KKT condition) and we will therefore postpone the convergence analysis of iterative algorithms to after
we have introduced a basic theory of optimization.

5.3.2 Complex form BFM

We consider the complex form BFM (5.19) of Chapter 5.2.1 but assume that the network graph G := (N,E)
is radial and C5.1 holds (ys

jk = ys
k j). We can then adopt a directed graph G and need to involve line variables

such as
�
I jk,S jk

�
only in the direction of the line j! k, but not variables

�
Ik j,Sk j

�
in the opposite direction,

as explained at the beginning of Chapter 5.1.3. Without loss of generality we assume the down orientation
where each line points away from the root (and reference) bus 0.

With these assumptions the complex form BFM (5.19) reduces to

s j = Â
k: j⇠k

Vj IHjk, I jk = ỹ jkVj� ys
jkVk (5.28)

Suppose V0 and injections s j at all non-reference buses j 6= 0 are given. To solve (5.28) for (s0,Vj, I jk, j 2
N, j! k 2 E), instead of I jk, we will first compute the currents Is

jk through the series admittances ys
jk :

Is
jk := I jk � ym

jkVj

as well as Vj. All other variables in (5.19), such as the injection s0 and the sending-end branch flows
(I jk,S jk), can be computed once (Vj, Is

jk) for all j 2 N and all j! k 2 E are determined. Instead of Is
jk, we

can also design a BFS algorithm that computes the branch current I jk directly (Exercise 5.6).

To this end we will choose two sets of power flow equations in (Vj, Is
jk) that are spatially recursive.

For each bus j, let i( j) denote the parent of bus j (i.e., i := i( j) is the bus adjacent to j on the unique path
from bus 0 to j). By Ohm’s law we have Vj�Vk = zs

jkIs
jk where zs

jk := 1/ys
jk is the series impedance of

line ( j,k). Under assumption C5.1, the receiving-end current at bus j from i := i( j) is Is
i j� ym

jiVj.3 The
current injection at bus j is (s j/Vj)H. Hence KCL at each non-reference bus j is (see Figure 5.6)

✓
s j

Vj

◆H

+
�
Is
i j� ym

jiVj
�

= Â
k: j!k

⇣
Is

jk + ym
jkVj

⌘
, j 2 N

This is the basis for the BFS algorithm of [49] which adopts the power flow equations:

Is
i j = Â

k: j!k
Is

jk �
 ✓

s j

Vj

◆H

� ym
j jVj

!
=: f j, j 2 N (5.29a)

Vj = Vi � zs
i jI

s
i j =: g j, j 2 N (5.29b)

3Note that the received power at bus j from i( j) is Vj

⇣
Is
i j� ym

jiVj

⌘H
, not Vi

⇣
Is
i j� ym

jiVj

⌘H
.
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k

I sjk

I sij

Vi

Vj
sj

Figure 5.6: Spatially recursive structure of power flow equations (5.29).

where i := i( j) denotes the unique parent of j and ym
j j := ym

ji + Âk: j!k ym
jk is the total shunt admittance

incident on bus j. The boundary conditions are

Is
jk := 0 for all leaf nodes j, V0 is given , Vj(0) := V0, j 2 N (5.29c)

This defines the partitioning (x,y) and the update functions ( f ,g) in (5.26) (recall that the injections s j at
all non-reference buses j are given):

• x j := Is
i j for j 2 N are the complex line currents across the series impedance zs

i j from buses i to j.

The backward sweep functions f j are given by (5.29a). Let x :=
⇣

Is
i( j) j, j 2 N

⌘
= (Is

jk, j! k 2 E)

and f := ( f j, j 2 N).

• y j := Vj for j 2 N are the complex voltages at buses j. The forward sweep functions g j are given by
(5.29b). Let y :=

�
Vj, j 2 N

�
and g := (g j, j 2 N).

• The initialization is given by (5.29c).

The update function f is linear in x given y, but not jointly linear in (x,y). The function g is linear in (x,y).

The functions ( f ,g) are spatially recursive because f j depends on x :=
⇣

Is
i( j) j, j 2 N

⌘
only through xT�j

and g j depends on y :=
�
Vj, j 2 N

�
only through yP�j . This translates automatically into a BFS algorithm

defined by the inner loops (5.27) and Algorithm 1. Given voltages y(t�1), propagating (5.29a) backward
from the leaf nodes towards the root (bus 0) in the reverse breadth-first search order, the current Is

i j(t)
can be updated once all the currents Is

jk(t) in the previous level have been determined; see Figure 5.6.
In the forward direction, given currents x(t), propagating (5.29b) from the root towards the leaf nodes,
the voltage Vj(t) can be updated once its parent Vi(t) has been determined. The detailed instantiation of
Algorithm 1 for (5.29) is given in Algorithm 2. A stopping criterion for Algorithm 2 can be based on the
discrepancy between the given injections s j and the injections s j(t) implied by x(t) := (Is

jk(t), j! k 2 E)
and y(t) := (Vj(t), j 2 N) at the end of each outer iteration t. Motivated by (5.29a), let

s j(t) := Vj(t)

 

Â
k: j!k

Is
jk(t)� Is

i j(t)

!H

+ ymH

j j
��Vj(t)

��2 , j 2 N
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Algorithm 2: BFS for (5.29)
Input: voltage V0 and injections (si, i 2 N).
Output: currents x := (Is

jk, j! k 2 E) and voltages y :=
�
Vj, j 2 N

�
that are a solution of (5.29).

1. Initiatization:

• Is
jk(t) := 0 for all leaf nodes j for all iterations t = 1,2, . . . .

• Vj(0) := V0 at all buses j 2 N.

• V0(t) := V0 at bus j = 0 for all t = 0,1, . . . .

2. while stopping criterion not met (see below) do

(a) t t +1;

(b) Backward sweep: for j starting from leaf nodes and iterating towards bus 0 do

Is
i j(t)  Â

k: j!k
Is

jk(t) �
 ✓

s j

Vj(t�1)

◆H

� ym
j j Vj(t�1)

!
, i! j 2 E

where ym
j j := ym

ji +Âk: j⇠k ym
jk and i := i( j) is the unique parent of j.

(c) Forward sweep: for j starting from children of bus 0 and iterating towards leaf nodes do

Vj(t) = Vi(t) � zs
i j Is

i j(t), j 2 N

where zs
i j :=

⇣
ys

i j

⌘�1
and i := i( j) is the unique parent of j.

3. Return: x := (Is
jk(t), j! k 2 E), y :=

�
Vj(t), j 2 N

�
.
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Then a stopping criterion can be

ks(t)� sk2 := Â
j2N

�
s j(t)� s j

�2
< e

for a given tolerance e > 0.

5.3.3 DistFlow model

The BFS algorithm defined by (5.29) assumes all power injections s j at non-reference buses j are given
and computes Is

jk in the backward sweep. If some buses have their voltage magnitudes |Vj| and real power
p j given instead (i.e., these are PV buses), we can develop BFS algorithms based on the DistFlow model
of Chapter 5.1.3. The advantage of the DistFlow model is that the BFS algorithms need not compute the
voltage angles q j. Phase angles can be recovered using (5.11) after BFS has produced a solution. As in
Chapter 5.1.3, we assume zs

jk = zs
k j (assumption C5.1) and ym

jk = ym
k j = 0.

We will present two algorithms, one where V0 and (s j, j 2 N) are given, as in Chapter 5.3.2, and the
other where (V0,v j, j 2 N) and (p j, j 2 N) are given. In both cases only v0 is needed in BFS but the angle
\V0 ensure a unique angle vector q in (5.11) from the solution of BFS. It will be convenient to adopt a
graph orientation where every line k! j points towards the root bus 0.

Example 5.4 (Given (V0,s j)). Suppose the complex voltage V0 and (s j, j 2 N) for all non-reference buses
j are given. We will use the DistFlow equation (5.8) for the up orientation to compute

�
Sk j,`k j,k! j 2 E

�

and (v j, j 2 N).

The equations (5.8a) and (5.8c) lead to the following backward sweep to compute
�
Sk j,`k j,k! j

�
:

S ji = s j + Â
k:k! j

⇣
Sk j� zs

k j`k j

⌘
, j 2 N (5.30a)

` ji =
|S ji|2

v j
, j 2 N (5.30b)

where i := i( j) in (5.30a) denotes the parent node of j on the unique path between node 0 and node j. The
equation (5.8b) leads to a forward sweep to compute (v j, j 2 N):

v j = vi + 2Re
⇣

zsH
ji S ji

⌘
� |zs

ji|2` ji, j 2 N (5.30c)

The boundary conditions are

S0i := 0, Sk j := 0, `k j := 0 for leaf nodes j, V0 given , v j(0) := |V0|2, j 2 N (5.30d)

This defines the partitioning (x,y) and the update functions ( f ,g) in (5.26):

• x :=
�
S ji( j),` ji( j), j 2 N

�
. The backward sweep functions f := ( f j, j2N) are given by (5.30a)(5.30b).

• y := (v j, j 2 N). The forward sweep functions g := (g j, j 2 N) are given by (5.30c).
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• The initialization is given by (5.30d).

The update function f is linear in x given y, but not jointly linear in (x,y). The function g is linear in (x,y).
Since the functions ( f ,g) are spatially recursive, (5.30) translates automatically into a BFS algorithm
defined by the inner loops (5.27); see Algorithm 1.

Example 5.5 (Given (v j, p j)). Suppose the complex voltage V0, squared voltage magnitudes (v j, j 2 N)
and real power injections (p j, j 2 N) for all non-reference buses j are given. We will compute the reactive
power injections (q j, j 2 N) as well as the line flows (S ji, j ! i 2 E). All other variables, including
(p0,q0), can then be determined.

Eliminating `k j from (5.30a)(5.30b) we can compute S ji :=
�
Pji,Q ji

�
in a backward sweep and q j in a

forward sweep:

S ji = s j + Â
k:k! j

 
Sk j� zs

k j
|Sk j|2

vk

!
, j 2 N (5.31a)

q j = Q ji � Â
k:k! j

 
Qk j� xs

k j
|Sk j|2

vk

!
, j 2 N (5.31b)

where zs
k j =: rs

k j + ixs
k j. The boundary conditions are

S0i := 0, Sk j := 0 for leaf nodes j, v j given for j 2 N, q j(0) given for j 2 N (5.31c)

This defines the partitioning (x,y) and the update functions ( f ,g) in (5.26):

• x :=
�
S ji( j), j 2 N

�
. The backward sweep functions f := ( f j, j 2 N) are given by (5.31a).

• y := (q j, j 2 N). The forward sweep functions g := (g j, j 2 N) are given by (5.31b).

• The initialization is given by (5.31c).

Both functions f and g are nonlinear in x ( f is linear in and g is independent of y). Since the functions
( f ,g) are spatially recursive, (5.31) translates automatically into a BFS algorithm defined by the inner
loops (5.27); see Algorithm 1.

5.4 Linear power flow models

We now present linear approximations of BFM for radial networks when the line losses zs
jk` jk are small

compared with the line flows S jk. The linear models have two advantages. Given injections s, the volt-
ages vlin

j and line flows Slin
jk of the linearized model can be solved explicitly in terms of s. Moreover the

linear solution (vlin,Slin) provides bounds on line flows S and voltages v of nonlinear branch flow models
(5.7)(5.8).



Draft: PSA December 13, 2024 229

5.4.1 With shunt admittances

Recall the general branch flow model (5.1) in Chapter 5.1.2 for a radial network with N + 1 buses and M
lines where shunt admittances (ym

jk,y
m
k j) may be nonzero and ys

jk and ys
k j may be unequal (i.e., assumption

C5.1 may not hold). A linear approximation is the following model obtained from (5.1) by setting ` jk =
`k j = 0 in (5.1):

s j = Â
k: j⇠k

S jk, j 2 N (5.32a)

|a jk|2v j� vk = 2Re
⇣

a jk z̄s
jkS jk

⌘
, ( j,k) 2 E (5.32b)

|ak j|2vk� v j = 2Re
⇣

ak j z̄s
k jSk j

⌘
, ( j,k) 2 E (5.32c)

ā jkv j � z̄s
jkS jk =

⇣
āk jvk � z̄s

k jSk j

⌘H
, ( j,k) 2 E (5.32d)

It is a set of 2(N + 1) + 4M = 6N + 2 linear real equations in 3(N + 1) + 4M = 7N + 3 real variables
x := (s j,v j,S jk,Sk j, j 2 N,( j,k) 2 E). Given 2N + 1 variables, e.g., (v0, p j,q j, j 2 N), the linear power
flow problem solves the remaining 5N + 2 variables from the set of 6N + 2 linear equations (5.32). Even
though there are more equations than variables these equations are typically linearly dependent, as the next
example shows.

Example 5.6 (Two buses connected by a transformer). For the two-bus network in Example 5.1, S jk = s j
and Sk j = sk. Hence the linear approximation (5.32) is a set of 4 equations in 6 variables (s,v):

v j� vk

.
|K|2 = 2Re

⇣
(z̃s)H s j

⌘

|ã/K|2 vk� v j = 2Re
⇣

ã (z̃s)H sk

⌘

v j� (z̃s)H s j =
�
ã/|K|2

�
vk� z̃ss̄k

where K is the voltage gain (possibly complex), ã := (1 + z̃sỹm) and z̃s and ỹm are the leakage and shunt
admittance of the transformer. Let r̃+ ix̃ := z̃s denote the resistance and reactance of the leakage impedance
of the transformer. Then this system of linear equations can be written as

2

664

1 1/|K|2
�1 |ã/K|2
1 �Re(ã)/|K|2
0 �Im(ã)/|K|2

3

775


v j
vk

�
=

2

664

2r̃ 2x̃ 0 0
0 0 2Re

�
ãHz̃s� 2Im

�
ãHz̃s�

r̃ x̃ �r̃ �x̃
�x̃ r̃ �x̃ r̃

3

775

2

664

p j
q j
pk
qk

3

775

We now demonstrate that the system of linear equations are typically linearly dependent.

Suppose ỹm = 0 so that ã = 1. Suppose further that (pk,qk,v j) are given and we are to solve
(p j,q j,vk). Then (p j,q j,vk) satisfies four equations (only three of which are linearly independent):

2

664

2r̃ 2x̃ �1/|K|2
0 0 1/|K|2
r̃ x̃ 1/|K|2
�x̃ r̃ 1/|K|2

3

775

| {z }
A

2

4
p j
q j
vk

3

5 =

2

664

0 0 1
2r̃ 2x̃ 1
r̃ x̃ 1
x̃ �r̃ 0

3

775

2

4
pk
qk
v j

3

5
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Elementary row operation reduces the matrix A to the following rank-3 matrix:
2

664

(r̃/x̃)(r̃2 + x̃2) 0 0
0 r̃2 + x̃2 0
0 0 1/|K|2
0 0 0

3

775

5.4.2 Without shunt admittances

Suppose ys
jk = ys

k j (assumption C5.1) and ym
jk = ym

k j = 0. Then we can consider a directed graph with an
arbitrary orientation. To simplify notation we sometimes omit the superscript and write y jk and z jk for ys

jk
and zs

jk respectively.

The linear approximation from [47] is obtained by setting ` jk := 0 in the DistFlow equation (5.3) of
Chapter 5.1.3:

Â
k: j!k

S jk = Â
i:i! j

Si j + s j, j 2 N (5.33a)

v j� vk = 2Re
⇣

z̄s
jkS jk

⌘
, j! k 2 E (5.33b)

The linear model (5.33) can also be derived from (5.32) by setting a jk = ak j = 1 (i.e., ym
jk = ym

k j = 0)
and ys

jk = ys
k j in (5.32) so that Sk j = �S jk and the cycle condition (5.32d) becomes (5.33b). We can also

write (5.33a)(5.33b) in vector form in terms of the bus-by-line incidence matrix C defined in (5.4). Let
Dr := diag(rl, l 2 E)� 0 and Dx := diag(xl, l 2 E)� 0 be the N⇥N positive definite diagonal matrices of
line resistances and reactances. Let s := (s j, j 2 N), v := (v j, j 2 N) and S := (Sl, l 2 E). Then the linear
model in vector form is:

s = C S, CTv = 2(DrP + DxQ) (5.33c)

The matrix C is of rank N since the graph is connected, i.e., its columns are linearly independent. The
null space of CT is span(1). Any N⇥N submatrix of C obtained by removing any row of C is invertible
(Theorem 20.36 of Appendix 20.2).

5.4.3 Linear solution and its properties

Suppose the reference bus voltage v0 and the injections ŝ :=
�
s j, j 2 N

�
at other buses are given.

5.4.3.1 Linear solution

The linear model (5.33) can be solved explicitly for non-reference bus voltages v̂ :=
�
v j, j 2 N

�
and line

flows S, from which s0 can also be determined. Recall the decomposition in (4.22a) of the incidence matrix
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C into the row cT0 corresponding to bus 0 and the remaining reduced incidence matrix Ĉ, reproduced here:

C =:


cT0
Ĉ

�

Then the linear model (5.33) when (v0, p j,q j, j 2 N) are given is:

ŝ = Ĉ S, s0 = cT0 S (5.34a)
v0 c0 + ĈTv̂ = 2(DrP + DxQ) (5.34b)

Let P j denote the unique path from bus 0 to bus j, including both buses 0 and j. We use “l 2 P j” to refer
to a directed line l in the path P j that points away from bus 0 and “�l 2 P j” to refer to a directed line l in
P j that points towards bus 0. Theorem 4.10 shows that the reduced incidence matrix Ĉ is nonsingular and

⇥
Ĉ�1⇤

l j =

8
<

:

�1 l 2 P j
1 �l 2 P j
0 otherwise

, Ĉ�Tc0 = �1

where Ĉ�T :=
�
ĈT
��1. Then (5.34) can be solved using Theorem 4.10.

Theorem 5.3 (Linear solution). Suppose the network graph G is a (connected) tree, assumption C5.1 holds
and ym

jk = ym
k j = 0. Fix any v0 and ŝ = ( p̂, q̂) 2 R

2N . Then

1. The solution to (5.34) is

S = Ĉ�1ŝ, s0 = cT0 Ĉ�1ŝ (5.35a)
v̂ = v0 1 + 2(Rp̂ + Xq̂) (5.35b)

where R := Ĉ�TDrĈ�1 and X := Ĉ�TDxĈ�1.

2. R� 0 and X � 0 are positive definite matrices and

R jk = Â
l2P j\Pk

rl, Xjk = Â
l2P j\Pk

xl (5.35c)

The solution (5.35a)(5.35b) can be obtained by multiplying both sides of (5.34) by Ĉ�1. The positive
definiteness of R and X follows from Dr � 0 and Dx � 0. The explicit expressions in (5.35c) follow from
Theorem 4.10 and have a simple interpretation: the ( j,k) entries of R and X are the total resistance and
reactance respectively in the common segment of the paths from bus 0 to buses j and k. If we interpret
L̂ := Ĉ(D�1

r )ĈT as a reduced Laplacian matrix, then R = L̂�1 (similarly for X).

5.4.3.2 Analytical properties

We now study some analytical properties of the linear model (5.33). These properties hold for general
graph orientations but are particularly transparent in two special orientations.
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Down orientation: lines point away from bus 0. The linear model (5.33) reduces to:

Â
k: j!k

Slin
jk = Slin

i j + s j, j 2 N (5.36a)

vlin
j � vlin

k = 2Re
⇣

zHjkSlin
jk

⌘
, j! k 2 E (5.36b)

where bus i := i( j) in (5.36a) denotes the bus adjacent to j on the unique path from bus 0 to bus j. The
boundary condition is: Slin

i0 := 0 in (5.36a) when j = 0 and Slin
jk = 0 in (5.36a) when j is a leaf node.

Up orientation: lines point towards bus 0. The linear model (5.33) reduces to:

Slin
ji = Â

k:k! j
Slin

k j + s j, j 2 N (5.37a)

vlin
k � vlin

j = 2Re
⇣

zHk jS
lin
k j

⌘
, k! j 2 E (5.37b)

where i := i( j) in (5.37a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by Slin

ji = 0 in (5.37a) when j = 0 and Slin
k j = 0,`k j = 0 in (5.37a) when

j is a leaf node.

Denote by T j the subtree rooted at bus j, including j. We write “l 2 T j” to mean either a bus l or a
line l in the subtree T j, depending on the context. If there is danger of confusion we write “( j,k) 2 T j” to
mean line l := ( j,k) in T j. The following corollary is proved in Exercise 5.8.

Corollary 5.4 (Linear solutions). Under the assumptions of Theorem 5.3 let (vlin,Slin) 2 R
N+2M be the

solution of (5.36) and (vlin,Slin
) 2 R

N+2M the solution of (5.37). Then

1. For (i, j) 2 E

Slin
i j = � Â

k2T j

sk, i! j

Slin
ji = Â

k2T j

sk, j! i

Hence Slin
i j =�Slin

ji .

2. For j 2 N, vlin
j = vlin

j = v0 +2Âk
�
R jk pk + Xjkqk

�
where R jk and Xjk are given in (5.35c).

Corollary 5.4 says that, on each line (i, j) 2 E, the power flow Si j from i to j, or the power flow S ji in
the opposite direction, equals the total load �Âk2T j sk in the subtree rooted at node j. These linear line
flows neglect line losses and underestimate the required power to supply these loads. With zero line loss,
we have Slin

i j =�Slin
ji . Since all entries of R and X are nonnegative, both real and reactive power injections

(p,q) always increase voltage magnitudes v according to the linear approximation.

This is not the case for solutions of nonlinear power flow equations (5.7) or (5.8). Indeed fix any v0
and injections ŝ 2 R

2N at non-reference buses in N. We can recurse on the power flow equations (5.7),
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starting from the leaf nodes for Si j and bus 0 for v j, to show that any solution (v,`,S) of (5.7) must satisfy
(Exercise 5.9):

Si j = � Â
k2T j

sk +

0

@zi j`i j + Â
l2T j

zl`l

1

A (5.38a)

v j = v0 � Â
l2P j

⇣
2Re

⇣
zHl Sl

⌘
� |zl|2`l

⌘
(5.38b)

Similarly we can recurse on (5.8) to show that

S ji = Â
k2T j

sk � Â
l2T j

zl`l (5.38c)

v j = v0 + Â
l2P j

⇣
2Re

⇣
zHl Sl

⌘
� |zl|2`l

⌘
(5.38d)

Summing (5.38a) and (5.38c) shows that

Si j + S ji = zi j`i j

as we saw earlier in (5.2). Note that given v0 and s 2 R
2N , Corollary 5.4 provides the unique solution

(vlin,Slin) to (5.36) (or unique solution (vlin,Slin
) to (5.37)). For nonlinear model (5.7) or (5.8), the solu-

tions (v,`,S) or (v,s,S) may not be unique. Any nonlinear solution however must satisfy (5.38).

It is proved in Exercise 5.8 that, for j 2 N, the linear solutions satisfy:

vlin
j = v0 � Â

l2P j

2Re
⇣

zHl Slin
l

⌘
(5.39a)

vlin
j = v0 + Â

l2P j

2Re
⇣

zHl Slin
l

⌘
(5.39b)

Comparing these relations and (5.38) leads to bounds on the nonlinear solutions in the following corollary
(proved in Exercise 5.10). Recall that, by definition, x is a power flow solution only if v � 0 and ` � 0
componentwise (assuming zl = (rl,xl) > 0 for any line l 2 E.).

Corollary 5.5 (Bounds on nonlinear solutions). Suppose the network graph G is a (connected) tree, as-
sumption C5.1 holds and ym

jk = ym
k j = 0. Fix any v0 and ŝ 2 R

2N . Let (v,`,S) and (v,`,S) in R
N+3M be any

(possibly nonunique) solutions of (5.7) and (5.8) respectively. Let (vlin,Slin) and (vlin,Slin
) in RN+2M be

the unique solutions of their linearizations (5.36) and (5.37) respectively. Then

1. For i! j 2 E, Si j � Slin
i j with equality if only if `i j and all `kl in T j are zero.

2. For j! i 2 E, S ji  Slin
ji with equality if and only if all `kl in T j are zero.

3. For j 2 N, v j = v j  vlin
j = vlin

j .
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Remark 5.2. 1. Up orientation. While it is easy to prove v j  vlin
j from (5.38d) and (5.39b), it does

not seem easy to prove v j  vlin
j directly, except by relating the variables (v j,vlin

j ) to (v j,vlin
j ) in the

opposite direction. This is an advantage of the models (5.8) and (5.37) in the up orientation.

2. Bounds for SOCP relaxation. The bounds in Corollary 5.5 do not depend on the quadratic equalities
(5.7c) and (5.8c) as long as ` jk � 0. In particular the bounds hold if the equalities are relaxed to
inequalities v j` jk � |S jk|2. These bounds are used in Chapter ?? in a sufficient condition for exact
SOCP relaxation of optimal power flow problems for radial networks.

3. Linear approximation. For radial networks, the linear approximation (5.33) of BFM has two advan-
tages over the (linear) DC approximation of BIM studied in Chapter 4.6.2. First the linear models
(5.36) and (5.37) with special graph orientations have a recursive structure that leads to simple
bounds on power flow quantities. Second DC approximation assumes r jk = 0, fixes voltage mag-
nitudes, and ignores reactive power, whereas (5.33) does not. This is important for distribution
systems where r jk are not negligible, voltages can fluctuate significantly and reactive powers are
used to regulate them. On the other hand (5.33), (5.36) and (5.37) are applicable only to radial
networks whereas DC approximation applies to meshed networks as well.

5.5 Bibliographical notes

A branch flow model, called the DistFlow equations, is proposed in [46, 47] for radial networks. Its
key feature is that it does not involve phase angles of voltage and current phasors. This is extended
to general meshed network in [50] by introducing a cycle condition. All of these models assume zero
shunt admittances on the lines. Shunt admittances of the lines are added to the branch flow model in
[51]. The main difference of the model (5.1) from the model in [46, 47, 50] is the use of undirected
rather than directed graph when shunt elements are included so that line currents and power flows are
defined in both directions. The equivalence of BFM and bus injection model (BIM) is proved in [52].
The equivalence of DistFlow to BFM in complex form and hence equivalent to BIM follows from [50,
Theorems 2, 4]. Theorem 5.1 is from [53]. For BFM and SOCP relaxations when a radial network contain
ideal transformers and multiple lines between two buses, see [54].

The linearized model (5.33) is first proposed in [47] and called the Simplified DistFlow equations.
The paper also states an explicit solution for the squared voltage magnitude vi as an affine function of the
injections s j whose coefficients xi j are the total impedances on the common paths P�i and P�j from the root
(bus 0) to buses i and j respectively. This is the same solution as that in Theorem 5.3. The properties in
Theorem 5.3 and Corollary 5.5 of the linear model seem to have been independently observed in several
papers, e.g., [55, 56, 57, 58, 36] where vi� v j is sometimes approximated by 2(|Vi|� |Vj|) since |Vi| ⇡ 1
pu. Our discussion on the local volt/var control algorithm follows [56, 57].

Backward forward sweep (edit later). Power flow solutions for general networks are mostly based
on Newton-Raphson and its variants, or more recently, interior-point methods. Another approach has
been developed for radial networks, both single-phase and three-phase networks, that exploits their tree
structure. The idea of backward forward sweep (BFS) is first proposed in [61] for three-phase distribu-
tion systems. Early examples of BFS algorithms for three-phase radial networks are designed in [62][63,



Draft: PSA December 13, 2024 235

Chapter 10.1.3]. The BFS method for single-phase networks described in Chapter 5.3.2 is from [49]. It is
extended in [64] to allow PV buses by computing line power flows S jk instead of currents Is

jk. Both algo-
rithms (with extensions for meshed networks) were developed for weakly meshed transmission systems
as well as distribution systems. Another variant of BFS, proposed in [?], calculates voltages in both for-
ward and backward iterations in linear feeders with voltage-dependent loads. The BFS algorithm in [49]
is extended in [65] from single-phase to three-phase networks, and in [?] to four-wire neutral-grounded
networks. In [?], three-phase voltages and line currents are calculated with generalized line models that
incorporate transformers and constant impedance loads. Transformers of different configurations have
been included in BFS through modified augmented nodal analysis [?]. Some of these works are briefly
discussed in [66]. BFS algorithms tend to have better convergence properties than general algorithms such
as Newton-Raphson. Simulation results in [67] suggest however that Newton-Raphson converges in a
smaller number of iterations.

The solution approach in the original DistFlow paper [47] uses one-time backward sweep to express all
variables in terms of the power injections at the feeder head and all branch points followed by a Newton-
Raphson algorithm to solve for these injections. The existence and uniqueness of solutions are studied in
[68]. By exploiting the approximate sparsity of the Jacobian matrix in [47], approximate fast decoupled
methods are developed and their convergence properties analyzed in [69]. These methods are extended to
three-phase radial networks in [67]. The existence and uniqueness of power flow solutions of three-phase
DistFlow model is analyzed in [70].

5.6 Problems

Chapter 5.1.

Exercise 5.1 (Line angles b (x)). Justify the definition of line angles in (5.9) using (5.19b)(5.19c).

Exercise 5.2 (Incidence matrix C). Consider the (N + 1)⇥M incidence matrix C of a (connected) radial
network defined by:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

Show that C has rank N = M, the null space of CT is span(1) and its pseudo-inverse
�
CT
�†

= C
�
CTC

��1.
(See Theorem 4.10 for the inverse of the reduced incidence matrix Ĉ.)

Exercise 5.3 (Line loss). Consider a radial network where lines have zero shunt admittances. Show that,
under assumption C5.1, (5.1) leads to:

S jk + Sk j = zs
jk` jk = zs

jk`k j
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Exercise 5.4 (DistFlow equations). Suppose assumption C5.1 holds and ym
jk = ym

k j = 0 for all lines ( j,k) 2
E. Show that Xtree ⌘ Xdf (these sets are defined in Chapter 5.2.2)

Exercise 5.5 (Graph orientation). Prove (5.6) under assumption C5.1, i.e., x satisfies (5.3) if and only if
x̂ := g(x) satisfies (5.5)

Chapter 5.3

Exercise 5.6 (Backward forward sweep). The BFS algorithm in Chapter 5.3.2, based on the branch flow
model (5.19) in complex form, computes (Vj, Is

jk).

1. Show that all other variables in (5.19) can be computed once (Vj, Is
jk) for all j 2 N and all j! k 2 E

are determined.

2. Design a BFS algorithm that solves the same power flow equations under the same assumptions but
computes the sending-end currents I jk directly, instead of Is

jk over the series admittances, as well as
the voltage Vj.

Exercise 5.7 (Backward forward sweep). Consider a 2-bus network and prove a sufficient condition for
BFS to converge under assumption C5.1.

Chapter 5.4. Assumption C5.1 and ym
jk = ym

k j = 0 are assumed in Chapter 5.4 for linear DistFlow models
and hence for problems in this section.

Exercise 5.8 (Linear solution). Prove Corollary 5.4. Also show that for j 2 N

vlin
j = v0 � Â

l2P j

2Re
⇣

zHl Slin
l

⌘
(5.40a)

vlin
j = v0 + Â

l2P j

2Re
⇣

zHl Slin
l

⌘
(5.40b)

Hence vlin
j = vlin

j . (Hint: Use (5.35) or induction.)

Exercise 5.9 (Nonlinear recursion). Derive (5.38) from the DistFlow equations (5.7) and (5.8). (Hint: Use
induction.)

Exercise 5.10 (Bounds). Prove Corollary 5.5.



Chapter 6

Example applications

In this chapter we illustrate the network models of Chapters 4 and 5 in several applications. The emphasis
is on the use of structural properties of these models to attain conceptual understanding of applications or
design solutions with performance guarantees, not on the scalable computation of these models. To make
this chapter self-contained we summarize the models used in each application.

6.1 Volt/var control on radial networks

In this section we apply the linear DistFlow model (5.33) or (5.34) of Chapter 5.4 and Theorem 4.10
of Chapter 4.2.6 for voltage control on radial networks. The expression (4.24) for Ẑ = Ŷ�1 in Theorem
4.10 is useful for various power system applications on radial networks. As explained in Remark 4.6 this
structure originates from the inverse Ĉ�1 in (4.23) of the reduced incidence matrix Ĉ of a tree graph and
is independent of the “weight matrix” Ds

y as long as Ds
y is nonsingular. In many applications, Ds

y is not
only nonsingular but also positive or negative definite. In this section we apply this result to the linear
DistFlow model of Chapter 5.4.2 for voltage control (or Theorem 5.3 that specializes Theorem 4.10 to
linear DistFlow model). In Chapter 6.2 we apply Theorem 4.10 to a linearized polar-form power flow
model for topology identification.

6.1.1 Linear DistFlow model

Consider a radial network G := (N,E) with N + 1 buses and M lines, modeled by the linear DistFlow
equations (5.33) with a given v0, or equivalently, by (5.34) of Chapter 5.4.3.1 reproduced here:

s̃ = Ĉ S, v0 c0 + ĈTv = 2(DrP + DxQ) (6.1)

where (s̃,v) here denote the real and reactive net injections and squared voltage magnitudes at non-
reference buses, S := (P,Q) are real and reactive line flows, CT := [c0 ĈT] is the transpose of the node-
by-line incidence matrix C, in particular Ĉ is the N⇥N reduced incidence matrix corresponding to non-
reference buses, and Dr := diag(rl, l 2 E), Dx := diag(xl, l 2 E) are diagonal matrices of line resistances

237
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and reactances respectively. As in Chapter 5.4.2, we assume throughout this section without stating it ex-
plicitly that the network graph G is a (connected) tree, ys

jk = ys
k j (assumption C5.1) and ym

jk = ym
k j = 0. To

simplify notation, we will use (p,q) 2R
2N and v 2R

N in this section to denote variables at non-reference
buses (instead of ŝ, v̂ as in Chapter 5.4).

We assume at each bus j there is a fixed and given active and reactive load s0
j :=

⇣
p0

j ,q
0
j

⌘
. In addition

there is possibly an inverter on bus j with a fixed active power injection p j and an adaptable reactive
power injection q j. For example, p j may represent solar generation. Hence the net injections s̃ in (6.1)
are s̃ = (p� p0,q� q0). The problem of volt/var control is to adapt the reactive outputs q j in order to
stabilize voltages on the network. To this end, since the network is radial, the reduced incidence matrix Ĉ
is nonsingular and we can apply Theorem 5.3 of Chapter 5.4.3.1 to solve (6.1) and express v in terms of
the net injections:

v = v0 1 + 2
�
R(p� p0) + X(q�q0)

�

where R := Ĉ�TDrĈ�1 and X := Ĉ�TDxĈ�1 are positive definite. We write v := v(q) explicitly as a
function of the control q:

v(q) = 2Xq + ṽ (6.2)

where ṽ := v0 1+2R
�

p� p0��2Xq0 does not depend on q.

A common model of inverters constrains the reactive power q j to the sector {q j : p2
j + q2

j  s2} with
a power factor limit �f j  tan�1(q j/p j)  f j  p/2. Equivalently the control q j is constrained to the
sector Uj determined by the given active power p̃ j:

Uj :=
n

q j : q j  q j  q j

o
, j = 1, . . . ,N (6.3)

where q j := min
n

p j tanf j,
q

s2� p2
j

o
and q j := max

n
�p j tanf j, �

q
s2� p2

j

o
. Let U := U1⇥ · · ·⇥

UN . If the reactive power q j of the inverter at bus j is fixed and not controllable, this can be modeled by
setting q j = q j = q j. If there is no inverter at bus j, then we set p j = q j = q j := 0.

6.1.2 Decentralized control: convergence and optimality

Let vref be a given vector of reference voltages at buses j > 0. Our goal is to choose control q 2U to drive
voltages towards vref. We require our control to be local, i.e., q j(t + 1) depends only on voltage v j(t) at
bus j, not voltages vk(t) at other buses k 6= j, and memoryless, i.e., q j(t +1) depends only on v j(t) but not
v j(s),s < t. In particular, q j is a function only of voltage discrepancy v j(t)� vref

j , of the form

q j(t +1) =
h
u j

⇣
v j(t)� vref

j

⌘i

Uj
, j = 1, . . . ,N

where v j(t) is the measured local voltage, u j : R! R is a control function that maps a voltage deviation
v j(t)� vref

j into a potential reactive power setting, [a]Uj := max
n

q j,min
�

a,q j
 o

is the projection onto
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Uj. Such a local memoryless control is simple to implement as it requires no communications among
controllers at different buses.

The local volt/var control problem in our formulation boils down to the design of the control function
u j. Many functions u j have been proposed and analyzed in the literature. We now present such a control
from [56, 57]. From Theorem 5.3,

∂v j

∂q j
= 2Xj j = 2 Â

l2P j

xl > 0

Therefore it is natural to choose a control function u j that is nonincreasing in voltage discrepancy v j(t)�
vref

j . An example u j is shown in Figure 6.1(a).

−α

−αδ
2− δ

2

uj (vj)

vj

(a) Piecewise linear control u j(v j)

uj−1(qj)

qj

1
α−

1
α−

δ
2

δ
2−

(b) Inverse u�1
j (q j)

cj (qj)

qj

(c) Implied cost c j(q j)

Figure 6.1: Piecewise linear control with a deadband (�d/2,d/2).

Closed-loop behavior. Consider the closed-loop system under a local control u j. Suppose the voltages
evolve according to (6.2), i.e., suppose the measured voltages at time t is v j(t) = v j(q(t)). Then the closed-
loop system is a discrete-time dynamical system defined by the control function u j : R!R followed by a
projection onto Uj:

q j(t +1) =
h
u j

⇣
v j(q(t))� vref

j

⌘i

Uj
, j = 1, . . . ,N (6.4)

where v j(q) is given by (6.2). If q⇤ =
⇥
u
�
v(q⇤)� vref�⇤

U then q⇤ is called a fixed point, or an equilibrium
point, of (6.4).

We now analyze the convergence and optimality of the dynamical system (6.4) for a class of u j that
satisfies the following assumptions:

C5.1: The control functions u j are differentiable on R and there exist a j such that
���u0j(v j)

��� a j for
all v j 2 R.

C5.2: The control functions ui are strictly decreasing on R.
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The differentiability assumption in C5.1 can be relaxed to allow control functions with a deadband and
saturation as shown in Figure 6.1(a) (see [57]). Let A := diag(a j, j 2 N).

Theorem 6.1 (Convergence). Suppose assumption C5.1 holds. If the largest singular value smax(AX) <
1/2 then there exists a unique equilibrium point q⇤ 2 U and the volt/var control (6.4) converges to q⇤

geometrically, i.e.,

kq(t)�q⇤k  b t kq(0)�q⇤k ! 0

for some b 2 [0,1).

Proof. Applying the mean value theorem to the control function u j(v j) we have

u j(v j)�u j(v̂ j) = u0j(w)(v j� v̂ j)

where w = lv j +(1�l )v̂ j for some l 2 [0,1]. Therefore

ku(v)�u(v̂)k2
2 = Â

j

��u j(v j)�u j(v̂ j)
��2  Â

j

��a j(v j� v̂ j)
��2 = kA(v� v̂)k2

2

where the inequality follows from the mean value theorem and assumption C5.1. Hence ku(v)�u(v̂)k2 
kA(v� v̂)k2. Applying the chain rule to Av = Av(q) as a vector-valued function of q we have

∂Av
∂q

(q) = A
∂v
∂q

= 2AX

Therefore
���u
⇣

v(q)� vref
⌘
� u

⇣
v(q̂)� vref

⌘���
2
 kAv(q)�Av(q̂)k2  k2AXk2 kq� q̂k2

where the first inequality follows from ku(v)� u(v̂)k2  kA(v� v̂)k2. The second inequality follows
from the mean value Theorem 20.34 for vectored-valued functions in Appendix 20.1.10 that says that if
f : Rn! R

n is continuously differentiable then

k f (y)� f (x)k 
����

∂ f
∂x

(z)
���� ky� xk

for any induced matrix norm k ·k where z := µx+(1�µ)y for some µ 2 [0,1]. Since the induced matrix
norm kMk2 = smax(M) (Exercise 6.1) we have

���u
⇣

v(q)� vref
⌘
� u

⇣
v(q̂)� vref

⌘���
2
 2smax(AX) kq� q̂k2

Therefore the control function u
�
v(q)� vref� as a function of q is a contraction when smax(AX) < 1/2.

Since projection onto U is nonexpansive by the Projection Theorem 7.7 of Chapter 7.2.3, the function
on the right-hand side of (6.4), as a function of q, is a contraction. The theorem then follows from the
Contraction Mapping Theorem 7.30 of Chapter 7.6.1.
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We next show that the equilibrium point q⇤ guaranteed by Theorem 6.1 under assumption C5.1 im-
plicitly optimizes a cost function implied by the control function u. Under assumption C5.2, the inverse
functions u�1

j exist and are strictly decreasing on R. We hence can define c j : R! R by

c j(q j) := �
Z q j

0
u�1

j (q̂ j)dq̂ j, j 2 N

Moreover c j is strictly convex since c00j (q j) =�1/u0j(q j) > 0 under assumptions C5.1 and C5.2. Consider
the optimization problem

min
q2U Â

j
c j(q j) + qTXq + qTDṽ (6.5)

where Dṽ := ṽ� vref.

Theorem 6.2 (Optimality). Suppose assumptions C5.1 and C5.2 hold. Then the unique equilibrium point
q⇤ 2U of (6.4) is the unique minimizer of (6.5).

Proof. Let C(q) := Â j c j(q j) + qTXq + qTDṽ denote the objective function of (6.5). Since X is positive
definite and c j are strictly convex, C(q) is strictly convex (and hence also continuous on R

N). This implies,
in particular, that if a minimizer of (6.5) exists (e.g., if U is bounded), then it is unique. It therefore suffices
to show that q⇤ is an equilibrium point of (6.4) if and only if it is a minimizer of (6.5).

Since (6.5) is a convex problem, q⇤ 2U is optimal if and only if

(—C(q⇤))T (q�q⇤) � 0 8q 2U

Since each Uj in (6.3) is a box constraint, this means the optimal q⇤ 2U is optimal if and only if (Exercise
6.2)

q⇤j 2 (q j,q j) only if [—C(q⇤)] j = 0 (6.6a)

q⇤j = q j if [—C(q⇤)] j > 0 (6.6b)

q⇤j = q j if [—C(q⇤)] j < 0 (6.6c)

We have from (6.2) and (6.4)

—C(q⇤) = —c(q⇤) + 2Xq⇤ + Dṽ = —c(q⇤) +
⇣

v(q⇤) � vref
⌘

where —c(q⇤) = (c0j(q
⇤
j) =�u�1

j (q⇤j), i 2 N). Therefore

[—C(q⇤)] j = �u�1
j (q⇤j) +

⇣
v j(q⇤j) � vref

j

⌘

Since u j(v j) is strictly decreasing in v j we have

[—C(q⇤)] j = 0 () u j

⇣
v j(q⇤j) � vref

j

⌘
= q⇤j

[—C(q⇤)] j > 0 () u j

⇣
v j(q⇤j) � vref

j

⌘
< q⇤j

[—C(q⇤)] j < 0 () u j

⇣
v j(q⇤j) � vref

j

⌘
> q⇤j

Substituting this into (6.6) shows that q⇤ =
⇥
u
�
v(q⇤)� vref�⇤

U , i.e., q⇤ is the unique equilibrium point of
(6.4). This shows that q⇤ is an equilibrium point of (6.4) if and only if it is a minimizer of (6.5).



242 Draft: PSA December 13, 2024

Remark 6.1. Theorem 6.2 shows that the control function in (6.4) implies an objective function C(q) in
(6.5) that an equilibrium implicitly optimizes. This is often referred to as reverse engineering. One can
also start by designing an objective function C(q) and deriving a control function as an iterative algorithm
to solve the optimization problem (6.5). This is referred to as forward engineering; see e.g. [56, 57]. Often
these algorithms require some communications among controllers at different buses but are guaranteed to
converge under less stringent requirement than that in Theorem 6.1.

The formulation here imposes limits [q,q] on the control q. It is pointed out in [71] that local memo-
ryless control such as (6.4) may not be able to stabilize the equilibrium voltages v(q⇤) to within an apriori
range [v,v] (see Exercise 6.4). Alternative formulation imposes apriori limits [v,v] on equilibrium voltages
v(q⇤) but relaxes limits on the control q using control laws with internal state, see e.g. [71]

6.2 Tree topology identification

In this section we illustrate the use of polar form power flow equation (4.27) of Chapter 4.3.2 and Theorem
4.10 of Chapter 4.2.6 for topology identification of radial networks from measurements of nodal voltage
magnitudes. A distribution network typically consists of a meshed network with sectionalizing switches
on some of the lines. At any time the switches are configured so that the operational network is a spanning
tree with the substation at its root. We assume the system operator knows the topology of the meshed
network, but may not know the switch configurations and hence the operational network. We first derive
a linearized model using the polar form power flow equation (4.27). We then present two methods to
identify the operational network, one making use of statistical properties of random voltage measurements
and the other uses a graphical-model method.

6.2.1 Linearized polar-form AC model

Consider a radial network represented by a (connected) tree G := (N,E) with N +1 buses and M = N lines
and modeled by the polar-form power flow equations (4.27) reproduced here:

p j = Â
k:k⇠ j

⇣
gs

jk +gm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk cosq jk +bs
jk sinq jk

⌘
, j 2 N (6.7a)

q j = � Â
k:k⇠ j

⇣
bs

jk +bm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk sinq jk�bs
jk cosq jk

⌘
, j 2 N (6.7b)

We will linearize (6.7) under the following assumptions:

C4.3: The series admittances ys
jk = ys

k j = gs
jk + ibs

jk (Assumption C4.1) and the shunt admittances
ym

jk = ym
k j = 0 for all lines ( j,k) 2 E.

C4.4: gs
jk > 0 and bs

jk < 0 for all ( j,k) 2 E.

Consider the “flat voltage profile” where V flat
j = µeiq for all j 2 N, so that the resulting power injection is�

pflat,qflat�= (0,0). Abuse notation and now let the variables (q , |V |) denote perturbations around the flat
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voltage profile V flat = (µeiq , j 2 N) and (p,q) denote the perturbations around
�

pflat,qflat� = (0,0). Let
|V̂ | := (|Vj|, j 2N) and (p̂, q̂) := (p j,q j, j 2N) denote the (perturbations of the) nodal voltage magnitudes
and the (perturbations of the) power injections respectively at non-reference buses. Let Ĉ be the N⇥N
reduced incidence matrix obtained from the node-by-line incidence matrix C by removing the first row of
C corresponding to the reference bus 0. Partition the admittance matrix Y into the reference bus 0 and non-

reference buses, Y =


Y00 yT0
y0 Ŷ

�
where Ŷ := ĈDs

yĈT is the reduced admittance matrix. Let ĝ0 := Re(y0)

and b̂0 := Im(y0) be the real and imaginary parts respectively of the first non-reference column of Y .

Then it is shown in Exercise 6.5 that the linearization of the polar form power flow equation (6.7) yields
the following linear model for how |V̂ | depends on the power injections (p̂, q̂) at non-reference buses:

|V̂ | = R̂p̂ + X̂ q̂ � v̂0 (6.8a)

where R̂ := Ĉ�TD1Ĉ�1� 0, X̂ :=�Ĉ�TD2Ĉ�1� 0 are positive definite matrices, and v̂0 := |V0|
�
R̂ĝ0 + X̂ b̂0

�
.

Here D1 and D2 are N⇥N diagonal matrices defined as:

Dg := diag(gs
l ) � 0, Db := diag(bs

l ) � 0

D1 :=
�
Dg +DbD�1

g Db
��1 � 0, D2 :=

�
Db +DgD�1

b Dg
��1 � 0

Let rl and xl denote the diagonal entries of D1 and D2 respectively. Then Theorem 4.10 says that R̂ and X̂
are given by:

R̂ jk = Â
l2P j\Pk

rl > 0, X̂ jk = Â
l2P j\Pk

xl > 0 (6.8b)

where P j denotes the unique path from bus 0 to bus j. Hence R̂ jk and X̂ jk are the sums of rl and xl
respectively on the common segment of the unique paths from the reference bus 0 to buses j and k.

6.2.2 Covariance of voltage magnitudes and powers

The method of [36] to identify the operational network exploits statistical properties of voltage magni-
tudes. Define the covariance matrix Sv := E[|V̂ |�E(|V̂ |)][(|V |�E(|V |)]T of voltage magnitudes V̂ at
non-reference buses and similarly the covariance matrices (Sp,Sq) of power injections (p̂, q̂), as well as
cross-covariance matrices Spq := E(p̂�E p̂)(q̂�Eq̂)T and Sqp := E(q̂�Eq̂)( p̂�E p̂)T. Suppose the
power injections at the same bus are positively correlated and those at different buses are uncorrelated, i.e.
(A[i, j] denotes the (i, j)th entry of matrix A),

C4.5: Sp[ j, j] > 0, Sq[ j, j] > 0, Spq[ j, j] = Sqp[ j, j] > 0 for all j, and Sp[ j,k] = Sq[ j,k] = Spq[ j,k] =
Sqp[ j,k] = 0 for all j 6= k.

The key insight on which the method of [36] is based is explained in the next result. It says that the
variance of voltage magnitude strictly increases as one moves away from the reference bus 0 where |V0|
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is fixed, and it also provides a way to identify the parent of a bus. This is the consequence of (6.8a) that
relates the covariance Sv of voltage magnitudes to the convariances of the power injections:

Sv = R̂SpR̂T + X̂SqX̂T + R̂SpqX̂T + X̂SqpR̂T (6.9)

The jth diagonal entry Sv[ j, j] = E
�
|Vj|�E|Vj|

�2
=: var(|Vj|) is the variance of voltage magnitude |Vj|

(deviation from its nominal value).

Recall that bus k is called a descendant of j if j is on the unique path from the reference bus 0 to
bus k. Bus j is called a parent of k if ( j,k) 2 E and k is a descendant of j. Let var(p j) and var(q j)
denote the variance of the real and reactive power injections respectively at bus j, and cov(p j,q j) :=
E
�
(p j�E p j)(q j�Eq j)

�
denote the covariance of (p j,q j) at bus j.

Theorem 6.3 (Topology identification). Suppose assumptions C4.3, C4.4 and C4.5 hold.

1. If a non-reference bus j 2 N is a descendant of bus i then var(|Vj|) > var(|Vi|).

2. If bus i is a parent of bus j 2 N then the variance of the voltage magnitude difference |Vi|� |Vj| is
given by:

E
�
(|Vi|� |Vi|)�E(|Vj|� |Vj|)

�2
= Â

k2T j

�
r2

i jvar(pk) + x2
i jvar(qk) + 2ri jxi jcov(pk,qk)

�
(6.10)

Proof. For part 1, suppose first i is a parent of j. Theorem 4.10 and (6.8b) imply

R̂ jk = R̂ik + ri j, R̂ik = Â
l2Pi

rl, if k 2 T j (6.11a)

R̂ik = R̂ jk, if k 62 T j (6.11b)

Therefore the diagonal entry of the first matrix on the right-hand side of (6.9) yields
⇣

R̂SpR̂T

⌘
[ j, j] �

⇣
R̂SpR̂T

⌘
[i, i] = Â

k
Â
k0

Sp[k0,k]
�
R̂ jk0R̂ jk� R̂ik0R̂ik

�

= Â
k

Sp[k,k]
�
R̂ jk + R̂ik

��
R̂ jk� R̂ik

�

= Â
k2T j

Sp[k,k]

 
2 Â

l2Pi

rl + ri j

!
ri j > 0

where the second equality follows because Sp[k0,k] = 0 if k0 6= k, the last equality follows from (6.11), and
the strict inequality follows because Sp[k,k] > 0 for all k and rl > 0 for all l. Similarly

�
X̂SqX̂T

�
[ j, j] >�

X̂SqX̂T
�
[i, i]. The diagonal entry of the third matrix on the right-hand side of (6.9) yields

⇣
R̂SpqX̂T

⌘
[ j, j] �

⇣
R̂SpqX̂T

⌘
[i, i] = Â

k
Spq[k,k]

�
R̂ jkX̂ jk� R̂ikX̂ik

�
> 0

where the equality follows from Spq[k0,k] = 0 if k0 6= k and the strict inequality uses (6.8b) and Spq[k,k] > 0.
Similarly

�
X̂SqpR̂T

�
[ j, j] >

�
X̂SqpR̂T

�
[i, i]. This shows that var(|Vj|) = Sv[ j, j] > Sv[i, i] = var(|Vi|) when
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i is a parent of j. When j is a descendant of i, the argument above applies pairwise on the path from i to j
to conclude that Sv[ j, j] > Sv[i, i].

For part 2, suppose bus i is a parent of bus j then

E
�
(|Vi|�E|Vi|)� (|Vj|)� |Vj|)

�2
= Sv[i, i]+Sv[ j, j]�2Sv[i, j] (6.12)

Consider Sv[i, i]�Sv[i, j]. The first matrix on the right-hand side of (6.9) yields
⇣

R̂SpR̂T

⌘
[i, i] �

⇣
R̂SpR̂T

⌘
[i, j] = Â

k
Sp[k,k]R̂ik

�
R̂ik� R̂ jk

�
= Â

k2T j

Sp[k,k] Â
l2Pi

rl(�ri j)

⇣
R̂SpR̂T

⌘
[ j, j] �

⇣
R̂SpR̂T

⌘
[ j, i] = Â

k
Sp[k,k]R̂ jk

�
R̂ jk� R̂ik

�
= Â

k2T j

Sp[k,k]

 

Â
l2Pi

rl + ri j

!
(ri j)

where we have used Sp[k0,k] = 0 if k0 6= k and (6.11). Summing these two expressions gives the part s1 of
(6.12) due to the first matrix in (6.9):

s1 :=
⇣

R̂SpR̂T

⌘
[i, i] +

⇣
R̂SpR̂T

⌘
[ j, j] � 2

⇣
R̂SpR̂T

⌘
[i, j] = r2

i j Â
k2T j

Sp[k,k]

Similarly the part s2 of (6.12) due to the second matrix in (6.9) is

s2 :=
⇣

X̂SqX̂T

⌘
[i, i] +

⇣
X̂SqX̂T

⌘
[ j, j] � 2

⇣
X̂SqX̂T

⌘
[i, j] = x2

i j Â
k2T j

Sq[k,k]

The third matrix on the right-hand side of (6.9) yields:
⇣

R̂SpqX̂T

⌘
[i, i] �

⇣
R̂SpqX̂T

⌘
[i, j] = Â

k
Spq[k,k]R̂ik

�
X̂ik� X̂ jk

�
= Â

k2T j

Spq[k,k] Â
l2Pi

rl(�xi j)

⇣
R̂SpqX̂T

⌘
[ j, j] �

⇣
R̂SpqX̂T

⌘
[ j, i] = Â

k
Spq[k,k]R̂ jk

�
X̂ jk� X̂ik

�
= Â

k2T j

Spq[k,k]

 

Â
l2Pi

rl + ri j

!
(xi j)

and hence

s3 :=
⇣

R̂SpqX̂T

⌘
[i, i] +

⇣
R̂SpqX̂T

⌘
[ j, j] � 2

⇣
R̂SpqX̂T

⌘
[i, j] = ri jxi j Â

k2T j

Spq[k,k] (6.13)

Similarly

s4 :=
⇣

X̂SqpR̂T

⌘
[i, i] +

⇣
X̂SqpR̂T

⌘
[ j, j] � 2

⇣
X̂SqpR̂T

⌘
[i, j] = ri jxi j Â

k2T j

Sqp[k,k]

Summing these expressions yields

Sv[i, i]�Sv[i, j] =
4

Â
k=1

sk = Â
k2T j

�
r2

i jSp[k,k] + x2
i jSq[k,k] + 2ri jxi jSpq[k,k]

�

proving (6.10).
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Part 1 of Theorem 6.3 allows us to identify a leaf node j as one that has the largest var(p j). Part 2 of the
theorem allows us to identify j’s parent i as one that most closely satisfies (6.10). The theorem therefore
suggests the following iterative method to identify the topology of the operational network from empirical
estimates of variances var(|Vj|), var(p j), var(q j) and the covariance cov(p j,q j) of voltage magnitudes and
power injections at each bus j. In each iteration the algorithm identifies a leaf node j among the set of
unidentified nodes (whose parents have not been identified), and then uses (6.10) to identify j’s parent i.
Then the algorithm removes node j from the set of unidentified nodes and the cycle repeats. The parent
identification step that uses (6.10) needs the knowledge of the underlying meshed network topology and
its line parameters (ri j,xi j).

6.2.3 Graphical-model method

6.3 Bibliographical notes

6.4 Problems

Chapter 6.1

Exercise 6.1 (Induced matrix norm). For any n⇥n matrix A show that the induced norm

kAk2 := max
kxk2=1

kAxk2 = smax(A)

where smax(A) is the largest singular value of A.

Exercise 6.2. [Local volt/var control] Let Uj := {x j : x j  x j  x j}, j = 1, . . . ,n, and U := U1⇥ · · ·⇥Un.
Let f : Rn! R

n. Show that

x⇤ 2 U, fT(x⇤)(x� x⇤) � 0 8x 2U (6.14)

if and only if

x⇤j 2 (x j,x j) only if f j(x⇤) = 0 (6.15a)
x⇤j = x j if f j(x⇤) > 0 (6.15b)
x⇤j = x j if f j(x⇤) < 0 (6.15c)

Exercise 6.3. [Local volt/var control] Let the control function in (6.4) be u j(v j) = �g j v j with g j > 0.
Derive the condition for convergence and the resulting cost function C(q).
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Exercise 6.4. [Local volt/var control] Suppose it is desirable to asymptotically stabilize the voltages v to
within a certain bounds [v,v] while maintaining the limits [q,q] on the reactive power.

1. Show that there exists ṽ such that no equilibrium point of (6.4) can lie in [v,v].

2. Fix ṽ. For each bus j, find the maximum v j and minimum v j for which it is possible to asymptotically
stabilize v j to within [v j,v j]. Note that it may not be possible for v j to attain v j (or v j) smultaneously
for all j.

Chapter 6.2

Exercise 6.5 (Linearized polar form). Consider a radial network for which G is a (connected) tree. Sup-
pose assumptions C4.3 and C4.4 hold.

1. Show that linearization of the polar form of the power flow equation (6.7) around (V flat, pflat,qflat) is
given by (6.8) where R̂ and X̂ are positive definite matrices. Assume without loss of generality that
µ = 1.

2. Show that if gs
jk = 0 for all ( j,k), the linearized model reduces to the DC power flow model (4.55a)

with |Vj| = µ for all j 2 N.

Exercise 6.6 (Topology identification). Consider the network in Exercise 6.5. Denote the variance of the
voltage magnitude difference at buses j and k by v( j,k) := E

�
(|Vj|� |Vk|)�E(|Vj|� |Vk|)

�2. Consider
any non-reference bus j 2 N. Show that among buses k that are not descendants of j, j’s parent uniquely
minimizes v( j,k), i.e., if i j is the (unique) parent of j then

i j = arg min
k 62T j

v( j,k)
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Chapter 7

Smooth convex optimization

In this chapter we study the following questions:

1. How to specify an optimization problem (Ch 7.1 and 7.2)?

2. How to characterize its optimal solutions and determine if one exists (Ch 7.3 and 7.4)?

3. How to compute an optimal solution iteratively when one exists (Ch 7.5)?

4. How to ensure the correctness of the computation (Ch 7.6)?

Specifically we formulate convex optimization problems (Chapter 7.1) and introduce some of the most
useful tools for convex analysis (Chapter 7.2). We develop a general theory to characterize optimal solu-
tions and provide sufficient conditions for their existence (Chapter 7.3). We then apply the general theory
to special classes of convex optimization problems widely used in applications (Chapter 7.4). We describe
iterative algorithms based on optimality conditions of Chapter 7.3 for solving these problems (Chapter
7.5) and explain basic techniques for analyzing their convergence (Chapter 7.6).

Convexity is a simplifying structure that enables a rich theory on algorithm design and analysis for
convex optimization. Even though optimal power flow problems are nonconvex, convex optimization
theory is useful for two reasons. First, iterative algorithms that have been designed and analyzed for
convex problems are often used also for solving nonconvex problems. Unlike for convex problems, there
is typically no guarantee on optimality or convergence for nonconvex problems, but they often perform
well nonetheless. Second, an important method to deal with a nonconvex problem is solving its convex
relaxation where an approximate convex problem is solved instead. We will study optimal power flow
problems in Chapter 9 and their convex relaxations in Chapters 10 and 11.

7.1 Convex optimization

A convex program is defined by a convex set and a convex function. We start by defining some basic con-
cepts that are used both in this chapter on smooth convex optimization and in Chapter 12.1 on nonsmooth
convex optimization.

249
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7.1.1 Affine hull and relative interior

Consider a nonempty set X 2 R
n. A point x 2 R

n is called a closure point of X if there is a sequence
{xk 2 X}✓ X that converges to x. The closure of X , denoted by cl(X), is the set of all closure points of X .
We say that X is closed if cl(X) = X , i.e., X contains all its limit points. The closure of X is the smallest
closed set that contains X . The set X is called open if its complement is closed, i.e., {x 2 R

n : x 62 X} is
closed. It is called bounded if there exists a finite b such that kxk  b for all x 2 X .1 It is called compact
if it is closed and bounded.

An alternative approach is to define a topological space by specifying all subsets of an ambient set Y
that are open in that topological space. In this approach the empty set /0 and the ambient set Y are always
defined to be open sets in any topology. When Y := R

n := (�•,•)n, Rn is both open and closed in the
topological space regardless of topology. This is consistent with the definition above in terms of limit
points (under the usual topology induced by a norm) because, e.g., the sequence xk := (k, . . . ,k) does not
converge as k! • since it tends to (•, . . . ,•) which is not a point in Y := R

n. If Y := R
n[{�•,•}n is

an extended space under the usual topology induced by a norm, however, Rn is open but not closed.

A point x is called an interior point of X if there exists an open neighborhood of x that is contained in
X , i.e., there is e > 0 such that Be(x) := {y : ky�xk< e}✓ X . The interior of X , denoted by int(X), is the
set of all interior points of X . A point x 2 cl(X) that is not an interior point of X is called a boundary point
of X . A boundary point may or may not be in X . The set of all boundary points is called the boundary of
X .

A set Y is called an affine set if Y contains all the lines that pass through pairs of distinct points x,y2Y
with x 6= y. The affine hull of X , denoted by aff(X), is the intersection of all affine sets containing X . The
affine hull aff(X) is itself an affine set. A point x 2 X ✓ R

n is called a relative interior point of X if there
exists an open neighborhood Be(x) ✓ R

n such that Be(x)\ aff(X) ✓ X , i.e., x is an interior point of X
relative to aff(X). The set of all relative interior points of X is called the relative interior of X , denoted by
ri(X). The set X is called relatively open if ri(X) = X . A point x 2 cl(X) that is not a relative interior point
is called a relative boundary point of X . The set of all relative boundary points of X is called the relative
boundary of X .

7.1.2 Convex set

A set is called convex if, given any two points in the set, every point in between lies in the set.

Definition 7.1 (Convex set). A set D✓ R
n is convex if, given any x,y 2 D,

ax+(1�a)y 2 D, 8a 2 [0,1]

For instance for any x0 2 D there exists r > 0 such that the r-ball around x0,

Br(x0) := { x 2 D | kx� x0k2  r }
1The norm k · k defines the usual topology. Since all norms are equivalent on a finite dimensional space, these concepts

remain the same regardless of topology.
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is contained in D, where kxk2 :=
q

x2
1 + x2

2 + · · ·+ x2
n is the Euclidean norm. Moreover Br(x0) is convex

for any r > 0, x0 2 D. The definition is illustrated in Figure 7.1.

.#
x 

.#y 

(a) Convex set.

.#
x 

.#y 

(b) Nonconvex set.

Figure 7.1: Definition of a convex set: every point in between two points in the set lies in the set.

Definition 7.2 (Convex hull). Let X ✓ R
n be a nonempty set. The convex hull of X , denoted conv(X), is

the intersection of all convex sets containing X .

The convex hull conv(X) of any set X ✓ R
n is contained in its affine hull aff(X). When X is a convex

set, the dimension of X is defined to be the dimension of aff(X).

Three types of convex sets are the most useful in engineering applications.

1. Polyhedral set H ✓ R
n. A polyhedral set is specified by affine equalities or inequalities. A hyper-

plane is a set H1 := {x 2 R
n : cTx = b} specified by an affine equality with c 2 R

n and b 2 R. A
polyhedral set, or a polyhedron, is a set H2 := {x2Rn : Ax b} specified by a finite number of affine
inequalities. We may call the intersection H1 := {x 2 R

n : Ax = b} of hyperplanes with A 2 R
m⇥n

and b 2 R
m a hyperplane or a polyhedron.

2. Second-order cone (SOC) Ksoc ✓ R
n. A second-order cone (SOC) is defined as:

Ksoc := {x 2 R
n | kxn�1k2  xn}, n� 2 (7.1)

where x =: (xn�1,xn), i.e., xn�1 denotes the subvector of x consisting of its first n�1 entries. A ball
Bxn(0) ⇢ R

n�1 is a cross section of the second-order cone defined by kxn�1k2  xn for a fixed xn.
SOC Ksoc is a special type of convex set called a cone. We will study in more detail cones, convex
cones, and second-order cones in Chapter 7.2.1.

3. Semidefinite cones Kpsd,Knsd ⇢ S
n. A real matrix X 2 R

n⇥n is symmetric if X = XT, i.e., Xi j = Xji
for all i, j = 1, . . . ,n. Let Sn ⇢ R

n⇥n denote the set of all real symmetric matrices. It is a vector
space (or linear space) over the field R of real numbers (see Appendix 20.1.1.1 for definitions of
vector space and subspace). A real matrix X is positive semidefinite (psd) if X is symmetric and
xTXx = Âi, j Xi jxix j � 0 for all x 2 R

n. Given a symmetric matrix X 2 R
n⇥n the following are

equivalent:

(a) X is positive semidefinite.
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(b) All eigenvalues of X are nonnegative.
(c) X = BBT for some matrix B 2 R

n⇥m and some natural number m.

A real matrix X is negative semidefinite (nsd) if�X is psd. We denote the set of all positive semidef-
inite matrices by Kpsd and the set of all negative semidefinite matrices by Knsd. We write X 2 Kpsd or
X ⌫ 0 to denote that X is positive semidefinite. Similarly X 2 Knsd or X � 0 denotes that X is neg-
ative semidefinite. These sets are special convex sets called semidefinite cones in the vector space
S

n ⇢ R
n⇥n over the field R. In Chapter 7.2.2 we extend these notions to the complex domain and

treat the set Sn ⇢ C
n⇥n of complex Hermitian matrices as a vector space over the field R (not C),

define the inner product in S
n, and the semidefinite cones of complex matrices in the vector space

S
n.

The proof that these three types of sets are convex is left as an exercise. Efficient algorithms exist to solve
constrained optimization problems that minimize a certain cost function over an affine set, second-order
cones, or semidefinite matrices.

Given these three basic convex sets we can create other convex sets through simple convexity-preserving
operations. Let X and Y be linear subspaces. For example X := R

n and Y := R
m.

1. Linear transformation: Let f : X! Y be linear.

(a) If A✓ X is convex then f (A) := { f (x) | x 2 A}✓ Y is convex.
(b) If B✓ Y is convex then f�1(B) = {x | f (x) 2 B}✓ X is convex.

2. Direct product: Let A✓X, B✓Y be convex. Then A⇥B := {(x,y) | x 2 A,y 2 B} is convex. In fact
the direct product of an arbitrary (e.g., uncountably many) number of convex sets is convex.

3. Finite sum: Let A,B✓ X be convex. Then A+B := {a+b | a 2 A,b 2 B} is convex. Therefore the
sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let A,B ✓ X be convex. Then the intersection A\B is convex. In fact the
intersection of an arbitrary collection of (e.g., uncountably many) convex sets is convex.

The proof that these set operations preserve convexity is left as an exercise. In contrast to intersection
the union of two convex sets can be nonconvex. Note that if A,B are convex, then A\B is convex. The
converse may not be true; e.g., A := {x : x� 0}[{x : x 0}✓ R

n and B := {x : x1 � 0}✓ R
n.

Example 7.1. Consider the ellipsoid

E := {x 2 R
n | xTAx c}

where A 2 R
n⇥n is a psd matrix and c > 0. The set E is convex because it can be derived from an

application of convexity-preserving operation on a convex set as follows. Since A is psd it can be expressed
as A := BBT for some B 2 R

n⇥m. Hence xTAx = xTBBTx = kBTxk2
2.

Let y = BTx. Then the set C := {(y, t) 2R
m+1 | kyk2  t} is a (convex) SOC. Hence the set D := {y 2

R
m | kyk2  c} is convex since it is the intersection of two convex sets:

D = C\ (Rm⇥{t = c})

Then E = f�1(D) where f (x) := BTx is a linear function from R
n to R

m. Hence E is convex as desired.
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For several important properties of convex sets see Chapter 7.2.

7.1.3 Derivative, directional derivative and partial derivative

In this subsection we review different notions of derivatives of real-valued functions f on R
n (see Chapter

20.1.9 for more details). A function can be differentiable but not convex or vice versa. We study convex
functions in Chapter 7.1.4.

Consider a real-valued function f : X ! R where X ✓ R
n is an open set. The function f is said to be

differentiable at x 2 X if there exists a vector m 2Rn such that (the limit must hold for all h 2Rn such that
h! 0)

lim
h2Rn
h!0

f (x+h)� f (x)�mTh
khk = 0

When this holds, the column vector m 2 R
n is called the gradient or derivative of f at x 2 X and denoted

by — f (x). If f is differentiable at every x 2 X then f is called differentiable on X .

At each x 2 X and for each v 2 R
n the one-sided directional derivative of f at x in the direction v is

defined as

d f (x;v) := lim
t2R
t#0

f (x+ tv)� f (x)
t

provided the limit exists, possibly ±•. Since X is open and f is real-valued, d f (x;v) if exists is always
real valued for any v 2 R

n. It can be shown that f is differentiable at x 2 X if (i) directional derivatives
d f (x;v) exist at x for all directions v 2 R

n, and (ii) d f (x;v) is a linear function of v.

At each x2 X and for the unit vector e j 2 {0,1}n that has a single 1 in its jth position, if the directional
derivatives d f (x;e j) and d f (x;�e j) exist in both directions and are equal, then they are called the partial
derivative of f at x 2 X with respect to x j and denoted by ∂ f

∂x j
(x):

∂ f
∂x j

(x) := lim
t2R
t!0

f (x+ te j)� f (x)
t

In this case f is called partially differentiable at x 2 X with respect to x j. The row vector of partial
derivatives of f at x 2 X is

∂ f
∂x

(x) :=
h

∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
i

If f is partially differentiable at all x 2 X then it is called partially differentiable on X . The partial deriva-
tive ∂ f

∂x (x) describes the behavior of f at x only along the coordinate axes whereas the derivative — f (x)
describes its behavior in all directions. If f is differentiable then it is partially differentiable, but the con-
verse does not generally hold. If f is not only partially differentiable but ∂ f

∂x (x) is also continuous at x,
then the converse holds at x 2 X . Such an f is called continuously differentiable at x. If f is continuously
differentiable at all x 2 X then it is continuously differentiable on X .
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Lemma 7.1 (Differentiability and partial differentiability). Consider a real-valued function f : X ! R

where X ✓ R
n is an open set.

1. If f is differentiable at x 2 X then it is partially differentiable at x. Moreover its gradient — f (x) is
given by

— f (x) =


∂ f
∂x

(x)
�T

2. If f is continuously differentiable at x 2 X then it is differentiable at x.

The following example shows that a partially differentiable function may not be differentiable when
the partial derivative ∂ f

∂x (x) is discontinuous at x. Indeed a partially differentiable function may not even
be continuous at all x 2 X . A continuously differentiable function is always continuous.

Example 7.2. 1. Consider f : R2! R defined by:

f (x,y) :=
⇢

0 if xy = 0
1 if x 6= 0, y 6= 0

Its partial derivative does not exist at any point, except at the origin where ∂ f
∂ (x,y)(0,0) = [0 0]. The

function f is discontinuous at (0,0) and hence cannot be differentiable at (0,0). Clearly ∂ f
∂ (x,y) is

discontinuous at the origin.

2. Consider f : R2! R defined by:

f (x,y) :=

(
xaya

x2a+y2a if (x,y) 6= (0,0)

0 if (x,y) = (0,0)

It is discontinuous at the origin along the line x = y (Exercise 7.7). Therefore the directional deriva-
tive of f along x = y does not exist.

Hence f is differentiable at x 2 X if and only if d f (x;v) = vT— f (x) = ∂ f
∂x (x)v for all v 2 R

n. For
convex but non-differentiable functions, derivatives are generalized in Chapter 12.3.2 to subdifferentials.

For a vector-valued function f : Rn ! R
m that maps an x 2 R

n to a vector f (x) 2 R
m, the Jacobian

J(x) :=
h

∂ f
∂x (x)

i
of f at x is the m⇥n matrix whose i jth entry Ji j(x) := ∂ fi

∂x j
(x) is the partial derivative of

fi with respect to x j evaluated at x. The gradient or derivative of f at x is — f (x) := JT(x).

7.1.4 Convex function

Definition 7.3. A function f : D! R defined over a convex domain D ✓ R
n is convex if, for all x,y 2 D

and all a 2 [0,1],

f (ax+(1�a)y)  a f (x)+(1�a) f (y)

It is strictly convex if the inequality is strict for x 6= y and a 2 (0,1). A function f is concave (strictly
concave) if � f is convex (strictly convex).
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The definition says that the straight line connecting f (x) and f (y) lies above the function f between x and
y, as illustrated in Figure 7.2(a).

f(x) 

x ∈ D
x y

α f (x)+ (1−α) f (y)

(a) Convex function.

f(x) 

x ∈ D

(b) Nonconvex function.

f(x) 

x ∈ D
x y

f y( )− f x( )
∇f x( )T y− x( )

(c) Differentiable convex function.

Figure 7.2: Definition of a convex function: The straight line connection f (x) and f (y) lies above f
between x and y. The linear approximation of a differentiable convex function f lies below f .

Example 7.3. If f (x) = x2 then for any x,y and a 2 [0,1]

a f (x)+(1�a) f (y)� f (ax+(1�a)y) = a(1�a)(x� y)2 > 0

for x 6= y and a 2 (0,1). Hence f is strictly convex.

Checking if a function is convex by verifying the convexity definition is often difficult. The following
theorem provides three different ways to check the convexity of a function. Consider f : D! R over
a convex domain D ✓ R

n. Let — f (x) denote the column vector of partial derivatives of f (whereas ∂ f
∂x

denotes the row vector of partial derivatives). Let

—2 f (x) :=
∂ 2 f
∂x2 :=

h
∂ 2 f

∂xi ∂x j

i

denote the n⇥n Hessian matrix.

Theorem 7.2 (Convex function). Consider a function f defined on a convex open domain D ✓ R
n. The

function f is convex if and only if any one of the following holds:

1. For x 2 D and all v 2 R
n the function

g(t) := f (x+ tv) (7.2)

is convex on {t 2 R | x+ tv 2 D}.

2. For a differentiable function f ,

f (y)� f (x) � — f (x)T(y� x), 8x,y 2 D (7.3)
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3. For a twice differentiable function f ,

—2 f (x) ⌫ 0, 8x 2 D

i.e., the Hessian matrix is positive semidefinite (all eigenvalues are nonnegative).

The condition in Theorem 7.2.1 does not require differentiability of f and says that, if we take any
cross section of the surface f defined by (x,v), i.e., from x in the direction of v or �v, the corresponding
scalar function g(t) is convex. The first-order condition in Theorem 7.2.2 says that the function f always
lies above its linear approximation, i.e., f (y) is always greater than or equal to the tangent plane to f at
any point x. This is illustrated in Figure 7.2(c). The second-order condition in Theorem 7.2.3 roughly says
that the gradient at any point x is increasing around x.

Proof of Theorem 7.2. 1. Suppose f is convex. Fix any x 2 D and any v 2 R
n. We will show that

g(t) := f (x+ tv) is convex, i.e., for s < u such that x+ sv and x+uv are both in D, we have, for any
t := as+(1�a)u with a 2 [0,1],

g(t)  ag(s)+(1�a)g(u)

From Figure 7.3 we have

Figure 7.3: Proof of Theorem 7.2.1.

x+ tv = a(x+ sv) + (1�a)(x+uv)

Hence, since f is convex,

g(t) = f (x+ tv) = f (a(x+ sv) + (1�a)(x+uv))  ag(s)+(1�a)g(u)

i.e., g is convex. Conversely suppose g is convex but f is not, i.e., there exists two points x,y 2 D
and a point z := (1�a)x+ay, a 2 [0,1], in between such that

f (z) > (1�a) f (x)+a f (y)

Define g(t) := x+ tv where v := y� x. Then z = x+av and, since g is convex,

f (z) = g(a)  (1�a)g(0)+ag(1) = (1�a) f (x)+a f (y)

contradicting that f is not convex.
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2. We first prove the result for a scalar differentiable function g : R! R. Then we use the result to
prove the theorem for a differentiable function f : D! R where D✓ R

n with n� 1.

Consider first g : R! R. We prove that the following are equivalent:

(a) g is convex.

(b) g(t)�g(s)� g0(s)(t� s) for any s 6= t 2 R.

(c) g0(t)� g0(s) for any t � s in R, i.e. g has nondecreasing slope.

Suppose (a): g is convex. Fix any s, t 2D. For any a 2 [0,1] we have g(s+a(t�s)) (1�a)g(s)+
ag(t) and hence

g(t)�g(s) � g(s+a(t� s))�g(s)
a

Taking limit

lim
a#0

g(s+a(t� s))�g(s)
a(t� s)

(t� s) = g0(s)(t� s)

we have (b). Conversely suppose (b) and we want to prove (a), i.e.

ag(t)+(1�a)g(s) � g(z) � 0 (7.4)

for any z := s+a(t� s), a 2 [0,1]. Compare the difference g(t)�g(z) and g(s)�g(z) in terms of
gradient at the common point z:

g(t)�g(z) � g0(z)(t� z) and g(s)�g(z) � g0(z)(s� z)

To obtain (7.4), multiply the first inequality by a and the second inequality by 1�a and sum, noting
that t�z = (1�a)(t�s) and s�z =�a(t�s) so that the right-hand sides of these two inequalities
sum to zero. This proves (a), (b).

Now suppose (b). Fix any t � s and compare g(t)�g(s) in terms of slope at s and at t:

g0(s)(t� s)  g(t)�g(s)  g0(t)(t� s)

yielding (c). Conversely suppose (c) and fix any t � s. By the mean value theorem we have, for
some z 2 [s, t], g(t)�g(s) = g0(z)(t� s) � g0(s)(t� s), which is (b). This proves (b), (c).

Now consider f : D! R where D✓ R
n with n� 1. We use the result above on scalar functions to

prove the theorem. Suppose f is convex and fix any x,y 2 D. Define the scalar function g : R! R

by

g(s) := f (x+ sy), for s 2 R such that x+ sy 2 D (7.5)

It is easy to show that g(s) is convex. By the mean value theorem there exists an s 2 [0,1] such that

f (x+ y)� f (x) = g(1)�g(0) = g0(s)
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By (c) above we have g0(s)� g0(0) = (— f (x))Ty and hence

f (x+ y)� f (x) � (— f (x))Ty

establishing (7.3). Moreover if f is strictly convex then the inequalities above are strict.

Conversely suppose (7.3) holds. To prove the convexity of f , use the same proof above for (b))
(a). Take z := x+a(y� x) for any a 2 [0,1]. We have

f (y)� f (z) � (— f (z))T(y� z) and f (x)� f (z) � (— f (z))T(x� z)

Multiply the first inequality by a and the second inequality by 1�a and sum to obtain:

a f (y)+(1�a) f (x) � f (z) � (— f (z))T(a(y� z)� (1�a)(z� x)) = 0

proving the convexity of f . Moreover if the inequalities above are strict then f is strictly convex.

3. To prove the second-order condition, fix any x,y 2 D, and define the scalar function g(s) := f (x +
s(y� x)). Applying the second-order Taylor expansion to g:

f (y)� f (x) = g(1)�g(0) = g0(0)+
1
2

g00(s)

= (— f (x))T(y� x)+
1
2
(y� x)T—2 f (x+ s(y� x))(y� x)

for some s 2 [0,1]. If —2 f (z) ⌫ 0 for all z 2 D, then f (y)� f (x) � (— f (x))T(y� x) which is
equivalent to the convexity of f from part 2.

Conversely, suppose f is convex but —2 f (x)� 0 for some x 2 D. Then there exists a vector v 2 R
n

such that vT—2 f (x)v < 0. Since f is convex, part 1 shows that the scalar function g(t) := f (x+ tv) is
convex in t. Then the proof of part 2(c) shows that, when g is twice differentiable, g00(t)� 0 for all
t 2R such that x+ tv 2D. But g00(t) = vT—2 f (x+ tv)v and hence vT—2 f (x)v < 0 means g00(0) < 0,
contradicting that g is convex.

Theorem 7.2 provides an exact characterization for convexity. For strict convexity, the second-order
characterization is sufficient but not necessary: e.g., f (x) = x4 is strictly convex but f 00(x) = 0 at x = 0.

Corollary 7.3 (Strictly convex function). Consider a function f defined on a convex open domain D✓R
n.

1. The function f is strictly convex if and only if the function g(t) in (7.2) is strictly convex on {t 2
R | x+ tv 2 D}.

2. For a differentiable function f , f is strictly convex if and only if strict inequality holds in (7.3) for
x 6= y.

3. For a twice differentiable function f , f is strictly convex if —2 f (x)� 0 for all x 2 D.
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A common mistake is to confuse the second-order condition in Theorem 7.2.3 that —2 f (x) is positive
semidefinite with the condition that

xT—2 f (x)x � 0 for all x 2 D

For any x 2 D, —2 f (x)⌫ 0 if and only if

yT—2 f (x)y � 0 for all y 2 R
n

i.e., regardless of what D is, the test on —2 f (x) is for all y 2 R
n. This is illustrated in the next example.

Example 7.4. Consider the function

f (x1,x2) = x1x2

over the domain

D :=
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

with

—2 f (x) =


0 1
1 0

�

We have

xT—2 f (x)x = 2x1x2 > 0 for all x 2 D

This however does not imply that f is strictly convex over D. The eigenvalues of —2 f (x) are 1 and�1, and
hence f is neither convex nor concave. Indeed the function value along the direction x1 = x2 corresponding
to the eigenvalue-eigenvector pair

�
1, [1 1]T

�
is given by

g(t) := f
✓

x1
x2

�
+ t ·


1
1

�◆
= (x1 + t)(x2 + t), t >�min{x1,x2}

Hence g(t) is convex in t, i.e. f is convex along x1 = x2. Along the direction x1 = �x2 corresponding to
the eigenvalue-eigenvector pair

�
�1, [1 �1]T

�
the function value is

g(t) := f
✓

x1
x2

�
+ t ·


1
�1

�◆
= (x1 + t)(x2� t), �x1  t  x2

Therefore g(t) is concave in t, i.e., f is concave along x1 =�x2. This is illustrated in Figure 7.4.

Example 7.5. We illustrate Theorem 7.2 using f (x) = logx for x > 0.

1. We have f 0(x) = x�1 and for x 6= y > 0 (such that y
x 6= 1)

f (y)� f (x) = log
y
x

<
y
x
�1 =

1
x
(y� x) = f 0(x)(y� x)

where the inequality follows from logz < z�1 for z > 0 and z 6= 1. Hence f is strictly concave by
Theorem 7.2.2.
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Figure 7.4: Contour plot of f (x) = x1x2 which is neither convex nor concave over D := {(x1,x2) |x1 >
0, x2 > 0}.

2. To use Theorem 7.2.3 we have

f 00(x) = � 1
x2 < 0

implying strict concavity of f .

Example 7.6. We illustrate the three sufficient conditions of Theorem 7.2 using the convex f : R2! R

defined by:

f (x) := f (x1,x2) := x2
1�4x1x2 +4x2

2 = (x1�2x2)
2

For the first-order condition we have

— f (x) := — f (x1,x2) = 2(x1�2x2)


1
�2

�

and hence

f (y)� f (x)�— f (x)T(y� x)
= (y1�2y2)

2� (x1�2x2)
2 � 2(x1�2x2)((y1� x1)�2(y2� x2))

= (y1�2y2)
2�2(x1�2x2)(y1�2y2)+(x1�2x2)

2

= ((y1�2y2)� (x1�2x2))
2 � 0

satisfying the condition of Theorem 7.2.2.

For Theorem 7.2.3 we have

—2 f (x) = 2


1
�2

�⇥
1 �2

⇤
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Therefore —2 f (x) is positive semidefinite as

yT—2 f (x)y = 2
✓

[y1 y2]


1
�2

�◆2
� 0

for any y 2 R
2.

For Theorem 7.2.1 we have

g(t) := f (x+ tv) = ((x1 + tv1)�2(x2 + tv2))
2 = ((v1�2v2) t +(x1�2x2))

2

which is clearly a convex function in t for any fixed x and v.

The addition, multiplication by a positive constant, and supremum operations preserve convexity.
Specifically suppose f1 and f2 are two convex functions on the same domain. Then

1. f := a f1 +b f2, a,b � 0, is convex.

2. f := max{ f1, f2} is convex. In fact f (x) := supy2Y f (x;y) is convex in x for arbitrary set Y , provided
that, for every y 2 Y fixed, f (x;y) is convex in x.

3. f (x,y) := |x| + |y| defined on R
2 is convex as it can be expressed in terms of the supremum and

addition operations ( f (x,y) = max{x,�x}+max{y,�y}).

Convex functions define another important class of convex sets. Let f : D! R where D✓ R
n. If D is

a convex set and f a convex function then for each a 2 R the level set {x 2 D | f (x) a} is convex. Let
f : D! R

m where D✓ R
n be a vector-valued function where f := ( f1, . . . , fm) with fi : D! R. Then the

set specified by:

X := {x 2 D | f (x) b} for some b 2 R
m

is convex if each fi is convex. This is because the level sets

Xi := {x 2 D | fi(x) bi}, i = 1, . . . ,m

are all convex and X = \m
i=1Xi and hence is convex since intersection preserves convexity.

An important property of a real-valued convex function is that it is continuous on the interior of its
domain. The proof of the following lemma is adapted from [74, Proposition 1.3.11]. See Lemma 12.14
for generalization to proper extended real-valued convex functions. Lemma 12.14 also states that a proper
convex function over a compact set X is Lipschitz continuous on X .

Lemma 7.4 (Continuity of convex functions). Let f : X ! R be a real-valued function where X ✓ R
n. If

f is convex on X then it is continuous on int(X).

Proof. Fix any point ȳ 2 int(X) and any sequence {yk} such that yk 6= ȳ and limk yk = ȳ. We will establish
the continuity of f at ȳ by showing

limsup
k

f (yk)  f (ȳ)  liminf
k

f (yk) (7.6)
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i.e., limk f (yk) = f (ȳ). Since ȳ 2 int(X) there exists d > 0 such that the compact set Bd (ȳ)✓ X . We will
consider sufficiently large integers k such that yk 2 Bd (ȳ) for all (such) k.

For the first inequality in (7.6) we will construct a sequence {(zk,ak)} with zk 2 Bd (ȳ) ✓ X for suf-
ficiently large k, ak 2 (0,1), yk being on the line segment joining ȳ and zk such that (see Figure 7.5)

yk = (1�ak)ȳ+akzk, zk 2 Bd (ȳ), 8 sufficiently large k (7.7a)
Dyk := yk� ȳ ! 0, ak ! 0, as k! • (7.7b)

The convexity of f then implies, for sufficiently large integers k,

Figure 7.5: Proof of Lemma 7.4: Construction of (xk,zk) from ȳ and yk.

f (yk)  (1�ak) f (ȳ)+ak f (zk)  (1�ak) f (ȳ)+ak f̄

where f̄ := maxy2Bd (ȳ) f (y) which is finite since f is continuous on the compact set Bd (ȳ) (see Theorem
7.14). Taking limsupk in (7.7b) therefore yields the first inequality in (7.6). To construct {(zk,ak)} we
follow the idea in Figure 7.5 and let

zk� ȳ := d Dyk

kDykk

so that kzk� ȳk= d , independent of k, and hence zk 2 Bd (ȳ). Then zk := ȳ + d Dyk
kDykk and therefore

yk := ȳ +
kDykk

d
(zk� ȳ) = (1�ak) ȳ + ak zk

with ak := kDykk/d < 1 for sufficiently large k. It can then be checked that (zk,ak) satisfies (7.7) and
establishes the first inequality in (7.6).

Similarly, for the second inequality in (7.6), let (see Figure 7.5)

xk� ȳ := �d Dyk

kDykk
so that kxk� ȳk= d , independent of k, and hence xk 2 Bd (ȳ). Then

ȳ := xk +
d

d +kDykk
(yk� xk) = bkyk + (1�bk)xk

where bk := d/(d +kDykk) < 1. Convexity of f implies

f (ȳ)  bk f (yk)+(1�b ) f (xk)  bk f (yk)+(1�b ) f̄

where f̄ := maxy2Bd (ȳ) f (y) < •. Taking liminfk on both sides yields f (ȳ) liminfk bk f (yk) = liminfk f (yk),
the second inequality in (7.6).
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7.1.5 Convex program

Consider an optimization problem of the form:

min
x2Rn

f (x) subject to x 2 X (7.8)

X ✓ R
n is called the feasible set and f : Rn ! R the objective function. An x 2 X is called a feasible

solution of (7.8). A feasible solution x⇤ that attains the minimum of f over X (i.e., f (x⇤)  f (x) for all
x 2 X) is called a (global) optimal solution/optimum or a (global) minimizer. A feasible solution x⇤ that
attains the minimum of f over a neighborhood of x⇤ (i.e., f (x⇤)  f (x) for all x 2 Br(x⇤)\X for some
r > 0) is called a local optimal solution/optimum or a local minimizer.

The problem (7.8) is called a convex program/problem if f is a convex function and X is a convex set.
It is tractable if X can be efficiently represented. For instance

X := {x 2 R
n | g(x) b} for some b 2 R

m

for a vector-valued convex function g : Rn! R
m. By setting U(x) =� f (x), the following maximization

problem is also called a convex program if U(x) is a concave function and X is a convex set:

max
x2Rn

U(x) subject to x 2 X

Importance of convexity. As we will see in Chapter 7.3 the existence of optimal solutions and their
characterization may not require the cost function f to be a convex function or the feasible set X to
be a convex set. Convexity of f and X is important for efficient computation of an optimal solution.
This is because for a convex objective function, local optimality implies global optimality. Moreover
only the first-order condition is required to guarantee local optimality. Specifically, for an unconstrained
minimization problem

min
x2Rn

f (x)

a necessary condition for a point x⇤ to be a local minimizer is (assuming f is differentiable)

— f (x⇤) = 0

If f is convex then this is also sufficient for x⇤ to be globally optimal, as illustrated in Figure 7.2. For
constrained minimization problem (7.8) where X is nonempty, closed and convex, the first-order necessary
condition for x⇤ 2 X to be a local minimizer becomes: there is a neighborhood Br(x⇤) for some r > 0 such
that

(— f (x⇤))T (x� x⇤) � 0 8x 2 Br(x⇤)\X (7.9)

i.e., moving away from x⇤ to any other feasible point x in Br(x⇤) can only locally increase the function
value f . If f is convex then this is both necessary and sufficient for x⇤ to be globally optimal. To see this,
suppose (7.9) holds but there is another x̂ 2 X such that f (x̂) < f (x⇤). Consider z(a) := a x̂ +(1�a)x⇤.
Since X is convex z(a) is feasible for a 2 [0,1]. Since f is convex we have, for any a 2 (0,1],

f (z(a))  a f (x̂)+(1�a) f (x⇤) < f (x⇤)
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But, for small enough a > 0 so that z(a) 2 Br(x⇤), this contradicts

f (z(a)) � f (x⇤)+—T f (x⇤)(z(a)� x⇤) � f (x⇤)

where the first inequality follows from Theorem 7.2.2 and the second inequality from (7.9). Hence x⇤ is
globally optimal in X .

Example 7.7 (Optimality condition for constrained optimization). Consider

min
x2R

f (x) := x2 subject to x� a

See Figure 7.6. It is clear from the figure that the unique minimizer is 0 where f 0(0) = 0 if a  0 and a

f(x) 

a1
x[%

a2
[%

∇f x2
*( ) > 0

∇f x1
*( ) = 0

Figure 7.6: Example 7.7: minx�a x2. If a  0 then the unique minimizer is x⇤1 = 0 where f 0(x⇤) = 0. If
a > 0 then the unique minimizer is x⇤2 = a where f 0(x⇤) > 0.

where f 0(a) > 0 if a > 0. We will derive this conclusion from the optimality condition (7.9) which is

f 0(x⇤)(x� x⇤) � 0, 8x� a (7.10)

First suppose a 0. If a x⇤ < 0 then f 0(x⇤) < 0 and there exists a feasible x > x⇤ where (7.10) cannot be
satisfied. Similarly if x⇤ > 0� a then f 0(x⇤) > 0 and there exists a feasible a x < x⇤ where (7.10) cannot
be satisfied. Hence the unique optimal is x⇤ = 0 where f 0(x⇤) = 0. Suppose next a > 0. Then f 0(x) > 0
for any feasible x� a. Then the only way (7.10) can be satisfied is if x⇤ = a.

Therefore the optimality condition reduces for this example (for any a 2 R) to: x⇤ is optimal if and
only if there exists a p⇤ such that

x⇤ � a, p⇤ � 0, f 0(x⇤) = p⇤, p⇤(x⇤ �a) = 0

This is called the Karush-Kuhn-Tucker (KKT) condition for optimality.

7.2 Properties of convex sets and convex cones

In this section we study some of the most useful properties of convex sets and cones. For example the
Projection Theorem 7.7 is used to prove the separating hyperplane Theorems 7.8 and 7.9 which are used
to prove the Farkas Lemma (Theorem 7.10). We will also use the Projection Theorem 7.7 to prove in
Chapter 7.6 some convergence properties of optimization algorithms, use the Farkas Lemma (Theorem
7.10) to prove in Chapter 7.4.2 linear program duality, and use the separating hyperplane theorems to
prove convex duality in Chapters 12.7.2 and 12.7.3.
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7.2.1 Second-order cone Ksoc in R
n

Cones in R
n. A set X ✓ R

n is called a cone if x 2 X implies that gx 2 X for all g > 0. A cone X
may not contain the origin though the closure of a nonempty cone always contains the origin. A cone
is not necessarily convex. For example X := {g1a1 : g1 � 0}[ {g2a2 : g2 � 0} for some a1,a2 2 R

n is a
cone consisting of two rays from the origin and is nonconvex unless a1 = ga2 for some g 2 R. A cone
is called pointed if x 2 C and �x 2 C implies that x = 0. Figure 7.7 shows pointed and non-pointed
cones that may be convex or not, a subspace or not. A cone K is called proper if (i) K is closed and












































































































(a) Pointed convex cone












































































































(b) Non-pointed nonconvex cone












































































































(c) Non-pointed convex cone

Figure 7.7: Cones and their affine hulls. (a) A pointed convex cone K. It is not a subspace; its affine hull
aff(K) = R

2. (b) A non-pointed nonconvex cone K. It is not a subspace; its affine hull aff(K) = R
2. (c) A

non-pointed convex cone K which is a subspace. Hence aff(K) = K.

convex; (ii) has a nonempty interior; and (iii) is pointed.2 Common examples are the nonnegative quadrant
R

n
+ := {x 2 R

n : x � 0}, the second-order cone Ksoc := {x 2 R
n : kxn�1k2  xn+1}, and the set Kpsd ⇢ S

n

of positive semidefinite matrices in the linear space S
n of Hermitian matrices.

Definition 7.4 (cone(X)). Let X ✓ R
n be a nonempty set. The cone generated by X , denoted cone(X), is

the set of all nonnegative combination of vectors in X , i.e.,

cone(X) :=

(
m

Â
i=1

aixi : xi 2 X ,ai � 0, integers m > 0

)

If {a1, . . . ,an} are the column vectors of A2Rm⇥n then cone({a1, . . . ,an})✓R
m is abbreviated as cone(A).

The set cone(X) is always a convex cone that contains the origin for arbitrary nonempty X . See
Figure 7.8 for examples. It therefore contains the set {gx : g � 0,x 2 X} which may not be convex, e.g.,

2A proper cone K can be used to define a partial ordering on R
n through a generalized inequality �K :

x �K y , y� x 2 K

It also defines a strict partial ordering on R
n:

x �K y , y� x 2 int K

where int(K) is the interior of K. We also write x⌫K y for y�K x and x�K y for y�K x. We will usually write directly y�x2K
instead of x�K y.
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Figure 7.8: Cones cone(X) generated by X ✓ R
n.

X := {a1,a2} with a1 6= ga2. It is not necessarily closed even if X is compact (see [74, Figure 1.2.2, p.21]
for an example). We will mostly be dealing with closed convex cones in this book.

A convex combination of x1, . . . ,xm in X is the vector x := Âm
i=1 aixi with ai � 0 and Âm

i=1 ai = 1. Any
convex combination of vectors in X is in conv(X). The next fundamental result implies the converse, e.g.,
[74, Proposition 1.2.1, p.20].

Theorem 7.5 (Carathéodory Theorem). Let X ✓ R
n be a nonempty set.

1. If x 2 conv(X) then x = Âm
i=1 aixi for some m n+1, ai > 0 with Âm

i=1 ai = 1, and xi 2 X .

2. If x 2 cone(X) then x = Âm
i=1 aixi for some m n, ai > 0 and linearly independent xi 2 X .

The convex hull conv(X) of an arbitrary set X is not necessarily closed, e.g., X = (0,1) = conv(X).
A consequence of the Carathéodory theorem is that conv(X) is compact if X is compact. Suppose x 2
conv(X) is given by x = Âm

i=1 biyi for some m > n, bi > 0 with Âm
i=1 bi = 1, and yi 2 X . At most n of

yi 2 X can be linearly independent, say, y1, . . . ,yk are linearly independent with k  n. Therefore other yi
for i > k can be written as linear combinations of y1, . . . ,yk, and we can write x = Âk

i=1 liyi with k n. The
coefficients li, however, may not form a convex combination of yi, unlike in the Carathéodory theorem.
In other words, any x 2 conv(X) can be written as a linear combination of k  n vectors yi 2 X (these yi
depend on x) and as a convex combination of m n+1 vectors xi 2 X (these xi depend on x). An example
application of the Carathéodory theorem is in Exercises 12.8, 13.12 and 13.13.

Second-order cone. A particularly useful convex cone is the second-order cone, defined by

K :=
⇢

(x, t) 2 R
n+1 :

q
x2

1 + · · ·+ x2
n  t

�
(7.11)

It is also called the Lorentz cone or ice-cream cone. It is equivalent to K := {(x, t) 2 R
n+1 : kxk2

2 
t2, t � 0} or the intersection K = K̃ \H where K̃ := {(x, t) 2 R

n+1 : kxk2
2  t2} and H := {(x, t) : t � 0}

is a halfspace. While K is a convex cone, K̃ is a nonconvex cone; see Figure 7.9 and Exercise 7.4 (see
Theorem 12.10 in Chapter 12.1.4 for more properties of K). The convex set K := {(x, t) : h1(x, t) 0} is
specified by the (convex) constraint function h1(x, t) := kxk2� t (see Chapter 7.1.4 for convex functions).
Equivalently K := {(x, t) : h2(x, t) 0, t � 0} can also be specified by constraint functions that may not all
be convex functions, in this case h2(x, t) := kxk2

2� t2. This has important implications on structural and
computational properties of equivalent representations of a constrained optimization; see Chapter 7.3.7.
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(a) Nonconvex cone X̃












































































































(b) Convex cone K

Figure 7.9: (a) Nonconvex cone K̃ := {(x, t) 2 R
n+1 : kxk2

2  t2}. (b) Second-order cone K = K̃\H.

A rotated second-order cone is the set

Kr := {(x,y,z) 2 R
n+2 : kxk2

2  yz, y� 0, z� 0} (7.12)

It can be represented as a linear transformation (a rotation) of the standard second-order cone K defined in
(7.11) using the equivalence:

kxk2
2  yz, y� 0, z� 0 ()

����


2x

y� z

�����
2
 y+ z

i.e., (w, t) = A(x,y,z) 2 K ✓ R
n+2 if and only if (x,y,z) 2 Kr for a (n+2)⇥ (n+2) nonsingular matrix A

(Exercise 7.5). Indeed

K = AKr, A =

2

4
2In 0n 0n
0Tn 1 �1
0Tn 1 1

3

5 (7.13a)

Kr = A�1K, A�1 =
1
2

2

4
In 0n 0n
0Tn 1 1
0Tn �1 1

3

5 (7.13b)

(See Corollary 12.11 in Chapter 12.1.4 for more properties of Kr.)

SOC constraint. A convex set specified in terms of a second-order cone K ✓ R
m+1 in (7.11) is

C := {x 2 R
n : (Ax+b,cTx+d) 2 K} = {x 2 R

n : kAx+bk2  cTx+d} (7.14)

where A 2 R
m⇥n, b 2 R

m, c 2 R
n, and d 2 R. It is a convex set because C is the pre-image of a convex set

K under an affine function (see also Exercise 7.6). The constraint in (7.14) is called a second-order cone
(SOC) constraint, even though C in general may not be a cone itself. For example
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• If A = 0 then C is a halfspace or hyperplane, generally not a cone.

• If c = 0 then C is an ellipsoid (d > 0), generally not a cone.

The set defined in (7.1) is a special case of (7.14) with b = 0,d = 0, c = en the unit vector with a single 1 as
its nth entry, and A =

⇥
In�1 0n�1

⇤
where In�1 and 0n�1 are the identity matrix and 0 vector respectively

of size n�1.

Example 7.8 (SOC constraint). Consider C defined in (7.14) where

A :=


1 0
0 1

�
, c := a


1
1

�
, b := 0, d := 0

C = C̃\H where C̃ := {x : kAx + bk2
2  (cTx + d)2} and H := {x : cTx + d � 0} is a halfspace. Then

C̃ =
�

x 2 R
2 : xTÃx 0

 
where

Ã := ATA� ccT =


1�a �a
�a 1�a

�

whose eigenvalues are 1 and 1�2a . Therefore if a  1/2 then Ã is positive semidefinite and C̃ is convex.
Otherwise C̃ is nonconvex. In both cases C = C̃\H is convex.

For example when a = 1/2, C̃ = {x : 1
2(x1� x2)2  0} = {x : x1 = x2}. When a = 1, C̃ = {x : x1x2 �

0} = {x : x� 0}[{x : x 0}. These sets and their intersections with the halfspace H := {x : x1 +x2 � 0}
are shown in Figure 7.10.












































































































(a) Convex C̃












































































































(b) Nonconvex C̃

Figure 7.10: Exampel 7.8. (a) When a = 1/2, C̃ = {x : x1 = x2} is convex. (b) When a = 1, C̃ = {x : x�
0}[{x : x 0} is nonconvex. In both cases C = C̃\H is convex.

Similarly a convex set can be specified in terms of a rotated second-order cone Kr ✓ R
m+2 in (7.12):

Cr := {x 2 R
n : (Ax+b, cT1 x+d1, cT2 x+d2) 2 Kr } (7.15a)

= { x 2 R
n : kAx+bk2

2  (cT1 x+d1)(cT2 x+d2), cT1 x+d1 � 0, cT2 x+d2 � 0 } (7.15b)
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where A 2Rm⇥n, b 2Rm, c 2Rn, and d 2R. It is a convex set because Cr is the pre-image of a convex set
Kr under an affine function. The constraints in (7.15) are also called second-order cone constraints, even
though Cr in general may not be a cone itself. This form of constraint is used in Chapter 11 to relax the
nonconvex quadratic constraint v j` jk = |S jk|2 into a second-order cone constraint v j` jk � |S jk|2.

We study some properties of SOC constraints in Chapter 12.1.4.

7.2.2 Semidefinite cone Kpsd in S
n

Numerous power system applications can be formulated as a constrained optimization problem often us-
ing complex variables in the phasor domain. Moreover some solution methods for solving these problems
give rise to constraints or variables involving matrices (see e.g. Chapter 10). Even though any optimiza-
tion problem in the complex domain can be converted into one in the real domain, it is sometimes more
convenient to use complex variables. In this subsection we define inner product on complex matrices and
dual cones in the linear space of Hermitian matrices (all these concepts apply directly to the vector space
of real symmetric matrices). We will use these concepts in Chapter 7.4.5 to define an important class of
convex optimization problems called semidefinite program and study its duality and optimality properties.

Inner product, polar cone and dual cone. For two complex matrices x 2 C
m⇥n and y 2 C

m⇥n (not
necessarily square), the (Frobenius) inner product is x · y := tr

�
yHx
�

= Â j,k x jky jk where yH = (ȳ)T is the
Hermitian transpose of matrix y, y jk is the complex conjugate of the scalar y jk and ȳ is the entrywise
complex conjugate of matrix y. If x,y 2 C

n are complex vectors, x · y = yHx reduces to the normal inner
product on C

n. It can be checked that x · y satisfies the three properties that are sometimes used to define
inner product:

1. Conjugate symmetry: x · y = y · x.

2. Linearity in the first argument: For any a,b 2 C, (a1x1 +a2x2) · y = a1(x1 · y)+a2(x2 · y).

3. Positive-definiteness: x · x > 0 if x 6= 0.

Let x2Cn⇥n be a square matrix. It is called a Hermitian matrix if x jk = x̄k j for all j,k. If x is Hermitian
its diagonal entries x j j are necessarily real. Let Sn ⇢Cn⇥n denote the set of all n⇥n Hermitian matrices.
If x,y 2 S

n then

x · y = Â
j

x j jȳ j j + Â
j<k

�
x jkȳ jk + xk jȳk j

�
= Â

j
x j jy j j + Â

j<k

�
x jkȳ jk + x̄ jky jk

�

i.e., x · y is a real number. This means that if x,y 2 S
n are Hermitian matrices then

x · y = y · x 2 R (7.16)

We will consider Sn as a vector (or linear) space over the field R of real numbers, not over C (see Appendix
20.1.1.1 for definitions of vector space and subspace). We can then call a set K ✓ S

n of Hermitian matrices
a cone in the vector space S

n if x 2 K implies that gx 2 K for any g > 0 in the field R. As for a cone K
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of vectors in R
n, a cone in S

n is not necessarily convex, e.g., K := {g1x1 : g1 � 0}[ {g2x2 : g2 � 0} is a
nonconvex set unless x1 = gx2 for some g 2R. We define the notion of dual cone in S

n (the order of inner
product in Definition 7.5 does not matter because of (7.16)).

Definition 7.5 (Cones in S
n). Consider the vector space S

n ⇢ C
n⇥n of Hermitian matrices. Let X ✓ S

n be
a nonempty set.

1. The polar cone of X is X� := {y 2 S
n : y · x 0 8x 2 X}

2. The dual cone X⇤ of X is X⇤ :=�X� = {y 2 S
n : y · x� 0 8x 2 X}.

3. A cone K is called self-dual if K⇤ = K.

The nonnegativity cone Rn
+ ⇢R

n, the second-order cone Ksoc ⇢R
n, and the positive semidefinite cone

Kpsd ⇢ S
n of positive semidefinite matrices are all self-dual proper cones (recall a proper cone is closed,

convex, pointed and has nonempty interior).

Polar and dual cones in R
n are defined in exactly the same way in Chapter 12.1.1. Their properties are

given in Proposition 12.1 there and extend directly to cones in the vector space S
n. For example for an

arbitrary nonempty set X ✓ S
n of matrices, its polar cone X� and dual cone X⇤ are closed convex cones.

If X is itself a closed convex cone then (X�)� = X . The following property of the dual cone underlies
the definition of dual problem and duality. Consider a cone K in an underlying vector space K+, e.g.,
K+ := R

n or K+ := S
n. Then the minimum value over K of the inner product with another vector y is 0 if

y 2 K⇤ and �• if otherwise. It follows directly from the definition of dual cone and therefore applies to
cones in both vector spaces Rn and S

n.

Lemma 7.6 (Duality over cone). Let K+ be a vector space with an inner product x ·y = y ·x which is in R.
Let K ✓ K+ be a nonempty cone. Then

min
x2K

y · x = min
x2K

x · y =

⇢
0 if y 2 K⇤

�• if y 2 K+ \K⇤

Lemma 7.6 holds whether or not the cone K is self dual or not; if K⇤ = K then we can replace K⇤ by
K in the lemma.

Remark 7.1 (Semidefinite cones in S
n). The vector space S

n can be partitioned into the cone Kpsd of
positive semidefinite matrices, the cone Knsd of negative semidefinite with Kpsd \Knsd = {0} the zero
matrix 0, and the set of indefinite Hermitian matrices (those with both positive and negative eigenvalues).
Both Kpsd and Knsd are self-dual proper cones. They are also polar cones of each other, i.e., Kpsd = K�nsd
and Knsd = K�psd.

7.2.3 Projection theorem

Given a set X ✓ R
n the projection of x 2 R

n onto X is defined to be:

[x]X := argmin
y2X

kx� yk2 (7.17)
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where k · k2 is the Euclidean norm. Hence [x]X is the unique point in X that is closest to x 2 R
n in the

Euclidean norm. They are illustrated in Figure 7.11.

.#x 

.#

y 

X 
z = x[ ]X

Figure 7.11: The point z := [x]X is the unique closest point to x in the convex set X under the Euclidean
norm. For all other points y 2 X , the inner product of y� z and x� z is nonpositive.

Theorem 7.7 (Projection theorem). Suppose X ✓ R
n is a nonempty, closed and convex set.

1. For every x 2 R
n there exists a unique [x]X defined by (7.17).

2. For every x 2 R
n, z = [x]X if and only if z 2 X and (y� z)T (x� z)  0 for all y 2 X .

3. The projection mapping T : Rn! X defined by T (x) := [x]X is continuous and nonexpansive under
the Euclidean norm, i.e.,

k[y]X � [x]Xk2  ky� xk2 8x,y 2 R
n

Note that Theorem 7.7 does not require X to be bounded (compact), only closed. This is because since
X is nonempty there is an w 2 X . Hence the minimization in the projection (7.17) can be equivalently
restricted to the compact set {y 2 X |kx� yk2  kx�wk2}.

7.2.4 Separating hyperplanes

Recall that for any set X ✓ R
n, cl(X) denotes the closure of X , int(X) denotes the interior of X , ri(X)

denotes the relative interior of X , and cl(X)\ int(X) is the boundary of cl(X).

Definition 7.6. 1. A hyperplane is a set H := {x 2 R
n : aTx = b} for some a 2 R

n and b 2 R.

2. Two sets X ,Y ✓R
n are separated by a hyperplane H = {x 2Rn : aTx = b} if each lies in a different

closed halfspace associated with H, i.e., ether

aTx  b  aTy, x 2 X , y 2 Y or aTx � b � aTy, x 2 X , y 2 Y

H is called a separating hyperplane.
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3. If x⇤ is in the boundary cl(X)\ int(X) of X ✓ R
n, the hyperplane H := {x 2 R

n : aTx = aTx⇤} that
separates cl(X) (or X) and {x⇤} is called a supporting hyperplane of cl(X) (or X) at x⇤.

If point x⇤ is not in the interior of a set X then either x is not in the closure of X or x is in the boundary
of X . The next result says that such a point x⇤ can always be separated from X by a hyperplane if X is
convex. The hyperplane is a supporting hyperplane of X at x⇤ if and only if x⇤ is in the boundary of X . It
is a straightforward consequence of the Projection Theorem 7.7.

Theorem 7.8 (A point x⇤ and a convex set X). Suppose X ✓R
n is nonempty convex and x⇤ 2R

n \ int(X).

1. There exists a hyperplane that passes through x⇤ that contains X in one of its halfspaces, i.e., there
exists a nonzero a 2 R

n such that

aTx  aTx⇤, x 2 cl(X) (7.18a)

A separating hyperplane is H := {x 2 R
n : aTx = aTx⇤}.

2. If x⇤ 62 cl(X) then the inequality in (7.18a) is strict. Hence there exists b 2 (aTx̂⇤,aTx⇤) such that
the hyperplane H := {x 2 R

n : aTx = b} strictly separates cl(X) and x⇤, i.e.,

aTx < b < aTx⇤, x 2 cl(X) (7.18b)

where x̂⇤ is the projection of x⇤ onto the convex set cl(X).

Proof. To prove part 2 first and then part 1.

Part 2: x⇤ 62 cl(X). Let x̂⇤ 6= x⇤ be the projection of x⇤ onto cl(X), i.e., x̂⇤ := argminx2cl(X) kx�x⇤k2. Then
(x⇤ � x̂⇤)T(x� x̂⇤)  0 for all x 2 cl(X) by the Projection Theorem 7.7. Define the normalized (error)
vector

a :=
x⇤ � x̂⇤

kx⇤ � x̂⇤k2
6= 0 (7.19a)

Therefore

aTx  aTx̂⇤ = aTx⇤ � aT (x⇤ � x̂⇤) < aTx⇤, x 2 cl(X) (7.19b)

where the last inequality follows because aT(x⇤ � x̂⇤) = kx⇤ � x̂⇤k2 > 0. By definition, (7.19) says that
cl(X) is in a halfspace associated with the hyperplane H := {x 2 R

n : aTx = aTx⇤}, as shown in Figure
7.12(a). Another separating hyperplane is the supporting hyperplane H := {x 2Rn : aTx = aTx̂⇤} of cl(X)
at x̂⇤ (the dashed line in 7.12(a)).

We now show (7.18b) by explicitly constructing a b 2 (aTx̂⇤,aTx⇤) so that H := {x 2 R
n : aTx = b}

is a separating hyperplane (see Figure 7.12(a)). We claim that we can choose any z = b x̂⇤+ (1� b )x⇤

between x̂⇤ and x⇤ for some b 2 (0,1) and let b := aTz. To see this we have from (7.19b)

aTx  aTx̂⇤ = aTz�aT(z� x̂⇤) < aTz, x 2 cl(X)
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Figure 7.12: Proof of Theorem 7.8. The vectors a,ai are in the normal cones of cl(X) at x̂⇤ and x̂i respec-
tively and H := {x 2 R

n : aTx = aTx⇤} is a hyperplane separating cl(X) and x⇤. In Case 1 the separating
hyperplane is nonunique: even with the same a, b can take any value in (aTx̂⇤,aTx⇤) and {x : aTx = b} will
be a seperating hyperplane. (Fig changes: ALL X should be cl(X) in figure. Separate into two subfigures
with captions: (a) Case 1: x⇤ 62 cl(X). (b) Case 2: x⇤ 2 cl(X)\ int(X).)

proving the first half of (7.18b), where the last inequality follows because

aT(z� x̂⇤) = (1�b )aT (x⇤ � x̂⇤) = (1�b )kx⇤ � x̂⇤k2 > 0

For the second half of (7.18b) we have

aT(x⇤ � z) = baT(x⇤ � x̂⇤) > bkx⇤ � x̂⇤k2 > 0

as desired.

Part 1: x⇤ 2 cl(X) \ int(X). In view of part 1 we only need to consider x⇤ 2 cl(X) \ int(X). In this case
x̂⇤ = x⇤ and hence we cannot define a by (7.19). Take a sequence {xi} not in cl(X) such that limi xi =
x⇤. Let x̂i be the projection of xi onto the convex set cl(X), i.e., x̂i := argminx2cl(X) kx� xik2. Then
(xi� x̂i)T(x� x̂i)  0 for all x 2 cl(X) by the Projection Theorem 7.7. Define the normalized (error)
vectors

ai :=
xi� x̂i

kxi� x̂ik2
, i = 1,2, . . .

Therefore

aTi x  aTi x̂i = aTi xi�aTi (xi� x̂i)  aTi xi, x 2 cl(X) (7.20)

where the second inequality follows because aTi (xi� x̂i) = kxi� x̂ik2. Since kaik= 1 the sequence {ai, i =
1,2, . . .} has a subsequence {aik ,k = 1,2, . . .} that converges to a nonzero vector a. Taking limit as k!
• in (7.20) yields aTx  aT limk xik = aTx⇤ for all x 2 cl(X) as desired. This completes the proof of
(7.18a).

Theorem 7.9 (Two convex sets X and Y ). Suppose two disjoint sets X ,Y 2 R
n, i.e., X \Y = /0, are

nonempty convex.
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1. There exists a nonzero a 2 R
n and b 2 R such that

aTx  b  aTy, x 2 cl(X), y 2 cl(Y )

i.e. X and Y are contained in different halfspaces of the hyperplane H := {x 2 R
n : aTx = b}.

2. If cl(X)\ cl(Y ) = /0, i.e., minx2cl(X) miny2cl(Y ) kx� yk2 > 0, then there exists b 2 R such that the
hyperplane H := {x 2 R

n : aTx = b} strictly separates X and Y :

aTx < b < aTy, x 2 cl(X), y 2 cl(Y )

Proof. Consider the set W := {x� y : x 2 X ,y 2 Y}. W is nonempty convex. Moreover the origin 0 62W .
Apply Theorem 7.8 to W and x⇤ = 0. Then there exists a nonzero a such that aT(x� y)  0 for all
x� y 2 cl(W ), or aTx aTy for all x 2 cl(X), y 2 cl(Y ).

When cl(X)\ cl(Y ) = /0, then x⇤ 62 cl(W ) and hence Theorem 7.8 guarantees a b 2 (aTx̂⇤,aTx⇤) such
that the inequalities are strict, where x̂⇤ is the projection of x⇤ onto W .

Define the Euclidean distance between X and Y as infx2X infy2Y kx� yk2. We illustrate Theorem 7.9
by deriving explicitly a and b for the case where the distance is nonzero and there are c 2 X ,d 2 Y that
attain the distance, i.e., kc�dk2 = minx2X miny2Y kx�yk2 > 0. First we treat c as the projection of d onto
cl(X), i.e., kc�dk2 = minx2cl(X) kx�dk2. This corresponds to part 2 of Theorem 7.8 with d = x⇤ 62 cl(X).
Hence from (7.19) we have

a :=
c�d
kc�dk2

(7.21a)

Then we have from Theorem 7.8

aTx < aTd, x 2 cl(X) (7.21b)

On the other hand we can also treat d as the projection of c onto cl(Y ), i.e., kc�dk2 = miny2cl(Y ) ky�ck2.
Then we have from (7.19) a0 := d�c

kd�ck2
=�a and a

0
Ty a

0
Tc for all y 2 cl(Y ). Hence

aTy > aTc, y 2 cl(Y ) (7.21c)

Combining (7.21) we have

aTx < aTd < aTc < aTy, x 2 cl(X), y 2 cl(Y )

where the second inequality follows from aT(c� d) = kc� dk2 > 0. Therefore b can be any number in
[aTd,aTc]. In Chapter 12.1.2 we show that the normal vector a constructed in the proof of Theorem 7.8 is
in the normal cone Ncl(X)(x̂⇤) of cl(X) at the projection x̂⇤ of x⇤ onto the convex set cl(X). For Theorem
7.9, the construction of a in (7.21a) is in the normal cone Ncl(Y )(d) =�Ncl(X)(c).
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7.2.5 Farkas Lemma

A very useful result is the following theorem which, e.g., underlies the strong duality of linear program-
ming. It is a simple consequence of the separating hyperplane Theorem 7.8. Recall that if {a1, . . . ,an} are
the column vectors of A 2 R

m⇥n then cone(A) :=cone({a1, . . . ,an})✓ R
m.

Theorem 7.10 (Farkas Lemma). Let A 2 R
m⇥n and b 2 R

m. Then

1. Exactly one of the following holds:3

(a) b 2 cone(A): There exists an x 2 R
n such that Ax = b and x� 0.

(b) b 62 cone(A): There exists an y 2 R
m such that yTA� 0 and yTb < 0.

2. Exactly one of the following holds:

(a) b 2 range(A): There exists an x 2 R
n such that Ax = b.

(b) b 62 range(A): There exists an y 2 R
m such that yTA = 0 and yTb 6= 0.

Proof. For part 1, according to the Carathéodory Theorem 7.5, any b 2 cone(A) can be expressed as
b = Âk

i=1 aiai for some km, ai > 0, and k linearly independent column vectors ai of A. Therefore Ax = b
for some x� 0 if and only if b 2 cone(A)✓ R

m. Suppose there exists no such x. We now prove that there
must exist y 2 R

m such that yTA � 0 and yTb < 0, by applying Theorem 7.8 to the closed convex cone
cone(A) and the point b. Since b 62 cone(A) there exists y 2 R

m such that yTb < yTz for all z 2 cone(A).4
Since 0 2 cone(A) we have yTb < 0. Moreover yTA � 0 because otherwise, if e := yTai < 0 for any
column vector ai of A, then tai 2 cone(A) for any t � 0 and yT(tai) = te !�• as t ! •, contradicting
yTb < yTz for all z 2 cone(A).

Part 2 of the theorem is a consequence the rank-nullity theorem which says that Rm can be decomposed
into two orthogonal subspaces, null(AT) and range(A) (see (20.1) in Chapter 20.1.1.2). Decompose b2Rm

into two orthogonal components b =: b1 + b2 with b1 2 null(AT) and b2 2 range(A), i.e., ATb1 = 0 and
b2 = Ax for some x 2 R

n. Either b is in range(A) (i.e., b1 = 0 and Ax = b) or there exists a nonzero
y := b1 2 null(AT) such that ATy = 0 and

yTb = yTb1 + yTb2 = kb1k2 > 0

where the last equality follows because b1 and b2 are orthogonal.

Part 1 of Theorem 7.10 is illustrated in Figures 7.13. Either b is in cone(A) or b is not. In the first
case, b = Ax for some x � 0 according to the Carathéodory Theorem 7.5, as shown in Figures 7.13(a).
Otherwise, let cone⇤(A) := {y 2 R

m : yTz � 0 8z 2 cone(A)}; see Figures 7.13(b). This is called a dual
cone of cone(A) and studied in Chapter 12.1.1. Since b is outside cone(A), there must exist an y in the
intersection of cone⇤(A) and the set {b}� := {y 2 R

m : yTb 0} (called the polar cone of {b} in Chapter
12.1.1) such that yTA� 0 and yTb < 0. Part 2 of Theorem 7.10 is illustrated in Figure 7.14.

3One clearly cannot have both because otherwise, yTAx = (yTA)x� 0 and yTAx = yTb < 0, a contradiction.
4Theorem 12.5 guarantees such an y in the dual cone cone⇤(cone(A)�b).
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Figure 7.13: Theorem 7.10.1.

Figure 7.14: Theorem 7.10.2.
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See Exercise 12.3 for an application of the Farkas Lemma to derive the polar cone of a pre-image of
the nonpositive quadrant under a linear transformation.

We next study various characterizations of optimal solutions, including the KKT condition, on which
many optimization algorithms are based.

7.3 General theory: optimality conditions

Consider the optimization problem (7.8) reproduced here:

min
x2Rn

f (x) subject to x 2 X

In this section we develop a basic theory to answer the following questions:

Q1 How to characterize optimal solutions?

Q2 When will optimal solutions exist and when will it be unique?

Associated with (7.8) is a dual problem maxµ d(µ). Q1 is important because many algorithms to com-
pute an optimal solution (studied in Chapter 7.5) are based on necessary conditions for optimality; these
conditions are often sufficient for convex programs. To answer Q1 we show in Chapter 7.3.1 that a saddle
point (x⇤,µ⇤) is optimal for both the primal and the dual problems and closes a duality gap (Saddle-point
Theorem 7.12). This characterization does not require the cost function f to be smooth (e.g. continuous
or differentiable) or convex or the feasible set X to be convex. In Chapter 7.3.2 we show that a saddle
point, not only is primal-dual optimal and closes the duality gap, but also satisfies the KKT condition
(KKT Theorem 7.13). This characterization requires the cost function f and constraint functions to be
continuously differentiable and convex (even though the feasible set X remains nonconvex if a convex
equality constraint is not affine). These results characterize the primal and dual optimal solutions but do
not ensure their existence.

For Q2 we show in Chapter 7.3.3 that continuity of the cost function f and compactness of the feasible
set X is sufficient for the existence of primal solutions x⇤ (Theorem 7.14). Strict convexity of f ensures
the uniqueness of x⇤. We show in Chapter 7.3.4 that if the primal optimal value is finite and a kind of
feasibility condition called constraint qualification is satisfied then the duality gap is zero and dual optimal
solutions exist (Slater Theorem 7.15). These results are summarized in Table 7.1.

As summarized in Table 7.1 smoothness is required for the KKT Theorem (continuously differentiable
cost and constraint functions) and the existence of primal optimal solutions (continuous cost function).
Neither the Saddle-point Theorem 7.12 nor the Slater Theorem 7.15 requires smoothness. These results
are generalized to a nonsmooth setting in Chapter 12 when the feasible set is convex.
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Primal-dual characterization Assumptions
Th 7.12 saddle point = p-d optimality + strong duality arbitrary f and X
Th 7.13 KKT point = saddle point cont. diff. conv. cost and constr. funts.

Existence
Th 7.14 primal optimal x⇤ cont. f , compact X
Th 7.15 dual optimal l ⇤ & strong duality conv. f , affine equality, convex inequality,

finite f ⇤, Slater cond.
Co 7.16 combination of Ths 7.12, 7.13, 7.14, 7.15 intersection

Table 7.1: Summary of characterization and existence of primal and dual optimal solutions.

7.3.1 Characterization: saddle point = p-d optimality + strong duality

Primal problem. We now study the case where the feasible set X ✓ R
n is specified by a set of equality

and inequality constraints. Consider

f ⇤ := min
x2Rn

f (x) s.t. g(x) = 0, h(x) 0 (7.22)

where f :Rn!R, g :Rn!R
m and h :Rn!R

l are arbitrary real-valued functions. In particular f ,g,h are
not necessarily convex or differentiable or even continuous. We will call this problem the primal problem.

Associated with every constrained optimization problem (7.22) (at least partially) specified by equality
and inequality constraints is a dual problem, defined as follows.

Dual problem. Associated with the equality constraint is the dual variable l 2 R
m and associated with

the inequality cosntraint is the dual variable µ 2 R
l
+. Define the Lagrangian function or the Lagrangian

associated with (7.22) as the function L : Rn+m+l ! R:

L(x,l ,µ) := f (x) + lTg(x) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l (7.23a)

For any (l ,µ) define the dual function by the unconstrained minimization of the Lagrangian over the
primal variable x:

d(l ,µ) := min
x2Rn

L(x,l ,µ) (7.23b)

The dual problem of (7.22) is defined to be:

d⇤ := max
l2Rm,µ2Rl

d(l ,µ) s.t µ � 0 (7.23c)

Let X := {x 2 R
n : g(x) = 0, h(x)  0} denote the primal feasible set and Y := {(l ,µ) 2 R

m+l : µ � 0}
the dual feasible set. A primal feasible point x⇤ 2 X is called primal optimal if x⇤ solves (7.22) and a
dual feasible point (l ⇤,µ⇤) 2 Y is called dual optimal if (l ⇤,µ⇤) solves (7.23). We also called such an
(x⇤,l ⇤,µ⇤) primal-dual optimal. It is important that the minimization over x in the dual problem (7.23) is
unconstrained. It converts the constrained minimization (7.22) into an unconstrained minimization over x
under certain conditions; see Remark 7.5.
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The dual problem (7.23) always provides a lower bound on the primal problem (7.22) for arbitrary cost
and constraint functions f ,g,h, even extended real-valued functions.

Lemma 7.11 (Weak duality). If (x̄, l̄ , µ̄) 2 X⇥Y is a primal-dual feasible point then d(l̄ , µ̄)  f (x̄).

Proof. Since (x̄, l̄ , µ̄) is primal-dual feasible we have l̄Tg(x̄) = 0 and µ̄Th(x̄) 0 and hence L(x̄, l̄ , µ̄)
f (x̄) from (7.23a). Therefore

d(l̄ , µ̄) := min
x2Rn

L(x, l̄ , µ̄)  L(x̄, l̄ , µ̄)  f (x̄)

as desired.

The weak duality Lemma 7.11 implies in particular that the dual objective value d⇤ lower bounds the
primal objective value f ⇤:

d⇤ := max
l ,µ�0

d(l ,µ)  min
x2X

f (x) =: f ⇤ (7.24)

This holds whether or not the primal problem is convex and whether or not these values are bounded: if the
primal optimal value is f ⇤ = �• then the dual problem is infeasible; if the dual optimal value is d⇤ = •
then the primal problem is infeasible. The gap f ⇤ � d⇤ is called the duality gap. For general nonlinear
optimization the duality gap can be strictly positive, and even unbounded. If the primal problem (7.22) is
convex and a certain constraint qualification is satisfied, then the duality gap is zero (Theorem 7.15). In
this case we say strong duality holds. Before we study in Chapters 7.3.3 and 7.3.4 the existence of primal
and dual optimal solutions (x⇤,l ⇤,µ⇤) that closes the duality gap, we first characterize them.

Saddle point. For the duality gap to be zero and for the primal and dual problems to both attain their
optimal values, it is necessary and sufficient that a saddle point exists for arbitrary f ,g,h. To define a
saddle point we first claim that the primal problem can be written in terms of L:

f ⇤ = min
x

max
l ,µ�0

L(x,l ,µ) (7.25)

To prove (7.25), note that given any infeasible x 62 X := {x : g(x) = 0, h(x)  0}, it is clear that
maxl ,µ�0 L(x,l ,µ) is unbounded. Therefore

min
x

max
l ,µ�0

L(x,l ,µ) = min
x2X

max
l ,µ�0

L(x,l ,µ) (7.26a)

Fix any x 2 X . On the one hand, L(x,l ,µ) f (x) for any µ � 0, and hence

min
x2X

max
l ,µ�0

L(x,l ,µ)  min
x2X

f (x) =: f ⇤ (7.26b)

On the other hand, maxl ,µ�0 L(x,l ,µ)� L(x,l ,0) = f (x) since x 2 X , and hence

min
x2X

max
l ,µ�0

L(x,l ,µ) � min
x2X

f (x) =: f ⇤ (7.26c)
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Combining (7.26) gives

f ⇤ = min
x

max
l ,µ�0

L(x,l ,µ) = min
x2X

max
l ,µ�0

L(x,l ,µ) (7.27)

proving (7.25). Therefore weak duality (7.24) can also be expressed symmetrically in terms of the La-
grangian L:

d⇤ := max
(l ,µ)2Y

min
x2Rn

L(x,l ,µ)  min
x2Rn

max
(l ,µ)2Y

L(x,l ,µ) =: f ⇤ (7.28)

An important feature of (7.28) is that the minimization over x is unconstrained.

Definition 7.7 (Saddle point). A point (x⇤,l ⇤,µ⇤) 2 R
n⇥Y is called a saddle point of the Lagrangian L

if it satisfies

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2Rn

L(x,l ⇤,µ⇤) (7.29)

where Y := {(l ,µ) 2 R
m+l : µ � 0}.

Remark 7.2 (Equivalent definitions of saddle point). 1. If (x⇤,l ⇤,µ⇤) 2 R
n⇥Y is a saddle point then

necessarily x⇤ 2 X is primal feasible because otherwise, max(l ,µ)2Y L(x⇤,l ,µ) is unbounded but
L(x⇤,l ⇤,µ⇤) is finite since f ,g,h are real-valued. Therefore, when f ,g,h are real-valued, we can
define a saddle point without loss of generality as a primal-dual feasible point (x⇤,l ⇤,µ⇤) 2 X ⇥Y
that satisfies (7.29).

2. An equivalent specification of a saddle point (x⇤,l ⇤,µ⇤) is (Exercise 7.14):

(x⇤,l ⇤,µ⇤) 2 X⇥Y, L(x⇤,l ⇤,µ⇤) = min
x2Rn

L(x,l ⇤,µ⇤), µ⇤Th(x⇤) = 0 (7.30)

i.e., max(l ,µ)2Y L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) in (7.29) can be replaced by primal feasibility and com-
plementary slackness.

Remark 7.3 (Partial dualization). The minimization over x in Definition 7.7 is unconstrained because
all constraints of (7.22) have been dualized. The constraints can also be partially dualized. Specifically
suppose (7.22) takes the form

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, g(x) = 0, h(x) 0 (7.31a)

where X 0 ✓ R
n. The Lagrangian L is still defined by (7.23a), but the dual function is now defined to be

d(l ,µ) := minx2X 0 L(x,l ,µ) and the dual problem is

d⇤ := max
(l ,µ)2Y

min
x2X 0

L(x,l ,µ) (7.31b)

where Y := {(l ,µ) 2 R
m+l : µ � 0}. Instead of (7.28) and (7.29), strong duality holds if

max
(l ,µ)2Y

min
x2X 0

L(x,l ,µ) = min
x2X 0

max
(l ,µ)2Y

L(x,l ,µ)

and (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is a saddle point if

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2X 0

L(x,l ⇤,µ⇤)

All saddle point results extend to the case of partial dualization with obvious modifications (see also
Chapter 12.7).
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Remark 7.4 (Game interpretation). The weak duality (7.28) can be interpreted as a two-person game
where a player tries to maximize L(x,l ,µ) over (l ,µ)2Y and the other player tries to minimize L(x,l ,µ)
over x 2 R

n. The inequality (7.28) expresses the second-mover advantage: the player that makes the first
move is generally disadvantaged. A saddle point (x⇤,l ⇤,µ⇤) is a Nash equilibrium of this game.

The next result Theorem 7.12 states that a saddle point (x⇤,l ⇤,µ⇤) of L solves both the primal and
the dual problems and closes the duality gap. It does not require any of the functions f ,g,h in the primal
problem (7.22) to be convex or smooth (e.g., differentiable or even continuous) or the feasible sets X ,Y to
be compact (Y is obviously not compact). It is simply a re-interpretation of a saddle point in terms of the
primal problem (7.25) and dual problem (7.23). It only characterizes a saddle point but does not ensure its
existence. We will study the existence of primal and dual optimal solutions in Chapters 7.3.3 and 7.3.4.

Theorem 7.12 (Saddle-point Theorem). Consider the primal problem (7.22) and its dual (7.23). A point
(x⇤,l ⇤,µ⇤) is a saddle point if and only if

1. It is primal-dual optimal, i.e., x⇤ is optimal for (7.22) and (l ⇤,µ⇤) is optimal for (7.23); and

2. The duality gap is zero at (x⇤,l ⇤,µ⇤), i.e.,

d(l ⇤,µ⇤) = d⇤ = f ⇤ = f (x⇤) (7.32)

In particular a saddle point (x⇤,l ⇤,µ⇤), if it exists, attains both the primal and dual objective values
( f ⇤,d⇤).

Proof. Suppose (x⇤,l ⇤,µ⇤) is a saddle point, i.e., it satisfies (7.29) in Definition 7.7. As explained in
Remark 7.2, when the functions f ,g,h are real-valued, a saddle point is necessarily a primal-feasible
point, in particular, x⇤ 2 X . Then we have

f (x⇤) = L(x⇤,l ,0)  max
(l ,µ)2Y

L(x⇤,l ,µ) = min
x2Rn

L(x,l ⇤,µ⇤) =: d(l ⇤,µ⇤)

where the second equality follows from (7.29) and the last equality follows from the definition of the dual
objective function d. Since (x⇤,l ⇤,µ⇤) 2 X⇥Y is feasible, the weak duality Lemma 7.11 implies that

f (x⇤) = d(l ⇤,µ⇤)

The definition of f ⇤ and d⇤ and weak duality (7.24) then imply

d(l ⇤,µ⇤)  d⇤  f ⇤  f (x⇤) = d(l ⇤,µ⇤)

which is (7.32). This also shows that (x⇤,l ⇤,µ⇤) is primal-dual optimal.

Conversely suppose (x⇤,l ⇤,µ⇤) 2 X ⇥Y is primal-dual optimal and satisfies (7.32). Since g(x) = 0
and µTh(x) 0 for any (x,l ,µ) 2 X⇥Y , we have

L(x⇤,l ⇤,µ⇤)  max
(l ,µ)2Y

L(x⇤,l ,µ)  f (x⇤) = d(l ⇤,µ⇤) := min
x2Rn

L(x,l ⇤,µ⇤)  L(x⇤,l ⇤,µ⇤)

where the second inequality follows because g(x⇤) = 0 and h(x⇤)  0, the first equality follows from
(7.32), and the second equality follows from the definition of d. Hence all inequalities above hold with
equality, proving that (x⇤,l ⇤,µ⇤) is a saddle point, i.e., it satisfies (7.29).
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Theorem 7.12 and (7.30) lead to a common characterization of attainment of optimality and strong
duality: (x⇤,l ⇤,µ⇤) attains primal-dual optimality and strong duality f ⇤ = d⇤ if and only if (x⇤,l ⇤,µ⇤) 2
X⇥Y is primal-dual feasible and

x⇤ 2 arg min
x2Rn

L(x,l ⇤,µ⇤), (µ⇤)T g(x⇤) = 0

Remark 7.5 (Solving dual problems). It is important that the minimization over x 2 R
n in the primal

problem (7.22) and its dual (7.23c), reproduced here:

f ⇤ := min
x2Rn

max
(l ,µ)2Y

L(x,l ,µ) (7.33)

d⇤ := max
(l ,µ)2Y

min
x2Rn

L(x,l ,µ) (7.34)

is unconstrained. We can interpret the dual problem as converting the constrained primal problem (7.22)
into an unconstrained minimization where the primal constraints are replaced by the penalty terms lTg(x)+
µTh(x) in the Lagrangian L(x,l ,µ). Given an (l ,µ) 2 Y , solving the inner unconstrained problem
minx L(x,l ,µ) can be much easier than solving (7.22), e.g., when —xL(x,l ,µ) = 0 can be solved ex-
plicitly. In this case, if strong duality holds, we can solve (7.22) by solving the dual problem (7.34).

When the primal constraints are partially dualized, as explained in Remark 7.3, the primal and dual
problems become

f ⇤ := min
x2X 0

max
(l ,µ)2Y

L(x,l ,µ)

d⇤ := max
(l ,µ)2Y

min
x2X 0

L(x,l ,µ)

Solving the dual problem is advantageous when strong duality holds and, given an (l ,µ) 2Y , solving the
inner problem minx2X 0 L(x,l ,µ) is much easier than solving (7.22).

Even if strong duality does not hold, solving the dual problem yields a lower bound on the primal
objective value f ⇤ which can be useful in practice.

Example 7.9. Power system examples to illustrate Remark 7.5.

7.3.2 Characterization: KKT point = saddle point

We now consider the primal problem (7.22) and its dual problem (7.23) under the assumption that the
cost function f and the constraint functions g,h are convex and continuously differentiable.5 While the
duality theory can be developed when some or all of the constraints are dualized (see Remark 7.3), the
KKT theory needs all constraints to be dualized.

5A function f is said to be continuously differentiable if its partial derivatives ∂ f
∂x j

(x) exist and are continuous functions of
x. See Chapter 12.3.1 or Chapter 20.1.9 for more details.
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KKT condition. The KKT condition on (x,l ,µ) associated with the primal and dual problems (7.22)(7.23)
is defined by the following system of equations:

Stationarity : —xL(x,l ,µ) = 0 (7.35a)
Primal feasibility : g(x) = 0, h(x)  0 (7.35b)
Dual feasibility : µ � 0 (7.35c)

Complementary slackness : µTh(x) = 0 (7.35d)

where —xL is the column vector whose ith entry is ∂L
∂xi

. The stationarity (7.35a) is explicitly:

Stationarity : — f (x) + —g(x)l + —h(x)µ = 0 (7.35e)

where —g(x) =
h

∂g
∂x

iT
2 R

n⇥m and —h(x) =
h

∂h
∂x

iT
2 R

n⇥l are the Jacobian of g and h respectively.

Definition 7.8 (KKT point). A primal variable x⇤ is called a stationary point and a dual variable (l ⇤,µ⇤)
a Lagrange multiplier (vector) of (7.22) if (x⇤,l ⇤,µ⇤) satisfies (7.35), i.e., if

—xL(x⇤,l ⇤,µ⇤) = 0, g(x⇤) = 0, h(x⇤) 0, µ⇤ � 0, µ⇤Th(x⇤) = 0 (7.36)

We also call such a point (x⇤,l ⇤,µ⇤) 2 X⇥Y a KKT point.

Like a saddle point, a KKT point is necessarily primal-dual feasible. If f ,g,h are convex functions then
a stationary point x⇤ is an unconstrained minimizer of L(x,l ⇤,µ⇤) over x 2 R

n. Otherwise a stationary
point x⇤ can be a local minimizer, a local maximizer or an inflection point of L(x,l ⇤,µ⇤). If f ,g,h are
convex then a primal-dual feasible (x⇤,l ⇤,µ⇤) 2 X ⇥Y satisfies the KKT condition if and only if it is a
saddle point, as proved in the next result. Note that the primal problem (7.22) is still nonconvex if g(x)
is convex but not affine and therefore Theorem 7.13 applies to nonconvex problems as long as f ,g,h are
convex (and continuously differentiable).

Theorem 7.13 (KKT Theorem). Consider the primal problem (7.22) and its dual (7.23). Suppose f ,g,h
are convex and continuously differentiable functions. Consider an arbitrary point (x⇤,l ⇤,µ⇤). The fol-
lowing are equivalent:

1. (x⇤,l ⇤,µ⇤) is a saddle point.

2. (x⇤,l ⇤,µ⇤) satisfies the KKT condition (7.36).

3. (x⇤,l ⇤,µ⇤) is primal-dual optimal and closes the duality gap, i.e., d(l ⇤,µ⇤) = d⇤ = f ⇤ = f (x⇤).

Proof. As discussed above, a saddle point, a KKT point and a primal-dual optimal are necessarily primal-
dual feasible and hence we can restrict ourselves without loss of generality to (x⇤,l ⇤,µ⇤) 2 X ⇥Y . The
equivalence of the first and the third assertions is proved in Theorem 7.12 and holds for arbitrary functions
f ,g,h, not necessarily convex or continuously differentiable. To show the equivalence of the first two
assertions, since (x⇤,l ⇤,µ⇤) is primal-dual feasible, we only need to show the complementary slackness
condition (7.35d) and the stationarity condition (7.35a). As we will see complementary slackness does
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not require f ,g,h to be convex or continuously differentiable, but stationarity being a first-order condition
requires both.

Suppose (x⇤,l ⇤,µ⇤) is a saddle point, i.e.,

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x

L(x,l ⇤,µ⇤) (7.37)

We now show that the first equality implies (7.35d) and the second equality implies (7.35a). The first
equality in (7.37) reads, substituting g(x⇤) = 0 (since x⇤ 2 X),

f (x⇤) + max
(l ,µ)2Y

µTh(x⇤) = f (x⇤) + µ⇤Th(x⇤)

But max(l ,µ)2Y µTh(x⇤) = 0 since h(x⇤)  0 and µ � 0, and hence f (x⇤) = f (x⇤)+ µ⇤Th(x⇤), implying
the complementary slackness condition µ⇤Th(x⇤) = 0. It also means that L(x⇤,l ⇤,µ⇤) = f (x⇤). Hence the
second equality in (7.37) reads

f (x⇤) = min
x

L(x,l ⇤,µ⇤)

i.e., x⇤ is an unconstrained minimizer of L(x,l ⇤,µ⇤) over 2R
n. Since f ,g,h are convex and continuously

differentiable, it is necessary and sufficient that —xL(x,l ⇤,µ⇤) = 0, proving the stationarity condition
(7.35a).

Conversely suppose (x⇤,l ⇤,µ⇤) satisfies the KKT condition (7.36). We now show that the saddle
point condition (7.37) is satisfied. Since f ,g,h are convex and continuously differentiable, the stationarity
condition —xL(x,l ⇤,µ⇤) = 0 implies that L(x⇤,l ⇤,µ⇤) = minx L(x,l ⇤,µ⇤), proving the second equality
of (7.37). For the first equality, since g(x⇤) = 0 and µ⇤Th(x⇤) = 0, we have f (x⇤) = L(x⇤,l ⇤,µ⇤). Hence

L(x⇤,l ⇤,µ⇤) = f (x⇤) � max
(l ,µ)2Y

f (x⇤)+lTg(x⇤)+ µTh(x⇤) = max
(l ,µ)2Y

L(x⇤,l ,µ) � L(x⇤,l ⇤,µ⇤)

proving L(x⇤,l ⇤,µ⇤) = max(l ,µ)2Y L(x⇤,l ,µ). This completes the proof of the theorem.

Remark 7.6 (Comparison: Saddle point and KKT theorems). 1. The saddle point Theorem 7.12 holds
without requiring f ,g,h in the primal problem (7.22) to be convex or differentiable. It says that a
saddle point (x⇤,l ⇤,µ⇤) is primal-dual optimal and closes the duality gap.

2. The KKT Theorem 7.13 requires that f ,g,h are convex and continuously differentiable. It implies
that, for a primal-dual feasible point (x⇤,l ⇤,µ⇤), the saddle point condition (7.37) is equivalent to
stationarity and complementary slackness conditions:

—xL(x⇤,l ⇤,µ⇤) = 0, µ⇤Th(x⇤) = 0

The consequence of —xL(x⇤,l ⇤,µ⇤) = 0 is that x⇤ is an unconstrained minimizer of L, i.e., L(x⇤,l ⇤,µ⇤) =
minx L(x,l ⇤,µ⇤). As mentioned above, (7.22) remains nonconvex if g is convex but not affine.
Hence Theorem 7.13 applies to nonconvex programs as well.

3. Like Theorem 7.12, Theorem 7.13 only shows that a KKT point (x⇤,l ⇤,µ⇤) is primal-dual optimal
and closes the duality gap, but does not guarantee its existence. We now study the existence and
uniqueness of a KKT point.
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7.3.3 Existence: primal optimal solutions

In general an optimal primal solution of a constrained optimization may not exist, even when the optimal
primal value is finite, dual optimal solutions exist and strong duality holds, as the next two examples show.

Example 7.10 (Nonexistence of primal optimal). Consider

f ⇤ := inf
x2R

f (x) := x2 s.t. x > 1

Clearly the primal optimal value is finite, f ⇤ = 1, but no primal optimal x⇤ exists such that f (x⇤) = f ⇤.

The Lagrangian is L(x,µ) := x2 + µ(1� x) = x2�µx+ µ , the dual function is

d(µ) := min
x

L(x,µ) = �µ2

4
+ µ

and hence d⇤ := maxµ�0 d(µ) = d(2) = 1 = f ⇤, i.e., strong duality holds and µ⇤ = 2 attains the dual
optimal.

Theorem 7.13 says that for a feasible x̄ to be optimal, (x̄,µ⇤) must satisfy the KKT condition. In
particular 2x̄ = µ⇤ and µ⇤(1� x̄) = 0, which cannot be satisfied when µ⇤ = 2 and x̄ > 1.

The reason the primal optimal is not attained in Example 7.10 is that the primal feasible set is not
closed. The next example possesses a closed (but unbounded) feasible set and has no primal optimal
solution either.

Example 7.11 (Nonexistence of primal optimal). Consider

f ⇤ := inf
x2R

f (x) := e�x s.t. x� 0

Clearly the primal optimal value is finite, f ⇤ = 0, but no finite x⇤ 2 R exists such that f (x⇤) = f ⇤.

The Lagrangian is L(x,µ) := e�x�µx, the dual function is

d(µ) := min
x

e�x�µx =

⇢
0, µ = 0
�•, µ > 0

and hence d⇤ := maxµ�0 d(µ) = d(0) = 0 = f ⇤, i.e., strong duality holds and µ⇤ = 0 attains the dual
optimal.

Theorem 7.13 says that for a feasible x̄ to be optimal, (x̄,µ⇤) must satisfy the KKT condition. In
particular ex̄ =�µ⇤, which cannot be satisfied by any finite x̄ when µ⇤ = 0.

We now formalize the intuition from these two examples. Consider the general optimization problem
(7.8), reproduced here

min
x2Rn

f (x) subject to x 2 X (7.38)

where X ✓ R
n and f : Rn! R is an arbitrary real-valued function. The next result provides a sufficient

condition for the existence of a primal optimal solution x⇤.
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Theorem 7.14 (Existence and uniqueness of x⇤). Consider the optimization problem (7.38). Suppose X is
nonempty and compact (closed and bounded) and f is continuous on X . Then

1. An optimal solution x⇤ exists.

2. Moreover the optimal solution x⇤ is unique if f is strictly convex.

The sufficient condition in Theorem 7.14 is a consequence of the Weierstrass theorem. For an exact
condition see Theorem 12.25 in Chapter 12.6. The existence of an optimal solution x⇤ only requires f to
be continuous, not necessarily convex. Convexity is important for the efficient computation of an optimal
solution because a local first-order condition is not only necessary but also sufficient for optimality when
the cost function is a convex function and the feasible set is a convex set. Note that a real-valued convex
function is continuous on the interior of its domain, according to Lemma 7.4.

7.3.4 Existence: dual optimal solutions and constraint qualifications

Consider the primal and dual problems (7.22)(7.23) where the feasible set is specified by a set of equalities
and inequalities. Conditions that guarantee the existence and uniqueness of Lagrange multipliers (l ⇤,µ⇤)
are called constraint qualification conditions. We describe three of them.

Constraint qualifications. Suppose x⇤ is a local optimal of (7.22). Let Y (x⇤) be the set of Lagrange
multipliers associated with x⇤:

Y (x⇤) :=
n

(l ,µ) 2 R
m+l : (x⇤,l ⇤,µ⇤) satisfies (7.36)

o

If Y (x⇤) is nonempty then it is a convex polyhedral set whether or not (7.22) is a convex program. (Recall
that a set B✓R

n is a polyhedral set if B = {x2Rn : Ax b} for some matrix A and vector b of appropriate
sizes; see Chapter 7.1.2.)

The set Y (x⇤) of Lagrange multipliers associated with a local optimal x⇤ is nonempty if and only if the
following condition holds at x⇤:

rank
∂g
∂x

(x⇤) = m, 9x 2 N
✓

∂g
∂x

(x⇤)
◆

s.t.
∂hI(x⇤)

∂x
(x⇤)x < 0 (7.39)

where N(A) is the null space of matrix A and I(x⇤) is the set of indices of inequality constraints that are
active at x⇤ and

∂hI(x⇤)
∂x (x⇤) is the |I(x⇤|⇥n matrix of partial derivatives of hi that are active at x⇤:

I(x⇤) := {i : hi(x⇤) = 0},
∂hI(x⇤)

∂x
(x⇤) :=

✓
∂hi

∂x
(x⇤), i 2 I(x⇤)

◆

The condition (7.39) is called the Mangasarian-Fromovitz constraint qualification (MFCQ). In particular
Y (x⇤) can be empty if MFCQ is not satisfied. The second condition of MFCQ says that the local optimal
x⇤ can move infinitesimally in the direction of x and become strictly feasible.
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The second constraint qualification guarantees not only the existence, but also the uniqueness, of the
Lagrangian multiplier associated with a local optimal x⇤:

the rows of
∂g
∂x

(x⇤),
∂hI(x⇤)

∂x
(x⇤) are linearly independent (7.40)

This is called the linear independence constraint qualification (LICQ) and it guarantees that Y (x⇤) is a
singleton. Using the Farkas Lemma 7.10 it can be shown that LICQ implies MFCQ (Exercise 7.15).

Both LICQ and MFCQ presume the existence of an optimal solution x⇤ for the primal problem (7.22).
When an optimal x⇤ exists and if one of the condition is satisfied then an optimal Lagrange multiplier
(l ⇤,µ⇤) 2 Y (x⇤) exists and (x⇤,l ⇤,µ⇤) is a KKT point. Theorem 7.13 then implies that (x⇤,l ⇤,µ⇤) is a
saddle point that closes the duality gap and solves both the primal and the dual problems, when f ,g,h are
convex and continuously differentiable functions (even if g is not affine and (7.22) remains nonconvex).

We next discuss the third constraint qualification, called the Slater condition, that does not require the
existence of a primal optimal solution x⇤. We will restrict ourselves to the version of the primal problem
(7.22) where the equality constraint g(x) = 0 is affine (this is generalized in Chapter 12.7 in a nonsmooth
setting). Consider the following problem:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, h(x) 0 (7.41)

where f :Rn!R and h :Rn!R
l are real-valued functions, and A2Rm⇥n, b2Rm. Suppose h1(x), . . . ,hl̄(x)

are affine functions and hl̄+1(x), . . . ,hl(x) are nonlinear convex functions. Then the constraint qualification
is:

Slater condition: There exists x̄ such that

Ax̄ = b, hi(x̄)  0, i = 1, . . . , l̄, hi(x̄) < 0, i = l̄ +1, . . . , l (7.42)

The Slater condition is often stated as having a strictly feasible point x̄ because x̄ satisfies the nonlinear
inequality constraints strictly. If all hi(x) are affine then the Slater condition reduces to primal feasibility.

Strong duality and dual optimality. Let the Lagrangian function L : Rn+m+l ! R associated with the
primal problem (7.41) be

L(x,l ,µ) := f (x) + lT(Ax�b) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l (7.43a)

The dual function is

d(l ,µ) := min
x2Rn

L(x,l ,µ) (7.43b)

and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (7.43c)

Let X := {x 2 R
n : Ax = b, h(x) 0} denote the primal feasible set and Y := {(l ,µ) 2 R

m⇥R
l : µ � 0}

the dual feasible set.

When f ,h are convex the Slater condition ensures that strong duality and the existence of a dual optimal
solution (l ⇤,µ⇤) that attains the dual optimal value, d(l ⇤,µ⇤) = d⇤.
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Theorem 7.15 (Slater Theorem). Consider the primal problem (7.41) and its dual (7.43). Suppose the
following conditions hold:

• Convexity: f ,h are convex.

• Finite primal value: f ⇤ is finite, i.e., �• < f ⇤ < •.

• Slater condition: (7.42) holds.

Then

1. f ⇤ = d⇤.

2. There exists a dual optimal solution (l ⇤,µ⇤) with d(l ⇤,µ⇤) = d⇤

3. When there is no equality constraint and the Slater condition is strict, i.e., there exists x̄ such that
h(x̄) < 0, then the set of dual optimal solutions is nonempty, compact and convex.

Note that Theorem 7.15 does not require f ,h to be smooth but only convex, e.g., it may not be contin-
uously differentiable or even continuous. This result will be extended to a nonsmooth setting in Chapter
12.7.1 as Theorem 12.26. A slightly simpler version, Theorem 12.27, is proved there which can can be
adapted to prove Theorem 7.15 here. Part 3 of Theorem 7.15 on the compactness and convexity of the
dual optimal set is proved in Exercise 7.19. In particular it shows that the set D⇤ of dual optimal solutions
is bounded by the weak duality gap at the strict Slater point x̄ divided by the worst-case “constraint gap“
[75, Lemma 1]

max
µ2D⇤
kµk2  max

µ2D⇤
kµk1 

f (x̄)�d⇤

mini(�hi(x̄))
=

f (x̄)� f ⇤

mini(�hi(x̄))

Since f ⇤ is finite, weak duality implies that the dual problem can only be finite feasible or infeasible.
The Slater condition in Theorem 7.15 guarantees that it is feasible and attained. It does not however
guarantee that the finite primal optimal is attained, i.e., there may not be a feasible x⇤ such that f (x⇤) = f ⇤

when the feasible set is not compact, as Examples 7.10 and 7.11 show. In these examples, both conditions
in Theorem 7.15 are satisfied and hence f ⇤ is finite, dual optimal solutions exist and strong duality holds. If
a primal optimal solution x⇤ does exist and (l ⇤,µ⇤) is the associated Lagrange multiplier, i.e., (x⇤,l ⇤,µ⇤)
is a KKT point, then Theorem 7.13 implies that (x⇤,l ⇤,µ⇤) is also a saddle point that is primal-dual
optimal and closes the duality gap. Note that for both the Slater Theorem 7.15 and the KKT Theorem
7.13, it is not enough for the feasible set to be convex. It has to be specified by a convex constraint
function h(x) for these theorems to apply. We will discuss in Chapters 7.3.7 and 7.4.6 potential issues that
may arise when the convex feasible set is represented by nonconvex constraint functions.

The next example shows that the importance of the Salter condition.

Example 7.12 (Nonexistence of dual optimal solution). Consider

f ⇤ := inf
x2R

f (x) := 2x s.t. x2  0
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The feasible set is {x = 0} and the Slater condition does not hold. We now show that the dual problem
is feasible, but dual optimality is not attained even though f ⇤ is finite and attained, f ⇤ = f (0) = 0, all
functions are convex, and strong duality holds.

The Lagrangian is L(x,µ) := 2x+ µx2 and the dual function d(l ) := infx2RL(x,µ) is

d(µ) =

⇢
�1/µ if µ > 0
�• if µ  0

Hence

d⇤ := sup
µ>0

d(µ) =� inf
µ>0

1
µ

= 0

i.e., dual optimal µ⇤ does not exists in R even though d⇤ = 0 = f ⇤ = f (0).

The counterexamples to primal optimality (Theorem 7.14) and dual optimality (Slater Theorem 7.15)
are summarized in Table 7.2. These examples are all primal and dual feasible. They show that one of the
(primal and dual) problems having an optimal solution generally does not guarantee the other also has an
optimal solution, except for linear programs (see Chapter 7.4.2).

Compact Primal Slater Dual Strong Example
feasible set optimality condition optimality duality

no no x⇤ yes d⇤ = d(µ⇤) finite f ⇤ = d⇤ 7.10, 7.11
yes f ⇤ = f (x⇤) no no µ⇤ finite f ⇤ = d⇤ 7.12

Table 7.2: Primal-dual feasible counterexamples to Theorems 7.14 and 7.15.

In summary Theorems 7.12 and 7.13 characterize a primal-dual optimal solution (x⇤,l ⇤,µ⇤) as a
saddle point and a KKT point that closes the duality gap. Theorems 7.14 and 7.15 provide sufficient
conditions for the existence of primal and dual solutions. These conditions combine to give the following
result.

Corollary 7.16 (Existence, uniqueness, characterizations). Consider the primal problem (7.41) and its
dual (7.43). Suppose

• Convexity and smoothness: f ,h are convex and continuously differentiable.

• Compact X : The primal feasible set X := {x 2 R
n : Ax = b, h(x) 0} is compact;

• Finite primal value: f ⇤ is finite, i.e., �• < f ⇤ < •;

• Slater condition: (7.42) holds;

Then there exists a primal-dual optimal solution (x⇤,l ⇤,µ⇤) 2 X ⇥Y to (7.41)(7.43), i.e., both the primal
and dual optimal values are attained, f ⇤ = f (x⇤) and d⇤ = d(l ⇤,µ⇤). Moreover
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1. Strong duality holds f ⇤ = d⇤.

2. (x⇤,l ⇤,µ⇤) 2 X⇥Y is a saddle point of the Lagrangian L.

3. (x⇤,l ⇤,µ⇤) 2 X⇥Y is a KKT point.

4. If f is strictly convex then the primal optimal solution x⇤ is unique.

5. If LICQ (7.40) holds, i.e., if the rows of A and
n

∂hi
∂x (x⇤) : hi(x⇤) = 0

o
are linearly independent, then

the dual optimal solution (l ⇤,µ⇤) is unique.

7.3.5 Perturbed problem and local sensitivity

A dual optimal solution (l ⇤,µ⇤) can be interpreted as the sensitivity to constraint perturbations of the
optimal value f ⇤. Specifically, for any (u,v)2Rm+l , consider the perturbed problem with the perturbation
vector (u,v):

f ⇤(u,v) := min
x2Rn

f (x) s.t. g(x) = u, h(x) v (7.44)

where f : Rn! R, g : Rn! R
m and h : Rn! R

l are real-valued functions. We do not assume that these
functions are convex. The function f ⇤ : Rm+l ! R maps a perturbation vector (u,v) to a (primal) optimal
value. If the perturbed problem is infeasible at (u,v), then f ⇤(u,v) := •. The primal problem (7.41) is a
special case of (7.44) with (u,v) = (0,0) and g(x) = Ax� b. We discuss two properties of the function
f ⇤(u,v): an affine lower bound on f ⇤(u,v) and the local sensitivity ∂ f ⇤

∂ (u,v)(0,0).

Suppose strong duality holds and dual optimality is attained for the unperturbed problem (7.44) with
the perturbation vector (0,0), e.g., when the conditions of the Slater Theorem 7.15 hold. Let (l ⇤,µ⇤) be
any dual optimal solution of the unperturbed problem with the perturbation vector (0,0). The first property
is an affine lower bound on the function f ⇤(u,v) in terms of the optimal value f ⇤(0,0) and the dual optimal
solution (l ⇤,µ⇤) of the unperturbed problem:

f ⇤(u,v) � f ⇤(0,0)�l ⇤Tu�µ⇤Tv, 8(u,v) 2 R
m+l (7.45)

The inequality (7.45) bounds the function f ⇤(u,v) by an affine function in (u,v). It has the following
(asymmetric) implications: if µ⇤i > 0 is large and we tighten the inequality constraint (vi < 0), then the
optimal value f ⇤(u,v) will increase greatly. If we loosen the inequality constraint (vi > 0), however, then
the value of the affine function may decrease greatly but f ⇤(u,v) may not since the affine function is only
a lower bound. On the other hand, if µ⇤i > 0 is small and we loosen the inequality constraint (vi > 0), then
f ⇤(u,v) will not decrease too much. Similarly for l ⇤i .

To prove (7.45) let x̄ be any feasible solution of the perturbed problem with the perturbation vector
(u,v) 2 R

m+l , i.e., g(x̄) = u and h(x̄) v. Then

f ⇤(0,0) = d(l ⇤,µ⇤) := inf
x2Rn

f (x)+l ⇤Tg(x)+ µ⇤Th(x)

 f (x̄)+l ⇤Tg(x̄)+ µ⇤Th(x̄)  f (x̄)+l ⇤Tu+ µ⇤Tv
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where the first equality follows from strong duality for the unperturbed problem, and the last inequality
follows since x̄ is feasible for the perturbed problem and µ⇤ � 0. Hence

f (x̄) � f ⇤(0,0)�l ⇤Tu�µ⇤Tv for all feasible x̄ of perturbed problem

from which (7.45) follows.

The second property is local sensitivity of the optimal value f ⇤(u,v) to constraint perturbations around
(u,v) = (0,0). Suppose again strong duality holds and dual optimality is attained for the unperturbed prob-
lem (7.44) with the perturbation vector (0,0). Suppose further that the function f ⇤(u,v) is differentiable
at (u,v) = 0. Then the lower bound (7.45) implies

f ⇤(tei,0)� f ⇤(0,0) � �tl ⇤i , t 2 R

where ei 2 R
m is the ith unit vector with a single 1 in the ith entry. Therefore, taking the limit t! 0 from

above and below, we have

lim
t!0, t>0

f ⇤(tei,0)� f ⇤(0,0)

t
� �l ⇤i , lim

t!0, t<0

f ⇤(tei,0)� f ⇤(0,0)

t
 �l ⇤i

Similarly for µ⇤, and we conclude:

∂ f ⇤

∂ui
(0,0) = �l ⇤i ,

∂ f ⇤

∂vi
(0,0) = �µ⇤i (7.46)

7.3.6 Envelop theorems

This subsection collects several variants of envelope theorems, taken from [76, Proposition A.43, p.649],
[77], and [78, Theorems 1, 2, 3].

The following saddlepoint envelope theorem is from [77, Theorem 298]. It makes mild assumptions,
e.g., does not need convexity or differentiability (except differentiability in parameter p), and unifies
several variants.

Theorem 7.17 (Saddle-point envelope Theorem [77]). Let X and Y be metric spaces and P ✓ R
n be an

open set. Let L : X⇥Y ⇥P ! R. For each p 2 P, let (x⇤(p),y⇤(p)) 2 X⇥Y be a saddle point of L, i.e.,

L(x⇤,y; p)  L(x⇤(p),y⇤(p); p)  L(x,y⇤(p); p), x 2 X , y 2 Y (7.47)

and define the value function as

V (p) := L(x⇤(p),y⇤(p); p)

Suppose:

1. x⇤(p) and y⇤(p) are continuous functions (in particular, this assumes that there is a unique saddle
point (x⇤(p),y⇤(p)) for each p 2 P).

2. —p L(x,y; p) exists and is jointly continuous on X⇥Y ⇥P.
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Then V is continuously differentiable and

—V (p) = —p L(x⇤(p),y⇤(p); p)

i.e., ∂V
∂ pi

(p) = ∂L
∂ pi

(x,y; p) evaluated at (x,y) = (x⇤(p),y⇤(p)).

Proof. We will prove that the directional derivative of V at each p 2 P in each direction h 2 R
n:

dV (p;h) := lim
t#0

V (p+ th)�V (p)

t

exists6 and equals ∂V
∂ p (p) · h. This is equivalent to the differentiability of f . Moreover we will show that

—V (p) is continuous on P.

Let h 2 R
n be such that [p, p + h] ⇢ P where [p, p + h] := {p + th : 0  t  1} (such h always exists

since P is open). By definition we have

V (p+h)�V (p) = L(x⇤(p+h),y⇤(p+h); p+h) � L(x⇤(p),y⇤(p); p)

The saddlepoint property (7.47) then implies the inequalities in the following:

V (p+h)�V (p) = L(x⇤(p+h),y⇤(p+h); p+h) � L(x⇤(p+h),y⇤(p); p+h)| {z }
�0

(7.48a)

+ L(x⇤(p+h),y⇤(p); p+h) � L(x⇤(p+h),y⇤(p); p) (7.48b)
+ L(x⇤(p+h),y⇤(p); p) � L(x⇤(p),y⇤(p); p)| {z }

�0

(7.48c)

Since L(x,y; p) is differentiable with respect to p for each (x,y), we can apply the mean value theorem to
(7.48b) to get

V (p+h)�V (p) � ∂L
∂ p

(x⇤(p+h),y⇤(p); p1(h)) ·h

for some p1(h) 2 [p, p+h]. Similarly we have

V (p+h)�V (p) = L(x⇤(p+h),y⇤(p+h); p+h) � L(x⇤(p),y⇤(p+h); p+h)| {z }
0

+ L(x⇤(p),y⇤(p+h); p+h) � L(x⇤(p),y⇤(p+h); p)

+ L(x⇤(p),y⇤(p+h); p) � L(x⇤(p),y⇤(p); p)| {z }
0

 ∂L
∂ p

(x⇤(p),y⇤(p+h); p2(h)) ·h

for some p2(h) 2 [p, p+h]. Combining, and replacing h by th, we have

∂L
∂ p

(x⇤(p+ th),y⇤(p); p1(th)) · th  V (p+ th)�V (p)  ∂L
∂ p

(x⇤(p),y⇤(p+ th); p2(th)) · th

6Since V (p) is not assumed to be convex, the limit in the definition of dV (p;h) may not exist.
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Hence

∂L
∂ p

(x⇤(p+ th),y⇤(p); p1(th)) ·h  V (p+th)�V (p)
t  ∂L

∂ p
(x⇤(p),y⇤(p+ th); p2(th)) ·h

Taking t # 0 and using the continuity of ∂L
∂ p , x(p) and y(p) we get

dV (p;h) =
∂L
∂ p

(x⇤(p),y⇤(p); p) ·h

for all p 2 P and all h 2 R
n. Hence

∂V
∂ p

(p) =
∂L
∂ p

(x⇤(p),y⇤(p); p)

exists. Moreover it is continuous since ∂L
∂ p is continuous.

Remark 7.7. It is important that the feasible sets (X ,Y ) are independent of p. The saddlepoint property
(7.47) can still hold if the feasible sets (Xp,Yp) depend on p, i.e., for all p 2 P,

L(x⇤(p),y; p)  L(x⇤(p),y⇤(p); p)  L(x,y⇤(p); p), x 2 Xp, y 2 Yp

Yet the conclusion of Theorem 7.18 in general does not hold. This is because the inequalities in (7.48a)
and (7.48c) rely on inequalities of the form:

L(x⇤(p),y⇤(p); p)  L(x⇤(q),y⇤(p); p)

which may not hold if x⇤(q) is in Xq \Xp. This inequality will hold if x⇤(p) 2 Xq for all p,q 2 P, i.e., even
if Xp and Xq are different, every optimal point x⇤(p) is feasible for every q 2 P. See Exercise 7.17.

An important implication of Remark 7.7 is that in a two-stage stochastic program with recourse, since
the feasible set for the second-stage problem usually depends on the first-stage decision x1, the differen-
tiability of the value function or recourse function F(x1) in (??) generally does not follow directly from
envelope theorems.

The following version is the classical envelope theorem. The key condition is that the first-order
stationarity condition hold with equality, which is the reason for X to be open so that the optimal point
x⇤(p) is in the interior of X . Note that convexity is not assumed since the proof only needs the necessity
of the stationarity condition.

Theorem 7.18 (Envelope Theorem [77]). Let X ✓R
N and P✓R

L be open sets. Consider the constrained
optimization for each p 2 P:

min
x2X

f (x, p) s.t. g(x, p) = 0

with the associated Lagrange multiplier y2RM, where f : X⇥P!R and g := (g1, . . . ,gM) : X⇥P!R
M.

Let x⇤(p) denote an optimal solution and V (p) := f (x⇤(p), p) the optimal value. Define the Lagrangian

L(x,y; p) := f (x, p) + yT g(x, p)

Suppose
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1. f , g1, . . . ,gM are continuously differentiable on X⇥P.

2. The conclusion of the Lagrange Multiplier Theorem holds for each p 2 P: there exist y⇤(p) 2 R
M

such that the first-order stationarity condition holds with equality:

∂L
∂x

(x⇤(p),y⇤(p); p) =
∂ f
∂x

(x⇤(p), p) + (y⇤(p))T ∂g
∂x

(x⇤(p), p) = 0

3. x⇤(p) and y⇤(p) are continuously differentiable functions (in particular, this assumes that the optimal
primal and dual solutions exist and are unique).

Then V (p) is continuously differentiable and

∂V
∂ p

(p) =
∂L
∂ p

(x⇤(p),y⇤(p); p) =
∂ f
∂ p

(x⇤(p), p) + (y⇤(p))T ∂g
∂ p

(x⇤(p), p)

The theorem can be proved by appealing to Theorem 7.18 but a direct proof is simpler.

Proof. V (p) is continuously differentiable since f (p) and x⇤(p) are. Since x⇤(p) satisfies g(x⇤(p), p) = 0
we have

V (p) = L(x⇤(p),y⇤(p); p) = f (x⇤(p), p) + Â
m

y⇤m(p) gm(x⇤(p), p)

Differentiability assumptions yield

∂V
∂ pl

(p) = Â
n

∂ f
∂xn

(x⇤(p), p) · ∂x⇤n
∂ pl

(x⇤(p), p) +
∂ f
∂ pl

(x⇤(p), p) + Â
m

∂y⇤m
∂ pl

(p) ·gm(x⇤(p), p)

+ Â
m

y⇤m(p)

✓
Â
n

∂gm

∂xn
(x⇤(p), p) · ∂x⇤n

∂ pl
(x⇤(p), p) +

∂gm

∂ pl
(x⇤(p), p)

◆

= Â
m

∂y⇤m
∂ pl

(p) ·gm(x⇤(p), p)

| {z }
= 0 * gm(x⇤(p),p)=0

+ Â
n

✓
∂ f
∂xn

(x⇤(p), p) + Â
m

y⇤m(p)
∂gm

∂xn
(x⇤(p), p)

◆

| {z }
= 0 * stationarity

·∂x⇤n
∂ pl

(x⇤(p), p)

+
∂ f
∂ pl

(x⇤(p), p) + Â
m

y⇤m(p) · ∂gm

∂ pl
(x⇤(p), p)

Hence

∂V
∂ p

(p) =
∂ f
∂ p

(x⇤(p), p) + (y⇤(p))T ∂g
∂ p

(x⇤(p), p)

as desired.

Remark 7.8. It is important that the set X is open so that the first-order stationarity condition holds with
equality. If the feasible set Xp depends on p, then either Xp is assumed open or x⇤(p) is in the interior
of Xp. This means that if the constraint x 2 Xp is represented by h(x, p) 0, the corresponding Lagrange
multipliers will be zero at optimality so that the stationarity condition and the conclusion of the theorem
will remain unchanged.
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The following result is taken from [76, Proposition A.43, p.649].

Theorem 7.19 (Danskin’s Theorem). Let X ✓ R
n be nonempty and f : X ⇥R

m ! R be a continuous
function. Suppose f (x, p) is convex in p for every x 2 X . Let

V (p) := sup
x2X

f (x, p)

1. Suppose X is compact so that a maximizer x⇤(p) always exists with V (p) = f (x⇤(p), p). Let the set
of maximizers be

X⇤(p) := {x 2 X : V (p) = f (x, p)}

(a) The function V : Rm!R is convex and has directional derivative dV (p;h) at p in the direction
of h 2 R

m given by:

dV (p;h) := lim
t#0

V (p+ th)�V (p)

t
= max

x2X⇤(p)
d f (x,h; p)

where d f (x,h; p) := limt#0
f (x+th,p)� f (x,p)

t is the directional derivative of the function f (·, p).

(b) If X⇤(p) = {x⇤(p)} is a singleton and f (x⇤(p), ·) is differentiable in its second argument at p,
then V (p) is differentiable at p and

—V (p) = —p f (x⇤(p), p) =

✓
∂ f
∂ p j

(x⇤(p), p), j = 1, . . . ,m
◆

(c) If, in addition, X is convex and f (x, p) is convex in x for every p2Rm, then X⇤(p) is nonempty,
convex and compact (according to Theorem 12.25).

2. The conclusions of 1 hold if, instead of assuming X is compact, we assume that

• X⇤(p) is nonempty for every p 2 R
m; and

• For every sequence {pk} converging to some p, there exists a bounded sequence {x⇤k} of max-
imizes x⇤k 2 X⇤(p) for all k (so that {x⇤k} has a convergent subsequence).

Remark 7.9. 1. As for Theorem 7.18, it is important that the feasible set X does not depend on p, for
the same reason discussed in Remark 7.7.

2. Theorem 7.19 is generalized in Theorem 12.18 to the case where f may not be continuous in x, X
may not be compact, and X⇤(p) may not be a singleton.

Theorem 7.19 guarantees the existence of directional derivative of V (p) if f is jointly continuous in
(x, p) and convex in p for every x 2 X . Differentiability of V however needs uniqueness of the maximizer
x⇤(p) and differentiability of f (x⇤(p), ·) at p. See [78, Theorems 1 and 2] for Envelope Theorems that
allow nonunique maximizer x⇤(p) but requires an upper bound on |∂ f (x, p)/∂ pi| uniformly in pi. The
formulation in [78, Theorems 1 and 2] also assumes that the feasible set X is independent of p.
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Remark 7.10. Consider a real-valued function f : X⇥R
m! R and

g1(y) := sup
x2X

f (x,y), g2(y) := inf
x2X

f (x,y)

where X is an arbitrary subset of Rn.

1. Taking supremum. If f is convex in y for every x 2 X then g1(y) is convex in y as Theorem 7.19
shows. Moreover if f (x, ·) is closed for each x2X then g1(·) is closed as well ([74, Proposition 1.1.6,
p.13]). This is the situation e.g. when f is the Lagrangian function of a constrained optimization.

2. Taking minimization. If f (x,y) is jointly convex in (x,y) instead (this is not the case with La-
grangian functions) then g2(y) is convex ([74, Proposition 3.3.1, p.122]). Moreover the epigraph
epi(g2(y)) := {(y,z) : z � g2(y),y 2 R

m} is essentially the projection of epi( f ) := {(x,y,z) : z �
f (x,y),x 2 X ,y 2Rm} on the space of (y,z), except possibly for somme boundary points y when the
infimum over x 2 X is not attained in which case (y,g2(y)) are missing. Precisely

P(epi( f )) ✓ epi(g2) ✓ clP(epi( f ))

where the projection P is defined by P(S) := {(y,z) : (x,y,z)2 S} for any subset S✓X⇥Rm⇥R.

7.3.7 Equivalent representations

Consider the following two convex optimization programs:

min
x2Rn

f (x) s.t. Ax = b, h1(x) 0 (7.49a)

min
x2Rn

f (x) s.t. Ax = b, h2(x) 0 (7.49b)

where f is a convex function. Suppose the feasible sets {x 2 R
n : Ax = b, h1(x) 0} and {x 2 R

n : Ax =
b, h2(x) 0} are the same, so (7.49a) and (7.49b) are equivalent representations of the same problem in the
sense that they have the same cost function f and the same convex feasible set. Equivalent representations
of the same problem can have different structural and computational properties. For example, the dual
problem, the optimal dual value and strong duality generally depend on the primal and dual representations
and may be different for different (even if equivalent) representations. If both h1(x) and h2(x) are convex
functions, the Slater condition is satisfied for both representations in (7.49), and their optimal primal
value is finite, then the Slater Theorem 7.15 applies to both representations and hence strong duality
holds and dual optimality is attained for both representations. In that case, even if they have different
dual problems, their optimal dual values will be the same. Since the constraint functions are convex the
optimality condition in the KKT Theorem 7.13 are sufficient for both representations.

If on the other hand h1(x) is convex but h2(x) is not, then even if the Slater condition is satisfied for
both problems and their optimal primary value is finite, the Slater Theorem 7.15 and the KKT Theorem
7.13 apply only to problem (7.49a), but neither applies to (7.49b). Indeed, for (7.49b), strong duality
may not hold and its dual problem may be infeasible, as the following example shows. We will discuss
in more detail in Chapter 7.4.6 potential issues that may arise when h1(x) is nonsmooth and h2(x) is
nonconvex, after we have derived explicitly in Chapter 7.4.4 the KKT condition for the class of problems
in the example.
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Example 7.13 (Equivalent representations). Consider the equivalent representation of what is called a
second-order cone program:

f ⇤1 := min
x2Rn

cTx s.t. kxn�1k2  xn (7.50a)

f ⇤2 := min
x2Rn

cTx s.t. kxn�1k2
2  x2

n, xn � 0 (7.50b)

where c 2 R
n. Both problems have the same convex feasible set, the standard second-order cone K ✓ R

n

defined in (7.11). They arise from two equivalent representations of K using different constraint functions.
The constraint function h1(x) := kxn�1k2�xn in (7.50a) is a convex function while the constraint function
h2(x) := kxn�1k2

2�x2
n in (7.50b) is nonconvex (Exercise 7.4). If the optimal primal value f ⇤1 = f ⇤2 is finite,

the Slater Theorem 7.15 applies to problem (7.50a) (the Slater condition is always satisfied) and hence
strong duality holds and a dual optimal solution exists. The optimality condition in the KKT Theorem
7.13 is also sufficient at x where xn�1 6= 0 and h1 is continuously differentiable. Since h2(x) is nonconvex,
neither theorem is applicable to problem (7.50b) even though its feasible set is convex.

A necessary condition for f ⇤1 = f ⇤2 to be greater than �• is cn � 0 for otherwise cTx = cnxn!�• if
xn�1 = 0 and xn! •. It can be shown (Exercise 7.26) that for problem instances where kcn�1k2  cn:

1. Both representations in (7.50) have a finite optimal primal value f ⇤1 = f ⇤2 = 0.

2. For (7.50a), strong duality holds and dual optimality is attained.

3. For (7.50b), if 0 6= kcn�1k2  cn, then the dual problem is infeasible, i.e., the optimal dual value is
�• and hence the duality gap is nonzero (in fact unbounded).

7.4 Special convex programs

In this section we apply the general theory developed in Chapter 7.3 to special classes convex optimization
problems widely used in applications.

7.4.1 Summary: general method

Consider the convex problem (7.22) reproduced here:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, h(x) 0 (7.51)

where f : Rn ! R is a convex function, A 2 R
m⇥n, b 2 R

m and h : Rn ! R
k is a convex function. The

classes of problems studied in this section and in Chapter 12.8 using nonsmooth methods are summarized
in Figure 7.15 and the conclusions are summarize in Table 7.3.

The classes in Figure 7.15 differ mainly in the convex constraint h(x) 0:

1. Linear program (LP): f (x) = cTx and h(x)  0 specifies Bx + d 2 Rk
+ := {x 2 R

k : x � 0}, i.e., an
affine transformation of x is in the nonnegativity cone.
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April 20, 2024: Special programs: summary

LP

11.4

SOCP

11.4

SDP

11.4

Conic 

program


17.8

Convex 

inequality


17.11

• Doublecheck chapter references after revisions

• Include convex QP?

QP

11.4

Figure 7.15: Special classes of convex problems studied in this section and Chapter 12.8 using nonsmooth
methods. (Doublecheck section references in the figure.)

f (x) h(x) 0 sufficient condition f ⇤ = d⇤ = d(l ⇤,µ⇤)
KKT, saddle pt

LP linear affine finite f ⇤ Th 7.21
QP quadratic affine feasibility (if Q� 0) Th 7.22, 7.23
SOCP convex h(x) 2 Ksoc finite f ⇤, Ax̄ = b Th 7.24, 7.25

h(x) := B̃x+ d̃ h(x̄) 2 ri(Ksoc)
SDP convex h(x) 2 Kpsd finite f ⇤, Ax̄ = b Th 7.26

h(x) := B0 +Ân
i=1 xiBi h(x̄) 2 ri(Kpsd)

Conic prog. convex h(x) 2 K finite f ⇤, Ax̄ = b Th 12.30, 12.31
h(x) := Bx+d h(x̄) 2 ri(K)

Convex prog. convex convex finite f ⇤, Ax̄ = b Exercise 12.22
h(x̄) < 0

Table 7.3: Summary: strong duality, dual optimality and KKT condition.
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2. Quadratic program (QP): f (x) = xTQx+2cx with a positive semidefinite cost matrix Q and an affine
constraint Bx+d 2 Rk

+.

3. Second-order cone program (SOCP): h(x)  0 specifies Bx + d 2 Ksoc := {x 2 R
k : kxk�1k2  xk},

i.e., an affine transformation of x is in the second-order cone.

4. Semidefinite program (SDP): h(x) 0 specifies Bx+d 2 Kpsd ⇢ S
k, i.e., an affine transformation of

x is in the semidefinite cone.

5. Conic program: h(x) 0 specifies Bx+d 2 K ✓R
k, i.e., an affine transformation of x is in a closed

convex cone K.

6. Convex inequality: h : Rn! R
k is a convex function.

Sometimes QP is used to denote problems with a convex quadratic cost f and a conic constraint Bx+d 2K.

The theory developed in Chapter 7.3 are used to derive three types of results for these common convex
problems. The general derivation method is as follows. It is important to remember however that some of
the results in Chapter 7.3 apply to nonconvex problems as well.

1. Dual problem. Given the primal problem (7.51), define the Lagrangian function L(x,l ,µ) : Rn!
R

m+k:

L(x,l ,µ) := f (x)�lT(Ax�b)+ µh(x), x 2 R
n, (l ,µ) 2 R

m+k (7.52a)

Then the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
(l ,µ)2Rm+k

d(l ,µ) s.t. µ � 0 (7.52b)

2. Strong duality and dual optimality. Recall that (i) f and h are convex functions. Suppose (ii) the
Slater condition is satisfied, i.e., there exists x̄ with Ax̄ = b and h(x̄) < 0, and (iii) the optimal primal
value f ⇤ is finite, i.e., �• < f ⇤ < •. Then the Slater Theorem 7.15 implies strong duality and the
existence of a dual optimal solution (l ⇤,µ⇤) with µ � 0, i.e., f ⇤ = d⇤ = d(l ⇤,µ⇤). This does not
guarantee the existence of a primal optimal x⇤.

3. KKT condition and primal optimality. Recall that (i) f and h are convex functions. Suppose (ii) the
Slater condition is satisfied, i.e., there exists x̄ with Ax̄ = b and h(x̄) < 0. Then the KKT Theorem
7.13 implies that a feasible x⇤ 2Rn is optimal if and only if there exists dual feasible (l ⇤,µ⇤)2Rm+k

such that

— f (x⇤) = ATl ⇤ �—h(x⇤)µ, µ⇤Th(x⇤) = 0, µ⇤ � 0 (7.52c)

where (only) the first condition is —xL(x⇤,l ⇤,µ⇤) = 0 and requires continuous differentiability of f
and h. Such a point (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and attains primal and
dual optimality, i.e., f ⇤ = f (x⇤) = d(l ⇤,µ⇤) = d⇤. Hence the KKT condition can be derived simply
by taking the derivative of L with respect to x and it is sufficient for primal-dual optimality when f
and h are convex. This method is not applicable if f or h are not continuously differentiable.
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Remark 7.11 (Nonsmooth extension). Smoothness (differentiability) of the cost and constraint functions
f ,h is not important. As long as f ,h are convex functions these results hold verbatim at points of differ-
entiability and extends naturally at nondifferentiable points using a set of set-theoretic tools. These tools,
developed in Chapter 12, exploits convexity properties, are conceptually simple and can treat a larger class
of convex problems (e.g., see Theorem 7.24 and Remark 7.12).

For example consider a general conic program which, instead of an explicit convex function h(x), is
specified abstractly by a constraint Bx+d 2 K for a closed convex cone K.

1. In that case the Lagrangian dual problem can still be defined as in (7.52a)(7.52b) but with the penalty
term µh(x) replaced by µ(Bx+d) in L(x,l ,µ) and dual feasibility µ � 0 replaced by µ 2K⇤, where
K⇤ := {µ 2 R

k : µTz� 0 8z 2 K} is called the dual cone of K defined in Chapter 12.1.1.

2. The strong duality and dual optimality result holds verbatim.

3. The KKT condition in (7.52c) is defined only at points where f and h are continuously differentiable.
It can be generalized to a nondifferentiable point using the concept of subgradient x ⇤ 2 ∂ f (x⇤) and
normal cone and takes the form (see Chapter 12.8.4):

x ⇤ = ATl ⇤+BTµ⇤, µ⇤T(Bx⇤+d) = 0, µ⇤ 2 K⇤

When K is specified explicitly, e.g., K = Ksoc, the condition µ⇤ 2K⇤ can be described in more detail
based on the primal optimal x⇤.

In the rest of this section we apply this general method to LP, SOCP and SDP. Referring to Table 7.3,
the results on strong duality, dual optimality and the KKT condition for QP are derived in Exercise 7.22
and those for convex problems specified by the convex inequality h(x) 0 are derived in Exercise 12.22.
General conic programs are studied in Chapter 12.8 using nonsmooth methods.

7.4.2 Linear program (LP)

Consider the linear program:

f ⇤ := min
x2Rn

cTx s.t. Ax� b (7.53a)

where c 2 R
n, A 2 R

m⇥n and b 2 R
m. From (7.23) the Lagrangian L : Rn+m! R of (7.53) is

L(x,µ) :=
⇣

c�ATµ
⌘T

x + bTµ x 2 R
n, µ 2 R

m

the dual function is

d(µ) := min
x2Rn

L(x,µ) =

⇢
bTµ if ATµ = c
�• if ATµ 6= c

and the dual problem is

d⇤ := max
µ�0

d(µ) = max
µ�0

bTµ s.t. ATµ = c (7.53b)
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Let X := {x 2 R
n : Ax� b} and Y := {µ 2 R

m : ATµ = c, µ � 0} be the feasible sets.

Each of the primal and dual problems in (7.53) can be finite feasible, feasible but unbounded, or
infeasible. By definition the primal problem is feasible if f ⇤ < • and the dual problem is feasible if
d⇤ >�•. Strong duality of LP implies that only four, instead of nine, scenarios are possible. Moreover a
feasible solution (x⇤,µ⇤) is optimal if and only if it satisfies complementary slackness. We start by stating
in the next lemma that a finite f ⇤ (feasibility is insufficient) implies the existence of a primal optimal
solution x⇤ 2 X with f (x⇤) = f ⇤; indeed a finite f ⇤ also implies the existence of dual optimal µ⇤ and
strong duality (see Theorem 7.21 below). See Example 12.9 for the condition (ADx� 0 implies cTDx > 0)
under which the set of minimizers is nonempty and compact. Lemma 7.20 applies to the dual problem
(7.53b) if d⇤ is finite.

Lemma 7.20 (LP primal optimality). Consider the linear program (7.53a). If �• < f ⇤ < • then exists an
optimal solution x⇤ 2 X such that cTx⇤ = f ⇤.

Proof. Let X := {x 2 R
n : Ax � b} be the feasible set of (7.53a). Since f ⇤ is finite, X is nonempty and

closed. If the feasible set X is bounded or if there is a g 2 R such that the level set Vg is nonempty and
bounded, then X \Vg is a compact (closed and bounded) set. The minimization (7.53a) can be taken
over X \Vg and a minimizer therefore exists (Corollary 12.22 generalizes this to nonlinear nonsmooth
problems).

Consider then the case where X is unbounded and every nonempty level set Vg := {x 2 R
n : cTx  g}

is unbounded. Let {Vgk} be a nested sequence of level sets with gk # f ⇤. The set of solutions of (7.53a)
is X⇤ := \•

k=1
�
X \Vgk

�
. The finiteness of f ⇤ means that X \Vgk 6= /0 for each k. Moreover X \Vgk is

polyhedral for each k. Then X⇤ 6= /0 follows from the following fact (see e.g. [74, Props. 1.4.9, 1.4.10,
pp.58–61] for proof) which underlies the simplicity of linear programs.

Fact. Consider a sequence {Ck} of nonempty sets Ck.

1. The intersection \•
k=1Ck 6= /0 if and only if there is a sequence {xk} that is bounded where xk 2Ck,

i.e., there is r with kxkk  r for all k.

2. If {Ck} are polyhedral then \•
k=1Ck 6= /0.

The next theorem is the main result on LP duality and optimality. Though the proof below appeals
to the Slater Theorem 7.15, it can also be proved directly using the Farkas Lemma (Theorem 7.10); see
Exercise 7.21.

Theorem 7.21 (LP duality and KKT). Consider the linear program and its dual (7.53).

1. Strong duality and primal-dual optimality. Exactly one of the following holds:

(a) If �• < f ⇤ < • or �• < d⇤ < • then both primal and dual problems attain their optimal and
strong duality holds, i.e., there exists (x⇤,µ⇤) 2 X⇥Y such that

cTx⇤ = f ⇤ = d⇤ = bTµ⇤
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(b) If the primal problem is feasible but unbounded then f ⇤ = �• = d⇤, i.e., the dual problem is
infeasible.

(c) If the dual problem is feasible but unbounded then d⇤ = • = f ⇤, i.e., the primal problem is
infeasible.

(d) Otherwise, both are infeasible, i.e., f ⇤ = • and d⇤ =�•.

2. KKT characterization. A feasible x⇤ 2 X is optimal if and only if there is a dual feasible µ⇤ 2Y that
satisfies complementary slackness, i.e.,

ATµ⇤ = c, µ⇤T(Ax⇤ �b) = 0, µ⇤ � 0 (7.54)

Such a point (x⇤,µ⇤) is a saddle point and a KKT point and is hence primal-dual optimal with
cTx⇤ = bTµ⇤.

Proof. Suppose f ⇤ is finite; if d⇤ is finite, Lemma 7.20 applies to the dual problem (7.53b) and the ar-
gument below is symmetric and omitted. Since f ⇤ < • there exists x̄ 2 X and hence the Slater condition
(7.42) is satisfied. The Slater Theorem 7.15 implies that there exists a dual optimal solution µ⇤ 2 Y such
that f ⇤ = d⇤ = d(µ⇤). (For linear programs, this step can be proved using the Farkas Lemma (Theorem
7.10); see Exercise 7.21.) The existence of a primal optimal solution x⇤ 2 X with f (x⇤) = f ⇤ follows from
Lemma 7.20.

If f ⇤ = �• then weak duality Lemma 7.11 implies that d⇤  f ⇤ = �•. Similarly if d⇤ = • then
f ⇤ = • by weak duality. The only case that is not covered by the three cases above is when both f ⇤ = •
and d⇤ =�•. This is possible as Example 7.15 shows.

Finally given any primal feasible point x⇤ 2 X and any µ⇤ � 0, we need to show that (x⇤,µ⇤) is primal-
dual optimal if and only if (x⇤,µ⇤) satisfies (7.54). Suppose (x⇤,µ⇤) satisfies (7.54). Then µ⇤ 2 Y and

bTµ⇤ = cTx⇤ �µ⇤T(Ax⇤ �b)  cTx⇤ (7.55)

where the first equality follows from µ⇤ 2 Y and the inequality follows from (x⇤,µ⇤) 2 X ⇥Y . Moreover
the complementary slackness in (7.54) implies that equality is attained in (7.55), i.e., bTµ⇤ = L(x⇤,µ⇤) =
cTx⇤. The weak duality Lemma 7.11 then implies that (x⇤,µ⇤) is primal-dual optimal and closes the
duality gap. Conversely suppose (x⇤,µ⇤) 2 X ⇥Y is primal-dual optimal. Then both f ⇤ = f (x⇤) and
d⇤ = d(µ⇤) are finite and therefore by part 1, strong duality holds, i.e., bTµ⇤ = cTx⇤. This and (7.55) then
imply µ⇤T(Ax⇤�b) and therefore (x⇤,µ⇤) satisfies (7.54). Such a point is a saddle-point and a KKT point
according to Theorem 7.13.

Example 7.14 (Equality and nonnegativity constraints). Adapt Theorem 7.21 to linear program of the
form:

1. f ⇤ := minx2Rn cTx s.t. Ax = b, x� 0 where c 2 R
n, A 2 R

m⇥n and b 2 R
m.

2. f ⇤ := minx2Rn cTx s.t. Ax = b, Bx+d � 0 where c2Rn, A2Rm⇥n, b2Rm, B2Rn⇥k and d 2Rk.

Solution. For part 1 the Lagrangian L : R2n+m! R of (7.53) is

L(x,l ,µ) :=
⇣

c�ATl �µ
⌘T

x + bTl x 2 R
n, l 2 R

m, µ 2 R
n
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the dual function is

d(l ,µ) := min
x2Rn

L(x,l ,µ) =

⇢
bTl if ATl + µ = c
�• if ATl + µ 6= c

and the dual problem is

d⇤ = max
l2Rm,µ�0

bTl s.t. ATl + µ = c

Let X := {x 2 R
n : Ax = b,x � 0} and Y := {(l ,µ) 2 R

m+n : ATl + µ = c, µ � 0} be the feasible sets.
All the structural results of Theorem 7.21 holds. The only change is that (7.55) becomes, since Ax⇤ = b,

bTµ⇤ = cTx⇤ �µ⇤Tx⇤  cTx⇤

and hence a feasible x⇤ 2 X is optimal if and only if there exists a dual optimal (l ⇤,µ⇤) 2 R
m+n with

ATl ⇤+ µ⇤ = c, µ⇤Tx⇤ = 0, µ⇤ � 0

Part 2 can be converted to the problem in part 1 by introducing the slack variable s 2 R
k: f ⇤ :=

min(x,s)2Rn+k cTx s.t. Ax = b, Bx+d� s = 0, s� 0.

Each of the primal and dual problems can either be “bounded feasible”, “unbounded feasible”, or
“infeasible”, giving 9 cases. Weak and strong duality imply only 4 of these 9 cases are possible, as
explained in Table 7.4 and its caption. The only case where the optimal values are attained at finite x⇤ or
(l ⇤,µ⇤) is when both problems are bounded feasible.

primal
bounded feasible unbounded feasible infeasible

dual
bounded feasible (x⇤,l ⇤,µ⇤) ⇥ (sd) ⇥ (sd)
unbounded feasible ⇥ (sd) ⇥ (wd) f ⇤ = d⇤ = •
infeasible ⇥ (sd) f ⇤ = d⇤ =�• d⇤ =�• < • = f ⇤

Table 7.4: Four possibilities: Strong duality in Theorem 7.21 excludes 4 possibilities labeled “⇥(sd)”. The
5th impossibility, labeled “⇥(wd)”, violates weak duality. Optimal values are attained only in one case.

Example 7.15 (LPs with infinite values). 1. Infeasible LP pair. Consider the LP minx x such that


1
�1

�
x�


0
1

�
. Its dual is maxµ�0 µ2 such that�µ2 = 1. Clearly neither the primal nor the dual is feasible and

hence f ⇤ = • and d⇤ =�• by definition.

2. Unbounded primal, infeasible dual. Consider:

f ⇤ := min
x�0
�x1 +ax2 s.t. x1� x2 = 0
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where a < 1. Then the optimal primal value is f ⇤ =�• and there is no finite x that attains it. From
Example (7.14) the dual function is

d(l ,µ) :=

8
<

:
0 if


�1
a

�
=


1
�1

�
l + µ

�• otherwise

Then no (l ,µ) that satisfies µ � 0 because otherwise µ1 + µ2 = �(1�a) < 0, and hence at least
one of µ1, µ2 is negative. Therefore the dual problem is infeasible, or d⇤ :=�• = f ⇤.

Optimal basic feasible solution. The first widely used algorithm for solving linear programs is the
simplex algorithm which makes use of the fact that if a LP has an optimal solution x⇤ then it has an
optimal solution that is an extreme point (vertex) of the feasible set. For each feasible point x 2 X :=
{x 2 R

n : Ax � b} let Î(x) := {i 2 {1, . . . ,n} : aTi x = bi} be the set of all active constraints at x. For
polyhedral sets such as X , x is an extreme point of X if and only if Î(x) contains n linearly independent
active constraints at x, i.e., {ai : i 2 Î(x)} contains n linearly independent ai. In the simplex algorithm
literature a feasible extreme point is called a basic feasible solution and an optimal extreme point is called
an optimal basic feasible solution. The simplex algorithm starts from a basic feasible solution and moves
to another basic feasible solution with a lower cost until an optimal basic feasible solution is found. Even
though the simplex algorithm is usually replaced by interior point methods in modern LP solvers, it reveals
the following useful structure of an optimal basic feasible solution x⇤ of linear programs.

For each extreme point x of X let I(x) ✓ Î(x) denote any collection of n linearly independent con-
straints, i.e., {ai : i 2 I(x)} is a set of n linearly independent vectors. Decompose (A,b) according to
I = I(x):

A =:


AI(x)
A�I(x)

�
, b =:


bI(x)

b�I(x)

�

so that AI(x)x = bI(x) and A�I(x)x > b�I(x). Then AI(x) is a n⇥n nonsingular matrix whose columns form
a basis of Rn. Hence an optimal basic feasible solution (extreme point) x⇤ of the linear program (7.53)
satisfies

x⇤ = A�1
I(x⇤) bI(x⇤) (7.56)

In Exercise 7.21 the set I(x) (or Î(x)) is used to construct an optimal dual variable µ⇤. The basic idea is to
use the Farkas lemma to show that c 2 cone

⇣
AT

I(x⇤)

⌘
and hence c = AT

I(x⇤)µ
⇤
I(x⇤) for some µ⇤I(x⇤) � 0.

7.4.3 Convex quadratic program (QP)

A quadratic program (QP) has a quadratic cost function and affine constraints and a quadratically con-
strained quadratic program (QCQP) has a quadratic cost function and quadratic constraints. In this sub-
section we study QPs that are convex.
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Convex quadratic program (QP). Consider first an unconstrained convex quadratic program:

f ⇤1 := min
x2Rn

f (x) := xTQx + 2cTx (7.57)

where Q 2Rn⇥n is positive semidefinite, i.e., Q⌫ 0, and c 2Rn. The cost function f is convex if and only
if Q⌫ 0. Since Q is positive semidefinite it has a spectral decomposition

Q = ULUT =
⇥
Ur Un�r

⇤Lr 0
0 0

�
UT

r
UT

n�r

�
= UrLrUT

r (7.58a)

where r is the rank of Q, Lr is a diagonal (sub)matrix of the r positive eigenvalues of Q and the columns of
Ur 2 R

n⇥r are the corresponding r  n (real) orthonormal eigenvectors. The columns of Un�r 2 R
n⇥(n�r)

are n�r orthonormal (real) eigenvectors corresponding to the 0 eigenvalue, if any. The matrix Q is positive
definite if r = n and positive semidefinite but not positive definite if r < n. The range space, null space
and the pseudo-inverse Q† of Q are respectively:

range(Q) = span(Ur), null(Q) = span(Un�r), Q† := UrL�1
r UT

r , r  n (7.58b)

because UT
r Un�r = 0 (see Chapter 20.1.7 on pseudo-inverse and Theorem 20.16 on orthogonal diagonal-

ization for psd matrices). If r = n then Q† = Q�1. Unconstrained convex QP can be solved explicitly, as
stated below and proved in Exercise 7.22.

Theorem 7.22 (Unconstrained convex QP). Consider the unconstrained convex QP (7.57).

1. If c 2 range(Q) then a minimizer x⇤ and the minimal value f ⇤1 are respectively:

x⇤ = �Q†c, f ⇤1 =�cTQ†c

where Q† is the pseudo-inverse of Q defined in (7.58b). Moreover the set of minimizer is x⇤ =
�Q†c+null(Q).

2. If c 62 range(Q) then f ⇤1 =�•.

3. If Q� 0 is positive definite then the unique minimizer x⇤ and the minimum value f ⇤1 are respectively:

x⇤ = �Q�1c, f ⇤1 =�cTQ�1c

In particular range(Q) = R
n and Q† = Q�1.

Consider next an affinely constrained version of (7.57):

f ⇤2 := min
x2Rn

f (x) := xTQx + 2cTx s.t. Ax = b, Bx+d � 0 (7.59)

where Q ⌫ 0, c 2 R
n, A 2 R

m⇥n, b 2 R
m, B 2 R

k⇥n and d 2 R
k. The quadratic program (7.59) reduces

to a linear program if Q = 0. We next state strong duality and the KKT condition for (7.59) when Q � 0
is positive definite. The result is proved in Exercise 7.23 for the more general case when Q ⌫ 0. When
Q� 0 let

Q̂ :=


A
B

�
Q�1 ⇥AT BT

⇤
, ĉ :=


�b
d

�
�


A
B

�
Q�1c (7.60)
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Theorem 7.23 (Constrained convex QP). Suppose the QP (7.59) is feasible and Q� 0.

1. Dual problem. The dual problem is

d⇤ := �cTQ�1c � min
l2Rm,µ2Rk

+

✓⇥
lT µT

⇤
Q̂


l
µ

�
+ 2 ĉT


l
µ

�◆

where R
k
+ := {µ 2 R

k : µ � 0}.

2. Strong duality, dual optimality, KKT condition. Strong duality holds and dual optimality is attained.
Moreover a feasible x⇤ is optimal if and only if there exists (l ⇤,µ⇤) 2 R

m+k such that µ⇤ � 0 and

x⇤ = Q�1(ATl ⇤+BTµ⇤ � c), µ⇤T(Bx⇤+d) = 0 (7.61)

Such a point is a saddlepoint and a KKT point that is primal-dual optimal and closes the duality gap,
i.e., f ⇤2 = f (x⇤) = d(l ⇤,µ⇤) = d⇤.

Exercise 7.24 studies the following convex quadratically constrained quadratic program (QCQP):

f ⇤ := min
x2Rn

f (x) := xTQ0x + 2cT0 x s.t. xTQ1x + 2cT1 x d

where Q0 � 0 is positive definite, Q1 ⌫ 0 is positive semidefinite, c0,c1 2 R
n and d 2 R. It shows that the

dual problem is:

d⇤ := � min
µ2R+

dµ + (c0 + µc1)
T(Q0 + µQ1)

�1(c0 + µc1)

strong duality holds and dual optimality is attained if f ⇤ is finite and there exists x̄ such that x̄TQ1x̄ +
2cT1 x̄ < d. In that case a feasible x⇤ is optimal if and only if there exists µ⇤ 2 R such that µ⇤ � 0 and

(Q0 + µ⇤Q1)x⇤+(c0 + µ⇤c1) = 0, µ⇤(x⇤TQ1x⇤ + 2cT1 x⇤ �d) = 0

7.4.4 Second-order cone program (SOCP)

A second-order cone program (SOCP) is a convex optimization problem where either the variable x or its
affine transformation B̃x + d̃ is in the standard second-order cone K := {x 2 R

n : kxn�1k2  xn} defined
in (7.11),

Second-order cone. Consider the convex optimization problem:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (7.62a)

where f : Rn!R is a real-valued convex function, A2Rm⇥n, b2Rm, and K ✓R
n is the standard second-

order cone defined in (7.11), reproduced here (xk := (x1, · · · ,xk) denotes the vector consisting of the first
k entries of x),

K := {x 2 R
n : kxn�1k2  xn} (7.62b)
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This problem is called a second-order cone program (SOCP). It reduces to a linear program (7.53a) if K
is polyhedral (e.g., K = {x 2 R

n : x � 0}) and f is linear. In this chapter we assume f is continuously
differentiable though this is not important (see the extension to nonsmooth convex setting in Chapter
12.8.3).

To derive the dual problem of (7.62) and the KKT condition, let the Lagrangian function L :Rn+m+1!
R be

L(x,l ,µ) := f (x) � lT(Ax�b) + µ
�
kxn�1k2� xn

�
, x 2 R

n, l 2 R
m,µ 2 R

Then the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (7.62c)

Let X :=
�

x 2 R
n : Ax = b,kxn�1k2  xn

 
and Y :=

�
(l ,µ) 2 R

m+1 : µ � 0
 

be the feasible sets.

Theorem 7.24 (SOCP duality and KKT). Consider the SOCP and its dual (7.62).

1. Strong duality and dual optimality. Suppose f ⇤ is finite, and there exists x̄ such that Ax̄ = b and
kx̄n�1k2 < x̄n. Then there exists a dual optimal solution (l ⇤,µ⇤) 2Y that closes the duality gap, i.e.,
f ⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization: [x⇤]n�1 6= 0. A primal and dual feasible point (x⇤,l ⇤,µ⇤) 2 X ⇥Y with
[x⇤]n�1 6= 0 is primal-dual optimal and closes the duality gap if and only if and

— f (x⇤) = ATl ⇤+ µ⇤
"
�[x⇤]n�1

k[x⇤]n�1k2
1

#
, µ⇤

�
k[x⇤]n�1k2� x⇤n

�
= 0 (7.63)

Such a point (x⇤,l ⇤,µ⇤) is a saddle point and a KKT point.

3. KKT characterization: [x⇤]n�1 = 0. For x⇤ with 0 = k[x⇤]n�1k2 < x⇤n, x⇤ is optimal if and only if
— f (x⇤) = ATl ⇤ for some l ⇤ 2 R

m. Finally x⇤ = 0 is optimal if and only if — f (0) = ATl ⇤+h⇤ for
some l ⇤ 2 R

m and h⇤ 2 K.

Proof. Part 1 follows from the Slater Theorem 7.15 since the constraint functions in (7.62b) are convex
functions (not just that the feasible set is a convex set). Part 2 follows from the KKT Theorem 7.13 because
(7.63) in the theorem are the stationarity condition —xL(x⇤,l ⇤,µ⇤) = 0 and the complementary slackness
condition. For part 3, (7.63) does not apply at x where xn�1 = 0 because the constraint function is not
differentiable at such a point. The stated result is proved in Chapter 12.8.3 where the KKT condition is
generalized to a nonsmooth convex setting that does not require differentiability (see (12.52)).

Note that the vector
⇣
�[x⇤]n�1

k[x⇤]n�1k2
,1
⌘

in (7.63) is in K and hence similar to the case in Theorem 7.24(3).
See Remark 12.7 in Chapter 12.8.3 for the reason.

Remark 7.12. 1. Primal optimality. Unlike for a linear program a finite f ⇤ (as well as the Slater
condition) does not guarantee that the optimal value f ⇤ is attained at a finite x⇤. In particular, even
when a dual optimal solution exists that closes the duality gap under the Slater condition, there may
not be any feasible x̄ that satisfies the KKT condition; see Examples 7.10 and 7.11.



308 Draft: PSA December 13, 2024

2. KKT under Slater condition. If we assume the Slater condition, i.e., there exists x̄ with Ax̄ = b and
kx̄n�1k2 < x̄n, then the KKT characterization in Theorem 7.24 can be strengthened to: a feasible
x⇤,2 X is optimal if and only if there exist (l ⇤,µ⇤) 2 Y such that (7.63) holds. Without the Slater
condition and finite f ⇤, the existence of a primal optimal x⇤ (and hence finite f ⇤) does not guarantee
the existence of a dual optimal (l ⇤,µ⇤).

3. Unimportance of smoothness. Differentiability of the cost and constraint functions are unimportant
for Theorem 7.24. The theorem holds verbatim in a nonsmooth setting as long as these functions
are convex; see Chapter 12.8.3 where the optimality condition in part 3 is derived. Figure 7.16
illustrates why the optimality condition does not depend on differentiability.
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�cn�1�2 � cn


x* = 0
f* = c�x* = 0

xn

xn�1

K

 decreasing�c

�cn�1�2 > cn


x*n � �
f* = c�x* � � �

xn

xn�1

K

 decreasing�c

Figure 7.16: Theorem 7.24: optimality condition at x⇤ = 0 where the constraint function is nondifferen-
tiable when the constraint Ax = b is absent and f (x) := cTx. Left: x⇤ = 0 and f ⇤ = 0 when c 2 K. Right:
f ⇤ =�• when c 62 K.

SOC constraint. Consider the convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, kBx+dk2  bTx+d (7.64)

where f : Rn ! R is a real-valued convex function A 2 R
m⇥n and b 2 R

m, B 2 R
(k�1)⇥n, d 2 R

k�1,
b 2 R

n and d 2 R. The constraint kBx + dk2  bTx + d is the second-order cone constraint studied
in Chapter 7.2.1. The problem (7.64) is also called a second-order cone program (SOCP) because the
quadratic constraint says that an affine transformation of x lies in the second-order cone K. It reduces
to a linear program when B = 0 and subsumes (7.62) as a special case. In this chapter we assume f is
continuously differentiable though this is not important (see the extension to nonsmooth convex setting in
Chapter 12.8.3).

To derive the dual problem of (7.62) and the KKT condition, we reduce it to the case of (7.62) with an
auxiliary variable z and an additional equality constraint. Consider the equivalent problem:

f ⇤ := min
(x,z)2Rn+k

f (x) s.t. Ax = b, z = B̃x+ d̃, kzk�1k2  zk (7.65a)

where z = (zk�1,zk) 2 R
k, f : Rn! R is a real-valued continuously differentiable convex function, A 2

R
m⇥n and b 2 R

m. Here

B̃ :=


B
bT

�
, d̃ :=


d
d

�
(7.65b)
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where B2R(k�1)⇥n, d 2Rk�1, b 2Rn, d 2R. The Lagrangian L : Rn+k⇥R
m+k+1!R is: for x2Rn,z2

R
k,l 2 R

m,g 2 R
k,µ 2 R,

L(x,z,l ,g,µ) := f (x) � lT(Ax�b) � gT(B̃x+ d̃� z) + µ
⇣
kzk�1k2� zk

⌘

The dual problem is (Exercise 7.26):

d⇤ := max
l ,g

⇣
bTl � d̃Tg

⌘
+ d0(l ,g) s.t. g 2 K (7.65c)

where

d0(l ,g) := min
x2Rn

⇣
f (x)� (ATl + B̃Tg)Tx

⌘
(7.65d)

For example when the cost function in (7.65a) is linear fTx the dual problem is (Exercise 7.27):

d⇤ := max
(l ,g)2Rm+k

bTl � d̃Tg s.t. ATl + B̃Tg = f , kgk�1k2  gk

Let X :=
�

x 2 R
n : Ax = b,kBx+dk2  bTx+d

 
and Y :=

�
(l ,µ) 2 R

m+1 : µ � 0
 

. Note that X ⇥Y
does not contain the auxiliary variable z and the corresponding dual variable g . Even though the dual
problem does not depend on µ , the complementary slackness in the KKT condition does.

Theorem 7.25 (SOCP duality and KKT). Consider the SOCP and its dual (7.65). Suppose there exists x̄
such that Ax̄ = b and kBx̄+dk2 < bTx̄+d so that the Slater condition (7.42) is satisfied.

1. Strong duality and dual optimality. Suppose f ⇤ is finite. Then there exists a dual optimal solution
(l ⇤,g⇤,µ⇤) that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,g⇤,µ⇤).

2. KKT characterization: BTx⇤+ d 6= 0. A point x⇤ 2 X with BTx⇤+ d 6= 0 is optimal if and only if
there exist (l ⇤,µ⇤) 2 Y such that

— f (x⇤) = ATl ⇤+ µ⇤
✓
�BT(Bx⇤+d)

kBx⇤+dk2
+ b

◆
, µ⇤

⇣
kBx⇤+dk2� (bTx⇤+d )

⌘
= 0

Such a point (x⇤,l ⇤,µ⇤), together with z⇤ := B̃x⇤+ d̃ and g⇤ = µ⇤
"
�[z⇤]k�1

k[z⇤]k�1k2
1

#
2 K, is a saddle point

and a KKT point for (7.65).

3. KKT characterization: BTx⇤+d = 0. A point x⇤ 2 X with BTx⇤+d = 0 is optimal if and only if

(a) Case bTx⇤+d > 0: there exists l ⇤ 2 R
m such that — f (x⇤) = ATl ⇤.

(b) Case bTx⇤+d = 0: there exists l ⇤ 2 R
m and h⇤ 2 K such that — f (x⇤) = ATl ⇤+ B̃Th⇤.

Proof. If there exists an x̄ such that Ax̄ = b and kBx̄ + dk2 < bTx̄ + d then there exists a z̄ such that
z̄ = B̃x + d̃ and kz̄k�1k2 < z̄k. This is the Slater condition for (7.65a) and hence part 1 follows from
Theorem 7.24 since the constraint functions in (7.65a) are convex.
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For part 2 we derive the stationarity condition —xL(x⇤,z⇤,l ⇤,g⇤,µ⇤) = 0 and —zL(x⇤,z⇤,l ⇤,g⇤,µ⇤) = 0
as well as the complementary slackness condition in the KKT Theorem 7.13. When zk�1 6= 0 we have

—xL(x,z,l ,g,µ) = — f (x)�ATl � B̃Tg, —zL(x,z,l ,g,µ) = g + µ

"
zk�1

kzk�1k2
�1

#

Hence the KKT condition in terms of (x⇤,z⇤) and (l ⇤,g⇤,µ⇤) is:

— f (x⇤) = ATl ⇤ + B̃Tg⇤, g⇤ = µ⇤
"
�[z⇤]k�1

k[z⇤]k�1k2
1

#
, µ⇤

⇣
k[z⇤]k�1k2� z⇤k

⌘
= 0

Eliminating z⇤ and g⇤ yields the KKT condition in the theorem. The remaining claim follows from the
KKT Theorem 7.13.

For part 3, the KKT Theorem 7.13 assumes continuously differentiable constraint functions and is not
applicable at x⇤ with BTx⇤+d = 0. The stated result is proved in Chapter 12.8.3 where the KKT condition
is generalized to a nonsmooth convex setting that does not require differentiability (see (12.55)).

Conic program. A generalization of SOCP (7.62) and (7.64) is the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (7.66)

where f : Rn! R is a real-valued convex function, A 2 R
m⇥n, b 2 R

m, and K ✓ R
n is a general closed

convex cone. The Slater Theorem 7.15 and the KKT Theorem 7.13 are formulated in this chapter for
problems where the constraint functions are explicitly given and continuously differentiable. Even though
part of the constraints in (7.66) is not explicit, since K is a convex cone, a dual problem can be formulated
in terms of what is called its dual cone. We derive in Chapter 12.8.4 a sufficient condition for strong
duality and dual optimality and the KKT condition for the general conic program (7.66) where the con-
straint functions are not fully specified and the cost function f is convex but not necessarily continuously
differentiable (Theorem 12.30).

7.4.5 Semidefinite program (SDP)

Recall the vector space S
n of Hermitian matrices over the field R of real numbers, not over C, and the

cone Kpsd of positive semidefinite matrices in the vector space S
n, studied in Chapter 7.2.2. For two

Hermitian matrices x,y 2 S
n, their inner product is x · y := tr

�
yHx
�

= Â j,k x jky jk is a real number and
satisfies x · y = y · x. Furthermore Kpsd is a proper self-dual cone.

Consider the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, h(x) 2 Kpsd (7.67a)

where f : Rn! R is a real-valued convex function, A 2 R
m⇥n, b 2 R

m, Kpsd ✓ S
k is the cone of positive

semidefinite matrices, and h : Rn! S
k is the function

h(x) := B0 +
n

Â
i=1

xiBi, Bi 2 S
k, i� 0 (7.67b)
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The constraint h(x) 2 Kpsd is called a linear matrix inequality and is sometimes denoted as h(x)⌫Kpsd 0 or
simply h(x)⌫ 0 if the underlying cone Kpsd is understood. SDP (7.67) reduces to LP if k = 1 (see Example
7.14 of Chapter 7.4.2). It also includes SOCP (7.62a) as a special case because x 2 Ksoc if and only if the

“arrow matrix”


xn [xn�1]T

xn�1 xnIn�1

�
2 Kpsd due to properties of the Schur complement (see Theorem 20.4 in

Chapter 20.1.3.1).

To define the dual problem let l 2R
m and Z 2 K⇤psd ✓ S

k denote dual variables, where K⇤psd is the dual
cone of Kpsd. The Lagrangian is7

L(x,l ,Z) := f (x) � lT(Ax�b) � Z ·
 

B0 +
n

Â
i=1

xiBi

!
, x 2 R

n, l 2 R
m, Z 2 K⇤psd (7.68a)

The dual function d(l ,Z) := minx2Rn L(x,l ,Z) is:

d(l ,Z) =
⇣

bTl � Z ·B0

⌘
+ d0(l ,Z)

d0(l ,Z) := min
x2Rn

f (x)�lTAx�Â
i

xi(Z ·Bi) (7.68b)

Hence the dual problem is

d⇤ := max
l2Rm,Z2Sk

⇣
bTl � tr(BH

0 Z)
⌘

+ d0(l ,Z) s.t. Z 2 K⇤psd (7.68c)

If f (x) = fTx then

d⇤ := max
l2Rm,Z2K⇤psd

⇣
bTl � tr(BH

0 Z)
⌘

s.t. fi = Â
j

A jil j + tr(BH

i Z), i = 1, . . . ,n

A point (x⇤,l ⇤,Z⇤) 2 R
n+m⇥S

k is a saddle point if

min
x2Rn

L(x,l ⇤,Z⇤) = L(x⇤,l ⇤,Z⇤) = max
µ2Rm,Z2K⇤psd

L(x⇤,l ,Z)

The Slater Theorem 12.26 and the generalized KKT Theorem 12.20 extend directly to the vector space
of Sn and SDP. Since Kpsd is self dual, i.e., K⇤psd = Kpsd, K⇤psd above can all be replaced by Kpsd. This
property is not important for the next theorem and therefore we continue to use K⇤psd in its statement.

Theorem 7.26 (SDP strong duality and KKT). Consider the SDP (7.67) and its dual (7.68). Suppose there
exists x̄ 2 R

n such that Ax̄ = b and h(x̄) 2 ri(Kpsd). Then

1. Strong duality and dual optimality. If f ⇤ is finite then there exists a dual optimal solution (l ⇤,Z⇤) 2
R

m⇥K⇤psd that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,Z⇤).

7A justification for the definition of Lagrangian is weak duality: for any feasible x and any Z 2K⇤psd, L(x,l ,Z) f (x) since
h(x) 2 Kpsd and hence Z ·h(x)� 0.
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2. KKT characterization. A feasible x⇤ is optimal if and only if there exists a dual feasible (l ⇤,Z⇤) 2
R

m⇥K⇤psd such that

tr(h(x⇤)HZ⇤) = 0,
∂ f
∂xi

(x⇤) = Â
j

A jil j + tr(BH

i Z⇤), i = 1, . . . ,n

In this case (x⇤,Z⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

We often use the following form of the semidefinite program with inequality constraints:

d⇤ := min
Z2Kpsd

tr
⇣

BH

0 Z
⌘

s.t. tr
⇣

BH

i Z
⌘
 fi, i = 1, . . . ,n (7.69)

where Kpsd ⇢ S
k. For instance the semidefinite relaxation of optimal power flow problems in Chapter

10.1.1 takes this form. This is equivalent to problem (7.68) without the affine constraint Ax = b, noting
that K⇤psd = Kpsd. We now derive its dual problem.

Let the Lagrangian be

L(Z,x) := tr
⇣

BH

0 Z
⌘

+
n

Â
i=1

xi

⇣
tr(BH

i Z)� fi

⌘
, Z 2 Kpsd, x 2 R

n
+

and the dual function be f (x) := minZ2Kpsd L(Z,x) =� fTx + minZ2Kpsd Z ·h(x), where h(x) is defined in
(7.67b). Since the constraint Z 2 Kpsd is not dualized, the domain of L for Z and hence the minimization
over Z in f (x) is over Kpsd, not Sk. If h(x) 2 K⇤psd then Z ·h(x)� 0 for all Z 2 Kpsd whereas if h(x) 62 K⇤psd
then, by the definition of dual cone, there exists Z̄ 2 Kpsd such that Z̄ ·h(x) < 0. Hence

min
Z2Kpsd

Z ·h(x) =

⇢
0 if h(x) 2 K⇤psd
�• otherwise

Since K⇤psd = Kpsd, the dual function is then (recalling that x� 0)

f (x) =

⇢
� fTx if x� 0, h(x) 2 Kpsd
�• otherwise (7.70a)

The dual problem f ⇤ := maxx2Rn f (x) is

f ⇤ := � min
x2Rn

fTx s.t. x� 0, h(x) 2 Kpsd (7.70b)

Recall that all eigenvalues of a matrix Z 2 Kpsd are nonnegative. The interior int(Kpsd) of Kpsd is the
set of all positive definite matrices whose eigenvalues are strictly positive.

Theorem 7.27 (SDP strong duality and KKT). Consider the SDP (7.69) and its dual (7.70). Suppose there
exists a positive definite matrix Z̄ 2 int(Kpsd) such that tr

�
BH

i Z̄
�
 fi, for i = 1, . . . ,n. Then

1. Strong duality and dual optimality. If d⇤ is finite then there exists a dual optimal solution x 2 R
n

that closes the duality gap, i.e., d⇤ = f ⇤ = f (x⇤).
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2. KKT characterization. A feasible Z⇤ 2 Kpsd is optimal if and only if there exists an x⇤ 2 R
n such

that

h(x⇤) 2 Kpsd, x⇤ � 0, x⇤i ( fi�Z⇤ ·Bi) = 0, i = 1, . . . ,n

In this case (x⇤,Z⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

Remark 7.13. SDP includes SOCP as a special case and SOCP includes LP and convex quadratically
constrained quadratic program (QCQP) as special cases. Solving an SOCP via standard SDP is generally
much less efficient. For the SOCP in (??) the number of iterations to reduce the duality gap to a constant
fraction of itself is bounded above by O(

p
L) for SOCP and by O(

p
Âm

k=1 nk) for SDP [79]. Moreover
each iteration is much faster for SCOP than for SDP.

7.4.6 Equivalent representation and nonsmoothness

A primal problem can be formulated in different but equivalent representations, e.g., their feasible sets
may be the same but they are specified by different constraint functions. They are equivalent in the
sense that they have the same optimal primal value because they may have the same cost functions and
feasible sets. As discussed in Chapter 7.3.7, equivalent primal representations may have different dual
problems. Results such as strong duality and KKT optimality are with respect to each pair of primal
and dual representations. In this subsection we study in more detail two potential issues that may arise
with alternative representations, one due to the fact that strong duality may not hold for the alternative
representation and the other at points of nonsmoothness of the original representation.

Consider the SOCP (7.62a). Its constraint function h1(x) := kxn�1k2� xn is not differentiable at x
where xn�1 = 0. To bypass this difficulty the following formulation is often solved instead:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, kxn�1k2
2  x2

n, xn � 0 (7.71a)

where f : Rn!R is a real-valued continuously differentiable convex function, A2Rm⇥n and b2Rm. The
alternative representation (7.71a) is equivalent to (7.62a) because they have the same feasible set, specified
by different constraint functions, and cost function. Since the constraint function h2(x) := kxn�1k2

2� x2
n

in (7.71a) is nonconvex neither the Slater Theorem 7.15 nor the sufficient condition in the KKT Theorem
7.13 (i.e., Theorem 7.24) applies to (7.71a) and its dual. This gives rise to two potential issues.

First the Lagrangian L : Rn+m+2! R of (7.71a) is

L(x,l ,µ) := f (x) � lT(Ax�b) + µ1
�
kxn�1k2

2� x2
n
�
� µ2xn, x 2 R

n, l 2 R
m,µ 2 R

2

the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (7.71b)

Since h1(x) for the original representation is convex but h2(x) for the alternative representation is noncon-
vex, strong duality may hold for (7.62) but not for (7.71) even if the Slater condition (7.42) is satisfied for
both. Indeed Exercise 7.26 gives an example where strong duality holds and dual optimality is attained for
(7.62) while the duality gap is unbounded and the dual problem infeasible for (7.71).
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Second the constraint function h2(x) in (7.71a) is differentiable everywhere. The KKT condition for
(7.71a) can be derived to be

— f (x⇤) = ATl ⇤ �2µ⇤1

[x⇤]n�1

�x⇤n

�
+ µ⇤2 en, µ⇤2

�
k[x⇤]n�1k2

2� (x⇤n)
2� = 0 (7.72)

together with primal and dual feasibility. Here en 2 {0,1}n is the unit vector with a single 1 in the nth
entry. Consider the simple case where the constraint Ax = b is absent. At x⇤ = 0, the KKT condition (7.72)
reduces to — f (0) = µ⇤2 en for some µ⇤2 � 0. It is shown in Exercise 7.26 that there are problem instances
where — f (0) = µ⇤2 en is sufficient, but not necessary, for x⇤ = 0 to be optimal for (7.62a) (a necessary
and sufficient condition is — f (0) 2 K from Theorem 7.24) while — f (0) = µ⇤2 en is neither necessary nor
sufficient for x⇤ = 0 to be optimal for the alternative representation (7.71a) because for those problem
instances, the dual problem of (7.71a) is not well defined (infeasible).

These caveats illustrate that when we adopt an alternative representation of a convex optimization
problem, assuming finite optimal primal value:

1. It is important to check that strong duality still applies, e.g., if the cost and constraint functions
remain convex and the Slater condition continues to hold so that the Slater Theorem 7.15 and the
KKT Theorem 7.13 continue to apply.

2. If points of nonsmoothness are relevant for the application, it is important to derive optimality con-
ditions at these points using nonsmooth analysis studied in Chapter 12.

7.5 Optimization algorithms

Even though OPF can be formulated as an optimization problem in the complex domain using the complex
form of power flow equations (e.g., in (9.9) or (9.16) for single-phase OPF in BIM), in computing a
solution, it is first converted into a problem in the real domain; see Remark 9.2. OPF can also be formulated
directly in the real domain using the polar form (4.27) or the Cartesian form (4.28) of the power flow
equations. We therefore present and analyze algorithms for solving OPF in the real domain.

Consider the problem

min
x

f (x) subject to x 2 X (7.73)

where f : Rn ! R is continuously differentiable and X ✓ R
n is nonempty, closed and convex. Let the

column vector — f (x) denote the gradient of f evaluated at x, i.e., [— f (x)]i := ∂ f /∂xi, i = 1, . . . ,n. Recall
that a point x⇤ is a local minimizer if f (x⇤) is minimum on a neighborhood of x⇤, i.e., there exists r > 0
such that f (x⇤) f (x) for all x 2 Br(x⇤)\X . A necessary optimality condition for general f is: if x⇤ 2 X
is a local minimizer for (7.73) then there is a neighborhood Br(x⇤) for some r > 0 such that

(— f (x⇤))T (x� x⇤) � 0 8x 2 Br(x⇤)\X (7.74)

i.e., moving away from x⇤ to any other feasible point x in Br(x⇤) can only increase the function value f .
If f is a convex function (X is assumed convex) then this is both necessary and sufficient for x⇤ to be a
global minimum of (7.73). This is illustrated in Figure 7.17.
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Figure 7.17: Moving away from an optimal point x⇤ to any other feasible point x can only locally increase
the cost.

7.5.1 Steepest descent algorithm

Steepest descent is the most widely used class of iterative algorithms for solving optimization problems.
For (7.73), it is given by the following iteration: starting from an initial point x(0) = x0,

x(t +1) = [ x(t)� g— f (x(t)) ]X (7.75)

where g > 0 is a constant stepsize. Here [x]X denotes the projection of x onto the nonempty, closed and
convex set X , i.e., for any x 2 R

n,

[x]X := argmin
y2X

kx� yk2

where k · k2 is the Euclidean norm. Hence [x]X is the unique point in X that is closest to x 2 R
n in

the Euclidean norm. Variants of the steepest descent algorithm can be obtained by using an iteration-
dependent stepsize g(t) > 0 or a scaling matrix g 2 R

n⇥n. The steepest descent algorithm is called a
first-order algorithm because it uses only the first derivative of the objective function f . A second-order
algorithm, such as the Newton-Raphson algorithm widely used for solving optimal power flow problems,
uses the second derivative to construct a time-dependent scaling matrix g(t) in each iteration, as we now
explain.

7.5.2 Newton-Raphson algorithm

As explained in Chapter 4.4.2, Newton-Raphson is an iterative algorithm for solving nonlinear equations
F(y) = 0 where F : Rn! R

n. It computes iteratively

y(t +1) = y(t) + Dy(t) where J(y(t))Dy(t) = �F(y(t)) (7.76)

where J(y) := ∂F
∂y (y) is the Jacobian of F at y. In this section we apply it to optimization problems where

the equation F(y) = 0 represents the KKT condition. A solution yopt of F(y) = 0 then produces an optimal
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solution if the underlying optimization problem is convex. For simplicity we assume solutions exist for all
the optimization problems considered unless otherwise specified.

In this subsection we focus on solving problems with equality constraints. Specifically

1. Linear equality constrained problems. The idea is to approximate the cost function by a quadratic
function around the next iterate (to be determined). This results in a quadratic program in each
iteration whose KKT condition is a system of linear equations that can be solved analytically for the
next iterate. We will also describe another algorithm that generalizes to nonlinear constraints.

2. Nonlinear equality constrained problems. In contrast to the KKT condition of an approximating
quadratic program, the KKT condition of these problems is generally nonlinear and cannot be solved
analytically. The idea is to solve the KKT condition iteratively using the Newton-Raphson method.

3. Inequality constrained problems. The KKT condition of these problems involves inequalities and
Newton-Raphson is not directly applicable. The idea is to replace the inequality constraint by a
penalty term in the cost function to obtain an approximate problem that has no inequality constraints.

Nonlinear program with linear equality constraint. Consider the following problem with an equality
constraint:

min
x2Rn

f (x) s.t. Ax = b (7.77)

where f : Rn ! R is twice continuously differentiable and A 2 R
m⇥n. We will derive two equivalent

algorithms. The first algorithm relies on the linearity of the constraint and is generally not applicable to
problems with nonlinear constraints. It approximates the cost function f (x) by a quadratic function in
each iteration and solves the resulting quadratic program directly. The second algorithm solves the KKT
condition for (7.77) and extends directly to problems with nonlinear equality constraints.

For the first algorithm, given the current iterate x(t), approximate the cost f (x(t)+ Dx(t)) at the next
iterate by

f̂ (x(t)+Dx(t)) := f (x(t))+
∂ f
∂x

(x(t))Dx(t)+
1
2

Dx(t)T
∂ 2 f
∂x2 (x(t))Dx(t) (7.78a)

and consider the optimization over Dx(t)

min
Dx2Rn

f̂ (x(t)+Dx(t)) s.t. A(x(t)+Dx(t)) = b (7.78b)

This is a quadratic program in Dx(t) with a fixed x(t) and can be solved analytically. Let l (t) 2R
m be the

Lagrange multiplier of (7.78). If f is convex then (7.78) is a convex program and the KKT condition is
both necessary and sufficient for optimality. The KKT condition is (Exercise 7.28)

"
∂ 2 f
∂x2 (x(t)) AT

A 0

#

| {z }
K(t)


Dx(t)
l (t)

�
= �


— f (x(t))
Ax(t)�b

�

| {z }
d(x(t))

(7.79a)
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This is system of n+m linear equations in n+m unknowns (Dx(t),l (t)). The matrix K(t) on the left-hand
side of (7.79a) is called a KKT matrix. If K(t) is nonsingular8 then Dx(t) can be computed directly. If K(t)
is singular but the given vector d(x(t)) on the right-hand side is orthogonal to the null space of K(t), then
there is a subspace of solutions (Dx(t),l (t)) to (7.79a) and �K†(t)d(x(t)) is the minimum-norm solution
where K†(t) is the pseudo inverse of K(t). Neither K(t) nor d(x(t)) depends on l (t). Hence in both cases
Dx(t) can be computed from just the current iterate x(t) and (7.79a) always allows pure primal iterations,

x(t +1) = x(t)+Dx(t) (7.79b)

for solving (7.77).

The second algorithm does not use the second-order approximation of f (x) and considers (7.77) di-
rectly. Specifically let l 2 R

m denote the Lagrange multiplier associated with the m constraints in (7.77).
The Lagrangian is

L(x;l ) := f (x) + lT (Ax�b)

Let y := (x,l ) 2 R
n+m and define F : Rn+m! R

n+m by

F(y) :=


—x L(x,l )
—l L(x,l )

�
=


— f (x)+ATl

Ax�b

�

The KKT condition is F(y) = 0. This specifies a system of n+m nonlinear equations in n+m unknowns
(x,l ), in contrast to the linear KKT condition (7.79a) for the second-order approximation (7.78). It
generally needs to be solved iteratively. The Jacobian J(y) := ∂F

∂y of F is:

J(y) =

"
∂ 2 f
∂x2 (x) AT

A 0

#

(which is the KKT matrix K(t) in (7.79a).) Hence the Newton-Raphson iteration is


x(t +1)
l (t +1)

�
=


x(t)
l (t)

�
+


Dx(t)
Dl (t)

�
(7.80a)

where the increment Dy(t) is given by J(y(t))Dy(t) =�F(y(t)), i.e.,
"

∂ 2 f
∂x2 (x(t)) AT

A 0

#
Dx(t)
Dl (t)

�
= �


— f (x(t))+ATl (t)

Ax(t)�b

�
(7.80b)

We compare the two algorithms (7.79) and (7.80). Both algorithms solve a linear equation with the
KKT matrix K(t) in each iteration. As mentioned above, the approach of (7.79) solves the KKT condition
for the second-order approximation (7.78) directly. This is possible because the linearity of the constraint
allows a second-order approximation of only the cost function but not of the constraint, resulting in a
quadratic program that can be solved analytically. It leads to a primal algorithm that iterates only on
x(t). This is generally inapplicable if the constraint is nonlinear. The approach of (7.80), on the other

8See [80, Chapter 10.1, p.523] for equivalent conditions of the nonsingularity of the KKT matrix K(t).
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hand, solves the KKT condition F(x,l ) = 0 for the original problem (7.77) iteratively using the Newton-
Raphson algorithm. It leads to a primal-dual algorithm that updates both the primal and the dual variables.
It will be extended to problems with a nonlinear constraint in (7.82).

These two algorithms are equivalent in that both produce the same sequence of (x(t),l (t)) starting
from the same initial point. Indeed, given the current iterate (x(t),l (t)) of the primal and dual variables,
(Dx(t),Dl (t)) satisfies (7.80) if and only if (Dx(t),l := l (t)+Dl (t)) satisfies (7.79). To see this, suppose
(Dx(t),l (t)+Dl (t)) satisfies (7.79), i.e.,

"
∂ 2 f
∂x2 (x(t)) AT

A 0

#✓
Dx(t)
Dl (t)

�
+


0

l (t)

�◆
= �


—x f (x(t))
Ax(t)�b

�

which yields (7.80). Suppose the converse holds. Write the right-hand side of (7.80) as


—x f (x(t))+ATl (t)
Ax(t)�b

�
=


—x f (x(t))
Ax(t)�b

�
+

"
∂ 2 f
∂x2 (x(t)) AT

A 0

#
0

l (t)

�

which, together with (7.80), yields (7.79). The only difference between these algorithms is that (7.80)
computes Dl (t) from (x(t),l (t)) and forms l (t +1) whereas (7.79) computes l (t +1) directly from x(t).

Nonlinear program with equality constraint. Consider the following problem with a possibly nonlin-
ear equality constraint

min
x2Rn

f (x) s.t. g(x) = 0 (7.81)

where f : Rn!R and g : Rn!R
m are twice continuously differentiable. The approach of (7.80) general-

izes directly to this problem. Let l 2Rm denote the Lagrange multiplier associated with the m constraints.
The Lagrangian is

L(x;l ) := f (x) + lTg(x)

Let y := (x,l ) 2 R
n+m and define F : Rn+m! R

n+m by

F(y) :=


—x L(x,l )
—l L(x,l )

�
=


— f (x) + ∂g

∂x (x)
Tl

g(x)

�
(7.82a)

The KKT condition is F(y) = 0 which specifies a system of n+m nonlinear equations in n+m unknowns
(x,l ). Hence the Jacobian J(y) := ∂F

∂y of F is:

J(y) :=

"
∂ 2L
∂x2

∂ 2L
∂l∂x

∂ 2L
∂x∂l

∂ 2L
∂l 2

#
=

"
∂ 2 f
∂x2 (x) + Âk

∂ 2gk
∂x2 lk

∂g
∂x (x)

T

∂g
∂x (x) 0

#
(7.82b)

which reduces to the Jacobian in (7.80b) when g(x) = Ax� b is linear. Here ∂ 2L
∂l∂x =

⇣
∂ 2L

∂l∂x

⌘T
is n⇥m.

The Newton-Raphson algorithm for solving (7.81) is the iteration (7.76) where F(y) and its Jacobian J(y)
are given by (7.82). It is a primal-dual algorithm that iterates on both x(t) and l (t).



Draft: PSA December 13, 2024 319

When the cost function f (x) or the feasible set {x 2 R
n : g(x) = 0} is nonconvex, there is generally

no guarantee that the Newton-Raphson algorithm will converge and if it does, it will produce a local or
global optimum. In practice, for OPF problems, the algorithm often converges to a local, and even global,
optimum despite their nonconvexity.

When f and g are homogeneous quadratic functions the nonlinear program reduces to the following
QCQP with equality constraints:

min
x2Rn

1
2

xTC0x s.t.
1
2

xTClx = bl, l = 1, . . . ,m

where Cl 2 R
n⇥n, l � 0, are real symmetric matrices and bl 2 R, l � 1. Then (7.82) reduces to:

F(y) :=


—x L(y)
—l L(y)

�
=

2

6664

A(l )Tx
1
2xTC1x�b1

...
1
2xTCmx�bm

3

7775

where A(l ) := C0 +Âl llCl and

J(y) :=

"
∂ 2L
∂x2

∂ 2L
∂l∂x

∂ 2L
∂x∂l

∂ 2L
∂l 2

#
=

2

6664

A(l )T CT

1 x · · · CT
mx

xTC1
... 0

xTCm

3

7775

Nonlinear program with inequality constraint. Consider the following problem with an inequality
constraint

min
x2Rn

f (x) s.t. g(x)  0 (7.83)

where f : Rn!R and g : Rn!R
m are twice continuously differentiable. Let l 2Rm denote the Lagrange

multiplier associated with the m constraints. The KKT condition involves inequalities, of the form

—x L(x,l ) = —x f (x) +
∂g
∂x

(x)Tl = 0, —l L(x,l ) = g(x)  0

l � 0, lTg(x) = 0

The standard Newton-Raphson method cannot be applied directly to solve this system of equalities and
inequalities. There are however many Newton-like methods that have been developed for inequality con-
strained problems.

One approach is to introduce a slack variable z 2Rm and convert (7.83) into a problem with a ‘simple’
inequality constraint:

min
(x,z)2Rn+m

f (x) s.t. g(x)+ z = 0, z � 0
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Algorithms for solving equality constrained problems can be modified by projecting z(t) to the nonnegative
quadrant in each iteration; see e.g. [81]. Another approach is to replace the constraint g(x) 0 in (7.83) by
a penalty term (1/t)f(x) in the cost function and solve the resulting unconstrained approximate problem

min
x2Rn

f (x) +
1
t

f(x)

where t > 0 is a parameter that controls the accuracy of the approximation. Newton-Raphson can be
applied to solve the optimality condition — f (x) + (1/t)—f(x) = 0. This is the approach of the interior
point methods which we describe next.

7.5.3 Interior-point algorithm

Consider the following problem with an equality and an inequality constraints:

min
x2Rn

f0(x) s.t. f (x)  0, g(x) = 0 (7.84)

where f0 : Rn ! R, f : Rn ! R
m, and g : Rn ! R

p are twice continuously differentiable. The idea is
to approximate (7.84) by an equality constrained problem by replacing the inequality constraint f (x) 0
by a penalty term in the cost function, and then solving the equality constrained problem using Newton
methods.

Log barrier function. A popular barrier function is j : R� ! R defined by:

jt(u) := �1
t

log(�u), u < 0

where t > 0 is a parameter. For each t > 0, the function jt(u) is convex increasing over its domain u < 0
and approaches • as u! 0. It is an approximation of the indicator function which takes the value 0 if
u  0 and • if u > 0. The larger the parameter t is, the more accurate the approximation will be. While
the indicator function is discontinuous, the log barrier function jt(u) is continuously differentiable over
its domain u < 0 for each t > 0.

The logarithmic barrier f : Rn! R is

f(x) := �
m

Â
i=1

log(� fi(x)) (7.85a)

over the domain

domf := {x 2 R
n : fi(x) < 0, i = 1, . . . ,m}

The log barrier f(x) grows without bound as fi(x)! 0 for any i. Its gradient and Hessian are (Exercise
??):

—f(x) =
m

Â
i=1

1
� fi(x)

— fi(x) (7.85b)

∂ 2f
∂x2 (x) = Â

i

1
f 2
i (x)

— fi(x)— fTi (x) + Â
i

1
� fi(x)

∂ 2 fi

∂x2 (x) (7.85c)
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The approximate problem. Fix any t > 0. An approximate problem to (7.84) with an equality constraint
is

min
x2Rn

f0(x) +
1
t

f(x) s.t. g(x) = 0

It is more convenient to consider the following equivalent approximate problem (they have the same min-
imizers):

Problem(t) : min
x2Rn

t f0(x) + f(x) s.t. g(x) = 0 (7.86)

Unlike (7.84) the problem (7.86) has only equality constraints and therefore can be solved using the
Newton-Raphson algorithm defined by (7.76)(7.82). If f0 is convex and g is linear then (7.86) is a con-
vex problem. In that case, if the Newton-Raphson algorithm converges to a solution (x(t),l (t)), then the
solution satisfies the KKT condition and is therefore primal and dual optimal, i.e., x(t) solves (7.86) and
l (t) solves its dual. Otherwise, (7.86) is nonconvex and there is generally no guarantee that the Newton-
Raphson algorithm will converge. If it does converge, it will produce a feasible solution but there is no
guarantee that it is a local or global optimum. In practice, for OPF problems, the algorithm often converges
to a local, and even global, optimum despite nonconvexity.

A popular interior point method, called the barrier method, is based on solving a sequence of the
approximate problems (7.86) with increasing t until the approximation is sufficiently accurate. To describe
it we first explain how to estimate the gap between the optimal value of the original problem (7.84) and
the objective value of a solution of its approximation (7.86).

Suboptimality gap. The theory of the barrier method is most complete for convex problems. For sim-
plicity, we make the following assumptions:

C9.1: The original problem (7.84) is convex, i.e., f0, f1, . . . , fm are convex functions and g(x) =
Ax�b for some A 2 R

p⇥n and b 2 R
p.

C9.2: For every t > 0 the approximate problem (7.86) has a unique primal solution x(t) and the
Newton-Raphson algorithm converges to x(t).

We call the optimal solution x(t) of (7.86) a central point and the set {x(t) : t > 0} of central points the
central path. The assumption of unique x(t) for each t > 0 means that there is a unique central path. In
this case the barrier method will use the Newton-Raphson algorithm to follow this unique path, as we will
see.

Let f ⇤0 denote the optimal value of the original problem (7.84). The next result shows that a central
point x(t) is a feasible solution of (7.84) with a suboptimality gap that is strictly decreasing in t > 0. A
certificate for the suboptimality gap is provided by a dual feasible solution for (7.84) associated with a
central point x(t).

Theorem 7.28 (Central point x(t)). Under assumptions C9.1 and C9.2, for each t > 0:

1. The central point x(t) is feasible for the original problem (7.84).
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2. Its objective value is at most m/t away from the optimal value f ⇤0 , i.e.,

f0(x(t)) � f ⇤0 
m
t

In particular f0(x(t))! f ⇤0 as t! •.

Proof. Since (7.86) is convex by assumption, the optimality of x(t) means there exists an optimal dual
variable l̂ (t) 2 R

p such that
⇣

x(t), l̂ (t)
⌘

satisfies the KKT condition for (7.86):

t— f0 (x(t))+—f (x(t))+
∂gT

∂x
(x(t)) l̂ (t) = 0, g(x(t)) = Ax(t)�b = 0 (7.87a)

This follows from Theorem 12.26 in Appendix 12.7. Because of the log barrier f we must have fi(x(t)) <
0 for all i = 1, . . . ,m. This means that x(t) is also (strictly) feasible for the original problem (7.84), i.e.,
x(t) satisfies

f (x(t)) < 0, g(x(t)) = Ax(t)�b = 0 (7.87b)

We now use (7.87) to estimate the suboptimality gap of x(t). Define the Lagrangian of the original
problem (7.84)

L(x,µ,l ) := f0(x)+ µT f (x)+lTg(x)

where the dual variables are µ 2 R
m
+, l 2 R

p. Let the dual function be

d(µ,l ) := min
x2Rn

L(x,µ,l )

Define

µi(t) :=
1

�t fi(x(t))
, li(t) :=

l̂i(t)
t

and let µ(t) := (µi(t), i = 1, . . . ,m), l (t) := (li(t), i = 1, . . . , p). Since fi(x(t)) < 0, we have µi(t) > 0 and
hence (µ(t),l (t)) is dual feasible for (7.84). Dividing by t the first condition in (7.87a) and substituting
(7.85b) we have

—x L(x,µ(t),l (t)) = — f0 (x(t))+
m

Â
i=1

µi(t)— fi(x(t))+
∂gT

∂x
(x(t))l (t) = 0

which implies that x(t) minimizes L(x,µ(t),l (t)) over x. Hence the dual function evaluated at (µ(t),l (t))
is

d(µ(t),l (t)) = L(x(t),µ(t),l (t)) = f0(x(t))+ µT(t) f (x(t))+lT(t)g(x(t))

But g(x(t)) = 0 from (7.87a) and d(µ(t),l (t)) f ⇤0 from weak duality for (7.84). Hence

f0(x(t)) � f ⇤0  �
m

Â
i=1

µi(t) fi(x(t)) =
m
t

as desired.



Draft: PSA December 13, 2024 323

The barrier method. Theorem 7.28 says that, when (7.84) is convex, the central point x(t) computed by
the Newton-Raphson algorithm is feasible for the original problem (7.84) and its objective value f0(x(t))
is at most m/t away from the optimal value f ⇤0 . This motivates the barrier method, also known as the
path-following method, that solves Problem(t) in (7.86) to compute a central point x(t), sequentially for
increasing t > 0.

Specifically the barrier method solves a sequence of the approximate problems (7.86) with increasing
t > 0, using the solution of the previous problem as the initial point for the current problem, as follows. Fix
a parameter g > 1 and solve Problem(t) in (7.86) with parameter t using the Newton-Raphson algorithm.
Geometrically increase the parameter t by multiplying it by g > 1 and solve (7.86) again starting from
the solution of the previous problem. Repeat until t is sufficiently large so that the solution produced by
Newton-Raphson is an accurate enough solution to the original problem (7.84). This method is described
more precisely as Algorithm 3. Even though optimality of the barrier method is guaranteed only when

Algorithm 3: Barrier method
Input: strictly feasible x, initial t := t0, scaling factor g > 1, tolerance e .
Output: an approximate solution x for (7.84).

1. while t  m
e do

(a) Solve Problem(t) in (7.86) to compute x(t) using the Newton-Raphson algorithm starting
from x.

(b) x x(t).

(c) t gt.

2. Return: x.

the problem is convex and the Newton-Raphson converges for each t > 0 (assumptions C9.1 and C9.2),
the method is also widely applied to problems that do not satisfy these conditions.

In principle one can solve Problem(t) in (7.86) with parameter t := m/e instead of solving a sequence
of (7.86) with increasing t as in Algorithm 3. In practice this method does not work well unless the
problem is small, the required accuracy e is moderate and a good starting point is available. Therefore the
barrier method is usually preferred.

Strictly feasible initial point. Algorithm 3 requires an initial point x that is strictly feasible for the
original problem (7.84), i.e. x satisfies

f (x) < 0, g(x) = 0

There are various methods to produce a strictly feasible point and we explain a simplest one (see [80,
Chapter 11.4] for others). When necessary, such a method can be used to compute a strictly feasible x
before the barrier method is executed. Starting from such an initial point, all subsequent iterates, across
Problem(t) for different t, will remain strictly feasible because of the log barrier f .
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Consider the feasibility problem

inf
(x,s)2Rn+1

s s.t. fi(x)  s, i = 1, . . . ,m, g(x) = 0 (7.88)

where s2Rn, and as before, f :Rn!R
m, and g :Rn!R

p are twice continuously differentiable. Suppose
we are given an initial x0 such that g(x0) = 0 and x0 2 dom( f1)\ · · ·\ dom( fm), i.e., fi(x0) < •, i =
1, . . . ,m. Then (7.88) is feasible because (x0,s0) is a feasible point with s0 := maxm

i=1 fi(x0). Note that the
feasible set is closed but not necessarily bounded and hence an optimal point of (7.88) may not exist or
the infimum may not be attained by any x.

A strictly feasible point x for (7.84) exists if and only if the optimal value sopt of (7.88) is strictly
negative (can be�•). Indeed solving (7.88) either produces such an x or proves that none exists, according
to the sign of sopt (Exercise 7.29):

1. sopt < 0: An x exists that is strictly feasible for (7.84) (hence the minimum sopt of (7.88) is attained).

2. sopt > 0: The problem (7.84) is infeasible, whether or not the minimum sopt of (7.88) is attained.

3. sopt = 0: If the minimum sopt = 0 is attained at an (xopt,sopt) then (7.84) is feasible but not strictly
feasible. Otherwise (i.e., there is no finite xopt that attains sopt = 0) then (7.84) is infeasible. In both
cases, Algorithm 3 is not applicable as a strictly feasible x does not exist.

Application to OPF.

7.5.4 Dual and primal-dual gradient algorithms

Consider again the problem (7.84) with explicitly given constraint functions, reproduced here:

min
x2Rn

f (x) s.t. g(x) = 0, h(x) 0 (7.89)

where f : Rn!R, g : Rn!R
m and h : Rn!R

l are twice continuously differentiable. The Lagrangian is

L(x,l ,µ) := f (x)+lTg(x)+ µTh(x)

where the dual variables are l 2 R
m, µ 2 R

l
+. Let the dual function be

d(l ,µ) := min
x2Rn

L(x,l ,µ) (7.90a)

and the dual problem be

max
(l ,µ)2Rm+l

d(l ,µ) s.t. µ � 0 (7.90b)

The steepest descent algorithm (7.75) solves the primal problem (7.89) by iterating on the primal variable
x and projects to the feasible set X in each iteration. This is sometimes referred to as a primal algorithm.
A dual algorithm iterates on the dual variable (l ,µ) to solve the dual problem (7.90) instead, and a
primal-dual algorithm iterates on both the primal and dual variables (x,l ,µ) to seek a saddle point of the
Lagrangian L. As we will see below both algorithms produce an primal-dual pair (x⇤,l ⇤,µ⇤) when they
converge. Their justification is the Saddle-point Theorem 7.12 that says that (x⇤,l ⇤,µ⇤) is primal-dual
optimal and strong duality holds if and only if (x⇤,l ⇤,µ⇤) is a saddle point.
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Dual algorithm. The key difference between (7.89) and (7.90a) is that the minimization over x is un-
constrained in (7.90a). A dual algorithm can be used when the unconstrained minimization in (7.90a) is
easy to solve. Given (l ,µ) let x(l ,µ) denote a minimizer of L:

x(l ,µ) := arg min
x2Rn

L(x,l ,µ) (7.91a)

When L is convex in x, x(l ,µ) is a solution of —xL(x,l ,µ) = 0. Then a dual algorithm is a steepest
ascent algorithm for solving the dual problem (7.90):

l (t +1) = l (t) + gl —l d(l (t),µ(t)) = l (t) + gl —l L(x(l (t),µ(t)),l (t),µ(t)) (7.91b)

µ(t +1) =
⇥
µ(t) + gµ—µd(l (t),µ(t))

⇤+
=
⇥
µ(t) + gµ—µL(x(l (t),µ(t)),l (t),µ(t))

⇤+ (7.91c)

where (gl ,gµ)2R2 are positive constant stepsizes and [y]+ := max{0,y} componentwise for a vector y. If
(7.91) converges and produces a dual optimum (l ⇤,µ⇤) of (7.90) then x(l ⇤,µ⇤) will be optimal for (7.89)
(Saddle-point Theorem 7.12). Variants of the steepest ascent algorithm (7.91) can be obtained by using
iteration-dependent stepsizes (gl (t),gµ(t)) or scaling matrices gl 2 R

m⇥m, gµ 2 R
l⇥l .

An important application of the dual algorithm is in distributed computation. When the problem (7.89)
has a certain decentralized structure, e.g., if the cost function f (x) = Âi fi(xi) is separable in i and the
constraints are linear, the dual algorithm decomposes naturally into a distributed method, as the next
example shows.

Example 7.16 (Distributed dual algorithm). Consider the utility maximization:

max
x2Rn Â

i
Ui(xi) s.t. Rx c (7.92)

where Ui : R! R for i = 1, . . . ,n are continuously differentiable and strictly concave increasing utility
functions, R 2 {0,1}l⇥n and c 2 R

l . The Lagrangian is

L(x,µ) := Â
i

Ui(xi) � µT(Rx� c), µ 2 R
l
+

and the dual function is

d(µ) := max
x2Rn

L(x,µ) =
n

Â
i=1

max
xi2R

 
Ui(xi)� xi

l

Â
j=1

R jiµ j

!
+ µTc

i.e., the unconstrained maximization over the vector x decomposes into a distributed maximization over
individual components xi. Given µ , the distributed maximization over xi can be solved in closed form:

xi(µ) := U 0�1
i

 
l

Â
j=1

R jiµ j

!
=: U 0�1

i (pi(µ)) , i = 1, . . . ,n (7.93a)

where pi(µ) := Â j R jiµ j, U 0i is the derivative of Ui and U 0�1
i is its inverse (which exists since Ui is strictly

concave). We write this in vector form as

x(µ) := (—xU)�1
⇣

RTµ
⌘
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The strict concavity of Ui implies that the maximizer xi(µ) is unique and hence Danskin’s Theorem 7.19
implies that the dual function d(µ) is differentiable with

—µd(µ) = —µL(x(µ),µ) = �(Rx(µ)� c)

Then the dual algorithm for solving the dual problem minµ�0 d(µ) is

µ(t +1) =
⇥
µ(t)� g—µd(µ(t))

⇤+
= [µ(t)+ g(Rx(µ(t))� c)]+

Therefore the dual update also decomposes into a distributed computation, given x:

µ j(t +1) =
⇥
µ j(t)+ g

�
y j(t)� c j

�⇤+
, j = 1, . . . , l (7.93b)

where y j(t) := Âi R jixi(µ(t)) and xi(µ(t)) is given by (7.93a).

Hence the dual algorithm for (7.92) is the distributed algorithm given by (7.93). This is a model of
Internet congestion control algorithm. In this application, each i represents a sender that wishes to send
its data packets at a rate xi packets/sec that is as high as possible and each j represents a link (buffer) in
the network whose processing speed is limited to c j packets/sec. The matrix R is a routing matrix that
specifies the path in the network of each sender i from its source node to its destination node, consisting of
links j with R ji = 1. The optimal sending rate vector x is one that maximizes the aggregate utility ÂiUi(xi)
subject to the constraint that the input rates y j := Âi R jixi at optimality do not exceed link capacities c j.
The Lagrange multiplier µ j � 0 can be interpreted as a congestion price at link j and pi := Â j R jiµ j is the
end-to-end congestion price (i.e., sum of the link congestion prices µ j along i’s path) observed by sender
i. Then the algorithm (7.93) specifies the local decision by each sender i and link j: given the end-to-end
congestion price pi(t), sender i sets its sending rate to xi(t) given by (7.93a) and given the local input flow
rate y j(t), link j updates its congestion price µ j(t) according to (7.93b). In particular the congestion price
µ j(t) is incremented if the input flow rate y j(t) at link j exceeds the link capacity c j and decremented
otherwise.

Primal-dual algorithm. When the unconstrained minimization over x in (7.91a) is difficult to solve
then, we can replace (7.91a) by iteration on the primal variable x:

x(t +1) = x(t) � gx—xL(x(t),l (t),µ(t)) (7.94a)
l (t +1) = l (t) + gl —l L(x(t),l (t),µ(t)) (7.94b)

µ(t +1) =
⇥
µ(t) + gµ—µL(x(t),l (t),µ(t))

⇤+ (7.94c)

where [y]+ := max{0,y} componentwise for a vector y. This is called a primal-dual algorithm. It seeks a
saddle point of the Lagrangian L through steepest descent in the primal variable x(t) and steepest ascent
in the dual variable (l (t),µ(t)). If (7.94) converges and produces a saddle point (x⇤,l ⇤,µ⇤) of L then it
is primal and dual optimal for (7.89)(7.90) and strong duality holds (Saddle-point Theorem 7.12).

For Example 7.16 the primal-dual version of (7.93) replaces (7.93a) by

xi(t +1) = xi(t) + gx
�
U 0i (x(t))� pi(µ(t))

�
, i = 1, . . . ,n

where pi(µ(t)) := Âl
j=1 R jiµ j(t). Hence it remains a distributed algorithm.



Draft: PSA December 13, 2024 327

7.5.5 Alternating direction method of multipliers (ADMM)

Consider

min
x2Rn, y2Rp

f (x)+g(y) s.t. x 2 X , y 2 Y (7.95a)

Ax+By = c (7.95b)

where A 2 R
m⇥n, B 2 R

m⇥p and c 2 R
m are given. The key feature of (7.95) is that the cost function

and the possibly nonlinear constraints in (7.95a) are separable in x,y. The coupling between x and y is
only through the linear constraint (7.95b). This is similar to the problem structure in Example 7.16 and
therefore a dual algorithm can be applied to obtain a distributed solution. Dual algorithm however often
converges slowly because the Lagrangian is linear, as opposed to strictly concave, in the dual variable.

The alternating direction method of multipliers (ADMM) combines the distributed structure of dual
decomposition with better convergence properties of augmented Lagrangian methods. Specifically define
the augmented Lagrangian function that relaxes the coupling constraint (7.95b):

Lr(x,y,l ) := f (x) + g(y) + lT (Ax+By� c) +
r
2
kAx+By� ck2

2 , (x,y) 2 R
n+p, l 2 R

m

where r � 0 is a parameter that controls the degree of augmentation (ADMM reduces to dual decomposi-
tion when r = 0). The ADMM algorithm is

x(t +1) = argmin
x2X

Lr (x, y(t), l (t)) (7.96a)

y(t +1) = argmin
y2Y

Lr (x(t +1), y, l (t)) (7.96b)

l (t +1) = l (t) + r (Ax(t +1)+By(t +1)� c) (7.96c)

Note that the update (7.96c) is l (t + 1) = l (t) + r—l Lr(x(t + 1),y(y + 1),l ). Hence, compared with
(7.91), (7.96) is a dual algorithm with stepsize r and two differences: it uses an augmented Lagrangian
function Lr for better convergence properties, and the subproblem (7.96b) and the dual update (7.96c)
use the latest available data, x(t + 1) and (x(t + 1),y(t + 1)) respectively (this is called one pass of a
Gauss-Seidel method).

7.5.6 Mixed integer linear program / branch and bound methods

LP relaxation.

Dual relaxation.

Branch and bound.
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7.5.7 Benders decomposition

7.6 Convergence analysis

Consider the problem (7.73), reproduced here:

min
x

f (x) subject to x 2 X (7.97)

where f : Rn!R is continuously differentiable and X ✓R
n is nonempty, closed and convex. We assume:

C7.3: The objective function f is lower bounded on X , continuously differentiable and convex. The
feasible set X is nonempty, closed and convex.

C7.3 guarantees that (7.97) is feasible and the gradient based algorithms, such as (7.75), are well defined.

As will become clear the iterative algorithms analyzed in this section are applicable not only for solving
optimization problems, but also for solving nonlinear equations g(x) = 0. Indeed many of the optimization
algorithms can be interpreted as solving a system of equations representing the KKT condition.

7.6.1 Convergence theorems

In this subsection we prove some basic results that are widely used for convergence analysis of constrained
optimization.

Since the feasible set X in (7.97) is not necessarily compact (bounded), the optimal may not be at-
tained (e.g., X = R and f (x) = e�x). Moreover the sequence (x(t), t = 0,1, . . .) generated by the gradient
projection algorithm (7.75) may not stay bounded and hence may not have any convergent subsequence
(the Bolzano-Weierstrass theorem states that a sequence (x(t), t = 0,1, . . .) has a convergent subsequence
if it is bounded). To guarantee that the gradient projection algorithm makes progress towards minimizing
f , we need:

C7.4: The gradient of f is Lipschitz continuous with a Lipschitz constant K, i.e.,

k— f (y)�— f (x)k2  K ky� xk2 8x,y 2 R
n

Note that the norm is Euclidean.9 C7.4 implies the following useful result which will be used in Theorem
7.32 to prove the optimality of gradient projection algorithm (7.75).

Lemma 7.29 (Descent Lemma.). If f : Rn! R is continuously differentiable and satisfies C7.4 then

f (x+ y)  f (x)+ yT— f (x)+
K
2
kyk2

2 8x,y 2 R
n

9In contrast, the norm that defines a contraction mapping can be arbitrary (see Definition 7.9 below).
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Proof. We estimate the difference f (x + y)� f (x) by considering the scalar function g(s) defined by the
intersection of the f (x) surface with the vertical plane at x in the direction y. Fix any x,y 2 R

n and define

g(s) := f (x+ sy) for s 2 [0,1]

Then

f (x+ y)� f (x) = g(1)�g(0) =
Z 1

0
g0(s)ds

Using

g0(s) = yT—f (x+ sy)

we have

f (x+ y)� f (x) =
Z 1

0
yT—f (x+ sy)ds

=
Z 1

0

⇣
yT—f (x) + yT (—f (x+ sy)�—f (x))

⌘
ds

 yT—f (x) +
Z 1

0
kyk2 k—f (x+ sy)�—f (x)k2 ds

 yT—f (x) + kyk2

Z 1

0
K ksyk2 ds

= yT—f (x) +
K
2
kyk2

2

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows
from condition C7.4.

When f satisfies a stronger form of convexity then the gradient projection algorithm indeed converges
and does so geometrically. This is because the stronger form of convexity (condition C7.5 below) implies
that the gradient projection algorithm is a contraction mapping, as we now explain.

Definition 7.9 (Contraction). Consider a function T : X ! X from a subset X of Rn into itself. T is called
a contraction mapping or simply a contraction if there exists an a 2 [0,1) such that

kT (y)�T (x)k  aky� xk 8x,y 2 X

for an arbitrary norm k ·k.

A function T can be a contraction under a certain norm, but not under a different norm, so the proper
choice of norm is critical.

Theorem 7.30 (Contraction mapping theorem). Suppose T : X ! X is a contraction mapping on a closed
subset X of Rn. Then

1. There exists a unique fixed point x⇤ such that x⇤ = T (x⇤).
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2. Starting from any initial point x(0) 2 X , the contraction iteration x(t + 1) := T (x(t)) converges
geometrically to x⇤; in particular

kx(t)� x⇤k  aT kx(0)� x⇤k 8t � 0

Proof. Consider the contraction iteration x(t +1) := T (x(t)). Definition 7.9 implies

kx(t +1)� x(t)k  a kx(t)� x(t�1)k  · · ·  aT kx(1)� x(0)k

Hence, for all t � 0 and s� 1, we have

kx(t + s)� x(t)k =

�����

s�1

Â
m=0

(x(t +m+1)� x(t +m))

�����


s�1

Â
m=0
kx(t +m+1)� x(t +m)k  kx(1)� x(0)kaT

s�1

Â
m=0

am

 aT

1�a
kx(1)� x(0)k

Since a 2 [0,1), x(t) is a Cauchy sequence and hence must converge to a point x⇤ in R
n. Since X is closed,

x⇤ 2 X . Since T is continuous,

x⇤ = lim
t

x(t +1) = lim
t

T (x(t)) = T (lim
t

x(t)) = T (x⇤)

and hence x⇤ is a fixed point of T . Moreover, the fixed point is unique for, otherwise, if x⇤ and y⇤ are both
fixed points then

ky⇤ � x⇤k = kT (y⇤)�T (x⇤)k  a ky⇤ � x⇤k

implying y⇤ = x⇤ since a 2 [0,1). This completes the proof of part 1.

For part 2, we have for all t � 1,

kx(t)� x⇤k = kT (x(t�1))�T (x⇤)k  a kx(t�1)� x⇤k

Hence kx(t)� x⇤k  aT kx(0)� x⇤k.

When a function T : X ! X from a subset X of Rn into itself has a fixed point x⇤ 2 X , then we call T
a pseudocontraction mapping or simply a pseudocontraction if there exists an a 2 [0,1) such that

kT (x)� x⇤k  akx� x⇤k 8x 2 X

for an arbitrary norm k ·k. Pseudocontraction is a weaker notion than contraction, i.e., if T is a contraction
then it is a pseudocontraction, but the converse may not hold. Theorem 7.30 however extends to pseudo-
contraction, i.e, the fixed point x⇤ in the definition of pseudocontraction is the unique fixed point in X and
the fixed-point iteration converges geometrically to x⇤. Note however that the existence of a fixed point x⇤

is part of the definition of pseudocontraction and x⇤ is often unavailable in applications.
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Suppose the cost function f is twice continuously differentiable (not just continuously differentiable as
guaranteed by condition C7.3). Then f is strictly convex if —2 f (x)� 0 for all x according to Corollary 7.3.
The curvature of a strictly convex function may be arbitrarily flat, i.e., yT—2 f (x)y > 0 can be arbitrarily
close to zero. A stronger form of convexity bounds this away from zero uniformly in x, i.e., for some
a > 0, —2 f (x)⌫ aI for all x 2 R

n. Consider:

C7.5: For some a > 0, f satisfies

(— f (y)�— f (x))T (y� x) � a ky� xk2
2 8x,y 2 R

n (7.98)

We say f is strongly convex if it satisfies condition C7.5. The next result shows that it is stronger than
strict convexity.

Lemma 7.31 (Strong convexity). Let f : Rn! R
n be continuously differentiable. If f satisfies C7.5 then

f is strictly convex. Indeed (7.98) is equivalent to —2 f (x)⌫aI for all x2Rn when f is twice continuously
differentiable.

Proof. We first use Corollary 7.3.2 to prove that if f satisfies C7.5 then f is strictly convex. As in the
proof of Lemma 7.29, fix any x,y 2 R

n and consider the (scalar) function along the path from x to y:

g(s) := f (x+ sy) for s 2 [0,1]

Then

f (x+ y)� f (x) =
Z 1

0
g0(s)ds =

Z 1

0
yT—f (x+ sy)ds

=
Z 1

0

⇣
yT—f (x) + yT (—f (x+ sy)�—f (x))

⌘
ds

� yT—f (x) +
Z 1

0

1
s

a ksyk2
2 ds

= yT—f (x) +
a
2
kyk2

2

where the inequality follows from C7.5 . Since a > 0, Corollary 7.3.2 implies the strict convexity of f .

We now show that if —2f (x) ⌫ aI for all x 2 R
n then f is strongly convex, i.e., f satisfies C7.5. Fix

any x,y and let

h(s) := —f (x+ s(y� x))T(y� x)

Then

h0(s) = (y� x)T—2f (x+ s(y� x))(y� x)

and

(—f (y)�— f (x))T (y� x) = h(1)�h(0) =
Z 1

0
h0(s)ds

=
Z 1

0
(y� x)T—2f (x+ s(y� x))(y� x) ds

� a ky� xk2
2
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where the inequality follows from —2f (x)⌫ aI. Hence f (x) is strongly convex.

Conversely suppose f is strongly convex. To estimate —2f (x) we have for any x,y 2 R
n

yT—2f (x)y = lim
l!0

1
l

✓
∂ f
∂x

(x+ly)� ∂ f
∂x

(x)
◆

y

� lim
l!0

1
l 2

�
a klyk2

2
�

= a kyk2
2

where the inequality follows from the strong convexity of f . Hence —2f (x) ⌫ aI as desired. This com-
pletes the proof of Lemma 7.31.

If a function f satisfies both C7.4 (Lispschit continuity of — f with parameter K) and C7.5 (strong
convexity of f with parameter a) then the proof of Lemma 7.31 and that of Lemma 7.29 show that

yT—f (x)+
a
2
kyk2

2  f (x+ y)� f (x)  yT—f (x)+
K
2
kyk2

2

A consequence is that the gradient projection algorithm (7.75) is a contraction mapping and therefore
converges geometrically to the unique optimal point, as we explain next.

7.6.2 Gauss-Seidel algorithm

The Gauss algorithm introduced in Chapter 4.4.1 is a fixed-point iteration of the form

x(t +1) = g(x(t)) (7.99)

where x2Rn and g : Rn!R
n. The goal is to solve for a fixed point x⇤ with x⇤ = f (x⇤). For unconstrained

optimization minx2Rn f (x), a large class of gradient descent algorithm can be interpreted as the following
fixed-point iteration

x(t +1) = x(t)� gG(x(t))— f (x(t) =: g(x(t))

where g > 0 is a stepsize and G(x) � 0 is a scaling matrix. A fixed point x⇤ with x⇤ = g(x⇤) satisfies
— f (x⇤) = 0 and is therefore optimal if f is convex. For constrained optimization a fixed-point iteration
can be used to solve the KKT condition.

A Gauss-Seidel algorithm modifies (7.99) so that the computation of component x j(t + 1) uses the
latest value xi(t +1) for i < j:

x j(t +1) = g j(x1(t +1), . . . ,x j�1(t +1),x j(t), . . . ,xn(t)), j = 1, . . . ,n

In this subsection we show that, if the Gauss algorithm (7.99) is a contraction mapping and therefore
converges geometrically to the unique fixed point, then the Gauss-Seidel algorithm will as well.
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7.6.3 Steepest descent algorithm

Conditions C7.3 and C7.4 do not guarantee that the sequence (x(t), t = 0,1, . . .) generated by the gradient
projection algorithm has any convergent subsequence, but if it does then it converges to an optimal point
x⇤ of (7.97) provided the stepsize g is sufficiently small. This implies that, when f is strictly convex so
that the optimal point x⇤ is unique, then (x(t), t = 0,1, . . .) itself converges to x⇤.

Theorem 7.32 (Optimality of gradient projection algorithm). Suppose conditions C7.3 and C7.4 hold, and
suppose 0 < g < 2/K. If the sequence (x(t), t = 0,1, . . .) produced by the gradient projection algorithm
(7.75) has a convergent subsequence (x(tk),k = 1,2, . . .) then its limit x⇤ is an optimal solution of (7.97).

Proof. We prove the theorem in three steps. First we show the sequence ( f (x(t)), t = 0,1, . . .) of objec-
tive values produced by the gradient projection algorithm (7.75) converges monotonically. Moreover the
difference sequence (x(t + 1)� x(t), t = 0,1, . . .) converges to zero. Specifically, by the Descent Lemma
7.29, we have

f (x(t +1))  f (x(t)) + (x(t +1)� x(t))T— f (x(t)) +
K
2
kx(t +1)� x(t)k2

2 (7.100)

Theorem 7.7.2 implies that for all t

(y� x(t +1))T ( x(t)� g— f (x(t)) � x(t +1) )  0 8y 2 X (7.101)

In particular let y = x(t) and we have, after rearranging,

(x(t +1)� x(t))T— f (x(t))  �1
g
kx(t +1)� x(t)k2

2

Substituting into (7.100) we have

f (x(t +1))  f (x(t)) �
✓

1
g
� K

2

◆
kx(t +1)� x(t)k2

2 (7.102)

Hence the sequence ( f (x(t)), t = 0,1, . . .) is strictly decreasing as long as x(t +1) 6= x(t) provided g < 2/K.
Since f is lower bounded on X (condition C7.3), the sequence ( f (x(t)), t = 0,1, . . .) is bounded and
monotone and thus converges. Rearranging (7.102), we also have

kx(t +1)� x(t)k2
2 

✓
1
g
� K

2

◆�1
( f (x(t))� f (x(t +1)))

Since f (x(t)) converges this means that the differences x(t + 1)� x(t) converge to zero (though this does
not guarantee that x(t) itself converges).

Second suppose there is a subsequence (x(tk),k = 1,2, . . .) that converges to x⇤. Consider the sequence
(x(tk + 1),k = 1,2, . . .). By Theorem 7.7.3, the iteration x(t + 1) = [x(t)� g— f (x(t))]X defined by (7.75)
is a projection and hence a continuous function of x(t). Hence the sequence (x(tk +1),k = 1,2, . . .), being
the image of a continuous function on x(tk), also converges. We now show that it converges to x⇤ as k!•.
Fix any e > 0. We have to show that there exists an K such that

kx(tk +1)� x⇤k2 < e 8k > K
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Since x(tk)! x⇤ there exists an K0 such that

kx(tk)� x⇤k2 <
e
2

8k > K0 (7.103a)

Step 1 above shows that x(tk +1)� x(tk) converges to zero and hence there exists K00 such that

kx(tk +1)� x(tk)k2 <
e
2

8k > K00 (7.103b)

Combining (7.103) we have for k > K := max{K0,K00}

kx(tk +1)� x⇤k2  kx(tk +1)� x(tk)k2 + kx(tk)� x⇤k2 < e

as desired.

Finally note that (7.101) holds for all t. In particular consider t = tk,k = 1,2, . . . . Taking k ! •,
(7.101) yields

✓
y� lim

k
x(tk +1)

◆T✓
lim

k
x(tk) � g lim

k
— f (x(tk)) � lim

k
x(tk +1)

◆
 0, 8y 2 X

Since f is continuously differentiable and limk x(tk) = limk x(tk +1) = x⇤, we have

g (y� x⇤ )T — f (x⇤) � 0 8y 2 X

Hence x⇤ satisfies the optimality condition (7.74) and is globally optimal since f is a convex function over
a convex set X .

As mentioned above, if the objective function f satisfies both C7.4 (Lispschit continuity of — f with
parameter K) and C7.5 (strong convexity of f with parameter a) then the mapping defined by the gradi-
ent projection algorithm (7.75) is a contraction. Theorem 7.30 then implies that the gradient projection
algorithm converges geometrically to the unique optimal solution of (7.97). In particular condition C7.4
guarantees strict descent for sufficiently small stepsize g > 0 and condition C7.5 guarantees geometric
convergence. The bound 2/K on the stepsize g in Theorem 7.32 depends only on the first-order informa-
tion (the Lipschitz constant K of the gradient — f ). The bound 2a/K2 on the stepsize g in Theorem 7.33
depends also on the second-order information a , the strength of the convexity of f .

Theorem 7.33 (Convergence rate of gradient projection algorithm). Suppose conditions C7.3–C7.5 hold.
Then there is a unique optimal solution x⇤ for (7.97) and the gradient projection algorithm (7.75) converges
geometrically to x⇤, provided the stepsize g satisfies:

if a < K : 0 < g <
2a
K2

if a � K : 0 < g <
a
K2 �d or

a
K2 +d < g <

2a
K2

where d :=
p

a2�K2/K2. Then

kx(t)� x⇤k  bT kx(0)� x⇤k 8t � 0

where b :=
p

K2g2�2ag +1 2 (0,1).
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Proof. The gradient project algorithm (7.75) is the iteration x(t +1) = T (x(t)) where T : X! X is defined
by T (x) := [x� g — f (x) ]X . We will show that T is a contraction under conditions C7.4 and C7.5. Then
the assertions follow from Theorem 7.30.

We have under the Euclidean norm

kT (y)�T (x)k2
2 = k [y� g — f (y)]X � [x� g — f (x)]X k2

2

 k(y� x)� g (— f (y)�— f (x))k2
2

= ky� xk2
2 � 2g (— f (y)�— f (x))T(y� x) + g2k— f (y)�— f (x))k2

2

where the inequality above follows from the fact that the projection operation is nonexpansive (Theorem
7.7.3). Conditions C7.5 and C7.4 guarantee that (— f (y)�— f (x))T(y� x) � aky� xk2

2 and k— f (y)�
— f (x))k2

2  K2ky� xk2
2 respectively. Hence

kT (y)�T (x)k2
2 

�
1�2ag + g2K2�ky� xk2

2

Hence T is a contraction if and only if b 2(g) := 1�2ag + g2K2 2 [0,1). The function b 2(g) is shown
in Figure 7.18. Hence the condition on the stepsize g in the theorem guarantees T is a contraction with

γ

1

2α
K 2

α
K 2

β 2 (γ )

γ

(a) a < K

γ

1

2α
K 2

α
K 2

γγ

β 2 (γ )

(b) a � K

Figure 7.18: Proof of Theorem 7.33. The function b 2(g). (a) If a < K then T is a contraction for any
stepsize g 2 (0,2a/K2). (b) If a � K then T is a contraction if g 2 (0,a/K2� d) or if g 2 (a/K2 +
d,2a/K2) where d :=

p
a2�K2/K2.

parameter b (g)2 (0,1). Theorem 7.30 then implies that x(t) converges geometrically to x⇤. Theorem 7.32
then guarantees that the unique limit point x⇤ is the optimal solution of (7.97).

7.6.4 Newton-Raphson algorithm

7.6.5 Interior-point algorithm

7.6.6 ADMM

Consider the ADMM algorithm (7.96).
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1. Write down the first-order optimality condition.

2. Show that the Gauss-Siedel step (7.96b) and the choice of the step size r for the dual update (7.96c)
ensure that (xt ,yt ,lt) satisfies one of the two stationarity conditions in part 1 in every iteration t.

3. Show that (under appropriate assumptions) ADMM converges, i.e.,

• The other stationarity condition is satisfied as t! •.

• Axt +Byt� c! 0 as t! •.

• f (xt)+g(yt) converges to the optimal value as t! •.

7.7 Bibliographical notes

7.8 Problems

Chapter 7.1.

Exercise 7.1 (Convex sets). Prove that the following sets are convex:

1. Affine set: C = {x 2 R
n | Ax = b} where A 2 R

m⇥n and b 2 R
m, m,n� 1.

2. Second-order cone: C = {(x, t) 2 R
n+1 | kxk2  t}, n � 1. Here kxk2 :=

q
x2

1 + x2
2 + · · ·+ x2

n is the
Euclidean norm.

3. Semidefinite matrices: C = {A 2 Sn⇥n | A⌫ 0}, n� 1. where Sn⇥n is the set of symmetric n⇥n real
matrices and A⌫ 0 means xTAx� 0 for any x 2 R

n. Such a matrix is called positive semidefinite.

Exercise 7.2 (Operations preserving set convexity). Operations that preserve convexity are of fundamental
importance to the convex optimization theory. Let X and Y be linear subspaces. For example X :=R

n and
Y := R

m.

1. Linear transformation: Let f : X! Y be linear. Prove:

(a) If A✓ X is convex then f (A) := { f (x) | x 2 A} is convex.

(b) If B✓ Y is convex then f�1(B) = {x 2 R
n | f (x) 2 B} is convex.

2. Arbitrary direct product: Let A✓ X, B✓ Y be convex.

(a) Prove that the product space

X⇥Y := {(x,y) | x 2 X, y 2 Y}
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with + and · defined by

(x1,y1)+(x2,y2) := (x1 + x2,y1 + y2) 8(x1,y1), (x2,y2) 2 X⇥Y;
l (x,y) := (lx,ly) 8l 2 R, 8(x,y) 2 X⇥Y

is also a linear space. For example, if X = R
m and Y = R

n for some m,n � 1, then X⇥Y =
R

m+n.
(b) Prove that the direct product

A⇥B := {(x,y) | x 2 A,y 2 B}

is convex. In fact the direct product of an arbitrary number of convex sets is convex.

3. Finite sum: Let A,B✓ X be convex. Prove that the set

A+B := {a+b | a 2 A,b 2 B}

is convex. Therefore the sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let A,B✓ X be convex. Prove that the intersection A\B is convex. In fact
the intersection of an arbitrary collection of convex sets is convex.

5. Union can be nonconvex. Let A,B ✓ X be convex. Give an example where the union A[ B is
nonconvex. [Hint: Consider X = R].

Exercise 7.3 (Carathéodory theorem). Prove Theorem 7.5.

Exercise 7.4 (Second-order cone). Show that the second-order cone

K :=
⇢

(x, t) 2 R
n+1 :

q
x2

1 + · · ·+ x2
n  t

�

is equivalent to K := {(x, t) 2R
n+1 : kxk2

2  t2, t � 0} or the intersection K = K̃\H where K̃ := {(x, t) 2
R

n+1 : kxk2
2  t2} and H := {(x, t) : t � 0} is a halfspace. Show that while K is a convex cone, K̃ is a cone

but nonconvex. In particular show that h1(x, t) := kxk2� t is a convex function while h2(x, t) := kxk2
2� t2

is nonconvex.

Exercise 7.5 (Rotated second-order cone). Show that the rotated second-order cone

Kr :=
�
(x,y,z) 2 R

n+2 : kxk2
2  yz, y� 0, z� 0

 

is a linear transformation of the standard second-order cone

K :=
�
(w, t) 2 R

n+2 : kxk  t
 

i.e., (w, t) = A(x,y,z) 2 K ✓ R
n+2 if and only if (x,y,z) 2 Kr for a (n+2)⇥ (n+2) nonsingular matrix A.

Derive A and its inverse.
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Exercise 7.6 (SOC constraint). Consider the second-order cone in Exercise 7.4:

K :=
⇢

(x, t) 2 R
n+1 :

q
x2

1 + · · ·+ x2
n  t

�

and the set defined in terms of K:

C := {x : (Ax+b,cTx+d) 2 K} = {x : kAx+bk2  cTx+d} ✓ R
m

where A 2 R
n⇥m, b 2 R

n, c 2 R
m, and d 2 R. Since C is the pre-image of an affine function on K, it is

convex.

1. Verify directly the convexity of C using the definition of convex sets.

2. Write C = C̃\H where C̃ := {x : kAx+bk2
2  (cTx+d)2} and H := {x : cTx+d � 0} is a halfspace.

Give an example where C̃ is not convex and illustrate how the intersection with H yields a convex
set.

Exercise 7.7 (Directional derivatives and differentiability). 1. Show that f (x,y) := xayb has partial deriva-
tives at 0 if a,b > 0 and a+b < 1, but not directional derivative along the line x = y

2. Show that

f (x,y) :=

(
xaya

x2a+y2a if (x,y) 6= (0,0)

0 if (x,y) = (0,0)

is not continuous, and hence not differentiable, at the origin.

Exercise 7.8 (Convex functions). Prove that the following functions are convex:

1. Exponential: f (x) := eax where a,x 2 R.

2. Entropy: f (x) := x lnx defined on R++ := (0,•).

3. Log-exponential: f (x1,x2) := ln(ex1 + ex2), xi 2 R.

Exercise 7.9 (Convex functions). [80, Exercise 3.6]

For each of the following functions determine if it is convex, concave, or neither.

• f (x) = ex�1 on R.

• f (x) = x1x2 on
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

.
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• f (x) = 1
x1x2

on
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

.

• f (x) = x1/x2 on
�
(x1,x2) 2 R

2 | x1 > 0,x2 > 0
 

.

Exercise 7.10 (Strict convexity). Prove Corollary 7.3.

Exercise 7.11 (Operations preserving function convexity). Prove that addition, multiplication by nonneg-
ative constants, and supremum operations preserve convexity. Specifically suppose f1 and f2 are two
convex functions on the same domain. Prove that:

1. f := a f1 +b f2, a,b � 0, is convex.

2. f := max{ f1, f2} is convex.

3. f (x,y) := |x|+ |y| defined on R
2 is convex. [Hint: use result in 2.]

Exercise 7.12 (Level set and convex problem). 1. Level set. Let f : C! R where C ✓ R
n. Prove that

the level set {x 2C | f (x)  a} is convex for any a 2 R provided that C is a convex set and f is a
convex function.

2. Convex problem. Consider

min
x

f (x) s.t. Ax = b, gi(x) 0, i = 1, . . . ,k

where A 2 R
m⇥n, b 2 R

m, k � 1, and f , g1, . . . ,gk are scalar functions defined on R
n. Prove that if

f ,g1,g2, . . . ,gk are convex then the feasible set

X := {x 2 R
n | Ax = b, gi(x) 0, i = 1, . . . ,k}

is convex.

Chapter 7.2.

Exercise 7.13.
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Chapter 7.3

Exercise 7.14 (Equivalent property of saddle point). Consider the primal problem and its partial dual
(7.31) with the undualized constraint set X 0, the dualized constraint set X := {x 2R

n : g(x) = 0,h(x) 0}
and dual feasible set Y := {(l ,µ) 2 R

m+l : µ � 0}. Show that (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is a saddle point, i.e.,

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2X 0

L(x,l ⇤,µ⇤)

if and only if

L(x⇤,l ⇤,µ⇤) = min
x2X 0

L(x,l ⇤,µ⇤), x⇤ 2 X , µ⇤Th(x⇤) = 0

Exercise 7.15 (LICQ implies MFCQ). Suppose x⇤ is a local optimal of the constrained optimization
problem (7.22). Let Ȳ (x⇤) be the set of Lagrange multipliers associated with x⇤:

Ȳ (x⇤) :=
⇢

(l ,µ) 2 R
m+l :

∂L
∂x

(x⇤,l ,µ) = 0, g(x⇤) = 0, h(x⇤) 0, µ � 0, µTh(x⇤) = 0
�

Prove that the linear independence constraint qualification (7.40) implies the Mangasarian-Fromovitz con-
straint qualification (7.39). (Hint: Use the Farkas Lemma 7.10.)

Exercise 7.16 (KKT condition). This problem derives the KKT condition for the constrained optimization
problem:

(P) : min
x2Rn

f (x) s.t. Ax = b, hi(x) 0, i = 1, . . . , l

where A 2 R
m⇥n, b 2 R

m, k � 1, and f , h1, . . . ,hl are scalar functions defined on R
n. Let µ 2 R

m,l 2
R

l
+ = [0,•)l , and define

L(x,l ,µ) := f (x)+lT(Ax�b)+ µTh(x)

where h(x) = (h1(x),h2(x), . . . ,hl(x))T.

1. Unconstrained optimization. Let d(l ,µ) := minx2Rn L(x,l ,µ) denote the unconstrained optimiza-
tion over x for fixed (l ,µ). Assume that Problem (P) has an optimal solution and denote it by x⇤.
Show that d(l ,µ) f (x⇤) for any l 2 R

m and µ 2 R
l
+.

2. Dual problem. Consider the dual problem

(D) : max
(l ,µ)2Rm+l

d(l ,µ) s.t. µ � 0

Assume (D) has an optimal solution (l ⇤,µ⇤).

(a) Show that d(l ⇤,µ⇤)� f (x⇤)Âl
i=1 µ⇤i hi(x⇤) 0. It implies that Problem (D) provides a lower

bound for Problem (P). Note that this holds whether or not f ,h1, . . . ,hl are convex.
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(b) Assume now f ,h1, . . . ,hl are convex and differentiable. Show that the equality is attained, i.e.,
d(l ⇤,µ⇤) = f (x⇤)+Âl

i=1 µ⇤i hi(x⇤), if and only if

—xL(x⇤,l ⇤,µ⇤) = 0

(c) Show that if there exists (x,l ,µ) such that x is feasible for (P), (l ,µ) is feasible for (D),
—xL(x,l ,µ) = 0, and µihi(x) = 0 for i = 1, . . . , l, then x solves (P) and (l ,µ) solves (D).
These are the KKT conditions.

The following problem studies Theorem 7.18 when the feasible set Xp depends on p. It shows that the
theorem generally no longer holds.

Exercise 7.17 (Saddlepoint envelope theorem). Consider the master problem:

min
x

f (x) := (x� p)2 s. t.
p
4
 x  p

2
(7.104)

for p 2 P := (0,2). Clearly the unique minimizer x⇤(p) = p/2. We study three ways to dualize the
constraints, resulting in different Lagrangian functions, feasible sets, and saddlepoints.

1. Dualize both constraints with dual variables y := (y1,y2)� 0 and the Lagrangian

L(x,y; p) := f (x) + y1

⇣ p
4
� x
⌘

+ y2

⇣
x� p

2

⌘

Exhibit that Theorem 7.18 holds.

2. Consider the form of (7.104)

min
x2Xp

f (x) := (x� p)2 s. t. x � p
4

(7.105)

with Xp := {x : x p/2}, and Lagrangian

L1(x,y1; p) := f (x) + y1

⇣ p
4
� x
⌘

Show that Theorem 7.18 does not hold because of the reason explained in Remark 7.7.

3. Consider the following form of (7.104)

min
x2Xp

f (x) := (x� p)2 s. t. x  p
2

(7.106)

with Xp := {x : x� p/4}, and Lagrangian

L2(x,y2; p) := f (x) + y2

⇣
x� p

2

⌘

Show that Theorem 7.18 holds because x⇤(p) 2 Xq for all p,q 2 P.
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Exercise 7.18 (Slater theorem). For the following problem, check that the conditions in the Slater Theorem
7.15 are satisfied and derive the primal-dual optimal solution (x⇤,l ⇤):

f ⇤ := inf
x2R

f (x) := e�x s.t. x = 0

Exercise 7.19 (Slater theorem: dual optimal set). Consider the following primal problem with only the
inequality constraint and its dual:

f ⇤ := min
x2Rn

f (x) s.t. h(x) 0

d⇤ := max
µ�0

d(µ) := max
µ�0

✓
inf

x2Rn
f (x)+ µTh(x)

◆

Suppose the conditions of Theorem 7.15 hold with the strict Slater condition: i.e.

• Convexity: f ,h are convex.

• Finite primal value: f ⇤ is finite, i.e., �• < f ⇤ < •.

• Strict Slater condition: there exists x̄ such that h(x̄) < 0

Then Theorem 7.15 says that strong duality holds and dual optimal solutions µ⇤ exist. Fix any µ̄ 2 R
l

with µ̄ � 0 and let D̄ := {µ 2 R
l : d(µ) � d(µ̄)} be the level set defined by µ̄ . Let D⇤ denote the set of

dual optimal solutions. Show that [75, Lemma 1]:

1. The level set D̄ is compact and convex.

2. The dual optimal set D⇤ is compact and convex. In particular D⇤ is bounded by the weak duality
gap at the strict Slater point x̄ divided by the worst-case “constraint gap“:

max
µ2D⇤
kµk2  max

µ2D⇤
kµk1 

f (x̄)�d⇤

mini(�hi(x̄))
=

f (x̄)� f ⇤

mini(�hi(x̄))

Chapter 7.4.

Exercise 7.20 (Convex programs). Show how the different classes of convex problems in Figure 7.15
reduce to each other.

Exercise 7.21 (LP duality). Consider the linear program (7.53a) and suppose �• < f ⇤ < •. Lemma 7.20
then implies the existence of an optimal primal solution x⇤ 2 X . Use Farkas Lemma (Theorem 7.10) to
show that there exists a dual optimal solution µ⇤ 2 Y that closes the duality gap, i.e., f ⇤ = d⇤ = bTµ⇤.
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Exercise 7.22 (Unconstrained quadratic program). This exercise proves Theorem 7.22 step by step for
unconstrained convex QP:

f ⇤1 := min
x2Rn

f (x) := xTQx + 2cTx

where Q⌫ 0 and c 2 R
n.

1. Suppose Q � 0 is positive definite. Show that the unique minimizer x⇤ and the minimum value f ⇤1
are respectively

x⇤ = �Q�1c, f ⇤1 =�cTQ�1c

2. Suppose Q⌫ 0 but not positive definite. Let the spectral decomposition of Q be

Q = ULUT =
⇥
Ur Un�r

⇤Lr 0
0 0

�
UT

r
UT

n�r

�
= UrLrUT

r

Write Q = RTR where R := L1/2
r UT

r 2 R
r⇥n.

(a) Show that it is possible to complete the square, i.e., write

f (x) = xTRTRx+2cTx = kRx+ c̃k2
2�kc̃k2

2

if and only if c 2 range(Q). Determine c̃.
(b) Show that if c 2 range(Q) then the set of minimizers x⇤ and the minimum value f ⇤1 are respec-

tively

x⇤ = �Q†c + null(Q), f ⇤1 =�cTQ†c

where Q† := UrL�1
r UT

r is the pseudo-inverse of Q.
(c) Show that if c 62 range(Q) then f ⇤1 = �•. (Hint: Transform to the coordinate defined by the

basis U .)

Exercise 7.23 (Constrained quadratic program). This exercise proves a slightly more general version of
Theorem 7.23 step by step for the affinely constrained convex QP:

f ⇤2 := min
x2Rn

f (x) := xTQx + 2cTx s.t. Ax = b, Bx+d � 0

where Q⌫ 0, c2Rn, A2Rm⇥n, b2Rm, B2Rk⇥n and d 2Rk. Here we replace the condition Q� 0 by the
weaker condition f ⇤2 >�• (which can be further replaced by a condition in terms of problem parameters).

1. Dual problem. Show that the Lagrangian dual problem is:

d⇤ := �cTQ†c � min
l2Rm,µ2Rk

+

✓⇥
lT µT

⇤
Q̂


l
µ

�
+ 2 ĉT


l
µ

�◆

where R
k
+ := {µ 2 R

k : µ � 0} and

Q̂ :=


A
B

�
Q† ⇥AT BT

⇤
, ĉ :=


�b
+d

�
�


A
B

�
Q†c (7.107)
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2. Strong duality, dual optimality, KKT condition. Show that strong duality holds and dual optimality
is attained. Moreover a feasible x⇤ is optimal if and only if there exists (l ⇤,µ⇤) 2 R

m+k such that
µ⇤ � 0 and

ATl ⇤+BTµ⇤ �Qx⇤ = c, µ⇤T(Bx⇤+d) = 0

Exercise 7.24 (QCQP). Consider the convex quadratically constrained quadratic program (QCQP):

f ⇤ := min
x2Rn

f (x) := xTQ0x + 2cT0 x s.t. xTQ1x + 2cT1 x d

where Q0 � 0 is positive definite, Q1 ⌫ 0 is positive semidefinite, c0,c1 2 R
n and d 2 R.

1. Dual problem. Show that the Lagrangian dual problem is:

d⇤ := � min
µ2R+

dµ + (c0 + µc1)
T(Q0 + µQ1)

�1(c0 + µc1)

2. Strong duality, dual optimality, KKT condition. Suppose f ⇤ is finite and there exists x̄ such that
x̄TQ1x̄ + 2cT1 x̄ < d. Show that strong duality holds and dual optimality is attained. Moreover a
feasible x⇤ is optimal if and only if there exists µ⇤ 2 R such that µ⇤ � 0 and

(Q0 + µ⇤Q1)x⇤+(c0 + µ⇤c1) = 0, µ⇤(x⇤TQ1x⇤ + 2cT1 x⇤ �d) = 0

Exercise 7.25 (SDP).

Exercise 7.26 (Equivalent representations: SOCP). Consider SOCP (7.62) and an alternative representa-
tion (7.71) of SOCP, reproduced here

f ⇤1 := min
x2Rn

f (x) s.t. Ax = b, kxn�1k2  xn (7.108a)

f ⇤2 := min
x2Rn

f (x) s.t. Ax = b, kxn�1k2
2  x2

n, xn � 0 (7.108b)

and suppose f (x) := fTx for some vector f 2 R
n. They are equivalent representations in the sense that

they have the same cost function and feasible set. In this exercise we show that, because the constraint
function h1(x) := kxn�1k2�xn in (7.108a) is nondifferentiable at x = 0 and the constraint function h2(x) :=
kxn�1k2

2� x2
n in (7.108b) is nonconvex, they may have very different duality and optimality properties.

Separate the first n�1 columns of A from the last column and the first n�1 entries of f �ATl from
the last:

A =:
⇥
An�1 an

⇤
, r :=


rn�1

rn

�
:=


f n�1� (An�1)Tl
fn�aTn l

�
:= f �ATl
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1. Consider the SOCP (7.108a).

(a) Show that, if g(x) := akxk2�bTx, then

min
x2Rn

g(x) =

⇢
0 if kbk2  a
�• otherwise (7.109)

(b) Use (7.109) to show that the Lagrangian dual function is

d1(l ,µ) := min
x2Rn

L(x,l ,µ) =

⇢
lTb if krn�1k2  rn = µ
�• otherwise

and hence the dual problem is

d⇤1 := max
l2Rm

lTb s.t. k f n�1� (An�1)Tlk2  fn�aTn l (7.110)

2. Consider the SOCP (7.108b). Show that the Lagrangian dual function is

d2(l ,µ) := min
x2Rn

L(x,l ,µ) =

⇢
lTb if rn�1 = 0, rn = µ � 0, and µ1 = 0
�• otherwise

and hence the dual problem is

d⇤2 := max
l2Rm

lTb s.t. (An�1)Tl = f n�1, aTn l  fn

The dual problem reduces to a linear program whose feasible set is a subset (potentially a strict
subset) of that of (7.110).

3. Strong duality and dual optimality. Consider the case where the constraint Ax = b is absent in
SOCP (7.108). Show that it is possible for strong duality to hold and dual optimality to be attained
for (7.108a) while f ⇤2 = 0 > �• = d⇤2, i.e., the duality is nonzero and dual problem infeasible for
(7.108b). (Hint: Consider problem instances where 0 6= k f n�1k2  fn.)

4. KKT condition at x⇤ = 0. Consider the case where the constraint Ax = b is absent in SOCP (7.108)
and suppose b = 0.

(a) The KKT condition at x⇤ = 0 for SOCP (7.108a) is f 2 K from Theorem 7.24. Show that
the KKT condition at x⇤ = 0 for the alternative representation (7.108b) is f = µ⇤2 en for some
µ⇤2 � 0.

(b) Show that there are problem instances where the condition f = µ⇤2 en for some µ⇤2 � 0 is suffi-
cient, but not necessary, for x⇤ = 0 to be optimal SOCP (7.108a).

(c) Show that for these problem instances, the condition f = µ⇤2 en for some µ⇤2 � 0 is not mean-
ingful for the alternative representation (7.108b) because the dual problem is infeasible (even
though the optimal primal value is finite).

Exercise 7.27 (Dual problem of SOCP). For the second-order constraint problem (7.65):
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1. Derive the dual problem.

2. Show that the dual problem is

d⇤ := max
(l ,g)2Rm+k

bTl � d̃Tg s.t. ATl + B̃Tg = f , kgk�1k2  gk

when the cost function is linear fTx.

Chapter 7.5.

Exercise 7.28 (Linear equality constraint). Consider the quadratic program (7.78) over Dx(t), with a given
x(t), reproduced here:

min
Dx2Rn

f̂ (x(t)+Dx(t)) s.t. A(x(t)+Dx(t)) = b

where f̂ (x(t)+Dx(t)) := f (x(t))+
∂ f
∂x

(x(t))Dx(t)+
1
2

Dx(t)T
∂ 2 f
∂x2 (x(t))Dx(t)

Let l 2 R
m be the Lagrange multiplier associated with the linear constraint. Show that its KKT condition

is given by (7.79):
"

∂ 2 f
∂x2 (x(t)) AT

A 0

#
Dx(t)

l

�
= �


— f (x(t))
Ax(t)�b

�

Exercise 7.29 (Interior-point method - strictly feasible point). Consider the following problem to compute
a strictly feasible point for (7.84):

min
(x,s)2Rn+1

s s.t. fi(x)  s, i = 1, . . . ,m, g(x) = 0 (7.111)

Assume (7.111) is feasible. Show that such a strictly feasible point exists if and only if the optimal value
sopt of (7.111) is strictly negative (possibly �•), whether or not the minimum of (7.111) is attained.

Chapter 7.6.



Chapter 8

Power system operations

The primary function of a power system is to deliver electricity reliably, and, subject to reliable operation,
economically. In Part II we study the mathematical problem of optimal power flow (OPF) that underlies
various power system operations and planning. This chapter overviews main operational components and
provides context for OPF which will be studied in detail in subsequent chapters.

After a brief overview in Chapter 8.1 we describe control mechanisms at different timescales to balance
power supply and demand. In Chapter 8.2 we explain the problem of unit commitment and optimal
dispatch. Unit commitment decides a day in advance which bulk generating units will be turn on the next
day. Optimal dispatch every 5-15 minutes before delivery the generation levels of units that are online.
Both unit commitment and optimal dispatch are formulated as OPF problems. In Chapter 8.3 we explain
frequency control that balances power on a second by second basis and regulates system frequency tightly
around its nominal value. In Chapter 8.4 we study economic dispatch that determines optimal generations
and electricity prices for market operation using the DC power flow model of Chapter 4.6.2. In Chapter 8.5
we formulate the problem of optimal location and sizing of batteries for voltage control on a distribution
feeder.

8.1 Overview

8.1.1 Operation

Electricity has two important differences from most commodities such as rice and minerals. First there
is not yet large-scale energy storage in our power system so that inventory control as a means to match
supply and demand for most commodities is not applicable. Instead generation and load must be balanced
on a second-by-second basis at all points on the network. Second electricity cannot yet be routed from
generators to loads at will but must follow paths determined power flow equations. The nonlinearity of
power flow equations introduces computational challenges. These differences have strong implications on
how the network is operated and how markets are organized.

The central control problem is to balance supply and demand, continuously and everywhere, without

347
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violating operational constraints such as capacity limits of generators and loads, bounds on voltage mag-
nitudes, and thermal and stability limits of transmission lines and transformers. Thermal generators such
as gas, coal and nuclear generators still generate the majority of electricity today. For example, in 2020,
fossil fuels generated 60.6% and nuclear generated 19.7% of all electricity in the US [90, Table 1.1]. They
are fully controllable and can produce a specified amount of electricity at a specified time and location.
Traditionally a power system operator forecasts demand, which is assumed inelastic, and schedules bulk
generators to meet the forecast demand. As we decarbonize our energy system by replacing fossil fuel
generators by wind and solar farms, our ability to control generation decreases and we must also exploit
flexibility in demand to match volatile supply. Difficulties arise from the variability and uncertainty of
undispatchable demand and supply, the need to match the speed of our control and the speed of distur-
bances, as well as random unscheduled outages of generators, loads, lines and transformers. Engineering
operation and market operation are tightly integrated in a power system. In this chapter we explain network
operation. Electricity markets will be studied in Part ??.

A transmission network is a high-voltage long-distance network that connects bulk power producers
to power consumers. These consumers are called load centers and represent aggregate loads such as
substations of a local utility company that feeds a city. The operation of a transmission network is typically
coordinated by an independent system operator that commits and dispatches generation units to meet
demand at timescales ranging from hours to minutes to seconds. Bulk generators such as gas, coal, and
nuclear generators need nontrivial amounts of time and cost to start up and shut down, e.g., the startup
time for a nuclear plant can be hours. This motivates a day-ahead market which usually closes 12–36
hours in advance of energy delivery and determines which generators will be online and their output
levels for each hour or half hour over a 24-hour horizon . This is the problem of unit commitment and
is discussed in Chapter 8.2. The commitment decisions are determined based on forecast of loads and
variable generations such as wind and solar power 12–36 hours in advance. A real-time market computes,
every 5–15 minutes in advance of energy delivery, adjustments to generation and consumption levels
relative to the schedules produced by the day-ahead market as uncertainty in consumption, generation, and
network state is resolved. This is the problem of economic dispatch and is discussed in Chapters 8.2.2.
Balancing on a second-by-second basis within a real-time dispatch interval takes the form of frequency
control and is discussed in Chapter 8.3.

8.1.2 Optimal power flow

The problems of day-ahead unit commitment and real-time economic dispatch can be formulated as a
constrained optimization of the form

min
u,x

c(u,x) s.t. f (u,x) = 0, g(u,x) 0

This is called an optimal power flow (OPF) problem and it is a basic building block that underlies numerous
power system applications. The optimization variable (u,x) consists of control u and network state x and
can span multiple time periods, e.g., in unit commitment problems. The cost function c and the constraint
functions f , g depend on the application under study. There are usually two types of constraint. The first is
power flow equations in various forms studied in Chapters 4 and 5 for single-phase networks and Chapters
17 and 18 for unbalanced multiphase networks. The second type of constraint consists of operational
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limits such as voltage limits, capacity limits on generators and loads, and thermal and stability limits on
transmission lines and transformers.

Part II of this book focuses on OPF especially its computational properties. In Chapter 8.2 we formu-
late unit commitment and optimal dispatch as OPF problems. In Chapter ?? we present other applications
of OPF. Finally we describe in Chapter ?? popular algorithms to solve OPF and in Chapter ?? techniques
for scalable solution of large practical OPF problems.

8.2 Unit commitment and dispatch

Finally in Chapter ?? we explain security constrained OPF that schedules responses to contingency events
such as the outage of a generator, transmission line or transformer.

8.2.1 Unit commitment

The problem of unit commitment is typically solved by the system operator in the day-ahead market 12–
36 hours in advance of energy delivery to decide which units will be turned on for each hour or half hour
over a 24-hour period. Integral to the commitment decision is also a dispatch decision that determines
the output levels of those units that will be online. The commitment decision is made assuming that the
dispatch decision will be optimized at delivery time. This can be formulated as a two-stage optimization
problem. For most day-ahead markets, the commitment decision is binding but the dispatch decision can
be binding or advisory, to be adjusted by economic dispatch in the real-time market. We will discuss in
detail the problem of optimal dispatch in Chapter 8.2.2, so we will focus on formulating the commitment
decision in this section.

Consider a time horizon T := {1,2, . . . ,T} and a power network represented as a graph G := (N,E)
as before. For example, each time t represents an hour and T = 24. For each period t 2 T let u(t) :=
(u j(t), j 2 N) denote controllable real and reactive power injections at time t, V (t) := (Vj(t), j 2 N) the
voltage phasor, S(t) :=

�
S jk(t),Sk j(t),( j,k) 2 E

�
the complex line flows. We call u(t) a dispatch and

x(t) := (V (t),S(t)) a network state at time t. Let u := (u(t), t 2 T ) and x := (x(t), t 2 T ). They are
complex vectors of appropriate sizes. Let k j(t) 2 {0,1} be the binary variable indicating that unit j will
be on at time t if k j(t) = 1 and off otherwise. Let k(t) :=

�
k j(t), j 2 N

�
and k := (k(t), t 2 T ).

Our OPF formulation includes only two features of the unit commitment problem. The first is injection
bounds on a unit when it is turned on. This can be expressed as the constraint:

u j(t)k j(t)  u j(t)  u j(t)k j(t), j 2 N (8.1a)

where u j(t) and u(t) j are given bounds on the active and reactive injections respectively at bus j at time
t.1 The second feature is the startup and shut down costs incurred by a bulk unit when it is turned on or

1All variables are complex and, by a  a where a,a 2 C, we mean separate bounds on the real and imaginary parts,
Re a Re a and Im a Im a.
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off. This can be expressed as a cost function dt that is positive when the on/off status of the unit changes:

d jt(k j(t�1),k j(t)) :=

8
<

:

startup cost if k j(t)�k j(t�1) = 1
shutdown cost if k j(t)�k j(t�1) =�1
0 if k j(t)�k j(t�1) = 0

(8.1b)

Unit commitment problems in practice include many other features. For instance, once turned on or off, a
generator must stay in the same on/off state for a minimum amount time. This can be expressed with an
additional state variable that keeps track of the time since the last on/off state change.

We illustrate how unit commitment can be posed as an OPF using the simplest formulation that in-
cludes only the two features in (8.1). Unit commitment is then the following two-stage optimization
problem:

min
k2{0,1}(N+1)T

Â
t

Â
j

d jt
�
k j(t�1),k j(t)

�
+ c⇤(k) (8.2a)

where the startup/shut down costs d jt are given by (8.1b). Given a commitment decision k , c⇤(k) is the
optimal dispatch cost over the entire optimization horizon:

c⇤(k) := min
(u,x)

Â
t

ct(u(t),x(t);k(t)) (8.2b)

s.t. ft(u(t),x(t);k(t)) = 0, gt(u(t),x(t);k(t)) 0, t 2 T (8.2c)
f̃ (u,x) = 0, g̃(u,x) 0 (8.2d)

Here ct is the dispatch cost, e.g., fuel cost, at time t. The constraints (8.2c) include power flow equations
and capacity limits such as (8.1a) at each time t, and the constraints (8.2d) are inter-temporal constraints
such as ramp rate limits of the form |u j(t)�u j(t�1)| r j. Hence the commitment decision k is chosen in
(8.2a) in anticipation that the dispatch decisions (u(t),x(t)) will be optimized in the second-stage problem
(8.2b)(8.2c)(8.2d). The constraint functions ft ,gt , f̃ may include uncontrollable injections, e.g., forecast
loads, as parameters as we will see in Chapter 8.2.2.
Remark 8.1 (Unit commitment in practice). The unit commitment problem (8.2) is nonconvex and com-
putationally challenging for large networks. Nonconvexity is due both to the binary variable k and the
nonlinear power flow equations. In practice these nonlinear power flow equations are usually replaced
by their linear approximations such as the DC power flow model. This reduces the problem to a mixed
integer linear program (MILP) and can often be solved within the available time. The solution (k⇤,u⇤,x⇤)
of the MILP however may not satisfy the original nonlinear constraints. Typically the nonlinear power
flow model is then used to check if the commitment and dispatch decisions (k⇤,u⇤) will produce a state x
that satisfies operational constraints such as voltage and line limits. This involves solving nonlinear power
flow equations. If operational constraints are violated, the MILP is modified and the procedure is repeated.

Active effort is underway in the R&D community and industry to scale computation methods for mixed
integer nonlinear programs to large networks, so that the OPF problem (8.2) can be applied in day-ahead
markets. See Chapter 9.5 for an example.

8.2.2 Optimal dispatch

After the on-off status of generating units and large controllable loads have been determined by a day-
ahead market, a real-time market computes every 5-15 minutes optimal injection levels of those units
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that are online. This is the problem of optimal, or economic, dispatch. While the control, or dispatch,
interval t for unit commitment is typically an hour or half hour, the control, or dispatch, interval t for
unit commitment is 5-15 minutes. The most common, and simplest, form of the problem computes an
optimal dispatch in each control interval without taking into account decisions in future control intervals.
We hence fix a control interval and drop the time index t in our notation.

In this section we formulate the optimal dispatch problem and discuss causes for intra-interval imbal-
ance. In the next section we describe frequency control mechanisms that balance power within a dispatch
interval.

OPF formulation. Consider a set of buses N and assume there is a generator or controllable load at
each bus j 2 N. Let u := (u j, j 2 N) denote the complex controllable injections, V := (Vj, j 2 N) the
voltage phasors, and S :=

�
S jk,Sk j,( j,k) 2 E

�
the complex line flows. We call u a dispatch and x := (V,S)

a network state. They are complex vectors of appropriate sizes. Let s :=
�
s j, j 2 N

�
be given complex

uncontrollable injections. For optimal dispatch the objective function c(u,x) may represent fuel cost which
may be convex quadratic in real power generation:

c(u,x) = Â
generators j

⇣
a j
�
Re(u j)

�2
+ b j Re(u j)

⌘

for some a j � 0, b j � 0.

The relation between the line flows S :=
�
S jk,( j,k) 2 E

�
and voltages V :=

�
Vj, j 2 N

�
is specified by

the power flow equation

S = S(V ) (8.3a)

where we have abused notation to use S jk to denote both a line flow and a function of voltages. For
example we can write the line flow S jk in terms of V in the complex form (4.25) reproduced here:

S jk(V ) =
⇣

ys
jk

⌘H �
|Vj|2�VjV H

k
�

+
⇣

ym
jk

⌘H
|Vj|2, ( j,k) 2 E

Sk j(V ) =
⇣

ys
jk

⌘H �
|Vk|2�VkV H

j
�

+
⇣

ym
k j

⌘H
|Vk|2, ( j,k) 2 E

where (ys
jk,y

m
jk) and (ys

k j,y
m
k j) are series and charging admittances of line ( j,k), or in polar form (see

(4.27)):

Pjk(V ) =
⇣

gs
jk +gm

jk

⌘
|Vj|2 � |Vj||Vk|

⇣
gs

jk cosq jk +bs
jk sinq jk

⌘
, ( j,k) 2 E

Q jk(V ) =
⇣

bs
jk +bm

jk

⌘
|Vj|2 � |Vj||Vk|

⇣
gs

jk sinq jk�bs
jk cosq jk

⌘
, ( j,k) 2 E

where (gs
jk,b

s
jk) and (gm

jk,b
m
jk) are series and charging admittances of line ( j,k) and q jk := \Vj �\Vk.

Similarly for
�
Pk j(V ),Qk j(V )

�
in the opposite direction on line ( j,k). Different power flow equations lead

to different OPF formulations with different computational properties. Then power balance is expressed
as2

u j + s j = Â
k: j⇠k

S jk, j 2 N (8.3b)

2If ys
jk = ys

k j and ym
jk = ym

k j = 0 then we can model the network by a directed graph described by a node-by-line incidence
matrix C. In this case (8.3b) takes the form u+s = CS.
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The most common operational constraints are:

• Injection limits (e.g., generator or load capacity limits):

u j  u j  u j, j 2 N (8.3c)

where u j and u j are given bounds on the active and reactive injections respectively at buses j.3

• Voltage limits:

v j  |Vj|2  v j, j 2 N (8.3d)

where v j and v j are given lower and upper bounds on the squared voltage magnitudes. We assume
v j > 0 to avoid triviality (in practice v j ⇡ 1 pu).

• Line limits: Thermal limits can be expressed as upper bounds on the magnitudes of line currents, on
the magnitudes of real and reactive line power, or on the apparent line power, as:

|S jk|  S jk, |Sk j|  Sk j, ( j,k) 2 E (8.3e)

The real-time optimal dispatch problem is then the following constrained optimization

min
u,x

c(u,x) s.t. (8.3) (8.4)

where (u,x) := (u,V,S) 2 C
2(N+1+M) and N + 1,M are the numbers of buses and lines respectively. It

is solved by the system operator for every control interval (e.g., every 5 minutes). We call u a feasible
dispatch if (u,x) := (u,V,S) satisfies (8.3) for some network state x. We call uopt an optimal dispatch
if (uopt,xopt) := (uopt,V opt,Sopt) is an optimal solution of (8.4) for some network state xopt. The key
parameter of (8.4) is the uncontrollable injection s in (8.3b). We often abuse notation and write uopt(s)
for an optimal dispatch as a function of s . We also say that the optimal dispatch uopt(s) is driven by s .

The interpretation of an optimal (uopt,xopt) is that the controllable generators and loads will produce
and consume according to the dispatch command uopt from the system operator. The injection uopt will
drive the voltage V opt and line flow Sopt on the network to a solution of the power flow equations (8.3a)
(8.3b) that satisfies the operational constraints (8.3c) (8.3d) (8.3e). In particular this should guarantee
power balance at all points of the network given an uncontrollable injection s . The reality is more com-
plicated as we will see below.

Remark 8.2. We have assumed without loss of generality that there is at most one controllable generator
or load at each bus with injection u j. It is straightforward to extend to the case where there are multiple
generators and loads at buses j. If there is no controllable injection at bus j then we can set u j = u j = 0 or
remove u j as an optimization variable.

3All variables are complex and, by a  a where a,a 2 C, we mean separate bounds on the real and imaginary parts,
Re a Re a and Im a Im a.
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Remark 8.3 (Economic dispatch in practice). The nonlinearity of power flow equations (8.3a) makes the
optimal dispatch problem (8.4) nonconvex and the standard economic theory inapplicable. Most markets
today adopt a linear approximation of (8.3a), e.g., the DC power flow model together with methods to
determine reactive injections, to compute electricity prices together with a reasonable dispatch u. This
problem is usually called DC OPF or economic dispatch. Given an optimal dispatch û from an economic
dispatch problem a system operator may check using AC power flow equations (8.3a) (8.3b) whether a
resulting network state x̂ := (V̂ , Ŝ) satisfies the operational constraints (8.3c) (8.3d) (8.3e), i.e., whether
(û,V̂ , Ŝ) is feasible for (8.4). If it is, then the system operator may price electricity according to a dual
optimal solution of the economic dispatch problem (see Part ??) and dispatch the injection û. Otherwise
the system operator may adjust the parameters of the DC OPF problem and repeat the cycle. Even though
this procedure may not produce an optimal solution of (8.4) it avoids the complication of nonconvex
pricing. We study economic dispatch in detail in Chapter ??.

Imbalance and error model. Recall that the optimal dispatch problem (8.4) is solved for every control
interval. We now describe a simple error model in order to understand how imbalance arises within a
control interval even when controllable generators and loads follow the system operator’s dispatch. In the
next section we explain frequency control mechanisms that correct the imbalance.

Suppose the uncontrollable injection (vector) s := (s(t), t 2 R+) is a continuous-time stochastic pro-
cess with the mean process m(t) := Es(t). This can model wind or solar generation or inelastic demand.
A realization s(x ) := (s(x , t), t 2 R+) of the process is indexed by x associated with a probability space,
though we may omit x and use s or s(t) to refer to a realization when there is no risk for confusion.
For each realization x and time t � 0 let u(s(x , t)) denote an actual injection that can maintain power
balance at all points of the network at time t. For instance u(s(x , t)) is an optimal dispatch driven by
the realization s(x , t), i.e., there exists a network state x(s(x , t)) such that (u(s(x , t)) ,x(s(x , t))) is an
optimal solution of the (deterministic) problem

min
(u,x):=(s,V,S)

c(x) s.t. (8.3a)(8.3c)(8.3d)(8.3e) (8.5a)

u j + s j(x , t) = Â
k: j⇠k

S jk, 8 j (8.5b)

It is of course impractical to compute such an optimal dispatch for each realization x at each time t � 0.4

Instead, a dispatch is computed by the real-time market in each discrete time period nd , n = 0,1, . . . ,
where d is the duration of each control interval, e.g., d = 5 minutes. Suppose the system operator’s
dispatch for the nth control interval is an optimal solution uopt (m̂(n)) of (8.4), or its linear approximation,
driven by a certain estimate m̂(n) of the uncontrollable injection s(x , t) over the interval. The imbalance
at time t is then the difference between the actual injection and the operator’s dispatch:

Du(x , t) := u(s(x , t)) � uopt (m̂(n)) , t 2 [nd ,(n+1)d ), n = 0,1, . . . (8.6)

The imbalance Du(x , t) can be interpreted as consisting of three errors:

Du(x , t) = D1(x , t) + D2(t) + D3(x , t)

These errors are:
4This will correspond to choosing an equilibrium injection of the dynamic model of Chapter 8.3 at each time t.
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1. Random error D1(x , t). The optimal dispatch (8.4) is a deterministic problem driven by an estimate
of the random injection s(t). If the estimate is the mean process m(t), it will lead to a random
imbalance between the actual injection and the dispatch driven by m(t), resulting in a dispatch error
D1(x , t) := u(s(x , t))� uopt(m(t)). This assumes however that it were possible to solve for an
optimal dispatch uopt(m(t)) at each time t � 0.

2. Discretization error D2(t). An optimal dispatch however is computed only in each discrete time
period nd , driven by a vector that approximates the behavior of the function m(t) over that interval.
Assume this is the time average of m(t) over [nd ,(n+1)d ):

m̄(n) :=
1
d

Z (n+1)d

nd
m(t)dt, n = 0,1, . . . (8.7)

For instance m j(t) may model the mean uncontrollable load at bus j at time t and m̄ j(n) is then its
time average over the nth interval. Approximating the continuous-time mean process m(t) by the
discrete-time process m̄(n) leads to a dispatch error D2(t) := uopt(m(t))� uopt(m̄(n)) at each time
t 2 [nd ,(n+1)d ).

3. Prediction error D3(x , t). The computation of m̄(n) needs the ensemble average m(t) over [nd ,(n+
1)d ). This is difficult because the statistics of the stochastic process s(t) may not be known ac-
curately and because the optimal dispatch for the nth control interval must be computed during
the n� 1st interval. The system operator therefore must use an estimate m̂(n) of m̄(n) in (8.3b)
when solving the optimal dispatch problem (8.4) for the nth interval. This leads to a dispatch error
D3(x , t) := uopt (m̄(n))�uopt (m̂(n)) at each time t 2 [nd ,(n+1)d ).

In general the estimate m̂(n) = m̂(x ,n) depends on the realization x and is a random variable. For
instance a common strategy is to set the estimate to be the uncontrollable injection realized in the
previous time interval

m̂(x ,n) :=
1
d

Z nd

(n�1)d
s(x , t)dt, n = 0,1, . . . (8.8)

e.g., the forecast wind energy in the next period is the actual wind energy in the current period. In
this case its mean Em̂(n) = m̄(n�1). The estimate m̂(n) may also be independent of the realization
x . This is a special case where m̂(x ,n) is a deterministic quantity for all x . For instance the forecast
of uncontrollable energy injection over the interval 7:00–7:05pm on Wednesday is the mean energy
estimated from historical data for 7:00–7:05pm on Wednesdays.

Typically the random error D1(t) tends to have zero mean. The time average of the discretization error
D2(t) over each control interval tends to be zero. This means that the energy discrepancy over each control
interval due to discretization tends to be small. If the statistics of the uncontrollable injection s(t) is slowly
time-varying then the prediction error D3(t) tends to be small. The next example describes a simple model
where these observations can be made precise.

Example 8.1. Consider a 2-bus network described by the DC power flow model. Bus 1 has an uncontrol-
lable load s := (s(t), t 2R+) with mean (m(t), t 2R+) and bus 2 has a controllable generator with output
level u(t). Suppose the generator and line capacities are high so that the injection and line limits are never
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active. The actual generation u(s(t)) = �s(t) balances the actual load at time t. Since the DC power
flow model is lossless the optimal dispatch is simply uopt(m̂(n)) = �m̂(n) for the nth control interval. It
balances the predicted mean load over that interval. Suppose we use the prediction m̂(n) := m̂(x ,n) given
by (8.8). Then the random imbalance at time t 2 [nd ,(n+1)d ) is

Du(x , t) := u(s(t)) � uopt(m̂(n)) = �s(x , t) +
1
d

Z nd

(n�1)d
s(x ,t)dt

i.e., the imbalance at time t is the difference between the actual load at time t and the time average load
over the pervious interval.

To gain further insight into the imbalance Du(t) and the constituent errors, suppose s is a (possibly
non-stationary) white Gaussian process with mean Es(t) = m(t) and correlation function K(t, t 0) = n2 if
t = t 0 and K(t, t 0) = 0 if t 6= t 0 for t, t 0 � 0. Then, under appropriate integrability assumptions, w(t) :=R t

0 s(t)dt is a Wiener process with the property that non-overlapping increments are independent Gaussian
random variables, i.e., for any t 0 < t  t 0 < t , the random variables

w(t)�w(t 0) :=
Z t

t 0
s(s)ds and w(t)�w(t 0) :=

Z t

t 0
s(s)ds

are independent and Gaussian with means
R t

t 0m(s)ds and
R t

t 0m(s)ds respectively and variance n2(t � t 0)
and n2(t� t 0) respectively. Then the prediction given by (8.8) is

m̂(n) =
1
d

(w(nd )�w((n�1)d ))

Therefore (m̂(n),n = 0,1, . . .) are independent Gaussian random variables whose means are the time av-
erages of the mean m(t) over the previous control intervals:

E (m̂(n)) =
1
d

Z nd

(n�1)d
m(t)dt =: m̄(n�1), n = 1,2, . . .

and whose variances are time invariant:

var(m̂(n)) =
n2

d
, n = 1,2, . . .

Here m̄(n) is the time average of the mean process m(t) over the nth interval defined in (8.7). The system
operator’s dispatch uopt(m̂(n)) = �m̂(n) for the nth interval is a Gaussian random variable with mean
�m̄(n� 1) and variance n2/d . The actual load s(t) at time t is a Gaussian random variable with mean
m(t) and variance n2. Note that s(t) and m̂(n) are independent because of the independent increment
property of Wierner process. Hence the imbalance Du(t) = �s(t)+ m̂(n) at time t 2 [nd ,(n + 1)d ) is a
Gaussian random variable with mean and variance

E (Du(t)) = �m(t) + m̄(n�1), var(Du(t)) = n2
✓

1+
1
d

◆

In particular if the Gaussian process s is stationary then the imbalance Du(t) has zero mean.
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We now calculate the various errors underlying the imbalance Du(t). The random error at time t is

D1(x , t) := u(s(x , t)) � uopt (m(t)) = �s(x , t) + m(t)

which is a Gaussian random variable with zero mean and variance n2. The discretization error at time
t 2 [nd ,(n+1)d ) is

D2(t) := uopt (m(t)) � uopt (m̄(n)) = �m(t) + m̄(n)

i.e., D2(t) is the deviation of the mean process m(t) from its time average m̄(n). The prediction error is

D3(x , t) := uopt (m̄(n)) � uopt (m̂(x ,n)) = �m̄(n) + m̂(x ,n)

which is a Gaussian random variable with mean E (D3(t)) = �m̄(n)+ m̄(n� 1) and variance n2/d . The
imbalance Du(x , t) = D1(x , t) + D2(t) + D3(x , t). These observations are summarized in Table 8.1. We

Expression Random Var Mean Variance
Random error D1(x , t) �s(x , t)+m(t) Gaussian zero n2

Discretiz. error D2(t) �m(t)+ m̄(n) constant �m(t)+ m̄(n) 0
Prediction error D3(x , t) �m̄(n)+ m̂(x ,n) Gaussian �m̄(n)+ m̄(n�1) n2/d
Imbalance Du(x , t) D1(t)+D2(t)+D3(t) Gaussian �m(t)+ m̄(n�1) n2 (1+1/d )

Table 8.1: Example 8.1: Imbalance and underlying errors.

note the following properties:

1. As noted above, the ensemble average of the random error D1(t) is zero.

2. The time average of the discretization error D2(t) is zero over each control interval:

1
d

Z (n+1)d

nd
D2(t) = � 1

d

Z (n+1)d

nd
m(t)dt + m̄(n) = 0

3. The mean prediction error ED3(t) = �m̄(n)+ m̄(n�1) is small if the mean process m(t) is slowly
time-varying. In particular if s is stationary then the prediction error has zero mean.

Imbalance due to random error D1(t), discretization error D2(t) and prediction error D3(t) is handled
by frequency control. The operator dispatch uopt (m̂(n)) is not the actual power injection but provides
setpoints for controllable generators and loads for the nth control interval. While these setpoints û(n) are
updated every d amount of time, frequency control operates continuously to determine the actual power
injection. The definition (8.6) and (8.3b) suggest the following power flow model at a fast timescale:

uopt (m̂(n)) + Dui(t) + si(t) = Â
j:i⇠ j

Si j(t), t 2 [nd ,(n+1)d ), i 2 N
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where we have fixed a realization x and suppressed the index x . This model however is incorrect. It
ignores two important features of frequency control, the fast timescale generator and frequency dynamics
and the feedback control to maintain frequency around its nominal value (the correct equation is (8.14b)).
Before we describe in Chapter 8.3 how an optimal dispatch uopt (m̂(n)) is realized at a fast timescale, we
remark on two other sources of imbalance.

Remark 8.4. Imbalance can also result from two other types of errors:

1. Contingency error. Unanticipated outages of generators, transmission lines or transformers or the
switching on or off of large loads may occur within a control interval, creating imbalance. Unlike
other errors, such contingency events occur rarely and when they do occur, the model in the original
problem (8.4) must be updated in order to compute a new dispatch. Imbalance due to contingency
error is discussed in Chapter ??.

2. Modeling error. The power flow model as expressed in (8.3a) is only an approximation of the reality.
A transmission network model is highly aggregated. A bus j may represent a substation where the
uncontrollable injection s j(t) is a coarse model of the aggregate demand on the underlying feeder. It
may also represent a balancing area where the single control u j(t) is an approximation of aggregate
output of multiple generators controlled by multiple organizations. A line (i, j) may be produced
by Kron reduction and represents the connectivity between two sets of buses. Finally network
parameters such as line admittances may not be known accurately, e.g., parameters for an aggregate
model may have to be estimated experimentally, the parameters of a device may depend on the
operating condition or change due to aging. Modeling error is of a different nature than the other
errors and we assume its effect can be incorporated as randomness in s .

8.2.3 Secure operation

Power system security refers to the ability to withstand large disturbances. The small random imbalances
are handled by real-time optimal dispatch and frequency control mechanisms discussed in Chapters 8.2.2
and 8.3 respectively. In this section we explain techniques to handle large disturbances due to contingency
events such as the loss of a bulk generator or wind or solar farm, the switching on or off of a large industrial
load, or the outage of a transmission line or transformer in the transmission network.

Contingency events are rare but their potential impacts are large. North American Electric Reliability
Corporation’s (NERC) N�1 rule states that the outage of a single piece of equipment (e.g., generator, line,
transformer) should not result in flow or voltage limit violations. As volatile generation from wind and
solar farms continues to displace thermal generators, a large deviation of such nondispatchable generation
from its predicted value may also count as a contingency event in the future. For instance the random
generation can be modeled as taking one of a finite number of values, each triggering a contingency
response if it differs significantly from its predicted value.

Secure operation is achieved through three main mechanisms: (i) analyze credible contingencies that
may lead to voltage or line limit violations, (ii) account for these contingencies in optimal commitment
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and dispatch schedules, and (iii) monitor system state in real time and take corrective actions when a
contingency occurs. We summarize each of these functions.

Contingency analysis. When a generator or load contingency occurs the resulting power flows might
violate line limits and lead to transmission outages where transmission lines or transformers are discon-
nected. If reserve capacity is insufficient to re-balance generation and demand, frequency excursion will
continue which can disconnect other generators to protect them from damage, potentially leading to invol-
untary load shedding and even system collapse. When a transmission line or transformer is disconnected
power flows in the network will redistribute and line limits can be violated, potentially leading to cascad-
ing line outages. Furthermore a transmission outage results in reactive losses in the network which can
suppress voltage magnitudes, leading to voltage violations.

The impacts of these contingency events can be assessed by solving AC power flow equations that
describe the network state after each contingency. Currently this set of post-contingency equations are
solved in the industry mostly using Newton-Raphson or the decoupled power flow methods because they
have good speed and convergence properties. Due to the large number of contingencies that must be
assessed in order to satisfy N� k security for k � 1, it is a common practice to first use the DC power
flow model to quickly screen contingencies and select a much smaller subset that result in voltage or line
limit violations for more detailed analysis using the AC power flow model, especially for contingency
scenarios where voltage magnitudes and reactive flows are important. Contingency scenarios in which
line or voltage limits are violated are called credible contingencies. Contingency screening uses the DC
power flow model often makes use of power transfer distribution factor and line outage distribution factor
analyzed in Chapter ??. These distribution factors are used to quickly estimate incremental line flow
changes due to a contingency from the pre-contingency operating point determined by the AC power flow
model. An advantage of this approach is that the impact of generator and transmission outages on the post-
contingency networks can be analyzed using the common pre-contingency topology across contingency
scenarios.

Security constrained dispatch and commitment. The credible contingencies that have been identified
in contingency analysis are taken into account in day-ahead (e.g., 12–36 hours) unit commitment and
real-time (e.g., 5–15 minutes) dispatch as well as automatic generation control (seconds to minutes). Ca-
pacities are reserved for normal operation (regulation and load-following reserves) and for contingencies
(contingency reserves).

There are two approaches to account for credible contingencies in scheduling optimal dispatch. The
preventive approach augments the optimal dispatch problem studied in Chapter 8.2.2 with additional con-
straints so that the network state under the optimal dispatch will satisfy operational constraints even after
contingency events. This allows the dispatch to remain unchanged until the next real-time dispatch pe-
riod even if a contingency occurs in the middle of the current period. The intra-period imbalance due to
contingency will be handled by the frequency control mechanisms studied in Chapter 8.3. The corrective
approach, on the other hand, will compute optimal dispatches both for normal operation and after each
contingency event. This allows the system operator to dispatch a response immediately after a contin-
gency is detected without having to wait till the next dispatch period. Both approaches can be formulated
as security constrained OPF problems.
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System monitoring. A system operator’s energy management system collects and processes measure-
ments of voltages, currents, line flows, and the status of circuit breakers and switches at all transmission
substations. Other measurements such as frequencies, generator outputs, and transformer tap positions are
also measured at various locations of a transmission network, e.g., using phasor measurement units. These
measurements are used for state estimation, real-time commitment and dispatch, and automatic genera-
tion control, among other applications. Based on these measurements the system can be classified as in a
normal state, an emergency state, or after a contingency, in a restoration state, with default actions in each
of these states.

Security constrained OPF. We will refer to the problem of optimal dispatch without security constraints
studied in Chapter 8.2.2:

min
(u0,x0)

c0 (u0,x0)

s.t. f0 (u0,x0) = 0, g0 (u0,x0)  0 (8.9)

as the base or pre-contingency case. Here u0 is a vector representing controls such as real power injections
of controllable generators and loads, generator voltage magnitudes, transformer tap positions, x0 is a
vector representing the network state such as bus voltage magnitudes and angles at load buses, f0 (x0,u0)
represents linear or nonlinear power flow equations, and g0 (x0,u0) represents operational constraints such
as voltage and line flow limits, all in the base case.

Let credible contingencies be indexed by k = 1, . . . ,K. After a contingency k, the dispatch u0 remains
unchanged in the short term (e.g., 1–5 mins). The network state however changes immediately from x0
to a new system state x̃k determined by the post-contingency network and frequency control actions. The
choice of pre-contingency dispatch u0 can take the new network state into account, in three ways.

Some operational constraints such as thermal limits may be temporarily relaxed immediately after the
contingency provided corrective actions will be implemented quickly. A preventive approach chooses
u0 so that emergency operational constraints in the short term are satisfied before corrective actions take
effect. Let f̃k denote the power flow equations for the post-contingency network, and g̃k models the
emergency operational constraints after contingency k. The pre-contingency control u0 and the post-
contingency network state x̃k in the short term must satisfy:

f̃k (u0, x̃k) = 0, g̃k (u0, x̃k)  0, k = 1, . . . ,K (8.10)

A preventive security-constrained OPF (SCOPF) problem chooses an optimal control decision u0 that will
remain secure after each contingency k = 1, . . . ,K, before corrective actions are implemented, i.e., it is of
the form

min
(u0,x0, x̃k, k�1)

c0 (u0,x0) s.t. (8.9)(8.10)

In the corrective approach a new dispatch uk is applied after contingency k. In addition to changes in
injections, the corrective control uk may also include changes to network topology such as line switching
or circuit breaker actions. These changes are captured in new power flow equations fk. While f̃k in (8.10)
is determined only by the contingency, e.g., a line or generator outage, fk may include topology changes as
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part of the corrective control. The operational constraints, modeled by gk, are generally different from the
pre-contingency constraints g and the emergency constraints g̃k immediately after contingency k. Besides
constraints such as voltage and line limits under control uk, gk may also include constraints due to capacity
reserves (see Chapters ??–??). The corrective control uk and the resulting network state xk therefore must
satisfy

fk (uk,gk) = 0, gk (uk,xk)  0, k = 1, . . . ,K (8.11a)

Often the corrective control uk is constrained to be close to the base control u0, e.g., because of limited
ramp rates rk of large generators or loads:

kuk�u0k  rk, k = 1, . . . ,K (8.11b)

Then a corrective SCOPF takes the form

min
(uk,xk, k�0)

Â
k�0

wk ck (uk,xk) s.t. (8.9)(8.11)

where ck are costs that can depend on the contingency and wk � 0 are nonnegative weights.

This corrective approach ignores the emergency constraints (8.10) and assumes the system will ride
through the small delay between the time a contingency occurs and when the corrective control uk takes
effect. This allows more flexibility in the base control u0 and lowers the cost of normal operation. A
more secure and potentially more costly approach will impose both the emergency constraints as well as
constraints on the corrective control:

min
(uk,xk, x̃k+1, k�0)

Â
k�0

wk ck (uk,xk) subject to (8.9)(8.10)(8.11)

Security constrained OPF are used in both control and market applications.

8.3 Frequency control

The power delivered by a thermal generator is determined by the mechanical power output of a prime
mover such as a steam turbine or water turbine. The output level is controlled by opening or closing
valves that regulate steam or water flow. For example if the load increases the valve of a generator must
open wider to increase the generated power. When there is excess supply the rotating machines in bulk
generators will speed up and the system frequency will rise. When there is a shortage the rotating machines
will slow down and the system frequency will drop. If power is not re-balanced by adjusting generators
or flexible loads, frequency excursion will continue which can disconnect generators to protect them from
damage, potentially leading to involuntary load shedding and even system collapse. Frequency deviation
from its nominal value is used as a control signal for generators, and controllable loads, that participate in
frequency control to adjust their power.

Frequency control, also referred to as automatic generation control, consists of three mechanisms
operating at timescales from seconds to minutes. A generating unit that participates in the primary con-
trol, also called droop control, uses a governor to automatically adjusts the mechanical power output of a
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turbine in proportion to its local frequency deviation. Primary frequency control is decentralized. It rebal-
ances power and stabilizes the frequency to a new equilibrium value in 30 seconds or so. The secondary
control adjusts generator setpoints around their dispatch values in order to restore system frequency to its
nominal value within a few minutes, e.g., up to 10 minutes after a contingency event. In an interconnected
power system consisting of multiple balancing areas, each managed by a single operator, the secondary
control additionally restores interchanges of tie-line power between areas to their scheduled values. The
adjustments are determined centrally within each area based on real-time measurements of tie-line flow
deviations. The dispatched setpoint and scheduled tie-line flows are determined by the tertiary control
that operates on a timescale of 5–15 minutes. They are chosen to attain economic efficiency as well as
restoring the reserve capacities deployed in primary and secondary control so that they are available for
contingency response. This is typically determined by solving an optimal dispatch problem as discussed
in Chapter 8.2.2.

We now present a linear dynamic model of the primary and secondary control that clarifies the relation
between system operator’s dispatch uopt(m̂(n)) for each interval and the actual (active) power generation.
A description of the physical system, including a generator, a turbine-governor system, a frequency control
system, and a voltage control system, as well as their detailed models, are beyond the scope of this book.
Our goal in this section is to use a simple model to connect optimal dispatch studied in Chapter 8.2.2 with
its realization at a fast timescale.

8.3.1 Assumptions and notations

Consider a control interval [nd ,(n+1)d ) for which the tertiary control has determined an optimal dispatch
uopt(m̂(n)) with the associated network state x(n) including scheduled tie-line flows. We assume that the
primary and secondary control converges on a much faster timescale than d so that the dispatch remains
unchanged and serves as the operating point for our incremental model below. We fix a random realization
x of the uncontrollable injection s(x , t). The dynamic model is deterministic with this fixed realization.
We hence omit the indices n and x in the rest of this section.

We make several simplifying assumptions:

• There is a synchronous generator at each bus that determines the frequency dynamics at the bus.
This assumption is only to simplify exposition and can be removed.

• Voltage regulation operates at a faster timescale so that voltage magnitudes |Vj| are fixed for the
analysis of frequency control. The effect of voltage regulation can be incorporated into the inertia
constant M and damping constant D of (the rotor angle transfer function of) the generator; see below.

• The rotor angles, the internal and terminal (bus) voltage phase angles of generators swing together,
i.e., the deviations of these angles from their operating points are equal at all times.

• The lines are lossless, i.e., their shunt admittances
⇣

ym
jk,y

m
k j

⌘
are zero and series admittances are

inductive ys
jk = ib jk with b jk < 0.

With these assumptions our dynamic model focuses on how active power in generating units change the
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voltage angles and their derivatives, i.e., frequencies. It makes similar assumptions to those in the DC
power flow model. In fact the DC power flow describes the steady state of the dynamic model.

The tertiary control determines active power dispatch u0
j for the generators and the associated voltage

angles q 0
j and active line flows P0

jk driven by estimates s0
j of uncontrollable real power injections. They

define the operating point around which we linearize our dynamic model. In particular they satisfy power
balance:

u0
j + s0

j = Â
k: j⇠k

P0
jk, j 2 N

Define the following variables and their perturbations around the operating point:

• u j(t) denotes the setpoint of generator j at time t. Let Du j(t) := u j(t)�u0
j denote the adjustment to

the optimal dispatch u0
j . The adjustment will be computed by the secondary frequency control.

• q j(t) denotes the (terminal) voltage angle at bus j at time t, relative to a rotating frame of the
operating-point frequency w0 (which is expected to be close but not necessarily equal to the nominal
frequency), i.e., the instantaneous voltage is v j(t) =

p
2|Vj|cos

�
w0t +q j(t)

�
. Define the incremen-

tal angle Dq j(t) := q j(t)�q 0
j .

• w j(t) denotes the voltage frequency at bus j defined to be the derivative of the phase angle w0t +
q j(t), i.e., w j(t) = w0+ q̇ j(t). Hence the frequency deviation Dw j(t) := w j(t)�w0

j satisfies Dw j(t) =

Dq̇ j(t).

• Pjk(t) denotes the line flow from bus j to bus k on line ( j,k). Let Pk j(t) :=�Pjk(t). Let DPjk(t) :=
Pjk(t)�P0

jk and similarly for DPk j(t).

• pM
j (t) denotes the mechanical power output of the prime mover (e.g., gas or water turbine). Let

PM0
j denote its value associated with the operating point

⇣
u0

j ,q 0
j ,w0,P0

jk,s
0
j , j 2 N, ( j,k) 2 E

⌘
and

DpM
j (t) := pM

j (t)�PM0
j .

• a j(t) denotes the valve position of the turbine-governor at bus j. Let a0
j denote its value associated

with the operating point
⇣

u0
j ,q 0

j ,w0,P0
jk,s

0
j , j 2 N, ( j,k) 2 E

⌘
and Da j(t) := a j(t)�a0

j .

We will remark on
⇣

a0
j , pM0

j

⌘
below when we describe the turbine-governor model. A common model of

the instantaneous line flow Pjk(t) as a function of voltage angles q(t) :=
�
q j(t), j 2 N

�
is (cf. the polar

form power flow equation (4.27a)):

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin
�
q j(t)�qk(t)

�
, ( j,k) 2 E

where
�
�b jk

�
> 0. We will adopt its linearization around the operating point as our model:

Pjk(t) = |Vj||Vk|
�
�b jk

�
sin
�
q 0

j �q 0
k
�

| {z }
P0

jk

+ Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E
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where Tjk := |Vj||Vk|
�
�b jk

�
cos
⇣

q 0
j �q 0

k

⌘
are called stiffness coefficients. Hence

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (8.12)

The coefficient Tjk measures power exchange over line ( j,k) with respect to changes in phase angles.

The model has three components (see Figure 8.1): (i) a turbine-governor that produces the mechan-
ical power pM

j (t) based on the setpoint u j(t); (ii) a power generator that converts the mechanical power
output pM

i (t) of the turbine-governor into electric power that serves the local load �s j(t) and injects
power Âk Pjk(t) into the transmission system; and (iii) two feedback control mechanisms for primary and
secondary frequency control. It describes the dynamics of the incremental variables Dq j, Dw j, etc.

Figure 8.1: A schematic diagram of generating unit j, its setpoint u j(t), local injection s j(t), and line
power Pjk(t) to the transmission system.

8.3.2 Primary control

Turbine-governor model. A second-order model of the turbine-governor with droop control is:

Tg j ȧ j = �a j(t) + u j(t)�
Dw j(t)

R j
, j 2 N

Tt j ṗM
j = �pM

j (t) + a j(t), j 2 N

where the states a j(t) and PM
j (t) are the valve position and mechanical power output of the turbine respec-

tively. The constant R j is called a regulation constant or a droop constant. The term �w j(t)/R j increases
the valve position when the frequency drops below w0 and decreases it otherwise. This is referred to as
the droop control or the primary frequency control. This model makes several simplifying assumptions,
e.g., it ignores the saturation of the valve position a j(t), but is reasonable when the frequency deviation
Dw j(t) is small.

We define
⇣

a0
j ,P

M0
j

⌘
to be the equilibrium point, defined by ȧ j = ṗM

j = 0, when frequency deviations

Dw j(t) = 0 and setpoint u j(t) = u0
j is the optimal dispatch, i.e.,

pM0 = a0
j = u0

j , j 2 N
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Then the incremental variable
⇣

Da j,DPM
j

⌘
:=
⇣

a j�a0
j , PM

j �PM0
j

⌘
satisfies the same equations:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (8.13a)

Tt j D ṗM
j = �DpM

j (t) + Da j(t), j 2 N (8.13b)

This incremental model is what we will use. The block diagram representation of (8.13) is in Figure 8.2.

Figure 8.2: Block diagram in Laplace domain of the turbine-governor dynamic (8.13).

As we will see in Chapter 8.3.3 the setpoint adjustment Du j(t) is changed by the secondary control at a
much slower timescale (several minutes) than that of the primary control (approximately 30 secs). Hence
a quasi steady-state of (8.13) is defined by a constant value of the setpoint adjustment Du j(t) = Du j. In
this steady state, the frequency deviation Dw⇤j is generally nonzero and the incremental mechanical power
output DpM⇤

j is related to the frequency deviation by

DpM⇤
j = Da⇤j = Du j �

1
R j

Dw⇤j , j 2 N

Remark 8.5. The time constants Tgi,Tti characterize the responsiveness of the governor and turbine re-
spectively to a change in their input. Typical value of Tgi and Tti are approximately 0.1 second and 0.5
second respectively. Since the governor responds much faster than the turbine the model is sometimes
simplified to a first-order model

Tt j DṗM
j = �DpM

j (t) + Du j(t)�
Dw j(t)

R j
, j 2 N

Generator model. The frequency deviation Dw j(t) is determined by the rotating speed of a generator
driven by the mechanical power output pM

j (t) of the turbine. A dynamic model of the generator in terms
of the incremental variables is:

Dq̇ j = Dw j(t), j 2 N (8.14a)

MjDẇ j + D jDw j(t) = DpM
j (t) + Ds j(t) � Â

k: j⇠k
DPjk(t), j 2 N (8.14b)
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Figure 8.3: Block diagram in Laplace domain of the generator dynamic (8.14). Buses adjacent to bus j
are labeled 1, . . . ,n j.

where Ds j(t) is the deviation of the uncontrollable injection from its prediction s0
j and DPjk(t) are the

incremental line flows given by (8.12). The block diagram representation of (8.14) is in Figure 8.3. Here
Mj is the inertia constant of generator j, and D j is the sum of damping constant of generator j and the
frequency sensitivity of motor-type injection at bus j, as we now explain.

If s j(t) < 0 represents a load, a common model consists of both frequency sensitive load s1 j

⇣
w0

j +w j(t)
⌘

such as a motor and frequency insensitive load s2 j(t) due to the switching on or off of an electrical device
that draws a specified amount of power. Approximate the frequency sensitive load by its linear approx-
imation s1 j

�
w0�+ ∂s1 j

∂w j

�
w0�Dw j(t) and write the frequency insensitive load as s2 j(t) = s0

2 j + Ds2 j(t).

Then the deviation ∂s1 j
∂w j

�
w0�Dw j(t) of the frequency sensitive load is absorbed into D jDw j(t) in (8.14b).

The uncontrollable load s j(t) is then the sum of the remaining terms:

s j(t) =
⇣

s1 j
�
w0�+s0

2 j

⌘

| {z }
s0

j

+ Ds2 j(t)| {z }
Ds j(t)

In summary the primary frequency control is modeled by (8.12) (8.13) (8.14) reproduced here:

Tg j Dȧ j = �Da j(t) + Du j(t) �
Dw j(t)

R j
, j 2 N (8.15a)

Tt j D ṗM
j = �DpM

j (t) + Da j(t), j 2 N (8.15b)

MjDẇ j + D jDw j(t) = DpM
j (t) + Ds j(t) � Â

k: j⇠k
DPjk(t), j 2 N (8.15c)

DPjk(t) = Tjk
�
Dq j(t)�Dqk(t)

�
, ( j,k) 2 E (8.15d)

Dq̇ j = Dw j(t), j 2 N (8.15e)
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This closes the droop control loop. The block diagram representation combines those in Figures 8.2 and
8.3. It is shown in Figure 8.4. The input to the system are external disturbance Ds j(t) at each each

Figure 8.4: Block diagram of primary frequency control (8.15). Buses adjacent to bus j are labeled
1, . . . ,n j.

generator j and the adjustment Du j(t) to the dispatch setpoint. Since the secondary control that updates
the setpoint operates at a much slower timescale than the primary frequency control timescale, we can
understand the behavior of the (quasi) steady state of the primary control by assuming a constant setpoint
adjustment Du j(t) = Du j.

Consider then a step disturbance in the uncontrollable injection where Ds j(t) changes at time t = 0
from 0 to a constant value Ds j. We say that x⇤ :=

�
Dw⇤,DP⇤,Dq ⇤,Da⇤,DpM⇤� is an equilibrium point of

(8.15) driven by the step change Ds and constant setpoint Du j if, at x⇤,

Dẇ j = Dȧ j = DṗM
j = 0, j 2 N

We do not require Dq̇ = 0 in the definition of equilibrium point. Indeed Dq̇ is generally nonzero when
primary control converges. Recall the bus-by-line incidence matrix C defined by:

Cjl :=

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i

0 otherwise
, j 2 N, l 2 E

The next result calculates the equilibrium frequency and line flows (its proof is left as Exercise 8.1). It
motivates secondary control discussed in Chapter 8.3.3.

Theorem 8.1 (Steady state of primary control). Suppose the network is connected. If x⇤ is an equilibrium
point of (8.15) driven by a step changes Ds and constant setpoints Du then:

1. Local frequency deviations converge to a new value equal to the total disturbance divided by the
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system damping:5

Dw⇤j = Dw⇤ := Âk (Duk +Dsk)

Âk (Dk +1/Rk)
, j 2 N

2. Line flow deviations converge to

DP⇤ = TCT L† (Du + Ds � Dw⇤d)

where T := diag(Tjk,( j,k) 2 E), L† is the pseudo inverse of the Laplacian matrix L := CTCT , and
d := (D j +1/R j, j 2 N).

Remark 8.6. 1. Intuitively the larger the disturbance or the smaller the system damping, the larger will
frequency deviation Dw⇤ be. Theorem 8.1 clarifies precisely the simple relationship among them.
Droop control R j adds to the system damping and reduces frequency deviation.

2. The theorem says that frequency can be restored to the operating-point value, i.e., Dw⇤ = 0, only if
we change the setpoints so that the total setpoint changes cancel out the total disturbances

Â
k

(Duk +Dsk) = 0

3. To restore all line flows, i.e., DP⇤ = 0, requires canceling disturbances locally at each bus,

Duk +Dsk = 0, k 2 N

The next example illustrates a benefit of interconnecting multiple areas.

Example 8.2 (Interconnected system). Consider N + 1 balancing areas each modeled as a single bus.
Suppose Du j = 0 for all areas j and that there is a step change of the uncontrollable injection where Ds j(t)
changes at time 0 from 0 to a value Ds j. Suppose Ds j are independent random variables with mean Ds̄ j
and variance n2

j . We will evaluate the equilibrium frequency deviation Dw⇤ using Theorem 8.1 when the
primary frequency control converges.

Case 1: Independent operation. Suppose these buses are not connected. Then the equilibrium frequency
deviation in each area j is

Dw⇤j =
Ds j

d j
, j 2 N

where d j := D j +1/R j with mean Ds̄ j/d j and variance n2
j /d2

j .

Case 1: Interconnected system. Suppose these buses are connected. Then the equilibrium frequency
deviation for the entire interconnected system is

Dw⇤ =
Â j Ds j

Â j d j
=

1
N +1 Â

j

Ds j

d̂

5We abuse notation to use Dw⇤ to both denote a scalar and the vector whose entries are all Dw⇤. The meaning should be
clear from the context.



368 Draft: PSA December 13, 2024

where d̂ := Â j d j/(N +1) is the average system damping. Define the average mean and variance of Ds j
respectively:

Dŝ :=
1

N +1 Â
j

Ds̄ j, n̂2 :=
1

N +1 Â
j

n2
j

Then the mean and variance of Dw⇤ are respectively

mean(Dw⇤) =
Dŝ
d̂

, var(Dw⇤) =
1

N +1
n̂2

d̂

The simple case when the random variables Ds j are i.i.d. (independently and identically distributed)
with mean Ds̄1 and variance n2

1 . Suppose also d j = d1 for all j. Then Dŝ = Ds̄1, n̂2 = n2
1 , and d̂ = d1.

Hence the mean of the interconnected system is the same as that of each area in independent operation,
but the variance is reduced by a factor of N +1. The bigger the interconnection, i.e., larger N, the smaller
the variance in equilibrium frequency deviation Dw⇤.

8.3.3 Secondary control

The first objective of the secondary control is to restore system frequency, i.e., to drive Dw(t) to zero.
The second objective is to restore line flows to their scheduled values, i.e., to drive DP(t) to zero. This
is less important and sometimes not pursued for an island system managed by a single operator. In an
interconnected system consisting of multiple areas managed by separate operators the interchanges of tie-
line power between areas have financial implications. Such a system usually operates under the principle
that (i) each area absorbs its own load changes, and (ii) scheduled tie-line flows are maintained. If each
bus in (8.15) models an entire area this requires driving DP(t) to zero.

Theorem 8.1 suggests that the objectives of the secondary control can only be achieved by adjusting
the setpoints u(t) of the generators to cancel the disturbances (see Remark 8.6). Suppose each bus j in
(8.15) represents an area and the setpoint adjustment Du j(t) represents an aggregate adjustment that will
then be shared by all generators in area j that participate in the secondary control. The adjustment is based
on the area control error (ACE) which is a weighted sum of frequency and line flow deviations:

ACE j(t) := Â
k: j⇠k

DPjk(t) + b jDw j(t), j 2 N

where b j > 0 is called a frequency bias setting. The setpoint adjustment Du j(t) integrates ACE j in order
to drive it to zero:

Du̇ j = �g j

 

Â
k: j⇠k

DPjk(t) + b jDw j(t)

!
, j 2 N (8.16)

The computation (8.16) requires real-time measurement of tie-line flow deviations DPjk(t) with all neigh-
boring areas k. This information is sent to area j’s system operator which centrally computes the aggre-
gate adjustment Du j(t) for the entire area using (8.16). It then dispatches in real time setpoint adjustments
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a jiDu j(t) with a ji � 0 and Âi a ji = 1 to participating generators i in area j. The weights a ji are called
participation factors.

In summary the primary and secondary frequency control in area j is modeled by the system (8.15)
(8.16). It is driven by the uncontrollable injection Ds j(t) and consists of two feedback control mech-
anisms, the droop control with regulation parameter R j and setpoint adjustment based on ACE j(t). Its
block diagram is shown in Figure 8.5.

Figure 8.5: Block diagram of primary and secondary frequency control (8.15) (8.16) in area j.

To understand the behavior of the entire interconnected system it is convenient to write (8.15) (8.16)
in vector form:

Tg Dȧ = �Da(t) + Du(t) � R�1Dw j(t) (8.17a)
Tt DṗM = �DpM(t) + Da(t) (8.17b)

MDẇ + DDw(t) = DpM(t) + Ds(t) � CDP(t) (8.17c)
DP(t) = TCT Dq(t) (8.17d)

Dq̇ = Dw(t) (8.17e)
Du̇ = �G(CDP(t) + BDw(t)) (8.17f)

where Tg,Tt ,T,G,B are diagonal gain matrices, R is the diagonal matrix of droop parameters, M,D are
diagonal matrices of generator parameters, and C is the (N +1)⇥M incidence matrix.

Consider a step change in uncontrollable injection where Ds(t) changes at time 0 from the 0 vector to
a constant vector Ds . We say that x⇤ :=

�
Du⇤,Dw⇤,DP⇤,Dq ⇤,Da⇤,DpM⇤� is an equilibrium point of (8.17)

driven by the step change Ds if, at x⇤,

Du̇ = Dẇ = Dȧ = DṗM = 0

Note that we do not require Dq̇ = 0 in the definition of equilibrium point. The next result proves that
indeed the objectives of the secondary control are achieved (its proof is left as Exercise 8.2).6 Furthermore
Dq̇ = Dw⇤ = 0 in equilibrium when frequency deviation is driven to zero.

6Even though Theorem 8.2 asserts that Dw⇤ = 0, in practice, it is possible that the frequency is not restored to w0 even
when ACE’s are driven to zero. This is because models are only approximations of reality.
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Theorem 8.2 (Steady state of secondary control). Suppose the network is connected. If x⇤ is an equilib-
rium point of (8.17) driven by a step change Ds then:

1. Frequencies are restored to w0 and Dw⇤ = 0.

2. Line flows are restored to their scheduled values P0 and DP⇤ = 0.

3. Disturbances are compensated for locally at each bus Du⇤+Ds = 0.

8.4 Economic dispatch and LMP

The DC power flow model (4.55) of Chapter 4.6.2 is widely used in electricity market operation. In this
section we illustrate its use for optimally scheduling generations to meet demands and pricing electricity.
This is called a DC optimal power flow problem, or economic dispatch, where the goal is to minimize a
certain cost subject to generation limits and operational constraints. The properties of optimal schedule
and electricity prices can all be derived from the power flow equations (4.55) and the optimality condition
for economic dispatch ((8.23) below).

Optimal power flow is studied in detail in Chapter 9. We study economic dispatch in this section
assuming all problem parameters are known. We discuss different formulations in Chapter 14.1 when
some of these parameters, such as renewable generations and undispatchable loads, are uncertain.

8.4.1 DC power flow model

Consider a power network modeled by the DC power flow model summarized here (see Chapter 4.6.2 for
details). The network is represented by a connected graph G = (N,E) of N + 1 nodes and M := |E| lines
where N := {0}[N, N := {1,2, . . . ,N} and E ✓ N⇥N. We assume there are no self-loops, i.e., ( j, j) 62 E
for any j 2N. We endow the graph with an arbitrary orientation and we refer to a line in E by ( j,k), j⇠ k,
or j! k interchangeably. With respect to this graph orientation, let C denote the (N + 1)⇥M incidence
matrix defined in (4.11) and reproduced here:

Cjl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

Each line l := ( j,k) 2 E is parametrized by its susceptance bl > 0. Let B := diag(bl, l 2 E) � 0 be the
diagonal matrix of (weighted) line susceptances. The Laplacian matrix L associated with G is defined to
be

L := CBCT (8.18)

The (N + 1)⇥ (N + 1) Laplacian matrix L is real symmetric with zero row and column sums. Since the
network is connected, rank(L) = N and its null space is span(1). Properties of L are studied in Chapter
4.6.1.
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We assume without loss of generality that there is a single controllable unit j at each bus j (including
multiple units at the same bus is straightforward). Let p j represent the net real power injections at buses j.
A unit can be a generator, a load, or a prosumer that can both generate and consume. We will sometimes
call j a generator bus if p j > 0 and a load bus if p j < 0, even though the unit at bus j can be a prosumer.
The real power flows P on the lines induced by the nodal injections p are given by

P = BCTL† p

where L† is the pseudo-inverse of the Laplacian matrix L. To simplify notation we define the (N +1)⇥M
matrix S that maps line variables to nodal variables:

S := L†CB s.t. P = STp (8.19)

The matrix S has zero row sums, 1TS = 1TL†CB = 0 (Theorem 4.13). It maps line congestion prices to
nodal congestion prices, as we will see in Chapter 8.4.3.2. The matrix S or its transpose ST is referred to as
a shift factor, an injection shift factor, or a power transfer distribution factor, because P = STp describes
how nodal injections impact line flows. We know from Chapter 4.6.2 that (8.19) is valid if and only if the
injection p satisfies

1Tp = 0 (8.20)

In our context this means that supply and demand must be balanced.

8.4.2 Welfare maximization and LMP

Let f j(p j) denote the cost function of unit j, i.e., f j(p j) models the generation cost at a generator bus
with p j � 0 and � f j(p j) models the utility of consuming �p j � 0 at a load bus. We assume f j are
differentiable. For a generator j, f 0j(p j) represents the marginal cost at production level p j whereas for a
load bus, f 0j(p j) represents the marginal utility at consumption level p j. To simplify exposition we often
do not differentiate between a generator and a load in which case we will refer to f 0j(p j) as the marginal
cost. Let pmin

j < pmax
j be the generation/consumption limits. Let p := (p j, j 2 N) and (pmin, pmax) :=

(pmin
j , pmax

j ,2 N).

Welfare maximization. The problem of economic dispatch is to schedule generation and consumption
levels p that minimize the total dispatch cost Â j f j(p j) subject to three constraints. The power must be
balanced as required in (8.20). The generation or consumption levels must respect their capacity limits:

pmin  p  pmax

Finally the power flow Pjk on each line j! k 2 E is directional (i.e, Pjk < 0 means power flows from
buses k to j). There are line capacity limits Pmin

jk < 0 < Pmax
jk in each direction and the line flows P = STp

induced by p must lie within line limits:

Pmin  P = STp  Pmax
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Economic dispatch is the following problem that chooses p to minimize the total dispatch cost subject to
capacity limits, nodal power balance, and line limits:7

min
pminppmax Â

j2N
f j(p j) (8.21a)

subject to 1Tp = 0 [g] (8.21b)

Pmin  STp  Pmax [k�,k+] (8.21c)

where S is defined in (8.19). This problem is also called a social welfare optimization. The optimization
variable p in (8.21) is called a primal variable. Associated with the scalar constraint (8.21b) is a scalar g 2
R called a dual variable or a Lagrange multiplier. Similarly, associated with the pair of vector constraints
in (8.21c) is a pair of vector dual variables or Lagrange multipliers (k�,k+) 2 R

2M. We use k to denote
the difference k := k� � k+. When there is no danger of confusion we also use k to denote the pair
k := (k�,k+) depending on the context.

Locational marginal price l ⇤. Given any dual variable (g,k) define the (N +1)-vector:

l := l (g,k) := g1 + Sk 2 R
N+1 (8.22)

where k := k��k+ and S := L†CB. The system operator solves (8.21) to determine an optimal dispatch
p⇤ and an associated (dual optimal) Lagrange multiplier (g⇤,k⇤). It computes l ⇤ := l (g⇤,k⇤) based on
the Lagrange multiplier. The vector l ⇤ is called a locational marginal price (LMP) or nodal price (vector),
and used to price electricity: a generator that provides p j > 0 amount of electricity will be paid l ⇤j p j by
the system operator and a load that consumes�p j > 0 amount of electricity will pay�l ⇤j p j to the system
operator. Besides setting the energy prices l ⇤, in many North American markets, the system operator also
makes binding dispatch decisions, i.e., unit j will be required to generate/consume the amount p⇤j obtained
from the socially optimal p⇤. In other markets, however, units may make their own injection decisions p
and pay the LMPs l ⇤. As we will see these two approaches are equivalent in theory because the LMP
l ⇤ is incentive compatible, i.e., it is in the best interest of individual units to choose the socially optimal
injections by setting p j = p⇤j .

KKT condition. We will study basic optimization theory in Chapter 7. For now it suffices to know
that, if the cost functions f j are convex and the economic dispatch (8.21) has a finite optimal value, then
there exist optimal Lagrange multipliers (g⇤,k�⇤,k+⇤) and hence an LMP l ⇤ such that a dispatch p⇤

is optimal for (8.21) if and only if p⇤ and (g⇤,k�⇤,k+⇤) satisfy what is called the Karush-Kahn-Tucker
(KKT) condition (the Slater Theorem 7.15 of Chapter 7.3.4):

1. Primal feasibility: pmin  p⇤  pmax, 1Tp⇤ = 0, Pmin  STp⇤  Pmax.

2. Dual feasibility: k�⇤ � 0, k+⇤ � 0.

7The problem (8.21) is often referred to as DC OPF in the literature and economic dispatch often refers to the special case
that does not impose the line limit (8.21c). We do not make this distinction.
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3. Stationarity:

f 0j(p⇤j)

8
<

:

= l ⇤j if pmin
j < p⇤j < pmax

j
> l ⇤j only if p⇤j = pmin

j
< l ⇤j only if p⇤j = pmax

j

(8.23a)

4. Complementary slackness:

�
k�⇤

�T⇣STp⇤
⌘

= 0,
�
k+⇤�T

⇣
STp⇤ �Pmax

⌘
= 0 (8.23b)

As we will see in Chapter 8.4.3 all properties of optimal dispatch p⇤ and associated LMP l ⇤ are conse-
quences of the DC power flow model represented by (8.18)(8.19) and the KKT condition (8.23).

Remark 8.7 (Reference buses). The formulation here uses the pseudo-inverse L† of the Laplacian matrix L
in the shift factor S := L†CB, the line flow constraint (8.21c), and the LMP l ⇤ in (8.22). Alternatively one
can designate a bus as a reference bus for injections and prices (slack bus) and a potentially different bus
for voltage angle, obtain a submatrix L̂ of L that is invertible, and define a reduced shift factor Ŝ := L̂�1ĈB
in terms of L̂�1. The choice of reference buses does not change the optimal dispatch p⇤ nor the LMP l ⇤
(but can change the Lagrange multiplier g⇤), and seems unnecessary; see Chapter 8.4.3.4.

Example 8.3 (Two-bus network). Consider two buses connected by a line with susceptance b so that

C :=


1
�1

�
, B :=

⇥
b
⇤

(8.24)

At each bus j, j = 1,2, suppose there are:

• A generator with a strictly convex increasing cost function f j(p j) = 1
2c j p2

j with c1 < c2 and 0 
p j  pmax

j , i.e., generator 1 is cheaper than generator 2.

• A fixed and given load d j > 0.

Let p := (p1, p2) and d := (d1,d2).

1. Compute the Laplacian L and its pseudo-inverse L†.

2. Write down the social welfare optimization (8.21) and the KKT condition (8.23).

3. Compute optimal dispatch p⇤, LMP l ⇤, and the resulting line flow P⇤.

Solution. The Laplacian and its pseudo-inverse are respectively (Exercise 4.19):

L := CBCT = b


1 �1
�1 1

�
, L† =

1
4b


1 �1
�1 1

�
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The social welfare maximization (8.21) problem is:

min
0ppmax

2

Â
j=1

f j(p j) (8.25a)

subject to 1T(p�d) = 0 [g] (8.25b)

�Pmax  BCTL†(p�d)  Pmax [k�,k+] (8.25c)

where Pmax > 0 is the line limit and the line flow P from buses 1 to 2 is

P := BCTL†(p�d) =
1
2
⇥
1 �1

⇤
(p�d) =

1
2
((p1�d1)� (p2�d2)) (8.26)

The optimal dispatch p⇤ and Lagrange multipliers (g⇤,k�⇤,k+⇤) are given by the KKT condition (8.23):
primal feasibility, dual feasibility, and

f 0j(p⇤j)

8
<

:

= l ⇤j if 0 < p⇤j < pmax
j

> l ⇤j only if p⇤j = 0
< l ⇤j only if p⇤j = pmax

j

ST(p⇤ �d⇤)

8
<

:

= �Pmax if k⇤ > 0
= Pmax if k⇤ < 0
2 (�Pmax,Pmax) only if k⇤ = 0

where k⇤ := k�⇤�k+⇤ and S := L†CB. For simplicity, we will suppose 0 < p⇤j < pmax
j so that f 0j(p⇤j) = l ⇤j .

Without congestion. If ST(p⇤ �d⇤) 2 (�Pmax,Pmax), then k⇤ = k�⇤ = k+⇤ = 0 and hence

Â
j

f 0�1
j (g⇤) = Â

j
d⇤j

which has a unique solution for g⇤ since f j are strictly convex. When f j(p j) = 1
2c j p2

j the optimal dispatch
and LMPs are

g⇤ =

 

Â
j

1
c j

!�1

Â
j

d⇤j , k⇤ = k�⇤ = k+⇤ = 0, l ⇤j = g⇤

p⇤j =
g⇤

c j
=

1/c j

1/c1 +1/c2
(d1 +d2) , j = 1,2 (8.27)

i.e., the generators j share the total load d1 +d2 in proportion to their 1/c j. Since c1 < c2 we have p⇤1 > p⇤2
and P⇤ > 0.

With congestion k̃⇤ 6= 0. If max{p⇤1� d1, p⇤2� d2} > Pmax where (p⇤1, p⇤2) is given in (8.27) then there
is line congestion and k̃⇤ 6= 0. Since c1 < c2 (generator 1 is cheaper), P̃⇤ = p̃⇤1 > 0 and hence the line
congestion price (optimal Lagrange multiplier) k̃+⇤ must be strictly positive and k̃⇤ := k̃�⇤ � k̃+⇤ < 0.
Complementary slackness then implies that P̃⇤ = ST(p̃⇤ �d⇤) = Pmax and

l̃ ⇤1 = g̃⇤+ 1
2

k̃⇤, l̃ ⇤2 = g̃⇤ � 1
2

k̃⇤ (8.28a)
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Therefore f 01(p̃⇤1) = l̃ ⇤1 < l̃ ⇤2 = f 02(p̃⇤2) even though p̃⇤1 may be greater or smaller than p̃⇤2. Since k̃⇤ < 0
and Â j p⇤j = Â j p̃⇤j = Â j d j, we must have p̃⇤1 < p⇤1 and p̃⇤2 > p⇤2. Power balance means

f 0�1
1

⇣
l̃ ⇤1
⌘

+ f 0�1
2

⇣
l̃ ⇤2
⌘

= d1 +d2 (8.28b)

Substituting (8.26) into P⇤ = ST(p̃⇤ �d⇤) = Pmax we have

f 0�1
1

⇣
l̃ ⇤1
⌘
� f 0�1

2

⇣
l̃ ⇤2
⌘

= 2Pmax +(d1�d2) (8.28c)

When f j(p j) = 1
2c j p2

j we have from (8.28b)(8.28c) Al̃ ⇤ = b with

A =


1/c1 1/c2
1/c1 �1/c2

�
, b1 := d1 +d2, b2 := 2Pmax +(d1�d2)

Therefore


l̃ ⇤1
l̃ ⇤

�
=


c1(d1 +Pmax)
c2(d2�Pmax)

�
,


p̃⇤1
p̃⇤2

�
=


d1 +Pmax

d2�Pmax

�
, P̃⇤ = Pmax

i.e., p̃⇤1 + p̃⇤2 = d1 +d2 and the line flow is P̃⇤ = p̃⇤1�d1 =�(p̃⇤2�d2). Using (8.28a), we have

g̃⇤ =
1
2
(l̃ ⇤1 + l̃ ⇤2 ) =

1
2

(c1d1 + c2d2� (c2� c1)Pmax)

k̃+⇤ = c2d2� c1d1� (c1 + c2)Pmax, k̃�⇤ = 0

8.4.3 LMP properties

We now study properties of an optimal dispatch p⇤ and the associated LMP l ⇤.

8.4.3.1 Competitive equilibrium

Consider the case where the system operator sets prices and allows generators and loads to freely choose
their injections in a way that optimizes their own surpluses. An important justification for pricing electric-
ity according to LMP is that an optimal dispatch and LMP (p⇤,l ⇤) satisfies the following properties:

1. Market clearing. The supply of equals the demand for power. This is ensured by (8.21b).

2. Capacity limits. The line flows respect their capacity constraints. This is ensured by (8.21c).

3. Welfare optimization. The pair (p⇤,l ⇤) solves the economic dispatch problem (8.21) that optimizes
social welfare.
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4. Incentive compatibility. Suppose the generators/loads are price takers, i.e., their bids will not alter
the LMP computed by the system operator. Given any generation-price pair (p j,l j) at bus j, if j is
a generator it incurs a cost f j(p j) and is paid l j p j whereas if it is a load it attains a utility � f j(p j)
and pays �l j p j. When presented with the LMP l ⇤j it is rational for the unit j to choose its level of
production/consumption so as to maximize its surplus, i.e., it chooses p j to solve

max
pmin

j p jpmax
j

l ⇤j p j � f j(p j)

The stationarity condition (8.23a) implies that the socially optimal dispatch p⇤j is a solution of indi-
vidual surplus maximization given the LMP l ⇤j . If unit j’s injection limits are not binding, then the
LMP l ⇤j equals its marginal cost f 0j(p⇤j) according to (8.23a); such a unit is called a marginal unit.
If l ⇤j > f 0j(p⇤j), then the LMP exceeds the marginal cost and therefore unit j generates at its peak
p⇤j = pmax

j . Similarly if the LMP is not sufficient to cover the marginal cost, l ⇤j < f 0j(p⇤j), then unit
j generates at its minimum p⇤j = pmin

j .

Therefore LMP l ⇤ aligns individual optimality with social optimality in that, when units are paid or
charged according to l ⇤, their individual surplus-maximizing decisions p⇤j will coincide with the optimal
dispatch the system operator would have chosen to optimize the social welfare (8.21). For this reason
(p⇤,l ⇤) is also called a competitive equilibrium.

8.4.3.2 LMP l ⇤ and line congestion price k⇤

To simplify exposition we do not distinguish between generators and loads, and refer to f j(p j) and f 0j(p j)
as costs and marginal costs. The LMP l ⇤j defined in (8.22) consists of two components:

l ⇤ := g⇤1 + c⇤ := g⇤1 + Sk⇤

where k⇤ := k�⇤ �k+⇤ and S := L†CB. We will call the first component g⇤ the energy price (g⇤ is also
called the system l ), and the second component c⇤ := Sk⇤ the nodal congestion prices, for the following
reasons.

Energy price g⇤. The first component g⇤ is the same at every bus j and equals the LMP if none of the
line constraints are binding so that k�⇤l = k+⇤

l = 0. In that case l ⇤j = g⇤ = f 0j(p⇤j) at all marginal units
j where their generation capacities are not binding. If f j are nondecreasing, when the network is not
congested, the LMP l ⇤j � 0 are always nonnegative and the same at every bus. In this case all marginal
units j produce (consume) at their common marginal costs (marginal utilities) f 0j(p⇤j) = g⇤. More generally,
g⇤ = (N +1)�1 Â j l ⇤j is the average LMPs across the network since 1TL† = 0 (Theorem 4.13).

Line congestion price k⇤ := k�⇤ � k+⇤. To understand the second component c⇤ of LMP, we first
interpret k⇤l := k�⇤l �k+⇤

l as the line congestion price or shadow price at l 2 E, for two reasons. First it is
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the marginal value of relaxing the line capacities (Pmin,Pmax): if we denote by f ⇤(Pmin,Pmax) the optimal
value of the economic dispatch problem (8.21) as a function of (Pmin,Pmax) then (see Chapter 7.3.5)

∂ f ⇤

∂Pmin
l

(Pmin,Pmax) = k�⇤l ,
∂ f ⇤

∂Pmax
l

(Pmin,Pmax) = �k+⇤
l

i.e., k�⇤l is approximately the increase in the optimal dispatch cost f ⇤ if the lower line limit Pmin
l is in-

creased (tightened) by 1 unit; and k+⇤
l is the reduction in f ⇤ if Pmax

l is increased (relaxed) by 1 unit. These
prices (k�⇤l ,k+⇤

l ) are nonnegative and at most one of them can be strictly positive due to complementary
slackness. They provide a valuation for the line capacities (Pmin

l ,Pmax
l ) in the sense that each additional

unit of line capacities will reduce the optimal cost f ⇤ by (k�⇤l ,k+⇤
l ) � 0 respectively. We therefore refer

to both the pair (k�⇤,k+⇤) and k⇤ := k�⇤�k+⇤ as line congestion prices.

Second, recall that the line flows are P = STp. Since the summands in (8.23b) are all nonpositive we
have

k�⇤l

⇣
Pmin

l �P⇤l
⌘

= 0, k+⇤
l (P⇤l �Pmax

l ) = 0, l 2 E

Complementary slackness (8.23b) implies that k⇤l is zero if line flow P⇤l is strictly within its capacity limits
(Pmin

l ,Pmax
l ). If k⇤l = �k+⇤

l < 0 then P⇤l = Pmax
l > 0 reaches the line capacity in the direction for which

Pl is defined. If k⇤l = k�⇤l > 0 then P⇤l = Pmin
l < 0 reaches the line capacity in the opposite direction.

Therefore the product �k⇤l P⇤l is always nonnegative at an optimal dispatch p⇤. We will therefore interpret
�k⇤l P⇤l � 0 as the cost of carrying line flow P⇤l on line l.

Nodal congestion price c⇤ := Sk⇤. This leads to the following justification for treating c⇤ := Sk⇤ as
the nodal congestion prices. Since P = STp, the shift factor ST = ∂P

∂ p describes the increases in line
flows for each additional units of nodal injections. Suppose the injection at bus j is increased by Dp j.
This increases the line flow at line l by S jlDp j, and thus increases the line congestion cost at line l by
�k⇤l (S jlDp j). This means that each additional Dp j of injection at j increases the congestion cost over the
network by �Âl S jlk⇤l Dp j, or equivalently, each additional Dp j of withdrawal (load) at j increases the
congestion cost over the network by

�
Âl S jlk⇤l

�
Dp j. We can therefore interpret c⇤j := Âl S jlk⇤l as the nodal

congestion price, the price to serving an additional unit of load from bus j. It is in this sense that we say
the matrix S maps the line congestion price k⇤ to the nodal congestion price c⇤.

Negative LMP l ⇤j < 0. The LMP l ⇤j = g⇤+ c⇤j is the sum of the energy price and the nodal congestion
price. Since the nodal congestion price c⇤j of serving a load at bus j can be positive or negative, the LMP at
bus j may be negative in which case a load is paid to consume or a generator pays to produce at bus j. In
addition to line congestion, LMP l ⇤j can also be negative due to generation limits (pmin, pmax). In practice
it is not uncommon for LMP to become negative, e.g., during the day time in California when there is a
lot of solar generation.
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8.4.3.3 LMP l ⇤ and merchandizing surplus

The system operator collects a payment l ⇤j (�p⇤j) from every load j and pays l ⇤j p⇤j to every generator j.
The residue

MS := �Â
j

l ⇤j p⇤i = �(l ⇤)T p⇤ (8.29)

is called the merchandizing surplus. It is left-over money with the system operator. Substitute l ⇤ =
g⇤1+Sk⇤ into (8.29) one obtains (Exercise 8.6):

MS =
�
k+⇤�TPmax +

�
k�⇤

�T
(�Pmin) (8.30)

Recall that Pmin
l < 0 < Pmax

l on each line l 2 E and (k�⇤,k+⇤) � 0. This means that every term on the
right-hand side of (8.30) is nonnegative. Therefore MS� 0, i.e., the system operator will not run cash
negative. This is called revenue adequacy. Moreover MS = 0 if and only if k�⇤l = k+⇤

l = 0, i.e., if and
only if there is no congestion in the network.

The congestion price (k�⇤l ,k+⇤
l ) induces a value k+⇤

l Pmax
l + k�⇤l (�Pmin

l ) � 0 on the line capacity
(Pmin

l ,Pmax
l ), explained in Chapter 8.4.3.2. This value is called the congestion rent of line l 2 E. The

relation (8.30) says that MS is equal to the congestion rent over the entire network. The MS is therefore
also called the congestion rent. Since the system operator is non-profit the MS is distributed to market
participants as financial transmission rights.

Using p⇤ = CP⇤ we can also express the MS in terms of optimal line flows P⇤ and the difference in
LMP at each end of a line:

MS = �(l ⇤)T CP⇤ = Â
j!k2E

�
l ⇤k �l ⇤j

�
P⇤jk

One might think that Pjk on line ( j,k) always flow from the bus with a lower LMP towards one with a
higher LMP, but this is not always the case. Recall that line flows are directional with a fixed but arbitrary
direction and hence if Pjk is defined then Pk j is not a variable in our model. The summand above consists of
the LMP difference that is opposite to the direction in which Pjk is defined. Therefore, on each line j! k,
if
⇣

l ⇤k �l ⇤j
⌘

P⇤jk > 0 then power flows towards the node with a higher LMP, but if
⇣

l ⇤k �l ⇤j
⌘

P⇤jk < 0 then
power flows towards the node with a lower LMP.

8.4.3.4 LMP l ⇤ and price reference bus

In the literature a particular bus r is sometimes designated as the price reference bus or a slack bus where it
is assumed that injections p�r at all other buses can be arbitrary and are always balanced by the injection
pr := �1Tp�r at the price reference bus r. This is often a bus with a large generator with many lines
connecting the bus to the rest of the grid so local congestion is rare. We still assume bus 0 is the reference
bus for voltage angles, i.e., q0 := 0. The price reference bus r may or may not be bus 0 (we assume r = 0
in Chapter 4.6.2 on the DC power flow model). The DC power flow equations can be rewritten in terms of
the injections p�r at non-price reference buses. It is important to keep in mind that this set of equations
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depends on the choice of the price reference bus r. We show in Theorem ?? below, however, that the
optimal dispatch and LMP (p⇤,l ⇤) do not.

To write DC power flow equations in terms of the injections p�r at non-price reference buses, let cT0 and
cTr denote the rows corresponding to the angle reference bus 0 and the price reference bus r respectively,
and C�0 and C�r denote the remaining submatrices after removing cT0 and cTr respectively form C. We will
refer to them as row 0 and row r, but for convenience they may not appear as the first or rth row of C, i.e.,
we may write C as (after possibly rearranging/relabeling rows):

C =:


cT0
C�0

�
, C =:


C�r
cTr

�

(Instead of Ĉ as in Chapter 4.6.2, we write C�0 here to emphasize the symmetry in angle and price refer-
ence buses.) Rewrite the DC power flow equation (4.55b) as (after possibly rearranging/relabeling rows):


p�r
pr

�
=


C�r
cTr

�
P, P = B

⇥
c0 CT

�0
⇤ q0

q�0

�
(8.31)

Since q0 := 0 by definition, we have the DC power flow model in terms of (C�0,C�r):

p�r = C�rP, P = BCT

�0q�0

yielding the relationship in terms of the N⇥N matrix Lr := C�rBCT

�0:

p�r =
⇣

C�rBCT

�0

⌘
q�0 =: Lrq�0 (8.32)

The matrix Lr can also be obtained from the Laplacian matrix L := CBCT by removing the column of L
corresponding to bus 0 and its row corresponding to bus r. It is not a principal submatrix of L unless r = 0
and hence L0 is symmetric but Lr is generally not. While any strict principal submatrix of L is nonsingular
(Theorem 4.13), Lr may not. This is the main disadvantage of this model.

Assuming Lr := C�rBCT

�0 in (8.32) is nonsingular. Then, given any injections p�r at non-reference
buses, the line flows are given by

P =
⇣

BCT

�0L�1
r

⌘
p�r =: STr p�r (8.33)

The matrix Sr := L�Tr C�0B is also referred to as a shift factor and it depends on the choice of the price
reference bus and the nonsingularity of Lr. The line flows P, however, do not depend on the choice of
r, i.e., P = STr p�r = STp where S := L†CB defined in (8.19) (see Exercise 8.7). The expression (8.33)
generalizes the expression P = BCT

�0L�1
0 p�0 in Lemma 4.14 of Chapter 4.6.2 which assumes that r = 0.

We now show that the economic dispatch (8.21) can be reformulated in terms of L�1
r instead of L†, but

that the optimal dispatch and LMP (p⇤,l ⇤) turn out to be independent of the choice of r.

Substituting (8.33) into (8.21), economic dispatch is equivalent to:

min
pminppmax Â

j2N
f j(p j) (8.34a)

subject to 1Tp = 0 [g] (8.34b)

Pmin  STr p�r := BCT

�0L�1
r p�r  Pmax [k�,k+] (8.34c)
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with associated Lagrange multipliers (g,k�,k+) 2 R
1+2M with k� � 0, k+ � 0. The difference between

(8.34) with a price reference bus and (8.21) without is in the line limit expression (8.34c). Since the
line flow P is independent of r, we expect the optimal dispatch p⇤ to remain the same; the exact relation
between these two formulations are clarified in Theorem 8.3. Given an optimal Lagrange multiplier vector
(g⇤,k�⇤,k+⇤), the LMP is given by

l ⇤ :=


l ⇤�r
l ⇤r

�
:= g⇤1 +


Srk⇤

0

�
(8.35)

where k⇤ := k�⇤ �k+⇤. It can be shown that a dispatch p⇤ and a Lagrange multiplier (g⇤,k�⇤,k+⇤) are
optimal for (8.35) and its dual problem if and only if (p⇤,g⇤,k�⇤,k+⇤) satisfies the KKT condition (8.23),
with the line flow STp⇤ in the primal feasibility condition and the complementary slackness condition
(8.23b) replaced by STr p⇤�r (the Slater Theorem 7.15 of Chapter 7.3.4).

The choice of the reference bus r does not affect the optimal dispatch or LMP (p⇤,l ⇤), though it
may affect the values of (g⇤,k�⇤,k+⇤). Specifically the next result implies that a dispatch p⇤ is optimal
for (8.34) with a price reference bus r if and only if p⇤ is optimal for (8.21) without designating a price
reference bus. Moreover their associated LMPs are equal. This is a consequence of the key fact that line
flows are independent of r, P = STr p�r = STp. See Exercise 8.7 for a proof.

Theorem 8.3 (Arbitrary choice of r). Suppose the cost functions f j are convex (and hence differentiable)
so that the KKT condition (8.23) is necessary and sufficient for optimality for both (8.34) and (8.21). Fix
a dispatch p⇤. Consider two sets of dual variables (g⇤,k�⇤,k+⇤) and (g̃⇤, k̃�⇤, k̃+⇤) that satisfy

g̃⇤ = g⇤ � sTr k⇤, k̃�⇤ = k�⇤, k̃+⇤ = k+⇤ (8.36)

where k⇤ := k�⇤�k+⇤ and sTr denotes row r of S := L†CB.

1. Let l̃ ⇤ := g̃⇤1+Sk̃⇤ and l ⇤ be defined in (8.35). Then l̃ ⇤ = l ⇤.

2. The dispatch p⇤ and (g̃⇤, k̃�⇤, k̃+⇤) satisfy the KKT condition (8.23) if and only if p⇤ and (g⇤,k�⇤,k+⇤)
satisfy (8.23) with the line flow STp⇤ in the primal feasibility condition and the complementary
slackness condition (8.23b) replaced by STr p⇤�r.

Theorem 8.3 is illustrated in Exercise 8.9. Its implications are collected in the following remark.

Remark 8.8 (Theorem 8.3: implications). 1. The shift factor Sr := L�T
r C�0B in (8.33) with a price

reference bus r and S := L†CB in (8.19) without a price reference bus are related as follows (Exercise
8.7):


Sr
0

�
= S � 1N+1sTr , Sr = [S]�r�1NsTr

where sTr denotes row r of S, [S]r denotes the submatrix of S obtained by removing row r, and 1n
is the vector of all 1s of size n. Recall that each row j of S is the marginal increase in all line
flows due to an additional injection Dp j at bus j. By designating a price reference (slack) bus r, we
renormalize the shift factor Sr so that its row j is now the marginal increase due to an additional
increase at j, in excess of the marginal increase sTr due to an additional injection at r. This underlies
the relation (8.36) between the two sets of prices.



Draft: PSA December 13, 2024 381

2. The LMP l ⇤r = g⇤ in (8.35) at the reference bus r is generally not the energy price discussed in
Chapter 8.4.3.2, but the average LMP 1Tl ⇤(N +1)�1 is; see Exercise 8.8.

3. The main disadvantage of formulating the economic dispatch and LMP with a designated price
reference bus r is that the submatrix Lr is not a principal submatrix of the Laplacian L and therefore
may be singular (unless r = 0, i.e., the price reference bus is the same as the angle reference bus).
The resulting DC power flow equations and the shift factor Sr will depend on the choice of r and the
nonsingularity of Lr. In contrast the DC power flow model (4.55c) in terms of L† and the shift factor
S in (8.19) do not. Furthermore the LMP l ⇤ decomposes into an energy price g̃⇤ and congestion
prices c⇤ := Sk̃⇤, but not in terms of (g⇤,k⇤) in (8.35).

8.5 Voltage control with batteries

As distributed generations such as rooftop solar and large loads such as electric vehicles grow on distribu-
tion systems, the voltage limits on a feeder can be frequently violated. One way to stabilize voltages is to
install batteries on the feeder. In this application we are given a set of battery locations and have to decide
the optimal energy capacity for each battery and its optimal charging/discharging rate during operation.

Consider a feeder modeled by a graph G := (N,E) where N is the set of buses i = 0,1, . . . ,N, and
E ✓ N⇥N is a set of distribution lines. Here i = 0 denotes the substation bus that supplies the feeder from
the transmission grid. Given a subset Nb ✓ N of buses where batteries will be installed. Consider a typical
day divided into time periods t 2 T : {1, . . . ,T}. Let w 2W denote random samples defined over a suitable
probability space. Let the following parameters be given:

• vref
i : the nominal voltages at buses i 2 N;

• ci: the unit cost of battery capacities installed at buses i 2 N; and

• (pi(t;w),qi(t;w)): the random real and reactive injections at non-substation buses i 2 N \ {0} at
each time t 2 T .

Let Bi � 0 be the battery capacity to be installed at bus i which must be determined before the realization
of random generations and demands in the typical day. We assume that, after the batteries are installed,
the random w is realized at the beginning of the typical day. Let the optimization variables that represent
charging/discharging operation be: for each t 2 T , w 2W,

• ui(t;w): the charging (when ui(t;w) � 0) or discharging (when ui(t;w)  0) rate of the battery at
bus i at time t so that the net real injection at bus i is pi(t;w)�ui(t;w) at time t. The rate is bounded
with a given interval:

ui  ui(t;w)  ui (8.37a)
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• bi(t;w): the battery’s state of charge (amount of energy) at bus i at time t that evolves according to:

bi(t +1;w) = bi(t;w)+ui(t;w), 0  bi(t;w)  Bi (8.37b)

This means in particular that if bi(t;w) = 0 then ui(t;w)� 0 and if bi(t;w) = Bi then ui(t;w) 0.

• vi(t;w): the voltage magnitude at bus i at time t that must satisfy given limits:

vi  vi(t;w)  vi (8.37c)

• x(t;w): the vector of other state variables on the grid such as line current and power flows.

The power flow equation is represented by

f (p(t;w)�u(t;w),q(t;w),v(t;w),x(t;w)) = 0, 8t 2 T, 8w 2W (8.38)

where p(t;w) := (pi(t;w), i 2 N) denotes the vector of real injections, and similarly for the other vec-
tor quantities. Let y(t;w) := (p0(t;w),q0(t;w),u(t;w),b(t;w),v(t;w),x(t;w)), including the substation
injections (p0(t;w),q0(t;w)).

The problem can then be formulated as a two-stage stochastic optimization with recourse where the
first-stage decision is battery capacities B and the second-stage decision is the operation variables y(t;w).
Given (B;w) the second-stage problem is

Q(B;w) := min
y(t;w)

Â
t

Â
i

���vi(t;w)� vref
i

���
2

s.t. (8.37)(8.38) (8.39)

where the objective is to minimize the deviation of voltage magnitudes from their nominal values. The
two-stage problem minimizes the weighted sum of infrastructure cost Âi ciBi and the expected voltage
deviation EwQ(B;w):

min
B�0 Â

i
ciBi + g EwQ(B;w)

where the value function Q(B;w) is given by (8.39).

8.6 Bibliography

There are many excellent texts on various aspects of power system operations in much more detail than this
book, e.g., [1, 3, 2]. Automatic generation control that encompasses voltage control and load frequency
control is discussed in detail in e.g. [1, Chapter 11], [94].
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8.7 Problems

Chapter 8.3

Exercise 8.1 (Primary frequency control). Proof Theorem 8.1.

Exercise 8.2 (Secondary frequency control). Proof Theorem 8.2.

Exercise 8.3 (Optimality of primary frequency control). Formulate underlying optimization problem
solved by primary frequency control (c.f. Changhong2014TAC).

Exercise 8.4 (Optimality of secondary frequency control). Formulate underlying optimization problem
solved by secondary frequency control (c.f. LinaCZ paper).

Chapter 8.4

Exercise 8.5 (3-bus network). Recall the conversion matrix GT defined in (1.11) and reproduced here:

GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

Treat GT as the incidence matrix of the 3-node network in Figure 1.9(b). Assume line susceptances bl = 1
for all l.

1. Show that the Laplacian matrix L := GTG and its pseudo-inverse L† are

L =

2

4
2 �1 �1
�1 2 �1
�1 �1 2

3

5 , L† =
1
9

L

2. Show that the shift factor S := L†GTB = 1
3GT.

3. Show that line flows P = 1
3Gp and LMP l = g1+ 1

3GTk .

Exercise 8.6 (Merchandizing surplus). Prove (??).

Exercise 8.7 (Theorem 8.3: proof). This exercise proves Theorem 8.3 step by step. Consider the DC power
flow model (8.33) and the economic dispatch formulation (8.34) in terms of Sr := L�Tr C�0B. Assume L�1

r
exists so Sr is well defined.
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1. Show that P = STr p�r = STp where S := L†CB is defined in (8.19), i.e., the line flows P given in
(8.33) are independent of the choice of the price reference bus r.

2. Show that Sr is related to S as:


Sr
0

�
= S � 1N+1sTr , Sr = [S]�r�1NsTr

where sTr denotes row r of S, [S]r denotes the submatrix of S obtained by removing row r, and 1n is
the vector of all 1s of size n, i.e., Sr is obtained from the submatrix [S]�r of S by subtracting row r
from every row in [S]�r.

3. Prove Theorem 8.3 using parts 1 and 2.

Exercise 8.8 (Energy price). Use (8.35) to show that Â j l ⇤j = (N + 1)g̃⇤ where g̃⇤ is the energy price
defined in (8.36). (This is what should be expected given that l̃ ⇤ = l ⇤ according to Theorem 8.3.)

Exercise 8.9 (Theorem 8.3: illustration). Consider the two-bus network and the economic dispatch (8.25)
of Example 8.3. An equivalent formulation is to replace the line flow BCTL†(p� d) in the line limit
(8.25c) by

�Pmax  p1�d1  Pmax

This is equivalent to using (8.25b) to eliminate p2 from BCTL†(p�d). This means that bus 2 is chosen as
the price reference bus r in the economic dispatch formulation (8.34).

1. For the formulation (8.34), calculate L2,L�1
2 ,S2 and derive expressions for LMP l ⇤.

2. Compare with the corresponding quantities in Example 8.3 and verify that the LMPs are the same
in both formulations, as asserted by Theorem 8.3.



Chapter 9

Optimal power flow

As we see in Chapter 8 optimal power flow (OPF) is a fundamental problem that underlies numerous
applications in power system operation and planning. In this chapter we study computational issues of
OPF as a general constrained optimization that takes the form

min
u,x

c(u,x) subject to f (u,x) = 0, g(u,x) 0

The cost function c may represent generation cost, voltage deviation, power loss, or user disutility. The
variable u collects control decisions such as generator commitment, generation setpoints, transformer taps,
capacitor switch status, electric vehicle charging levels, thermostatic settings, or inverter reactive power.
The variable x collects network state such as voltage levels, line currents, or power flows. The constraint
functions f ,g describe current or power balance, generation or consumption limits, voltage or line limits,
and stability and security constraints, as well as other operational requirements.

In Chapter 9.1 we use the single-phase models of Part I to formulate OPF in the bus injection model. In
Chapter 9.2 we formulate OPF in the branch flow model for radial networks and show that it is equivalent
to OPF in the bus injection model. In Chapter 9.3 we prove that OPF is NP-hard and in Chapter 9.4
we prove that a subclass characterized by a Lyapunov-like condition can be solved efficiently to global
optimality. In Chapter 9.5 we describe techniques for scaling OPF solutions. Popular algorithms for
solving OPF problems are studied in Chapter 7.5 and example applications are discussed in Chapter 8.

9.1 Bus injection model

In Chapter 9.1.1 we describe how to represent different devices in terms of their nodal power injections
and voltages (s j,Vj). The interaction of these terminal variables over the network is described by power
flow equations. We formulate in Chapter 9.1.2 OPF in the bus injection model and then express it in
Chapter 9.1.3 as a standard quadratically constrained quadratic program.

385
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9.1.1 Single-phase devices

For simplicity we will assume voltages are defined with respect to the ground and every single-phase
device is connected between its terminal (bus) and the ground. We will model the devices we encounter
by one of the following:

1. Voltage source Vj: An ideal voltage source j fixes its voltage Vj 2 C if it is uncontrollable and it
adjusts Vj if it is controllable.

2. Current source Ij: An ideal current source fixes its current I j 2C if it is uncontrollable and it adjusts
I j if it is controllable. An example current source is a load model for an electric vehicle charger
whose charging current is controllable.

3. Power source s j: An ideal power source fixes its power injection s j 2 C if it is uncontrollable and
adjusts s j if it is controllable.

4. Impedance z j: An impedance z j connected between the terminal and the ground fixes the relation-
ship between the nodal voltage and current Vj = �z jI j where the negative sign indicates that I j is
defined in the direction of ground-to-terminal.

The bus injection model studied in Chapter 4 focuses on the nodal power injections and voltages�
Vj,s j

�
of these devices. The relation among the nodal variables at each bus j is s j = VjĪ j. The nodal

variables at different buses interact with each other over the network through current balance equation
I = YV or power flow equations s j = f j(V ). We now formulate OPF for single-phase systems.

9.1.2 Single-phase OPF

Consider a single-phase network modeled as an undirected graph G := (N,E) where there are N + 1
buses j 2 N := {0,1, . . . ,N} and M lines in E. Each line ( j,k) 2 E is characterized by admittances⇣

ys
jk,y

m
jk

⌘
2 C

2 and
⇣

ys
k j,y

m
k j

⌘
2 C

2. We now explain the variables, power flow equations, cost function,
and constraints that define an OPF problem. As we will see the OPF formulation (9.5) below does not
require assumption C4.1 that ys

jk = ys
k j. It can therefore accommodate single-phase transformers that have

complex turns ratios.

OPF. Without loss of generality we first make the following assumptions and present a simple OPF
formulation:

1. The OPF involves only voltage sources and power sources.

2. There is exactly one single-phase device (voltage or power source) at each bus j. We therefore
interchangeably refer to j as a bus, a node, a terminal or a device.

We will explain below how to relax these assumptions.
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Under these assumptions, associated with each bus j is its bus (nodal) power injection s j and voltage
Vj. The vectors s := (s j, j 2 N) and V := (Vj, j 2 N) are the optimization variables. The cost function
C(s,V ) may represent the cost of generation (e.g. in economic dispatch), estimation error (e.g. in state
estimation), line loss (e.g. in volt/var control in distribution systems), and user disutility (e.g., in demand
response). For instance to minimize a weighted sum of real power generations we can use

C(s,V ) := Â
j:gens

c j Re(s j)

To minimize the total real power loss over the network we can use

C(s,V ) := Â
j

Re
�
s j
�

There are two type constraints on (s,V ). The first is power flow equations, the complex form of which
is derived in Chapter 4.2 as follows. The sending-end line currents from buses j to k in terms of V and
those from buses k to j are given in (4.1a) and reproduced here:

I jk(V ) = ys
jk(Vj�Vk) + ym

jk Vj, Ik j(V ) = ys
k j(Vk�Vj) + ym

k j Vk, ( j,k) 2 E (9.1)

The sending-end complex power flow from buses j to k and that from buses k to j are respectively (from
(4.2)):

S jk(V ) := VjĪ jk(V ) = ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

jk|Vj|2, ( j,k) 2 E (9.2a)

Sk j(V ) := VkĪk j(V ) = ȳs
k j
�
|Vk|2�VkV̄j

�
+ ȳm

k j|Vk|2, ( j,k) 2 E (9.2b)

The bus injection model in complex form is therefore (from (4.26a)):

s j = Â
k: j⇠k

S jk(V ) := Â
k: j⇠k

ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

j j |Vj|2, j 2 N (9.3)

where ym
j j := Âk: j⇠k ym

jk are the total shunt admittances incident on buses j. Instead of the complex form
(9.3), we can also use the polar form or the Cartesian form of power flow equations.

The second type of constraints on (s,V ) is operational constraints. We will consider only three con-
straints:

1. Injection limits: These can represent generation or load capacity limits and take the form:

smin
j  s j  smax

j , j 2 N (9.4a)

where smin
j , smax

j 2C are given bounds on the injections at buses j. Recall that a1 + ib1  a2 + ib2 is
a shorthand for two real inequalities a1  a2 and b1  b2.

2. Voltage limits: These are limits on voltage magnitudes:

vmin
j  |Vj|2  vmax

j , j 2 N (9.4b)

where vmin
j , vmax

j 2 R are given lower and upper bounds on the squared voltage magnitudes. We
assume vmin

j > 0 to avoid triviality.
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3. Line limits: Thermal limits can be expressed in terms of line currents
�
I jk(V ), Ik j(V )

�
in (9.1):

���ys
jk(Vj�Vk) + ym

jk Vj

���
2
 `max

jk ,
���ys

k j(Vk�Vj) + ym
k j Vk

���
2
 `max

k j , ( j,k) 2 E (9.4c)

which are quadratic inequalities in V .

Alternatively line limits can be expressed in terms of complex line power:

Smin
jk  S jk(V )  Smax

jk , Smin
k j  Sk j(V )  Smax

k j , ( j,k) 2 E

or in terms of apparent power:

|S jk(V )|  Smax
jk , |Sk j(V )|  Smax

k j , ( j,k) 2 E

where
�
S jk(V ),Sk j(V )

�
are given by (9.2). The limits on apparent power can be expressed in terms

of a degree four polynomial in V which can be converted into quadratic constraints with additional
variables (see Exercise 9.2).

Depending on the application there can be many more constraints, e.g., stability and security constraints,
ramp limits, limits on battery state of charge and charging rates. For illustration purpose we will mostly
restrict ourselves to these three types of constraints.

A simple OPF problem in the bus injection model is then

min
(s,V )

C(s,V ) s.t. (9.3)(9.4) (9.5)

Since the constraints (9.3)(9.4c) do not require assumption C4.1 that ys
jk = ys

k j, the OPF formulation (9.5)
can accommodate single-phase transformers that have complex turns ratios.

Remark 9.1 (Uncontrollable parameters and reference voltage). This is a general formulation that allows
the power injection s j and voltages Vj at every bus j to be optimization variables. If there is practically
no bound on the injection at bus j then smin

j := �•� i• or smax
j := • + i• which removes the lower or

upper bound on the function s j(V ) of V . On the other hand the inequality constraints also allow the case
where a quantity is not an optimization variable but a parameter, by setting smin

j = smax
j to the specified

value. For instance s j(V ) = smin
j = smax

j may represent a given uncontrollable constant-power load or a
given renewable generation. For the slack bus 0, unless otherwise specified, we always assume V0 := 1\0�
pu so that vmin

0 = vmax
0 = 1 and smin

0 =�•� i•, smax
0 = •+ i•. Therefore we sometimes replace j 2 N in

(9.3)(9.4) by j 2 N.

Other devices. Single-phase devices other than voltage and power sources can also be included in the
OPF formulation. For instance an electric vehicle charger can be modeled by a current source. If it is
controllable then its current I j is an additional optimization variable and it imposes a quadratic equality
constraint on (s j,Vj, I j):

s j = VjIHj
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If the current source is uncontrollable with a fixed I j, then the constraint above is a linear constraint on
(s j,Vj). A nodal impedance z j introduces a quadratic equality constraint on (s j,Vj):

s j = �
��Vj
��2

z̄ j

where the negative sign indicates that the direction of s j is ground-to-terminal through the impedance.
A nodal admittance y j, such as a capacitor tap, can be incorporated by including the the variable y j and
quadratic equality constraint on (s j,Vj,y j):

s j = �ȳ j
��Vj
��2

where the negative sign indicates that the direction of s j is ground-to-terminal through the admittance.

We assume in the OPF formulation (9.5) that each bus j has a single device with the nodal variable�
s j,Vj

�
. If multiple devices are connected to bus j in parallel with power injections s jk, k = 1, . . . ,Kj, they

introduce additional variables
�
s jk,k = 1, . . . ,Kj

�
and impose the linear constraint

s j = Â
k

s jk

Hence other devices can be incorporated and they impose local constraints at each bus j. If a devices at
bus j is controllable, it introduces an additional optimization variable u j (e.g., I j of a controllable current
source) and a local constraint of the form

f j
�
u j,s j,Vj

�
= 0, j 2 N (9.6a)

Otherwise, it does not introduce additional variable at bus j (e.g., impedance z j) and (9.6a) reduces to a
local constraint of the form f j(s j,Vj) = 0 where the local device (e.g, z j) is a parameter of the constraint
function f j. When an additional optimization variable u j is introduced, there may also be an operational
constraint on u j of the form

g j
�
u j
�
 0, j 2 N (9.6b)

Most applications indeed involve other variables in addition to (s j,Vj). For example, the unit com-
mitment problem in Chapter 8.2.1 includes binary variables to indicate if a unit will be on or off. In
distributed energy resource optimization, battery charging rates and their states of charge as well as the
temperature setpoint of a thermostat may be additional variables. In volt/var control that optimizes over
the reactive power output of an inverter given its real power input, the reactive power needs to satisfy a
sector constraint. For single-phase networks, however, we will focus on the simple OPF (9.5) and study
its computational properties. In particular we will omit variables u j and the associated local constraints
(9.6).

OPF in terms of V only. We can treat the power flow equation (9.3) as defining s j(V ) as a function of
V :

s j(V ) = Â
k: j⇠k

S jk(V ) := Â
k: j⇠k

ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

j j|Vj|2, j 2 N (9.7)
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where ym
j j := Âk: j⇠k ym

jk are the total shunt admittances incident on buses j. Using (9.1)(9.2)(9.7) for single-
phase networks, we can express powers and currents

�
s j,S jk, I jk

�
in terms of voltages V and formulate OPF

as an optimization over V only.

For instance the cost function to minimize a weighted sum of real power generations is:

C(V ) := Â
j:gens

c j Re(s j(V )) = Â
j:gens

c j Re

 

Â
k: j⇠k

ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

j j|Vj|2
!

The cost function to minimize the total real power loss over the network is:

C(V ) := Â
j

Re

 

Â
k: j⇠k

ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

j j|Vj|2
!

which can be shown to be a quadratic form C(V ) = VHRe(Y )V in terms of the admittance matrix Y
(Exercise 9.1). The total real power loss equals the total thermal (r|I|2) loss in the network lines if line
shunt admittances are reactive, i.e., if ym

jk and ym
k j are pure imaginary:

C(V ) := Â
( j,k)2E

r jk |Is
jk(V )|2

where r jk := Re
⇣

zs
jk

⌘
= Re

✓⇣
ys

jk

⌘�1
◆

is the series resistance of the line and Is
jk(V ) := ys

jk(Vj�Vk) is

the current through the series impedance of the line. All these costs are quadratic functions of V (Exercise
9.1).

For operational constraints, the voltage limits (9.4b) and the line limits (9.4c) are already quadratic
inequalities in V . We can use (9.7) to express the injection limits smin

j  s j(V )  smax
j also as quadratic

inequalities in V :

smin
j  Â

k: j⇠k
ȳs

jk
�
|Vj|2�VjV̄k

�
+ ȳm

j j|Vj|2  smax
j , j 2 N (9.8)

If we use the polar form (4.27) BIM then the injection limits become:

pmin
j  Â

k:k⇠ j

⇣
gs

jk +gm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk cosq jk +bs
jk sinq jk

⌘
 pmax

j , j 2 N

qmin
j  � Â

k:k⇠ j

⇣
bs

jk +bm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk sinq jk�bs
jk cosq jk

⌘
 qmax

j , j 2 N

For notational simplicity only, we will mostly use the complex form (9.8) as injection limits.

The simple OPF (9.5) can be equivalently formulated in terms of V only:

min
V

C(V ) s.t. (9.8)(9.4b)(9.4c) (9.9)

As mentioned before, this formulation does not require assumption C4.1 that ys
jk = ys

k j and hence can
accommodate single-phase transformers that have complex turns ratios. To avoid triviality we will assume
unless otherwise specified that OPF (9.9) is feasible.
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9.1.3 OPF as QCQP

As we have seen above the constraints in OPF (9.9) are quadratic in V . We now explain how to express
(9.9) as a quadratically constrained quadratic program (QCQP).

QCQP. A QCQP is the following problem:

min
x2Cn

xHC0x (9.10a)

s.t. xHClx  bl, l = 1, . . . ,L (9.10b)

where x 2Cn is a vector, Cl 2 Sn for l = 0, . . . ,L, are Hermitian matrices so that xHClx are real values, and
bl 2 R are given scalars. If Cl , l = 0, . . . ,L, are positive semidefinite (psd) then (9.10) is a convex QCQP.
Otherwise it is nonconvex. If xopt is optimal for (9.10), so is �xopt.

The inequality constraints (9.10b) can include equality constraints (a = b, a b, b a). Sometimes
equality constraints are specified explicitly as in

min
x2Cn

xHC0x

s.t. xHClx  bl, l = 1, . . . ,L
xHC̃lx = b̃l, l = 1, . . . , L̃

Remark 9.2 (Equivalent real QCQP). In computing a solution of (9.10), the QCQP is first converted into
a problem in the real domain. Indeed the complex QCQP (9.10) is equivalent to the following QCQP in
the real domain of twice the dimension (Exercise 9.5):

min
y2R2n

yTD0y s.t. yTDly  bl, l = 1, . . . ,L (9.11a)

where

y :=


Re(x)
Im(x)

�
, Dl :=


Re(Cl) �Im(Cl)
Im(Cl) Re(Cl)

�
, l = 0,1, . . . ,L (9.11b)

Note that Dl are symmetric matrices.

The problem (9.10) is called a homogeneous QCQP because each term, called a monomial, in the
polynomial xHClx is of degree 2. An inhomogeneous QCQP contains monomials with degree 1 and takes
the form

min
x2Cn

xHC0x +
⇣

cH0 x+ xHc0

⌘
(9.12a)

s.t. xHClx +
⇣

cHl x+ xHcl

⌘
 bl, l = 1, . . . ,L (9.12b)

Note that
�
cHl x+ xHcl

�
are real numbers. This problem can be homogenized by introducing a scalar

complex variable t 2 C because, if we set x := x̂t̄ and require |t|2 = 1 (i.e., t = eiq for some q ), then

xHClx + cHl x+ xHcl = x̂HClx̂ + cHl (x̂t̄) + (x̂t̄)Hcl =
⇥
x̂H tH

⇤Cl cl
cHl 0

�
x̂
t

�
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Hence the inhomogeneous QCQP (9.12) is equivalent to the following homogeneous QCQP with equality
and inequality constraints:

min
x̂2Cn, t2C

⇥
x̂H tH

⇤C0 c0
cH0 0

�
x̂
t

�
(9.13a)

s.t.
⇥
x̂H tH

⇤Cl cl
cHl 0

�
x̂
t

�
 bl, l = 1, . . . ,L (9.13b)

⇥
x̂H tH

⇤0 0
0 1

�
x̂
t

�
= 1 (9.13c)

If (x̂opt, topt) 2 C
n+1 is optimal for (9.13), then the product xopf := x̂optt̄opt = x̂opte�iq opt

is optimal for
(9.12).

We will hence study, without loss of generality, homogeneous QCQP (9.10) with inequality constraints.

Remark 9.3 (Real QCQP). If the variable x is in R
n instead of Cn and Cl are n⇥n real symmetric matrices,

l = 0, . . . ,L, then (9.10) is a real homogeneous QCQP:

min
x2Rn

xTC0x s.t. xTClx  bl, l = 1, . . . ,L

A real inhomogeneous QCQP

min
x2Rn

xTC0x +
⇣

cT0 x+ xTc0

⌘

s.t. xTClx +
⇣

cTl x+ xTcl

⌘
 bl, l = 1, . . . ,L

is equivalent to the following real homogeneous QCQP

min
x̂2Rn, t2R

⇥
x̂T t

⇤C0 c0
cT0 0

�
x̂
t

�

s.t.
⇥
x̂T t

⇤Cl cl
cTl 0

�
x̂
t

�
 bl, l = 1, . . . ,L

⇥
x̂T t

⇤0 0
0 1

�
x̂
t

�
= 1

in that, if (x̂opt, topt) 2 R
n+1 is optimal for the homogeneous QCQP, then xopt := x̂opttopt is optimal for the

original nonhomogeneous QCPQ (topt 2 {�1,1}).

Remark 9.4 (Linear and bilinear cost or constraints). For any l � 0, Cl = 0 corresponds to a linear cost or
constraint. It can be homogenized in exactly the same way above, i.e., (9.13) allows any of the matrices Cl
to be zero. For example, in the scalar case n = 1, a linear constraint can be homogenized by setting x := x̂t̄
and requiring |t|2 = 1, so that

cHx + xHc = cH(x̂t̄) + c(x̂t̄)H =
⇥
x̂H tH

⇤ 0 cl
cHl 0

�
x̂
t

�
, |t|2 = 1 (9.14a)
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Note that the two linear terms must be complex conjugates of each other so that they sum to a real number.
For a linear inequality dHx b where b := br + ibi is complex, we can rewrite it as two real inequalities:

1
2

⇣
dHx+ xHd

⌘
 br,

1
2i

⇣
dHx� xHd

⌘
 bi (9.14b)

The first inequality takes the form of (9.14a) with c := d/2. The second inequality takes the form of
(9.14a) with c := id/2.

A block bilinear term of the form xHCy can be homogenized as follows. For any variables (x,y) 2C
2n

and any square matrices C,D 2 C
n⇥n

xHCy + yHDx =
⇥
xH yH

⇤0 C
D 0

�
x
y

�
(9.15)

Note that C and D may not be Hermitian of each other so that the product xHCy+yHDx may be a complex
number. Its real and imaginary parts can be written as quadratic forms of (x,y) in terms of the following
Hermtian matrices respectively:

F :=
1
2


0 C +DH

CH +D 0

�
, Y :=

1
2i


0 C�DH

�CH +D 0

�

We emphasize that we convert QCQPs to their homogenized form mainly so that we can focus only
on homogeneous QCQP in our study of structural properties. In computation, one may not convert an
inhomogeneous constraint, especially a linear constraint, into a homogeneous quadratic constraint.

Example 9.1 (Polynomial cost or constraints). A polynomial can be expressed as a quadratic with auxil-
iary variables. Write the following as quadratic constraints:

1.
�
|Vj|2�1

�2  e .

2. a0x3 +a1x2 +a2x a with ai,x,a 2 C.

Solution.

1. We have
�
|Vj|2�1

�2  e if and only if there exist t j 2 C such that
�
Vj, t j

�
satisfies

��t j�1
��2  e, t j = |Vj|2

which are quadratic equality and inequality constraints that can be homogenized as discussed above.
Note that t j = V 2

j is not a quadratic form when
�
Vj, t j

�
are complex.

2. Let x =: y + iz with y,z 2 R. First convert the constraint into two real polynomial constraints in y
and z, each of the form

Â
(i, j):i+ j=3

bi jyiz j + Â
(i, j):i+ j=2

ci jyiz j + Â
(i, j):i+ j=1

di jyiz j  b

for some real coefficients bi j,ci j,di j and real b . To write this as a quadratic constraint in (y,z) 2R2,
introduce auxiliary variables t = y2, u = z2. Then write y3 = ty, y2z = tz, yz2 = yu, z3 = uz. These
quadratic expressions can then be homogenized as discussed above.
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OPF as QCQP. We now assume the cost function C(V ) := VHC0V is a quadratic form in V for some
positive semidefinite matrix C0. We can then express OPF (9.9) as a QCQP, by deriving the cost matrices
Cl underlying the quadratic constraints (9.4b)(9.4c)(9.8).

1. Injection limits: To express the injection s j in (9.8) as a quadratic form, use I = YV to write

s j = Vj IHj =
⇣

eHj V
⌘⇣

eHj I
⌘H

= eHj VVHYHe j

where e j is the (N +1)-dimensional vector with 1 in the jth entry and 0 elsewhere. Since tr(AB) =
tr(BA), we have1

s j = tr
⇣

eHj VVHYHe j

⌘
= tr

⇣⇣
YHe jeHj

⌘
VVH

⌘
=: VHYH

j V

where Yj := e jeHj Y is an (N + 1)⇥ (N + 1) matrix with its jth row equal to the jth row of the
admittance matrix Y and all other rows equal to the zero vector. Yj is not Hermitian so that VHYH

j V
is in general a complex number. Its real and imaginary parts can be expressed in terms of the
Hermitian and skew Hermitian components of YH

j defined as:

F j :=
1
2

⇣
YH

j +Yj

⌘
and Y j :=

1
2i

⇣
YH

j �Yj

⌘

Then F j and Y j are Hermitian matrices and (Exercise 9.4)

Re(s j) = VHF jV and Im(s j) = VHY jV

They will be upper and lower bounded by

pmin
j := Re smin

j and pmax
j := Re smax

j

qmin
j := Im smin

j and qmax
j := Im smax

j

These quantities will be used to rewrite below OPF as a standard QCQP of the form (9.10).

2. Voltage limits: Let E j := e jeHj denote the Hermitian matrix with a single 1 in the ( j, j)th entry and
0 everywhere else. Then squared voltage magnitude |Vj|2 = VHE jV is a quadratic form. It will be
lower and upper bounded by vmin

j and vmax
j in (9.4b) respectively.

3. Line limits: For the first set of constraints in (9.4c), use (9.1) to write

I jk = ys
jk(Vj�Vk) + ym

jkVj =
⇣

ys
jk(e j� ek)

T + ym
jk eTj

⌘
V

Hence |I jk|2 = VHŶjkV , which will be upper bounded by `max
jk , where

Ŷjk :=
⇣

ȳs
jk(e j� ek) + ȳm

jk e j

⌘⇣
ys

jk(e j� ek)
T + ym

jk eTj
⌘

The matrix Ŷjk is Hermitian and hence VHŶjkV is indeed a real number. Similarly for bounds on
|Ik j|2.

1The inner product of two complex matrices is defined to be A · B := tr(AHB) = Âi, j Ai jBi j and is not equal to tr(AB) =
Âi, j Ai jB ji unless A is Hermitian; see Exercise 9.3.
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Putting all this together, OPF (9.9) can be written as a standard QCQP

OPF : min
V2CN+1

VHC0V (9.16a)

s.t. pmin
j  VHF jV  pmax

j , j 2 N (9.16b)

qmin
j  VHY jV  qmax

j , j 2 N (9.16c)

vmin
j  VHE jV  vmax

j , j 2 N (9.16d)

VHŶjkV  `max
jk , ( j,k) 2 E (9.16e)

VHŶk jV  `max
k j , ( j,k) 2 E (9.16f)

This form will be used to derive a convex relaxation in Chapter 10.2. As mentioned above the OPF
formulation here does not require assumption C4.1 that ys

jk = ys
k j, and hence can accommodate single-

phase transformers that have complex turns ratios. To avoid triviality we will assume unless otherwise
specified that OPF (9.16) is feasible.

Instead of (9.16e)(9.16f), line limits are sometimes expressed in terms of line power flows. The next
example shows how to express such limits on real and reactive line flows as quadratic constraints. See
Exercise 9.2 on how to express limits on apparent powers |S jk(V )|, |Sk j(V )| as inhomogeneous quadratic
constraints.

Example 9.2 (Quadratic line power limit). Use (9.2) to write the line limit

Smin
jk  S jk(V ) Smax

jk , Smin
k j  Sk j(V ) Smax

k j , ( j,k) 2 E (9.17)

as quadratic forms in V .

Solution. We will rewrite the first constraint in (9.17) on S jk(V ) as a quadratic constraint; the constraint
on Sk j(V ) can be similarly converted. Using the expression of I jk, S jk(V ) in quadratic form is:

S jk(V ) = VjIHjk =
⇣

eHj V
⌘⇣

ys
jk(e j� ek)

TV + ym
jk eTj V

⌘H

= eHj
⇣

VVH

⌘⇣⇣
ȳs

jk + ȳm
jk

⌘
e j � ȳs

jkek

⌘

= tr
⇣

ỸH

jk

⇣
VVH

⌘⌘
=: VHỸH

jkV

where

Ỹjk := e j

⇣⇣
ys

jk + ym
jk

⌘
eHj � ys

jkeHk
⌘

(9.18a)

or explicitly

⇥
Ỹjk
⇤

mn :=

8
>><

>>:

⇣
ys

jk + ym
jk

⌘
m = n = j

⇣
�ys

jk

⌘
m = j, n = k

0 otherwise
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which is symmetric if and only if ys
jk = ys

k j. Ỹjk is not Hermitian and hence VHỸjkV is a complex number.
Define the Hermitian and skewed Hermitian components of Ỹjk:

F̃ jk :=
1
2

⇣
ỸH

jk + Ỹjk

⌘
and Ỹ jk :=

1
2i

⇣
ỸH

jk� Ỹjk

⌘
(9.18b)

so that

Re
�
S jk
�

= VHF̃ jkV and Im
�
S jk
�

= VHỸ jkV (9.18c)

Hence the constraint Smin
jk  S jk(V ) Smax

jk becomes a pair of quadratic constraints:

Re
⇣

Smin
jk

⌘
 VHF̃ jkV  Re

⇣
Smax

jk

⌘

Im
⇣

Smin
jk

⌘
 VHỸ jkV  Im

⇣
Smax

jk

⌘

9.2 Branch flow model: radial networks

DistFlow model. Since the branch flow model is most useful for radial networks, we first formulate OPF
in the DistFlow model that assumes:

• zs
jk = zs

k j, or equivalently ys
jk = ys

k j, for every line ( j,k) (assumption C5.1).

• ym
jk = ym

k j = 0 for every line ( j,k). This is a reasonable assumption on distribution lines where ym
jk

and ym
k j are typically much smaller in magnitude than the series admittance ys

jk.

Consider a single-phase radial network G = (N,E) with N + 1 buses and M = N lines. The assumptions
allow us to adopt a directed graph G = (N,E) and include branch variables in only one direction. We
denote a line in E from bus j to bus k either by ( j,k) 2 E or j ! k. It is characterized by its series
impedance z jk := zs

jk (we sometimes omit the superscript when there is no danger of confusion). Without
loss of generality we take bus 0 as the root of the tree.

The device models are the same as those for the bus injection model described in Chapter 9.1.1. OPF
in the branch flow model differs only in the terminal variables and power flow equations that relate them.
We use the DistFlow model (5.7) with down orientation (all lines point away from bus 0), reproduced here:

Â
k: j!k

S jk = Si j� zs
i j`i j + s j, j 2 N (9.19a)

v j� vk = 2Re
⇣

z̄s
jkS jk

⌘
� |zs

jk|2` jk, j! k 2 E (9.19b)

v j` jk = |S jk|2, j! k 2 E (9.19c)
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where, in (9.19a), bus i := i( j) denotes the unique adjacent node of j on the path from node 0 to node j,
with the understanding that when j = 0 then Si0 := 0 and `i0 := 0. The injection, voltage and line limits
are:

smin
j  s j  smax

j , vmin
j  v j  vmax

j , ` jk  `max
jk , j 2 N, ( j,k) 2 E (9.19d)

Denote by (s,v) := (s j,v j, j 2 N) 2 R
3(N+1) the bus injections and squared voltage magnitudes, and

by (`,S) := (` jk,S jk, j! k 2 E) 2R3M the squared line current magnitudes and line powers. The vector v
includes v0 and s includes s0. Let x := (s,v,`,S) in R

3(2N+1) since G is a tree. Let the cost function in the
branch flow model be C(x). Let the feasible set be

Xdf := {x := (s,v,`,S) 2 R
6N+3 | x satisfies (9.19)} (9.20a)

Then the optimal power flow problem in the branch flow model is:
OPF:

min
x

C(x) subject to x 2 Xdf (9.20b)

To avoid triviality we will assume unless otherwise specified that OPF (9.20) is feasible. We assume the
cost functions C(x) here and C(V ) in the single-phase OPF problem (9.9) or (9.16) in the bus injection
model represent the same function but in terms of different variables. Since Xdf ⌘ V by Theorem 5.2,
the single-phase OPF problem (9.20) in the branch flow model is equivalent to (9.9) or (9.16) in the
bus injection model. (See the proof of Theorem 11.2 in Chapter 11.1.2 for an explicit construction of a
bijection between Xdf and a set equivalent to the feasible set V of (9.9).)

Remark 9.5 (Current sources and impedances). The model (9.19) includes only voltage and power sources
whose controllable variables are v j and s j respectively. A current source will introduce its current I j 2 C

as an additional variable and an equality constraint |s j|2 = v j|I j|2 that relate I j to (s j,v j). An impedance
z j will introduce an equality constraint s j = �v j/zHj on (s j,v j). If z j is controllable, e.g., representing a
switched capacitor, then z j is an additional variable. For simplicity we restrict ourselves to voltage and
power sources only. (See Chapter 9.1.2 for more discussions.)

General radial network. The feasible set Xdf is based on the DistFlow equations (9.19a)–(9.19c) that
assume zs

jk = zs
k j and ym

jk = ym
k j = 0. OPF can also be formulated without these assumptions, based on the

branch flow model (5.1) that includes branch variables ` :=
�
` jk,`k j,( j,k) 2 E

�
, S :=

�
S jk,Sk j,( j,k) 2 E

�

in both directions, reproduced here:

s j = Â
k: j⇠k

S jk, j 2 N (9.21a)

|a jk|2v j� vk = 2Re
⇣

a jkz̄s
jkS jk

⌘
� |zs

jk|2` jk, ( j,k) 2 E (9.21b)

|ak j|2vk� v j = 2Re
⇣

ak j z̄s
k jSk j

⌘
� |zs

k j|2`k j, ( j,k) 2 E (9.21c)
��S jk
��2 = v j ` jk,

��Sk j
��2 = vk `k j, ( j,k) 2 E (9.21d)

ā jkv j � z̄s
jkS jk =

⇣
āk jvk � z̄s

k jSk j

⌘H
, ( j,k) 2 E (9.21e)
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where

a jk := 1+ zs
jk ym

jk, ak j := 1+ zs
k j ym

k j

The operation limits are the same as (9.19d) but include line limits in both directions:

smin
j  s j  smax

j , vmin
j  v j  vmax

j , ` jk  `max
jk , `k j  `max

k j , j 2 N, ( j,k) 2 E (9.21f)

The feasible set is

Xtree := {x : (s,v,`,S) 2 R
9N+3 | x satisfies (9.21)} (9.22a)

and the OPF problem is:
OPF:

min
x

C(x) subject to x 2 Xtree (9.22b)

Since Xtree ⌘ V by Theorem 5.2, the single-phase OPF problem (9.22) for a general radial network is
equivalent to (9.9) or (9.16) in the bus injection model, provided the cost functions C(x) here and C(V ) in
the bus injection model are the same.

9.3 NP-hardness

Since the feasible set of OPF is generally nonconvex (see e.g. (9.16)), OPF is a nonconvex problem.
Moreover OPF has been shown to be NP-hard in [95, 96, 97, 98, 99, 100, 101]. We present the result of
[97] that shows that even determining the feasibility of an OPF on a tree network is NP-hard. As hardness
results describe worst-case complexity this suggests that there are OPF instances that are hard to scale.

9.3.1 OPF feasibility on a tree network

Consider a tree network represented by a graph (N,E) with N +1 buses and M = N lines described by the
polar-form power flow equations (4.27):

p j = Â
k:k⇠ j

⇣
gs

jk +gm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk cosq jk +bs
jk sinq jk

⌘
, j 2 N

q j = � Â
k:k⇠ j

⇣
bs

jk +bm
jk

⌘
|Vj|2 � Â

k:k⇠ j
|Vj||Vk|

⇣
gs

jk sinq jk�bs
jk cosq jk

⌘
, j 2 N

We make the following assumptions:

• fixed voltage magnitudes |Vj| := 1 pu for all j 2 N;

• ys
jk = ys

k j and ym
jk = ym

k j = 0;

• ys
jk = g+ ib for all ( j,k) 2 E with g� 0, b 0.
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Assume also that each bus either has a fixed and given injection (p j,q j) or a dispatchable generation
(p j,q j) with the requirement p j � 0 (no constraint on q j). Let NL ⇢ N denote the set of fixed injections
and NG ⇢ N the set of generations. We are to determine if there are generations (p j,q j, j 2 NG) to balance
the given injections (p j,q j, j 2 NL) subject to the inequality constraints that p j � 0 for j 2 NG and a
common line limit of the form:

|q j�qk|  q , ( j,k) 2 E

for a given q 2 (0,p/2]. Exercise 9.8 shows that this constraint is equivalent to a limit on the squared
apparent line flow P2

jk + Q2
jk over q 2 (0,q). Hence the OPF feasibility problem is to find nonnegative

real power injections (p j, j 2 NG)� 0 at generation buses, voltage angles (q j, j 2 N) at all buses, and line
flows (Pjk,Q jk,( j,k) 2 E) that satisfy the following constraints

OPF feasibility: p j = Â
k: j⇠k

Pjk, q j = Â
k: j⇠k

Q jk, j 2 NL (9.23a)

p j � 0, j 2 NG (9.23b)
Pjk = g jk(1� cosq jk)�b jk sinq jk, ( j,k) 2 E (9.23c)
Q jk = �b jk(1� cosq jk)�g jk sinq jk, ( j,k) 2 E (9.23d)

|q j�qk|  q , ( j,k) 2 E (9.23e)

These constraints define the feasible set of an OPF on the tree network. An instance of the OPF feasibility
problem is specified by (NG[NL,E), (g jk,b jk,( j,k) 2 E), q 2 (0,p/2], and (p j,q j, j 2 NL).

9.3.2 OPF is NP-hard

We often say a function is computable in polynomial time (tractable) or a problem is NP hard (intractable).
We first describe these notions more precisely by summarizing basic concepts of complexity theory (see
e.g. [102] for more details). We then state the theorem that OPF feasibility problem is NP-hard.

P and NP. NP-hardness is formally defined first for language problems. Let S be a finite set of symbols
called an alphabet and S⇤ denote the set of all finite strings of symbols in S. A language L over S is any
subset of S⇤. A deterministic Turing machine (DTM) is a model for computation that takes an input s
from S⇤, performs computation (e.g., read, write, state transition), and then either halts in one of a set of
designated states or does not halt. We will focus on classes of languages L✓ S⇤ for which a DTM always
halts in one of two states, “yes” or “no” (these are called decidable decision problems). Given a DTM M,
the time complexity function cM : N+! N+ of M (N+ is the set of positive integers) is:

cM(n) := max{m : 9s 2 S⇤ with |s | = n s.t. M takes m steps to halt on s}

A DTM M is called a polynomial time DTM if there exists a polynomial p such that cM(n) p(n) for all
n 2 N+. The set

LM := {s 2 S⇤ : M halts on s in “yes” state } (9.24)
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is called the language recognized by M. The class P of languages is

P := {L✓ S⇤ : 9 polynomial time DTM M for which L = LM}

Informally the class P consists of all languages over S that are recognizable by a DTM in time upper
bounded by a polynomial in the length of the input string.

While P is meant to capture the “solvability” of a problem, NP is meant to capture the “verifiability”
of a problem, i.e., given a guess, verify if it is a solution. For many problems, it is much easier to verify if
a given candidate is a solution than computing a solution. For instance, it is difficult (NP-complete) to find
a cycle in an arbitrary graph that visits every node exactly once, but much easier to verify if a candidate
path is a solution. This is called the Hamiltonian circuit/cycle problem and is a special case of traveling
salesman problem where the distances between adjacent cities are 1. Formally, given a nondeterministic
Turing machine (NDTM) M, the time complexity function of M is:

cM(n) := max{m : 9s 2 S⇤ with |s | = n s.t. M takes m steps to halt on s in “yes” state}

If M does not halt in “yes” state for any s with |s | = n, then cM(n) := 1. (For decidable problems, which
are what we focus on, M will halt in “no” state on s .) Then M is called a polynomial time NDTM if there
exists a polynomial p such that cM(n) p(n) for all n 2 N+. The language recognized by a NDTM M is
LM as defined in (9.24) except for a NDTM M. Then

NP := {L✓ S⇤ : 9 polynomial time NDTM M for which L = LM}

Informally the class NP consists of all languages over S that are recognizable by a NDTM (or equivalently,
verifiable by a DTM) in time upper bounded by a polynomial in the length of the input string. NP contains
P as a subclass.

A function f : S⇤1 ! S⇤2 is a language L f := {(s , f (s)) : s 2 S⇤1} ✓ S⇤1⇥ S⇤2. We say a DTM M
computes f if LM = L f . Let L1 ✓ S⇤1 and L2 ✓ S⇤2 be two languages. A polynomial transformation or
polynomial reduction from L1 to L2 is a function f : S⇤1 ! S⇤2 which can be computed by a polynomial
time DTM such that, for all s 2 S1, s 2 L1 if and only if f (s) 2 L2. Note the asymmetry between L1 and
L2. A language L is NP-hard if for every L0 2 NP there exists a polynomial reduction from L0 to L. It is
NP complete if L is NP-hard and L 2 NP. NP-complete languages are in a sense the “hardest” languages
in NP.

A decision problem is a problem whose solution is either “yes” or “no”. Such a problem is defined by a
(possibly countably infinite) set P of finite instances, usually described in terms of sets, graphs, functions,
real numbers, etc. These instances are finite in the sense that each instance in P can be represented by
a finite number of symbols. Even though the specification of an instance can involve real numbers such
as
p

7/3,cos(p/3), they are typically described symbolically in terms of integers. We consider decision
problems P that can be “encoded” into language problems defined over some alphabet S. Informally, an
encoding is a mapping from P to S⇤. For any instance y2P let s(y)2 S⇤ denote the result of the mapping,
i.e., the encoding of the instance y. We sometimes refer to y or s(y) interchangeably as a decision problem
instance when the underlying encoding is understood.

Let Y ✓ P be the subset of instances of the decision problem P whose solutions are “yes”. We will
refer to Y either as a set of problem instances (from P) or simply as a problem by itself. Let LY := {s(y) :
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y 2Y}✓ S⇤ be the language defined by the instances in Y , i.e., the solution of an instance y is “yes” if and
only if its encoding s(y) 2 LY . Hardness properties of the problem (instances) Y are then defined in terms
of the hardness properties of its encoding LY . For example the problem (instances) Y is said to be in P if
LY 2 P and it is said to be NP-complete if LY is NP-complete. The OPF feasibility problem (9.23) is such
a decision problem.

Computation problems such as solving a system of equations or optimization problems can likewise be
encoded into a language L for which hardness properties can be formally defined. The hardness properties
of L then endow a computation or optimization problem with the corresponding hardness properties. A
large number of prototypical problems have been proved to be NP-complete. No polynomial time algo-
rithms are known for solving these problems. Moreover a polynomial time algorithm for solving one of
these problems will lead to polynomial time algorithms for all of them. It is in this sense that NP-complete
problems are the ”hardest” problems.

Hardness result. We can now state the hardness result.

Theorem 9.1 (OPF NP-hardness [97]). The OPF feasibility problem (9.23) is NP-hard.

Remark 9.6. 1. The OPF feasibility problem is not proved to be in the class of NP (and hence NP-
complete) because solutions of (9.23) can be irrational.

2. Consider a decision problem defined by the set P of all its instances. Each instance s (or more
precisely, the encoding s(y) of each y 2 P) has len(s), which is a measure of the size of the
specification of s , and max(s), which is a measure of the magnitude of numerical parameters of
s ((NG,NL,E,g,b,q , p j,q j, j 2 NL) in our case). Let p be a polynomial over integers and Yp ✓ P
be the set of all problem instances with max(s)  p(len(s)), i.e., Yp is the subset of P instances
for which all numerical parameters are bounded by the single polynomial p in the size of the input
instance. The problem Yp is called strongly NP-hard if there exists a polynomial p such that Yp is
NP-hard. It is called strongly NP-complete if Yp is strongly NP-hard and Yp 2 NP [103].

We will prove Theorem 9.1 below by reducing the NP-complete subset sum problem to our OPF
feasibility problem. The theorem does not imply that (9.23) is strongly NP-hard because the subset
sum problem is NP-complete but not strongly NP-complete. See [100] for a proof that determining
OPF feasibility is strongly NP-hard by a polynomial reduction of the strongly NP-complete one-in-
three 3SAT problem.

3. The more restrictive the class of OPF instances to which all instances of the subset sum problem
can be reduced, the stronger the hardness result because computation complexity is about the per-
formance on worst-case instances. For example the constraints in (9.23) apply to networks with
meshed topology, but the NP-hardness proof reduces any instance of the subset sum problem to
OPF feasibility instances that use only star networks. Theorem 9.1 says that even the OPF feasibil-
ity problem P1 in which all instances are restricted to star networks is NP-hard. The larger class
of OPF feasibility problem P2 � P1 in which instances may be meshed networks is therefore also
NP-hard. It suggests that OPF as an optimization problem is NP-hard.

4. Theorem 9.1 does not mean that all instances of OPF are hard to solve. Indeed we study in Chapters
10 and 11 subclasses of OPF on tree networks that are polynomial time solvable. These subclasses
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fall outside the subclass defined by the OPF feasibility problem (9.23) ((9.23) does not satisfy the
sufficient conditions in Chapter 10 and 11 for exact convex relaxations). We will also study in
Chapter 9.4 another class of OPF that can be solve efficiently.

5. Besides nonconvexity another source of hardness is involvement of discrete variables in OPF such
as in unit commitment. The hardness of approximation and approximation ratios of such problems
are studied in [99, 101]. See also [104, Chapter 5] for a collection of hardness and approximation
results.

9.3.3 Proof of Theorem 9.1

To show that the OPF feasibility problem is NP-hard we will reduce an arbitrary instance of the NP-
complete subset sum problem to an instance of (9.23).

Subset sum problem (A,s):
Problem instance: a set A of positive integers and a positive integer s .
Decision: whether there is a subset A0 ✓ A such that Âa2A0 a = s .

OPF feasibility (NG[NL,E), (g jk,b jk,( j,k) 2 E), q 2 (0,p/2], and (p j,q j, j 2 NL):
Problem instance: a graph (star) (NG[NL,E), |NL| rational numbers (p j,q j, j 2 NL), |E| rational numbers
(g jk,b jk,( j,k) 2 E), and rational number q 2 (0,p/2] that define an instance of the OPF feasibility prob-
lem (9.23).
Decision: whether there exist nonnegative real power injections (p j, j 2 NG) � 0 at generation buses,
voltage angles (q j, j 2 N) at all buses, and line flows (Pjk,Q jk,( j,k) 2 E) that satisfy (9.23).

An instance of the subset sum problem specified by (A,s) is said to be solvable if a solution A0 exists.
In the following we will describe a polynomial reduction of an arbitrary instance (A,s) to an instance of
the OPF feasibility problem, and show that (A,s) is solvable if and only if the corresponding instance of
the OPF feasibility problem is feasible. Let

P̂(q) := g(1� cosq)�bsinq , Q̂(q) = �b(1� cosq)�gsinq (9.25)

for some (g,b) to be chosen later. We now prove Theorem 9.1 in three steps.

Step 1: Polynomial reduction. Fix an arbitrary subset sum instance (A,s). We specify the parameters
(NG [NL,E), (p j,q j, j 2 NL), (g jk,b jk,( j,k) 2 E) and q 2 (0,p/2] that defines an instance of the OPF
feasibility problem (9.23). Choose (g,b,q) such that b < 0 < g, P̂(�q) < 0 in (9.25), and q := (0,p/2].
Construct the following star network (NG[NL,E) with |A| generator buses connected to a single load bus
where

• NG := A, NL := {0} with p0 := s P̂(�q) and q0 := sQ̂(�q) at the load bus j = 0.

• For all lines (a,0) 2 E and all a 2 A, ga0 := ag and ba0 := ab.

Denote this OPF feasibility problem instance as T (A,s). This reduction is polynomial in the size of
(A,s) since the construction only uses rational numbers and finitely many real numbers constructed from
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integers a 2 A, basic arithmetic operations, sin and cos. We next show that (A,s) is solvable if and only if
T (A,s) has a feasible solution x := (p j, j 2 NG; q j, j 2 NG[NL; Pjk,Q jk,( j,k) 2 E) for (9.23).

Step 2: (A,s) is solvable) T (A,s) is feasible. Let A0 ✓ A be a solution of (A,s). Define x by (recall
that the only load bus is j = 0):

q0 := 0, qa := q , 8a 2 A0

P0a := aP̂(�q), Q0a := aQ̂(�q), 8a 2 A0

pa := Pa0 := aP̂(q), Qa0 := aQ̂(q), 8a 2 A0

and for all buses outside the solution set,

pa := qa := P0a := Q0a := Pa0 := Qa0 := 0, 8a 2 A\A0

We show that x satisfies (9.23). Clearly the line flows (9.23c)(9.23d) and the line limits (9.23e) are satisfied
by construction. The injection at each generator bus a 2 A is

pa := Pa0 = a(g(1� cosq)�bsinq) � 0

where the inequality follows from a being a positive integer, b < 0 < g and q 2 (0,p/2], which is (9.23b).
Finally the power balance (9.23a) at the load bus j = 0 is:

Â
a2A

P0a = P̂(�q) Â
a2A0

a = s P̂(�q) = p0

where the second equality follows because A0 is a solution of (A,s) and the other equalities are due to
construction. Similarly

Â
a2A

Q0a = Q̂(�q) Â
a2A0

a = sQ̂(�q) = q0

Hence x is a feasible solution of (9.23).

Step 3: T (A,s) is feasible) (A,s) is solvable. Let x := (p j, j 2NG; q j, j 2NG[NL; Pjk,Q jk,( j,k)2 E)
be a solution of (9.23). Consider the line flow Pa0 = aP̂(qa0) := a(g(1� cosqa0)�bsinqa0) on each line
(a,0) 2 E. Suppose qa0 < 0. Then it can be shown that P̂(qa0) < 0 (Exercise 9.9). But this implies
pa = Pa0 = aP̂(qa0) < 0, contradicting (9.23b). Therefore qa0 � 0 for all a 2 A.

Let A0 := {a 2 A : qa0 > 0}. We now show that Âa2A0 a = s . From (9.23a) we have at bus 0,

s P̂(�q) =: p0 = Â
a2A

P0a = Â
a2A

aP̂(q0a) (9.26)

sQ̂(�q) =: q0 = Â
a2A

Q0a = Â
a2A

aQ̂(q0a)

Since P̂(�q) < 0 by construction, we have Q̂(�q) > 0 (Exercise 9.9), and hence we can divide both sides
by P̂(�q) and Q̂(�q) to obtain:

Â
a2A

a
✓

P̂(q0a)

P̂(�q)
� Q̂(q0a)

Q̂(�q)

◆
= 0
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or

Â
a2A

a
�
Q̂(�q)P̂(q0a)� P̂(�q)Q̂(q0a)

�
= 0

It can be shown that P̂(�q)Q̂(q0a) � Q̂(�q)P̂(q0a) with equality if and only if qa0 2 {0,q} (Exercise
9.9). Therefore qa0 = 0 or q for all a 2 A. Note that P̂(0) = 0 and q0a = �qa0, and hence we have from
(9.26)

s P̂(�q) = Â
a2A0

aP̂(�q)

i.e., A0 is a solution of (A,s).

9.4 Global optimality: Lyapunov-like condition

OPF is NP-hard in theory, but seems easy in practice in that polynomial time algorithms often produce
globally optimal solutions. In this subsection we study Lyapunov-like conditions for global optimality.
Sufficient conditions for global optimality through semidefinite relaxation are studied in Chapters 10 and
11.

9.4.1 Convex relaxation

Consider

min
x

f (x) s.t. x 2 X ✓ R
n (9.27)

and

min
x

f (x) s.t. x 2 X̂ ✓ R
n (9.28)

where X is a nonempty compact set (not necessarily convex), X̂ is an arbitrary compact and convex superset
of X , and f : Rn!R is a convex (and hence continuous) function. Hence optimal solutions exist for both
(9.27) and (9.28) according to Theorem 7.14. Problem (9.27) is a nonlinear program and generally NP-
hard (Exercise 9.10). Problem (9.28) is called a convex relaxation of (9.27). Since it is a convex problem
it is polynomial time solvable (assuming X̂ is efficiently represented). If an optimal solution x⇤ of (9.28) is
feasible for (9.27) then x⇤ is optimal for (9.27). In Chapters 10 and 11 we study the semidefinite relaxations
of OPF where X̂ is restricted to be a semidefinite cone or a second-order cone, but in this section we allow
any convex relaxation.

The cost function of OPF is typically convex but its feasible set is nonconvex due to nonlinear power
flow equations. Most algorithms used for solving OPF are local algorithms such as Newton-Raphson or
interior-point methods (studied in Chapter 7.5). First order conditions are available to guarantee that these
algorithms converge to produce a global optimum for convex problems. Since OPF is nonconvex there is
usually no guarantee that a local algorithm will converge or will produce a global (or local) optimum when
it does. Solving convex relaxations of OPF is also widely studied, and in general, there is no guarantee that
relaxations will be exact. Yet there is significant evidence that, in practice, local algorithms and convex
relaxations tend to produce globally optimal solutions, e.g., [105].
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9.4.2 Conditions for global optimality

We now present conditions from [106, 107] for the nonlinear program (9.27) to simultaneously have exact
convex relaxation and no spurious local optima. These conditions help explain the empirical experience
that local algorithms and convex relaxations for OPF tend to work well in practice.

Definition 9.1 (Exact relaxation). 1. A point x⇤ 2 X is called a local optimum of (9.27) if there exists
a d > 0 such that f (x⇤) f (x) for all x 2 X with kx� x⇤k< d . It is called a global optimum or an
optimum if f (x⇤) f (x) for all x 2 X .

2. If every optimal solution x⇤ of (9.28) is feasible for, and therefore a global optimum of, (9.27) then
we say that the convex relaxation (9.28) is exact with respect to (9.27).

The optimality conditions rely on, for every infeasible point x 2 X̂ \X , finding a path that takes x back
to the feasible set X along which the cost is nonincreasing.

Definition 9.2 (Path). 1. A path in Y ✓ R
n connecting point a to point b is a continuous function

h : [0,1]! Y such that h(0) = a and h(1) = b.

2. An arbitrary set {hi : i 2 I} of paths in Y is called

(a) uniformly bounded if there exists a finite number H such that khi(t)k• H for all t 2 [0,1] and
all i 2 I;

(b) uniformly equicontinuous if for any e > 0, there exists d > 0 such that khi(t2)�hi(t1)k• < e
for all i 2 I whenever |t2� t1| < d .

As an example, if all paths in {hi : i2 I} consist of at most m linear segments for some finite m, then (the
arc-length reparametrized version of) {hi : i2 I} is both uniformly bounded and uniformly equicontinuous;
see [106].

Definition 9.3 (Lyapunov-like function). A Lyapunov-like function associated with (9.27) and (9.28) is a
continuous function V : X̂ ! R+ such that V (x) = 0 if x 2 X and V (x) > 0 if x 2 X̂ \X .

We can now state a sufficient condition and a necessary condition for (9.27) to simultaneously have
exact convex relaxation and no spurious local optima. The first condition C9.1 says that every infeasible
point x can be brought back to the feasible set X with a strictly lower cost along a path on which neither
the cost f nor the Lyapunov function V increases. Condition C9.3(b) requires that the cost decreases
sufficiently along the path, not just nonincreasing, in order to eliminate the possibility of pseudo local
optimum (see Definition 9.4 below). C9.2 is a regularity condition on the set of paths for all infeasible
points. It is needed for the Arzelà-Ascoli Theorem that guarantees that this set of paths has a uniformly
convergent subsequence in order to prove that all local optima are global optima.

C9.1: There is a Lyapunov-like function V associated with (9.27) and (9.28) and, for every infeasible
point x 2 X̂ \X , there is a path hx in X̂ such that

(a) hx(0) = x, hx(1) 2 X , and f (hx(1)) < f (x).
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(b) Both f (hx(t)) and V (hx(t)) are nonincreasing for t 2 [0,1].

C9.2: The set {hx : x 2 X̂ \X} of paths in C9.1 is uniformly bounded and uniformly equicontinuous.

C9.3: At least one of the following holds:

(a) All local optima of (9.27) are isolated, i.e., every local optimum has an open neighborhood
that contains no other local optimum.

(b) For the set {hx : x 2 X̂ \ X} of paths in C9.1, there exists a > 0 such that for all infeasible
points x 2 X̂ \ X and all 0  s < t  1, we have f (hx(s))� f (hx(t)) � akhx(s)� hx(t)k for
some norm k ·k.

Theorem 9.2 (Sufficiency). Suppose conditions C9.1, C9.2, C9.3 hold. Then

1. The convex relaxation (9.28) is exact with respect to (9.27).

2. Every local optimum of (9.27) is a global optimum.

Moreover if C9.3(a) holds then the optimal point is unique.

A set Y ✓R
n is semianalytic if every x 2R

n has a neighborhood U such that Y \U can be represented
as a finite Boolean combination of sets {x : g(x) = 0} and {x : h(x) < 0} for some analytic functions g,h
(i.e., for every x0, g(x) = Â•

n=0 an(x� x0)n for some real coefficients an in a neighborhood of x0, and
similarly for h). Engineering problems are often specified in terms of analytic functions and semianalytic
sets.

Theorem 9.3 (Necessity). Suppose the feasible set X is semianalytic and the cost function f is analytic.
If (9.28) is exact with respect to (9.27) and every local optimum of (9.27) is a global optimum, then there
exists Lyapunov-like function V and a family of paths {hx : x 2 X̂ \X} that satisfy C9.1, C9.2.

Remark 9.7 (Sufficiency). 1. Conditions C9.1 and C9.2 imply that the feasible set X of (9.27) is con-
nected. For OPF however it is possible that the feasible set is disconnected. In that case convex
relaxation may not be exact in the strong sense of Definition 9.1 that all optimal points of (9.28) are
optimal for (9.27). Theorems 9.2 and 9.3 hold however for X restricted to a connected component
of the feasible set. We can also consider a weaker notion of exactness that requires at least one
global optimum of (9.28) to be feasible and hence optimal for (9.27). See [106, Theorem 4] for a
similar sufficient condition that guarantees weak exactness of (9.28) and no spurious local optimum
for (9.27).

2. As we will show in Lemma 9.4 below the exactness of (9.28) with respect to (9.27) is equivalent to
the existence of a path hx for each infeasible point x 2 X̂ \ X that satisfies C9.1. Indeed proofs of
exact relaxations in Chapters 10 and 11 can be interpreted as constructing such a path. The existence
of a Lyapunov-like function and all other conditions in Theorem 9.2 are needed to prove the global
optimality of every local optimum.
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3. Consider the dynamical system

ẋ = f (x(t)), t � 0, x(0) = x0 (9.29)

and suppose x⇤ is an equilibrium point where f (x⇤) = 0. The equilibrium point x⇤ is said to be
globally asymptotically stable if the trajectory x(t) of (9.29) stays close to x⇤ whenever the initial
point x0 is close to x⇤ and x(t)! x⇤ for any initial point x0. The standard Lyapunov stability theory
says that x⇤ is globally asymptotically stable if there exists a continuously differentiable Lyapunov
function V (x) such that V (x) > V (x⇤) and V̇ (x) < 0 for all x 6= x⇤. In this case (9.29) specifies the
trajectory (path) that x(t) takes starting from a given x0 and the Lyapunov function V certifies a
stability property of the equilibrium point x⇤. There is no general method to construct V except on a
case-by-case basis.

In our case, the Lyapunov-like function V in Theorem 9.2 certifies that a local optimum x⇤ 2 X of
(9.27) is a global optimum. Since there is no dynamics, there is no requirement on the differentia-
bility of V . We however have to construct a path hx for every infeasible point x 2 X̂ \X that takes x
back to a feasible point in X with a strictly lower cost. No general methods to construct V or hx are
known (see an example in Chapter 9.4.4).

9.4.3 Proof of Theorem 9.2

We next prove the sufficiency condition taken from [107]; see [106] for the proof of Theorem 9.3.

Lemma 9.4. The convex relaxation (9.28) is exact with respect to (9.27) if and only if, for every infeasible
point x 2 X̂ \X , there exists a path hx that satisfies C9.1.

Proof of Lemma 9.4. Suppose (9.28) is exact and let x⇤ 2 X be a global optimum of (9.27), which exists
due to Theorem 7.14. Given any infeasible point x 2 X̂ \X , let hx be the line segment connecting x to x⇤.
Then hx is in X̂ since X̂ is convex. Moreover f (x) > f (x⇤) since (9.28) is exact, and hence C9.1 for hx
follows from the convexity of f . Conversely suppose every x 2 X̂ \X has a path hx in X̂ that satisfies C9.1.
If a global optimum x⇤ of (9.28) is not in X then f (hx⇤(1)) < f (x⇤), contradicting the optimality of x⇤.
Hence x⇤ 2 X and is a global optimum of (9.27).

Lemma 9.4 says that, for exact relaxation, it is sufficient if every infeasible point x2 X̂ \X has a path hx
that satisfies just Condition C9.1. For global optimality of local optima of (9.27), we need to differentiate
between two types of local optima that are not global optima; see Figure 9.1.

Definition 9.4 (Pseudo local optimum). A local optimum x⇤ 2 X that is not a global optimum is called

1. a pseudo local optimum if there is a path h : [0,1]! X that starts at h(0) = x⇤ and ends at a point
h(1) that is not a local optimum, such that f (h(t))⌘ f (x⇤) for all t 2 [0,1].

2. a genuine local optimum if it is a local optimum but neither a global optimum nor a pseudo local
optimum.
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X

a

b

c

d

Figure 9.1: Three types of local optima. The cost function decreases in the direction of the arrow. Point b
is a global optimum, c a pseudo local optimum, and a,d are genuine local optima.

A local optimum x⇤ is a pseudo local optimum if it can be strictly improved without incurring a higher
cost in the process.

Definition 9.5 (Improvable). A point x 2 X is called improvable in X if there is a path hx : [0,1]! X with
hx(0) = x such that

1. f (h(t)) is nonincreasing for t 2 [0,1];

2. f (h(1)) < f (x) or h(1) is not a local optimum.

A local optimum is a pseudo local optimum if and only if it is improvable in X . The next lemma,
together with Lemma 9.4, says that conditions C9.1 and C9.2 almost imply Theorem 9.2, except for the
possibility of pseudo local optima.

Lemma 9.5. Suppose conditions C9.1 and C9.2 hold. Then every local optimum of (9.27) is either a
global optimum or a pseudo local optimum.

Proof of Lemma 9.5. Fix an x 2 X that is a local but not global optimum of (9.27). We will show that x is
improvable in X and hence a pseudo local optimum.

Let x⇤ 6= x be a global optimum of (9.27) with f (x⇤) < f (x). Let ` : [0,1]! X̂ be the line segment con-
necting x to x⇤, `(t) := (1� t)x+ tx⇤ for t 2 [0,1]. The convexity of f implies that f (`(t)) is nonincreasing
in t because, for any 0 t < t  1, `(t) = a`(t)+(1�a)x⇤ for some a 2 [0,1] and hence

f (`(t)) = a f (`(t))+(1�a) f (x⇤)  f (`(t))

If `(t) 2 X for all t 2 [0,1], i.e., the line segment is in X , then ` defines the path hx in Definition 9.5 with
f (hx(1)) < f (x). Therefore x is improvable in X and hence a pseudo local optimum.

Suppose then part of ` lies in X̂ \ X and define the first time the line segment ` leaves X (see Figure
9.2):

t† := sup
t2[0,1]

t s.t. `(t) 2 X 8t  t

Since X is closed, t† 2 X . First note that f (`(t)) is strictly decreasing in t until f (`(s)) = f (x⇤) for some
s and f (`(t))⌘ f (x⇤) over t 2 [s,1]. To see this suppose f (`(t))⌘ f (`(t1)) over any interval t 2 [t1,t2]
with 0 t1 < t2  1. Then, since `(t2) = a`(t1)+(1�a)x⇤ for some a 2 [0,1), we have

f (`(t1)) = f (`(t2))  a f (`(t1))+(1�a) f (x⇤)
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implying f (`(t)) = f (x⇤) over [t1,t2] and that f (`(t)) is strictly decreasing in t until f (`(s)) = f (x⇤) for
some s. Then, since f (x) > f (x⇤), the convexity and hence continuity of f imply that f (`(t)) is strictly
decreasing in t until at least `(t) is at the boundary of X . Therefore x can only be on the boundary of X to
be a local optimum, i.e., t† = 0 and x = `(t†) = `(0).

We will show that x = `(0) is improvable in X by constructing the path h in Definition 9.5, i.e.,
constructing an h : [0,1]! X with h(0) = x such that f (h(t)) is nonincreasing for t 2 [0,1] and either
f (h(1)) < f (x) or h(1) is not a local optimum. Conditions C9.1 and C9.2 are required for this construc-
tion because x is on the boundary of X but the path h must lie entirely in X (as opposed to be in X̂ as `
is). The notation for the rest of the proof is illustrated in Figure 9.2. The basic idea is as follows. For a

x

x⇤

X

X̂

`(t†)

`(t1)
`(t2)

`(tm)

h1

h2
hm

h h1(1)

h2(1)
hm(1)h(1)

Figure 9.2: Notation for the proof of Lemma 9.5. Point x and `(t†) will be proved to be identical.

sequence t1, t2, . . . that converges to t† = 0, C9.1 provides a sequence h1,h2, . . . of paths in X̂ (not X) that
takes the infeasible points `(t1),`(t2), . . . to some feasible points h1(1),h2(1), . . . in X with strictly lower
costs. C9.2 implies that the sequence h1,h2, . . . of paths has a convergent subsequence that converges to a
limit function h : [0,1]! X̂ which is then proved to satisfy Definition 9.5. In particular, even though each
hm is a path in X̂ , their limit h will be the required path in X ; see Figure 9.2 (the Lyapunov function V is
needed in this step to certify that h(t) 2 X .). We now make this precise.

By the definition of t† there exists a decreasing sequence t1 > t2 > · · · > t† such that limm tm = t† = 0
and `(tm) 2 X̂ \ X for all m. Since f (x) > f (x⇤) and f (`(t)) is strictly decreasing in t until a certain
s 2 (0,1], we have for tm  s

f (`(tm)) < f (`(0)) = f (x) (9.30)

Moreover limm f (`(tm)) = f (x) monotonically because f (`(tm)) is a nondecreasing sequence in m. C9.1
therefore guarantees a sequence hm of paths in X̂ (not X) with hm(0) = `(tm) and hm(1) 2 X with a
strictly lower cost. Since the sequence {hm : m = 1,2, . . .} of paths are uniformly bounded and uni-
formly equicontinuous, the Arzelà-Ascoli Theorem implies that it has a uniformly convergent subsequence
with a limit point h : [0,1]! X̂ . Without loss of generality we denote the convergent subsequence by
{hm : m = 1,2, . . . ,}.

We now show that h is in X (not just in X̂) and satisfies Definition 9.5:

1. h(t) 2 X for t 2 [0,1]: Fix any t 2 [0,1] and consider the convergent (sub)sequence {hm(t) : m =
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1,2, . . . ,}. The continuity of the Lyapunov-like function V implies

V (h(t)) = V
⇣

lim
m

hm(t)
⌘

= lim
m

V (hm(t))  lim
m

V (hm(0))

where the inequality follows because V (hm(t)) is nonincreasing in t due to C9.1. Substituting
V (hm(0)) = V (`(tm)) from the definition of hm we have

V (h(t))  lim
m

V (`(tm)) = V
⇣

lim
m

`(tm)
⌘

= V (`(0)) = V (x) = 0

since limm `(tm) = `(limm tm) = x 2 X . Hence V (h(t)) = 0 and h(t) 2 X .

2. h(0) = x: We have h(0) = limm hm(0) = limm `(tm) = `(limm tm) = `(0) = x.

3. f (h(t)) nonincreasing in t: This follows from f (h(t)) = f (limm hm(t)) = limm f (hm(t)) and f (hm(t))
is nonincreasing in t by C9.1.

4. f (h(1)) < f (x) or h(1) is not a local optimum: Suppose f (h(1)) = f (x). We will show that h(1)
cannot be a local optimum. For each m we have

f (hm(1)) < f (hm(0)) = f (`(tm)) < f (`(0)) = f (x) = f (h(1))

where the first inequality and the first equality follow from C9.1, and the second inequality follows
from (9.30). This means that there are infinitely many m such that f (hm(1)) < f (h(1)) and hm(1)!
h(1). Therefore there is no neighborhood of h(1) in which f attains minimum.

This shows that x, which is a local but not global optimum of (9.27), is improvable in X and hence a
pseudo local optimum.

Finally we show that C9.3 eliminates the possibility of pseudo local optimum. This, together with
Lemmas 9.4 and 9.5, proves Theorem 9.2.

Lemma 9.6. Suppose conditions C9.1, C9.2 and C9.3 hold. Then every local optimum of (9.27) is a
global optimum.

Proof of Lemma 9.6. If C9.3(a) holds, then clearly a local optimum x cannot be a pseudo local optimum.
Lemma 9.5 then implies that x is a global optimum. Moreover if there are multiple local (and hence global)
optima x and x̂ then, since f is convex, any convex combination of x and x̂ is optimal, contradicting that x
and x̂ are isolated optima. (For the DistFlow model, this uniqueness properties is Theorem 11.1.)

Suppose C9.3(b) holds and x is a local but not a global optimum of (9.27). Following the proof of
Lemma 9.5 we have a uniformly convergent (sub)sequence {hm : m = 1,2, . . .} whose limit point is the
path h : [0,1]! X with h(0) = x. Since f (hm(s))� f (hm(t))� akhm(s)�hm(t)k for any s < t by C9.3(b),
taking limit as m! • we have,

f (h(s))� f (h(t)) � akh(s)�h(t)k > 0 whenever h(s) 6= h(t) (9.31)



Draft: PSA December 13, 2024 411

Let s0 := inf{s 2 (0,1] : h(s) 6= x}. Then h(s0) = x since h is continuous. The proof of Theorem 9.2 shows
that f (h(1)) < f (x) or h(1) is not a local optimum. This means that h(1) 6= x, and hence 0 s0 < 1. We
claim that h(s0 + e) 6= x for any e 2 (0,1� s0], because

f (h(s0 + e)) < f (h(s0)) = f (x)

where the first inequality follows from substituting s := s0 and t := s0 + e into (9.31). Therefore f (x) >
f (h(t)) for all t 2 (s0,1], contradicting the local optimality of x.

9.4.4 Application to OPF on radial network

Consider the single-phase OPF (9.20) formulated in Chapter 9.2 on a radial network G = (N,E) with N +1
buses and M = N lines modeled by the DistFlow equation (9.19), reproduced here (all lines pointing away
from bus 0):

Â
k: j!k

S jk = Si j� zs
i j`i j + s j, j 2 N (9.32a)

v j� vk = 2Re
⇣

z̄s
jkS jk

⌘
� |zs

jk|2` jk, j! k 2 E (9.32b)

v j` jk = |S jk|2, j! k 2 E (9.32c)

and operational constraints:

smin
j  s j  smax

j , vmin
j  v j  vmax

j , ` jk  `max
jk , j 2 N, ( j,k) 2 E (9.32d)

Denote by (s,v) := (s j,v j, j 2 N) 2 R
3(N+1) the bus injections and squared voltage magnitudes, and by

(`,S) := (` jk,S jk, j! k 2 E) 2 R
3M the squared line current magnitudes and line powers. The vector v

includes v0 and s includes s0. Let x := (s,v,`,S) in R
3(2N+1) since G is a tree. Let

X := {x := (s,v,`,S) 2 R
3(2N+1) | x satisfies (9.32)} (9.33a)

Let the cost function be a real-valued function f (x). Then OPF formulated in (9.20) and reproduced here
is:

min
x

f (x) s.t. x 2 X (9.33b)

The feasible set X is nonconvex because of the nonlinear constraint (9.32c). Relax it to a second-order
constraint (studied in Chapter 7.2.1):

v j` jk � |S jk|2, j! k 2 E (9.34)

Consider the relaxed convex feasible set

X̂ := {x 2 R
3(2N+1) | x satisfies (9.32a)(9.32b), (9.34), (9.32d) } (9.35a)

and the convex relaxation of (9.33)

min
x

f (x) s.t. x 2 X̂ (9.35b)

We assume the problem parameters are such that the following condition is satisfied:
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C9.4: The feasible set X is nonempty and compact, the convex feasible set X̂ is compact, and the
real-valued cost function f (x) is convex and continuous.

Then (9.33) and (9.35) are an example of (9.27) and (9.28) to which Theorem 9.2 applies.

To construct a Lyapunov-like function V and paths hx for every infeasible point x 2 X̂ \ X , we need
additional assumptions:

C9.5: The cost function f (x) = f (p,q,v,`) is independent of line flows S = (P,Q) and continuously
differentiable in (p,q,`) with nonnegative —p f (x)� 0 and —q f (x)� 0 for all x2 X̂ . Moreover there
exists c > 0 such that ∂ f

∂`l
(x)� c for all l 2 E and all x 2 X̂ .

C9.6: For each j 2 N, the injection limit smin
j =�•� i•.

C9.7: For each j! k 2 E, z jk =: (r jk,x jk) > 0 and the line limit satisfies |z jk|2`max  vmin
j .

C9.5 implies that C is strictly increasing in each component of ` j. Moreover, given any x := (p,q,v,`,S) 2
X̂ , any nonnegative (d p,dq,0,d`)� 0, and any scalar t � 0 we have (Exercise 9.12)

f ((p,q,v,`)+ t(d p,dq,0,d`)) � f (p,q,v,`) � ct Â
( j,k)2E

d` jk = ctkd`k1 (9.36)

where kyk1 := Â j |y j| is the l1 norm. This property will be used in the proof below. C9.6 means that
demands are large enough not to pose a constraint. C9.7 is realistic because typically Vj = (1+ e j)eiq j pu
where e j 2 [�0.1,0.1] and the angle differences q jk := q j�qk are typically small in magnitude. Then the
maximum value of |Vj�Vk|2 =

��(1+ e j)eiq jk� (1+ ek)
��, which is |z jk|2`max, should be much smaller than

vmin
j ⇡ 1 pu.

Theorem 11.3 of Chapter 11.2 shows that C9.5 and C9.6 imply that the SOCP relaxation (9.35) is exact
with respect to (9.33). We now show that conditions C9.4–C9.7 guarantee that every local optimum of
(9.33) is a global optimum.

Theorem 9.7 (Global optimality of (9.33)). Suppose C9.4–C9.7 holds for OPF (9.33) on radial networks.
Then every local optimum of (9.33) is a global optimum.

Proof. We will construct a Lyapunov-like function V and a path hx in X̂ for each infeasible point x̂ 2 X̂ \X
that, for OPF (9.33), satisfy C9.1–C9.3. The theorem then follows from Theorem 9.2.

Let

V (x) := Â
j!k2E

�
v j` jk� |S jk|2

�
(9.37)

Clearly V (x) � 0 for all x 2 X̂ with equality if and only if x 2 X , and hence V (x) is a Lyapunov-like
function.
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Fix an x 2 X̂ \ X . To construct a path hx in X̂ , let M := {( j,k) 2 E : v j` jk > |S jk|2} be the set of lines
where the quadratic equality is violated. For each ( j,k) 2M, let f jk be the quadratic function:

f jk(a) :=
|z jk|2

4
a2 +

�
v j�Re

�
z̄ jkS jk

��
a +

�
|S jk|2� v j` jk

�
(9.38)

Since f jk(0) < 0, f jk has a unique positive root. Define D jk to be this positive root if ( j,k) 2 M and 0
otherwise. Furthermore for ( j,k) 2M,

v j�Re(z̄ jkS jk) � v j� |z jk||S jk| > v j� |z jk|
q

v j` jk � v j�
q

v j · |z jk|2`max
jk |� v j�

pv j · v j = 0

where the second inequality follows from ( j,k) 2 M, and the last inequality follows from C9.7. This
implies that the quadratic function f jk(a) is negative and strictly increasing over [0,D jk]. Consider the
path hx(t) :=

�
s̃(t), ṽ(t), ˜̀(t), S̃(t)

�
for t 2 [0,1] where

s̃ j(t) := s j �
t
2 Â

i:i! j
zi jDi j �

t
2 Â

k: j!k
z jkD jk, j 2 N (9.39a)

ṽ j(t) := v j, j 2 N (9.39b)
˜̀jk(t) := ` jk � tD jk, j! k 2 E (9.39c)

S̃ jk(t) := S jk �
t
2

z jkD jk, j! k 2 E (9.39d)

Therefore hx(t) := x�tAD(x) where the vector D(x) := (D jk,( j,k)2E) depends on x through the quadratic
function f jk(a), A is the following 3(2N +1)⇥N matrix

A :=

2

6666664

1
2 |C|R
1
2 |C|X

0
IN
1
2R
1
2X

3

7777775
with R := diag(r jk, j! k 2 E), X := diag(x jk, j! k 2 E) (9.40)

and z jk =: (r jk,x jk). Here |C| is obtained from the node-by-line incidence matrix C by replacing �1 by 1,
and 0 and IN denote the zero and identity matrices of appropriate sizes. Since z jk > 0 (C9.7) and D jk � 0
by construction, each entry of the vector AD(x) is nonnegative and hence, for OPF (9.33), we have

1TAD(x) = Â
k

[AD(x)]k = kAD(x)k1, x 2 X̂ (9.41)

where kxk1 := Âk |xk| is the l1 norm. This is a property needed to establish C9.3 below.

We now show that V in (9.37) and {hx : x 2 X̂ \X} in (9.39) satisfy C9.1–C9.3.

1. Clearly hx(0) = x in X̂ \X . It can be shown that hx(t) 2 X̂ for all t 2 [0,1] and hx(1) 2 X (Exercise
9.12). It suffices to show that both f (hx(t)) and V (hx(t)) are strictly decreasing in t on [0,1] for
C9.1 to be satisfied. Since f is strictly increasing in ` (C9.5) and D jk > 0 for ( j,k) 2 M, ˜̀� `
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is nonnegative and nonzero from (9.39c) for t > 0. Hence f (hx(t)) = f (x� tAD(x)) is strictly
decreasing in t on [0,1]. For V (hx(t)) we have from (9.37) and (9.39)

V (hx(t)) := Â
( j,k)2E

�
v j(` jk� tD jk)� |S jk� (t/2)z jkD jk|2

�
= � Â

( j,k)2M
f jk(tD jk)

because v j` jk = |S jk|2 for ( j,k) 62M. Since f jk(a) is strictly increasing in a over [0,D jk], V (hx(t))
is strictly decreasing in t over [0,1]. This proves C9.1.

2. C9.2 follows because X̂ is a compact set and hx(t) = x� tAD(x) is linear in t.

3. For C9.3 we will use (9.36) and (9.41) to show that there exists a > 0 such that for all infeasible
points x 2 X̂ \ X and all 0  t < t  1, we have f (hx(t))� f (hx(t)) � akhx(t)� hx(t)k1. Fix
0 t < t  1. Since hx(t) = x� tAD(x), C9.5 and (9.40) imply

f (hx(t))� f (hx(t)) = f ((p,q,v,`)� t(d p,dq,dv,d`)) � f ((p,q,v,`)� t(d p,dq,dv,d`))

where


d p
dq

�
=

 1
2 |C|R
1
2 |C|X

�
D(x), dv = 0, d` = D(x)

Hence (9.36) implies

f (hx(t))� f (hx(t)) � c(t� t)kd`k1 = c(t� t)kD(x)k1 (9.42)

We will compare the right-hand side with khx(t)�hx(t)k1 = (t� t)kAD(x)k1. We have

khx(t)�hx(t)k1 = (t� t)1TAD(x)  (t� t) c̃ Â
( j,k)2E

D jk(x) = (t� t) c̃kD(x)k1

where the first equality follows from (9.41), the last equality follows because every entry of D(x)
is positive, and c̃ := maxk[1TA]k > 0 (recall that every entry of A is nonnegative). Substituting into
(9.42) yields

f (hx(t))� f (hx(t)) �
c
c̃
khx(t)�hx(t)k1

which is C9.3.

Remark 9.8 (Strong increase in Condition C9.5). 1. C9.5 assumes f is strongly increasing in ` in the
sense that ∂ f

∂` j
(x)� c > 0. Instead of `, we can assume that f is strongly increasing in p or in q and

Theorem 9.7 continues to hold. Specifically C9.5 can be modified to: there exists c > 0 such that for
all x 2 X̂ , ∂ f

∂`l
(x)� c for all l 2 E, or ∂ f

∂ p j
(x)� c for all j 2 N, or ∂ f

∂q j
(x)� c for all j 2 N. Moreover

Theorem 11.3 of Chapter 11.2 on exact relaxation continues to hold (see condition C11.1).

2. Continuous differentiability in C9.5 is not necessary because, since f is convex (C9.4), it is always
subdifferentiable and we can replace ∂ f

∂` j
(x) � c > 0 by x j � c > 0 for all subgradient x j of f with

respect to ` j, for all j and all x 2 X̂ .
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9.5 Techniques for scalability: case study

Practical OPF problems can be difficult to solve. This can be due to the sheer number of variables and
constraints relative to available solution time. It can also arise from the nonsmoothness or the noncon-
vexity of the objective or constraint functions that often lead to numerical issues. The nonsmoothness or
nonconvexity can take different forms, e.g., nonlinear power flow equations, discrete variables, nondiffer-
entiability of the objective or constraint functions, complementarity or disjunctive constraints. All of these
features are embodied in security constrained OPF (SCOPF). Practical solutions for a large optimization
problem require not only the understanding of basic optimization theory, but also the development of many
heuristics tailored to the structure of the specific problem.

In this section we illustrate these computational challenges and some solution techniques through an
SCOPF problem proposed by the US Advanced Research Projects Agency - Energy (ARPA-E) in a multi-
year Grid Optimization (GO) Competition. The GO Competition aims to accelerate the development
of algorithms and software for solving large OPF problems. It was staged as a series of challenges.
Challenge 1, which was conducted over the course of 2019, focused on real-time SCOPF [108]. In Chapter
9.5.1 we formulate the SCOPF problem and discuss computational challenges embodied in this problem.
These challenges are also commonly found in other energy applications. In Chapters 9.5.2 and 9.5.3
we describe some of the techniques used by the top three winners of the GO Challenge 1 in addressing
the nonsmoothness and scalability of SCOPF respectively [109, 110, 111]. The effective treatment of
complementarity constraints, efficient contingency screening, and robust parallelization of computation
have proved to be essential in devising a practical solution.

9.5.1 SCOPF formulation

The detailed SCOPF formulation is described in the official specification [108]. We present a highly
simplified version to illustrate the main algorithmic ideas in [109, 110, 111] to overcome some of the
computational challenges.

Constraints. We start by formulating the constraints of the GO Challenge 1 problem. It can sometimes
be difficult to exactly satisfy equality and inequality constraints in a realistic problem. This can be due to
modeling or numerical errors, not just the lack of computational resources. Energy management systems
in practice however must recommend a decision even when it is impossible to satisfy all constraints of the
model. One way to deal with this is to allow some constraint violations in order to practically eliminate
infeasibility, but penalize them in the objective.

Let k = 0 denote the base case and k = 1, . . . ,K denote contingencies, though we will often refer
to the base case also as contingency k = 0. Let

�
pu

ki,q
u
ki
�

denote uncontrollable loads (or generations)
and (pki,qki) denote controllable generation levels at buses i 2 N in contingencies k � 0. For notational
simplicity we assume without loss of generality that there is exactly one uncontrollable injection and one
controllable generator at each bus i. We impose the standard voltage and generation limits:

vki  |Vki| vki, pi  pki  pi, qi  qki  qi, k � 0, i 2 N (9.43)

where vki  vki, pi  pi, and qi  qi are given constants.
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For each line (i, j) 2 E, let
�
Pk,i j,Qk,i j

�
denote the sending-end real and reactive power from buses i

to j and
�
Pk, ji,Qk, ji

�
denote the sending-end line power in the opposite direction in contingencies k � 0.

Instead of exact real and reactive power balance at bus i, we impose

pki � pu
ki = Â

j: j⇠i
Pk,i j + s p+

ki � s p�
ki ,

⇣
s p+

ki ,s p�
ki

⌘
� 0, k � 0, i 2 N (9.44a)

qki � qu
ki = Â

j: j⇠i
Qki + sq+

ki � sq�
ki ,

⇣
sq+

ki ,sq�
ki

⌘
� 0, k � 0, i 2 N (9.44b)

where the nonnegative variables
⇣

s p+
ki ,s p�

ki

⌘
are slack variables for real power violations and

⇣
sq+

ki ,sq�
ki

⌘

are slack variables for reactive power violations. These slack variables will be penalized in the objective
as we will see below.

With a slight abuse of notation we use (Pk,i j(qk, |Vk|),Qk,i j(qk, |Vk|)) to denote the line power as func-
tions of voltage magnitudes and angles in contingencies k � 0 defined by:

Pk,i j(qk, |Vk|) =
�
gs

i j +gm
i j
�
|Vki|2 � |Vki||Vk j|

�
gs

i j cos(qki�qk j) + bs
i j sin(qki�qk j)

�
(9.45a)

Qk,i j(qk, |Vk|) = �
�
bs

i j +bm
i j
�
|Vki|2 + |Vki||Vk j|

�
bs

i j cos(qki�qk j) � gs
i j sin(qki�qk j)

�
(9.45b)

where
⇣

gs
i j,b

s
i j

⌘
and

⇣
gm

i j,b
m
i j

⌘
are series and shunt admittances of line (i, j). Similarly for

�
Pk, ji(qk, |Vk| ,

Qk, ji(qk, |Vk|)
�

in the opposite direction on line (i, j). Then we impose the constraints

(Pk,i j,Qk,i j) = (Pk,i j(qk, |Vk|),Qk,i j(qk, |Vk|)), k � 0, (i, j) 2 E (9.45c)
(Pk, ji,Qk, ji) = (Pk, ji(qk, |Vk|),Qk, ji(qk, |Vk|)), k � 0, (i, j) 2 E (9.45d)

Line limits are expressed in terms of apparent power and the sending-end voltage magnitudes, on both
ends of the lines (i, j) 2 E:

q
P2

k,i j +Q2
k,i j  Pmax

k,i j |Vki| + s e
k,i j, k � 0, (i, j) 2 E (9.46a)

q
P2

k, ji +Q2
k, ji  Pmax

k,i j |Vk j| + s e
k,i j, k � 0, (i, j) 2 E (9.46b)

s e
k,i j � 0, k � 0, (i, j) 2 E (9.46c)

where Pmax
k,i j are given parameters and s e

k,i j are slack variables that measure line limit violations.

When contingency k � 1 occurs the generators will adjust their real and reactive power to rebalance.
This may be necessary even if the contingency is a transmission outage, i.e, the disconnection of a line or
a transformer, instead of a generator outage, because the redistribution of line flows may result in different
amounts of losses that need to be compensated for by these generators. Moreover the outage may also
lead to deviation of tie-line flows from their scheduled values and hence nonzero area control error that
must be corrected. The rebalancing is carried out at a fast timescale by frequency control mechanisms
(see Chapter 8.3). The effect of the frequency control actions is modeled as follows. The real power at the
generators is adjusted proportionally within their generation capacities:

pki = [p0i + ai Dk]
pi
pi

, k � 1, i 2 N (9.47a)
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where p0i are the output levels of generators i in the base case k = 0,
⇣

pi, pi

⌘
are their lower and upper

capacity limits, Dk are the total real power contingency response, and ai � 0 are called the participation
factors of generators i with Âi ai = 1. (If generator i does not participate in contingency response then
ai = 0.) Here, for real scalars x, a  b, we define [x]ba := max(a,min(x,b)). The reactive power of
generators i is adjusted within their capacity limits in an attempt to restore the voltage magnitudes |Vki| to
their pre-contingency values, as expressed in:
n

qi  qki  qi, |Vki| = |V0i|
o
[
n

qki = qi, |Vki|� |V0i|
o
[ {qki = qi, |Vki| |V0i|} , k � 1, i 2 N

(9.47b)

Variables. To simplify notation define the following nodal vector variables for each contingency:

(pk,qk, |Vk|,qk) :=
�

pki,qki, |Vki|,qki, i 2 N
�
, s p+

k :=
⇣

s p+
ki , i 2 N

⌘
, k � 0 (9.48a)

and similarly for
⇣

s p�
k ,sq+

k ,sq�
k

⌘
. Define the following branch variables for each contingency:

(Pk,Qk) :=
�
Pk,i j,Qk,i j,Pk, ji,Qk, ji, (i, j) 2 E

�
, s e

k :=
⇣

s e
k,i j, (i, j) 2 E

⌘
, k � 0 (9.48b)

Let

sk :=
⇣

s p+
k ,s p�

k ,sq+
k ,sq�

k ,s e
k

⌘
, k � 0 (9.48c)

xk := (pk,qk, |Vk|,qk, Pk,Qk, sk) , k � 0 (9.48d)
yk := (xk,Dk) , k � 1 (9.48e)

The vector x0 collects base-case decisions and yk collect responses to contingencies k � 1.

SCOPF. The SCOPF problem in the GO Challenge 1 takes the form:

min Â
i

cg
i (p0i) + dc0(s0) + (1�d )

1
|K| Â

k�1
ck(sk) (9.49a)

over x0,(yk, k � 1) (9.49b)
s.t. (9.43)(9.44)(9.45)(9.46)(9.47) (9.49c)

where cg
i (p0i) are the generation costs at buses i in the base case, c0(s0) and ck(sk) are the penalty

functions for constraint violations in the base case k = 0 and contingencies k � 1 respectively, defined as:

ck (sk) := Â
i2N

⇣
cp

ki

⇣
s p+

ki +s p�
ki

⌘
+ cq

ki

⇣
sq+

ki +sq�
ki

⌘⌘
+ Â

(i, j)2E
ce

k,i j

⇣
s e

k,i j

⌘
, k � 0 (9.49d)

and d 2 [0,1] is the weight to trade off the penalty in the base case against the average contingency penalty.
The functions cp

ki, cq
ki, ce

k,i j, k � 0, are convex piecewise linear, each with three segments of increasing
slopes.
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Two-stage formulation. The problem (9.49) can also be treated as a two-stage optimization where the
first-stage optimization is over the base-case decision x0 and the second-stage optimization is over the
contingency response yk in each contingency k � 1. It can be rewritten as

min
x0

Â
i

cg
i (p0i) + dc0(s0) + (1�d )

1
|K| Â

k�1
rk (x0) (9.50a)

s.t. (9.43)(9.44)(9.45)(9.46) with k := 0 (9.50b)

where the recourse functions from the second-stage optimization are: for j � 1,

r j (x0) := min
y j

c j
�
s j
�

(9.51a)

s.t. (9.43)(9.44)(9.45)(9.46)(9.47) with k := j (9.51b)

where the penalty functions ck(sk) are defined in (9.49d). The second-stage problem is used for contin-
gency evaluation. (Two-stage optimization with recourse is studied in Chapter 13.)

Remark 9.9 (Key structures of SCOPF). 1. The constraints (9.43) and (9.44) are linear. The con-
straint (9.45) is smooth but nonconvex. The constraints (9.46) (9.47) are nonsmooth and compu-
tationally difficult especially for interior-point methods (e.g., Ipopt [112]) used by all three teams
[109, 110, 111]. All three teams devise methods to effectively handle these nonsmooth constraints,
as discussed in Chapters 9.5.2 and 9.5.3.

2. The constraints (9.43) (9.44) (9.45) (9.46) apply to both the base case k = 0 and contingencies k� 1,
but (9.47) where complementarity constraints must be dealt with applies only to contingencies k� 1
and hence only appears in the second-stage problem (9.51). As noted above (9.47) models the
steady-state effect of frequency control actions after a contengency.

3. All constraints except (9.47) are separable in k. The constraint (9.47) couples the base case variables
x0 and contingency response yk for each k. The SCOPF problem is therefore highly parallelizable
and this is exploited by all three teams.

Computational challenges The GO Challenge 1 includes a SCOPF test where a base case decision x0
must be computed within 10 or 45 minutes depending on the category of competition. It includes another
test that computes contingency responses given the base-case decision x0 with a time limit corresponding
to 2 seconds per contingency. The problem (9.49) does not include unit commitment decisions or switched
devices such as transformer taps, capacitor banks and switchable transmission lines. They are included in
Challenge 2 of the GO Competition that was conducted in 2021 and introduce discrete variables that add
to the computational difficulty.

There are three main computational challenges with (9.49):

1. Nonsmoothness. Interior-point solvers, which all three winning teams use, by default require the
problem to be smooth but constraints (9.46)(9.47) are both nonsmooth. The line limit (9.46) specifies
a second-order cone (studied in Chapter 7.2.1) of the form:

vuut
n�1

Â
i=1

x2
i  xn +an, x 2 R

n, an 2 R (9.52a)
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This constraint is convex but nondifferentiable at the origin. The real power generation limit (9.47a)
in each contingency is of the form

y = [x]ba := max(a,min(x,b)), x,y,a,b 2 R (9.52b)

and also nondifferentiable at x = a or x = b. The reactive power generation limit in each contingency
(9.47b) is a logical constraint of the form

{a x b, y = z} [ {x = a, y� z} [ {x = b, y z} , x,y,z,a,b 2 R (9.52c)

Logical constraints are generally difficult to compute.

2. Large problem size. For a network with G generators and M transmission lines or transformers2,
if we are to evaluate security against the outage of every single generator or line/transformer, it
can increase the number of constraints by a factor of G + M under N� 1 security. If the dispatch
has to be secure against N� k security then the number of constraints will be increased by a factor
of (G + M)!/(k!(G + M� k)!). For example the largest network used in the GO Challenge 1 has
30,000 buses, 3,526 generators, 32,020 transmission lines, 3,373 transformers [111, Table EC.1],
yielding G + M = 3,526 + 32,020 + 3,373 = 38,919. This would have increased the number of
constraints by 4 orders of magnitude under N� 1 security, or almost 9 orders of magnitude under
N� 2 security ((G + M)!/(k!(G + M� k)!) = 757,324,821). The GO Competition adopts N� 1
security and specifies about 16,000 contingency scenarios which is still an increase of 4 orders of
magnitude. For real-time SCOPF any practical solution must include methods to efficiently rank
contingencies and solve an approximate problem with only a few highly ranked contingencies.

3. Nonconvexity. The power flow constraint (9.45) is nonconvex. As we have seen in Chapter 9.3, OPF
is NP-hard which means that it is hard to scale in the worst case.

Methods to deal with nonconvexity through convex relaxations are studied in Chapters 10 and 11. It is
however difficult to scale these methods to large problems. All three teams use a solver (Ipopt [112]) that
applies a local interior-point algorithm to the nonconvex problem. Though local algorithms are generally
not guaranteed to produce a global optimum, they often perform well in practice, as we have discussed in
Chapter 9.4.

We therefore focus in the rest of this section on techniques use by the GO Competition teams to handle
nonsmoothness and large problem size.

9.5.2 Handling nonsmoothness

The types of nonsmoothness in (9.52) are common in OPF problems. A basic approach is to approximate
nondifferentiable functions by smooth functions and convert logical constraints into equivalent comple-
mentarity constraints or mixed integer constraints. For small problems the resulting complementarity
problems or mixed integer problems can be solved directly. For large problems the complementarity con-
straints or mixed integer constraints are approximated by smooth constraints that can be solved using
standard solvers. We next describe three techniques from [109, 110, 111].

2The official GO Challenge 1 formulation models transformers with slightly different capacity limits than (9.46).
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9.5.2.1 Smooth approximation

A common technique to handle the nondifferentiable second-order cone constraint (9.52a),
q

Ân�1
i=1 x2

i 
xn +an, is to consider instead

n�1

Â
i=1

x2
i  (xn +an)

2, xn +an � 0

The first constraint Ân�1
i=1 x2

i  (xn + an)2 is differentiable but nonconvex. Even though they are different
representations of the same set, the resulting optimization problem can have different duality and compu-
tational properties; see Chapter 7.3.7. Instead of including the nonconvex constraint Ân�1

i=1 x2
i  (xn +an)2,

[109] replaces it by a log-barrier function in the cost function for each contingency:

log

 
(xn +an)

2 �
n�1

Â
i=1

x2
i

!

which is convex.

The constraint (9.52b), y = [x]ba := max(a,min(x,b)), is nondifferentiable at x = a or x = b. It is
approximated by a smooth constraint in [111], as follows. The function f (x) := max(0,x), x 2 R, can be
over approximated by

f e(x) := e ln
⇣

1+ ex/e
⌘

, e > 0 (9.53a)

and the function g(x) := min(0,x), x 2 R, can be under approximated by

ge(x) := �e ln
⇣

1+ e�x/e
⌘

, e > 0 (9.53b)

See Figure 9.3(a). The approximation errors are respectively

f e(x)� e ln2  f (x) < f e(x), e > 0, x 2 R

ge(x)+ e ln2 � g(x) > ge(x), e > 0, x 2 R

Hence the approximation becomes tight as e! 0, but a small e can cause numerical issues since the second
derivatives d2

dx2 f e(0) and d2

dx2 ge(0) evaluated at x = 0 diverges as e ! 0. Hence a good heuristic must
strike a balance between accuracy and numerical stability. This method leads to a smooth approximation
of h(x) := max(a,min(x,b)) given by

he(x) := a + e ln

 
1 +

e(b�a)/e

1 + e(b�x)/e

!
(9.53c)

See Exercise 9.13 for approximations of max(a,x), min(x,b) and max(a,min(x,b)). Then the constraint
y = [x]ba can be replaced by its smooth approximation y = he(x).
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Figure 9.3: (a) The nonsmooth functions f (x) := max(0,x) and g(x) := min(0,x) and their smooth ap-
proximations f e(x) and ge(x) respectively (e = 0.05). (a) The nonsmooth functions h(x) := [x]ba and and
its smooth approximation he(x) (e = 0.05, a =�0.2, b = 0.2).

9.5.2.2 Reformulation as mixed integer constraints

Both the nondifferentiable constraint (9.52b) and the logical constraint (9.52c) can be reformulated as
equivalent mixed integer constraints using the big-M method. Specifically y = [x]ba := max(0,min(x,b)) if
and only if there exist binary variables z,z 2 {0,1} such that (Exercise 9.14):

a  y  b, y�a  Mz, y� x  M(1� z), b� y  Mz, x� y  M(1� z), x,y 2 R

where M 2 R+ is a sufficiently large constant. Similarly the logical constraint (9.52c) can also be refor-
mulated as an equivalent mixed integer constraint (Exercise 9.15): (x,y,z) 2 R

3 satisfies

{a x b, y = z} [ {x = a, y� z} [ {x = b, y z}

if and only if there exist binary variables (z,z) such that

a  x  b, z,z 2 {0,1}
x�a  Mz, z� y  Mz, y� z  M(1� z)
b� x  Mz, y� z  Mz, z� y  M(1� z)

After all nondifferentiable constraints and logical constraints have been replaced by equivalent mixed
integer constraints, the resulting mixed integer problem can be solved exactly by standard solvers if the
problem is small. Otherwise one can relax the integrality constraints, e.g., relax z,z 2 {0,1} to z,z 2 [0,1],
and solve the relaxation instead.
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9.5.2.3 Reformulation as complementarity constraints

Alternatively the nondifferentiable constraint (9.52b) can be reformulated as an equivalent complementar-
ity constraint: y = [x]ba := max(0,min(x,b)) if and only if there exist slack variables r�,r+ 2 R such that
(Exercise 9.14)

y+r+�r� = x, 0  r� ? y�a � 0, 0  r+ ? b� y � 0, x,y 2 R (9.54a)

Similarly the logical constraint (9.52c) can also be reformulated as an equivalent complementarity con-
straint (Exercise 9.15): (x,y,z) 2 R

3 satisfies

{a x b, y = z} [ {x = a, y� z} [ {x = b, y z}

if and only if there exist slack variables r�,r+ 2 R such that

y+r+�r� = z, 0  r� ? x�a � 0, 0  r+ ? b� x � 0 (9.54b)

The ability to convert between these nonsmooth constraints allows algorithm designers to choose different
representations and derive different strategies to handle them, as the GO Competition teams do.

Solving complementarity constraints such as those in (9.54), e.g., given x, finding (y,r�,r+) that
satisfies (9.54a) is called a linear complementarity problem. More generally, given a matrix M 2 R

m⇥n

and vector c 2 R
m the linear complementarity problem LCP(M,c) is to find vectors (z,x) 2 R

m+n such
that

z� 0, Mx+ c� 0, zT(Mx+ c) = 0 (9.55a)

The shorthand for (9.55a) is

0  z ? Mx+ c� 0

Note that the set {(z,x) 2 R
2 : 0 z? x � 0} is a nonconvex set and hence LCP can be difficult to solve

exactly. We often encounter the special case where M is square and x := z are imposed in (9.55a), i.e., find
z 2 R

n such that

z� 0, Mz+ c� 0, zT(Mz+ c) = 0 (9.55b)

In this case a sufficient condition for the existence and uniqueness of a solution z is that M satisfies
xTMx � 0 for all x 2 R

m whether or not M is symmetric.3 In particular M being positive definite or
symmetric is not necessary (Exercise 9.18). A nonlinear complementarity problem NCP(h) for a function
h : Rn! R

m is to find vectors (z,x) 2 R
n+m such that

z� 0, h(x)� 0, zTh(x) = 0 (9.56)

It reduces to LCP(M,a) when h(x) := Mx+c. Complementarity problems originally arise as solving KKT
conditions of optimization problems; in particular solving the KKT condition of a quadratic program is

3For a matrix M over the field R, we define M to be positive definite only for symmetric M; see Definition 20.2 and Remark
20.1 in Chapter 20.1.5.
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a linear complementarity problem (Exercise 9.16). To see that, given x, finding (y,r�,r+) that satisfies
(9.54a) is a LCP, substitute y = r��r+ + x into the complementarity constraints to get:

0 r� ? (r��r+)+(x�a)� 0
0 r+ ? (�r�+r+)+(b� x)� 0

or finding a solution (r�,r+) 2 R
2 to the following LCP(M,c):

0


r�
r+

�
?


1 �1
�1 1

�

| {z }
M


r�
r+

�
+


x�a
b� x

�

| {z }
c

� 0

After all nondifferentiable constraints and logical constraints have been replaced by equivalent com-
plementarity constraints, the resulting problem can be solved exactly by LCP solvers if the problem is
small. Otherwise the complementarity constraints can be approximated by simpler smooth constraints
that can be solved for larger problems, as we discuss next.

Consider the complementarity constraint of the form

x � 0, y � 0, xy = 0, x,y 2 R (9.57)

The bilinear constraint xy = 0 is nonconvex. The function f(x,y) := x+y�
p

x2 + y2 is called the Fischer-
Burmeister function and well studied for nonlinear complementarity problems. It is easy to check that
(9.57) holds if and only it f(x,y) = 0. A common way to handle the complementarity constraint (9.57) is
to replace it with the Fischer-Burmeister function f(x,y) as a penalty term in the objective. The function f
is convex and Lipschitz continuous. (It is however not differentiable at (0,0) and [109] finds this approach
numerically unstable for the SCOPF problem.)

In many applications some bounds on x,y are known, e.g., the capacity limit of the largest generator
poses a bound on all generators’ output levels a priori. Suppose x  x  x and y y y where (x,x) and
(y,y) are known. Then the bilinear function f (x,y) := xy, x,y 2 R can be approximated by a McCormick
envelop. Generally a McCormick envelop is a convex relaxation of a nonconvex function f (x,y), x,y 2R.
For the bilinear constraint:

w = xy, x  x x, y y y, w,x,y 2 R

the relaxation is a set of linear inequalities in (w,x,y) 2 R
3 (Exercise 9.19):

lower bounds on w: w � yx+ xy� xy, w � yx+ xy� xy (9.58a)
upper bounds on w: w  yx+ xy� xy, w  yx+ xy� xy (9.58b)

x  x  x, y  y  y (9.58c)

The quality of the approximation depends on how tight the lower and upper bounds on x,y are.

Example 9.3 (McCormick envelops). Consider the QCQP:

min
x2Rn Â

i, j
ci jxix j s.t. Â

i, j
cl

i jxix j  bl, l = 1, . . . ,L

x  x  x
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Derive a convex relaxation based on the McCormick envelops.

Solution. Let wi j := xix j. Applying (9.58) leads to the convex relaxation:

min
x2Rn Â

i, j
ci jwi j s.t. Â

i, j
cl

i jwi j  bl, l = 1, . . . ,L

wi j � x jxi + xix j� xix j, wi j � x jxi + xix j� xix j, i, j = 1, . . . ,n

wi j  x jxi + xix j� xix j, wi j  x jxi + xix j� xix j, i, j = 1, . . . ,n

x  x  x

Suppose there are known upper bounds on x,y 2 R in the complementarity constraint (9.57):

x � x � 0, y � y � 0, xy = 0, x,y 2 R (9.59)

(Note that this may not be the case for KKT conditions as one of the variables x,y will be a dual variable
which may not have an upper bound.) In this case, substituting w = xy into (9.59) leads to the following
linear relaxation of the nonconvex constraint xy = 0:

0  x  x, 0  y  y, w = 0, x,y 2 R

max{0, yx+ xy� xy}  0  min{xy, yx}

or equivalently

0  x  x, 0  y  y, 0  min{xy, yx}, x,y 2 R

9.5.3 Scaling computation

To scale the computation of (9.49), or its two-stage formulation (9.50)(9.51), efficient software implemen-
tation is critical, especially how to effectively use multi-core platforms for parallel computation, how to
detect and reduce numerical instability, and how to handle software failures such as solver divergence or
convergence to an infeasible point even when the problem is provably feasible. For example, the number
of nonlinear subproblems that needs to be solved in [109] can be as high as 100,000, each with 2,000,000
variables and constraints. Software implementation issues in such a large-scale computational regime are
highly nontrivial.

In the rest of this subsection however we will focus only on algorithmic techniques for scalability. In
particular we summarize four techniques used in [109, 110, 111] to illustrate some of the ideas in solving
industrial-scale OPF problems.

Approximate or relax nonsmooth functions. To avoid infeasibility, some hard constraints g(x) = 0,
h(x) 0 such as power balanced have been replaced by soft constraints g(x) = s1, h(x) s2 respectively
and a violation cost c(s1,s2) is added to the cost function to penalize constraint violation. Nonsmooth cost
functions f (x), e.g., piecewise linear (convex) constraint violation costs cp

ki(s),c
q
ki(s),c

e
k,i j(s) in (9.49d), are
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approximated by quadratic functions of the form f̂ (x) := ax2 + bx with parameters (a,b) determined by
linear regression. Nondifferentiable or combinatorial constraints, e.g., (9.46)(9.47), are approximated or
relaxed by smooth constraints, as discussed in Chapter 9.5.2. Smooth problems are generally easier to
solve and what most standard solvers can handle.

Approximate optimal recourse function rk(x0). The approach of [109] uses the two-stage formulation
(9.50)(9.51) of the SCOPF problem. A two-stage problem is computationally difficult because an explicit
form of the second-stage recourse function rk(x0) is generally not available. Moreover the recourse func-
tion is in general nonsmooth; we will study nonsmooth convex optimization in Chapter 12 and two-stage
stochastic optimization in Chapter 13.4. The key idea of [109] is to approximate rk(x0) by an explicit
polynomial function r̂k(x0;pk) of the form

r̂k(x0;pk) := pk f̂k(x0) (9.60a)

where f̂k(x0) is a low-degree polynomial that depends on the device (a generator or a line) that is dis-
connected in contingency k under N � 1 security and pk is a scaling factor in the approximation to be
determined. This reduces the first-stage to a much simpler approximate problem of the form

min
x0

f̂0(x0) +
1

|K̂| Â
k2K̂

r̂k (x0;pk) (9.60b)

where the cost functions f̂0 and r̂k are either quadratic or low-degree polynomials and K̂ is a reduced set
of credible contingencies (see discussions below). Given an optimal solution x0 of the approximate first-
stage problem (9.60), an approximate version of the second-stage problem (9.51) is solved to determine
the scaling factor pk. Since the second-stage problem is separable in k, given x0, the approximate (9.51) is
solved in parallel across contingencies k, to obtain an (approximate) optimal rk(x0). Using (9.60a), pk(x0)
is then set to be

pk(x0) :=
rk(x0)

f̂k(x0)
(9.61)

This leads to an algorithm that solves approximate first-stage problem and approximate second-stage
problem iteratively: for t = 0,1, . . . , repeat until a stopping criterion is satisfied (pk(0) = 0, i.e., start with
the base case):

1. Given r̂k(x0;pk(t)), solve the approximate first-stage problem (9.60) to obtain an optimal solution
x0(t +1).

2. Given x0(t + 1), solve an approximate version of the second-stage problems (9.51) in parallel to
obtain optimal solutions rk(x0(t +1)). Construct pk(t +1) := pk(x0(t +1)) according to (9.61) and
r̂k(x0;pk(t +1)) according to (9.60a).

The two subproblems in this algorithm are made much simpler by techniques that handle nonsmoothness
(discussed in Chapter 9.5.2) and techniques that screen contingencies quickly to identify and include only
contingencies that are likely to have large recourse costs rk(x0), which we discuss next.
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Fast contingency selection. The approach of [110] focuses on continuously and iteratively evaluate con-
tingencies and include only the top three contingencies in the solution of SCOPF (9.49) in each iteration.
Three main contingency selection techniques are used to identify top three contingencies:

1. Initial ranking using machine learning. Initial contingency ranking uses supervised learning to
predict the importance of a contingency on overall cost based on various features, such as different
expressions of generation levels and line power, generator ratings, degrees of buses, etc. It finds that
the apparent line power

max
nq

P2
0,i(k) j(k) + Q2

0,i(k) j(k),
q

P2
0, j(k)i(k) + Q2

0, j(k)i(k)

o

has the best predictive power. This is consistent with the intuition used to approximate the recourse
function rk(x0) in [109] (it is used in f̂k(x0) in (9.60a)).

2. Contingency evaluation. Each contingency k identified by the initial ranking as credible is then
evaluated more carefully by solving the second-stage problem (9.51), in two steps. First, given a
first-stage decision x0, an upper bound on the second-stage cost rk(x0) is computed by solving a
reduced problem with only the power flow equations and linear constraints associated with com-
plementarity constraints predicted by an active set method to handle complementarity constraints.
In particular this reduced problem does not include any operational constraints. Only if this upper
bound exceeds a certain threshold will a full evaluation of the contingency be carried out by solving
the second-stage problem using the active set method.

3. Dominated contingencies. Inclusion of the constraints due to contingency j may cause the con-
straints due to other contingencies k to be automatically (possibly approximately) satisfied. To
identify these constraints, let smax

k be the largest entry of the vector sk defined in (9.48c), i.e., smax
k

is the largest slack variable measuring the violation of power balance or a line limit in contingency
k. We say that contingency k is dominated by contingency j if smax

j > smax
k . Only contingencies

that are not dominated by another contingency are included in the solution of the master problem
(9.49).

The screening of contingencies and solving of SCOPF (9.49) with top three contingencies in each iteration
both require techniques to handle complementarity constraints, evaluate contingencies quickly, remove
dominated contingencies, and effective parallelization of computation.

Exploit distributed problem structure by ADMM algorithm. The approach of [111] uses smooth
approximation of constraint (9.47) and develops an ADMM-based algorithm to exploit the problem’s dis-
tributed structure. The base case k = 0 and the contingencies k� 1 are coupled only through the first-stage
decision x0 in the constraint (9.47) that appears in the set of second-stage problems (9.51), one for each
contingency k � 1. By introducing a local copy x0

k of x0 for each contingency subproblem these second-
stage problems are decoupled and can therefore be computed in parallel, with a consensus constraint that
all local copies x0

k equal to x0 at optimality. Hence the SOCP problem (9.49) can be equivalently reformu-
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lated into the form

min f0(x0) + Â
k�1

fk
�
x0

k ,yk
�

(9.62a)

over x0,
�
x0

k ,yk, k � 1
�

(9.62b)

s.t. x0 2 X0,
�
x0

k ,yk
�
2 Xk, k � 1 (9.62c)

x0
k = x0, k � 1 (9.62d)

where the constraint x0 2 X0 means that x0 satisfies (9.43)–(9.46), and the constraint
�
x0

k ,yk
�
2 Xk means

that yk satisfies (9.43)–(9.46) and
�
x0

k ,yk
�

satisfies the smooth approximations of (9.47). These constraints
(9.62c) are decoupled across k. The coupling of the K +1 variables x0 and (x0

k ,yk), k � 1, is only through
K linear (consensus) constraint (9.62d). This is a form that is suitable for distributed solution using the
alternating direction method of multipliers (ADMM) studied in Chapter 7.5.5.

Define the augmented Lagrangian function that relaxes the coupling constraint (9.62d):

Lr
�
x0,(x0

k ,yk),k � 1;l
�

:= f0(x0) + Â
k�1

fk
�
x0

k ,yk
�

+ lT
�
1K⌦ x0� x0� +

r
2
��1K⌦ x0� x0��2

2

where 1K is the vector of all 1s of size K and x0 := (x0
1, · · · ,x0

K) is a column vector. The ADMM algorithm
is

x0(t +1) := arg min
x02X0

Lr
�
x0,
�
x0

k(t),yk(t)
�
,k � 1;l (t)

�
(9.63a)

�
x0

k(t +1),yk(t +1)
�

:= arg min
(x0

k ,yk)2Xk

Lr
�
x0(t +1),

�
x0

k ,yk
�
,k � 1;l (t)

�
, k � 1 (9.63b)

l (t +1) := l (t) + r
�
1K⌦ x0(t +1)� x0(t +1)

�
(9.63c)

The expression (9.63b) is a shorthand for one-pass of a Gauss-Seidel method across the K contingencies:
for k = 1, . . . ,K,
�
x0

k(t +1),yk(t +1)
�

:= arg min
(x0

k ,yk)2Xk

Lr
�
x0(t +1),(x0

1(t +1),y1(t +1)), . . . ,
�
x0

k ,yk
�
, . . . ,

�
x0

K(t),yK(t)
�

;l (t)
�

Given the Lagrange multiplier lk(t) associated with contingency k, the K+1 subproblems (9.63a)(9.63b)
can be computed in parallel. The algorithm of [111] applies this idea to SCOPF (9.62) with two main re-
finements. First it relaxes the coupling constraint (9.62d) with a slack variable zk for each contingency
k� 1 which is penalized in the objective function with a term bkzkk2

2. As a result the solution returned by
the ADMM algorithm may violate by a large amount the coupling constraint and is therefore infeasible for
the original SCOPF. The second refinement is an outer loop where the weight b on the penalty is increased
if the worst violation maxk�1 kzkk across contingencies is too large and the approximate SCOPF is solved
again using ADMM. The outer loop terminates when maxk�1 kzkk is small enough (and the stationarity
condition is sufficiently satisfied). Even though the problem is nonconvex it is proved in [111] that the
two-level ADMM algorithm with both the inner and outer loops converges under the condition that each
inner-loop iteration (9.63a)(9.63b) produces sufficient descent.
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9.6 Bibliographical notes

As for most chapters, this section is now a placeholder with references collected in a somewhat random
fashion during the writing of the text. Major rewrite later.

There has been a great deal of research on OPF since Carpentier’s first formulation in 1962 [113]. An
early solution appears in [114] and extensive surveys can be found in e.g. [115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 58, 128]. It is nonconvex and has been shown to be NP-hard in general
[129, 96, 97].

Many references for 3-phase OPF: e.g. [130, 131, 132]

There are many excellent texts on optimization theory especially for convex problems, e.g., [133, 80,
74]. Optimization texts with power system applications include [134, 135]. In particular Chapter 7.5.3
mostly follows the presentation in [80, Chapter 11]. A popular interior-point solver for OPF problems is
[136].

A classic text on computational complexity is [102]. OPF has been shown to be NP-hard in general
[129, 96, 97, 99, 101]. [104] surveys combinatorial OPF and proves approximation results and conditions
for exactness (when there are no discrete variables). It shows that OPF with discrete injections cannot be
efficiently approximated. The hardness results complement those in [100, 95, 96, 97]; see [104, Chapter
5] and its Section 5.6 for comparison.

Chapter 9.4 on global optimality is taken form [107, 106]

[139] shows that, by dualizing clique tree conversion, a class of nonconvex problems, including OPF
problems, the per-iteration cost of an interior-point method is linear O(n) in time and in memory, so an
e-accurate and e-feasible iterate is obtained after O(

p
n log(1/e)) iterations in O(n1.5 log(1/e)) time.

9.7 Problems

Chapter 9.1

Exercise 9.1 (OPF: power losses as quadratic form). We revisit Exercise 4.12 to write power losses as
quadratic forms. For each line ( j,k) 2 E, let its admittances be ys

jk = gs
jk + ibs

jk and ym
jk = gm

jk + ibm
jk.

Suppose ys
jk = ys

k j and gs
jk � 0, gm

jk � 0 (these conditions are satisfied if ( j,k) models a transmission line).

1. Define the total real power loss as:

C(V ) := Â
j

Re
�
s j(V )

�
= Â

j
Re

 

Â
k: j⇠k

ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

j j|Vj|2
!

Show that C(V ) is a quadratic form C(V ) =VHC0V where the cost matrix C0 := 1
2
�
YH +Y

�
= Re(Y )

is the Hermitian component of the admittance matrix Y . Show that C0 is a positive semidefinite
matrix.
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2. Suppose ym
jk = ym

k j = 0. Define the total thermal loss as:

C(V ) := Â
( j,k)2E

rs
jk |I jk(V )|2 = Â

( j,k)2E
rs

jk

���ys
jk(Vj�Vk)

���
2

where zs
jk = rs

jk + ixs
jk := 1/ys

jk. Show that C(V ) is a quadratic form C(V ) = VHC0V where the cost
matrix C0 = Re(Y ) when ym

jk = ym
k j = 0.

3. Therefore, when ym
jk = ym

k j = 0, the total real power loss in part 1 reduces to the total thermal loss
in part 2. As an alternative proof that sheds light on the physics behind this mathematical property,
show that

Â
j

s j(V ) = Â
( j,k)2E

zs
jk

�����
Vj�Vk

zs
jk

�����

2

+ Â
( j,k)2E

⇣
ȳm

jk|Vj|2 + ȳm
k j|Vk|2

⌘

where (Vj�Vk)/zs
jk is the current through the series impedance of line ( j,k).

Exercise 9.2 (OPF: quadratic line limit). Consider the line limit

|S jk(V )|2  S2
jk, |Sk j(V )|2  S2

k j, ( j,k) 2 E

where

S jk(V ) := VjĪ jk(V ) = ȳs
jk
�
|Vj|2�VjV̄k

�
+ ȳm

jk|Vj|2, ( j,k) 2 E

Sk j(V ) := VkĪk j(V ) = ȳs
k j
�
|Vk|2�VkV̄j

�
+ ȳm

k j|Vk|2, ( j,k) 2 E

Show that the line limit can be written as an inhomogeneous quadratic form.

Exercise 9.3 (Inner product and trace). Let A,B 2 C
n⇥n be square complex matrices. The inner product

of A,B is defined to be A ·B := tr(AHB). Show that:

1. tr(AB) = tr(BA).

2. A ·B := tr(AHB) = tr(AB) if A is Hermitian. The converse does not necessarily hold.

3. If A and B are both Hermitian then A ·B = B ·A.

Exercise 9.4 (Skew-symmetric and Hermitian matrices). Show that:

1. If C 2 R
n⇥n is a skew symmetric matrix (i.e., CT =�C) then xTCx = 0 for any x 2 R

n.

2. If C 2 C
n⇥n is a Hermitian matrix (i.e., CH = C) then xHCx 2 R for any x 2 C

n.
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3. If C 2 C
n⇥n is a Hermitian matrix, then tr(CX) is a real number for any rank-1 matrix X 2 C

n⇥n

(psd or nsd).

4. Let C := Cr + iCi where Cr,Ci 2 R
n⇥n. If C is Hermitian then CT

r = Cr and CT
i =�Ci.

Let A 2 C
n⇥n and x 2 C

n. Define the Hermitian and skewed Hermitian components of A:

Br :=
1
2

⇣
A+AH

⌘
, Bi :=

1
2i

⇣
A�AH

⌘

Show that

5. Br and Bi are both Hermitian for arbitrary A, so that xHBrx and xHBix are both real numbers.

6. Moreover xHAx = xHBrx+ ixHBix.

Exercise 9.5 (Real QCQP). Show that the complex QCQP (9.10) is equivalent to the real QCQP (9.11) of
twice the dimension. Show that Dl are symmetric matrices.

Exercise 9.6 (Homogenization). Let x,a,b 2 C
n.

1. Let e j 2 {0,1}n be the unit vector with a single 1 at the jth position. Show that the set of inequalities
a j  x j  b j, j = 1, . . . ,n, is equivalent to the following set of homogeneous quadratic inequalities
in (x̂, t) with x := x̂t̄: for j = 1, . . . ,n,

Re(a j) 


x̂
t

�H 0 z j
zH

j 0

�
x̂
t

�
 Re(b j), Im(a j) 


x̂
t

�H 0 iz j
�izH

j 0

�
x̂
t

�
 Im(b j)

(9.64a)

1 


x̂
t

�H0 0
0 1

�
x̂
t

�
 1 (9.64b)

where z j = e j/2.

2. Let c j 2Cn for j = 1, . . . ,n. Show that the set of inequalities a j cHj x b j, j = 1, . . . ,n, is equivalent
to (9.64) with z j = e j/2 replaced by z j = c j/2.

Chapter 9.2.

Exercise 9.7.
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Chapter 9.3.

Exercise 9.8 (Angle constraint). Show that (9.23e) is equivalent to the constraint on apparent power P2
jk +

Q2
jk  S(q) for some real number S(q) that depends on q , provided |q jk| q 2 (0,p/2].

Exercise 9.9 (NP-hardness [97]). Let x := (p j, j 2 NG; q j, j 2 NG[NL; Pjk,Q jk,( j,k) 2 E) be a solution
of (9.23).

1. Consider the line flow Pa0 = aP̂(qa0) := a(g(1� cosqa0)�bsinqa0) on line (a,0) 2 E. Show that,
if qa0 < 0, then P̂(qa0) < 0.

2. Show that Q̂(�q) > 0.

3. Show that P̂(�q)Q̂(q0a)� Q̂(�q)P̂(q0a) with equality if and only if qa0 2 {0,q}.

(Hint: use tan(f/2) = (1� cosf)/sinf , |qa0| q  p/2 and P̂(�q) < 0.)

Exercise 9.10 (NP-hardness of nonconvex quadratic program [137]). Show that determining the global
solution of smooth nonlinear program is NP-hard by reducing the NP-complete subset sum problem to
nonconvex quadratic program. (Hint: Write a subset sum problem instance (A,s) in terms of determining
a binary vector x of size |A| and reduce it to a smooth nonconvex quadratic program.)

Chapter 9.4

Exercise 9.11 (Feasible region of OPF [138]). By introducing slack variables, the constraints that define
the feasible region of OPF (e.g., (9.16)) is of the form f (x) = 0 for some f : Rn ! R

n. Consider the
(energy) function E(x) := 1

2k f (x)k2
2 and the problem minx2Rn E(x).

1. What is the gradient flow (continuous time version of gradient descent algorithm) to minimize E(x)?

2. Show that if x̄ is a feasible point (i.e., f (x̄) = 0), then x̄ is an stable equilibrium point of the gradient
flow dynamic. The converse is not necessarily true.

3. Show that the converse is true if the Jacobian ∂ f
∂x (x) is nonsingular on R

n.

Exercise 9.12 (OPF global optimality). This exercise fills in some details in the proof of Theorem 9.7 in
Chapter 9.4.4.

1. Show that condition C9.5 implies (9.36).

2. For {hx : x 2 X̂ \X} defined in (9.39), show that hx(t) 2 X̂ for all t 2 [0,1] and hx(1) 2 X .
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Chapter 9.5

Exercise 9.13 (Smooth approximation). This problem considers smooth approximations of max(a,x) and
min(a,x).

1. Let f (x) := max(0,x) and its over approximation f e(x) := e ln
⇣

1+ ex/e
⌘

for x 2 R and e > 0. For
any e > 0 show that f e(x)� e ln2 f (x) < f e(x) for all x 2 R, with equality if and only if x = 0.

2. What is the corresponding approximation f̃ e(x) for f̃ (x) := max(a,x) for any a 2 R?

3. Let g(x) := min(0,x) and its under approximation ge(x) :=�e ln
⇣

1+ e�x/e
⌘

for x 2 R and e > 0.
For any e > 0 show that ge(x) < g(x) ge(x)+e ln2 for all x2R, with equality if and only if x = 0.

4. What is the corresponding approximation g̃e(x) for g̃(x) := min(x,b) for any b 2 R?

5. What is the approximation for h(x) := max(a,min(x,b)) for a < b if we apply the approximations
for f̃ and g̃?

Exercise 9.14 (Complementarity and big-M constraints). Consider the nondifferentiable constraint y =
[x]ba := max(0,min(x,b)) where x,y 2 R are variables and a < b 2 R are given constants.

1. Show that it is equivalent to a complementarity constraint: y = [x]ba := max(0,min(x,b)) if and only
if there exist slack variables (r�,r+) 2 R

2 such that

y+r+�r� = x, 0  r� ? y�a � 0, 0  r+ ? b� y � 0, x,y 2 R (9.65)

Given x 2 R, show that finding a solution (y,r�,r+) 2 R
3 to this complementarity constraint is a

standard linear complementarity problem LCP(M,q) for a 2⇥2 matrix M.

2. Show that it is equivalent to a big-M mixed integer constraint: y = [x]ba := max(0,min(x,b)) if and
only if there exist binary variables z,z such that

a  y  b, z,z 2 {0,1} (9.66a)
y�a  Mz, y� x  M(1� z) (9.66b)
b� y  Mz, x� y  M(1� z) (9.66c)

where M 2 R+ is a sufficiently large constant. What value of (z,z) will result in infeasibility?

3. Show that it is also equivalent to (in the same sense):

x�a  Mz, a� x  M(1� z) (9.67a)
b� x  Mz, x�b  M(1� z) (9.67b)

together with (the nonlinear equality)

(y�a)(1� z) + (y�b)(1� z) + (y� x)zz = 0, z,z 2 {0,1} (9.67c)

What value of (z,z) will result in infeasibility?
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Exercise 9.15 (Complementarity and big-M constraints). Consider the logical constraint (9.52c) on the
variables (x,y,z) 2 R

3, reproduced here

{a x b, y = z} [ {x = a, y� z} [ {x = b, y z} , (x,y,z) 2 R
3 (9.68)

where a < b are given scalars. Unlike the complementarity problem in Exercise 9.14, the equality con-
straint y = z here involves another variable x.

1. Show that it is equivalent to the following complementarity constraint: (x,y,z) 2 R
3 satisfies (9.68)

if and only if there exist slack variables r�,r+ 2 R such that

y+r+�r� = z, 0  r� ? x�a � 0, 0  r+ ? b� x � 0 (9.69)

Given z, show that finding (x,y,r�,r+) that solves (9.69) is an LCP.

2. Show that it is equivalent to the following mixed integer constraint: (x,y,z) 2 R
3 satisfies (9.68) if

and only if there exist binary variables (z,z) such that

a  x  b, z,z 2 {0,1}
x�a  Mz, z� y  Mz, y� z  M(1� z)
b� x  Mz, y� z  Mz, z� y  M(1� z)

where M is a sufficiently large constant.

Exercise 9.16 (LCP for quadratic program). 1. Consider the quadratic optimization:

min
x2Rn

1
2

xTQx + cTx s.t. Ax  b, x � 0 (9.70a)

Show that solving the associated KKT condition is a LCP(M,q) with

M :=


QT AT

�A 0

�
, q :=


c
b

�
(9.70b)

2. Consider the quadratic optimization without the nonnegativity constraint on x:

min
x2Rn

1
2

xTQx + cTx s.t. Ax  b (9.70c)

If Q is positive definite show that solving the associated KKT condition is equivalent to the following
LCP:

l � 0, Ml +q � 0, lT (Ml +q) = 0

Determine M and q.
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Exercise 9.17 (LCP). Suppose A,B 2 R
n⇥n are square matrices and a,b 2 R

n. Consider the problem of
finding z such that

0  Az+a ? Bz+b � 0

Show that this is equivalent to a LCP if A is nonsingular.

Exercise 9.18 (Linear complementarity problem). Let

M :=


1 1
�1 0

�
, q :=


�1
1

�

Solve the LCP(M,q): find x := [x1 x2]T such that

x � 0, Mx+q � 0, xT(Mx+q) = 0

Note that there exists a unique solution even though M is neither positive definite nor symmetric.

Exercise 9.19 (McCormick envelop of w = xy). For the bilinear constraint

w = xy, x  x x, y y y, w,x,y 2 R

derive its McCormick envelops. (Hint: For (9.58a), if we let a := x� x and b := y� y or a := x� x and
b := y� y then ab� 0. Similarly for the lower bounds.)



Chapter 10

Semidefinite relaxations: BIM

Chapter 9 formulates OPF as a nonconvex quadratically constrained quadratic program (QCQP) and shows
that it is NP-hard in general. There are three common approaches to deal with nonconvexity. First, one
can solve a linear approximation of the original nonconvex problem. For instance DC OPF is a linear
program approximation that is widely used for electricity market operations (see Chapter 8.4). Second,
one can apply local algorithms such as Newton-Raphson or interior-point methods to compute a local
solution. Some of these algorithms are studied in Chapter 7.5, but because the problem is nonconvex, the
optimality conditions of Chapter 7.3 for convex problems are generally not applicable. Theorem 9.2 of
Chapter 9.4 provides a Lyapunov-like condition that guarantees that if an algorithm does produce a local
optimum, it will be a global optimum. The condition also ensures that convex relaxations of OPF will
be exact and therefore a third approach is to solve a convex relaxation for a global solution, to which the
optimality conditions of Chapter 7.3 do apply. In this and the next chapters we study a particular type
convex relaxation, called semidefinite relaxation, of OPF.

There is a rich theory and extensive empirical experiences in applying semidefinite relaxation to many
engineering problems. Besides being a method for seeking a global solution, a semidefinite relaxation
allows us to check if a feasible solution produced by a local algorithm is globally optimal. If it is not,
the solution of a relaxation provides a lower bound on the minimum cost and hence a bound on how far
any feasible solution is from optimality. Unlike approximations, if a relaxed problem is infeasible, it is a
certificate that the original OPF is infeasible.

In Chapter 10.1 we define semidefinite relaxation of QCQP in general and explain how to use the
concept of partial matrices and their psd rank-1 completion to reduce the computational complexity of
semidefinite relaxation for large sparse networks. In Chapter 10.2 we apply these results to write the
single-phase OPF in terms of partial matrices to reveal structures that enable exact relaxations (we will
use the QCQP formulation of OPF studied in Chapter 9.1.3 for the bus injection model). In Chapters 10.3
and 10.4 we study two sufficient conditions for exact relaxations of OPF on single-phase radial networks.
We study semidefinite relaxations in the branch flow model in Chapter 11. The sufficient conditions in
this and the next chapter complement the exactness condition of Chapter 9.4 (see Lemma 9.4).

435
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10.1 Semidefinite relaxations of QCQP

OPF is formulated in (9.16) as a standard homogeneous QCQP. The computational difficulty arises from
the nonconvex feasible set of OPF. Informally one can regard a relaxation of OPF as minimizing the same
cost function over a convex superset (though in a lifted space). Different choices of convex supersets lead
to different relaxations, but they all provide lower bounds to OPF. If an optimal solution of a relaxation
happens to lie in the feasible set of the original OPF problem, then it is optimal for the original OPF. In
this case we say the relaxation is exact. In this section we describe three types of semidefinite relaxation
of OPF and explain equivalence relations among them.

10.1.1 SDP relaxation

Since these methods are not restricted to OPF, we will discuss them using the general QCQP formulation
(9.10), reproduced here:

Copt := min
x2Cn

xHC0x (10.1a)

s.t. xHClx  bl, l = 1, . . . ,L (10.1b)

Using xHClx = tr
�
ClxxH

�
we can rewrite (10.1) as

min
X2Sn,x2Cn

tr(C0X)

s.t. tr(ClX)  bl, l = 1, . . . ,L

X = xxH

Any positive semidefinite (psd) rank-1 matrix X 2 S
n⇥n
+ has a spectral decomposition X = xxH for some

x 2 C
n; see Chapter 20.1.6. The factor x is unique up to a rotation, i.e., x satisfies X = xxH if and only if

xe jq does for any q 2 R. Hence (10.1) is equivalent to the following problem where the optimization is
over the set Sn of Hermitian matrices X :

min
X2Sn

tr(C0X) (10.2a)

s.t. tr(ClX)  bl, l = 1, . . . ,L (10.2b)
X ⌫ 0, rank(X) = 1 (10.2c)

Recall that tr(ClX) = Â j,k[Cl] jkXk j = Â j,k[Cl] jkXH

jk where the second equality follows when X is Her-
mitian. While the objective function and the constraints in (10.1) are quadratic in x, they are linear in X
in (10.2a)(10.2b). The constraint X ⌫ 0 in (10.2c) is convex (Sn

+ is a convex cone; see Chapter 7.2.2).
The rank constraint in (10.2c) is the only nonconvex constraint. These two problems are equivalent in the
sense that, given a feasible (or optimal) solution x to QCQP (10.1), there is an X := xxH that is feasible (or
optimal) to the semidefinite program (10.2). Conversely, given an X that is feasible (or optimal) to (10.2),
a solution x to (10.1) can be recovered through rank-1 factorization X = xxH. It is in this sense that we also
say that the feasible sets of (10.1) and (10.2) are equivalent. This is referred to as lifting the original QCQP
problem from n dimensional space C

n to the higher-dimensional space of n⇥n Hermitian matrices.
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Removing the rank constraint (10.2c) results in a semidefinite program (SDP):

min
X2Sn

tr(C0X) (10.3a)

s.t. tr(ClX)  bl, l = 1, . . . ,L (10.3b)
X ⌫ 0 (10.3c)

which is a convex problem. (Strong duality and KKT condition of semidefinite program is studied in
Chapter 7.4.5.) We call (10.3) a semidefinite relaxation or an SDP relaxation of QCQP (10.1) because the
feasible set of the equivalent problem (10.2) is a subset of the feasible set of SDP (10.3). A strategy for
solving QCQP (10.1) is to solve SDP (10.3) for an optimal matrix Xopt and check its rank. If rank(Xopt) = 1
then Xopt is feasible and hence optimal for (10.2) as well and an optimal solution xopt of QCQP (10.1)
can be recovered from Xopt through spectral decomposition Xopt = xopt(xopt)H. If rank Xopt > 1 then, in
general, no feasible solution of QCQP can be directly obtained from Xopt but the optimal objective value
of SDP provides a lower bound on that of QCQP.

10.1.2 Partial matrices and rank-1 completion

Even though the relaxation (10.3) is a convex problem computing its solution can still be challenging if
the problem size n is large. If the underlying network is sparse, much more efficient relaxations can be
used. To develop these ideas precisely, the key is to study the feasible sets of QCQP and its relaxations.

We start with the concept of partial matrices and their completions. An instance of QCQP (10.1)
is specified by a set of matrices and scalars (C0,Cl,bl, l = 1, . . . ,L). We assume the matrices Cl, l =
0,1, . . . ,L, are Hermitian so that xHClx are real. They define an underlying undirected graph F := (N,E)
with n nodes and m edges where distinct nodes j and k are adjacent (i.e., ( j,k) 2 E) if and only if there
exists an l 2 {0,1, . . . ,L} such that [Cl] jk = [Cl]

H

k j 6= 0. Assume without loss of generality that the graph
F is connected (otherwise restrict ourselves to each connected component). For any x 2 C

n note that the
quadratic form xHClx depends on |x j|2 and on xHj xk if and only if ( j,k) 2 E is a link in F , i.e., if and only
if there exists an l such that the coefficient of xHj xk is nonzero. Indeed

xHClx = Â
j,k

[Cl] jk xHj xk = Â
j

[Cl] j j |x j|2 + 2 Â
j<k

( j,k)2E

Re
⇣
[Cl] jk xHj xk

⌘

where the last equality follows from [Cl]k jxHk x j = [Cl]
H

jkxHk x j =
⇣
[Cl] jk xHj xk

⌘H
since Cl is Hermitian. Hence

xHj xk is not constrained by xHClx  bl if ( j,k) 62 E for any l, in which case Xjk of the lifted variable X is
not constrained by tr(ClX) bl for any l. This can be used to relax the psd and rank-1 constraints on the
entire matrix X using the concept of partial matrices, greatly simplifying computation when the underlying
graph F of the QCQP is sparse.

Given a graph F := (N,E), a partial matrix XF defined on F is a set of 2m+n complex numbers:

XF :=
�

[XF ] j j, [XF ] jk, [XF ]k j : nodes j 2 N and links ( j,k) 2 E
 

XF can be interpreted as a matrix with entries partially specified by these complex numbers. The ( j,k)th
entry of XF that does not correspond to an edge in F is not specified. If F is a complete graph (in which
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there is an edge between every pair of vertices) then XF is a fully specified n⇥n matrix. A completion X
of XF is any fully specified n⇥n matrix that agrees with XF on graph F , i.e.,

[X ] j j = [XF ] j j, [X ] jk = [XF ] jk, [X ]k j = [XF ]k j, j 2 N, ( j,k) 2 E

Given an n⇥n matrix X we use XF to denote the submatrix of X on F, i.e., the partial matrix consisting of
the entries of X defined on graph F . If q is a clique (a fully connected subgraph) of F then let XF(q) denote
the fully-specified principal submatrix of XF defined on q, i.e., if the clique q has k nodes then XF(q) is a
k⇥ k matrix and, for every node j and link ( j,k) in q,

[XF(q)] j j := [XF ] j j, [XF(q)] jk := [XF ] jk, [XF(q)]k j := [XF ]k j

We extend the definitions of Hermitian, psd, rank-1, and the trace operation for matrices to partial
matrices.

Definition 10.1 (Partial matrix XF ). Let XF be a partial matrix on a graph F := (N,E).

1. XF is Hermitian, denoted by XF = XH
F , if [XF ]k j = [XF ]Hjk for all ( j,k) 2 E.

2. XF is positive semidefinite (psd), denoted by XF ⌫ 0, if XF is Hermitian and the principal submatrices
XF(q) are psd for all cliques q of F .

3. XF is rank-1, denoted by rank(XF) = 1, if the principal submatrices XF(q) are rank-1 for all cliques
q of F .

4. XF is 2⇥2 psd if, for all edges ( j,k) 2 F , the 2⇥2 principal submatrices

XF( j,k) :=

[XF ] j j [XF ] jk
[XF ]k j [XF ]kk

�

are psd (and necessarily Hermitian).

5. XF is 2⇥2 rank-1 if, for all edges ( j,k) 2 F , the 2⇥2 principal submatrices XF( j,k) are rank-1.

6. The trace operation on XF is defined as

tr(ClXF) := Â
j2N

[Cl] j j [XF ] j j + Â
j<k

( j,k)2E

�
[Cl] jk [XF ]k j + [Cl]k j [XF ] jk

�

The condition XF( j,k)⌫ 0 is equivalent to: the matrix XF( j,k) is Hermitian, i.e., XF( j,k) = XF( j,k)H,
and

[XF ] j j � 0, [XF ]kk � 0, [XX ] j j[XX ]kk �
��[XF ] jk

��2

This is a rotated second-order cone studied in Chapter 7.2.1 (see (7.12)). The condition rank(XF( j,k)) = 1
is equivalent to:

[XF ] j j [XF ]kk =
��[XF ] jk

��2 > 0



Draft: PSA December 13, 2024 439

If both Cl and XF are Hermitian then [Cl]k j[XF ] jk =
�
[Cl] jk[XF ]k j

�H and hence

tr(ClXF) = Â
j2N

[Cl] j j [XF ] j j +2 Â
j<k

( j,k)2E

Re
�
[Cl] jk [XF ]k j

�

is a real scalar.

We call F a chordal graph if either F has no cycle or all its minimal cycles (ones without chords) are
of length three. A chordal extension c(F) of F is a chordal graph that contains F , i.e., c(F) has the same
vertex set as F but an edge set that is a superset of F’s edge set. In that case we call the partial matrix Xc(F)
a chordal extension of the partial matrix XF . Every graph F has a chordal extension, generally nonunique.
In particular a complete supergraph of F is a trivial chordal extension of F . Chordal graphs are important
for us because of the result [140, Theorem 7] that every psd partial matrix has a psd completion if and only
if the underlying graph is chordal. When a positive definite completion exists, there is a unique positive
definite completion, in the class of all positive definite completions, whose determinant is maximal. We
extend this result to rank-1 partial matrices after presenting an example.

Example 10.1 (Partial matrices and chordal extensions). Consider the graph F and the partial matrix XF in
Figure 10.1(a). XF is Hermitian if x jk = xHk j. The only cliques in F consist of two nodes that are adjacent,
and hence XF is psd if it is 2⇥2 psd and XF is rank-1 if it is 2⇥2 rank-1. XF is not chordal as it contains
a cycle of length greater than 3.

Figure 10.1(b) and (c) depict two chordal extensions c(F) of F and the partial matrices Xc(F) defined
on these chordal extensions. The chordal extension in Figure 10.1(b) has 2 maximal cliques, q1 := (1,2,3)
and q2 := (2,3,4,5). These cliques share two nodes, 2 and 3. The (fully specified) submatrices Xc(F)(q1)
and Xc(F)(q2) defined on the cliques q1 and q2 respectively are outlined in the figure with overlapping
entries shaded in green. The chordal extension in Figure 10.1(c) has 3 maximal cliques whose (fully
specified) submatrices are outlined. The clique q2 := (2,3,5) overlaps with the other two cliques and
the overlapping entries in Xc(F)(q2) are shaded in blue. (The shared nodes between maximal cliques
introduce complications in formulating semidefinite relaxation based on chordal extensions; see Chapter
10.1.6.)

Consider the following conditions on a n⇥ n matrix X and partial matrices Xc(F) and XF associated
with a given graph F :

X ⌫ 0, rank(X) = 1 (10.4a)
Xc(F) ⌫ 0, rank(Xc(F)) = 1 (10.4b)

XF( j,k)⌫ 0, rank(XF( j,k)) = 1, ( j,k) 2 E (10.4c)

We say that a partial matrix XF satisfies the cycle condition if for every cycle c in F

Â
( j,k)2c

\[XF ] jk = 0 mod 2p (10.5)

where x = f mod 2p means x = f +2kp for some integer k. For instance if \[XF ] jk represent the voltage
phase differences across lines ( j,k) then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle c. The next theorem, proved in [141, Theorem 3] and [52], implies that XF has a psd
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Figure 10.1: Example 10.1: (a) Partial matrix XF . (b)(c) Two chordal extensions Xc(F) and their overlap-
ping maximal cliques. (Nov 9, 2024: Perhaps keep this fig? But change W in figure to X . Fig (c): shade
cell X33 in a darker color in which all 3 submatrices overlaps.)
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rank-1 completion X if and only if XF has a chordal extension Xc(F) that is psd rank-1, if and only if XF is
2⇥2 psd rank-1 on F and satisfies the cycle condition (10.5). 1 All proofs in this section are deferred to
Chapter 10.1.8

Theorem 10.1 (Rank-1 characterization). Fix a connected graph F := (N,E) with n := |N| nodes. Con-
sider any chordal extension c(F) of F . Suppose Xj j > 0,

⇥
Xc(F)

⇤
j j > 0 and [XF ] j j > 0, j 2 N, for the

matrix X and submatrices XF and Xc(F) below. Then

(1) Given a n⇥n matrix X that satisfies (10.4a), its submatrix Xc(F) satisfies (10.4b).

(2) Given a partial matrix Xc(F) that satisfies (10.4b), its submatrix XF satisfies (10.4c) and the cycle
condition (10.5).

(3) Given a partial matrix XF that satisfies (10.4c) and the cycle condition (10.5), there is a completion
X of XF that satisfies (10.4a). Moreover the completion X is unique.

Informally Theorem 10.1 says that (10.4a) is equivalent to (10.4b) which is equivalent to (10.4c)(10.5).
It implies in particular that, for a chordal graph, X is psd rank-1 if and only if the principal submatrix X(q)
of X is psd rank-1 for every maximal clique q of the graph. It characterizes a property of the full matrix
X (that X is psd and rank-1) in terms of its submatrices Xc(F) and XF . This is important because the
submatrices are typically much smaller than X for large sparse networks and much easier to compute. We
discuss how to construct a chordal extension c(F) of F and formulate Xc(F) in Chapter 10.1.6. Theorem
10.1 thus allows us to solve smaller problems in terms of partial matrices as we now explain.

10.1.3 Feasible sets

To develop semidefinite relaxations of QCQP we start by studying their feasible sets. Fix Cl , l = 0,1, . . .L,
and its underlying graph F . Define the feasible set of the QCQP (10.1) as:

V := {x 2 C
n |xHClx  bl, l = 1, . . . ,L} (10.6)

Given an x 2 V, it defines a unique (up to a rotation) psd rank-1 matrix X := xxH and therefore a unique
psd rank-1 partial matrix XF that satisfies tr(ClXF)  bl . The converse is not always true: given a partial
matrix XF that is psd rank-1 and satisfies tr(ClXF) bl , it is not always possible to recover an x in V. This
is possible if and only if XF has a psd rank-1 completion X that satisfies tr(ClX) bl . We now characterize
the set of partial matrices from which x 2 V can be recovered.

Define the set of Hermitian matrices:

X := { X 2 S
n | X satisfies tr(ClX) bl, l = 1, . . . ,L, (10.4a) } (10.7a)

i.e., X 2 X satisfies tr(ClX) bl for all l and (10.4a). Fix a connected graph F . Fix any chordal extension
c(F) of F and define the set of Hermitian partial matrices Xc(F):

Xc(F) := { Xc(F) | Xc(F) satisfies tr
�
ClXc(F)

�
 bl, l = 1, . . . ,L, (10.4b) } (10.7b)

1The theorem also holds with psd replaced by negative semidefinite.
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Finally define the set of Hermitian partial matrices XF :

XF := { XF |XF satisfies tr(ClXF) bl, l = 1, . . . ,L, (10.4c)(10.5) } (10.7c)

Note that the definition of psd for partial matrices implies that Xc(F) and XF are Hermitian partial matrices
(see Definition 10.1).

Theorem 10.1 implies that given a partial matrix Xc(F) 2 Xc(F) or a partial matrix XF 2 XF there is a
psd rank-1 completion X 2 X. Moreover the completion X is unique.

Corollary 10.2 (Uniqueness of rank-1 completion). Fix a connected graph F . Given a partial matrix
Xc(F) 2 Xc(F) or XF 2 XF there is a unique psd rank-1 completion X 2 X.

The corollary implies that, given any Hermitian partial matrix XF 2 XF , the set of all completions of
XF consists of a single psd rank-1 matrix and infinitely many indefinite or non-rank-1 matrices.

We say two sets A and B are equivalent, denoted A ⌘ B, if there is a bijection between them. Even
though X,Xc(F),XF are different kinds of spaces, Theorem 10.1 and Corollary 10.2 imply that they are all
equivalent to the feasible set of QCQP (10.1) once an arbitrary reference angle is fixed, e.g., \x1 := 0.

Theorem 10.3 (Equivalence). V⌘ X⌘ Xc(F) ⌘ XF .

Since the cost function xHC0x of (10.1) depends on X only through the partial matrix XF , Theorem
10.3 suggests three problems that are equivalent to QCQP (10.1): for X̂ 2

�
X,Xc(F),XF

 
,

min
X

C(XF) subject to X 2 X̂ (10.8)

Specifically, given an optimal solution Xopt in X, it can be decomposed into Xopt = xopt(xopt)H where xopt

is unique up to an arbitrary reference angle. Then xopt is in V and an optimal solution of QCQP (10.1).
Alternatively given an optimal solution Xopt

F 2XF or Xopt
c(F) 2Xc(F), Corollary 10.2 guarantees that it has a

unique psd rank-1 completion Xopt in X from which an optimal xopt 2 V can be recovered. This suggests
solving the QCQP (10.1) by computing Xopt

F or Xopt
c(F) instead of Xopt because both of them are typically

much smaller in size than Xopt for a large sparse network. Indeed the number of complex variables in a
Hermitian X is n(n + 1)/2 while the number of complex variables in XF is only n + |E|, which is much
smaller if F is large but sparse. Given a partial matrix XF 2 XF (or Xc(F) 2 Xc(F)), however, there is a
more direct construction of a feasible solution x 2 V of QCQP than through its completion (see Chapter
10.1.4).

Remark 10.1 (Graph F̂ underlying QCQP). Note that the feasible sets V,X,Xc(F),XF defined in (10.6)
(10.7) depend only on the constraint matrices Cl , l = 1, . . . ,L, but not on the cost matrix C0. Equivalence
among these sets will therefore hold if we replace F in Theorem 10.1, Corollary 10.2 and Theorem 10.3
with a subgraph F̂ that is induced by Cl only for l � 1, i.e., two nodes j and k in F̂ are adjacent if and only
if [Cl] jk 6= 0 for some l 2 {1, . . . ,L}.

The matrix F is needed for the proper definition of cost function. For the optimization problems in
(10.8) to be equivalent, we need to compute the partial matrices XF and Xc(F). The partial matrices XF̂ will
have missing terms [XF̂ ] jk in the cost function if ( j,k) is in F but not in F̂ , i.e., if [C0] jk 6= 0 but [Cl] jk = 0
for all l � 1. Similarly for Xc(F̂).
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10.1.4 Semidefinite relaxations and solution recovery

Hence solving QCQP (10.1) is equivalent to solving (10.8) over any of X,Xc(F),XF for an appropriate
matrix variable. The difficulty with solving (10.8) is that the feasible sets X, Xc(F), and XF are still
nonconvex due to the rank-1 constraint and the cycle condition (10.5). Their removal leads to three types
of semidefinite relaxations of QCQP (10.1).

Semidefinite relaxations. Relax X, Xc(F) and XF to the following convex supersets:

X
+ := {X 2 S

n | XF satisfies tr(ClX) bl, l = 1, . . . ,L, X ⌫ 0}
X

+
c(F) := {Xc(F) | XF satisfies tr

�
ClXc(F)

�
 bl, l = 1, . . . ,L, Xc(F) ⌫ 0}

X
+
F := {XF | XF satisfies tr(ClXF) bl, l = 1, . . . ,L, XF( j,k)⌫ 0, ( j,k) 2 E}

These feasible sets are defined for different (partial) matrices and differ in the definition of psd. Remark
10.1 applies to these relaxed feasible sets regarding the underlying graph and the corresponding partial
matrices. The following problems are semidefinite relaxations of QCQP (10.1) with different sizes and
tightness:
QCQP-sdp:

Csdp := min
X

C (XF) subject to X 2 X
+ (10.9a)

QCQP-ch:

Cch := min
Xc(F)

C (XF) subject to Xc(F) 2 X
+
c(F) (10.9b)

QCQP-socp:

Csocp := min
XF

C (XF) subject to XF 2 X
+
F (10.9c)

We call (10.9a) a SDP relaxation, (10.9b) a chordal relaxation, and (10.9c) a SOCP relaxation. In Chap-
ter 10.1.6 we describe how to construct the set of constraints Xc(F) ⌫ 0 in X

+
c(F) and show that chordal

relaxation is equivalent to a semidefinite program (and similarly for SOCP relaxation).

Solution recovery. When the semidefinite relaxations OPF-sdp, OPF-ch, OPF-socp are exact, i.e., if
their optimal solutions X sdp, Xch

c(F), X socp
F happen to lie in X, Xc(F), XF respectively, then an optimal

solution xopt 2V of the original QCQP can be recovered from these solutions. Indeed the recovery method
works not just for an optimal solution, but any feasible solution that lies in X, Xc(F) or XF . Moreover, given
an X 2 X or an Xc(F) 2 Xc(F), the construction of x depends on X or Xc(F) only through their submatrix
XF . We hence describe a method for recovering an x 2V from an XF , which may be a partial matrix in XF
or the submatrix of a (partial) matrix in X or Xc(F). The solution x is unique if F is connected and, say,
\x1 is fixed.
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Take an arbitrary spanning tree of F rooted at bus 1 with orientation where lines pointing away from
bus 1. Let P j denote the unique path from bus 1 to bus j in the spanning tree. Set |x1| :=

p
[XF ]11 and

\x1 to an arbitrary value. For j = 2, . . . ,n,

|x j| :=
q

[XF ] j j, \x j := \V1 � Â
(i,k)2P j

\ [XF ]ik (10.10)

Then, on link ( j,k), \x j �\xk = \ [XF ] jk and [XF ] jk = x jxHk since XF is 2⇥ 2 psd rank-1. It can be
checked that x is in the feasible set V of QCQP, i.e., xHClx  bl , l = 1, . . . ,L (Exercise 10.1). The cycle
condition (10.5) ensures that the angle calculation (10.10) gives the same result for any spanning tree.

This method for recovering x from XF is generally more efficient than computing the psd rank-1 com-
pletion X of XF and factorizing X , as suggested in Theorem 10.3, and is used in the proof of Theorem 10.1
(see Chapter 10.1.8). It is equivalent to the method (5.11c) of Chapter 5.1.2 for recovering voltage angles
in the branch flow model for radial networks, with b jk = [XF ] jk.

10.1.5 Tightness of relaxations

Recall that V⌘X⌘ Xc(F) ⌘ XF (Theorem 10.3). Since X✓X
+, Xc(F) ✓X

+
c(F), XF ✓X

+
F , the relaxations

OPF-sdp, OPF-ch, OPF-socp all provide lower bounds on OPF (9.9). OPF-socp is the simplest computa-
tionally. OPF-ch usually requires heavier computation than OPF-socp but much lighter than OPF-sdp for
large sparse networks (even though OPF-ch can be as complex as OPF-sdp in the worse case [142, 143]).
The relative tightness of the relaxations depends on the network topology. For a general network that may
contain cycles, OPF-ch is as tight a relaxation as OPF-sdp and they are strictly tighter than OPF-socp. For
a tree (radial) network the hierarchy collapses and all three are equally tight. We now make this precise.

Consider the relaxed feasible sets X+, X+
c(F) and X

+
F . Consider two sets A and B and the corresponding

cost functions CA : A! R and CB : B! R. For instance A := C
n, B := S

n, CA(x) := xHCx and CB(X) :=
tr(CX) for a given Hermitian matrix C. We say that A is an effective subset of B with respect to the cost
functions CA,CB, denoted by A v B, if, given any a 2 A, there is a b 2 B that has the same cost CA(a) =
CB(b). We say A is similar to B with respect to the cost functions CA,CB, denoted by A' B, if Av B and
B v A. Note that A ⌘ B implies A ' B but the converse may not hold. Even though effective subset and
similarity are defined with respect to some cost functions CA,CB, we often omit the cost functions when
their existence is understood and unimportant for the discussion, and simply say A is an effective subset
of B or A is similar to B.

The feasible set of QCQP (10.1) is an effective subset of the feasible sets of its relaxations; moreover
these relaxations have similar feasible sets when the network is radial.

Theorem 10.4 (Tightness of relaxations). 1. Vv X
+ ' X

+
c(F) v X

+
F .

2. If F is a tree then Vv X
+ ' X

+
c(F) ' X

+
F .

The reason X
+
c(F) is similar, but not equivalent, to X

+ is that psd completions of a psd submatrix
X 2 X

+
c(F) are generally nonunique. In contrast, the psd rank-1 completion of a psd rank-1 submatrix

X 2 Xc(F) is unique according to Corollary 10.2.
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Let Copt,Csdp,Cch,Csocp be the optimal values of QCQP (10.1), QCQP-sdp (10.9a), QCQP-ch (10.9b),
QCQP-socp (10.9c) respectively. Theorem 10.3 and Theorem 10.4 directly imply

Corollary 10.5. 1. Copt �Csdp = Cch �Csocp.

2. If F is a tree then Copt �Csdp = Cch = Csocp.

Remark 10.2 (Tightness). Theorem 10.4 and Corollary 10.5 imply that for radial networks one should
always solve QCQP-socp, not QCQP-sdp or QCQP-ch, since it is the tightest and the simplest relaxation of
the three. For networks that contain cycles there is a tradeoff between QCQP-socp and QCQP-ch/QCQP-
sdp: the latter is tighter but requires heavier computation. Between QCQP-ch and QCQP-sdp, QCQP-ch is
preferable as they are equally tight but QCQP-ch is usually much faster to solve for large sparse networks.

10.1.6 Chordal relaxation

Theorem 10.1 through Corollary 10.5 apply to any chordal extension c(F) of F . The choice of c(F) does
not affect the optimal value of the chordal relaxation but determines its complexity. We now explain how
to construct the set of constraints Xc(F) ⌫ 0 in the definition of X+

c(F) and show that chordal relaxation
(10.9b) is equivalent to a semidefinite program. The method is applicable to SOCP relaxation (10.9c) as
well (see Example 10.2).

The constraint Xc(F) ⌫ 0 consists of multiple constraints that the (fully specified) principal submatrices
Xc(F)(q)⌫ 0, one for each maximal clique q of c(F). We will discuss the tradeoffs in choosing a chordal
extension c(F) of F later. Once a c(F) is chosen the construction of Xc(F) ⌫ 0 involves two steps:

1. List all the maximal cliques qk of c(F), k = 1, . . . ,K.

2. Use as relaxation variables appropriate Hermitian matrices Xk corresponding to qk. Then Xc(F) ⌫ 0
is a shorthand for: Xk ⌫ 0 for k = 1, . . . ,K.

We elaborate on both steps. Computing all maximal cliques of a general graph is NP-hard. It can however
be done efficiently for a chordal graph because a graph is chordal if and only if it has a perfect elimination
ordering [148] and computing this ordering takes linear time in the number of nodes and edges [149].
Given a perfect elimination ordering all maximal cliques qk can be enumerated and XF(qk) constructed
efficiently [142]. For most OPF applications the computation depends only on the topology of the power
network, not on operational data, and therefore can be done offline.

Suppose the set of maximal cliques {qk,k = 1, . . . ,K} has been identified in which clique qk consists
of nk nodes. It is tempting to simply use K matrix variables Xk each of size nk⇥nk, require Xk ⌫ 0 in the
chordal relaxation (10.9b), and integrate the K optimal (fully specified) matrix solutions Xopt

k of (10.9b)
into a single optimal partial matrix Xopt

c(F). Unfortunately this approach fails if some of the maximal cliques
qk share nodes. In that case their Xk share entries and cannot be integrated as principal submatrices of an
n⇥ n matrix, as explained in Example 10.1. Therefore when maximal cliques of c(F) share nodes, their
corresponding matrices must be decoupled by introducing auxiliary variables and equality constraints on
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the auxiliarty variables. We now sketch this procedure using Example 10.1 (see [142, 143] for more
details). It also illustrates the difficulty in choosing a good chordal extension c(F).

Suppose we have chosen the chordal extension c(F) in Figure 10.1(b) with two cliques q1 := (1,2,3)
and q2 := (2,3,4,5) that share nodes 2 and 3. The (fully specified) matrices X1 and X2 defined on the
cliques q1 and q2 respectively are outlined in Figure 10.1(b). They overlap in 4 entries and require 4
decoupling variables u jk. To decouple these matrices, replace X1 by the 3⇥3 matrix

X 01 :=

2

4
x11 x12 x13
x21 u22 u23
x31 u32 u33

3

5

where the decoupling variables u jk are constrained to be:

u jk = x jk for j,k = 2,3 (10.11a)

Then the psd constraints Xc(F) ⌫ 0 in chordal relaxation (10.9b) is not X1 ⌫ 0 and X2 ⌫ 0, but

X 01 ⌫ 0, X2 ⌫ 0 (10.11b)

We can write the chordal relaxation as a SDP in standard form (10.3) by defining the 7⇥ 7 block-
diagonal matrix

X 0 :=


X 01 0
0 X2

�

Then chordal relaxation (10.9b) is equivalent to:

min
X 02S7

tr(C00X 0) (10.12a)

s.t. tr(C0lX
0)  bl, l = 1, . . . ,L (10.12b)

tr(C0rX
0) = 0, r = 1,2,3,4 (10.12c)

X 0 ⌫ 0 (10.12d)

for appropriate C0l , l = 0, . . . ,L. The constraint X 0 ⌫ 0 in (10.12d) is equivalent to the psd constraints
(10.11b) on X 01 and X2. The matrices C0r in (10.12c) are chosen to enforce the linear decoupling constraints
(10.11a). See Example 10.2 for an explicit construction of these matrices.

As the example illustrates, the choice of chordal extension c(F) determines the number and sizes of
matrices Xk associated with the maximal cliques as well as the number of decoupling variables and con-
straints. In our example, the full SDP computes a 5⇥5 matrix X for 25 variables (counting x jk and xk j = x̄ jk
as two variables). Chordal relaxation defined by (10.11) computes a 3⇥ 3 matrix X 01 and a 4⇥ 4 matrix
X2 for 25 variables, plus 4 decoupling variables and (linear) constraints. If we have chosen the chordal
extension c(F) in Figure 10.1(c) with three cliques q1 := (1,2,3), q2 := (3,4,5), and q3 := (2,3,5), then
chordal relaxation will involve three 3⇥ 3 matrices with 27 variables, plus 8 decoupling variables and
constraints. (Despite these examples, chordal relaxation is typically much less computationally intensive
than a full SDP for large sparse network.)



Draft: PSA December 13, 2024 447

The optimal choice of chordal extension c(F) that minimizes the complexity of QCQP-ch is NP-hard
to compute. This difficulty is due to two conflicting factors in choosing a c(F). On the one hand if c(F)
contains few cliques q then the submatrices Xc(F)(q) tend to be large and expensive to compute (e.g. if
c(F) is the complete graph then there is a single clique, but Xc(F) = X and QCQP-ch is identical to QCQP-
sdp). On the other hand if c(F) contains many small cliques q then there tends to be more overlap and
chordal relaxation tends to require more decoupling variables and constraints. Hence choosing a good
chordal extension c(F) of F is important but nontrivial.

Example 10.2 (SOCP relaxation). We apply the same method to construct SOCP relaxation (10.9c) on
the graph in Figure 10.1(a). It has 5 links (1,2), (1,3), (3,4), (4,5), (2,5). (In this example each link is
a maximal clique but this fact is not important for SOCP relaxation, i.e., for a general network F we can
choose an arbitrary spanning tree TF and construct SOCP relaxation on TF .) Every link ( j,k) shares node
j with a link (i, j) and node k with another link (k, l). We introduce 5 decoupling variables to decouple the
five 2⇥2 variables:

X12 :=


x11 x12
x21 x22

�
, X 013 :=


u11 x13
x31 x33

�
, X 034 :=


u33 x34
x43 x44

�
, X 045 :=


u44 x45
x54 x55

�
, X 025 :=


u22 x25
x52 u55

�

with 5 decoupling constraints:

u11 = x11, u33 = x33, u44 = x44, u22 = x22, u55 = x55 (10.13a)

Then the set of 2⇥2 psd constraints in X
+
F are:

X12 ⌫ 0, X 013 ⌫ 0, X 034 ⌫ 0, X 045 ⌫ 0, X 025 ⌫ 0 (10.13b)

We can convert this into a semidefinite program in standard form, i.e., we will construct the matrices C0l in
(10.12).

Define the 10⇥10 matrix

X 0 := diag
�
X12,X 013,X

0
34,X

0
45,X

0
25
�

Then (10.13b) is equivalent to X 0 ⌫ 0. To convert an original constraint tr(ClXF)  bl into tr(C0lX
0)  bl

we have (each c jk may be zero or nonzero, but all blank entries are zero):

tr(ClXF)  bl , tr

2

66664

c11 c12 c13
c21 c22 c25
c31 c33 c34

c43 c44 c45
c52 c54 c55

3

77775

2

66664

x11 x12 x13
x21 x22 x25
x31 x33 x34

x43 x44 x45
x52 x54 x55

3

77775
 bl

To construct C0l , define

C12 :=


c11 c12
c21 c22

�
, C013 :=


0 c13

c31 c33

�
, C034 :=


0 c34

c43 c44

�
, C045 :=


0 c45

c54 c55

�
, C025 :=


0 c25

c52 0

�

i.e., C0jk has the same pattern as X 0jk with entries corresponding to decoupling variables u j j set to zero.
Then

C0l := diag
�
C12,C013,C

0
34,C

0
45,C

0
25
�
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and

tr(ClXF)  bl () tr(C0lX
0)  bl

Finally to enforce the decoupling constraints (10.13a) define (e j is the unit vector of size 10 with 1 in the
jth place and 0 elsewhere)

C011 := e1eT1 � e3eT3 , C033 := e4eT4 � e5eT5 , C044 := e6eT6 � e7eT7
C022 := e2eT2 � e9eT9 , C055 := e8eT8 � e10eT10

Then (10.13a) is equivalent to

tr(C0rX
0) = 0, r = 1,2,3,4,5

10.1.7 Strong SOCP relaxations: mesh network

1. Strong SOCP relaxations are proposed and their relation with SOCP and SDP relaxations are studied
in [150].

2. SDP, SOCP and strong SOCP relaxations are applied to a two-stage robust AC OPF problem, and
column-and-constraint generation method of [88, 151] are used to solve these relaxations.

3. Check out Lingling Fan’s recent paper: A sparse Convex AC OPF Solver and Convex Iteration
Implementation Based on 3-Node Cycles Minyue Ma, Lingling Fan, Zhixin Miao, Bo Zeng, Hossein
Ghassempour.

10.1.8 Proofs

Proof of Theorem 10.1: Rank-1 characterization. We will prove (1)) (2)) (3)) (1). If X is psd
rank-1 then all its principal submatrices are psd and of rank 1 (the submatrix cannot be of rank 0 because,
by assumption, Xj j > 0 for all j 2 N). This implies that its submatrix Xc(F) is psd and rank-1. Hence (1)
) (2).

Fix a partial matrix Xc(F) that is psd and rank-1 and consider its submatrix XF . Since each link ( j,k)2E
is a clique of c(F) the 2⇥2 principal submatrix XF( j,k) is psd and rank-1. Therefore to prove that (2))
(3), it suffices to show that XF satisfies the cycle condition (10.5). We now prove the following statement
by induction on k: for all cycles c := ( j1, . . . , jk) of length 3 k n in c(F), such that the lines ( ji, ji+1)2 c
with jk+1 := j1, we have

k

Â
i=1
\ [XF ] ji ji+1

= 0 mod 2p (10.14)
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For k = 3, a cycle c := ( j1, j2, j3) is a clique of c(F) and therefore the following principal submatrix of
Xc(F):

Xc(F)( j1, j2, j3) :=

2

4
[Xc(F)] j1 j1 [Xc(F)] j1 j2 [Xc(F)] j1 j3
[Xc(F)] j2 j1 [Xc(F)] j2 j2 [Xc(F)] j2 j3
[Xc(F)] j3 j1 [Xc(F)] j3 j2 [Xc(F)] j3 j3

3

5

defined on the cycle is psd rank-1. Hence Xc(F)( j1, j2, j3) = xxH for some x := (x1,x2,x3) 2 C
3. Then

3

Â
i=1
\ [XF ] ji ji+1

= \
⇣

x1xH2
⌘

+\
⇣

x2xH3
⌘

+\
⇣

x3xH1
⌘

= 0 mod 2p

Suppose (10.14) holds for all cycles in c(F) of length up to k > 3. Consider now a cycle ( j1, . . . , jk+1)
of length k + 1 in c(F). Since c(F) is chordal there is a chord, say, ( j1, jm) 2 E for some 1 < m < k + 1.
Since both cycles ( j1, . . . , jm) and ( j1, jm, . . . , jk+1) satisfy (10.14) we have

m�1

Â
i=1
\ [XF ] ji ji+1

+ \ [XF ] jm j1 = 0 mod 2p

\ [XF ] j1 jm +
k+1

Â
i=m
\ [XF ] ji ji+1

= 0 mod 2p

where jk+2 := j1. Since XF is Hermitian, \ [XF ] jm j1 =�\ [XF ] j1 jm and hence adding the above equations
yields

k+1

Â
i=1
\ [XF ] ji ji+1

= 0 mod 2p

proving (10.14) for k +1. This completes the proof of (2)) (3).

For (3)) (1), fix any partial matrix XF that is 2⇥2 psd rank-1 and satisfies the cycle condition (10.5).
We can construct a psd rank-1 completion X of XF , by constructing a vector x 2 C

n such that X = xxH,
using the method (10.10) of Chapter 10.1.4 for solution discovery, applied to each connected component
of F if F is not connected, with an arbitrary spanning tree for each connected component. This defines
x j for all j 2 {1, . . . ,n}. Clearly X = xxH is a psd rank-1 completion of XF . For uniqueness of X see the
proof of Corollary 10.2. This completes the proof.

Proof of Corollary 10.2: Uniqueness of rank-1 completion. The proof of Theorem 10.1 shows that
given a partial matrix Xc(F) 2Xc(F), the (unique) submatrix XF of Xc(F) has a psd rank-1 completion X 2X.
Therefore to prove the corollary it suffices to prove that any partial matrix XF 2XF has a unique psd rank-1
completion X 2X. To this end fix an XF 2XF and suppose there are two psd rank-1 completions X := xxH

and X̂ := x̂x̂H in X. Since XF = X̂F we have

��x j
�� =

q
[XF ] j j =

��x̂ j
�� , j 2 N
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and

q j � qk = \ [XF ] jk = q̂ j � q̂k, ( j,k) 2 E

i.e., CTq = CTq̂ where C is the |N|⇥ |E| incidence matrix of the graph G := (N,E):

Cjl :=

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i

0 otherwise
, j 2 N, l 2 E

This means that CT
�
q̂ �q

�
= 0. The cycle condition (10.5) in XF guarantees that there is a solution for

q̂ �q when the graph F is not a tree. Since the graph F is connected, the null space of CT is span(1), and
therefore, q̂ = q + g1 for any g 2 R. Hence x̂ = xeig . This implies that

X̂ = x̂x̂H =
⇣

xeig
⌘⇣

xeig
⌘H

= X

i.e., the psd rank-1 completion is unique.

Proof of Theorem 10.4: Tightness of relaxations. First Vv X
+ v X

+
c(F) v X

+
F follows from Theorem

10.3 and the definitions of X
+, X+

c(F), X
+
F (recall that by assumption the cost function C depends on

V,X ,Xc(F) only through the submatrix XF ). Since c(F) is chordal, [140, Theorem 7] implies that every
Xc(F) in X

+
c(F) has a psd completion X in X

+, i.e., X+
c(F) v X

+. Hence X
+ ' X

+
c(F).

Suppose F is a tree and consider any chordal extension c(F). We need to show that X+
F v X

+
c(F), i.e.,

given any XF 2 X
+
F there is a Xc(F) 2 X

+
c(F) with the same cost. Since F is itself chordal, [140, Theorem

7] implies that XF has a psd completion X in X
+. The submatrix Xc(F) of X defined on c(F) is the desired

partial matrix in X
+
c(F) with the same cost. This proves X

+
F v X

+
c(F) and hence X

+
F ' X

+
c(F) for radial

networks.

10.2 Application to OPF

In this section we apply the results of Chapter 10.1 to single-phase OPF problems in the bus injection
model. In Chapter 10.2.1 we write OPF (9.16) as a standard QCQP but expressed in terms of the partial
matrix defined on the network graph G. Its semidefinite relaxations then follow from (10.9). In Chapter
10.2.2 we define exact relaxation of OPF. Sufficient conditions for exact relaxations of OPF for radial
networks will be studied in Chapters 10.3 and 10.4.

10.2.1 Semidefinite relaxations

Constraints. Recall the undirected connected graph G = (N,E) that models a power network with N +1
buses and M lines. Given a voltage vector V 2 V define the partial matrix WG := WG(V ):

[WG] j j := |Vj|2, j 2 N; [WG] jk := VjVH

k =: [WG]Hk j, ( j,k) 2 E
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Then the constraints in OPF (9.16) as a QCQP can be written in terms of the partial matrix WG := WG(V )
as:

pmin
j  tr

�
F jWG

�
 pmax

j , j 2 N (10.16a)

qmin
j  tr

�
Y jWG

�
 qmax

j , j 2 N (10.16b)

vmin
j  tr

�
E jWG

�
 vmax

j , j 2 N (10.16c)

tr
�
ŶjkWG

�
 `max

jk , ( j,k) 2 E (10.16d)

tr
�
Ŷk jWG

�
 `max

k j , ( j,k) 2 E (10.16e)

Cost function. Common cost functions can also be expressed in terms of the partial matrix WG. For
example if the cost is a weighted sum of real generation power then

C(WG) = Â
j:gens

c j Re(s j) = Â
j:gens

c j tr
�
F jWG

�

In particular the real line loss in the network is:

C(WG) = Â
j

Re(s j) = Â
j

tr
�
F jWG

�

We present a less obvious example.

Example 10.3 (Cost function). Consider the problem of minimizing the total deviation of squared voltage
magnitudes from their squared nominal values a j 2 R

min
V2CN+1 Â

j

⇣��Vj
��2�a j

⌘2
s.t. V 2 V (10.17)

where the feasible set V is defined by quadratic constraints in terms of the partial matrix WG: V 2V if and
only if

VHClV = tr(ClWG)  bl, l = 1, . . . ,L

with some matrices Cl and real numbers bl such that [Cl] jk = 0 if ( j,k) 62 E. Even though the cost function
is not a quadratic form in terms of WG, show that the problem can be equivalently expressed as a QCQP
in terms of WG with additional variables and constraints.

Solution. The cost function is Â j

⇣��Vj
��4 � 2a j

��Vj
��2 + a2

j

⌘
. We can omit the constants a2

j in the cost and
hence (10.17) is equivalent to the following problem:

min
V2CN+1 Â

j

⇣��Uj
��2 � 2a jUj

⌘
s. t. V 2 V, Uj =

��Vj
��2 , j 2 N (10.18a)
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Let V :=
�
Vj, j 2 N

�
2CN+1, U :=

�
Uj, j 2 N

�
2CN+1, a :=

�
a j, j 2 N

�
, and e j 2 {0,1}N+1 with a single

1 at the jth entry and 0 elsewhere. In terms of the variable x := (V,U) 2 C
2(N+1), we rewrite (10.18a) as

an inhomogeneous QCQP of the form:

min
x2C2(N+1)

xHC0x +
⇣

cH0 x+ xHc0

⌘
s. t. V 2 V, xHCjx +

⇣
cHj x+ xHc j

⌘
= 0, j 2 N (10.18b)

Indeed

Â
j

⇣��Uj
��2 � 2a jUj

⌘
= UHU �

�
aHU +UHa

�

��Vj
��2 � Uj = VH

⇣
e jeHj

⌘
V � 1

2

⇣
eHj Uj +UH

j e j

⌘
, j 2 N

since a j and Uj =
��Vj
��2 are real numbers. Therefore (10.18a) is an inhomogeneous QCQP of the form

(10.18b) with

C0 :=


0 0
0 IN+1

�
, c0 :=


0
�a

�

Cj :=


e jeHj 0
0 0

�
, c j :=


0
�1

2e j

�
, j 2 N

where IN+1 is the identity matrix of size N + 1. Since the cost function and the new constraints depends
on V only through |Vj|2, in particular, it does not depend on VjVH

k , j 6= k, the problem (10.18b) depends
only on WG. Indeed WG appears only in the term VH

⇣
e jeHj

⌘
V = tr

⇣⇣
e jeHj

⌘
VVH

⌘
= tr

⇣⇣
e jeHj

⌘
WG

⌘
.

As explained in Chapter 9.1.3, the inhomogeneous QCQP (10.18b) is equivalent to the following
homogeneous QCQP with an auxiliary scalar variable t 2 C:

min
x2C2(N+1), t2C

⇥
xH tH

⇤C0 c0
cH0 0

�
x
t

�

s. t. V 2 V

⇥
xH tH

⇤Cj c j
cHj 0

�
x
t

�
= 0, j 2 N

⇥
xH tH

⇤0 0
0 1

�
x
t

�
= 1

in the sense that, if (xopt, topt)2C2N+3 is optimal for the homogeneous QCQP, then their product xopttopt =
xopteiq opt

is optimal for the inhomogeneous problem (10.18b).

Henceforth we will abuse notation and use C to denote the cost function both as a function C(V ) of the
voltage vector V 2 C

N+1 and as a function C(WG) of a partial matrix WG.

OPF and relaxations. Recall the OPF problem (9.16) as a QCQP, reproduced here

min
V

C(V ) s.t. V 2 V :=
n

V 2 C
N+1 | VHClV  bl, l = 1, . . . ,L

o
(10.19)
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where the constraint matrices Cl are given in (10.16). To avoid triviality we will assume unless otherwise
specified that OPF (10.19) is feasible. Define the set of Hermitian matrices:

W := { W 2 S
N+1 | W satisfies (10.16) with WG replaced by W , (10.4a) }

Fix any chordal extension c(G) of G and define the set of Hermitian partial matrices Wc(G):

Wc(G) := { Wc(G) | Wc(G) satisfies (10.16) with WG replaced by Wc(G), (10.4b) }

Finally define the set of Hermitian partial matrices WG:

WG := { WG |WG satisfies (10.16)(10.4c)(10.5) }

Then Theorem 10.3 implies that OPF (10.19) is equivalent to

min
W

C(WG) s.t. W 2 Ŵ

where Ŵ is any one of the equivalent feasible sets W,Wc(G),WG. Its semidefinite relaxation relaxes Ŵ to
semidefinite cones:

W
+ := { W 2 S

N+1 | WG satisfies (10.16), W ⌫ 0 }
W

+
c(G) := { Wc(G) | WG satisfies (10.16), Wc(G) ⌫ 0 }

W
+
G := { WG |WG satisfies (10.16), WG( j,k)⌫ 0, ( j,k) 2 E }

i.e., the semidefinite relaxations of OPF (10.19) is:

min
W

C(WG) s.t. W 2 Ŵ
+

where Ŵ
+ is any one of the feasible sets W+,W+

c(G),W
+
G . Explicitly, these relaxations are (c.f. (10.9)):

OPF-sdp:

min
W2SN+1

C(WG) s.t. tr(ClW )  bl, l = 1, . . . ,L, W ⌫ 0 (10.20a)

OPF-ch:

min
Wc(G)

C(WG) s.t. tr
�
ClWc(G)

�
 bl, l = 1, . . . ,L, Wc(G) ⌫ 0 (10.20b)

OPF-socp:

min
WG

C(WG) s.t. tr(ClWG)  bl, l = 1, . . . ,L, WG( j,k) ⌫ 0, ( j,k) 2 E (10.20c)

where Cl are given in (10.16). Since OPF (9.16) as a QCQP does not require assumption C4.1 that
ys

jk = ys
k j, neither does its semidefinite relaxations (10.20). They can therefore accommodate single-phase

transformers that have complex turns ratios.

As discussed in Remark 10.2, if the network graph G is a tree, then we should solve OPF-socp to
compute the partial matrix WG because it will be as tight as OPF-sdp that computes the entire matrix W ,
but much simpler computationally. Otherwise we can solve OPF-ch to compute Wc(G) corresponding to a
chordal extension c(G) of G which is usually much simpler than OPF-sdp for large sparse network but as
tight.
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Scanned with CamScanner

Figure 10.2: Example 10.4. (Nov 13, 2024: Change (�p1,�q1)! (p2,q2).)

Example 10.4 (Two-bus network). For the two-bus network in Figure 10.2, suppose the line is a series
admittance y = g + ib and the load (p2,q2) is given. Write OPF and its relaxation as QCCPs assuming C
is the cost matrix and line limits are neglected.

Solution. The complex form power flow solution is (from Chapter 4.3.1):

s1 = ȳ
�
|V1|2�V1V̄2

�
, s2 = ȳ

�
|V2|2�V2V̄1

�

Therefore the admittance matrix and the associated Y1,Y2 are:

Y :=


y �y
�y y

�
, Y1 := e1eT1 Y =


y �y
0 0

�
, Y2 := e2eT2 Y =


0 0
�y y

�

The matrices in (10.16) are:

F1 :=
1
2

⇣
YH

1 +Y1

⌘
=


g �y/2
�ȳ/2 0

�
, Y1 :=

1
2i

⇣
YH

1 �Y1

⌘
=


�b y/(2i)
�ȳ/(2i) 0

�

F2 :=
1
2

⇣
YH

2 +Y2

⌘
=


0 �ȳ/2
�y/2 g

�
, Y2 :=

1
2i

⇣
YH

2 �Y2

⌘
=


0 �ȳ/(2i)

y/(2i) �b

�

J1 = e1eT1 and J2 = e2eT2 . Then OPF is:

min
V2C2

VHCV s.t. pmin
1  p1 = VHF1V  pmax

1 , qmin
1  q1 = VHY1V  qmax

1

vmin
1  |V1|2 = VHJ1V  vmax

1 , vmin
2  |V2|2 = VHJ2V  vmax

2

VHF2V = p2, VHY2V = q2

Its SDP relaxation is:

min
W2S2

tr(CW ) s.t. pmin
1  tr(F1W )  pmax

1 , qmin
1  tr(Y1W )  qmax

1

vmin
1  tr(J1W )  vmax

1 , vmin
2  tr(J2W )  vmax

2

tr(F2W ) = p2, tr(Y2W ) = q2, W ⌫ 0

10.2.2 Exact relaxation: definition

Consider the single-phase OPF (10.19) as a standard QCQP and its semidefinite relaxations (10.20).
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Definition 10.2 (Strong exactness). We say that

1. OPF-sdp (10.20a) is exact if every optimal solution W sdp of OPF-sdp is psd rank-1;

2. OPF-ch (10.20b) is exact if every optimal solution W ch
c(G) of OPF-ch is psd rank-1, i.e., the principal

submatrices W ch
c(G)(q) of W ch

c(G) are psd rank-1 for all maximal cliques q of the chordal extension
c(G) of graph G;

3. OPF-socp (10.20c) is exact if every optimal solution W socp
G of OPF-socp

• is 2⇥ 2 psd rank-1, i.e., the 2⇥ 2 principal submatrices W socp
G ( j,k) are psd rank-1 for all

( j,k) 2 E; and

• satisfies the cycle condition (10.5).

Exactness does not guarantee the existence of an optimal solution. If a relaxation is infeasible then
the original OPF is also infeasible. To recover an optimal solution V opt of OPF (10.19) from an optimal
solution W sdp or W ch

c(G) or W socp
G of its relaxations, see Chapter 10.1.4. The strong exactness notion in

Definition 10.2 is convenient because it ensures that any algorithm that solves an exact relaxation always
produces a globally optimal solution to the OPF problem. For a weaker notion of exactness that requires at
least one (not necessarily all) optimal solution of the relaxation, if exists, be feasible and therefore optimal
for the original nonconvex OPF problem, an algorithm may not be guaranteed to produce an optimal
solution of OPF by solving its relaxation. This strong notion of exactness is however more stringent than
necessary under the sufficient exactness conditions of Chapters 10.3 and 10.4 for radial networks. See
Remark 10.3 after Theorem 10.6 and Remark 10.4 after Theorem 10.9 (and Remarks 11.1 and 11.3 for
BFM). These conditions guarantee that an optimal solution to OPF can always be recovered from any
optimal solution of OPF-socp for radial networks, even when the OPF-socp is not exact under Definition
10.2.

In the rest of this chapter we present sufficient conditions for exact semidefinite relaxations when the
network is radial, i.e., the network graph is a tree. We restrict our discussion to single-phase networks
though exactness conditions exist in the literature for three-phase radial networks.

10.3 Exactness condition: linear separability

Theorem 10.4 implies that, for a single-phase radial network whose graph G is a tree, if SOCP relaxation
is exact then SDP and chordal relaxations are also exact. We hence focus on the exactness of OPF-socp
(10.20c). Since the cycle condition (10.5) is vacuous for radial networks, OPF-socp (10.20c) is exact if all
of its optimal solutions are 2⇥2 rank-1. To avoid triviality we assume OPF (10.19) is feasible.

We will first present a general result on the exactness of the SOCP relaxation of general QCQP on a
tree graph G and then apply it to OPF-socp (10.20c) for single-phase radial networks.
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10.3.1 Sufficient condition for QCQP

Fix an undirected graph G = (N,E) where |N| = n and E ✓ N ⇥N. Fix Hermitian matrices Cl 2 S
n,

l = 0, . . . ,L, defined on G, i.e., [Cl] jk = 0 if ( j,k) 62 E. Consider QCQP:

Copt := min
x2Cn

xHC0x s.t. xHClx bl, l = 1, . . . ,L (10.21)

where bl 2R, l = 1, . . . ,L, and its SOCP relaxation where the optimization variable ranges over Hermitian
partial matrices XG:

Csocp := min
XG

tr(C0XG) s.t. tr(ClXG) bl, l = 1, . . . ,L (10.22a)

XG( j,k)⌫ 0, ( j,k) 2 E (10.22b)

The following result can be regarded as an extension of [156] on the SOCP relaxation of QCQP from the
real domain to the complex domain. Consider: 2

C10.1: For each link ( j,k)2E there exists an a jk such that\ [Cl] jk 2 [ai j,ai j +p] for all l = 0, . . . ,L.

C10.2: The cost matrix C0 is positive definite.

Condition C10.1 is illustrated in Figure 10.3. Let Copt and Csocp denote the optimal values of QCQP
(10.21) and SOCP (10.22) respectively.

Theorem 10.6 (Linear separability). Suppose G is a tree and C10.1 holds. Then Copt = Csocp and an
optimal solution xopt 2 C

n of QCQP (10.21) can be recovered from every optimal solution X socp
G of SOCP

(10.22).

Remark 10.3 (Strong exactness). The SOCP relaxation may not be exact in the strong sense of Definition
10.2, i.e., some optimal solutions of (10.22) may be 2⇥ 2 psd but not 2⇥ 2 rank-1, but Theorem 10.6
says that C10.1 guarantees that an optimal solution of QCQP (10.21) can always be recovered from any
optimal solution xsocp of its SOCP relaxation (10.22) whether or not xsocp is 2⇥2 rank-1. The proof of the
theorem prescribes a simple procedure to do that; see Chapter 10.3.3.

If the objective function is strictly convex however then the optimal solution is unique and SOCP
(10.22) is indeed exact in the sense of Definition 10.2.

Corollary 10.7. Suppose G is a tree and C10.1, C10.2 hold. Then SOCP (10.22) is exact.

2All angles should be interpreted as “mod 2p”, i.e., projected onto (�p,p].
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10.3.2 Application to OPF

We now apply Theorem 10.6 to our OPF problem (10.19) where the constraint matrices Cl are given
in (10.16). Since the formulation does not require assumption ys

jk = ys
k j (assumption C4.1) and allows

nonzero shunt admittances (ym
jk,y

m
k j), and can therefore accommodate single-phase transformers that have

complex turns ratios.

To simplify illustration we ignore the branch constraints (10.16d)(10.16e), which reduces (10.19) to:

min
x2Cn

VHC0V s.t. VHF jV  pmax
j , VH(�F j)V �pmin

j , j 2 N (10.23a)

VHY jV  qmax
j , VH(�Y j)V �qmin

j , j 2 N (10.23b)

VHE jV  vmax
j , VH(�E j)V �vmin

j , j 2 N (10.23c)

for some Hermitian matrices C0,F j,Y j,E j where j 2 N. Condition C10.1 depends only on the off-
diagonal entries of C0, F j, Y j (E j are diagonal matrices). It implies a simple pattern on the power
injection constraints (10.23a)(10.23b). Write the series admittances in terms of its real and imaginary
parts ys

jk =: gs
jk + ibs

jk with gs
jk > 0,bs

jk < 0. (Note that C10.1 does not depend on the shunt admittances⇣
ym

jk,y
m
k j

⌘
.) Then we have

[Fk]i j =

8
><

>:

1
2Yi j = �1

2(gs
i j + ibs

i j) if k = i
1
2YH

i j = �1
2(gs

i j� ibs
i j) if k = j

0 if k 62 {i, j}

[Yk]i j =

8
><

>:

�1
2i Yi j = 1

2(bs
i j� igs

i j) if k = i
1
2iY

H
i j = 1

2(bs
i j + igs

i j) if k = j
0 if k 62 {i, j}

Hence for each line ( j,k) 2 E the relevant angles for C10.1 are those of [C0] jk and

⇥
F j
⇤

jk = �1
2

⇣
gs

jk + ibs
jk

⌘
, [Fk] jk = �1

2

⇣
gs

jk� ibs
jk

⌘

⇥
Y j
⇤

jk =
1
2

⇣
bs

jk� igs
jk

⌘
, [Yk] jk =

1
2

⇣
bs

jk + igs
jk

⌘

as well as the angles of �[F j] jk,�[Fk] jk and �[Y j] jk,�[Yk] jk. These quantities are shown in Figure 10.3
with their magnitudes normalized to a common value and explained in the caption of the figure.

Condition C10.1 applied to OPF (10.23) takes the following form (see Figure 10.3):

C10.1’: For each link ( j,k) 2 E there is a line in the complex plane through the origin such that
[C0] jk as well as those ±[Fi] jk and ±[Yi] jk corresponding to finite lower or upper bounds on (pi,qi),
for i = j,k, are all on one side of the line, possibly on the line itself.

Let Copt and Csocp denote the optimal values of OPF and OPF-socp respectively.
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Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Figure 10.3: Condition C10.1’ for OPF on a line ( j,k) 2 E. The quantities ([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk)
on the left-half plane correspond to finite upper bounds on (p j, pk,q j,qk) in (10.23a)(10.23b);
(�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half plane correspond to finite lower bounds on
(p j, pk,q j,qk).

Corollary 10.8. Suppose G is a tree and C10.1’ holds.

1. Copt =Csocp. Moreover an optimal solution V opt of OPF (10.23) can be recovered from every optimal
solution X socp

G of OPF-socp.

2. If, in addition, C10.2 holds then OPF-socp is exact.

It is clear from Figure 10.3 that condition C10.1’ cannot be satisfied if there is a line where both the real
and reactive power injections at both ends are both lower and upper bounded (8 combinations as shown in
the figure). C10.1’ requires that some of them be unconstrained. When the cost function is convex, this is
the same as requiring that the constraints be inactive at optimality (see Exercise 10.3). The result proved
in [152] also includes constraints on real branch power flows and line losses. Corollary 10.8 includes
several sufficient conditions in the literature for exact relaxation as special cases. Referring to Figure
10.3, the load over-satisfaction condition in [153, 157] corresponds to the red line in the figure being the
Im-axis that excludes all quantities on the right-half plane. The sufficient condition in [158, Theorem 2]
corresponds to the red line in the figure that allows a finite lower bound on the real power at one end of
the line, i.e., p j or pk but not both, and no finite lower bounds on reactive powers q j and qk.

10.3.3 Proofs

We now prove Theorem 10.6 and Corollary 10.7, following [155]. It is equivalent to the argument of [154]
and simpler than the original duality proof in [152].
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Proof of Theorem 10.6. Fix any partial matrix XG that is feasible for SOCP (10.22). We will construct
an x 2 C

n that satisfies

xHClx  tr ClXG, l = 0,1, . . . ,L

i.e., x is feasible for QCQP (10.21) and has an equal or lower cost than XG. Since the minimum cost of
QCQP is lower bounded by that of its SOCP relaxation this means that an optimal solution x 2 C

n of
QCQP (10.21) can be obtained from every optimal solution XG of SOCP (10.22), whether or not (10.22)
is exact in the sense of Definition 10.2.

Now XG( j,k)⌫ 0 for every ( j,k) 2 E implies that [XG] j j � 0 for all j 2 N and

[XG] j j [XG]kk �
��[XG] jk

��2 , ( j,k) 2 E

Case 1: XG is 2⇥ 2 psd rank-1. Suppose [XG] j j[XG]kk = |[XG] jk|2 for all ( j,k) 2 E. We will construct
an x 2 C

n that is feasible for QCQP and has an equal cost. To construct such an x let |x j| :=
p

[XG] j j,
j 2 N. Recall that G is a (connected) tree with node 1 as its root. Let \x1 := 0. Traversing the tree
starting from the root the angles can be successively assigned: given \x j at one end of a link ( j,k), let
\xk :=\x j�\[XG] jk at the other end. Given any XG which is 2⇥2 psd rank-1, angles \x j can always be
consistently assigned if and only if G is a tree. (If G contains cycles then XG must also satisfy the cycle
condition according to Theorem 10.1).

With this x constructed from XG we have, for l = 0,1, . . . ,L,

xHClx = Â
j,k

[Cl] jk xHj xk = Â
j,k

[Cl] jk |x j| |xk|ei(\xk�\x j) = Â
j,k

[Cl] jk
��[XG] jk

�� e�i\[XG] jk = tr(ClXG)

where the last equality follows from tr(ClXG) = Â j,k [Cl] jk [XG]Hjk and that XG is a Hermitian partial matrix.
Hence x is feasible for QCQP (10.21) and has the same cost as XG.

Case 2: XG is 2⇥2 psd but not 2⇥2 rank-1. Suppose [XG] j j[XG]kk > |[XG] jk|2 for some ( j,k). We will

1. Construct an X̂G that is 2⇥2 psd rank-1.

2. Show that C10.1 implies

tr ClX̂G  tr ClXG, l = 0,1, . . . ,L (10.24)

Then an x 2 C
n can be constructed from X̂G as in Case 1 and step 2 ensures that for l = 0,1, . . . ,L

xHClx = tr ClX̂G  tr ClXG

i.e., x is feasible for QCQP (10.21) and has an equal or lower cost than XG.

To construct such an X̂G let [X̂G] j j = [XG] j j, j 2 N. For each line ( j,k) 2 E let

[X̂G] jk� [XG] jk =: r jke�i( p
2�a jk)
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for some r jk > 0 to be determined and a jk in condition C10.1. For X̂G to be 2⇥2 psd rank-1 we need to
choose r jk > 0 such that [X̂G] j j[X̂G]kk =

��[X̂G] jk
��2 for all ( j,k) 2 E, i.e.,

[XG] j j [XG]kk =
���[XG] jk + r jke�i( p

2�a jk)
���
2

or

r2
jk +2br jk� c = 0

where

b := Re
⇣
[XG] jk ei( p

2�a jk)
⌘

, c := [XG] j j [XG]kk�
��[XG] jk

��2 > 0

Therefore setting r jk :=
p

b2 + c�b > 0 yields an X̂G that is 2⇥2 psd rank-1.

To show that X̂G is feasible for SOCP (10.22) and has an equal or lower cost than XG, we have for
l = 0,1, . . . ,L,

tr ClX̂G� tr ClXG = tr
�
Cl
�
X̂G�XG

��
= Â

( j,k)2E
[Cl] jk

�
[X̂G] jk� [XG] jk

�H

= 2 Â
j<k,( j,k)2E

Re
⇣
[Cl] jk · r jk ei( p

2�a jk)
⌘

= 2 Â
j<k

( j,k)2E

��[Cl] jk
�� r jk cos

⇣
\[Cl] jk +

p
2
�a jk

⌘
 0

where the last inequality follows because assumption C10.1 implies

p
2
 \[Cl] jk + p

2 �a jk 
3p
2

and therefore cos
�
\[Cl] jk + p

2 �a jk
�
 0. This completes the proof.

Proof of Corollary 10.7. C10.2 implies that the objective function of SOCP (10.22) is strictly con-
vex and hence has a unique optimal solution. Suppose XG is an optimal solution of SOCP (10.22) but
[XG] j j[XG]kk > |[XG] jk|2 for some ( j,k), i.e., XG is 2⇥2 psd but not 2⇥2 psd rank-1. Then the proof for
Theorem 10.6 constructs another feasible solution X̂G with equal cost. This contradicts the uniqueness of
the optimal solution of SOCP (10.22), and hence XG must be 2⇥2 psd rank-1.

10.4 Exactness condition: small angle differences

The sufficient conditions in [158, 159, 160] require that the voltage angle difference across each line be
small. We explain the intuition using a result in [159] for an OPF problem under the following simplifying
assumptions. We assume ys

jk = ys
k j (assumption 4.1) and ym

jk = ym
k j := 0 for all lines ( j,k). We use the polar
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form power flow equation (4.27) of Chapter 4.3.2, instead of the complex form that we have been using
in the previous sections. We ignore reactive power and assume voltage magnitudes |Vj| are fixed. Let
Vj = |Vj|eiq j . Then the optimization over (s,V ) in OPF reduces to an optimization over (p,q) as well as
real line flows P as an auxiliary variable. Under these assumptions, as long as the voltage angle difference
is small, the power flow solutions form a locally convex surface that is the Pareto front of its relaxation.
This implies that the relaxation is exact. The intuition extends to cases where some of these assumptions
are relaxed though the clean geometric insight becomes more obscure.

10.4.1 Sufficient condition

Let ys
jk = ys

k j =: g jk + ib jk with g jk > 0,b jk < 0 for all lines ( j,k). Consider

min
p,P,q

C(p) (10.25a)

s.t. pmin
j  p j  pmax

j , j 2 N (10.25b)

q min
jk  q jk  q max

jk , ( j,k) 2 E (10.25c)

p j = Â
k:k⇠ j

Pjk, j 2 N (10.25d)

Pjk = |Vj|2g jk� |Vj||Vk|g jk cosq jk� |Vj||Vk|b jk sinq jk, ( j,k) 2 E (10.25e)

where q jk := q j�qk are the voltage angle differences across lines ( j,k). The constraint (10.25c) on q jk is
equivalent to a limit on the apparent line power .

We comment on the constraint (10.25c) on angles q jk. When the voltage magnitudes |Vi| are fixed,
constraints on real power flows, branch currents, line losses, as well as stability constraints can all be
represented in terms of q jk. Indeed a line flow constraint of the form |Pjk|  Pmax

jk becomes a constraint
on q jk using the expression for Pjk in (10.25e) (or see Exercise 9.8). A current constraint of the form
|I jk|  Imax

jk is also a constraint on q jk since |I jk|2 = |y jk|(|Vj|2 + |Vk|2� 2|VjVk|cosq jk). The line loss
over ( j,k) 2 E is equal to Pjk + Pk j which is again a function of q jk. Stability typically requires |q jk| to
stay within a small threshold. Therefore given constraints on branch power or current flows, losses, and
stability, appropriate bounds q min

jk ,q max
jk can be determined to enforce these constraints, assuming |Vj| are

fixed.

We can eliminate the branch flows Pjk and angles q jk from (10.25). Since |Vj|, j 2 N, are fixed we
assume without loss of generality that |Vj| = 1 pu. Define the injection region

Pq :=

(
p 2 R

n

�����p j = Â
k:k⇠ j

�
g jk�g jk cosq jk�b jk sinq jk

�
, j 2 N, q min

jk  q jk  q max
jk , ( j,k) 2 E

)

Let Pp := {p 2 R
n | pmin

j  p j  pmax
j , j 2 N}. Then (10.25) is:

OPF:

min
p

C(p) subject to p 2 Pq \Pp (10.26)

This problem is hard because the set Pq is nonconvex. To avoid triviality we assume OPF (10.26) is
feasible. For a set A let convA denote the convex hull of A. Consider the following problem that relaxes
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the nonconvex feasible set Pq \Pp of (10.26) to a convex superset:
OPF-socp:

min
p

C(p) s.t. p 2 conv(Pq ) \ Pp (10.27)

We will show below that (10.27) is indeed an SOCP. It is said to be exact if every optimal solution of
(10.27) lies in Pq \Pp and is therefore also optimal for (10.26).

We say that a point x 2 A✓R
n is a Pareto optimal point in A if there does not exist another x0 2 A such

that x0  x with at least one strictly smaller component x0j < x j. The Pareto front of A, denoted by O(A),
is the set of all Pareto optimal points in A. The significance of O(A) is that, for any increasing function,
its minimizer, if exists, is necessarily in O(A) whether A is convex or not. If A is convex then xopt is a
Pareto optimal point in O(A) if and only if there is a nonzero vector c := (c1, . . . ,cn)� 0 such that xopt is
a minimizer of cTx over A [80, pp.179–180].

Assume

C10.3: For all ( j,k) 2 E, tan�1 b jk
g jk

< q min
jk  q max

jk < tan�1 �b jk
g jk

.

C10.4: C(p) is strictly increasing in each p j.

The following result, proved in [158, 159, 160] says that (10.27) is exact provided q jk are suitably bounded.

Theorem 10.9. Suppose G is a tree and C10.3–C10.4 hold.

1. Pq \Pp = O(conv(Pq ) \ Pp).

2. The problem (10.27) is equivalent to (i.e., can be reformulated as) an SOCP. Moreover it is exact.

Remark 10.4 (Strong exactness). Condition C10.4 is needed to ensure that every optimal solution of
OPF-socp (10.27) is optimal for OPF (10.26). If C(p) is nondecreasing but not strictly increasing in all
p j, then Pq \Pp ✓O(conv(Pq ) \ Pp) and OPF-socp may not be exact according to our definition. Even
in that case it is possible to recover an optimal solution of OPF from any optimal solution of OPF-socp
(see Exercise 10.9).

10.4.2 Proof: 2-bus network

We now illustrate the geometric insight by proving the theorem for the case of a single line (see [159] for
proof for a tree network).

Proof of Theorem 10.9: 2-bus network. Consider two buses j and k connected by a line with admit-
tance ys

jk = ys
k j = g jk + ib jk with g jk > 0,b jk < 0. Recall that we assume voltage magnitudes |Vj| = 1 pu

are fixed for buses j = 1,2, zero charging admittances, and we ignore reactive powers. Since p j = Pjk and
pk = Pk j we will work with P := (Pjk,Pk j). Then (the power flow equation (4.27a) in polar form)

Pjk := Pjk(q jk) := g jk�g jk cosq jk�b jk sinq jk

Pk j := Pk j(q jk) := g jk�g jk cosq jk +b jk sinq jk
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where q jk := q j�qk, or in vector form

P�g jk1 = A


cosq jk
sinq jk

�
(10.28)

where 1 := [1 1]T and A is an invertible matrix (A is not necessarily negative definite because it is not
symmetric, but AAT is positive definite since A is nonsingular):

A :=

�g jk �b jk
�g jk b jk

�

The proof will proceed in four steps:

1. We show that P traces out an ellipse in R
2 as q jk ranges over [�p,p]. Since the feasible set is a

subset of ellipse, it is nonconvex.

2. We show that condition C10.3 restricts the feasible set to the lower half of the ellipse.

3. We show that condition C10.4 implies that the Pareto front of the feasible set of the relaxed problem
(10.27) coincides with the feasible set. This implies that the relaxation is exact.

4. Finally we reformulate the relaxation (10.27) as an SOCP.

Step 1: P that satisfies (10.28) is an ellipse. In general the set of points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M (see Exercise 10.4). To see that P describes an
ellipse, write v := [cosq jk sinq jk]

T = A�1 �P�g jk1
�
. Hence kvk2

2 = 1, yielding

(P�g jk1)T
⇣

AAT

⌘�1
(P�g jk1) = 1 (10.29)

As noted above, AAT is positive definite, implying that P is an ellipse centered at g jk1. From (10.28), the
ellipse P passes through the origin when q jk = 0, as shown in Figures 10.4. Since the feasible set is a
subset of the ellipse P (without the interior), it is nonconvex.

Step 2: condition C10.3 restricts the feasible set to the lower half of the ellipse. Let pmin
jk denote the

minimum Pjk(q jk) and pmin
k j the minimum Pk j(q jk) on the ellipse as shown in the figure. They are attained

when q jk takes the values

q min
jk := tan�1 b jk

g jk
and q min

k j := tan�1 �b jk

g jk

respectively (Exercise 10.7). The condition q min
jk  q jk  q min

k j restricts P(q jk) to the darkened segment of
the ellipse in Figures 10.4. Recall the sets

Pq := { p | p = P, P satisfies (10.28) for q min
jk  q jk  q max

jk }, Pp := {p | pmin  p pmax}
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Pjk

Pkj

π kj
min

π jk
min

2gjk

2bjk−

Figure 10.4: The feasible set of OPF (10.26) for the two-bus network is a subset of an ellipse without
the interior, hence nonconvex. OPF-socp (10.27) includes the interior of the ellipse and is hence convex.
If the cost function C is strictly increasing in (Pjk,Pk j) then the Pareto front of the SOCP feasible set
will lie on the lower part of the ellipse, O(Pq ) = Pq , and hence OPF-socp is exact. The points P :=
(Pjk(q jk),Pk j(qk j)) = 0 when q jk = 0, Pjk = pmin

jk when q jk = q min
jk , and Pk j = pmin

k j when q jk = q min
k j .

and the feasible set Pq \ Pp of OPF (10.26). Condition C10.3 ensures q min
jk  q jk  q min

k j and hence
restricts both Pq and the feasible set Pq \Pp to the lower half of the ellipse.

The implication is that, under condition C10.4 that the cost function C is strictly increasing in the
injections (p j, pk) = (Pjk,Pk j), the nonconvex feasible sets Pq and Pq \ Pp coincide with the Parento
fronts of their respectively convex hulls, i.e.,

Pq = O(conv Pq ), Pq \Pp = O(conv(Pq \Pp)) (10.30)

Step 3: condition C10.4 implies that Pq \Pp =O(conv(Pq )\Pp). Unfortunately the convex hull conv(Pq \
Pp) in (10.30) of the intersection of two sets generally does not have a simple algebraic representation.
The feasible set conv(Pq )\Pp of the relaxation OPF-socp (10.27) is the intersection of two convex hulls
and is more amenable to computation. It is however a superset of conv(Pq \Pp). To illustrate their relation
denote the points P(q jk) :=

�
Pjk(q jk),Pk j(q jk)

�
attained at q min

jk and q max
jk by

⇣
pmin

jk ,pmin
k j

⌘
:= P(q min

jk ),
⇣

pmax
jk ,pmax

k j

⌘
:= P(q max

jk ) (10.31)

The set Pq is the ellipse segment between these two points
⇣

pmin
jk ,pmin

k j

⌘
and

⇣
pmax

jk ,pmax
k j

⌘
. As shown in

Figure 10.5, the relation between these two convex sets is:

conv(Pq )\Pp ◆ conv(Pq \Pp)

Even though these two sets are generally different, it is clear from the figure that, if the cost function C(p)
is strictly increasing in each p j (condition C10.4), then they share the same Pareto front, i.e.,

O(conv(Pq )\Pp) = O(conv(Pq \Pp)) = Pq \Pp
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Pjk

Pkj

π jk,π kj( )

π jk,π kj( )

Pkj = π kj +µ Pjk −π jk( )

µ :=
π kj −π kj

π jk −π jk

(a) conv(Pq )

p
j
, p

k( )

conv Pθ ∩Pp( )

p
j
, p

k( )

conv(Pθ ) ∩  Pp

π jk,π kj( )

π jk,π kj( )

π jk,π kj( )

π jk,π kj( )

Pareto)op2mal)

(b) conv(Pq \Pp)

p
j
, p

k( )

conv Pθ ∩Pp( )

p
j
, p

k( )

conv(Pθ ) ∩  Pp

π jk,π kj( )

π jk,π kj( )

π jk,π kj( )

π jk,π kj( )

Pareto)op2mal)

(c) conv(Pq )\Pp

Figure 10.5: (a) The set conv(Pq ) is the intersection of the ellipse, including its interior, and a half-space.
(b)(c) conv(Pq \Pp) ✓ conv(Pq )\Pp. (Change: p jk! pmin

jk ,pk j ! pmin
k j , p j ! pmin

j , pk! pmin
k ,p jk!

pmax
jk ,pk j! pmax

k j .)

where the last equality follows from (10.30). This proves the first claim of Theorem 10.9.

Step 4: (10.27) is an SOCP and it is exact. We now reformulate the feasible set conv(Pq )\Pp of OPF-
socp as the intersection of a second-order cone with several affine sets. First, from (10.29), the solid ellipse
including the interior is the set of P satisfying

1 �
�
P�g jk1

�T
(AAT)�1 �P�g jk1

�

This is a second-order cone t2 � (P� g jk1)T(AAT)�1(P� g jk1) intersecting with the affine set t = 1.
Second the set conv(Pq ) is the intersection of this second-order cone with the following half space (see
Figure 10.5(a)):

Pk j  pmin
k j +

pmax
k j �pmin

k j

pmax
jk �pmin

jk

⇣
Pjk�pmin

jk

⌘

where (pmin
jk ,pmin

k j ) and (pmax
jk ,pmax

k j ) are defined in (10.31). Finally intersecting this set with the affine set
Pp produces the feasible set conv(Pq )\Pp of OPF-socp. Hence the problem (10.27) is indeed an SOCP
for the two-bus case.

In summary, the SOCP relaxation of OPF (10.26) enlarges the feasible set Pq \ Pp to the convex
superset conv(Pq )\Pp. Under condition C10.4, every minimizer lies in its Pareto front and hence in the
original nonconvex feasible set Pq \Pp, as proved in Step 3.

We have hence proved Theorem 10.9 for the two-bus case.

We illustrate the purpose of condition C10.3. If there are no constraints on the injections p, then SOCP
relaxation (10.27) is exact under condition C10.4 due to Pq = O(conv Pq ) in (10.30). As illustrated in
Figure 10.6, upper bounds pmax on power injections p do not affect exactness (as long as the problem
remains feasible) whereas lower bounds pmin do. Specifically the lower half of the ellipse corresponds to
small |q jk| (Exercise 10.7). If the feasible set contains the lower half of the ellipse, as the shaded region in
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p
j
, p

k( )

Pareto)front)

(a) Exact relaxation

p
j
, p

k( )

Pareto)front)

(b) Inexact relaxation

Figure 10.6: Lower bounds pmin on injections affect exactness of relaxation. (Nov 16, 2024: Change:
p j! pmin

j , pk! pmin
k .)

Figure 10.6(a) illustrates, then the Pareto front remains on the ellipse itself, Pq \Pp =O(conv(Pq ) \ Pp),
and the relaxation is exact. On the other hand the upper half of the ellipse corresponds to large |q jk|. The
feasible set of OPF may include only the upper half of the ellipse if the lower bounds pmin are large (see
Figure 10.6(b)), in which case the Pareto front does not lie on the ellipse and the relaxation is not exact.
The purpose of condition C10.3 is to restrict the angle q jk in order to eliminate the upper half of the ellipse
from Pq .

We close this subsection with a remark on the importance of tree topology.

Remark 10.5 (Tree topology). The tree topology allows the extension of the argument for a single line to
a radial network with multiple lines, in two ways. First let F jk

q denotes the set of branch power flows on
each line ( j,k) 2 E:

F
jk
q := { (Pjk,Pk j) | (Pjk,Pk j) satisfies (10.28) for q min

jk  q jk  q max
jk }

If the network is a tree, the set Fq of branch power flows on all lines is simply the product set, Fq =

’
( j,k)2E

F
jk
q , because given any (q jk,( j,k)2 E) there is always a (unique up to a reference angle) (q j, j 2N)

that satisfies q jk = q j�qk. If the network has cycles then this is not possible for some vectors (q jk,( j,k)2
E) and Fq is no longer a product set of F jk

q .

Second the power injections p are related to the branch flows P by a linear transformation Pq = AFq
for some (N +1)⇥2M dimensional matrix A. Matrix A has full row rank and there is a bijection between
Pq and Fq (after fixing the reference angle) using the fact that the graph is a tree. We can therefore freely
work with either p 2 Pq or the corresponding P 2 Fq in the proof for a tree network (see [159]).

When the network is not radial or |Vj| are not constants, then the feasible set can be much more
complicated than ellipsoids and the simple geometric insight becomes obscure [27, 28, 29, 160].
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10.5 Other convex relaxations

10.6 Bibliographical notes

Solving OPF through semidefinite relaxation in the bus injection model is first proposed in [161] as a
second-order cone program (SOCP) for radial (tree) networks and in [162] as a semidefinite program
(SDP) for general networks. The exactness of semidefinite relaxations is first studied in [96]. By defining
a new set of variables v j := |Vj|2, R jk := |Vj||Vk|cos(q j�qk), and I jk := |Vj||Vk|sin(q j�qk) where q j :=
\Vj, [161] rewrites the bus injection model (4.27) in the polar form as a set of linear equations in these
new variables and the following quadratic equations:

v jvk = R2
jk + I2

jk

Relaxing these equalities to v jvk � R2
jk + I2

jk enlarges the solution set to a second-order cone that is equiv-
alent to W

+
G in this chapter. Partial matrices and their completions are studied in [140, 142, 143]. Ex-

ploiting graph sparsity to simplify the SDP relaxation of OPF through chordal extension is first proposed
in [144, 145, 163] and analyzed in [141, 146, 52]. Theorem 10.1 is from [52] and Corollary 10.2 is from
[141]). The sufficient condition on angle differences for exact SOCP relaxation in Chapter 10.4 is from
[158, 159] and our proof mostly follows that in [159]. The result in Chapter 10.4 assumes the voltage
magnitudes are fixed and ignores reactive powers. These assumptions are relaxed in [160] although, with-
out these assumptions, the feasible set may no longer be a convex surface that is the Pareto front of its
relaxation.

The semidefinite relaxation of three-phase OPF in Chapter ?? follows the idea in [132, 164].

Simulations [105] show that the SDP relaxation of OPF is often exact and adding valid inequalities and
bound tightening can further reduce the optimality gap to within 1%, though [150] also reports instances
where the optimality gap of SDP relaxation is large.

10.7 Problems

Chapter 10.1

Exercise 10.1 (Solution recovery). Given a partial matrix XF in XF defined in (10.7c) and a vector x 2C
n

recovered from XF using (10.10), show that x satisfies [XF ] jk = x j xk and xHClx bl , l = 1, . . . ,L.

Chapter 10.2

Exercise 10.2 (Loss minimization). In this problem we formulate and solve a simple nonconvex loss mini-
mization problem. A generator supplies a load through a transmission line modeled as a series admittance
y := g + ib = 1/(r + ix) with g > 0 and b < 0. The voltage at the generator (reference) bus is fixed at
V0 := 1\0� p.u. The required load power is s = p+ iq = |s|eif with p > 0 specified, i.e., �s is the power
injection at the load bus. Let the load voltage be V := veiq .
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1. Show that the active line loss r |I|2 = g
��1� veiq ��2.

2. Fix v and p. Formulate OPF as minimization over (q ,f) of the active line loss.

3. Reformulate OPF as an unconstrained minimization minf f (f) over f only.

4. Show that the unique minimizer of f (f) over (�p/2,p/2) is fmin := tan�1(�b(1� v2)/p), even
though the original OPF problem in part 2 is nonconvex.

5. Suppose v is also an optimization variable and assume p < g. Show that

fmin = tan�1(�b/g) = tan�1(x/r), vmin =
p

1� p/g

is an isolated local minimizer3 of f (f ,v) over f 2 (�p/2,p/2) and v > 0, by showing —2 f (fmin,vmin)
is positive definite.

6. Is (fmin,vmin) a global minimizer over f 2 (�p/2,p/2) and v > 0? (Hint: What is f (fmin,vmin)
and the load voltage vmineiqmin? Interpret.)

Chapter 10.3

Exercise 10.3 (Linear separability). The linear separability condition C10.1’ requires that some of power
injections be unconstrained even though in practice they are always bounded. The next exercise shows
that, for a convex problem, C10.1’ is equivalent to requiring that the finite bounds on these power injec-
tions be inactive at optimality (as opposed to removing these finite bounds but optimal solutions of the
unconstrained problem turn out to satisfy these bounds).

Consider the two problems:

x̂ 2 argmin
x2X

f (x) (10.32a)

x⇤ 2 argmin
x2X

f (x) s. t. g(x)  0 (10.32b)

where X ✓ R
n is convex and g : Rn! R

m is a convex function. We assume the minimizers x̂ and x⇤ exist.

1. Suppose f is strictly convex. Show that g(x̂) < 0 if and only if g(x⇤) < 0 in which case f (x̂) = f (x⇤).

2. Show that if f is nonconvex, then it is possible that both g(x⇤) < 0 and g(x̂) > 0, in which case
f (x̂) < f (x⇤).

3There is a neighborhood of (fmin,vmin) that contains no other minimizer.
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Chapter 10.4 The next few problems use a two-bus example to illustrate the geometry of solutions to
the polar form power flow equations, convex relaxation and its exactness [158, 159].

Exercise 10.4 (Ellipsoid). An ellipsoid in R
k (without the interior) in standard form are the points x 2 R

k

that satisfy

xTLx = 1 (10.33a)

for a real positive definite diagonal matrix L � 0. The center of the ellipsoid is the origin 0 and the k
principal axes are the coordinate axes. This is illustrated in Figure 10.7 for k = 2. In general the set of

(a) Ellipsoid in R
2 (b) Rotation in R

2

Figure 10.7: Exercises 10.4 and 10.5.

points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1 (10.33b)

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M. In this exercise, we show that a general ellipsoid
(10.33b) can be obtained through simple transformations of the standard form ellipsoid (10.33a).

Given a standard form ellipsoid x 2 R
k that satisfies (10.33a).

1. Translation: Let y := x+ x0 2 R
k. Show that y is a standard form ellipsoid with its center translated

to x0. Illustrate y for k = 2.

2. Scaling: Let y := ax where a 2 R is nonzero. Show that y is a standard form ellipsoid with its size
scaled by a in all the k dimensions. Illustrate y for k = 2.

3. Scaling and rotation: Let y := Ax. Show that y is an ellipsoid as long as A is real and invertible, i.e.,
y satisfies (10.33b) with a real (symmetric) positive definite matrix M.

4. Inverse scaling and rotation: Show that a general ellipsoid y that satisfies (10.33b) with the origin
c = 0 as its center is a standard form ellipsoid x scaled and rotated by a matrix U , i.e., y = Ux.
Derive U .
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Exercise 10.5 (Rotation in R
2). Show that y = R(q)x is a rotation of x by an angle q in R

2 where

R(q) :=


cosq �sinq
sinq cosq

�

as illustrated in Figure 10.7(b).

1. Show that R�1(q) = R(�q) = RT(q).

2. Show that R(q) is normal and find its spectral decomposition for q 6= 0.

3. Suppose x is a standard form ellipse in R
2 that satisfies (10.33a). Show that y := R(q)x is an ellipse,

i.e., y satisfies (10.33b) with a real (symmetric) positive definite matrix M.

Exercise 10.6 (Geometric insight [158, 159]). Fix a line ( j,k) so we can omit the subscript in g jk,b jk.
Show that (10.28) can be rewritten as

P =


Pjk
Pk j

�
=
p

2


cos45� sin45�
�sin45� cos45�

�
· P̂ + g


1
1

�
(10.34a)

where P̂ 2 R
2 satisfies

1 =

����


cosq jk
sinq jk

�����
2

= P̂T

"
1
b2 0
0 1

g2

#
P̂ (10.34b)

This says that P̂ defined by (10.34) is a standard form ellipse centered at the origin with its major axis of
length 2b on the x-axis and its minor axis of length 2g on the y-axis. P is the ellipse obtained from P̂ by
scaling it by

p
2, rotating it by �45�, and shifting its center to (g,g).

Exercise 10.7 (Geometric insight [158, 159]). Show that the two-bus network given by (10.28), repro-
duced here with subscript jk dropped:

p1 = p1(q) := g � gcosq � bsinq (10.35a)
p2 = p2(q) := g � gcosq + bsinq (10.35b)

We have shown that (p1, p2) forms an ellipse. Draw the ellipse and indicate on the ellipse values for
q where p1 and p2 attain minimum or maximum values. Conclude that the “lower half” of the ellipse
corresponds to small |q | and the “upper half” corresponds to large |q |.

Exercise 10.8 (Geometric insight [158, 159]). Consider the 2-bus network in Exercise 10.7. Let x :=
(p1, p2,q). Let c(p1, p2) be a cost function that is strictly increasing in (p1, p2), e.g., c(p1, p2) := p1 + p2.
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1. Consider the OPF problem:

min
x

c(p1, p2) s.t. x 2 X1 (10.36)

where the only constraint is the power flow equation:

X1 := {x := (p1, p2,q) : x satisfies (10.35)}

The feasible set is nonconvex because it is an ellipse without its interior. Consider the convex
relaxation:

min
x

c(p1, p2) s.t. x 2 conv(X1) (10.37)

Explain why the relaxation is exact, i.e., an optimal x⇤ for (10.37) is also optimal for (10.36).

2. Consider the constraints on injections (p1, p2) and constraints on q :

X2 := {x := (p1, p2,q) 2 R
3 : q min  q  q max}

X3 := {x := (p1, p2,q) 2 R
3 : pmin

j  p j  pmax
j , j = 1,2}

Consider the OPF:

min
x

c(p1, p2) s.t. x 2 X1\X2\X3 (10.38)

and its convex relaxation:

min
x

c(p1, p2) s.t. x 2 conv(X1\X2) \ X3 (10.39)

Indicate the feasible sets of (10.38) and (10.39) projected onto (p1, p2) plane, and explain why lower
bounds (pmin

1 , pmin
2 ) on the injections (p1, p2) affect the exactness of SOCP relaxation, but not the

upper bounds (pmax
1 , pmax

2 ).

3. Explain why limiting |q | to [q min,q max] can ensure exact relaxation as long as (recall that g > 0,b <
0)

tan�1
✓

b
g

◆
 q min < q max  tan�1

✓
�b
g

◆

Exercise 10.9 (Condition C10.4 and Pareto front). In general, a point x⇤ is Pareto optimal over a convex
set A✓ R

k if and only if it x⇤ = argminx2A cTx for some nonzero c� 0.

1. Show that, for the two-bus network in Exercise 10.7, O(conv(Pq )\Pp) ◆ O(conv(Pq \Pp)) if
condition C10.4 does not hold.

2. Show that if condition C10.4 holds, then we can define a Pareto optimal x⇤ as x⇤ = argminx2A cTx
for some c > 0 and O(conv(Pq )\Pp) = O(conv(Pq \Pp)).
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Exercise 10.10 (Convex hull and Pareto front). Let B,C ✓ R
k be arbitrary sets, D := {x 2 R

k|Mx c} be
an affine set, and M a matrix and b a vector of appropriate dimensions.

1. conv(MB) = M conv(B) and conv(B⇥C) = conv(B)⇥ conv(C) where for any sets A1,A2 ✓ R
k,

(x1,x2) 2 A1⇥A2 if and only if x1 2 A1 and x2 2 A2.

2. Suppose B and C are convex and a point is Pareto optimal over a set if and only if it minimizes cTx
over the set for some nonzero c� 0. Then O(MB) = MO(B) and O(B⇥C) = O(B)⇥O(C).

3. If B = O(conv B) then B\D✓O(conv(B)\D).

Chapter ??.

Exercise 10.11 (Lemma 19.1 [164]).



Chapter 11

Semidefinite relaxations: BFM

In Chapter 10 we study the semidefinite relaxation of OPF in the bus injection model. In this chapter we
continue our study in the branch flow model for radial networks. In Chapter 11.1 we formulate SOCP
relaxation and prove its equivalence to the SOCP relaxation in BIM. In Chapters 11.2 and 11.3 we prove
sufficient conditions for exact relaxation for radial networks.

11.1 SOCP relaxation

We first focus on the DistFlow model studied in Chapter 5.1.3 where zs
jk = zs

k j and zm
jk = zm

k j = 0 for each
line ( j,k) 2 E. We formulate SOCP relaxation of OPF under these two assumptions in Chapter 11.1.1 and
prove its equivalence to the SOCP relaxation in the bus injection model in Chapter 11.1.2. Then we extend
SOCP relaxation to general radial networks without these assumptions in Chapter 11.1.3.

11.1.1 DistFlow model

The DistFlow model of Chapter 5.1.3 assumes the series impedances zs
jk = zs

k j of each line ( j,k) are
equal in each direction (assumption C5.1) and shunt admittances are zero zm

jk = zm
k j = 0. It is a reasonable

model for single-phase radial networks, but requires approximations to incorporate transformer models
(see discussions in Chapter 5.1.1). These two assumptions allow us to assume the network graph G =
(N,E) is directed and includes branch variables in only one direction (see Chapter 5.1.3 for details). We
denote a line in E from bus j to bus k either by ( j,k) 2 E or j ! k. It is characterized by its series
impedance z jk := zs

jk. Without loss of generality we take bus 0 as the root of the tree.

Consider a single-phase radial network G = (N,E) with N + 1 buses and M = N lines modeled by

473
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DistFlow equation (5.8) with up orientation (all lines point towards bus 0), reproduced here:

S jk = Â
i:i! j

�
Si j� zi j`i j

�
+ s j, j 2 N (11.1a)

v j� vk = 2Re
⇣

z̄s
jkS jk

⌘
� |z jk|2` jk, j! k 2 E (11.1b)

v j` jk = |S jk|2, j! k 2 E (11.1c)

where k := k( j) in (11.1a) denotes the node adjacent to j on the unique path from bus j to bus 0, with the
udnerstanding that S jk := 0 when j = 0 and Si j = 0, `i j = 0 when j is a leaf node.1 The injection, voltage
and line limits are:

smin
j  s j  smax

j , vmin
j  v j  vmax

j , ` jk  `max
jk , j 2 N, ( j,k) 2 E (11.2)

The model (11.1) includes only voltage and power sources whose controllable variables are v j and s j
respectively. See Remark 9.5 of Chapter 9.2 on how to incorporate current sources and impedances.
Denote by (s,v) := (s j,v j, j 2 N) 2 R

3(N+1) the bus injections and squared voltage magnitudes, and by
(`,S) := (` jk,S jk, j! k 2 E) 2 R

3M the squared line current magnitudes and line powers. The vector v
includes v0 and s includes s0. Let x := (s,v,`,S) in R

3(2N+1) since G is a tree.

Let C(x) be a cost function. Let the feasible set be

Xdf := {x := (s,v,`,S) 2 R
6N+3 | x satisfies (11.1)(11.2)} (11.3a)

The OPF (9.20) formulated in Chapter 9.2 (but with a different graph orientation) is
OPF:

min
x

C(x) subject to x 2 Xdf (11.3b)

To avoid triviality we will assume unless otherwise specified that OPF (11.3) is feasible. The constraints
(11.1a)(11.1b) are linear in x. The constraint (11.1c) is however quadratic in x, making the feasible set of
OPF (11.3) nonconvex. Relaxing the equality in (11.1c) into inequality

v j` jk � |S jk|2, j! k 2 E (11.4)

results in a (convex) second-order cone. Define

X
+
df := {x : (s,v,`,S) 2 R

6N+3 | x satisfies (11.1a)(11.1b)(11.4)(11.2)} (11.5a)

Then an SOCP relaxation of OPF (11.3) is:
OPF-socp:

min
x

C(x) subject to x 2 X
+
df (11.5b)

We say that OPF-socp (11.5) is exact if every optimal solution xsocp of (11.5) attains equalities in (11.4)
and hence is an optimal solution of OPF (11.3). This is convenient because it ensures that any algorithm
that solves an exact relaxation always produces a globally optimal solution to the OPF problem. This

1A node j 2 N is a leaf node if there is no i such that i! j 2 E.
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notion of strong exactness is however unnecessary under the sufficient exactness conditions of Chapters
11.2 and 11.3 for radial networks; see Remark 11.1 after Theorem 11.3 and Remark 11.3 after Theorem
11.5. These conditions guarantee that an optimal solution to OPF can be recovered from any optimal
solution xsocp of OPF-socp whether or not xsocp attains equalities in (11.4).

The next result from [53] shows that, when the SOCP relaxation (in fact, any convex relaxation) of
(11.3) is exact in the strong sense defined above, then the optimal solution is unique.

Theorem 11.1 (Unique optimal of SOCP relaxation). Suppose the network graph G is a tree and the cost
C is a convex function. If OPF-socp (11.5) is exact then its optimal solution is unique.

Proof. Suppose x̂ and x̃ are distinct optimal solutions of the relaxation OPF-socp (11.5). Since the feasible
set of OPF-socp is convex the point x := (x̂+ x̃)/2 is also feasible for OPF-socp. Since the cost function C
is convex and both x̂ and x̃ are optimal for (11.5), x is also optimal for (11.5). The exactness of OPF-socp
then implies that x attains equality in (11.4). This contradicts Theorem 5.1 that shows that if x̂ and x̃ are
feasible, then no convex combination of x̂ and x̃ can be feasible.

11.1.2 Equivalence

The single-phase OPF (11.3) is equivalent to the single-phase OPF problem (9.9) or (9.16) in the bus
injection model because their feasible sets Xdf and V respectively are equivalent by Theorem 5.2. In this
section we show that their SOCP relaxations are equivalent as well by establishing a bijection between the
feasible sets of these relaxations.

The equivalence of the SOCP relaxations in these two models rests on the equivalence of their feasible
sets. Recall that any sets A and B are equivalent, denoted by A ⌘ B, if there is a bijection between them.
When there is a one-one correspondence g : A! B between their feasible sets, a feasible point x is optimal
for one problem if and only if g(x) is optimal for the other problem. We now make this precise.

Recall from Chapter 10.2.1 that the SOCP relaxation (10.20c) of OPF in BIM is the minimization of
C(WG) over Hermitian partial matrices WG 2 C

2M+N+1 subject to operational and 2⇥ 2 psd constraints.
The operational constraints are the injection limits, voltage limits, and line limits. In terms of the partial
matrix WG, they are respectively: (substituting |Vj|2 = [WG] j j and VjVH

k = [WG] jk into (9.8) (9.4b)(9.4c)):

smin
j  Â

k: j⇠k
ȳs

jk
�
[WG] j j� [WG] jk

�
 smax

j , j 2 N (11.6a)

vmin
j  [WG] j j  vmax

j , j 2 N (11.6b)
���ys

jk

���
2 �

[WG] j j +[WG]kk� [WG] jk� [WG]k j
�
 `max

jk , j! k 2 E (11.6c)

The 2⇥2 psd constraint WG( j,k)⌫ 0, ( j,k) 2 E, is equivalent to

[WG] jk = [WG]Hk j, [WG] j j > 0, [WG]kk > 0, [WG] j j[WG]kk �
��[WG] jk

��2 , ( j,k) 2 E (11.6d)

Then the feasible set of the SOCP relaxation (10.20c) of OPF in BIM is

W
+
G := { WG 2 C

2M+N+1 | WG satisfies (11.6) } (11.7a)
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and the SOCP relaxation is

min
WG

C(WG) s.t. WG 2W
+
G (11.7b)

The feasible set of OPF-socp (11.5) in BFM is equivalent to that of (11.7) in BIM.

Theorem 11.2 (Equivalence of SOCPs). X+
df ⌘W

+
G .

The theorem implies that there is a bijection g : W+
G!X

+
df. If the cost function in the SOCP relaxation

(11.5) in BFM and that in (11.7) in BIM are equivalent, i.e., C(WG) = C (g(WG)), then these SOCP relax-
ations are equivalent problems in the sense that W opt

G is optimal for (11.7) if and only if xopt := g(W opt
G ) is

optimal for (11.5).

The proof of Theorem 11.2 below constructs a linear mapping g : W+
G!X

+
df, motivated by the factor-

ization W = VVH of the psd rank-1 completion W of the partial matrix WG when WG is psd rank-1. Define
the linear mapping g : W+

G ! X
+
df with x := (s,v,`,S) = g(WG) where

s j := Â
k: j⇠k

ȳs
jk
�
[WG] j j� [WG] jk

�
,

= Â
i:i! j

ȳs
i j
�
[WG] j j� [WG] ji

�
+ Â

k: j!k
ȳs

jk
�
[WG] j j� [WG] jk

�
, j 2 N (11.8a)

v j := [WG] j j, j 2 N (11.8b)

` jk := |ys
jk|2
�
[WG] j j +[WG]kk� [WG] jk� [WG]k j

�
, j! k 2 E (11.8c)

S jk := ȳs
jk
�
[WG] j j� [WG] jk

�
, j! k 2 E (11.8d)

and the mapping g�1 : X+
df!W

+
G with WG = g�1(x) where

[WG] j j := v j, j 2 N (11.9a)

[WG] jk := v j� z̄s
jkS jk = [WG]Hk j , j! k 2 E (11.9b)

Note that in (11.8a) the first summation over lines i! j is [WG] j j� [WG] ji, not
�
[WG]ii� [WG]i j

�
. The proof

below establishes that g and g�1 are indeed inverses of each other. By restricting these mappings g and
g�1 to subsets WG ✓W

+
G and Xdf ✓ X

+
df, the theorem immediately implies the equivalence of Xdf ⌘WG

and hence the equivalence of single-phase OPF (11.3) in BFM and the OPF (9.9) or (9.16) in BIM (since
WG ⌘ V).

Since we assume zm
jk = zm

k j = ym
jk = ym

k j = 0, we often omit the superscript s in zs
jk and ys

k j.

Proof of Theorem 11.2. We will prove that g and g�1 are indeed inverses of each other in three steps:
(1) g maps every point WG 2W+

G to a point in X
+
df; (2) g�1 maps every point x 2X+

df to a point in W
+
G; and

(3) g(g�1(x)) = x and g�1(g(WG)) = WG. This defines a bijection between W
+
G and X

+
df and establishes

W
+
G ⌘ X

+
df.
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Step 1: x := g(WG) 2X+
df. Given a WG 2W+

G , we have to prove x := g(WG) satisfies (11.1a) (11.1b) (11.4)
(11.2). Clearly (11.2) follows from (11.8) and (11.6). To prove (11.1a), we have for j 2 N

Â
i:i! j

�
Si j� zi j`i j

�
+ s j

= Â
i:i! j

�
ȳi j
�
[WG]ii� [WG]i j

�
� ȳi j

�
[WG]ii +[WG] j j� [WG]i j� [WG] ji

��
+ s j

= Â
i:i! j

�
�ȳi j

�
[WG] j j� [WG] ji

��
+ Â

i:i! j
ȳ ji
�
[WG] j j� [WG] ji

�
+ Â

k: j!k
ȳ jk
�
[WG] j j� [WG] jk

�

= Â
k: j!k

S jk

where the last equality uses yi j = y ji by assumption C5.1. To prove (11.1b), we have for j! k 2 E

2Re
�
z̄ jkS jk

�
� |z jk|2` jk = 2Re

�
[WG] j j� [WG] jk

�
�
�
[WG] j j +[WG]kk� [WG] jk� [WG]k j

�

=
�
[WG] j j� [WG]kk

�
� [WG]Hjk +[WG]k j

= v j� vk

where the last equality follows because the partial matrix WG is Hermitian. Finally to prove (11.4), for
each j!2 E, we have from (11.6d) [WG] j j[WG]kk � |[WG] jk|2. Hence

v j` jk =
��y jk
��2 [WG] j j

�
[WG] j j +[WG]kk� [WG] jk� [WG]k j

�

�
��y jk
��2
⇣
[WG]2j j +

��[WG] jk
��2� [WG] j j[WG] jk� [WG] j j[WG]Hjk

⌘
(11.10)

=
��S jk
��2

as desired. Hence g maps every WG 2W
+
G to an x 2 X

+
df.

Step 2: WG := g�1(x) 2W
+
G . Given an x 2 X

+
df, we have to prove that WG := g�1(x) satisfies (11.6).

Clearly (11.9a) and the voltage limit in (11.2) implies (11.6b).

To prove (11.6a), we have for each j 2 N+

Â
k:( j,k)2E

ȳs
jk
�
[WG] j j� [WG] jk

�
= Â

i:i! j
ȳs

ji
�
[WG] j j� [WG] ji

�
+ Â

k: j!k
ȳs

jk
�
[WG] j j� [WG] jk

�

= Â
i:i! j

ȳs
i j

⇣
v j�

�
vi� z̄s

i jSi j
�H⌘

+ Â
k: j!k

ȳs
jk

⇣
v j�

⇣
v j� z̄s

jkS jk

⌘⌘

= Â
k: j!k

S jk � Â
i:i! j

ȳs
i j

⇣
vi� v j� zs

i jS
H

i j

⌘

= Â
k: j!k

S jk � Â
i:i! j

ȳs
i j

⇣
2Re(z̄s

i jSi j)�
��zs

i j
��2 `i j� zs

i jS
H

i j

⌘

where the second equality follows from (11.9) and y ji = yi j by assumption C5.1, and the last equality
follows from (11.1b). But

⇣
2Re(z̄s

i jSi j)� zs
i jS

H

i j

⌘
=

⇣
z̄s

i jSi j + zs
i jS

H

i j

⌘
� zs

i jS
H

i j = z̄s
i jSi j
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and hence

Â
k:( j,k)2E

ȳs
jk
�
[WG] j j� [WG] jk

�
= Â

k: j!k
S jk � Â

i:i! j

�
Si j� zs

i j`i j
�

= s j

where the last equality follows from (11.1a). This and the injection limits in (11.2) imply (11.6a). To
prove (11.6c), we have for each ( j,k) 2 E, from (11.9),

��y jk
��2 �[WG] j j +[WG]kk� [WG] jk� [WG]k j

�
=
��y jk
��2
✓

v j + vk�
⇣

v j� z̄s
jkS jk

⌘
�
⇣

v j� z̄s
jkS jk

⌘H◆

=
��y jk
��2
⇣
�v j + vk + z̄s

jkS jk + zs
jkSHjk

⌘

= ` jk

where last equality follows from (11.1b). This and the line limit in (11.2) imply (11.6c). Finally to prove
(11.6d), note that [WG] jk = [WG]Hk j, [WG] j j > 0, and [WG]kk > 0 follow directly from (11.9). Furthermore

[WG] j j[WG]kk�
��[WG] jk

��2 = v jvk�
���v j� z̄s

jkS jk

���
2

= v jvk�
✓

v2
j +
���zs

jk

���
2 ��S jk

��2�2v j Re
⇣

z̄s
jkS jk

⌘◆

= v j

⇣
vk� v j +2Re

⇣
z̄s

jkS jk

⌘⌘
�
���zs

jk

���
2 ��S jk

��2

=
���zs

jk

���
2⇣

v j` jk�
��S jk
��2
⌘
� 0

where last equality follows from (11.1b) and the last inequality follows from (11.4). Therefore WG( j,k)⌫
0 for all ( j,k) 2 E, as desired. This shows that g�1 maps every x 2 X

+
df to a WG 2W

+
G .

Step 3: g(g�1(x)) = x and g�1(g(WG)) = WG. The proof uses (11.8)(11.9)(11.1a)(11.1b). It follows a
similar argument used in Steps 1 and 2, and is omitted. This completes the proof that g and g�1 are indeed
inverses of each other and establishes W+

G ⌘ X
+
df.

This completes the proof of Theorem 11.2.

11.1.3 General radial network

The OPF (11.3) and its SOCP relaxation (11.5) are based on the DistFlow model that assumes ys
jk = ys

k j
(assumption C5.1) and ym

jk = ym
k j = 0. OPF is also formulated in (9.22) of Chapter 9.2 without these

assumptions, based on the branch flow model (5.1) that includes branch variables ` :=
�
` jk,`k j,( j,k) 2 E

�
,
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S :=
�
S jk,Sk j,( j,k) 2 E

�
in both directions, reproduced here:

s j = Â
k: j⇠k

S jk, j 2 N (11.11a)

��a jk
��2 v j� vk = 2Re

⇣
a jkz̄s

jkS jk

⌘
�
���zs

jk

���
2
` jk, ( j,k) 2 E (11.11b)

��ak j
��2 vk� v j = 2Re

⇣
ak jz̄s

k jSk j

⌘
�
���zs

k j

���
2
`k j, ( j,k) 2 E (11.11c)

ā jkv j � z̄s
jkS jk =

⇣
āk jvk � z̄s

k jSk j

⌘H
, ( j,k) 2 E (11.11d)

��S jk
��2 = v j ` jk,

��Sk j
��2 = vk `k j, ( j,k) 2 E (11.11e)

where

a jk := 1+ zs
jk ym

jk, ak j := 1+ zs
k j ym

k j

The feasible set is

Xtree := {x : (s,v,`,S) 2 R
9N+3 | x satisfies (11.11), (11.2)} (11.12a)

and the OPF problem is:
OPF:

min
x

C(x) subject to x 2 Xtree (11.12b)

Its SOCP relaxation replaces the quadratic equality constraint (11.11e) by second-order cones:

v j` jk � |S jk|2, vk`k j � |Sk j|2, j! k 2 E (11.13)

Then the feasible set is

X
+
df := {x : (s,v,`,S) 2 R

6N+3 | x satisfies (11.11a)� (11.11d), (11.13), (11.2)} (11.14a)

and
OPF-socp:

min
x

C(x) subject to x 2 X
+
df (11.14b)

We say that OPF-socp (11.14) is exact if every optimal solution xsocp of (11.14) attains equalities in (11.13)
and hence is an optimal solution of OPF (11.12). We study exactness condition for (11.14) in Theorem
11.4 of Chapter 11.2.

11.2 Exactness condition: inactive injection lower bounds

11.2.1 DistFlow model

Consider first OPF (11.3) and its SOCP relaxation (11.5) in the DistFlow model. Assume
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C11.1: The cost function C(x) = C(p,q,v,`) is independent of branch flows S = (P,Q) and nonde-
creasing in (p,q,`). Moreover it is strictly increasing in every component of (` jk,( j,k) 2 E) or in
every component of (p j, j 2 N) or in every component of (q j, j 2 N).

C11.2: For j 2 N, smin
j =�•� i•.

Popular cost functions in the literature include active power loss over the network or active power genera-
tions, both of which satisfy C11.1.

Theorem 11.3 (Inactive injection lower bounds). Suppose the network graph G is a tree and C11.1, C11.2
hold. Then the SOCP relaxation (11.5) is exact, i.e., every optimal solution xsocp of (11.5) is optimal for
OPF (11.3).

Remark 11.1 (Strong exactness and global optimality). 1. If the cost function C(x) in C11.1 is only
nondecreasing, rather than strictly increasing, in `, then C11.1, C11.2 still guarantee that all optimal
solutions of OPF (11.3) are optimal solutions of its relaxation OPF-socp (11.5), but OPF-socp may
have an optimal solution xsocp that maintains a strict inequality in (11.4) and hence is infeasible for
OPF. Even though OPF-socp is not exact in the strong sense of Definition 10.2, an optimal solution
of OPF (11.3) can still be constructed from such a solution xsocp; see explanation immediately after
the proof of Theorem 11.3 below.

2. Theorem 9.7 of Chapter 9.4.4 shows that C11.2 and a strengthened version of C11.1 (and other mild
conditions) also guarantee that every local optimum of OPF (11.3) is a global optimum.

Remark 11.2 (Convexity). For exact relaxation, we do not require the cost function C(x) to be convex in
x; C(x) needs to be convex for (11.5) to be a convex problem.

We can allow more general constraints on power injections s j than s j  smax
j assumed in Theorem

11.3. The injection s j can be in an arbitrary set B j that satisfies C11.2. In particular B j need not be convex
nor even connected for OPF-socp to be exact. It (only) needs to be convex to be efficiently computable.
Such a general constraint on s is useful in many applications. For instance it allows constraints of the form
|s j|2  a, |\s j| f j that is useful for inverter control or q j 2 {0,a} for capacitor configuration.

Proof of Theorem 11.3. Fix any optimal solution x := (s,v,`,S) 2 R
3(2N+1) of OPF-socp (11.5). Since

G is a tree, the cycle condition is vacuous and we only need to show that x attains equality in (11.4). For
the sake of contradiction assume this is violated on line j!k, i.e.,

v j` jk > |S jk|2 (11.15)

We will construct an x̃ that is feasible for OPF-socp and attains a strictly lower cost, contradicting the
optimality of x.

For an e > 0 to be determined below, consider the following x̃ obtained by modifying only the current
` jk and power flow S jk on line j! k and the injections s j,sk at two ends of line j! k:

˜̀jk := ` jk� e (11.16a)
S̃ jk := S jk� z jke/2 (11.16b)
s̃ j := s j� z jke/2 (11.16c)
s̃k := sk� zk je/2 (11.16d)
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and ṽ := v, ˜̀il := `il and S̃il := Sil for (i, l) 6= ( j,k), s̃i := si for i 6= j,k. In particular, no other variables
than (s j,sk,` jk,S jk) associated with the single line j! k are modified.2 By assumption C11.1 the cost
function C(x) is strictly increasing in every component of (` jk,( j,k)2E) or in every component of (p j, j 2
N) or in every component of (q j, j 2 N). Hence x̃ has a strictly lower cost than x. It suffices to show that
there exists an e > 0 such that x̃ is feasible for OPF-socp (11.5), i.e., x̃ satisfies (11.1a)(11.1b)(11.4)(11.2).
Moreover we can choose e > 0 so that x̃ attains equalities in (11.4) and is therefore feasible for OPF.

Assumption C11.2 ensures that x̃ satisfies (11.2) since z jk > 0 and e > 0. Further x̃ satisfies (11.1a)
at buses i 6= j,k, and satisfies (11.1b)(11.4) over lines (i, l) 6= ( j,k). We now show that x̃ also satisfies
(11.1a)(11.1b)(11.4) at buses j,k and over the line ( j,k).

For (11.1a) at bus j, we have from (11.16b)(11.16c)

S̃ jk = S jk� z jk
e
2

= Â
i:i! j

�
Si j� zi j`i j

�
+ s j � z jk

e
2

= Â
i:i! j

�
S̃i j� zi j ˜̀i j

�
+ s̃ j

as desired (recall that no variables except those associated with line ( j,k) are modified). For (11.1a) at bus
k, on line k! l from k towards bus 0, we have from (11.16a)(11.16b)(11.16d)

S̃kl = Skl =
�
S jk� z jk` jk

�
+ Â

i6= j:i!k
(Sik� zik`ik) + sk

=
⇣

S̃ jk� z jk ˜̀jk� z jk
e
2

⌘
+ Â

i6= j:i!k

�
S̃ik� zik ˜̀ik

�
+ sk = Â

i:i!k

�
S̃ik� zik ˜̀ik

�
+ s̃k

as desired. This shows that x̃ satisfies (11.1a) at both buses j,k. For (11.1b) over line ( j,k), we have from
(11.16a)(11.16b)

ṽ j� ṽk = v j� vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk = 2Re

⇣
zHjkS̃ jk

⌘
� |z jk|2 ˜̀jk

as desired. For (11.4) over line ( j,k), we have from (11.16a)(11.16b)

ṽ j ˜̀jk�
��S̃ jk
��2 = �

��z jk
��2

4
e2 �

⇣
v j�Re

⇣
zHjkS jk

⌘⌘
e +

⇣
v j` jk�

��S jk
��2
⌘

Hence (11.15) implies that we can always choose an e > 0 such that ṽ j ˜̀jk =
��S̃ jk
��2.

This completes the proof of Theorem 11.3.

Note that the construction of x̃ ensures that equalities are attained in (11.4) and therefore x̃ is feasible
for OPF (11.3), not just for its SOCP relaxation. If the cost function C(x) in C11.1 is only nondecreasing,
rather than strictly increasing, in ` (or in p or q), then it is possible that C(x̃) = C(x) and OPF-socp (11.5)
has an optimal solution x that maintains a strict inequality in (11.4). Even in this case, the proof shows
how to construct from such an x an optimal solution x̃ for OPF (11.3) under C11.1 and C11.2.

2In the proof of Theorem 9.7 of Chapter 9.4.4 on global optimality of OPF, the adjustment (9.39) to x is the same as that in
(11.16) but on all lines i! l 2 E and all buses i 2 N, not just on j! k, with individual ei = eil = tDil .
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11.2.2 General radial network

Theorem 11.3 can be extended to general radial networks where zs
jk and zs

k j may not be equal and zm
jk,z

m
k j

may not be zero. The OPF and its SOCP relaxation for this general model are given in (11.12) and (11.14)
respectively. Assume

C11.3: For all ( j,k) 2 E, both Re(a jk) and Re(ak j) are positive; furthermore zs
jk = zs

k j.

For C11.3, Re(a jk) = 1 + Re(zs
jkym

jk) � 1� |ym
jk/zs

jk|. Since ym
jk is typically much smaller in magnitude

than ys
jk, Re(a jk) is usually strictly positive. The next theorem is proved in Exercise 11.1.

Theorem 11.4 (Inactive injection lower bounds). Suppose the network graph G is a tree and C11.1, C11.2,
C11.3 hold. Then the SOCP relaxation (11.14) is exact, i.e., every optimal solution xsocp of (11.14) is
optimal for OPF (11.12).

11.3 Exactness condition: inactive voltage upper bounds

In this section we present a sufficient condition for exact SOCP relaxation of single-phase OPF on a radial
network, when the operational constraint (11.2) is replaced by the following set of constraints:

vmin
j  v j  vmax

j , j 2 N (11.17a)
s j 2 B j ✓ {s j 2 C |s j  smax

j }, j 2 N (11.17b)

for some given finite smax
j , j 2 N. In particular we ignore line limits, but allow the injections (s j, j 2 N)

at non-root buses to be in an arbitrary set B j that is bounded above (see Remark 11.2). We also assume v0
is given and satisfies (11.17a) and s0 is unconstrained.

Then OPF and its feasible set are:

OPF: min
x

C(x) s.t. x 2 Xdf (11.18a)

where Xdf := {x : (s,v,`,S) 2 R
6N+3 | x satisfies (11.1)(11.17)} (11.18b)

Their SOCP relaxations are:

OPF-socp: min
x

C(x) s.t. x 2 X
+
df (11.19a)

where X
+
df := {x : (s,v,`,S) 2 R

6N+3 | x satisfies (11.1a)(11.1b)(11.4)(11.17)} (11.19b)

OPF-socp (11.19) is exact if every optimal solution xsocp of (11.19) attains equality in (11.4) and is hence
optimal for OPF (11.18).

11.3.1 Sufficient condition

We now state the sufficient condition for exact SOCP relaxation for radial networks and show that exact-
ness implies uniqueness of the optimal solution. The main sufficient condition is that the voltage upper
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bounds are inactive at optimality. 3 Before presenting it we first explain a simple intuition using a two-bus
network that motivates this condition.

Example 11.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with impedance z :=
r + ix with r,x > 0. Without loss of generality, let the direction of the line be from bus 1 to bus 0. Let `
be the sending-end squared current magnitude from buses 1 to 0 (recall that S01 := 0 in (11.1a)). Suppose
also without loss of generality that v0 = 1 pu. The model in (11.1) reduces to (Exercise 11.2):

p0� r` = �p1, q0� x` = �q1, p2
0 +q2

0 = ` (11.20a)
v1� v0 = 2(rp1 + xq1) � (r2 + x2)` (11.20b)

Suppose s1 is given (e.g., a constant power load). Then the variables are x := (p0,q0,v1,`) and the feasible
set consists of solutions of (11.20), subject to operational constraints on x. The case without any con-

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 11.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over the
SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact.

straint is instructive and shown in Figure 11.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection cor-
responds to a 3 solution with a small v1 (fault condition). (See Example 5.3 of Chapter 5.1.5 for detailed
calculations.) As explained in the caption, SOCP relaxation is exact if there is no voltage constraint and
as long as constraints on (p0,q0,`) do not remove the high-voltage solution c. Only when the system is
stressed to a point where the high-voltage solution becomes infeasible will relaxation lose exactness. This
agrees with conventional wisdom that power systems under normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (11.20b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

3Exercise 10.3 shows that, since SOCP is a convex problem, condition C11.5 that requires an upper bound of v j be less
than vmax

j is equivalent to requiring v j  vmax
j but the bound is inactive at optimality.
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translating the constraint on v1 into a box constraint on `:

1
|z|2 (2rp1 +2xq1 +1� vmax

1 )  `  1
|z|2
⇣

2rp1 +2xq1 +1� vmin
1

⌘

Figure 11.1 shows that the lower bound vmin
1 (corresponding to an upper bound on `) does not affect the

exactness of SOCP relaxation. The effect of upper bound vmax
1 (corresponding to a lower bound on `) is

illustrated in Figure 11.2. As explained in the caption of the figure SOCP relaxation is exact if the upper
bound vmax

1 does not exclude the high-voltage solution c and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Figure 11.2: Impact of voltage upper bound vmax
1 on exactness. (a) When vmax

1 (corresponding to a lower
bound on `) is not binding, the power flow solution c is in the feasible set of SOCP and hence the relaxation
is exact. (b) When vmax

1 excludes c from the feasible set of SOCP, the optimal solution is infeasible for
OPF and the relaxation is not exact.

See Example 5.3 and Exercise 11.3 for details of feasibility and exactness of OPF-socp.

To state the exactness condition for a general radial network, recall the linear approximation of BFM
studied in Chapter 5.4.3.2, obtained by setting ` jk = 0 in (11.1). Given v0 and the injections ŝ := ( p̂, q̂) :=
(p j,q j, j 2 N) at non-root buses, the line flow vector Slin(s) :=

⇣
Slin

jk ,( j,k) 2 E
⌘

and the voltage vector

v̂lin(s) := (vlin
j , j 2 N) at non-root buses in the linearized model are explicitly given by (from Theorem

5.3):

Slin(s) = Ĉ�1ŝ, v̂lin(s) = v0 1 + 2(Rp̂ + Xq̂) (11.21)

for some given invertible matrices Ĉ, R and X . The key property we will use is, from Corollary 5.5:

S jk  Slin
jk (s) and v j  vlin

j (s), j 2 N (11.22)

Define the 2⇥2 matrix function

A jk(S jk,v j) := I2�
2
v j

z jk
�
S jk
�T (11.23)
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where I2 is the identity matrix of size 2, z jk := (r jk,x jk) is the column vector of line impedance and
S jk := (Pjk,Q jk) is the column vector of branch power flows, so that z jk

�
S jk
�T is a 2⇥2 matrix with rank

less or equal to 1. As we will see below, the matrices A jk(S jk,v j) describe how changes in branch power
flows propagate towards the root node 0. Evaluate the Jacobian matrix A jk(S jk,v j) at the boundary values:

A jk := A jk

✓h
Slin

jk (smax)
i+

, vmin
j

◆
= I2�

2
vmin

j
z jk

✓h
Slin

jk (smax)
i+◆T

(11.24)

Here
�
[a]+

�T is the row vector [[a1]+ [a2]+] with [a j]+ := max{a j,0}.

For a radial network, for j 6= 0, every line j! k identifies a unique node k and therefore, to simplify
notation, we refer to a line interchangeably by ( j,k) or j and use A j, A j, z j etc. in place of A jk, A jk, z jk
etc. respectively. Assume

C11.4: The cost function is C(x) := ÂN
j=0Cj

�
p j
�

with C0(p0) strictly increasing in p0. There is no
constraint on s0.

C11.5: The set B j of injections satisfies v̂lin
j (s) vmax

j , j 2 N, where v̂lin
j (s) is given by (11.21).

C11.6: For each leaf node j 2 N let the unique path from j to 0 have k lines and be denoted by
P j := ((ik, ik�1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then Ait · · ·Ait0 zit0+1

> 0 for all 1  t  t 0 < k,
where A j are defined in (11.24).

Theorem 11.5. Suppose the network graph G is a tree and C11.4–C11.6 hold. Then OPF-socp (11.19) is
exact.

The proof of Theorem 11.5 is long and relegated to Appendix 11.3.2. It can be shown that Theorem
11.5 have the following simple and practical interpretation: OPF-socp is exact provided at least one of the
following is satisfied:

• There are no reverse power flows in the network.

• The r/x ratios on all lines are equal.

• If the r/x ratios increase in the downstream direction from the substation (node 0) to the leaves then
there are no reverse real power flows.

• If the r/x ratios decrease in the downstream direction then there are no reverse reactive power flows.

These properties are derived in [166, 167, 168] and are special cases of Theorem 11.5.

We now comment on the conditions C11.4–C11.6. C11.5 is affine in the injections s := (p,q). It
enforces the upper bounds on voltage magnitudes because of (11.22). C11.6 is a technical assumption and
has a simple interpretation: the branch power flow S jk on all branches should move in the same direction.
Specifically, given a marginal change in the complex power on line j! k, the 2⇥2 matrix A jk is (a lower
bound on) the Jacobian and describes the effect of this marginal change on the complex power on the line
immediately upstream from line j! k. The product of Ai in C11.6 propagates this effect upstream towards
the root. C11.6 requires that a small change, positive or negative, in the power flow on a line affects all
upstream branch powers in the same direction. This seems to hold with a significant margin in practice.
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Remark 11.3 (Strong exactness). Condition C11.4 requires that the cost functions Cj depend only on the
injections p j. For instance, if Cj

�
p j
�

= p j, then the cost is total active power loss over the network. It
also requires that C0 be strictly increasing but makes no assumption on Cj, j > 0, e.g., the total cost C(x)
can be C0(p0). Common cost functions such as line loss or generation cost usually satisfy C11.4. If C0 is
only nondecreasing, rather than strictly increasing, in p0 then C11.4–C11.6 still guarantee that all optimal
solutions of OPF (11.18) are (effectively) optimal for OPF-socp (11.19), but OPF-socp may not be exact in
our definition, i.e., it may also have an optimal solution that maintains a strict inequality in (11.4). In this
case the proof of Theorem 11.5 can still construct from it another optimal solution that attains equalities
in (11.4) and is hence optimal for OPF.

11.3.2 Appendix: Proof of Theorem 11.5

Given an optimal solution x := (s,v,`,S) that maintains a strict inequality in (11.4), v j` jk > |S jk|2, for some
line j! k 2 E, the proof of Theorem 11.3 in Section 11.2 constructs another feasible solution x̂ from x
that incurs a strictly smaller cost, contradicting the optimality of x. The modification is over a single line
over which x maintains a strict inequality. The proof of Theorem 11.5 is also by contradiction but, unlike
that of Theorem 11.3, the construction of x̂ from x involves modifications on multiple lines, propagating
from the line that is closest to bus 0 where strictly inequality holds all the way to bus 0. The proof relies
crucially on the recursive structure of the branch flow model (11.1).

Proof of Theorem 11.5. To simplify notation we only prove the theorem for the case of a linear network
representing a primary feeder without laterals. The proof for a general tree network follows the same idea
but with more cumbersome notations; see [53] for details. We adopt the graph orientation where every line
points towards the root node 0. The notation for the linear network is explained in Figure 11.3 (we refer
to a line j! k by j and index the associated variables z jk,S jk,` jk with j). With this notation the branch
flow model (11.1) is the following recursion:

S j�1 = S j� z j` j + s j�1, j = 1, . . . ,N (11.25a)

v j�1 = v j�2Re
⇣

zHj S j

⌘
+ |z j|2` j, j = 1, . . . ,N (11.25b)

v j` j = |S j|2, j = 1, . . . ,N (11.25c)
Sn = sn, S0 := 0 (11.25d)

where v0 is given. The SOCP relaxation of (11.25c) is:

v j` j � |S j|2, j = 1, . . . ,N (11.26)

OPF on the linear network in Figure 11.3 then becomes (s0 is unconstrained by assumption C11.4):
OPF:

min
x

C(x) :=
N

Â
j=0

Cj
�

p j
�

(11.27a)

s.t. (11.17)(11.25) (11.27b)
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Sn,n

v0 v1 vn
zn

snsms1s0

z1

vm−1 vm

S1,1

= ≥>

Sm,m

zm

Figure 11.3: Linear network and notations. Line m in the proof is the line closest to bus 0 where the
inequality in (11.26) is strict, i.e., (11.26) holds with equality at lines j = 1, . . . ,m�1, strict inequality at
line m, and inequality at lines j = m+1, . . . ,N.

and its SOCP relaxation becomes:
OPF-socp:

min
x

C(x) :=
N

Â
j=0

Cj
�

p j
�

s.t. (11.17), (11.25a)(11.25b)(11.25d), (11.26) (11.28a)

For the linear network assumption C11.6 reduces:

C11.6’: A j · · ·Ak zk+1 > 0 for 1 j  k < N where A j are defined in (11.24).

Our goal is to prove OPF-socp (11.28) is exact, i.e., every optimal solution of (11.28) attains equality
in (11.26) and hence is also optimal for OPF (11.27). Suppose on the contrary that there is an optimal
solution x := (S,`,v,s) of OPF-socp (11.28) that violates (11.25c). We will construct another feasible
point x̂ := (Ŝ, ˆ̀, v̂, ŝ) of OPF-socp (11.28) that has a strictly lower cost than x, contradicting the optimality
of x.

Let m := min{ j 2N | v j` j > |S j|2} be the closest line from bus 0 where (11.25c) is violated; see Figure
11.3. Pick any em 2 (0,`m� |Sm|2/vm] and construct x̂ as follows:

1. ŝ j := s j for j 6= 0.

2. For Ŝ, ˆ̀, ŝ0:

• For j = N, . . . ,m+1: Ŝ j := S j and ˆ̀j := ` j.

• For j = m: Ŝm := Sm and ˆ̀m := `m� em.
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• For j = m�1, . . . ,1:

Ŝ j := Ŝ j+1� z j+1 ˆ̀j+1 + ŝ j

ˆ̀j :=
|Ŝ j|2

v j

• ŝ0 :=�Ŝ1 + z1 ˆ̀1.

3. v̂0 := v0. For j = 1, . . . ,N,

v̂ j := v̂ j�1 +2Re
⇣

zHj Ŝ j

⌘
� |z j|2 ˆ̀j

Notice that the denomintor in ˆ̀j is defined to be v j, not v̂ j. This decouples the recursive construction of
(Ŝ j, ˆ̀j) and v̂ j so that the former propagates from bus N towards bus 1 while the latter propagates in the
opposite direction, as in backward forward sweep studied in Chapter 5.3.

By construction x̂ satisfies (11.25a), (11.25b), (11.25d), and (11.17b). We only have to prove that x̂ sat-
isfies (11.17a) and (11.26). Hence the proof of Theorem 11.5 is complete after Lemma 11.6 is established,
which asserts that x̂ is feasible and has a strictly lower cost under assumptions C11.4, C11.5, C11.6’.

Lemma 11.6. Under the conditions of Theorem 11.5 x̂ satisfies

1. C(x̂) < C(x).

2. v̂ j ˆ̀j �
��Ŝ j
��2, j 2 N.

3. v j
min  v̂ j  vmax

j , j 2 N.

To simplify notation redefine S0 := �s0 and Ŝ0 := �ŝ0. Then for j 2 N define DS j := Ŝ j � S j and
Dv j := v̂ j� v j. The key result that leads to Lemma 11.6 is:

DS j � 0 and Dv j � 0, j 2 N

The first inequality is stated more precisely in Lemma 11.7 and proved after the proof of Lemma 11.6.

Lemma 11.7. Suppose m > 1 and C11.6’ holds. Then DS j � 0 for j 2 N with Ŝ j > S j for j = 0, . . . ,m�1.
In particular ŝ0 < s0.

We now prove the second inequality together with Lemma 11.6 assuming Lemma 11.7 holds.

Proof of Lemma 11.6. 1) If m = 1 then, by construction, ŝ0 = s0� z1e1 < s0 since z1 > 0. If m > 1 then
ŝ0 < s0 by Lemma 11.7. Since ŝ = s and ŝ0 < s0 we have

C(x̂)�C(x) =
N

Â
j=0

�
Cj
�

p̂ j
�
�Cj

�
p j
��

= C0 (p̂0)�C0 (p0) < 0
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as desired, since C0 is strictly increasing.

2) To avoid circular argument we will first prove using Lemma 11.7

v̂ j � v j, j 2 N (11.29)

We will then use this and Lemma 11.7 to prove v̂ j ˆ̀j � |Ŝ j|2 for all j 2 N. We then use assumption
C11.5 to prove vmin

j  v̂ j  vmax
j , j 2 N. This shows that x̂ satisfies (11.26) and (11.17a) (in addition to

(11.25a)(11.25b)(11.25d) and (11.17b)).

To prove (11.29), note that both v̂ and v satisfy (11.25b) and hence we have, for j = 1, . . . ,N,

Dv j�1 = Dv j�2Re
⇣

zHj DS j

⌘
+ |z j|2D` j (11.30)

where D` j := ˆ̀j� ` j. From (11.25a) we have

z jD` j = DS j�DS j�1 +Ds j�1

where Ds0 := ŝ0� s0 < 0 and Ds j�1 = 0 for j > 1. Multiplying both sides by zHj and noticing that both
sides must be real, we conclude

|z j|2D` j = Re
⇣

zHj DS j� zHj DS j�1 + zHj Ds j�1

⌘

Substituting into (11.30) we have for j = 1, . . . ,N

Dv j�Dv j�1 = Re zHj DS j + Re zHj DS j�1 � Re zHj Ds j�1

But Lemma 11.7 implies that Re zHj DS j = r j DPj +x j DQ j � 0. Similarly every term on the right-hand side
is nonnegative and hence

Dv j � Dv j�1 for j = 1, . . . ,N

implying that Dv j � Dv0 = 0, proving (11.29).

We now use (11.29) to prove the second assertion of the lemma. By construction, for j = m+1, . . . ,N,

ˆ̀j = ` j �
|S j|2

v j
�

|Ŝ j|2

v̂ j

as desired, since Ŝ j = S j and v̂ j � v j. Similarly (11.26) holds for x̂ for j = m because of the choice of em.
For j = 1, . . . ,m�1, v̂ j � v j again implies

ˆ̀j =
|Ŝ j|2

v j
�

|Ŝ j|2

v̂ j

3) The relation (11.29) means

v̂ j � v j � vmin
j , j 2 N

Assumption C11.5 and (11.22) imply that

v̂ j  vlin
j (s)  vmax

j , j 2 N

This proves x̂ satisfies (11.17a) and completes the proof of Lemma 11.6.
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The remainder of this subsection is devoted to proving the key result Lemma 11.7.

Proof of Lemma 11.7. By construction DS j = 0 for j = m, . . . ,n. To prove DS j > 0 for j = 0, . . . ,m� 1,
the key idea is to derive a recursion on DS j in terms of the Jacobian matrix A j(S j,v j). The intuition is
that, when the branch current `m is reduced by em to ˆ̀m, loss on line m is reduced and all upstream branch
powers S j will be increased to Ŝ j as a consequence.

This is proved in three steps, of which we now give an informal overview. First we derive a recur-
sion (11.32) on DS j. This motivates a collection of linear dynamical systems w in (11.34) that contains
the process (DS j, j = 0, . . . ,m� 1) as a specific trajectory. Second we construct another collection of
linear dynamical systems w in (11.35) such that assumption C11.6’ implies w > 0. Finally we prove an
expression for the process w�w that shows w � w (in Lemmas 11.8, 11.9, 11.10). This then implies
DS = w� w > 0 as desired. We now make these steps precise.

Since both x and x̂ satisfy (11.25a) and ŝ j = s j for all j 2 N we have (with the redefined DS0 :=
�(ŝ0� s0))

DS j�1 = DS j� z jD` j, j = 1,2, . . . ,N (11.31)

where D` j := ˆ̀j� ` j. For j = 1, . . . ,m�1 both x and x̂ satisfy (11.25c). For these j, fix any v j � vmin
j and

consider ` j := ` j(S j) as functions of the real pair S j := (Pj,Q j):

` j(S j) :=
P2

j +Q2
j

v j
, j = 1, . . . ,m�1

whose Jacobian are the row vectors:

∂` j

∂S j
(S j) =

2
v j

[Pj Q j] =
2
v j

STj

The mean value theorem implies for j = 1, . . . ,m�1

D` j = ` j(Ŝ j)� ` j(S j) =
∂` j

∂S j
(S̃ j)DS j

where S̃ j := a jS j +(1�a j)Ŝ j for some a j 2 [0,1]. Substituting it into (11.31) we obtain the recursion,
for j = 1, . . . ,m�1,

DS j�1 = Ã j DS j (11.32a)
DSm�1 = em zm > 0 (11.32b)

where the 2⇥2 matrix Ã j is the matrix function A j(S j,v j) defined in (11.23) evaluated at (S̃ j,v j):

Ã j := A j(S̃ j,v j) := I2�
2
v j

z jS̃Tj (11.33)

which depends on (S j, Ŝ j) through S̃ j.
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Note that Ã j and DS j are not independent since both are defined in terms of (S j, Ŝ j), and therefore
strictly speaking (11.32) does not specify a linear system. Given an optimal solution x of the relaxation
OPF-socp (11.28) and our modified solution x̂, however, the sequence of matrices Ã j, j = 1, . . . ,m� 1,
are fixed. We can therefore consider the following collection of discrete-time linear time-varying systems
(one for each t), whose state at time t (going backward in time) is w(t;t), when it starts at time t � t in
the initial state zt+1: for each t with 0 < t < m,

w(t�1;t) = Ãt w(t;t), t = t,t�1, . . . ,1 (11.34a)
w(t;t) = zt+1 (11.34b)

Clearly DS j = em w( j;m�1). Hence, to prove DS j > 0, it suffices to prove w( j;m�1) > 0 for all j with
0 j  m�1.

To this end we compare the system w(t;t) with the following collection of linear time-variant systems:
for each t with 0 < t < m,

w(t�1;t) = At w(t;t), t = t,t�1, . . . ,1 (11.35a)
w(t;t) = zt+1 (11.35b)

where At is defined in (11.24) and reproduced here:

At := At

✓h
Slin

t (smax)
i+

, vt

◆
= I2�

2
vmin

t
zt

✓h
Slin

t (smax)
i+◆T

(11.36)

Note that At are independent of the OPF-socp solution x and our modified solution x̂. Then assumption
C11.6’ is equivalent to

w(t;t) > 0 for all 0 t  t < m (11.37)

We now prove, in Lemmas 11.8, 11.9, 11.10, that w(t;t) � w(t;t) and hence C11.6’ implies DS j =
em w( j;m�1)� em w( j;m�1) > 0, establishing Lemma 11.7.

Lemma 11.8. For each t = m�1, . . . ,1

Ãt�At = 2 zt dT

t

for some 2-dimensional vector dt � 0.

Proof of Lemma 11.8. Fix any t = m�1, . . . ,1. We have St  Slin
t (s) from (11.22). Even though we have

not yet proved Ŝt is feasible for OPF-socp we know Ŝt satisfies (11.25a) by construction of x̂. The same
argument as in Corollary 5.5 then shows Ŝt  Slin

t (s). Hence S̃t := atSt +(1�at)Ŝt , at 2 [0,1], satisfies
S̃t  Slin

t (s). Hence

S̃t  Slin
t (s)  Slin

t (smax) 
h
Slin

t (smax)
i+

(11.38)

Using the definitions of Ãt in (11.33) and At in (11.36) we have Ãt�At = 2ztdT
t where

dT

t :=

"⇥
Plin

t (smax)
⇤+

vmin
t

� P̃t

vt

⇥
Qlin

t (smax)
⇤+

vmin
t

� Q̃t

vt

#

Then (11.38) and vt � vmin
t impy that dt � 0.



492 Draft: PSA December 13, 2024

For each t with 0 < t < m define the scalars a(t;t) in terms of the solution w(t;t) of (11.35) and dt
in Lemma 11.8:

a(t;t) := 2dT

t w(t;t) > 0 (11.39)

Lemma 11.9. Fix any t with 0 < t < m. For each t = t,t�1, . . . ,0 we have

w(t;t)�w(t;t) =
t

Â
t 0=t+1

a(t 0;t)w(t; t 0 �1)

Proof of Lemma 11.9. Fix a t with 0 < t < m. We now prove the lemma by induction on t = t,t�1, . . . ,0.
The assertion holds for t = t since w(t;t)�w(t;t) = 0. Suppose it holds for t. Then for t� 1 we have
from (11.34) and (11.35)

w(t�1;t)�w(t�1;t) = Ãt w(t;t)�At w(t;t)

=
�
Ãt�At

�
w(t;t) + Ãt (w(t;t)�w(t;t))

= a(t;t)zt +
t

Â
t 0=t+1

a(t 0;t) Ãt w(t; t 0 �1)

= a(t;t)zt +
t

Â
t 0=t+1

a(t 0;t)w(t�1; t 0 �1)

=
t

Â
t 0=t

a(t 0;t)w(t�1; t 0 �1)

where the first term on the right-hand side of the third equality follows from Lemma 11.8 and the definition
of a(t;t) in (11.39), and the second term from the induction hypothesis. The last two equalities follow
from (11.34).

Lemma 11.10. Suppose C11.6’ holds. Then for each t with 0 < t < m and each t = t,t�1, . . . ,0,

w(t;t) � w(t;t) > 0 (11.40)

Proof of Lemma 11.10. We prove the lemma by induction on (t,t).

1. Base case: For each t with 0 < t < m, (11.40) holds for t = t , i.e., for t such that t� t = 0.

2. Induction hypothesis: For each t with 0 < t < m, suppose (11.40) holds for t  t such that 0 
t� t  k�1.

3. Induction: We will prove that, for each t with 0 < t < m, (11.40) holds for t  t such that 0 
t� t  k. For t = t� k we have from Lemma 11.9

w(t;t)�w(t;t) =
t

Â
t 0=t+1

a(t 0;t)w(t; t 0 �1)
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But each w(t; t 0 �1) in the summands satisfies w(t; t 0 �1)� w(t; t 0 �1) by the induction hypothesis.
Hence, since a(t 0;t) > 0,

w(t;t)�w(t;t) �
t

Â
t 0=t+1

a(t 0;t)w(t; t 0 �1) > 0

where the last inequality follows from (11.37) and (11.39).

This completes our induction proof.

Lemma 11.10 implies, for j = 0, . . . ,m� 1, DS j = em w( j;m� 1) > 0. This completes the proof of
Lemma 11.7.

This completes the proof of Theorem 11.5 for the linear network. For a general tree network the proof
is almost identical, except with more cumbersome notations, by focusing on a path from the root to a first
line m over which v j` j > |S j|2; see [53].

11.4 Bibliographical notes

SOCP relaxation of Chapter 11.1 for radial networks in the DistFlow model of [46, 47] is first proposed in
[165, 50]. Theorem 11.2 is proved in [52] and the proof presented here follows that in [58, Theorem 11].
Theorem 11.3 is from [50, Part I] which generalizes an earlier result in [165] to allow convex objective
functions, shunt elements, and line limits. Theorems 11.5 and 11.1 are from [53]. The semidefinite
relaxation of three-phase OPF in Chapter ?? follows the idea in [132, 164].

11.5 Problems

Chapter 11.2.

Exercise 11.1 (Exactness: general tree). Let x := (s,v,`,S) 2R
9N+3 be any optimal solution of OPF-socp

(11.14).

1. Show that v j` jk > |S jk|2 if and only if vk`k j > |Sk j|2.

2. Prove Theorem 11.4.

(Hint: Modify proof of Theorem 11.3.)
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Chapter 11.3.

Exercise 11.2 (Geometric insight). For the 2-bus network in Example 11.1 of Chapter 11.3, derive the
model (11.20) from the DistFlow equation (11.1) in the up orientation.

Exercise 11.3 (Feasible set and relaxation). This problem illustrates SOCP relaxation of OPF and its
exactness. Consider the 2-bus network in Example 11.1 of Chapter 11.3. Suppose q1 = 0 and v0 = r = x =
1 pu, and suppose the injection p1 is controllable. Let w := (p0,q0, p1,v1,`). Consider the OPF problem:

min
w

C(w) s.t. p0� ` = �p1, q0� ` = 0, v1�1 = 2p1�2`, p2
0 +q2

0 = `

0.9 pu  v1  1.1 pu, pmin
1  p1  pmax

1

where the cost function C(w) is strictly increasing in `. Its SOCP relaxation replaces the quadratic equality
constraint with the convex constraint p2

0 +q2
0  `.

1. Determine the largest range R1 := [pmin
1 , pmax

1 ] over which the SOCP relaxation is exact.

2. Determine the largest range R2 := [pmin
1 , pmax

1 ] over which the SOCP relaxation is inexact. Note that
in this regime, bus 1 is generating power and causing a large amount of reverse power flow.

3. What happens if the range [pmin
1 , pmax

1 ] for injection p1 overlaps with neither R1 nor R2?

Draw a diagram to illustrate your answers. (Hint: The power flow solution as a function of p1 is computed
in Example 5.3 of Chapter 5.1.5.)



Chapter 12

Nonsmooth convex optimization

The power flow optimization problems we have studied so far are deterministic problems where prob-
lem parameters are fixed and known. In Chapter 13 we study stochastic optimization where problem
parameters may be uncertain or random. These problems are generally intractable, but some have convex
reformulation. Many of these reformulated problems however may not be differentiable. In particular
the two-stage optimization with recourse studied in Chapter 13.4 takes the following form: infx f 1(x)+
Q(x) s.t. h1(x) 0 where Q(x) := Ew

�
infy(w)

�
f 2(x,y(w)) : h2(x,y(w)) 0

 �
and Ew denotes expecta-

tion with respect to w . The function Q(x) is generally nondifferentiable even if ( f 1,h1) and ( f 2,h2) are
continuously differentiable; moreover Q(x) may take be ±• even if ( f 1,h1) and ( f 2,h2) are real-valued.
When these functions are convex, however, so is Q(x). In this chapter we generalize the structural results
of Chapter 7.3 to a convex but nonsmooth setting. It turns out that convexity is fundamental, but not
smoothness, and, once the basic framework is established, the more abstract approach here that relies only
on convexity is both more natural and simpler conceptually.

Consider the convex optimization problem

min
x2Rn

f (x) s.t. x 2 X

where f is a convex function and X ✓ R
n is a convex set. We will develop a basic theory to answer the

following questions:

Q1 How to characterize optimal solutions?

Q2 When will optimal solutions exist and when will it be unique?

We study these two questions in Chapter 7.3 where the KKT theorem (Theorem 7.13) requires the cost
and constraint functions to be continuously differentiable and the existence of primal optimal solutions
(Theorem 7.14) requires the cost function f to be continuous. In many applications, however, these func-
tions are convex but not differentiable everywhere and may take infinite values. We will show in this
chapter that the optimality results summarized in Table 7.1 hold in a nonsmooth setting. We will develop
set theoretic tools that handles nonsmooth but convex functions. After the basic machinery is set up this
view will be seen to be more fundamental and simpler. It reveals that smoothness is unimportant for the
theory of convex optimization (though smoothness can be important for computation).

495
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In Chapter 12.1 we introduce several set theoretic concepts that can be viewed as linear approximations
of feasible sets and the descent direction of level sets. They will play a similar role to gradients of cost
and constraint functions in the KKT condition. In Chapter 12.2 we define an important class of extended
real-valued convex functions that allows us to treat the constrained minimization of a real-valued function
in a unified manner as an unconstrained minimization of an extended real-valued function. In Chapter
12.3 we show that even though a convex function may not be differentiable, it is always continuous and
subdifferentiable on the relative interior of its domain. In the remainder of this chapter we use these convex
analysis tools to generalize the optimality conditions of Chapter 7.3 to a nonsmooth setting by replacing
gradients with subdifferentials. Specifically we answer Q1 in Chapters 12.4 (the saddlepoint theorem)
and 12.5 (the KKT theorem), and Q2 in Chapters 12.6 (primal optimality) and 12.7 (strong duality and
dual optimality). Finally in Chapter 12.8 we apply the general theory developed in Chapters 12.4–12.7 to
special classes convex optimization problems widely used in applications.

The topic of nonsmooth convex optimization is extensive. We only summarize key concepts and
techniques, mostly from [74, 173], and use them to answer these questions. We include some (but not all)
of the proofs to illustrate common techniques useful for nonsmooth convex optimization. The results of
this chapter are used heavily, e.g., in Chapter 13.4 on optimality conditions of two-stage optimization with
recourse.

12.1 Normal cones of feasible sets

For smooth convex optimization where the cost and constraint functions are continuously differentiable,
optimality conditions and algorithms are often based on the linear approximations of the cost and contraint
functions, e.g., the KKT condition (7.35) or the Newton-Raphson algorithm (7.78)(7.79). Indeed the first-
order optimality condition roughly says that a feasible point x⇤ 2Rn is a minimizer if the negative gradient
�— f (x⇤) points away from a linear approximation of the feasible set at x⇤ defined by the gradients of
the constraint functions at x⇤. This characterization extends directly to nonsmooth convex optimization
even though the cost or constraint functions may no longer be differentiable. In this setting a linear
approximation of the feasible set is called a tangent cone and a feasible point x⇤ is a minimizer if there
is a negative cost subgradients that point away from the tangent cone of the feasible set at x⇤, i.e., the
subgradient is contained in the normal cone NX(x⇤) of the feasible set at x⇤ (see an optimality condition
for general nonsmooth convex optimization in Theorem 12.20 of Chapter 12.5). In this section we define
these notions. In Chapter 12.5 we study KKT conditions using normal cones NX(x⇤).

Recall the notions of relative interior, convex sets, closed convex cones, and second-order cones studied
in Chapters 7.1.1, 7.1.2 and 7.2.1.

12.1.1 Feasible direction cone and polar cone

Let x̄ 2 X ✓ R
n. The cone of feasible directions of X at x̄ (or the radial cone) is, from Definition 7.4,

cone(X� x̄) := {Âm
i=1 ai(xi� x̄) : xi 2 X ,ai � 0, integers m > 0}
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1 It is the set of feasible directions x� x̄ and their convex combinations along which an infinitesimal step
from x̄ will stay in X . It is closed if and only if X is closed. The closure of cone(X� x̄) can be interpreted
as a “linear approximation” for the set X at the point x̄ 2 X in that it is the smallest convex cone that
contains all the feasible directions x� x̄ at x̄. For a smooth function f , the first-order Taylor expansion
f̂ (y) := f (x̄)+Jx(x̄)(y� x̄) approximates f locally at x̄ by a supporting hyperplane. For a “smooth” set X ,
the closed convex cone cl(cone(X� x̄)) approximates the set X locally at x̄ by a halfspace associated with
the supporting hyperplane at x̄. This is illustrated in Figure 12.4 after we have defined tangent cone and
normal cone in Chapter 12.1.2.

To define a normal cone we need the notion of a polar cone.

Definition 12.1 (Polar cone and dual cone). Let X ✓ R
n be a nonempty set.

1. The polar cone of X is X� := {y 2 R
n : yTx 0 8x 2 X}.

2. The dual cone of X is X⇤ := �X� := {y 2 R
n : yTx � 0 8x 2 X}, the negative of the polar cone of

X .

3. A cone K is called self-dual if K⇤ = K.

It can be verified that X� and X⇤ are indeed cones for arbitrary X . Informally, the polar cone of X is
the set of points that is “most opposite to the entire set X” or “most away from the entire set X”. The dual
cone of X is the set that is “most aligned with the entire set X” or “closest to the entire set X”. It is used to
define the dual problem of a conic program where the nonlinear constraint is specified abstractly by x 2 K
for a general closed convex cone K; see Chapter 12.8.4. These cones are illustrated in Figure 12.1. Some
properties of polar cones are given in the following result; see e.g. [74, Proposition 2.2.1, p.100].

Proposition 12.1. Let X ✓ R
n be a nonempty set.

1. Its polar cone X� is closed and convex.

2. X� = [cl(X)]� = [conv(X)]� = [cone(X)]�.

3. If X ✓ Y then Y � ✓ X�.

4. If X is a nonempty cone then (X�)� = cl(conv(X)). If X is a closed convex cone then (X�)� = X .

Figure 12.1 shows the polar cones of sets X that contain the origin. For a set X whose closure cl(X)
does not contain the origin, its polar cone X� is the same as the polar cone cone�(X) of cone(X) according
to Proposition 12.1, as illustrated in Figure 12.2.

Example 12.1. Fix an x̄ 2 X�. By definition x̄Tx  0 for all x 2 X . Can there be an x 2 X� such that
x̄Tx 0?

Solution. Yes. Consider X := {x 2 R
s : x1 > 0,x2 = 0}. Then X� = {x 2 R

2 : x1  0}. An example is
x̄ := (0,�1) 2 X� and x := (0,1) 2 X�.

1
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(a) Polar cones X� of X












































































































(b) Dual cones X⇤ =�X� of X

Figure 12.1: Polar cones and dual cones of X ✓ R
n. For the leftmost set X which is nonconvex, both

its polar cone and dual cone contain only the origin. The other three sets X are closed convex cones and
therefore (X�)� = X .












































































































Figure 12.2: Polar cone X� = cone�(X) according to Proposition 12.1.
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12.1.2 Normal cone and tangent cone

The notion of normal cone and tangent cone is fundamental to nonsmooth optimization.

Definition 12.2. Let X ✓ R
n be a nonempty set and x̄ 2 X .

1. The normal cone of X at x̄ is the polar cone of the feasible direction cone of X at x̄:

NX(x̄) := [cone(X� x̄)]� = {y 2 R
n : yT(x� x̄) 0 8x 2 X}

2. The tangent cone of X at x̄ is:

TX(x̄) := cl(cone(X� x̄))

Hence we define the normal cone as the polar cone of the feasible direction cone cone(X � x̄) and the
tangent cone as its closure. Proposition 12.1 then implies that they are the polar cone of each other. The
second equality in Definition 12.2 of normal cone defines (X � x̄)� which, according to Proposition 12.1,
is equal to the polar cone [cone(X� x̄)]� of the feasible direction cone of X at x̄. An equivalent definition
for tangent cone of X at x̄ is

TX(x̄) := {0}[
⇢

y 6= 0 : 9xk 2 X s.t. xk 6= x̄,xk! x̄,
xk� x̄
kxk� x̄k !

y
kyk

�

This definition is often used from which TX(x̄) = cl(cone(X� x̄)) can be derived.

Proposition 12.2. Let X ✓ R
n be a nonempty set and x̄ 2 X .

1. The polar cone, dual cone, normal cone, and tangent cone are closed and convex, even if X is neither
closed nor convex.

2. [TX(x̄)]� = NX(x̄) and TX(x̄) = [NX(x̄)]�, i.e., y 2 TX(x̄) if and only if yT(x� x̄)� 0, 8x 2 X .

3. If x̄ 2 int(X) then NX(x̄) = {0} and TX(x̄) = R
n.

While a polar cone X� and a dual cone X⇤ = �X� are sets with respect to the entire set X , a normal
cone NX(x̄) and a tangent cone TX(x̄) are set-valued functions whose values generally depend on their
argument x̄ 2 X . Note that if x̄ 2 ri(K) instead of x̄ 2 int(X) then NK(x̄) not be {0}. For example, K :=
{(x1,0) 2 R

2 : x1 � 0} and x̄ := (1,0) 2 ri(K) at which NK(x̄) = {(0,x2) : x2 2 R}. See Figure 12.3 and
its caption for a visualization of normal cones and tangent cones at different points x̄ when K is a closed
cone.

Remark 12.1 (Linear approximation and optimality). Proposition 12.2 implies that, as mentioned in Chap-
ter 12.1.1, a tangent cone TX(x̄) = cl(cone(X � x̄)) locally approximates the set X at the point x̄ 2 X by
the smallest closed convex cone containing all the feasible directions x� x̄ along which an infinitesimal
step from x̄ will stay in X . If X is “smooth” at x̄ then TX(x̄) is a halfspace associated with the supporting
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(a) Pointed cone: NK(x)












































































































(b) Pointed cone TK(x)












































































































(c) Non-pointed nonconvex cone












































































































(d) Non-pointed convex cone

Figure 12.3: Normal and tangent cones of closed cones K ✓ R
2. K� ✓ R

2 is the polar cone of K. (a) The
normal cones NK(x̄) and NK(x̃) at two boundary points x̄ and x̃ are different. At the origin, NK(0) = K�. At
an interior point x̄, NK(x̄) = {0}. (b) The tangent cone TK(x̄) at a boundary point x̄ is a halfspace containing
K. At the origin, TK(0) = K. This satisfies TK(0) = [NK(0)]� = [K�]� = K, verifying Proposition 12.2 and
Proposition 12.1 since the feasible direction cone cone(K� 0) = K is a closed convex cone. This is not
the case at the boundary point x̄ since cone(K� x̄) is a cone but cone(K� x̄) 6= K. At a interior point x̄,
TK(x̄) = R

2. (c) For this non-pointed nonconvex cone, at all x̄ 2 K, NK(x̄) = {0} and TK(x̄) = R
2. (d)

For this non-pointed convex cone K (which is a hyperplane in R
2), at all x̄ 2 K, NK(x̄) = K� is the normal

{y 2 R
n : yTx = 0 8x 2 K} to the hyperplane K and TK(x̄) = K.
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hyperplane at x̄. See Figure 12.4. Its polar cone, the normal cone NX(x̄), specifies the directions x� x̄
along which an infinitesimal step from x̄ will move “most away from” or “most opposite to” X . As we
will see in Theorem 12.20 of Chapter 12.5, x̄ will be a minimizer of a constrained optimization if there is a
negative cost subgradient at x̄ in the normal cone of the feasible set at x̄, i.e., the negative cost subgradient
points most away from a linear approximation (the tangent cone) of the feasible set at x̄. This implies that
all directions in which cost can decrease must lie in NX(x̄) due to the convexity of the cost function and
that of the feasible set.












































































































Figure 12.4: The tangent cones TX(x̄) = cl(cone(X� x̄)) and the normal cones NX(x̄) = cone�(X � x̄) of
X at x̄. At x̄ where the boundary of X is “smooth”, the left panel illustrates the importance of ”cl” in the
definition of TX(d̄) and why NX(x̄) is a singleton.

Hyperplane, polyhedron and convex cones. Recall from Chapter 7.1.2 that a hyperplane (or intersec-
tion of hyperplanes) is a set H1 := {x 2 R

n : Ax = b} specified by a finite number of affine equalities with
A 2 R

m⇥n and b 2 R
m. A polyhedral set, or a polyhedron, is a set H2 := {x 2 R

n : Ax  b} specified by
a finite number of affine inequalities. The normal cones of hyperplanes, polyhedrons, or general convex
cones are particularly useful, so we derive them here. A hyperplane H1 is not a cone unless b = 0. Its
normal cone NH1(x̄) is independent of x̄, unlike the normal cone of a polyhedron H2 or a general convex
cone. To avoid triviality we often assume implicitly these sets are nonempty.

Theorem 12.3 (Normal cones). Given A 2 R
m⇥n, let H1 := {x 2 R

n : Ax = b} be a hyperplane and H2 :=
{x 2 R

n : Ax b} be a polyhedron. Let K+ := {x 2 R
n : x� 0} be the nonnegative quadrant, and K ✓ R

n

a convex cone. Let C := {x 2 R
n : h(x)  0} be the convex set defined by a real-valued continuously

differentiable function h : Rn! R
m that is convex on R

n. Then

1. NH1(x̄) = {ATl 2 R
n : l 2 R

m} for any x̄ 2 H1. Hence y 2 NH1(x̄) if and only if y is in span(ai, i =
1, . . . ,m) where aTi are row vectors of A.

2. NH2(x̄) = {ATl 2 R
n : l 2 R

m
+ s.t. lT(Ax̄�b) = 0} for any x̄ 2 H2. In particular NK+(x̄) = {0} if

Ax̄ < b.

3. NK+(x̄) = {y 2 R
n : y 0, yTx̄ = 0} for any x̄ 2 K+. In particular NK+(x̄) = {0} if x̄ > 0.

4. NK(x̄) = {y 2 K� : yTx̄ = 0} for any x̄ 2 K, where K� := {y 2 R
n : yTx  0 8x 2 K} is the polar

cone of K. Hence NK(0) = K�.
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5. NC(x̄) = {—h(x̄)l 2 R
n : l 2 R

m
+, lTh(x̄) = 0} for any x̄ such that h(x̄) 0.

Proof. 1. By definition

NH1(x̄) = {y 2 R
n : yT(x� x̄) 0 8x s.t. Ax = b}

Since x, x̄ 2 H1, A(x� x̄) = 0. Hence we can replace x� x̄ for all x 2 H1 by all x in null(A) to get

NH1(x̄) = {y 2 R
n : yTx 0 8x s.t. Ax = 0}

Since if x 2 null(A) then �x 2 null(A), we must have yTx = 0 for all x 2 null(A).2 Hence y 2
range(AT), i.e., NH1(x̄) = {ATl 2 R

n : l 2 R
m}.

2. By definition

NH2(x̄) = {y 2 R
n : yT(x� x̄) 0 8x s.t. Ax b}

Suppose y = ATl for some l � 0 with lT(Ax̄�b) = 0. Then, for any x with Ax b,

yT(x� x̄) = lTA(x� x̄) = lT(Ax�b)  0

where the last inequality follows because l � 0 and Ax b. Therefore y 2 NH2(x̄).

Conversely suppose y 2 NH2(x̄), i.e., yT(x� x̄) 0 for all x with Ax b. Let I := I(x̄) := {i : aTi x̄ =
bi} where aTi 2 R

n are the rows of A and aTi x̄ < bi for i 62 I. If I = /0, i.e., x̄ 2 int H2, then the usual
argument shows that NH2(x̄) = {0} as claimed. Specifically there exists t with |t| > 0 such that
x := x̄ + tei 2 H2 and hence yT(x� x̄) = tyi  0 implies yi = 0 since t can be positive or negative.
We now prove the case of I 6= /0 in three steps. First there exists sufficiently small t with |t| > 0 such
that x := x̄+ tDx satisfies

aTi (x� x̄) = t aTi Dx
⇢

= 0 if i 2 I
< 0 if i 62 I

Hence Ax = Ax̄+tADx b, i.e., x2H2. Second let AI and bI be the submatrix of A and b respectively
consisting of only the rows in I such that AIx = AIx̄ = bI . We can therefore apply the argument of
part 1 with A replaced by AI , i.e., if y 2 NH2(x̄) then yT(x� x̄) = tyTDx 0 for all Dx with AIDx = 0,
implying that y = AT

I lI for some lI 2 R
|I|, or equivalently y = ATl for some l with li 2 R if i 2 I

and li = 0 if i 62 I. In particular this implies that li(aTi x̄�bi) = 0 for i 2 I as well as i 62 I. Finally,
to show that l � 0, consider any x with Ax b. Then substituting y = ATl ,

yT(x� x̄) = lTA(x� x̄) =
⇥
lT

I 0
⇤ AI

A�I

�
(x� x̄) = lT

I AI(x� x̄) = lT

I (AIx�bI)

Hence since yT(x� x̄) 0 and AIx�bI  0, we must have lI � 0.

2More explicitly, for any x 2 H1 so that A(x� x̄) = 0, the vector x0 := 2x̄� x is also in H1 since Ax0 = b; moreover
A(x0 � x̄) = A(x̄� x).
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3. For K+ := {x 2 R
n : x� 0} we have

NK+(x̄) = {y 2 R
n : yT(x� x̄) 0 8x� 0}

If x̄ > 0 (i.e., x̄ is an interior point), then x := x̄ + te j for t 2 R with small enough |t| (where e j is
the unit vector with 1 in the jth entry and 0 elsewhere) ensures yT(x� x̄) = ty j  0. As t can be
negative or positive, we must have y j = 0. Hence NK+(x̄) = {0} if x̄ > 0. If x̄ is a boundary point of
K+ with x̄ j = 0 for j 2 J ✓ {1, . . . ,n} and x̄ j > 0 for j 62 J, then the same reason implies y 2 NK+(x̄)
will have y j = 0 for j 62 J. For j 2 J, using x := te j for any t > 0 gives yT(x� x̄) = ty j  0, i.e.,
y j  0. Putting all this together we have NK+(x̄) := {y 2 R

n : y 0, yTx̄ = 0}.

4. For a general convex cone K ✓ R
n (which includes K+ as a special case if K is closed), we have

NK(x̄) := {y 2 R
n : yT(x� x̄) 0 8x 2 K}

Since K is a cone and x̄2K, x := g x̄2K for any g > 0. Hence any y2NK(x̄) must satisfy yT(x� x̄) =
(g�1)yTx̄ 0. Since g can be chosen to be greater or smaller than 1 we must have yTx̄ = 0. Then
y satisfies yTx  0 8x 2 K, i.e., y is in the polar cone K� of K. This shows that NK(x̄) ✓ {y 2 K� :
yTx̄ = 0}. For the converse let y 2 K� with yTx̄ = 0. Then clearly yT(x� x̄)  0 for all x 2 K, i.e.,
y 2 NK(x̄).

5. The proof is similar to that for H2 with —h(x̄) playing the role of A and using the convexity of h. Let
h(x̄) 0. By definition

NC(x̄) = {y 2 R
n : yT(x� x̄) 0 8x s.t. h(x) 0}

Let Z := {—h(x̄)l 2 R
n : l � 0,lTh(x̄) = 0}. We will show that NC(x̄) = Z.

Suppose z 2 Z with z =: —h(x̄)l . Since h is convex on R
n we have

h(x)�
⇣

h(x̄)+—Th(x̄)(x� x̄)
⌘
� 0, 8x s.t. h(x) 0

Multiplying both sides by l , we get, since l � 0 and lTh(x̄) = 0,

(—h(x̄)l )T (x� x̄)  lTh(x)  0 8x s.t. h(x) 0

where the last inequality follows since h(x) 0 and l � 0. Hence z 2 NC(x̄).

Conversely suppose y2NC(x̄). Let I := I(x̄) := {i : hi(x̄) = 0} and hi(x̄) < 0 for i 62 I. As for NH2(x̄),
if I = /0, then x̄ 2 int(H2) and NC(x̄) = {0} as claimed. If I 6= /0 then there exists sufficiently small
t with |t| > 0 and Dx 6= 0 such that x := x̄ + tDx satisfies hi(x) = 0 for i 2 I and hi(x) < 0 for i 62 I.
Then x 2C. Moreover hi(x) = 0 exactly when hi(x̄) = 0, and hence if l � 0 and lTh(x̄) = 0 then
lTh(x) = 0 as well.

Now y 2 NC(x̄) means yT(x� x̄) = tyTDx  0 for all x 2 R
n with h(x) 0. Since t can be negative

or positive, we must have

yTDx = 0 (12.1)
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Using the convexity of h we have h(x)� h(x̄) � ∂h
∂x (x̄)(x� x̄) = t ∂h

∂x (x̄)Dx for all x 2 R
n, where

∂h
∂x = —Th. Retaining only rows i 2 I on both sides we have hI(x)�hI(x̄) � t ∂hI

∂x (x̄)Dx. Since t can
be positive and negative we must have, noting that hI(x) = hI(x̄) = 0,

∂hI

∂x
(x̄)Dx = 0 (12.2)

This holds for all Dx and all sufficiently small t with |t| > 0 such that hI(x) = hI(x̄ + tDx) = 0, or
equivalently such that ∂hl

∂x (x̄)Dx = 0. Hence (12.1) and (12.2) say that y is orthogonal to the null
space of ∂hl

∂x (x̄). Therefore y = —hI(x̄)lI for some lI 2 R
|I|, or y = —h(x̄)l for some l 2 R

m such
that li = 0 for i 62 I. Finally we claim that l � 0 because for any x0 with h(x0)  0 we must have,
since y = —h(x̄)l = —hI(x̄)lI 2 NC(x̄),

yT(x0 � x̄) = lT

I
∂hI

∂x
(x̄)(x0 � x̄)  0 (12.3)

For each i 2 I, 0 = hi(x0)� hi(x̄) � ∂hi
∂x (x̄)(x0 � x̄) where the inequality follows from the convexity

of hi on R
n. This, together with (12.3), implies that lI � 0.

For a general cone K, if x̄ 2 int(K), then NK(x̄) = {0} for the same reason as in the proof above for
NK+(x̄). Part 3 is a special case of part 2 with A = I and b = 0. It is also special case of part 4 with K = K+

and K�+ = {y 2 R
n : y  0}. Exercise 12.22 generalizes NC(x̄) to the case where h is convex but may not

be differentiable.

Example 12.2 (NH1(x̄) and NH2(x̄)). Let

A :=


1 1 0
0 0 1

�
, b :=


1
2

�

Then Ax = b defines the hyperplane H1 := {x 2 R
3 : x1 + x2 = 1, x3 = 2}. Its normal cone is the span of

the columns of AT independent of x̄ 2 H1:

NH1(x̄) = {y 2 R
3 : y = ATl for some l 2 R

2} =

8
<

:

2

4
l1
l1
l2

3

5 : li 2 R

9
=

;

and is illustrated in Figure 12.5.

Consider the polyhedron H2 := {x 2 R
3 : x1 + x2  1, x3  2} and x̄ := (0.5,0.5,0) 2 H2. Then

I := I(x̄) = {1}. According to Theorem 12.3 its normal cone is in the cone of the columns of AT with
complementary slackness:

NH2(x̄) = {y 2 R
3 : y = ATl for some l1 � 0,l2 = 0} =

8
<

:

2

4
l1
l1
0

3

5 : l1 � 0

9
=

;
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Figure 12.5: Example 12.2: normal cone NH1(x̄) of the hyperplane H1. (Fig change: (i) H! H1. (ii) Add
subfigure for H2?)

Theorem 12.3 provides the normal cones of common convex sets. The next result, proved using Theo-
rem 12.17 below (Exercise 12.14), says that the normal cone of the intersection of convex sets is the sum
of their individual normal cones. It is useful in deriving the normal cone of multiple convex constraints in
an optimization problem from the normal cones of individual constraints.

Theorem 12.4 (Normal cone of set intersection). Consider polyhedral sets Ci ✓ R
n, i = 1, . . . ,m, and

convex sets Ci ✓ R
n, i = m+1, . . . ,m, and let C := \m

i=1Ci. If
�
\m

i=1Ci
� \ �

\m
i=m+1 ri(Ci))

�
6= /0

then

NC(x̄) = Â
i

NCi(x̄), 8x 2
m\

i=1
Ci

We will Theorems 12.3 and 12.4 to derive KKT conditions in Chapter 12.8 for convex optimization
problems widely used in applications. The intuition is that x⇤ is a minimizer if the negative cost gradient
�— f (x⇤) is in the normal cone NX(x⇤) of the feasible set X at x⇤, i.e., pointing away from the feasible
set (or equivalently — f (x⇤) is in �NX(x⇤)). Theorem 12.3 suggests that the key to the normal cone of a
convex cone K is its poplar cone K� (or its dual cone K⇤ = �K�). The condition yTx̄ = 0 in the theorem
gives rise to complementary slackness in KKT conditions, as we will see in Chapter 12.8. Table 12.1
summarizes the tangent cones and the normal cones of some commonly encountered sets.

Set X ✓ R
n Tangent cone TX(x̄) Normal cone NX(x̄)

cone K cl{Âi ai(x� x̄) : x 2 K, ai � 0} {y 2 K� : yTx̄ = 0}
{x : x� 0} {y : xi = 0) yi � 0} {y 0 : yTx̄ = 0}
{x : Ax = b} null(A) := {y : Ay = 0} range(AT) := {ATl : l 2 R

m}
{x : f (x) = 0} null(Jf (x̄)) := {y : Jf (x̄)y = 0} range(— f (x̄)) := {— f (x̄)l : l 2 R

m}

Table 12.1: The tangent cones TX(x̄) := cl(cone(X� x̄)) and the normal cones [cone(X� x̄)]� of common
sets. (— f (x̄) = (Jf (x̄))T.)
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Geometric interpretation of separating hyperplanes. We can interpret Theorems 7.8 and 7.9 on sep-
arating hyperplanes in terms of convex cones such as polar cones, dual cones and normal cones. Roughly
these theorems assert, for convex sets, that a certain polar cone is nonempty or the intersection of a certain
polar cone and a certain dual cone is nonempty. The proofs of the theorems explicitly construct a normal
vector a in these cones that defines the separating hyperplane, even though any point a in these cones can
be used to construct the separating hyperplane (see Theorem 12.5 below).

Indeed the proofs of Theorems 7.8 and 7.9 construct a particular a that is in the normal cone Ncl(X)(x̂⇤)
of cl(X) at the projection x̂⇤ of x⇤ onto the convex set cl(X). To show this for Theorem 7.8, for part 2.
the construction in (7.19a) for a implies that aT(x� x̂⇤)  0 for all x 2 cl(X). For part 1, aT(x� x̂⇤) =
limk aTik(x� x̂ik)  0 for all x 2 cl(X). Since x̂⇤ 2 cl(X) in both cases this means that a 2 Ncl(X)(x̂⇤) with
the separating hyperplane H := {x 2 R

n : aTx = aTx⇤}, as shown in Figure 7.12. For Theorem 7.9, the
construction of a in (7.21a) is in the normal cone Ncl(Y )(d) =�Ncl(X)(c).

More generally, when x⇤ 62 cl(X), other vectors a that may not be in the normal cone Ncl(X)(x̂⇤) can
also define hyperplanes that separate x⇤ from cl(X). Indeed the condition aT(x� x⇤)  0 for all x 2
cl(X) in (7.18a) of Theorem 7.8 only states that there exists a point a in the polar cone cone�(cl(X)�
x⇤) that defines a separating hyperplane. When x⇤ 2 cl(X) \ int(X), x⇤ = x̂⇤ and cone�(cl(X)� x⇤) =
Ncl(X)(x̂⇤) by Definition 12.2. This is illustrated in Figure 12.6(a). Otherwise when x⇤ 62 cl(X), x⇤ 6= x̂⇤

and cone�(cl(X)�x⇤)◆ Ncl(X)(x̂⇤) but they may not be equal. In Figure 12.6(b), for example, the vertical











































































































Figure 12.6: Geometric interpretation of Theorem 7.8. (a) When x⇤ 2 cl(X) \ int(X), x̂⇤ = x⇤ and
cone�(cl(X)� x⇤) = Ncl(X)(x̂⇤). (b) When x⇤ 62 cl(X), cone�(cl(X)� x⇤) ◆ Ncl(X)(x̂⇤) but these sets may
not be equal. (Fig change: Change into 2 subfigures and switch their order. ALL X should be cl(X) in
figure.)

line is a separating hyperplane but its normal vector a is clearly not in Ncl(X)(x̂⇤).

Theorem 7.9 says that, when X and Y are disjoint convex sets, then there exists a point z 2 R
n to

serve as the origin such that the intersection of the polar cone of cone(cl(X)� z) and the dual cone of
cone(cl(Y )� z) is nonempty. By Definition 12.1 on polar and dual cones, a point a in this intersection
satisfies

aT(x� z)  0  aT(y� z), x 2 cl(X), y 2 cl(Y )

i.e., aTx  aTz  aTy for all x 2 cl(X), y 2 cl(Y ); see the proof of Theorem 7.8. The corresponding
separating hyperplane is H := {x2Rn : aTx = b} where b := aTz. See Figure 12.7. When cl(X)\cl(Y ) = /0
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Figure 12.7: Geometric interpretation of Theorem 7.9: If X and Y are disjoint and convex then there exists
a possibly new origin z such that the intersection A := cone�(cl(X)� z)\ cone⇤(cl(Y )� z) is nonempty.
(ALL X , Y should be cl(X) and cl(Y ) respectively in figure. Change c to z.)

Theorem 7.9 further guarantees a point a in the intersection such that the inequalities are strict. We
summarize our discussion as the following result. This geometric view implies directly the Farkas Lemma
Theorem 7.10.

Theorem 12.5 (Geometric interpretation: separating hyperplane). Suppose X ,Y ✓ R
n are both nonempty

convex.

1. Suppose x⇤ 2 R
n \ int(X).

• The polar cone cone�(cl(X)�x⇤) of cone(cl(X)�x⇤) is nonempty. A hyperplane that separates
cl(X) and x⇤ is H := {x 2 R

n : aTx = b} where a is any point in cone�(cl(X)� x⇤) and b :=
aTx⇤.

• When x⇤ 62 cl(X) then b and a in cone�(cl(X)� x⇤) can be chosen such that

aTx < b < aTx⇤, x 2 cl(X)

Equivalently b and a in the dual cone cone⇤(cl(X)�x⇤) can be chosen such that aTx > b > aTx⇤

for all x 2 cl(X).

2. Suppose X and Y are disjoint, i.e., X \Y = /0.

• There exists a point z 2 R
n to serve as the origin such that

cone�(cl(X)� z) \ cone⇤(cl(Y )� z) 6= /0 (12.4)

i.e., the intersection of the polar cone cone�(cl(X)� z) and the dual cone cone⇤(cl(Y )� z) is
nonempty. The hyperplane that separates X and Y is H := {x 2 R

n : aTx = b} where a is any
point in the intersection in (12.4) and b := aTz.

• When cl(X)\ cl(Y ) = /0, then z and a in the intersection in (12.4) can be chosen such that

aTx < aTz < aTy, x 2 cl(X), y 2 cl(Y )
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12.1.3 Affine transformation of convex cone

In this subsection we derive the polar cones and normal cones of linear and affine transformations of a
general convex cone. They will be applied in Chapter 12.1.4 to derive the normal cones of second-order
cones.

Linear transformation. Consider the linear mapping A : X !Y where A 2Rm⇥n, X ✓R
n and Y ✓R

m.
We will study the relation between the polar cones X� and Y � and that between the normal cones NX(x̄) and
NY (Ax̄). The main conclusion is that if A is square and nonsingular then X�= ATY � and NX(x̄) = ATNY (ȳ).

Specifically given a convex cone X ✓ R
n, its image under A is the set

Y := AX := {Ax 2 R
m : x 2 X}

Clearly Y is a convex cone. By definition of Y , the mapping A : X ! Y is surjective, i.e., every y 2 Y
satisfies y = Ax for some x2 X . It will be a bijection if it is also injective, i.e., for any x, x̃2 X , A(x� x̃) 6= 0
unless x = x̃. Therefore, for A to be a bijection between X and Y , it is sufficient but not necessary for A
to be square and nonsingular (e.g. for an arbitrary A 2 R

m⇥n, A and its pseudoinverse A+ are inverses of
each other between X := range(AT) and Y := range(A).).

Theorem 12.6 (Image of linear transformation). Let X ✓ R
n be a convex cone and X� and NX(x̄) be its

polar cone and normal cone at x̄ 2 X respectively. Let Y := AX where A 2 R
m⇥n. Suppose ȳ = Ax̄ 2 Y for

an x̄ 2 X . Then

1. The polar cone Y � and the normal cone NY (ȳ) of Y at ȳ are the pre-images of the polar cone and the
normal cone of X at x̄ respectively under AT:

Y � = {y 2 R
m : ATy 2 X�} (12.5a)

NY (ȳ) = {y 2 R
m : ATy 2 NX(x̄)} = {y 2 R

m : ATy 2 X�, yTȳ = 0} (12.5b)

2. ATY � ✓ X� and ATNY (ȳ) ✓ NX(x̄). If A is square (m = n) and nonsingular then ATY � = X� and
ATNY (ȳ) = NX(x̄).

Proof. For the polar cone Y � we have by definition

Y � := {y 2 R
m : yTAx 0, 8x 2 X} =

⇢
y 2 R

m :
⇣

ATy
⌘T

x 0, 8x 2 X
�

i.e., y2Y � implies ATy2X�. This also shows that ATY � ✓X�. If A is square and invertible then X = A�1Y .
Suppose x2 X�, i.e., xTA�1y 0 for all y2Y . Then (AT)�1x2Y �. This shows that if x2 X� then x = ATy
for some y 2 Y �, i.e., ATY � ◆ X� and hence ATY � = X�.

For the normal cone NY (ȳ) we have, for any ỹ 2 NY (ȳ), ỹT(y� ȳ)  0 for y = Ax 2 Y for all x 2 X .
Then

ỹTA(x� x̄)  0 8x 2 X
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i.e., ATy 2 NX(x̄). This also shows that ATNY (ȳ) ✓ NX(x̄). If A is nonsingular then X = A�1Y and
therefore the argument applied to A�1 implies that A�TNX(x̄) ✓ NY (ȳ) where A�T = (A�1)T = (AT)�1.
Hence for any x 2 NX(x̄) we have x = ATy for some y 2 NY (ȳ). This shows that ATNY (ȳ) ◆ NX(x̄) and
hence ATNY (ȳ) = NX(x̄).

Finally, the second expression in (12.5b) for NY (ȳ) follows from the application of Theorem 12.3 to
the convex cone X .

Theorem 12.6 is illustrated in Figure 12.8 for the case when A is nonsingular so that X� = ATY �. See
Example 12.3 for a case when A is singular and X� ) ATY �.












































































































Figure 12.8: Theorem 12.6 when A is nonsingular: linear transformation Y of a convex cone X and their
polar cones Y �,X� respectively. By Theorem 12.3, their normal cones at x̄ = 0 are NX(0) = X� and
NY (0) = Y � respectively. (Changes in figure: (i) X� should have a wider angle. (ii) X� = NX(0) and
Y � = NY (0).)

Given a convex cone Y ✓ R
m, its pre-image under A 2 R

m⇥n is the set

X := {x 2 R
n : Ax 2 Y}

Clearly X is also a convex cone, but unlike for the image of X under A, the mapping A : X ! Y is not
necessarily surjective, i.e., AX ✓ Y and AX can be a strict subset of Y (see Example 12.3). The relation
between the polar and normal cones of X and Y is similar to that in Theorem 12.6 for the image under A.

Theorem 12.7 (Pre-image of linear transformation). Let Y ✓ R
m be a convex cone. Let X := {x 2 R

n :
Ax 2 Y} be its pre-image under A 2 R

m⇥n. Suppose ȳ = Ax̄ 2 Y for an x̄ 2 X . Then X� ◆ ATY � and
NX(x̄)◆ ATNY (ȳ). If A is square (m = n) and nonsingular then X� = ATY � and NX(x̄) = ATNY (ȳ).

Proof. Given any y 2 Y �, yTỹ 0 for all ỹ 2 Y . In particular yTỹ 0 for all ỹ = Ax̃ 2 AX ✓ Y . Therefore
yTAx̃ 0 for all x̃ 2 X , i.e., ATy 2 X�. This shows ATY � ✓ X�.

Given any y 2 NY (ȳ), yT(ỹ� ȳ) 0 for all ỹ 2 Y . In particular yT(ỹ� ȳ) 0 for all ỹ = Ax̃ 2 AX ✓ Y .
Therefore yTA(x̃� x̄) 0 for all x̃ 2 X , i.e., ATy 2 NX(x̄). This shows that ATNY (ȳ)✓ NX(x̄).

If A is square and invertible then X = A�1Y . Application of Theorem 12.6 to A�1 implies that A�TX�=
Y � and A�TNX(x̄) = NY (ȳ) where A�T = (A�1)T = (AT)�1. Hence X�= ATY � and NX(x̄) = ATNY (ȳ).
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Example 12.3 (Linear transformation: singular A). 1. Consider the convex cone X and its image Y un-
der a singular A:

X := {x 2 R
2 : x� 0}, A :=


1 1
1 1

�
, Y := AX = {Ax : x� 0} =

⇢
a


1
1

�
: a � 0

�

The polar cone of X is X� = {x 2 R
2 : x  0}. From Theorem 12.6 the polar cone of Y is the

pre-image of X� under AT:

Y � = {y 2 R
2 : ATy 2 X�} = {y 2 R

2 : y1 + y2  0}

We hence have

ATY � = {ATy : y 2 Y �} =

⇢
a


1
1

�
: a  0

�
( X�

These sets are illustrated in Figure 12.9(a).










































































































(a) Image of X












































































































(b) Pre-image of Y (Fig: “X�”! “X� = ATY �”)

Figure 12.9: Example 12.3. Since A is singular, (a) ATY � ( X�; (b) AX ( Y .

2. Consider the convex cone Y and its pre-image X under the singular A:

Y := {y 2 R
2 : y� 0}, A :=


1 1
1 1

�
, X := {x 2 R

2 : Ax� 0} = {x : x1 + x2 � 0}

Then Y � = {y : y 0} and

X� := {x : x1x̃1 + x2x̃2  0, x̃1 + x̃2 � 0} = {x : x1 = x2, x 0}

We also have AX = {Ax : x1 +x2 � 0} = {a(1,1) : a � 0} (Y . Even though A is singular, ATY � =
{ATy : y 0} = {a(1,1) : a  0} which is equal to X�. See Figure 12.9(b).

Part 2 of Example 12.3 is an example where ATY � = X� even though A is singular. See Exercise 12.3
for a generalization.
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Affine transformation. We now generalize Theorem 12.6 and 12.7 to an affine transformation f (x) =
Ax + b where A 2 R

m⇥n and b 2 R
m. Given a convex cone X ✓ R

n let the image of X under the affine
transformation be

Yb := AX +b ✓ R
m

i.e., y 2 Yb if and only if y = Ax + b for some x 2 X . The set Yb is convex but is not a cone unless b = 0.
Therefore Theorem 12.3 is generally not applicable for deriving the normal cone of Yb. According to
Proposition 12.2, Y �b and NYb(ȳ) are always closed convex cones even when b 6= 0. The next result shows,
in particular, that the normal cone of Yb is independent of the translation by b (except for the relation
ȳ = Ax̄+b). It reduces to Theorem 12.6 when b = 0. Recall that a convex cone contains 0 if it is closed.

Theorem 12.8 (Image of affine transformation). Let X ✓ R
n be a convex cone and X� and NX(x̄) be its

polar cone and normal cone at x̄ 2 X respectively. Let Yb := AX +b where A 2 R
m⇥n and b 2 R

m.

1. If X contains 0, then the polar cone Y �b of Yb is the intersection of the pre-image of the polar cone of
X under AT and a halfspace:

Y �b = {y 2 R
m : ATy 2 X�, yTb 0}

Hence AT(Yb�b)� ✓ X� where Yb�b = {Ax : x 2 X}. If A is square (m = n) and nonsingular then
AT(Yb�b)� = X�

2. Suppose ȳ = Ax̄ 2 Y for an x̄ 2 X . The normal cone NYb(ȳ) of Yb at ȳ is the pre-image of the normal
cone of X at x̄ under AT:

NYb(ȳ) = {y 2 R
m : ATy 2 NX(x̄)}

Hence ATNYb(ȳ)✓ NX(x̄). If A is square (m = n) and nonsingular then ATNYb(ȳ) = NX(x̄).

Proof. By definition, Y �b = {y 2 R
m : yT(Ax + b)  0 8x 2 X}. Since 0 2 X , b 2 Y and y 2 Y �b implies

yTb 0. Therefore

Y �b =

⇢
y 2 R

m :
⇣

ATy
⌘T

x+ yTb 0 8x 2 X
�
\H�(b)

where H�(b) := {y 2 R
m : yTb  0} is a halfspace. We now show that

�
ATy

�T x + yTb  0 for all x 2
X implies that

�
ATy

�T x  0, yielding the expression for Y �b in the theorem. Suppose for the sake of
contradiction that there exists ȳ 2 Y �b and x̄ 2 X such that (ATȳ)Tx̄ > 0. Since g x̄ 2 X for any g > 0 we
have limg!•(ATȳ)T(g x̄)!•, contradicting

�
ATȳ

�T
(g x̄)+ ȳTb 0. Hence, for any y 2Y �,

�
ATy

�T x 0
for all x 2 X , i.e., ATy 2 X�, as desired.

Let Ŷ := Yb�b := {Ax 2 R
m : x 2 X}. Its polar cone is

Ŷ � = {ŷ 2 R
m : ŷTAx 0, 8x 2 X}
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i.e., ATŶ � = AT(Yb� b)� ✓ X�. If A is nonsingular then X = A�1(Yb� b). Since X is a convex cone,
so is Ŷ := Yb� b = AX . We can therefore apply Theorem 12.6 to X and its image Ŷ to conclude that
AT(Y �b)� = X�.

The proof of part 2 is identical to that for Theorem 12.6. For any ỹ 2 NYb(ȳ), ỹT(y� ȳ)  0 for
y = Ax+b for all x2 X . Since ȳ = Ax̄+b, we have ỹTA(x� x̄) 0 for all x2 X . Therefore ATỹ2NX(x̄) or
ATNYb(ȳ)✓NX(x̄). If A is square and nonsingular then X = A�1Yb�A�1b. Applying the result to this affine
transformation yields A�TNX(x̄) ✓ NYb(ȳ) and hence ATNYb(ȳ) ◆ NX(x̄). This proves ATNYb(ȳ) = NX(x̄)
when A is nonsingular.

Theorem 12.8 is illustrated in the next example.

Example 12.4 (Image of affine transformation). Consider the convex cone X and its affine transformation
Yb:

X := {x 2 R
2 : x� 0}, A :=


1 0
0 �1

�
, b :=


1
1

�
, Yb := AX +b = {y 2 R

2 : y1 � 1, y2  1}

The polar cone of X is X� = {x 2 R
2 : x  0}. Since 0 2 X , Theorem 12.8 implies that the polar cone of

Yb is

Y �b = {y 2 R
2 : ATy 2 X�, yTb 0} = {y 2 R

2 : y1  0, y2 � 0, y1 + y2  0}

This is illustrated in Figure 12.10. It can be seen that Yb is not a cone (since b 6= 0) but Y �b is a closed












































































































(a) Image of affine transformation












































































































(b) Yb � b and (Yb �
b)�

Figure 12.10: Example 12.4: while X is a cone, Yb is not. According to Theorem 12.8, X� = AT(Yb�b)�

and NX(x̄) = ATNYb(ȳ). (Change in figure (a): Change X� to X� = AT(Yb�b)�.)

convex cone. Moreover Yb�b shifts the origin to b and is a convex cone with (Yb�b)� = {y 2R
2 : ATy 2

X�} = {y 2 R
2 : y1  0, y2 � 0}. Since A is nonsingular, it can be verified that AT(Yb�b)� = X�.

At x̄ = (1,0) and ȳ = Ax̄+b = (2,1), the normal cone of the convex cone X is, from Theorem 12.3,

NX(x̄) = {x 2 X� : xTx̄ = 0} = {x 2 R
2 : x1 = 0, x2  0}

The normal cone of Yb is, from Theorem 12.8,

NYb(ȳ) = {y : ATy 2 NX(x̄)} = {y : y1 = 0, y2 � 0}
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At x̄ = 0 and ȳ = Ax̄ +b = (1,1), NX(x̄) = X� and NYb(ȳ) = {y : y1  0, y2 � 0}. Since A is nonsingular,
it can be verified that ATNYb(ȳ) = NX(x̄) in both cases.

Given a convex cone Y ✓ R
m, its pre-image under an affine map is the set

Xb := {x 2 R
n : Ax+b 2 Y}

where A 2 R
m⇥n and b 2 R

m. The sets Xb and Y �b are convex but not cones unless b = 0. By definition
AXb + b ✓ Y and AXb + b can be a strict subset of Y . We will use this affine transformation in Chapter
12.1.4 to study the normal cone of the convex set defined by a second-order cone constraint where Y is a
convex cone. The relation between the polar and normal cones of Xb and Y is similar to that in Theorem
12.8 between the polar and normal cones of X and Yb.

Theorem 12.9 (Pre-image of affine transformation). Let Y ✓ R
m be a convex cone. Let Xb := {x 2 R

n :
Ax +b 2 Y}. Suppose ȳ = Ax̄ +b 2 Y for an x̄ 2 Xb. Then X�b ◆ AT(Y �b)� and NXb(x̄)◆ ATNY (ȳ). If A
is square (m = n) and nonsingular then X�b = AT(Y �b)� and NXb(x̄) = ATNY (ȳ).

Proof. Given any ỹ2 (Y�b)�, ỹTy 0 for all y2Y�b. In particular ỹTy 0 for all y = Ax2AXb✓Y�b.
Therefore ỹTAx 0 for all x 2 Xb, i.e., X�b ◆ AT(Y �b)�.

Given any ỹ 2 NY (ȳ), ỹT(y� ȳ) 0 for all y 2Y . In particular ỹT(y� ȳ) 0 for all y = Ax+b 2 AXb +
b✓ Y . Therefore ỹTA(x� x̄) 0 for all x 2 Xb, i.e., ATỹ 2 NXb(x̄). This shows that NXb(x̄)◆ ATNY (ȳ).

If A is square and invertible then Xb = A�1(Y � b).3 Consider any x 2 X�b . Then xTx̃  0 for all
x̃ = A�1(ỹ� b) 2 Xb, ỹ 2 Y . Hence xTA�1(ỹ� b)  0 for all ỹ 2 Y , i.e., A�Tx 2 (Y � b)�. This shows
X�b ✓ AT(Y �b)�. Hence X�b = AT(Y �b)�. For NXb(x̄), since Y is a convex cone we can apply Theorem
12.8 to the affine transformation Xb = A�1Y�A�1b. Then A�TNXb(x̄) = NY (ȳ), or NXb(x̄) = ATNY (ȳ).

Theorem 12.9 is verified in the next example (compared with Example 12.4).

Example 12.5 (Image of affine transformation). Consider the convex cone Y and its pre-image under an
affine transformation Xb:

Y := {y 2 R
2 : y1 � 0, y2  0}, Xb := {x 2 R

2 : Ax+b 2 Y} = {x 2 R
2 : x1 ��1, x2 � 1}

where A,b are the same as those in Example 12.4. Neither Xb nor the set Y �b = {y 2R
2 : y1 ��1, y2 

�1} (which is Y with origin shifted to (1,1)) are cones; see Figure 12.11. By definition, y 2 (Y � b)� if
and only if yTỹ = ỹ1y1 + ỹ2y2  0 for all ỹ 2 Y � b, i.e., for all ỹ with ỹ1 � �1, ỹ2  �1. It can then be
checked that (Y �b)� is (consider ỹ := (�1,�1) 2 Y �b, ỹ1! • and ỹ2!�•)

(Y �b)� = {y 2 R
2 : y1 + y2 � 0, y1  0, y2 � 0}

which is a closed convex cone even though Y �b is not a cone (Proposition 12.2). Theorem 12.9 implies
that, since A is nonsingular, X�b = AT(Y � b)�, which we verify directly as follows. For y 2 (Y � b)�,
x := ATy = (y1,�y2) and hence

AT(Y �b)� = {x 2 R
2 : x1� x2 � 0, x1  0, x2  0}

3Theorem 12.6 on linear transformation is not applicable because Yb�b is not a cone unless b = 0.
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(a) Pre-image of affine transformation












































































































(b) Y �b and (Y �b)�

Figure 12.11: Example 12.5: while Y is a cone, Xb is not. According to Theorem 12.9, X�b = AT(Y �b)�

and NXb(x̄) = ATNY (ȳ).

On the other hand, x 2 X�b if and only if xTx̃ = x̃1x1 + x̃2x2  0 for all x̃ 2 Xb, i.e., for all x̃ with x̃1 ��1,
x̃2 � 1. It can then be checked that X�b is (consider x̃ := (�1,1) 2 Xb, x̃1! • and x̃2! •)

X�b = {x 2 R
2 : x1� x2 � 0, x1  0, x2  0}

which equals AT(Y �b)� and is a closed convex cone even though Xb is not a cone. See Figure 12.11.

At ȳ = (1,0) and x̄ = A�1(ȳ� b) = (0,1). Theorem 12.9 implies NXb(x̄) = ATNY (ȳ), which can be
verified as follows. Since Y is a convex cone we can apply Theorem 12.3 to obtain NY (ȳ) = {y 2 Y � :
yTȳ = 0} = {y 2R

2 : y1 = 0, y2 � 0}. Hence ATNY (ȳ) = {x 2R
2 : x1 = 0, x2  0}. Since Xb is not a cone

we cannot apply Theorem 12.3 to obtain NXb(x̄). By definition x 2 NXb(x̄) if and only if xT(x̃� x̄) 0 for
all x̃ 2 Xb, i.e.,

x̃1x1 + (x̃2�1)x2  0 for all x̃ with x̃1 ��1, x̃2 � 1

Taking x̃ = (�1,1) and x̃ = (1,1) yields x1 = 0. Hence x2  0. This shows that NXb(x̄) = ATNY (ȳ),
verifying Theorem 12.9.

12.1.4 Second-order cones and SOC constraints

Second-order cones. The normal cone NK(x̄, s̄) of the second-order cone K defined in (7.11) can be de-
rived explicitly. It is the polar cone K� at the origin, the origin at an interior point, and, at a boundary point,
the line segment in the intersection of the “lower cone” K� and the hyperplane with normal (x̄/kx̄k2,1).

Theorem 12.10 (Second-order cone). Let K := {(x,s) 2 R
n+1 : kxk2  s} be the standard second-order

cone. Then

1. K is a convex cone.

2. Its polar cone is K� = {(y, t) 2 R
n+1 : kyk2 �t}.
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3. Its normal cone NK(x̄, s̄) := {(y, t) 2 R
n+1} at an (x̄, s̄) 2 K is

NK(x̄, s̄) =

8
<

:

K� if (x̄, s̄) = (0,0)
{(0,0) 2 R

n+1} if kx̄k2 < s̄�
µ(x̄,�s̄) 2 R

n+1 : for some µ � 0
 

if kx̄k2 = s̄ > 0

Proof. Part 1 is left as Exercise 7.4. To verify that K� = {(y, t) 2 R
n+1 : kyk2  �t}, take any (x,s) 2 K

and (y, t) such that kyk2 �t. Then

xTy+ st  kxk2 kyk2 + st  s(�t)+ st = 0 (12.7)

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows
from definition of K. Hence (y, t) 2 K�. This shows that K� ◆ {(y, t) 2R

n+1 : kyk2 �t}. Conversely let
(y, t) 2 K�, i.e., xTy+ st  0 for all kxk2  s. Clearly (0,0) 2 K� since K� is a closed convex cone, so let
s� kxk2 > 0. Then xTy+kxk2t  0 and hence

xT

kxk2
y + t  0

Since this holds for all x (because there always exists some s > 0 such that (x,s) 2 K), we can take x = y
to conclude kyk2 + t  0. This proves part 2. Indeed K is the “upper” cone in Figure 7.9(b) and K� is the
“lower” cone.

For part 3, application of Theorem 12.3 to part 2 yields

NK((x̄, s̄)) = {(y, t) 2 R
n+1 : kyk2 �t, x̄Ty+ s̄t = 0} (12.8)

Hence if (x̄, s̄) = (0,0) then NK((x̄, s̄)) = K�. If kx̄k2 < s̄ then (x̄, s̄) is in the interior of K and hence
NK(x̄, s̄) = {(0,0) 2Rn+1}. Consider then kx̄k2 = s̄ 6= 0. The requirement that x̄Ty+ s̄t = 0 means that the
two inequalities in (12.7) must hold with equality which is possible if and only if

y = µ x̄ for some µ 2 R, kxk2 = s̄, kyk2 = �t

Hence �t = kyk2 = |µ|kx̄k2 = |µ|s̄. Then x̄Ty + s̄t = s̄2(µ � |µ|) = 0 implies that µ � 0 since s̄ > 0.
Therefore y = µ x̄, t =�µ s̄ with µ � 0. This proves part 3. This is illustrated in Figure 12.12.

We know from Theorem 12.3 that the normal cone NK(x̄, s̄) of a convex cone K are vectors in its polar
cone K� where complementary slackness holds. Theorem 12.10 describes these vectors in more detail
when K is explicitly specified as the second-order cone (note that the vector µ(x̄,�s̄) 2 K�).

Recall the relation K = AKr between a rotated second-order cone Kr defined in (7.12) and a standard
second-order cone K, where A is a nonsingular matrix defined in (7.13), reproduced here:

A =

2

4
2In 0n 0n
0Tn 1 �1
0Tn 1 1

3

5 (12.9)

For an x 2 R
n, we use xm, m  n, to denote the subvector xm := (x1, . . . ,xm) of the first m entries of x.

Since A is nonsingular, the application of Theorem 12.7 to Theorem 12.10 leads to the following result on
rotated second-order cone.
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Figure 12.12: Theorem 12.10: The normal cone NK((x̄, s̄)) is the line segment on the boundary of the
lower cone K� in the direction of x̄.

Corollary 12.11 (Rotated second-order cone). Let Kr := {x 2Rn+2 : kxnk2
2  xn+1xn+2, xn+1 � 0, xn+2 �

0} be a rotated second-order cone. Let K := AKr where A is defined in (12.9) and K� denote its polar cone.

1. Kr is a convex cone.

2. Its polar cone is

K�r = ATK� := {ATx 2 R
n+2 : kxn+1k2 �xn+2}

3. Its normal cone NKr(x̄) = ATNK(Ax̄) at an x̄ 2 Kr is

NKr(x̄) =

8
<

:

ATK� if Ax̄ = 0
{(0,0) 2 R

n+2} if k[Ax̄]n+1k2 < [Ax̄]n+2�
µ([Ax̄]n+1,�[Ax̄]n+2) 2 R

n+2 : for some µ � 0
 

if k[Ax̄]n+1k2 = [Ax̄]n+2 > 0

SOC constraint. Consider the convex set C defined by second-order cone constraint in (7.14), repro-
duced here:

C := {x 2 R
n : (Ax+b,cTx+d) 2 K} = {x 2 R

n : kAx+bk2  cTx+d} (12.10)

where A 2 R
m⇥n, b 2 R

m, c 2 R
n, d 2 R, and K is the standard second-order cone defined in (7.11). Then

C is the pre-image of K under the affine transformation

C =
�

x 2 R
n : Ãx+ b̃ 2 K

 
where Ã :=


A
cT

�
, b̃ :=


b
d

�

The mapping f : C!K defined by f (x) = Ãx+ b̃ is generally neither surjective nor injective. For instance
if Ã is singular then f is not injective. If A = 0, C = {x : kbk2  cTx + d)} is a hyperplane and f (x) =
Ãx + b̃ 6= 0 for any x if b 6= 0, i.e., f is not surjective. Therefore Theorem 12.9 (in its current form) does
not guarantee NC(x̄) = ÃTNK(Ãx̄+ b̃) where NK(ȳ) is given by Theorem 12.10.

Example 12.6. Consider the case where A = 0 2Rm⇥n and C := {x 2Rn : kbk2  cTx+d} is a halfspace.
We know from Theorem 12.3 that its normal cone is, for any x̄ with �cTx̄ d�kbk2,

NC(x̄) =
n
�lc : l 2 R such that l � 0 with l = 0 if � cTx̄ < d�kbk2

o
(12.11)
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Theorem 12.9 shows that NC(x̄)◆ ÃTNK(Ãx̄+ b̃) where

Ã :=


0
cT

�
, b̃ :=


b
d

�

and NK(ȳ)✓ R
m+1 is given by Theorem 12.10 as, writing y 2 R

m+1 as y =: (ym,ym+1) with ym 2 R
m,

NK(Ãx̄+ b̃) =

8
<

:

K� if (b,cTx̄+d) = (0,0)
{(0,0)} if kbk2 < cTx̄+d�

µ
�
b,�(cTx̄+d)

�
2 R

m+1 : for some µ � 0
 

if kbk2 = cTx̄+d > 0

and K� = {y 2 R
m+1 : kymk2 �ym+1}. (If b 6= 0 then NK(Ãx̄+ b̃) 6= K� for any x̄.)

We now verify that NC(x̄) = ÃTNK(Ãx̄+ b̃). Indeed ÃTNK(Ãx̄+ b̃) is, noting that ym+1  0,

ÃTNK(Ãx̄+ b̃) =

8
<

:

{ym+1c : ym+1 2 R�} if (b,cTx̄+d) = (0,0)
{ym+1c : ym+1 2 R�} if kbk2 = cTx̄+d > 0
{0 2 R

n} if kbk2 < cTx̄+d

which is equal to NC(x̄) in (12.11), as desired.

12.2 CPC functions

When we allow extended real-valued and discontinuous functions we can treat constrained optimization
as unconstrained optimization and develop a unified theory that covers both. In this section we define
an important class of such functions, the set of closed proper convex (CPC) functions, that we will use
extensively in deriving optimality conditions in later sections.

12.2.1 Extended real-valued functions

A real-valued function f : Rn! R maps a finite vector x 2 R
n to a finite value f (x) 2 R. An extended

real-valued function f : Rn! [�•,•] can take values �• and •. For a function f : X ! [�•,•] defined
on X ✓R

n, X is called the domain of f . The effective domain of f is the set dom( f ) := {x2 X : f (x) < •}.
The epigraph of f is the set epi( f ) := {(x,y) 2 X ⇥R : y� f (x)}✓ R

n+1. In particular if (x,y) 2 eip( f )
then y 62 {�•,•} by definition. Therefore x 2 dom( f ) if and only if there exists y = y(x) 2 R such that
(x,y) 2 epi( f ), i.e., dom( f ) is the projection of epi( f ) onto R

n.

For the purpose of minimization, a function f : X! [�•,•] defined on X ✓R
n can always be extended

to R
n by defining

fX(x) :=
⇢

f (x) if x 2 X
• if x 2 R

n \X (12.12)

The epigraph of fX is then the set epi( fX) := {(x,y) 2 R
n⇥R : y � fX(x)} ✓ R

n+1. Therefore we often
treat real-valued functions f on X as extended real-valued functions fX on R

n whose effective domain
dom( fX) may be a subset of Rn.
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Consider an extended real-valued function f : X ! [�•,•] where its domain X ✓ R
n. We say that f

is lower semicontinuous (lsc) at x 2 X if

f (x)  liminf
k

f (xk) (12.13)

for every sequence {xk} ✓ X with xk ! x, and that f is lower semicontinuous (on X) if it is lsc at every
x 2 X . A function f is called upper semicontinuous (usc) if� f is lsc. A function is continuous if and only
if it is both lsc and usc.

Definition 12.3 (Closed proper convex (CPC) f ). Consider f : X ! [�•,•] with X ✓ R
n.

1. The function f is closed if epi( f ) is a closed set.

2. The function f is proper if there exists x 2 X such that f (x) < • (so that epi( f ) is nonempty) and
f (x) >�• for all x 2 X . In particular a real-valued function f : X ! R is proper.

3. Suppose X is convex. Then f is convex if epi( f ) is a convex subset of Rn+1.

The convexity definition in terms of epi( f ) reduces to the usual definition of convexity for real-valued
functions. If a closed convex function f is not proper then f cannot take any finite value: f (x) = �•
if x 2 dom( f ) and f (x) = • otherwise. We therefore consider only proper functions f : Rn! (•,•]. A
proper and convex function is continuous, except possibly on its relative boundary. Moreover it is Lipschitz
continuous over a compact set with the norm of a maximum subgradient as its Lipschitz constant; see
Lemma 12.14.

A common mistake in the literature is to claim that if f is lsc, then dom( f ) is a closed set or that f is a
closed function.4 The subtle relation between lsc, closed f (closed epi( f )) and closed dom( f ) is explained
in the next remark.

Remark 12.2 (lsc, closed f , closed epi(f), closed dom( f )). 1. Whether f is lsc (or continuous) depends
on its domain X . Take the indicator function dC(x) := 0 if x 2C ✓ R

n and • if x 62C. Suppose C
is open in R

n. If the domain X of the extended real-valued function is taken to be the closure cl(C)
of C (or Rn), then dC(x) is not lsc on cl(C) (or Rn) because (12.13) is not satisfied at x 2 X on the
boundary of C. If X = C, however, dC(x) is lsc on X because in the test (12.13) for lsc, x must be in
the open set X .

2. Consider the extended real-valued function f (x) := 1/x defined on X := [0,1]; in particular f (0) :=
•. Then f is lsc at x = 0 2 X because liminfk f (xk) (and limsupk f (xk)) can take ±• value by
definition if the sequence {xk}✓ X is unbounded. In contrast, f is not continuous at x = 0 because
continuity means that f (xk) converges to a finite value y 2 R for every sequence {xk} ✓ X with
limk xk = x2X (x is also finite).5 If the domain of f is taken to be X 0 := (0,1] instead, f is continuous
on X 0 because the test sequence {xk} cannot converge to a boundary point not in X 0.

4Such a claim has been made on the recourse function Q(x) in two-stage optimization with recourse where dom(Q) is
claim to be a closed (convex) set in [174, Proposition 2.7, p.35] and [87, Corollary 37; p.158]. See Lemma 13.25 for correct
statement.

5In general when we say a sequence {xk}⇢ R
n converges to an x, we mean that the limit point x is in R

n, i.e., xi are finite.
If kxkk!±•, the sequence is said to be unbounded.
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3. For an extended real-valued function f : X! [�•,•] where X ✓R
n, its effective domain dom( f ) :=

{x 2 X : f (x) < •} being a closed set in X is generally different from epi( f ) being a closed set in
X ⇥R. Their relation is as follows. If dom( f ) is closed in X and f is lsc on dom(X), then epi( f )
is a closed set in X ⇥R (i.e., f is a closed function). The converse may not hold (see below). If
X = R

n, then f is lsc on R
n if and only if epi( f ) is a closed set in R

n+1. See [74, Propositions 1.1.2
and 1.1.3, p.10] (Exercise 12.7). Therefore, for extended real-valued functions f defined on R

n, f
being closed is equivalent to f being lsc on R

n.

4. For an extended real-valued function f defined on X ✓ R
n, it is possible that f is lsc on dom( f ) but

dom( f ) is not closed. Yet, f is closed, i.e., epi( f ) is a closed set in R
n+1. An example is the function

f (x) := 1/x on X := [0,1] defined above where f is lsc (in fact continuous) on dom( f ) = (0,1],
but dom( f ) is not closed in X (or in R). To see that f is a closed function, consider any sequence
{(xk,yk)}2 epi( f )✓ X⇥R such that (xk,yk)! (x̄, ȳ)2 X⇥R. By definition ȳ is finite and therefore
x̄ cannot be 0 (i.e., (x̄, ȳ) 6= (0,•)). Moreover (x̄, ȳ) 2 epi( f ) because

f (x̄)  liminf
k

f (xk)  liminf
k

yk = ȳ

where the first inequality follows from lsc of f on dom( f ), the second inequality follows because
(xk,yk) 2 epi( f ), and the equality follows because yk! ȳ. For general f : X ! [�•,•], the closed-
ness of dom( f ) ensures that for any sequence {(xk,yk)} 2 epi( f ) with (xk,yk)! (x̄, ȳ) 2 X⇥R, ȳ is
finite. Then the inequalities above hold generally to show the closedness of f .

Hence for an extended real-valued function f defined on X ✓ R
n, f can be a closed function, or

equivalently epi( f ) can be a closed set in X ⇥R, while dom( f ) is not closed in X (even when f
is lsc on X). Often it is the closedness of f that is needed, not the closedness of dom( f ), e.g., in
the Weierstrass Theorem 12.21 and its application in Theorem 13.26 to derive conditions for primal
optimality of two-stage nonlinear optimization with recourse.

12.2.2 Indicator function, support function and polyhedral functions

Indicator function and support function. Given a set X ✓ R
n the indicator function of X is the ex-

tended real-valued function dX : Rn! (�•,•] defined by:

dX(x) :=
⇢

0 if x 2 X
• if x 62 X (12.14a)

It is proper if and only if the set X is nonempty. It is a convex function if and only if X is a convex set.

The support function of X is sX : Rn! (�•,•] defined by:

sX(x) := sup
y2X

yTx (12.14b)

It is proper if and only if X is nonempty and supy2X yTx < • for at least one x. The sets X , cl(X), conv(X),
cl(conv(X)), conv(cl(X)) all have the same support function (Exercise 12.8):

sX(x) = scl(X)(x) = sconv(X)(x) = scl(conv(X))(x) = sconv(cl(X))(x), x 2 R
n (12.15)
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See Exercise 12.12 for relation between dX and sX (as well as their subdifferentials).

Theory of convexity, optimality and duality can be developed based either on real-valued functions or
on extended real-valued functions. An advantage of extended real-valued functions is that they allow us to
represent the minimization of a real-valued function f : Rn! R over X as an unconstrained optimization
of the extended real-valued function (12.12):

min
x2Rn

fX(x) = f (x) + dX(x) (12.16)

A unified theory can then be developed for unconstrained optimization as we will see in the next sections.

Example 12.7. Derive dX(x) and sX(x) for:

1. X := (0,1)✓ R.

2. X := {x 2 R
n : xi 2 (�1,1)}.

Solution. For X := (0,1)✓ R

dX(x) =

⇢
0 x 2 (0,1)
• x 62 (0,1)

sX(x) := sup
y2(0,1)

yx =

⇢
x x� 0
0 x < 0

For X := {x 2 R
n : xi 2 (�1,1)}

dX(x) =

⇢
0 8i xi 2 (�1,1)
• 9i s.t. xi 62 (�1,1)

sX(x) := Â
i

sup
yi2(�1,1)

yixi = Â
i

|xi| = kxk1

They are illustrated in Figure 12.13.

(a) X := (0,1)✓ R (b) X := {x 2 R
2 : xi 2 (�1,1)}

Figure 12.13: Example 12.7.

Polyhedral set and polyhedral function. Recall that a polyhedral set, or a polyhedron, is a set X := {x2
R

n : Ax  b} specified by a finite number of affine inequalities. We often assume, sometimes implicitly,
that X is nonempty to avoid triviality. Such a set is then nonempty closed and convex by definition. See
Appendix 20.1.2 for more discussions on polyhedral sets and extreme points.

We say that a proper function f : Rn! (�•,•] is a polyhedral function if if its epi( f ) is a polyhedral
set in R

n+1. Since a polyhedral set is closed nonempty convex, a polyhedral function is closed proper
convex. It can be represented as the pointwise maximum of affine functions e.g. [74, Proposition 2.3.5,
p.109].
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Lemma 12.12. Let f : Rn! (�•,•] be a convex function. Then f is a polyhedral function if and only if
dom( f ) is a polyhedral set and

f (x) = max
i2{1,...,m}

⇣
aTi x+bi

⌘
, 8x 2 dom( f )

for some ai 2 R
n, bi 2 R, and integer m > 0.

In particular an affine function is polyhedral.

12.3 Gradient and subgradient

Consider the convex optimization

min
x2Rn

f (x) s.t. g(x) = 0, h(x) 0

where X ✓ R
n is a nonempty convex set and f : Rn! (�•,•] is a proper convex extended real-valued

function. For smooth optimization the KKT condition of Chapter 7.3.2 is a first-order optimality condi-
tion that involves the gradients — f ,—g,—h of convex and continuously differentiable cost and constraint
functions. In this section we generalize gradients of differentiable functions to subgradients of convex but
possibly non-differentiable functions and develop conditions for subdifferential calculus. We use these
tools in Chapter 12.5 to generalize the KKT Theorem 7.13 of Chapter 7.3.2 to the convex nonsmooth
setting.

12.3.1 Derivative, directional derivative and partial derivative

The notion of derivative, directional derivative and partial derivative defined in Chapter 7.1.3 for real-
valued functions extend directly to extended real-valued functions. Consider a proper function f : X !
(�•,•] where X ✓ R

n is an open set. The function f is said to be differentiable at x 2 X if there exists a
vector m 2 R

n such that

lim
h2Rn
h!0

f (x+h)� f (x)�mTh
khk = 0

When this holds, the column vector m is called the gradient or derivative of f at x 2 X and denoted by
— f (x). If f is differentiable at every x 2 X then f is called differentiable on X .

At each x 2 X and for each v 2 R
n the one-sided directional derivative of f at x in the direction v is

defined as

d f (x;v) := lim
t2R
t#0

f (x+ tv)� f (x)
t

provided the limit exists, possibly ±•. For x 2 dom( f ), d f (x;v) can take finite values or ±•, but for x 2
ri(dom( f )), d f (x;v) if exists is always real valued for any v 2 R

n. It can be shown that f is differentiable
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at x 2 X if (i) directional derivatives d f (x;v) exist at x for all directions v 2R
n, and (ii) d f (x;v) is a linear

function of v.

At each x2 X and for the unit vector e j 2 {0,1}n, if the directional derivatives d f (x;e j) and d f (x;�e j)
exist in both directions and are equal, then they are called the partial derivative of f at x 2 X with respect
to x j and denoted by ∂ f

∂x j
(x):

∂ f
∂x j

(x) := lim
t2R
t!0

f (x+ te j)� f (x)
t

In this case f is called partially differentiable at x 2 X with respect to x j. The row vector of partial
derivatives of f at x 2 X is

∂ f
∂x

(x) :=
h

∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
i

If f is partially differentiable at all x 2 X then it is called partially differentiable on X . The partial deriva-
tive ∂ f

∂x (x) describes the behavior of f at x only along the coordinate axes whereas the derivative — f (x)
describes its behavior in all directions. If f is differentiable then it is partially differentiable, but the con-
verse does not generally hold. If f is not only partially differentiable but ∂ f

∂x (x) is also continuous at x,
then the converse holds at x 2 X . Such an f is called continuously differentiable at x. If f is continuously
differentiable at all x 2 X then it is continuously differentiable on X .

As Example 7.2 in Chapter 7.1.3 shows, a partially differentiable function may not be differentiable
when the partial derivative ∂ f

∂x (x) is discontinuous at x. Indeed a partially differentiable function may not
even be continuous at all x 2 X . A continuously differentiable function is always continuous. Moreover
Lemma 7.1 extends directly to a proper extended real-valued function f : X ! (�•,•], i.e., if f is dif-

ferentiable then it is partially differentiable and — f (x) =
h

∂ f
∂x (x)

iT
. Conversely, f is differentiable if it is

continuously differentiable. Hence f is differentiable at x 2 X if and only if d f (x;v) = vT— f (x) = ∂ f
∂x (x)v

for all v 2 R
n. This is generalized in (12.19) below to proper convex functions that may not be differen-

tiable (but are always subdifferentiable). Moreover the directional derivative of a proper convex function
f : X ! (�•,•] always exists because ( f (x+ tv)� f (x))/t is increasing in t > 0 and hence the limit
always exists, possibly ±•. The limit d f (x;v) may be �• or • at the relative boundary of dom( f ) but is
always a finite value at an x 2 ri(dom( f )).

12.3.2 Subgradient

Recall that, for the purpose of minimization, a function f : X ! (�•,•] with X ✓ R
n can always be

represented as an extended real-valued function f : Rn! (�•,•] by defining f (x) := • for x 62 X so that
its effective domain dom( f )✓ X .

Subgradient. Consider a proper convex function f : Rn! (�•,•]. A vector y 2 R
n is a subgradient of

f at x̄ 2 dom( f ) if

f (x) � f (x̄) + yT(x� x̄), 8x 2 R
n (12.17a)
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The inequality must hold for all real x, not just for x 2 dom( f ), i.e., the affine function on the right-hand
side is a lower approximation of f over Rn and coincides with f at x = x̄. The set of all subgradients of a
convex function f at x̄ is the subdifferential ∂ f (x̄) of f at x̄. By convention ∂ f (x̄) = /0 if x̄ 62 dom( f ). An
equivalent definition to (12.17a) is: y 2 R

n is a subgradient of f at x̄ 2 dom( f ) if

f (x̄)� yTx̄ = min
x2Rn

⇣
f (x)� yTx

⌘
(12.17b)

i.e., x̄ 2 dom( f ) attains the minimum on the right-hand side.

The definition (12.17) of subgradient immediately implies the following first-order optimality condi-
tion for nonsmooth convex optimization. It is used in Chapter 12.5 to derive a general optimality condition
which leads to various KKT conditions in subsequent subsections.

Corollary 12.13 (Optimality condition). Consider the unconstrained convex optimization infx2Rn f (x)
where f : Rn! (�•,•] is a proper convex function. Then x⇤ 2 R

n is optimal if and only if

0 2 ∂ f (x⇤)

If f is differentiable this reduces to — f (x⇤) = 0.

Proof. It is obvious that f (x⇤) = minx2Rn f (x) if and only if y = 0 in (12.17b), i.e., if and only if 0 2
∂ f (x⇤).

Remark 12.3 (Subgradient as certificate of optimality). 1. For unconstrained convex optimization, 02
∂ f (x⇤) is necessary and sufficient for x⇤ to be an optimal. The fact that there may be subgradients
y 2 ∂ f (x⇤) with yT(x� x⇤) 6= 0 has no bearing on the optimality of x⇤. The zero vector 0 2 ∂ f (x⇤)
is a certificate for the optimality of x⇤.

2. For constrained optimization, x⇤ is optimal if there exists a subgradient y⇤ 2 ∂ f (x⇤) such that y
⇤
T(x�

x⇤) � 0 for all feasible x because (12.17a) then implies f (x) � f (x⇤) for all feasible x. Such a
subgradient y⇤ is a certificate for the optimality of x⇤. A precise statement is Theorem 12.20 below.
Again the fact that there may be subgradients y 2 ∂ f (x⇤) with yT(x� x⇤) < 0 has no bearing on the
optimality of x⇤.

A proper convex function f : Rn! (�•,•] always has a subgradient at any interior x 2 int(dom( f )).
We now prove this using the separating hyperplane Theorem 7.8. It is the origin of the Slater condition,
e.g., in Theorem 12.17 on subdifferentials and 12.26 on strong duality and dual optimality. Convexity of
f means its epigraph epi( f ) := {(x,y) : y� f (x), x 2R

n,y 2R} is a convex set in R
n+1 (Definition 12.3).

It is nonempty because f is proper. Fix an x̄ 2 int(dom( f )). The point (x̄, f (x̄)) is in epi( f )\ int(epi( f )).
Theorem 7.8 then implies that there exists nonzero (a,b) 2 R

n⇥R such that

aT(x� x̄) + b(y� f (x̄)  0, 8(x,y) 2 epi( f ) (12.18a)

This implies b  0 (substitute (x̄,y) 2 epi( f ) with y > f (x̄) into (12.18a)). By substituting (x, f (x)) 2
epi( f ) into (12.18a) we obtain b f (x)  b f (x̄)� aT(x� x̄). We will argue that b < 0 (i.e., the separating
hyperplane is not vertical at an interior point x̄) and therefore, upon dividing by b on both sides, we have

f (x) � f (x̄)� aT

b
(x� x̄) (12.18b)
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Since this holds for all x 2Rn, �(a/b) is a subgradient of f at x̄. If b = 0 then (12.18) gives aT(x� x̄) 0
for all x 2 dom( f ). Since x̄ 2 int(dom( f )), this is possible only if a = 0, contradicting (a,b) 6= 0. Hence
b < 0. The existence of an interior point x̄ where the separating hyperplane is not vertical underlies the
Slater condition in numerous results.6

The following is taken from [74, Propositions 5.4.2 and 5.4.3]. It generalizes Lemma 7.4 for real-
valued convex functions to extended real-valued convex functions.

Lemma 12.14 (Subgradient and Lipschitz continuity). Let f : Rn! (�•,•] be a proper convex function.

1. For x 2 ri(dom( f )), f (x) is continuous at x.

2. For x 2 int(dom( f )), ∂ f (x) is a nonempty convex compact set.

3. If X ✓ dom( f ) is nonempty and compact, then ∂X f :=[x2X ∂ f (x) is nonempty and bounded. More-
over f is Lipschitz continuous over X with Lipschitz constant L := supx2∂X f kxk2.

In particular if f is a real-valued convex function, then ∂ f (x) is always a nonempty convex compact
set. If f is extended real-valued convex, then ∂ f (x) can be unbounded or empty at the boundary of or
outside dom( f ).

By the definition of subgradient we have, for all t 2 R, f (x + tv)� f (x) � t yTv for all subgradients
y 2 ∂ f (x). Hence

d f (x;v) � yTv, 8y 2 ∂ f (x), x 2 dom( f ), v 2 R
n

For any x 2 ri(dom( f )) the function d f (x; ·) is closed and is the support function of ∂ f (x), i.e.,

d f (x;v) = sup
y2∂ f (x)

yTv, 8x 2 ri(dom( f )), v 2 R
n (12.19)

Hence d f (x;v) > supy2∂ f (x) yTv can only hold at a boundary point x of dom( f ) where d f (x; ·) is not a
closed function. In particular, if f : Rn! R is a real-valued function then dom( f ) = R

n and d f (x;v) =
supy2∂ f (x) yTv for all x,v 2 R

n.

Conjugate functions. Consider a convex function f : Rn! (�•,•]. Fix a x̄ 2 dom( f ). By definition
(12.17), ȳ 2 ∂ f (x̄) if and only if f (x) � f (x̄)+ ȳT(x� x̄) for all x 2 R

n. Hence ȳ 2 ∂ f (x̄) if and only if
ȳTx̄� f (x̄)� supx2Rn

�
ȳTx� f (x)

�
. But the reverse inequality clearly holds and therefore

ȳ 2 ∂ f (x̄) () ȳTx̄� f (x̄) = sup
x2Rn

⇣
ȳTx� f (x)

⌘
(12.20a)

This motivates the definition of the conjugate function f ⇤ : Rn! [�•,•] of f defined by:

f ⇤(y) := sup
x2Rn

⇣
xTy � f (x)

⌘
, y 2 R

n

6The assumption that x̄ 2 int(dom( f )) is needed to show that b 6= 0. If x̄ 2 ri(dom( f )), then the contradiction argument
breaks down, but subgradient may still exist at a such a x̄. See Exercise 12.9.
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Conjugate function is defined for any function f , not only convex functions. Since f ⇤ is the pointwise
supremum of affine functions of y it is closed and convex for any f . Then (12.20a) says:

ȳ 2 ∂ f (x̄) () ȳTx̄ = f (x̄)+ f ⇤(ȳ) (12.20b)

i.e., ȳ is a subgradient of f at x̄ if and only if x̄ attains the maximization in f ⇤(ȳ). When f is CPC, f ⇤⇤ = f
and the property becomes symmetric. We summarize important properties of conjugate functions and
subgradients in the following result taken from [74, Propositions 1.6.1, 5.4.3 and 5.4.4].

Theorem 12.15 (Conjugate function and subgradient). Let f : Rn! (�•,•].

1. Its conjugate f ⇤ is closed and convex.

2. If f is convex then the properness of any one of f , f ⇤, f ⇤⇤ implies the properness of the other two.
In particular if f is proper convex then f ⇤ is CPC (closed proper convex).

3. If f is CPC then f (x) = f ⇤⇤(x) for x 2 R
n.

4. Envelop theorem: If f is CPC then, for any x̄ 2 dom( f ), ȳ 2 dom( f ⇤),

x̄Tȳ = f (x̄)+ f ⇤(ȳ) () ȳ 2 ∂ f (x̄) () x̄ 2 ∂ f ⇤(ȳ)

5. Dual differentiability and optimality: If f is CPC then

(a) f ⇤(y) is differentiable at ȳ 2 int(dom( f ⇤)) if and only if f ⇤(ȳ) := supx2Rn
�
xTȳ� f (x)

�
is at-

tained at a unique x̄ 2 R
n.

(b) The set argminx2Rn f (x) of unconstrained minima of f is equal to ∂ f ⇤(0).
(c) Hence x⇤ is an unconstrained minimizer if and only if x⇤ 2 ∂ f ⇤(0) if and only if 0 2 ∂ f (x⇤).

Theorem 12.15.4 is a form of envelop theorem for CPC functions. An implication of Theorem 12.15.5
is that the dual function of a convex program is differentiable if the minimum of the Lagrangian over the
primal variable is uniquely attained.

Example 12.8 (Differentiable functions). Consider the real-valued convex and differentiable function f :
R

n! (�•,•). The subdifferential of f at x̄ is ∂ f (x̄) = {— f (x̄)}. Then (12.20b) reduces to

—Tf (x̄)x̄ = f (x̄)+ f ⇤(— f (x̄)) = f (x̄)+ sup
x2Rn

⇣
—Tf (x̄)x� f (x)

⌘

which says that the supremum on the right-hand side is attained at x̄ when f is convex, or re-arranging,

f (x) � f (x̄)+—Tf (x̄)(x� x̄), x 2 R
n

which is a property of convexity (or definition of subgradient).

Suppose further that, for all ȳ 2 R
n, the supremum in f ⇤(ȳ) := supx2Rn(ȳTx� f (x)) is attained at

a unique x̄ so that f ⇤ is differentiable on R
n. Then the envelop theorem in Theorem 12.15 reduces to

ȳ = — f (x̄) if and only if x̄ = — f ⇤(ȳ). This says that the derivative of the conjugate function at ȳ,

f ⇤(ȳ) := sup
x2Rn

⇣
xTȳ� f (x)

⌘
= x̄Tȳ� f (x̄)

is the unique maximizer x̄. Moreover the unconstrained supremum of the concave function ȳTx� f (x) of
x is attained at x̄ that satisfies — f (x̄) = ȳ.
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Indicator dX and support functions sX . It is shown in Exercise 12.12 that for any nonempty set X ✓R
n,

the conjugate of the indicator function dX is the support function sX . Since dX is proper, Theorem 12.15
implies that sX is CPC (closed proper convex) as long as X is nonempty. This however does not in itself
imply that dX is itself CPC nor dX = s⇤X . Indeed dX is CPC if and only if X is a closed nonempty convex
set, in which case the conjugate s⇤X of the support function is indeed dX . The results in Exercise 12.12 are
summarized in Table 12.2.

function f conjugate f ⇤ subdifferential ∂ f (x) condition
dX(x) sX(x) NX(x) if X is nonempty convex
dX(x) dX�(y) NX(x) if X is a nonempty convex cone
sX(x) dX(x) {y 2 R

n : xTy = sX(x)} if X is closed nonempty convex

Table 12.2: Indicator function dX(x) := 0 if x 2 X and • otherwise, support function sX(x) := supy2X yTx,
their conjugates and subdifferentials (NX(x) denotes the normal cone of X at x).

For a closed nonempty convex set X we can interpret ∂sX(x) = {y 2 R
n : xTy = sX(x)} as a form of

envelop theorem for the function sX(x) := supy2X yTx. We can also interpret it as a supporting hyperplane.
Indeed fix any x̄2X . Then x := sX(x̄) is a constant and hence ∂sX(x̄) = {y2Rn : x̄Ty = x} is a hyperplane
in R

n. Since x̄Ty x for all y 2 X , the hyperplane ∂sX(x̄) contains X in its “lower” halfspace. If there is
a finite ȳ 2 X that attains the supremum in sX(x̄) := supy2X x̄Ty, then ∂sX(x̄) is a supporting hyperplane
of X at ȳ. See Figure 12.14.












































































































Figure 12.14: For a nonempty closed convex X , ∂sX(x̄) is a supporting hyperplane of X at ȳ.

12.3.3 Subdifferential calculus

The subdifferential of functions of functions is fundamental. In particularly the result on the sum of func-
tions in Theorem 12.17 is used to derive an exact optimality condition for nonsmooth convex optimization
in Chapter 12.5 that underlies the KKT condition. The proof of Theorem 12.17 makes use of the follow-
ing result on the existence of a dual optimal solution that attains strong duality (even if the primal optimal
value is not attained).
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Consider the convex optimization

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, Ax = b (12.21a)

where the nonempty convex set X 0 ✓ R
n is the intersection of a polyhedral set P and a convex set C:

X 0 := P \ C

A 2 R
m⇥n, b 2 R

m, and f : Rn! (�•,•] is an extended real-valued proper convex function. 7 Let the
Lagrangian function be

L(x,l ) := f (x) + lT(Ax�b), x 2 R
n, l 2 R

m

the dual function be d(l ) := infx2X 0 L(x,l ) and the dual problem be

d⇤ := sup
l2Rm

d(l ) (12.21b)

The problem (12.21) is a special case of (12.32) studied in detail in Chapter 12.7.1 when there is no explicit
inequality constraint h(x) 0. The following result is a special case of Theorem 12.26 there (whose proof
does not require Theorem 12.17). It is presented here because it is needed to prove Theorem 12.17 on
subdifferential calculus.

Theorem 12.16 (Slater Theorem). Consider the optimization problem (12.21) with a mixture of polyhe-
dral constraints. Suppose the following conditions hold:

• Convexity: f is proper convex; P is a nonempty polyhedral set and C is a nonempty convex set.

• Finite primal value: f ⇤ >�•.

• Slater condition: There exists x̄ 2 ri(dom( f ))\P\ ri(C) such that Ax̄ = b.

Then

1. f ⇤ = d⇤.

2. The set of dual optimal solutions l ⇤ with d(l ⇤) = d⇤ is nonempty and convex.

Theorem 12.17 is taken from [74, Propositions 5.4.5–5.4.6, p.192]. Its proof makes use of Theorem
12.16 and leads to the requirement of constraint qualifications. They take the form that the intersection
of the effective domains of various polyhedral functions is nonempty (if some of the functions are not
polyhedral, their effective domains are replaced by their relative interiors).

7
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Theorem 12.17 ([74]). 1. Sum of functions. Let fi : Rn! (�•,•], i = 1, . . . ,m, be convex functions.
Suppose F(x) := Âi fi(x) is proper. If, for some m with 1  m  m, the functions fi, i = 1, . . . ,m,
are polyhedral and

�
\m

i=1 dom( fi)
� \ �

\m
i=m+1 ri(dom( fi))

�
6= /0

then F is convex and

∂F(x) = Â
i

∂ fi(x), 8x 2
m\

i=1
dom( fi)

When fi are differentiable this reduces to —F(x) = Âi — fi(x).

2. Chain rule. Let f : Rm! (�•,•] be a convex function and A 2 R
m⇥n. Suppose F(x) := f (Ax) is

proper. If

• either f is polyhedral, or
• there exists an x̃ 2 R

n such that Ax̃ 2 ri(dom( f ))

then F is convex and ∂F(x) = AT∂ f (Ax) for all x 2 R
n. When f is differentiable this reduces to

—F(x) = AT— f (Ax).

Proof. Sum of functions. Fix an x̄2
Tm

i=1 dom( fi). Then x̄2 dom(F). By Lemma 12.14, ∂ fi(x̄) and ∂F(x̄)
are nonempty convex and compact. The proof of ∂F(x̄) ◆ Âi ∂ fi(x̄) needs no assumption; its converse
does. For any ȳi 2 ∂ fi(x̄) we have

fi(x) � fi(x̄)+ ȳTi (x� x̄), x 2 R
n, i = 1, . . . ,m

Hence

F(x) := Â
i

fi(x) � F(x̄)+

 

Â
i

ȳi

!T

(x� x̄), x 2 R
n

i.e., Âi ȳi 2 ∂F(x̄).

For the converse, suppose ȳ 2 ∂F(x̄). Then

min
x2Rn

F(x)� ȳTx � F(x̄)� ȳTx̄ 2 R (12.22)

i.e., the finite minimum on the left-hand side is attained at x̄. To apply Theorem 12.16, we write F(x) =
Âi f (xi) with the constraints xi = x 2 R

n. Then (x̄,xi = x̄, i = 1, . . . ,m) is a minimizer of the following
convex optimization:

f ⇤ = min
x,xi2Rn Â

i
fi(xi)� ȳTx s.t. xi 2 dom( fi), xi = x, i = 1, . . . ,m (12.23a)

Its dual objective function is

d(l ) := min
x2Rn,xi2dom( fi)

Â
i

fi(xi) � ȳTx �Â
i

lT

i (xi� x) (12.23b)
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where l := (l1, . . . ,lm) 2 R
mn. The application of Theorem 12.16 to (12.23) implies that strong duality

holds and that any optimal dual variable l̄i yields a subgradient in ∂ fi(x̄) at x̄.

Specifically X 0 in (12.21) corresponds to the convex constraint

X 0 := P\C :=
�
\m

i=1 dom( fi)
�\�

\m
i=m+1 dom( fi)

�

Clearly a (finite) primal optimal is attained at xi = x = x̄ due to (12.22). The condition in the theorem
guarantees a point xi := x̃ 2 P\ ri(C) such that xi = x := x̃. Theorem 12.16, then implies that strong
duality holds for (12.23) and there is a dual optimal solution l̄ := (l̄1, . . . , l̄m) 2 R

mn. Therefore, from
(12.23), we have

d(l̄ ) := min
x2Rn,xi2dom( fi)

Â
i

⇣
fi(xi)� l̄T

i xi

⌘
�
 

ȳ�Â
i

l̄i

!T

x

For the dual problem maxl d(l ), we must have ȳ = Âi l̄i since the minimization in d(l ) over x is uncon-
strained. Strong duality then implies

d(l̄ ) = f ⇤ = Â
i

⇣
fi(x̄) � l̄T

i x̄
⌘

where the last equality follows because ȳ = Âi l̄i and (x̄,xi = x̄, i = 1, . . . ,m) is a minimizer of (12.23a).
Since we can extend the minimization in d(l ) over xi to R

n, this implies (substituting again ȳ = Âi l̄i)

d(l̄ ) = min
xi2Rn Â

i

⇣
fi(xi)� l̄T

i xi

⌘
= Â

i
min
xi2Rn

⇣
fi(xi)� l̄T

i xi

⌘
= Â

i

⇣
fi(x̄) � l̄T

i x̄
⌘

The last equality means that, for every i, fi(x̄)� l̄T
i x̄ = minxi2Rn

�
fi(xi)� l̄T

i xi
�
, i.e., l̄i 2 ∂ fi(x̄) according

to (12.17b). This complete the proof of part 1.

Chain rule. The proof follows a similar argument as that for part 1. Clearly F is convex since f is. Fix
an x̄ 2 R

n. If Ax̄ 62 dom( f ) then x̄ 62 dom(F) and hence ∂F(x̄) = ∂ f (Ax̄) = /0 by definition. Suppose then
Ax̄ 2 dom( f ). The proof of ∂F(x)◆ AT∂ f (Ax) needs no assumptions; its converse does.

Let x̄ 2 ∂ f (Ax̄)✓ R
m be any subgradient of f at Ax̄. Then

F(x)�F(x̄) = f (Ax)� f (Ax̄) � x̄T(Ax�Ax̄) =
⇣

x̄TA
⌘

(x� x̄), x 2 R
n (12.24)

i.e., ȳ := ATx̄ 2 R
n is in ∂F(x̄). This shows AT∂f (Ax̄)✓ ∂F(x̄).

For the converse (under the assumption in the theorem), suppose ȳ 2 ∂F(x̄). We will show that there
exists an l̄ 2Rm such that l̄ 2 ∂ f (Ax̄) and ȳ = ATl̄ . From the definition (12.17b) of subgradient we have

F(x̄)� ȳTx̄ = min
x2Rn

F(x)� ȳTx 2 R

i.e., the finite minimum of the right-hand side is attained at x̄. Hence (x̄,Ax̄) is a minimizer of the following
constrained convex optimization:

min
(x,z)2Rn+m

f (z)� ȳTx s.t. z 2 X 0 := dom( f ), z = Ax (12.25)
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If f is polyhedral, then X 0 := dom( f ) =: P is a polyhedral set. Otherwise X 0 =: C is a convex set since
f is a convex function. In the former case the assumption that F is proper means that there exists x̃ 2 R

n

such that z̃ := Ax̃ 2 X 0. In the latter case the assumption in the theorem means that there exists x̃ 2Rn such
that z̃ := Ax̃ 2 ri(X 0). In both cases Theorem 12.16 implies that strong duality holds and there exists an
optimal dual variable l̄ 2 R

m that attains the dual optimal value:

min
x2Rn,z2dom( f )

⇣
f (z)� l̄Tz� (ȳ�ATl̄ )Tx

⌘
= f (Ax̄)� ȳTx̄

where the left-hand side is the dual function of (12.25) evaluated at the dual optimal point l̄ and the right-
hand side is the primal optimal value attained at (x̄,Ax̄). Since the minimization over x is unconstrained
we must have ȳ = ATl̄ . Clearly we can extend the minimization over z to R

m and hence we have

min
z2Rm

f (z)� l̄Tz = f (Ax̄)� ȳTx̄ = f (Ax̄)� l̄T(Ax̄)

i.e., l̄ 2 ∂ f (Ax̄) by definition (12.17b). This completes the proof that ∂F(x) = AT∂ f (Ax).

Theorem 12.18. 1. Finite max. Let F(x) := max{ f1(x), . . . , fm(x)} where fi : Rn!R are real-valued
(and hence proper) convex functions. For any x 2 R

n let

I(x) := {i : fi(x) = f (x)}

Then

dF(x;v) = max
i2I(x)

d fi(x;v), 8x,v 2 R
n

∂F(x) = conv(∂ fi(x) : i 2 I(x)) , 8x 2 R
n

2. Arbitrary max. Let F(x) := maxy2Y f (x,y) where f : Rn⇥Y ! R is a real-valued function and
Y ✓ Rm. Suppose for each y2Y , f (·,y) is convex and hence continuous on R

n. Fix an x̄ and suppose
there exists a neighborhood U(x̄) of x̄ such that for each x 2U(x̄), f (x, ·) is upper semicontinuous
on Y . Let Y (x) := {y : f (x,y) = F(x)}. Then

dF(x̄;v) = sup
y2Y (x̄)

dx f (x̄,y;v), 8v 2 R
n

∂F(x̄) = cl(conv(∂x f (x̄,y) : y 2 Y (x̄)))

where dx f (x,y;v) and ∂x f (x,y) are respectively the directional derivative and subdifferential of f
with respect to x.

Remark 12.4. Theorem 12.18 is used in Exercise 13.13 to derive the subdifferentials of dual functions
defined through minimization over primal variables. If f is real-valued and jointly continuous in (x,y), Y
is compact Theorem 7.19 is generalized in Theorem 12.18 to the case where f may not be continuous in
x, X may not be compact, and X⇤(p) may not be a singleton.

1. Theorem 12.18.1 is proved in e.g. [74, Example 5.4.5, p.199]. Since fi are real-valued convex and
hence proper and continuous on dom( f ) = R

n, F is also a real-valued convex continuous function.
Since ∂ fi(x) is nonempty convex compact by Lemma 12.14, so is ∂F(x).
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2. Theorem 12.18.2 is taken from [173, Proposition 4.5.2, p.76].

We next use the tools developed in Chapters 12.3.1, 12.3.2 and 12.3.3 to derive an optimality conditions
for general convex optimization, following the same structure of Chapter 7.3.

12.4 Characterization: saddle point = p-d optimality + strong du-
ality

In this section we present a primal-dual characterization of an optimal solution when some or all of the
constraints are specified explicitly and can be dualized. In smooth optimization the Saddle-point Theorem
7.12 states that a saddle point attains primal-dual optimality and strong duality. We show that this charac-
terization extends directly to the nonsmooth setting, without the machinery in Chapters 12.3.1, 12.3.2 and
12.3.3 for nonsmooth analysis.

Consider the optimization problem where the feasible set is partially specified by constraint functions:

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, g(x) = 0, h(x) 0 (12.26)

where X 0 ✓ R
n is a nonempty set and f : Rn! (�•,•], g : Rn! (�•,•]m and h : Rn! (�•,•]l are

extended real-valued functions. As for the smooth case in Chapter 7.3.1, we do not assume X 0 to be a
convex set or f ,g,h to be convex functions. Therefore (12.26) is generally a nonconvex problem.

Let the Lagrangian function be

L(x,l ,µ) := f (x) + lTg(x) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l (12.27a)

the dual function be

d(l ,µ) := inf
x2X 0

L(x,l ,µ) (12.27b)

and the dual problem be

d⇤ := sup
l ,µ�0

d(l ,µ) (12.27c)

Let X := {x 2 R
n : x 2 X 0,g(x) = 0, h(x)  0} denote the primal feasible set and Y := {(l ,µ) 2 R

m+l :
µ � 0} the dual feasible set. The primal problem (12.26) is the same as (7.22) in Chapter 7.3.1 except the
cost and constraint functions are allowed to be nonsmooth and extended real-valued. The dual problem
(12.27) partially dualizes the constraints, in contrast to the dual problem (7.23). These differences are
immaterial (see Remark 7.3). The Saddle-point Theorem 7.12 applies directly in the nonsmooth setting
here.

Even though we allow the cost and constraint functions f ,g,h to be extended real-valued, for simplic-
ity, we require a saddle point to attain a finite value of the Lagrangian L by definition.
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Definition 12.4 (Saddle point for extended real-value functions). A point (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is called a
saddle point of the Lagrangian L if it satisfies

max
(l ,µ)2Y

L(x⇤,l ,µ) = L(x⇤,l ⇤,µ⇤) = min
x2X 0

L(x,l ⇤,µ⇤) 2 R (12.28)

In particular this common value L(x⇤,l ⇤,µ⇤) is finite.

With this finiteness requirement, Definition 12.4 is equivalent to Definition 7.7 for real-valued func-
tions f ,g,h, and Theorem 7.12 on primal-duality optimality and strong duality extends directly to the
nonsmooth setting.

Theorem 12.19 (Saddle-point Theorem 7.12). Consider the primal problem (12.26) and its dual (12.27).
A point (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is a saddle point that satisfies (12.28) if and only if

1. It is optimal-dual optimal, i.e., x⇤ is optimal for (12.26) and (l ⇤,µ⇤) is optimal for (12.27).

2. The duality gap is zero at (x⇤,l ⇤,µ⇤), i.e.,

d(l ⇤,µ⇤) = d⇤ = f ⇤ = f (x⇤) (12.29)

In particular a saddle point (x⇤,l ⇤,µ⇤), if it exists, attains both the primal and dual objective values
( f ⇤,d⇤).

Proof. The proof of Theorem 7.12 does not use any smoothness properties of the cost and constraint
functions f ,g,h, except that they are real-valued. In particular, when (x⇤,l ⇤,µ⇤) 2 X 0 ⇥Y is a saddle
point, the proof there uses Remark 7.2 to deduce that x⇤ 2 X is primal feasible. This conclusion still holds
here due to the finiteness requirement in Definition 12.4. Since the weak duality lemma 7.11 applies to
extended real-valued functions, it can be checked that the argument in the proof of Theorem 7.12 goes
through in the nonsmooth setting.

12.5 Characterization: generalized KKT condition

Consider the convex optimization

min
x2Rn

f (x) s.t. x 2 P\C (12.30)

where P✓ R
n is a nonempty polyhedral set, C ✓ R

n is a nonempty convex set, and f : Rn! (�•,•] is a
proper convex extended real-valued function. In particular f may not be differentiable, though subgradi-
ents always exist since f is convex. We now derive an exact characterization of primal optimal solutions
when they exist. As we will see in Chapter 12.8, when the feasible set P\C is specified explicitly by equal-
ity and inequality constraints, the characterization reduces to the KKT condition for nonsmooth convex
problems.
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Corollary 12.13 in Chapter 12.3.2 says that a vector x⇤ is an unconstrained minimizer of an extended
real-valued convex function f if and only if 0 2 ∂ f (x⇤). For constrained minimization (12.30) this con-
dition is generalized to the existence of a subgradient y⇤ 2 ∂ f (x⇤) such that �y⇤ is in the normal cone
NX(x⇤) of the feasible set P\C at x⇤. Constrained optimization also requires a constraint qualification
which is a kind of feasibility condition, e.g., dom( f )\P\ ri(C) is nonempty if f is polyhedral. If f is not
polyhedral then dom( f ) is replaced by ri(dom( f )).

Theorem 12.20 (Generalized KKT condition). Consider the convex optimization (12.30) with a nonempty
polyhedral set P, a nonempty convex set C, and a proper convex function f . Suppose one of the following
constraint qualifications holds, depending on whether f is polyhedral:

1. ri(dom( f ))\P\ ri(C) 6= /0;

2. f is polyhedral and dom( f )\P\ ri(C) 6= /0;

Then x⇤ 2 P\C is optimal for (12.30) if and only if

0 2 ∂ f (x⇤) + NP(x⇤) + NC(x⇤) (12.31a)

i.e., there exists a subgradient y⇤ 2 ∂ f (x⇤) such that �y⇤ 2 NP(x⇤)+NC(x⇤), or equivalently

y⇤T (x� x⇤) � 0, 8x 2 P\C (12.31b)

Proof. The proof is from [74, Proposition 5.4.7, p.195]. The problem (12.30) is equivalent to the uncon-
strained minimization:

min
x2Rn

f (x) + dP(x) + dC(x)

where the indicator function dX 0(x) = 0 if x 2 X 0 and • if x 62 X 0. Corollary 12.13 in Chapter 12.3.2 says
that x⇤ 2P\C is optimal if and only if 02 ∂ ( f (x⇤)+dP(x⇤)+dC(x⇤)). The stated constraint qualifications
allow us to apply the result on the sum of functions in Theorem 12.17 to conclude that x⇤ 2P\C is optimal
if and only if

0 2 ∂ f (x⇤) + ∂dP(x⇤) + ∂dC(x⇤) = ∂ f (x⇤) + NP(x⇤) + NC(x⇤)

where the second equality follows from Table 12.2.

Theorem 12.20 characterizes an optimal solution x⇤ but does not guarantee its existence. See Exam-
ples 7.10 and 7.11 in Chapter 7 for cases where primal optimal solutions do not exist even though the
constraint qualifications in Theorem 12.20 are satisfied. In both examples the feasible set is not com-
pact, but the primal optimal objective values are finite, strong duality holds, and dual optimal solutions
exist. As discussed in Remark 12.3 we only need one subgradient y⇤ 2 ∂ f (x⇤) to certify the optimality
of x⇤ and does not require yT(x� x⇤) � 0 to hold for all y 2 ∂ f (x⇤). The theorem is proved by reducing
the constrained minimization (12.30) to an unconstrained minimization using the indicator function dX .
It illustrates the simplicity of argument based on the set theoretic concepts of nonsmooth optimization
introduced in Chapter 12.1 and the concept of subdifferentials introduced in Chapters 12.3.2 and 12.3.3.
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Remark 12.5 (Real-valued f ). 1. When f : Rn ! R is real-valued then ri(dom( f )) = dom( f ) = R
n

and the constraint qualifications in Theorem 12.20 reduce to

P\ ri(C) 6= /0

whether or not f is polyhedral.

2. If the cost function f is differentiable then y⇤ and ∂ f (x⇤) in the optimality condition in (12.31) can
be replaced by — f (x⇤).

Similarly for other duality and optimality conditions.

When the feasible set X := P\C is a general convex set X , Theorem 12.20 on the characterization of
(primal) optimal solutions and Theorem 12.25 on its existence are almost all that we can say without more
knowledge about X . When X is at least partially specified by affine equalities and convex inequalities, we
characterize saddle points and strong duality in Theorem 12.19 of Chapter 12.4 and the existence of dual
optimal solutions in the Slater Theorem 12.26 of Chapter 12.7.1. When the feasible set X is fully specified,
all constraints can be dualized. When the normal cones NP(x⇤) and NC(x⇤) can be explicitly derived, such
as those in Theorems 12.3, 12.10 and Corollary 12.11, the exact optimality condition (12.31) reduces to
KKT conditions; see Chapter 12.8.

12.6 Existence: primal optimal solutions

Theorem 12.20 of Chapter 12.5 provides an exact characterization of primal optimal solutions and the
Saddle-point Theorem 12.19 of Chapter 12.4 characterizes saddle points as primal-dual optimal solutions
that close the duality gap. They do not ensure that primal or dual optimal solutions exist. For smooth
optimization Theorem 7.14 states that the primal optimal value is attained if the cost function is continuous
and the feasible set is compact. It is a consequence of the Weierstrass theorem. In this section we extend
this result to a nonsmooth setting where the continuity of the cost function is replaced by the closedness
of f (recall that a function f : Rn! [�•,•] is closed if and only if f is lsc on R

n).

A function f : Rn! (�•,•] is called radially unbounded if limk f (xk) = • for every sequence {xk}
with kxkk ! •. All nonempty level sets of a radially unbounded function are bounded. The next result
from [74, Proposition 3.2.1, p.119] provides a sufficient condition for the existence of optimal solutions
x⇤ 2 R

n for unconstrained optimization.

Theorem 12.21 (Weierstrass Theorem). Consider

min
x2Rn

f (x)

where f : Rn! (�•,•] is closed and proper. If any of the following conditions holds:

1. dom( f ) is bounded; or

2. There exists g 2 R such that the level set Vg := {x : f (x) g} is nonempty and bounded; or
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3. f is radially unbounded;

then the set X⇤ ✓ R
n of unconstrained minima of f is nonempty and compact.

A constrained optimization of f over a nonempty closed subset X ✓ R
n can be turned into an un-

constrained optimization of the extended real-valued function fX(x) : Rn ! [�•,•] defined in (12.16).
An optimality condition then follows immediately from Theorem 12.21 and the fact that fX is closed if
dom( f ) is closed and f is lower semicontinuous on dom( f ) (Exercise 12.15).

Corollary 12.22 (Sufficient optimality condition). Consider

min
x2Rn

f (x) s.t. x 2 X

where X ✓ R
n is nonempty and f : X ! R is real-valued (and therefore proper). If X is closed, f is lower

semicontinuous at every x 2 X , and one of the following holds:

1. X is bounded; or

2. There exists g 2 R such that the level set Vg := {x : f (x) g} is nonempty and bounded; or

3. f is radially unbounded;

then the set X⇤ ✓ X of minima of f over X is nonempty and compact.

CPC function f . Theorem 12.21 and Corollary 12.22 guarantee that the minimum of f is attained (at a
finite point in R

n) when there is a nonempty level set that is bounded. When level sets are not bounded,
the set X⇤ of constrained minima can be exactly characterized if f is not only closed and proper but also
convex and X is closed and convex. The key idea is that x cannot wander to infinity within a level set Vg
while staying within its feasible set X . We now make this intuition precise.

Definition 12.5 (Recession cone). Let X ✓ R
n be a nonempty convex set.

1. A vector d 2 R
n is a direction of recession of X if x+ad 2 X for all x 2 X and all a � 0.

2. The recession cone of X , denoted by rc(X), is the set of all directions of recession of X .

Lemma 12.23. [74, Proposition 1.4.1; p.43] Let X ✓ R
n be a nonempty closed convex set. Then

1. rc(X) is closed and convex.

2. d 2 rc(X) as long as there exists one x 2 X such that x+ad 2 X for all a � 0.

3. rc(X) contains a nonzero direction if and only if X is unbounded.

The next result allows us to define the direction of recession for a closed proper convex (CPC) function
f in terms of its level set.
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Lemma 12.24. [74, Proposition 1.4.5; p.51] Consider a closed proper convex function f : Rn! (�•,•]
and its level sets

Vg := { x : f (x) g }, g 2 R

Then:

1. All nonempty level sets Vg have the same recession cone rc(Vg) = {d : (d,0) 2 rc(epi( f ))}.

2. If one nonempty level set Vg is compact, then all level sets are compact.

In view of the lemma we can define, for a CPC function f : Rn ! (�•,•], the recession cone of f
as rc( f ) := rc(Vg) for any nonempty level set Vg . A vector d 2 rc( f ) is called a direction of recession
of f . The next result from [74, Proposition 3.2.2; p.120] characterizes exactly the set X⇤ of minima of a
constrained optimization.

Theorem 12.25. [74, Proposition 3.2.2; p.120] Consider

min
x2Rn

f (x) s.t. x 2 X

where X ✓ R
n is nonempty closed and convex, f : Rn ! (�•,•] is closed proper convex, and X \

dom( f ) 6= /0. The set X⇤ ✓ X of minima of f over X is nonempty, convex and compact if and only if
X and f have no common nonzero direction of recession.

Theorem 12.25 is used in Exercise 13.13 to derive the subdifferentials of dual functions defined through
minimization over primal variables. If X and f in the theorem do have common nonzero directions of
recession, then either the optimal solution set is empty (infeasible problem) or else it is nonempty and
unbounded (optimal value may be finite or infinite and may or may not be attained). This is because for
any common nonzero direction d of recession in rc(X)\ rc( f ), there is a feasible point x 2 X such that
x +ad remains in X and in the level set Vg as a ! •. Moreover this holds for all nonempty level sets Vg
by Lemma 12.24. Therefore either limg!�•Vg 6= /0 (limit exists because Vg are nested) or Vg = /0 for small
enough g . In the former case there is a d 2 rc(X)\ rc

�
limg!�•Vg

�
and the primal solution is not attained,

e.g., X = R, f (x) = x and d = �1. Otherwise there is a smallest g0 for which Vg0 6= /0 and the primal
optimal solution set is nonempty and unbounded since the intersection of rc(X) and rc(Vg0) is nonempty
(Exercise 12.16), e.g., X = R, f (x) = max{0,x} and d =�1.

Example 12.9 (Linear program). Consider the linear program (7.53a) reproduced here:

f ⇤ := min
x2Rn

cTx s.t. Ax� b

where c 2 R
n, A 2 R

m⇥n and b 2 R
m. If the feasible set X is bounded or if there is a g 2 R such that

the level set Vg is nonempty and bounded, then Corollary 12.22 implies that the set X⇤ ✓ X of optimal
solutions is nonempty and compact. Consider then the case where X is unbounded and every nonempty
level set Vg := {x 2 R

n : cTx  g} is unbounded. This means that both rc(X) and rc( f ) contain nonzero
directions of recession (Lemma 12.23). Suppose f ⇤ is finite.

Suppose d 2 rc(X) and d 6= 0. Then there are two mutually exclusive cases:
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1. d 62 rc( f ) and cTd > 0: In this case Theorem 12.25 implies the existence of an optimal solution x⇤;
moreover the set X⇤ of optimal solutions is compact.

2. d 2 rc( f ) and cTd = 0: In this case Lemma 7.20 shows that an optimal solution x⇤ exists but X⇤

may not be compact.

To show that these are the only two possible cases when f ⇤ is finite, suppose d 2 rc(X)\ rc( f ) and d 6= 0,
i.e., for all x 2 X \Vg and all a � 0, x+ad 2 X \Vg . This means A(x+ad)� b and cTx+acTd  g for
all g � 0. This is possible if only if

Ad � 0, cTd  0

If cTd < 0, then letting a!• the cost cT(x+ad)!�•, contradicting f ⇤ >�•. Therefore if d 2 rc(X)
(i.e., Ad � 0), then either d 2 rc( f ) and cTd = 0, or d 62 rc( f ) and cTd > 0.

12.7 Existence: dual optimal solutions and strong duality

In Chapter 12.6 we study the existence of primal optimal solutions (Corollary 12.22 and Theorem 12.25).
In this section we study dual optimality. In smooth optimization the Slater Theorem 7.15 states that a
dual optimal solution exists and strong duality holds if the optimal primal value is finite (even if it is not
attained) and the Slater condition is satisfied. We extend this assertion to the nonsmooth setting in Chapter
12.7.1 and provide a detailed proof in 12.7.2 and 12.7.3 (which also proves Theorem 7.15). These results
are mostly adapted from [74, Chapters 4 and 5].

12.7.1 Slater Theorem

Consider the convex optimization (12.26) where the feasible set is specialized to be the intersection of a
polyhedral set and a convex set and the equality constraint g(x) = 0 is polyhedral:

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, Ax = b, h(x) 0 (12.32a)

where the nonempty convex set X 0 ✓ R
n is the intersection of a polyhedral set P and a convex set C:

X 0 := P \ C

A 2 R
m⇥n, b 2 R

m, and f : Rn! (�•,•] and h : Rn! (�•,•]l are extended real-valued proper convex
functions. 8 Suppose, for some l with 0  l̄  l, hi, i = 1, . . . , l̄, are polyhedral functions. In contrast to
(12.26) the polyhedral equality constraint Ax = b ensures that the feasible set of (12.32a) is convex.

Let the Lagrangian function be

L(x,l ,µ) := f (x) + lT(Ax�b) + µTh(x), x 2 R
n, l 2 R

m, µ 2 R
l

8
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the dual function be

d(l ,µ) := inf
x2X 0

L(x,l ,µ)

and the dual problem be

d⇤ := sup
l ,µ�0

d(l ,µ) (12.32b)

The following result from [74, Proposition 5.3.6, p.175] extends the Slater Theorem 7.15 to the nonsmooth
setting (see also Exercise 12.20).

Theorem 12.26 (Slater Theorem). Consider the optimization problem (12.32) with a mixture of polyhe-
dral and nonpolyhedral constraints. Suppose the following conditions hold:

• Convexity: f ,h are proper convex; P is a nonempty polyhedral set and C is a nonempty convex set.

• Finite primal value: f ⇤ >�•.

• Slater condition: There exists x̄ 2 ri(dom( f ))\P\ ri(C) such that Ax̄ = b, hi(x̄)  0, i = 1, . . . , l̄,
and hi(x̄) < 0 for i = l̄ +1, . . . , l.

Then

1. f ⇤ = d⇤.

2. The set of dual optimal solutions (l ⇤,µ⇤) with d(l ⇤,µ⇤) = d⇤ is nonempty.

9

Remark 12.6 (Real-valued functions). When f and h are real-valued the constraint qualification for strong
duality in Theorem 12.26 can be slightly weakened to [74, Proposition 5.3.6, p.175]:

1. There exists x̃ 2 P\ ri(C) such that Ax̃ = b and hi(x̃) 0, i = 1, . . . , l̄; and

2. There exists x̄ 2 P\C such that Ax̄ = b, hi(x̄) 0, i = 1, . . . , l̄, and hi(x̄) < 0 for i = l̄ +1, . . . , l.

Instead of the problem (12.32) where the constraints are explicitly decomposed into polyhedral con-
straints x 2 P and Ax = b and (possibly nonpolyhedral) convex constraints x 2 C and h(x)  0, we will
prove Theorem 12.26 in the following simpler form:

f ⇤ := min
x2Rn

f (x) s.t. x 2 X 0, h(x) 0 (12.33a)

9
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where X 0 ✓R
n is a nonempty convex set, and f : Rn! (�•,•] and h : Rn! (�•,•]l are proper convex

extended real-valued functions. Let the Lagrangian function be

L(x,µ) := f (x) + µTh(x), x 2 R
n, µ 2 R

l

the dual function be

d(µ) := inf
x2X 0

L(x,µ)

and the dual problem be

d⇤ := sup
µ�0

d(µ) (12.33b)

This problem is equivalent to (12.32) since X 0 can take the form X 0 = P\C for a convex set C and Ax = b
is equivalent to Ax  0,Ax � 0. For simplicity, however, we will prove the following version where the
Slater condition is less refined than that in Theorem 12.26.

Theorem 12.27 (Slater theorem). Consider the convex optimization problem and its dual (12.33). Suppose
the following conditions hold:

• Convexity: f ,h are proper convex; X 0 is a nonempty convex set.

• Finite primal value: f ⇤ >�•.

• Slater condition: one of the following constraint qualifications holds:

CQ1 : There exists x̄ 2 dom( f )\X 0 such that h(x̄) < 0;10 or
CQ2 : The functions hi, i = 1, . . . , l, are affine and there exists x̄ 2 ri(dom( f ))\ ri(X 0) such that

h(x̄) 0.

Then

1. f ⇤ = d⇤.

2. The set of dual optimal solutions µ⇤ with d(µ⇤) = d⇤ is nonempty.

3. If CQ1 holds then the set of optimal µ⇤ is nonempty, convex and compact.

Theorem 12.27 is taken from [74, Propositions 5.3.1, 5.3.2, p.168] with a small modification that
allows f and g to be extended real-valued functions. Due to weak duality d⇤  f ⇤, finite f ⇤ means that
the dual problem is either finite feasible or infeasible. The constraint qualification CQ1 or CQ2 in the
theorem ensures strong duality and the existence of dual optimal solutions. The boundedness, and hence
compactness, of the dual optimal set holds generally only when there is no equality constraint, i.e., for
problem (12.33), but may not hold for (12.32) (see Exercise 7.19 for proof). 11

The proof of Theorem 12.27 illustrates the typical arguments in this type of results. In particular it
shows how constraint qualifications ensures that a nonvertical separating hyperplane exists between two
disjoint convex sets. The normal vector of the hyperplane defines a dual optimal solution. We next develop
over Chapters 12.7.2 and 12.7.3 the proof of Theorem 12.27, adapted from [74, Chapters 4 and 5].

10CQ1 is customarily called the Slater condition.
11
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12.7.2 MC/MC problems

The proof of strong duality relies on the following geometric idea. Let M ✓ R
n+1 be a nonempty set and

let (u,w) with u 2 R
n and w 2 R denote a variable in R

n+1. Define the primal problem:

Primal (minimum common) : w⇤ := inf
(0,w)2M

w (12.34a)

where w⇤ := • if (0,w) 62M for any w 2 R. As we will see below duality expresses the situation where
there exists a nonvertical hyperplane that contains the set M in its “upper” closed halfspace; see Figure
12.15. The normal to the hyperplane defines a dual optimal solution. To describe this, recall that a












































































































(a) Nonconvex M










































































































 (b) Convex M

Figure 12.15: The primal and dual problems (12.34) defined by the nonempty set M. Their optimal values
are (w⇤,d⇤) respectively. The normal (µ⇤,b ⇤ := 1) of the nonvertical hyperplane attains the dual optimal
solution µ⇤, i.e., d(µ⇤) = d⇤. (a) Nonzero duality gap d⇤ < w⇤ when M is not convex. (b) Zero duality
gap d⇤ = w⇤ when M is convex even though M is nonconvex. In both cases, 0 2 ri(DM) which ensures that
b ⇤ > 0 (nonvertical hyperplane).

hyperplane in the (u,w)-space specified by a normal (µ,1) 2 R
n+1 and an w-intercept x 2 R is given by

{(u,w) 2 R
n+1 : µTu+w = x}

We desire µTu+w� x for all (u,w)2M, corresponding to containing M in the “upper” halfspace. Hence
define

d(µ) := inf
(u,w)2M

µTu + w

and the dual problem:

Dual (maximum crossing) : d⇤ := sup
µ2Rn

d(µ) (12.34b)
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If the normal to the hyperplane is (µ,0), i.e., b ⇤ = 0 in Figure 12.15, then the hyperplane is vertical and
there is no finite maximum crossing d⇤. It is straightforward to show weak duality: d⇤  w⇤ (Exercise
12.17).

It is easier to work with the positive extension M of M defined by:

M := M + {(0,w) : w� 0} = {(u,w) 2 R
n+1 : w� w̄ for some (u, w̄) 2M} (12.35)

because M ignores nonconvexity in the “upper” part of M which does not affect the minimization in
(12.34a). We can define (12.34) equivalently by replacing M with M:

Primal (minimum common) : w⇤ := inf
(0,w)2M

w (12.36a)

Dual (maximum crossing) : d⇤ := sup
µ2Rn

d(µ) (12.36b)

where d(µ) := inf(u,w)2M µTu+w.

The starting point for our proof is the following condition from [74, Propositions 4.4.1 and 4.4.2,
p.150] for d⇤ = w⇤ and the existence of a dual optimal solution µ⇤. Constraint qualifications in convex
optimization such as the Slater condition arise from the requirement in the next lemma that the origin be
in the relative interior of the projection of M (or M) onto the u-space; see Figure 12.15 and its caption.
Specifically, define DM to be the projection of M on to the u-space:

DM := {u 2 R
n : (u,w) 2M for some w 2 R} (12.37)

We may write D for DM if M is understood from the context. Then the relative interior of M and that of
DM are related as:

ri(M) = {(u,w) 2 R
n+1 : u 2 ri(DM), w > w̄ for some (u, w̄) 2M}

Lemma 12.28 (MC/MC strong duality). Suppose

• Finite primal value: w⇤ >�•.

• Convexity: M is convex.

• Constraint qualification: 0 2 ri(DM).

Then

1. d⇤ = w⇤ in (12.36).

2. There exists a dual optimal solution µ⇤ 2 R
n with d(µ⇤) = d⇤.

3. If 0 2 int(DM) then the set of dual optimal solutions is nonempty, convex and compact.
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Note that the lemma only requires M to be convex, even if M is not. It guarantees that the dual optimal
value d⇤ is attained at some µ⇤ 2 R

n, but does not guarantee that the primal optimal value w⇤ is attained
even though w⇤ is finite, i.e., (0,w⇤) may be in cl(M) but not in M. The lemma is proved by constructing
a nonvertical proper separating hyperplane defined by its normal (µ⇤,1) that establishes the existence of
an optimal dual vector µ⇤ (the hyperplane is called proper if it does not fully contain the convex set M).
The requirement 02 ri(DM) ensures that the hyperplane is nonvertical so that the maximum crossing point
is finite. We provide the proof of parts 1 and 2 of Lemma 12.28 from [74, Propositions 4.4.1, p.150] to
illustrate the main ingredients of duality proofs. It shows the critical role of the constraint qualification
0 2 ri(DM). Part 3 of the lemma is proved in [74, Proposition 4.4.2, p.151] and omitted.

Proof of Lemma 12.28, parts 1 and 2. We prove the lemma in four steps.

Step 1: (0,w⇤) 62 ri(M). We claim that w⇤ is finite, i.e., �• < w⇤ < •, and (0,w⇤) 62 ri(M). The first
inequality follows from the first assumption of the lemma. The constraint qualification says that there
exists w̄ such that (0, w̄) 2 M, and hence w⇤ := inf(0,w)2M w  w̄ < •. This confirms that w⇤ is finite.
We claim that (0,w⇤) 62 ri(M) because otherwise, (12.37) implies that w⇤ > w̄ for some (0, w̄) 2 M, a
contradiction.

Step 2: H separating (0,w⇤) from and not containing M. The separating hyperplane Theorem 7.8 then
implies that there exists a hyperplane that passes through (0,w⇤) and separates (0,w⇤) from M (Theorem
7.8 extends easily to the case where int(X) is replaced by ri(X)). Specifically there exists (µ,b ) 2 R

n+1

such that

bw⇤  µTu+bw, 8(u,w) 2M

Moreover the separating hyperplane H := {(u,w) 2 R
n+1 : µTu+bw = bw⇤} does not fully contain the

convex set M (follows from [74, Proposition 1.5.5, p.74]). This means that

bw⇤  inf
(u,w)2M

µTu+bw < sup
(u,w)2M

µTu+bw (12.38)

Step 3: b > 0. We claim that b > 0. Clearly b cannot be negative because otherwise, since there exists
(0, w̄) 2M (constraint qualification in the lemma), the definition (12.35) of M implies that (0, w̄+w0) 2M
as w0 ! •. Hence inf(u,w)2M

�
µTu+bw

�
 b (w̄ + w0)! �•, contradicting (12.38). Suppose for the

sake of contradiction that b = 0. Then (12.38) implies

0  inf
(u,w)2M

µTu  inf
u2DM

µTu

Since 0 2DM from the constraint qualification, this infimum is attained at the origin u = 0 over the convex
set DM (DM is convex since it is a projection of the convex set M). But 0 2 ri(DM), which is possible
only if µTu is constant (and equal to 0) over DM, for otherwise the minimum will be attained at a relative
boundary point of the convex set DM. This contradicts the strict inequality in (12.38) with b = 0, i.e.,
it contradicts the fact that the separating hyperplane H does not fully contain the convex set M. Hence
b > 0.

Step 4: strong duality and dual optimality. Since b > 0, we can renormalize to define the hyperplane by
µ⇤ := µ/b and b ⇤ = 1. Substitute b ⇤ = 1 into (12.38) to get

w⇤  inf
(u,w)2M

µ⇤Tu+w =: d(µ⇤)  d⇤
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where the last inequality follows from the definition (12.36b) of d⇤. Weak duality w⇤ � d⇤ then implies
that w⇤ = d⇤. This also shows d(µ⇤) = d⇤, i.e., the dual optimal is attained at µ⇤. This completes the proof
of parts 1 and 2 of the lemma.

From the proof of the lemma the set of all optimal dual variables µ⇤ that attains strong duality is

Q⇤ =

(
µ⇤ 2 R

n : d(µ⇤) := inf
(u,w)2M

µ⇤Tu+w = w⇤
)

(12.39)

Therefore every dual optimal µ⇤ 2 Q⇤ defines a hyperplane H := {(u,w) 2 R
n+1 : µ⇤Tu + w = w⇤} that

passes through (0,w⇤) and separates it from cl(M) (which resides in the “upper” halfspace of H) in a way
that there is a point (u,w) 2 cl(M) that lies on H. 12 See Figure 12.16.












































































































Figure 12.16: Every dual optimal µ⇤ 2Q⇤ defines a hyperplane H that passes through (0,w⇤) and separates
it from cl(M). The yellow region shows all the hyperplanes defined by Q⇤.

Lemma 12.28 applies to an arbitrary nonempty set M ✓ R
n. The formulation of the primal and dual

problems (12.36) is very general. In the following we will apply the lemma to prove strong duality of
constrained convex optimization by specifying M in terms of the cost and constraint functions f ,h.

12.7.3 Slater Theorem: proof

We now prove Theorem 12.27 with an explicit description of dual optimal solutions. Let X 0 ✓ R
n be a

nonempty convex set and f : Rn! (�•,•] and h : Rn! (�•,•]l be proper convex extended real-valued
functions. Consider the convex optimization problem (12.33), reproduced here:

Primal: f ⇤ := inf
x2Rn

f (x) s.t. x 2 X 0, h(x) 0 (12.40a)

Dual: d⇤ := sup
µ�0

d(µ) (12.40b)

12
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where d(µ) := infx2X 0 L(x,µ) and L(x,µ) := f (x)+ µTh(x), x 2 R
n, µ 2 R

l , is the Lagrangian. We can
treat the dual function d : Rl ! [�•,•] as an extended real-valued function defined as

d(µ) :=
⇢

infx2X 0 f (x)+ µTh(x), µ � 0
�•, otherwise (12.40c)

The feasible set is X := {x 2 X 0 : h(x) 0}✓ R
n. The dual function d(µ) is always concave for arbitrary

f and h.

To apply Lemma 12.28 define

M := {(u,w) 2 R
l+1 : u� h(x), w� f (x) for some x 2 X 0} = M (12.41a)

and its projection onto the u-space:

DM := {u 2 R
l : (u,w) 2M for some w 2 R} = {u 2 R

l : u� h(x) for some x 2 X 0} (12.41b)

The extended set M defined by X 0 differs slightly from M in Figure 12.15 in that u 2 R
l extends to the

“right” indefinitely; see Figure 12.17. In the result below constraint qualifications imply that the primal











































































































(a) Nonconvex M












































































































(b) Convex M

Figure 12.17: The (u,w) space is defined by the feasible set X which defines M = M (cf. M in Figure
12.15). (Figure change: Rn! R

l .)

problem (12.40a) is feasible so that M = M is nonempty. Indeed if x̄ is a feasible point for (12.40a) then
(0, f (x̄)) 2M. Moreover M is convex since X 0 is a convex set and f ,h are convex functions.

The primal and dual problems (12.36) in terms of M are then

Primal: f ⇤ := inf
(0,w)2M

w (12.42a)

Dual: d⇤ := sup
µ2Rl

d(µ) (12.42b)
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where the dual function d(µ) := inf(u,w)2M µTu + w can also be equivalently described in terms of M.
Indeed the problems in (12.42) are equivalent to those in (12.40) in the sense that an optimal primal-dual
solution of one problem can be mapped into an optimal primal-dual problem of the other and they attain
the same optimal values (Exercise 12.18). In particular, we can restrict µ to be nonnegative in (12.42b)
and then the two definitions of d(µ) are equivalent because

inf
(u,w)2M

µTu+w = inf
x2X 0

µTh(x)+ f (x), µ � 0

When f ⇤ is finite (�• < f ⇤ < •) define

Q⇤ := {µ 2 R
l : µ � 0, f (x)+ µTh(x) � f ⇤,8x 2 X 0} (12.43)

The next result proves Theorem 12.27. It shows that Q⇤ is the set of all optimal dual variables µ⇤ � 0 that
attain strong duality, d(µ⇤) � f ⇤, and provides conditions for Q⇤ to be nonempty, convex and compact.
The proof shows how a constraint qualification in terms of h ensures that the requirement 0 2 ri(DM) in
Lemma 12.28 is satisfied.

Theorem 12.29 (Slater Theorem 12.27). Consider the convex optimization problem and its dual (12.40).
Suppose the following conditions hold:

• Convexity: f ,h are proper convex; X 0 is a nonempty convex set.

• Finite primal value: f ⇤ >�•.

• Slater condition: one of the following constraint qualifications holds:

CQ1 : There exists x̄ 2 dom( f )\X 0 such that h(x̄) < 0; or

CQ2 : The functions hi, i = 1, . . . , l, are affine and there exists x̄ 2 ri(dom( f ))\ ri(X 0) such that
h(x̄) 0.

Then

(a) f ⇤ = d⇤ in (12.40).

(b) Q⇤ defined in (12.43) is the set of all dual optimal µ⇤ with d(µ⇤) = d⇤. It is nonempty and convex.

(c) If CQ1 holds then Q⇤ is nonempty, convex and compact.

We first prove Theorem 12.29 under CQ1 for a general convex function h, by verifying the three
conditions in Lemma 12.28. Under CQ2 for an affine function h, the requirement 0 2 ri(DM) in Lemma
12.28 may not hold and we will modify the proof for the case of CQ1. The proof for the first case is
based on [74, Proposition 5.1.1, p.160] and that for the second case is based on [74, Proposition 4.5.1,
p.154]. When there is no equality constraint (as in the case here) and strict Slater condition holds (CQ1),
the dual optimal set is bounded (see Exercise 7.19). Since the dual function d(µ) is concave, it is upper
semicontinuous as an extended valued function and hence is closed. This means that the dual optimal set
is compact. It is also convex since d(µ) is concave.
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Proof of CQ1: Assume 9x̄ 2 dom( f )\X 0 such that h(x̄) < 0. We verify the three conditions in Lemma
12.28:

1. f ⇤ > �•: This holds by assumption. Indeed f ⇤ is finite (�• < f ⇤ < •) because x̄ 2 dom( f ) and
CQ1 implies f ⇤  f (x̄).

2. Convex M = M: Let (u1,w1), (u2,w2) 2 M. Then there exists x1,x2 2 X 0 such that

ui � h(xi), wi � f (xi) i = 1,2

The convexity of h implies that for any a 2 [0,1]

au1 +(1�a)u2 � ah(x1)+(1�a)h(x2) � h(ax1 +(1�a)x2)

Similarly the convexity of f implies aw1+(1�a)w2� f (ax1+(1�a)x2). This means a(u1,w1)+
(1�a)(u2,w2) is in M, proving the convexity of M.

3. 0 2 int(DM): We will use h(x̄) < 0 to show that 0 2 int(DM) and hence 0 2 ri(DM) where DM is the
projection of M onto the u-space defined in (12.41b). Now 0 2 int(DM) if and only if there exists
e > 0 such that kuk< e implies u2DM. Since all norms are equivalent in a finite dimensional space,
we will use kuk• := max j |u j|. Let e := �maxi{hi(x̄)} > 0. Then max j |u j| < e implies for all j,
u j > �e = maxi{hi(x̄)} � h j(x̄). Therefore (u,w) 2M where w := f (x̄) < • (since x̄ 2 dom( f )),
and hence u 2 DM. This shows that 0 2 int(DM).

Lemma 12.28 then implies that

d⇤ = f ⇤, 9µ⇤ 2 R
m s.t. d⇤ = d(µ⇤) = inf

(u,w)2M
µ⇤Tu+w (12.44)

We next show that µ⇤ is dual optimal, i.e., it satisfies (12.44), if and only if µ⇤ 2Q⇤ defined in (12.43).
Let µ⇤ be a dual optimal solution. First, as discussed above (Exercise 12.18), we must have µ⇤ � 0. Then
for any x 2 X 0, (h(x), f (x)) 2M and therefore, since µ⇤ � 0, we have

(µ⇤)Th(x)+ f (x) � inf
(u,w)2M

(µ⇤)Tu+w = d⇤ = f ⇤

where the two equalities follow from (12.44). Hence µ⇤ 2 Q⇤. Conversely if µ⇤ 2 Q⇤ then d(µ⇤) � f ⇤

by (12.43). Weak duality then implies (12.44), i.e., µ⇤ is dual optimal. Finally, since we have proved
0 2 int(DM), not just 0 2 ri(DM), Lemma 12.28 implies that Q⇤ is not only nonempty, but also convex and
compact.

This completes the proof of Theorem 12.29 for the case of CQ1.

Proof of CQ2: Assume h j are affine and 9x̄ 2 ri(dom( f ))\ ri(X 0) such that h(x̄) 0. In this case, the third
condition 0 2 int(DM) in Lemma 12.28 may not hold, but we will modify the proof of Lemma 12.28 to
establish (12.44) directly. The rest of the proof is then the same as that for the case of CQ1.

Following the proof of Lemma 12.28 we establish (12.44) in four steps (key difference being Step 2).
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Step 1: f ⇤ is finite.. By assumption �• < f ⇤. Using (12.40a) for f ⇤ := infx2X 0,h(x)0 f (x), we have
f ⇤  f (x̄) < • since x̄ in CQ2 is in dom( f ) and is feasible. Hence f ⇤ is finite, i.e., �• < f ⇤ < •.

Step 2: Separating hyperplane. Substitute h(x) = Ax�b for some A 2 R
l⇥n and b 2 R

l into the definition
(12.41a) of M = M:

M = M := {(u,w) 2 R
l+1 : u� Ax�b, w� f (x) for some x 2 X 0}

The key to the proof is a clever decomposition of M as a Minkowski sum of a convex set C✓R
l+1 defined

by the convex function f and a polyhedral set P✓R
l+1 defined by the affine functions h, as follows. With

the view of a slack variable v := u� (Ax�b)� 0, we can write M = C +P where

C := {(Ax�b,w) : w� f (x) for some x 2 X 0}, P := {(v,0) : v� 0}

M = C +P because (u,w) 2M if and only if u = Ax�b+ v for some v� 0.

Guided by the sets C and P (see Step 4 below), we define the convex set C̃ ✓ R
l+1 and the polyhedral

set P̃✓ R
l+1 (since f ⇤ is finite):

C̃ := {(Ax�b,w) : w > f (x) for some x 2 X 0}, P̃ := {(v, f ⇤) : v 0}

(When X 0 is open, C̃ = ri(C). More generally, when restricted to x 2 ri(X 0), Ĉ := {(Ax� b,w) : w >
f (x) for some x 2 ri(X 0)} is ri(C).) We claim that C̃\ P̃ = /0 because otherwise if (ṽ, f ⇤) 2 C̃\ P̃ then
there exists an x̃ 2 X 0 such that

ṽ = Ax̃�b  0, f ⇤ > f (x̃)

contradicting that f is uniformly lower bounded by f ⇤ on its feasible set.

The separating hyperplane Theorem 7.9 then implies that there exists a hyperplane that separates C̃
and P̃, i.e., 9(µ,b ) 2 R

l+1 such that

sup
(v, f ⇤)2P̃

µTv+b f ⇤  inf
(u,w)2C̃

µTu+bw

Moreover the separating hyperplane does not fully contain the convex set C̃ (follows from [74, Proposition
1.5.7, p.77] since ri(C̃)\ P̃ = /0). This means that

sup
(v, f ⇤)2P̃

µTv+b f ⇤  inf
(u,w)2C̃

µTu+bw < sup
(u,w)2C̃

µTu+bw (12.45)

This corresponds to (12.38) in the proof of Lemma 12.28. The remaining Steps 3 and 4 follow the same
idea there, working with C̃, P̃ and the decomposition of M = C + P here instead of M directly in Lemma
12.28.

Step 3: b > 0. We claim that b > 0. Clearly b cannot be negative because otherwise, since (0, f (x̄)) 2M
(where x̄ is the point in CQ2), the definition (12.41a) of M implies that (0, f (x̄) + w0) 2 M as w0 ! •.
Hence inf(u,w)2M

�
µTu+bw

�
 b ( f (x̄) + w0) ! �•, contradicting (12.45). Suppose for the sake of

contradiction that b = 0. Then (12.45) implies

sup
(v, f ⇤)2P̃

µTv  inf
(u,w)2C̃

µTu  µTv̄
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where v̄ := Ax̄� b with x̄ being the point in CQ2. Here the last inequality follows because the point
(v̄, f (x̄)) is in C̃. But v̄ 0 and hence (v̄, f ⇤) 2 P̃. Therefore

µTv̄  sup
(v, f ⇤)2P̃

µTv  inf
(u,w)2C̃

µTu  µTv̄

i.e., all inequalities above must hold with equality. Therefore v̄ := Ax̄� b attains the minimization of
µTu over the projection D̃ := {u = Ax� b : (u,w) 2 C̃} of C̃ onto the u-space. Since CQ2 says that
x̄ 2 ri(dom( f ))\ ri(X 0), v̄ := Ax̄�b is in ri(D̃). This is possible only if µTu is constant (and equal to µTv̄)
over D̃, for otherwise the infimum will be attained at a relative boundary point of the convex set D̃. This
contradicts the strict inequality in (12.45), i.e., it contradicts the fact that the separating hyperplane does
not fully contain the convex set C̃.

Step 4: strong duality and dual optimality. Since b > 0, we can renormalize to define the hyperplane by
µ⇤ := µ/b and b ⇤ = 1. Substitute b ⇤ = 1 into (12.45) to get

sup
v0

µ⇤Tv+ f ⇤  inf
(u,w)2C̃

µ⇤Tu+w

f ⇤  inf
(u,w)2C̃

inf
v0

µ⇤T(u� v) + w

= inf
(u,w)2C

inf
(v,0)2P

µ⇤T(u+ v) + w

= inf
(u,w)M

µ⇤Tu+w =: d(µ⇤)  d⇤

where the first equality uses the fact that the infimum of µ⇤Tu+w over C̃ or C is the same. Weak duality
f ⇤ � d⇤ then implies that f ⇤ = d⇤. This also shows d(µ⇤) = d⇤, i.e., the dual optimal is attained at µ⇤.
This establishes (12.44). The rest of the proof is the same as that for the case of CQ1.

12.8 Special convex programs

In this section we apply the general theory developed in Chapters 12.4–12.7 to special classes convex
optimization problems widely used in applications. In particular we apply the Slater Theorem 12.26 and
the generalized KKT Theorem 12.20 to derive conditions for strong duality, dual optimality and the KKT
conditions for some of the problem classes in Figure 7.15 of Chapter 7.4.1 (specifically linear program,
second-order cone program, conic program, and convex program specified by a general convex inequality).
It extends some of the results of Chapter 7.4 for differentiable problems to a nonsmooth setting.

12.8.1 Summary: general method

Consider the convex problem:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 X ✓ R
n (12.46)

where f : Rn! R is a convex function, A 2 R
m⇥n, b 2 R

m and X is a nonempty closed convex set that
may be specified explicitly as h(x)  0 for a convex function h : Rn! R

k. The problems studied in this
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section is summarized in Figure 7.15 and the conclusions are summarize in Table 7.3 of Chapter 7.4.1.
A general analysis method is also described in Chapter 7.4.1 for smooth problems. Here we summarize
how to adapt that method to the nonsmooth setting using concepts of subgradients, normal cones and dual
cones. The key difference is the approach to derive the KKT condition without differentiability and for
abstract specifications of the feasible set X .

1. Dual problem. Given the primal problem (12.46), if X is explicitly specified, e.g., by a convex
inequality h(x)  0, then the Lagrangian function L and the dual problem are defined by (7.52a)
(7.52b) in Chapter 7.4.1. Otherwise if X is specified by Bx+d 2 K for a closed convex cone K then
the Lagrangian can be defined in terms of its dual cone K⇤:

L(x,l ,µ) := f (x)�lT(Ax�b)+ µ(Bx+d), x 2 R
n, l 2 R

m, µ 2 K⇤ ✓ R
k

The dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
(l ,µ)2Rm+k

d(l ,µ) s.t. µ 2 K⇤

This is derived in Chapter 12.8.4.

2. Strong duality and dual optimality. This does not require differentiability and the results hold ver-
batim in the nonsmooth setting using Theorem 12.26.

3. KKT condition and primal optimality. Suppose X is specified by Bx+d 2K for a closed convex cone
K. Without differentiability the KKT condition cannot be derived simply from —xL(x⇤,l ⇤,µ⇤) = 0
as done in (7.52c) of Chapter 7.4.1. Instead we convert (12.46) into an unconstraint problem

f ⇤ := min
x2Rn

f (x)+dH(x)+dK(x)

where H := {x 2 R
n : Ax = b}. Recall that (i) f is a convex function. Suppose (ii) the Slater

condition is satisfied, i.e., there exists x̄ 2 ri(dom f )\ ri(K) with Ax̄ = b (dom f = R
n if we assume

f is real-valued). Then the generalized KKT Theorem 12.20 implies that x⇤ is optimal if and only if
there exists a subgradient x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and µ⇤ 2 R
k such that

x ⇤ 2 �NH(x⇤)�NK(x⇤)

Using Theorem 12.3 on normal cones the KKT condition is equivalent to

x ⇤ = ATl ⇤+BTµ⇤, µ⇤T(Bx⇤+d) = 0, µ⇤ 2 K⇤

Indeed the conditions µ⇤ 2 K⇤ and µ⇤T(Bx⇤+d) = 0 define a vector µ⇤ in�NK(Bx⇤+d) according
to Theorem 12.3 for a general convex cone K. When K is specified explicitly, e.g., K is the second-
order cone, these conditions define the vector µ⇤ more specifically based on the primal optimal
x⇤.

In the rest of this section we apply this general method to common convex programs.
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12.8.2 Linear program (LP)

Consider the linear program:

f ⇤ := min
x2Rn

cTx s.t. Ax = b, x� 0 (12.47a)

where A 2 R
m⇥n, b 2 R

m and c 2 R
n. Let H := {x 2 R

n : Ax = b} and K := {x 2 R
n : x � 0}. Theorem

7.21 and Example 7.14 in Chapter 7.4.2 for smooth optimization show that if either the optimal primal
or the optimal dual value is finite then both the primal and dual problems attain their optimal, strong
duality holds, and a primal and dual feasible solution is optimal if and only if it satisfies complementary
slackness. In this subsection we derive the same result using Theorem 12.20 to illustrate the simplicity of
the set-theoretic approach for the nonsmooth setting.

For strong duality and the existence of primal and dual optimal solutions, the dual problem of (12.47a)
is derived in Example 7.14 to be:

d⇤ := max
l ,µ�0

bTµ s.t. ATl + µ = c (12.47b)

where l 2Rm, µ 2Rn. Let X := {x2Rn : Ax = b,x� 0} and Y := {(l ,µ)2Rm+n : ATl +µ = c, µ � 0}
be the feasible sets. If either f ⇤ or d⇤ is finite then the Slater condition of Theorem 12.26 (or Slater
Theorem 7.15) is satisfied. The exact same proof for part 1 of Theorem 7.21 shows that there exists a
primal-dual optimal solution (x⇤,l ⇤,µ⇤) 2 X⇥Y that closes the duality gap, i.e.,

cTx⇤ = f ⇤ = d⇤ = bTl ⇤

For KKT characterization, rewrite (12.47a) as an unconstrained optimization of an extended real-
valued function:

min
x2Rn

cTx + dH(x) + dK(x) (12.47c)

Since the objective function f (x) := cTx is real-valued and polyhedral, dom( f ) = R
n. Application of

Theorem 12.20 then says that x⇤ 2 R
n is optimal if and only if

�c 2 ∂ (dH(x⇤)+dK(x⇤)) = ∂dH(x⇤)+∂dK(x⇤)

where the equality follows from Theorem 12.17, provided (12.47) is feasible (H\K 6= /0). Since ∂dX(x) =
NX(x) from Table 12.2, x⇤ is optimal if and only if

�c 2 NH(x⇤)+NK(x⇤)

From Theorem 12.3 in Chapter 12.1.3,

NH(x⇤) = {ATl 2 R
n : l 2 R

m}
NK(x⇤) = {y 2 R

n : y 0, yTx⇤ = 0}
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Substituting these normal cones into the condition c 2 �NH(x⇤)�NK(x⇤) leads to KKT condition for
linear program: a feasible x⇤ is optimal if and only if there exists a (l ⇤,µ⇤) 2 R

m+n such that

ATl ⇤+ µ⇤ = c, µ⇤Tx⇤ = 0, µ⇤ � 0 (12.48)

Such a point (x⇤,l ⇤,µ⇤) is a saddle point and a KKT point and is hence primal-dual optimal with cTx⇤ =
bTµ⇤. Since the constraint qualification in Theorem 12.20 reduces to feasibility for a linear program, the
KKT characterization (12.48) requires only feasibility of the linear program (12.47). Strong duality and
the existence of primal and dual optimal solutions requires, in addition, f ⇤ >�• (or �• < d⇤ < •).

Example 12.10 (NH\K(x) = NH(x)+ NK(x)). This example illustrates the property that the normal cone
of the intersection H \K is the sum of the normal cones (see Figure 12.18 and its caption):

NH\K(x) = NH(x)+NK(x)

As noted above, if (12.47) is feasible, then we have

∂ (dH(x⇤)+dK(x⇤)) = ∂dH(x⇤)+∂dK(x⇤)

according to Theorem 12.17. The normal cone property hence follows since the effective domain H \K
of the objective function in (12.47c) is feasible.












































































































(a) At a relative interior point x̄ of H \K.












































































































(b) At a relative boundary point x̄ of H \K

Figure 12.18: Normal cones in Theorem 12.3 satisfy NH\K(x̄) = NH(x̄)+NK(x̄) at all points x̄ 2 H \K.

12.8.3 Second-order cone program (SOCP)

Second-order cone. Recall the second-order cone program (SOCP):

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (12.49a)
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where f : Rn!R is a real-valued convex function (not necessarily differentiable), A2Rm⇥n, b2Rm, and
K ✓ R

n is the standard second-order cone defined in (7.11), reproduced here (xk := (x1, · · · ,xk) denotes
the vector consisting of the first k entries of x),

K := {x 2 R
n : kxn�1k2  xn} (12.49b)

and studied in Theorem 12.10. The Lagrangian L : Rn+m+1! R of (12.49a)(12.49b) is

L(x,l ,µ) := f (x) � lT(Ax�b) + µ
�
kxn�1k2� xn

�
, x 2 R

n, l 2 R
m,µ 2 R

the dual function is d(l ,µ) := minx2Rn L(x,l ,µ) and the dual problem is

d⇤ := max
l ,µ�0

d(l ,µ) (12.49c)

Theorem 7.24 on strong duality, dual optimality and the KKT condition for SOCP in Chapter 7.4.4 for
smooth convex optimization holds verbatim in the nonsmoonth setting. Indeed, strong duality and dual
optimality follow from the Slater Theorem 12.26. We now derive the KKT condition. It illustrates both
how nonsmooth analysis handles points of nondifferentiability and the simplicity of the set-theoretic ap-
proach here.

We again rewrite SOCP (12.49a)(12.49b) as an unconstrained optimization of an extended real-valued
function:

min
x2Rn

f (x) + dH(x) + dK(x)

where H := {x2Rn : Ax = b}. Since f is real-valued, ri(dom( f )) =R
n and hence the constraint qualifica-

tions in Theorem 12.20 reduces to the Slater condition H\ ri(K) 6= /0 (Remark 12.5). Under this condition
Theorem 12.20 says that x⇤ 2 H \K is optimal if and only if there exists a x ⇤ 2 ∂ f (x⇤) such that

�x ⇤ 2 ∂ (dH(x⇤)+dK(x⇤)) = ∂dH(x⇤)+∂dK(x⇤) = NH(x⇤)+NK(x⇤) (12.50)

(The first equality follows from Theorem 12.17 under the Slater condition H \ ri(K) 6= /0 and the second
equality follows from ∂dX(x) = NX(x) in Table 12.2.) Theorems 12.3 and 12.10 in Chapter 12.1 then give

NH(x⇤) = {ATl 2 R
n : l 2 R

m}

NK(x⇤) =

8
<

:

{x 2 R
n : kx n�1k2 �xn} if x⇤ = 0

{0 2 R
n} if k[x⇤]n�1k2 < x⇤n�

µ([x⇤]n�1,�x⇤n) 2 R
n : for some µ � 0

 
if k[x⇤]n�1k2 = x⇤n > 0

(12.51a)

Substituting these normal cones into (12.50) leads to the following KKT condition. Suppose the SOCP
(12.49) satisfies the Slater condition H \ ri(K) 6= /0. We separate three cases according to NK in (12.51a):
A feasible x⇤ 2 H \K is optimal if and only if there exist x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and

1. If 0 k[x⇤]n�1k2 < x⇤n: such that

x ⇤ = ATl ⇤ (12.52a)

which is the same as the KKT condition in Theorem 7.24. Note that (12.52a) applies naturally to x⇤

with [x⇤]n�1 = 0 and x⇤n > 0 where the constraint function h(x) := kxn�1k2� xn is nondifferentiable
and proves part of Theorem 7.24(3).
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2. If 0 < k[x⇤]n�1k2 = x⇤n: there exists µ⇤ 2 R+ such that

x ⇤ = ATl ⇤ + µ⇤

�[x⇤]n�1

x⇤n

�
(12.52b)

which is the same as the KKT condition in Theorem 7.24 with µ⇤ there replaced by µ⇤x⇤n =
µ⇤k[x⇤]n�1k2. Note that µ⇤(�[x⇤]n�1,x⇤n) is a vector in K as in the next case.

3. If 0 = k[x⇤]n�1k2 = x⇤n, i.e., x⇤ = 0: there exists h̃ 2 K� := {h 2 R
n : khn�1k2  �hn} such that

�x ⇤ = AT(�l ⇤)+ h̃ . This is equivalent to: x⇤ = 0 is optimal if and only if there exist x ⇤ 2 ∂ f (0),
l ⇤ 2 R

m and h⇤ 2 K such that

x ⇤ = ATl ⇤+h⇤ (12.52c)

Note that b = Ax⇤ = 0. The condition (12.52c) proves part of Theorem 7.24(3) where smooth
analysis is not applicable because of nondifferentiability of the constraint function.

Here we assume the Slater condition and the conclusion is slightly stronger than that in Theorem 7.24 (see
Remark 7.12).

Remark 12.7 (h⇤ 2K for SOCP). Note that all the KKT conditions in (12.52) are of the form x ⇤= ATl +
h⇤ for some h⇤ 2 K. This is due to (12.50) that requires x ⇤ 2 �NH(x⇤)�NK(x⇤) and Theorem 12.3 that
says that NK(x⇤)✓ K� is a subset of the polar cone K�. Hence h⇤ is in the dual cone K⇤ =�K� = K since
the second-order cone is self-dual. Indeed the conditions in (12.52) specialize the description h⇤ 2 K⇤ and
h⇤Tx⇤ = 0 in Theorem 12.3 for a general convex cone K to the case of second-order cone based on x⇤.

SOC constraint. Recall the second-order cone program (SOCP):

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, kBx+dk2  bTx+d (12.53)

where f : Rn!R is a real-valued convex function (not necessarily differentiable), A 2R
m⇥n and b 2R

m,
B 2 R

(k�1)⇥n, d 2 R
k�1, b 2 R

n and d 2 R. The constraint kBx + dk2  bTx + d is the second-order
cone constraint studied in Chapter 7.2.1. It is a convex constraint but does not necessarily defines a cone.
Theorem 7.25 in Chapter 7.4.4 on strong duality, dual optimality and the KKT condition holds verbatim
in the nonsmoonth setting here. The strong duality and dual optimality follow from the Slater Theorem
12.26. The analysis reduces the SOC constraint in (12.53) to the conic constraint in (12.49) with an
auxiliary variables z and an additional linear equality constraint (see (7.65) in Chapter 7.2.1 for details):

zk�1 = Bx+d, zk = bTx+d , kzk�1k2  zk

We now derive the KKT condition in Theorem 7.25 using Theorem 12.20 to illustrate how points of
nondifferentiability are handled. To rewrite SOCP (12.53) as an unconstrained optimization let

B̃ :=


B
bT

�
, d̃ :=


d
d

�
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and

H̃1 := {(x,z) 2 R
n+k : Ax = b} =: H1⇥R

k, H1 := {x 2 R
n : Ax = b}

K̃ := {(x,z) 2 R
n+k : kzk�1k2  zk} =: R

n⇥K, K := {z 2 R
k : kzk�1k2  zk}

H2 := {(x,z) 2 R
n+k : z = B̃x+ d̃}

with normal cones NH̃1
(x,z) = NH1(x)⇥{02Rk} and NK̃(x,z) = {02Rn}⇥NK(z). Rewrite SOCP (12.53)

as:

min
(x,z)2Rn+k

f (x) + dH̃1
(x,z) + dK̃(x,z) + dH2(x,z)

The constraint qualification in Theorem 12.20 reduces to the Slater condition H̃1\ ri(K̃)\H2 6= /0 (Remark
12.5). Under this condition Theorem 12.20 says that (x⇤,z⇤) 2 H̃1\ K̃\H2 is optimal if and only if there
exists a x ⇤ 2 ∂ f (x⇤) such that

�


x ⇤
0

�
2 NH̃1

(x⇤,z⇤)+NK̃(x⇤,z⇤)+NH2(x
⇤,z⇤) =


NH1(x

⇤)
0

�
+


0

NK(z⇤)

�
+NH2(x

⇤,z⇤) (12.54)

Theorems 12.3 and 12.10 in Chapter 12.1 give

NH1(x
⇤) = {ATl 2 R

n : l 2 R
m}

NK(z⇤) =

8
<

:

{h 2 R
k : khk�1k2 �hk} if z⇤ = 0

{0 2 R
k} if k[z⇤]k�1k2 < z⇤k�

µ([z⇤]k�1,�z⇤k) 2 R
k : for some µ � 0

 
if k[z⇤]k�1k2 = z⇤k > 0

Now NH2(x
⇤,z⇤) =

�
(x ,h) 2 R

n+k : x = B̃Tg, h =�g, g 2 R
k and hence

NH2(x
⇤,z⇤) =

n
(B̃Tg,�g) 2 R

n+k : g 2 R
k
o

Substituting these normal cones into (12.54) leads to the following KKT condition. Suppose the SOCP
(12.53) satisfies the Slater condition that there exists x̄ such that Ax̄ = b and kBx̄ + dk2 < bTx̄ + d . We
separate three cases according to NK: A feasible x⇤ is optimal if and only if there exists x ⇤ 2 ∂ f (x⇤),
l ⇤ 2 R

m, and

1. If 0 kBx⇤+dk2 < bTx⇤+d : such that (g⇤ = 0)

x ⇤ = ATl ⇤ (12.55a)

which is the same as the KKT condition in Theorem 7.25 but also allows x⇤ with Bx⇤+ d = 0 and
bTx⇤+d > 0 where the constraint function h(x) := kBx+dk2�(bTx⇤+d ) is nondifferentiable and
proves part of Theorem 7.25(3).

2. If 0 < kBx⇤+dk2 = bTx⇤+d : there exist g⇤ 2R
k and µ⇤ 2R+ such that �x ⇤ = ATl ⇤+ B̃Tg⇤ and

g⇤ = µ⇤([z⇤]k�1,�z⇤k) where z⇤ = B̃x⇤+ d̃. Eliminating g⇤ and z⇤ yields: A feasible x⇤ is optimal if
and only if there exists x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and µ⇤ 2 R+ such that

x ⇤ = ATl ⇤ + µ⇤
⇣
�BT(Bx⇤+d)+b (bTx⇤+d )

⌘
(12.55b)

This is the same as the KKT condition in Theorem 7.25 with µ⇤ there replaced by µ⇤(bTx⇤n +d ).
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3. If 0 = kBx⇤+dk2 = bTx⇤+d : there exist g⇤ 2 R
k and h̃ 2 K� := {h 2 R

k : khk�1k2 �hk} such
that�x ⇤= AT(�l ⇤)+ B̃Tg⇤ and g⇤= h̃ . Eliminating g⇤ yields: x⇤ with 0 = kBx⇤+dk2 = bTx⇤+d
is optimal if and only there exist x ⇤ 2 ∂ f (x⇤), l ⇤ 2 R

m and h⇤ 2 K such that

x ⇤ = ATl ⇤+ B̃Th⇤ (12.55c)

The condition (12.55c) proves part of Theorem 7.25(3) where smooth analysis is not applicable
because of nondifferentiability of the constraint function at x⇤ where 0 = kBx⇤+dk2 = bTx⇤+d .

12.8.4 Conic program and convex inequality

In this subsection we derive conditions for strong duality and dual optimality and the KKT condition for
conic programs and for convex programs specified by a general convex inequality.

Conic feasible set. A generalization of SOCP (12.49) is the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, x 2 K (12.56)

where f : Rn ! R is a real-valued convex function, A 2 R
m⇥n, b 2 R

m, and K ✓ R
n is a closed convex

cone. Even though K ✓ R
n in (12.56) is not explicitly specified by convex inequalities, but because K is

a convex cone, we can formulate the Lagrangian dual problem using the dual cone of K. Recall the polar
cone K� and the dual cone K⇤ of K in Definition 12.1:

K� := {x 2 R
n : xTx 0 8x 2 K} (12.57a)

K⇤ := �K� := {x 2 R
n : xTx� 0 8x 2 K} (12.57b)

Let the dual variables be l 2 R
m and µ 2 K⇤ the dual cone. Define the Lagrangian function to be

L(x,l ,µ) := f (x) � lT(Ax�b) � µTx, x 2 R
n, l 2 R

m, µ 2 K⇤ ✓ R
n

The dual function is

d(l ,µ) := min
x2Rn

L(x,l ,µ) = lTb + d0(l ,µ), l 2 R
m, µ 2 K⇤ ✓ R

n (12.58a)

where

d0(l ,µ) := min
x2Rn

⇣
f (x)� (ATl + µ)Tx

⌘
(12.58b)

The dual problem is:

d⇤ := max
l2Rm,µ2K⇤

lTb + d0(l ,µ) (12.58c)
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For a linear program where f (x) = fTx, d0(l ,µ) = 0 if f = ATl + µ and �• otherwise in which case
the dual problem becomes:

d⇤ := max
l2Rm,µ2K⇤

lTb s.t. f = ATl + µ

We can extend the Slater Theorem 12.26 to the more general formulation of dual problem (13.101) to
provide a condition for strong duality and dual optimality.

For KKT characterization, we again let H := {x 2Rn : Ax = b} and rewrite the primal problem (12.56)
as an unconstrained convex optimization:

min
x2Rn

f (x) + dH(x) + dK(x)

The constraint qualification in Theorem 12.20 reduces to the Slater condition H \ ri(K) 6= /0. Under this
condition Theorem 12.20 says that x⇤ 2 R

n is optimal if and only if there exists x ⇤ 2 ∂ f (x⇤) such that

�x ⇤ 2 ∂ (dH(x⇤)+dK(x⇤)) = NH(x⇤)+NK(x⇤) (12.59a)

where we have used Theorem 12.17 and Table 12.2. From Theorem 12.3 in Chapter 12.1.2,

NH(x⇤) = {ATl 2 R
n : l 2 R

m} (12.59b)

NK(x⇤) = {µ� 2 K� ✓ R
n : µ�Tx⇤ = 0} (12.59c)

where K� is the polar cone of K in (12.57a). Substituting these normal cones into (12.59a) leads to the
KKT condition for conic program (12.56) in terms of the dual cone K⇤ of K in (12.57b).13 In summary,
provided that the Slater condition H \ ri(K) 6= /0, the Slater Theorem 12.26 and the generalized KKT
Theorem 12.20 directly imply the following result for the general conic program.

Theorem 12.30 (Strong duality and KKT for conic program). Consider the conic program (12.56) and its
dual (13.101). Suppose there exists x̄ 2 ri(K) such that Ax̄ = b. Then

1. Strong duality and dual optimality. If f ⇤ is finite then there exists a dual optimal solution (l ⇤,µ⇤) 2
R

m⇥K⇤ that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization. A feasible x⇤ is optimal if and only if there exist a subgradient x ⇤ 2 ∂ f (x⇤),
a dual feasible (l ⇤,µ⇤) 2 R

m⇥K⇤ such that

x ⇤ = ATl ⇤+ µ⇤, µ⇤Tx⇤ = 0

In this case (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

Remark 12.8. The conditions µ⇤ 2 K⇤ and µ⇤Tx⇤ = 0 define a vector µ⇤ in �NK(Bx⇤+ d) according to
Theorem 12.3 for a general convex cone K. When K is specified explicitly, these conditions define the
vector µ⇤ more specifically based on the primal optimal x⇤. For example see Theorem 7.24 or Chapter
12.8.3 when K := {x 2 R

n : kxn�1k  xn} is the second-order cone.
13The definition of the dual problem (13.101) does not require K to be a convex cone, but the normal cone expression

(12.59c) holds only if K is a convex cone.
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Conic constraint. A generalization of SOCP (12.53) is the following convex optimization

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, Bx+d 2 K (12.60a)

where f : Rn!R is a real-valued convex function, A 2R
m⇥n, b 2R

m, B 2R
k⇥n, d 2R

k and K ✓R
k is a

closed convex cone. The feasible set may not be a cone but (12.60) is still called a conic program because
an affine transformation of x is in a closed convex cone. The dual problem can be shown to be (Exercise
12.21):

d⇤ := max
(l ,µ)2Rm+k

d(l ,µ) :=
⇣

bTl �dTµ
⌘

+ d0(l ,µ) s.t. µ 2 K⇤ ✓ R
k (12.60b)

where d0(l ,µ) := minx2Rn f (x)� (ATl + BTµ)Tx. It reduces to (12.58b)(12.58c) when B = In the
identity matrix of size n and d = 0. When f (x) = fTx, d0(l ,µ) = 0 if f = ATl +BTµ and �• otherwise
in which case the dual problem becomes:

d⇤ := max
l2Rm, µ2K⇤

lTb�dTµ s.t. f = ATl +BTµ

Theorem 12.30 on strong duality, dual optimality and the KKT characterization extends to problem (12.60)
(Exercise 12.21). The KKT condition in the next theorem reduces to that in Theorem 12.30 when B = Ik
and d = 0.

Theorem 12.31 (Strong duality and KKT for conic program). Consider the conic program and its dual
(12.60). Suppose the Slater condition is satisfies, i.e., there exists x̄ such that Ax̄ = b and Bx̄ + d 2 ri(K).
Then

1. Strong duality and dual optimality. If f ⇤ is finite then there exists a dual optimal solution (l ⇤,µ⇤) 2
R

m⇥K⇤ that closes the duality gap, i.e., f ⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization. A feasible x⇤ is optimal if and only if there exist a subgradient x ⇤ 2 ∂ f (x⇤),
a dual feasible (l ⇤,µ⇤) 2 R

m⇥K⇤ such that

x ⇤ = ATl ⇤+BTµ⇤, µ⇤T(Bx⇤+d) = 0

In this case (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

Convex inequality constraint. A generalization of the conic programs (12.56) and (12.60) is the general
convex program whose feasible set is convex but not necessarily of the form Bx+d 2 K:

min
x2Rn

f (x) s.t. Ax = b, h(x) 0

where f : Rn!R is a convex function, A 2R
m⇥n, b 2R

m and h : Rn!R
k is a convex function. If f and

h are continuously differentiable then the KKT condition is given by the KKT Theorem 7.13. Otherwise
the derivation of the KKT condition using the nonsmooth method of this chapter is left as Exercise 12.22.
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12.9 Bibliographical notes

12.10 Problems

Chapter 12.1.

Exercise 12.1 (Normal cone of dual cone). Let K ✓ R
n be a convex cone and NK(x̄) be its normal cone

at x̄ 2 K. Let K� and K⇤ := �K� denote the polar cone and the dual cone respectively of K. Show that if
x̄ 2 K⇤ then NK⇤(x̄) =�NK(x̄).

Exercise 12.2 (Image of linear transformation of convex cone). Given a convex cone X ✓R
n let Y := AX

for some matrix A 2R
m⇥n, i.e., y 2Y if and only if y = Ax for some x 2 X . Show that the two expressions

in Theorem 12.6 for the normal cone of Y at a ȳ = Ax̄ 2 Y with x̄ 2 X :

N1(ȳ) = {y 2 R
m : ATy 2 NX(x̄)}

N2(ȳ) = {y 2 R
m : ATy 2 X�, yTȳ = 0}

are equivalent.

Exercise 12.3 (Pre-image of linear transformation of convex cone). Let Y ✓ R
m be a convex cone and X

be its pre-image under a possibly singular matrix A, i.e.,

X := {x 2 R
n : Ax 2 Y}

where A 2 R
m⇥n.

1. Show that X� ◆ ATY �.

2. If Y := {y 2 R
m : y  0} is the nonpositive quadrant, show that X� ✓ ATY �. (Hint: use Farkas

Lemma (Theorem 7.10).)

Exercise 12.4 (Pre-image of linear transformation of convex cone). Consider the convex cone Y and its
pre-image X under a singular matrix A:

Y := {y 2 R
2 : y1 � y2 � 0}, A :=


1 1
1 1

�
, X := {x 2 R

2 : Ax 2 Y}

1. Derive X�, Y � and compare ATY � and X�.

2. Derive NY (ȳ) and NX(x̄) where ȳ = Ax̄ 2 Y for x̄ = (0,0),(1,�1),(1,1).
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Exercise 12.5 (Image of affine transformation of convex cone).

Exercise 12.6 (Feasible direction and normal cones). The feasible direction cone and the normal cone of
a set X ✓ R

n at x̄ 2 X are defined as:

DX(x̄) := cone(X� x̄) := {g(x� x̄) : x 2 X ,g � 0}
NX(x̄) := [DX(x̄)]� = {y 2 R

n : yT(x� x̄) 0 8x 2 X}

Let H := {x2Rn : Ax = b} where A2Rm⇥n and C✓R
n be a convex cone. Show that the feasible direction

cone and the normal cone of these sets at an x̄ in these sets are respectively:

1. DH(x̄) = {y 2 R
n : Ay = 0}. Hence NH(x̄) = {y 2 R

n : y = ATl , l 2 R
m}.

2. DC(x̄) = {y = x� g x̄ : x 2C, g � 0} and NC(x̄) = {y 2C� : yTx̄ = 0} where C� is the polar cone of
C.

Chapter 12.2.

Exercise 12.7 (Closedness and lsc of f ; [74].). 1. For a function f : Rn ! [�•,•], show that it is
closed if and only if it is lsc on R

n if and only if its level set Vg := {x| f (x)  g} is closed for
every g 2 R.

2. For f : X ! [�•,•] where X ✓ R
n, show that it is closed if its effective domain dom( f ) is closed

and f is lsc on dom( f ).

3. Consider a real-valued function f : X ! R
n where X ✓ R

n is nonempty. Extend f to the extended
real-valued function fX(x) : Rn! [�•,•] defined by

fX(x) :=
⇢

f (x) if x 2 X
• if x 62 X

Show that fX is closed (on R
n) if the effective domain dom( f ) is closed and f is lower semicontin-

uous on dom( f ).

Exercise 12.8 (Support function sX(x)). The support function of X is the extended real-valued function:

sX(x) := sup
y2X

yT x

It is proper if and only if X is nonempty and supy2X yT x < • for at least one x. For a nonempty set X ,
show that X , cl(X), conv(X), cl(conv(X)), conv(cl(X)) all have the same support function, i.e.

sX(x) = scl(X)(x) = sconv(X)(x) = scl(conv(X))(x) = sconv(cl(X))(x), x 2 R
n (12.61)
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Chapter 12.3. The proof of the existence of subgradient for a proper convex function at x̄, using (12.18),
requires x̄2 int(dom( f )). The next exercise shows that, even though the contradiction argument there may
break down if x̄ 2 ri(dom( f )), a subgradient may still exist at such a x̄ in the relative interior of dom( f ).

Exercise 12.9 (Existence of subgradient.). Consider the proper extended real-valued function f : R2 !
(�•,•] defined by

f (x1,x2) =

⇢
x2

1 if x2 = 0
• if x2 6= 0

The effective domain dom( f ) = {x 2 R
2 : x2 = 0} = ri(dom( f )), epi( f ) is in a vertical plane, and hence

int(dom( f )) = /0. Show that subgradient exists at every point x̄ 2 dom( f ), even though ∂ f
∂x2

(x) is not well
defined.

Exercise 12.10 (Jensen’s inequality). Suppose X is a random variable taking value in R
n with finite ex-

pectation EX . Show that if f : Rn! R is convex on R
n then E( f (X)) � f (EX). (Hint: Use subgradient

of f .)

Exercise 12.11 (Conjugate functions). Prove Theorem 12.15.

Exercise 12.12 (dX , sX and their subdifferentials). Fix any nonempty subset X ✓ R
n. Consider the ex-

tended real-valued indicator function and support function defined respectively by:

dX(x) :=
⇢

0 if x 2 X
• if x 62 X , sX(x) := sup

y2X
yT x

the polar cone X� := {y : yTx 0 8x2 X}, and the normal cone NX(x̄) := cone�(X� x̄) = {y : yT(x� x̄)
0 8x 2 X} of X at x̄ 2 X . Show that:

1. The conjugate d ⇤X(y) of the indicator function dX(x) is d ⇤X(y) = sX(y).

2. If X is a cone then d ⇤X(y) = dX�(y), i.e., the support function of a cone is an indicator function of its
polar cone.

3. Suppose X is a convex set. Then subdifferential ∂dX(x) = NX(x).

4. Suppose X is a closed nonempty convex set. The conjugate of the support function s⇤X(x) = dX(x).

5. [74, Example 5.4.3, p.190] Suppose X is a closed nonempty convex set. The subdifferential ∂sX(x) =
{y 2 R

n : yT x = sX(x)}.
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Exercise 12.13 (Subdifferential and normal cone). Consider the second-order cone program:

f ⇤ := min
x2Rn

f (x) s.t. x 2 K := {x 2 R
n : kxn�1k2  xn}

where f : Rn! R is a real-valued convex function (not necessarily differentiable) and K is the standard
second-order cone. Show, using the definition of subgardient and ∂dK(0) = NK(0) = K� (Exercise 12.12
and Theorem 12.10), that x⇤ = 0 is optimal if and only if there exists x 2 ∂ f (0) such that x 2 K.

Exercise 12.14 (Normal cone of set intersection.). 1. Prove Theorem 12.4.

2. Consider the constraint set C := {x 2 R
n : Ax = b,x 2 K} where A 2 R

m⇥n and K ✓ R
n is a convex

cone. Show that NC(x̄) = {ATl +y : l 2R
m, y 2 K�,yTx̄ = 0} for any x̄ 2C, where K� denotes the

polar cone of K.

Chapter 12.4.

Chapter 12.5.

Chapter 12.6.

Exercise 12.15 (Primal optimality.). Prove Corollary 12.22.

Exercise 12.16 (Primal optimal solutions.). Suppose X and f in Theorem 12.25 have a common nonzero
direction of recession. If the level sets Vg = /0 for small enough g , show that:

1. There is a smallest g0 for which Vg0 6= /0.

2. The primal solution set is unbounded.

Chapter 12.7.

Exercise 12.17 (Weak duality). Let M ✓ R
n+1 be a nonempty set, not necessarily convex, and define the

following pair of problems:

w⇤ := inf
(0,w)2M

w

d⇤ := sup
µ2Rn

d(µ)

where d(µ) := inf(u,w)2M µT u+w and w⇤ := • if (0,w) 62M. Show that d⇤  w⇤.
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Exercise 12.18 (Equivalent formulations). Suppose the primal problem (12.40a) is feasible. Show that
the problems in (12.42) are equivalent to those in (12.40), assuming there is a feasible point x̄ 2 dom( f )\
X 0 \{x : h(x) 0}.

Exercise 12.19 (Nonlinear Farkas lemma). Suppose X ✓ R
n, f : X ! (�•,•] and g : X ! (�•,•]m

satisfy the conditions in Lemma 12.29, and, in particular, they satisfy the first constraint qualification:
9x̄ 2 dom( f )\X such that g(x̄) < 0. Recall the definition (12.40c) of the dual function:

d(µ) :=
⇢

infx2X f (x)+ µTg(x), µ � 0
�•, otherwise

Define

Q := {µ 2 R
m : µ � 0, f (x)+ µTg(x) � a,8x 2 X}

(Since f ⇤ � a, Q⇤ ✓ Q.) Show that

1. �d(µ) is a closed proper convex (CPC) function over Rm.

2. Q is nonempty, convex and compact.

(Hint: Use Lemma 12.29.)

Exercise 12.20 (Nonlinear Farkas lemma). 1. Extend the nonlinear Farkas Lemma 12.29 to allow g to
be a mixture of polyhedral and nonpolyhedral convex constraints. Prove your extension.

2. Use the extension to prove Theorem 12.26.

Chapter 12.8.

Exercise 12.21 (Conic program). Consider the conic program (12.60) reproduced here:

f ⇤ := min
x2Rn

f (x) s.t. Ax = b, Bx+d 2 K

where f : Rn!R is a real-valued convex function, A 2R
m⇥n, b 2R

m, B 2R
n⇥k, d 2R

k and K ✓R
k is a

closed convex cone.

1. Derive its dual problem.

2. Prove Theorem 12.31.
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Exercise 12.22 (Convex inequality constraints). Consider the convex optimization

min
x2Rn

f (x) s.t. Ax = b, h(x) 0 (12.62)

where f : Rn!R is a convex function, A2Rm⇥n, b2Rm and h : Rn!R
k are convex functions. Suppose

the Slater condition is satisfied, i.e., there exists x̄ with Ax̄ = b and h(x̄) < 0, and that the primal optimal
value is finite.

1. Suppose h is continuously differentiable but f is not. Show that the KKT condition is: a feasible x⇤

is optimal if and only if there exist a subgradient x ⇤ 2 ∂ f (x⇤) and a dual optimal solution (l ⇤,µ⇤)2
R

m+k such that µ⇤ � 0 such that

x ⇤+ATl ⇤+—h(x⇤)µ⇤ = 0, µ⇤Th(x⇤) = 0

2. Suppose neither f nor h are continuously differentiable. Show that the KKT condition is: a feasible
x⇤ is optimal if and only if there exist subgradients x ⇤ 2 ∂ f (x⇤) and q ⇤i 2 ∂hi(x⇤), and a dual optimal
solution (l ⇤,µ⇤) 2 R

m+k such that µ⇤ � 0 and

x ⇤+ATl ⇤+Q⇤Tµ⇤ = 0, µ⇤Th(x⇤) = 0

where the rows of the matrix Q⇤ are qi.



Chapter 13

Stochastic OPF

This chapter presents basic methods for stochastic optimization and their application to optimal power
flow problems. Optimal power flow problems we have studied in previous chapters take the form

min
x2Rn

f (x) s.t. h(x,z ) 0 (13.1)

where x is a decision variable and f : Rn!R is a cost function, and h(x,z ) : Rn⇥R
k!R

m is a constraint
function, as a function of both the decision variable x and a parameter z 2 R

k. For instance the problem
computes an optimal generation schedule x⇤ to meet a demand z subject to power flow equations and
operational constraints. Or it computes an optimal setpoint x⇤ for smart inverters to help stabilize voltages
in a distribution system in response to photovoltaic generation z . In general the parameter z is uncertain.
So far we have implicitly assumed that the decision x⇤ is made either based on a forecast ẑ of the random
parameter z or after z has been realized, and therefore the problem is deterministic. In this chapter we
study the case where at least some of the decisions must be made before the random z is realized and
simply substituting the forecast ẑ for z is inadequate. We study four approaches to making decisions
under uncertain z .

In the first approach an uncertainty set Z is assumed known in which the uncertain parameter z takes
value. An optimal x⇤ is chosen with respect to a worst-case z 2 Z, i.e., the constraint h(x⇤,z )  0 must
be satisfied for all z 2 Z. This leads to robust optimization (Chapter 13.1) where the single constraint
in (13.1) is replaced by a possibly infinite set of constraints (h(x⇤,z ) 0,8z 2 Z). Robust optimization
can be too conservative as it demands constraint satisfaction in the worst-case realization of the uncer-
tain parameter z 2 Z. This motivates the second approach where the uncertain parameter z := z (w) 2 Z
is a random vector on a given probability space with a known probability measure P. An optimal x⇤ is
chosen so that the constraint h(x⇤,z )  0 is satisfied with high probability, not necessarily for all z 2 Z
(or with probability 1 under P). This leads to chance constrained optimization (Chapter 13.2) where the
constraint h(x⇤,z )  0 in (13.1) is replaced by P(h(x⇤,z ) 0) � 1� e with a given tolerance e for con-
straint violation. Chance constrained optimization can be intractable for common P; moreover P may not
be known in many applications even when random samples of z under P are available, e.g., measure-
ments of z from a real power system. This motivates the third approach, called scenario programming
(Chapter 13.3), where the single constraint h(x⇤,z ) 0 in (13.1) is replaced by N randomized constraints�
h(x⇤,z i) 0, i = 1, . . . ,N

�
defined by N independent random samples of z 1, . . . ,z N under P. Unlike the

564
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other three approaches where the optimization problem is deterministic, a scenario program is a random-
ized problem. If N is sufficiently large then the resulting randomized optimal solution x⇤ will likely satisfy
the chance constraint, in expectation or probability. Finally we study two-stage stochastic optimization
with recourse where some decisions must be made before the random z is realized and other decisions can
be made afterwards in response to the observed realization of z .

In this chapter we introduce the basic theory for each of these four approaches and apply it to power
system problems. Most stochastic optimization problems are nonconvex and computationally hard. Our
emphasis is on conditions under which these problems have equivalent finite convex reformulations. Even
though these reformulated problems often introduce extended real-valued and nondifferentiable functions,
especially in two-stage optimization problems, optimality conditions can be derived using nonsmooth
techniques studied in Chapter 12. Moreover computation algorithms studied in Chapter 7 can be adapted
to solve these convex but nonsmooth problems with gradients replaced by subgradients.

13.1 Robust optimization

13.1.1 General formulation

A robust optimization problem is of the form:

min
x2Rn

f (x) s.t. hi(x,zi)  0, 8zi 2 Zi(x), i = 1, . . . ,m (13.2)

where f : Rn!R is a cost function. For i = 1, . . . ,m, zi 2Rki are given parameters, and hi : Rn⇥R
ki!R

are constraint functions. Here zi are uncertain parameters that take values in uncertainty sets Zi(x)✓R
ki .

It is convenient in applications to allow the uncertainty sets Zi(x) to depend on x (see Example 13.1)
and hence we can regard each Zi : Rn! 2R

ki as a set-valued map on R
n. The problem seeks an optimal

solution x⇤ that minimizes the cost function f (x) and remains feasible for all possible realizations of the
uncertain parameters zi 2 Zi(x⇤), 8i. It is called a robust program. If some of the Zi(x) are continuous
sets, then (13.2) is called a semi-infinite problem because it contains a finite number of variables but an
infinite number of constraints. As a consequence the robust counterpart of a nominal problem (when Zi(x)
are singletons) is generally computationally intractable even if the nominal problem is simple such as a
linear program. In Chapters 13.1.2, 13.1.3 and 13.1.4 we present three classes of robust programs that are
tractable. Specifically we will derive finite convex reformulation for these problems to which techniques
in Chapters 12 and 7 can be applied.

Remark 13.1. The formulation (13.2) makes two assumptions without loss of generality:

1. Certain and linear cost function. It assumes that the cost function f is certain. Otherwise, we can
introduce an additional variable t and an additional constraint to obtain the following equivalent
problem that has uncertainty only in the constraints:

min
x2Rn, t2R

t s.t. f (x,z0)� t  0, hi(x,zi)  0, 8zi 2 Zi(x), i = 0, . . . ,m

where z0 2 Z0(x) is the uncertain parameter of the cost function f . This also shows that we can
assume without loss of generality that the cost is linear.
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2. Direct product of uncertainties. It assumes that the uncertainty set is a direct product Z(x) :=
Z1(x)⇥ · · ·⇥ Zm(x) of individual uncertainty sets Zi(x). If the uncertainty set Z(x) ✓ RÂm

i=1 ki is
not a direct product, the robust optimization problem

min
x2Rn

sup
z2Z(x)

f (x) s.t. hi(x,zi)  0, i = 1, . . . ,m

can be specified with an equivalent uncertainty set Ẑ(x) := Z1(x)⇥ · · ·⇥Zm(x) that is a direct prod-
uct, as follows

min
x2Rn

sup
zi2Zi(x)
i=1,...,m

f (x) s.t. hi(x,zi)  0, i = 1, . . . ,m

where Zi(x) := {zi : z := (z1, . . . ,zm) 2 Z(x)} is the projection of Z(x) onto the ith coordinate.
This is because hi depends on zi, not on z j, j 6= i, and therefore given x, supz2Z(x) hi(x,zi) =
supzi2Zi(x) hi(x,zi).

3. Equality constraints without recourse. The nominal problem for many applications contain equality
constraints, resulting in a robust counterpart involving uncertain equality constraints of the form

gi(x,yi,zi) = 0, hi(x,yi,zi)  0, 8zi 2 Zi(x), i = 1, . . . ,m (13.3)

An equality constraint such as yi = zi where zi 2 {0,1} is generally infeasible for robust optimiza-
tion if yi is also an optimization variable that must be chosen and fixed before the uncertain zi is
realized. There are two common approaches to avoid infeasibility. The first is to solve an approxi-
mate problem by replacing the equality constraints by penalty terms in the cost function that allow
but penalize violation of equality constraints. The second is to interpret equality constraints dif-
ferently from inequality constraints, as follows. We assume the equality constraint gi(x,yi,zi) = 0
means that given (the control) x, (the system state) yi will be determined by x and the realization of
the uncertain parameter zi. Given an x let Yi(x) := {yi : gi(x,yi,zi) = 0, zi 2 Zi(x)} denote the set of
yi implicitly defined by gi as zi varies over Zi(x). Then (13.3) is interpreted as

hi(x,yi,zi)  0, 8(yi,zi) 2 Yi(x)⇥Zi(x), i = 1, . . . ,m

which is of the form in (13.2), i.e., (the system state) yi becomes an uncertain parameter determined
by the equality constraint gi and zi. Note that yi depends only on zi, but not z j, j 6= i, so that the
uncertainty set Yi(x) is separable in i. Hence equality constraints should be interpreted as

min
x

sup
z2Z(x)

sup
y2Y (x)

f (x) s.t. hi(x,yi,zi)  0, i = 1, . . . ,m

instead of minx,y supz2Z(x) f (x) s.t. gi(x,yi,zi) = 0, hi(x,yi,zi) 0. See Example 13.1 and Exercise
13.3.

This is different from stochastic optimization with recourse studied in Chapter 13.4 where a first-
stage decision is made before the uncertain parameter z is realized and a second-stage decision
is made after z is realized. With recourse, it is possible to satisfy uncertain equality constraints
and, indeed, the feasibility condition plays an important role in optimality conditions for two-stage
optimization studied in Chapter 13.4.



Draft: PSA December 13, 2024 567

4. Closed and convex Z. We will assume without loss of generality that the uncertainty set Z is closed
and convex (Exercise 13.2).

Example 13.1 (Robust optimization: voltage control). Consider a solar panel with uncertain real power
generation pt at time t that takes value in a set Pt ✓R. Suppose its reactive power qt is controllable within
the range qt 2 [qmin,qmax] for all t. The solar panel is connected to a battery through a line with a given
series admittance y := g + ib 2 C. The DC discharging power dt of the battery is controllable within the
range dt 2 [dmin,dmax] as long as its state of charge b := (b1, . . . ,bT ) 2 R

T satisfies the energy capacity
bt 2 [0,B]. Let u1t := |u1t |eiq1t and u2t := |u2t |eif2t denote the voltage phasors at the solar panel and the
battery respectively at time t. Our goal is to determine the schedules for reactive power q := (q1, . . . ,qT )2
R

T and discharging power d := (d1, . . . ,dT )2RT to minimize a certain cost f subject to the constraint that
the voltages ut := (u1t ,u2t) 2C

2 satisfy voltage limits |uit | 2 [umin,umax] for i = 1,2, for all realizations of
the solar generation pt 2 Zt , for t = 1, . . . ,T .

This can be formulated as a robust optimal power flow (OPF) problem.1 Let x := (q,d,b) where
q,d,b are defined above. Let f (x) denote the cost function. Suppose the uncertain solar generation z :=
(z1, . . . ,zT ) 2 R

T takes value in Z ✓ R
T, independent of x. As explained in Remark 13.1 we can assume

without loss of generality that Z = Z1⇥ · · ·⇥ZT with Zt := (zt : z 2 Z). The robust scheduling problem is

min
x

f (x) s.t. gt(x,ut ,zt) = 0, ht(x,ut ,zt) 0, 8zt 2 Zt , t = 1, . . . ,T (13.4a)

where the equality constraints gt(x,ut ,zt) = 0 are power flow equations and battery state transition:

zt + iqt = yH
⇣
|u1t |2�u1tuH2t

⌘
, dt + i0 = yH

⇣
|u2t |2�u2tuH1t

⌘
, bt+1 = bt�dt (13.4b)

and the inequality constraints ht(x,ut ,zt) 0 are voltage and battery limits:

umin  |uit |  umax, i = 1,2, 0  bt  B (13.4c)

We interpret the uncertain equality constraints in (13.4b). In reality we set the values of the reactive
power qt and discharging power dt , which then, together with the uncertain solar generation zt , determine
the voltages ut := (u1t ,u2t) according to the power flow equations in (13.4b):

zt + iqt = yH
⇣
|u1t |2�u1tuH2t

⌘
, dt + i0 = yH

⇣
|u2t |2�u2tuH1t

⌘
(13.5)

Let Ut(x) := {ut 2 C
2 : ut satisfies (13.5), zt 2 Zt} denote the set of power flow solutions of (13.5) as zi

varies in Zt . We can eliminate ut from (13.4a)(13.4c) using the new uncertainty set Ut(x), and eliminate
the equality constraint on battery SOC bt by expanding on the battery state (given initial state b0):

bt = b0 �Â
s<t

ds, t = 1, . . . ,T

1We formulate the OPF problem in the complex domain for notational simplicity; it is straightforward to convert it into
OPF in the real domain.
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to obtain the equivalent formulation:

min
x

f (x) s.t. umin  |uit | umax, i = 1,2, 8ut 2Ut(x), t = 1, . . . ,T

0 b0�Â
s<t

ds  B, t = 1, . . . ,T

which is in the form (13.2). Note that the uncertainty sets Zt , which are independent of x, have been
incorporated into the new uncertainty sets Ut(x) which depend on x.

The tractability of the robust optimization problem (13.2) depends on the structure of the nominal
problem and that of the uncertainty set Z(x) := Z1(x)⇥ · · ·⇥Zm(x)✓ R

k1⇥ · · ·⇥R
km for each x. If we let

the robust feasible set be:

X := X(Z) := { x : hi(x,zi) 0, 8zi 2 Zi(x), i = 1, . . . ,m }

then the tractability of the robust problem often boils down to whether there is a finite convex repre-
sentation of X(Z). Since the direct product of Zi(x) preserves convexity we can assume without loss of
generality that m = 1 in (13.2) and consider the tractability of

min
x2Rn

f (x) s.t. h(x,z )  0, 8z 2 Z(x) (13.6)

where f : Rn ! R and h : Rn⇥R
k ! R are convex functions and Z(x) ✓ R

k is a convex set for every
x 2 R

n.

The derivation of a tractable reformulation of (13.6) often uses the following concept.

Definition 13.1. A set X+ ✓ R
n⇥R

m is said to represent a set X ✓ R
n if the projection of X+ onto the

space of x-variable is exactly X , i.e., X = {x : (x,y) 2 X+, y 2 R
m}.

This simple technique can sometimes be used to greatly reduce the number of constraints. For instance
the L1-norm ball

X :=

(
x 2 R

n : kxk1 := Â
i

|xi| 1

)

is defined by 2n linear inequalities, but can be represented by a much simpler set X+ defined by 2n + 1
linear inequalities in 2n variables (Exercise 13.1):

X+ :=

(
(x,y) 2 R

2n : �yi  xi  yi, i = 1, . . . ,n, Â
i

yi  1

)

Note that y in X+ satisfies yi � 0 for all i. Indeed yi represents |xi|.

More importantly we will use this concept to derive a finite convex representation X+, which does
not depend on the uncertainty set Z, of the possibly semi-infinite feasible set X(Z). Then (13.6) can be
reformulated as

min
x,y

f (x) s.t. (x,y) 2 X+ ✓ R
n+m (13.7)

which is tractable when f is a convex cost function and X+ is a convex feasible set. We first summarize
the general strategy.
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Derivation strategy. The key observation is that (13.6) is equivalent to

min
x2Rn

f (x) s.t. sup
z2Z(x)

h(x,z )  0 (13.8)

This is called a bi-level problem and generally intractable. It often has a tractable reformulation when, for
each fixed x 2 R

n, the subproblem

h̄(x) := sup
z2Z(x)

h(x,z ) (13.9)

is a convex problem and the constraint h̄(x)  0 has a finite convex representation. We assume without
loss of generality that f is a convex function (otherwise we can move f into the constraint f (x)  t). To
derive a tractable reformulation the general strategy is:

1. When the subproblem (13.9) can be solved explicitly for each x 2Rn then the semi-infinite problem
(13.8) is equivalent to the finite problem

min
x2Rn

f (x) s.t. h̄(x)  0

If Z(x) = Z independent of x then, since h(x,z ) is convex in x for each z , h̄(x) is convex in x. In this
case the robust program has a tractable convex representation studied in Chapters 7 and 12.

2. Suppose the subproblem (13.9) is convex for each x 2 R
n but cannot be explicitly solved. Suppose

strong duality holds and optimal solutions for the dual of (13.9) exist (e.g., when the Slater Theorems
7.15, 12.26 and the KKT Theorems 7.13, 12.20 apply). Then

(a) Using strong duality we replace h̄(x)  0 in (13.8) by d(y;x)  0 where, for each x, d(·;x) is
the Lagrangian dual function of (13.9) and y is a minimizer that attains dual optimality.

(b) Typically the minimizer y cannot be solved explicitly for each x. We use the KKT condition
for (13.9) and its dual to characterize primal-dual optimal solutions (z ,y). When z can be
eliminated from the KKT condition, then we can conclude that x is feasible for (13.8) if and
only if there exists y such that (x,y) satisfies

d(y,x)  0, KKT(x,y)  0 (13.10)

where KKT(x,y) 0 represents the resulting KKT condition. If d(x,y) and the KKT function
KKT(x,y) are convex then the semi-infinite problem (13.8) is equivalent to the convex problem
minx,y f (x) s.t. (13.10) which is of the form (13.7).

This strategy is used to prove Theorems 13.1 and 13.2 below.

3. Sometimes the semi-infinite constraint in (13.8) takes the form h0(x)+h(x,z ) 2 K for all z 2 Z(x)
where, for each z , h0(·) and h(·,z ) are affine functions of x, for each x, h(x, ·) is a function of the
uncertainty parameter z , and K is a closed convex pointed cone. This is the case in Theorems 13.3
and 13.4 where Z(x) is a set of matrices with bounded spectrum norms. For both theorems the
constraint can be reformulated as a finite set of linear matrix inequalities using the S-lemma.
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As we will see below tractability often requires the uncertainty set Z(x) = Z to be independent of x. For
instance a robust linear program with the uncertainty set Z := {z 2 R

L : kzk•  1} remains a linear
program, but may become intractable if Z(x) := {z 2 R

L : kzk•  h(x)}; see Exercise 13.4.

In the rest of this section we use the general strategy above to derive the convex reformulations of
three classes of (h,Z) for which (13.6) is tractable, corresponding to robust counterparts of uncertain
linear program, second-order cone program, and semidefinite program.

13.1.2 Robust linear program

Consider (13.6) where f is linear and h is affine in x and z separately, giving rise to the following robust
counterpart of an uncertain linear program:

min
x2Rn

cTx s.t. aTx b, 8[aT b] 2
( h

aT0 b0

i
+

k

Â
l=1

zl

h
aTl bl

i
: z 2 Z ✓ R

k

)
(13.11)

where a 2 R
n and b 2 R are uncertain parameters. The row vector

⇥
aT0 b0

⇤
are nominal parameters and⇥

aTl bl
⇤

are basic perturbations modulated by the uncertain z in the uncertainty set Z. It does not lose
generality to assume that the uncertain vector [aT b] takes this form because taking k = n + 1 will allow
each entry of a and b to vary independently. We assume without loss of generality that Z is such that the
feasible set is nonempty, closed and convex. The uncertainty set Z is independent of x; otherwise (13.11)
may not be tractable; see Exercise 13.4.

Write (13.11) as a bi-level problem:

min
x2Rn

cTx s.t. max
z2Z

k

Â
l=1

zl(aTl x�bl)  �(aT0 x�b0) (13.12)

The corresponding constraint function h(x,z ) is affine in x for each z and affine in z for each x. Our
goal is to derive a finite convex representation of the semi-infinite feasible set in (13.11), and thus convert
the semi-infinite linear program into an explicit convex program. This amounts to replacing the subprob-
lem maxz2Z Âl zl

�
aTl x�bl

�
in (13.12) by a finite set of convex constraints involving x and possibly the

dual variable y of the subproblem but not the uncertain parameter z . The next theorem presents three
uncertainty sets Z that lead to tractable reformulations of the problem (13.11).

Theorem 13.1 (Tractable robust LP). Consider the robust linear program (13.11).

1. Linear uncertainty. Suppose Z := {z 2 R
k : kzk•  1}. Then (13.11) is equivalent to the LP:

min
(x,y)2Rn+k

cTx s.t. Â
l

yl  �(aT0 x�b0), �yl  aTl x�bl  yl, l = 1, . . . ,k

2. SOC uncertainty. Suppose Z := {z 2 R
k : kzk2  r}. Then (13.11) is equivalent to the SOCP:

min
x2Rn

cTx s.t. r
s

Â
l

�
aTl x�bl

�2  �(aT0 x�b0)
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3. Conic uncertainty. Suppose

Z := {z 2 R
k : 9u 2 R

p s.t. Pz +Qu+d 2 K }

where K is a closed convex pointed cone in R
m with a nonempty interior, P 2 R

m⇥k, Q 2 R
m⇥p are

given matrices, and d 2 R
m is a given vector. Suppose Z is nonempty and

• Either K is a polyhedral cone or

9(z̄ , ū) 2 R
k+p s.t. Pz̄ +Qū+d 2 ri(K)

• For each x 2 R
n, the subproblem maxz2Z Âl zl

�
aTl x�bl

�
in (13.12) is finite.

Then X is represented by the set X+ of (x,y) 2 R
n+m defined by the following system of conic

inequalities:

aT0 x + dTy  b0 (13.13a)

y 2 K⇤, QTy = 0, aTl x +
⇣

PTy
⌘

l
= bl, l = 1, . . . ,k (13.13b)

where K⇤ := {y 2R
m : yTz� 0 8z 2 K} is the dual cone of K. The robust linear program (13.11) is

equivalent to the conic program

min
(x,y)2Rn+m

cTx s.t. (13.13)

Proof. For parts 1 and 2, see Exercise 13.4. For part 3 fix any x 2 R
n. Let s 2 R

k be defined by sl :=
sl(x) := aTl x� bl . Then the subproblem in (13.12) is the following conic program (12.60) studied in
Chapter 12.8.4:

p⇤(x) := max
(z ,u)2Rk+p

(s(x))Tz s.t.
⇥
P Q

⇤z
u

�
+ d 2 K (13.14a)

i.e., x is feasible for (13.12) if p⇤(x)  b0� aT0 x. We will show that this holds if and only if there exists
(x,y) 2 R

n+m that satisfies (13.13).

The Lagrangian of (13.14a) is

L(z ,u,y) := sTz + yT
✓⇥

P Q
⇤z

u

�
+d
◆

, (z ,u) 2 R
k+p, y 2 K⇤

where K⇤ is the dual cone of K (see Chapter 12.8.4 for details). Since

L(z ,u,y) := yTd +
⇣

sT + yTP
⌘

z + yTQu

the dual function is

d(y) := max
(z ,u)2Rk+p

L(z ,u,y) =

⇢
dTy if PTy =�s, QTy = 0
• otherwise
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and the dual problem is:

d⇤(x) := min
y2K⇤

dTy s.t. PTy =�s(x), QTy = 0 (13.14b)

where the constraints above correspond to the stationarity condition —(z ,u) L = 0. For every x 2 R
n, since

the Slater condition is satisfied and the optimal value p⇤(x) of (13.14a) is finite, Theorem 12.31 implies that
strong duality holds and there exists y(x) 2 K⇤ that attains dual optimality, i.e., p⇤(x) = d⇤(x) = dTy(x),
whether or not there exists primal optimal point (z ,u).

Fix an x 2 R
n. Since strong duality holds, p⇤(x) b0�aT0 x will be equivalent to (13.13a) if and only

if y = y(x) in (13.13a) is dual optimal. We now show that a y is dual optimal if and only if (x,y) satisfies
(13.13b). Since the Slater condition is satisfied, Theorem 12.31 implies that a feasible (z ,u) is optimal
for (13.14a) if and only if there exists y 2 K⇤ ✓ R

m such that (noting that our primal problem (13.14a) is
maximization corresponding to minimizing �sTz )


�s
0

�
=


PT

QT

�
y, yT

✓⇥
P Q

⇤z
u

�
+d
◆

= 0 (13.15)

The first condition in (13.15) is stationarity and the second complementary slackness. Moreover such
an y is optimal for (13.14b). It hence suffices to show that (13.15) is equivalent to (13.13b). First we
claim that the complementary slackness condition in (13.15) (which involves the primal variables (z ,u))
is redundant and can be omitted given strong duality (yTd = sTz ) and the stationarity condition in (13.15).
This is because

yT
✓⇥

P Q
⇤z

u

�
+d
◆

= yTPz + yTQ + yTd = �sTz + 0 + yTd = 0

Next recall that sl := sl(x) := aT0 x� bl and hence s + PTy = 0 is equivalent to aTl x + (PTy)l = bl , l =
1, . . . ,k. We have thus shown that y is dual optimal if and only if (x,y) satisfies (13.13). This completes
the proof.

Remark 13.2 (Theorem 13.1). 1. The proof of Theorem 13.1 illustrates the strategy outlined in Chap-
ter 13.1.1. For parts 1 and 2, the subproblem (13.9) is solved explicitly. The equivalent feasibility
condition h̄(x) 0 takes the convex form given in the theorem. For part 3 the subproblem (13.9) is
convex but cannot be solved explicitly.

2. Part 3 reduces to part 1 when K := R
m
+ is the nonnegative quadrant, Q = 0, d = 1 of size 2k and

P is 2k⇥ k with Pll = �1, P(k+l)l = 1 and Pil = 0 if i 6= l,k + l, such that (Pz + d)l = 1� zl and
(Pz + p)k+l = zl + 1. The uncertainty set of part 2 can be expressed as the intersection of that of
part 3 and an affine set (see Exercise 13.5).

13.1.3 Robust second-order cone program

We study the robust counterpart of an uncertain second-order cone program studied in Chapters 7.4.4 and
12.8.3. It takes the form

min
x2Rn

cTx s.t. kA(z )x + b(z )k2  aT(z )x + b (z ), 8z 2 Z ✓ R
k (13.16a)
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where

A(z ) := A0 +
k

Â
l=1

zlAl 2 R
(m�1)⇥n, b(z ) := b0 +

k

Â
l=1

zlbl 2 R
m�1 (13.16b)

a(z ) := a0 +
k

Â
l=1

zlal 2 R
n, b (z ) := b0 +

k

Â
l=1

zlbl 2 R (13.16c)

Hence x is feasible if the affine transformation of x defined by (A(z ),b(z ),a(z ),b (z )) is in the second-
order cone in R

m for all z in the uncertainty set Z. The form of uncertainty in (13.16b)(13.16c) does not
lose generality because with k = (m� 1)n and appropriate choices of (Al,bl,al,bl) we can perturb each
entry of (Al(z ),bl(z ),al(z ),bl(z )) independently around its nominal value.

If Z = conv(z 1, . . . ,z p) ✓ R
k then these constraints are equivalent to a set of p second-order cone

constraints

kA(z i)x + b(z i)k2  aT(z i)x + b (z i), i = 1, . . . , p

Otherwise, (13.16) is generally a semi-infinite set of constraints. Writing (13.16) as a bi-level problem:

min
x2Rn

cTx s.t. max
z2Z

h(x,z )  0

It can be easily shown that, for any fixed x 2 R
n, the constraint h(x,z )  0 can be written as a SOC

constraint, and hence convex, in z (Exercise 13.7):
��Â(x)z + b̂(x)

��
2  âT(x)z + b̂ (x), 8z 2 Z (13.17)

for some Â(x) 2R(m�1)⇥k, b̂(x) 2Rm�1, â(x) 2Rk, b̂ (x) 2R. In particular b̂ (x) := aT

0 x + b0 which will
be used in Theorem 13.2. This means that the maximization of the convex h(x, ·) over Z, and hence robust
SOCP (13.16), is generally computationally hard except for special Z, e.g., Z = conv(z 1, . . . ,z p). We now
present two other classes of Z with decoupled uncertainties for which (13.16) is a tractable problem.

Suppose the dependence on the uncertain parameter z := (z l,z r) 2 Zl⇥ Zr in (13.16) is decoupled
in that the left-hand side depends only on z l and the right-hand side depends only on z r. Specifically
consider the robust SOCP:

min
x2Rn

cTx s.t.
���A(z l)x+b(z l)

���
2
 aT(z r)x+b (z r), 8z l 2 Zl, z r 2 Zr (13.18)

Any x 2 R
n is feasible for (13.18) if and only if there exists a variable t such that

max
z l2Zl
kA(z l)x + b(z l)k2  t  min

z r2Zr
aT(z r)x + b (z r) (13.19)

Fix an x 2 R
n. The semi-infinite constraint on x is tractable if both inequalities in (13.19) have finite

convex representations. We discuss two classes of (Zl,Zr) for which this is the case. In both cases, to
maintain convexity of both optimization problems in (13.19), their objective functions are affine in z l and
z r respectively. The feasible set Zl for the maximization is affine in z l and the feasible set Zr for the
minimization is defined by conic constraints. Even though the form (13.16b)(13.16c) of the uncertain
parameters (A(z l),b(z l),a(z r),b (z r)) is general, it is sometimes convenient to allow them to take other
forms.
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Interval + conic uncertainty. Consider the robust SOCP (13.18). Suppose that:

1. Left-side uncertainty: A(z l) = A0 +DA and b(z l) = b0 +Db with the uncertainty set

Zl :=
n

z l := [DA Db] : |DAi j| di j, |Dbi| di, i = 1, . . . ,m�1, j = 1, . . . ,n
o

(13.20a)

i.e., each parameter [A(z l)]i j, [b(z l)]i is perturbed independently of other parameters around its
nominal value.2

2. Right-side uncertainty: a(z r) := a0 + Âkr
l=1 zlal 2 R

n and b (z r) := b0 + Âkr
l=1 zlbl 2 R with the

uncertain parameter z r in the conic uncertainty set in Theorem 13.1:

Zr :=
n

z r 2 R
kr : 9u s.t. Pz r +Qu+d 2 K

o
(13.20b)

where K ✓ R
p is a closed convex pointed cone for some P,Q,d,u of appropriate dimensions. Sup-

pose Zr satisfies the Slater condition, i.e., Zr is nonempty and either K is polyhedral or there is (z̄ r, ū)
such that Pz̄ r +Qū+d 2 ri(K).

Fix an x 2 R
n. We separately consider the two inequalities in (13.19). The first inequality, even though

it involves maximization of a convex function, can be solved explicitly and the second inequality can
be characterized the same way as (13.14a) in the proof of Theorem 13.1. Specifically, the first inequal-
ity in (13.19) is of the form kw + Dwk2

2 = Âi(wi + Dwi)2  t2. Since Zl is a simple box constraint,
maxDw:|Dwi|ei kw + Dwk2 is attained at Dwi = ±ei where each |wi + Dwi| is individually maximized with
maximum value |wi|+ ei. Hence the first inequality in (13.19) is equivalent to: 9z 2 R

m�1 such that

zi =

�����Âj
[A0]i jx j +[b0]i

����� + Â
j

|di jx j|+di, i = 1, . . . ,m�1, kzk2  t

which is a linear constraint and a convex quadratic constraint in z2Rm�1. The second inequality in (13.19)
is equivalent to

t  min
z r2Zr, t2R

n
t : aT(z r)x + b (z r) t

o

For the given x, use (13.17) to rewrite this minimization as:

min
z r,t,u

t s.t. âT(x)z r + b̂ (x)� t  0, Pz r +Qu+d 2 K (13.21)

for some â(x) and b̂ (x) := aT

0 x + b0. This is a convex problem similar to the problem (13.14a) in the
proof of Theorem 13.1, with an additional affine constraint.

The next theorem shows that when the uncertainty set is decoupled as Z := Zl⇥Zr, the robust SOCP
(13.18) is a conic program and hence tractable. It can be proved using Theorem 12.31, similarly for
Theorem 13.1 (Exercise 13.8).

2If uncertainty is expressed in the form of (13.16b)(13.16c), this corresponds to
��Âl zl [Al ]i j

�� di j, |Âl zl [bl ]i| di.
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Theorem 13.2 (Tractable SOCP). Consider the robust SOCP (13.18) where (Zl,Zr) are given by (13.20)
where Zr satisfies the Slater condition. Suppose the optimal value of the minimization in (13.19) is finite.
Then x 2 R

n is feasible for (13.18) if and only if there exist (y,z) 2 R
p+m�1 such that (x,y,z) satisfies

zi =

�����Âj
[A0]i jx j +[b0]i

����� + Â
j

di j|x j|+di, i = 1, . . . ,m�1 (13.22a)

kzk2  b̂ (x)� yTd, y 2 K⇤, PTy = â(x), QTy = 0 (13.22b)

where K⇤ ✓ R
p is the dual cone of K and b̂ (x) := aT

0 x + b0. Hence (13.18) is equivalent to the conic
program:

min
(x,y,z)2Rn+p+m�1

cTx s.t. (13.22)

Bounded-norm + conic uncertainty. Consider the robust SOCP (13.18). Suppose that:

1. Left-side uncertainty: A(z l)x+b(z l) takes the form

A(z l)x+b(z l) = (A0x+b0)+ LT(x)z lr(x) (13.23)

with the restriction that at most one of L(x)2Rk1⇥(m�1) and r(x)2Rk2 depends on x and the other is
a constant. Moreover the dependence of L(x) or r(x) is affine in x so that the constraints in (13.26b)
and (13.26c) below are linear matrix inequalities in x. Here A(z l) 2 R

(m�1)⇥n, b(z l) 2 R
m�1, and

the uncertain parameter z l 2 R
k1⇥k2 . The uncertain parameter z l is a matrix of bounded induced

norm (maximum singular value) in the uncertainty set

Zl :=
⇢

z l 2 R
k1⇥k2 :

���z l
���

2
:= max

u:kuk21

���z lu
���

2
 1

�
(13.24)

2. Right-side uncertainty: Zr is given by (13.20b) and satisfies the Slater condition.

The next result says that the SOC constraint in (13.18) with uncertainty sets (Zl,Zr) given by (13.24)(13.20b)
is equivalent to an explicit system of linear matrix inequalities (LMI). It implies the tractability of robust
SOCP (13.18) for bounded-norm and conic uncertainty. We separate explicitly (13.23) into two cases:

A(z l)x+b(z l) = (A0x+b0)+ LT(x)z lr (13.25a)

where L(x) a matrix affine in x and r 6= 0 is a constant vector and

A(z l)x+b(z l) = (A0x+b0)+ LTz lr(x) (13.25b)

where L 6= 0 is a constant matrix and r(x) is a vector affine in x.

Theorem 13.3. Consider the robust SOCP (13.18) where Zl is given by (13.24)(13.25) and Zr is given
by (13.20b). Suppose the optimal value of the minimization in (13.19) is finite and Zr satisfies the Slater
condition. An x 2 R

n is feasible for (13.18) if and only if there exist y 2 R
p and (t,l ) 2 R

2 such that
(x,y,t,l ) satisfies

y 2 K⇤, t  b̂ (x)� yTd, PTy = â(x), QTy = 0 (13.26a)

and the following linear matrix inequalities:
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• when A(z l)x+b(z l) is given by (13.25a):

l � 0,

2

4
t�lkrk2

2 (A0x+b0)T 0
A0x+b0 tIm�1 LT(x)

0 L(x) l Ik1

3

5 ⌫ 0 (13.26b)

• when A(z l)x+b(z l) is given by (13.25b):

l � 0,

2

4
t (A0x+b0)T rT(x)

A0x+b0 tIm�1�lLTL 0
r(x) 0 l Ik2

3

5 ⌫ 0 (13.26c)

Hence (13.18) is equivalent to the semidefinite program:

min
(x,y,t,l )2Rn+p+2

cTx s.t. (13.26)

For Zl in (13.24), the maximization problem in (13.19) cannot be solved explicitly as for Zl in (13.20a).
Instead, we will interpret the maximization as the constraint, for all z 2 Zl, (A(z l)x+b(z l),t) 2 Ksoc the
second-order cone. The proof that this is equivalent to (13.26b)(13.26c) then uses the following three
ideas:

1. LMI characterization of second-order cone. A vector (y, t) 2 R
`+1 is in the second-order cone, i.e.,

kyk2  t, if and only if


t yT

y tI`

�
⌫ 0 (13.27)

where I` is the identity matrix of size `. This follows from the following property of the Schur
complement of the “arrow matrix” in (13.27): a matrix is (necessarily symmetric and) positive
definite if both a principal submatrix and the Schur complement of the principal submatrix are
positive definite (see Theorem 20.4 in Chapter 20.1.3.1).

2. l2-norm matrix minimization. It can be proved using singular-value decomposition that (Exercise
13.9)

�r ka1k2 ka2k2 = min
X :kXk2r

aT1 Xa2 (13.28)

3. S-Lemma. Let A, B be symmetric matrices of the same size and x̄TAx̄ > 0 for some x̄. Then the
implication xTAx � 0) xTBx � 0 holds if and only if 9l � 0 such that B⌫ lA. Note that neither
B nor A needs to be positive semidefinite, but B�lA is.
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Proof of Theorem 13.3. Fix an x 2 R
n. It is feasible for (13.18) if and only if there exists a variable t 2 R

such that both inequalities in (13.19) have finite convex representations. Since Zr is the same as that
in Theorem 13.2 the second inequality in (13.19) is equivalent to (13.26a). We now show that the first
inequality in (13.19) is equivalent to (13.26b)(13.26c), using the three ideas above.

Consider the case (13.25a) and let g(x) := A0x+b0 2R
m�1. First, apply (13.27) to (13.25a) to rewrite

the first inequality in (13.19) as: for all z l 2 Zl,
"

t
�
g(x)+LT(x)z lr

�T

g(x)+LT(x)z lr tIm�1

#
⌫ 0

Therefore

(z1)
2t + 2zT2

⇣
g(x)+LT(x)z lr

⌘
z1 + (zT2 z2)t � 0, 8 z1 2 R, z2 2 R

m�1, z l 2 Zl

Or

(z1)
2t + 2zT2 g(x)z1 + (zT2 z2)t + min

z l:kz lk21
(2L(x)z2)

Tz l(z1r) � 0, 8 z1 2 R, z2 2 R
m�1 (13.29)

Second, use (13.28) to eliminate z l from minz l:kz lk21(2L(x)z2)Tz l(z1r):

min
z l:kz lk21

(2L(x)z2)
Tz l(z1r) = �2kL(x)z2k2 kz1rk2 = min

X :kXk2kz1rk2
(2L(x)z2)

TX(1)

where the second equality uses (13.28) again with X 2 R
k1⇥1. Substituting into (13.29) we have, for all

z1 2 R and X 2 R
k1 with z2

1krk2
2�XTX � 0,

(z1)
2t + 2zT2 g(x)z1 + (zT2 z2)t + 2zT2 LT(x)X � 0, 8 z1 2 R, z2 2 R

m�1

This is equivalent to
2

4
krk2

2 0 0
0 0 0
0 0 �Ik1

3

5 ⌫ 0 =)

2

4
t gT(x) 0

g(x) tIm�1 LT(x)
0 L(x) 0

3

5 ⌫ 0 (13.30)

Third, there clearly exists z1 > 0 such that z2
1krk2

2 > 0 since r 6= 0. Hence we can apply the S-lemma to the
two (m+ k1)⇥ (m+ k1) matrices in (13.30) to conclude that the first inequality in (13.19) is equivalent to
(13.26b).

The case of (13.25b) is similar. Applying (13.27) to (13.25b), the first inequality in (13.19) is equiva-
lent to: for all z l 2 Zl,

"
t

�
g(x)+LTz lr(x)

�T

g(x)+LTz lr(x) tIm�1

#
⌫ 0

Therefore

(z1)
2t + 2zT2 g(x)z1 + (zT2 z2)t + min

z l:kz lk21
(2Lz2)

Tz l(z1r(x)) � 0, 8 z1 2 R, z2 2 R
m�1 (13.31)
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Use (13.28) to eliminate z l ((13.25a) and (13.25b) differ mainly in the second equality below):

min
z l:kz lk21

(2Lz2)
Tz l(z1r(x)) = �2kLz2k2 kz1r(x)k2 = min

X :kXk2kLz2k2
(2z1r(x))TX(1)

where the second equality uses (13.28) again with X 2 R
k2⇥1. Substituting into (13.31) we have, for all

z2 2 R
m�1 and X 2 R

k
2 with zT2 (LTL)z2�XTX � 0,

(z1)
2t + 2zT2 g(x)z1 + (zT2 z2)t + 2XTr(x)z1 � 0, 8 z1 2 R, z2 2 R

m�1

This is equivalent to
2

4
0 0 0
0 LTL 0
0 0 �Ik2

3

5 ⌫ 0 =)

2

4
t gT(x) rT(x)

g(x) tIm�1 0
r(x) 0 0

3

5 ⌫ 0 (13.32)

Hence we can apply the S-lemma to the two (m + k2)⇥ (m + k2) matrices in (13.32) to conclude that the
first inequality in (13.19) is equivalent to (13.26c).

13.1.4 Robust semidefinite program

We study the robust counterpart of an uncertain semidefinite program (SDP) studied in Chapter 7.4.5.
Consider a standard SDP

min
x2Rn

f (x) s.t. h0(x) 2 Kpsd (13.33a)

where f : Rn ! R is a real-valued convex function, Kpsd ✓ S
m is the closed convex pointed cone of

positive semidefinite matrices in the vector space S
m ⇢ R

m⇥m of symmetric matrices, and the matrix-
valued function h0 : Rn! S

m is given by:

h0(x) := B0 +
n

Â
i=1

xiAi
0 2 S

m (13.33b)

where Ai
0,B0 2 S

m are given symmetric matrices for i = 0,1, . . . ,n. This is the nominal problem where the
parameters (Ai

0,B0, i� 0) that define h0 are certain and given.

The robust counterpart of (13.33) is

min
x2Rn

f (x) s.t. h0(x)+hz (x) 2 Kpsd, 8z 2 Z (13.34a)

where h0(x) is given by (13.33b), hz (x) is a symmetric matrix in S
m as a function of x indexed by z , and

z is the uncertainty parameter that takes value in an uncertainty set Z. We assume that the matrix-valued
function hz (x) is an affine function of x for each fixed z 2 Z so that the constraints in (13.34a) are linear
matrix inequalities (LMIs) in x. For example hz (x) may take the form:

hz (x) :=
k

Â
l=1

zl

 
Bl +

n

Â
i=1

xiAi
l

!
2 S

m, 8z 2 Z ✓ R
k
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for a given set of symmetric matrices (Ai
l,Bl, i = 1, . . . ,n, l = 1, . . . ,k) in S

m. For a general uncertainty
set Z, it is a semi-infinite set of LMIs and hence the robust SDP (13.34a) is generally computationally
intractable. There are two exceptions. The first is when Z := conv(z 1, . . . ,z p) is the convex hull of p
given vectors z 1, . . . ,z p 2Rk. In this case the semi-infinite set of LMIs reduces to a set of p LMIs and the
robust SDP (13.34a) reduces to the following convex problem

min
x2Rn

f (x) s.t. h0(x)+hz i(x) 2 Kpsd, i = 1, . . . , p

for any affine functions hz i(x) of x, indexed by z 1, . . . ,z p 2 Z.

The second exception is when the affine function hz (x) is given by

hz (x) := LT(x)z R(x)+RT(x)zTL(x) 2 S
m (13.34b)

where z is a k1⇥ k2 matrix with bounded spectral norm in the uncertainty set

Z :=
⇢

z 2 R
k1⇥k2 : kzk2 := max

u:kuk2=1
kz uk2  r

�
(13.34c)

and both L(x) 2 R
k1⇥m and R(x) 2 R

k2⇥m are affine functions of x with at least one of them being inde-
pendent of x (cf. the left-side uncertainty set in (13.24)(13.25) for robust SOCP).

Example 13.2 (SDP relaxation of OPF). For notational simplicity we will formulate our problem in the
complex domain, i.e., Sm is the set of Hermitian matrices and Kpsd is the closed convex pointed cone of
semidefinite matrices in the vector space Sm over the field R (not C). It can be converted to the real domain
(see Remark 9.2).

The semidefinite relaxation (10.20a) in Chapter 10.1 of optimal power flow (OPF) (9.16) is given by
(omitting line flow constraints for simplicity):

min
W2Kpsd

tr(C0W ) s.t. tr
�
F jW

�
 pmax

j , �tr
�
F jW

�
 �pmin

j , j 2 N (13.35a)

tr
�
Y jW

�
 qmax

j , �tr
�
Y jW

�
 �qmin

j , j 2 N (13.35b)

tr
�
JjW

�
 vmax

j , �tr
�
JjW

�
 �vmin

j , j 2 N (13.35c)

where Kpsd ⇢ S
N+1,

Fi :=
1
2

⇣
YH

0 eieTi + eieTi Y0

⌘
, Yi :=

1
2i

⇣
YH

0 eieTi � eieTi Y0

⌘
, Ji := eieTi (13.35d)

and ei 2 {0,1}N+1 is the unit vector with a single 1 in its ith entry. Here Y0 2 C
(N+1)⇥(N+1) is a given

nominal admittance matrix. This problem is of the form (7.69), reproduced here:

min
Z2Kpsd

tr
⇣

BH

0 Z
⌘

s.t. tr
⇣

AiH
0 Z
⌘
 ci, i = 1, . . . ,n := 6(N +1)

for some B0,Ai
0 2 S

N+1, i� 1. The dual problem of (13.35) is therefore of the form (from (7.70b)):

�min
x2Rn

cTx s.t. x� 0, h0(x) 2 Kpsd (13.36a)
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where h0(x) 2 C
(N+1)⇥(N+1) for each x 2 R

6(N+1), defined as:

h0(x) := C0 +
N+1

Â
i=1

�
(x2i�1� x2i)Fi +

�
x2(N+1)+2i�1� x2(N+1)+2i

�
Yi +

�
x4(N+1)+2i�1� x4(N+1)+2i

�
Ji
�

(13.36b)

which takes the form of the nominal SDP problem (13.33).

Suppose the admittance matrix Y in (13.35d) is uncertain with Y =Y0 +DY where DY is the uncertainty
parameter that takes value in an uncertainty set Z ✓ C

(N+1)⇥(N+1). Let DFi :=
�
DYHeieTi + eieTi DY

�
/2

and DYi :=
�
DYHeieTi � eieTi DY

�
/2i. Then the robust counterpart of (13.36) is

�min
x2Rn

cTx s.t. x� 0, h0(x)+hDY (x) 2 Kpsd (13.37a)

where hDY (x) := LH(x)DY +DYHL(x) is a linear function in x and

L(x) :=
N+1

Â
i=1

✓
1
2

(x2i�1� x2i) +
1
2i
�
x2(N+1)+2i�1� x2(N+1)+2i

�◆
eieTi (13.37b)

If the perturbation DY has bounded spectral norm then this is the uncertainty model in (13.34) with R(x) :=
IN+1.

The next result says that the robust semidefinite program (13.34) whose uncertainty parameter z has a
bounded spectral norm is computationally tractable.

Theorem 13.4. Consider the robust SDP (13.34).

1. If hz (x) := LT(x)z R+RTzTL(x) with R 6= 0, then x is feasible for (13.34) if and only if there exists
l such that (x,l ) 2 R

n+1 satisfies

l � 0,


h0(x)�lRTR rLT(x)

rL(x) l Ik1

�
⌫ 0 (13.38a)

2. If hz (x) := LTz R(x)+RT(x)zTL with L 6= 0, then x is feasible for (13.34) if and only if there exists
l such that (x,l ) 2 R

n+1 satisfies

l � 0,


h0(x)�lLTL rRT(x)

rR(x) l Ik2

�
⌫ 0 (13.38b)

Hence the robust SDP (13.34) is equivalent to the semidefinite program:

min
(x,l )2Rn+1

f (x) s.t. (13.38)
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Proof. Suppose hz (x) := LT(x)z R+RTzTL(x) with nonzero R. Fix an x 2Rn. It is feasible for (13.34) if
and only

yT
⇣

h0(x)+LT(x)z R+RTzTL(x)
⌘

y � 0, 8y 2 R
m, 8

⇣
z 2 R

k1⇥k2 : kzk2  r
⌘

Hence

yTh0(x)y + 2 min
z :kzk2r

(L(x)y)Tz (Ry) � 0, 8y 2 R
m (13.39)

As in the proof of Theorem 13.3, apply (13.28) twice to eliminate z from (13.39):

min
z :kzk2r

(L(x)y)Tz (Ry) = �r kL(x)yk2 kRyk2 = min
X2Rk1⇥1:kXk2kRyk2

(rL(x)y)TX(1) (13.40)

Substituting into (13.39) we have

yT(RTR)y�XTX � 0 =) yTh0(x)y + 2yT(rL(x))TX � 0, 8(y,X) 2 R
m+k1

This is equivalent to


RTR 0
0 �Ik1

�
⌫ 0 =)


h0(x) rLT(x)
rL(x) 0

�

Clearly there exists y such that yTRTRy > 0 since R is nonzero. Hence we can apply the S-lemma to
conclude (13.38a).

The case of hz (x) := LTz R(x) + RT(x)zTL with nonzero L is similar. The main difference is that
(13.40) becomes

min
z :kzk2r

(Ly)Tz (R(x)y) = �r kLyk2 kR(x)yk2 = min
X2Rk2⇥1:kXk2kLyk2

(1)XT(rR(x)y)

Hence

yT(LTL)y�XTX � 0 =) yTh0(x)y + 2XT(rR(x))y � 0, 8(y,X) 2 R
m+k2

This is equivalent to


LTL 0
0 �Ik2

�
⌫ 0 =)


h0(x) rRT(x)
rR(x) 0

�

Then S-lemma implies (13.38b).

13.2 Chance constrained optimization

Consider the optimization problem:

min
x2Rn

c(x) (13.41a)

s.t. P(hi(x,z ) 0, i = 1, . . . ,m) � p (13.41b)
x 2 X (13.41c)
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where c : Rn ! R is a cost function, hi : Rn⇥R
k ! R, i = 1, . . . ,m, are constraint functions, z 2 R

k

is a random vector and P is a probability measure defined on some probability space3, p 2 [0,1], and
X ✓ R

n is nonempty. The constraint (13.41b) is called a chance constraint or a probabilistic constraint.
The problem (13.41) is a deterministic optimization problem called a chance constrained program. It is
generally intractable because the chance constraint (13.41b) is often nonconvex.

Compared with the robust program (13.2), the chance constrained program (13.41) allows the depen-
dence on the uncertain parameter z of different constraints hi(x,z ) 0 to be coupled across i and is more
general than hi(x,zi)  0. More importantly (13.41) is less conservative in the sense that the constraints
hi(x,z )  0 for all i need not hold for almost all uncertain parameter values z , but only with probability
greater than or equal to p.

In this section we introduce several techniques to deal with the chance constrained program (13.41).
When the constraint functions hi and the probability measure P have certain concavity properties then the
chance constraint (13.41b) is convex and (13.41) is tractable. This is studied in Chapter 13.2.1. We then
study two techniques to analyze (13.41) when these concavity conditions may not hold. In Chapter 13.2.2
we derive several bounds on the tail probability of a random variable. They are called concentration
inequalities and can be used to provide inner approximations of the feasible set defined by the chance
constraint (13.41b). In Chapter 13.2.3 we approximate the chance constrained program (13.41) by a safe
but more conservative robust program using the Chernoff bound studied in Chapter 13.2.2. In Chapter
13.3 we approximate the chance constraint by a finite set of random constraints.

13.2.1 Tractable instances: convexity, strong duality and optimality

In this subsection we studied conditions under which the chance constrained program is tractable. Unless
otherwise specified (see Remark 13.3), we assume that the chance constraint is separable in the decision
variable x and the random vector z , i.e., we consider the following special case of (13.41) where the
constraint function is separable in x and z :

min
x2Rn

c(x) (13.42a)

s.t. P(z  h(x)) � p (13.42b)
x 2 X (13.42c)

where the constraint function is h : Rn! R
m and the random vector z 2 R

m.

In this case the chance constraint (13.42b) can be expressed in terms of the (probability) distribution

3Formally a probability space is a triple (W,F ,P) where the sample sapce W is an arbitrary nonempty set. The s -algebra
F ✓ 2W is a set of subsets A✓W of W called events that satisfies: (i) W 2F ; (ii) if A 2F then W\A 2F ; and (iii) if Ai 2F
for i = 1,2, . . . , then ([iAi)2F . The probability measure P : F ! [0,1] is a function such that (i) P(W) = 1; and (ii) if Ai 2F
for i = 1,2, . . . are pairwise disjoint, then P([iAi) = ÂiP(Ai). A random variable or random vector Z defined on the probability
space (W,F ,P) is a function Z : W! R

m such that P({w 2W : Z(w) z}) is called the probability of the event {Z  z} and
sometimes denoted by P(Z  z). The probability distribution function or distribution function FZ : Rm! [0,1] is the function
defined by the probability measure P, FZ(z) = P({w 2W : Z(w) z}).

In this book we will ignore measurability issues, i.e., we will assume all random variables or processes encountered are
well defined, they generate appropriate s -algebra on which appropriate probability measures are defined, and all functions
encountered are measurable. When we say two sets are the same, we mean they differ only by a measure zero set.
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function Fz : Rm! [0,1] of z as

Fz (h(x)) � p

The function Fz (z) is also called a cumulative distribution function. A (probability) density function, if
exists, is denoted by fz (z). A distribution function Fz is nondecreasing, i.e., Fz (z1)  Fz (z2) if z1  z2,
and upper semicontinuous, i.e., if zk! z then

Fz (z) � limsup
k

Fz (zk) (13.43)

Consider the feasible set

Xp :=
�

x 2 R
n : Fz (h(x)) � p

 
(13.44)

In this subsection we study conditions under which Xp is convex, the chance constrained problem (13.42)
is tractable, and strong duality and optimality hold.

Convexity of Xp. Suppose components hi, 8i, of h : Rn! R
m and the distribution function Fz : Rm!

[0,1] are real-valued and concave functions. Then the feasible set Xp in (13.44) is convex (Exercise 13.10).
Important distribution functions however may not be concave, as the next example shows.

Example 13.3 (Gaussian distribution). The multivariate Gaussian random vector Z 2 R
m has a density

function

fz (z) :=
1p

(2p)m det(S)
exp
✓
�1

2
(z�µ)TS�1(z�µ)

◆

with a mean µ 2 R
m and a positive definite covariance matrix S 2 R

m⇥m. Then

ln fz (z) = �1
2
(z�µ)TS�1(z�µ)� 1

2
ln((2p)m det(S))

and hence fz is log-concave. It can be shown that its distribution function Fz (z) is also log-concave (see
(13.45) below).

Example 13.3 motivates a more general notion of concavity under which the feasible set Xp remains
convex.

Definition 13.2 (a-concavity). Let W✓R
m be a convex set. A nonnegative function f : W!R+ is called

a-concave with a 2 [�•,•] if for all x,y 2W such that f (x) > 0 and f (y) > 0 and all l 2 [0,1], we have

f (lx+(1�l )y) �

8
>><

>>:

(l f a(x)+(1�l ) f a(y))1/a if a 62 {0,�•,•}
f l (x) f 1�l (y) if a = 0
min{ f (x), f (y)} if a =�•
max{ f (x), f (y)} if a = •
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The class of a-concave functions includes several commonly used function classes as special cases. A
function f : Rn! R is called concave if for all x,y 2 R

n and all l 2 [0,1] we have f (lx +(1�l )y) �
l f (x) + (1� l ) f (y); this corresponds to 1-concavity. The function f is called log-concave if log f is
concave with respect to any base; this corresponds to 0-concavity. The function f is called quasi-concave
if f (lx+(1�l )y)�min{ f (x), f (y)}; this corresponds to �•-concavity. The function f is •-concave if
and only if it is a constant function. For a 62 {0,�•,•}, f is a-concave if and only if f a is concave.

One can also define a-concavity for a probability measure P which is a stronger property in the sense
that an a-concave probability measure implies an a-concave distribution function Fz , but the converse
may not hold. Unless otherwise specified we assume the chance constraint is separable in x and z in
which case the a-concavity of Fz is sufficient for our purposes (cf. Remark 13.3). The a-concavity of
a probability density function fz (z) induces a probability measure, and hence its distribution function
Fz (z), that is b -concave for some b . Specifically it can be shown (see [174, Corollary 4.16, p.106])
that if the probability density function fz (z) defined on W✓ R

m, with
R

W fz (z)dz = 1, is a-concave with
a 2 [�1/m,•] and if fz (z) > 0 in the interior of W, then the probability measured P defined by

P(A) :=
Z

A
fz (z)dz, A✓W (13.45a)

is b -concave with

b :=

8
<

:

a
1+ma if a 2 (�1/m,•)
�• if a =�1/m
1/m if a = •

(13.45b)

This implies that, since the Gaussian density function fz of Example 13.3 is log-concave (a = 0), so is its
distribution function Fz .

The following properties of a-concavity are important in determining the convexity of the feasible set
Xp in (13.44).

Lemma 13.5 (a-concavity). Let W✓R
m be a convex set and consider nonnegative function f : W!R+.

1. For a 2 [�•,•], (a,b) 2 R
2
+ with a > 0, b > 0, and l 2 [0,1], define

ma(a,b,l ) :=

8
>><

>>:

(laa +(1�l )ba)1/a if a 62 {0,�•,•}
al b1�l if a = 0
min{a,b} if a =�•
max{a,b} if a = •

Therefore f being a-concave is equivalent to f (lx+(1�l )y)� ma( f (x), f (y),l ). Then for each
(a,b,l ), the mapping a ! ma(a,b,l ) is nondecreasing and continuous.

2. If f is a-concave then it is b -concave for all b  a; in particular concavity implies log-concavity
which implies quasi-concavity.

3. Let hi : Rn ! R, i = 1, . . . ,m. If all hi are concave and f is nonnegative, nondecreasing and a-
concave then f �h : Rn! R+ is a-concave.
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4. If f is a-concave for some a >�• then f is continuous on ri(W).

5. Suppose f : Rn1⇥n2 !R+ is such that for all y 2Y ✓R
n2 , f (x,y) is a-concave in x for a 2 [�•,•]

on a convex set X ✓ R
n1 . Then g(x) := infy2Y f (x,y) is a-concave on X .

Consider a concave function f : Rm!R (and is therefore proper as an extended real-valued function).
We say y 2 R

m is a subgradient of f at x̄ 2 R
m if �y is a subgradient of the convex function � f , i.e., if

f (x)  f (x̄) + yT(x� x̄), x 2 R
m

The set of all subgradients of the concave function f at x̄ is the subdifferential ∂ f (x̄) of f at x̄. Then
x⇤ 2R

m is an optimal solution of supx2Rm f (x) if and only if 0 2 ∂ f (x⇤). Moreover Lemma 12.14 applies
directly to the real-valued concave function f . In particular f (x) is continuous on R

m. For each x 2 R
n,

∂ f (x) ✓ R
m is a nonempty convex compact set. If X ⇢ R

m is nonempty and compact, then ∂X f :=
[x2X ∂ f (x) is nonempty and bounded; moreover f is Lipschitz continuous over X with Lipschitz constant
L := supx2∂X f kxk2, i.e., k f (x)� f (y)k2  Lkx� yk2 for all x,y 2 R

m. More generally if f is a-concave
with a > �• then it is continuous on the relative interior of its domain according to Lemma 13.5. A
quasi-concave function (a =�•) need not be continuous.

In general the feasible set Xp in (13.44) is not convex or even connected. The following result provides
a sufficient condition for the feasible set to be convex and closed.

Theorem 13.6 (Convexity of Xp). Suppose all components hi of h : Rn ! R
m are concave and the

distribution function Fz : Rm ! [0,1] is a-concave for some a 2 [�•,•], then the feasible set Xp :=�
x 2 R

n : Fz (h(x))� p
 

defined in (13.44) is convex and closed.

Proof. Lemma 13.5 implies that the function H : Rn! [0,1] defined by H(x) := Fz (h(x)) is a nonnegative
a-concave function. To show that the set Xp for a fixed p 2 [0,1] is convex consider x1,x2 2 Xp with
H(x1)� p and H(x2)� p and x := lx1 +(1�l )x2 for any l 2 [0,1]. We have

H(x) � ma(H(x1),H(x2),l )

If a = �•, i.e., H(x) is quasi-concave, then H(x) � min{H(x1),H(x2)} � p, i.e., x 2 Xp. Since the
mapping a ! ma(a,b,l ) for each (a,b,l ) is nondeacreasing in a by Lemma 13.5, if H(x) is a-concave
for any a 2 [�•,•], it is quasi-concave and hence x 2 Xp. This proves that Xp is convex.

To show that Xp is closed, consider any sequence xk 2 Xp with xk! x. We have

H(x) := Fz (h(x)) = Fz

✓
lim

k
h(xk)

◆
� limsup

k
Fz (h(xk)) � p

where the second equality follows from the continuity of h since h is concave (Lemma 13.5), the first
inequality follows from the uppersemicontinuity of distribution functions from (13.43), and the last in-
equality follows from xk 2 Xp.

Remark 13.3 (Inseparable chance constraint). Theorem 13.6 generalizes to the case where the chance
constraint in (13.42b) is not separable in the decision variable x and the random vector z and takes the
form H(x) := P(hi(x,z )� 0, i = 1, . . . ,m) � p. It can be shown ([174, Theorem 4.39, p.115]) that if
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hi(x,z), i = 1, . . . ,m, are jointly quasi-concave in (x,z) 2 R
n+k and if z has a probability measure that

is a-concave, then H(x) is a-concave on {x 2 R
n : 9z 2 R

k s.t. hi(x,z) � 0, 8i}. This implies that the
feasible set X := {x 2 R

n : H(x)� p} is convex and closed, because for all x,y 2 X and l 2 [0,1],

H(lx+(1�l )y) � ma(H(x),H(y),l ) � min{H(x),H(y)} � p

where the first inequality follows from the a-concavity of H, the second inequality follows from the mono-
tonicity of the mapping a ! ma(a,b,l ), and the last inequality follows from x,y 2 X . Compared with
Theorem 13.6, the functions hi(x,z) are required only to be quasi-concave (a =�•) which is weaker than
concavity, but the probability measure of z is required to be a-concave which is stronger than requiring
only its distribution function Fz to be a-concave.

Duality and optimality. Fix a p 2 (0,1). Define the p-level set Zp of the distribution function Fz (z):

Zp :=
�

z 2 R
m : Fz (z) � p

 

The chance constrained problem (13.42) is then equivalent to:

c⇤ := min
x2Rn,z2Rm

c(x) s.t. h(x)� z, x 2 X , z 2 Zp (13.46a)

where c : Rn! R and h : Rn! R
m are real-valued, and X ✓ R

n. The Lagrangian is

L(x,z,µ) = c(x) + µT (z�h(x))

the dual function is

d(µ) := inf
(x,z)2X⇥Zp

L(x,z,µ) = inf
x2X

⇣
c(x)�µTh(x)

⌘

| {z }
dX (µ)

+ inf
z2Zp

µTz
| {z }

dZ(µ)

, µ 2 R
m
+

and the dual problem is

d⇤ := sup
µ�0

d(µ) := dX(µ) + dZ(µ) (13.46b)

where

dX(µ) := inf
x2X

⇣
c(x)�µTh(x)

⌘
, dZ(µ) := inf

z2Zp
µTz (13.46c)

Since we only partially dualize the primal problem (13.46a) we cannot characterize a primal-dual opti-
mal point (x⇤,z⇤,µ⇤) by the KKT condition, but we can characterize it as a saddle point. Recall that
(x⇤,z⇤,µ⇤) 2 X⇥Zp⇥R

m
+ is a saddle point if and only if

sup
µ�0

L(x⇤,z⇤,µ) = L(x⇤,z⇤,µ⇤) = inf
(x,z)2X⇥Zp

L(x,z,µ⇤) (13.47)

By the definition of L,dX ,dZ , the minimization in (13.47) is equivalent to

dX(µ⇤) = c(x⇤)�µ⇤Th(x⇤), dZ(µ⇤) = µ⇤Tz⇤
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It is shown in Theorem 13.7 that the maximization in (13.47) is equivalent to complementary slackness,
given h(x⇤)� z⇤ (or see Exercise 7.14).

Even though f and h are real-valued the dual function d(µ) can be extended real-valued. Moreover
d(µ) may not be differentiable because the minimizer (x,z) of the Lagrangian function may not be unique.
It is however always concave hence always subdifferentiable for any f and h. This is a nonsmooth convex
optimization problem studied in Chapter 12. In particular the problem (13.46) takes the same form as the
nonsmooth convex problem (12.33). We next use the Slater Theorem 12.27 to provide sufficient conditions
for strong duality and dual optimality and the Saddle-point Theorem 12.19 to characterize a primal-dual
optimal point. We make the following assumptions:

C13.1 Convexity:

– c is convex; h is concave (i.e., each component hi is concave);

– X is nonempty convex;

– The distribution function Fz (z) is a-concave for an a 2 [�•,•].

C13.2 Slater condition: one of the following holds:

– There exists (x̄, z̄) 2 X⇥Zp such that h(x̄) > z̄; or

– The functions hi, i = 1, . . . ,m, are affine and there exists (x̄, z̄) 2 ri(X⇥Zp) such that h(x̄)� z̄.

The a-concavity of Fz implies that Fz is quasi-concave (Lemma 13.5) and hence Zp is a nonempty convex
set (since p 2 (0,1)).

Theorem 13.7 (Strong duality and optimality). Suppose the chance constrained program and its dual
(13.46) satisfy conditions C13.1 and C13.2. Then

1. Strong duality and dual optimality. If c⇤ >�• then there exists a dual optimal solution µ⇤ � 0 that
closes the duality gap, i.e., c⇤ = d⇤ = d(µ⇤).

2. Saddle-point characterization. A point (x⇤,z⇤,µ⇤)2X⇥Zp⇥Rm
+ is primalp-dual optimal and closes

the duality gap, i.e., c(x⇤) = c⇤ = d⇤ = d(µ⇤) if and only if

dX(µ⇤) = c(x⇤)�µ⇤Th(x⇤), dZ(µ⇤) = µ⇤Tz⇤, µ⇤T(z⇤ �h(x⇤)) = 0 (13.48)

Such a point is a saddle point.

Proof. Since c is real-valued, dom(c) = R
n. The Slater Theorem 12.27 in Chapter 12.7 then implies that

strong duality holds and there is a dual optimal µ⇤ that attains dual optimality.

To characterize a primal-dual optimal we apply the Saddle-point Theorem 12.19 which states that
(x⇤,z⇤,µ⇤) 2 X ⇥Zp⇥R

m
+ is primal-dual optimal and closes the duality gap if and only if it is a saddle

point, i.e., if and only if it satisfies (13.47). As discussed above, the second equality in (13.47) is equivalent
to the first two conditions in (13.48). We next show that the first equality in (13.47) is equivalent to the
complementary slackness condition in (13.48).
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First we claim that, if (x⇤,z⇤,µ⇤)2X⇥Zp⇥Rm
+ is a primal-dual optimal or a saddle point, then h(x⇤)�

z⇤. If (x⇤,z⇤,µ⇤) is primal-dual optimal then (x⇤,z⇤) is primal feasible and hence h(x⇤)� z⇤. If (x⇤,z⇤,µ⇤)
is a saddle point then, if h(x⇤) < z⇤, then supµ�0 L(x⇤,z⇤,µ) = • contradicting that supµ�0 L(x⇤,z⇤,µ) =
L(x⇤,z⇤,µ⇤). Then the first equality in (13.47) yields

L(x⇤,z⇤µ⇤) = sup
µ�0

L(x⇤,z⇤,µ) = sup
µ�0

⇣
c(x⇤) + µT (z⇤ �h(x⇤))

⌘
 c(x⇤)

with equality if and only if µT (z⇤ �h(x⇤)). Since µ⇤ � 0 attains the maximum of L(x⇤,z⇤,µ), the com-
plementary slackness condition in (13.48) is established.

Remark 13.4. 1. See Exercise 13.12 for an alternative proof of the saddle-point characterization (13.48).
It applies Theorem 12.20 to the dual (13.46b) and illustrates basic techniques in nonsmooth analysis
that are used to reduce optimality conditions to a saddle-point characterization.

2. Denote the sets of minimizers in (13.46c) by

X(µ) := {x 2 X : dX(µ) = c(x)�µTh(x)}, Z(µ) := {z 2 Zp : dZ(µ) = µTz}

Under the assumptions in Theorem 13.7, X(µ) and Z(µ) are nonempty, convex and compact. The
subdifferentials of the dual function dX ,dZ in (13.46c) are

∂dX(µ) = conv(�h(x) : x 2 X(µ)), ∂dZ(µ) = Z(µ)

and hence the subdifferential of d in (13.46b) is ∂d(µ) = conv(�h(x) : x 2 X(µ)) + Z(µ). These
results are derived in Exercises 13.12 and 13.13, using Theorem 12.18 and Theorem 12.25 (under
the additional assumption that X and Zp are not only nonempty convex, but also compact).

13.2.2 Concentration inequalities

In Chapter 13.2.1 we study conditions, e.g., a-concavity of the distribution function FZ , under which the
chance constrained program (13.42) is convex. In the remaining of this section we study techniques to
deal with chance constrained optimization when these conditions are not satisfied and (13.42) may not be
tractable. In this subsection we derive some basic bounds on the tail probability of a random variable.
These bounds can be used to approximate chance constraints. For instance they are used in Chapter 13.2.3
to derive a convex inner approximation of the feasible set defined by affine chance constraints, leading to
a safe convex approximation of chance constrained linear program. They are also used in Chapter 13.3.2
to derive sample complexity of scenario programs.

Markov’s inequality. Let Y be any nonnegative random variable with finite mean EY < •. Let d (x)
denote the indicator function where d (x) = 1 if x is true and 0 otherwise. Observe that, for all t > 0,
Y/t � d (Y � t). Taking expectation on both sides we obtain the Markov’s inequality: for all t > 0,

P(Y � t)  EY
t

(13.49a)
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Let R ✓ R be any interval and let f : R! R+ be a nonnegative nondecreasing function on R. Since
d (Y � t) = d (f(Y )� f(t)), (13.49a) implies, for any t with f(t) > 0,

P(Y � t) = P(f(Y )� f(t))  E(f(Y ))

f(t)
(13.49b)

Chebyshev’s inequality. Let Y := |X �EX | be nonnegative where X is an arbitrary random variable
with a finite variance var(X) < •. Let R := (0,•) and f(t) = t2. Then the Markov’s inequality (13.49b)
implies the Chebyshev’s inequality: for any t > 0,

P(|X�EX |� t)  var(X)

t2 (13.50a)

For the sample mean n�1 Âi Xi of a sequence of independent random variables X1, . . . ,Xn, since var(Âi Xi) =
Âi var(Xi), (13.50a) implies

P

 �����
1
n Â

i
(Xi�EXi)

������ t

!
 Âi var(Xi)

n2t2 =
s2

n
nt2 (13.50b)

where s2
n := n�1 Âi var(Xi) is the average variance. In particular if Xi are iid (independent and identically

distributed) then s2
n = s2

1 and the tail probability decreases in n at the rate of n�1.

Chernoff bound. For a random variable Y with a finite expectation EY , E(elY ) is called a moment-
generating function of Y , as a function of l 2 R. Let

yY (l ) := logE(elY ), l 2 R (13.51a)

be the log moment-generating function of Y . Here log := loge denotes the natural log. The function yY (l )
is convex in l Recall the conjugate function defined (in Chapter 12.3.2) as

y⇤Y (t) := sup
l2R

(tl �yY (l )) , t 2 R (13.51b)

Jensen’s inequality says that, if f is a convex function, then E( f (x))� f (EX) (see Exercise 12.10). Hence
the log moment-generating function yY (l ) satisfies

yY (0) = 0, yY (l ) � lEY (13.52)

For l � 0, the function f(t) := el t is a nonnegative nondecreasing function of t over R and hence the
Markov’s inequality (13.49b) implies P(Y � t) E(elY )/el t for all l � 0. Therefore, for t � EY ,

logP(Y � t)  � sup
l�0

(tl �yY (l )) = � sup
l2R

(tl �yY (l )) = �y⇤Y (t) (13.53a)
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where the first equality follows because, for l  0 and t � EY , tl �yY (l )  l (t�EY )  0 = �yY (0)
by (13.52). Hence the Chernoff bound on the tail probability is:

P(Y � t)  e�y⇤Y (t), t � EY (13.53b)

where the conjugate function y⇤Y (t) is defined in (13.51). Note that (13.53) holds for t � EY . For t  EY ,
(13.52) implies that yY (l )�tl � l (EY�t)� 0 if (and only if) l � 0 and hence�supl�0 (tl �yY (l ))�
0 in (13.53a) is a trivial upper bound. Therefore the Chernoff bound that holds for all t 2R takes the form

P(Y � t)  exp

 
� sup

l�0
(tl �yY (l ))

!
, t 2 R (13.54)

where the supremum is taken over l � 0 as opposed to l 2 R in (13.51b).

If Y := n�1 Âi Xi is the sample mean of n independent random variables Xi, i = 1, . . . ,n, then

yY (l ) = Â
i

yXi(l/n), y⇤Y (t) = sup
l2R

Â
i

(tl �yXi(l ))  Â
i

y⇤Xi
(t)

with equality if Xi are iid. Therefore, the sample mean of n iid random variables Xi satisfies the Chernoof
bound, for t � EY ,

P

 
1
n Â

i
Xi � t

!
 e�ny⇤X1

(t)

i.e., the tail probability decays exponentially in n when Xi are iid.

Example 13.4 (Gaussian random variable). Consider the Gaussian random variable Y with mean µ := EY
and standard deviation s :=

p
var(Y ). Its log moment-generating function is

yG(l ) := logE(elY ) = log
✓Z •

�•

1p
2ps

elye�(y�µ)2/2s2
dy
◆

= µl +
1
2

s2l 2 (13.55a)

Hence its conjugate function is

y⇤G(t) := sup
l2R

✓
tl �µl � 1

2
s2l 2

◆
=

(t�µ)2

2s2 (13.55b)

where the maximizer l ⇤ = (t�µ)/s2. For t := µ + rs with r > 0, the Chernoff bound is

P(Y > µ + rs)  e�r2/2 (13.55c)

The sample mean n�1 Âi Xi of n iid Gaussian random variables Xi, i = 1, . . . ,n, satisfies the Chernoff bound

P

 
1
n Â

i
Xi�µ > e

!
 e�ne2/2s2

, e > 0

where µ and s2 are the mean and variance respectively of X1.
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Hoeffding’s lemma for bounded Y . A random variable Y is called sub-Gaussian with parameter (µ,s2)
if

yY (l ) := logE(elY )  µl +
s2

2
l 2 =: yG(l ), l 2 R (13.56a)

i.e., if the log moment-generating function is upper bounded by that of a Gaussian random variable with
mean µ and variance s2. This is equivalent to E(elY )  exp

⇣
µl + s2

2 l 2
⌘

for all l 2 R. If Y has zero

mean EY = 0 then Y is called sub-Gaussian with variance factor s2 if

yY (l ) := logE(elY )  s2

2
l 2 =: yG(l ), l 2 R (13.56b)

where yG(l ) denotes the log moment-generating function of a zero-mean Gaussian random variable.
Since y⇤Y (t)� y⇤G(t) for t 2 R where y⇤G(t) is defined in (13.55b), (13.53) implies

P(Y � t)  e�y⇤Y (t)  e�(t�µ)2/2s2
, t � EY

Indeed, the tail probability P(Y � t) for t � EY of a sub-Gaussian random variable Y decays more rapidly
than that of the bounding Gaussian random variable.

Hoeffding’s lemma shows that a zero-mean random variable with bounded support [a,b] is always sub-
Gaussian with variance factor (b�a)2/4. It is used to prove Theorem 13.9 that bounds the tail probability
of a martingale with bounded increments.

Lemma 13.8 (Hoeffding’s lemma). Let Y be a zero-mean random variable taking values in a bounded
interval [a,b]. Then

yY (l ) := logE(elY )  (b�a)2

8
l 2, l 2 R

Proof. First observe that any random variable Z with bounded support on [a,b], whether or not EZ = 0,
satisfies var(Z) (b�a)2/4 because

����Z�
a+b

2

���� 
b�a

2

and hence var(Z) = var(Z� (a+b)/2) (b�a)2/4� (EZ)2.

Second, since Y takes value in a bounded set, the bounded convergence theorem implies that d
dl E(g(Y )) =

E
� d

dl g(Y )
�
. Hence

y 00Y (l ) = EY

 
Y 2 · elY

EY elY

!
�
 

EY

 
Y · elY

EY elY

!!2

, l 2 R (13.57)

where we have written EY to emphasize that the expectation is taken with respect to the probability distri-
bution FY of the random variable Y . Consider a random variable Z that takes value in the same bounded
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interval [a,b] whose distribution function FZ is obtained from FY according to the following change of
measure:

dFZ(z) =
el z

EY el z dFY (z)

If density functions fY (y) and fZ(z) of respectively Y and Z exist, then fZ(z) = el z

EY el z fY (z). For any
(measurable) function g, change of measure implies that moments can be computed from either probability
distribution as

EY

 
g(Y ) · elY

EY elY

!
= EZ (g(Z))

Substituting into (13.57) we have

y 00Y (l ) = EZ
�
Z2�� (EZZ)2 = var(Z)  (b�a)2

4
, l 2 R (13.58)

where the inequality follows since Z takes value in the bounded interval [a,b].

Finally notice that yY (0) = 0 and y 0Y (0) = 0 since EY = 0. Hence the Taylor expansion implies that,
for some µ 2 [0,l ],

yY (l ) = yY (0)+y 0Y (0)l +
1
2

y 00Y (µ)l 2  (b�a)2

8
l 2, l 2 R

where the inequality follows from (13.58).

Azuma-Hoeffding inequality for martingale. A discrete-time stochastic process X0,X1, . . . , is a mar-
tingale if

• E|Xn| < •.

• E(Xn|X0, . . . ,Xn�1) = Xn�1.

Application of Hoeffding’s Lemma 13.8 leads to a concentration inequality for a martingale with bounded
increments.

Theorem 13.9 (Azuma-Hoeffding inequality). Let X0,X1, . . . , be a martingale with bounded increments
|Xn�Xn�1| sn. Then for any n� 1 and any t > 0,

P(Xn�X0 � t)  exp
✓
� t2

2Ân
i=1 s2

i

◆
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Proof. Without loss of generality we can assume X0 = 0; otherwise we can consider the martingale
Y0,Y1, . . . , with Y0 := 0 and Yn := Xn�X0. Chernoff bound gives

P(Xn � t)  min
l2R

E
exp(lXn)

exp(l t)
= min

l2R
e�l tE exp

 
l

n

Â
i=1

(Xi�Xi�1)

!

= min
l2R

e�l tE

 
exp

 
l

n�1

Â
i=1

(Xi�Xi�1)

!
E (exp(l (Xn�Xn�1))|X0, . . . ,Xn�1)

!
(13.59)

Hoeffding’s Lemma 13.8 states that, if Y is a real-valued random variable taking value in [a,b] almost
surely, then for all l 2 R

Eel (Y�EY )  exp
✓

(b�a)2

8
l 2
◆

To apply Hoeffindg’s Lemma to E (exp(l (Xn�Xn�1))|X0, . . . ,Xn�1), note that E(Xn�Xn�1|X0, . . . ,Xn�1) =
0 since X0,X1, . . . , is a martingale. Moreover |Xn�Xn�1| sn. Hence

E (exp(l (Xn�Xn�1))|X0, . . . ,Xn�1)  exp
✓

s2
n

2
l 2
◆

Substitute into (13.59) to get

P(Xn � t)  min
l2R

e�l tE

 
exp

 
l

n�1

Â
i=1

(Xi�Xi�1)

!!
exp
✓

s2
n

2
l 2
◆

Repeating this calculation for Xn�1�Xn�2, . . . , X1�X0, we arrive at

P(Xn � t)  min
l2R

e�l t exp

 
l 2

2

n

Â
i=1

s2
i

!
=: min

l2R
exp
✓

s2
n
2

l 2� tl
◆

where s2
n := Ân

i=1 s2
i . The minimizer is ln := t/s2

n and P(Xn � t) exp
⇣
� t2

2s2
n

⌘
.

Bound for Y := maxi Xi. Let X1,X2, . . . , be sub-Gaussian random variables with a common variance
factor s2, i.e., for all i, yi(l ) := logEelXi  (s2/2)l 2 for all l 2 R. Note that Xi are not necessarily
independent. It can be shown that (Exercise 13.15)

E
✓

max
i=1,...,n

Xi

◆
 s

p
2logn (13.60a)

Substituting into the Markov’s inequality (13.49a) yields a concentration inequality for the maximum of
finitely many sub-Gaussian random variables:

P

✓
max

i=1,...,n
Xi � t

◆
 s

p
2logn
t

, t > 0 (13.60b)

The bound (13.60a) on expectation is generalized in [177, Theorem 2.5, p.32] to random variables that are
not necessarily sub-Gaussian.
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13.2.3 Safe approximation by robust optimization

In this subsection we use uncertain linear program as an example to show how robust optimization can
provide a safe approximation of the chance constrained program (13.41) when the uncertain parameters
are independent sub-Gaussian random variables.

Specifically consider the chance constrained linear program (cf. the robust program (13.12)):

min
x2Rn

cTx s.t. P

 
k

Â
l=1

⇣
aTl x�bl

⌘
zl  �(aT0 x�b0)

!
� 1 � e (13.61)

where e 2 (0,1). We say that a robust program is a safe approximation of the chance constrained program
(13.61) if the feasible set of the robust program is contained in the feasible set of (13.61). This means that
any optimal solution of the robust program will satisfy the chance constraint in (13.61). To derive a safe
approximation, we use the Chernoff bound and the definition (13.56a) of a sub-Gaussian random variable
to construct an uncertainty set Z that is a subset (inner approximation) of the chance constrained feasible
set.

Theorem 13.10 (Safe approximation: LP). Suppose the random variables zl , l = 1, . . . ,k, in the chance
constrained program (13.61) are independent and sub-Gaussian with parameter (µl,s2

l ), i.e.,

yzl
(l ) := logEzl

⇣
elzl

⌘
 µll +

s2
l

2
l 2, l 2 R (13.62)

Then the following robust program is a safe approximation of (13.61):

min
x2Rn

cTx s.t. max
ẑ2Ze

k

Â
l=1

ẑl(âTl x� b̂l)  �(âT0 x� b̂0) (13.63a)

where Ze is the SOC uncertainty set Ze :=
n

ẑ 2 R
k : kẑk2 

p
2log(1/e)

o
and

âl := slal, b̂l := slbl, â0 := a0 +Â
l

µlal, b̂0 := b0 +Â
l

µlbl (13.63b)

Proof. We will bound the tail probability P
�
Âk

l=1
�
aTl x�bl

�
zl >�(aT0 x�b0)

�
using the Chernoff bound

(13.54). Let al(x) := aTl x�bl , l = 0, . . . ,k. The Chernoff bound (13.54) implies

logP

 
k

Â
l=1

al(x)zl >�a0(x)

!
 inf

l�0

 
logE exp

 
l

k

Â
l=1

al(x)zl

!
+la0(x)

!

= inf
l�0

0

BB@Â
l

logE exp(lal(x)zl)| {z }
yzl

(lal(x))

+la0(x)

1

CCA

 inf
l�0

 
l

 
a0(x)+Â

l
µlal(x)

!
+

l 2

2 Â
l

s2
l a2

l (x)

!
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where the equality follows from the independence of zl and the last inequality follows from (13.62). Let
b (x) := a0(x)+Âl µlal(x) and g(x) := Âl s2

l a2
l (x). If b (x)� 0 then the minimum on the right-hand side

above is 0 (a trivial bound on the tail probability), attained at the minimizer l (x) := 0. If b (x) < 0 then
the minimum is �b 2(x)/(2g(x)), attained at the minimizer l (x) := �b (x)/g(x) provided g(x) > 0. The
case of b (x) < 0 and g(x) = 0 (i.e., al(x) = 0 for all l) is triviality because the minimum is then �•,
corresponding to b (x) = a0(x) < 0 and hence P(Âl al(x)zl >�a0(x)) = P(a0(x) > 0) = 0.

Since e 2 (0,1), loge < 0. If Âl s2
l a2

l (x) > 0, then a sufficient condition for the chance constraint in
(13.61) to hold is therefore b (x) < 0 and

logP

 
k

Â
l=1

al(x)zl >�a0(x)

!
 �b 2(x)

2g(x)
:= �(a0(x)+Âl µlal(x))

2

2Âl s2
l a2

l (x)
 loge

Hence x is feasible for (13.61) if
p

2log(1/e)g(x)�b (x) (which implies g(x) > 0 as discussed above),
or

p
2log(1/e)

r
Â

l
s2

l a2
l (x)  �a0(x)�Â

l
µlal(x) (13.64)

where al(x) := aTl x�bl , l = 0, . . . ,k. This can be rewritten as

p
2log(1/e)

s

Â
l

�
âTl x� b̂l

�2  �(âT0 x� b̂0) (13.65)

where (âl, b̂l, l = 0, . . . ,k) are defined in (13.63b). Theorem 13.1 then says that the constraint (13.65) on x
is equivalent to the constraint in the robust program (13.63).

The proof of Theorem 13.10 implies the following concentration inequality for the weighted sum of
independent sub-Gaussian random variables. Recall that if Yl are independent Gaussian random variables
with parameters (µl,s2

l ) then Âl alYl is Gaussian with parameter
�
Âl alµl,Âl a2

l s2
l
�
. The probability that

Âl alYl deviates from its mean by r standard deviations is bounded by e�r2/2 from (13.55c). The next
result says that the probability that the sum of independent sub-Gaussian random variables deviates from
the mean of the bounding Gaussian variable Âl alYl by r standard deviations is bounded by the same
bound.

Corollary 13.11 (Sum of independent sub-Gaussian random variables). Let (zl, l = 1, . . . ,k) be indepen-
dent sub-Gaussian random variables with parameter (µl,s2

l ), i.e., they satisfy (13.62). Then for any real
numbers (al, l = 1, . . . ,k) and r � 0 we have

P

 
k

Â
l=1

alzl >
k

Â
l=1

 
alµl + r

r
Â

l
a2

l s2
l

!!
 e�r2/2

Proof. The argument that establishes (13.64) shows that, for any real numbers a0 and (al, l = 1, . . . ,k), we
have P

�
Âk

l=1 alzl >�a0
�
 e if �a0 � Âl alµl +

p
2log(1/e)

q
Âl a2

l s2
l . This says that the probability

that Âl alzl is greater than or equal to
p

2log(1/e) deviations above the mean of the bounding Gaussian
random variable is less than e . The corollary follows by setting r :=

p
2log(1/e) and �a0 := Âl alµl +

r
q

Âl a2
l s2

l .
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Example 13.5 (LPs with bounded uncertainty). Let (zl , l = 1, . . . ,k) be independent zero-mean random
variables each taking value in [�1,1]. We compare three formulations of uncertain linear programming.

1. The robust linear program is (13.12), reproduced here:

min
x2Rn

cTx s.t. max
z2Z•

Â
l

⇣
aTl x�bl

⌘
zl  �(aT0 x�b0) (13.66)

for the uncertainty set Z• := {z 2 R
k : kzk•  1}.

2. A relaxed formulation is the chance constrained program (13.61), reproduced here:

min
x2Rn

cTx s.t. P

 
k

Â
l=1

⇣
aTl x�bl

⌘
zl  �(aT0 x�b0)

!
� 1 � e (13.67)

where e 2 (0,1).

3. Since zl are zero-mean random variables taking values in the bounded interval [�1,1], Hoeffding’s
Lemma 13.8 shows that zl are (independent) sub-Gaussian with variance factor (b�a)2/4 := 1, i.e.,
they satisfy (13.62) with µl := 0 and sl := 1. Theorem 13.10 then implies that the robust program
(13.63), reproduced here:

min
x2Rn

cTx s.t. max
ẑ2Z2

k

Â
l=1

ẑl(aTl x�bl)  �(aT0 x�b0) (13.68)

with Z2 :=
n

ẑ 2 R
k : kẑk2 

p
2log(1/e)

o
is a safe approximation of the chance constrained

program (13.67).

The feasible set of (13.67) contains both robust programs (13.66) and (13.68). They are illustrated in
Figure 13.1 for e�1 < e < e�1/2.

Figure 13.1: Feasible sets of uncertain linear programs in Example 13.5: The box Z• and ball Z2 with
e�1 < e < e�1/2 are uncertainty sets of the robust programs (13.66) and (13.68). They are contained in
the possibly nonconvex feasible set of the chance constrained program (13.67).

Theorem 13.10 shows, for linear programming, how robust optimization can provide a safe approxi-
mation to a chance constrained program. Reverse approximation is generally not possible but a chanced
constrained program can indeed provide a safe approximation to a perturbed robust program; see Lemma
13.19.
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13.3 Convex scenario program

Consider the robust program (13.6) studied Chapter 13.1 with a linear cost: 4

RCP : c⇤RCP := min
x2X✓Rn

cTx s.t. h(x,z ) 0, z 2 Z ✓ R
k (13.69)

where c 2R
n, z 2R

k is an uncertain parameter taking value in the uncertainty set Z, h : Rn⇥R
k!R

m is
a convex (and hence continuous) function in x for every z 2 Z, and X is a nonempty closed convex set.5
Even though (13.69) is convex, it is semi-infinite and hence generally intractable. Moreover requiring
constraint satisfaction for all possible uncertain parameters in Z can be too conservative. The chance
constrained formulation studied in Chapter 13.2 is less conservative as it requires constraint satisfaction
only with high probability rather than with probability 1 (see Example 13.5 for comparison). Consider the
chance constrained program with a linear cost:

CCP(e) : c⇤CCP(e) := min
x2X✓Rn

cTx s.t. P(h(x,z ) 0) � 1� e (13.70)

where X ,c,h are the same as those in (13.69), z 2 Z✓R
k is a random vector and P is a probability measure

defined on some probability space, and e 2 (0,1). Solving problem (13.70) however can be challenging as
it requires the knowledge of the probability measure P which may not be available. Moreover it requires
an efficient method to evaluate the probability in order to assess the feasibility of x.

This motivates the scenario approach to uncertain convex optimization where N independent samples
z 1, . . . ,z N of the uncertain parameter z are drawn according to the probability measure P, leading to the
following problem, called a convex scenario program:

CSP(N) : c⇤CSP(N) := min
x2X✓Rn

cTx s.t. h(x,z i) 0, i = 1, . . . ,N (13.71)

Since z i are random samples, the scenario program (13.71) is a randomized problem in the sense that its
solution is a random variable whose value depends on the values of z i. It does not require the knowledge
of P, but only a way to obtain independent samples according to P. For instance, the uncertain parameter
z may represent power demand and its realizations z i may be measured from a real power system without
knowing the underlying distribution.

Unlike RCP (13.69) and CCP(e) (13.70) which are often intractable, the scenario program (13.71)
is a finite convex program for each realization of the random samples (z 1, . . . ,z N) and therefore can be
efficiently solved if N is not too large. There is therefore a tradeoff between small computational burden
(when N is small) and high likelihood of constraint satisfaction (when N is large). In this section we will
study three issues:

1. Violation probability (Chapter 13.3.1). Given a fixed vector x 2 X ✓ R
n the violation probability

V (x) is the probability of hi(x,z ) > 0 for at least one i, a deterministic value. A solution x⇤N of the

4The linear cost function does not lose generality; see Remark 13.1.
5We can also assume without loss of generality that h :Rn⇥Rk!R is a scalar-valued function because otherwise, h(x,z )

0 can be replaced by the single constraint maxi hi(x,z )  0. Note however that if h is scalar-valued then x is infeasible if
h(x,z ) > 0, but if h is vector-valued then x is infeasible if hi(x,z ) > 0 for at least one i, not h(x,z ) > 0.
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convex scenario program CSP(N) is random, depending on the random samples (z 1, . . . ,z N). The
violation probability V (x⇤N) of the random solution x⇤N is therefore not a deterministic value, but a
random variable itself. We will bound the expected value and tail probability of V (x⇤N).

2. Sample complexity (Chapter 13.3.2). The more sampled constraints are included in CSP(N), the
more likely its optimal solution x⇤N will satisfy the chance constraint of CCP(e). We will use the
bounds on the expected value and tail probability of V (x⇤N) to derive a threshold N(e,b ) to guarantee
that the (random) solution x⇤N will be feasible for CCP(e) with probability at least 1�b .

3. Optimality guarantee (Chapter 13.3.3). We will show that the same threshold N(e,b ) that guar-
antees the feasibility of x⇤N for CCP(e) also guarantees that the optimal value cTx⇤N is close to the
optimal values of RCP and CCP(e) with probability at least 1�b .

13.3.1 Violation probability V (x⇤N)

Let Xz := {x 2 X ✓ R
n : h(x,z )  0}. The assumption that X is a closed convex set and h are convex

(and hence continuous) in x for any z 2 Z implies that Xz is a closed convex set for every z 2 Z. We
may interpret Xz either as a deterministic set determined by a realization of z in Z, or a random set whose
value depends on the random variable z , depending on the context. For each x 2 X , define the violation
probability of x as

V (x) := P
��

z 2 Z : x 62 Xz
 �

(13.72a)

For a fixed x 2 X , V (x) is a deterministic value in [0,1]. As we will see the feasibility and sample com-
plexity results are independent of the fine structure of the constraint function h or the probability measure
P, except through the random constraint set Xz . The CCP(e) (13.70) with the deterministic constraint
P
�
x 2 Xz

�
� 1� e can be equivalently stated as:

CCP(e) : c⇤ccp(e) := min
x2X✓Rn

cTx s.t. V (x)  e

For each integer N � n, we interpret z 1, . . . ,z N 2 R
k either as deterministic values in Z realized by

independent samples of z under the probability measure P, or as iid random variables with probability
measure P, depending on the context. In the latter case the random vector (z 1, . . . ,z N) takes value in ZN

under the product measure denoted by P
N . The randomized problem CSP(N) (13.71) can be equivalently

stated as:

CSP(N) : c⇤CSP(N) := min
x2X✓Rn

cTx s.t. x 2 Xz 1 \ · · ·\Xz N

An optimal solution x⇤N of CSP(N), if exists, is feasible for the chance constrained program (13.70) when
V (x⇤N)  e . Note however that x⇤N is a random variable under probability measure P

N , depending on
(z 1, . . . ,z N), i.e., V (x⇤V ) is the conditional violation probability:

V (x⇤N) := P
��

z 2 Z : x⇤N 62 Xz
 ���z 1, . . . ,z N�� (13.72b)
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Hence the violation probability V (x⇤N) itself is a random variable under PN . It may be greater or smaller
than e , i.e., x⇤N may or may not be feasible for CCP(e) (13.70). We emphasize that V (x⇤N) is not the un-
conditional probability P

N+1 �x⇤N 62 Xz
�
. While the former is a random variable with probability measure

P
N , the latter is a deterministic value. Their relation is

P
N+1 �x⇤N 62 Xz

�
=
Z

ZN
V (x⇤N)PN �dz 1, . . . ,dz N� = EN (V (x⇤N)) (13.73)

i.e., the expected value of the violation probability V (x⇤N) turns out to be the unconditional probability
P

N+1 �x⇤N 62 Xz
�
. 6

Main result. Intuitively a larger N will produce an optimal solution x⇤N that is more likely to satisfy the
chance constraint V (x⇤N)  e . A reasonable approach is then to choose N large enough to ensure that the
expected value EN (V (x⇤N)) b under PN for sufficiently small b . Another approach is to ensure that the
tail probability P

N (V (x⇤N) > e) b . In this subsection we show in Theorems 13.13 and 13.14 that

EN (V (x⇤N))  n
N +1

, P
N(V (x⇤N) > e) 

n�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i

and that both bounds are tight for a class of problems called fully supported problems defined in Definition
13.3. The bound on EN (V (x⇤N)) decreases at a rate ⇠ 1/N. The bound on P

N(V (x⇤N) > e) is a Binomial
tail. Hence it is in (0,1) as long as N � n (equal to 1 if N = n� 1) and decreases more rapidly as N
increases. These bounds mean that if we solve CSP(N) (13.71) with sufficiently large N, then we will
obtain a random optimal solution x⇤N whose conditional violation probability V (x⇤N) is small either in
expectation or tail probability. They translate into sample complexity studied in Chapter 13.3.2.

We make the following assumption

C13.1: Consider CSP(N) (13.71).

• For each z 2 Z, the (components h j of the) constraint function h(x,z ) is continuous and convex
in x so that Xz is a closed convex set.

• For each integer N � n and each realization of (z 1, . . . ,z N), the feasible set of CSP(N) (13.71)
(is nonempty and) has a nonempty interior. Moreover CSP(N) has a unique optimal solution
denoted by x⇤N .

Remark 13.5 (Uniqueness of x⇤N). The assumption of unique optimal solution x⇤N is not material. If there
are multiple optimal solutions, then a rule to uniquely choose one of them can be imposed and all results
apply with respect to this uniquely chosen solution x⇤N .

Definition 13.3 (Uniformly supported problem). Fix any N � n and consider CSP(N) (13.71).

6Strictly speaking, V (x) for a fixed x is a violation probability and V (x⇤N) for a random variable x⇤N is a conditional violation
probability. To simplify exposition we usually call both a violation probability and the meaning should be clear from the
context.
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1. A constraint h(x,z i)  0 defined by z i is called a support constraint for CSP(N) if its removal
changes the optimal solution, i.e., for every realization of (z 1, . . . ,z N) 2 ZN , cTx⇤N 6= cTx⇤N\i where
x⇤N\i is the optimal solution of the scenario program with the constraint Xz i removed from CSP(N).

2. CSP(N) is called uniformly supported with s support constraints if every realization of (z 1, . . . ,z N)2
ZN contains exactly s� 0 support constraints (with probability 1). It is called fully supported if it is
uniformly supported with s = n support constraints. It is called to have no support constraint if it is
uniformly supported with s = 0 support constraint.

A support constraint must be an active constraint at the optimal point x⇤N . If CSP(N) is uniformly sup-
ported with s = 0 support constraint, it means that, (with probability 1) for every realization of (z 1, . . . ,z N),
there is no single constraint that is a support constraint (e.g. multiple active constraints at x⇤N). An impor-
tant observation is the following result of [178]. Its proof makes use of the linearity of the cost function
cTx and convexity of Xz .

Lemma 13.12 ([178]). For each N � n, consider CSP(N) (13.71) with linear cost function and closed
convex sets Xz for all z 2 Z. Then the number of support constraints is at most n for any realization of
(z 1, . . . ,z N) 2 ZN .

Example 13.6 (Fully and uniformly supported problems [179]). We are given N � 3 points in R
2 specified

by their coordinates z i := (ai,bi), i = 1, . . . ,N where (ai,bi) are iid samples under Gaussian distribution
over R2.

1. Fully supported problem. We are interested in constructing the strip of smallest vertical width that
contains all the N points; see Figure 13.2. This can be formulated as the scenario program

CSP(N) : min
(x1,x2,x3)2R3

x1 s.t.
��bi� (aix2 + x3)

��  x1, i = 1, . . . ,N

This problem is fully supported as (with probability 1) CSP(N) has exactly n = 3 support constraints
for every realization of (ai,bi).

2. Uniformly supported problem. Suppose we construct the circle of smallest radius that contains all
the N points (see Figure 13.2), formulated as solving

CSP(N) : min
(x1,x2,x3)2R3

x1 s.t.
q

(ai� x2)2 +(bi� x3)2  x1, i = 1, . . . ,N

This problem is uniformly (but not fully) supported as (with probability 1) CSP(N) has 2 support
constraints for every realization of (ai,bi).

The main characterization of the conditional violation probability V (x⇤N) is given in the next two theo-
rems.

Theorem 13.13 (Expectation of V (x⇤N) [178, 180]). Fix any N � n and suppose assumption C13.1 holds.
Then

EN (V (x⇤N)) = P
N+1

⇣
x⇤N 62 Xz N+1

⌘
 n

N +1
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y = x⇤
2u + x⇤

3

x⇤
1

Fig. 2. Strip of smaller vertical width.

x⇤
2, x

⇤
3

x⇤
1

Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3�R3

x1

subject to:
q

(u(i) � x2)2 + (y(i) � x3)2  x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 � 10�5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 � 10�5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 � 10�5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,
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fully-supported problem because exactly d=3 constraints (data points) are supporting constraints

(b) Circle of minimum radius

Figure 13.2: Example 13.6 (from [179]).

If CSP(s) and CSP(N +1) are uniformly supported with 0 s n N support constraints then

EN (V (x⇤N)) = P
N+1

⇣
x⇤N 62 Xz N+1

⌘
=

s
N +1

In particular if CSP(N +1) has no support constraint then EN (V (x⇤N)) = 0.

Theorem 13.14 (Tail probability of V (x⇤N) [179]). Fix any N � n and suppose assumption C13.1 holds.
Then

P
N (V (x⇤N) > e) 

n�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i

If CSP(s) and CSP(N) are uniformly supported with 1 s n support constraints then

P
N (V (x⇤N) > e) =

s�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i

In particular if CSP(N) has no support constraint then P
N (V (x⇤N) = 0) = 1.

We will prove Theorems 13.13 and 13.14 in the rest of this section.

Proof of Theorems 13.13 and 13.14. A useful characterization of V (x⇤N) is the following.

Lemma 13.15 (V (x⇤N)). Consider CSP(N) and CSP(N +1).

1. x⇤N 62 Xz N+1 , Xz N+1 is support constraint for CSP(N +1).

2. V (x⇤N) =P

⇣
x⇤N 62 Xz N+1

���
�
z 1, . . . ,z N�

⌘
=P

⇣
Xz N+1 is support constraint for CSP(N +1)

���
�
z 1, . . . ,z N�

⌘
,

i.e., V (x⇤N) is the conditional probability that the last constraint Xz N+1 is a support constraint for
CSP(N +1), given

�
z 1, . . . ,z N�.



602 Draft: PSA December 13, 2024

Proof. Suppose x⇤N 62Xz N+1 . Then Xz N+1 must be a support constraint of CSP(N +1) with N +1 constraints
because otherwise, the optimal solution x⇤N+1 (which satisfies x⇤N+1 2 Xz N+1) must remain unchanged when
Xz N+1 is removed by the definition of support constraints. This means that x⇤N+1 = x⇤N , the optimal solution
of CSP(N), contradicting x⇤N 62 Xz N+1 . This shows that Xz N+1 is a support constraint for CSP(N +1).

Conversely, suppose Xz N+1 is a support constraint for CSP(N + 1). If x⇤N 2 Xz N+1 then x⇤N is feasible,
and hence optimal, for CSP(N +1) which contains the constraint Xz N+1 . According to assumption C13.1,
the optimal solution x⇤N+1 of CSP(N +1) is unique and hence x⇤N+1 = x⇤N . But this contradicts Xz N+1 being
a support constraint for CSP(N +1), proving x⇤N 62 Xz N+1 .

Part 2 then follows from (13.72b).

We first prove Theorems 13.13 and 13.14 for the simpler case where CSP(N) has no support constraint,
i.e., no realization of (z 1, . . . ,z N) 2 ZN for CSP(N) has any support constraint.

Lemma 13.16 (No support constraint). Suppose CSP(N) has no support constraint.

1. CSP(k) has no support constraint for k � N (with probability 1).

2. V (x⇤N) = 0 with probability 1. Hence EN (V (x⇤N)) = 0 and P
N (V (x⇤N) > e) = 0 for any e > 0.

Proof. Suppose CSP(N) that has no support constraint. Suppose for the sake of contradiction that there
are
�
z 1, . . . ,z N+1� with nonzero probability that have s support constraints, i.e., ZN+1(s) 6= /0 for some

1 s n < N +1 (this is weaker than CSP(N +1) being uniformly supported with s support constraints).
Then every realization (z 1, . . . ,z N+1) 2 ZN+1(s) ✓ ZN+1 has exactly s support constraints and N + 1� s
non-support constraints. Hence CSP(N) with one of the non-support constraints removed as a constraint
will still have the same s constraints as support constraints. Since the samples z i are iid, this contradicts
that CSP(N) has no support constraint. Hence CSP(N +1) has no support constraint and part 1 is proved
by induction.

Part 2 then follows from Lemma 13.15.

We next prove Theorems 13.13 and 13.14 for the general case where CSP(N) may not be uniformly
supported or is uniformly supported with s � 1 support constraints. A key to the proof is the partitioning
of ZN according to support constraints. Fix any N � n and consider CSP(N). The independent samples
(z 1, . . . ,z N) take values in ZN . For s = 1, . . . ,n, let Is ✓ {1, . . . ,N} be an index set with |Is| = s indices
and let

ZN(Is) :=
n�

z 1, . . . ,z N� 2 ZN :
⇣

Xz i , i 2 Is
⌘

are s support constraints
o

(13.74a)

ZN(s) :=
[

Is
ZN(Is) (13.74b)

i.e., ZN(Is) is the set of vectors in ZN whose s support constraints are indexed by Is and ZN(s) is the subset
of ZN that contains exactly 1  s  n support constraints (Lemma 13.12 implies s  n). For s = 0, let
I0 = /0,

ZN �I0� := ZN(0) :=
��

z 1, . . . ,z N� 2 ZN : CSP(N) has no support constraint
 

(13.75)
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Clearly ZN(Is) and ZN(Js) are disjoint if Is and Js are distinct index sets each with s indices. Moreover
ZN(s) for s = 0,1, . . . ,n, form a partition of ZN , first according to the number support constraints and then
according to different index sets Is in ZN(s):

ZN =
[

s2{0,1,...,n}
ZN(s) :=

[

s2{0,1,...,n}

[

Is
ZN(Is) (13.76)

The problem CSP(N) is uniformly supported with 0 s n support constraints if and only if ZN(s0) = /0

for all s0 6= s. For each 0  s  n there are
✓

N
s

◆
index sets Is. The next result shows that either ZN(Is)

are nonempty for all Is (in which case ZN(s) is nonempty) or they are empty for all Is (in which case
ZN(s) is empty). This reflects the fact that the order of support constraints in

⇣
Xz 1 , . . . ,Xz N

⌘
does not

matter. Moreover, for each s, the conditional probability P
N �ZN(Is)

��ZN(s)
�

is the same for all index sets
Is, conditioned on

�
z 1, . . . ,z N� containing exactly s support constraints, provided ZN(s) 6= /0. In particular

P
N �ZN �I0����z 1, . . . ,z N� 2 ZN(0)

�
= 1 because ZN �I0�= ZN(0) by definition.

Lemma 13.17 (Partitions ZN(Is) of ZN [179]). Fix any N � n and suppose assumption C13.1 holds. For
any 0 s n, if ZN(s) 6= /0 then

P
N �ZN(Is)

���z 1, . . . ,z N� 2 ZN(s)
�

=

✓
N
s

◆��1
, 8Is with |Is| = s (13.77)

where ZN(Is) and ZN(s) are defined in (13.74). Hence if CSP(s) and CSP(N) are uniformly supported
with s support constraints then

P
N �ZN(Is)

�
= P

N �ZN(Is)
��ZN(s)

�
=

✓
N
s

◆��1
, 8Is with |Is| = s (13.78)

Proof. As mentioned above P
N �ZN �I0����z 1, . . . ,z N� 2 ZN(0)

�
= 1 because ZN �I0�= ZN(0) by defini-

tion. So we only need to prove the theorem for s� 1. We first prove the case where CSP(s) and CSP(N)
are uniformly supported with s support constraints and then extends the proof to the general case.

Step 1: uniformly supported case. For the uniformly supported case, we omit the superscript and write
I for Is in order to simplify notation. Fix any index set I ✓ {1, . . . ,N} with |I| = s � 1 indices. Let
CSP(s(I)) denote the scenario program with only the s constraints

⇣
Xz i , i 2 I

⌘
. Since CSP(s) is uniformly

supported, these s constraints are support constraints of CSP(s(I)). Let x⇤s(I) be the (unique) optimal
solution of CSP(s(I)) guaranteed by assumption C13.1. Since CSP(s(I)) and CSP(N) are uniformly
supported, (z 1, . . . ,z N) 2 ZN(I) if and only if x⇤s(I) does not violate the constraints

⇣
Xz i , i 62 I

⌘
(up to a

measure zero set; see [179] for details), i.e.,

P
N �ZN(I)

�
= P

N
⇣n

(z 1, . . . ,z N) 2 ZN : x⇤s(I) 2 Xz i , i 62 I
o⌘

(13.79)

Recall the violation probability V
⇣

x⇤s(I)
⌘

:= P

⇣n
z 2 Z : x⇤s(I) 62 Xz

o⌘
. Conditioning on a realization of

(z i, i2 I), the probability that x⇤s(I) does not violate the constraints
⇣

Xz i , i 62 I
⌘

is
⇣

1�V
⇣

x⇤s(I)
⌘⌘N�s

since
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z i for i 62 I are iid random variables each with the same probability measure P, i.e.,

P
N�s
⇣

x⇤s(I) 2 Xz i , i 62 I
���z i, i 2 I

⌘
=
⇣

1�V
⇣

x⇤s(I)
⌘⌘N�s

Substituting this into (13.79) and integrating over (z i, i 2 I) 2 Zs we have (recall that x⇤s(I) depends on
(z i, i 2 I) only)

P
N �ZN(I)

�
=
Z

Zs

⇣
1�V

⇣
x⇤s(I)

⌘⌘N�s
P

s �z i, i 2 I
�

(13.80)

We now use the fact that z 1, . . . ,z N are iid and therefore the probability measure for V
⇣

x⇤s(I)
⌘

is indepen-
dent of the index set I and is the product measure P

s. Consider CSP(s) with (only) the first s constraints
Xz 1 , . . . ,Xz s and let x⇤s be its (unique) optimal solution. Let

Fs(v) := P
s (V (x⇤s ) v)

denotes the distribution function of the random variable V (x⇤s ). Then (13.80) becomes

P
N �ZN(I)

�
=
Z 1

0
(1� v)N�sF(dv) (13.81)

This shows that PN �ZN(I)
�

are the same for all index sets I and implies (13.78) since there are
✓

N
s

◆
index

sets I with s support constraints.

Step 2: general case. When CSP(s) and CSP(N) may not be uniformly supported, the argument in
Step 1 holds for each fixed s 2 {1, . . . ,n} with ZN replaced by ZN(s) whenever ZN(s) is nonempty. This
means that the conditional probability of ZN(Is), conditioned on

�
z 1, . . . ,z N� containing exactly s support

constraints, is given by (13.77).

We now bound the expectation EN (V (x⇤N)) of the violation probability.

Proof of Theorem 13.13. The expression EN (V (x⇤N)) = P
N+1

⇣
x⇤N 62 Xz N+1

⌘
is from (13.73). The case

where CSP(N + 1) has no support constraint (i.e., uniformly supported with s = 0 support constraints) is
proved in Lemma 13.16. We next prove EN (V (x⇤N)) = s

N+1 when CSP(s) and CSP(N +1) are uniformly
supported with 1 s n N support constraints, and then EN (V (x⇤N)) n

N+1 in general.

Suppose CSP(s) adn CSP(N +1) are uniformly supported with s support constraints for some integer
1 s n. Let Is ✓ {1, . . . ,N +1} be an index set with |Is| = s indices and (as in (13.74a))

ZN+1(Is) :=
n�

z 1, . . . ,z N+1� 2 ZN+1 :
⇣

Xz i , i 2 Is
⌘

are s support constraints
o
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Then Lemma 13.17 shows that PN+1 �ZN+1(Is)
�

=

✓
N +1

s

◆��1
. This implies:

EN (V (x⇤N)) = P
N+1

⇣
x⇤N 62 Xz N+1

⌘
= P

N+1
⇣

Xz N+1 is support constraint for CSP(N +1)
⌘

= Â
Is:N+12Is

P
N+1 �(z 1, . . . ,z N+1) 2 ZN+1(Is)

�

=

✓
N

s�1

◆
·
✓

N +1
s

◆��1
=

s
N +1

(13.82)

where the first equality follows from (13.73), the second equality follows from Lemma 13.15, and the last

second equality follows because, of all the
✓

N +1
s

◆
index sets Is,

✓
N

s�1

◆
of them contain N + 1. This

completes the derivation of EN (V (x⇤N)) when CSP(s) adn CSP(N + 1) are uniformly supported with s
support constraints.

We now extend the argument above to the general case where CSP(s) or CSP(N + 1) may not be
uniformly supported for any integer s. We have as for the uniformly supported case:

EN (V (x⇤N)) = P
N+1

⇣
x⇤N 62 Xz N+1

⌘
= P

N+1
⇣

Xz N+1 is support constraint for CSP(N +1)
⌘

=
n

Â
s=0

P
N+1

⇣
Xz N+1 is support constraint for CSP(N +1)|ZN+1(s)

⌘
P

N+1 �ZN+1(s)
�

=
n

Â
s=1

 

Â
Is:N+12Is

P
N+1 �ZN+1(Is)

���z 1, . . . ,z N+1� 2 ZN+1(s)
�
!
P

N+1 �ZN+1(s)
�

where the last equality follows because PN+1
⇣

Xz N+1 is support constraint for CSP(N +1)
���ZN+1(0)

⌘
= 0

by definition of ZN+1(0). From (13.77) we have, as for (13.82),

Â
Is:N+12Is

P
N+1 �ZN+1(Is)

���z 1, . . . ,z N+1� 2 ZN+1(s)
�

=
s

N +1
, s = 1, . . . ,n

Therefore

EN (V (x⇤N)) =
n

Â
s=1

s
N +1

P
N+1 �ZN+1(s)

�

=
1

N +1
EN+1 (number of support constraints for CSP(N +1))  n

N +1

where the last inequality follows from Lemma 13.12.

We now bound the tail probability of V (x⇤N).

Proof of Theorem 13.14. Due to Lemma 13.16 we only need to prove the theorem for s � 1. We will do
this in three steps, first for the case where CSP(s) and CSP(N) are uniformly supported with s support
constraints for some integer 1 s n, and then the general case.
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Step 1: uniformly supported case: PN �ZN(I)
�

and P
N (V (x⇤N) > e). Suppose CSP(s) and CSP(N) are uni-

formly supported with 1 s n support constraints. We will calculate the tail probability P
N (V (x⇤N) > e)

by intersecting the set
�
(z 1, . . . ,z N) 2 ZN : V (x⇤N) > e

 
with the partitions ZN(I) of ZN defined in (13.74):

P
N (V (x⇤N) > e) = Â

I
P

N �V (x⇤N) > e, (z 1, . . . ,z N) 2 ZN(I)
�

(13.83)

Consider CSP(s) with (only) the first s constraints Xz 1 , . . . ,Xz s and let x⇤s be its (unique) optimal solu-
tion guaranteed by assumption C13.1. As in the proof of Lemma 13.17, fix any index set I ✓ {1, . . . ,N}
with |I| = s indices. Let CSP(s(I)) denote the scenario program with only the s constraints

⇣
Xz i , i 2 I

⌘
.

Since CSP(s) is assumed to be uniformly supported, CSP(s(I)) is also uniformly supported with s support
constraints. Let x⇤s(I) be the (unique) optimal solution of CSP(s(I)). Recall the distribution function of the
random variable V (x⇤s ) associated with CSP(s):

Fs(v) := P
s (V (x⇤s ) v)

Recall that (13.80) leads to (13.81), reproduced here.

P
N �ZN(I)

�
=
Z 1

0
(1� v)N�sFs(dv) (13.84)

Similarly, for the summands in (13.83), (13.80) leads to

P
N �V (x⇤N) > e, (z 1, . . . ,z N) 2 ZN(I)

�
=
Z

Zs
d (V (x⇤N) > e)

⇣
1�V (x⇤s(I))

⌘N�s
P

s �z i, i 2 I
�

=
Z 1

e
(1� v)N�sFs(dv)

where the indicator function d (A) = 1 if A holds and 0 otherwise. Hence we have from (13.83)

P
N (V (x⇤N) > e) = Â

I

Z 1

e
(1� v)N�sFs(dv) =

✓
N
s

◆Z 1

e
(1� v)N�sFs(dv) (13.85)

since there are
✓

N
s

◆
many index sets I with s support constraints.

Step 2: uniformly supported case: Fs(v) := P
s (V (x⇤s ) v) = vs and P

N (V (x⇤N) > e).

We first use (13.84) to show that the distribution function Fs(v) = vs, and then substitute it into (13.85)
to compute P

N (V (x⇤N) > e). Hence the violation probability V (x⇤s ) is uniformly distributed over [0,1].

Substitute Lemma 13.17 into (13.84) to get

✓
N
s

◆Z 1

0
(1� v)N�sFs(dv) = 1
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This is an integral equation that has a unique solution for Fs(v). We show that Fs(v) = vs is the solution
by substituting it into the left-hand side and integrating by part:

✓
N
s

◆Z 1

0
(1� v)N�sd (vs) =

✓
N
s

◆✓
(1� v)N�svs��1

0 + (N� s)
Z 1

0
(1� v)N�s�1vsdv

◆

=

✓
N
s

◆
N� s
s+1

Z 1

0
(1� v)N�s�1d

�
vs+1�

=

✓
N
s

◆
(N� s) · · · · ·1
(s+1) · · · · ·N

Z 1

0
d
�
vN� = 1

This proves Fs(v) = vs, the uniform distribution over [0,1].

Substitute Fs(v) = vs into (13.85) to get, again integrating by part,

P
N (V (x⇤N) > e) = Â

I

Z 1

e
(1� v)N�sd (vs)

=

✓
N
s

◆✓
�(1� e)N�ses + (N� s)

Z 1

e
(1� v)N�s�1vsdv

◆

= �
✓

N
s

◆
(1� e)N�ses +

✓
N
s

◆
N� s
s+1

Z 1

e
(1� v)N�s�1d

�
vs+1�

...

= �
N�1

Â
i=s

✓
N
i

◆
(1� e)N�ie i +

✓
N
s

◆
(N� s) · · · · ·1
(s+1) · · · · ·N

Z 1

e
d
�
vN�

= �
N�1

Â
i=s

✓
N
i

◆
(1� e)N�ie i +

�
1� eN� =

s�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i

This completes the proof of Theorem 13.14 when CSP(s) and CSP(N) are uniformly supported with
1 s n support constraints.

Step 3: general case: P
N (V (x⇤N) > e). For the general case where CSP(s) or CSP(N) may not be uni-

formly supported for any integer s 2 {0,1, . . . ,n}, recall the partitioning of ZN in (13.76) where ZN is first
partitioned according to the number s = 0,1, . . . ,n of support constraints and then, for each s, according to
different index sets Is in ZN(s). We extend the argument in Step 2 by conditioning on ZN(s).

Lemma 13.16 also implies that PN �V (x⇤N) > e
��ZN(0)

�
= 0. Hence

P
N (V (x⇤N) > e) =

n

Â
s=0

P
N �V (x⇤N) > e

��ZN(s)
�
P

N �ZN(s)
�

=
n

Â
s=1

P
N �V (x⇤N) > e

��ZN(s)
�
P

N �ZN(s)
�

When ZN(s) is nonempty, Lemma 13.17 gives the conditional probability, for s = 1, . . . ,n,

P
N �ZN(Is)

��ZN(s)
�

=

✓
N
s

◆��1
, 8Is with |Is| = s (13.86)

To extend (13.84) and (13.85) to conditional probabilities, define for nonempty ZN(s), s� 1:
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• The conditional violation probability V (x⇤N |ZN(s)) := P
�

x⇤N 62 Xz
��ZN(s)

�
associated with CSP(N).

• The conditional violation probability V (x⇤s |Zs(s)) := P
�

x⇤s 62 Xz
��Zs(s)

�
associated with CSP(s),

where Zs(s) is the subset of Zs that contains s support constraints.

• The conditional distribution function Fs(v|Zs(s)) := P
s (V (x⇤s ) v|Zs(s)) of V (x⇤s ).

Then (13.84) and (13.85) become, for nonempty ZN(s),

P
N �ZN(I)

��ZN(s)
�

=
Z 1

0
(1� v)N�sFs(dv|Zs(s)) (13.87)

P
N �V (x⇤N) > e

��ZN(s)
�

= Â
Is

Z 1

e
(1� v)N�sFs(dv|Zs(s)) (13.88)

As in Step 2, (13.86) and (13.87) implies Fs(v|Zs(s)) = vs, the uniform distribution function over [0,1].
Substituting into (13.88) and integrating by part yields, for nonempty ZN(s),

P
N �V (x⇤N) > e

��ZN(s)
�

=
s�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i

Therefore

P
N (V (x⇤N) > e) =

n

Â
s=1

P
N �V (x⇤N) > e

��ZN(s)
�
P

N �ZN(s)
�

=
n

Â
s=1

P
N �ZN(s)

� s�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i


n�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i

where the last inequality follows since s n (Lemma 13.12) and Ân
s=1P

N �ZN(s)
�
 1.

Remark 13.6. 1. It is remarkable that the bounds in Theorems 13.13 and 13.14 depend only on (n,N)
and e , and not on the probability measure P, the cost function, or the structure of the constraint sets
Xz . The cost function and the structure of the constraints only affect whether the problem is fully
supported and hence the tightness of the bound. (The linearity of the cost function cTx and convexity
of Xz are used in the proof of Lemma 13.12 [178].)

2. The assumption in C13.1 on the existence and uniqueness of the optimal solution x⇤N is not important.
It is shown in [178, 179] that if optimal solutions are nonunique, a tie-breaking rule can be used
to produce a unique solution, e.g., choose the optimal solution with minimum Euclidean norm, and
Theorems 13.13 and 13.14 depend only on (n,N) hold unchanged. If optimal solutions may not exist
then the expectation in Theorem 13.13 should be replaced by conditional expectation, conditioned
on the subset of ZN on which an optimal solution x⇤N exists, and the tail probability P

N(V (x⇤N) > e)
in Theorem 13.14 should be replaced by P

N (x⇤N exists and V (x⇤N) > e). This means that if a solution
of CSP(N) is found then it is likely to satisfy the chance constraint in CCP(e) (13.70) in expectation
or probability.
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13.3.2 Sample complexity

Theorems 13.13 and 13.14 translate into sample complexity results for CSP(N), making use of the Markov’s
inequality and Chernoff bound. They provide thresholds for N that guarantee sufficiently small violation
probability V (x⇤N), in expectation or probability (they are proved in Exercise 13.16).

Corollary 13.18 (Sample complexity). Fix any N � n and suppose assumption C13.1 holds. For any
e 2 (0,1) and any b 2 (0,1):

1. EN (V (x⇤N)) b if N � (n/b )�1.

2. P
N (V (x⇤N) > e) b if N � N(e,b ) where

(a) N(e,b ) := (n/eb )�1;
(b) or

N(e,b ) := min

(
N :

n�1

Â
i=0

✓
N
i

◆
e i(1� e)N�i  b

)
(13.89)

(c) or

N(e,b ) := min
⇢

N : (N� (n�1)) log
N� (n�1)

N(1� e)
+ (n�1) log

n�1
Ne

� log
1
b

�

Example 13.7. Numerical example to compare the thresholds for N in Corollary 13.18.

13.3.3 Optimality guarantee

In Chapter 13.3.2 we use the violation probability bound of Theorem 13.14 to derive the sample com-
plexity of CSP(N) (13.71). If N � N(e,b ) in (13.89) then its optimal solution x⇤N is feasible for CCP(e)
(13.70) with high probability 1� b , according to Corollary 13.18. In this subsection we show that the
same N(e,b ) in (13.89) also guarantees that the optimal value c⇤CSP(N) of CSP(N) is close to the optimal
value c⇤RCP of the robust program RCP (13.69) and the optimal value c⇤CCP(e) of the chance constrained
program CCP(e) (13.70) with high probability.

The feasibility of x⇤N for CCP(e) with high probability connects c⇤CSP(N) to c⇤CCP(e), provided N �
N(e,b ). Unless the violation probability V (x⇤N) = 0, x⇤N is however infeasible for RCP. The key to con-
necting c⇤CSP(N) to c⇤RCP is that if x is feasible for CSP(e) then it is feasible for a perturbed robust program
defined as follows: for v 2 R

m,

RCP(v) : c⇤RCP(v) := min
x2X✓Rn

cTx s.t. h̄(x) := sup
z2Z

h(x,z ) v (13.90)

where c 2 R
n, z 2 R

k is an uncertain parameter taking value in the uncertainty set Z, v 2 R
m is a pertur-

bation vector, h : Rn⇥R
k! R

m is a convex (and hence continuous) function in x for every z 2 Z, and X
is a nonempty closed convex set. Since h(x,z ) is convex in x for every z 2 Z, h̄(x) is a convex function.
The unperturbed robust program RCP (13.69) is (13.90) with v = 0. While CCP(e) relaxes RCP by re-
quiring constraint satisfaction only probabilitistically, RCP(v) relaxes RCP by allowing a certain amount
v of violation. To relate the feasibility of CCP(e) and RCP(v) we need the following definition.



610 Draft: PSA December 13, 2024

Definition 13.4. 1. The probability of worst-case constraints is the function p : X⇥Rm
+! [0,1] defined

as:

p(x,b) := P
��

z 2 Z : 9i := i(z ) s.t. h̄i(x)�hi(x,z ) < bi
 �

where h̄(x) := supz 02Z h(x,z 0).

2. A perturbation bound with respect to p is the function v̄ : [0,1]! R
m
+ defined as:

v̄(e) := sup
⇢

b 2 R
m
+ : inf

x2X
p(x,b) e

�

where the supremum here is taken componentwise of vectors b.

The motivation for Definition 13.4 is that v̄(e) connects RCP(v̄(e)) to CCP(e), as follows. For each x2
X , z violates the constraint h(x,z ) 0 if and only if h̄i(x)�hi(x,z ) < h̄i(x) for at least one i and therefore
p(x, h̄(x)) is the violation probability V (x) defined in (13.72a). This means that the chance constraint
V (x) e in CCP(e) is equivalent to p(x, h̄(x)) e . Hence V (x) e implies h̄(x) v̄(e), componentwise
by definition of v̄(e). This is summarized in the following lemma. It implies that v̄(e) defines the tightest
perturbation vector v 2 R

m
+ such that the feasible set of CCP(e) is an inner approximation of the feasible

set of RCP(v). We emphasize that, like the violation probability V (x), p(x,b) and hence the perturbation
bound v̄(e) depend on the constraint function h, the uncertainty set Z and the probability measure P.

Lemma 13.19. [89] If x is feasible for the chance constrained program CCP(e) (13.70), then it is feasible
for the perturbed robust program RCP(v̄(e)) (13.90).

The scenario program CSP(N) (13.71) is a relaxation of the robust program RCP (13.69) and is an
approximation of the chance constrained program CCP(e) (13.70). Let x⇤N be the random optimal solution
of CSP(N) ensured by C13.1. If N � N(e,b ) defined in (13.89) then we have

c⇤RCP(v̄(e))  c⇤CCP(e) / cTx⇤N = c⇤CSP(N)  c⇤RCP (13.91)

where the first inequality follows from Lemma 13.19,/means “smaller or equal to with probability at least
1�b” and it follows from Corollary 13.18 since N �N(e,b ), and the last inequality follows since CSP(N)
is a relaxation of RCP. In particular the optimal values of the chance constrained and convex scenario
programs lie between those of the robust program and its perturbed counterpart with high probability.

To quantify how close c⇤CSP(N) is to c⇤RCP and to c⇤CCP(e), we will relate the optimal values c⇤RCP(v) and
c⇤RCP(0) by establishing, using the envelop theorem, sufficient conditions under which c⇤RCP(v) is Lipschitz
continuous. Let the Lagrangian and the dual function of the perturbed robust program (13.90) be: for
v 2 R

m,

L(x,µ;v) := cTx + µT(h̄(x)� v), x 2 X ✓ R
n, µ � 0 2 R

m (13.92a)
d(µ;v) := inf

x2X✓Rn
L(x,µ;v), µ � 0 2 R

m (13.92b)

For each perturbation vector v, let (x(v),µ(v)) denote a primal-dual optimal solution of (13.90). We make
the following assumptions on the perturbed robust program (13.90):
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C13.2 For all e 2 [0,1] the perturbation bound v̄(e) in Definition 13.4 takes value in a compact and
convex set V ✓ R

m
+.

C13.3 For each v 2V ✓ R
m
+:

(a) There exists a unique primal-dual optimal solution (x(v),µ(v)) and it is continuous at v.

(b) Strong duality holds at (x(v),µ(v)).

C13.4 [Slater condition]: There exists x̄ 2 X such that h(x̄) < vmin where vmin
i := min{vi : v 2V} is

the minimum element of V .

Define

LRCP :=
cTx̄�minx2X cTx
mini

�
vmin

i � h̄i(x̄)
� � 0 (13.93)

where vmin
i := min{vi : v 2V} and h̄(x) := supz2Z h(x,z ). The numerator in LRCP is the cost of the Slater

point x̄ from a lower bound of the optimal cost and the denominator is the smallest gap of x̄ from the
feasibility boundary.

Lemma 13.20. Consider the perturbed robust program (13.90) and suppose assumptions C13.1–C13.4
hold. Then c⇤RCP(v) is a Lipschitz continuous function on V ✓ R

m
+, i.e., for all v1,v2 2V ,

kc⇤RCP(v1)� c⇤RCP(v2)k  LRCP kv1� v2k

where k ·k can either be the Euclidean norm or the `1 norm and LRCP is defined in (13.93).

Proof. For any v 2 V , assumption C13.3 and the Saddlepoint Theorem 7.18 implies that the primal-dual
optimal solution (x(v),µ(v)) is a saddlepoint of (13.92a):

L(x(v),µ;v)  L(x(v),µ(v);v)  L(x,µ(v);v) , x 2 X , µ � 0

Clearly —vL(x,µ;v) = �µ is a continuous function on X ⇥R
m
+ ⇥V . This, together with assumption

C13.3(a), allows us to apply the Saddlepoint Envelop Theorem 7.18 which states that c⇤RCP(v) is continu-
ously differentiable and 7

—vc⇤RCP(v) = —vL(x(v),µ(v);v) = �µ(v)

Fix any v1,v2 in V . The mean value theorem gives c⇤RCP(v1)� c⇤RCP(v2) = µT(u)(v1� v2) for some u
between v1 and v2 (u 2V because V is convex). Hence, by Cauchy-Schwarz inequality,

kc⇤RCP(v1)� c⇤RCP(v2)k  kµ(u)kkv1� v2k (13.94)

7To be precise, assumption C13.3 should be defined for all v 2 V � for some open set containing the compact set V so that
—vc⇤RCP(v) is well defined on the boundary of V .
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where the norm k ·k can either be the Euclidean norm or the `1 norm. We now bound kµ(v)k over v 2V .
Fix any v2V . Since µ(v) attains the optimal value of the perturbed robust program (13.90), strong duality
implies:

c⇤CRP(v) = d(µ(v);v)  cTx̄+ µT(v)
�
h̄(x̄)� v

�
 cTx̄+max

i
(hi(x̄)� vi)Â

i
µi(v)

where the first inequality follows from (13.92b) and the last inequality follows since µ(v) � 0. Hence,
noting that h̄(x̄)� v < 0 by the Slater condition C13.4,

Â
i

µi(v) 
cTx̄� c⇤RCP(v)

mini
�
vi� h̄i(x̄)

�  cTx̄�minx2X cTx
mini

�
vi� h̄i(x̄)

�

Since µ(v)� 0 we have

kµ(v)k2  kµ(v)k1 
cTx̄�minx2X cTx
mini

�
vi� h̄i(x̄)

�

Maximizing both sides over the compact set V yields supv2V kµ(v)k  LRCP. Substituting into (13.94)
proves the lemma.

The next result from [89] uses (13.91) and Lemma 13.20 to quantify how close c⇤CSP(N) is to c⇤RCP and
to c⇤CCP(e).

Theorem 13.21 (Optimality guarantees [89]). Consider the robust program RCP (13.69), the chance con-
strained program CCP(e) (13.70), and the convex scenario program CSP(N) (13.71). Suppose assump-
tions C13.1–C13.4 hold. Given any e 2 [0,1], any b 2 [0,1] and any N � N(e,b ) in (13.89), we have

P
N (c⇤RCP� c⇤CSP(N) 2 [0,C(e)]) � 1�b (13.95a)

P
N (c⇤CSP(N)� c⇤CCP(e) 2 [0,C(e)]) � 1�b (13.95b)

where

C(e) := min
⇢

LRCPkv̄(e)k2, max
x2X

cTx�min
x2X

cTx
�

LRCP is defined in (13.93) and the perturbation bound v̄ : [0,1]! R
m
+ in Definition 13.4.

Proof. The inequalities in (13.91) imply that c⇤RCP� c⇤CSP(N) 2 [0,C1] with probability 1 and c⇤CSP(N)�
c⇤CCP(e) 2 [0,C1] with probability at least 1� b where C1 := maxx2X cTx�minx2X cTx. We are hence
left with showing that, with probability at least 1� b , c⇤RCP� c⇤CSP(N)  LRCPkv̄(e)k2 and c⇤CSP(N)�
c⇤CCP(e) LRCPkv̄(e)k2.

From (13.91) we have, with probability at least 1�b ,

c⇤CSP(N) � c⇤RCP(v̄(e)) � c⇤RCP(0)�LRCP kv̄(e)k2

where the last inequality follows from Lemma 13.20. Hence c⇤RCP� c⇤CSP(N) LRCPkv̄(e)k2 with proba-
bility at least 1�b . Furthermore (13.91) implies that, with probability at least 1�b ,

c⇤CSP(N)� c⇤CCP(e)  c⇤RCP� c⇤RCP(v̄(e))  LRCPkv̄(e)k2

where the last inequality follows from Lemma 13.20.
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13.4 Two-stage optimization with recourse

Consider the situation where decisions are made in two stages under uncertainty indexed by a random event
w in a certain set W. The first-stage decision x needs to be made before w is realized and the second-stage
decision y(w) is made after w is realized as a function of w . The first-stage decision x is made taking into
account of the effect of uncertainty, e.g., by minimizing not just a first-stage cost in x, but also the expected
second-stage cost incurred by y(w) given a first-stage decision x. This can be formulated as a two-stage
stochastic program with recourse. In this section we study the structure of feasible regions associated
with such a problem, the optimal value of the second-stage decision, and the optimality condition and
strong duality of the overall problem. As we will see two-stage optimization generally involves extended
real-valued functions that will require the use of nonsmooth techniques studied Chapter 12.

13.4.1 Stochastic linear program with fixed recourse

Consider the following two-stage stochastic program with recourse where the second-stage problem is a
linear program:

min
x2Rn1

f (x) + Ez

✓
min

y(w)2Rn2
qT(w)y(w)

◆
(13.96a)

s.t. Ax = b, x 2 K (13.96b)
T (w)x + W y(w) = h(w), y(w) � 0, 8w 2W (13.96c)

where

• For the first-stage problem, the real-valued cost function f : Rn1 ! R is convex (and hence contin-
uous over Rn1), A 2 R

m1⇥n1 , b 2 R
m1 , K ✓ R

n1 is a closed convex cone. For instance K := R
n1
+ , the

nonnegative quadrant (closed in R
n1). It is important that the first-stage quantities ( f ,A,b,K) are

certain.

• For each random event w 2 W the second-stage problem is a linear program in y(w), with the cost
vector q(w) 2 R

n2 , the constraint parameters T (w) 2 R
m2⇥n1 , W 2 R

m2⇥n2 , and h(w) 2 R
m2 . The

second-stage decision y(w) is called a recourse action (or corrective action). These quantities,
except W , are random, dependent on w . The second-stage problem is generally semi-infinite and
intractable when W is an infinite set. The constraint y(w) � 0 does not lose generality because if
y(w) is allowed to take value in R

n2 , it can be replaced by z1(w)� z2(w) where z1(w) � 0 and
z2(w)� 0 are two nonnegative variables.

• The matrix W is called a recourse matrix. It is assumed to be deterministic, i.e., independent of w , in
(13.96c). Problems with deterministic W are said to have fixed recourse. In general W (w) can also
depend on w . Stochastic programs with random recourse are much more complicated (see Lemma
13.22 and the discussion that follows). We will only deal with problems with fixed recourse.

• The random variable z := z (w) is a function of w and is the column vector

z := z (w) := (q(w), h(w),TT

i (w), i = 1, . . . ,m2)
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where Ti(w) is the ith row of T (w). The size of z is k := n2 +m2 +m2n1. Denote the set of possible
values of z by Z := {z (w) 2 R

k : w 2 W}. The expectation Ez in (13.96a) is taken with respect to
z .

To understand the structure of the stochastic program (13.96), re-write it in terms of the solution of the
second-stage problem. Given a first-stage decision x and a realization of the random vector z 2 Z define
the extended real-valued functions Q̃ : Rn1⇥R

k! [�•,•] and Q : Rn1 ! [�•,•] as:

Q̃(x,z ) := min
y(w)�0

qT(w)y(w) s.t. Wy(w) = h(w)�T (w)x (13.97a)

Q(x) := Ez Q̃(x,z ) (13.97b)

In particular, Q̃(x,z ) is defined to be • if the second-stage problem (13.97a) is infeasible for the given
x, and �• if it is feasible and unbounded below. The case of Q̃(x,z ) = • can be a reasonable model
of a practical situation (e.g. a generation schedule in the first stage leads to insufficient supply when
outages occur in the second stage), but Q̃(x,z ) =�• means that the objective can be infinitely improved
in the second stage and usually indicates an improper model. We thus usually assume Q̃(x,z ) > �• on
domain of interest. The optimal value Q̃(x,z ) of the second-stage problem (13.97a) is called the second-
stage value function and Q(x) the second-stage expected value function or the recourse function. Both are
extended real-valued functions studied in Chapter 12.2.1.

The stochastic program (13.96) is then equivalent to the following problem:

p⇤ := min
x2Rn1

f (x)+Q(x) s.t. Ax = b, x 2 K (13.97c)

where the cost function is extended real-valued even though f is real-valued. Comparing the conic pro-
gram (12.56) studied in Chapter 12.8.4 with (13.97), it is clear that the difficulty of stochastic program
(13.97) lies in the structural and computational properties of Q(x). Even though the second-stage problem
(13.97a) is a linear program in y(w), the recourse function Q(x) is generally not a linear function of x
and therefore (13.97) is generally not a linear program. We will show below that, for the problem (13.96)
with fixed recourse, if z has finite second moment, then Q(x) is a convex function and (13.97) is indeed
a conic program studied in Chapter 12.8.4. Conditions for strong duality and KKT optimality of (13.97)
can therefore be derived from Theorem 12.30 (although the computation of Q(x) and its subdifferential
is generally difficult). The fact that the second-stage problem (13.97a) is a linear program is important in
deriving these results. We therefore sometimes refer to (13.96) as a stochastic linear program.

Tractability. We start with the feasibility of (13.97) and some basic properties of the recourse function
Q(x). We will then present the optimality condition and strong duality for the problem when it is convex.

Let C1 := {x 2 R
n1 : Ax = b, x 2 K}. The first-stage decision x is feasible if x 2 C1 and if x has a

feasible second-stage completion so that (13.97c) is well defined. There are two interpretations of feasible
second-stage completion, expressed by the following two definitions:

C2 := dom(Q) := {x 2 R
n1 : Q(x) < •}, C02 :=

\

a.e.z2Z

{x 2 R
n1 : Q̃(x,z ) < •} (13.98)
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The set C2 consists of x for which the expected Q̃(x,z ) is finite. The set C02 consists of x for which the
second-stage problem is always feasible for almost every (a.e.) z 2 Z, i.e., for a.e. w 2W, there exists an
y(w)� 0 that satisfies Wy(w) = h(w)�T (w)x. If z can take only finitely many values, then C2 = C02 and
the feasibility of the second-stage problem guarantees that its expected optimal value Q(x) is finite. If z is a
continuous random variable, however, this may not be the case, e.g., when the problem has random rather
than fixed recourse or when Ez z 2 = • (see Exercise 13.17). The following result provides a sufficient
condition for the equivalence of these two interpretations (C2 = C02) for the case of fixed recourse. It is
taken from [87, Theorems 4 and 5, p.111] (detailed proof in [181, Theorems 4.1, 4.7, 4.10]). 8

Lemma 13.22. [87, Theorems 4 and 5, p.111] Consider the stochastic program (13.96) or its equivalent
(13.97) with fixed recourse, i.e., W is independent of w . Suppose z has finite second moment. Then

1. C2 = C02 = dom(Q).

2. C2 is closed and convex.

3. C2 is polyhedral, i.e., defined by a finite set of linear inequalities, provided

• T (w) = T is fixed; or

• T (w) and h(w) are independent and the support ZT of the distribution of T (w) is polyhedral.

We now give an intuition on why a finite second moment is sufficient for C2 = C02. The argument also
shows the importance of the second-stage problem (13.97a) being a linear program. Suppose the optimal
value Q̃(x,z ) is finite. Suppose also for simplicity that K = R

n1 so the second-stage problem Q̃(x,z ) is
a linear program. Then an optimal y⇤(w) of the linear program exists that is an extreme point (vertex) of
the feasible set in (7.56). Such a point is called an optimal basic feasible solution. Rewrite the constraint
in (13.97a) as an inequality constraint

W̃y(w) :=

2

4
W
�W
In2

3

5y(w) �

2

4
h(w)�T (w)x
�(h(w)�T (w)x)

0

3

5 =: d(w)

where In2 is the identity matrix of size n2. Then an optimal basic feasible solution y⇤(w) takes the form
given in (7.56):

y⇤(w) = W̃�1
I⇤ dI⇤(w)

where WI⇤ is a n2⇥n2 nonsingular submatrix of W̃I⇤ and dI⇤(w) is the corresponding n-subvector of d(w)
that depend on y⇤(w). The second-stage value function is

Q̃(x,z ) = qT(w)y⇤(w) = qT(w)W̃�1
I⇤ dI⇤(w)

Hence Q̃(x,z ) is a quadratic function in z and the finite second moment of z implies that Q(x) :=
Ez Q̃(x,z ) is bounded. If, on the other hand, W (w) and hence W̃ (w) depend on w , then Q(x) depends

8In general we assume all functions have the necessary properties that allow us to mostly ignore issues with measurability
and well-posedness of Q(x) for general distributions. See e.g. [174, Chapter 2.1.3], [87] for discussions on these issues.
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on higher moments of z . The assumption of fixed recourse and finite second moments is only sufficient;
see [182] for more general sufficient conditions, including for the case where W (w) is not fixed.

In view of Lemma 13.22 we will consider stochastic program (13.96) with fixed recourse and assume z
has finite second moment. Then we will not need to differentiate between C2 := dom(Q) and its alternative
C02. A stochastic program is said to have a relatively complete recourse if C1 ✓ dom(Q), i.e., an x that
satisfies the first-stage constraint always has a feasible second-stage completion for a.e. z 2 Z. It is said
to have a complete recourse if {Wy : y� 0} = R

m2 regardless of the first-stage decision x, i.e., the positive
cone spanned by the columns of W equals Rm2 . A stochastic program that has a complete recourse has a
relatively complete recourse, but the converse does not hold.

The following result from [87, Theorems 6, p.112] implies that the deterministic equivalent (13.97) is
a convex and differentiable problem. (Part 1 of Theorem 13.23 is proved in [181, Theorems 7.6, 7.7]; part
2 in [87, Theorem 6, pp.112] [183, 184]; and part 3 in [87, Theorems 1 and 2, pp.106–107].)

Theorem 13.23 (Recourse function Q(x)). Consider problem (13.97) with fixed recourse, i.e., W is inde-
pendent of w . Suppose z has finite second moment. Then

1. The recourse function Q(x) is convex and Lipschitz on dom(Q) := {x 2 R
n1 : Q(x) < •}.

2. If the distribution function of z is absolutely continuous, then Q(x) is differentiable in the relative
interior ri(dom(Q)) of dom(Q).

3. Suppose z takes finitely many values a.s. Then

• dom(Q) is closed, convex, and polyhedral.
• The recourse function Q(x) is piecewise linear and convex on dom(Q).

Note that Q(x) is convex even for problems with random recourse and without the finite moment
assumption; see Lemma 13.25 below (proved in Exercises 13.20).

Example 13.8 (∂Q(x) and Ez ∂xQ̃(x,z )). Consider the second-stage linear program (13.97a) with fixed
recourse, specified by: y(w) 2 R

2, W = [1 1], T 2 R
1⇥n is fixed, h(w) 2 R is a uniform random variable

over [1,2],

q1(w) =

⇢
1 with probability 1�a
�1 with probability a , q2(w) = 0 with probability 1

and h and q are independent random variables. The random vector z := z (w) := (q(w),h(w)) 2 R
3. For

each w 2W,

Q̃(x,z ) := min
y�0

q1y1 s.t. y1 + y2 = h�T x (13.99)

1. Solve the linear program (13.99) explicitly to obtain the extended real-valued function Q(x) :=
Ez Q̃(x,z ).

2. Show that the effective domain dom(Q) = {x 2 R
n1 : T x  1} and ∂Q(x̄) = aTT + Ndom(Q)(x̄) for

x̄ 2 dom(Q) where NX(x̄) denotes the normal cone of X at x̄ 2 X .
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3. For each z , derive the extended real-valued function Q̃(x,z ) and ∂xQ̃(x̄,z ) for x̄ 2 dom(Q(·,z )).
(The effective domain of Q̃(·,z ) depends on z and is generally different from dom(Q).)

4. Show that ∂Q(x̄) = Ez
�
∂xQ̃(x̄,z )

�
+Ndom(Q)(x̄) for x̄ 2 dom(Q).

Solutions. The linear program (13.99) is illustrated in .. The distribution function for h is Fh(h) = Ph(h
h) = min{max{h�1,0},1}. From the figure there are two cases:

1. T x > 1: When 1 < T x  2, Q̃(x,z ) = •, i.e., (13.99) is infeasible, with probability T x� 1. When
T x > 2 then Q̃(x,z ) = • with probability 1. Therefore Q(x) = • when T x > 1.

2. T x 1: In this case Q̃(x,z ) < • for all z . The optimal solution y⇤ and optimal value of (13.99) are

y⇤ =

⇢
(0,h�T x) if q1 = 1
(h�T x,0) if q1 =�1 , Q̃(x,z ) = q1y⇤1 =

⇢
0 if q1 = 1
T x�h if q1 =�1

Hence, in this case, Q(x) = Eh|q1=�1 (T x�h|q1 =�1)Pq1(q1 = �1) = a (T x�Eh(h)) where the
last equality follows from the independence of h and q. Here Eh(h) = 1.5.

Therefore dom(Q) = {x 2 R
n1 : T x 1} and the extended real-valued function Q : Rn1 ! (�•,•] is:

Q(x) = a (T x�Eh(h)) + ddom(Q)(x)

where the indicator function is dX(x) = 0 if x 2 X and • if x 62 X . From Table 12.2, the subdifferential of
an indicator function is its normal cone, i.e., ∂dX(x̄) = NX(x̄) for any x̄ 2 X . Hence, for all x̄ 2 dom(Q),

∂Q(x̄) = aTT +Ndom(Q)(x̄) (13.100)

In particular if x̄ 2 ri(dom(Q)) then Ndom(Q)(x̄) = {0} and ∂Q(x̄) = {—Q(x̄)} =
�

aTT
 

.

We now derive, for each fixed z = (q,h), the effective domain dom(Q̃(·,z )) ✓ R
n1 and the proper

extended real-valued function Q̃(·,z ) on R
n1 . As discussed above, Q̃(x,z ) = • if T x > 2 or if T x 2 (1,2]

but h < T x. Otherwise Q̃(x,z ) is real-valued. Specifically, let C(h) := {x 2 R
n1 : T x h}; note that C(h)

is a random set depending on h 2 [1,2]. Then, given a z = (q,h), for x 2 R
n1 ,

Q̃(x,q1,h) =

⇢
dC(h)(x) if q1 = 1
dC(h)(x)+T x�h if q1 =�1

Hence, for each z ,

∂xQ̃(x̄,q1,h) =

⇢
NC(h)(x̄) if q1 = 1
NC(h)(x̄)+TT if q1 =�1 , x̄ 2C(h)

We now evaluate Ez ∂xQ̃(x̄,z ) for x̄ in the deterministic set dom(Q). Note that dom(Q) ⇢ C(h) with
probability 1; in particular dom(Q) = C(h) only when h = 1 which happens with probability 0. Since q
and h are independent we have

Ez ∂xQ̃(x̄,z ) = (1�a)Eh
�
NC(h)(x̄)

�
+a

⇣
Eh
�
NC(h)(x̄)

�
+TT

⌘
= aTT + Eh

�
NC(h)(x̄)

�
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We claim that Eh
�
NC(h)(x̄)

�
= 0. Note that Eh

�
NC(h)(x̄)

�
=
R 2

1+ NC(h)(x̄)dh. Since x̄ 2 dom(Q) ⇢ C(h)

with probability 1, x̄ is in the interior of C(h) with probability for h 2 (1,2]. Therefore Eh
�
NC(h)(x̄)

�
= 0

and Ez ∂xQ̃(x̄,z ) = aTT for x̄ 2 dom(Q), giving

∂Q(x̄) = Ez ∂xQ̃(x̄,z ) + Ndom(Q)(x̄), x̄ 2 dom(Q)

from (13.100).

Finally for the polyhedral set dom(Q) = {x 2 R
n1 : T x  1}, Theorem 12.3 says that Ndom(Q)(x̄) =

{lTT 2 R
n1 : l 2 R+ s.t. l (T x̄�1) = 0}. Substituting into (13.100) we have

∂Q(x̄) = Ez ∂xQ̃(x̄,z )+Ndom(Q)(x̄) =

⇢ �
aTT

 
if TTx̄ < 1�

(a +l )TT : l � 0
 

if TTx̄ = 1

KKT condition and duality. When the problem (13.97) with fixed recourse has finite second moment,
Theorem 13.23 implies that the extended real-valued recourse function Q(x) is convex and hence always
subdifferentiable in ri(dom(Q)), whether or not the distribution of z is absolutely continuous. This makes
(13.97) a conic program (12.56) studied in Chapter 12.8.4. Recall the dual cone K⇤ of K in Definition
12.1:

K⇤ := {x 2 R
n1 : xTx� 0 8x 2 K} (13.101a)

Let the dual variables be l 2 R
m1 and µ 2 K⇤ ✓ R

n1 . Define the Lagrangian function of (13.97):

L(x,l ,µ) := f (x)+Q(x) � lT(Ax�b) � µTx, x 2 R
n1 , l 2 R

m1 , µ 2 K⇤ ✓ R
n1

The dual function is

d(l ,µ) := min
x2Rn1

L(x,l ,µ) = lTb + d0(l ,µ), l 2 R
m1 , µ 2 K⇤ ✓ R

n1 (13.101b)

where

d0(l ,µ) := min
x2Rn1

⇣
f (x)+Q(x)� (ATl + µ)Tx

⌘
(13.101c)

Note that if µ 62 K⇤ then minx2Rn1 µTx =�•. The dual problem is:

d⇤ := max
l2Rm1 ,µ2K⇤

lTb + d0(l ,µ) (13.101d)

We make the following assumptions:

C13.5: Finite second moment and well posed Q(x). Ez z 2 < • and Q(x) 2 (�•,•].

C13.6: Slater condition. There exists x̄ 2 ri(dom(Q))\ ri(K) such that Ax̄ = b.
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Assumption C13.5 and Theorem 13.23 imply that Q(x) is convex on dom(Q) (hence subdifferentiable
but not necessarily differentiable). Assumptions C13.5 and C13.6 implies that Q is proper. The proper-
ness and the convexity of Q on dom(Q), and the existence of x̄ 2 ri(dom(Q)) imply that ∂ ( f + Q)(x) =
∂ f (x) + ∂Q(x) for all x 2 dom(Q), according to Theorem 12.17. These properties, together with the
Slater condition C13.6, allow us to apply Theorem 12.30 on conic program (or more precisely for an ex-
tended real-valued cost function, the Slater Theorem 12.26 and the generalized KKT Theorem 12.20) to
the stochastic program (13.97), with the following implication.

Theorem 13.24 (Strong duality and KKT for stochastic LP). Consider problem (13.97) with fixed re-
course, i.e., W is independent of w , and its dual (13.101). Suppose assumptions C13.5 and C13.6 hold.
Then

1. Strong duality and dual optimality. If the optimal value p⇤ of (13.97) is finite then there exists a dual
optimal solution (l ⇤,µ⇤) 2 R

m1⇥K⇤ that closes the duality gap, i.e., p⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization. A feasible x⇤ 2 K with Ax⇤ = b is optimal if and only if there exist subgradi-
ents x ⇤ 2 ∂ f (x⇤) and y⇤ 2 ∂Q(x⇤), a dual feasible (l ⇤,µ⇤) 2 R

m1⇥K⇤ such that

x ⇤+y⇤ = ATl ⇤+ µ⇤, µ⇤Tx⇤ = 0

In this case (x⇤,l ⇤,µ⇤) is a saddle point that closes the duality gap and is primal-dual optimal.

Example 13.9 (Linear program). Consider problem (13.97) with fixed recourse and its dual (13.101).
Suppose f (x) := cTx and K := R

n1
+ the nonnegative quadrant. Then K⇤ = K = R

n1
+ , d0(l ,µ) = 0 if

c = ATl + µ and �• otherwise in which case the dual problem becomes:

d⇤ := max
l2Rm1 ,µ2Rn1

+

lTb s.t. c = ATl + µ

Suppose Q is differentiable. Then the KKT condition becomes: x⇤ 2 dom(Q) with Ax⇤ = b and x⇤ � 0 is
optimal if and only if there exists (l ⇤,µ⇤) 2 R

m1⇥R
n1
+ such that

—Q(x⇤) = �c+ATl ⇤+ µ⇤, µ⇤Tx⇤ = 0

Problems with relative complete recourse. When problem (13.97) has a relative complete recourse
we can rewrite the KKT condition in Theorem 13.24 in terms of Ez ∂xQ(x⇤,z ) instead of ∂Q(x⇤). Then
∂xQ(x⇤,z ) can be evaluated using envelop theorems studied in Chapter 7.3.6. Write the stochastic program
(13.97) as an unconstrained optimization:

min
x2Rn1

f (x)+Q(x)+dC1(x)

where C1 := {x 2 R
n1 : Ax = b,x 2 K}, K ✓ R

n1 is a closed convex cone, and dC1(x) is the indicator
function of C1. The generalized KKT Theorem 12.20 implies that a feasible x⇤ 2C1 is optimal if and only
if

0 2 ∂ f (x⇤) + ∂Q(x⇤) + NC1(x
⇤) (13.102)
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The property ∂Q(x̄) = Ez ∂xQ̃(x̄,z )+Ndom(Q)(x̄) in Example 13.8 holds more generally. Usually ∂Q(x̄) =
∂xEz Q(x̄,z ) is not the same as Ez ∂xQ(x̄,z ), i.e., one cannot generally interchange the order of expectation
and subderivative. It is shown in [87, Theorem 11, p.117] [185, Proposition 2.11] however that if x̄ 2
C1\dom(Q), i.e., if x̄ is feasible for (13.97), then

∂Q(x̄) = Ez ∂xQ(x̄,z ) + Ndom(Q)(x̄)

If the stochastic program has a relatively complete recourse, then C1 ✓ dom(Q) and hence Ndom(Q)(x̄) ✓
NC1(x̄) for all feasible x̄ 2C1. This and the fact that NC1(x̄) and Ndom(Q)(x̄) are convex cones imply that
NC1(x̄)+ Ndom(Q)(x̄) = NC1(x̄). Substituting all this into (13.102) we have: x⇤ 2C1 is optimal if and only
if

0 2 ∂ f (x⇤) + Ez ∂xQ(x⇤,z ) + NC1(x
⇤) (13.103a)

Theorem 12.4 implies that NC1(x̄) = {ATl + µ 2 R
n1 : l 2 R

m1 , µ 2 K�,µTx̄ = 0} for x̄ 2 C1 where
K� ✓ R

n1 is the polar cone of K (Exercise 12.14). Therefore, while (13.102) yields the KKT condition
in Theorem 13.24, for problems with a relatively complete recourse, (13.103a) yields the equivalent KKT
condition in terms of Ez ∂xQ(x⇤,z ): x⇤ 2C1 is optimal if and only if there exists subgradients x ⇤ 2 ∂ f (x⇤)
and y⇤ 2 Ez ∂xQ(x⇤,z ), a dual feasible (l ⇤,µ⇤) 2 R

m1⇥K⇤ such that

x ⇤+y⇤ = ATl ⇤+ µ⇤, µ⇤Tx⇤ = 0 (13.103b)

Fix any w and z := z (w) and we may drop w and z to simplify notation. The dual of the recourse
problem (13.97a) is

d̃(x,z ) := max
l̃2Rm2

(T x�h)Tl̃ s.t. WTl̃ +q � 0

Suppose, for every x 2 R
n1 , the linear program Q̃(x,z ) and its dual d̃(x,z ) has a unique and continu-

ous primal-dual optimal solution (y(x), l̃ (x)) and strong duality holds at (y(x), l̃ (x)). Then the Saddle-
point Envelop Theorem 7.18 in Chapter 7.3.6 implies that Q̃(x,z ) is continuously differentiable in x and
—xQ̃(x,z ) = TTl̃ (x) where l̃ (x) is the dual optimal solution (Exercise 13.19). When (y(x), l̃ (x)) is not
unique and continuous in x, Q̃(x,z ) is subdifferentiable in x and

∂xQ̃(x̄,z ) = TTL̃⇤(x̄,z )

where L̃⇤(x̄,z ) is the set of dual optimal solutions l̃ (x), as long as Q̃(x̄,z ) is finite [174, Proposition 2.2,
p.28].

It is not common, however, that an analytical expression for Q(x) or Q̃(x,z ) is available. When z
is a continuous random variable, Q(x) and its derivative generally need to be computed by numerical
integration of Q(x,z ) and its derivative. This limits the practical solution of stochastic linear programs to
problems where the dimensionality of z is small. One approach is to approximate a continuous z by a
discrete random variable.
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Multi-stage extension. The multi-stage extension of the stochastic program with fixed recourse (13.97)
is:

p⇤ := min
x02Rn0

f (x0)+Q1(x0) s.t. W0x0 = h0, x0 2 K

where the value function Q1(x0) is given by: for t = 1, . . . ,t�1,

Qt(xt�1(w)) := Ezt(w) Q̃t (xt�1(w),zt(w))

Q̃t (xt�1(w),zt(w)) := min
xt(w)�0

⇣
qTt (w)xt(w)+Qt+1 (xt(w))

⌘
s.t. Wtxt(w) = ht(w)�Tt(w)xt�1(w)

and for the last stage t = t ,

Qt(xt�1(w)) := Ezt (w) Q̃t (xt�1(w),zt(w))

Q̃t (xt�1(w),zt(w)) := min
xt (w)�0

qTt (w)xt(w) s.t. Wtxt(w) = ht(w)�Tt(w)xt�1(w)

Hence the initial-stage decision x0 is made before the realization of w . For each t = 1, . . . ,t , the stage-t
decision xt(w) depends on the realized stage-t cost qt(w), constraint parameters (Wt ,ht(w),Tt(w)), as
well as the stage-(t +1) value function Qt+1 (xt(w)). The basic theory on the effective domains dom(Qt),
the value functions Qt(xt�1(w)), and optimality conditions can be extended from two-stage to multi-stage
problems. Like dynamic programming, a multi-stage stochastic program with recourse can suffer from the
curse of dimensionality as the number of stages grows (see [87, Chapter 10] for computational methods
for multi-stage stochastic programs that possess simplifying structures).

13.4.2 Stochastic nonlinear program with general recourse

Consider the stochastic nonlinear program:

inf
x2Rn1

f 1(x) + Q(x) s.t. A1x = b1, h1(x)  0 (13.104)

where the extended real-valued function Q : Rn1 ! [�•,•] is Q(x) := Ew Q̃(x,w), w takes value in a set
W, and

Q̃(x,w) := inf
y(w)2Rn2

f 2(x,y(w),w) s.t. A2(w)x+W (w)y(w) = b2(w), h2(x,y(w),w)  0

(13.105)

For first-stage functions, f 1 :Rn1!R, A1 2Rm1⇥n1 , b1 2Rm1 , h1 :Rn1!R
l1 . For second-stage functions,

f 2 : Rn1 ⇥R
n2 ⇥W! R, A2(w) 2 R

m2⇥n1 , W (w) 2 R
m2⇥n2 and b2(w) 2 R

m2 for each w 2 W, and h2 :
R

n1⇥R
n2⇥W!R

l2 . Compared with the stochastic linear program (13.97) the main difference is that the
recourse problem (13.105) is generally not a linear program and that the recourse is generally not fixed,
i.e., the second-stage functions ( f 2,A2,W,b2,h2) generally depend on w . We ignore measurability issues,
i.e., we assume all functions and sets we encounter are measurable. Furthermore we make the following
assumptions:
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C13.7: Convexity.

1. f 1 is convex on R
n1 and h1 is convex on R

n1 .

2. For a.e. w 2W, f 2(·, ·,w) is convex on R
n1⇥R

n2 and h2(·, ·,w) is convex on R
n1⇥R

n2 .

We next study properties of the recourse function Q(x) and then optimality conditions. Under assump-
tion C13.7, both Q̃(x,w) and Q(x) are closed convex functions in x (Exercises 13.20), even though their
effective domains dom(Q(·,w)) and dom(Q) may not be closed sets (see Remark 12.2).

Lemma 13.25. Consider the stochastic nonlinear program with recourse (13.104)(13.105) and suppose
C13.7 holds.

1. Q̃(x,w) and Q(x) are convex on R
n1 for a.e. w 2W.

2. If for every x1 2 R
n1 the feasible region of the recourse problem (13.105) is bounded, then

(a) Q̃(x,w) and Q(x) are lower semicontinuous on R
n1 for a.e. w 2W.

(b) Q̃(x,w) and Q(x) are closed functions on R
n1 for a.e. w 2W.

3. The effective domain dom(Q) := {x 2 R
n1 : Q(x) < •} is a convex set.

Let C1 :=
�

x 2 R
n1 : A1x = b1, h1(x) 0

 
. The Weierstrass Theorem 12.21 in Chapter 12.6 implies

the existence of primal optimal solution (Exercise 13.21) under the additional assumption:

C13.8: Well posed Q(x). Q(x) 2 (�•,•].

Note that it is not necessary for the feasible set C1\dom(Q) of (13.104) to be closed.

Theorem 13.26 (Primal optimality). Consider the stochastic nonlinear program with recourse (13.104)
and suppose assumptions C13.7 and C13.8 hold. Suppose further that, for every x1 2 R

n1 , the feasible
region of the recourse problem (13.105) is bounded. If C1 is bounded and C1\dom(Q) 6= /0, then (13.104)
has a finite optimal value and it is attained at some x⇤ 2 R

n1 .

The stochastic program with general recourse (13.104) can be written equivalently as:

p⇤ := inf
x2Rn1

f 1(x) + Q(x) s.t. A1x = b1, h1(x) 0 (13.106a)

where Q(x) := EwQ̃(x,w) as defined in (13.105). Lemma 13.25 implies that dom(Q) is a convex set (not
necessarily closed) and Q(x) is a convex function on R

n1 under Assumption C13.7, and hence (13.106) is
a convex problem. The Lagrangian is

L(x,l ,µ) := f 1(x)+Q(x) + lT(A1x�b1) + µTh1(x) (13.106b)

The dual function is

d(l ,µ) := inf
x2dom(Q)

L(x,l ,µ), l 2 R
m1 , µ � 0 2 R

l1 (13.106c)
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and the dual problem is

d⇤ := sup
l ,µ�0

d(l ,µ) (13.106d)

For strong duality and dual optimality we need the following additional assumption.

C13.9: Slater condition. There exists x̄ 2 ri(dom( f 1)) \ ri(dom(Q)) such that Ax̄ = b, and h1(x̄) <
0.

Assumptions C13.8 and C13.9 imply that Q is proper. The properness and the convexity of Q on dom(Q)
(from Lemma 13.25), and the existence of x̄ 2 ri(dom(Q)) imply that ∂ ( f 1 +Q)(x) = ∂ f 1(x)+∂Q(x) for
all x 2 dom(Q), according to Theorem 12.17. These properties, together with the Slater condition C13.9,
allow us to apply the Slater Theorem 12.26 and the generalized KKT Theorem 12.20 to (13.106), with the
following implication. (See Exercise 12.22 for proof.)

Theorem 13.27 (Strong duality and KKT for stochastic NLP). Consider the stochastic program with
general recourse and its dual (13.106). Suppose assumptions Assumption C13.7, C13.8 and C13.9 hold.
Then

1. Strong duality and dual optimality. If the optimal value p⇤ of (13.106a) is finite then there exists a
dual optimal solution (l ⇤,µ⇤) 2 R

m1⇥R
l1
+ that closes the duality gap, i.e., p⇤ = d⇤ = d(l ⇤,µ⇤).

2. KKT characterization. A feasible x⇤ 2 C1 is optimal if and only if there exists a dual feasible
(l ⇤,µ⇤) 2 R

m1⇥R
l1
+ such that

0 2 ∂ f 1(x⇤) + ∂Q(x⇤) + A1Tl ⇤ + Â
i

µ⇤i ∂h1
i (x
⇤) µ⇤Th1(x⇤) = 0

i.e., there exist subgradients x ⇤ 2 ∂ f (x⇤) and y⇤ 2 ∂Q(x⇤), q ⇤i 2 ∂h1
i (x
⇤), and a dual feasible

(l ⇤,µ⇤) 2 R
m̄1⇥R

m1�m̄1
+ such that

0 = x ⇤ + y⇤ + A1Tl ⇤ + Q⇤Tµ⇤, µ⇤Th1(x⇤) = 0

where the rows of the matrix Q⇤ are qi. In this case (x⇤,l ⇤,µ⇤) is a saddle point that closes the
duality gap and is primal-dual optimal.

As for stochastic linear programs, under appropriate conditions, we can express ∂Q(x) in terms of the
expectation over w of ∂Q(x,w), as

∂Q(x) = Ew∂xQ(x,w) + Ndom(Q)(x)

13.5 Bibliographical notes

Theorem 13.1 in Chapter 13.1.2 on robust linear program (13.11) follows [175, Theorem 1.3.4, p.20].
Theorem 13.2 in Chapter 13.1.3 on robust second-order cone program is from [175, Theorem 6.3.2, pp.
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162–165]. Theorem 13.4 on robust SDP is from [175, Theorem 8.2.3]. Theorem 13.6 on the convexity of
the feasible set of a chance constrained optimization problem is adapted from [174, Theorem 4.43, p.117].

The concentration inequalities in Chapter 13.2.2 are some of the most basic inequalities; see [177] for
much more results. The safe approximation in Chapter 13.2.3 of chance constrained linear program is a
special case of the original result in [186].

Chapter 13.4 introduces some basic theory on stochastic programs with fixed recourse, specifically
the structure of feasible sets associated with such a problem, the second-stage value function, and the
optimality condition and strong duality of the overall problem; see e.g. [87, Chapter 3][174, Chapter 2].
This problem is also studied in detailed in [181] (e.g., results in Lemma 13.22 on K2 and Theorem 13.23
on Q(x)). More general results on optimality, duality, and sensitivity of optimal solutions to parameter
and distribution perturbations can be found in [184, 181, 185, 189]. The materials in Chapter 13.4.2 on
stochastic nonlinear program with recourse mostly follow [87, Chapter 3.5]; see also [174, Chapter 2] for
excellent treatment.

Books on general stochastic programming methods includes [191]. For chance constrained optimiza-
tion, properties of probabilistically constrained sets such as convexity and connectedness, and continuity
and differentiability of constraint functions are discussed extensively in [174, Ch 4.2].

13.6 Problems

Chapter 13.1

Exercise 13.1 (Representation). 1. Explain why X1 := {x 2 R
n : kxk1  1} is specified by n2 inequal-

ities. Show that it is the same as X2 := {x 2 R
n : Ân

i=1 yi  1, �yi  xi  y1, i = 1, . . . ,n}, a set
specified by 2n variables and 2n+1 inequalities. Can yi in X2 be negative?

2. Explain why X1 := {x 2 R
n : kxk•  1} is specified by 2n inequalities. Show that it is the same as

X2 := {x2Rn : yi 1, �yi xi y1, i = 1, . . . ,n}, a set specified by 2n variables and 3n inequalities.

Exercise 13.2 (Closed and convex Z). Consider the robust optimization (13.2) reproduced here:

min
x2Rn

f (x) s.t. h(x,z )  0, 8z 2 Z (13.107)

where f : Rn! R is a cost function and Z 2 R
L is an uncertainty set. Suppose h(x,z ) is continuous and

convex in z for every x 2 R
n. Show that we can assume without loss of generality that Z is closed and

convex. (Hint: Show that if x is a feasible solution for (13.107) then it remains feasible when Z is extended
to its closure cl(Z) or convex hull conv(Z).)

The next problem shows how to formulate the robust counterpart of a nominal problem that involves
equality constraints.
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Exercise 13.3 (Robust SOCP relaxation of OPF). Consider the second-order cone relaxation of optimal
power flow (OPF) in (11.5). Recall the (N +1)⇥N incidence matrix C of a radial network and let C+ :=
max{C,0}, C� := min{C,0}. Let y1 := (p,q) 2 R

2(N+1) denote injections that are assumed controllable
and y2 := (v,`,P,Q)2R4N+1 the resulting states. Let r := diag(r jk,( j,k)2E) and x := diag(x jk,( j,k)2E)
denote the given diagonal matrices of line resistances and inductances.

1. Show that the SOCP relaxation of OPF in (11.5) takes the form:

min
y1,y2

cT1 y1 + cT2 y2 s.t. A0y1 +B0y2 = 0, B jky2 2 Ksoc, ( j,k) 2 E (13.108a)

ymin
1  y1  ymax

1 , vmin  v  vmax, `  `max (13.108b)

for some (4N +1)⇥(4N +1) matrix B jk for every line ( j,k)2E, where Ksoc := {(u, t)2R4 : kuk2
t} is the standard second-order cone, and

A0 :=

2

4
IN+1 0N+1
0N+1 IN+1
0N 0N

3

5 , B0 :=

2

4
0N+1 �C�r �C 0(N+1)⇥N
0N+1 �C�x 0(N+1)⇥N �C
CT r2 + x2 �2r �2x

3

5 (13.108c)

with Im being the identity matrix of size m, and 0m, 0m⇥n being respectively the m⇥m and m⇥ n
zero matrices.

2. Suppose the line resistances r + Dr and inductances x + Dx have uncertain perturbations of Dr :=
diag(Dr jk,( j,k) 2 E) and Dx := diag(Dx jk,( j,k) 2 E) respectively. Let the uncertainty parameter
z := (Dr, Dx) that takes value in some uncertainty set Zz . Show that the robust counterpart of
(13.108) is:

min
y1, t

t s.t. cT1 y1 + cT2 y2  t, B jky2 2 Ksoc, ( j,k) 2 E

ymin
1  y1  ymax

1 , vmin  v  vmax, `  `max, 8y2 2 Z(y1)

where (derive DB(z ))

Z(y1) := {y2 2 R
4N+1 : A0y1 +(B0 +DB(z ))y2 = 0, 8z 2 Zz }

i.e., the uncertainty set Zz has been embedded in the new uncertainty set Z(y1). Is the robust coun-
terpart tractable?

Exercise 13.4 (Robust LP: Z(x)). 1. Prove part 1 of Theorem 13.1. Show that if Z(x) := {z 2 R
k :

kzk•  h(x)} depends on x then the semi-infinite linear program (13.11) is equivalent to:

min
(x,y)2Rn+k

cTx s.t. h(x)
L

Â
l=1

yl  �(aT0 x�b0), �yl  aTl x�bl  yl, l = 1, . . . ,k

which may not be convex.
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2. Prove part 2 of Theorem 13.1. Show that if Z(x) := {z 2R
k : kzk2  r(x)} depends on x then the

semi-infinite linear program (13.11) is equivalent to:

min
x2Rn

cTx s.t. aT0 x + r(x)
s

Â
l

�
aTl x�bl

�2  b0

which may not be convex.

Exercise 13.5. Recall the second order cone Ksoc := {(z ,u) 2 R
k+1 : kzk2  u} and the affine set H :=

{(z ,u) 2 R
k+1 : u = r} for a given r > 0. Derive a tractable reformulation of the robust linear program

(13.11) with the uncertainty set Z := Ksoc\H, by adapting the proof of part 3 of Theorem 13.1. Compare
your result with part 2 of Theorem 13.1.

Exercise 13.6 (Robust LP). Show that the robust LP:

min
x2Rn

cTx s.t. (ai +ui)
Tx bi, i = 1, . . . ,m, 8kuik2  r

is equivalent to the deterministic second-order cone program:

min
x2Rn

cTx s.t. aTi x+kxk2  bi/r, i = 1, . . . ,m

Exercise 13.7 (Robust SOCP). Derive Â(x) 2 R
(m�1)⇥k, b̂(x) 2 R

m�1, â(x) 2 R
k, b̂ (x) 2 R such that

x 2 R
n is feasible for the robust SOCP (13.16) if and only if

��Â(x)z + b̂(x)
��

2  âT(x)z + b̂ (x), 8z 2 Z

Exercise 13.8 (Robust SOCP). [175, Proposition 6.2.1] Prove (13.22), assuming the problem (13.21) is
feasible and bounded.

Exercise 13.9. Prove (13.28): for any a1 2 R
m and a2 2 R

n we have

�r ka1k2 ka2k2 = min
X2Rm⇥n:kXk2r

aT1 Xa2

where the spectral norm kXk2 := supkvk21 kXvk2 = smax(X) is the largest singular value of X .
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Chapter 13.2.

Exercise 13.10 (Concavity). Let h : Rn! R
m and f : Rm! R be real-valued functions (so their domains

are R
n and R

m respectively). Show that If f is concave nondecreasing and h is concave then f (h(x)) is
concave in x.

Exercise 13.11 (a-concavity). Prove Lemma 13.5.

Exercise 13.12 (Chance-constrained program). Consider the dual problem (13.46b)

d⇤ := sup
µ�0

d(µ) := dX(µ) + dZ(µ) (13.109a)

where

dX(µ) := inf
x2X

⇣
c(x)�µTh(x)

⌘
, dZ(µ) := inf

z2Zp
µTz (13.109b)

Denote the sets of minimizers in (13.109b) by

X(µ) := {x 2 X : dX(µ) = c(x)�µTh(x)}, Z(µ) := {z 2 Zp : dZ(µ) = µTz}

Suppose conditions C13.1 and C13.2 of Theorem 13.7 are satisfied. In addition suppose X and Zp are not
only nonempty and convex, but also compact.

1. Apply Theorem 12.20 to (13.109) to show that µ⇤ � 0 is optimal for (13.109) if and only if there
exists (x⇤,z⇤) such that

x⇤ 2 X(µ⇤), z⇤ 2 Z(µ⇤), z⇤ �h(x⇤) 2 NR
m
+
(µ⇤) (13.110)

where NY (y) denotes the normal cone of Y at y 2 Y . (Hint: Use Exercise 13.13.)

2. Show that (13.110) is equivalent to (the saddle point characterization (13.48) in Theorem 13.7)

x⇤ 2 X(µ⇤), z⇤ 2 Z(µ⇤), h(x⇤) � z⇤, (µ⇤)T (h(x⇤)� z⇤) = 0 (13.111)

Exercise 13.13 (Chance-constrained program). Consider the (dual) functions dX(µ),dZ(µ) of Exercise
13.12 and the sets X(µ),Z(µ) of minimizers in (13.109b). Suppose X and Zp are nonempty, convex, and
compact. Show that for µ 2 R

m
+:

1. X(µ) and Z(µ) are nonempty, convex and compact.

2. ∂dX(µ) = conv(�h(x) : x 2 X(µ)).

3. ∂dZ(µ) = Z(µ).
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(Hint: Use Theorem 12.18 and Theorem 12.25.)

The next two problems are used to derive two sample complexity results for convex scenario program
(Corollary 13.18) by bounding the Binomial tail.

Exercise 13.14 (Chernoff bound: Binomial distribution). Consider the Binomial random variable Y 2
{0, . . . ,n} with parameter (n, p), i.e., P(Y = k) =

✓
n
k

◆
pk(1� p)n�k for k 2 {0, . . . ,n}. Show that

1. The moment-generating function of Y is EelY =
⇣

pel +1� p
⌘n

.

2. For any a 2 (0,1)

P(Y � na)  exp
✓
�n
✓

a log
a
p

+ (1�a) log
1�a
1� p

◆◆

This bound can be used to bound the Binomial tail in Theorem 13.14.

Exercise 13.15 (Concentration inequality: E(maxi Xi)). Let X1,X2, . . . , be sub-Gaussian random variables
with a common variance factor s2 (not necessarily independent), i.e., for all i, yi(l ) := logEelXi 
(s2/2)l 2 for all l 2 R. Show that

E
✓

max
i=1,...,n

Xi

◆
 s

p
2logn

(Hint: Apply Jensen’s inequality to elE(maxi Xi).)

Chapter 13.3.

Exercise 13.16 (Sample complexity). Prove Corollary 13.18.

Chapter 13.4.

Exercise 13.17 (Stochastic LP: C2 and C02). In general, C2 6= C02 in (13.98).

1. For stochastic linear program with fixed recourse, provide an example where C2 ( C02. (Hint:
Ez z 2 = •; see Lemma 13.22.)

2. For stochastic linear program with random recourse, provide an example where C02 (C2.
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Exercise 13.18 (Stochastic LP: C2 and C02). Give an example random variable that has finite first moment
but infinite second moment.

Exercise 13.19 (∂xQ̃(x,z )). Fix any z and recall from (13.97a) (omitting w or z in notation)

Q̃(x,z ) := min
y�0

qTy s.t. Wy = h�T x

Suppose, for each x 2 R
n1 ,

1. There exists a unique primal-dual optimal solution (y(x),l (x),µ(x)) for Q̃(x,z ); moreover it is
continuous at x.

2. Strong duality holds at (y(x),l (x),µ(x)).

Show that Q̃(x,z ) is continuously differentiable and —xQ̃(x,z ) = TTl (x). (Hint: Use envelop theorem
(Chapter 7.3.6). See [174, Chapter 2.1] on subdifferentiability of Q̃(x̄,z ) when (y(x),l (x),µ(x)) is not
unique and continuous in x.)

Exercise 13.20. [87, Theorem 34 and 35; p.157][Stochastic nonlinear program] Prove Lemma 13.25.

Exercise 13.21. [87, Theorem 39; p.158][Stochastic nonlinear program] Prove Theorem 13.26.



Chapter 14

Example applications

14.1 Stochastic economic dispatch

We have studied in Chapter 8.4 the problem of optimally scheduling generations and demands and pricing
electricity when there is no uncertainty. In this section we discuss how the nominal economic dispatch
problem of Chapter 8.4 can be modified when uncertainty arises. Our main purpose is to illustrate various
concepts of stochastic OPF of Chapter 13 in a concrete application.

Consider a power network modeled by the DC power flow model of Chapter 4.6.2. The network is
represented by a connected graph G = (N,E) of N + 1 nodes and M := |E| lines where N := {0}[N,
N := {1,2, . . . ,N} and E ✓ N⇥N. Let C denote the (N + 1)⇥M incidence matrix (defined in (4.11)).
Each line l := ( j,k) 2 E is parametrized by its susceptance bl > 0. Let B := diag(bl, l 2 E) � 0 be the
diagonal matrix of line susceptances. Suppose at each bus j:

• There is possibly an uncontrollable generation g j � 0 (e.g. photovoltaic) and an uncontrollable load
d j � 0. The net demand to the grid is g j�d j.

• There is a single dispatchable unit p j taking value within its capacity limits [pmin
j , pmax

j ]. It can be
a generator (pmin

j � 0), a controllable load (pmax
j  0), or a prosumer pmin

j  0  pmax
j . Let f j(pi)

denote the cost function of unit j, i.e., f j(p j) models the generation cost at a generator bus with
p j � 0 and � f j(p j) models the utility of consuming �p j � 0 at a load bus.

Any of (p j,g j,d j) can be set to zero if they are not present at node i.

The Laplacian matrix L associated with G is defined to be

L := CBCT

(See Chapter 4.6.1 for properties of L.) A net injection (vector) (p+g�d) induces power flows P on lines
given by

P = STp := BCTL†(p+g�d) (14.1)

630
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where S := L†CB is called a shift factor. The expression (14.1) for P is valid if and only if 1T(p+g�d) =
0, i.e., if and only if supply and demand are balanced. The power flow Pjk on each line j! k 2 E is
directional (i.e, Pjk < 0 means power flows from buses k to j). There are line capacities Pmin

jk < 0 < Pmax
jk

in each direction and the line flows P = STp induced by p must lie within these limits.

14.1.1 Nominal ED

We have studied the following nominal economic dispatch in Chapter 8.4 that minimizes aggregate pro-
duction cost subject to capacity limits, power balance, and line limits, when (g,d) are known:

min
pminppmax Â

j2N
f j(p j) (14.2a)

s.t. 1T(p+g�d) = 0 [g] (14.2b)

Pmin  ST(p+g�d)  Pmax [k�,k+] (14.2c)

with associated Lagrange multipliers (g,k�,k+) with (k�,k+)� 0. The locational marginal price (LMP)
or nodal price is the following vector:

l := l (g,k) =: g1+Sk := g1+
⇣

L†CB
⌘

k 2 R
N+1 (14.3)

where k := k��k+. The Slater Theorem 7.15 of Chapter 7.3.4 implies that if the cost functions f j are
convex and the economic dispatch (8.21) has a finite optimal value, then there exist optimal Lagrange
multipliers (g⇤,k�⇤,k+⇤) and hence an LMP l ⇤ such that a dispatch p⇤ is optimal for (14.3) if and only
if p⇤ is primal feasible, (k�⇤,k+⇤)� 0, and (p⇤,g⇤,k�⇤,k+⇤) satisfies stationarity:

f 0j(p⇤j)

8
<

:

= l ⇤j if pmin
j < p⇤j < pmax

i
> l ⇤j only if p⇤j = pmin

j
< l ⇤j only if p⇤j = pmax

j

(14.4a)

and complementary slackness:
�
k�⇤

�T⇣Pmin�ST(p⇤+g�d)
⌘

= 0,
�
k+⇤�T

⇣
ST(p⇤+g�d)�Pmax

⌘
= 0 (14.4b)

14.1.2 Robust ED

Suppose the uncontrollable generations and demands (g j,d j) are uncertain. For simplicity we take f j(p j) :=
c j p j so that the economic dispatch is a linear program. To formulate robust economic dispatch we first
relax the power balance equality constraint (14.2b) into an inequality constraint:

fmin := min
pminppmax

cTp (14.5a)

s.t. bmin  1T(p+g�d)  bmax [g�,g+] (14.5b)

Pmin  ST(p+g�d)  Pmax [k�,k+] (14.5c)
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with associated Lagrange multipliers (g�,g+,k�,k+) with (g�,g+) � 0 and (k�,k+) � 0. We assume
bmin < 0 < bmax and Pmin < 0 < Pmax. The rationale is that the dispatch decisions and LMP (p⇤,l ⇤)
are made in advance, e.g., 5 or 15 minutes before delivery, before (g,d) are realized. At delivery time
when (g,d) are realized, as long as the power imbalance 1T(p + g� d) over the entire network is small
enough in magnitude, it can be met by some reserve generation and demand response in some manner. (In
two-stage program with recourse in Chapter 14.1.5, we will optimize the scheduling of reservers.) Given a
fixed value of (g,d), the relaxed economic dispatch (14.5) chooses an optimal dispatch p⇤ with a network
power imbalance within the range [bmin,bmax]. Let g := g��g+ and recall k := k��k+. Then, as for the
nominal ED (14.2), a primal feasible p⇤ and a dual feasible (g�⇤,g+⇤,k�⇤,k+⇤) are optimal if and only if
they satisfy (14.4) with LMP l ⇤ := g⇤1+Sk⇤, as in (14.3) but with g⇤ := g�⇤� g+⇤.

Suppose the uncertain generations and loads (gi,di) take values in Gi⇥Di := [0,gmax
i ]⇥ [0,dmax

i ] and
let G⇥D := (’i Gi)⇥ (’i Di). The robust counterpart of the relaxed economic dispatch (14.5) chooses
an optimal dispatch p⇤ so that power can be balanced in the worst-case realization of (g,d):

f ⇤rED := min
pminppmax

cTp (14.6a)

s.t. bmin  1T(p+g�d)  bmax, 8(g,d) 2 G⇥D (14.6b)

Pmin  ST(p+g�d)  Pmax, 8(g,d) 2 G⇥D (14.6c)

We now show that this semi-infinite problem is equivalent to a finite linear program. The subproblems
(13.9) corresponding to the power balance constraint (14.6b) are:

min
(g,d)2G⇥D

1T(g�d) = �1Tdmax, max
(g,d)2G⇥D

1T(g�d) = 1Tgmax

Therefore the semi-infinite constraint (14.6b) has the finite reformulation:

bmin +1Tdmax  1Tp  bmax�1Tgmax

which is feasible only if 1T (dmax +gmax)  bmax� bmin. This constraint says that the dispatch must be
able to meet the largest possible demand but also allow the largest possible generation.

Denote by s jl the ( j, l) entry of S := L†CB and let sl := (s jl, j 2 N) denote the lth column of S. Then
we have for the lth constraint in (14.6c):

min
(g,d)2G⇥D

sTl (g�d) = �
�
t�l
�T 1, max

(g,d)2G⇥D
sTl (g�d) =

�
t+l
�T 1

where t�l := t�l (sl) and t+l := t+l (sl) are row vectors in R
N+1
+ that depend on sl:

t�l j :=
⇢

|s jl|dmax
j if s jl � 0

|s jl|gmax
j if s jl  0 , t+li :=

⇢
|s jl|gmax

j if s jl � 0
|s jl|dmax

j if s jl  0

Recall that s jl is the marginal increase in line flow DPl for additional unit of injection Dp j at bus j.
Therefore, for upper line limit t+l , when node s jl � 0, the worst-case uncertainty on line l (in terms of
pushing the line flow towards Pmax

l ) is gmax
j ; otherwise the worst-case uncertainty is dmax

j . The worst-case
realization of (g,d) can be different for different constraints l and the robust formulation requires that the
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line flow Pl on any line l due to any realization (gk,dk) must stay within its line limit (Pmin
l ,Pmax

l ). Let
T� and T + be matrices whose lth rows are the row vectors t�l and t+l respectively. Then the semi-infinite
constraint (14.6c) has the finite reformulation:

Pmin +T�1  STp  Pmax�T +1

Therefore the semi-infinite robust program (14.6) can be reformulated as a linear program:

f ⇤rED := min
pminppmax

cTp (14.7a)

s.t. bmin +1Tdmax  1Tp  bmax�1Tgmax [g�,g+] (14.7b)

Pmin +T�1  STp  Pmax�T +1 [k�,k+] (14.7c)

with associated Lagrange multipliers (g�,g+,k�,k+) with (g�,g+) � 0 and (k�,k+) � 0. As for the
relaxed economic dispatch (14.5), a primal feasible p⇤ and a dual feasible (g�⇤,g+⇤,k�⇤,k+⇤) are optimal
if and only if the stationarity and complementary slackness conditions (14.4) hold with LMPs defined as
l ⇤ := g⇤1+Sk⇤ where g⇤ := g�⇤� g+⇤ and k⇤ := k�⇤�k+⇤.

The lower and upper limits on power imbalance and line flows are however tighter in the robust pro-
gram (14.7) than those in (14.5). The tightening accommodates the worst-case uncertainty and can be too
conservative.

14.1.3 Chance constrained ED

The constraints (14.5b)(14.5c) are

1T(g�d) � bmin�1Tp, ST(g�d) � Pmin�STp

1T(g�d)  bmax�1Tp, ST(g�d)  Pmax�STp

Define the random (column) vector taking value in R
M+1:

z :=
⇣

1T(g�d), ST(g�d)
⌘

=
⇥
1 S

⇤T
(g�d) (14.8a)

Let Fz (z) denote the distribution function of z and assume it is continuous. Let h1 : RN+1! R
M+1 and

h2 : RN+1! R
M+1 be the affine functions:

h1(p) :=
⇣

bmin�1Tp, Pmin�STp
⌘

(14.8b)

h2(p) :=
⇣

bmax�1Tp, Pmax�STp
⌘

(14.8c)

Then the chance constrained formulation (13.46) of the relaxed economic dispatch (14.5) is:

f ⇤ccED := min
pminppmax Â

j2N
f j(p j) s.t. Fz (h2(p))�Fz (h1(p)) � 1� e (14.8d)

corresponding to the chance constraint P(h1(p) z  h2(p)) � 1� e . Even if Fz (h j(p)) are concave
functions in p (which will be the case if Fz (z) is concave in z since Fz is nondecreasing and nonnegative),
their difference Fz (h2(p))�Fz (h1(p)) may not be concave in p, and hence the chance constrained eco-
nomic dispatch (14.8) is generally a nonconvex problem. Moreover it is not clear how to define locational
marginal prices for this formulation.
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14.1.4 Scenario-based ED

Suppose
�
z 1, . . . ,z K� with K � N + 1 are independent samples according to the distribution function Fz.

Then the scenario program corresponding to (14.8) is:

f ⇤sED := min
pminppmax Â

j2N
f j(p j) s.t. h1(p) z k  h2(p), k = 1, . . . ,K (14.9)

Suppose the cost is linear, i.e., f j(x j) = c jx j. For each realization
�
z 1, . . . ,z K�, the scenario program

(14.9) is a linear program since hi(p) are affine functions. Consider an optimal solution p⇤K of the random-
ized problem (14.9) (see Remark 13.5 on uniqueness of p⇤K). It violates the chance constraint in (14.8d)
with a (random) probability V (x⇤K) with mean EN (V (x⇤K)) (N +1)/(K +1) according to Theorem 13.13.
Moreover Theorem 13.14 and Theorem 7.21 on linear program optimality imply that, provided that (14.9)
has a finite optimal cost for every realization

�
z 1, . . . ,z K�, the tail probability of V (x⇤K) is bounded by a

Binomial tail:

P
K (V (x⇤K) > e) 

n�1

Â
i=0

✓
K
i

◆
e i(1� e)K�i

For any b > 0 we can choose the number K of samples greater than the threshold K(e,b ) given in (13.89)
to guarantee that the PK (V (x⇤K) > e) b . Moreover such a K will ensure that, with probability at least 1�
b , the optimal value f ⇤sED of the scenario program is close to the optimal values f ⇤rED and f ⇤ccED according
to Theorem 13.21.

Let

S̃ :=
⇥
1 S

⇤
, P̃min :=


bmin

Pmin

�
, P̃max :=


bmax

Pmax

�

For each realization of the K samples (z 1, . . . ,z K), the scenario program (14.9) is a convex program and
a special case of robust ED (14.6) with a finite set of uncertain values for (g,d):

f ⇤sED := min
pminppmax Â

j2N
f j(p j) s.t. P̃min�z k  S̃Tp  P̃max�z k, k = 1, . . . ,K

which is equivalent to:

f ⇤sED := min
pminppmax Â

j2N
f j(p j) s.t. P̃min�min

k
z k  S̃Tp  P̃max�max

k
z k (14.10)

Therefore for the (randomized) program (14.10), LMP l ⇤K can be defined in the same way as that for (14.5),
but with possibly a tighter constraint. A primal feasible p⇤K and a dual feasible (g�⇤K ,g+⇤

K ,k�⇤K ,k+⇤
K ) are

optimal if and only if the stationarity and complementary slackness conditions (14.4) hold.

14.1.5 Security constrained ED

Suppose the uncontrollable generation and demand take one of K values (gk,dk) 2 R
2(N+1)
+ with prob-

ability wk > 0 such that ÂK
k=1 wk = 1. (We overload notation and use k here to index the K different
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deterministic values z can take, not the random samples (z 1, . . . ,z K) in scenario-based ED.). Suppose
each unit j can decide not just a dispatch p j before (g,d) is realized, but also chooses an adjustment rk j
if (gk,dk) is later realized so that the actual injection at delivery time is p j + rk j in scenario k. Unit j
must reserve some down and up reserve capacities (rmin

j ,rmax
j ) in the first stage for its adjustment rk j in

the second stage so that

rmin
j  rk j  rmax

j , pmin
j  p j + rmin

j  p j + rmax
j  pmax

j , j 2 N (14.11a)

The first-stage decision consists of the dispatch p and reserve capacities rmin :=
⇣

rmin
j , j 2 N

⌘
and rmax :=

⇣
rmax

j , j 2 N
⌘

, but this decision must be made taking into account of the second-stage actions rk :=
(rk j, j 2 N) for each scenario k = 1, . . . ,K. We will formulate this as a two-stage stochastic program with
recourse. In a typical application, this program is solved before (g,d) is realized for both the first-stage
decision (p,rmin,rmax) and the second-stage decisions (rk,8k) in order to produce an optimal schedule in
advance. After (g,d) is realized, the optimal action rk can then be applied if (g,d) = (gk,dk).

Besides (14.11) suppose there is also a system-wide reliability requirement on the reserves (rmin,rmax)
imposed by the system operator. For example, a popular reserve requirement is that the total reserve
must be sufficient to cover the outage of the largest generating unit, i.e., Â j 6= jk rmin

j � max j pmax
i where

jk := argmax j pmax
j . We assume the reliability requirement in each scenario k depends only on (rmin,rmax),

not on the dispatch p, and is separable in j, i.e., it is of the form:

hk(rmin,rmax) := Â
j

hk j(rmin
j ,rmax

j ) � 0 (14.11b)

where hk j : R2 ! R. 1 For the example above, hk j(rmin
j ,rmax

j ) = rmin
j �a j pmax

jk for j 6= jk with a j � 0
and Â j a j = 1. In general hk j(rmin

j ,rmax
j ) can be positive or negative. The capacity and reserve constraints

(14.11a) are decentralized across j, but the systemwide reliability requirement (14.11b) couples their
reserve decisions (rmin

j ,rmax
j ).

Joint energy and reserve optimization. Suppose the cost for unit j to provide p j +rk j amount of energy
is fk j(p j + rk j) if scenario k materializes. Then the joint energy and reserve optimization, called security
constrained economic dispatch, is the following two-stage optimization with recourse:

f ⇤scED := min
p,rmin,rmax

K

Â
k=1

wk Qk(p,rmin,rmax) (14.12a)

s.t. pmin  p+ rmin, p+ rmax  pmax [a�,a+] (14.12b)

hk

⇣
rmin,rmax

⌘
:= Â

j
hk j

⇣
rmin

j ,rmax
j

⌘
� 0 [µk] (14.12c)

1A less stringent requirement is to have enough reserve to cover the outage of the largest dispatched generating unit, i.e.,
Â j 6= jk rmin

j �max j pi where jk := argmax j p j. The formulation and results here extend to the case where the dispatch decision
p and the reserve decisions (rmin,rmax) are coupled.
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where, for each k = 1, . . . ,K, Qk solves the economic dispatch in scenario k:

Qk(p,rmin,rmax) := min
rk

fk(p+ rk) := Â
j

fk j(p j + rk j) (14.12d)

s.t. 1T(p+ rk +gk�dk) = 0 [gk] (14.12e)

Pmin  ST(p+ rk +gk�dk)  Pmax [k�k ,k+
k ] (14.12f)

rmin  rk  rmax [b�k ,b+
k ] (14.12g)

Since the second-stage action rk is taken after the uncontrollable generation and demand (gk,kk) are
known, we impose exact power balance in (14.12e), as in the case of nominal economic dispatch (14.2).

The second-stage problems Q(p,rmin,rmax,rk) are separable in k. We can therefore interchange expec-
tation and minimization and write (14.12) as a single program:

f ⇤scED := min
p,rmin,rmax

(rk,k�1)

Â
k

wk fk(p+ rk) := Â
k

wk Â
j

fk j(p j + rk j) (14.13a)

s.t. (14.12b)(14.12c)(14.12e)� (14.12g) (14.13b)

Denote the primal and dual variables for (14.13) by

x⇤ := (p⇤,rmin⇤,rmax⇤,r⇤k ,k � 1)

x ⇤ := (g�⇤k ,g+⇤
k ,k�⇤k ,k+⇤

k ,a�⇤,a+⇤,b�⇤k ,b+⇤
k ,µ⇤k ,k � 1)

Let g⇤k := g�⇤k � g+⇤
k , k⇤k := k�⇤k �k+⇤

k , a⇤ := a�⇤�a+⇤, and b ⇤k := b�⇤k �b+⇤
k . Define the LMP l ⇤k for

each scenario k:

l ⇤k := g⇤k 1 + Sk⇤k (14.14)

We assume all functions fki,hki are real-valued, convex and continuously differentiable and the parameters
are appropriately chosen such that (14.13) has a finite optimal value, and the Slater condition is satisfied,
e.g., pmin < pmax. Then the Slater Theorem 7.15 of Chapter 7.3.4 implies that optimal Lagrange multipliers
x ⇤ and hence LMPs (l ⇤k ,8k) always exist. Moreover a primal-dual feasible (x⇤,x ⇤) is primal-dual optimal
for (14.13) if and only if (x⇤,x ⇤) satisfies stationarity:

wk— fk(p⇤+ r⇤k) = l ⇤k +b ⇤k , Â
k

µ⇤k —hk

⇣
rmin⇤,rmax⇤

⌘
= 0, a⇤ = Â

k
b ⇤k (14.15)

and complementary slackness for decentralized constraints:
�
a�⇤

�T⇣pmin� p⇤ � rmin⇤
⌘

= 0,
�
a+⇤�T (p⇤+ rmax⇤ � pmax) = 0 (14.16a)

�
b�⇤k

�T⇣rmin⇤ � r⇤k
⌘

= 0,
�
b+⇤

k
�T

(r⇤k � rmax⇤) = 0 (14.16b)

and that for coupling constraints (Exercise 14.1):

µ⇤k hk

⇣
rmin⇤,rmax⇤

⌘
= 0 (14.16c)

�
k�⇤

�T⇣Pmin�ST(p⇤+ r⇤k +gk�dk)
⌘

= 0,
�
k+⇤�T

⇣
ST(p⇤+ r⇤k +gk�dk)�Pmax

⌘
= 0 (14.16d)
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The stationarity condition (14.15) has three implications. First the probability-weighted marginal cost
wk— fk is the sum of LMP l ⇤k plus the “reserve capacity price” b ⇤k in the second stage. Moreover the
“reserve capacity price” a⇤ in the first stage (which is independent of scenarios k) is simply the sum of
the reserve capacity prices b ⇤k . Finally the total marginal reliability cost Âk µ⇤k —hk

�
rmin⇤,rmax⇤� is zero.

Interestingly complementary slackness (14.16c) says that the total reliability cost is also zero (we will
return to this point shortly).

ICRA settlement rule. For the nominal economic dispatch (14.2) without uncertainty, it is desirable to
price electricity using the Lagrange multipliers (g⇤,k⇤) associated with coupling constraints (power bal-
ance and line limits) because they price the externalities caused by units j and align individual optimality
with social optimality (see Chapter 8.4.3). We apply the same intuition to the two-stage problem (14.14)
and design prices using the Lagrange multipliers associated only with the coupling constraints, power
balance (14.12e), line limits (14.12f), as well as the systemwide reliability requirement (14.12c).

Let (x⇤,x ⇤) be a primal-dual optimal solution of (14.13) and l ⇤k be the LMP defined in (14.14) for
scenarios k. Consider the following settlement rule:

1. Energy prices (scenario-dependent LMP) l ⇤k /wk: If the scenario k materializes at delivery time then
unit j that provides energy

�
p j + rk j

�
is paid by the system operator the amount l ⇤k j

�
p j + rk j

�
/wk.

2. Reserve payment Âk µ⇤k hki

⇣
rmin

j ,rmax
j

⌘
: Regardless of scenario at delivery time, unit j that provides

reserve capacities (rmin
j ,rmax

i ) is paid by the system operator the amount Âk µ⇤k hk j

⇣
rmin

j ,rmax
j

⌘
.

The settlement rule enjoys three desirable properties:

• Incentive compatible. When unit j is faced with the scenario-dependent LMP l ⇤k j/wk in sce-

nario k and the reserve payment Âk µ⇤k hk j

⇣
rmin

j ,rmax
j

⌘
, it would have preferred to choose x⇤j :=

(p⇤j ,r
min⇤
j ,rmax⇤

j ,r⇤k j,k � 1) that maximizes its expected profit, i.e., it solves:

max
x j

Â
k

wk

⇣
l ⇤k j(p j + rk j)/wk� fk j(p j + rk j)

⌘
+Â

k
µ⇤k hk j(rmin

j ,rmax
j ) s.t. (14.12b)(14.12g)

(14.17)

The settlement rule is called incentive compatible in expectation if a primal optimal solution x⇤ of
(14.13) also solves the expected profit maximization (14.17) for all units under the settlement rule.
Note that the individual optimization (14.17) relaxes all coupling constraints but includes all local
constraints.

• Revenue adequate. If all units provide their energy and reserves according to a primal optimal solu-
tion x⇤, then the total payment to the system operator in each scenario k, called the merchandizing
surplus, under the settlement rule is:

MSk := �Â
j

1
wk

l ⇤k j(p⇤j + r⇤k j +gk�dk) �Â
i

Â
j

µ⇤i hi j

⇣
rmin

j ,rmax
j

⌘

The settlement rule is called revenue adequate in each scenario k � 1 if MSk � 0.
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• Reserve payment balanced. The reserve payments are said to be balanced under the settlement rule
if

Â
j
Â
k

µ⇤k hk j

⇣
rmin

j ,rmax
j

⌘
= 0

This means that those units that need more reliability exactly compensate those that can provide
more reliability.

Theorem 14.1 (ICRA). Suppose fk j,hk j are real-valued, convex, and continuously differentiable. Let
(x⇤,x ⇤) be a primal-dual optimal solution of (14.13). Then the settlement rule is:

• incentive compatible in expectation;

• revenue adequate in each scenario k � 1; and

• reserve payment balanced.

The theorem is proved in Exercise 14.1. Indeed the settlement rule is also incentive compatible in each
scenarios k � 1 in the sense that, after the first-stage commitment (p⇤,rmin,rmax) when the scenario k is
realized, r⇤k j from an optimal solution of (14.13) will also maximize unit j’s profit in scenario k.

Remark 14.1. The formulation here is highly simplified to illustrate various concepts of stochastic OPF
studied in Chapter 13. It can be extended to:

• allow the network (shift factor S) and nodal injection sets to depend on contingencies k to model
outages;

• include additional local constraints, ramp rates, network losses, reserve costs, and per-area reliability
requirements;

• allow reserve constraints hk j(p j,rmin
j ,rmax

j ) to depend on both the dispatch decision and reserve
decisions.

The settlement rule and the ICRA property extend directly.

14.1.6 Example: no congestion

We illustrate the impact of uncertainty on the prices, optimal dispatch and cost using the following special
case:

1. Omit line limits, i.e., the line capacities are large enough not to pose any constraint. This problem
is traditionally called the economic dispatch.

2. All units are generators with cost functions fi(pi) := p2
i /(2hi) over [0,•] where h j > 0. We assume

no production limits, i.e., the generators’ capacities are large so that their generation levels will be
constrained by their quadratically increasing costs rather than capacity limits.
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Let z := 1T(g� d) denote the total uncontrollable excess generation and we assume it takes value in a
compact set Z. Then the nominal economic dispatch (14.5) given a realization z 0 2 Z, its robust counter-
part (14.7), and the scenario-based ED (14.9) are all convex quadratic programs of the form (we assume
b > 0):

f ⇤(b) := min
p�0 Â

j
f j(p j) s.t. b  1Tp  b [g�,g+] (14.18a)

with respectively

f ⇤min : 0 < b := bmin�z 0, b := bmax�z 0 (14.18b)

f ⇤rED : 0 < b := bmin�min
z2Z

z , b := bmax�max
z2Z

z (14.18c)

f ⇤sED : 0 < b := bmin�min
k

z k, b := bmax�max
k

z k (14.18d)

where the scenario-based ED is a randomized program defined by K independent random samples of the
total uncontrollable excess generation z 1, . . . ,z K .

We now analyze the LMP g⇤ := g�⇤� g+⇤ and optimal dispatch programs in p⇤ for (14.18) and com-
pare their optimal values f ⇤min, f ⇤rED, f ⇤sED(K). Since the marginal costs f 0j(p j) = p j/h j > 0 for p j > 0 for
all j, g⇤ = f 0j(p⇤j) > 0 at optimality and the lower bound of the power balance constraint is tight. Given
any g > 0, p j(g) := f 0�1

j (g) = h jg is the amount that is incentive compatible for unit j to produce. At
optimality, power balance becomes b = g⇤ÂN

j=0 h j, and hence

g⇤ =
b

Âi hi
, p⇤j = p j(g⇤) =

h j

Âi hi
b, f ⇤(b) =

b2

2Âi hi
(14.19)

Hence the optimal cost f ⇤ depends only on the lower limit b. We can interpret h j as a participation
factor: generator j produces a share of the minimum excess demand b proportional to its h j. Define the
deterministic quantity zZ and the random variable zK as:

zZ := min
z2Z

z , zK := min
k

z K

i.e., zZ represents the worst-case demand (�zZ > 0 is the largest in Z) and zK represents the worst-case
demand among the K random samples. Applying (14.19) to (14.18), the differences in LMPs, optimal
dispatches and optimal costs under robust and scenario-based ED, in comparison with the nominal ED
(14.5) if the realization of (g,d) were known in advance, are respectively

g⇤rED� g⇤min =
z 0�zZ

Âi hi
� 0, g⇤sED� g⇤min =

z 0�zK

Âi hi

p⇤rED, j� p⇤min, j =
h j(z 0�zZ)

Âi hi
� 0, p⇤sED, j� p⇤min, j =

h j(z 0�zK)

Âi hi

and the differences in the optimal costs are:

f ⇤rED� f ⇤min =
1

2Â j h j

�
z 0�zZ

�⇣
2bmin�z 0�zZ

⌘
� 0

f ⇤sED� f ⇤min =
1

2Â j h j

�
z 0�zK

�⇣
2bmin�z 0�zK

⌘
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Since the worst-case demand is always higher, i.e., z0 � zZ a.s., robust ED always produces a larger LMP,
dispatches more power and incurs a higher optimal cost than the nominal ED (14.5). This may not be the
case with scenario-based ED since it is a randomized program. If z 0 < zK , then f ⇤sED < f ⇤min. On the other
hand

f ⇤rED � max{ f ⇤min, f ⇤sED} a.s.

Suppose z 0 is also drawn from the same distribution as the K random samples in scenario-based ED. Then
the expected optimality gaps are, from (14.18) and (14.19),

f ⇤rED�E f ⇤min =
1

2Â j h j

⇣
2bmin(Ez �zZ) �

�
E(z 2)�z 2

Z
�⌘
� 0

E f ⇤sED�E f ⇤min =
1

2Â j h j

⇣
2bmin(Ez �zK) �

�
E(z 2)�E(z 2

K)
�⌘
� 0

where EX denotes the expectation of the random variable X .

Finally consider the security constrained economic dispatch (14.13) and assume fk j(p j) := p2
j/(2h j)

for all scenarios k. Assume z := 1T(g�d) can take only finitely many values z1, . . . ,zK . (Note that k here
indexes the K different deterministic values z can take, not random samples in scenario-based ED.) Then
we have the deterministic two-stage program with recourse (reserves (rmin,rmax) play no role because we
have assumed generators have no capacity limits):

f ⇤scED := min
p,rmin,rmax

(rk,k�1)

Â
k

wk Â
j

fk j(p j + rk j) := Â
k

wk Â
j

1
2h j

�
p j + rk j

�2

s.t. 1T(p+ rk) = �zk [gk]

hk

⇣
rmin,rmax

⌘
:= Â

j
hk j

⇣
rmin

j ,rmax
j

⌘
� 0 [µk]

where we recall that zk := 1T(gk�dk) is the total uncontrollable excess generation. The optimal scenario-
dependent LMP g⇤k /wk, generations, and cost are respectively

g⇤k
wk

=
�zk

Âi hi
, p⇤j + r⇤k j = �

h jzk

Âi hi
, f ⇤scED =

1
2Âi hi

Â
k

wkz 2
k

If one knew scenario k will be materialized, we assume here that one solves the economic dispatch (14.5)
with bmin = bmax := 0 to produce the LMP and optimal dispatch and, incurs an optimal cost, from (14.19),

g⇤min =
�zk

Âi hi
, p⇤min, j = �

h jzk

Âi hi
, f ⇤min = f ⇤(�zk) =

z 2
k

2Â j h j

Hence, without the reliability requirement (14.12c) (nor startup or ramp constraints), reserves play no role
and the two-stage optimization with recourse will be the same as a single-stage decision after observing
the realization of (g,d) because the actual generations p⇤j + r⇤k j =�h jzk/Âi hi in the security constrained
ED can always exactly meet the realized excess load �zk > 0. Hence the expected optimality gap of
security constrained ED is:

f ⇤scED�E f ⇤min =
1

2Âi hi

 

Â
k

wkz 2
k �E(z 2

k )

!
= 0
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14.2 Unit commitment

Two-stage robust optimization formulation of unit commitment:

1. [88, 192, 193] first formulate unit commitment as a two-stage robust optimization. This is extended
in [194] to multi-stage formulation to take into account of uncertain hourly net demand that unfolds
over 24 hours the following day.

2. Column-and-constraint generation method to solve the two-stage problem, as an improvement over
Benders decomposition (to deal with binary variables), are developed in [88, 151].

14.3 Uncertain AC optimal power flow

14.4 Problems

Chapter 14.1

Exercise 14.1. Consider the two-stage economic dispatch problem (14.13) and the LMP l ⇤k defined in
(14.14) for scenarios k.

1. Show that a primal-dual feasible (x⇤,x ⇤) is primal-dual optimal for (14.13) if and only if (x⇤,x ⇤)
satisfies (14.15)(14.16).

2. Prove Theorem 14.1.

(a) Show that wk MSk =
�
k+⇤

k
�TPmax�

�
k�⇤k

�TPmin.

(b) Suppose (x⇤,x ⇤) is primal-dual feasible for (14.13) and satisfies the complementary slackness
conditions (14.16c)(14.16d) for the coupling constraints. Show that (x⇤,x ⇤) is primal-dual op-
timal for (14.13) if and only if individual (x⇤j ,x ⇤j ) are primal-dual optimal for units j’s problem
(14.17) for all j.

Exercise 14.2. Derive (14.19) when all generators have a common and finite capacity 0 < pmax < •.

Exercise 14.3.



Part III

Unbalanced three-phase networks
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Chapter 15

Component models, I: devices

Single-phase models are a good approximation of the reality for many transmission network applications
where lines are symmetric and loads are balanced. In that case, a similarity transformation produces three
networks in a sequence coordinate, called zero, positive, and negative-sequence networks, that are de-
coupled. Each network can be analyzed using a single-phase model studied in previous chapters. These
sequence networks are coupled when lines are not transposed or equally spaced, e.g., as in distribution
systems, or when loads are unbalanced or nonlinear, e.g., AC furnaces, high-speed trains, power electron-
ics, or single or two-phase laterals in distribution networks. In that case single-phase analysis can produce
incorrect power flow solutions. In this and next chapters we extend single-phase models to unbalanced
three-phase models.

We first provide in Chapter 15.1 an overview of models for three-phase devices, lines and transformers,
and how to use these component models to compose an overall network model. We summarize in Chap-
ter 15.2 mathematical properties that underly the behavior of three-phase systems. Finally we derive in
Chapter 15.3 the models of three-phase voltage sources, current sources, power sources, and impedances
in Y and D configurations. In Chapter 16 we derive models for three-phase lines and transformers. We will
use these component models in Chapters 17 and 18 to construct network models and study unbalanced
three-phase analysis.

15.1 Overview

Figure 15.1 shows a simple example of a three-phase system with three components, two devices con-
nected by a line. For example the single-terminal device on the left can model a three-phase generator
and the other single-terminal device can be a three-phase load. Each terminal has three wires (or ports or
conductors) indexed by its phases a,b,c, and possibly a neutral wire indexed by n. Internally, it can be in Y
or D configuration, and the Y configuration may have a neutral wire that may be grounded. A three-phase
line has two terminals, each terminal with three or four wires, and it connects two single-terminal devices,
one at each end of the line. The line may model a transmission or distribution line or a transformer. The
distribution line can be underground or overhead with a neutral wire that may be grounded in regular
spacing along the line.

643
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three-phase 
source

three-phase 
load

a’
b’
c’

n’

a
b
c

n

Figure 15.1: A simple model of a three-phase system consisting of a source connected through a line to a
load.

The basic idea in modeling a three-phase component is to explicitly separate its model into an internal
model that specifies the characteristics of the constituent single-phase components in terms of internal
variables, and a conversion rule that maps its internal variables to its terminal variables. The internal
model depends only on the type of components (non-ideal voltage sources, ZIP loads, or different single-
phase transformer models) regardless of their configurations. The conversion rule depends only on their
configurations regardless of the type of components. They determines an external model which is a relation
between the terminal variables, obtained by eliminating the internal variables from the set of equations
describing the internal model and the conversion rule. We next describe this procedure in detail.

15.1.1 Internal and terminal variables

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n’

n

a

b

c

In'= I n
V n'

(a) Y configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) D configuration

Figure 15.2: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal variables of a generic single-terminal device are shown in Figure 15.2 and defined as
follows:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3, (V n, In,sn) 2 C
3:
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line-to-neutral voltages, currents, and power across the single-phase devices in Y configuration, as
well as the voltage, current, and power across the neutral impedance zn, respectively. By definition
san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage V n, with respect
to a common reference point, is generally nonzero. A Y -configured device may or may not have a
neutral line which may or may not be grounded and the grounding impedance zn may or may not
be zero. When present, the current on the neutral line is denoted by In in the direction coming out
of the device. The Kirchhoff current law dictates that In = Âf Ifn. The internal power across the

neutral impedance is sn :=
⇣

V n�V n0
⌘

In where In denotes the complex conjugate of In. The term

V nIY , in contrast, is the vector power delivered across the neutral and the common reference point
(e.g., the ground).

• V D :=
�
V ab,V bc,V ca� 2 C

3, ID :=
�
Iab, Ibc, Ica� 2 C

3, sD :=
�
sab,sbc,sca� 2 C

3 : line-to-line volt-
ages, currents, and power across the single-phase devices respectively in D configuration. By defi-
nition sab := V ab �Iab�H is the power across the phase-a device, etc.

Note that the direction of the internal power san or sab across a single-phase device is defined in the
direction of the current across the device. The neutral line, when present, is often assumed grounded, i.e.,
V n0 = 0, and the voltage reference point is the ground. In this case sn = V nInH.

The terminal variables of the single-terminal device in Figure 15.2 are defined as follows:

• V :=
�
V a,V b,V c� 2 C

3, I :=
�
Ia, Ib, Ic� 2 C

3, s :=
�
sa,sb,sc� 2 C

3,
⇣

V n0 , In0 ,sn0
⌘
2 C

3: terminal
voltages, currents, and power respectively. The terminal voltage V is defined with respect to an
arbitrary but common reference point, e.g., the ground. The terminal current I is defined in the
direction coming out of the device, i.e., I is defined to be the current injection from the device to the
rest of the network when it is connected to a bus bar, regardless of whether it generates or consumes
power. By definition sa := V a (Ia)H is the power across the terminal a and the common reference
point. When there is a neutral wire its terminal voltage (with respect to the common reference point),
current and power are denoted by

⇣
V n0 , In0 ,sn0

⌘
with In0 = In and sn0 := V n0In0H = V n0InH.

The internal and external variables of a three-phase device are summarized in Table 15.1.

Voltage Current Power Neutral line
Internal variable VY/D IY/D sY/D (V n, In,sn)

External variable V I s
⇣

V n0 , In0 ,sn0
⌘

Table 15.1: Internal and external variables of single-terminal three-phase devices. The notation xY/D is a
shorthand for the pair (xY ,xD).
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15.1.2 Three-phase device models

An internal model of a three-phase device is a relation between the internal variables
�
VY , IY ,sY� or

between
�
V D, ID,sD�. It describes the behavior of the single-phase devices, and does not depend on their

Y or D configuration nor the absence or presence of a neutral line. For example the internal model of an
ideal voltage source specified by its internal voltage EY/D 2 C

3 is

VY/D = EY/D, sY/D = diag
✓

EY/D
⇣

IY/D
⌘H◆

where the notation xY/D is a shorthand for the pair (xY ,xD). The internal model of an impedance specified
by a complex matrix zY/D 2 C

3⇥3 is

VY/D = zY/D IY/D, sY/D = diag
✓

VY/D
⇣

IY/D
⌘H◆

Denote the internal model of a general three-phase device by

f int
⇣

VY/D
, IY/D

⌘
= 0, sY/D = diag

⇣
VY/DIY/DH

⌘
(15.1)

The external model of a device is the relation between its terminal variables (V, I,s) and possibly⇣
V n0 , In0 ,sn0

⌘
. It describes the externally observable behavior of the device and depends on both the inter-

nal model of the single-phase devices and their configuration. How the Y or D configuration determines
its external model is described by conversion rules that map internal variables to terminal variables. While
the internal model depends only on the type of single-phase devices, the conversion rules depend only on
the configuration, but not on the device type. This will be explained in detailed in Chapter 15.3. Denote
the external model by

f ext(V, I) = 0, s = diag
⇣

V IH
⌘

(15.2)

The importance of the external model is that devices interact over a network only through their terminal
variables. The external model of each three-phase device imposes local constraints on its own terminal
variables while network equations, to be studied in Chapters 17 and 18, impose global constraints on the
terminal variables across devices.

Though not explicit, the functions in (15.1) and (15.2) may be augmented with the internal and terminal
variables (V n, In,sn) and

⇣
V n0 , In0 ,sn0

⌘
respectively associated with the neutral in a Y configuration. The

functions f int and f ext are linear for voltage sources, current sources and impedances, but quadratic for
power sources; see Chapter 15.3.

A three-phase device can therefore be modeled in two equivalent ways:

1. An internal model (15.1) that describes the relation between its internal variables
⇣

VY/D, IY/D,sY/D
⌘

and the conversion rules, (15.8) (15.9) (15.10) below, that map internal variables to external vari-
ables.
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2. An external model (15.2) that describes the relation between its terminal variables. The external
model is obtained by applying the conversion rules to the internal model (15.1) to eliminate the
internal variables.

The first model is useful when the application under study needs to determine or optimize some of the
internal variables such as the power sY/D

j generated or consumed by each of the single-phase devices
connected at a bus j. Otherwise the external model (15.2) can be used if the application involves only the
terminal variables.

Remark 15.1. One should be careful with the direction in which currents and powers are defined when
relating internal and external powers (see Chapter15.3). For instance V an is the voltage drop between
terminal a and the neutral n and Ian is the current from a to n. The power san is therefore the power
delivered to the device in the direction of the current Ian. If the device models a generator then the power
it generates is �san = V an (�Ian)H.

15.1.3 Three-phase line and transformer models

Let the terminals of a three-phase line or transformer be indexed by j and k. Let Vj :=
⇣

V a
j ,V b

j ,V c
j

⌘
2

C
3 and Vk :=

�
V a

k ,V b
k ,V c

k
�
2 C

3 denote the voltages at terminals j and k respectively with respect to
an arbitrary but common reference point. Let I jk :=

⇣
Ia

jk, I
b
jk, I

c
jk

⌘
2 C

3 denote the sending-end current
from terminal j to terminal k along the line or transformer, and Ik j denote the sending-end current in the
opposite direction. The external behavior of a three-phase line or transformer is described by a linear
relation between

�
Vj,Vk, I jk, Ik j

�
2 C

12 of the form

g
�
Vj,Vk, I jk, Ik j

�
= 0 (15.3a)

where g is defined by 3⇥3 matrix parameters of the line ( j,k).

Let S jk :=
⇣

Sa
jk,S

b
jk,S

c
jk

⌘
2 C

3 denote the sending-end power from terminal j to terminal k along
the line or transformer, and Sk j denote the sending-end power in the opposite direction. For each phase

f = a,b,c, Sf
jk := V f

j

⇣
If

jk

⌘H
. In vector form this is

S jk := diag
⇣

VjIHjk
⌘

, Sk j := diag
⇣

VkIHk j

⌘
(15.3b)

When there is a neutral wire between terminals j and k, their voltages are V n
j and V n

k . The current in

the neutral wire is denoted by
⇣

In
jg, I

n
kg

⌘
if the neutral is grounded or

⇣
In

jk, I
n
k j

⌘
otherwise. The function g

(15.3a) includes neutral voltages and currents and is defined by 4⇥ 4 matrix parameters of the line. The
power flow equation (15.3b) is modified accordingly.

The equations (15.3) describe the end-to-end behavior of a three-phase line or transformer. We reiterate
that they depend on the three-phase devices connected to its terminals only through their external variables.
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15.1.4 Three-phase network models

A network of three-phase devices connected by three-phase lines and transformers can be composed from
the component models (15.2) and (15.3) for these components through the flow balance equations that
relate nodal current and power (s j, I j) to line currents and power

�
I jk,S jk

�
connected to the same bus bar

j:

I j = Â
k: j⇠k

I jk, 8 j (15.4a)

s j = Â
k: j⇠k

S jk, 8 j (15.4b)

Depending on the application, what information is available and what quantities are controllable, we
can model the network in two ways:

1. IV model: We can model the network using the relation f ext(V, I) = 0 in (15.2) and (15.3a) (15.4a)
between bus voltage and current vectors (V, I). This model is linear. Once nodal voltages Vj 2 C

3

and currents I j 2 C
3 are determined, nodal powers s j := diag

⇣
VjIHj

⌘
can be calculated.

2. sV model: We can model the network using the device model (15.2) and the power flow equations
(15.3b) (15.4b) between bus voltages and power injections (V,s). This model is generally nonlinear.

The linear IV model can always be used if the system contains no power sources. Otherwise either the IV
model or the sV model can be used to describe the network but, since the device model (15.2) is nonlinear,
the overall model will always be nonlinear. Network models are studied in Chapter 17 for bus injection
models and Chapter 18 for branch flow models.

In summary a complete network model consists of

1. (15.3) (15.4) + (15.1) and (15.8) (15.9) (15.10): involves the internal variables of three-phase
devices.

2. (15.3) (15.4) + (15.2): does not involve internal variables of the three-phase devices.

15.1.5 Balanced operation

If the following conditions are satisfied throughout the network:

1. all lines have symmetric geometry;

2. zero total current: ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. zero total charge: qa(t)+qb(t)+qc(t) = 0 at all times t;
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then the system is balanced and its phases are decoupled. This means that (15.2) reduces to

f ext,f (V f , If ) = 0, sf = V f IfH, f = a,b,c

and similarly for equations (15.3)(15.4). For example the line current Ia
jk in phase a depends only on

voltages
⇣

V a
j ,V a

k

⌘
in phase a, but not on voltages in other phases. This allows per-phase analysis, as we

have done in earlier chapters. These decoupling conditions can be satisfied if the terminal voltages of all
three-phase sources are balanced (i.e., they have equal magnitudes and are separated by 120� in phase),
all three-phase loads consist of identical impedances, and all three-phase lines has symmetric geometry
(e.g. through transposition). In that case the magnetic coupling across phases can be modeled by self-
impedance alone, i.e., a three-phase line behaves as if its mutual inductances and capacitances across
phases are zero and self inductances and capacitances are equal in each phase, as shown in Chapter 2.1.4.
A general formulation of per-phase analysis of a balanced network and its formal justification is provided
in Chapter 17.3. The underlying mathematical property is explained in Corollary 1.3 and Theorem 15.2.

Otherwise, self-impedance alone is not sufficient to model the coupling across phases of a line and per-
phase analysis becomes inaccurate. A unbalanced three-phase model is necessary for power flow analysis.
The overview of such a model is illustrated in Figure 15.3.

Figure 15.3: Overall network model of the system in Figure 15.1.

Before deriving in detail the internal and external models of these components we first describe some
mathematical tools that are important for our derivation.

15.2 Mathematical properties of three-phase network

In this section we collect several mathematical properties that are used in the rest of this chapter, of-
ten without explicit references. These properties underlie much of the behavior of three-phase systems.
Specifically we use the spectral properties of the conversion matrices G and GT defined in Chapter 1.2.2
to derive in Chapter 15.2.1 their pseudo inverses. The eigenvectors of G are orthogonal and can serve
as a basis of C3. In Chapter 15.2.2 we use this basis to transform voltages and currents to a sequence
coordinate in which an unbalanced network may become decoupled.
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15.2.1 Pseudo-inverses of G,GT.

The main characters of three-phase networks arise from the spectral properties of the conversion matrices
G and GT, defined in (1.11) of Chapter 1.2.2 and reproduced here:

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5 (15.5)

We have seen in Chapter 1.2.4 that these conversion matrices play an important role in relating the internal
and external behaviors of a balanced three-phase system. In such a system, positive-sequence voltages
and currents are in span(a+) and a+ is an eigenvector of G and GT. This means that the transformation
of balanced voltages and currents under G,GT reduces to a scaling of these variables by their eigenvalues
1�a and 1�a2 respectively (Corollary 1.3). The voltage and current at every point in a network can
be written as linear combinations of transformed source voltages and source currents, transformed by�
G,GT� and line admittance matrices. Therefore if the source voltages and source currents are balanced

positive-sequence sets and lines are identical and phase-decoupled, then the transformed voltages and
currents remain in span(a+) and hence are balanced positive-sequence sets. This is the key property
that enables balanced sources to induce balanced voltages and currents throughout a balanced network,
allowing per-phase analysis of three-phase systems. A formal statement and proof of this property for
general three-phase networks is provided in Chapter 17.3.

For unbalanced systems where voltages and currents are not necessarily in span(a+), Corollary 1.3 is
not applicable and we need the concept of pseudo inverses of G,GT in order to convert between terminal
variables and line-to-line variables internal to a D configuration. Even though G and GT are not invertible,
their pseudo inverses G† and GT† respectively always exist. The pseudo inverse M† of a matrix M 2 C

n⇥n

maps the null space of MH to zero. The orthogonal complement of the null space of MH is the range space
of M. M† restricted to the range space acts like an inverse of M in that it maps each vector v in the range
space of M to the unique vector u := M†v in the range space of MH. The vector u is the one in C

n with the
minimum norm such that Mu = v. See Appendix 20.1.7 for more properties of pseudo-inverse. The facts
relevant to us is summarized in the following lemma (from Theorem 20.13, Theorem 20.19 and Remark
20.2.)

Lemma 15.1. Let M 2 C
n⇥n be a normal matrix, i.e., MMH = MHM.

1. Unitary diagonalization. There exists a unitary matrix U 2 C
n⇥n and a diagonal matrix L 2 C

n⇥n

with

M = ULUH =
n

Â
i=1

liuiuHi

where

(a) L =diag(l1, . . . ,ln) consists of the eigenvalues of A;
(b) the columns of U are the associated eigenvectors of A.

2. Pseudo inverse. The pseudo-inverse of M is given by M† =UL†UH where L† := diag
�
l�1

1 , . . . ,l�1
n
�

with l�1
j := 0 if l j = 0.
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3. Consider Mx = b. A solution x exists if and only if b is orthogonal to null
�
MH
�

in which case

x = M† b + w, w 2 null(M)

Moreover M†b is the unique solution to Mx = y with the minimum Euclidean norm kxk2 = kM†bk2+
kwk2, w 2 null(M).

Theorem 1.2 shows that G and GT are normal matrices and their spectral decompositions are

G = FLF , GT = FLF (15.6a)

where L is a diagonal matrix and F is a unitary matrix defined in (1.17), reproduced here:

L :=

2

4
0

1�a
1�a2

3

5 , F :=
1p
3

⇥
1 a+ a�

⇤
:=

1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 (15.6b)

with a := e�i2p/3 and a+ and a� being the standard positive and negative sequence vectors respectively:

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5

Here F is the complex conjugate of F componentwise. Since F is symmetric (Theorem 1.2), Lemma 15.1
implies that the pseudo inverses of G,GT are

G† = FL†F , GT† = FL†F (15.6c)

where L† := diag
�
0,(1�a)�1,(1�a2)�1�. This yields the following simple expressions for these

pseudo inverses. The proof of the theorem is left as Exercise 15.1.

Theorem 15.2 (Pseudo inverses of G,GT). 1. The null spaces of G and GT are both span(1,1,1).

2. Their pseudo-inverses are

G† =
1
3

GT, GT† =
1
3

G

3. Consider Gx = b where b,x2C3. Solutions x exist if and only if 1Tb = 0, in which case the solutions
x are given by

x =
1
3

GTb + g1, g 2 C

4. Consider GTx = b where b,x 2 C
3. Solutions x exist if and only if 1Tb = 0, in which case the

solutions x are given by

x =
1
3

Gb + g1, g 2 C

5. GG† = G†G = 1
3 GGT = 1

3 GTG = I � 1
3 11T where I is the identity matrix of size 3.

Recall that GGT = GTG are complex symmetric Laplacian matrices of the graphs in Figure 1.9. This
theorem underlies much of the materials in this chapter.
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15.2.2 Similarity transformation and symmetrical components

Fortescue transformation. Since G and GT are normal matrices, they have orthonormal eigenvectors
(1,a+,a�) which are the columns of F defined in (15.6b). We can therefore use F to define a similarity
transformation (see Appendix 20.1.4 for discussions on similarity transformation). This idea is due to
Fortescue [195] and F is sometimes called a (normalized) Fortescue matrix. It simplifies the analysis of
an unbalanced three-phase system when the network has a certain symmetry, as explained in Chapter 17.4.

Consider a vector x that may represent a voltage or current. Recall that F is unitary and complex
symmetric (Theorem 1.2) and therefore its inverse is:

F�1 = FH = F =
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1T
aT
�

aT
+

3

5 (15.7)

(Note that a+ = a�, a� = a+; more properties of a are studied in Exercise 1.6). The matrix F defines
the transformation:

x = Fx̃, x̃ := F�1x = Fx

The vector x̃ is called the sequence variable of x. Its components

x̃0 :=
1p
3

1Hx, x̃+ :=
1p
3

aH

+x, x̃� :=
1p
3

aH

�x

are called the zero-sequence, positive-sequence, and negative-sequence components of x. They are also
called symmetrical components of x. We will sometimes refer to x as a phase variable to differentiate it
from the sequence variable x̃. The relation x = Fx̃ expresses the phase variable in terms of its sequence
components:

x =
1p
3

(x̃01 + x̃+a+ + x̃�a�) =
1
3

⇣⇣
1Hx
⌘

1 +
⇣

aH

+x
⌘

a+ +
⇣

aH

�x
⌘

a�
⌘

Sequence voltage, current, power. Applying this similarity transformation to phase voltage V and cur-
rent I, we obtain their sequence variables:

Ṽ = FV, Ĩ = FI,

The vector of power in the phase coordinate is s := diag
�
V IH

�
and that in the sequence coordinate is

s̃ := diag
�
Ṽ ĨH

�
. They are related through the outer product of voltage and current in their respective

coordinates according to:

s̃ := diag
⇣

Ṽ ĨH
⌘

= diag
⇣

FV IHFH
⌘

= diag
⇣

FV IHF
⌘

s := diag
⇣

V IH
⌘

= diag
⇣

FṼ ĨHFH

⌘
= diag

⇣
FṼ ĨHF

⌘



Draft: PSA December 13, 2024 653

The total powers 1Ts̃ = 1Ts however are equal in both coordinates:

1Ts̃ = ĨHṼ =
⇣

IHFH
⌘�

FV
�

= IHV = 1Ts

since FHF = FF = I. This is sometimes referred to as power invariance property of the similarity trans-
formation F . In Chapter 17.4 we will apply sequence variables to the external models of Chapter 15.3 to
define sequence networks.

In Definition 1.1, we call x a balanced vector if its zero-sequence component x̃0 = 0 and exactly one
of x̃+ and x̃� is nonzero. In particular a balanced positive-sequence vector is in span(a+). To simplify
exposition in this chapter it is convenient to generalize the definition of balanced vector to include a zero-
sequence component.

Definition 15.1 (Generalized balanced vector). A vector x̂ := (x̂1, x̂2, x̂3) 2 C
3 is called a generalized

balanced vector if x̂ = x+ g1, for some g 2 C, such that x is balanced according to Definition 1.1.

Hence a generalized balanced vector x̂ may contain a nontrivial zero-sequence component x̃0 and
exactly one of x̃+ and x̃�. We will often refer to a generalized balanced vector x̂ simply as balanced if
there is no risk of confusion or if the differentiation is not important, even if g 6= 0. The key property
Corollary 1.3 for balanced networks holds for generalized balanced vectors, i.e., G(x+ g1) = (1�a)x
and GT (x+ g1) = (1�a2)x if x is a balanced positive-sequence vector.

Park transformation. Besides Foretescue transformation F , several other similarity transformations
have been proposed that have different advantages and disadvantages for steady-state fault analysis; see
[196] that explains their relation. Park’s transformation [197] is applicable not only to steady-state voltage
and current phasors, but also to instantaneous voltages, currents, and flux linkages. It is originally proposed
for analyzing synchronous machines and is defined by the following real orthonormal matrix (which is the
normalized version of Park’s original matrix; we follow [1]):

P :=
r

2
3

2

64

1p
2

cosq sinq
1p
2

cos(q �120�) sin(q �120�)
1p
2

cos(q +120�) sin(q +120�)

3

75

It can be verified that P is orthonormal so that P�1 = PT. The matrix can be used to transform instanta-
neous phase voltages, currents and flux linkages. For example, for instantaneous voltages we have

v =

2

4
va

vb

vc

3

5 =

r
2
3

2

64

1p
2

cosq sinq
1p
2

cos(q �120�) sin(q �120�)
1p
2

cos(q +120�) sin(q +120�)

3

75

2

4
v0

vd

vq

3

5 = Pṽ

ṽ =

2

4
v0

vd

vq

3

5 =

r
2
3

2

4
1p
2

1p
2

1p
2

cosq cos(q �120�) cos(q +120�)
sinq sin(q �120�) sin(q +120�)

3

5

2

4
va

vb

vc

3

5 = PTv

The transformed coordinate is called the 0dq, or zero-direct-quadrature, or rotor coordinate. The abc
variables are stator-based quantities and the 0dq variables are rotor-based quantities. Similarly we can
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transform abc currents and flux linkages into the 0dq coordinate with ĩ = PTi and l̃ = PTl . The model of
a synchronous machine becomes simpler in the rotor coordinate. For example the inductance matrix L in
the abc coordinate that relates currents and flux linkages, l = Li, becomes diagonal in the rotor coordinate,
i.e., l̃ = L̃ĩ for a diagonal L̃.

15.3 Three-phase device models

In this section we develop the external models (15.2)(15.3) of three-phase devices in terms of their internal
specifications. The models of three-phase devices developed in Chapter 1.2 and the phase-decoupled line
model of Chapter 2 are special cases of the models in this section.

We start by describing in Chapter 15.3.1 the conversion rules (15.8) and (15.9)(15.10) that maps in-
ternal variables

⇣
VY/D, IY/D,sY/D

⌘
to external variables (V, I,s) for devices in Y and D configurations

respectively. These conversion rules depend only on the configuration and are applicable to any types of
devices. In Chapters 15.3.3 and 15.3.4 we present the internal models of four types of devices in Y and D
configuration respectively and apply the conversion rules to these internal models to derive their external
models. In Chapter 15.3.5 we explain how to derive the Y equivalent of an ideal D-configured voltage or
current source in an unbalanced setting.

15.3.1 Conversion rules

Conversion in Y configuration. Consider a generic three-phase device in Y configuration with internal
and terminal variables defined as in Figure 15.2(a). Its terminal voltage, current, and power (V, I,s) are
related to its internal variables (VY , IY ,sY ) by:

V = VY + V n1, I = �IY , �1TI = In, s = �
⇣

sY +V nIY
⌘

(15.8)

where IY denotes the componentwise complex conjugate of the vector IY 2 C
3. The negative sign on the

current and power conversions is due to the definition of
�
IY ,sY� as internal current and power delivered

to the single-phase devices whereas (I,s) is defined as the terminal current and power injections out of the
three-phase device; see Remark 15.1. The property �1TI = In follows from the KCL at the neutral.

Here sY := diag
�
VY IYH� is the internal power delivered across the single-phase devices, or equiv-

alently, �sY is the power generated internally by these devices. The term V nIY is the vector power
delivered across the neutral and the common reference point (e.g., the ground). The terminal power
s := diag

�
V IH

�
is power delivered from the device across the phase lines and the common reference

point. Hence �sY = s+V nIY says that the power generated by the device is equal to that delivered to the
neutral impedance and the rest of the network. This follows from the conversion between voltages and
currents:

s := diag
⇣

V IH
⌘

= diag
⇣

VY ��IY�H
⌘

+ V n diag
⇣

1
�
�IY�H

⌘
= �

⇣
sY + V nIY

⌘
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The conversion rule (15.8) holds whether or not there is a neutral line and whether or not the neutral
is grounded with zero or nonzero neutral impedance zn. If there is not a neutral line then In := 0 and we
have 1TI = 1TIY = 0. If the neutral is grounded, then In is the current from the neutral to the ground and
V n = znIn =�zn1TI whether or not zn = 0. If the neutral is ungrounded but connected to the neutral of a
4-wire line, then In is the current on the neutral line leaving the neutral of the device. Its value will depend
on network interaction; see Example 17.5 and Exercise 17.7.

Remark 15.2 (Neutral voltage V n). In general the neutral voltage V n with respect to a common reference
point is nonzero whether or not there is a neutral line and whether or not the neutral is grounded. If the
neutral is grounded with zero neutral impedance and voltages are defined with respect to the ground, then
V n = 0, and hence V = VY and s = �sY . It is important to explicitly include V n in a network model
because not every device in a network may be grounded or grounded with zero neutral impedance.

Remark 15.3 (Total power). The total terminal power is

1Ts = �1TsY � V n
⇣

1T IY
⌘

The first term 1TsY on the right-hand side is the total power delivered across the single-phase devices.
The expression says that the total terminal power injection is equal to the total power �1TsY generated
internally net of power consumed by the neutral impedance.

If the neutral is ungrounded then 1T IY = 0 by KCL and 1Ts =�1TsY . If the neutral is grounded (i.e.,
V n0 = 0) through an impedance then V n

⇣
1T IY

⌘
is the power delivered to the neutral impedance. In general

the internal power delivered to the neutral impedance is sn :=
⇣

V n�V n0
⌘

In

Conversion in D configuration. Consider a generic three-phase device in D configuration with internal
and terminal variables defined as in Figure 15.2(b). We now apply Theorem 15.2 to convert between
internal and external variables in D configuration.

Voltage and current conversion. The relation between terminal voltage and current (V, I) and internal
voltage and current

�
V D, ID� is:

2

4
V ab

V bc

V ca

3

5 =

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

| {z }
G

2

4
V a

V b

V c

3

5 ,

2

4
Ia

Ib

Ic

3

5 = �

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

| {z }
GT

2

4
Iab

Ibc

Ica

3

5

or in vector form

V D = GV, I = �GT ID (15.9a)

where G,GT are given in (15.5). Given appropriate vectors V D and I, solutions V and ID to (15.9a) is
provided by Theorem 15.2.

1. Given V D, there is a solution V to (15.9a) if and only if V D is orthogonal to 1, i.e.,

V ab +V bc +V ca = 0
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which expresses Kirchhoff’s voltage law. In that case, there is a subspace of solutions V given by

V = G†V D + g 1 =
1
3

GTV D + g 1, g 2 C (15.9b)

This amounts to an arbitrary reference voltage for V . The quantity g := 1
31TV is the (scaled) zero-

sequence voltage of V . In most applications we are given a reference voltage (e.g., V0 := a+ at the
reference bus 0) which will fix the constant g for every D-configured device (different devices may
have different zero-sequence voltages g).

2. Given I, there is a solution ID to (15.9a) if and only if I is orthogonal to 1, i.e.,

Ia + Ib + Ic = 0

which expresses Kirchhoff’s current law. In that case, there is a subspace of ID that satisfy (15.9a),
given by

ID = �GT† I + b 1 = �1
3

GI + b 1, b 2 C (15.9c)

where b specifies the amount of loop flow in ID and does not affect the terminal current I since
GTID = 0. The quantity b := 1

31T ID is the (scaled) zero-sequence current of ID.

We make two remarks regarding the solutions (V, ID). First the minimum-norm solution

V :=
1
3

GTV D =
1
3

2

4
V ab�V ca

V bc�V ab

V ca�V bc

3

5

sets g = 0 such that 1TV = 3g = 0. Note that this solution does not set one of (V a,V b,V c) to zero. A
consequence of the arbitrary reference voltage is that, given the internal voltage and current

�
V D, ID� with

1TV D = 0 of a D-configured device, its terminal power vector s depends on the arbitrary constant g (similar
to the effect of the neutral voltage V n on s for a Y -configured device); see Remark 15.4. To fix V to be
the minimum-norm solution (15.9b) with g = 0, it is important to include explicitly the condition 1TV = 0
together with V D = GV , i.e., the minimum-norm solution with g = 0 is the unique solution to the system
of equations:

V D = GV, 1TV = 0, (given V D that satisfies 1TV D = 0)

Second the minimum-norm solution sets b = 0 and is

ID = �1
3

GI = �1
3

2

4
Ia� Ib

Ib� Ic

Ic� Ia

3

5

It contains zero loop flow, i.e., 1TID = 3b = 0. Analogous to the case above, a consequence of an arbitrary
b is that, given the terminal voltage and current (V, I) of a D-configured device, its internal power vector
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sD depends on the zero-sequence current b ; see Remark 15.4. To fix I to be the minimum-norm solution
(15.9c) with b = 0, it is important to include explicitly the condition 1TID = 0 together with I = �GTID,
i.e., the minimum-norm solution with b = 0 is the unique solution to the system of equations:

I = �GTID, 1TID = 0 (given I that satisfies 1TI = 0)

Power conversion. The terminal power injection from the device is s := diag
�
V IH

�
and the internal power

delivered across the single-phase devices in the direction ab, bc, ca is sD := diag
�
V DIDH�. Unlike a

Y -configured power source for which the terminal power s is related directly to the internal power sY

(see (15.8)), for a D-configured power source, the relation between s and sD is indirect through
�
V D, ID�,

through (V, I), or through
�
V, ID�. We now derive these relations using the voltage and current conversion

(15.9).

Specifically, given internal voltage and current
�
V D, ID� with 1TV D = 0, the internal power is sD :=

diag
�
V DIDH�. To express the terminal power s in terms of

�
V D, ID�, we use (15.9a) (15.9b) to write the

terminal voltage and current as

V = G†V D + g1, g 2 C, I = �GTID

where different g correspond to different reference voltages. Therefore

V IH =
⇣

G†V D + g1
⌘⇣
�GTID

⌘H
= �G†

⇣
V DIDH

⌘
G + g

⇣
1 IH
⌘

Hence the terminal power s can be expressed in terms of the internal voltage and current
�
V D, ID� as

s := diag
⇣

V IH
⌘

= �diag
⇣

G†
⇣

V DIDH
⌘

G
⌘

+ gI, 1TV D = 0 (15.10a)

where I is the componentwise complex conjugate of the terminal current I = �GTID and g 2 C is deter-
mined by a reference voltage.

Example 15.1. Given internal voltage and current
�
V D, ID� with 1TV D = 0, evaluate the terminal power

s := diag
�
V IH

�
directly using the solution (15.9b) with g := 0.

Solution. We have

I = �GTID = �

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

2

4
Iab

Ibc

Ica

3

5 = �

2

4
Iab� Ica

Ibc� Iab

Ica� Ibc

3

5

Combine with (15.9b) with g = 0 to evaluate diag
�
V IH

�
:

s := �1
3

2

64

�
V ab�V ca��Iab� Ica�H
�
V bc�V ab��Ibc� Iab�H
�
V ca�V bc��Ica� Iab�H

3

75 = �1
3

0

B@

2

4
sab + sca

sbc + sab

sca + sbc

3

5 +

2

4
V ca 0 V ab

V bc V ab 0
0 V ca V bc

3

5

2

64
Iab

Ibc

Ica

3

75

1

CA

This is (15.10a) with g = 0.
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We next relate s and sD in terms of terminal voltage and current (V, I). Given (V, I) with 1TI = 0,
s := diag

�
V IH

�
. To express sD in terms of (V, I), use (15.9a) (15.9c) to write the internal voltage and

current as

V D = GV, ID = �GT†I + b1, b 2 C

where different b correspond to different loop flows in the D configuration. Therefore

V DIDH = �G
⇣

V IH
⌘

G† + b
⇣

V D 1T
⌘

Hence the internal power sD := diag
�
V DIDH� can be expressed in terms of the terminal voltage and current

(V, I) as

sD := diag
⇣

V DIDH
⌘

= �diag
⇣

G
⇣

V IH
⌘

G†
⌘

+ bV D, 1TI = 0 (15.10b)

where V D = GV and b 2 C is determined by the amount of loop flow in ID.

Even though (15.10a) and (15.10b) contain the zero-sequence voltage and current (g,b ), the total
powers 1Ts and 1TsD do not.

Remark 15.4 (Total powers). 1. Given an internal voltage and current
�
V D, ID�, the terminal power

vector s in (15.10a) does not depend on the zero-sequence current b := 1
31TID but does depend on

the zero-sequence voltage g := 1
31TV . Since I =�GTID and hence 1TI = 0, the total terminal power

however is independent of g:

1T s = �1Tdiag
⇣

G†
⇣

V DIDH
⌘

G
⌘

This is the same as the effect of neutral voltage V n on terminal power s and its aggregate 1Ts in Y
configuration when the neutral is ungrounded so that 1TIY = 0 by KCL.

2. Analogously, from (15.10b), the internal power vector sD depends on zero-sequence current b . Since
V D = GV and hence 1TV D = 0, the total internal power however is independent of the loop flow:

1TsD = �1Tdiag
⇣

G
⇣

V IH
⌘

G†
⌘

It can be shown that 1Tdiag
�
G
�
V IH

�
G†�= 1Tdiag

�
V IH

�
(Exercise 15.6). Therefore the total internal

and terminal powers are equal, i.e., 1TsD = 1Ts.

Finally we can relate s and sD through the terminal voltage and internal current
�
V, ID�. Indeed both s

and sD can be expressed in terms of
�
V, ID� using (15.9a):

s := diag
⇣

V IH
⌘

= �diag
⇣

V IDHG
⌘

, sD := diag
⇣

V DIDH
⌘

= diag
⇣

GV IDH
⌘

(15.10c)

An important advantage of (15.10c) is that
�
V, ID� contains implicitly both the zero-sequence voltage

g := 1
31TV and the zero-sequence current b := 1

31TID. This is often a more computationally convenient
model than (15.10a) and (15.10b).

In summary:
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• Given internal voltage and current (V D, ID) with 1TV D = 0, the terminal power s as a function of
(V D, ID) is given by (15.10a).

• Given terminal voltage and current (V, I) with 1TI = 0, the internal power sD as a function of (V, I)
is given by (15.10b).

• Given terminal voltage and internal current
�
V, ID�, the terminal power s and the internal power sD

are given by (15.10c).

These expressions are used to derive the external model a constant-power source in D configuration; see
Chapter 15.3.4.

Finally, note that unlike the relation I = �GTID which expresses KCL, it is not true that s = �GTsD.
The relation between terminal power and internal power is given only indirectly by (15.10).

15.3.2 Case study: Riverside CA utility

In this subsection we present voltage and current measurements from a distribution transformer in a South-
ern California municipal utility grid. The case study makes concrete some of the concepts introduced in the
previous sections. It also illustrates how unbalanced three-phase models can be used to analyze physical
systems that are not necessarily three-phased, in this case a split-phase system modeled as a D-configured
three-phase load with one terminal grounded.

Figure 15.4 shows a typical pad-mounted split-phase distribution transformer. The transformer in
the Southern California grid supplies 8 houses in a residential area in D configuration. It is rated at 75
kVA, with 12 kV grounded-Y on the high-voltage side and single split-phase 240V/120V with grounded
neutral on the low-voltage side as shown in the figure. We measure the voltage and current phasors

𝑰𝒃

𝑰𝒂

𝑰𝒄

𝑽𝒃

𝑽𝒂

𝑽𝒄

(a) Split-phase distribution transformer












































































































(b) Equivalent circuit

Figure 15.4: Typical distribution transformer and the equivalent circuit of the Southern California system
supplying 8 houses arranged in D configuration.

V := (V a,V b,V c) and I := (Ia, Ib, Ic) respectively at the low-voltage terminals of the transformer. Terminal
b is grounded and used as the common reference point, i.e., V b := 0. Note that the terminal current
is defined here to be into the load which is in the opposite direction to what we usually use elsewhere
in this chapter, corresponding to the direction in Figure 15.4. We assume that the line loss between
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the transformer and the load (8 houses) is negligible, and hence V and I are also the terminal voltage
and terminal current respectively of the load in D configuration. We reiterate that even though we use
unbalanced three-phase concepts to model the load, they are on a single (split-)phase on the low-voltage
side of the transformer.

We illustrate in Figures 15.5 and 15.6 the behavior of the circuit using the noisy time series of (V, I)
measured from the field on March 28 Thur, 2024.

1. Voltage behavior. The solid lines in Figures 15.5(a) and 15.5(b) show the magnitude and phase
respectively of the terminal voltage V . We see from Figure 15.5(a) that the magnitudes |V a| and |V c|
are roughly 120 V but their phase angles in Figure 15.5(b) are roughly 180� apart most of the time
due to the split phase. Notice that the green solid line |V b| is zero in Figures 15.5(a) and there is no
green solid line for voltage angle on line b. Instead the red solid line \V a = 0� in Figure 15.5(b).
This is because voltage measurement va(t) in the time domain is actually the voltage drop between
terminal a and terminal b, which is grounded, and hence vb(t) := 0. This means that, in the phasor
domain \V a is arbitrary and it is set to be 0� in our calculation, i.e., \V a = 0 is the reference for all
voltage, current and power angles. Relative to the potential on the b terminal, vc(t) is approximately
a half cycle off from va(t) and \V c ⇡ �180� most of the time due to the split phase. (See also
discussion below on voltage imbalance.)

2. Current behavior. The dash lines in Figures 15.5(a) and 15.5(b) show the magnitude and phase
respectively of the terminal current I. There are three curves in each of the figures for phases a,b,c.
As discussed above the angles \If are relative to the reference \V a := 0. The magnitudes of Ia

and Ic are similar but their phases are approximately 180� apart most of the time due to the split
phase. Both the magnitudes |Ia|, |Ic| and their phases \Ia, \Ic show prominently the effect of
solar generation between roughly 8am to 5pm. In particular from Figure 15.5(b) during 9am–5pm
the power factor angles \V f �\If ⇡ �180� for both phases a and c, resulting in negative real
powers Re(sf ) = |V f ||If |cos180� during this period, i.e., real powers flow from the loads towards
the transformer on phases a and c. The magnitude of Ib is much smaller in Figure 15.5(a) and its
angle in Figure 15.5(b) fluctuates between 0� and ±180�, indicating that a relatively small amount
of line b current flows back and forth between the transformer and the loads. This means that the
current Ia on line a mostly returns as Ic on line c, and hence their angles are approximately 180�
apart as noted above.

3. Power behavior. We can construct the behavior of the terminal power s from that of V and I and
confirm that in the measurement. As noted above, between 9am–5pm, the real powers Re(sf ) on
phases a and c are negative, shown as red and blue curves respectively in Figure 15.5(c), whereas
they are positive and flow from the transformer to the loads outside this period. From Figure 15.5(d),
the reactive powers Im(sf ) are small most of the time. The green curve representing power on line
b is zero because V b := 0 by definition.

The internal (load) power sD, from (15.10b), is sD = 1
3diag

�
G
�
V IH

�
GT
�

+ b (GV ) which cannot
be computed from (V, I) because of the unknown loop flow parameter b 2 C. Even though s and
sD are generally different vectors, the total powers 1Ts and 1TsD are equal as explained in Remark
15.4. They are illustrated in 15.5(e) which are the sums of the curves in Figure 15.5(c) for the real
part and those in Figure 15.5(d) for the imaginary part.
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(a) |V f | and |If |

(b) \V a := 0, \V c and \If

(c) Terminal power Re(sf )

(d) Terminal Im(sf )

(e) Total powers 1Ts = 1TsD

Figure 15.5: Voltage, current and power behavior. (a)(b)(c)(d) Solid lines: voltages, dashed lines: currents.
Red: phase a, green: phase b, blue: phase c. (e) Brown: real (kW), grey: imaginary (kVar).
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(a) Sequence voltage magntidues |Ṽ0| (red) and |Ṽ1| (green)

(b) Neutral current |In| = |Ia + Ib + Ic|

(c) Voltage and current waveforms around midnight 12am (in phase)

(d) Voltage and current waveforms around noon 12pm (out of phase)

Figure 15.6: Sequence voltages, neutral current, voltage and current waveforms. (a) Brown: real, grey:
imaginary. (c)(d) Solid lines: voltages, dashed lines: currents. Red: phase a, green: phase b, blue: phase
c.
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4. Voltage imbalance. If we view our system as an unbalanced three phase system with grounded
terminal b then the zero-sequence voltage g := 1

3(V a +V b +V c) can be treated as a measure of
voltage imbalance. A more natural perspective is to view the split-phase system as a two-phase
system with terminal phase voltages (V a,V c) and terminal phase currents (Ia, Ic), return current Ib

and a neutral current In. We can decompose these voltages along an orthonormal basis for two-phase
systems to obtain the sequence voltages Ṽ :

Ṽ :=

Ṽ0
Ṽ1

�
:=

1p
2


1 1
1 �1

� 
V a

V c

�

Note that Ṽ0 can be viewed as a measure of voltage imbalance and is equal to 3p
2
g since V b := 0.

The magnitudes |Ṽ0| and |Ṽ1| are shown in Figures 15.6(a). Their normalized values averaged over
the measurement period t = 1, . . . ,T are:

|Ṽ0| :=
1
T

T

Â
t=1

|Ṽ0(t)|
kṼ (t)k2

= 0.0010, |Ṽ1| :=
1
T

T

Â
t=1

|Ṽ1(t)|
kṼ (t)k2

= 0.9999

5. Neutral current. From KCL we have Ia + Ib + Ic = In where In is the neutral current from terminal
b to the ground. Its magnitude |In| is shown in Figure 15.6(b). It is small most of the time com-
pared with |Ib| on line b. Its magnitude relative to those of the phase currents averaged over the
measurement period is

average relative neutral current :=
1
T

T

Â
t=1

|Ia(t)+ Ib(t)+ Ic(t)|
(|Ia(t)|+ |Ib(t)|+ |Ic(t)|)/3

= 0.1752

6. Voltage and current waveforms. Figure 15.6(c) shows the voltage (solid lines) and current (dashed
lines) waveforms around midnight where the currents and voltages are roughly in phase, indicating
that real power flows from the transformer to the loads. Figure 15.6(d) shows the voltage and current
waveforms around noon where the currents and voltages are roughly out of phase, indicating that
real power flows from the loads to the transformer.

15.3.3 Devices in Y configuration

In this subsection we first present parameters of a voltage source, current source, power source, and
impedance in Y configuration. For each device we then specify its internal model. Finally we apply
the conversion rule (15.8) to the internal model of each device to derive its external model.

Device specification. The devices we study are shown in Figure 15.7.

1. Voltage source
�
EY ,zY ,zn�. A voltage source is a single-terminal three or four-wire device. When

the configuration is Y , as shown in Figure 15.7(a), it is specified by three parameters. Its internal
voltage is fixed at EY := (Ean,Ebn,Ecn) and its series impedance matrix is zY := diag

�
zan,zbn,zcn�.

If there is a neutral wire then its impedance is a scalar zn which may or may not be zero whether



664 Draft: PSA December 13, 2024

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’

Ean

Ecn Ebn

zan

zcn zbn

(a) Voltage source

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’

yan

ybn
ycn

J an

J cn

J bn

(b) Current source

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’

σa

σbσc

(c) Power source

V aI a

V n

I n

zn

I b

I c

V b

V c

n’ I n’
V n’

zbn

zan

zcn

(d) Impedance

Figure 15.7: Three-phase devices in Y configuration. (a) A voltage source. (b) A current source. (c) A
power source. (d) An impedance. Note that the direction of JY and sY is terminal-to-neutral.
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or not the neutral is grounded. An ideal voltage source is one with zY = 0 and zn = 0. A voltage
source can serve as a Thévenin equivalent circuit of a synchronous generator for which the internal
voltage EY is typically balanced. It can also model the primary or secondary side of a transformer,
or a grid-forming inverter.

2. Current source
�
JY ,yY ,zn�. A current source is a single-terminal three or four-wire device. When

the configuration is Y , as shown in Figure 15.7(b), it is specified by three parameters. Its internal
current is fixed at JY := (Jan,Jbn,Jcn) and its shunt admittance matrix is yY := diag

�
yan,ybn,ycn�. If

there is a neutral wire then its impedance is a scalar zn which may or may not be zero whether or not
the neutral is grounded. An ideal current source is one with yY = 0 and zn = 0. A current source can
serve as a Norton equivalent circuit of a synchronous generator. It can also model a load such as an
electric vehicle charger, or a grid-following inverter.

3. Power source
�
sY ,zn�. A single-terminal three or four-wire power source in Y configuration is

shown in Figure 15.7(c) and specified by two parameters. It consumes a constant power sY :=�
san,sbn,s cn� or injects a constant power �sY . If there is a neutral wire then its impedance is

a scalar zn which may or may not be zero whether or not the neutral is grounded. An ideal power
source is one with zn = 0. A power source can model a load, a generator, or the primary or secondary
side of a transformer.

4. Impedance
�
zY ,zn�. A single-terminal three or four-wire impedance in Y configuration as shown

in Figure 15.7(d) is specified by an impedance matrix zY := diag
�
zan,zbn,zcn�. If there is a neutral

wire then its impedance is a scalar zn which may or may not be zero whether or not the neutral is
grounded. An impedance can model a load.

Note that the direction of JY and sY is defined to be terminal-to-neutral, opposite to that of the terminal
current I.

The list above only specifies the internal parameters of a Y -configured device. When it is connected
to a network, its neutral voltage V n will need to be either specified or computed in order to translate
between its internal voltage VY and external voltage V = VY +V n1 (from (15.8)) and determine voltages,
currents, and powers at other parts of the network. We will discuss in Chapter 17.2, for each device in
a typical three-phase analysis problem, what quantities are parameters that should be specified and what
are variables to be computed through network equations. An assumption that is often made, sometimes
implicitly, is:

C15.1: All neutrals are grounded either through an impedance zn or directly (zn = 0) and all voltages
are defined with respect to the ground.

This assumption is often satisfied in practice. Under this assumption, V n0 = 0 (see Figure 15.7). Moreover
the internal neutral voltage V n is not independently specified but is determined by the current through the
neutral impedance zn:

V n = zn
⇣

1TIY
⌘

= �zn
⇣

1TI
⌘

(15.11)

If the neutral is directly grounded, i.e., zn = 0, then V n = 0. Without C15.1 or for an ungrounded voltage
source, knowing the internal voltage and current

�
VY , IY� alone may not be sufficient to determine the

external voltage V . We will be explicit when we assume C15.1.
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Voltage source (EY ,zY ,zn). Internal model. Referring to Figure 15.7(a) the internal model of a voltage
source is

VY = EY + zY IY , V n�V n0 = zn
⇣

1TIY
⌘

, In = 1TIY (15.12a)

This yields an internal power sY := diag
�
VY IYH� across the non-ideal voltage source and an internal power

sn :=
⇣

V n�V n0
⌘

InH across the impedance zn on the neutral line, given by:

sY = diag
⇣

EY IYH
⌘

+ diag
⇣

zY IY IYH
⌘

=

2

4
EanIanH

EbnIbnH

EcnIcnH

3

5

| {z }
sY

ideal

+

2

64
zan |Ian|2

zbn
��Ibn
��2

zcn |Icn|2

3

75

| {z }
simp

(15.12b)

sn = zn
���1TIY

���
2

(15.12c)

External model. To derive an external model, apply the conversion rule (15.8), reproduced here:

V = VY + V n1, I = �IY , �1TI = In, s = �
⇣

sY +V nIY
⌘

to the internal model (15.12) to eliminate the internal variables (here, IY is the complex conjugate of vector
IY componentwise). This yields a relation between its terminal variables (V, I,s):

V = EY + V n1 � zY I, 1TI = �In, s = diag
⇣

EY IH
⌘

+ V nI � diag
⇣

zY IIH
⌘

(15.13a)

The model (15.13a) holds whether there is a neutral line or whether the neutral line is grounded or un-
grounded but connected to another device over a four-wire line. As discussed before, In = 0 if the neutral
is ungrounded.

Suppose assumption C15.1 holds so that V n0 = 0 and V n = �zn
⇣

1TI
⌘

. Then (15.13a) yields the
external model:

V = EY � ZY I (15.13b)

where

ZY := zY + zn 11T =

2

4
zan + zn zn zn

zn zbn + zn zn

zn zn zcn + zn

3

5

This has the same form as that of a single-phase voltage source discussed in Chapter ??. The neutral
impedance zn couples the phases. Substituting (15.13b) into s = diag

�
V IH

�
expresses the terminal power

s as a quadratic function of V :

s = diag
⇣

V
�
EY �V

�H �
(ZY )�1�H

⌘
(15.13c)
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assuming ZY is invertible. The inverse of ZY is calculated in Exercise 15.7.

The linear I-V relation and the nonlinear V -s or I-s relation in (15.2) takes the form of (15.13) for a
voltage source.

If zn = 0 then ZY = zY . From (15.13b) the phases are decoupled, i.e., V a = Ean� zanIa, whether or not
the current I and the voltage V are balanced. For an ideal voltage source where both zn = 0 and zY = 0,
the internal and external models (15.12) (15.13) here reduce to, under assumption C15.1,

V = V = EY , s = sY = diag(EY IH)

Example 15.2. Unlike for an ideal voltage source, sY in (15.12b) includes both the power sY
ideal :=

diag
�
EY IYH� across the ideal voltage source and the power simp := diag

�
zY IY IYH� delivered to the se-

ries impedance zY . Hence the net power injection is

s = �
⇣

sY
ideal + simp + V nIY

⌘

Summing across phases a,b,c shows that the total power generated is equal to the total power injection
and total power consumed by the internal impedances of the voltage source:

�1TsY
ideal = 1Ts + 1Tsimp + sn

where sn given by (15.12c) is the power delivered to the impedance zn on the neutral wire.

Current source (JY ,yY ,zn). Internal model. Referring to Figure 15.7(b) the internal model of a current
source is given by

IY = JY + yYVY , V n�V n0 = zn
⇣

1TIY
⌘

, In = 1TIY (15.14a)

This yields an internal power sY := diag
�
VY IYH� across the non-ideal current source and an internal power

sn := V nInH across the impedance zn on the neutral line, given by (Exercise 15.8):

sY = diag
⇣

VY JYH
⌘

+ diag
⇣

VYVYH yYH
⌘

=

2

4
V anJanH

V bnJbnH

V cnJcnH

3

5

| {z }
sY

ideal

+

2

64
yanH |V an|2

ybnH
��V bn

��2

ycnH |V cn|2

3

75

| {z }
sadm

(15.14b)

sn := V nInH = zn
���1TJY + diag

�
yY�TVY

���
2

(15.14c)

External model. The derivation here is analogous to that for a voltage source above. Applying the conver-
sion rule (15.8) to the internal model (15.14a) yields an external model of a current source that relates its
terminal variables:

I = �JY � yY (V �V n1) , 1TI = �In, s = �diag
⇣

V JYH
⌘
� diag

⇣
V (V �V n1)H yYH

⌘
(15.15a)
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As discussed earlier, In = 0 if the neutral is ungrounded.

Suppose assumption C15.1 holds so that V n =�zn
⇣

1TI
⌘

. Then (15.15a) yields (Exercise 15.9):

V = �
�
zY JY + ZY I

�
, I = �A

�
JY + yY V

�
(15.15b)

where, assuming ZY is invertible,

zY :=
�
yY��1

, ZY := zY + zn 11T, A := I� zn

1+ zn
⇣

1TyY 1
⌘ yY 11T

and I denotes the identity matrix of size 3. The effective impedance matrix ZY is the same matrix in
(15.13b) for a voltage source. Substituting (15.15b) into s = diag

�
V IH

�
expresses the terminal power s as

a quadratic function of V :

s = �diag
⇣

V
⇣

JYH + VHyYH
⌘

AH

⌘
(15.15c)

The linear I-V relation and the nonlinear V -s or I-s relation in (15.2) takes the form of (15.15) for a current
source.

Analogous to a voltage source, the phases are decoupled if zn = 0. An ideal current source with yY = 0
and zn = 0 has I =�IY =�JY and s =�diag

�
V JYH�.

Power source
�
sY ,zn�. Internal model: By definition the power delivered to a constant-power source

and the power delivered to the impedance zn on the neutral line are respectively (Figure 15.7(c))

sY := diag
⇣

VY IYH
⌘

= sY , sn :=
⇣

V n�V n0
⌘

InH = zn
���1TIY

���
2

(15.16)

External model: Apply the conversion rule to the internal model (15.16) yields an external model that
relates the terminal variables:

sY = diag
⇣

IYH
⌘

VY = �diag
⇣

IH
⌘

(V �V n1) , s = �sY + V nI, 1TI = �In (15.17a)

Suppose assumption C15.1 holds so that V n0 = 0 and V n =�zn
⇣

1TI
⌘

. We can then rewrite the vector

V nIY as

V nI = �zn
⇣

1TI
⌘

I = �zn
⇣

IIT
⌘

1

This yields a quadratic relation between V and I (Exercise 15.10):

V = �
�
diag I

��1 sY � zn
⇣

11T
⌘

I (15.17b)

and between s and I:

s = �
⇣

sY + zn
⇣

IIT
⌘

1
⌘

(15.17c)
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It is generally not possible to solve (15.17b) for I in closed form and hence there is generally not an explicit
V -s model for a power source. From (15.17c) the total power �1TsY generated by the constant-power
source is equal to the total power injection and the power delivered to the impedance on the neutral line:

�1TsY = 1Ts + zn
⇣

1TIY
⌘

| {z }
�V n

⇣
1TIY

⌘

| {z }
�InH

= 1Ts + sn

Clearly s =�sY if zn = 0.

Impedance
�
zY ,zn�. Internal model: Referring to Figure 15.7(d) the internal model of an impedance is

VY = zY IY , sY := VY IYH, sn :=
⇣

V n�V n0
⌘

InH = zn
���1TIY

���
2

(15.18)

External model: Application of the conversion rule (15.8) to the internal model (15.18) yields an external
model that relates the terminal variables:

V = �zY I + V n1, �1TI = In (15.19a)

If assumption C15.1 holds so that V n0 = 0 and V n =�zn
⇣

1TI
⌘

, then the external model reduces to:

V = �ZY I (15.19b)

where ZY := zY + zn 11T is the same effective impedance ZY in (15.13b) for a voltage source. Substituting
(15.19b) into s = diag

�
V IH

�
expresses s as a quadratic function of V :

s = �diag
⇣

VVH
�
(ZY )�1�H

⌘
(15.19c)

assuming ZY is invertible. If zn = 0 then ZY = zY is diagonal.

Balanced impedance. When zn 6= 0 but zY is balanced, i.e., zan = zbn = zcn, then ZY = zan
I+ zn 11T and

its off-diagonal entries will couple voltages and currents in different phases. One can perform a similarity
transformation using the unitary matrix F to what is called the sequence coordinate as explained in Chapter
15.2.2. In the sequence coordinate, the transformed impedance Z̃Y , called the sequence impedance, is
diagonal:

Z̃Y =

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

This leads to decoupled voltages and currents in the sequence coordinate called symmetrical components.
The decoupled relation between the sequence voltages, currents and impedances can be interpreted as
defining separate sequence networks that can be analyzed independently. This is explained in Chapter
17.4.1.
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Remark 15.5 (Phase decoupling). The matrix ZY := zY + zn11T in (15.13) (15.15) (15.19) is called the
phase impedance matrix or the impedance matrix.

1. If zn = 0 in these four devices, i.e., the neutrals are directly grounded, then the phases are decoupled.
This is because, for a power source, s = �sY , and for the other devices, the impedance matrix
ZY = zY becomes diagonal and hence V = zY I.

2. If zn 6= 0 but the currents are balanced, i.e., Ia + Ib + Ic = 0 then In = 0 and V ng = 0. In this case the
phases are also decoupled. If the voltage V is balanced and zan = zan = zcn then In will indeed be
zero and the phases will be decoupled (Exercise 15.11).

3. In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has
nonzero off-diagonal entries that couple voltages and currents in different phases. As mentioned
above, if zan = zan = zcn then the sequence impedance Z̃Y is diagonal and hence decoupled in the
sequence domain (Chapter 17.4).

15.3.4 Devices in D configuration

In this subsection we first present parameters of the same single-phase devices studied in Chapter 15.3.3,
but arranged in D rather than Y configuration. For each device we then specify its internal model. Finally
we apply the conversion rule (15.9) (15.10) to the internal model of each device to derive its external
models.

Internal specification. The three-phase devices we study are shown in Figure 15.8.

1. Voltage source
�
ED,zD�. A three-wire voltage source in D configuration as shown in Figure 15.8(a)

is specified by its internal line-to-line voltage ED := (Eab,Ebc,Eca) and series impedance matrix
zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0. An ideal voltage source is one with

zD = 0.

2. Current source
�
JD,yD�. A three-wire current source in D configuration as shown in Figure 15.8(b)

is specified by its internal line-to-line current JD := (Jab,Jbc,Jca) and shunt admittance matrix yD :=
diag

�
yab,ybc,yca�. An ideal current source is one with yD = 0.

3. Power source sD. A three-wire power source in D configuration as shown in Figure 15.8(c) con-
sumes a constant power sD :=

�
sab,sbc,s ca� or injects a constant power �sD.

4. Impedance zD. A three-wire impedance in D configuration as shown in Figure 15.8(d) is specified
by an impedance matrix zD := diag

�
zab,zbc,zca�. We assume that zab + zbc + zca 6= 0.
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V aI a

I b

I c

V b

V c

E ab

E ca

E bc

zab

zbc
zca

(a) Voltage source

V aI a

I b

I c

V b

V c

J ab

J bc

J ca

yab

ybc

yca

(b) Current source

V aI a

I b

I c

V b

V c

σabσca

σbc

(c) Power source

V aI a

I b

I c

V b

V c

zab

zbc

zca

(d) Impedance

Figure 15.8: Three-phase devices in D configuration. (a) A voltage source. (b) A current source. (c) A
power load. (d) An impedance. Note the direction of JD and sD.
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Voltage source
�
ED,zD�. Internal model. Referring to Figure 15.8(a) the internal model of a voltage

source in D configuration is

V D = ED + zD ID, sD := diag
⇣

V DIDH
⌘

= diag
⇣

EDIDH
⌘

+ diag
⇣

zD IDIDH
⌘

(15.20)

External model. The terminal voltage and current (V, I) are related to the internal voltage and current�
V D, ID� according to the conversion rule (15.9a) for D-configured devices, reproduced here

V D = GV, I = �GT ID

We will derive two equivalent relations between the terminal (V, I). Given V , the first relation uniquely
determines I in terms of V . Given I, the second relation however determines V in terms of I only up
to an arbitrary zero-sequence voltage g . The asymmetry between these two cases is because V contains
more information (g := 1

31TV ) than I and uniquely determines the internal voltage V D and hence ID (from
(15.20)) and I. In contrast I contains no information about the zero-sequence current b := 1

31TID and
hence does not uniquely determine the internal current ID.

For the first relation that maps V to I, define yD :=
�
zD��1 and write from (15.20)

ID = yD
⇣

V D�ED
⌘

Multiplying both sides by �GT and substituting the conversion rule we have

I =
⇣

GTyD
⌘

ED � Y DV (15.21a)

where YD is a complex symmetric Laplacian matrix of the graph in Figure 1.9:1

Y D := GTyD G =

2

4
yab + yca �yab �yca

�yab ybc + yab �ybc

�yca �ybc yca + ybc

3

5

Note that the terminal current I given by (15.21a) satisfies 1TI = 0.

For the second relation that maps I to V , substitute the conversion rule into the internal model (15.20)
to eliminate the internal variable

�
V D, ID�:

GV = ED + zD
⇣
�GT† I +b1

⌘

where we have used ID = �GT† I +b1 from (15.9c) and this is valid if and only if we require

1TI = 0

1Note however that yD is a complex matrix and therefore Y D is complex symmetric, not Hermitian. Therefore span(1) is a
subset of the null space of Y D. For a sufficient condition for the null space of Y D to be span(1), see Exercise 4.2.
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Here b 2 C is not arbitrary but depends on ED and I.2 Multiplying both sides by 1T gives

0 = 1TGV = 1TED � 1TzD
|{z}

z̃DT

GT†I + b
⇣

1TzD1
⌘

| {z }
z

Define the column vector z̃D := zD1 =
�
zab,zbc,zca� and the scalar z := 1TzD1 = zab + zbc + zca. Then

b =
1
z

⇣
z̃DTGT†I � 1TED

⌘

Note that 1TED is the zero-sequence internal voltage and z̃D is the vector of internal impedances. Both are
zero, and hence b = 0, if the internal voltage ED and impedances z̃D are balanced. Therefore

GV = ED � zD GT† I +
1
z

zD1
⇣

z̃DTGT†I � 1TED
⌘

=

✓
I� 1

z
z̃D 1T

◆
ED � zD

✓
I� 1

z
1 z̃DT

◆
GT†I

or

V = ĜED � ZDI + g1, 1TI = 0 (15.21b)

where (using Theorem 15.2)

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

and g is fixed by a given reference voltage. This is similar to (15.13b) for the Y -configured voltage source.

The two external models (15.21a) and (15.21b) are equivalent in the following sense.

Theorem 15.3. Given the conversion rules V D = GV and I = �GTID between the terminal and internal
voltages and currents, the following are equivalent:

1. Internal model: V D = ED + zDID and 1T
�
ED + zDID�= 0.

2. External model: I =
�
GTyD�ED�Y DV where Y D := GTyDG.

3. External model: V = ĜED�ZDI + g1, 1TI = 0 for some g 2 C where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

2To gain intuition, imagine the voltage source is connected to a constant-voltage device that fixes the terminal voltage V of
the voltage source, and hence its internal voltage V D = GV . Therefore, on each phase line, say, line ab, we have V ab�Eab =
zabIab. Hence ID is uniquely determined which fixes both I and b := 1

3 1TID.
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The proof of the theorem is similar to that of Theorem 15.4 and left as Exercise 15.14.

Hence given V , I is uniquely determined by (15.21a) and given I, V is determined by (15.21b) up to a
reference voltage specified by g . These equations allow us to relate terminal power injection s to V or to I
as:

s = diag
⇣

V IH
⌘

= diag
✓

V
⇣

GTyDED � Y DV
⌘H◆

(15.21c)

s = diag
⇣

V IH
⌘

= diag
⇣⇣

ĜED � ZDI
⌘

IH
⌘

+ gI (15.21d)

For an ideal voltage source where zD = 0 we have Ĝ := 1
3GT and ZD = 0. The external model is,

provided 1TED = 0,

V =
1
3

GTED + g1, 1TI = 0, s =
1
3

diag
⇣

GTEDIH
⌘

+ gI

where g is fixed by a reference voltage.

Current source
�
JD,yD�. Internal model. Referring to Figure 15.8(b) the internal model of a current

source in D configuration is

ID = JD + yDV D, sD := diag
⇣

V DIDH
⌘

= diag
⇣

V DJDH
⌘

+ diag
⇣

V DV DHyDH
⌘

(15.22)

External model. Multiplying both sides of ID = JD +yDV D by�GT and substituting the general conversion
rule

V D = GV, I = �GT ID

for D-configured devices, we have

I = �
⇣

GTJD + Y DV
⌘

(15.23a)

where Y D := GTyD G is the matrix in (15.21a). The power injection is

s = diag
⇣

V IH
⌘

= �diag
⇣

V JDHG + VVHY DH
⌘

(15.23b)

For an ideal current source where yD = 0 we have I =�GTJD and s =�diag(V JDHG).

Remark 15.6 (Voltage and current sources). A D-configured current source specifies its internal current
JD which then uniquely determines its terminal current I through the conversion rule (15.9a), as well as its
zero-sequence current b := 1

31TJD, whereas a voltage source specifies its internal voltage ED which does
not uniquely determine its terminal voltage V . This is why the external voltage source model (15.21b)
determines V only up to an arbitrary zero-sequence voltage g and requires 1TI = 0 while both (15.21a)
and (15.23a) are valid without any extra condition as their derivation does not involve pseudo-inverse of
conversion matrices.
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Power source sD. Internal model. Referring to Figure 15.8(c) the internal model of a constant-power
source is

sD := diag
⇣

V D IDH
⌘

= sD (15.24)

This specifies the powers (sab,sbc,s ca) delivered to these single-phase devices.

External model. Applying the power conversion rule (15.10b) to the internal model sD = sD yields an
external model of a constant-power source that relates its terminal voltage and current (V, I):

sD = �1
3

diag
⇣

G
⇣

V IH
⌘

GT

⌘
+ bGV, 1TI = 0 (15.25a)

where the first equality follows because
�
GT†�H = 1

3GH = 1
3GT from Theorem 15.2. Here b represents the

amount of loop flow in the internal current ID. All three quantities (V, I,b ) are variables to be determined
by the interaction with other devices through the network; see Chapter 17.1. Here (V, I) are terminal
variables but, unlike the external models of other devices, b is a quantity internal to the D configuration.

An alternative model of a constant-power source is (15.10c) that relates its terminal voltage V with its
internal current ID:

sD := diag
⇣

V DIDH
⌘

= diag
⇣

GV IDH
⌘

(15.25b)

An advantage of this model is that it contains implicitly both the zero-sequence terminal voltage g := 1
31TV

and zero-sequence internal current b := 1
31TID.

We now study the connection between the two equivalent models (15.25a) and (15.25b) of a constant-
power source that relate (V, I) and

�
V, ID� respectively. Expand the first equation in (15.25a) to get

sD = �1
3

2

64

�
Ia� Ib�H �V a�V b�
�
Ib� Ic�H �V b�V c�

(Ic� Ia)H (V c�V a)

3

75 + b

2

4
V a�V b

V b�V c

V c�V a

3

5 =

✓
diag

✓⇣
�GT†I

⌘H
◆

+ b I
◆

| {z }
diag(IDH)

(GV )

which is equivalent to (15.25b). Given a terminal voltage V , the currents I and ID can be uniquely deter-
mined in these models (15.25a) and (15.25b) respectively. Given a current I or ID in (15.25a) and (15.25b)
respectively, however, V cannot be uniquely determined.

Specifically, given a terminal voltage V , the model (15.25b) provides three linear equations in three
unknowns ID, which determines ID uniquely. Both the terminal current I and b are then determined
uniquely. Conversely, given ID (and hence b ), (15.25b) provides three linear equations in three unknowns
V but only

�
V a�V b,V b�V c,V c�V a�, i.e., V D = GV , can be uniquely determined. The terminal voltage

V (or equivalently, its zero-sequence voltage g) needs to be determined through network equations or from
a reference voltage.

Similarly for the model (15.25b), given a terminal voltage V , (15.25a) provides four linear equations
in four unknowns I := (Ia, Ib, Ic) and b which determine (I,b ) uniquely (Exercise 15.15). Intuitively,
the given terminal voltage V fixes the internal voltage V D which then fixes the internal current ID since
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diag
�
V DIDH� = sD. This then produces a unique terminal current I and the zero-sequence current b :=

1
31TID. On the other hand, consider the situation where the terminal current I with 1TI = 0 is given, instead
of ID as for the model (15.25b) above. In this case (15.25a) also does not uniquely determine the terminal
voltage V because (15.25a) provides three quadratic equations in four unknowns (V,b ), quadratic due to
the term bGV . Moreover since I contains less information than ID, there is ambiguity in b in addition to g;
see Exercise 15.16. As for the model (15.25b) the terminal voltage V (hence g) and b will be determined
through network equations or from a reference voltage.

For a balanced system however the loop flow b and the internal voltages V D are uniquely determined
by sD and a terminal current I, as the next example illustrates.

Example 15.3 (Balanced systems). Consider a constant-power source with a given sD whose external
behavior is described by (15.25a). Given a terminal current I = ia+ which is a positive-sequence balanced
vector with 1TI = 0:

1. Show that the given sD and I must satisfy

sD 2 span
✓
�1�a

3
i1 + ba+

◆

for some b 2 C. Note that the internal power sD is different in each phase (with different phase
angles separated by 120�) if and only if the loop flow b 6= 0.

2. Show that the loop flow b and the internal voltage V D are uniquely determined by sD and I, and that
the terminal voltage V is unique only up to an arbitrary reference voltage.

Assume that the internal voltage V D is also a positive-sequence balanced vector.

Solution. By Corollary 1.3 we have for any balanced vector x 2 C
3 in positive sequence

Gx = (1�a)x, GTx = (1�a2)x

Hence the internal current is

ID = �GT†I + b1 = �1
3

GI + b1 = �1�a
3

ia+ + b1

where the second equality follows from Theorem 15.2. By assumption V D is a positive-sequence balanced
vector, i.e., V D = va+ where v 2 C is a scalar to be determined. Then

sD = diag
⇣

V DIDH
⌘

= v diag

 
a+

✓
�(1�a)i

3
a+ + b1

◆H
!

= v
✓
�(1�a)i

3
diag

⇣
a+ aH

+

⌘
+ b diag

⇣
a+1T

⌘◆

= v
✓
�(1�a)i

3
1 + ba+

◆
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i.e., sD lies in span
⇣
� (1�a)i

3 1 + ba+

⌘
for some b . To determine v, multiplying both sides by 1T to get

v =
�1TsD

(1�a)i

Then V D = va+. The terminal voltage V is given by

V = G†V D + g1 =
v
3

GTa+ + g1 =
�1TsD(1+a)

3i
a+ + g1, g 2 C

which is unique up to an arbitrary reference voltage specified by g 2 C.

Note that neither V D nor V depends on b , even though from the expression above for sD in part 1, the
internal powers sD :=

�
sab,sbc,s ca� depend on the loop flow specified by b . Moreover the expression

uniquely determines b :

sab = v
✓
�(1�a)i

3
+ b

◆
, sbc = v

✓
�(1�a)i

3
+ ab

◆
=) b =

sbc�sab

sab +sbc +s ca i

Whereas (15.25a) relates the internal power sD to the external voltage and current (V, I), we can also
use the conversion rule (15.10a) to relate the external power s to the internal voltage and current

�
V D, ID�.

Specifically, the internal voltage and current (V D, ID) and the terminal power s of a constant-power source
must satisfy:

s = �1
3

diag
⇣

GT

⇣
V DIDH

⌘
G
⌘
� g GTID

, sD = diag
⇣

V DIDH
⌘

, 1TV D = 0 (15.25c)

where g is fixed by a reference voltage. An equivalent model in terms of
�
V, ID� is (using (15.10c))

s = �diag
⇣

V IDHG
⌘

, sD = diag
⇣

GV IDH
⌘

(15.25d)

The choice of different models in (15.25) for three-phase analysis depends on the specification of the
problem. See Example 17.11 in Chapter 17.2.1.

Remark 15.7 (Total power). Since sD is the power delivered to the single-phase devices while s is the
power injected from the three-phase power source to the network it is connected to, (15.25) implies that
(the negative of) its total internal power is equal to its total terminal power, i.e., 1Ts = �1TsD (Exercise
15.17). In particular the total terminal power 1Ts is independent of the loop-flow b and zero-sequence
voltage g even when s does.

Impedance zD. Internal model. Referring to Figure 15.8(d) the internal model of an impedance zD in D
configuration is

V D = zD ID, sD = diag
⇣

V DIDH
⌘

:= diag
⇣

zDIDIDH
⌘

(15.26)
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External model. The external model can be derived in a similar way to that for a voltage source, by
applying the conversion rule V D = GV , I = �GTID to the internal model (15.26). We will derive first a
relation that maps a terminal voltage V (which also determines its zero-sequence component g) uniquely
to a terminal current I and then a converse relation that maps I to V up to an arbitrary g .

Define the admittance matrix yD :=
�
zD��1. Substituting into (15.26), multiplying both sides by �GT

and applying the conversion rule, we get

I = �Y DV (15.27a)

where Y D := GTyDG is the same complex symmetric Laplacian matrix in (15.21a) for a voltage source.
Note that the terminal current I given by (15.27a) satisfies 1TI = 0.

For the converse relation, given any terminal current I that satisfies 1T I = 0, substitute the conversion
rule into the internal model (15.26) to eliminate

�
V D, ID�:

GV = zD
⇣
�GT† I +b1

⌘

where b 2 C is not arbitrary but depends on I. Multiplying both sides by 1T gives

0 = 1TGV = �1TzD
|{z}

z̃DT

GT†I + b
⇣

1TzD1
⌘

| {z }
z

where z̃D := zD1 and z := zab + zbc + zca. Hence

b =
1
z

⇣
z̃DTGT†

⌘
I

Therefore

GV = �zD
✓
I� 1

z
1 z̃DT

◆
GT†I

or

V = �ZDI + g1, 1TI = 0 (15.27b)

where g is a variable to be determined together with V and (using Theorem 15.2)

ZD :=
1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

is the same matrix in (15.21b).

Remark 15.8. Note that (15.27b) is a system of at most 4 linearly independent equations in 7 variables
(V, I,g). We can also eliminate the variable g := 1

31TV and write (15.27b) equivalently in terms of only
(V, I):

✓
I� 1

3
11T
◆

V = �ZDI, 1TI = 0

Since the matrices on both sides of the first equation are singular, this is a system of at most 3 linearly
independent equations in 6 variables. It is often more convenient to use (15.27b) in analysis as it expresses
V explicitly in terms of I despite the additional variable g; see Example 17.8.



Draft: PSA December 13, 2024 679

As for a voltage source, the two external models (15.27a) and (15.27b) of an impedance are equivalent
in the following sense. The theorem also implies that ZD and Y D are pseudo-inverses of each other.

Theorem 15.4. Given the conversion rules V D = GV and I = �GTID between the terminal and internal
voltages and currents, the following are equivalent:

1. Internal model: V D = zDID and hence 1TzDID = 0.

2. External model: I = �Y DV where Y D := GTyDG.

3. External model: V =�ZDI + g1, 1TI = 0 for some g 2 C where

ZD :=
1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

Proof. The derivation above of the two external models (15.27a) and (15.27b) shows that 1) 2 and 3.
For the converse we will show that 2) 1 and 3) 1.

Suppose I =�Y DV =�
�
GTyDG

�
V . Substitute the conversion rules to get

GT

⇣
yDV D� ID

⌘
= 0

i.e., yDV D� ID is in the null space of GT, or yDV D� ID = b1 for some b 2 C. Therefore

V D = zDID +b zD1

It is important to note that this expression is not of the form V D = z0DID + b 01 for some diagonal matrix
z0D 2 C

3 and scalar b 0 2 C. Since 1TV D = 0 because of the conversion rule, multiplying both sides by 1T
yields

b = � 1
z

z̃DTID

where z̃D := zD1 and z := zab + zbc + zca. Hence

V D = zDID� 1
z

z̃DTID zD1 = zD
✓
I� 1

z
11TzD

◆

| {z }
z0D

ID

For z0D to be a valid three-phase impedance, it must be a diagonal matrix. This is the case if and only if
zD1
⇣

1TzDID
⌘

= 0 in which case V D = zDID, as desired.

Suppose V =�ZDI + g1, 1TI = 0 for some g 2 C. Then †

V D = GV = �1
3

GG†zD
✓
I� 1

z
1 z̃DT

◆
G I



680 Draft: PSA December 13, 2024

Since 1TI = 0, there exists ID such that I =�GTID. Hence

V D = GG†zD
✓
I� 1

z
1 z̃DT

◆
GGTID = zD

✓
I� 1

z
11TzD

◆

| {z }
z0D

ID

where we have used GG† = I� 1
311T from Theorem 15.2. As before, z0D must be a diagonal matrix to be

a valid three-phase impedance. This is the case if and only if zD1
⇣

1TzDID
⌘

= 0 in which case V D = zDID,
as desired.

Hence given a V , I is uniquely determined by (15.27a) and given an I with 1TI = 0, V is determined
by (15.27b) up to a reference voltage specified by g . These equations allow us to relate terminal power
injection s to V or to I as:

s = diag
⇣

V IH
⌘

= �diag
⇣

VVHY DH
⌘

(15.27c)

s = diag
⇣

V IH
⌘

= �diag
⇣

ZDIIH
⌘

+ gI (15.27d)

Balanced impedance. When the impedance is balanced, i.e., zab = zbc = zca then (Exercise 15.18)

ZD =
zab

3

✓
I� 1

3
11T
◆

i.e., ZD is not diagonal and the off-diagonal entries will couple voltages and currents in different phases.
As we will see in Chapter 17.4.1, in this case, one can perform a similarity transformation using the
unitary matrix F to what is called the sequence coordinate as explained in Chapter 15.2.2. In the sequence
coordinate, the transformed impedance Z̃D, called the sequence impedance, is diagonal:

Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

This leads to decoupled voltages and currents in the sequence coordinate called symmetrical components.
The zero-sequence component (first row and column of Z̃D) is zero, reflecting the fact that Ia + Ib + Ic = 0
in a D configuration since there is no neutral line. The decoupled relation between the sequence voltages,
currents and impedances can be interpreted as defining separate sequence networks that can be analyzed
independently.

Remark 15.9 (Phase decoupling). Determine conditions under which phases become decoupled ( Exercise
15.19).

15.3.5 D-Y transformation

Ideal voltage source
�
ED,g

�
. The terminal voltage of an ideal D-configured voltage source

�
ED,g

�
with

zero internal impedance zD = 0 is, from (15.21b):

V =
1
3

GTED + g1, 1TI = 0
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where g is fixed by a given reference voltage. The terminal voltage of an ideal Y -configured voltage source�
EY ,V n� with zero internal impedance zY = 0 is, from (15.13a):

V = EY + V n 1, 1TI = �In

Hence the Y equivalent of an ideal voltage source
�
ED,g

�
, not necessarily balanced, is given by

EY :=
1
3

GTED, V n := g, no neutral line so that In := 0

Note that this does not satisfy assumption C15.1 since the neutral is not grounded unless g = 0. If ED is
balanced then GTED = (1�a2)ED =

p
3e�ip/6 ED (by Corollary 1.3) and EY reduces to the expression

(1.31a) derived in Chapter 1.2.4 for balanced systems:

EY =
1p

3eip/6
ED, V n := g, no neutral line so that In := 0

For a non-ideal D-configured voltage source
�
ED,zD,g

�
, its terminal voltage is, from (15.21b):

V = ĜTED � ZDI + g1

where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

It generally does not have a Y equivalent. Indeed, since the Y equivalent needs to be ungrounded so that
1TI = 0, its external model is V = EY �zY I +V n1 from (15.13a). In general the effective impedance ZD is
not diagonal and hence may not be interpreted as an internal series impedance matrix zY of an Y -configured
source, even if the impedance is balanced zD := zab

I (in which case ZD = zab

3

⇣
I� 1

311T
⌘

).

Remark 15.10 (Y -equivalent with equal line-to-line voltage). Given a general D-configured device with
internal voltage V D, its equivalent line-to-neutral voltage is defined in [63, p.204] to be

VY :=
1
3

2

4
2 1 0
0 2 1
1 0 2

3

5V D (15.28)

This definition is the same as the Y -equivalent of an ideal voltage source V D derived above with a particular
choice of the neutral voltage:

VY :=
1
3

GTV D, V n := g = 0

in the sense that they have the same line-to-line voltages.

To see this, recall that the line-to-line voltage ṼY (not the terminal voltage) of a Y -configured device
with internal voltage VY is ṼY = GVY . If it is equivalent to the given V D then V D = ṼY = GVY . Theorem
15.2 then implies

VY =
1
3

GTV D + g1 for any g 2 C
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Here g being arbitrary means that the D-configured device has an arbitrary zero-sequence terminal voltage
and its Y -equivalent has an arbitrary neutral voltage. Take g := 0. Since 1TV D = 1T

�
GVY� = 0 we can

add 1
31TV D to YY to get

VY =
1
3

⇣
GT +11T

⌘
V D =

1
3

0

@

2

4
1 0 �1
�1 1 0
0 �1 1

3

5+

2

4
1 1 1
1 1 1
1 1 1

3

5

1

AV D =
1
3

2

4
2 1 0
0 2 1
1 0 2

3

5V D

The model (15.28) is applicable only if the zero-sequence voltage g := 1
31TV of the given D-configured

device is zero. Otherwise its Y -equivalent must have a nonzero neutral voltage V j = g .

Ideal current source JD. An ideal D-configured current source JD has an external model of I =�GTJD.
Note that 1TI = 0. The external model of a Y -configured current source is I = �JY , 1TI = �In. Hence
the Y equivalent is

JY = GTJD, no neutral line so that In := 0

If JD is balanced then Corollary 1.3 implies

JY = (1�a2)JD =

p
3

eip/6 JD

the same expression (1.31a) for balanced systems.

15.3.6 Comparison with single-phase devices

Assume C15.1 holds, i.e., neutrals are grounded and voltages are defined with respect to the ground. We
compare the external models of three-phase devices to those of their single-phase counterparts. As we will
see they are structurally the same, except for the D-configured power source.

E

z I

V

(a) Single-phase

V aI a

V n

I n

Zn

I b

I c

V b

V c

zan

zbn

zcn

Ecn Ebn

Ean

(b) Y configuration (grounded)

V aI a

I b

I c

V b

V c

E ab

E ca

E bc

zab

zbc
zca

(c) D configuration

Figure 15.9: Comparison of single-phase and three-phase voltage sources.
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Voltage source. Figure 15.9 shows a single-phase voltage source specified by an internal voltage E and
a series impedance z and the three-phase voltage sources in Y and D configurations studied in this section.
Their external models are, from (15.13b) and (15.21b):

single-phase: V = E� zI

Y -configuration: V = EY � ZY I, ZY := zY + zn11T

D-configuration: V = ĜED � ZDI + g1, 1TI = 0

J

I

Vy

(a) Single-phase

V aI a

V n

I n

zn

I b

I c

V b

V c

yan

ybn
ycn

J an

J cn

J bn

(b) Y configuration (grounded)

V aI a

I b

I c

V b

V c

J ab

J bc

J ca

yab

ybc

yca

(c) D configuration

Figure 15.10: Comparison of single-phase and three-phase current sources.

Current source. Figure 15.10 shows a single-phase current source specified by an internal current J and
a shunt admittance y and the three-phase current sources in Y and D configurations studied in this section.
Their external models are, from (15.15b) and (15.23a):

single-phase: I = �(J + yV )

Y -configuration: I = �A
�
JY + yYV

�
, A := I� zn

1+ zn
⇣

1TyY 1
⌘yY 11T

D-configuration: I = �
⇣

GTJD + Y DV
⌘

, Y D := GTyD G

Power source. Figure 15.11 shows a single-phase power source specified by an internal power s and
the three-phase power sources in Y and D configurations studied in this section. Their external models are,
from (15.17c) and (15.25d):

single-phase: s = �s

Y -configuration: s = �
⇣

sY + zn
⇣

IIT
⌘

1
⌘

D-configuration: s = �diag
⇣

V IDHG
⌘

, sD = diag
⇣

GV IDH
⌘

Impedance. Figure 15.12 shows a single-phase impedance specified by z and the three-phase power
sources in Y and D configurations studied in this section. Their external models are, from (15.19b) and
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(a) Single-phase












































































































(b) Y configuration

V aI a

I b

I c

V b

V c

σabσca

σbc

(c) D configuration

Figure 15.11: Comparison of single-phase and three-phase power sources.












































































































(a) Single-phase












































































































(b) Y configuration

V aI a

I b

I c

V b

V c

zab

zbc

zca

(c) D configuration

Figure 15.12: Comparison of single-phase and three-phase impedances.
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(15.27a):

single-phase: V = �zI

Y -configuration: V = �ZY I, ZY := zY + zn 11T

D-configuration: I = �Y DV, Y D := GTyDG

15.3.7 Summary

The external models of three-phase devices are summarized in Table 15.2 and will be used to compose
network models in Chapters 17 and 18.

Device Y configuration D configuration
Specification Internal External Specification Internal External

Voltage source
�
EY ,zY ,zn� (15.12) (15.13)

�
ED,zD� (15.20) (15.21)

Current source
�
JY ,yY ,zn� (15.14) (15.15)

�
JD,yD� (15.22) (15.23)

Power source
�
sY ,zn� (15.16) (15.17) sD (15.24) (15.25)

Impedance
�
zY ,zn� (15.18) (15.19) zD (15.26) (15.27)

Line (3-wire model) (16.8)

Table 15.2: Specification, internal and external models of three-phase devices.

When the devices are ideal these models reduce to a simpler form summarized in Tables 15.3 and 15.4.
The internal models of ideal devices are:

1. Ideal voltage source EY/D:

VY/D = EY/D, sY/D = diag
✓

EY/D
⇣

IY/D
⌘H◆

(15.29a)

2. Ideal current source JY/D:

IY/D = JY/D, sY/D = diag
✓

VY/D
⇣

JY/D
⌘H◆

(15.29b)

3. Ideal power source sY/D:

sY/D = sY/D, sY/D = diag
✓

VY/D
⇣

IY/D
⌘H◆

(15.29c)

4. Impedance zY/D:

VY/D = zY/D IY/D, sY/D = diag
✓

VY/D
⇣

IY/D
⌘H◆

(15.29d)
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Device Assumption Y configuration
Voltage source zn = 0, zY = 0 V = EY + g1 s = diag

�
EY IH

�
+ gI

Current source zn = 0, yY = 0 I =�JY s =�diag
�
V JYH�

Power source zn = 0 diag
�
IH
�
(V � g1) =�s s =�sY + gI

Impedance zn = 0 V =�zY I + g1 s =�diag
⇣

V (V � g1)H yYH
⌘

Table 15.3: External models of ideal single-terminal devices in Y configuration. The quantity g := V n

is the neutral voltage. If all neutrals are directly grounded and voltages are defined with respect to the
ground, then g := V n = 0 for all Y -configured devices.

Device Assumption D configuration
Voltage source zD = 0, 1TED = 0 V = G†ED + g1, 1TI = 0 s = diag

�
G†EDIH

�
+ gI

Current source yD = 0 I =�GTJD s =�diag
�
V JDHG

�

Power source sD = diag
�
GV IDH�

1TI = 0 sD = �diag
�
GT† �V IH

�
GT
�
+b GV

s = diag
�
V IDHG

�

1TV D = 0 s = �diag
�
G† �V DIDH�G

�
� g GTID

Impedance I =�Y DV s =�diag
�
VVHY DH�

V =�ZDI + g1, 1TI = 0 s =�diag
�
ZDIIH

�
+ gI

Table 15.4: External models of ideal single-terminal devices in D configuration. The quantity g := 1
31TV

is the zero-sequence voltage of V and b := 1
31TID is the zero-sequence current of ID.
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In each case the internal specification of the three-phase device fixes one of the terminal variables (V, I,s)
and the relation between the remaining variables characterizes its external behavior. In the rest of this
book we often assume sources are ideal and characterized by Tables 15.3 and 15.4 (see Chapter 16.1.4 for
a justification).

Consider a network of three-phase voltage sources, current sources, power sources, and impedances
connected by three-phase lines and transformers. A power flow problem typically specifies a set of these
devices and the objective is to determine other voltages, currents, and powers on the network. The spec-
ification of these devices include not only internal voltages, currents, or powers, but also some of the
zero-sequence quantities (g,b ). We will clarify in Chapter 17.2 the parameters that should be specified
versus variables to be computed of the external models in Tables 15.3 and 15.4.

15.4 Voltage regulators

15.5 Bibliographical notes

The concept of symmetrical component is described in another seminal paper [195] by C. L. Fortescue to
simplify the analysis of unbalanced operation of a multiphase system. The use of symmetrical components
for fault current analysis is explained in e.g. [10] which also proposes a different transformation called
(a,b ,0) components. The paper [196] explains that Fortescue’s transformation matrix as a particular
choice of orthogonal basis for three-dimensional vectors over the complex field (the similarity transforma-
tion matrix F in Chapter 15.2.2 is the normalized version of Fortescue’s original matrix so that the basis
are orthonormal). It shows that other well-known transformations such as those of Clarke, Concordia,
Kimbark, and Park can be obtained from Forescue’s matrix through elementary row and column transfor-
mations and have different advantages and disadvantages mostly for fault analysis. Park transformation
[197] is applicable not only to steady state voltage and current phasors, but also to instantaneous voltages,
currents, and flux linkages in modeling synchronous machines.

As we will see in Chapter 17 a three-phase network has a single-phase equivalent circuit where the net-
work equations have the form as a single-phase network. The main difference with a single-phase network
is the models of three-phase devices in the equivalent circuit, such as models for constant-power devices
[5, Chapter 11], loads and voltage regulars [63], as we have studied in Chapter 15.3, as well as three-phase
lines and transformers, to be studied in Chapter 16. See also [198, Chapter 3] for comprehensive models
of three-phase components including distribution lines, transformers and switches.

15.6 Problems

Chapter 15.2.
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Exercise 15.1 (Proof of Theorem 15.2). Let

G :=

2

4
1 �1 0
0 1 �1
�1 0 1

3

5 , GT :=

2

4
1 0 �1
�1 1 0
0 �1 1

3

5

Prove Theorem 15.2:

1. The null spaces of G and GT are both span(1,1,1).

2. Their pseudo-inverses are

G† =
1
3

GT, GT† =
1
3

G

3. Consider Gx = b. If 1Tb = 0 then the solutions x are given by x = G†b+b1 for all b 2 C
3.

4. Consider GTx = b. If 1Tb = 0 then the solutions x are given by x = GT†b+b1 for all b 2 C
3.

5. GG† = G†G = 1
3 GGT = 1

3 GTG = I � 1
3 11T where I is the identity matrix of appropriate size.

Exercise 15.2. Use G† = 1
3 GT (Theorem 15.2) to verify the four defining properties of pseudo-inverse of

G:

1. (GG†)G = G.

2. G†(GG†) = G†.

3. GG† is Hermitian.

4. G†G is Hermitian.

Exercise 15.3. Suppose I =�GTID. Show that V IH
�
G† G

�
= V IH.

Chapter 15.3.1.

Exercise 15.4 (Terminal power s). Consider the three-phase voltage source serving a three-phase impedance
load shown in Figure 15.13. Both the source and the load are grounded. Suppose the terminal voltage V is
defined with respect to the ground. The terminal current Ia flows from terminal a of the source to the load
and returns from the ground, and sa := V aIaH is the power delivered across terminal a and the ground.
Relate the terminal power 1Ts := V aIaH+V bIbH+V cIcH and the internal power 1TsY for both the voltage
source and the impedance.
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Figure 15.13: Terminal power s and internal power sY .

Figure 15.14: Terminal power s and internal power sY .
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Exercise 15.5 (Terminal power s). Repeat Exercise 15.4 but for the case where the neutrals are not
grounded, as shown in Figure 15.14. All voltages are defined with respect to an arbitrary but common
reference point, e.g., the ground.

Exercise 15.6 (Total powers). Show that 1Tdiag
�
G
�
V IH

�
G†�= 1Tdiag

�
V IH

�
and hence the total internal

and terminal powers are equal, i.e., 1TsD = 1Ts.

Chapter 15.3.3.

Exercise 15.7 (Y -configured voltage source). Compute the inverse of ZY := zY + zn 11T in (15.13c) using
the matrix inversion formula.

Exercise 15.8 (Y -configured current source). Consider the current source in Figure 15.7(b). Derive (15.14)
for internal power sY and sn.

Exercise 15.9 (Y -configured current source). Consider the current source in Figure 15.7(b). Suppose
assumption C15.1 holds. Derive (15.15b):

V = �
�
zY JY + ZY I

�
, I = �A

�
JY + yY V

�

where

zY :=
�
yY��1

, ZY := zY + zn 11T, A := I� zn

1+ zn
⇣

1TyY 1
⌘ yY 11T

assuming ZY is invertible.

Exercise 15.10 (Y -configured power device). Suppose all voltages are defined with respect to the ground,
so that V n =�zn

⇣
1TI
⌘

. Derive (15.17b).

Exercise 15.11 (Y -configured impedance). Consider a three-phase load in Y configuration specified by a
series impedance matrix ZY :

V :=

2

4
Vag
Vbg
Vcg

3

5 =

2

4
za + zn zn zn

zn zb + zn zn
zn zn zc + zn

3

5

2

4
Ia
Ib
Ic

3

5

Show that if V is balanced and za = zb = zc then the neutral current In = 0 and the phases are decoupled.
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Chapter 15.3.4.

Exercise 15.12 (Voltage source in D configuration). Consider the voltage source in Figure 15.8(a). Let
V D = GV .

1. Show that 1TI = 0 implies 1T
�
ED� zDGT†I

�
= 0.

2. Show that the converse is not true.

Exercise 15.13 (Voltage source in D configuration). Suppose A is a complex symmetric matrix A with
zero row sums. Show that its pseudo-inverse A† is also complex symmetric with zero row sums. (Hint:
Use Takagi factorization for complex symmetric matrices in Theorem 20.17 of Appendix 20.1.6.)

Exercise 15.14 (Voltage source in D configuration). Prove Theorem 15.3: Given the conversion rules V D =
GV and I =�GTID between the terminal and internal voltages and currents, the following are equivalent:

1. Internal model: V D = ED + zDID and hence 1T
�
ED + zDID�= 0.

2. External model: I =
�
GTyD�ED�Y DV where Y D := GTyDG.

3. External model: V = ĜED�ZDI + g1, 1TI = 0 for some g 2 C where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

(Hint: See the proof of Theorem 15.4.)

Exercise 15.15 (Voltage source in D configuration). Consider (15.25a), reproduced here:

sD = �1
3

diag
⇣

G
⇣

V IH
⌘

GT

⌘
+ bGV, 1TI = 0

Given any terminal voltage V , show that I and b are uniquely determined in terms of V and sD.

Exercise 15.16 (Voltage source in D configuration). Consider the model of a constant-power source
(15.25a), reproduced here:

sD = �1
3

diag
⇣

G
⇣

V IH
⌘

GT

⌘
+ bGV, 1TI = 0, b 2 C

Given a terminal current I with 1TI = 0, show that the zero-sequence current b := 1
31TID can take two

values.
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Exercise 15.17 (Total power in D). Consider a power source with internal power sD := (sab,sbc,s ca) in
D configuration. Show that (the negative of) its total internal power is equal to its total terminal power,
i.e., 1Ts =�1TsD.

Exercise 15.18 (Balanced impedance zD). Consider a D-configured impedance zD whose external equiva-
lent is (from (15.27b)):

ZD :=
1
9

GT zD
✓
I� 1

z
1 z̃DT

◆

| {z }
ẑD

G

If the impedance is balanced, i.e., zab = zbc = zca, show that

ZD =
zab

3

✓
I� 1

3
11T
◆

Exercise 15.19 (Devices in D configuration). Show that the phases are decoupled, i.e., phase a variables
(sa,V a, Ia) do not depend on variables in phases b and c, if the terminal currents are balanced Ia + Ib + Ic =
0 and the terminal voltages V a +V b +V c = 0 for the four types of devices in D configuration discussed in
Chapter 15.3.4.

Chapter 15.3.5.

Exercise 15.20 (D-Y transformation). Show that the external behavior of a symmetric non-ideal voltage
source

�
ED,zab

I
�

with identical series impedance zD := zab
I and zero-sequence voltage g = 0 is equivalent

to a non-ideal Y -configured voltage source
�
EY ,zY ,zn� whose neutral is grounded through an impedance

zn with:

EY :=
1
3

GTED, zY :=
zab

3
I, zn := �zab

9

under assumption C15.1.

Exercise 15.21 (D-Y transformation). Consider a symmetric non-ideal current source
�
JD,yab

I
�

with iden-
tical shunt admittance yD := yab

I. Show that it cannot be equivalent to a non-ideal Y -configured current
source

�
JY ,yY ,zn� under assumption C15.1.



Chapter 16

Component models, II: line and transformers

In this chapter we continue the modeling of three-phase components. In Chapter 16.1 we model a three-
phase transmission or distribution line. In Chapter 16.2 we extend the simplified model of transformers of
Chapter 3.1.4 from single-phase to three-phase setting. In Chapter 16.3 we extend the transformer model
based on unitary voltage network of Chapter 3.1.5 from single-phase to three-phase setting. In Chapter
16.4 we explain how to identify model parameters from measurements. We will use these component
models in Chapters 17 and 18 to construct network models and study unbalanced three-phase analysis.

16.1 Three-phase transmission or distribution line models

As explained Chapter 2.1 the electromagnetic interactions among the electric charges in wires of different
phases couple the voltages on and currents in these wires. The relation between the voltages and currents
in these phases can be modeled by a linear mapping that depends on the line characteristics (resistances,
inductances, capacitances).

16.1.1 Review: single-phase model

The linear mapping becomes decoupled when the phases are balanced, leading to a per-phase model of
a transmission or distribution line as a two-terminal device specified by a P-equivalent circuit (ys

jk, ym
jk,

ym
k j), as explained in Chapter 2.2.2. The terminal (or bus) voltages (Vj,Vk) and sending-end line currents

(I jk, Ik j) on this two-terminal device describes the end-to-end behavior of the line. They are linearly related
according to Kirchhoff’s and Ohm’s laws:

I jk = ys
jk
�
Vj�Vk

�
+ ym

jk Vj, Ik j = ys
k j
�
Vk�Vj

�
+ ym

k j Vk (16.1a)

For a transmission or distribution line, ys
jk = ys

k j. The terms ym
jkVj and ym

k jVk assume that the shunt ad-
mittances connect the buses j and k both to the common reference point for terminal voltages, e.g., the

693
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ground. The sending-end line power
�
S jk,Sk j

�
is related to (Vj,Vk) by

S jk =
⇣

ys
jk

⌘H
Vj
�
Vj�Vk

�H
+
⇣

ym
jk

⌘H
VjVH

j (16.1b)

Sk j =
⇣

ys
k j

⌘H
Vk
�
Vk�Vj

�H
+
⇣

ym
k j

⌘H
VkVH

k (16.1c)

When (ys
jk = ys

k j and) the shunt admittances are zero, i.e., ym
jk = ym

k j = 0, then I jk =�Ik j and this relation
reduces to

Vj � Vk = zs
jk I jk (16.1d)

where zs
jk :=

⇣
ys

jk

⌘�1
is the series impedance of the line. We now extend these relations to an unbalanced

three-phase transmission or distribution line.

16.1.2 Four-wire three-phase model

A three-phase line has three wires one for each phase a,b,c. It may also have a neutral wire which may
be grounded at one or both ends if the device connected to that end of the line is in Y configuration.
Consider then a four-wire three-phase line where the total current ia(t)+ ib(t)+ ic(t) and the total charge
qa(t) + qb(t) + qc(t) may be nonzero and they flow through the neutral wire (if present) and the earth
return. The effect of neutral or earth return on the impedance of a transmission line depends on details
such as how many neutral wires are present, whether they are grounded along the lines at regular spacing,
etc.

To build intuition we first omit line charging. In this case the three-phase voltages and currents are
related by a series impedance matrix, similar to (16.1d) for a single-phase system. We then incorporate
the effect of line charging by including shunt admittances to obtain a model that generalizes (16.1a) to a
three-phase system.

Without shunt admittances. Consider a four-wire three-phase line with a neutral wire. The voltage
between one end of a wire to the other end depends linearly on the current in each of the four wires. Let
V̂j :=

⇣
V a

j ,V b
j ,V c

j ,V
n
j

⌘
and V̂k :=

�
V a

k ,V b
k ,V c

k ,V n
k
�

be the terminal (or nodal or bus) voltages at terminals j
and k respectively of the phase and neutral wire ( j,k), with respect to an arbitrary but common reference
point, e.g., the ground. Let Î jk :=

⇣
Ia

jk, I
b
jk, I

c
jk, I

n
jk

⌘
denote the currents in these lines. Then the four-wire

three-phase line can be modeled by a series impedance matrix1 ẑs
jk that linearly relates these voltages and

1It is sometimes called a series phase impedance matrix to differentiate it from a series sequence impedance matrix for
sequence variables; see Chapter 17.4.
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currents:
2

664

V a
j

V b
j

V c
j

V n
j

3

775 �

2

664

V a
k

V b
k

V c
k

V n
k

3

775 =

2

6664

ẑaa
jk ẑab

jk ẑac
jk ẑan

jk
ẑba

jk ẑbb
jk ẑbc

jk ẑbn
jk

ẑca
jk ẑcb

jk ẑcc
jk ẑcn

jk
ẑna

jk ẑnb
jk ẑnc

jk ẑnn
jk

3

7775

| {z }
ẑs

jk

2

6664

Ia
jk

Ib
jk

Ic
jk

In
jk

3

7775
(16.2a)

or in vector form

V̂j � V̂k = ẑs
jk Î jk (16.2b)

For example, the series impedance matrix ẑs
jk can model an overhead three-phase line with an overhead

neutral wire and earth return. Here ẑff
jk are called the self-impedances of phase f wires, including the

effect of earth return, and ẑff 0
jk the mutual impedances between phase f and phase f 0 wires, including the

effect of earth return. Their values depend on the wire materials, their lengths, distances between them,
the operating frequency, and the resistivity of the earth. To relate these impedances to the physical system,
suppose a voltage is applied between the phase a terminals and therefore completing the phase a circuit,
while circuits of phases b,c,n are open. Then the current Ia

jk in the phase a wire is nonzero while all other
currents If

jk = 0, f 6= a, so that
2

664

V a
j

V b
j

V c
j

V n
j

3

775 �

2

664

V a
k

V b
k

V c
k

V n
k

3

775 =

2

6664

ẑaa
jk ẑab

jk ẑac
jk ẑan

jk
ẑba

jk ẑbb
jk ẑbc

jk ẑbn
jk

ẑca
jk ẑcb

jk ẑcc
jk ẑcn

jk
ẑna

jk ẑnb
jk ẑnc

jk ẑnn
jk

3

7775

2

664

Ia
jk
0
0
0

3

775

Hence the self-impedance

ẑaa
jk =

V a
j �V a

k

Ia
jk

is the ratio of the voltage applied between the phase a terminals to the current in the phase a wire when all
other circuits are open. The current Ia

jk induces voltages in other phases and the mutual impedance

ẑba
jk =

V b
j �V b

k

Ia
jk

is the ratio of the voltage induced across the phase b terminals to the phase a current when only the phase
a circuit is complete.

With shunt admittances. To incorporate the effect of line charging, let the series admittance matrix be

ŷs
jk :=

⇣
ẑs

jk

⌘�1
, assuming ẑs

jk is invertible. Let
⇣

ŷm
jk, ŷ

m
k j

⌘
denote the shunt admittance matrices. The termi-

nal voltages
�
Vj,Vk

�
2 C

8 and the sending-end currents
�
I jk, Ik j

�
2 C

8 respectively are related according
to

I jk = ŷs
jk
�
Vj�Vk

�
+ ŷm

jk Vj, Ik j = ŷs
jk
�
Vk�Vj

�
+ ŷm

k j Vk (16.3)
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I njk I nkj

I ajk

I bjk

I cjk

I akj

I bkj

I ckj

Vj
a

Vj
b

Vj
n

Vj
c

Vk
a

Vk
b

Vk
c

Vk
n

ŷsjk

ŷmjk ŷmkj

Figure 16.1: A four-wire line characterized by 4⇥4 series and shunt admittance matrices
⇣

ŷs
jk, ŷ

m
jk, ŷ

m
k j

⌘
.

This model is illustrated in Figure 16.1. It has exactly the same form as (16.1a), except that the variables
and admittances are vectors and matrices respectively. It generalizes (16.1a) from a single-phase model to
a three-phase model. The terms ym

jkVj and ym
k jVk in (16.3) assume that the shunt admittances connect the

buses j and k both to the common reference point for terminal voltages, e.g., the ground.

16.1.3 Three-wire three-phase model

An equivalent three-wire model can be derived from the four-wire models (16.2) and (16.3). To this
end denote the phase voltages by Vj := (V a

j ,V b
j ,V b

j ) and Vk := (V a
k ,V b

k ,V b
k ) and phase currents by I jk :=

(Ia
jk, I

b
jk, I

c
jk).

Without shunt admittances. Ignore first shunt admittances. Decompose the impedance matrix ẑs
jk in

(16.2a) into

ẑs
jk =

"
ẑff

jk ẑfn
jk

ẑnf
jk ẑnn

jk

#
:=

2

6664

ẑaa
jk ẑab

jk ẑac
jk ẑan

jk
ẑba

jk ẑbb
jk ẑbc

jk ẑbn
jk

ẑca
jk ẑcb

jk ẑcc
jk ẑcn

jk
ẑna

jk ẑnb
jk ẑnc

jk ẑnn
jk

3

7775
(16.4a)

where ẑff
jk 2 C

3⇥3, ẑnn
jk 2 C, and ẑfn

jk , ẑnf
jk are of matching dimensions. Then (16.2a) can be rewritten as


Vj
V n

j

�
�


Vk
V n

k

�
=

"
ẑff

jk ẑfn
jk

ẑnf
jk ẑnn

jk

#
I jk
In

jk

�
(16.4b)

The Schur complement of ẑnn
jk of ẑs

jk is

zschur
jk := ẑff

jk �
1

ẑnn
jk

ẑfn
jk ẑnf

jk =

2

64
ẑaa

jk ẑab
jk ẑac

jk
ẑba

jk ẑbb
jk ẑbc

jk
ẑca

jk ẑcb
jk ẑcc

jk

3

75 �
1

ẑnn
jk

2

64
ẑan

jk
ẑbn

jk
ẑcn

jk

3

75
h
ẑna

jk ẑnb
jk ẑnc

jk

i
(16.5a)
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Then we can perform Kron reduction on (16.4) to obtain an equivalent three-wire model that relates Vj�Vk
and In

jk to I jk and V n
j �V n

k :

Vj�Vk = zschur
jk I jk +

ẑfn
jk

ẑnn
jk

�
V n

j �V n
k
�

(16.5b)

In
jk = �

ẑnf
jk

ẑnn
jk

I jk +
1

ẑnn
jk

�
V n

j �V n
k
�

(16.5c)

i.e., a complete three-wire model expresses the phase voltages Vj�Vk and the neutral current In
jk in terms

of the phase currents I jk and neutral voltage difference V n
j �V n

k . It is equivalent to the four-wire model
(16.2) for the case where shunt admittances are assumed zero. Therefore in using three-wire models we
generally have to keep track of neutral voltages for Y -configured devices because V n

j �V n
k affects the phase

voltages and currents (Vj�Vk, I jk) through (16.5b).

We refer to the complete model (16.5) as a three-wire model because when the neutral wire is absent
or open circuited, e.g., when connecting devices in D configuration, or when the neutral is grounded at
both the sending and the receiving ends of the line, the phase voltages and currents (Vjk, I jk) are related
simply by a 3⇥3 impedance matrix:

1. Neutral wire absent: In
jk = 0. Then (16.5) reduces to

Vj�Vk = ẑff
jk I jk, V n

j �V n
k = ẑnf

jk I jk (16.6a)

where ẑff
jk 2C

3⇥3 is defined in (16.4a). The neutral voltages V n
j ,V n

k are generally nonzero since they
are not grounded (assuming voltages are defined with respect to the ground) and their difference
depends on the phase currents according to (16.6a).

2. Neutral wire grounded: V n
j = V n

k .2 Then (16.5) reduces to

Vj�Vk = zschur
jk I jk, In

jk = �
ẑnf

jk

ẑnn
jk

I jk (16.6b)

Even though V n
j = V n

k across the neutral wire, the current In
jk in the neutral wire is generally nonzero

and given by (16.6b).

Hence when In
jk = 0 or V n

j = V n
k , we can use a simplified three-wire model and characterize a three-phase

line by a 3⇥3 series impedance matrix zs
jk that relates the phase voltages and currents:

Vj � Vk = zs
jk I jk (16.7)

where zs
jk := ẑff

jk if In
jk = 0 and zs

jk := zschur
jk if V n

j = V n
k . This is a direct generalization of (16.1d) from a

single-phase model to a three-phase model. Even though the three-wire model (16.7) involves no neutral
voltage or current, the 3⇥3 impedance matrix zs

jk includes the effect of neutral lines and earth return (see
(16.6)).

2The neutral n0 of a Y -configured four-wire device may be through a neutral impedance zn
j to the external terminal n of the

device which is then connected to the neutral of the line. The neutral impedance zn
j of the device may or may not be zero but

V n
j = V n

k .
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Example 16.1. For the case where the neutrals of the sending and receiving ends are grounded through
nonzero impedances, derive the three-wire model from the four-wire model (16.2).

With shunt admittances. To incorporate the effect of line charging, let the series admittance matrix be

ys
jk :=

⇣
zs

jk

⌘�1
, assuming zs

jk is invertible. Let
⇣

ym
jk,y

m
k j

⌘
denote the shunt admittance matrices. The termi-

nal voltages
�
Vj,Vk

�
2 C

6 and the sending-end currents
�
I jk, Ik j

�
2 C

6 respectively are related according
to

I jk = ys
jk
�
Vj�Vk

�
+ ym

jk Vj, Ik j = ys
jk
�
Vk�Vj

�
+ ym

k j Vk (16.8a)

This model is the three-wire version of (16.3). It is illustrated in Figure 16.2 which is a three-wire version
of Figure 16.1. The terms ym

jkVj and ym
k jVk in (16.8a) assume that the shunt admittances connect the buses

I cjk I ckj

I ajk I akj

I bjk I bkj
Vj

a

Vj
b

Vj
c

Vk
a

Vk
b

Vk
c

ŷsjk

ŷmjk ŷmkj

Figure 16.2: A three-wire line characterized by 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

j and k both to the common reference point for terminal voltages, e.g., the ground.

Example 16.2. Derive the three-wire model (16.8a) directly from the four-wire model (16.3) with nonzero
shunt admittances.

To describe the relation between the sending-end line power and the voltages
�
Vj,Vk

�
, define the

matrices S jk,Sk j 2 C
3⇥3 by

S jk := Vj
�
I jk
�H

= Vj
�
Vj�Vk

�H⇣ys
jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H
(16.8b)

Sk j := Vk
�
Ik j
�H

= Vk
�
Vk�Vj

�H⇣ys
jk

⌘H
+ VkVH

k

⇣
ym

k j

⌘H
(16.8c)

The three-phase sending-end line power from terminals j to k along the line is the vector diag
�
S jk
�

of
diagonal entries and that in the opposite direction is the vector diag

�
Sk j
�
. The off-diagonal entries of

these matrices represent electromagnetic coupling between phases. This generalizes (16.1b)(16.1c) from
a single-phase model to a three-phase model.

Example 16.3 (External vs internal variables). Figure 16.3 shows a three-phase voltage source connected
to a three-phase impedance load through the line in Figure 16.2. As the figure highlights, the voltages
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I c
jk I c

kj

I a
jk I a

kj

I b
jk I b

kj
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Vk
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Vk
c

ŷsjk

ŷmjk ŷmkj

zk
ab

zk
bc

zk
ca

E cn E bn
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c

zj
n

ideal
voltage source

series 
impedance impedance zk

∆

voltage source
(EY, zj

Y, zj
n )

Figure 16.3: A voltage source connected to an impedance load through the line in Figure 16.2.

(Vj,Vk) and currents (I jk, Ik j) in (16.8a) are terminal voltages and currents regardless of whether the three-
phase devices connected to terminals j and k are in Y or D configuration. The relation between the terminal
variables and internal variables are derived in Chapters 15.3.3 and 15.3.4.

The terminal variable
�
Vj, I j,s j

�
at each bus j satisfies both the external device model and the line

model (16.8):

0 = f ext
j
�
Vj, I j

�
, s j = diag

⇣
VjIHj

⌘

I j = I jk
�
Vj,Vk

�
, s j = diag

�
S jk
�
Vj,Vk

��

In particular the nodal balance equation (16.8) relate
�
Vj, I j,s j

�
to the terminal voltage Vk at bus k.

Remark 16.1 (Three-wire model). We will mostly use three-wire line models (16.8) for simplicity, but
all analysis extends to four-wire models (including a neutral line) or five-wire models (including a neutral
line and the ground return) almost without change with proper definitions that include neutral and ground
variables; see Example 17.5 in Chapter 17.2 and Exercise 17.7.

In most practical situations the series impedance matrix zs
jk is symmetric, i.e.,

⇣
zs

jk

⌘ff 0
=
⇣

zs
jk

⌘f 0f
,

f ,f 0 = a,b,c, meaning that the coupling between phases f and f 0 does not depend on direction. It is also
common in practice that the shunt admittance matrices ym

jk and ym
k j are symmetric. Formally, we assume

throughout this chapter:

C16.1: zs
jk is symmetric and invertible. Moreover zs

jk = zs
k j.

C16.2: ym
jk and ym

k j are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. By Theorem 4.2, zs
jk is invertible and

Re(ys
jk)� 0 if Re(zs

jk)� 0. Assumption C16.1 implies that ys
jk is symmetric and ys

jk = ys
k j (Exercise 16.1).

Symmetric line. When the line geometry is symmetric (e.g. through transposition) then the series
impedance matrix zs

jk has the following important property:

zaa
jk = zbb

jk = zcc
jk =: z jk and zab

jk = zba
jk = zbc

jk = zcb
jk = zca

jk = zac
jk =: e jk
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so that

zs
jk =

2

4
z jk e jk e jk
e jk z jk e jk
e jk e jk z jk

3

5 =
�
z jk� e jk

�
I + e jk11T (16.9a)

Typically |z jk| > |e jk|. Then the line admittance ys
jk :=

⇣
zs

jk

⌘�1
has the same structure

ys
jk =

2

64
y1

jk y2
jk y2

jk
y2

jk y1
jk y2

jk
y2

jk y2
jk y1

jk

3

75 =
�
y jk�d jk

�
I + d jk11T (16.9b)

where

y jk :=
z jk + e jk�

z jk� e jk
��

z jk +2e jk
� , d jk := �

e jk�
z jk� e jk

��
z jk +2e jk

� (16.9c)

and (16.9c) follows from:

I = ys
jk zs

jk =
⇣�

y jk�d jk
�
I+d11T

⌘⇣�
z jk� e jk

�
I+ e jk11T

⌘

=
�
y jk�d jk

��
z jk� e jk

�
I +

�
e jky jk + z jkd jk + e jkd jk

�
11T

Typically |y jk| > |d jk|. If the sources and loads are balanced so that currents sum to zero ia(t)+ ib(t)+
ic(t) = 0 and charges sum to zero qa(t)+qb(t)+qc(t) = 0 across phases then e jk = 0 (see Chapter 2.1.4),
i.e., zs

jk is diagonal and the voltages and currents of different phases are decoupled. Otherwise zs
jk is

not diagonal and therefore the voltages and currents of different phases are coupled even if the line is
symmetric, i.e., even if the series impedance zs

jk satisfies (16.9). As we will see in Chapter 17.4.4, in
this case, when shunt admittances are assumed zero, a similarity transformation using the unitary matrix
F yields a diagonal impedance matrix z̃s

jk in the sequence coordinate. This leads to decoupled relation
between the sequence voltages and currents across the three-phase line that can be interpreted as defining
separate sequence networks.

Example 16.4 (Special lines). The line in (16.8a) is an abstraction that can model a transmission or
distribution line, a transformer, or parts of series impedances or shunt admittances of generators or loads.
We discuss some degenerate forms of (16.8a) that will be used for this purpose, e.g., for modeling non-
ideal voltage and current sources in Chapter 16.1.4. The series impedance zY

jk in Figure 16.4(a) can be

treated as a line
⇣

ys
jk,y

m
jk,y

m
k j

⌘
with a diagonal series impedance, i.e., ym

jk = ym
k j = 0, and

ys
jk := diag�1

⇣
za

jk,z
b
jk,z

c
jk

⌘
, I jk := ys

jk
�
Vj�Vk

�
, Ik j := �I jk (16.10a)

The Y -configured shunt admittance yY
jk in Figure 16.4(b) can be treated as a line

⇣
ys

jk,y
m
jk,y

m
k j

⌘
with a shunt

admittance in Y configuration, i.e., zs
jk = 0, ym

k j = 0, and

ym
jk := diag

⇣
ya

jk,y
b
jk,y

c
jk

⌘
, Vj = Vk, I jk + Ik j = ym

jk Vj (16.10b)
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Figure 16.4: Special three-wire lines characterized by (16.10).

The D-configured shunt admittance yD
jk in Figure 16.4(c) can be treated as a line

⇣
ys

jk,y
m
jk,y

m
k j

⌘
with a shunt

admittance in D configuration, i.e., zs
jk = 0, ym

k j = 0, and

ym
jk := diag

⇣
yab

jk ,y
bc
jk,y

ca
jk

⌘
, Vj = Vk, ID = ym

jk GVj

where ID :=
�
Iab, Ibc, Ica� are the line-to-line current internal to the D configuration. Therefore for any

currents I jk and Ik j with 1TI jk = 1TIk j = 0, the degenerate line in Figure 16.4(c) is characterized by

ym
jk := diag

⇣
yab

jk ,y
bc
jk,y

ca
jk

⌘
, Vj = Vk, GT† �I jk + Ik j

�
+ b1 = ym

jk GVj (16.10c)

where b 2 C depends on the amount of loop flow in the internal current ID.

We next use these special lines to simplify models for non-ideal voltage and current sources in Y and
D configurations.

16.1.4 Ideal voltage and current sources

A voltage or current source in Y configuration may or may not have a neutral line which may or may
not be grounded. Figure 16.5 shows the case where the neutral is grounded through an impedance zn. In
this case the voltage source

�
EY ,zY ,zn� can be treated as an ideal voltage source

�
EY ,zn� connected to a

(degenerate) three-phase line with a series impedance zY characterized by (16.10a). Similarly a grounded
current source

�
JY ,yy,zn� in Y configuration, as shown in Figure 16.5(b), can be treated as an ideal current

source
�
JY ,zn� connected to a three-phase line with a shunt admittance yY characterized by (16.10b). In

both cases the ideal source has no series impedance or shunt admittance. In general the neutral voltage V n

is nonzero whether or not there is a neutral line and whether or not the neutral is grounded.

A voltage source
�
ED,zD� in D configuration, as shown in Figure 16.6(a), can be treated as an ideal

voltage source ED in D configuration connected to a three-phase line with a series impedance ZD :=
1
9 GTzD

⇣
I� 1

z 1 z̃DT
⌘

G in (15.21b). A current source
�
JD,yD� in D configuration, as shown in Figure



702 Draft: PSA December 13, 2024

V aI a

I b

I c

V b

V c

za

zb

zc

Ecn Ebn

Ean

series
impedance zY

ideal voltage source E Y

zn

(a) Voltage source

V aI a

I b

I c

V b

V c

ya

yb

yc

shunt
admittance yY

ideal current source J Y

zn

J an

J bnJ cn

(b) Current source

Figure 16.5: Three-wire sources in Y configuration. (a) A voltage source. (b) A current source.
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I c
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(b) Current source

Figure 16.6: Three-wire sources in D configuration. (a) A voltage source. (b) A current source.
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16.6(b), can be treated as an ideal current source JD in D configuration connected to a three-phase line
with a shunt admittance yD in D configuration characterized by (16.10c).

Example 16.5 (Ideal sources). Figure 16.7 shows a three-phase voltage source in Y configuration con-
nected to a three-phase current source in D configuration through the line in Figure 16.2. The shunt

I c
jk I c

kj

I a
jk I a

kj

I b
jk I b

kj

Vj
a

Vj
b

Vj
c

Vk
a

Vk
b

Vk
c

ŷsjk

ŷmjk ŷmkj

E cn E bn
E an

zj
a

zj
b

zj
c

zj
n

ideal
voltage source

series 
impedance

voltage source
(EY, zj

Y, zj
n )

current source
(J∆, y∆)

ideal current sourceshunt
admittance

ybc

yca yab

J bc

J ca

J ab

Figure 16.7: A voltage source connected to a current source through the line in Figure 16.2.

admittance yD
k := diag

�
yab

k ,ybc
k ,yca

k
�

of the current source can be absorbed into the shunt admittance ma-
trix ym

k j of the line so that the system is equivalent to an ideal current source JD
k connected to terminal k of

a line with an equivalent shunt admittance matrix ỹm
k j given by:

ỹm
k j :=

2

64
yaa

k j yab
k j yac

k j
yba

k j ybb
k j ybc

k j
yca

k j ycb
k j ycc

k j

3

75

| {z }
yk j

+

2

4
0 yab

k yca
k

yab
k 0 ybc

k
yca

k ybc
k 0

3

5

| {z }
from yD

k

Note that in this equivalent model the two shunt admittance matrices ym
jk and ỹm

k j are generally unequal
even if ym

jk = ym
k j originally. Note also that the series impedance matrix zY

j of the voltage source cannot be
directly absorbed into the line parameters.

16.2 Three-phase transformer models: simplified circuit

In this section we show that, as for a three-phase line, the external model of a three-phase transformer
takes the form of an admittance matrix Y . The general method is similar to that for other three-phase
devices: (i) define internal and terminal variables; (ii) derive conversion rules that relate internal and
terminal variables; (ii) define internal models that relate these internal variables; and finally (iv) eliminate
the internal variables to arrive at the external model. We start by reviewing the single-phase transformer.
The notation and the derivation generalize naturally when these transformers are configured into a three-
phase transformer.
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16.2.1 Review: single-phase transformer

Consider the simplified mode of a single-phase transformer in Figure 3.5 of Chapter 3.1.4, reproduced in
Figure 16.8, consisting of an ideal transformer with a voltage gain n, a leakage admittance ys and a shunt
admittance ym on the primary side. Let the turns ratio be a := n�1 (even though a is used to denote both
a phase and a turns ratio its meaning should be clear from the context). The currents entering/leaving and

ym

yl

V̂j V̂k

I j
nVj

n Vk
n

Ik
n

I j
Vj Vk

IkÎj Îk

1  :   n

ideal transformer

Figure 16.8: Single-phase transformer: simplified model. The internal variables (V̂j, Î j), (V̂k, Îk) and ter-
minal variables (Vj,V n

j , I j), (Vk,V n
k , Ik).

the voltages across the ideal transformer are denoted by variables with a hat:
�
V̂j, Î j

�
,
�
V̂k, Îk

�
. They are

called internal variables. The dot notation on the ideal transformer indicates that the internal currents are
defined to be positive when Î j flows into and Îk flows out of the dotted terminals, as indicated in Figure
16.8.

The terminal voltages
⇣

Vj,V n
j ,Vk,V n

k

⌘
are defined with respect to an arbitrary but common reference

point, e.g., the ground. We emphasize that, while the internal voltages (V̂j,V̂k) are defined to be the voltage
drops across the ideal transformer windings, the terminal voltages

⇣
Vj,V n

j ,Vk,V n
k

⌘
are defined with respect

to a common reference point; in particular the primary and secondary windings are not assumed to be
grounded. The terminal currents

�
I j, Ik

�
are defined to be the sending-end currents from buses j and k

respectively to the other side, as shown in Figure 16.8. The terminal and internal variables are related by
the conversion rule:

I j = yl �Vj�V n
j �V̂j

�
, I j = ymV̂j + Î j, In

j = �I j (16.11a)

V̂k = Vk � V n
k , Îk = �Ik, In

k = �Ik (16.11b)

where the neutral currents (In
j , I

n
k ) are injections from the neutral terminals into the ideal transformer and

follow from In
j = �(ymV̂j + Î j) = �I j and In

k = Îk = �Ik respectively. The internal model of the single-
phase (ideal) transformer is defined by its transformer gains (n,a):

V̂k = nV̂j, Îk =
1
n

Î j =: aÎ j (16.11c)

Eliminating the internal variables from (16.11) yields an external model that relates the terminal variables:

I j = yl ��Vj�V n
j
�
�a(Vk�V n

k )
�
, Ik = �aÎ j = aym �Vj�V n

j
�
�a
✓

1+
ym

yl

◆
I j
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or in terms of an admittance matrix Y :


I j
Ik

�
=


yl �ayl

�ayl a2(yl + ym)

�

| {z }
Y

✓
Vj
Vk

�
�

V n

j
V n

k

�◆
(16.12a)

We can add neutral currents from (16.11) to (16.12a):


In
j

In
k

�
= �


I j
Ik

�
= �Y

✓
Vj
Vk

�
�

V n

j
V n

k

�◆

to obtain a two-wire model of a single-phase transformer:
2

664

I j
Ik
In

j
In
k

3

775 =


Y �Y
�Y Y

�

| {z }
Y 2wire

2

664

Vj
Vk
V n

j
V n

k

3

775 (16.12b)

Both Y and the 4⇥ 4 admittance matrix Y 2wire are complex symmetric. While Y generally has nonzero
row and column sums, Y 2wire has zero row and column sums. The admittance matrix Y 2wire is represented
by a four-node network in Figure 16.9(a). Since Y 2wire has zero row and column sums, there are no shunt

a2 (yl+ ym)yl

ayl

−ayl −ayl

ayl

jn kn

kj

(a) General circuit model.

a(a−1)yl+a2ym(1−a)yl

ayl kj

(b) P circuit model.

Figure 16.9: (a) Circuit model of admittance matrix Y 2wire and (b) when neutrals are grounded with zero
grounding impedances, V n

j = V n
k = 0.

admittances in the four-node network in Figure 16.9(a).

It is often assume implicitly (e.g., in Chapter 3 and Chapter 4.1.3) that neutrals are grounded with zero
grounding impedance and voltages are defined with respect to the ground (assumption C15.1). In this
case, V n

j = V n
k = 0 and the model (16.12a) reduces to a P circuit model:


I j
Ik

�
= Y


Vj
Vk

�

The four-node network in Figure 16.9(b) then reduces to a P circuit in which parallel branches to the
ground are combined into shunt admittances, i.e., it can be characterized by series and shunt admittances
given by

ỹs
jk := ayl, ỹm

jk := (1�a)yl, ỹm
k j := a(a�1)yl +a2ym (16.12c)
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like a transmission or distribution line.

We now explain how these relations (16.11)(16.12) extend naturally to three-phase transformers in an
unbalanced setting.

16.2.2 General derivation method

The external model of a three-phase transformer depends on the models of its constituent single-phase
transformers and their configuration on each side of the three-phase transformer. In particular each of
the primary and secondary sides can be in Y or D configuration, giving four configurations for a standard
three-phase transformer. The external model can be derived in four simple steps, similar to the derivation
for a single-phase transformer or other three-phase devices:

1. Conversion rule: For the primary side, define the internal variables (V̂j, Î j) and external variables
(Vj,V n

j , I j) (defined precisely below) and relate them.

2. Conversion rule: For the secondary side, define the internal variables (V̂k, Îk) and external variables
(Vk,V n

k , Ik) and relate them.

3. Internal model: Couple these relations through the transformer gains (16.11c) on (V̂j, Î j), (V̂k, Îk) for
each of the single-phase transformers.

4. External model: Derive the external model, a relation between external variables (Vj, I j) and (Vk, Ik),
by eliminating the internal variables.

This method is modular and applicable in a general setting where the single-phase transformers may have
different admittances or turns ratios, the neutrals of Y configurations may or may not be connected to the
other side, may or may not be grounded, with zero or nonzero grounding impedances. The method can
also be generalized to non-standard transformers such as open transformers.

We now describe these steps in more detail.

1. Primary side. Consider the primary circuit of a three-phase transformer in Y or D configuration in
Figure 16.10. The internal voltages and currents associated with the ideal transformer are denoted by

V̂Y
j :=

2

4
V̂ an

j
V̂ bn

j
V̂ cn

j

3

5 , ÎY
j :=

2

4
Îan

j
Îbn

j
Îcn

j

3

5 , V̂ D
j :=

2

4
V̂ ab

j
V̂ bc

j
V̂ ca

j

3

5 , ÎD
j :=

2

4
Îab

j
Îbc

j
Îca

j

3

5

The terminal voltages and currents are denoted by

Vj :=

2

4
V a

j
V b

j
V c

j

3

5 , I j :=

2

4
Ia

j
Ib

j
Îc

j

3

5
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yma

yla

V̂j
an

V̂j
bn

V̂j
cn

I j
a

Vj
a

Îj
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Îj
bn

ylc

I j
n

Vj
n

I j
c

Vj
c

Îj
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Figure 16.10: Primary side of a three-phase transformer in Y (left) or D (right) configuration.

regardless of the configuration. For Y configuration the (terminal) neutral voltage and current are denoted
by
⇣

V n
j , In

j

⌘
in the direction shown in Figure 16.10. As for the single-phase model, these voltages are

defined with respect to a common reference point (e.g., the ground); in particular the neutrals are not
assumed to be grounded. Note that the internal voltages and currents

⇣
V̂Y/D

j , ÎY/D
j

⌘
are defined across the

ideal transformers. In general, Vj 6= V̂Y
j +V n

j 1 and V̂ D
j 6= GVj. Moreover, I j 6= ÎY

j and I j 6= GTÎD
j , unless

ym = 0.

The leakage admittances of the transformer are denoted by the diagonal matrix yl := diag
�
yla,ylb,ylc�

and the shunt admittances are denoted by ym := diag
�
yma,ymb,ymc�. From (16.11a) for each single-phase

transformer the terminal variables are related to the internal variables according to the conversion rule:

Y configuration: I j = yl �Vj � V n
j 1 � V̂Y

j
�
, I j = ymV̂Y

j + ÎY
j , In

j = �1TI j (16.13a)

D configuration: ÎD
j = ylGVj � (yl + ym)V̂ D

j , I j = GT

⇣
ÎD

j + ymV̂ D
j

⌘
(16.13b)

For Y configuration the neutral current In
j in (16.13a) follows from In

j = �1T
⇣

ymV̂Y
j + ÎY

j

⌘
= �1TI j. For

D configuration ÎD
j in (16.13b) follows from Îab

j + ymaV̂ ab
j = yla

⇣
V a

j �V b
j �V̂ ab

j

⌘
. Clearly 1TI j = 0 for D

configuration. Moreover (16.13) implies that the internal and terminal voltages are related according to

Y configuration: Vj = V̂Y
j + V n

j 1 + zlI j (16.13c)

D configuration: V̂ D
j = GVj + ylzmGVj � (zl + zm)ÎD

j (16.13d)

where zl := (yl)�1 and zm := (ym)�1.
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2. Secondary side. Consider the secondary side of a three-phase transformer in Y or D configuration in
Figure 16.11. The internal voltages and currents associated with the transformer are denoted by

V̂k
ab

V̂k
bc

V̂k
ca

Vk
a

Vk
b

Vk
c

–Îk
ab

–Îk
bc

–Îk
ca

Ik
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Ik
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V̂k
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V̂k
cn

Vk
a

Vk
b

Vk
c

–Îk
an

–Îk
bn

–Îk
cn

Ik
a

Ik
b

Ik
c

Vk
n

Ik
n

Figure 16.11: Secondary side of a three-phase transformer in Y (left) or D (right) configuration.

V̂Y
k :=

2

4
V̂ an

k
V̂ bn

k
V̂ cn

k

3

5 , ÎY
k :=

2

4
Îan
k

Îbn
k

Îcn
k

3

5 , V̂ D
k :=

2

4
V̂ ab

k
V̂ bc

k
V̂ ca

k

3

5 , ÎD
k :=

2

4
Îab
k

Îbc
k

Îca
k

3

5

The terminal voltages and currents are denoted by

Vk :=

2

4
V a

k
V b

k
V c

k

3

5 , Ik :=

2

4
Ia
k

Ib
k

Îc
k

3

5

regardless of the configuration. For Y configuration the neutral voltage and current are denoted by
�
V n

k , In
k
�

in the direction shown in Figure 16.11.

From (16.11b) for each single-phase transformer the terminal variables are related to the internal vari-
ables according to the conversion rule:

Y configuration: Vk = V̂Y
k + V n

k 1, Ik = ÎY
k , In

k = �1TÎY
k = �1TIk (16.14a)

D configuration: V̂ D
k = GVk, Ik = GTÎD

k (16.14b)

For D configuration, 1TIk = 0.
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3. Internal model. The voltage and current gains across the ideal transformer define an internal model
which couples the internal variables in the primary and secondary circuits and connects the relations
(16.13) and (16.14). These gains are determined by the turns ratios of the constituent single-phase ideal
transformers according to (16.11c), but tailored for different configurations. Denote the voltage gain of
the ideal three-phase transformer by a real diagonal matrix n := diag

�
na,nb,nc� 2R

3⇥3 and its turns ratio
by a := n�1 2 R

3⇥3. Then

YY configuration: V̂Y
k = nV̂Y

j , �ÎY
k = a ÎY

j (16.15a)

DD configuration: V̂ D
k = nV̂ D

j , �ÎD
k = a ÎD

j (16.15b)

DY configuration: V̂Y
k = nV̂ D

j , �ÎY
k = a ÎD

j (16.15c)

Y D configuration: V̂ D
k = nV̂Y

j , �ÎD
k = a ÎY

j (16.15d)

These are internal models of a three-phase (ideal) transformer. The negative signs on ÎY
k and ÎD

k are due
to the convention that the transformer current gain is defined for secondary current leaving the dotted
terminal of the secondary winding (see Figure 16.11).

4. External model. The external model of a three-phase transformer relates the terminal variables
(Vj,V n

j , I j) and (Vk,V n
k , Ik) on both sides of the transformer in terms of the leakage admittance ys, the shunt

admittance ym, and the turns ratio a. It can be derived by eliminating the internal variables
⇣

V̂Y/D
j , ÎY/D

j

⌘

and
⇣

V̂Y/D
k , ÎY/D

k

⌘
from the conversion rules (16.13) (16.14) and the internal model (16.15).

The external models, derived in detail below, turn out to have a striking modular structure. To describe
the general form let V :=

�
Vj,Vk

�
2 C

6 and I :=
�
I j, Ik

�
2 C

6. Define a 6⇥6 admittance matrix YYY and a
column vector g 2 C

6:

YYY :=


yl �ayl

�ayl a2(yl + ym)

�
, g :=


V n

j 1
V n

k 1

�
(16.16a)

where 1 := (1,1,1). Let D denote a 6⇥6 block diagonal matrix whose value depends on configuration. As
we will explain below YYY is the admittance matrix of a transformer in YY configuration. It is the same as
that in (16.12a) for a single-phase transformer, except that a,y are now 3⇥3 diagonal matrices rather than
scalars. The vector g is the neutral voltages of a transformer in YY configuration. For DD configuration,
Dg = 02C6 in (16.16b), reflecting that a D configuration contains no neutral voltage; similarly for DY and
Y D configurations. The external models of three-phase transformers in YY , DD, DY and Y D configurations
take the form

I = DTYYY D(V � g) (16.16b)
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where D is a 6⇥6 block diagonal matrix that depends on configuration:

YY configuration: D :=

I 0
0 I

�
(16.16c)

DD configuration: D :=


G 0
0 G

�
(16.16d)

DY configuration: D :=


G 0
0 I

�
(16.16e)

Y D configuration: D :=

I 0
0 G

�
(16.16f)

Hence the external models of DD, DY , Y D configurations can be obtained by pre-multiplying the admit-
tance matrix YYY of the YY configuration by GT and post-multiplying it by G for a (primary or secondary)
circuit that is in D configuration and setting its neutral voltage to zero. This has a simple interpretation.
Take DD configuration as an example: D(V � g) = DV = (GVj,GVk) can be interpreted as the internal
line-to-line voltages of a certain three-phase device in D configuration, YYY DV can be interpreted as the
corresponding internal currents, and hence DT(YYY DV ) converts this internal current to terminal currents
that are externally observable.

Remark 16.2. 1. Neither the voltage gains n :=
�
na,nb,nc� nor the admittances yl :=

�
yla,ylb,ylc�,

ym :=
�
yma,ymb,ymc� may be equal across phases a,b,c. Unless otherwise specified we assume n

and a are real matrices. This is the case if they represent voltage gains and turns ratios of constituent
single-phase transformers (they can be complex if phase-shifting transformers are involved or if the
three-phase transformer is the YY equivalent model of a DY -configured transformer in a balanced
setting; see Example 16.7).

2. The derivation method is modular. If a different single-phase transformer model is used, e.g., with
complex transformer gains, then the relations (16.13) or (16.14) need to be modified but the structure
of the derivation remains unchanged.

3. The model (16.16) is a three-wire model that does not include neutral currents. See (16.19c) for a
four-wire model that does.

4. The method is also applicable to non-standard transformers such as open transformers. Indeed the
external model of an open DD transformer is also given by (16.16b) (16.16d) but with the diagonal
matrices yl,ym in YYY in (16.16a) replaced by diag

�
yla,ylb,0

�
and diag

�
yma,ymb,0

�
with ylc = ymc =

0 on the third leg that has no transformer.

We will illustrate this general method by deriving the external models (16.16) of three-phase trans-
formers in YY , DD, DY and Y D configurations and then show how to adapt the method to non-standard
transformers such as open transformers. We start by explaining when a three-phase transformer can be
represented by a three-phase P circuit.
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16.2.3 Three-phase P circuit, block symmetry, symmetry

Refer to the P circuit model in Figure 16.9(b) for a single-phase transformer where the neutral voltages
V n

j = V n
k = 0. The series and shunt admittances

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
of the P circuit are given by (16.12c). They

define a 2⇥ 2 admittance matrix Yjk that relates
�
Vj,Vk

�
to
�
I jk, Ik j

�
that is complex symmetric. This is

because the application of Kirchhoff’s laws to this circuit yields

I jk = ỹs
jk
�
Vj�Vk

�
+ ỹm

jkVj, Ik j = ỹs
jk
�
Vk�Vj

�
+ ỹm

jkVk (16.17)

Therefore a single-phase transformer always has a P circuit representation and, in this sense, behaves like
a single-phase transmission line.

This is not the case for three-phase transformers. Consider a three-phase transformer and denote by Yjk
the 6⇥6 admittance matrix that maps its voltage vectors

�
Vj,Vk

�
2C6 to its current vectors

�
I jk, Ik j

�
2C6,

i.e.,


I jk
Ik j

�
=


Yjk,11 Yjk,12
Yjk,21 Yjk,22

�

| {z }
Yjk


Vj
Vk

�

If Yjk can be represented by a three-phase P circuit model, i.e., if it behaves like a three-phase transmission
line as shown in Figure 16.2, then (16.17) must also hold but

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
are now 3⇥ 3 matrices, not

scalars. This means that the two off-diagonal submtrices of Yjk 2 C
6 must be equal Yjk,12 = Yjk,21 and Yjk

must be of the form

Yjk =


ỹs

jk + ỹm
jk �ỹs

jk
�ỹs

jk ỹs
jk + ỹm

k j

�

We call such a matrix block symmetric (see Definition 17.1). In contrast, if Yjk is symmetric then YT

jk,12 =
Yjk,21. As we will see a three-phase transformer may not be block symmetric and hence may not have a
three-phase P circuit representation. For balanced systems, this manifests itself as the per-phase model
of a DY or Y D-configured transformer having no single-phase P circuit representation because of the its
complex voltage gain K(n), as discussed in Chapter 4.1.3. This phenomenon is generalized in the rest of
this section for unbalanced systems.

Whether or not Yjk is block symmetric we can always interpret Yjk as the 6⇥6 admittance matrix of a
single-phase network consisting of 6 buses, indexed by if , i = j,k and f 2 {a,b,c}, as studied in Chapter
4.2. This is referred to as its single-phase equivalent circuit and studied in Chapter 17.1.2.

A matrix can be symmetric but not block symmetric, and vice versa. Symmetry of a matrix is deter-
mined only by its off-diagonal entries but its diagonal entries can be arbitrary. Block symmetry is deter-
mined only by its off-diagonal blocks but its diagonal blocks can be arbitrary. A symmetric Yjk is block
symmetric if YT

jk,12 = Yjk,12. A block symmetric Yjk is symmetric if all submatrices Yjk,12, Yjk,11,Yjk,22 are
symmetric. These are reasonable assumptions for modeling a three-phase transmission or distribution line,
i.e., Yjk for a transmission or distribution line can be assumed to be both block symmetric and symmetric
and therefore has both a three-phase P circuit representation and a single-phase equivalent circuit. This is
not necessarily the case for three-phase transformers.
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We will generalize the concepts of block symmetry and single-phase equivalent circuit in Chapter
17.1.2 to a network setting.

16.2.4 YY configuration

1  :  n c

yma
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V̂j
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V̂j
bn

V̂j
cn

I j
a

Vj
a

Îj
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ylb
I j
b

Vj
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Îj
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ylc

I j
n

Vj
n
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c

Vj
c

Îj
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ymc
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Vk
b
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–Îk
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–Îk
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–Îk
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Ik
a

Ik
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Ik
c

Vk
n

Ik
n

Figure 16.12: YY -configured transformer.

Referring to Figure 16.12 and combining the variables defined in Chapter 16.2.2 for each configuration,
the internal voltages and currents associated with the ideal transformer are:

V̂Y
j :=

2

4
V̂ an

j
V̂ bn

j
V̂ cn

j

3

5 , ÎY
j :=

2

4
Îan

j
Îbn

j
Îcn

j

3

5 , V̂Y
k :=

2

4
V̂ an

k
V̂ bn

k
V̂ cn

k

3

5 , ÎY
k :=

2

4
Îan
k

Îbn
k

Îcn
k

3

5

The terminal voltages and currents are:

Vj :=

2

4
V a

j
V b

j
V̂ c

j

3

5 , I j :=

2

4
Ia

j
Ib

j
Îc

j

3

5 , Vk :=

2

4
V a

k
V b

k
V̂ c

k

3

5 , Ik :=

2

4
Ia
k

Ib
k

Îc
k

3

5

as well as the the neutral voltages and currents
⇣

V n
j , In

j

⌘
and

�
V n

k , In
k
�

as shown in the figure. The relation
between the internal and terminal variables is given by (16.13a) and (16.14a) for Y configurations on the
primary and secondary sides respectively:

I j = yl �Vj � V n
j 1 � V̂Y

j
�
, I j = ymV̂Y

j + ÎY
j , In

j = �1TI j (16.18a)

Vk = V̂Y
k + V n

k 1, Ik = ÎY
k , In

k = �1TIk (16.18b)
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The transformer gains that relate the internal variables are:

V̂Y
k = nV̂Y

j , ÎY
k = �a ÎY

j (16.18c)

Here yl := diag
�
yla,ylb,ylc� is the leakage admittance matrix, ym := diag

�
yma,ymb,ymc� is the shunt ad-

mittance matrix, n := diag
�
na,nb,nc� is the voltage gain matrix and a := n�1 is the turns ratio matrix.

We can derive an external model that relates the terminal variables by eliminating the internal variables
from (16.18). Specifically we have from (16.18a)(16.18b)

V̂Y
j = (Vj�V n

j 1) �
⇣

yl
⌘�1

I j, V̂Y
k = Vk�V n

k 1

ÎY
j = I j � ym(Vj�V n

j 1) + ym
⇣

yl
⌘�1

I j, ÎY
k = Ik

Substituting it into (16.18c) yields the external model of a three-phase transformer in YY configuration:


I j
Ik

�
=


yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(16.19a)

In
j = �1TI j, In

k = �1TIk (16.19b)

where we have used yla = ayl and a(yl + ym)a = a2(yl + ym) since they are all diagonal matrices. The
expression (16.19a) is the same as the external model (16.12a) for a single-phase transformer, except
that, instead of scalars, the variables

�
Vj, I j,Vk, Ik

�
are vectors in C

3 and the parameters a,yl,ym are 3⇥3
matrices. It is the expression (16.16).

We can also express the neutral currents
⇣

In
j , I

n
k

⌘
in terms of the terminal voltages instead of the

terminal currents using (16.19a)(16.19b):


In

j
In
k

�
= �


1T 0
0 1T

�
YYY

| {z }
Y n

YY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆

A four-wire model includes the neutral currents. To derive the four-wire model we rewrite this and (16.19a)
as


I j
Ik

�
=


yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


Vj
Vk

�
�


yl1 �ayl1
�ayl1 a2(yl + ym)1

�

| {z }
YYY (I2⌦1)


V n

j
V n

k

�


In

j
In
k

�
= �


1Tyl �1Tayl

�1Tayl 1Ta2(yl + ym)

�

| {z }
(I2⌦1T)YYY


Vj
Vk

�
+


1Tyl1 �1Tayl1
�1Tayl1 1Ta2(yl + ym)1

�

| {z }
(I2⌦1T)YYY (I2⌦1)


V n

j
V n

k

�
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where I2 is the identity matrix of size 2, 1Tyl1 = Âf ylf , 1Tayl1 = Âf af ylf , and 1Ta2(yl + ym)1 =

Âf (af )2(ylf + ymf ). Hence the four-wire model of a three-phase transformer in YY configuration is:

2

664

I j
Ik
In

j
In
k

3

775 =

"
YYY �YYY (I2⌦1)

�
⇣
I2⌦1T

⌘
YYY

⇣
I2⌦1T

⌘
YYY (I2⌦1)

#

| {z }
Y 4wire

YY

2

664

Vj
Vk
V n

j
V n

k

3

775 (16.19c)

This model extends (16.12b) with neutral currents to three-phase transformers. The matrix YYY in (16.19a)
is both symmetric and block symmetric (see Chapter 16.2.3) because a, yl and ym are diagonal. This,
together with (A⌦B)T = AT⌦BT, imply that the four-wire admittance matrix Y 4wire

YY is also symmetric.
While the admittance matrix YYY generally has nonzero row and column sums, Y 4wire

YY has zero row and
column sums.

If both neutrals are grounded with zero impedances and voltages are defined with respect to the ground,
then V n

j = V n
k = 0 and (16.19a) reduces to


I j
Ik

�
= YYY


Vj
Vk

�
=


yl �ayl

�ayl a2(yl + ym)

�
Vj
Vk

�

which can be represented as a three-phase P circuit. This means that the external behavior of a YY
transformer, when its neutral voltages are zero, has the same structure as that of a three-phase transmission
line and can be specified by 3⇥3 series and shunt admittance matrices

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
where

ỹs
jk := ayl, ỹm

jk := (I�a)yl, ỹm
k j := a(a� I)yl +a2ym (16.19d)

This extends the single-phase P circuit model (16.12c) to the three-phase setting.

16.2.5 DD configuration

Referring to Figure 16.13, and combining the variables defined in Chapter 16.2.2 for each configuration,
the internal voltages and currents associated with the ideal transformer are:

V̂ D
j :=

2

4
V̂ ab

j
V̂ bc

j
V̂ ca

j

3

5 , ÎD
j :=

2

4
Îab

j
Îbc

j
Îca

j

3

5 , V̂ D
k :=

2

4
V̂ ab

k
V̂ bc

k
V̂ ca

k

3

5 , ÎD
k :=

2

4
Îab
k

Îbc
k

Îca
k

3

5

The terminal voltages and currents are denoted by (Vj, I j), (Vk, Ik), as for a YY -configured transformer. The
relation between the internal and terminal variables is given by (16.13b) and (16.14b) for D configurations:

ÎD
j = ylGVj � (yl + ym)V̂ D

j , I j = GT

⇣
ÎD

j + ymV̂ D
j

⌘
(16.20a)

V̂ D
k = GVk, Ik = GTÎD

k (16.20b)
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Figure 16.13: DD-configured transformer.

The transformer gains that relate the internal variables are:

V̂ D
k = nV̂ D

j , ÎD
k = �a ÎD

j (16.20c)

To derive an external model, eliminate the internal variables from (16.20). We obtain from (16.20b)(16.20c):

V̂ D
j = n�1V̂ D

k = aGVk, GTaÎD
j = �Ik

Substitute into the first expression in (16.20a) to eliminate (V̂ D
j , ÎD

j ):

Ik = �
⇣

GTaylG
⌘

Vj +
⇣

GTa2(yl + ym)G
⌘

Vk

Substitute again V̂ D
j into the first expression in (16.20a) to obtain ÎD

j = ylGVj � a(yl + ym)GVk. Substitute
this and V̂ D

j into the second expression in (16.20a) to eliminate (V̂ D
j , ÎD

j ):

I j =
⇣

GTylG
⌘

Vj �
⇣

GTaylG
⌘

Vk

The external model of a three-phase transformer in DD configuration is hence


I j
Ik

�
=


GTyl G �GTayl G
�GTayl G GTa2(yl + ym)G

�

| {z }
YDD


Vj
Vk

�
(16.21a)
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or in terms of the admittance matrix YYY in (16.19a) for a YY -configured transformer:


I j
Ik

�
=


GT 0
0 GT

�
yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


G 0
0 G

�
Vj
Vk

�
(16.21b)

This is the expression (16.16). Unlike YYY the admittance matrix YDD is not invertible (it has zero row and
column sums). Since YDD is block symmetric (as well as symmetric) it can be represented as a three-phase
P circuit. This means that its external behavior has the same structure as that of a three-phase transmission
line and can be specified by 3⇥3 series and shunt admittance matrices

⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
where

ỹs
jk := GTayl G, ỹm

jk := GT (I�a)yl G, ỹm
k j := GT

⇣
a(a� I)yl +a2ym

⌘
G (16.21c)

This is the P circuit model (16.19d) for YY -configured transformer, multiplied on both sides by GT and G.

The submatrices in (16.21b) are (cf. Y D in (15.21a)):

GTyl G =

2

4
yla + ylc �yla �ylc

�yla ylb + yla �ylb

�ylc �ylb ylc + ylb

3

5 , GTayl G =

2

4
ŷla + ŷlc �ŷla �ŷlc

�ŷla ŷlb + ŷla �ŷlb

�ŷlc �ŷlb ŷlc + ŷlb

3

5

where ŷlf := af ylf for f 2 {a,b,c}. In the special case where the single-phase transformers are identical,
i.e., yl = yla

I and a := aa
I, these matrices are particularly simple:

⇣
yla
⌘

GTG = yla

2

4
2 �1 �1
�1 2 �1
�1 �1 2

3

5 ,
⇣

aayla
⌘

GTG = aayla

2

4
2 �1 �1
�1 2 �1
�1 �1 2

3

5 (16.22)

These expressions are often used in simplified models of three-phase transformers.

16.2.6 DY configuration

This is a popular configuration for stepdown transformers in distribution systems. Referring to Figure
16.14, the internal voltages and currents associated with the ideal transformer are:

V̂ D
j :=

2

4
V̂ ab

j
V̂ bc

j
V̂ ca

j

3

5 , ÎD
j :=

2

4
Îab

j
Îbc

j
Îca

j

3

5 , V̂Y
k :=

2

4
V̂ an

k
V̂ bn

k
V̂ cn

k

3

5 , ÎY
k :=

2

4
Îan
k

Îbn
k

Îcn
k

3

5

The terminal voltages and currents are denoted by (Vj, I j), (Vk, Ik), as before. The relation between the
internal and terminal variables is given by (16.13b) for D configuration on the primary side and (16.14a)
for Y configuration on the secondary side:

ÎD
j = ylGVj � (yl + ym)V̂ D

j , I j = GT

⇣
ÎD

j + ymV̂ D
j

⌘
(16.23a)

Vk = V̂Y
k + V n

k 1, Ik = ÎY
k , In

k = �1TIk (16.23b)
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Figure 16.14: DY -configured transformer.

The transformer gains that relate the internal variables are:

V̂Y
k = nV̂ D

j , ÎY
k = �a ÎD

j (16.23c)

Eliminating the internal variables from (16.23), the external model of a three-phase transformer in DY
configuration is (Exercise 16.2):


I j
Ik

�
=


GTyl G �GTayl

�ayl G a2(yl + ym)

�

| {z }
YDY


Vj
Vk

�
�

�GTayl

a2(yl + ym)

�
V n

k 1 (16.24a)

or in terms of the admittance matrix YYY in (16.19a):


I j
Ik

�
=


GT 0
0 I

�
yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


G 0
0 I

�✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(16.24b)

It is the expression (16.16). The matrix YDY in (16.24a) is not invertible. It is symmetric but not block
symmetric. Therefore it cannot be represented as a three-phase P circuit even if the neutral voltage V n

k = 0.

Even though there is no neutral line on the primary side, the primary current I j is affected by the
neutral voltage V n

k on the secondary side, unless a = aa
I and y = ya

I, i.e., the single-phase transformers
are identical, in which case GT1 = 0 and I j becomes independent of V n

k .
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16.2.7 Y D configuration

Figure 16.15 shows a Y D-configured three-phase transformer. Its external model is (Exercise 16.3):

V̂k
ab

V̂k
bc

V̂k
ca

Vk
a

Vk
b

Vk
c

–Îk
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Figure 16.15: Y D-configured transformer.


I j
Ik

�
=


yl �aylG

�GTayl GTa2(yl + ym)G

�

| {z }
YY D


Vj
Vk

�
�


yl

�GTayl

�
V n

j 1 (16.25a)

or in terms of the admittance matrix YYY in (16.19a):


I j
Ik

�
=


I 0
0 GT

�
yl �ayl

�ayl a2(yl + ym)

�

| {z }
YYY


I 0
0 G

�✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(16.25b)

It is the expression (16.16). The matrix YY D is singular, symmetric but not block symmetric. In particular
it cannot be represented as a three-phase P circuit even if the neutral voltage V n

j = 0.

16.2.8 Open transformer

Open transformers where at least one leg of a three-phase transformer is open (not connected) are widely
used in distribution systems to connect single-phase loads, e.g., a household. The analysis of a closed
transformer can be adapted to that of an open transformer. Indeed their external models are identical,
except that the admittance matrices are ỹl = diag

�
yla,ylb,0

�
and ỹm = diag

�
yma,ymb,0

�
for an open trans-

former without the third leg (compare (16.21) with (16.26) for an open DD transformer). We now derive
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the external model of an open DD transformer. Other configurations, such as open YY , open DY , or open
Y D, can be analyzed in a similar manner. The analysis proceeds in the same manner as for its closed
version, once the voltage gain expression has been modified to represent the open transformer leg where
the internal voltages V̂ ca

j and V̂ ca
k are no longer related by a voltage gain.

Figure 16.16 shows an open DD-configured transformer where only two single-phase transformers are
used. The leakage admittances of these transformers are

�
ya,yb� and their voltage gains are

�
na,nb�. The
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Figure 16.16: Open DD-configured transformer.

internal voltages and currents associated with the ideal transformer are:

V̂ D
j :=

2

4
V̂ ab

j
V̂ bc

j
V̂ ca

j

3

5 , ÎD
j :=

2

4
Îab

j
Îbc

j
Îca

j

3

5 , V̂ D
k :=

2

4
V̂ ab

k
V̂ bc

k
V̂ ca

k

3

5 , ÎD
k :=

2

4
Îab
k

Îbc
k

Îca
k

3

5

The terminal voltages and currents are denoted by (Vj, I j) 2 C
6, (Vk, Ik) 2 C

6, as before. We will show
that its external model is


I j
Ik

�
=


GTỹl G �GTaỹl G
�GTaỹl G GTa2(ỹl + ỹm)G

�

| {z }
YopenDD


Vj
Vk

�
(16.26a)

or


I j
Ik

�
=


GT 0
0 GT

�
ỹl �aỹl

�aỹl a2(ỹl + ỹm)

�
G 0
0 G

�
Vj
Vk

�
(16.26b)

where

ỹl :=

2

4
yla 0 0
0 ylb 0
0 0 0

3

5 , ỹm :=

2

4
yma 0 0
0 ymb 0
0 0 0

3

5 (16.26c)
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where a := diag
�
aa,ab,ac�. The constant ac is introduced for notational convenience and can take any

arbitrary nonzero finite value, e.g. ac = 1, as its value does not affect the external model. Hence the
admittance matrix YopenDD in (16.26a)(16.26b) are the same as YDD in (16.21a)(16.21b) for a closed DD
transformer, except that ylc = ymc = 0 on the third leg that has no transformer. It is also the same as the
expression (16.16) with (yl,ym) in YYY replaced by (ỹl, ỹm). The matrix YopenDD is block symmetric (as well
as symmetric) and therefore has a three-phase P circuit representation with series and shunt admittance
matrices:

ỹs
jk := GTaỹlG, ỹm

jk := GT (I�a) ỹlG, ỹm
k j := GT

⇣
a(a� I)ỹl +a2ỹm)

⌘
G (16.26d)

which is the same as (16.21c) with (yl,ym) replaced by (ỹl, ỹm).

For notational convenience, we introduce an artificial voltage gain nc which can take any nonzero
finite values, e.g., nc := 1. As before let n := diag

�
na,nb,nc� and a := n�1. As defined above, the leakage

and magnetizing admittances are ỹl := diag
�
yla,ylb,0

�
and ỹm := diag

�
yma,ymb,0

�
respectively. The fact

that the third leg of the transformer is open requires two adjustments to the derivation of a closed DD
transformer. These adjustments modify the internal model (the current and voltage gain on the missing
leg) and the derivation then follows the same procedure, as we now explain.

1. The relation between the internal and terminal variables are still given by (16.20a)(16.20b) with the
following modifications: replace (yl,ym) by (ỹl, ỹm) and enforce the current on the missing leg on
the secondary side to be zero (see Figure 16.16):

ỹlc := 0, ỹmc := 0, Îca
k := 0 (16.27a)

This implies that Îca
j = 0 and Ic

j =�Îbc
j on the primary side from the last row of (16.20a).

2. For the internal model (16.20c), the current gain ÎD
k =�a ÎD

j remains unchanged (given (16.27a)), but
the voltage gain needs modification because the internal voltages V̂ ca

k :=V c
k �V a

k and V̂ ca
j :=V c

j �V a
j

are no longer related by the voltage gain n, unlike in a closed transformer.

In order to follow the same derivation we will replace the voltage gain expression V̂ D
j = aV̂ D

k in
(16.20c), as follows. In the analysis of a closed DD transformer, the voltage gain is used to relate V̂ D

j
to Vk through

V̂ D
j = aV̂ D

k = aGVk

For an open DD transformer, the last row of this relation is rewritten as:

V̂ ca
j = acV̂ ca

k +
�
V̂ ca

j �acV̂ ca
k
�

leading to the voltage relation V̂ D
j = aV̂ D

k + E3

⇣
V̂ D

j �aV̂ D
k

⌘
where E3 := diag(0,0,1). The right-

hand side can then be written in terms of the terminal voltage Vj because V̂ ca
j := V c

j �V a
j :

V̂ D
j = E3GVj + (I�E3)aV̂ D

k (16.27b)

which can then be related to Vk using V̂ D
k = GVk.
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In summary, these two modifications (16.27) means that, for open DD transformer, the conversion rules
are (16.20a)(16.20b) with (yl,ym) replaced by (ỹl, ỹm):

ÎD
j = ỹlGVj � (ỹl + ỹm)V̂ D

j , I j = GT

⇣
ÎD

j + ỹmV̂ D
j

⌘
(16.28a)

V̂ D
k = GVk, Ik = GTÎD

k (16.28b)

and the internal model (16.20c) is replaced by:

V̂ D
j = E3GVj + (I�E3)aV̂ D

k , ÎD
k = �a ÎD

j (16.28c)

We then follow the same derivation for the external model. For example we obtain from (16.28b)(16.28c):

V̂ D
j = E3GVj + (I�E3)aGVk, GTaÎD

j = �Ik

Substitute into the first expression in (16.28a) to eliminate (V̂ D
j , ÎD

j ):

Ik = �
⇣

GTaỹlG
⌘

Vj +
⇣

GTa2(ỹl + ỹm)G
⌘

Vk

where we have used (ỹl + ỹm)E3 = 0. Similarly we have

I j =
⇣

GTỹlG
⌘

Vj �
⇣

GTaỹlG
⌘

Vk

verifying the external model (16.26). With ylc = ymc = 0 the matrices are explicitly:

GTỹl G =

2

4
yla �yla 0
�yla ylb + yla �ylb

0 �ylb ylb

3

5 , GTaỹl G =

2

4
ŷla �ŷla 0
�ŷla ŷlb + ŷla �ŷlb

0 �ŷlb ŷlb

3

5

where ŷlf := af ylf for f 2 {a,b}.

Example 16.6 (Bernie Leseiutre, Allerton Conference, September 2023). Bernie Leseiutre told me about
an interesting circulating loop flow phenomenon in an open DD transformer, shown in Figure He said
that even if the D load is purely inductive, there is real power P flowing between the two single-phase
transformers, even if the transformers are (assumed) ideal. They have verified this experimentally. The
terminal currents/powers are purely reactive, so real current/power only are in internal vars. This show be
derivable from the results here.

16.2.9 Single-phase equivalent in balanced setting

A three-phase transformer is equivalent to a YY -configured transformer if they have the same external
model, i.e., their admittance matrices are equal. In general a three-phase transformer not in YY configu-
ration does not have a YY equivalent, except in a balanced setting. In a balanced setting, not only does a
three-phase transformer have a YY equivalent, there is also a single-phase transformer that can be naturally
interpreted as the single-phase equivalent of the YY equivalent. For simplicity we assume ym = 0.
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Figure 16.17: Unitary voltage network in each phase f of a three-phase transformer.

Consider a DD-configured transformer whose external model is determined by the admittance matrix
YDD in (16.21b), reproduced here:

YDD :=


GT 0
0 GT

�
yl �ayl

�ayl a2yl

�
G 0
0 G

�

Recall from (16.19) that the admittance matrix ỸYY of a YY -configured transformer with turns ratio ã and
leakage admittance ỹl is given by

ỸYY :=


ỹl �ãỹl

�ãỹl ã2ỹl

�

The DD-configured transformer has a YY equivalent if YDD = ỸYY for some ỸYY . Since the submatrices of
ỸYY are diagonal while those of YDD are not, there is generally no YY equivalent, even if the constituent
single-phase transformers are identical, i.e., if yl = yla

I and a = aa
I (see (16.22)).

The DD-configured transformer does have a YY equivalent, however, if the system is balanced, i.e., the
single-phase transformers are identical and voltages and currents are positive-sequence sets. This property
is used in Chapter 3.4 for per-phase analysis and can be justified using the external models derived here.

Suppose

yl := yla
I, a := aa

I, Vj := v ja+, Vk := vka+

where we recall that a+ := (1,a,a2) is the unit positive-sequence vector and a := e�i2p/3. In this case
Corollary 1.3 implies

GVj = (1�a)Vj, GTVj = (1�a2)Vj

The external model (16.21a) of the DD-configured transformer then reduces to (with ym = 0):

I j =
⇣

GTylG
⌘

Vj �
⇣

GTaylG
⌘

Vk = (1�a)(1�a2)yla �Vj � aaVk
�

Ik = �
⇣

GTaylG
⌘

Vj +
⇣

GTa2ylG
⌘

Vk = (1�a)(1�a2)yla
⇣
�aaVj + (aa)2Vk

⌘
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Since (1�a)(1�a2) = 3 we have


I j
Ik

�
=


ỹ �aỹ
�aỹ a2ỹ

�

| {z }
ỸYY


Vj
Vk

�

where ỹl = 3yla
I and a = aa

I. Hence when the system is balanced a DD-configured transformer has a YY
equivalent with the same turns ratio a but a leakage admittance ỹl three times the original admittance yl .
Since the admittance matrix of the YY equivalent is

ỸYY :=
✓

3yla


1 �aa

�aa (aa)2

�◆
⌦ I

we can interpret

Ỹ1f := 3yla


1 �aa

�aa (aa)2

�

as the admittance matrix of the single-phase equivalent of the DD transformer in balanced setting.

In a balanced system a DY -configured transformer also has a YY equivalent when V n
k = 0 and hence

a single-phase equivalent, but the YY equivalent requires complex, rather than real, turns ratios. This is
explained in the next example.

Example 16.7 (Single-phase equivalent of DY configuration with V n
k = 0). Consider a DY -configured

transformer. Suppose, not only is the system balanced, i.e.,

yl := yla
I, a := aa

I, Vj := v ja+, Vk := vka+

but the neutral on the secondary side is also grounded with zero grounding impedance, i.e., V n
k = 0. Show

that its YY equivalent and single-phase equivalent are respectively

ỸYY := Ỹ1f ⌦ I, Ỹ1f := ỹla


1 �ãa

�ãaH |ãa|2
�

where

ỹla := 3yla, ãa :=
aa

1�a
=

aa
p

3eip/6

Solution. The external model of a DY -configured transformer is given by (16.24a). Applying Corollary
1.3 (GVj = (1�a)Vj, GTVj = (1�a2)Vj), (1�a)(1�a2) = 3 and GT1 = 0, we have3

I j =
⇣

GTyl G
⌘

Vj �
⇣

GTayl
⌘

(Vk�V n
k 1) = 3yla

✓
Vj �

aa

1�a
Vk

◆

Ik =
⇣
�ayl G

⌘
Vj +

⇣
a2yl

⌘
(Vk�V n

k 1) = 3yla

 
� aa

1�a2Vj +

✓
aa
p

3

◆2
(Vk�V n

k 1)

!

3To illustrate the effect of V n
k on YY equivalent we do not substitute V n

k = 0 until the last step.
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Since aa 2 R we have
✓

aa

1�a2

◆H

=
aa

1�a
=

aa
p

3eip/6

Define the matrices

ỹl := 3yla
I, ã :=

aa

1�a
I, |ã|2 :=

(aa)2

3
I (16.29a)

The external model of the DY -configured transformer is then


I j
Ik

�
=


ỹl �ãỹl

�ãHỹl |ã|2ỹl

�
Vj
Vk

�
�


0
|ã|2ỹl V n

k 1

�
(16.29b)

To derive its YY equivalent, consider a YY -configured transformer with a complex voltage gain (matrix)
n̂ := diag

�
n̂a, n̂b, n̂c� 2 C

3⇥3 and its turns ratio (matrix) â := n̂�1. Instead of (16.18c) for real transformer
gains, the transformer gains when n̂ and â are complex are given by

V̂Y
k = n̂V̂Y

j , ÎY
k = âH ÎY

j (16.30a)

Let ŷ 2 C
3⇥3 denote its leakage admittance matrix. Then its external model can be shown to be (Exercise

16.5):


I j
Ik

�
=


ŷl �âŷl

�âHŷl |â|2ŷl

�

| {z }
ỸYY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆
(16.30b)

In
j = �1TI j, In

k = �1TIk (16.30c)

where |â|2 is the matrix |â|2 := diag
�
1/|n̂a|2,1/|n̂b|2,1/|n̂c|2

�
. Note that the matrix ỸYY is not complex

symmetric and therefore does not have a three-phase P circuit representation when â is complex.

Comparing (16.29b) and (16.30b) we see that, if V n
k = 0, then the DY -configured transformer has a

YY equivalent whose neutrals are grounded with zero grounding impedances on both sides and whose
admittance matrix ŷ = ỹ and complex turns ratio matrix â = ã are given by (16.29a). This completes the
proof.

16.3 Three-phase transformer models: unitary voltage network

In this section we extend the single-phase model in Chapter 3.1.5 with unitary voltage network to three-
phase transformers. Multiple copies of the single-phase circuit in Figure 3.8(b) can be connected in D or
Y configuration on each side of the unitary voltage network, per phase, to create three-phase transformers.
The derivation of their external models follows a similar method as that in Chapter 16.2.2: (i) define
internal variables for the unitary voltage network in each phase; (ii) derive the internal model that relate
these internal variables; (iii) the transformer gains across the two ideal transformers define the conversion
between the internal and terminal variables; and finally (iv) eliminate the internal variables to arrive at the
external models.
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16.3.1 Internal model: UVN per phase

The internal variables on the unitary voltage network in each phase f 2 {a,b,c} are defined in Figure
16.18. Note that the voltages (V̂ f

0 ,V̂ f
j ,V̂ f

k ) are defined to be the voltage drops, whether the unitary voltage

V̂0
øV̂j

ø V̂k
ø

Îk
øÎj

ø Î0
ø:= 0

y0
ø

yj
ø yk

ø

Figure 16.18: Unitary voltage network in each phase f of a three-phase transformer.

network is grounded or not. These variables satisfy (3.10) for each phase f :

Îf
j = yf

j (V̂
f
j �V̂ f

0 ), Îf
k = yf

k (V̂ f
k �V̂ f

0 ), Îf
0 + Îf

j + Îf
k = yf

0V̂ f
0 , f 2 {a,b,c} (16.31)

Define the internal variables and admittance matrices:

Îi :=

2

4
Îa
i

Îb
i

Îc
i

3

5 , V̂i :=

2

4
V̂ a

i
V̂ b

i
V̂ c

i

3

5 , yi := diag
⇣

ya
i ,y

b
i ,y

c
i

⌘
, i = 0, j,k

Then (16.31) is in vector form:

Î j = y j(V̂j�V̂0), Îk = yk(V̂k�V̂0), Î0 + Î j + Îk = y0V̂0

or in terms of a 9⇥9 admittance matrix:
2

4
Î0
Î j
Îk

3

5 =

2

4
Âi yi �y j �yk
�y j y j 0
�yk 0 yk

3

5

2

4
V̂0
V̂j
V̂k

3

5 (16.32)

where Âi yi = y0 + y j + yk is a diagonal matrix of all admittances. Since Î0 = 0 2 C
3 we can eliminate V̂0

and derive the 6⇥6 Kron-reduced admittance matrix Yuvn that maps V̂ := (V̂j,V̂k)2C6 to Î := (Î j, Îk)2C6

(Exercise 16.6):

Î = YuvnV̂ where Yuvn :=

0

@I2⌦
 

Â
i

yi

!�1
1

A


y j(y0 + yk) �y jyk
�y jyk yk(y0 + y j)

�
(16.33)

and I2 is the identity matrix of size 2. This defines the internal model that relates Î and V̂ . Note that
the phases of these internal variables are decoupled in (16.33) since the admittance matrices yi 2 C

3⇥3

are diagonal. The phases will be coupled in the terminal variables (Vj,Vk) and (I j, Ik) through Y or D
configuration, as we now explain.
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16.3.2 Conversion rules

Let the terminal currents of the three-phase transformer be Ii := (Ia
i , Ib

i , Ic
i ), its terminal voltages be Vi :=

(V a
i ,V b

i ,V c
i ), and the terminal neutral voltage of Y configuration be V n

i , i = j,k. The primary side is
illustrated in Figure 16.19. These voltages are defined respect to an arbitrary and common reference
point, e.g., the ground. Let Mj := diag

⇣
1/Na

j ,1/Nb
j ,1/Nc

j

⌘
and Mk := diag

�
1/Na

k ,1/Nb
k ,1/Nc

k
�

be the
transformer gain matrices of the ideal transformers on each side of the unitary voltage network.

To derive the conversion between internal and terminal variables, consider first the primary side where
three single-phase ideal transformers are connected to the left end of the unitary voltage network in Figure
16.18. Figure 16.19(a) shows the primary side in Y configuration. The conversion rule between the internal

Nj
a : 1

Nj
b : 1

Nj
c : 1

I j
a

Vj
a

I j
b

Vj
b

I j
n

Vj
n

I j
c

Vj
c

V̂j
a V̂k

a

V̂k
b

V̂k
c

V̂j
b

V̂j
c

Îj
a

Îj
b

Îj
c

Îk
a

Îk
b

Îk
c

yk
a

yk
b

yk
c

yj
a

yj
b

yj
c

y0
a

y0
b

y0
c

(a) Y configuration

I j
a

Vj
a

I j
b

Vj
b

I j
c

Vj
c

V̂j
a

V̂j
b

V̂j
c

Îj
a

Îj
b

Îj
c

Îk
a

Îk
b

Îk
c

yk
a

yk
b

yk
c

yj
a

yj
b

yj
c

y0
a

y0
b

y0
c

Nj
a : 1

Nj
b : 1

Nj
c : 1

V̂k
a

V̂k
b

V̂k
c

Îj
ab

Îj
bc

Îj
ca

(b) D configuration

Figure 16.19: Primary side of a three-phase transformer with unitary voltage networks.

variables (V̂j, Î j) and the terminal variables (Vj, I j,V n
j ) is:

Y configuration: V̂j = Mj
�
Vj�V n

j 1
�
, Î j = M�1

j I j (16.34a)

where 1 := (1,1,1). Figure 16.19(b) shows the primary side in D configuration. Let ÎD
j := (Îab

j , Îbc
j , Îca

j ) de-
note the internal currents entering the primary side of the ideal transformer as indicated in Figure 16.19(b).
From (15.9a) the internal variables (V̂j, Î j, ÎD

j ) are related to the terminal variables (Vj, I j) according to the
conversion rule:

D configuration: V̂j = MjGVj, Î j = M�1
j ÎD

j , I j = GTÎD
j (16.34b)

where G,GT are conversion matrices. Similarly on the secondary side we have the conversion rule (see
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Figure 16.20):

Y configuration: V̂k = Mk (Vk�V n
k 1) , Îk = M�1

k Ik (16.34c)

D configuration: V̂k = MkGVk, Îk = M�1
k ÎD

k , Ik = GTÎD
k (16.34d)

Nj
a : 1

Nj
b : 1

Nj
c : 1

1 : Nk
a

1 :  Nk
b

1 :  Nk
c

Ij
a

Vj
a

I j
b

Vj
b

I j
n

Vj
n

I j
c

Ik
a

Ik
b

Ik
n

Ik
c

Vj
c

Vk
a

Vk
b

Vk
n

Vk
c

V̂j
a

V̂j
b

V̂j
c

Îj
a

Îj
b

V̂k
c

V̂k
b

V̂k
a

Îj
c

Îk
a

Îk
b

Îk
c

yk
a

yk
b

yk
c

yj
a

yj
b

yj
c

y0
a

y0
b

y0
c

(a) YY configuration

I j
a

Vj
a

I j
b

Vj
b

I j
c

Ik
a

Ik
b

Ik
c

Vj
c

Vk
a

Vk
b

Vk
c

V̂j
a

V̂j
b

V̂j
c

Îj
a

Îj
b

V̂k
c

V̂k
b

V̂k
a

Îj
c

Îk
a

Îk
b

Îk
c

yk
a

yk
b

yk
c

yj
a

yj
b

yj
c

y0
a

y0
b

y0
c

Nj
a : 1

Nj
b : 1

Nj
c : 1

1 : Nk
a

1 : Nk
b

1 : Nk
c

Îk
ab

Îk
bc

Îk
ca

Îj
ab

Îj
bc

Îj
ca

(b) DD configuration

Figure 16.20: Three-phase transformer models with unitary voltage networks.
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16.3.3 External model

We can derive an external model by eliminating the internal variables (V̂ , Î, ÎD) from the internal model
(16.33) and the conversion rules (16.34). Specifically substitute (16.34) into (16.33) to get

YY :


M�1
j I j

M�1
k Ik

�
= Yuvn


Mj(Vj�V n

j 1)
Mk(Vk�V n

k 1)

�
, DD :


M�1

j ÎD
j

M�1
k ÎD

k

�
= Yuvn


MjGVj
MkGVk

�
(16.35a)

DY :


M�1
j ÎD

j
M�1

k Ik

�
= Yuvn


MjGVj

Mk(Vk�V n
k 1)

�
, Y D :


M�1

j I j

M�1
k ÎD

k

�
= Yuvn


Mj(Vj�V n

j 1)
MkGVk

�
(16.35b)

Let V := (Vj,Vk) 2 C
6 and I := (I j, Ik) 2 C

6 denote the vectors of terminal voltages and currents respec-
tively. Let M := diag(Mj,Mk) 2 R

6⇥6 be the transformer gain matrices. Then the external model of a
three-phase transformer is (Exercise 16.7)

I = DT(MYuvnM)D(V � g) (16.36a)

where Yuvn is defined in (16.33), D 2 C
6⇥6 and g 2 C

6 are defined in (16.16).

We often do not know the numbers Nf
j , Nf

k of turns of the primary and secondary windings respectively
and hence cannot determine the matrices Mj,Mk, but we can always determine the turns ratio matrix
a := M�1

j Mk = diag
⇣

Na
j /Na

k ,Nb
j /Nb

k ,Nc
j /Nc

k

⌘
from the specified rated voltages. The 3⇥ 3 admittance

matrices y0,y1,y2 are assembled from their per-phase admittances and recall from (3.9) (see Figure 3.8):

y0 := N2
j ym := N2

j diag
⇣

yma,ymb,ymc
⌘

y j := N2
j yp := N2

j diag
⇣

ypa,ypb,ypc
⌘

, ypf :=
1

zpf , f 2 {a,b,c}

yk := N2
k ys := N2

j diag
⇣

ysa,ysb,ysc
⌘

, ysf :=
1

zsf , f 2 {a,b,c}

Then the matrix MYuvnM in (16.36a) can also be written in terms of the 3⇥ 3 turns ratio and admittance
matrices a, yp,ys,ym (Exercise 16.8):

YYY := MYuvnM = ypys �a2ym +a2yp + ys��1

I+a2ym(ys)�1 �a

�a a2 �
I+ ym(yp)�1�

�
(16.36b)

Hence the external model of a standard three-phase transformer is

I = DTYYY D(V � g) (16.36c)

where YYY is defined in (16.36b), D 2 C
6⇥6 and g 2 C

6 are defined in (16.16), reproduced here: g :=⇣
V n

j 1,V n
k 1
⌘

are neutral voltages for Y configuration and D is a 6⇥ 6 block diagonal matrix that depends
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on configuration:

YY configuration: D :=

I 0
0 I

�

DD configuration: D :=


G 0
0 G

�

DY configuration: D :=


G 0
0 I

�

Y D configuration: D :=

I 0
0 G

�

For DD configuration, Dg = 02C6 in (16.36), reflecting that a D configuration contains no neutral voltage;
similarly for other configurations.

Remark 16.3. 1. As explained in Chapter 3.1.5, the transformer model with unitary voltage networks
is equivalent to the T equivalent circuit. This holds in both single-phase and three-phase settings.

2. This model is generally different from the simplified model of Chapter 16.2 which is the three-phase
extension of the model in Chapter 3.1.4. From (16.36) and (16.16), these models however have the
same structure. They differ only in the admittance matrix YYY for the YY configuration and the
difference is due to different models for single-phase nonideal transformers.

3. When the shunt admittances are assumed zero in both models, i.e., yf
0 = ymf = 0 for f 2 {a,b,c},

these two models are equivalent, as in the single-phase case. To see this, recall that per-phase
f 2 {a,b,c}, the leakage impedances in the simplified model are zlf = zpf + (af )2zsf and hence
the leakage admittances per phase are

ylf =
⇣

zla
⌘�1

=
⇣

1/ypf + (af )2 ysf
⌘�1

=
ypf ysf

(af )2ypf + ysf , f 2 {a,b,c}

Since all matrices are diagonal we have yl = ypys �a2yp + ys��1. Substituting this and ym = 0 into
(16.36b), YYY for the transformer model based on the unitary voltage network reduces to

YYY = yl

I �a
�a a2

�

which is the same as YYY in (16.16a) for the simplified model. (See Exercise 16.9 for another proof).

4. The model (16.36) generalizes the single-phase model (3.11) in three ways. First the 6⇥ 6 admit-
tance matrix MYuvnM in (16.36) has the same structure as the 2⇥ 2 matrix in (3.11). Second the
neutrals of the three-phase transformer in Y configuration may not be grounded, i.e., V n

j ,V n
k may

be nonzero whereas V in (3.11) is assumed to be the voltage drop across the windings. Finally the
admittance matrix of a three-phase transformer in YY configuration is YYY := MYunvM, and a D con-
figuration in either the primary or the secondary circuit is represented by conversion matrices GT

and G.
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16.3.4 Split-phase transformer

16.4 Parameter identification: examples

16.4.1 Simplified circuit

Example 16.8 (Parameter identification). Consider a three-phase transformer in DY configuration. Its
simplified circuit model is shown in Figure 16.21. Suppose the single-phase transformers are identical,

V̂j
ab

V̂j
bc

V̂j
ca

I j
a

Vj
a

Îj
ab

I j
b

Vj
b

Îj
bc

I j
c

Vj
c

Îj
ca

yla

ylb

ylc

V̂k
an

V̂k
bn

V̂k
cn

Vk
a

Vk
b

Vk
c

–Îk
an

–Îk
bn

–Îk
cn

Ik
a

Ik
b

Ik
c

Vk
n

Ik
n

Figure 16.21: DY -configured transformer with zero shunt admittances.

i.e. their turns ratios a := aa
I and leakage admittances yl := yla

I are the same across phases. Suppose the
shunt admittances are zero. We discuss parameter identification in two steps.

1. Suppose the following measurements are given:

• Terminal currents I j = i j 2 C
3 and Ik = ik 2 C

3.

• Terminal voltages Vj = v j 2 C
3 (with respect to ground) on the primary (D) side.

• Line-to-line voltages GVk = uk 2 C
3 on the secondary (Y ) side.

• The neutral is grounded with zero grounding impedance so that V n
k := 0.

Assume the measurements are error free and let x := (i j, ik,v j,uk) be the measurement vector. Cal-
culate:

• The turns ratio aa and the leakage admittance yla.

• The terminal voltage Vk with respect to the ground.
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• The internal voltage and current (V̂Y
k , ÎY

k ) on the secondary side.
• The internal voltage and current (V̂ D

j , ÎD
j ) on the primary side and hence the loop flow b j within

the D configuration.

2. Repeat part 1 when T measurements (x1, . . . ,xT ) are given and measurement errors may be nonzero.

Solution. Under the assumption of zero measurement error, the measurement x := (i j, ik,v j,uk) 2C
12, the

parameter q := (aa,yla) 2 C
2, and the variable Vk 2 C satisfy (16.24a) with yl := yla

I,a := aa
I:


i j
ik

�
= yla


GTG �aaGT

�aa G (aa)2
I

�
v j
Vk

�
(16.37)

We can obtain GTVk from the line-to-line voltage measurement GVk = uk by shifting the values of uk:

GTVk =

2

4
V a�V c

V b�V a

V c�V b

3

5 = �

2

4
0 0 1
1 0 0
0 1 0

3

5

| {z }
permutation P

2

4
V a�V b

V b�V c

V c�V a

3

5 = �PGVk = �Puk

Hence the first row of (16.37) becomes

i j = yla
⇣

GTGv j + aaPuk

⌘
(16.38a)

where P is the permutation matrix

P :=

2

4
0 0 1
1 0 0
0 1 0

3

5 (16.38b)

This is a set of 3 quadratic equations in a positive real variable aa 2 R+ and a complex variables yla 2 C.
Under appropriate conditions a solution of (16.38) exists and can be computed numerically. Let q :=
(aa,yla) denote such a solution. All other variables can then be derived in terms of the parameter q and
the measurement x := (i j, ik,v j,uk), as follows.

The terminal voltage Vk can be calculated from the second row of (16.37):

Vk =
1

(aa)2yla ik +
1
aa Gv j (16.39a)

On the secondary side the internal voltage and current (V̂Y
k , ÎY

k ) are given by the conversion rule in (16.23b)
for Y configuration on the secondary side:

V̂Y
k = Vk�V n

k 1 = Vk, ÎY
k = ik (16.39b)

On the primary side the internal voltage V̂ D
j across the ideal transformers is given by (16.13d) with zm := 0

(no shunt admittance):

V̂ D
j = Gv j �

1
yla ÎD

j
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Instead of expressing ÎD
j in terms of the measurement i j using ym = 0 and the conversion rule i j = GTÎD

j ,
we will use the transformer current gain in (16.23c) for DY configuration to express ÎD

j in terms of the
measurement ik, yielding

V̂ D
j = Gv j +

1
aa yla ik, ÎD

j = � 1
aa ÎY

k = � 1
aa ik, b j :=

1
3

1TÎD
j = � 1

3aa 1Tik (16.39c)

Even though we cannot determine the loop flow b j from the terminal current i j, we can from the measure-
ment ik on the secondary side.

When the measurement error is zero, the measurement vector x := (i j, ik,v j,uk) and the parameter
vector q := (aa,yla) satisfy (16.38). This can be represented as f (x;q) = 0 for some function f . Given T
measurements x := (x1, . . . ,xT ), there may not be any choice of q such that f (xt ;q) = 0 for all t = 1, . . . ,T
when measurement errors are nonzero. A popular estimate of q is one that minimizes error subject to
certain constraints:

q̂ := argmin
q Â

t
k f (xt ;q)k s.t. g(xt ;q)  0, t = 1, . . . ,T

for some appropriate norm k · k. Here g(xt ;q)  0 expresses some known relations that must hold, e.g.,
aa � 0 is real. Let q̂ denote an estimate of the parameter. Then other variables

ŷt := (Vk(t),V̂ D
j (t), ÎD

j (t),V̂Y
k (t), ÎY

k (t)), t = 1, . . . ,T

can be derived from (16.39) in terms of q̂ and the measurements xt .

It is possible that the estimate ŷt derived in this way may violate some known constraints, e.g., vmin
k 

kVk(t)k2  vmax
k for some t given voltage limits. An alternative identification method is to estimate the

parameter q and the variables y := (y1, . . . ,yT ) jointly from the measurements x := (x1, . . . ,xT ), i.e., solve

(q̂ , ŷ) := arg min
(q ,y)

Â
t
k f (xt ,yt ;q)k s.t. g(xt ,yt ;q)  0, t = 1, . . . ,T

where f represents (16.38)(16.39) and g(xt ,yt ;q) 0 express some known constraints on (q̂ , ŷ).

From Figure 16.21 the terminal powers s j and sk are powers injected into the transformer at terminals
j and k respectively. Hence 1T(s j + sk) is the total power loss in the three-phase transformer due to the
leakage impedance 1/yl , as the next example shows.

Example 16.9 (Total power loss). For the three-phase transformer in Example 16.8 show that the total
power loss 1T(s j + sk) in the transformer is equal to (assuming zero measurement error):

1T(s j + sk) =
1

yla kn
aikk2

2

where na := 1/aa is the voltage gain. Even though the transformer gain na relates the internal currents
(ÎD

j , ÎY
k ), not terminal currents (I j, Ik), we can interpret naik as the “effective” terminal current on the

primary side.
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Solution. The terminal powers are, from (16.39),

s j := diag
⇣

VjIHj
⌘

= �na diag
⇣

v j iHk G
⌘

sk := diag
⇣

VkIHk
⌘

= na diag
⇣

Gv j iHk
⌘

+
(na)2

yla diag
⇣

ik iHk
⌘

where na := 1/aa, the second equality follows from ym = 0 and hence i j = GTÎD
j =�na GTik, and the last

equality follows from (16.39a). Hence

s j + sk = na
⇣

diag
⇣

Gv j iHk
⌘
� diag

⇣
v j iHk G

⌘⌘
+

(na)2

yla diag
⇣

ik iHk
⌘

Now

diag
⇣

Gv j iHk
⌘
�diag

⇣
v j iHk G

⌘
=

2

4
(va

j � vb
j)ī

a
k

(vb
j � vc

j)ī
b
k

(vc
j� va

j)ī
c
k

3

5�

2

4
va

j(ī
a
k� īck)

vb
j(ī

b
k� īak)

vc
j(ī

c
k� ībk)

3

5 =

2

4
va

j ī
c
k

vb
j ī

a
k

vc
jī

b
k

3

5�

2

4
vb

j ī
a
k

vc
jī

b
k

va
j ī

c
k

3

5

diag
⇣

ik iHk
⌘

=

2

4
|iak |2
|ibk |2
|ick|2

3

5

where P is the permutation matrix in (16.38b). The total power loss in the three-phase transformer is then

1T(s j + sk) = na
⇣
(Pik)Hv j � iHk (PTv j)

⌘
+

(na)2

yla kikk
2
2 =

1
yla kn

aikk2
2

where the last equality follows from (Pik)Hv j = iHk (PTv j).

16.4.2 Unitary voltage network

16.5 Bibliographical notes

The modeling of transmission lines with earth return is presented in the seminal paper [205] by J. R.
Carson. Circuit models of three-phase line models studied in Chapter 16.1 are developed in e.g. [199, 206,
63]. See e.g. [198, Chapter 3] for comprehensive models of three-phase components including distribution
lines, transformers and switches. For the simplified model of Chapter 16.2 see [203, 207, 208, 209] for
early work and [63, Ch 8][5, Ch 7.4][210] for recent summary. The idea of decomposing a nonideal
transformer into two ideal transformers connected by a unitary voltage network as in Chapter 16.3 is first
mentioned, but not explored, in [203]. It is developed in detail in [202] where the unitary network is a P
circuit with a leakage (series) admittance and two shunt admittances. The unitary voltage network in [204]
uses a T circuit model, as Chapter 16.3 does. The unitary voltage network that models leakage fluxes and
core losses can be quite general e.g. [211, 212].
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16.6 Problems

Chapter 16.1.

Exercise 16.1 (Symmetric y jk). Let z jk be a phase impedance matrix of a three-phase line ( j,k). Assume
z jk is symmetric invertible and z jk = zk j (A0). Show that its inverse y jk := z�1

jk is symmetric. Moreover
y jk = yk j.

Chapter 16.2.

Exercise 16.2 (DY -configured transformer). Derive the external model (16.24) of the DY -configured three-
phase transformer in Figure 16.14.

Exercise 16.3 (Y D-configured transformer). Derive the external model (16.25) of the Y D-configured three-
phase transformer in Figure 16.15.

Exercise 16.4 (Open transformers).

Exercise 16.5 (Complex voltage gain). Consider a YY -configured transformer with a complex voltage gain
(matrix) n := diag

�
na,nb,nc� 2 C

3⇥3. Let its turns ratio be a := n�1 2 C
3⇥3. Let yl 2 C

3⇥3 denote its
series admittance and assume its shunt admittance ym = 0. Show that its external model is


I j
Ik

�
=


yl �ayl

�aHyl |a|2yl

�

| {z }
YYY

✓
Vj
Vk

�
�

V n

j 1
V n

k 1

�◆

In
j = �1TI j, In

k = �1TIk

where |a|2 is the matrix |a|2 := diag
�
1/|na|2,1/|nb|2,1/|nc|2

�
.

Exercise 16.6 (Unitary voltage network: 3f transformers). Derive (16.33), reproduced here:

Î = YuvnV̂

where

Yuvn :=

0

@I2⌦
 

Â
i

yi

!�1
1

A


y j(y0 + yk) �y jyk
�y jyk yk(y0 + y j)

�

I2 is the identity matrix of size 2, and Âi yi = y0 + y j + yk is a diagonal matrix of all admittances.
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Exercise 16.7 (Unitary voltage network: 3f transformers). Show that, for the transformer model in Chap-
ter 16.3 with unitary voltage network, the admittance matrices of standard three-phase transformers are
given by

I = DT(MYuvnM)D(V � g)

where Yuvn is defined in (16.33), and D 2 C
6⇥6 and g 2 C

6 are defined in (16.16).

Exercise 16.8 (Unitary voltage network: turns ratio a). Prove (16.36b): the matrix MYuvnM in (16.36) can
be written in terms of the 3⇥3 turns ratio and admittance matrices a, yp,ys,ym:

YYY := MYuvnM = ypys �a2ym +a2yp + ys��1

I+a2ym(ys)�1 �a

�a a2 �
I+ ym(yp)�1�

�

Exercise 16.9 (3f transformer: ym = y0 = 0). Suppose shunt admittances y0 = ym = diag(0,0,0). Then
the admittance matrices Yuvn defined in (16.33) and YYY defined in (16.16a) become

Yuvn :=
�
I2⌦

�
y j + yk)

�1��


y jyk �y jyk
�y jyk y jyk

�
, YYY :=


yl �ayl

�ayl a2yl

�

Show that MYuvnM = YYY .

Exercise 16.10 (Split-phase transformer). Consider a split-phase DD transformer in Figure ??. Suppose
Âf2{a,b,c}

⇣
If
k + If 0

k

⌘
= 0. Derive (??).



Chapter 17

Bus injection models

In this chapter we use the component models in Chapters 15 and 16 to construct network models and
study unbalanced three-phase analysis. In Chapter 17.1 we extend the relation between terminal voltage,
current and power (V, I,s) in the single-phase bus injection model of Chapter 4.3 to the unbalanced three-
phase setting. In Chapter 17.2 we formulate a general three-phase analysis problem. In Chapter 17.3 we
study the analysis problem when the network is balanced. We prove formally that a general balanced
network is equivalent to per-phase networks and its analysis can be solved by per-phase analysis. In
Chapter 17.4 we explain that, when an unbalanced system has a certain symmetry, we can transform it to a
sequence coordinate in which the system becomes decoupled even if the phases are coupled in the original
coordinate. Single-phase analysis can then be applied to individual sequence networks.

17.1 Network models

In this section we develop a model for a network of three-phase devices connected by three-phase lines
and transformers studied in Chapters 15 and 16. We start in Chapter 17.1.1 with a line model that models
a three-phase transmission or distribution line or a three-phase transformer. The line model linearly relates
the sending-end line currents

�
I jk, Ik j

�
2 C

6 and the nodal voltages
�
Vj,Vk

�
2 C

6 by an admittance matrix
Yjk which may or may not have a three-phase P circuit representation. The line model induces a network
model through nodal current balance equations. This is derived in Chapter 17.1.2 and it linearly relates
the nodal (terminal) current injections I j and voltages Vj through a network admittance matrix Y . The
admittance matrix Y also implies a single-phase equivalent circuit of the three-phase network. We then use
Y to derive in Chapter 17.1.4 nonlinear power flow equations that relate nodal (terminal) power injections
s j and voltages Vj. Finally we explain in Chapter 17.1.5 that the overall model consists of the network
equations of Chapters 17.1.2 and 17.1.4 and the three-phase device models of Chapter 15.3. A device
model can either be specified as an internal model with conversion rules or an external model relating the
terminal variables (Vj, I j,s j).

736
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17.1.1 Line model

Consider a network with N + 1 three-phase devices connected by three-phase lines represented as an
undirected graph G := (N,E) where every bus j 2 N and every line ( j,k) 2 E has 3 phases. A bus is
where the terminals of three-phase devices are connected. A line may model a transmission or distribution
line, a transformer, or a combination. We will hence refer to j 2 N interchangeably as a bus, a node, or
a terminal, and ( j,k) 2 E interchangeably as a line, a branch, a link, or an edge. The formulation can be
generalized to the case where a bus or a line has a single, two, or three phases.

For simplicity of exposition we assume, by default, we can use three-wire models for these lines
and their characterization includes the effects of neutral and earth return on the phase variables. This
assumption is reasonable if, e.g., neutral wires are absent, the line connects devices in D configuration, or
the neutrals are directly grounded with equal spacing along a line and at both ends of the line so that all
neutrals have V n

j = 0. Otherwise, the line model in this section needs to be augmented with neutral lines
with variables in C

4 instead of C3 and line admittance matrices in C
4⇥4 instead of C3⇥3; see Example

17.5 and Exercise 17.7. As we will see, even though lines are assumed to be three-wired, Y -configured
devices such as voltage, current and power sources and impedances do have neutral lines in our models
and their neutral voltages g j := V n

j may be nonzero.

For each line ( j,k) 2 E let
�
Vj,Vk

�
2 C

6 denote the terminal voltages at each end of the line and�
I jk, Ik j

�
2 C

6 denote the sending-end line currents in both directions. In general each line ( j,k) 2 E is
characterized by four 3⇥ 3 series and shunt admittance matrices,

⇣
ys

jk,y
m
jk

⌘
from j to k and

⇣
ys

k j,y
m
k j

⌘

from k to j. See Figure 17.1. They define the relation between
�
Vj,Vk

�
and

�
I jk, Ik j

�
:











































































































Figure 17.1: A model of three-phase system. Correction: Remove abc and a0b0c0.

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
k j(Vk�Vj) + ym

k jVk (17.1a)

or in matrix form:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

k j ys
k j + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(17.1b)

We emphasize that ys
jk and ys

k j may be different matrices and therefore this general model Yjk may not have
a three-phase P circuit representation. When ys

jk = ys
k j, it can model:
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• A transmission or distribution line where, from (16.8a), ys
jk = ys

k j is its series admittance and⇣
ym

jk,y
m
k j

⌘
are its shunt admittances.

• A transformer in YY configuration where neutral voltages are zero (V n
j = V n

k = 0), from (16.19d),

ys
jk = ys

k j := aŷl, ym
jk := (I�a) ŷl, ym

k j := a(a� I)ŷl +a2ŷm (17.2a)

with a := diag(aa,ab,ac) being the turns ratios of the transformer, ŷl := diag(yla,ylb,ylc) and ŷm :=
diag(yma,ymb,ymc) its leakage and shunt admittances respectively.

• A transformer in DD configuration where, from (16.21c),

ys
jk = ys

k j := GTaŷlG, ym
jk := GT (I�a) ŷlG, ym

k j := GT

⇣
a(a� I)ŷl +a2ŷm

⌘
G (17.2b)

Or a transformer in open DD configuration where, from (16.26d),

ys
jk = ys

k j := GTaỹlG, ym
jk := GT (I�a) ỹlG, ym

k j := GT

⇣
a(a� I)ỹl +a2ỹm)

⌘
G (17.2c)

which is the same as (17.2b) with ŷl and ŷm replaced by the leakage and shunt admittances ỹl :=
diag(yla,ylb,0) and ỹm := diag(yma,ymb,0) respectively of the open transformer.

When ys
jk 6= ys

k j is allowed, this model can also model transformers in other configurations:

• A transformer in DY configuration with zero neutral voltage (V n
k = 0) where, from (16.24a),

ys
jk := GTaŷl, ys

k j := aŷl G, ym
jk := GTŷl(G�a), ym

k j := aŷl(a�G)+a2ŷm (17.3a)

• A transformer in Y D configuration with zero neutral voltage (V n
j = 0) where, from (16.25a),

ys
jk := aŷl G, ys

k j := GTaŷl, ym
jk := ŷl(I�aG), ym

k j := GT

⇣
aŷl(aG� I)+a2ŷmG

⌘

(17.3b)

Remark 17.1 (Transformer models). 1. We emphasize that the models (17.2) (17.3) assume that, for
three-phase transformers with Y configuration either in the primary or secondary side, their neutrals
are directly grounded so the neutral voltages V n

j = 0 or V n
k = 0.

2. While the shunt admittances ym
jk and ym

k j are typically equal for a transmission or distribution line,
they are typically different for a transformer. Moreover the shunt admittances (ym

jk,y
m
k j) of the line

model of a transformer are generally nonzero even if the shunt admittances ŷm := diag(yma,ymb,ymc)
(or ỹm := diag(yma,ymb,0) for open DD transformer) of the constituent single-phase transformers are
assumed zero.

3. The series and shunt admittance matrices
⇣

ys
jk,y

m
jk

⌘
and

⇣
ys

k j,y
m
k j

⌘
in (17.2) are all complex symmet-

ric. None of them are symmetric for series and shunt admittances in (17.3). Moreover the admittance
matrices corresponding to D configuration in the primary or secondary side are singular, i.e., unlike
for single-phase transformers, none of the admittances ys

jk,y
m
jk,y

s
k j,y

m
k j may have an inverse.



Draft: PSA December 13, 2024 739

For simplicity we often restrict ourselves to the special case where ys
jk = ys

k j. In this case we character-

ize a line ( j,k) by three 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. With ys

jk = ys
k j, (17.1)

reduces to

I jk = ys
jk(Vj�Vk) + ym

jkVj, Ik j = ys
jk(Vk�Vj) + ym

k jVk (17.4a)

or in terms Yjk:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�

| {z }
Yjk


Vj
Vk

�
(17.4b)

which is now block symmetric (see Definition 17.1). We say Yjk has a three-phase P circuit representa-
tion in the sense that its external behavior is the same as the external behavior (16.8a) of a three-phase
transmission line; see Figure 16.2.

From (17.3) this more restrictive Yjk cannot be used to model transformers in DY and Y D configura-
tions. It is however still widely used. We therefore often adopt this model and will explicitly state it as
assumption C17.1 below when we use it.

17.1.2 IV relation

Associated with each bus j are three nodal variables
�
Vj, I j,s j

�
2C9 representing the nodal voltage, current

injection, and power injection respectively at the terminal of the device connected to bus j. To simplify
notation we assume, without loss of generality, that at most one single-terminal device (source or load)
is connected to a bus but one or more lines can be connected to a bus.1 The bus current and power
injection (I j,s j) at bus j therefore refers unambiguously to the injection from the unique device at bus j.
As explained in Chapters 15.3.3 and 15.3.4, the external behavior of a three-phase device is described by
the relation between (Vj, I j) or that between (Vj,s j). We can assume without loss of generality that these
three-phase devices are ideal (see Chapter 16.1.4) and their behavior is summarized in Tables 15.3 and
15.4.

Let (V, I,s) :=
�
Vj, I j,s j, j 2 N

�
2C

3(N+1) be nodal variables over the entire network. As for a single-
phase network, a three-phase network model is a relation between the terminal voltage and current (V, I) or
a relation between the terminal voltage and power (V,s), independent of the internal Y or D configurations
of the three-phase devices that are connected by the lines. In this subsection we derive the linear IV
relation defined by an admittance matrix Y and show that Y defines a single-phase equivalent circuit of the
three-phase network. In the next subsection we derive the sV relation in the form of nonlinear power flow
equations. In both cases the extension of the line model (17.1) to a network is the nodal current or power
balance equations:

I j = Â
k: j⇠k

I jk, s j = Â
k: j⇠k

diag
�
S jk
�
, j 2 N

where S jk := VjIHjk are matrices defined in (16.8b).

1If K three-phase devices with terminal current injections I j1, . . . , I jK are connected to bus j then the net bus injection is
I j := Âk I jk. Unless otherwise specified we assume K = 1.
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Network admittance matrix Y . Substitute the line currents (17.1) into the current balance equation to
get

I j = Â
k: j⇠k

I jk = Â
k: j⇠k

ys
jk(Vj�Vk) +

 

Â
k: j⇠k

ym
jk

!
Vj

Therefore

I j =

  

Â
k: j⇠k

ys
jk

!
+ ym

j j

!
Vj � Â

k: j⇠k
ys

jkVk, j 2 N (17.5a)

where

ym
j j := Â

k: j⇠k
ym

jk (17.5b)

Note that I j is the net current injection.2 In vector form, this relates the bus current vector I := (I0, . . . , IN)
to the bus voltage vector V := (V0, . . . ,VN):

I = YV (17.6a)

through a 3(N +1)⇥3(N +1) admittance matrix Y where its 3⇥3 submatrices Yjk 2 C
3⇥3 are given by

Yjk :=

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(17.6b)

The submatrices Yjk and Yk j may be different if ( j,k) models a three-phase transformer in DY or Y D
configuration.

Definition 17.1 (Block symmetry and block row sum). Given a matrix A 2 C
3n⇥3n, partition it into n⇥n

blocks of 3⇥3 submatrices. Denote by A jk 2 C
3⇥3 its jkth submatrix.

1. A is called block symmetric if A jk = Ak j for all j,k = 1, . . . ,n.

2. A is said to have zero block row sums if Âk A jk = 0 for all j = 1, . . . ,n.

As discussed in Chapter 16.2.3 a matrix can be symmetric but not block symmetric, and vice versa.
Symmetry of a matrix is determined only by its off-diagonal entries but its diagonal entries can be arbitrary.
Block symmetry is determined only by its off-diagonal blocks but its diagonal blocks can be arbitrary. A
symmetric matrix A is block symmetric if, in addition, all its off-diagonal blocks are themselves symmet-
ric, i.e., AT

jk = A jk, for all j 6= k. A block symmetric A is symmetric if, in addition, all blocks A jk, including
the diagonal blocks, are symmetric (Exercise 17.1). We will remark on zero block row sums below after
introducing single-phase equivalent circuit.

2If there is a nodal shunt admittance load ysh
j , e.g., a capacitor bank, in addition to a device whose terminal injection is Ĩ j,

then the net injection from bus j to the rest of the network is I j = Ĩ j�ysh
j Vj. This assumes that ysh

j connects bus j to the ground
and the terminal voltage Vj is defined with respect to the ground.
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In general an admittance matrix Y defined by (17.6) may neither be block symmetric nor symmetric.
If the series admittances ys

jk = ys
k j for all lines ( j,k) 2 E then the admittance matrix Y is block symmetric

and hence has a three-phase P circuit representation. As in Chapter 4 we label the following assumption
and will explicitly state it when it is required:

C17.1: The series admittance matrices ys
jk = ys

k j for every line ( j,k) 2 E, so that the admittance
matrix Y is block symmetric.

If every ( j,k) 2 E models a transmission or distribution line or a transformer described by (17.2), then
Y is block symmetric with a three-phase P circuit representation. If some ( j,k) 2 E model transformers
described by (17.3), however, then Y is not.

The expression (4.12) for Y for a single-phase network generalizes directly to the three-phase setting.
Let C 2 {�I,0,I}|N|⇥|E| be the bus-by-line incidence matrix defined by:

Cjl =

8
<

:

I if l = j! k for some bus k
�I if l = i! j for some bus i
0 otherwise

where I is the identity matrix of size 3. Let Y s := diag
�
ys

l , l 2 E
�

be the 3|E|⇥3|E| block diagonal matrix
with the series admittance matrices ys

l 2 C
3⇥3 as its diagonal submatrices. Let Y m := diag

⇣
ym

j j, j 2 N
⌘

be

the |N|⇥ |N| block diagonal matrix with the total shunt admittances ym
j j 2 C

3⇥3 in (17.5b) as its diagonal
submatrices. Then the admittance matrix in (17.6b) is, when ys

jk = ys
k j,

Y = CY sCT + Y m

Example 17.1. The admittance matrix Y for a 3-terminal network with zero shunt admittances is shown
in Figure 17.2.

Single-phase equivalent circuit. The 3(N+1)⇥3(N+1) admittance matrix Y in (17.6) defines a single-
phase equivalent circuit of the three-phase network. Recall that a three-phase network can be represented
by a graph G := (N,E) where N is a set of N +1 three-phase buses and E is a set of three-phase lines. The
admittance matrix Y induces a network graph G3f := (N3f

,E3f ) where N3f has 3(N + 1) buses. Each
bus in N3f is indexed by jf with j 2 N,f 2 {a,b,c} in the original network G. Each line in E3f is
indexed by ( jf ,kf 0). There is a line between bus jf and another distinct bus kf 0 in G3f if and only if
Y ff 0

jk is nonzero. We call this graph G3f the single-phase equivalent (circuit) of the three-phase network
G. All the single-phase modeling and analysis developed in earlier chapters can be directly applied to this
single-phase equivalent.

When shunt admittances are assumed zero, ym
jk = ym

k j = 0 for all ( j,k) 2 E, the 3(N + 1)⇥ 3(N + 1)
admittance matrix Y has zero block row sums (Definition 17.1), because

Yj j = Â
k:( j,k)2E

ys
jk = Â

k
�Yjk, j 2 N
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(b) Admittance matrix Y .

Figure 17.2: The admittance matrix Y for a 3-terminal network with no shunt admittances.

so that Âk Yjk = 0 for all j. Suppose Y has zero block row sums. Then Y also has zero block column sums
if and only if Y is block symmetric. The matrix has zero row sums if Âk,f 0Yjf ,kf 0 = 0 for all jf . This is
equivalent to

Â
k,f 0

Yjf ,kf 0 = Â
f 02{a,b,c}

yff 0
j j � Â

k:( j,k)2E
f 02{a,b,c}

yff 0
jk = 0, jf 2 N⇥{a,b,c}

i.e., zero row sums requires only that the 3⇥3 matrix Âk Yjk has zero row sums, whereas zero block row
sums requires that Âk Yjk is a zero matrix. Hence if a matrix has zero block row sums, then all its row sums
are zero, but the converse does not necessarily hold.

In general Y is not symmetric (nor block symmetric), i.e., it may not satisfy C4.1 as the admittance
matrix of a single-phase network. It is symmetric, and block symmetric, under the following condition:

C17.2: In addition to C17.1, all series and shunt admittance matrices ys
jk,y

m
jk,y

m
k j are complex sym-

metric, so that the admittance matrix Y is both symmetric and block symmetric.

Suppose all transmission and distribution line models satisfy C17.2 (in particular, it satisfies assumptions
C16.1 and C16.2). If every ( j,k) 2 E models a transmission or distribution line or a transformer described
by (17.2), then Y is not only block symmetric, but also symmetric (hence satisfying C4.1). Therefore
Y has a three-phase P circuit representation and the admittance matrix of its single-phase equivalent is
complex symmetric. If some ( j,k) 2 E models transformers described by (17.3), however, then Y is
neither symmetric nor block symmetric.

Radial network. Even when the multiphase network G is radial (i.e., with tree topology), its single-
phase equivalent G3f is a meshed network (i.e., has cycles), but in that case, G3f has a radial macro-
structure in which each line is represented as a clique (complete subgraph). Specifically G3f has a maximal
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clique consisting of the set
n

jf ,kf 0 2 N3f : f ,f 0 2 {a,b,c}
o

of buses if and only if ( j,k) is a line in G;

see Figure 17.3. The corresponding principal submatrix YG3f ( j,k) 2 C
6⇥6 of Y is:

ja jb jc 

kb kc ka 

Figure 17.3: A clique of G3f corresponding to line ( j,k) in G.

YG3f ( j,k) =


Yj j Yjk
Yk j Ykk

�

We will explain in Chapter ?? that G3f is a chordal graph which can be exploited to simplify the semidef-
inite relaxation of optimal power problems.

17.1.3 Invertibility of Y , Y22 and Y/Y22

In this subsection we study the invertibility and properties of Y , Y22 and its Schur complement Y/Y22.
These results extend those in Chapter 4.2.3 from single-phase to three-phase networks.

Invertibility of Y . Recall that a real matrix G is positive semidefinite (or positive definite), denoted
G⌫ 0 (or G� 0), if G is symmetric and vTGv� 0 (or vTGv > 0) for all real vectors v (see Remark 20.1 in
Appendix 20.1.5). Under assumption C17.2 (ys

jk = ys
k j, ym

jk and ym
k j are complex symmetric) the admittance

matrix Y 2 C
3(N+1)⇥3(N+1) is both symmetric and block symmetric. Write admittances in terms of their

real and imaginary parts, ys
jk = gs

jk + ibs
jk, ym

jk = gm
jk + ibm

jk, and ym
k j = gm

k j + ibm
k j. Consider the following

conditions on the conductances gs
jk,g

m
jk,g

m
k j 2 R

3⇥3:

C17.3: For all lines ( j,k) 2 E, gs
jk ⌫ 0, gm

jk ⌫ 0, gm
k j ⌫ 0.

C17.4a: For all buses j 2 N, gm
j j := Âk:k⇠ j gm

jk � 0, i.e., for all j, there exists a line ( j,k) 2 E such
that gm

jk � 0

C17.4b: For all lines ( j,k) 2 E, gs
jk � 0. Furthermore there exists a line ( j0,k0) 2 E such that

gm
j0k0 � 0.

C17.4c: For all lines ( j,k) 2 E, gs
jk � 0. Furthermore there exists a line ( j0,k0) 2 E such that the

intersection of the null spaces of gm
j0k0 and gm

k0 j0 is {0}.
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Condition C17.4b is a special case of C17.4c which does not require positive definiteness of gm
jk. The next

result extends Theorems 4.2, 4.3, and 4.9 in Chapter 4.2.3 from single-phase to three-phase networks.

Theorem 17.1. Suppose the network is connected and the admittance matrix Y 2 C
3(N+1)⇥3(N+1) satis-

fies C17.2. If the conductance matrices gs
jk,g

m
jk,g

m
k j 2 R

3⇥3 satisfy conditions C17.3 and one of C17.4a,
C17.4b, C17.4c, then

1. The admittance matrix Y�1 2 C
3(N+1)⇥3(N+1) exists and is symmetric. Moreover both Re(Y ) � 0

and Re(Y�1)� 0.

In addition if Y =:

Y11 Y12
YT

12 Y22

�
with invertible Y22, then

2. The Schur complement Y/Y22 := Y11�Y12Y�1
22 YT

12 of Y22 is symmetric and invertible. Moreover both
Re(Y/Y22)� 0 and Re

�
(Y/Y22)�1�� 0.

Proof. Let G := Re(Y ) 2 R
3(N+1)⇥3(N+1). We will show that G � 0. The claims then follow from Theo-

rems 4.2 and 4.9.

Fix any real vector r 2 R
3(N+1) and decompose it into r =: (r j, j 2 N) with r j 2 R

3. We have using
(17.6b) and (17.5b)

rTGr = Â
j

Â
k:k⇠ j

⇣
rT

j gs
jk r j � rT

j gs
jk rk

⌘
+ Â

j2N
rT

j gm
j j r j (17.7a)

= Â
( j,k)2E

⇣
rT

j gs
jkr j � rT

j gs
jk rk � rT

k gs
k j r j + rT

k gs
k j rk

⌘
+ Â

j
Â

k:k⇠ j
rT

j gm
jk r j (17.7b)

= Â
( j,k)2E

(r j�rk)
Tgs

jk (r j�rk) + Â
( j,k)2E

⇣
rT

j gm
jk r j + rT

k gm
k j rk

⌘
(17.7c)

where the last equality follows because gs
jk = gs

k j for all ( j,k) 2 E by C17.2. Since gs
jk,g

m
jk,g

m
k j 2R3⇥3 are

positive semidefinite for all lines ( j,k)2 E by C17.3, every summand is nonnegative and hence rTGr = 0
if and only if every summand is zero. We examine each of the three cases:

• C17.4a holds: Then for all buses j 2 N, rT
j gm

j j r j > 0 unless r j = 0. Therefore for the second
summation in (17.7a) to be zero we must have r j = 0 for all j 2 N. This implies that G� 0.

• C17.4b holds: For the first summation in (17.7c) to be zero we must have r j = rk for all ( j,k) 2 E.
Since the network is connected, this implies that r j = r1 for all j 2 N. The second summation in
(17.7b) then becomes, if r1 6= 0,

Â
j

Â
k:k⇠ j

rT

j gm
jk r j = rT

1

 

Â
j

Â
k:k⇠ j

gm
jk

!
r1 � rT

1 gm
j0k0 r1 > 0

Therefore rTGr > 0 unless r = 0, i.e., G� 0.
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• C17.4c holds: As for the case of C17.4b, we must have r j = r1 for all j 2 N. Then the second
summation in (17.7c) becomes, if r1 6= 0,

Â
( j,k)2E

⇣
rT

j gm
jk r j + rT

k gm
k j rk

⌘
� rT

1

⇣
gm

j0k0 + gm
k0 j0

⌘
r1 > 0

where the last inequality follows because gm
j0k0 and gm

k0 j0 are positive semidefinite and their null spaces
intersect only at the origin. Therefore rTGr > 0 unless r = 0, i.e., G� 0.

Hence in all three cases G is positive definite. Since Y is complex symmetric and Y22 is nonsingular by
assumption, Theorems 4.2 and 4.9 complete the proof.

Consider the following conditions on the conductances bs
jk,b

m
jk,b

m
k j 2 R

3⇥3:

C17.5: For all lines ( j,k) 2 E, bs
jk � 0, bm

jk � 0, bm
k j � 0.

C17.6a: For all buses j 2 N, bm
j j := Âk:k⇠ j bm

jk � 0, i.e., for all j, there exists a line ( j,k) 2 E such
that bm

jk � 0

C17.6b: For all lines ( j,k) 2 E, bs
jk � 0. Furthermore there exists a line ( j0,k0) 2 E such that

bm
j0k0 � 0.

C17.6c: For all lines ( j,k) 2 E, bs
jk � 0. Furthermore there exists a line ( j0,k0) 2 E such that the

intersection of the null spaces of bm
j0k0 and bm

k0 j0 is {0}.

Condition C17.6b is a special case of C17.6c which does not require negative definiteness of bm
jk. The next

result extends Theorems 4.2, 4.4, and 4.9 in Chapter 4.2.3 from single-phase to three-phase networks. Its
proof is left as Exercise 17.2.

Theorem 17.2. Suppose the network is connected and the admittance matrix Y 2C3(N+1)⇥3(N+1) satisfies
C17.2. If the susceptance matrices bs

jk,b
m
jk,b

m
k j 2R3⇥3 satisfy conditions C17.5 and one of C17.6a, C17.6b,

C17.6c, then

1. The admittance matrix Y�1 2 C
3(N+1)⇥3(N+1) exists and is symmetric. Moreover Im(Y ) � 0 and

Im(Y�1)� 0.

In addition if Y =:

Y11 Y12
YT

12 Y22

�
with invertible Y22, then

2. The Schur complement Y/Y22 := Y11�Y12Y�1
22 YT

12 of Y22 is symmetric and invertible. Moreover
Im(Y/Y22)� 0 but Im

�
(Y/Y22)�1�� 0.
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The conditions in Theorem 17.1 not only ensure Re(Y )� 0 and those in Theorem 17.2 not only ensure
Im(Y )� 0. Each set of conditions also ensures aHY a 6= 0 for any nonzero a 2 C

3(N+1) (Exercise 17.3).
Since a necessary condition for Y to be singular is the existence of a nonzero a with aHY a = 0, these
conditions imply the invertibility of Y , as expected, and extend the sufficient conditions in Theorems 4.3
and 4.4 to three-phase networks.

Remark 17.2. The admittance matrix of a three-phase transformer involving D configuration is singular
(see (16.16) or (16.36)). This causes the admittance matrix Y of a network that contains such transformers
to be singular. A proposal in the literature is to add a small shunt admittance (diagonal entries) to the
admittance matrix of such a transformer to make it nonsingular.

Invertibility of Y22 when ym
jk = ym

k j = 0. Let A ( N and YA be the 3|A|⇥ 3|A| principal submatrix of Y
consisting of row and column blocks Yjk with j,k 2 A. Suppose the shunt admittances are zero, ym

jk = ym
k j =

0 so that the admittance matrix Y has zero block row sums and is not invertible. The next result provides
a set of simple sufficient conditions for a principal submatrix YA to be invertible when A is a strict subset
of N. Its proof is similar to those of Theorems 4.5 and 4.6 and left as Exercise 17.4.

Theorem 17.3. Suppose the network is connected and the admittance matrix Y 2C3(N+1)⇥3(N+1) satisfies
C17.2. Suppose ym

jk = ym
k j = 0 for all lines ( j,k) 2 E. Consider the principal submatrix YA 2 C

3|A|⇥3|A| for
a strict subset A ( N.

1. If gs
jk � 0 for all lines ( j,k) 2 E then Y�1

A exists and is symmetric. Moreover both Re(YA) � 0 and
Re(Y�1

A )� 0.

2. If bs
jk � 0 for all lines ( j,k) 2 E then Y�1

A exists and is symmetric. Moreover Im(YA) � 0 but
Im(Y�1

A )� 0.

Even when not all gs
jk are positive definite and not all bs

jk are negative definite the admittance matrix
Y can still be invertible because they cannot be zero simultaneously. The next result extends Theorem 4.8
from single-phase to three-phase setting.

Theorem 17.4. Suppose the network is connected and the admittance matrix Y 2C3(N+1)⇥3(N+1) satisfies
C17.2. Suppose ym

jk = ym
k j = 0 for all lines ( j,k) 2 E. If gs

jk ⌫ 0 and bs
jk � 0 for all lines ( j,k) 2 E then the

principal submatrix YA 2 C
3|A|⇥3|A| for a strict subset A ( N satisfies:

1. Re(YA)⌫ 0, Im(YA)� 0.

2. Moreover Re(YA)� Im(YA)� 0.

3. Y�1
A exists and is symmetric.

Proof. The proof of Theorem 4.8 for single-phase network shows that GA is diagonally dominant since
gs

jk 2 R are nonnegative and hence its eigenvalues are nonnegative by the the Geršgorin disc theorem. In
the three-phase case, we cannot use this argument since not every element of the 3⇥3 conductance matrix
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gs
jk is nonnegative. We will use the argument in the proof of Theorem 17.1 (see (17.7)): for any real vector

r =: (r j, j 2 A) with r j 2 R
3 we have, using GA := Re(YA),

rTGAr = Â
j

Â
k:k⇠ j

⇣
rT

j gs
jk r j � rT

j gs
jk rk

⌘

= Â
( j,k)2E

⇣
rT

j gs
jkr j � rT

j gs
jk rk � rT

k gs
k j r j + rT

k gs
k j rk

⌘

= Â
( j,k)2E

(r j�rk)
Tgs

jk (r j�rk)

where the last equality has used gs
jk = gs

k j for all ( j,k) 2 E from C17.2. Since gs
jk ⌫ 0, rTGAr � 0 for any

r , i.e., GA ⌫ 0. Similar, using BA := Im(YA), we have

rTBAr = Â
j

Â
k:k⇠ j

⇣
rT

j bs
jk r j � rT

j bs
jk rk

⌘
= Â

( j,k)2E
(r j�rk)

Tbs
jk (r j�rk)

Therefore rTBAr  0 since bs
jk � 0, i.e., BA � 0. This implies that GA�BA ⌫ 0.

We now show that, indeed, GA�BA � 0 because the network is connected and A⇢ N is a strict subset.
The argument is the same as that for Theorem 4.8 for single-phase networks. For a 3n⇥3n matrix M, let
M[ j,k] denote the 3⇥ 3 submatrix of M consisting of the jth row block and the kth row column. Since
GA�BA is real symmetric, consider, for any nonzero real vector r 2 R

3|A|,

rT(GA�BA)r = Â
j2A

Â
k2A

rT

j (GA[ j,k]�BA[ j,k])rk

= Â
j2A

Â
k2A:

( j,k)2E

rT

j (�gs
jk +bs

jk)rk + Â
j2A

rT

j

0

B@ Â
k2A:

( j,k)2E

(gs
jk�bs

jk) + Â
k 62A:

( j,k)2E

(gs
jk�bs

jk)

1

CAr j

= Â
j,k2A:

( j,k)2E

�
r j�rk

�T
(gs

jk�bs
jk)
�
r j�rk

�
+ Â

j2A
r jG jrT

where the third equality has used gs
jk = gs

k j for all ( j,k)2E from C17.2. Here G j := Âk 62A:( j,k)2E(gs
jk�bs

jk)

for j 2 A and the summation is not vacuous because the network is connected and A ( N. For every line
( j,k) 2 E, ys

jk 6= 0 and hence gs
jk�bs

jk � 0 since gs
jk ⌫ 0 and bs

jk ⌫ 0. This implies G j � 0 as well for all
j 2 A. Therefore for rT(GA�BA)r > 0 for any real vector r 6= 0, i.e., GA�BA � 0.

Finally GA�BA � 0 implies that YA is nonsingular (it is clear that Y�1
A is symmetric if it exists). The

argument is exactly the same as that for Theorem 4.8 for single-phase networks.

Application: admittance matrix Y identification.

Uniform lines. Suppose all lines are of the same type specified by an impedance matrix y�1 per unit
length. These lines differ only in their lengths. We will call y the unit admittance.3 We show that this

3
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property is preserved under Schur complement. It means that the effective line admittances of the Kron-
reduced admittance matrix Y/YA are also specified by the unit admittance y. This assumption makes the
iterative construction of the Schur complement particularly simple.

Consider any 3(N +1)⇥3(N +1) complex symmetric matrix Y on a graph G := (N,E) where its 3⇥3
(i, j)th blocks Y [i, j] are given by:

Y [i, j] =

8
<

:

�µi j y (i, j) 2 E�
Âk:(i,k)2E µik

�
y i = j

0 otherwise
(17.8)

where y 2 C
3⇥3 is complex symmetric. Suppose Re(y)� 0 and µi j > 0 for all (i, j) 2 E0. Then Theorem

4.2 implies that y�1 exists, is symmetric, and Re(y�1)� 0. Kron reduction preserves this structure.

Theorem 17.5. Suppose Re(y) � 0 and µi j > 0 for all (i, j) 2 E0 in the complex symmetric matrix Y

defined in (17.8). Let Y =:

Y11 Y12
YT

12 Y22

�
with a 3n⇥3n nonsingular submatrix Y22, 1 n N.

1. The 3⇥3 (i, j)th blocks (Y/Y22)[i, j] of the Schur complement Y/Y22 of Y22 of Y are given by

(Y/Y )[i, j] =

8
<

:

�µ̃i j y i j
(Âk:i k µ̃ik)y i = j
0 otherwise

(17.9)

for some µ̃i j = µ̃ ji > 0. Here i j if and only if there is a path in the underlying graph G connecting
nodes i and j.

2. If the network is connected and the admittance matrix Y satisfies C17.2, then (Y/Y22)�1 exists and
is symmetric, and both Re(Y/Y22)� 0 and Re(Y/Y22)�1 � 0.

Proof. The Schur complement Y/Y22 is the admittance matrix describing the effective connectivity be-
tween nodes 1, . . . ,N� n + 1 obtained by eliminating interior nodes N� n + 2, . . . ,N + 1 by Kron reduc-
tion. We follow the approach of [15] to prove the theorem by induction on the interior nodes to be Kron
reduced one by one. Define

A0 := Y, A1 := A0/A0[n,n], · · · An := An�1/An�1[N�n+2,N�n+2] = Y/Y22

i.e., Al+1 is the admittance matrix for the graph after the last node in Al has been Kron reduced, and hence
Y/Y22 = An. Define the set of lines in the graph underlying A0, A1, . . . ,An by

E0 := E, El :=
n

(i, j) : Al[i, j] 6= 0
o

, l = 1, . . . ,k

Hence these sets are well-defined given the matrices A0, A1, . . . ,An. For 0 < l < n, let the induction
hypothesis be

Al[i, j] =

8
><

>:

�µ l
i j y (i, j) 2 El

⇣
Âk:(i,k)2El µ l

ik

⌘
y i = j

0 otherwise
(17.10)
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for some µ l
i j = µ l

ji > 0. Clearly A0 satisfies (17.10). Suppose Al satisfies (17.10). We now prove that
Al+1 := Al/Al[N� l +1,N� l +1] satisfies (17.10).

The 3⇥3 (i, j)th block Al+1[i, j] is given by

Al+1[i, j] = Al[i, j] � Al[i,N� l +1]
⇣

Al[N� l +1,N� l +1]
⌘�1

Al[ j,N� l +1] (17.11)

We consider 6 cases by substituting the induction hypothesis (17.10) into (17.11):

1. If (i, j) 2 El but either (i,N � l + 1) 62 El or ( j,N � l + 1) 62 El then, substituting the induction
hypothesis (17.10) into (17.11), we have Al+1[i, j] =�µ l+1

i j y where µ l+1
i j := µ l

i j > 0.

2. If (i, j) 62 El but both (i,N� l +1) 2 El and ( j,N� l +1) 2 El then

Al+1[i, j] = �µ l
i(N�l+1) y

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1) y

1

A
�1

µ l
j(N�l+1) y = �µ l+1

i j y

where

µ l+1
i j := µ l

i(N�l+1) µ l
j(N�l+1)

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1)

1

A
�1

> 0

3. If (i, j) 2 El , (i,N� l +1) 2 El and ( j,N� l +1) 2 El then

Al+1[i, j] := �µ l
i j y � µ l

i(N�l+1) y

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1) y

1

A
�1

µ l
j(N�l+1) y

= �µ l+1
i j y

where

µ l+1
i j := µ l

i j + µ l
i(N�l+1) µ l

j(N�l+1)

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1)

1

A
�1

> 0

4. If i = j but (i,N� l +1) 62 El then Al+1[i, i] =
⇣

Âk:(i,k)2El+1 µ l+1
ik

⌘
y where µ l+1

ik := µ l
ik > 0.

5. If i = j and (i,N� l +1) 2 El then

Al+1[i, i] :=

0

@ Â
k:(i,k)2El

µ l
ik

1

Ay � µ l
i(N�l+1) y

0

@ Â
k:(k,N�l+1)2El

µ l
k(N�l+1) y

1

A
�1

µ l
i(N�l+1) y

=

0

@ Â
k:(i,k)2El+1

µ l+1
ik

1

Ay
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where µ l+1
ik := µ l

ik > 0 for (i,k) 2 El and k = 1, . . . ,N� l +1, and

µ l+1
i(N�l+1) := µ l

i(N�l+1)

 
1 �

µ l
i(N�l+1)

Âk:(k,N�l+1)2El µ l
k(N�l+1)

!
> 0

6. Otherwise, i 6= j and (i, j) 62 El and Al+1[i, j] = 0.

This completes the induction and the proof of part 1. Part 2 follows from Re(y)� 0 and Theorem 17.1.

17.1.4 sV relation

Power flow equations. The power flow equations that relate bus injections s :=
�
s j, j 2 N

�
and voltages

V :=
�
Vj, j 2 N

�
can be obtained by applying the derivation for single-phase systems to the single-phase

equivalent network G3f . In particular the bus injection model in complex form is defined by the following
power flow equation that expresses power balance at each bus jf in terms of the elements Yjf ,kf 0 of the
3(N +1)⇥3(N +1) admittance matrix Y defined in (17.6):

sf
j = Â

k2N
f 02{a,b,c}

YH

jf ,kf 0V
f
j

⇣
V f 0

k

⌘H
, j 2 N, f 2 {a,b,c} (17.12a)

This directly generalizes (4.26b) from the single-phase setting to the three-phase setting. To generalize
(4.26a) to the three-phase setting note that

s j = Â
k: j⇠k

diag
⇣

VjIHjk
⌘

, j 2 N

where s j,Vj, I jk 2 C
3 are power injections, voltages, and line currents in all phases. We then have from

(16.8)

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (17.12b)

Power flow analysis and optimization for unbalanced three-phase networks can be conducted using both
forms of the bus injection model (17.12). In particular (17.12b) will be used in Chapter ?? to prove the
equivalence of the branch flow model and the bus injection model (Theorem 18.1). The model (17.12)
does not require condition C17.1 nor C17.2.

17.1.5 Overall model

Most power flow analysis or optimization applications involve three-phase devices, either in Y or D config-
uration, connected by three-phase lines. The lines may not be phase-decoupled and the sources and loads
may not be balanced. In this subsection we compose an overall model consisting of the device modes of
Chapter 15.3 and the network equations of this section. We use this overall model to formulate a general
three-phase analysis problem in the next section.

The overall model consists of:
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1. A network model that relates terminal voltage, current, and power (V, I,s). Any equivalent model
can be used, whichever is convenient for the problem under study, including:

• The (linear) current balance equation (17.5)(17.6).

• The (quadratic) power flow equation that defines the BIM model (17.12).

2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (15.29) and the conversion rules (15.8) and (15.9)(15.10); or

• Its external model summarized in Tables 15.3 and 15.4 when only terminal quantities are
needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 15.2 and the conversion rules (15.8) and (15.9)(15.10);
or

• Its external model summarized in Table 15.2 when only terminal quantities are needed.

If only voltage sources, current sources and impedances are involved then the overall model is linear,
consisting of the nodal current balance equation (17.5)(17.6) and linear device models. If power sources
are also involved then, even though (17.5)(17.6) can still be used as the network model, the overall model
will be nonlinear because of nonlinear power source models.

17.2 Three-phase analysis

A device model relates its internal and terminal variables. A network equation relates the terminal vari-
ables of these devices. A typical three-phase analysis problem is: given a collection of voltage sources,
current sources, power sources and impedances connected by three-phase lines, compute a certain set of
external and internal variables. We first illustrate this in Chapter 17.2.1 using examples. We then formulate
in Chapter 17.2.2 a general three-phase analysis problem and outline in Chapter 17.2.3 a solution strategy
based on intuitions from these examples.

17.2.1 Examples

Three-phase analysis or optimization problems in practice are large-scale and can only be solved numer-
ically. The goal of analyzing small examples is to gain intuition on how to specify these problems using
the models developed in this chapter and illustrate their structure.

Consider a network of three-phase sources and impedances connected by three-phase lines. Assume
without loss of generality that there is exactly one device at each bus j. The quantities of interest include
the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘
and the terminal variables

�
Vj, I j,s j,g j

�
at each bus j. The

first set of examples is driven by voltage and current sources and the second set by power sources as well.
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In these examples we specify the parameters of a set of (ideal) devices and our objective is to compute the
remaining internal and terminal voltages, currents, and powers.

The general analysis problem we formulate in Chapter 17.2.3 will specify g j for all voltage sources.
The first example shows how g j arises in a circuit.

Example 17.2 (Reference voltage and g j). We start with a single-phase circuit shown in Figure 17.4(a)
where the source can be a voltage, current, or power source, the load is an impedance zk, and the line is a

(a) Single-phase network (b) Three-phase network

Figure 17.4: Reference voltage and constant g j

series impedance z jk. The terminal voltages
�
Vj,Vk,Vg

�
are defined with respect to an arbitrary but fixed

reference point. The defining equations are

Vj � Vk = z jkI jk, Vk�Vg = zkI jk

Suppose the source is a current source with a given Jj from g to terminal j. Then the solution is:

I jk = Jj, Vj =
�
z jk + zk

�
Jj + Vg Vk = zkJj + Vg

The terminal voltages depend on the choice of the reference point through the ground voltage Vg. For
this example, g j = gk = Vg. In particular, if g j at the source is specified then gk at the load is fixed and
the voltages (Vj,Vk) are uniquely determined. If we choose the reference point to be the ground then
g j = gk = Vg = 0.

Consider now a three-phase system shown in Figure 17.4(b) where a device may or may not have a
neutral line and the neutrals may or may not be grounded, directly or through an impedance. The voltage
conversion rule between internal and terminal voltages for Y and D configured devices is (15.8)(15.9),
reproduced here:

Vj = VY
j + g j1, V D

j = GVj or equivalently Vj = G†V D
j + g j1

For Y -configured devices, g j =V n
j , i.e., their neutral voltages with respect to the reference point. In general

we need two of
⇣

Vj,VY
j ,g j

⌘
to determine the third. For D-configured devices, g j can be determined by

specifying one of
⇣

V a
j ,V b

j ,V c
j

⌘
for each device j. Knowing the vector Vj is sufficient to determine both

the internal voltage V D
j and g j. Knowing V D

j however is not sufficient to determine Vj without g j. This is
studied in detail in the next few examples.
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Voltage and current sources. For a network driven by constant voltage and current sources without
power sources, both the device models and the network equation I =YV are linear. We will therefore focus
on linear analysis to compute terminal and internal voltages and currents. Given (Vj, I j) and

⇣
VY/D

j , IY/D
j

⌘
,

external and internal powers can be computed. As we will see, the key step in our analysis is to solve for
the internal currents IY/D

k of all impedances k, together with other quantities such as the terminal voltages
Vj of current sources j, using the network equation, internal models of impedances and the voltage and
current conversion rules. All other variables can then be derived. This solution strategy is extended in
Chapter 17.2.3 to general three-phase networks.

Example 17.3 (Generator/load in Y configuration). Consider the system in Figure 17.5 where an (ideal)
voltage source is connected through a three-phase line to an impedance, both in Y configuration. We
assume the neutrals are not grounded and there is not a neutral line. Suppose the following are specified:

• Voltage source
⇣

EY
j ,g j := V n

j

⌘
.

• Impedance
�
zY

k ,gk := V n
k
�
.

• Line parameters
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. In particular assumption C17.1 is satisfied.

Derive the terminal and internal voltages and currents
�
Vk, Ik,VY

k , IY
k
�

of the impedance.

Figure 17.5: Example 17.3: A Y -configured generator connected through a three-phase line to a Y -
configured impedance load.

Solution. The terminal voltages (Vj,Vk) and current injections (I j, Ik) are related according to (17.5):

I j = ys
jk
�
Vj�Vk

�
+ ym

jkVj (17.13a)

Ik = ys
jk
�
Vk�Vj

�
+ ym

k jVk (17.13b)

From Table 15.3, the external models for the ideal voltage source and impedance in Y configuration are

Vj = EY
j + g j, Vk = �zY

k Ik + gk1 (17.13c)
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This is a system of 12 linear equations in 12 unknowns
�
Vj, I j

�
and (Vk, Ik).

Substituting Vj from (17.13c) and the current conversion rule IY
k =�Ik into (17.13b) we have

�IY
k = �ys

jk
�
EY

j + g j
�
+
⇣

ys
jk + ym

k j

⌘
Vk (17.14a)

Substituting Vk from (17.13c) we have
✓⇣

ys
jk + ym

k j

⌘�1
+ zY

k

◆
IY
k =

⇣
ys

jk + ym
k j

⌘�1
ys

jkVj � gk1 (17.14b)

Hence

IY
k = �Ik =

�
ẑ jk + zY

k
��1 ẑ jk ys

jkVj � gk
�
ẑ jk + zY

k
��1 1

=
⇣

zY
k + zs

jk + zs
jkym

k jz
Y
k

⌘�1
Vj � gk

�
ẑ jk + zY

k
��1 1

where zs
jk :=

⇣
ys

jk

⌘�1
, ẑ jk :=

⇣
ys

jk + ym
k j

⌘�1
and Vj = EY

j + g j. From (17.13c)

VY
k = zY

k IY
k = zY

k

⇣
zY

k + zs
jk + zs

jkym
k jz

Y
k

⌘�1
Vj � gk zY

k
�
ẑ jk + zY

k
��1 1

Vk = VY
k + gk1 = zY

k

⇣
zY

k + zs
jk + zs

jkym
k jz

Y
k

⌘�1
Vj + gk

⇣
I�
�
ẑ jk + zY

k
��1
⌘

1

In Example 17.3 the neutral voltages g j,gk are given explicitly. Often some of them are not explicitly
given but additional information is available to indirectly specify them, i.e., to either compute their values,
provide additional equations, or eliminate them in terms of other variables. For instance, if a neutral at
bus j is grounded with zero grounding impedance and voltages are defined with respect to the ground
then g j = 0. The next two examples study this in more detail. In Example 17.4, gk of the impedance zY

k
is not explicitly given, but the additional information shows that its terminal voltage and current satisfy
Vk = �ZY

k Ik; see (17.15). This means that the external model of the impedance is equivalent to that of
an impedance with an effective internal impedance ZY

k with a known neutral voltage gk = 0. (See also
Exercise 17.7 for another four-wire example).

Example 17.4 (Indirect specification of gk = V n
k ). Repeat Example 17.3 with the modification that the

impedance is specified only by zY
k (i.e., gk is not specified), and that the neutral of the impedance is

connected through a given impedance zn
k to the ground and not to the voltage source.

Solution. The equations (17.13) in Example 17.3 is now a system of 4 vector linear equations in 4 vector
unknowns

�
Vj,Vk, I j, Ik

�
and a scalar unknown, the unspecified neutral voltage gk := V n

k of the impedance,
one more unknown than in Example 17.3. Since the neutral of the impedance is connected only to the
ground (and not to the voltage source) through the impedance zn

k , KCL and Ohm’s law provide the addi-
tional equation

gk := V n
k = �zn

k

⇣
1TIk

⌘
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Substituting into gk in (17.13c) we have Vk =�zY
k Ik� zn

k11TIk. Hence the external device model (17.13c)
in Example 17.3 can be replaced by

Vj = EY
j + g j1, Vk = �

⇣
zY

k Ik + zn
k11T

⌘

| {z }
ZY

k

Ik (17.15)

It says that the external behavior of the impedance zY
k when its neutral is grounded through zn

k is equivalent
to an impedance with an effective admittance ZY

k that is grounded directly so that gk := V n
k = 0. The same

computation leads to the same solution for (Vk, Ik) with the following replacement:

zY
k ! ZY

k , gk ! 0

The next example illustrates the case where the neutrals are not grounded but connected directly to
each end of a four-wire line (also see Exercise 17.7). In this case, neither g j nor gk needs to be explicitly
specified and can be determined from the network equation I = YV . This is an example where g j of a
voltage source cannot be specified arbitrarily but is constrained by the network equation, in contrast to
the three-wire models of Examples 17.3 and 17.4. This is because, when the neutral of the voltage source
j is not grounded nor connected to bus k, the current I j is determined only by (Vj,Vk) through (17.13a)
and g j can be arbitrary. With the neutral wire, the additional constraint In0

j = 1TI j determines g j uniquely.
Similarly for gk for the impedance.

Example 17.5 (Four-wire model). Repeat Example 17.3 with the modification that the neutrals of both
devices are ungrounded and are connected to the neutral wires at each end of a 4-wire line; see Figure
17.6. Suppose the following are specified:

• Voltage source EY
j .

• Impedance zY
k .

• Line parameters
⇣

ys
jk,y

m
jk,y

m
k j

⌘
. In particular assumption C17.1 is satisfied.

Note that neither g j nor gk is explicitly specified.

Solution. To indicate the direction of internal currents on the neutral lines, we will use n to denote the
internal neutral of a device and n0 to denote the external terminal of the neutral line. In this example,
n0 = n in the sense that V n0n

j = V n0n
k = 0. See Exercise 17.7 for the case where the neutrals of the voltage

source and the load are connected through internal impedances
⇣

zn
j ,z

n
k

⌘
to each end of the four-wire line,

so
⇣

V n0n
j ,V n0n

k

⌘
may not be zero.

Define the terminal voltages (with respect to a common reference point) and currents in C
4:

V̂j :=

2

6664

V a
j

V b
j

V c
j

V n0
j

3

7775
, V̂k :=

2

664

V a
k

V b
k

V c
k

V n0
k

3

775 , Î j :=

2

664

Ia
j

Ib
j

Ic
j

In
j

3

775 , Îk :=

2

664

Ia
k

Ib
k

Ic
k

In
k

3

775
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Figure 17.6: Example 17.5: A Y -configured generator connected through a four-wire line to a Y -configured
impedance load.

As noted above, zn
k = 0 implies that g j := V n

j = V n0
j and gk := V n

k = V n0
k are variables to be determined.

These terminal variables are related by Î = ŶV̂ as in (17.13a) (17.13b), except that the admittance matrices
are replaced by their four-wire counterparts:

Î j = ŷs
jk
�
V̂j�V̂k

�
+ ŷm

jkV̂j, Îk = ŷs
jk
�
V̂k�V̂j

�
+ ŷm

k jV̂k (17.16a)

The external model of a four-wire voltage source in Y configuration is, since the neutrals are ungrounded
and connected to each other,

V̂j =

2

664

Ean
j +V n

j
Ebn

j +V n
j

Ecn
j +V n

j
V n

j

3

775 =


EY

j
0

�

| {z }
ÊY

j

+ g j1̂ =: ÊY
j + g j1̂, In

j = 1TI j (17.16b)

where 1̂ is the vector of all 1s of size 4 and I j := (Ia
j , I

b
j , I

c
j ). Similarly the internal model of a four-wire

impedance in Y configuration is, since the neutrals are ungrounded and connected to each other,

V̂k =

2

664

zan
k Ian

k
zbn

k Ibn
k

zcn
k Icn

k
0

3

775 + gk1̂ = �


zk 0
0 0

�
Îk + gk1̂, In

k = 1TIk (17.16c)

This is a set of 18 linear equations in 18 unknowns
�
V̂j, Î j,g j

�
and

�
V̂k, Îk,gk

�
. It replaces (17.13) when

neutrals are ungrounded and unconnected to each other and g j,gk must be given explicitly. It can be solved
as in Example 17.3.

Exercise 17.6 expresses (g j,gk) in terms of the phase voltages and currents
�
Vj,Vk, I j, Ik

�
.

The next example considers the setup of Example 17.3 in D configuration when the load is supplied by
a voltage source. Exercise 17.8 considers the D configuration when the load is supplied by a current source.
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A voltage source
⇣

ED
j ,g j,b j

⌘
is fully specified. A current source only needs to specify its internal current

JD
j if shunt admittances of the line are nonzero. Otherwise its zero-sequence voltage g j also needs to be

specified (see Exercise 17.8 and Remark 17.8). Neither the zero-sequence voltage nor the zero-sequence
current (gk,bk) of the load need to be specified. They will be derived from network equations. A more
detailed comparison between Example 17.3 (voltage source) and Exercise 17.8 (current source) is given
in Tables 17.1 and 17.2 and in Remark 17.3. We will also explain in Remark 17.6 in Chapter 17.2.2 the
asymmetry in the specification of voltage and current sources in D configuration.

Example 17.6 (Generator/load in D configuration). Repeat Example 17.3 when the devices are in D con-
figuration as shown in Figure 17.7, Suppose the following are specified:

Figure 17.7: Example 17.6: Three-phase generator in D configuration connected through a three-phase
line to an impedance load in D configuration.

• Voltage source
⇣

ED
j ,g j,b j

⌘
.

• Impedance zD
k . (Note that the internal current bk need not be specified and can be derived.)

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk = ym
k j := 0

◆
. We have assumed assumption C17.1 and that shunt

admittances are zero.

1. Compute all the other quantities in Table 17.1. In particular show that the internal voltage and
current

�
V D

k , ID
k
�

of the impedance depends only on ED
j , but not on

�
g j,b j

�
.

2. Show that ID
j � ID

k = d1 for some d 2 C when 11TZ�1
Th ED

j is in span(1) where ZTh := Gzs
jkGT + zD

k .

3. Show that gk = g j when the three-phase line is symmetric of the form in (16.9) with z1
jk +2z2

jk 6= 0.

4. In deriving the impedance model (15.27b), we have shown that its internal variable bk and terminal
current Ik must satisfy bk = 1

zk

�
z̃DT

k GT†� Ik, where z̃D
k := zD

k 1 and zk := 1TzD
k 1. Verify this expressions

using the answer to part 1.
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Solution. We will derive the quantities in the following order: ED
j ) ID

k ,V D
k ) bk, Ik, I j. Then ED

j ,g j )
Vj,Vk,gk ) ID

j .

The current balance equation (17.5) with ym
jk = ym

k j = 0 is:

Vk = Vj � zs
jkI j

Multiplying both sides by G and substituting the conversion rule V D
k = GVk, ED

j = GVj, and I j = �Ik, we
have

V D
k = GVk = ED

j + Gzs
jk Ik (17.17)

Substitute the internal model V D
k = zD

k ID
k of impedance and the conversion rule Ik =�GTID

k to get
⇣

Gzs
jkGT + zD

k

⌘
ID
k = ED

j (17.18)

Hence

ID
k = Z�1

Th ED
j , V D

k = zD
k Z�1

Th ED
j

where ZTh := Gzs
jkGT+zD

k is the Thévenin equivalent of the three-phase line and the three-phase impedance.
The expression for V D

k is the three-phase version of the voltage divider rule. Note that the internal variables�
V D

k , ID
k ,b j

�
of the impedance does not depend on g j.

We now calculate the other variables
⇣

Vj, I j, ID
j

⌘
and (Vk, Ik,gk,bk). The zero-sequence current and the

terminal current of the impedance are

Ik = �GTID
k = �GTZ�1

Th ED
j , bk :=

1
3

1TID
k =

1
3

1TZ�1
Th ED

j

Using the external model of an ideal voltage source from Table 15.4 we have

Vj =
1
3

GTED
j + g j1, I j = �Ik = GTZ�1

Th ED
j (17.19)

Hence

Vk = Vj� zs
jkI j =

✓
1
3

GT� zs
jkGTZ�1

Th

◆
ED

j + g j1

gk =
1
3

1TVk = g j �
1
3

⇣
1Tzs

jkGT

⌘
Z�1

Th ED
j

Since �GTID
j = I j = GTZ�1

Th ED
j from (17.19) we have GT

⇣
ID

j +Z�1
Th ED

j

⌘
= 0. Therefore (since the null

space of GT is span(1))

ID
j = �Z�1

Th ED
j + b 0j1
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where b 0j 2 C is related to the given b j := 1
31TID

j by b 0j = b j +
1
31TZ�1

Th ED
j . Hence4

ID
j = �Z�1

Th ED
j +

✓
1
3

1TZ�1
Th ED

j +b j

◆
1

From the derivation above, gk = g j if 1Tzs
jkGTZ�1

Th ED
j = 0. When the line is symmetric of the form in

(16.9) we have

1Tzs
jk = 1T

2

64
z1

jk z2
jk z2

jk
z2

jk z1
jk z2

jk
z2

jk z2
jk z1

jk

3

75 =
⇣

z1
jk +2z2

jk

⌘
1T

Hence (since z1
jk +2z2

jk 6= 0)

1Tzs
jkGT =

⇣
z1

jk +2z2
jk

⌘⇣
1TGT

⌘
= 0

Finally we verify that the expressions bk = 1
31TZ�1

Th ED
j and Ik =�GTZ�1

Th ED
j satisfy bk = 1

zk

�
z̃DT

k GT†� Ik

where z̃D
k := zD

k 1 and zk := 1TzD
k 1. We have

⇣
z̃DT

k GT†
⌘

Ik = �z̃DT
k

⇣
GT†GT

⌘
Z�1

Th ED
j = �z̃DT

k

✓
I� 1

3
11T
◆

Z�1
Th ED

j = �z̃DT
k Z�1

Th ED
j +

zk

3
1TZ�1

Th ED
j

where the second equality follows from Theorem 15.2. But

z̃DT
k Z�1

Th ED
j = 1TzD

k Z�1
Th ED

j = 1TV D
k = 0

where the last equality follows from (17.17). Hence
�
z̃DT

k GT†� Ik = zkbk as desired.

Remark 17.3 (Comprison: voltage vs current sources). In both Example 17.6 and Exercise 17.8, the key
to the derivation is to first calculate the internal current ID

k of the impedance by relating it to the given
source parameter ED

j or JD
j . Given ID

k , all other variables can be derived. This insight will be used in
Chapter 17.2.3 for analyzing a general three-phase problem.

Compare the results in Table 17.1 from Example 17.6 for the voltage source with the results in Table
17.2 from Exercise 17.8 for the current source.

1. The internal variables
�
V D

k , ID
k ,bk

�
of the impedance do not depend on

�
g j,b j

�
, but only on ED

j for
the voltage source and ID

j for the current source.

4Alternative derivation is: �GTID
j = GTZ�1

Th ED
j implies

ID
j = �1

3
GGTZ�1

Th ED
j + b j1 = �Z�1

Th ED
j +

1
3

11TZ�1
Th ED

j + b j1

where the last equality follows from 1
3 GGT = I� 1

3 11T by Theorem 15.2.
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Voltage source j
V D

j given ED
j V D

k zD
k ID

k = zD
k Z�1

Th ED
j

ID
j �

�
GG†�Z�1

Th ED
j +b j1 ID

k Z�1
Th ED

j
b j given bk

1
31TID

k = 1
31TZ�1

Th ED
j

Vj G†ED
j + g j Vk

⇣
1
3GT� zs

jkGTZ�1
Th

⌘
ED

j + g j1
I j �Ik = GTZ�1

Th ED
j Ik �GTID

k =�GTZ�1
Th ED

j

g j given gk g j� 1
3

⇣
1Tzs

jkGT

⌘
Z�1

Th ED
j

Table 17.1: Example 17.6: parameters and variables for a voltage source j where ZTh := Gzs
jkGT + zD

k .

Current source j
V D

j V D
k �

⇣
Gzs

jkGT

⌘
ID

j V D
k zD

k ID
k = zD

k A(zD
k )JD

j

ID
j given JD

j ID
k A(zD

k )JD
j

b j
1
31TJD

j bk

⇣
z̃D
k

zk
� 1

3

⌘T
JD

j

Vj Vk + zs
jkI j = Vk� zs

jkGTJD
j Vk

1
3GTV D

k + gk1
I j �GTJD

j Ik GTJD
j

g j given gk g j +
1
31Tzs

jkGTJD
j

Table 17.2: Exercise 17.8: parameters and variables for a current source j where z̃D
k := zD

k 1, zk := 1TzD
k 1,

and A(zD
k ) :=

⇣
1
zk

1z̃DT
k � I

⌘
.
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2. For the current source, ID
k = A(zD

k )JD
j depends only on the impedance zD

k but not on the line series
admittance ys

jk. This is because of the assumption zm
jk = zm

k j = 0. For the voltage source, ID
k =

Z�1
Th ED

j depends on both zs
jk and zD

k through their Thévenin equivalent. Their values are equal if
ED

j = ZTh A
�
zD

k
�

JD
j .

3. For both the voltage and current source, gk = g j if zs
jk is symmetric.

4. For the current source, the loop flows b j and bk are related as follows (see Exercise 17.8):

• bk =�b j if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = 0.

• bk = 0 if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = zkb j.

• bk = 0 if the impedance zD
k = zk

3 I is balanced, regardless of whether JD
j is balanced or whether

b j is zero. The converse does not necessarily hold.

Example 17.7 (Balanced system). Assume the system in Example 17.6 is a balanced system, i.e., given

• The voltage source parameters
⇣

ED
j ,g j,b j

⌘
with ED

j := l ja+ where l j 2 C, a+ := (1,a,a2), and

a := e�i2p/3,

• The impedance zD
k := z 0k I where z 0k 2 C.

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk = ym
k j := 0

◆
with zs

jk = z jkI, i.e., the phases are decoupled.

1. Show that ZTh = z 0kI+z jkGGT and Z�1
Th = a

⇣
I� az jk

3az jk�1 11T
⌘

where a := 1/(z 0k +3z jk).

2. Show that all variables
�
Vj,Vk, I j, Ik

�
,
�
V D

k , ID
k
�

are balanced positive-sequence sets.

Solution. By definition

ZTh := zD
k +Gzs

jkGT = z 0kI + z jkGGT

Substituting GGT = 3I�11T from Theorem 15.2 we have ZTh = (1/a)
⇣
I�az jk11T

⌘
. Apply the matrix

inversion formula (20.5) in Appendix 20.1.3: given a scalar c 2 C, vectors b,d 2 C
n, and the identity

matrix In of size n,
⇣
In +bcdT

⌘�1
= In � b

⇣
c�1 +dTb

⌘�1
dT

we therefore have (with c :=�az jk, b = d = 1)

Z�1
Th = a

✓
I �

az jk

3az jk�1
11T
◆

(17.20)
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To show that all voltages and currents are balanced positive-sequence sets, i.e., in span(a+), the key
property that we will use is Corollary 1.3 which states that: For any balanced positive-sequence vector
x+a1 2 C

3 with a 2 C, we have

G(x+a1) = (1�a)x, GT(x+a1) = (1�a2)x

We have from Table 17.1 (substituting ED
j = l jI and zD

k = z 0kI)

ID
k = Z�1

Th ED
j = al j

✓
I �

az jk

3az jk�1
11T
◆

a+ =
l j

z 0k +3z jk
a+

V D
k = zD

k ID
k =

z 0k
z 0k +3z jk

l j a+, bk :=
1
3

1TID
k = 0

where we have used 1Ta+ = 0. The expression for V D
k is the voltage divider rule.

We now calculate the other variables
⇣

Vj, I j, ID
j

⌘
and (Vk, Ik,gk). The terminal current of the impedance

are

Ik = �GTID
k = �

l j

z 0k +3z jk
GTa+ = �

(1�a2)l j

z 0k +3z jk
a+

Using the external model of an ideal voltage source from Table 15.4 we have

Vj =
1
3

GTED
j + g j1 =

1
3
(1�a2)l j a+ + g j1

I j = �Ik =
(1�a2)l j

z 0k +3z jk
a+

Hence

Vk = Vj� zs
jkI j =

(1�a2)z 0k
3
�
z 0k +3z jk

�l j a+ + g j1, gk =
1
3

1TVk = g j

Finally

ID
j = �1

3
GI j +b j1 = �

(1�a)(1�a2)l j

3
�
z 0k +3z jk

� a+ + b j1

With power sources. The solution strategy is the same as that for problems without power sources with
the addition of quadratic device models of power sources. Specifically we first relate internal voltages and
currents to power sources (sD

j ,g j) to obtain a system of quadratic equations that can be solved numerically.
Then all other voltages and currents can be obtained analytically in terms of a solution of the quadratic
equations. Finally we can calculate internal and external power using sY/D

j := diag
⇣

VY/D
j IY/DH

j

⌘
and

s j := diag
⇣

VjIHj
⌘

respectively. This solution strategy is extended in Chapter 17.2.3 to general three-phase
networks.
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Example 17.8 (Power source). Consider the system in Figure 17.7 where, instead of a voltage source, the
generator is a three-phase power source. Suppose the following are specified:

• Power source
⇣

sD
j ,g j

⌘
.

• Impedance zD
k . (Note that bk needs not be specified for an impedance and can be derived.)

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
with nonzero ym

jk and ym
k j. In particular assumption C17.1 is satisfied.

Find all remaining internal and external variables
�
V D

i , ID
i ,sD

i ,b j
�

and (Vi, Ii,si,gk), i = j,k.

Solution. The current balance equation I = YV , the internal models of the power source and impedance,
and the conversion rules are:


I j
Ik

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�
Vj
Vk

�
(17.21a)

sD
j = diag

⇣
V D

j IDH
j

⌘
, V D

k = zD
k ID

k (17.21b)

GVi = V D
i , Ii = �GTID

i , i = j,k (17.21c)

Assuming the admittance matrix Y is invertible (e.g., it satisfies the condition in Theorem 4.3), denote its
inverse by

Y�1 :=


ys
jk + ym

jk �ys
jk

�ys
jk ys

jk + ym
k j

��1

=


z j j z jk
zk j zkk

�

We can then relate the internal variables
�
V D

i , ID
i
�
, i = j,k, by eliminating the external variables to get


V D

j
V D

k

�
= �diag(G,G)


z j j z jk
zk j zkk

�
diag

⇣
GT,GT

⌘ID
j

ID
k

�
(17.22)

sD
j = diag

⇣
V D

j IDH
j

⌘

Eliminating V D
k using V D

k = zD
k ID

k and re-arranging, we get


Z j j Z jk I

Zk j Zkk + zD
k 0

�2

4
ID

j
ID
k

V D
j

3

5 =


0
0

�
(17.23a)

diag
⇣

V D
j IDH

j

⌘
= sD

j (17.23b)

where Z j j := Gz j jGT and so on. This is a system of 9 quadratic equations in 9 variables
⇣

V D
j , ID

j , ID
k

⌘
.

It can be solved numerically. All other variables can then be derived analytically in terms of a solution⇣
V D

j , ID
j , ID

k

⌘
.
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We can further reduce (17.23) by eliminating V D
j and ID

k to get a quadratic equation in ID
j :

diag
✓✓
�Z j j +Z jk

⇣
Zkk + zD

k

⌘�1
Zk j

◆
ID

j IDH
j

◆
= sD

j , j 2 N (17.24)

In summary we can first solve (17.24) numerically to obtain ID
j and then derive all other variables, or

first solve (17.23) numerically to obtain
⇣

V D
j , ID

j , ID
k

⌘
and then all other variables. They are equivalent to

solving the original system (17.21) numerically. The decentralized structure of (17.24) is quite striking:
the system of power flow equations for the entire network reduces to this quadratic equation separately for
each bus j that can be solved in parallel.

We now derive all other variables from ID
j , by tracing back the derivation of (17.24). From (17.23a)

we have

ID
k = �

⇣
Zkk + zD

k

⌘�1
Zk jID

j , V D
j = �Z j jID

j �Z jkID
k =

✓
�Z j j +Z jk

⇣
Zkk + zD

k

⌘�1
Zk j

◆
ID

j

From (17.21b) we have

V D
k = zD

k ID
k = �zD

k

⇣
Zkk + zD

k

⌘�1
Zk jID

j ,

The internal zero-sequence currents are given by

b j =
1
3

1TID
j , bk =

1
3

1TID
k

This completes the derivation of internal voltages and currents.

The terminal currents can be obtained from the conversion rule (17.21c):

I j = �GTID
j , Ik = �GTID

k = GT

⇣
Zkk + zD

k

⌘�1
Zk jID

j

Note that 1TV D
j = 1TV D

k = 0 from (17.22). Hence the conversion rule (17.21c) yields (recall that g j is
specified)

Vj =
1
3

V D
j + g j1 (17.25a)

Given the terminal voltage Vj of the power source, (Vk,gk) of the impedance can then be determined
through the network equation (17.21a):

Vk =
⇣

ys
jk + ym

k j

⌘�1⇣
ys

jkVj + Ik

⌘
, gk =

1
3

1TVk (17.25b)

Notice that the zero-sequence voltage g j of the power source uniquely determines gk of the impedance.

The derivation in Example 17.8 relies on the assumption that the admittance matrix Y in (17.21a) is
invertible. If the shunt admittances ym

jk = ym
k j = 0 then Y has zero block row sums (Definition 17.1), i.e.,

Âk Yjk = 0 for all j. This implies that Y has zero row sums, i.e., Âk,f 0Yjf ,kf 0 = 0 for all jf , and is therefore
singular. In that case, additional information needs to be specified to obtain a unique solution, as the next
example illustrates.
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Example 17.9 (Power source). Repeat Example 17.8 but with zero shunt admittances and given zero-
sequence currents, i.e., suppose the following are specified:

• Power source
⇣

sD
j ,g j

⌘
.

• Impedance zD
k .

• Line admittances
⇣

ys
jk,y

m
jk = ym

k j = 0
⌘

with nonsingular ys
jk. In particular assumption C17.1 is satis-

fied.

• b j +bk := 1
31T

⇣
ID

j + ID
k

⌘
= b 0.

Solution. When ym
jk = ym

k j = 0 the network equation (17.21a) reduces to

I j = �Ik = ys
jk
�
Vj�Vk

�
(17.26)

Hence GT

⇣
ID

j + ID
k

⌘
= 0 from (17.21c), implying that

ID
j + ID

k =
�
b j +bk

�
1 = b 0 1 (17.27)

with b 0 a given quantity. We will express V D
j in terms of ID

j in order to write s j = diag
⇣

V D
j IDH

j

⌘
as a

quadratic equation in ID
j .

Multiplying both sides of (17.26) by zs
jk :=

⇣
ys

jk

⌘�1
and using the conversion rule again (17.21b)(17.21c),

we have

V D
j =

⇣
Gzs

jkGT + zD
k

⌘
ID
k = ZD

jk

⇣
�ID

j +b 01
⌘

= �ZD
jkID

j +b 0z̃D
k (17.28)

where the second equality follows from (17.27), ZD
jk := Gzs

jkGT + zD
k , and z̃D

k := zD
k 1. Hence we have

sD
j = diag

⇣
V D

j IDH
j

⌘
= diag

⇣
�ZD

jkID
j IDH

j + b 0z̃D
k IDH

j

⌘
(17.29)

This is a system of three quadratic equations in three variables ID
j 2 C

3. Assume a solution exists and can
be obtained by solving (17.29) numerically.

Given a solution ID
j of (17.29), all other variables can be derived analytically in terms of ID

j by tracing
back the derivation of (17.29), similar to the derivation in Example 17.8. Specifically we have I j =�GTID

j
and b j := 1

31TID
j . We obtain V D

j from (17.28), from which we have Vj = 1
3GTV D

j + g j1. This computes all
voltages and currents of the power source j.

The network equation (17.26) then yields Vk = Vj� zs
jkI j and hence also gk := 1

31TVk. We also have
Ik = �I j = GTID

j , bk = b 0 �b j, and hence ID
k = �1

3GIk + bk1 and V D
k = zD

k ID
k . This computes all voltages

and currents of the impedance k.



766 Draft: PSA December 13, 2024

The next example shows that if the power source and the impedance are balanced and the line is
decoupled and balanced, then all voltages, currents, and powers will be generalized balanced vectors.
This will be proved for general networks in Chapter 17.3. Furthermore the given power sD

j cannot be
arbitrary but must be consistent with other parameters of the network such as line and device impedances,
e.g., from (17.33), b j/c must be real. This generalizes the single-phase case where a power source s
supplies an impedance load z with a current i. Then s = z|i|2 implying that s/z is a read number. This is
because \z = \s fixes the phase difference between the voltage v and current i across the impedance.

Example 17.10 (Balanced power source). Repeat Example 17.8 when the system is balanced, i.e.,

• Power source
⇣

sD
j ,g j

⌘
with sD

j = a ja+ + b j1 for given
�
a j,b j

�
, i.e., a balanced power source

must be a generalized balanced vector. Moreover its voltage and current
⇣

V D
j , ID

j

⌘
are generalized

balanced vectors.

• Impedance zD
k := z D

k I.

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
:=
⇣

hs
jkI,h

m
jkI,h

m
k jI
⌘

with nonzero hs
jk, hm

jk and hm
k j.

Find all remaining internal and external variables
�
V D

i , ID
i ,sD

i ,b D
i
�

and (Vi, Ii,si,gi), i = j,k. Show that the
problem can be solved analytically when a reference angle is given, say, \V a

j := q a
j .

Solution. Let (recall that 1TV D
j = 0)

V D
j =: vD

j a+, ID
j =: iDj a+ +b j1 (17.30)

giving (noting diag
�
a+aH

+

�
= 1)

sD
j = diag

✓
vD

j a+

⇣
iDj a+ +b j1

⌘H◆
=
⇣

vD
j b j

⌘
a+ +

⇣
vD

j iDj
⌘

1

where
⇣

vD
j , i

D
j ,b j 2 C

3
⌘

are to be determined. Recall that x denotes the complex conjugate of any x 2 C.

Therefore, since sD
j = a ja+ +b j1,

vD
j b j = a j, vD

j iDj = b j (17.31)

which are two quadratic equations in unknowns
⇣

vD
j , i

D
j ,b j

⌘
2 C

3. Note that the internal power sD
j is

different in each phase (with different phase angles separated by 120�) if and only if b j 6= 0.

We will solve this problem by substituting the given balanced system parameters into the solution of
Example 17.8.

Specifically the admittance matrix is

Y :=


ys
jk + ym

jk �ys
jk

�ys
jk ys

jk + ym
k j

�
=

hs
jk +hm

jk �hs
jk

�hs
jk hs

jk + ym
k j

�

| {z }
Y 1f

⌦I
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Assuming the 2⇥2 admittance matrix Y 1f is invertible with inverse
�
Y 1f��1

=:


z j j z jk
zk j zkk

�
we have

Y�1 =
⇣

Y 1f
⌘�1
⌦ I =:


z j j z jk
zk j zkk

�
⌦ I

where the first equality follows from (A⌦B)�1 = A�1⌦B�1 in Lemma 17.6. Then (17.22) becomes

V D

j
V D

k

�
= �diag(G,G)

✓
z j j z jk
zk j zkk

�
⌦ I

◆
diag

⇣
GT,GT

⌘ID
j

ID
k

�

=


z j j z jk
zk j zkk

�
⌦
⇣

GGT

⌘ID
j

ID
k

�

where GGT = 3I�11T from Theorem 15.2. Then (17.23) becomes (17.31) together with


z j j
�
GGT

�
z jk
�
GGT

�
I

zk j
�
GGT

�
zkk
�
GGT

�
+z D

k I 0

�2

4
iDj a+ +b j1

ID
k

vD
j a+

3

5 =


0
0

�

where we have used the specification (17.30). This is a system of 8 (redundant) quadratic equations that
can be solved numerically for the 6 unknowns

⇣
vD

j , i
D
j ,b j

⌘
2 C

3 and ID
k 2 C

3. It implies that ID
k is a

generalized balanced vector of the form ID
k = iDk a+ +bk1 for some

�
iDk ,bk

�
.

To evaluate (17.24) we have

ID
j IDH

j =
⇣

iDj a+ +b j1
⌘⇣

iDj a+ +b j1
⌘H

=
���iDj
���
2

a+aH

+ + iDj b j a+1T + iDj b j 1aH

+ +
��b j
��2 11T

and therefore
⇣

GGT

⌘
ID

j IDH
j = 3

✓���iDj
���
2

a+aH

+ + iDj b j a+1T
◆

(17.32a)

where we have used GGTa+ = 3a+ from Corollary 1.3 and GT1 = 0. Furthermore

⇣
Zkk + zD

k

⌘�1
=
⇣

zkk

⇣
GGT

⌘
+z D

k I
⌘�1

=
⇣⇣

3zkk +z D
k

⌘
I � zkk11T

⌘�1
=

1
3zkk +z D

k

 
I� zkk

z D
k

11T
!

where the last equality follows from the matrix inversion formula (see Appendix 20.1.3.2)

(In +BD)�1 = In � B(Ik +DB)�1 D

when B,DT 2 C
n⇥k and In,Ik denote identity matrices of sizes n,k respectively. Hence

Z jk

⇣
Zkk + zD

k

⌘�1
Zk j =

z jkzk j

3zkk +z D
k

⇣
GGT

⌘ 
I� zkk

z D
k

11T
!⇣

GGT

⌘
=

3z jkzk j

3zkk +z D
k

GGT (17.32b)
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Together with Z j j = z j jGGT, (17.32) implies that (17.24) is

s j = a ja+ + b j1 =

 
�z j j +

3z jkzk j

3zkk +z D
k

!
diag

⇣
GGHID

j IDH
j

⌘

= 3

 
�z j j +

3z jkzk j

3zkk +z D
k

!

| {z }
c

✓
iDj b j a+ +

���iDj
���
2

1
◆

where we have used diag
�
a+aH

+

�
= 1. Hence

c iDj b j = a j, c
���iDj
���
2

= b j (17.33)

which is a system of 2 quadratic equations. This yields the magnitude of iDj :
���iDj
���
2

=
b j

c
which in particular means that the specification cannot be arbitrary, e.g., b j/c must be real.

When the reference angle\V a
j := q a

j is given, let f j :=\iDj . Given iDj :=
q

b j
c eif j , all the other variables⇣

vD
j , i

D
j ,b j

⌘
2 C

3 and ID
k 2 C

3 can be obtained as in Example 17.8, as a function of f j which can then be
determined from the given reference angle:

\V a
j = \


1
3

GTvD
j a+ + g j1

�a
= q a

j

This also shows that all variables are (generalized) balanced positive-sequence sets.

Remark 17.4 (Nonuniqueness of specification). Device specification is not unique and depends on the
application under study. For Example 17.8, since both internal voltages V D

j and V D
k are obtained in terms

of ID
j in (17.25), we can either specify g j for the power source and derive gk of the impedance through the

network equation, as done in Example 17.8, or alternatively, we can specify gk and determine g j from the
network equation instead. While Example 17.8 contains no power sources, the next example illustrates
multiple ways to specify and solve the case when both the generator and the load are power sources.

Also see Remark 17.6 for discussions on the asymmetry in device specifications.

The next example uses the internal model or an external model of power sources, depending on how
the power sources are specified. Specifically the solution boils down to a system of quadratic equations
that can be solved numerically. All other variables can then be derived analytically in terms of a solution of
the quadratic equations. For each of the two power sources, if its zero-sequence voltage gi is specified, we
will use the internal model for the power source to obtain the system of quadratic equations in the internal
currents ID

i . Then the internal voltage V D
i can be derived and, with the given gi, the terminal voltages Vi.

If its zero-sequence current bi is specified, on the other hand, we will use an external model to obtain the
quadratic equations in the terminal current Ii from which, with the given bi, the internal current ID

i can
then be derived. The network equation is used to express V D

i in terms of ID
i in the first case and express Vi

in terms of Ii in the second case in the derivation of the system of quadratic equations.
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Example 17.11 (Power sources). Consider the system in Figure 17.7 where both the generator and load
are power sources. Suppose the line admittances

⇣
ys

jk,y
m
jk,y

m
k j

⌘
are specified with nonzero ym

jk, ym
k j and

assumption C17.1, as in Example 17.8.

1. Suppose the power sources are specified as
⇣

sD
j ,g j

⌘
and

�
sD

k ,gk
�
. Determine all variables

�
V D

i , ID
i ,bi

�

and (Vi, Ii,si), i = j,k.

2. Suppose the power sources are specified as
⇣

sD
j ,b j

⌘
and

�
sD

k ,bk
�
. Determine all variables

�
V D

i , ID
i
�

and (Vi, Ii,si,gi), i = j,k.

3. Suppose the power sources are specified as
⇣

sD
j ,g j

⌘
and

�
sD

k ,bk
�
. Determine all variables

�
V D

i , ID
i
�

and (Vi, Ii,si), i = j,k, and b j,gk.

Solution.

1. The internal model of the power sources, the conversion rules, and the current balance equation are

sD
i := diag

⇣
V D

i IDH
i

⌘
, V D

i = GVi, Ii = �GTID
i , i = j,k (17.34a)


I j
Ik

�
=


ys

jk + ym
jk �ys

jk
�ys

jk ys
jk + ym

k j

�
Vj
Vk

�
(17.34b)

Assume the admittance matrix Y in (17.34b) is invertible and let Y�1 =:


z j j z jk
zk j zkk

�
. Then substitut-

ing the conversion rules into the network equation (17.34b) yields

V D

j
V D

k

�
= �diag(G,G)


z j j z jk
zk j zkk

�
diag

⇣
GT,GT

⌘

| {z }

Z:=

"
Z j j Z jk
Zk j Zkk

#


ID

j
ID
k

�
(17.35)

Substituting V D
j and V D

k into the internal power source models in (17.34a) yelds

sD
j := �diag

⇣⇣
Z j jID

j +Z jkID
k

⌘
IDH

j

⌘
, sD

k := �diag
⇣⇣

Zk jID
j +ZkkID

k

⌘
IDH
k

⌘
(17.36)

This is a system of 6 quadratic equations that can be solved numerically for
⇣

ID
j , ID

k

⌘
2 C

6.

All other variables can then be derived in terms of a solution
⇣

ID
j , ID

k

⌘
. Specifically, the internal volt-

ages can be obtained from the internal power source model (17.34a) (or equivalently from (17.35)),
V D

i =
�
diag

�
IDH
i
���1 sD

i , i = 1,2. Using gi, the terminal voltages are determined by the conversion
rule, Vi = 1

3 GTV D
i + gi1, i = 1,2. In terms of ID

i we have bi := 1
31TID

i and Ii =�GTID
i , i = j,k. The

terminal power is si := diag
�
ViIHi

�
, i = j,k.
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2. When
�
g j,gk

�
are given as in part 1, we set up equation (17.36) to solve numerically for

⇣
ID

j , ID
k

⌘
,

so that V D
i and then Vi can be derived for i = j,k. When

�
b j,bk

�
are given instead, we will solve

numerically for (Vj,Vk) by using the external model (15.25a) of a power source, reproduced here:

sD
i = �1

3
diag

⇣
G
⇣

ViIHi
⌘

GT

⌘
+ b iGVi, 1TIi = 0, i = j,k

and the network equation (17.34b). Note that all these equations relate terminal voltages and cur-
rents.
Specifically, instead of (17.35)), obtain from the network equation (17.34b)


Vj
Vk

�
=


z j j z jk
zk j zkk

�
I j
Ik

�

Substituting into the external models of the power sources we have

sD
j = �1

3
diag

⇣
G
�
z j jI j + z jkIk

�
IHj GT

⌘
+ b jG

�
z j jI j + z jkIk

�
, 1TI j = 0

sD
k = �1

3
diag

⇣
G
�
zk jI j + zkkIk

�
IHk GT

⌘
+ b kG

�
zk jI j + zkkIk

�
, 1TIk = 0

This is a system of 8 (redundant) quadratic equations that can be solved numerically for
�
I j, Ik

�
2C6.

Given a solution
�
I j, Ik

�
, the internal currents can be determined from the conversion rule and the

given
�
b j,bk

�
as ID

i =�1
3GIi +bi1, i = j,k. The remaining variables can then be derived as in part

1.

3. This combines the solution approaches of parts 1 and 2. Specifically we use the internal model for
power source j, the external model for k:

sD
j := diag

⇣
V D

j IDH
j

⌘
, V D

j = GVj, I j = �GTID
j (17.37a)

sD
k = �1

3
diag

⇣
G
⇣

VkIHk
⌘

GT

⌘
+ b kGVk, 1TIk = 0 (17.37b)

From the network equation (17.34b) we have

V D

j
Vk

�
= diag(G,I)


z j j z jk
zk j zkk

�
diag

⇣
�GT,I

⌘ID
j

Ik

�
=


�Gz j jGT Gz jk
�zk jGT zkk

�
ID

j
Ik

�

Substituting V D
j and Vk into the internal power source models in (17.37) yelds

sD
j := diag

⇣⇣
�Gz j jGTID

j +Gz jkIk

⌘
IDH

j

⌘

sD
k = �1

3
diag

⇣
G
⇣
�zk jGTID

j + zkkIk

⌘
IHk GT

⌘
+ b kG

⇣
�zk jGTID

j + zkkIk

⌘
, 1TIk = 0

This is a system of 7 (redundant) quadratic equations that can be solved numerically for
⇣

ID
j , Ik

⌘
2

C
6. All other variables can then be derived analytically in terms of a solution

⇣
ID

j , Ik

⌘
as done in

parts 1 and 2.
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17.2.2 General analysis problem

We now formulate a general three-phase analysis problem. Consider a three-phase network G := (N,E)

where each line ( j,k) 2 E is characterized by 3⇥ 3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

At each bus j 2 N we assume, without loss of generality, there is a single three-wire device in either Y or
D configuration. Associated with each device j are its internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘
2 C

10 (or

in C
9 for Y -configured devices j without b j) and terminal variables

�
Vj, I j,s j,g j

�
2 C

10. Some of these
variables will be specified in our formulation. The others are to be computed from network equations,
device models and the conversion rules.

We start by describing which of these variables are specified for each type of devices using the internal
and external device models in Tables 15.3 and 15.4. It is important to keep in mind that device specification
is not unique and our formulation here may need to be modified depending on the details of an application,
especially for problems involving power sources as discussed in Remark 17.4 and illustrated in Example
17.11. The principle of analysis described here, however, is widely applicable and can be applied to other
formulations. For instance, we formulate our analysis problem in a three-wire model. If the neutrals of
two Y -configured devices are not grounded and are connected to each other through a four-wire line, then
a four-wire model needs to be used; see Example 17.5 and Exercise 17.7. In that case the neutral voltages
of these devices may not be arbitrarily specified but must be determined through network equations and
device models, even for a voltage source, unlike the formulation here.

Partition N into 8 disjoint subsets:

• NY/D
v : buses with ideal voltage sources in Y or D configurations. Let Nv := NY

v [ND
v .

• NY/D
c : buses with ideal current sources in Y or D configurations. Let Nc := NY

c [ND
c .

• NY/D
i : buses with impedances in Y or D configurations. Let Ni := NY

i [ND
i .

• NY/D
p : buses with ideal power sources in Y or D configurations. Let Np := NY

p [ND
p .

with N = Nv[Nc[Ni[Np. These devices are specified as follows.

1. Voltage source
⇣

EY
j ,g j

⌘
or
⇣

ED
j ,g j,b j

⌘
: It is specified by its internal voltage EY/D

j and a parameter

g j where g j := V n
j is the neutral voltage for Y configuration and g j := 1

31TVj is the zero-sequence
terminal voltage for D configuration. For D configuration, ED

j should satisfy 1TED
j = 0. The zero-

sequence internal current b j := 1
31TID

j also needs to be specified in order to determine ID
j from the

terminal current I j.

2. Current source
⇣

JY
j ,g j

⌘
or JD

j : It is specified by its internal current JY/D
j . For a Y -configured current

source, its neutral voltage g j is also specified. For a D-configured current source, the zero-sequence
voltage gi generally need not be specified and can be derived in terms of other quantities, but there
are exceptions; see Remark 17.8.
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3. Power source
�
sY ,g j

�
or
�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 17.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 17.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given ad-
mittance matrices

⇣
ys

jk,y
m
jk

⌘
,
⇣

ys
k j,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 17.3. Note that the analy-

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D

j , ID
j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j

⇣
VY

j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j

⇣
V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 17.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

sis problem does not assume C17.1 and therefore each line ( j,k) may model a transmission or distribution
line, or a three-phase transformer where its series admittance matrices ys

jk and ys
k j may be different.

We make a few remarks on the voltage g j. See Remark 17.3 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 17.5 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for
every Y -configured device in our formulation here. It may be specified explicitly, or more likely,
indirectly. By that, we mean information additional to generic device models is available to either
compute their values, provide additional equations, or eliminate them in terms of other variables.
For instance if the neutral of a Y -configured device is grounded and all voltages are defined with
respect to the ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the

model. If the neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded

but the internal voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail

in Examples 17.3 and 17.4 for a three-wire line model as we have been assuming in almost all of
our analysis.
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For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj� g j1 from the terminal voltage Vj.

As noted above, Example 17.5 and Exercise 17.7 consider a four-wire line model where the neutrals
of the voltage source and the impedance are connected to each other. Here the (internal) neutral
voltages

�
g j,gk

�
of neither device can be arbitrarily specified but must be determined through the

network equation and device models.

2. D configuration. For a D-configured voltage source, the zero-sequence voltage g j := 1
31TVj needs

to be specified, e.g., by specifying one of its terminal voltages, say, V a
j . For a D-configured current

source or impedance, g j can be determined once its terminal voltage Vj is determined from network
equations. For a D-configured power source, typically either g j or b j can be specified; see Example
17.11.

3. Neutral voltage g j and zero-sequence voltage. For any Y -configured device, we have

Vj = VY
j + V n

j 1

The parameter g j := V n
j may or may not equal the zero-sequence voltage 1

31TVj. They are equal if
and only if the internal voltages have no zero-sequence component since 1

31TVj = 1
31TVY

j +V n
j .

Remark 17.6 (Asymmetry in D specification). As summarized in Table 17.3, in our formulation, for D
configuration, a voltage source needs to specify both

�
g j,b j

�
, but a power source only needs to specify

its g j, and a current source or impedance needs to specify none. This asymmetry is because internal
currents ID

j contain more information (they fix b j) than internal voltages V D
j (they do not fix g j). Device

specification and network equation determine
⇣

ED
j , I j

⌘
for voltage sources, which contains neither b j nor

g j. These quantities therefore need to be specified. Device specification and network equation, on the
other hand, determine

⇣
JD

j ,Vj

⌘
for current sources, which contains both b j and g j. For impedances, as we

will see in Chapter 17.2.3, the network equation will determine their internal currents ID
j which contain

b j. When the terminal voltages of all sources, including power sources, are specified or obtained, the
terminal voltages Vj of impedances can be determined by the network equation. Therefore both

�
g j,b j

�

are determined by the network equation in that case.

17.2.3 Solution strategy

The solution strategy for the problem formulated in Chapter 17.2.2 consists of three steps:

1. Write down a network equation that relates the terminal variables (V, I,s), either the current balance
equation (17.5)(17.6) I = YV or the power flow equation (17.12). As discussed in Remark 17.7 we
can always use the linear equation I = YV .

2. Write down the device models of the given collection of sources and impedances, either their internal
models and conversion rules, or their external models.
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3. Numerically solve this system of equations for desired variables.

Step 1 specifies, for the entire network, an equation that relates all the terminal variables. For examples, see
(17.38) and (17.43) for analysis problems without and with power sources respectively. Step 2 specifies,
for each device, equations relating its terminal variables to its internal variables or specified parameters.
For examples, see (17.39d)(17.39d) and (17.44a) respectively.

Remark 17.7 (Nonlinearity). Using the nonlinear power flow equations s j = diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H◆

as the network equation in Step 1 is equivalent to using the linear current balance equation I = YV . This
is because dividing both sides of the power flow equations by Vj and taking complex conjugate yields
I = YV . Therefore if no power sources are involved, then the device models of voltage sources, current
sources and impedances are linear and therefore the overall model will be linear.

If power sources are involved, then even if we use I = YV as the network equation, the device models
of power sources will be quadratic and therefore the overall network will be nonlinear. In this case the
power source device model is the only place where nonlinearity appears.

In the rest of this subsection we first describe in detail Steps 1 and 2 in the general solution strategy
outline above to obtain a system of equations that can be solved numerically. In light of Remark 17.7 we
will use the current balance equation I = VY as our network equation. Then, motivated by the examples
in Chapter 17.2.1, we show how to reduce the entire system of equations obtained from Steps 1 and 2
into a smaller system with possibly much fewer variables, which must be solved numerically. All other
variables can then be derived analytically in terms of the solution of the reduced system. (For problems
without power sources, this reduces equations (17.38)(17.39) to (17.42).) This simpler solution strategy
not only reduces the size of the system that needs numerical solution, but more importantly, it often reveals
more clearly the essential structure of the problem. For instance, for problems with power sources, the
reduced system is equation (17.47) which consists of a linear equation and a quadratic equation due to
power sources.

We first derive the solution for the case without power sources. We then show how to extend the
solution to incorporate power sources simply by adding their device models to the systems of equations.
We will focus on determining terminal and internal voltages and currents. Once they are determined,
internal and external powers can be calculated using sY/D

j := diag
⇣

VY/D
j IY/DH

j

⌘
and s j := diag

⇣
VjIHj

⌘

respectively.

Without power sources. Recall that Nv := NY
v [V D

v , Nc := NY
c [V D

c , and Ni := NY
i [V D

i are the set of
buses with, respectively, voltage sources, current sources, and impedances. With a slight abuse of notation
define the following (column) vectors of terminal voltages and currents:

(Vv, Iv) :=
�
Vj, I j, j 2 Nv

�
, (Vc, Ic) :=

�
Vj, I j, j 2 Nc

�
, (Vi, Ii) :=

�
Vj, I j, j 2 Ni

�

Some of them will be specified and the remaining voltages and currents will be determined from the
network equation and device models. Step 1 of the solution strategy is to write the network equation
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I = YV :
2

4
Iv
Ic
Ii

3

5 =

2

4
Yvv Yvc Yvi
Ycv Ycc Yci
Yiv Yic Yii

3

5

| {z }
Y

2

4
Vv
Vc
Vi

3

5 (17.38)

where the admittance matrix Y is defined in (17.6).

Step 2 is to describe the device models. The specifications for voltage sources, current sources and
impedances are, from Table 17.3:

⇣
EY/D

v ,gY/D
v ,b D

v

⌘
:=

⇣
EY/D

j , g j, j 2 NY/D
v ; b j, j 2 ND

v

⌘

⇣
JY/D

c ,gY
c

⌘
:=

⇣
JY/D

j , j 2 NY/D
c ; g j, j 2 NY

c

⌘

⇣
ZY/D

i ,gY
i

⌘
:=

⇣
diag

⇣
zD

j , j 2 NY/D
i

⌘
; g j, j 2 NY

i

⌘

To unify notation we define the following matrices

GY †
v := I

Y
v ⌦ I, GD†

v := I
D
v ⌦G†, G†

v := diag
⇣

GY †
v ,GD†

v

⌘

GY
c := I

Y
c ⌦ I, GD

c := I
D
c ⌦G, Gc := diag

⇣
GY

c ,GD
c

⌘

GY
i := I

Y
i ⌦ I, GD

i := I
D
i ⌦G, Gi := diag

⇣
GY

i ,GD
i

⌘

where I
Y
v ,IYc ,IYi are the identity matrices of sizes |NY

v |, |NY
c |, |NY

i | respectively and I
D
v ,ID

c ,ID
i denote the

identity matrices of sizes |ND
v |, |ND

c |, |ND
i | respectively. Define vectors of specifications

Ev :=


EY
v

ED
v

�
, Jc :=


JY

c
JD

c

�
, Zi := diag

⇣
ZY

i ,ZD
i

⌘
(17.39a)

gv :=


gY
v

gD
v

�
, gc :=


gY

c
0

�
, gi :=


gY

i
0

�
(17.39b)

so that gv 2 C
|Nv|, gc 2 C

|Nc| and gi 2 C
|Ni|. Then the terminal voltage and current Vv and Ic in (17.38) are

given by

Vv :=


EY
v + gY

v ⌦1
GD†

v ED
v + gD

v ⌦1

�
= G†

vEv + gv⌦1 (17.39c)

Ic := �


JY
c

GDT
c JD

c

�
= �GT

c Jc (17.39d)

Define the following notations for internal variables of impedances:

IY
i :=

�
IY

j , j 2 NY
i
�
, ID

i :=
⇣

ID
j , j 2 ND

i

⌘
, Iint

i :=


IY
i

ID
i

�

VY
i :=

�
VY

j , j 2 NY
i
�
, V D

i :=
⇣

V D
j , j 2 ND

i

⌘
, V int

i :=

VY

i
V D

i

�
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The internal model of the impedances in Y and D configurations is then

V int
i = Zi Iint

i (17.39e)

where Zi is defined in (17.39a). The conversion rule for the current and voltage (Ii,Vi) is:

Ii =


�IY

i
�GDT

i ID
i

�
= �GT

i Iint
i , GiVi =


VY

i + gY
i ⌦1

V D
i

�
= V int

i + gi⌦1 (17.39f)

The analysis problem is: Solve the network equation (17.38) and the device models (17.39) for the
unknown external and internal variables. This can be done by numerically solving the system of equations
(17.38)(17.39). Note that the analysis problem defined by (17.38)(17.39) does not assume C17.1 and
therefore each line ( j,k) may model a transmission or distribution line, or a three-phase transformer where
its series admittance matrices ys

jk and ys
k j may be different.

The intuition from Example 17.3, Example 17.6 and Exercise 17.8 suggests that, instead of numerically
solving (17.38)(17.39), it is possible to reduce it to a smaller system of equations with possibly much fewer
variables. Once the reduced system is solved numerically, all other variables can be derived analytically in
terms of a solution of the reduced system. The key observation from the examples is to first solve for the
internal currents Iint

i of all impedances, not their internal voltages V int
i nor other terminal variables (Vi, Ii),

using the network equation, the internal device models and the conversion rules. We now explain how
to obtain the reduced system of equations in the internal currents Iint

i of all impedances and the terminal
voltages Vc of all current sources.

Substituting Ii in (17.39f) into (17.38) we have


Ic
�GT

i Iint
i

�
=


Ycv
Yiv

�
Vv +


Ycc Yci
Yic Yii

�
Vc
Vi

�
(17.40)

To express Vi in this equation in terms of Iint
i , suppose the inverse


Zcc Zci
Zic Zii

�
:=

Ycc Yci
Yic Yii

��1
(17.41)

exists and multiplying both sides of (17.40) by this inverse and then by diag(Ic,Gi) we have

diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ic

�GT
i Iint

i

�
= diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ycv
Yiv

�

| {z }"
Acv
Aiv

#

Vv +


Vc

GiVi

�

where Ic is the identity matrix of size |Nc|. Substituting GiVi = V int
i + gi⌦1 = ZiIint

i + gi⌦1 from (17.39e)
and (17.39f) and re-arranging, we have thus reduced the original system (17.38)(17.39) into the following
reduced system in

�
Vc, Iint

i
�
:


Ic⌦ I ZciGT

i
0 GiZiiGT

i +Zi

�
Vc
Iint
i

�
=


Zcc

GiZic

�
Ic �


Acv
Aiv

�
Vv �


0

gi⌦1

�
(17.42)
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Here Vv, Ic, Zi and gi are given by (17.39), the submatrices Zcc,Zci,Zic,Zii are from the inverse in (17.41),
and


Acv
Aiv

�
:= diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ycv
Yiv

�

All quantities on the right-hand side of (17.42) are known. This is a system of 3(|Nc|+ |Vi|) linear equations
in 3(|Nc|+ |Vi|) unknowns

�
Vc, Iint

i
�
. Assuming the matrix on the left-hand side is invertible, the methods

described in Chapter 4.2.5 can be used to compute numerically a solution
�
Vc, Iint

i
�

of (17.42).

We now explain how to derive all the remaining variables.

1. For impedances, with Iint
i , the internal voltage V int

i = ZiIint
i and the terminal current Ii = �GT

i Iint
i

from the internal model (17.39e) and the conversion rule (17.39f). With both Iint
i and Vc, we can

obtain Vi from (17.40). The zero-sequence voltages and currents
⇣

g j = 1
31TVj, b j := 1

31TID
j

⌘
of all

D-configured impedances j 2 ND
i can then be derived from

�
Vi, Iint

i
�
. This completes the derivation

of all voltages and currents of impedances.

2. For voltage sources, with (Vv,Vc,Vi), the terminal current Iv can be derived from (17.38). For Y -
configured voltage sources j 2 NY

v , the internal currents are IY
j = �I j. For D-configured voltage

sources j 2 ND
v , b j are given and hence the internal currents are ID

j =�1
3GI j +b j1. This completes

the derivation of all voltages and currents of power sources.

3. For Y -configured current sources j 2 NY
c , g j are given and hence the internal voltages are VY

j =

Vj� g j1. For D-configured current sources j 2 ND
c , b j can be calculated from JD

j and
⇣

V D
j ,g j

⌘
can

be calculated from Vj. This completes the derivation of the voltages and currents of all current
sources.

With all voltages and currents determined, the internal and external powers are then sY/D
j := diag

⇣
VY/D

j IY/DH
j

⌘

and s j = diag
⇣

VjIHj
⌘

, j 2 N, respectively. This completes the derivation of the variables of all devices in
the network.

Remark 17.8. The derivation of the reduced system (17.42) depends critically on the assumption that the
admittance matrix in (17.40) and the effective impedance matrix GiZiiGT

i + Zi in (17.42) are invertible.
When that is not the case, additional information will be needed to uniquely determine all the quantities.

1. If there are voltage sources then the matrix in (17.40) is a strict submatrix of an admittance matrix
and therefore will be invertible if the conditions in Theorem 4.5 are satisfied, including the condition
ys

jk = ys
k j.

In Example 17.3 where a voltage source j supplies an impedance k both in Y configuration over
a three-phase line, the equation (17.40) is (17.14a) for which the inverse exists. In Example 17.6
where the devices are in D configuration, the equation (17.40) takes the form

�GTID
k = �ys

jkVj + ys
jkVk

so the inverse
⇣

ys
jk

⌘�1
also exists.
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2. When only current sources are present, the matrix in (17.40) is the network admittance matrix and
is invertible if the conditions in Theorem 4.3 are satisfied, including the condition ys

jk = ys
k j. In

particular if the shunt admittances of all three-phase lines are assumed zero, then the admittance
matrix is not invertible because it will have zero row sums. In that case, additional information
needs to be specified to provide an additional equation to (17.40) for solving

�
Vc, Iint

i
�

and Vi.

In Exercise 17.8 where the voltage source is replaced by a current source j and shunt admittances⇣
ym

jk,y
m
k j

⌘
are assumed zero, the equation (17.40) takes the form


I j

�GTID
k

�
=


ys

jk �ys
jk

�ys
k j ys

k j

�
Vj
Vk

�

for which the inverse does not exist. As a result the zero-sequence voltage g j of the current source
is also specified to provide the additional equation for solving

�
Vj, Iint

i
�
. If the shunt admittances⇣

ym
jk,y

m
k j

⌘
are nonzero as in Exercise 17.9, g j of the current source need not be specified and can be

derived because the equation above will be invertible.

3. The reduced system (17.42) generalizes (17.14b) in Example 17.3 and (17.18) in Example 17.6 to
general networks and with current sources.

With power sources. Analysis problems with power sources can be solved following the same proce-
dure, but with the addition of device models of power sources. Specifically the current balance equation
(17.38) is extended to

2

664

Iv
Ic
Ii
Ip

3

775 =

2

664

Yvv Yvc Yvi Yvp
Ycv Ycc Yci Vcp
Yiv Yic Yii Yip
Ypv Ypc Ypi Ypp

3

775

| {z }
Y

2

664

Vv
Vc
Vi
Vp

3

775 (17.43)

where (Vp, Ip) :=
�
Vj, I j, j 2 Np

�
, with Np := NY

p [ND
p , are the terminal voltages and currents of power

sources.

The device model (17.39) also needs to be extended to include power sources. For a Y -configured
power source,

⇣
sY

j := sY
j ,g j := V n

j

⌘
are specified. For a D-configured power source, we assume that

⇣
sD

j := sD
j ,g j := 1

31TVj

⌘
are specified. Let sp :=


sY

p
sD

p

�
. Then the internal models of the power sources in

Y and D configurations are

sY
p =

⇣
diag

⇣
VY

j IYH
j

⌘
, j 2 NY

p

⌘
, sD

p :=
⇣

diag
⇣

V D
j IDH

j

⌘
, j 2 ND

p

⌘
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To simplify notation define the internal currents and voltages for all power sources:

IY
p :=

�
IY

j , j 2 NY
p
�
, ID

p :=
⇣

ID
j , j 2 ND

p

⌘
, Iint

p :=


IY
p

ID
p

�

VY
p :=

�
VY

j , j 2 NY
p
�
, V D

p :=
⇣

V D
j , j 2 ND

p

⌘
, V int

p :=

VY

p
V D

p

�

Then the internal models of the power sources can be written as

sp = diag
⇣

V int
p IintH

p

⌘
(17.44a)

This is a quadratic equation in the unknowns internal voltage and current
�
V int

p , Iint
p
�
.5 Define

GD
p := I

D
p⌦G, Gp := diag

⇣
I
Y
p ,GD

p

⌘
, gp :=


gY

p
0

�

where I
D
p denotes the identity matrix of size |ND

p |, I
Y
p the identity matrices of size 3|NY

p |, and gY
p :=⇣

g j := V n
j , j 2 NY

p

⌘
are neutral voltages of all Y -configured power sources j. The current and voltage

conversion rule is (similar to (17.39f))

Ip = �Gp Iint
p , GpVp = V int

p + gp⌦1 (17.44b)

The analysis problem can be stated as: Solve the network equation (17.43) and the device models
(17.39) (17.44) for the unknown external and internal variables. This system of equations (17.43)(17.39)(17.44)
can be solved numerically.

We will follow the same procedure to reduce (17.43)(17.39)(17.44) into a smaller system of (nonlinear)
equations that involves only

�
Vc, Iint

i , Iint
p ,V int

p
�
. All other variables can then be derived from a solution�

Vc, Iint
i , Iint

p ,V int
p
�
.

Substituting Ii, Ip in (17.39f) and (17.44b) respectively into (17.43) we have

diag
⇣
Ic,�GT

i ,�GT

p

⌘
2

4
Ic

Iint
i

Iint
p

3

5 =

2

4
Ycv
Yiv
Ypv

3

5Vv +

2

4
Ycc Yci Ycp
Yic Yii Yip
Ypc Ypi Ypp

3

5

2

4
Vc
Vi
Vp

3

5 (17.45)

Suppose the inverse
2

4
Zcc Zci Zcp
Zic Zii Zip
Zpc Zpi Zpp

3

5 :=

2

4
Ycc Yci Ycp
Yic Yii Yip
Ypc Ypi Ypp

3

5
�1

(17.46)

5We can also use the equivalent model sp = diag
�
(GpVp � gp) IintH

p
�

of power sources in terms of the terminal volt-
age Vp, the internal current Iint

p , and the neutral voltage gY
p . The network equation however will only allow us to solve

for G jVj = V D
j for D-configured power sources j. Specifically V int

p in (17.47a) will be replaced by GpVp and (17.47b) by
sp = diag

�
(GpVp � gp) IintH

p
�
. Therefore it is simpler to solve for the internal voltage V int

p and then use g j to obtain the terminal
voltages Vj of D-configured power sources j.
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exists and multiplying both sides by this inverse and then by diag(Ic,Gi,Gp) we have

diag(Ic,Gi,Gp)

2

4
Zcc Zci Zcp
Zic Zii Zip
Zpc Zpi Zpp

3

5diag
⇣
Ic,�GT

i ,�GT

p

⌘
2

4
Ic

Iint
i

Iint
p

3

5 =

2

4
Bcv
Biv
Bpv

3

5Vv +

2

4
Vc

GiVi
GpVp

3

5

where
2

4
Bcv
Biv
Bpv

3

5 := diag(Ic,Gi,Gp)

2

4
Zcc Zci Zcp
Zic Zii Zip
Zpc Zpi Zpp

3

5

2

4
Ycv
Yiv
Ypv

3

5

Substituting GiVi = V int
i + gi⌦ 1 = ZiIint

i + gi⌦ 1 from (17.39e) and (17.39f), GpVp = V int
p + gp⌦ 1 from

(17.44b), and re-arranging, we have

2

4
Ic ZciGT

i ZcpGT
p 0

0 GiZiiGT
i +Zi GiZipGT

p 0
0 GpZpiGT

i GpZppGT
p Ip

3

5

2

664

Vc
Iint
i

Iint
p

V int
p

3

775 =

2

4
Zcc

GiZic
GpZpc

3

5 Ic �

2

4
Bcv
Biv
Bpv

3

5Vv �

2

4
0
gi
gp

3

5⌦1 (17.47a)

diag
⇣

V int
p IintH

p

⌘
= sp (17.47b)

The reduced system of (17.43)(17.39)(17.44) is (17.47) which must be solved numerically. The analysis
problem therefore becomes: Solve (17.47) for

�
Vc, Iint

i , Iint
p ,V int

p
�

and derive all other variables analytically
(Exercise 17.13). As before, the analysis problem does not assume C17.1 and therefore each line ( j,k)
may model a transmission or distribution line, or a three-phase transformer where its series admittance
matrices ys

jk and ys
k j may be different.

We make three remarks. First, compared with the reduced system (17.42) without power sources,
the reduced system (17.47) involves two more variables

�
V int

p ,V int
p
�

with two additional sets of equations.
While (17.42) is linear, (17.47) is quadratic because of the device model (17.47b) of power sources. Even
if the inverse in (17.46) exists and the matrix on the left-hand side of (17.47a) is invertible, (17.47) may
or may not have a solution which may or may not be unique because of the nonlinearity. Second, these
inverses may not exist in which case more information is needed to determine a solution. For example,
when there are no voltage sources as in Example 17.9 and the shunt admittances ym

jk = ym
k j = 0, the admit-

tance matrix in (17.45) has zero row sums and is singular. In that case additional information (b j +bk) is
given, compared with the case in Example 17.8; see also Remark 17.8. Finally, the linearity of (17.47a) is
the consequence of using the linear current balance equation I = YV in (17.43), and this is always possible
as discussed in Remark 17.7.

17.3 Balanced network

In this section we show that, if the voltage sources, current sources, and impedances are generalized
balanced vectors and the lines are decoupled, then the analysis problem in Chapter 17.2 can be solved
by analyzing certain simpler per-phase networks. The intuition is that the balanced voltage and current
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sources render all voltages and currents in the network to be balanced due to Corollary 1.3. To simplify
exposition we only consider the case without power sources so that our problem remains linear.

With today’s abundant computing power the smaller problem size may not be an important advan-
tage of per-phase analysis. Rather, per-phase analysis clarifies the simple structure underlying a balanced
network and enhances our conceptual understanding of three-phase networks in general, balanced or un-
balanced.

We start in Chapter 17.3.1 by summarizing properties of Kronecker product which underlies the equiv-
alence of three-phase analysis and per-phase analysis for a balanced network.

17.3.1 Kronecker product

The simple structure that underlies balanced networks depends critically on properties of the Kronecker
product. For instance the admittance matrix Y of a balanced three-phase network can be written as the
Kronecker product of a per-phase admittance matrix and the identity matrix I of size 3. This is explained
in Chapter 17.3. In particular we will use the following properties in the proof of Theorem ?? there.

Lemma 17.6 (Kronecker product). Let A,B,C,D be complex matrices of appropriate dimensions.

1. (A+B)⌦C = (A⌦C) + (B⌦C); C⌦ (A+B) = (C⌦A) + (C⌦B).

2. (A⌦B)(C⌦D) = (AC)⌦ (BD).

3. (A⌦B)T = AT⌦BT; (A⌦B)H = AH⌦BH.

4. (A⌦B)�1 = A�1⌦B�1; (A⌦B)† = A†⌦B† where A† denotes the pseudo-inverse of A.

5. rank (A⌦B) = rank A · rank B.

6. If A 2 C
m⇥n is invertible and X ,Y 2 C

p⇥q then

A⌦X = A⌦Y, () X = Y

The proof of the lemma is left as Exercise ??

17.3.2 Three-phase analysis

We first explain how the device models and the admittance matrix simplify in a balanced system. We then
use that to simplify the three-phase analysis problem in Chapter 17.2. Finally we show that the problem is
equivalent to solving per-phase systems.
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Balanced devices. When the devices are balanced positive-sequence sets with parameters l j,µ j,z j 2C:

EY/D
j := l ja+, j 2 Nv, JY/D

j := µ ja+, j 2 Nc, zY/D
j := z jI, j 2 Ni

their internal models in Table 17.3 reduce to those specified in Table 17.4. In vector form the voltage
sources are

EY
v = lY

v ⌦a+, ED
v = l D

v ⌦a+, Ev :=


EY
v

ED
v

�
= lv⌦a+

where lY
v :=

�
l j, j 2 NY

v
�
, l D

v :=
�
l j, j 2 ND

v
�

and lv :=
�
l j, j 2 Nv

�
. Defining similar quantities for

current sources and impedances, the specification (17.39a)(17.39b) in vector form reduces to

Ev :=


lY
v

l D
v

�
⌦a+ = lv⌦a+, gv :=


gY

v
gD

v

�
(17.48a)

Jc :=


µY
c

µD
c

�
⌦a+ = µc⌦a+, g0

c :=


gY
c
0

�
(17.48b)

Zi := diag
⇣

zY
i ,z D

i

⌘
⌦ I = zi⌦ I, g0

i :=


gY
i
0

�
(17.48c)

where zY
i := diag

�
z j, j 2 NY

i
�
, z D

i := diag
�
z j, j 2 ND

i
�
, zi := diag

�
zY

i ,z D
i
�

are diagonal matrices of sizes��VY
i
��,
��V D

i
��, |Vi| respectively.

The external models in Table 17.4 are obtained by substituting these specifications into the external
models in Table 17.3 and applying Corollary 1.3 and Theorem 15.2, specifically

Ga+ = (1�a)a+, GTa+ =
�
1�a2�a+, G† =

1
3

GT, GT† =
1
3

G

The derivation of the impedance model in Table 17.4 in D configuration is left as Exercise 17.14. These

Buses j Specification External model Vars Internal vars
NY

v EY
j = l ja+, g j Vj = l ja+ + g j1 I j IY

j =�I j

ND
v ED

j = l ja+, g j, b j Vj = 1
3(1�a2)l ja+ + g j1 I j ID

j = �GT†I j +b j1
NY

c JY
j = µ ja+,g j I j = �µ ja+ Vj VY

j = Vj� g j1
ND

c JD
j = µ ja+ I j = �(1�a2)µ ja+ Vj V D

j = GVj, g j := 1
31TVj

b j := 1
31TID

j
NY

i zY
j = z jI, g j I j = �h j

�
Vj� g j1

� �
Vj, I j

�
VY

j = Vj� g j1, IY
j =�I j

ND
i zD

j = z jI, b j I j =�3h j
�
Vj � g j1

� �
Vj, I j

�
V D

j = GVj, g j := 1
31TVj

ID
j = �GT†I j +b j1

Table 17.4: Internal and external models of balanced positive-sequence sources and impedances with
h j := z�1

j . The impedance model for ND
i in the table is equivalent to I j = �3h j

⇣
Vj �

⇣
1
31TVj

⌘
1
⌘

which is the model I j = �Y D
j Vj in Table 17.3.
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models are special cases of the three-phase devices in Chapters 15.3.3 and 15.3.4. To simplify the notation
for the external models of voltage and current sources, define

â j :=

8
>><

>>:

1 if j 2 NY
v [NY

c [NY
i

(1�a2)/3 if j 2 ND
v (voltage sources)

(1�a2) if j 2 ND
c (current sources)

3 if j 2 ND
i (admittance)

Then when the voltage and current sources are balanced, their external models (17.39c)(17.39d) reduce
to:

Vv =
�
â jl ja+ + g j1, j 2 Nv

�
=: l̂v⌦a+ + gv⌦1 (17.48d)

Ic =
�
�â jµ ja+, j 2 Nc

�
=: �µ̂c⌦a+ (17.48e)

where l̂v,gv 2 C
|Nv| and µ̂c 2 C

|Nc|.

Remark 17.9 (D-Y transformation). The specification (17.48d)(17.48e) corresponds to the first step of per-
phase analysis in Chapter 1.2.5 that converts all D configured devices to their Y equivalents that have the
same external behavior. It generalizes the standard practice of assuming g j = 0 to the case where g j may be
nonzero, because some Y -configured devices on the network are not grounded, some are grounded through
nonzero earthing impedances, and some D-configured devices have nonzero zero-sequence voltages.

The internal models of impedances (17.39e) and the conversion rules (17.39f) become

V int
i = Zi Iint

i = (zi⌦ I) Iint
i (17.48f)

Ii =


�IY

i
�
�
I

D
i ⌦GDT

i
�

ID
i

�
= �GT

i Iint
i (17.48g)

GiVi =


VY

i + gY
i ⌦1

V D
i

�
= V int

i + g0
i ⌦1 (17.48h)

where Zi,zi,g0
i are defined in (17.48c), and I

Y
i ,ID

i are the identity matrices of sizes
��VY

i
�� ,
��V D

i
�� respectively.

Balanced admittance matrix Y . We assume all lines are balanced, i.e.,

ys
jk = hs

jkI, ym
jk = hm

jkI, ym
k j = hm

k jI (17.49a)

for some constants hs
jk,h

m
jk,h

m
k j 2 C. The terminal voltages and currents V := (V0, . . . ,VN) and I :=

(I0, . . . , IN) are described by (17.5) which, with balanced lines, reduces to

I j = Â
k: j⇠k

⇣
ys

jk + ym
jk

⌘
Vj � Â

k: j⇠k
ys

jkVk = Â
k: j⇠k

h jkVj � Â
k: j⇠k

hs
jkVk, j 2 N (17.49b)

where h jk := hs
jk +hm

jk and Vj, I j 2C3. This in vector form is I =YV . The balanced lines in (17.49a) allow
us to write the admittance matrix Y using the Kronecker product. This is the key mathematical structure,
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in addition to the conversion matrices G,GT as described in Corollary 1.3, that underlies the balanced
property of all voltages and currents in the network.

Specifically, define the (N +1)⇥ (N +1) per-phase admittance matrix Y 1f by

Y 1f
jk :=

8
><

>:

�hs
jk, ( j,k) 2 E, ( j 6= k)

Âk: j⇠k

⇣
hs

jk + hm
jk

⌘
, j = k

0 otherwise
(17.50a)

As we will see, this is the bus admittance matrix studied in Chapter 4.2 for the per-phase circuit of
a balanced three-phase network where each line is characterized by four complex scalars

⇣
hs

jk,h
m
jk

⌘
,

⇣
hs

k j,h
m
k j

⌘
. In particular Y does not assume C17.1 and hence Y 1f may not satisfy C4.1. Therefore each

line ( j,k) may model a transmission or distribution line, or a three-phase transformer where its series
admittance matrices ys

jk and ys
k j may be different.

Substituting (17.49a) into the admittance matrix Y in (17.6) for the three-phase network, we can write
Y in terms of the per-phase admittance matrix Y 1f using the Kronecker product:

Y = Y 1f ⌦ I (17.50b)

The relation I = YV for the three-phase network becomes

I =
⇣

Y 1f ⌦ I

⌘
V (17.50c)

Three-phase analysis. We are interested in determining the (column) vectors of terminal and internal
variables

V�v := (Vc,Vi) :=
�
Vj, j 2 Nc[Ni

�
, I�c := (Iv, Ii) :=

�
I j, j 2 Nc[Ni

�
(17.51a)

V int
�v :=

⇣
V int

c ,V int
i

⌘
:=
⇣

VY/D
j , j 2 Nc[Ni

⌘
, Iint

�c :=
⇣

Iint
v , Iint

i

⌘
:=
⇣

IY/D
j , j 2 Nc[Ni

⌘
(17.51b)

gD
�v :=

⇣
gD

c ,gD
i

⌘
:=
⇣

g j, j 2 ND
c [ND

i

⌘
, b D

�v :=
⇣

b D
j ,b D

j

⌘
:=
⇣

b j, j 2 ND
c [ND

i

⌘
(17.51c)

Let x :=
�
V�v, I�c,V int

�v , Iint
�c,gD

�v,b D
�v
�
. When the network is balanced the three-phase analysis problem

in Chapter 17.2 reduces to: solve for x given the device specification (17.48) and the network equation
(17.50).

17.3.3 Balanced voltages and currents

In this subsection we prove a structural result that says that, when the internal voltages and currents of
non-power sources are balanced, so are all other voltages and currents in the network.
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Partition the per-phase admittance matrix Y 1f defined in (17.50) into submatrices (A11,A21,A22):

Y 1f =:

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75 =:


A11 AT

21
A21 A22

�
(17.52)

The matrix A22 is complex symmetric and therefore a legitimate admittance matrix. We will make two
assumptions on the per-phase admittance matrix Y 1f .

C17.7: The submatrix A22 is invertible.

Assuming C17.7 (see Chapter 4.2.3 for sufficient conditions for the invertibility of principal submatri-
ces of an admittance matrix), denote the inverse of the submatrix A22 by

"
Z1f

cc Z1f
ci

Z1f
ic Z1f

ii

#
:=

"
Y 1f

cc Y 1f
ci

Y 1f
ic Y 1f

ii

#�1

= A�1
22 (17.53a)

Then the inverse in (17.41) exists and is:


Zcc Zci
Zic Zii

�
:=

Ycc Yci
Yic Yii

��1
= A�1

22 ⌦ I (17.53b)

where we have used (A⌦B)�1 = A�1⌦B�1 (Lemma 17.6). The second assumption is:

C17.8: The impedances z j 2 C are nonzero for all j 2 Ni, the submatrix Z1f
ii in (17.53a) and the matrix

Ĉi =

✓⇣
Z1f

ii

⌘�1
⌦ I

◆
+ GT

i
�
z�1

i ⌦ I
�

Gi (17.54)

are invertible.

Theorem 17.7 (Balanced voltages and currents). Suppose C17.7 and C17.8 hold.

1. Any solution x of (17.48)(17.50) consists of generalized balanced vectors in positive sequence, i.e.,
any voltage or current x j in (17.51) at bus j is of the form x j = a ja+ +b j1 for some a j,b j 2 C.

2. Moreover all x j are balanced vectors, i.e., b j = 0, if gv = 0 for all voltage sources and the neutral
voltages gY

i = 0 for all Y configured impedances.

In the rest of this subsection we prove the theorem following the solution strategy in Chapter 17.2.3
to show that any solution

�
Vc, Iint

i
�

of the reduced system (17.42) consists of generalized balanced vectors.
All other variables can then be derived analytically in terms of the solution

�
Vc, Iint

i
�

and shown to be
generalized balanced vectors (Exercise 17.15).

The variable
�
Vc, Iint

i
�

satisfies (17.42), reproduced here:

Ic⌦ I ZciGT

i
0 GiZiiGT

i +Zi

�
Vc
Iint
i

�
=


Zcc

GiZic

�
Ic �


Acv
Aiv

�
Vv �


0

g0
i ⌦1

�
(17.55)
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where


Acv
Aiv

�
:= diag(Ic⌦ I,Gi)


Zcc Zci
Zic Zii

�
Ycv
Yiv

�

We now prove Theorem 17.7 in the following three lemmas. The first lemma simplifies (17.55) using
balanced devices (17.48) and balanced lines (17.50).

Lemma 17.8. Suppose C17.7 holds. Balanced devices and lines (17.48)(17.50) reduces (17.55) to
2

4
Ic⌦ I

⇣
Z1f

ci ⌦ I

⌘
GT

i

0 Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i + (zi⌦ I)

3

5

| {z }
M


Vc
Iint
i

�
= a0 ⌦a+ + b0 ⌦1 (17.56a)

where

a0 := �

2

64
Z1f

cc µ̂c + Bcv l̂v

Z1f ,Y
ic µ̂c + BY

ivl̂v

(1�a)
⇣

Z1f ,D
ic µ̂c + BD

ivl̂v

⌘

3

75 , b0 := �

2

4
Bcv gv

BY
ivgY

v + gY
i

0

3

5 (17.56b)

for some matrices Bcv,BY
iv,B

D
iv.

The second lemma shows that the inverse M�1 of the matrix in (17.53a) has a structure that preserve
the balanced nature of voltages and currents.

Lemma 17.9. Suppose C17.7 and C17.8 hold.

1. The matrix M in (17.56) is invertible.

2. Each 3⇥3 block
⇥
M�1⇤

jk of M�1 corresponding to phases abc is of the form

⇥
M�1⇤

jk := v jk I + w jk Wjk (17.57)

where v jk,w jk 2 C are scalars and Wjk 2 C
3⇥3 is one of I, G, GT, GGT and GTG.

The structure (17.57) of M�1 in Lemma 17.9 is what allows
�
Vc,V int

i
�

to remain generalized balanced
vectors. It requires that Ĉi in C17.8 be invertible. The following lemma is the crucial fact in determining
the inverse of Ĉi that appears in M�1. The lemma can be verified directly using

�
GTG

��
GTG

�
= 3GTG

(Theorem 15.2). It says that taking the inverse of the sum of a Kronecker product with I and a Kronecker
product with GTG preserves the Kronecker structure.

Lemma 17.10. For any matrix A and B of appropriate sizes, if A and A+3B are invertible then
⇣

A⌦ I + B⌦GTG
⌘�1

=
⇣

A�1⌦ I �
⇣
(A+3B)�1 BA�1

⌘
⌦GTG

⌘

We now prove Lemmas 17.8 and 17.9.
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Proof of Lemma 17.8. From (17.53) and (17.48c), the matrix on the left-hand side of (17.55) reduces to

2

4
Ic⌦ I

⇣
Z1f

ci ⌦ I

⌘
GT

i

0 Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i + (zi⌦ I)

3

5 (17.58)

On the right-hand side partition Z1f
ic in (17.53) into submatrices corresponding to impedances in Y and

D configurations:

Z1f
ic =:

"
Z1f ,YY

ic Z1f ,Y D
ic

Z1f ,DY
ic Z1f ,DD

ic

#
=:

"
Z1f ,Y

ic
Z1f ,D

ic

#

where Z1f ,Y
ic denotes the first |NY

i | rows of Z1f
ic corresponding to Y configured impedances and Z1f ,D

ic
denotes the remaining |ND

i | rows of Z1f
ic corresponding to D configured impedances. We then have, using

Gi = diag
�
I
Y
i ⌦ I,ID

i ⌦G
�
,

GiZic = Gi

⇣
Z1f

ic ⌦ I

⌘
=

"
Z1f ,Y

ic ⌦ I

Z1f ,D
ic ⌦G

#

The important structure is that the conversion matrix G appears on the right as “⌦G” which allows the
current Ic transformed by GiZic to remain in span(a+) on the right-hand side (using (17.48e)):


Zcc

GiZic

�
Ic = �

"
Z1f

cc ⌦ I

Gi

⇣
Z1f

ic ⌦ I

⌘
#

µ̂c⌦a+ = �

2

64
Z1f

cc µ̂c

Z1f ,Y
ic µ̂c

(1�a)Z1f ,D
ic µ̂c

3

75⌦a+ (17.59a)

where we have used (A⌦B)(C⌦D) = (AC)⌦ (BD) (Lemma 17.6) and Ga+ = (1�a)a+ (Corollary
1.3).

The second term


Acv
Aiv

�
Vv on the right-hand side of (17.55) can be simplified in a similar manner but

with more steps. We have from (17.53)


Acv
Aiv

�
=

"
Z1f

cc ⌦ I Z1f
ci ⌦ I

Gi

⇣
Z1f

ic ⌦ I

⌘
Gi

⇣
Z1f

ii ⌦ I

⌘
#"

Y 1f
cv ⌦ I

Y 1f
iv ⌦ I

#

Similarly partition Z1f
ii into its first |NY

i | and the remaining |ND
i | rows:

Z1f
ii =:

"
Z1f ,Y

ii
Z1f ,D

ii

#
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Then, using (17.48d) and Gi = diag
�
I
Y
i ⌦ I,ID

i ⌦G
�
, we have


Acv
Aiv

�
Vv =

2

64
Z1f

cc ⌦ I Z1f
ci ⌦ I

Z1f ,Y
ic ⌦ I Z1f ,Y

ii ⌦ I

Z1f ,D
ic ⌦G Z1f ,D

ii ⌦G

3

75

"
Y 1f

cv ⌦ I

Y 1f
iv ⌦ I

#⇣
l̂v⌦a+ + gv⌦1

⌘

=:

2

4
Bcv l̂v
BY

ivl̂v
(1�a)BD

ivl̂v

3

5

| {z }
a0

⌦a+ +

2

4
Bcv gv
BY

ivgY
v

0

3

5

| {z }
b0

⌦1 (17.59b)

where

Bcv := Z1f
cc Y 1f

cv + Z1f
ci Y 1f

iv , BY
iv := Z1f ,Y

ic Y 1f
cv + Z1f ,Y

ii Y 1f
iv , BD

cv := Z1f ,D
ic Y 1f

cv + Z1f ,D
ii Y 1f

iv

The factor 1�a in (17.59b) is due to Ga+ = (1�a)a+ and the 0 entry is due to G1 = 0 and originates
from the fact that the internal voltages in a D configuration sum to zero, i.e., 1TV D = 0.

Substituting (17.58)(17.59) into (17.55) then yields (17.56) (recall from (17.48c) that g0
i :=

�
gY

i ,0
�
).

Proof of Lemma 17.9. The matrix in (17.56):

M :=

2

4
Ic⌦ I

⇣
Z1f

ci ⌦ I

⌘
GT

i

0 Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i + (zi⌦ I)

3

5

is invertible if its submatrix

M22 := (zi⌦ I) + Gi

⇣
Z1f

ii ⌦ I

⌘
GT

i (17.60a)

is invertible in which case its inverse is

M�1 :=

"
Ic⌦ I �

⇣
Z1f

ci ⌦ I

⌘
GT

i M�1
22

0 M�1
22

#
(17.60b)

(see Appendix 20.1.3 for discussions on Schur complement for the inverse of general block matrices). To
study the invertibility of M22 we use the matrix inversion formula (20.5):

(A+BCD)�1 = A�1 � A�1 �BC̃�1D
�

A�1

where C̃ := C�1 + DA�1B in Appendix 20.1.3.2. The matrix A + BCD is invertible if A, C and C̃ :=
C�1 + DA�1B are invertible. Therefore M22 in (17.60a) is invertible if (i) the impedances z j 2 C are
nonzero for all j 2 Ni; (ii) Z1f

ii is invertible; and (iii) the matrix Ĉi in (17.54) is invertible, as claimed in
Lemma 17.9.
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We now prove (17.57). To apply Lemma 17.10 to determine the inverse of Ĉi, use Gi = diag
�
I
Y
i ⌦ I,ID

i ⌦G
�

to get

GT

i
�
z�1

i ⌦ I
�

Gi = diag
⇣
I
Y
i ⌦ I,ID

i ⌦GT

⌘
diag

✓�
zY

i
��1⌦ I,

⇣
z D

i

⌘�1
⌦ I

◆
diag

⇣
I
Y
i ⌦ I,ID

i ⌦G
⌘

= diag
⇣

hY
i ⌦ I,hD

i ⌦GTG
⌘

where hY/D
i :=

⇣
zY/D

i

⌘�1
. Partition

⇣
Z1f

ii

⌘�1
into submatrices:

⇣
Z1f

ii

⌘�1
=:


AYY AY D

ADY ADD

�

Then

Ĉi :=
✓⇣

Z1f
ii

⌘�1
⌦ I

◆
+ GT

i
�
z�1

i ⌦ I
�

Gi =


ÃYY AY D

ADY ADD

�
⌦ I + diag

⇣
0,hD

i

⌘
⌦GTG

where ÃYY := AYY +hY
i . We can then apply Lemma 17.10 to get

Ĉ�1
i = Ã⌦ I � B̃⌦GTG (17.61)

where

Ã :=


AYY +hY
i AY D

ADY ADD

��1

, B̃ :=


AYY +hY
i AY D

ADY ADD +3hD
i

��1

diag
⇣

0,hD
i

⌘
Ã

Applying the matrix inversion formula with Ĉ�1
i given by (17.61) we obtain the inverse of M22 in

(17.60a) as

M�1
22 = (hi⌦ I) � (hi⌦ I)Gi

⇣
Ã⌦ I � B̃⌦GTG

⌘
GT

i (hi⌦ I)

= (hi⌦ I) �
✓

ÂYY ⌦ I ÂY D⌦GT

ÂDY ⌦G ÂDD⌦GGT

�
�


B̂YY ⌦GTG 3B̂Y D⌦GT

3B̂DY ⌦G 3B̂DD⌦GGT

�◆
(17.62)

where

[Â/B̂]YY := hY
i [Ã/B̃]YY hY

i , [Â/B̂]Y D := hY
i [Ã/B̃]Y DhD

i

[Â/B̂]DY := hD
i [Ã/B̃]DY hY

i , [Â/B̂]DD := hD
i [Ã/B̃]DDhD

i

and hY/D
i :=

⇣
zY/D

i

⌘�1
, hi := diag

�
hY

i ,hD
i
�
. Therefore each 3⇥3 block of M�1

22 is of the desired form of

v jkI+w jk Wjk where v jk,w jk 2 C are scalars and Wjk 2 C
3⇥3 is one of I, G, GT, GGT and GTG.

Finally substituting (17.61) into (17.60b) we see that each 3⇥3 block of the 3(|Nc|+ |Ni|)⇥3(|Nc|+ |Ni|)
matrix M�1 will also be of the desired form of w jk Wjk if this property holds for its off-diagonal submatrix
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⇣
Z1f

ci ⌦ I

⌘
GT

i M�1
22 . We now show that this is indeed the case. Partition Z1f

ci into submatrices corresponding
to impedances in Y and D configurations:

Z1f
ci =:

"
Z1f ,YY

ci Z1f ,Y D
ci

Z1f ,DY
ci Z1f ,DD

ci

#

Using Z1f
ci and Gi = diag

�
I
Y
i ⌦ I,ID

i ⌦G
�

we have

⇣
Z1f

ci ⌦ I

⌘
GT

i M�1
22 =

"
Z1f ,YY

ci ⌦ I Z1f ,Y D
ci ⌦GT

Z1f ,DY
ci ⌦ I Z1f ,DD

ci ⌦GT

#
M�1

22

Substituting M�1
22 in (17.62) and using

GTGGT =
⇣

3I�11T
⌘

GT = 3GT

we see that each 3⇥3 block of
⇣

Z1f
ci ⌦ I

⌘
GT

i M�1
22 is of the desired form of v jkI+w jk Wjk where v jk,w jk 2C

are scalars and Wjk 2 C
3⇥3 is one of I, G, GT, GGT and GTG.

This completes the proof of (17.57).

Lemmas 17.8 and 17.9 imply Theorem 17.7.

Proof of Theorem 17.7. Multiplying both sides of (17.56) by M�1 in (17.57) we see that the jth 3⇥ 3
block of

�
Vc, Iint

i
�

is of the form

Â
k

⇥
M�1⇤

jk

�
a0ka+ +b0k1

�
= Â

k
a0k
�
v jkI+w jkWjk

�
a+ + Â

k
b0k
�
v jkI+w jkWjk

�
1

Since

Wjka+ =

8
>><

>>:

a+ if Wjk = I

(1�a)a+ if Wjk = G
(1�a2)a+ if Wjk = GT

3a+ if Wjk = GGT or GTG

and Wjk1 = 1 if Wjk = I and 0 otherwise,
�
Vc, Iint

i
�

consists of generalized balanced vectors of the form
a ja+ +b j1. When gv = 0 for all voltage sources and gY

i = 0 for all Y configured impedances, then b0 = 0
in (17.56) and hence b = 0. This completes the proof of Theorem 17.7.

17.3.4 Phase decoupling and per-phase analysis

In this subsection we show that phases in a balanced network are decoupled so that the three-phase analysis
problem can be solved by solving two per-phase networks.
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Substitute the per-phase admittance matrix (17.52), and the external models of voltage and current
sources (17.48d)(17.48e) into the current balance equation I = YV (17.50c) to get

2

4
Iv

�µ̂c⌦a+

Ii

3

5 =

0

B@

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75⌦ I

1

CA

2

4
l̂v⌦a+ + gv⌦1

Vc
Vi

3

5 (17.63)

Instead of following the solution strategy of Chapter 17.2.3 to compute the internal impedance current Iint
i

from the reduced system (17.42) we will compute the terminal voltage Vi, as well as Vc, using (17.63). We
can then compute (Iv, Ii) and all other variables such as internal voltages and currents and zero-sequence
voltages and currents.

We know from Theorem 17.7 that all voltages and currents consist of generalized balanced vectors of
the form a ja+ +b j1. We now describe separately external models for devices in D and Y configurations.

D configuration. Consider a D configured device j 2 ND
v [ND

c [ND
i . Let

Vj =: v ja+ + g j1, j 2 ND
c [ND

i (17.64a)

I j =: i ja+, j 2 ND
v [ND

i (17.64b)

for some (v j,g j) and i j to be determined. Here g j =
1
31TVj is the zero-sequence voltage of Vj. As expected,

1TI j = 0 since I j = �GTID
j . For an impedance j 2 ND

i , we can express its terminal current I j in terms of
its terminal voltage Vj using its external model (from Table 17.4)

I j = �3h j
�
Vj� g j1

�
= �3h jv j a+, j 2 ND

i (17.64c)

Hence the variables (v j, i j) for an impedance j 2 ND
i satisfies i j = �3h jv j, the negative sign due to the

definition of I j being injection from the device to the rest of the network.

Y configuration. Consider a Y configured device j 2 NY
v [NY

c [NY
i . Let its internal voltage and internal

current be generalized balanced vectors:

VY
j =: vint

j a+ + g int
j 1, j 22 NY

c [NY
i

IY
j =: �

⇣
iint

j a+ + b int
j 1
⌘

, j 2 NY
v [NY

i

for some (vint
j ,g int

j ) and
⇣

iint
j ,b int

j

⌘
to be determined. Here g int

j := 1
31TVY

j is the zero-sequence voltage of

the internal voltage VY
j , not the neutral voltage g j := V n

j , and b int
j := 1

31TIY
j is the zero-sequence current

of the internal current IY
j . Since Vj = VY

j +V n
j 1 and I j =�IY

j , the terminal voltage and current are:

Vj =: vint
j a+ +

⇣
g int

j + g j

⌘
1, j 2 NY

c [NY
i (17.65a)

I j =: iint
j a+ + b int

j 1, j 2 NY
v [NY

i (17.65b)
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Recall that the neutral voltages g j := V n
j are given for all Y configured devices. The zero-sequence voltage

of the terminal voltage Vj is the sum of the zero-sequence voltage g int
j of the internal voltage VY

j and the
neutral voltage g j. Hence the terminal voltage Vj is balanced if and only if the neutral voltage g j is offset
by g int

j so that g int
j + g j = 0 (see below for a sufficient condition). Moreover 1TI j = �1TIY

j = �In
j is the

negative of the neutral current. Hence b int
j = 1

31TI j = 0 if device j has no neutral line. For an impedance
j 2 NY

i , we can express its terminal current I j in terms of its terminal voltage Vj using the external model
(from Table 17.4 and (17.65a))

I j = �h j
�
Vj� g j1

�
= �h j

⇣
vint

j a+ + g int
j 1
⌘

, j 2 NY
i (17.65c)

Hence iint
j =�h jvint

j and b int
j =�h jg int

j .

Before substituting (17.64)(17.65) into the network equation (17.63) we unify notations by defining

v̂ j :=
⇢

vint
j ,

v j,
ĝ j :=

⇢
g int

j + g j,
g j,

j 2 NY
c [NY

i
j 2 ND

c [ND
i

(17.66a)

î j :=
⇢

iint
j ,

i j,
b̂ j :=

⇢
b int

j ,
0,

j 2 NY
v [NY

i
j 2 ND

v [ND
i

(17.66b)

Even though g j =V n
j are given for j 2NY

c [NY
i , g int

j (as well as g j := 1
31TVj for j 2ND

c [ND
i ) are unknown,

and hence ĝ j is unknown for j 2 Nc [Ni. Therefore all the quantities in (17.66a) (17.66b) are to be
determined. Collect currents and voltages associated with voltage and current sources respectively into

îv :=
�
î j, j 2 Nv

�
, b̂v :=

⇣
b̂ j, j 2 Nv

⌘
, v̂c :=

�
v̂ j, j 2 Nc

�
, ĝc :=

�
ĝ j, j 2 Nc

�
(17.66c)

Collect currents and voltages associated with impedances into

îi :=
�
î j, j 2 Ni

�
, b̂i :=

⇣
b̂ j, j 2 Ni

⌘
, v̂i :=

�
v̂ j, j 2 Ni

�
, ĝi :=

�
ĝ j, j 2 Ni

�
(17.66d)

Using the same notation for â j as in (17.48d)(17.48e), we can apply (17.66) to the external impedance
models (17.65c) and (17.64c) to relate v̂i and îi:

îi⌦a+ + b̂i⌦1 = �(ĥi⌦ I)(v̂i⌦a+ +(ĝi� gi)⌦1) (17.67a)

where the diagonal matrix ĥi 2 C
|Ni|⇥|Ni| and the vector gi 2 C

|Ni| are defined as

ĥi := diag
�
â jh j, j 2 Ni

�
, gi :=


gY

i
gD

i

�
:=

2

4

⇣
g j := V n

j , j 2 NY
i

⌘

⇣
g j := 1

31TVj, j 2 ND
i

⌘

3

5 (17.67b)

Hence ĝi� gi =


g int

i
0

�
with g int

i :=
⇣

g int
j , j 2 NY

i

⌘
. Note the difference between gi defined here and the

specification g0
i :=


gY

i
0

�
defined in (17.48c). Recall that gY

i is given, but g int
i and hence ĝi are to be

determined.
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Substituting (17.66) into (17.63) we have
2

4
îv
�µ̂c

îi

3

5⌦a+ +

2

4
b̂v
0
b̂i

3

5⌦1 =

0

B@

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75⌦ I

1

CA

0

@

2

4
l̂v
v̂c
v̂i

3

5⌦a+ +

2

4
gv
ĝc
ĝi

3

5⌦1

1

A (17.68)

where the voltage sources l̂v, current sources�µ̂c, as well as
�
gv,g0

c ,g0
i
�

are given, and
⇣

v̂�v, ĝ�v, î�c, b̂�c

⌘

are variables to be determined. Since a+ and 1 are orthogonal this induces two sets of equations that can
be interpreted as two per-phase networks.

Positive-sequence per-phase network. Equating the a+ coordinates on both sides of (17.68) the per-
phase variables must satisfy

2

4
îv
�µ̂c

îi

3

5 =

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75

2

4
l̂v
v̂c
v̂i

3

5 (17.69a)

This defines the following per-phase network:

• The admittance matrix is Y 1f .

• The voltage sources have given voltages l̂v.

• The current sources have given currents �µ̂c.

• The impedances are ĥi so that (from (17.67a))

îi = �ĥiv̂i (17.69b)

This is a system of 4 sets of equations in 4 sets of variables
�
v̂c, v̂i, îv, îi

�
. Substituting (17.69b) into (17.69a)

we obtain
"

Y 1f
cc Y 1f

ci
Y 1f

ic Y 1f
ii + ĥi

#
v̂c
v̂i

�
= �

 
µ̂c
0

�
+

"
Y 1f

cv

Y 1f
iv

#
l̂v

!
(17.70)

If the matrix on the left-hand side is invertible then (v̂c, v̂i) can be uniquely determined. The other variables�
îv, îi
�

can then be derived in terms of a solution (v̂c, v̂i).

Zero-sequence per-phase network. Equating the 1 coordinates in (17.68) the per-phase variables must
satisfy

2

4
b̂v
0
b̂i

3

5 =

2

64
Y 1f

vv Y 1f
vc Y 1f

vi
Y 1f

cv Y 1f
cc Y 1f

ci
Y 1f

iv Y 1f
ic Y 1f

ii

3

75

2

4
gv
ĝc
ĝi

3

5 (17.71a)

This defines the following per-phase network:
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• The network is described by the admittance matrix is Y 1f .

• The voltage sources have given voltages gv.

• The current sources inject 0 currents, i.e., no device is connected at buses j of the zero-sequence
per-phase network where three-phase current sources are connected in the original network.

• The impedances are ĥi so that (from (17.67a))

b̂i = �ĥi (ĝi� gi) = �diag
�
ĥY

i ,0
��ĝY

i � gY
i
�

0

�
(17.71b)

where ĥY
i := diag

�
h j, j 2 NY

i
�
, ĝY

i :=
�
ĝ j, j 2 NY

i
�

and gY
i :=

⇣
V n

j , j 2 NY
i

⌘
. Note that gY

i is given
and ĝY

i is unknown.

This is a system of 4 sets of equations in 4 sets of variables
⇣

ĝc, ĝi, b̂v, b̂i

⌘
. Substituting (17.71b) into

(17.71a) we obtain
"

Y 1f
cc Y 1f

ci
Y 1f

ic Y 1f
ii +diag

�
ĥY

i ,0
�
#

ĝc
ĝi

�
= �

"
Y 1f

cv

Y 1f
iv

#
gv +


0

ĥig0
i

�
(17.72)

where we recall ĥi in (17.67) and the given neutral voltages g0
i :=


gY

i
0

�
. If the matrix on the left-hand side

is invertible then (ĝc, ĝi) can be uniquely determined. The other variables
⇣

b̂v, b̂i

⌘
can then be derived in

terms of a solution (ĝc, ĝi).

Assume the matrix in (17.72) is invertible. If gv = 0 and gY
i = 0 as in Theorem 17.7.2, then ĝc = 0

and ĝi = 0 and all voltages consist of balanced vectors. In this case we do not have to compute the zero-
sequence network but simply set ĝ�v := 0 and b̂�c := 0. Recall from (17.66a)(17.66b) that this means
g int

j +V n
j = 0 and b int

j = 0 for Y configured devices and g j = 0 for D configured devices.

Note that, even though b̂�c is determined from (17.72) (17.71), its components b̂ j = 0 for j 2 ND
v [ND

i
from (17.66b). This is consistent because, for j 2ND

v [ND
i , multiplying both sides of (17.49b) by 1T gives,

using g j := 1
31TVj,

Â
k: j⇠k

⇣
ys

jk + ym
jk

⌘
g j � Â

k: j⇠k
ys

jkgk = 0

which is (17.71) for rows corresponding to j 2 ND
v [ND

i .

Per-phase analysis. Per-phase analysis for solving (17.63) is as follows:

1. Solve the positive-sequence per-phase network (17.70) for (v̂c, v̂i) and then derive
�
îv, îi
�
.
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2. If gv = 0 and gY
i = 0, set ĝ�v := 0, b̂�c := 0, and goto the next step. Otherwise, solve the zero-

sequence per-phase network (17.72) for (ĝc, ĝi) and then derive
⇣

b̂v, b̂i

⌘
.

3. Substitute into (17.64)(17.65) to obtain (V�v, I�c).

Example 17.12 (gY = 0). Explain per-phase analysis in the special case where all neutrals are grounded
with zero neutral impedances and voltages are defined with respect to the ground, i.e., g j = 0 for j 2
NY

v [NY
c [NY

i .

17.4 Symmetric network

We have formulated a general three-phase analysis problem in Chapter 17.2.2 and described a solution
strategy in Chapter 17.2.3. When the network is balanced, the phases are decoupled and the network
decomposes into two independent per-phase networks and the problem can be solved using per-phase
analysis as explained in Chapter 17.3.

When the network is not balanced, e.g., the sources are unbalanced or the transmission lines are not
phase-decoupled, then we can apply the similarity transformation F defined in Chapter 15.2.2 to transform
terminal phase voltage and current (V, I) into sequence voltage and current (Ṽ , Ĩ). Even though the phases
are coupled, we show in Chapters 17.4.1–17.4.4 that if three-phase lines are symmetric and loads are
identical, then their external models are decoupled in the sequence coordinate. They define sequence
networks that can be analyzed separately, similar to the per-phase networks of a balanced network studied
in Chapter 17.3. The results from analyzing the sequence networks can then be transformed back to the
original phase coordinate. We describe in Chapter 17.4.5 how to compose the sequence networks from
the sequence models of individual devices and how to solve the three-phase analysis problem using these
decoupled sequence networks when the original network is symmetric.

Symmetric components and sequence networks are most useful for fault analysis in a system that is
more or less balanced, e.g., a three-phase network that remains balanced until the fault location. Without
any symmetry, symmetrical components may not offer much advantage because they do not lead to de-
coupled sequence networks. Even though we do not study fault analysis in this book, the discussion in
this section illustrates the application of various three-phase models developed in this chapter.

17.4.1 Sequence impedances

Y configuration
�
zY ,zn�. Consider the four-wire three-phase impedance

�
zY ,zn� in Y configuration

shown in Figure 15.7 of Chapter 15.3.3. Under assumption C15.1 (all neutrals are grounded and all
voltages are defined with respect to the ground), recall the external model (15.19b) relating the terminal
voltage and current (V, I):

V = �ZY I with ZY := zY + zn 11T =

2

4
zan + zn zn zn

zn zan + zn zn

zn zn zcn + zn

3

5
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Substitute V = FṼ and I = FĨ to obtain the external model in the sequence coordinate:

Ṽ = �FZY F| {z }
Z̃Y

Ĩ = �Z̃Y Ĩ

where F from (15.6b) and its inverse F�1 = F from (15.7) are

F =
1p
3

⇥
1 a+ a�

⇤
=

1p
3

2

4
1T
aT

+

aT
�

3

5 :=
1p
3

2

4
1 1 1
1 a a2

1 a2 a

3

5 (17.73a)

F =
1p
3

⇥
1 a� a+

⇤
=

1p
3

2

4
1T
aT
�

aT
+

3

5 :=
1p
3

2

4
1 1 1
1 a2 a
1 a a2

3

5 (17.73b)

We call Z̃Y a sequence impedance matrix to differentiate it from the (phase) impedance matrix ZY . Sub-
stituting ZY = zY + zn11T, F and F , we have (Exercise 17.18)

Z̃Y =
1
3

2

4
1T z aT

+z aT
�z

aT
�z 1T z aT

+z
aT

+z aT
�z 1T z

3

5 +

2

4
3zn 0 0
0 0 0
0 0 0

3

5

where z :=
�
zan,zbn,zcn� is the column vector of phase impedances. Hence the neutral impedance zn

appears only in the zero-sequence impedance.

If the impedance is balanced zan = zbn = zcn, then 1T z = 3zan and aT
+z = aT

�z = 0 and

Z̃Y =

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5 (17.74a)

Hence the sequence impedance matrix Z̃Y is diagonal even though the phase impedance ZY is not. This
implies that the external model Ṽ =�Z̃Y Ĩ relating the sequence voltage and current in the sequence coor-
dinate is decoupled:

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 = �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 (17.74b)

i.e., the external model consists of three separate impedances:

zero-seq impedance: Ṽ0 = �(zan +3zn) Ĩ0

positive-seq impedance: Ṽ+ = �zanĨ+
negative-seq impedance: Ṽ� = �zanĨ�

The interpretation is as follows. When the similarity transformation defined by the unitary matrix F
transforms a power network from the abc phase coordinate to 0+� sequence coordinate (see Chapter
15.2.2), a balanced impedance with zan = zbn = zcn becomes decoupled in the sequence coordinate. If
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all devices are decoupled in the sequence coordinate, the entire sequence networks are decoupled and the
sequence impedances are impedances on these decoupled sequence networks. Each sequence network can
be analyzed separately like a single-phase network. We will explain in Chapter 17.4.5 on how to compose
the sequence networks from sequence models of individual devices.

Note that if the impedance is not balanced then the relation Ṽ = Z̃Y Ĩ is generally coupled and power
flow analysis using the sequence variables may not offer any advantage over using the phase variables.

D configuration zD. Consider the three-wire three-phase impedance zD in D configuration shown in Fig-
ure 15.8 of Chapter 15.3.4. Recall the external model (15.27b) relating the terminal voltage and current
(V, I):

V = �ZDI + g1, 1TI = 0 (17.75)

where the zero-sequence voltage g := 1
31TV is also a variable to be determined in an analysis problem and

ZD :=
1
9

GT zD
✓
I� 1

z
1 z̃DT

◆

| {z }
ẑD

G

Substitute V = FṼ and I = FĨ to obtain the external model in the sequence coordinate:

Ṽ = �
⇣

FZDF
⌘

| {z }
Z̃D

Ĩ + g F1, 1TFĨ = 0 (17.76)

where F and its inverse F is given in (17.73). It can be shown (Exercise 17.19) that

Z̃D :=
1
9

(FL)H ẑD (FL) with L :=

2

4
0

1�a
1�a2

3

5

Moreover g F1 = Ṽ0 e1 and 1TFĨ =
p

3Ĩ0 = 0.

If the impedance is balanced, i.e., zab = zbc = zca then (Exercise 17.19)

ZD =
zab

3

✓
I� 1

3
11T
◆

, Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5 (17.77a)

and the external model (17.76) of a D-configured impedance in the sequence coordinate becomes decou-
pled:

2

4
0

Ṽ+

Ṽ�

3

5 = �zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 , Ĩ0 =
1p
3

(Ia + Ib + Ic) = 0 (17.77b)
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For a D-configured load, Ĩ0 = 0 because there is no neutral wire and therefore KCL dictates that the line
currents sum to zero. The model (17.77) defines three separate impedances in the sequence coordinate:

zero-seq impedance: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq impedance: Ṽ+ = �zab

3
Ĩ+

negative-seq impedance: Ṽ� = �zab

3
Ĩ�

The interpretation is that a balanced D-configured impedance with zab = zbc = zca connected to a bus in a
power network is transformed into an impedance of zab/3 at that bus (as we have seen in Chapter 1.2.4)
in the positive and the negative-sequence networks and no impedance at that bus in the zero-sequence
network (i.e., in the circuit model for the zero-sequence network, the connection between this bus and the
ground is open; see (??) and discussions therein). This does not mean that the voltage Vj,0 = 0 at bus j in
the zero-sequence network where the impedance is connected. Rather, it means that there is zero injection
at bus j (Ĩ j,0 = 0) and Ṽj,0 will be determined by the network equation; see Chapter 17.4.5.

Remark 17.10 (Terminal variables). It is important to remember that the external models derived in this
section relate the sequence variables (Ṽ , Ĩ) of the terminal voltage and current (V, I), not the internal
voltage and current

⇣
VY/D, IY/D

⌘
. See Example 17.13 on how to use sequence networks to calculate

internal currents and powers.

17.4.2 Sequence voltage sources

Y configuration
�
EY ,zY ,zn�. Consider the four-wire three-phase voltage source

�
EY ,zY ,zn� in Y con-

figuration shown in Figure 15.7 of Chapter 15.3.3. Under assumption C15.1 (all neutrals are grounded and
all voltages are defined with respect to the ground), recall the external model (15.13b) relating the terminal
voltage and current (V, I):

V = EY � ZY I with ZY := zY + zn 11T

where ZY is the same matrix as that for Y -configured impedance. Substitute V = FṼ and I = FĨ to obtain
the external model in the sequence coordinate:

Ṽ = FEY
|{z}

ẼY

� FZY F| {z }
Z̃Y

Ĩ =: ẼY � Z̃Y Ĩ

The sequence impedance matrix Z̃Y := FZY F is the same matrix as that for Y -configured impedance and
the sequence internal voltage is:

ẼY := FEY =
1p
3

2

4
1HEY

aH
+EY

aH
�EY

3

5
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When the impedance zY is balanced, i.e., zan = zbn = zcn, even if the internal voltage EY is unbalanced,
its external model in the sequence coordinate becomes decoupled (using (17.74b)):

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 =

2

4
ẼY

0
ẼY

+
ẼY
�

3

5 �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 (17.78a)

This defines three separate non-ideal voltage sources:

zero-seq voltage source: Ṽ0 = ẼY
0 � (zan +3zn) Ĩ0

positive-seq voltage source: Ṽ+ = ẼY
+ � zanĨ+

negative-seq voltage source: Ṽ� = ẼY
� � zanĨ�

As for a balanced impedance, the voltage source becomes decoupled in the sequence coordinate even if
they remain unbalanced.

Furthermore, if EY = Eana+ is a balanced positive-sequence set then only the positive-sequence volt-
age is nonzero:

FEY = ẼY =
1p
3

2

4
1T
aT
�

aT
+

3

5(Eana+) =
Ean
p

3

2

4
1Ha+

aH
+a+

aH
�a+

3

5 =

2

4
0p

3Ean

0

3

5

The external model of a balanced Y -configured voltage source in the sequence coordinate becomes (from
(17.78a)):

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 =

2

4
0p

3Ean

0

3

5 �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 (17.78b)

This defines a voltage source
�p

3Ean,zan� on the positive-sequence network and impedances on the other
sequence networks:

zero-seq impedance: Ṽ0 = �(zan +3zn) Ĩ0

positive-seq voltage source: Ṽ+ =
p

3Ean � zanĨ+
negative-seq impedance: Ṽ� = �zanĨ�

They are illustrated in Figure 17.8. 6

D configuration
�
ED,zD�. Consider the three-phase voltage source

�
ED,zD� in D configuration shown in

Figure 15.8 of Chapter 15.3.4. One of its external models is (15.21b), reproduced here 7

V = ĜED � ZDI + g1, 1TI = 0

6The sequence networks of synchronous generators are generally more complicated and their sequence impedances (mostly
reactances) are generally unequal unlike the model in (17.78b); see e.g. [203, Section 2.3].

7
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Scanned with CamScanner

Figure 17.8: The sequence networks of a balanced voltage source
�
EY ,zY ,zn� in Y configuration.

where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

where z̃D := zD1 is a column vector and z := 1Tz̃D is a scalar. This is similar to the model (17.75) of
D-configured impedance with the extra term ĜED. Substitute V = FṼ and I = FĨ to obtain the external
model in the sequence coordinate:

Ṽ = FĜED
| {z }

ẼD

� FZDF| {z }
Z̃D

Ĩ + gF1 =: ẼD � Z̃DĨ + Ṽ0e1, 1TFĨ = 0

where 1TFĨ =
p

3Ĩ0 = 0. This is similar to (17.76) with the extra term (Exercise 17.20)

ẼD := FĜED = L†F
✓
I� 1

z
z̃D 1T

◆
ED with L† :=

2

4
0

(1�a)�1

(1�a2)�1

3

5

If the impedance is balanced, i.e., zab = zbc = zca then z̃D := zab1, z := 3zab, and (Exercise 17.20 and
from (17.77a))

ẼD =

2

4
0

(1�a)�1ẼD
+

(1�a2)�1ẼD
�

3

5 , ZD =
zab

3

✓
I� 1

3
11T
◆

, Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

where the sequence voltages are ẼD
+ := 1

3aH
+ED and ẼD

� := 1
3aH
�ED. The zero-sequence voltage ẼD

0 = 0
because there is no neutral line in D configuration. Hence the external model in the sequence coordinate
is

2

4
0

Ṽ+

Ṽ�

3

5 =

2

4
0

(1�a)�1ẼD
+

(1�a2)�1ẼD
�

3

5 � zab

3

2

4
0
Ĩ+
Ĩ�

3

5 , Ĩ0 =
1p
3

⇣
Ia + Ib + Ic

⌘
= 0 (17.79a)
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Hence the voltage sources in the sequence coordinate are unbalanced but decoupled:

zero-seq voltage source: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq voltage source: Ṽ+ =
ED

+

1�a
� zab

3
Ĩ+

negative-seq voltage source: Ṽ� =
ED
�

1�a2 �
zab

3
Ĩ�

As for a D-configured impedance, a symmetric voltage source in a power network is transformed into
voltage sources in the positive and negative-sequence networks. The equivalent series impedance of the
sequence voltage sources is zab/3 as we have seen in Chapter 1.2.4. There is no device (open circuit)
in the zero-sequence network, which means that, when the voltage source is connected to bus j, there is
zero injection at bus j in the zero-sequence network (Ĩ j,0 = 0) and Ṽj,0 will be determined by the network
equation; see Chapter 17.4.5.

Furthermore, if ED := Eaba+ is a balanced positive-sequence set then

ẼD
+ =

p
3Eab, ẼD

� = 0

and
2

4
0

Ṽ+

Ṽ�

3

5 =

2

4
0

e�ip/6 Eab

0

3

5 � zab

3

2

4
0
Ĩ+
Ĩ�

3

5 (17.79b)

since
p

3/(1�a) = e�ip/6. This defines a voltage source
⇣

e�ip/6Eab,zab/3
⌘

in the positive-sequence

network and an impedance zab/3 in the negative-sequence network:

zero-seq voltage source: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq voltage source: Ṽ+ = e�ip/6 Eab � zab

3
Ĩ+

negative-seq voltage source: Ṽ� = � zab

3
Ĩ�

There is no device (open circuit) in the zero-sequence network.

17.4.3 Sequence current sources

Y configuration
�
JY ,yY ,zn�. An external model of a Y -configured current source

�
JY ,yY ,zn� is (from

(15.15a)):

I = �JY � yY (V �V n1)

Substitute V = FṼ and I = FĨ to obtain the external model in the sequence coordinate:

Ĩ = �FJY
|{z}

J̃Y

� FyY F| {z }
ỸY

Ṽ + V nFyY 1
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where J̃Y := FJY and

ỸY := FyY F =
1
3

⇣
yan11H + ybna�aH

� + ycna+aH

+

⌘
(17.80)

If the phase admittance yY := yan
I is balanced then the sequence admittance is also balanced:

ỸY := FyY F = yan
I, FyY 1 = yanF1 = yan

2

4

p
3

0
0

3

5

The current source becomes decoupled in the sequence coordinate even though it is unbalanced:
2

4
Ĩ0
Ĩ+
Ĩ�

3

5 = �

2

4
J̃Y

0
J̃Y
+

J̃Y
�

3

5 � yan

0

@

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 �

2

4

p
3V n

0
0

3

5

1

A

In particular the neutral voltage V n appears only in the zero-sequence network. If, furthermore, the current
source JY := Jana+ is in a balanced positive sequence then

J̃Y = FJY =
Jan
p

3

2

4
1H
aH

+

aH
�

3

5a+ =

2

4
0p
3Jan

0

3

5

The current source in the sequence coordinate becomes a current source
�p

3Jan,yan� in the positive-
sequence network and the impedance (yan)�1 in each of the other two sequence networks:

zero-seq impedance: Ĩ0 = �yan
⇣

Ṽ0�
p

3V n
⌘

positive-seq current source: Ĩ+ = �
p

3Jan � yanṼ+

negative-seq impedance: Ĩ� = �yanṼ�

The interpretation of the zero-sequence impedance is that the voltage drop across the impedance (yan)�1

is Ṽ0�
p

3V n with one end of the impedance at a potential
p

3V n with respect to the common voltage
reference point.

When assumption C15.1 holds (the neutral is grounded and voltages are defined with respect to the
ground) so that V n =�zn

⇣
1TI
⌘

, we have

V n = �zn
⇣

1TFĨ
⌘

= � zn
p

3

⇣
1T
⇥
1 a+ a�

⇤
Ĩ
⌘

= �
p

3zn Ĩ0

i.e., the neutral voltage depends only on the zero-sequence current Ĩ0 (of the terminal current I). Substitute
this into expressions above, the sequence voltage and current

�
Ṽ , Ĩ
�

satisfies, when yY := yan
I,

2

4
(1+3yan zn) Ĩ0

Ĩ+
Ĩ�

3

5 = �

2

4
J̃Y

0
J̃Y
+

J̃Y
�

3

5 � yan

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 (17.81a)
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and the current source becomes decoupled in the sequence coordinate even if they remain unbalanced:

zero-seq current source: Ĩ0 = �
J̃Y

0
1+3yan zn �

yan

1+3yan zn Ṽ0

positive-seq current source: Ĩ+ = �J̃Y
+ � yanṼ+

negative-seq current source: Ĩ� = �J̃Y
� � yanṼ�

If, furthermore, the current source JY := Jana+ they become:

zero-seq admittance: Ĩ0 = � yan

1+3yan zn Ṽ0 (17.81b)

positive-seq current source: Ĩ+ = �
p

3Jan � yanṼ+ (17.81c)
negative-seq admittance: Ĩ� = �yanṼ� (17.81d)

Instead of sequence current sources in (17.81), equivalent voltage sources in the sequence domain can
also be derived starting from the external model of a current source (from (15.15b)): V =�

�
zY JY + ZY I

�

where zY :=
�
yY��1 and ZY := zY + zn 11T; see Exercise 17.22.

D configuration
�
JD,yD�. The external model of a D-configured current source is (from (15.23a)):

I = �
⇣

GTJD + Y DV
⌘

where Y D := GTyD G is the matrix in (15.21a). Substitute V = FṼ and I = FĨ to obtain the external model
in the sequence coordinate:

Ĩ = �

0

@FGTJD
| {z }

J̃D

+ FY DF| {z }
Ỹ D

Ṽ

1

A =: �
⇣

J̃D + Ỹ DṼ
⌘

where

J̃D := FGTJD = 3L†FJD

Ỹ D := F
⇣

GTyD G
⌘

F = F
⇣

3FL†F
⌘

yD �FLF
�

F = 3L†
⇣

FyDF
⌘

L

where we have used G = FLF and GT = 3G† = 3FL†F from (15.6).

If the phase admittance yY := yab
I is balanced, then the effective phase admittance Y D is not diagonal

but its sequence admittance Ỹ D is unbalanced but diagonal:

Y D := yabGTG = 3yab
✓
I� 1

3
11T
◆

Ỹ D := FY DF = 3yab
⇣
I � e1eT1

⌘
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where we have used GTG = 3
⇣
I� 1

311T
⌘

from Theorem 15.2 and F1 =
p

3e1. Hence the current source
is unbalanced but decoupled in the sequence coordinate:

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 = �

2

4
J̃D

0
J̃D
+

J̃D
�

3

5 � 3yab

2

4
0 0 0
0 1 0
0 0 1

3

5

2

4
Ṽ0
Ṽ+

Ṽ�

3

5 = �

2

4
J̃D

0
J̃D
+

J̃D
�

3

5 � 3yab

2

4
0

Ṽ+

Ṽ�

3

5 (17.82a)

The zero-sequence network has an ideal current source J̃D
0 and the other two sequence networks each has

a non-ideal current source:

zero-seq current source: Ĩ0 = �J̃D
0

positive-seq current source: Ĩ+ = �J̃D
+ � 3yabṼ+

negative-seq current source: Ĩ� = �J̃D
� � 3yabṼ�

If, furthermore, the current source JD := Jaba+ is a balanced positive sequence then

J̃D := 3JabL†Fa+ = 3Jab

2

4
0

(1�a)�1
�
1�a2��1

3

5

2

4
0p
3

0

3

5 =

2

4
0

3e�ip/6Jab

0

3

5

where we have used Fa+ =
p

3e2 and
p

3/(1�a) = e�ip/6. A balanced positive-sequence current source
is therefore transformed into a current source

⇣
3e�ip/6Jab,3yab

⌘
in the positive-sequence network and an

admittance 3yab in the negative-sequence network:

zero-seq current source: null (Ĩ0 = 0) (17.82b)

positive-seq current source: Ĩ+ = �3e�ip/6Jab � 3yabṼ+ (17.82c)

negative-seq admittance: Ĩ� = �3yabṼ� (17.82d)

There is no device in the zero-sequence network because D configuration has no neutral line.

17.4.4 Sequence line model

Consider a three-phase line connecting bus j and bus k that is modeled by only a series phase impedance
matrix zs

jk. We omit shunt admittances for simplicity.8 The terminal voltages and the line current is related
by Ohm’s law:

Vj � Vk = zs
jk I jk

8Shunt admittances can be included using (16.8a): I jk = ys
jk(Vj�Vk)+ym

jkVj in which case the sequence admittance matrices⇣
ỹs

jk, ỹ
m
jk, ỹ

m
k j

⌘
are given by:

Ĩ jk =
⇣

Fys
jkF
⌘

| {z }
ỹs

jk

�
Ṽj�Ṽk

�
+
⇣

Fym
jkF
⌘

| {z }
ỹm

jk

Ṽj
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Convert to the sequence coordinate by substituting Vj = FṼj, Vk = FṼk and I jk = FĨjk to get

Ṽj � Ṽk =
⇣

Fzs
jkF
⌘

| {z }
z̃s

jk

Ĩ jk =: z̃s
jk Ĩ jk (17.83a)

where z̃s
jk := Fzs

jkF is called the sequence impedance matrix of line ( j,k). This does not assume C17.1,
i.e., zs

jk and zs
k j may be different.

If the phase impedance matrix zs
jk is symmetric of the form in (16.9) then (omitting the subscript jk

for simplicity)

z̃s
jk =

1
3

2

4
1 1 1
1 a2 a
1 a a2

3

5

2

4
z1 z2 z2

z2 z1 z2

z2 z2 z1

3

5

2

4
1 1 1
1 a a2

1 a2 a

3

5 =

2

4
z1 +2z2 0 0

0 z1� z2 0
0 0 z1� z2

3

5 (17.83b)

i.e., the sequence impedance matrix of line ( j,k) is diagonal. This defines three separate sequence net-
works:

zero-seq impedance: Ṽj,0�Ṽk,0 =
�
z1 +2z2� Ĩ jk,0

positive-seq impedance: Ṽj,+�Ṽk,+ =
�
z1� z2� Ĩ jk,+

negative-seq impedance: Ṽj,��Ṽk,� =
�
z1� z2� Ĩ jk,�

The phase impedance matrix zs
jk in (16.9) is complex symmetric but not Hermitian. In general a

complex symmetric matrix may not be diagonalizable (see Exercise 17.23 for an example). The matrix zs
jk

however is normal and hence unitarily diagonalizable through the unitary matrix F (Exercise 17.24).

17.4.5 Three-phase analysis

We now explain how to compose sequence networks from individual device models in the sequence coor-
dinate derived in Chapters 17.4.1–17.4.4. We will show that if a network is unbalanced but symmetric, its
sequence networks are decoupled and can be analyzed separately.

Definition 17.2 (Symmetric network). A network G :=
�
N,E

�
that connects a set of three-phase devices

by three-phase lines is called symmetric if the following assumptions hold:

C17.9: All impedances are symmetric zY/D
j = zan/ab

j I.

C17.10: All voltage sources have symmetric series impedances zY/D
j = zan/ab

j I.

C17.11: All current sources have symmetric shunt admittances yY/D
j = yan/ab

j I.

C17.12: All three-phase lines ( j,k) have series impedances zs
jk = zs

k j that satisfy (16.9) and zero
shunt admittances. In particular we assume for simplicity that assumption C17.1 holds.
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Suppose we are given a symmetric network with a single three-phase device at each bus. As before,
partition the set N of buses into 6 disjoint subsets:

• NY/D
v : buses with non-ideal voltage sources in Y or D configurations:

�
EY ,zY ,zn�,

�
ED,zD�.

• NY/D
c : buses with non-ideal current sources in Y or D configurations:

�
JY ,yY ,zn�,

�
JD,yD�.

• NY/D
i : buses with impedances in Y or D configurations:

�
zY ,zn�, zD.

Suppose assumption C15.1 holds (i.e., all neutrals are grounded and voltages are defined with respect to
the ground). C15.1 and the assumption of a single three-phase device at each bus are made without loss
of generality only to simplify presentation (see Example 17.13 for a network where there are two devices
connected to a single bus). We will follow the solution strategy of Chapter 17.3.4 that solves

2

4
Iv
Ic
Ii

3

5 =

2

4
Yvv Yvc Yvi
Ycv Ycc Yci
Yiv Yic Yii

3

5

| {z }
Y

2

4
Vv
Vc
Vi

3

5 (17.84)

for the terminal voltage V�v := (Vc,Vi) and current I�c := (Iv, Ii). All other variables such as internal
voltages and currents

⇣
VY/D, IY/D

⌘
can then be derived in terms of the terminal voltages and currents

(V, I).

We now show that (17.84) decomposes into three separate sequence networks so that it can be solved
by analyzing three simpler networks. Furthermore, if not only is the network symmetric but all voltage and
current sources are also balanced positive-sequence sets, then it is sufficient to analyze only the positive-
sequence network. This is because in that case there are only impedances and admittances, but no voltage
or current sources, in the zero-sequence and the negative-sequence networks.

Let IN+1 be the identity matrix of size N +1 so that IN+1⌦F is a matrix of size 3(N +1)⇥3(N +1).
Convert both sides of (17.84) into the sequence coordinate by substituting

I =: (IN+1⌦F) Ĩ, V =: (IN+1⌦F)Ṽ

to obtain
2

4
Ĩv
Ĩc
Ĩi

3

5 =

2

4
Ỹvv Ỹvc Ỹvi
Ỹcv Ỹcc Ỹci
Ỹiv Ỹic Ỹii

3

5

| {z }
Ỹ

2

4
Ṽv
Ṽc
Ṽi

3

5 where Ỹ :=
�
IN+1⌦F

�
Y (IN+1⌦F) (17.85a)

and we have used (IN+1⌦F)�1 = IN+1⌦F from Lemma 17.6. The three rows (3 j +1,3 j +2,3 j +3) of
(17.85a) corresponding to the sequence current Ĩ j 2 C

3 of device j = 0, . . . ,N, are:

Ĩ j = Â
j: j⇠k
k2Nv

ỹ jk
�
Ṽj�Ṽk

�
+ Â

j: j⇠k
k2Nc

ỹ jk
�
Ṽj�Ṽk

�
+ Â

j: j⇠k
k2Ni

ỹ jk
�
Ṽj�Ṽk

�
, j 2 N (17.85b)
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where ỹ jk :=
�
z̃ jk
��1 :=

⇣
Fzs

jkF
⌘�1

are the series admittance matrices of lines ( j,k) in the sequence
coordinate from (17.83). The network equation (17.85) relates terminal variables. To show that the three-
phase network decomposes into decoupled sequence networks we have to show both of the following:

1. The three rows of (17.85b) are decoupled, i.e., the zero-sequence current Ĩ j,0 depends only on volt-
ages Ṽk,0 of its adjacent buses k 6= j in the zero-sequence network but not on voltages Ṽk,s in the other
sequence networks s2 {+,�}. Similarly for the positive and negative-sequence currents

�
Ĩ j,+, Ĩ j,�

�
.

2. At each bus j, the terminal voltage and current
�
Ṽj, Ĩ j

�
are decoupled, i.e., the zero-sequence voltage

Ṽj,0 does not depend on the positive or negative-sequence currents
�
Ĩ j,+, Ĩ j,�

�
at bus j. Similarly for

Ṽj,+ and Ṽj,�.

The first claim follows from C17.12 in Definition 17.2 which implies that ỹ jk is diagonal (from (17.83)).
This means that the three rows of (17.85b) are decoupled at all buses j 2 N. We hence only need to prove
the second claim that locally at each bus j the sequence voltage Ṽj,s, s 2 {0,+,�}, does not couple the
sequence currents Ĩ j,s0 , s0 6= s. This can be shown using the models derived in Chapters 17.4.1–17.4.3.

Specifically the external models of the three-phase devices are as follows.

1. Voltage source j 2 Nv from (17.78a) and (17.79a):
2

4
Ṽj,0
Ṽj,+
Ṽj,�

3

5 =

2

4
ẼY

j,0
ẼY

j,+
ẼY

j,�

3

5 �

2

4
zan

j +3zn
j

zan
j

zan
j

3

5

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 NY
v (17.86a)

2

4
0

Ṽj,+
Ṽj,�

3

5 =

2

4
0

1
1�a

1
1�a2

3

5

2

4
ẼD

j,0
ẼD

j,+
ẼD

j,�

3

5 �
zab

j

3

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 ND
v (17.86b)

2. Current sources j 2 Nc from (17.81a) and (17.82a):
2

4
Ĩ j,0
Ĩ0,+

Ĩ j,�

3

5 = � 1
1+3yan zn

2

4
J̃Y

j,0
J̃Y

0,+
J̃Y

0,�

3

5 � yan

1+3yan zn

2

4
Ṽj,0
Ṽj,+
Ṽ0,�

3

5 , j 2 NY
c (17.86c)

2

4
Ĩ j,0
Ĩ0,+

Ĩ j,�

3

5 = �

2

4
J̃D

j,0
J̃D

j,+
J̃D

j,�

3

5 � 3yab

2

4
0

Ṽj,+
Ṽj,�

3

5 , j 2 ND
c (17.86d)

3. Impedances j 2 Ni from (17.74b) and (17.77b):
2

4
Ṽj,0
Ṽj,+
Ṽj,�

3

5 = �

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 NY
i (17.86e)

2

4
0

Ṽj,+
Ṽj,�

3

5 = �zab

3

2

4
Ĩ j,0
Ĩ j,+
Ĩ j,�

3

5 , j 2 ND
i (17.86f)
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Therefore the terminal voltage and current
�
Ṽj, Ĩ j

�
at each bus j are decoupled, even if they are unbalanced.

The network equation (17.85) and the device models (17.86) thus decompose into separate 0/+/� sequence
networks that can be analyzed separately, similar to per-phase analysis for balanced networks.

We illustrate the analysis of sequence networks with an example.

Example 17.13 (Sequence network analysis). Consider the network shown in Figure 17.9 where a voltage
source and a current source supply power through two lines to two loads in parallel. Suppose the network

Figure 17.9: Example 17.13: Three-phase unbalanced sources supplies power two balance loads in parallel
through symmetric lines.

is symmetric (Definition 17.2) and C15.1 holds (i.e., all neutrals are grounded and voltages are defined
with respect to the ground). Given the Y -configured voltage source

�
EY ,zY ,zn�, the D-configured current

source
�
JD,yD�, the balanced impedances

�
zY ,zn�, zD, and the symmetric lines with series impedance

matrices (z12,z23), calculate:

1. the terminal load voltages V2 :=
�
V a

2 ,V b
2 ,V c

2
�
;

2. the internal current IY
2 :=

�
Ian
2 , Ibn

2 , Icn
2
�

and the total complex power 1TsY
2 delivered to the Y -configured

load;

3. the internal current ID
2 :=

�
Iab
2 , Ibc

2 , Ica
2
�

and the total complex power 1TsD
2 delivered to the D-configured

load;

Solution. The network equation (17.85) and the device models (17.86) decompose into separate 0/+/�
sequence networks as shown in Figure 17.10. We will first determine the terminal sequence voltage Ṽ2 and
then the terminal sequence currents Ĩ1

2 and Ĩ2
2 coming out of the Y -configured and D-configured impedances

respectively. The terminal phase variables are then V2 = FṼ2, I1
2 = FĨ1

2 , and I2
2 = FĨ2

2 . Given these terminal
variables we can determine internal currents

�
IY
2 , ID

2
�

and powers
�
sY

2 ,sD
2
�

using the conversion rules.
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Figure 17.10: Example 17.13: Circuit models of sequence networks.
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To determine Ṽ2, apply KCL at bus 2 of the zero-sequence networks to get

ẼY
1,0�Ṽ2,0�

zan
1 +3zn

1
�
+
�
zs

12 +2zm
12
� =

Ṽ2,0

zan
2 +3zn

2
+ J̃D

3,0 (17.87a)

To analyze the positive and negative-sequence networks let the Thévenin equivalent load admittance be

Ỹ2 = yan
2 + 3yab

2

where yan
2 :=

�
zan

2
��1 and yab

2 :=
�
zab

2
��1. KCL at bus 2 of the positive-sequence network gives

ẼY
1,+�Ṽ2,+

zan
1 +

�
zs

12� zm
12
� = Ỹ2Ṽ2,+ + 3yab

3 Ṽ3,+ + J̃D
3,+

Hence we have, after eliminating Ṽ3,+

ẼY
1,+�Ṽ2,+

zan
1 + zs

12� zm
12

=
⇣

Ỹ2 +3r̃3yab
3

⌘
Ṽ2,+ +

⇣
1 � 3r̃3yab

3 (zs
23� zm

23)
⌘

J̃D
3,+ (17.87b)

Similarly, from the negative-sequence network, we get

ẼY
1,��Ṽ2,�

zan
1 + zs

12� zm
12

=
⇣

Ỹ2 +3r̃3yab
3

⌘
Ṽ2,� �

⇣
1 � 3r̃3yab

3 (zs
23� zm

23)
⌘

J̃D
3,� (17.87c)

The terminal sequence voltage Ṽ2 :=
�
Ṽ2,0,Ṽ2,+,Ṽ2,�

�
can be obtained from (17.87). From the 0/+/�

sequence networks, the terminal sequence load currents are

Ĩ1
2,0 = �

Ṽ2,0

zan
2 +3zn

2
, Ĩ1

2,+ = �
Ṽ2,+

zan
2

, Ĩ1
2,� = �

Ṽ2,�
zan

2

Ĩ2
2,0 = 0, Ĩ2

2,+ = �
3Ṽ2,+

zab
2

, Ĩ2
2,� = �

3Ṽ2,�

zab
2

From the terminal sequence variables
�
Ṽ2, Ĩ1

2 , Ĩ2
2
�

we can obtain the terminal phase variables

V2 = FṼ2, I1
2 = FĨ1

2 , I2
2 = FĨ2

2

To obtain the internal currents IY
2 and ID

2 , apply the conversion rules to get

IY
2 = �I1

2 , ID
2 = �GT†I2

2 + b21 = �1
3

GI2
2 + b21

for an arbitrary b 2 C, where ID
2 exists because Ĩ2

2,0 = 0 means 1TI2
2 = 0.

Finally to calculate the internal powers sY
2 and sD

2 we first obtain the internal voltages:

VY
2 = V2 � V n

2 1 = V2 + zn
2

⇣
11T
⌘

I1
2 , V D

2 = GV2

where the second equality follows from V n
2 =�zn

2

⇣
1TI1

2

⌘
under C15.1. Hence

sY
2 := diag

⇣
VY

2 IYH
2

⌘
= �diag

⇣
V2I1H

2 + zn
2

⇣
11T
⌘

I1
2 I1H

2

⌘

sD
2 := diag

⇣
V D

2 IDH
2

⌘
= �diag

⇣
GV2I2H

2 G†
⌘

+ b 2GV2

The total internal powers are 1TsY
2 and 1TsD

2 which is independent of b2.
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17.5 Bibliographical notes

Three-phase load flow solvers have been developed since at least the 1960s, e.g., see [213] for solution in
the sequence coordinate and [61, 203] in the phase coordinate. A three-phase network is equivalent to a
single-phase circuit where each node in the equivalent circuit is indexed by a (bus, phase) pair [203]. The
main difference with a single-phase network is the models of three-phase devices in the equivalent circuit,
such as models for generators and loads studied in Chapter 15, and lines and transformers studied in Chap-
ter 16. Single-phase power flow algorithms such as Newton Raphson [214] or Fast Decoupled methods
[215] can be directly applied to the equivalent circuit. See also [5, Chapter 11] for recent algorithms for
solving three-phase power flows. A sufficient condition is derived in [24] to ensure a fixed-point iteration
of an AC power flow equation converges to a unique power flow solution. Sufficient conditions are also
proved in [25] for the invertibility of three-phase admittance matrix which then ensures the validity of Z-
bus method for computing power flow solutions. Finally recent studies on three-phase AC optimal power
flow problems and their semidefinite relaxations include e.g. [130, 131, 216].

17.6 Problems

Chapter 17.1.

Exercise 17.1 (Symmetry and block symmetry). Consider a 3n⇥3n matrix A partitioned as in Definition
17.1.

1. Suppose A is symmetric. Show that it is block symmetric if all its off-diagonal blocks are symmetric,
i.e., AT

jk = A jk, for all j 6= k.

2. Suppose A is block symmetric. Show that it is symmetric if all blocks A jk, including the diagonal
blocks, are symmetric.

Exercise 17.2 (Invertibility of Y ). Prove Theorem 17.2.

Exercise 17.3 (Invertibility of Y ). This exercise shows that the set of conditions in Theorem 17.1 and that
in Theorem 17.2 each ensures aHY a 6= 0 for any nonzero a 2 C

3(N+1). Suppose C17.2 is satisfied, i.e.,
ys

jk = ys
k j, ym

jk and ym
k j are complex symmetric, so that the admittance matrix Y is both symmetric and block

symmetric. Consider aHY a for any a 2 C
3(N+1), and write ys

jk,y
m
j j := Âk: j⇠k ym

jk and a j in terms of their
real and imaginary parts:

ys
jk =: gs

jk + ibs
jk 2 C

3⇥3, ym
j j =: gm

j j + ibm
j j 2 C

3⇥3, a j =: r j + ie j 2 C
3
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1. Show that the real and imaginary parts of aHY a are:

Re
⇣

aHY a
⌘

= Â
( j,k)2E

✓
r j
e j

�
�


rk
ek

�◆Tgs
jk 0
0 gs

jk

�✓
r j
e j

�
�


rk
ek

�◆
+ Â

j2N

⇥
rT

j eTj
⇤gm

j j 0
0 gm

j j

�
r j
e j

�

Im
⇣

aHY a
⌘

= Â
( j,k)2E

✓
r j
e j

�
�


rk
ek

�◆Tbs
jk 0
0 bs

jk

�✓
r j
e j

�
�


rk
ek

�◆
+ Â

j2N

⇥
rT

j eTj
⇤bm

j j 0
0 bm

j j

�
r j
e j

�

2. Show that the conditions in Theorem 17.1 ensure aHY a 6= 0 for any nonzero a 2 C
3(N+1).

3. Show that the conditions in Theorem 17.2 ensure aHY a 6= 0 for any nonzero a 2 C
3(N+1).

Exercise 17.4 (Invertibility of Y22). Prove Theorem 17.3.

Exercise 17.5 (Power flow equation). Express the three-phase power injection s j 2 C
3 in terms of the

voltage vector V 2 C
3(N+1):

s j = Â
k: j⇠k

diag
⇣⇣

eTj ⌦ I

⌘
VVH

⇣
(e j� ek)⌦ ysH

jk

⌘
+
⇣

eTj ⌦ I

⌘
VVH

⇣
e j⌦ ymH

jk

⌘⌘

Chapter 17.2.

Exercise 17.6 (Four-wire model in Y -configured). For Example 17.3 express the neutral voltages (g j,gk)
in terms of the phase voltages and currents

�
Vj,Vk, I j, Ik

�
.

Exercise 17.7 (Four-wire model in Y -configured). Repeat Example 17.5 but for the case where the neutrals
n of the voltage source and the impedance are connected through impedances

⇣
zn0n

j ,zn0n
k

⌘
to their respective

external neutral terminals n0 which are then connected to the four-wire line. See Figure 17.6.

Figure 17.11: Exercise 17.7: A Y -configured generator connected through a four-wire line to a Y -
configured impedance load.
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Note that V n
j is the voltage (with respect to a common reference point) at the neutral internal of the

device, and V n0
j is the voltage at the terminal of the neutral line of the device, and that

⇣
V n0

j ,V n0
k

⌘
do not

need to be given or grounded.

Exercise 17.8 (Current Source in D configuration). Consider Example 17.6 but with an ideal current source
instead of the ideal voltage source. Specifically suppose the following are specified:

• Current source
⇣

JD
j ,g j

⌘
.

• Impedance zD
k . (Note that bk need not be specified but can be derived.)

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk = ym
k j := 0

◆
. We have assumed for simplicity that shunt admit-

tances are zero.

1. Compute all the other quantities in Table 17.2.

2. Show that if zs
jk is symmetric of the form in (16.9) with z1

jk +2z2
jk 6= 0, then gk = g j.

3. Show the following relation between the loop flows b j and bk:

• bk =�b j if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = 0.

• bk = 0 if and only if zab
k Jab

j + zbc
k Jbc

j + zca
k Jca

j = zkb j where zk := 1Tzk1.

• bk = 0 if the impedance zD
k = zk

3 I is balanced, regardless of whether JD
j is balanced or whether

b j is zero. The converse does not necessarily hold.

Note that if the shunt admittances
⇣

ym
jk,y

m
k j

⌘
are nonzero, then g j need not be specified and can be derived;

see Remark 17.8.

Exercise 17.9 (Y and D devices). Consider a Y -configured current source connected to a D-configured
impedance as shown in Figure 17.12. Suppose the following are specified:

• Current source JY
j .

• Impedance zD
k .

• Line admittances
✓⇣

zs
jk

⌘�1
,ym

jk,y
m
k j

◆
with at least one of

⇣
ym

jk,y
m
k j

⌘
being nonzero.

Follow the solution strategy outlined in Chapter 17.2.3 to solve the network. State any invertibility as-
sumptions in your derivation. An alternative approach is that used in Exercise 17.8.
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Figure 17.12: Three-phase Y -configured current source connected through a three-phase line to a D-
configured impedance load.

Exercise 17.10 (Balanced power source). Solve Example 17.9 when the system is balanced, i.e.,

• Power source
⇣

sD
j ,g j

⌘
with sD

j = a ja+ + b j1 for given
�
a j,b j

�
. i.e., a balanced power source

must be a generalized balanced vector. Moreover its voltage and current
⇣

V D
j , ID

j

⌘
are generalized

balanced vectors.

• Impedance zD
k := z D

k I.

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
:=
⇣

hs
jkI,0,0

⌘
.

• b j +bk := 1
31T

⇣
ID

j + ID
k

⌘
= b 0.

Use the external model (15.27b) of impedance.

Exercise 17.11 (Power sources). Repeat Example 17.11 when the shunt admittances are zero, i.e., the
three-phase line is specified as

⇣
ys

jk,y
m
jk = ym

k j = 0
⌘

with nonsingular ys
jk, as in Example 17.9. Since the

admittance matrix is no longer invertible, suppose b j +bk := 1
31T

⇣
ID

j + ID
k

⌘
= b 0 is also given.

Exercise 17.12 (Balanced power sources). Consider the system in Figure 17.7 where both the generator
and load are power sources and the lines have zero shunt admittances, as in Example 17.9. Suppose the
system is balanced and the following are specified:

• Power source
⇣

sD
j ,g j

⌘
with sD

j = a ja+ + b j1 for given
�
a j,b j

�
, with its voltage and current

⇣
V D

j , ID
j

⌘
being generalized balanced vectors.
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• Power source sD
k = aka+ +bk1 for given (ak,bk), with its voltage and current

⇣
V D

j , ID
j

⌘
being gen-

eralized balanced vectors. Note that gk is not specified.

• Line admittances
⇣

ys
jk,y

m
jk,y

m
k j

⌘
:=
⇣

hs
jkI,0,0

⌘
.

• Suppose a reference voltage \V a
j := q a

j is given.

Show how to derive all variables
�
V D

i , ID
i ,bi

�
and

�
Vi, Ii,g j

�
, i = j,k, analytically. In particular show that

g j = gk.

Exercise 17.13 (Power sources). Given a solution
�
Vc, Iint

i , Iint
p ,V int

p
�

to the reduced system (17.47), derive

all the unknown internal variables
⇣

VY/D
j , IY/D

j ,sY/D
j ,b j

⌘
and external variables

�
Vj, I j,s j,g j

�
over the

network.

Chapter 17.3

Exercise 17.14 (Balanced network). The two equivalent external models of an impedance zD
j in Tables

15.3 and 15.4 are

Vj = �ZDI j + g j1, 1TI j = 0

I j = �Y DVj

where the effective impedance and admittance matrices are ZD
j := 1

9 GTzD
j G and and Y D

j := GTyD
j G. For

balanced networks where the impedance zD
j = e�1

j I, show that these models reduce to:

Vj = � 1
3e j

I j + g j1, 1TI j = 0

I j = �3e j
�
Vj � g j1

�

Exercise 17.15 (Balanced voltages & currents). Consider the reduced system (17.42) of (17.48)(17.50).
We have shown that any solution

�
Vc, Iint

i
�

of (17.42) consists of generalized balanced vectors. Derive all
other variables analytically in terms of the solution

�
Vc, Iint

i
�

and show that they are generalized balanced
positive-sequence sets.

Exercise 17.16 (Balanced network). Suppose (A⇥ I)V = b⌦a+ + c⌦1 where A 2 C
n⇥n, b,c 2 C

n, I is
the identity matrix of size 3 and 1 is the vector of all 1s of size 3. Let g j := 1

31TVj be the zero-sequence
component of Vj 2 C

3. Show that Ag = c.
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Chapter 17.4.
Exercise 17.17. Prove that if a vector V of three-phase voltages is a balanced negative sequence then the
negative-sequence voltage Ṽ� =

p
3Va and the zero-sequence and the positive-sequence voltages are both

zero, Ṽ0 = Ṽ+ = 0.

Exercise 17.18 (Sequence impedance Z̃Y ). Consider the phase impedance matrix ZY := zY + zn11T of a
Y -configured impedance zY . Show that its sequence impedance matrix is

Z̃Y =
1
3

2

4
1T z aT

+z aT
�z

aT
�z 1T z aT

+z
aT

+z aT
�z 1T z

3

5 +

2

4
3zn 0 0
0 0 0
0 0 0

3

5

If zan = zbn = zcn then

Z̃Y =

2

4
zan +3zn 0 0

0 zan 0
0 0 zan

3

5

Exercise 17.19 (Sequence impedance Z̃D). Consider a D-configured impedance zD whose external model
is (from (17.75)):

V = �ZDI + g1, 1TI = 0 (17.88)

where the zero-sequence voltage g := 1
31TV is also a variable to be determined and

ZD :=
1
9

GT zD
✓
I� 1

z
1 z̃DT

◆

| {z }
ẑD

G

Show that its sequence impedance matrix is

Z̃D :=
1
9

(FL)H ẑD (FL)

where F is given in (??) and

L :=

2

4
0

1�a
1�a2

3

5

If zab = zbc = zca then

Z̃D =
zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

and the external model of the D-configured impedance in the sequence coordinate is:
2

4
0

Ṽ+

Ṽ�

3

5 = �zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

2

4
Ĩ0
Ĩ+
Ĩ�

3

5 , Ĩ0 = 0
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Exercise 17.20 (Sequence network: D-configured voltage source). One of the external models of a D-
configured voltage source is (from (15.21b)):

V = ĜED � ZDI + g1, 1TI = 0

where

Ĝ :=
1
3

GT

✓
I� 1

z
z̃D 1T

◆
, ZD :=

1
9

GTzD
✓
I� 1

z
1 z̃DT

◆
G

where z̃D := diag
�
zD�1 and z := 1Tz̃D.

1. Show that

Exercise 17.21 (Sequence network: D-configured voltage source). Repeat Exercise 17.20 starting with the
alternative external models of a D-configured voltage source is (from (15.21a)).

Exercise 17.22 (Sequence network: Y -configured current source). Suppose assumption C17.1 holds (all
neutrals are grounded and voltages are defined with respect to the ground) so that V n =�zn

⇣
1TI
⌘

. Derive
the sequence networks for a Y -configured current source (as those in Chapter 17.4.3) starting from the
external model in the phase domain (from (15.15b)):

V = �
�
zY JY + ZY I

�

where zY :=
�
yY��1 and ZY := zY + zn 11T.

Exercise 17.23. Consider the complex symmetric matrix

M :=


1 i
i �1

�

Show that M is not diagonalizable by computing its Jordan form and that:

1. Its eigenvalue l = 0 has algebraic multiplicity of 2 and geometric multiplicity of 1.

2. Its eigenvector is v1 = (�i,1) and generalized eigenvector is v2 = (�2i,1).

Exercise 17.24. Consider the complex symmetric phase impedance matrix

z :=

2

4
s m m
m s m
m m s

3

5

where s,m 2 C.
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1. Check directly that zzH = zHz. Hence, even though z is symmetric but not Hermitian, it is normal.

2. Since z is normal, it is unitarily similar to a diagonal matrix z̃, i.e., there exists a unitary matrix F
such that z̃ = FHzF . Find F and z̃.

Exercise 17.25 (Unbalanced currents). Consider a balanced load in (a) Y configuration, or (b) D con-
figuration, with one of the loads open-circuited, as shown in Figure 17.13. Find the sequence currents
Ĩ := (Ĩ1, Ĩ2, Ĩ3) and the neutral current In (for Y configuration) when the terminal phase currents are

I =

2

4
ia

ia ei2p/3

Ic

3

5

Why is only the negative-sequence component nonzero even though the loads are unbalanced because of
the open circuit?

Scanned with CamScanner

Figure 17.13: Sequence components of unbalanced phase currents.

Exercise 17.26. Repeat Example 17.13 without using symmetrical components and sequence networks.

Exercise 17.27. Repeat Example 17.13 but with the Y and D-impedances in series (instead of in parallel)
connected by a line with the same series-phase impedance matrix zline, as shown in Figure 17.14.

Exercise 17.28. Repeat Exercise 17.27 without using symmetrical components and sequence networks.



Draft: PSA December 13, 2024 819

Sc
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w
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Sc
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Figure 17.14: Exercise 17.27: A three-phase unbalanced voltage source supplies power two balance loads
in series through symmetric lines.



Chapter 18

Branch flow models: radial networks

In this chapter we extend the single-phase branch flow models of Chapter 5 to unbalanced three-phase
networks. We will build on materials in Chapter 17 on unbalanced bus injection models.

18.1 Three-phase BFM for radial networks

18.1.1 Line model

We use the three-phase line model of Chapter 17.1.1 where each line ( j,k)2 E characterized by four 3⇥3
series and shunt admittance matrices,

⇣
ys

jk,y
m
jk

⌘
from j to k and

⇣
ys

k j,y
m
k j

⌘
from k to j, that define the

relation between
�
Vj,Vk

�
and

�
I jk, Ik j

�
:


I jk
Ik j

�
=


ys

jk + ym
jk �ys

jk
�ys

k j ys
k j + ym

k j

�

| {z }
Yjk


Vj
Vk

�

We emphasize that ys
jk and ys

k j may be different (i.e., Yjk may not be block symmetric) and ym
jk and ym

k j
may be different. Moreover, when ( j,k) models a three-phase transformer, any of these 3⇥3 admittance
matrices may be singular and the shunt admittances (ym

jk,y
m
k j) of the line model are generally nonzero even

when the shunt admittances of the constituent single-phase transformers are assumed zero; see Remark
17.1 and (17.2)(17.3) for line parameters when ( j,k) models a three-phase transformer. Therefore we
assume

⇣
ys

jk,y
m
jk

⌘
and

⇣
ys

k j,y
m
k j

⌘
are given for each line ( j,k) 2 E, but series impedance matrices zs

jk :=
⇣

ys
jk

⌘�1
and zs

k j :=
⇣

ys
k j

⌘�1
may not exist. Generally we will write power flow equations in terms of the

series admittance matrices instead of the series impedance matrices (unless the series admittance matrices
are assumed nonsingular).

820
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18.1.2 With shunt admittances

To extend the branch flow model (5.1) for single-phase networks to unbalanced three-phase networks
define the following variables:

s j 2 C
3, v j 2 S

3
+, j 2 N

` jk,`k j 2 S
3
+, S jk,Sk j 2 C

3⇥3, ( j,k) 2 E

where S
n
+ ✓ C

n⇥n is the set of of n⇥n complex (Hermitian and) positive semidefinte matrices. It will be-
come clear later that v j,` jk,S jk are rank-1 matrices. The diagonal entries of v j are the squared magnitudes
of the nodal voltages (V a

j ,V b
j ,V c

j ), the diagonal entries of ` jk are the squared magnitudes of the sending-end
line currents (Ia

jk, I
b
jk, I

c
jk), the diagonal entries of S jk are the sending-end line power flows (Sa

jk,S
b
jk,S

c
jk),

and similarly in the opposite direction. Let s := (s j, j 2 N),v := (v j, j 2 N), ` := (` jk,`k j,( j,k) 2 E),
S := (S jk,Sk j,( j,k) 2 E), and let x := (s,v,`,S) 2 C

12(N+1)+36M. Define for each ( j,k) 2 E the total
admittance matrix

ỹ jk := ys
jk + ym

jk, ỹk j := ys
k j + ym

k j

Hence ỹ jk = ys
jk and ỹk j = ys

k j if and only if ym
jk = ym

k j = 0 2C3⇥3. The extension of (5.1) to an unbalanced
three-phase network is the following model:

s j = Â
k: j⇠k

diag(S jk), j 2 N (18.1a)

ỹ jkv jỹHjk� ys
jkvk

⇣
ys

jk

⌘H
= 2Re

�
ỹ jkS jk

�
� ` jk, ( j,k) 2 E (18.1b)

ỹk jvkỹHk j� ys
k jv j

⇣
ys

k j

⌘H
= 2Re

�
ỹk jSk j

�
� `k j, ( j,k) 2 E (18.1c)


v j S jk
SHjk ` jk

�
� 0,


vk Sk j
SHk j `k j

�
� 0, ( j,k) 2 E (18.1d)

rank


v j S jk
SHjk ` jk

�
= 1, rank


vk Sk j
SHk j `k j

�
= 1, ( j,k) 2 E (18.1e)

ys
k j

⇣
v jỹHjk�S jk

⌘
=
⇣

vkỹHk j�Sk j

⌘H⇣
ys

jk

⌘H
, ( j,k) 2 E (18.1f)

col
⇣

v jỹHjk�S jk

⌘H
✓ range

⇣
ys

jk

⌘
, col

⇣
vkỹHk j�Sk j

⌘H
✓ range

⇣
ys

k j

⌘
, ( j,k) 2 E (18.1g)

where V0 2 C
3 is given and v0 := V0VH

0 and colA denotes the columns of A. These equations extend (5.1)
from single-phase to three-phase networks and express the same four properties that a power flow solution
x := (s,v,`,S) satisfies:

1. Power balance: Unlike the power balance equation (5.1a), (18.1a) constrains only the diagonal terms
of 3⇥3 matrices S jk. Their off-diagonal terms are determined jointly with the other equations.

2. Ohm’s law: (18.1b)(18.1c) originate from the Ohm’s law I jk = ys
jk(Vj �Vk) + ym

jkVj, but unlike
(5.1b)(5.1c), (18.1b)(18.1c) use only admittance matrices (ys

jk,y
m
jk) and (ys

k j,y
m
k j), but not impedance

matrices because these admittances may be singular (e.g., when they model transformers in D con-
figuration).
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3. Apparent power: The explicit definition (5.1d) of apparent power for single-phase networks be-
comes the implicit psd rank-1 conditions (18.1d)(18.1e). They ensure the existence of (Vj, I jk) so
that

v j = VjVH

j , ` jk = I jkIHjk, S jk = VjIHjk (18.2a)

or equivalently


v j S jk
SHjk ` jk

�
=


Vj
I jk

�
·
h
VH

j IHjk
i
, j! k 2 E (18.2b)

as well as the quantities in the opposite direction. The vectors
�
Vj, I jk

�
are unique up to a reference

angle j jk 2 (�p,p], one for each ( j,k) 2 E. When the network graph is a tree and the linear cycle
condition (18.1f) is satisfied, j jk as well as jk j in the opposite direction are the same for all lines
( j,k) 2 E. Moreover a given V0 at the reference bus 0 will fix the angles of all variables in x, as
discussed in the proof of Theorem 18.1 and in Chapter 18.2.3. 1 See also Example 18.1 in Chapter
18.3.

4. Cycle condition: The linear cycle condition (5.1e) becomes (18.1f)(18.1g). The condition (18.1g) is

linear and equivalent to:
⇣

v jỹHjk�S jk

⌘H
= ys

jkw for some matrix w 2 C
3⇥3. It is necessary because

any of admittance matrices (ys
jk,y

m
jk) and (ys

k j,y
m
k j) may be singular, the main challenge in extending

(5.1) to three-phase networks. If (ys
jk,y

s
k j) are nonsingular then multiplying both sides of (18.1f) by

zs
k j :=

⇣
ys

jk

⌘�1
and taking Hermitian transpose we obtain

⇣
v jỹHjk�S jk

⌘H
= ys

jk

⇣
vkỹHk j�Sk j

⌘
zsH

jk

which implies (18.1g); similarly in the opposite direction k to j. Therefore if (ys
jk,y

s
k j) are non-

singular then the condition (18.1g) is vacuous. We will discuss in Chapter 18.2.3 the role of tree
topology, cycle conditions, and angle recovery after we have extended (18.1) to general networks
that may contain cycles.

Like the single-phase model (5.1) for radial networks, (18.1) does not require ys
jk = ys

k j (assumption
assumption C18.1 below) and allows nonzero shunt admittances (ym

jk,y
m
k j). It is therefore suitable for

modeling three-phase transformers in standard configurations in addition to distribution and short trans-
mission lines (line parameters when ( j,k) models a three-phase transformer are given in (17.2)(17.3)). If
the admittances

⇣
ys

jk,y
m
jk

⌘
and

⇣
ys

k j,y
m
k j

⌘
are nonzero scalars then (18.1) reduces to (5.1) for single-phase

networks.

1A fixed V0 is needed in the equivalence Theorem 18.1. A given V0 also enables Algorithm 5 in Chapter 18.2.3 that
explicitly constructs voltage and current phasors (V, I) from a power flow solution x := (s,v,`,S) of (18.1), and enables a
backward forward sweep method in Chapter 18.4.2. Note however that fixing V0 may not guarantee the uniqueness of power
flow solutions x since (18.1) is nonlinear.
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18.1.3 Without shunt admittances

Suppose the following condition holds:

C18.1: For every line ( j,k) 2 E, the series admittance matrices satisfy ys
jk = ys

k j.

This means that the 3(N + 1)⇥ 3(N + 1) admittance matrix Y is block symmetric and has a three-phase
P circuit representation. We also assume that the shunt admittances ym

jk = ym
k j = 0 as well in which case

the admittance matrix Y has zero block row sums. In this case ( j,k) can model a distribution or short
transmission line, but is not suitable for modeling a transformer since their shunt admittances are generally

nonzero; see Remark 17.1. Hence in this case we assume series impedance matrices zs
jk :=

⇣
ys

jk

⌘�1
exist

for all ( j,k) 2 E. This allows us to adopt a directed graph for network model since in this case

S jk + Sk j = zs
jk` jk, ` jk = `k j (18.3)

and use line variables (` jk,S jk) (only) on each directed line j! k.

Substituting (18.3) into (18.1) leads to the following model proposed in [131] that generalizes DistFlow
equations from the single-phase to the three-phase setting (Exercise 18.2):

Â
k: j!k

diag(S jk) = Â
i:i! j

diag
�
Si j� zs

i j`i j
�
+ s j, j 2 N (18.4a)

v j� vk =
⇣

zs
jk SHjk +S jkzsH

jk

⌘
� zs

jk ` jk zsH
jk , j! k 2 E (18.4b)


v j S jk
SHjk ` jk

�
� 0, rank


v j S jk
SHjk ` jk

�
= 1, j! k 2 E (18.4c)

where V0 2C3 is given. In particular the cycle condition (18.1f) becomes vacuous when assumption C18.1
holds and shunt admittances are zero.

Angle recovery. We now explain how to recover the phase angles for voltage and current phasors (V, I)
for a radial network with zero shunt admittance matrices ym

jk = ym
k j = 0 and under assumption C5.1, i.e.,

given a power solution x = (s,v,`,S) that satisfies (18.4) we will construct the phasors (V, I).

The BFM (18.4) does not contain the vectors Vj or I jk, but the psd rank-1 constraints (18.4c) ensure
that there exist Vj and I jk such that

v j = VjVH

j , ` jk = I jkIHjk, S jk = VjIHjk (18.5a)

or equivalently


v j S jk
SHjk ` jk

�
=


Vj
I jk

�
·
h
VH

j IHjk
i
, j! k 2 E (18.5b)

Given matrices
�
v j,` jk,S jk

�
, the vectors

�
Vj, I jk

�
are determined uniquely up to a reference angle. If a

reference angle is given, e.g., \V a
0 = 0�, the power flow equation (18.4) will fix the angles of all variables.

See Example 18.1 in Chapter 18.3.
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If V0 is given, not just V f
0 , f 2 {a,b,c}, then given a power solution x := (s,v,`,S) that satisfies (18.4),

an x̃ := (s,V, I,`,S)2 X̃ can be explicitly constructed using the iterative Algorithm 5 from [131] that makes
use of the tree topology. The basic idea in Step 5 of the algorithm is to compute the phasors Vi and Ii j
recursively, starting from bus 0 when V0 is given: since Si j = Vi IHi j , taking the Hermitian transpose and
multiplying both sides by Vi, we have

Vi IHi j = Si j ) Ii j

⇣
VH

i Vi

⌘
= SHi j Vi ) Ii j =

1
tr(vi)

SHi j Vi (18.6)

Algorithm 4: Recover x̃ = (s,V, I,`,S) from x = (s,v,`,S).
Down orientation where all lines point away from root bus 0.

Input: x = (s,v,`,S) 2 X; V0 2 C
3.

Output: x̃ = (s̃,Ṽ , Ĩ, ˜̀, S̃) 2 X̃

1: s̃  s; ˜̀  `; S̃  S;
2: Nvisit  {0};
3: while Nvisit 6= N do
4: find i! j such that i 2 Nvisit and j /2 Nvisit;
5: compute

Ĩi j  
1

tr(vi)
SHi j Ṽi

Ṽj  Ṽi� zi j Ĩi j

Nvisit  Nvisit[{ j}

6: end while

Tree topology and cycle condition. An x satisfying (18.4) is a legitimate power flow solution, i.e., from
which a unique (up to an arbitrary reference angle) phasor (V, I) can be constructed as described above,
only if the network is radial. To see this, substituting I jk = y jk

�
Vj�Vk

�
into S jk = VjIHjk we get

VjVH

k = v j � S jkzHjk, j! k 2 E

Taking the diagonal vectors on both sides, we conclude that given a solution x of (18.4), voltage phasors
Vj exist if and only if there exist q j :=

⇣
q a

j ,q b
j ,q c

j

⌘
, for all j 2 N, such that

2

664

|V a
j V a

k |ei(q a
j�q a

k )

|V b
j V b

k |ei(q b
j�q b

k )

|V c
j V c

k |ei(q c
j�q c

k )

3

775 =

2

664

|Ua
jk|e

ib a
jk

|Ub
jk|e

ib b
jk

|Uc
jk|e

ib c
jk

3

775 , j! k 2 E
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where the vectors b jk := b jk(x)2R3 of angles depend on x and are defined by b jk(x) :=\diag
⇣

v j�S jkzHjk
⌘

.

In particular there must exist q :=
�
q j 2 R

3, j 2 N
�
2 R

3(N+1) such that

b (x) =
⇣

CT⌦ I

⌘
q (18.7a)

where b (x) :=
�
b jk(x), j! k 2 E

�
2 C

3M and C is the (N + 1)⇥M bus-by-line incidence matrix whose
rank is N. See Chapter 20.2 for more properties of C. The condition (18.17) is the cycle condition that
generalizes (??) from single-phase to three-phase networks. We now show that the cycle condition is
vacuous for radial networks, i.e., any x satisfying (18.4) also satisfies (18.17) when the network is radial.

Partition C into its first row cT0 and an N⇥M matrix Ĉ of the remaining rows so that

CT =:
⇥
c0 ĈT

⇤

Similarly partition q =:
�
q0, q̂

�
2 R

3(N+1). Suppose G is a (connected) tree with M = N. Then ĈT

is N ⇥N and of full rank. Therefore c0 = ĈTh for some h 2 C
N . It is proved in Exercise 18.1 that�

ĈTh
�
⌦ I =

�
ĈT⌦ I

�
(h⌦ I). Hence (18.17) becomes

b (x) =
⇣

cT0 ⌦ I

⌘
q0 +

⇣
ĈT⌦ I

⌘
q̂ =

⇣
ĈT⌦ I

⌘�
q̂ +(h⌦q0)

�
(18.7b)

where we have used (h⌦ I)q0 = h⌦q0. Since ĈT and hence
�
ĈT⌦ I

�
are invertible, for any x satisfying

(18.4), there always exists an q =
�
q0, q̂

�
2 R

3(N+1) that satisfies (18.21a). Indeed the solution q of
(18.21a) is not unique. Given any q0 2 C

3, there is always a (unique) q̂ :=
⇣�

ĈT
��1⌦ I

⌘
b (x)�h ⌦q0

that satisfies (18.21a).2

If G contains cycles, on the other hand, then M > N and the 3M⇥3(N +1) matrix
�
CT⌦ I

�
in (18.17)

has a column rank of 3N < 3M since rank (A⌦B) = rank A · rank B from Lemma 17.6. This means that
the column space of

�
CT⌦ I

�
does not span R

3M and hence there may be b (x) for which no q exists that
satisfies (18.17), regardless of whether q0 is given. A power flow model for a meshed network consists of
(18.4) augmented with the cycle condition (18.17).

18.2 Equivalence, cycle condition and angle recovery

The branch flow models for an unbalanced three-phase radial networks are (18.1) with shunt admittances
and without assumption C18.1 and the generalized DistFlow equations (18.4) when shunt admittances
are zero and assumption C18.1 holds. We will show that they are equivalent to the bus injection model
(17.12b) studied in Chapter 17.1.4, reproduced here:

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (18.8)

To this end we first extend the branch flow models (18.1) and (18.4) to general networks possibly with
cycles. We then use these generalized branch flow models as a bridge to relate BFM (18.1) and (18.4) for
radial networks to BIM (18.8) for general networks.

2Here the vector q0 can be arbitrary to satisfy (18.21a) whereas a single angle e.g. q a
0 fixes all other angles in (18.2). This

is because (18.2) uses the matrix v j whereas (18.21) uses only the diagonal entries of v j.
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18.2.1 Extension to general networks

To extend the branch flow model (5.19) for a general network possibly with cycles from the single-phase
setting to the unbalanced three-phase setting, define the following variables:

s j 2 C
3, Vj 2 C

3, j 2 N

Ijk, Ik j 2 C
3, ` jk,`k j 2 S

3
+, S jk,Sk j 2 C

3⇥3, ( j,k) 2 E

where S
n
+ ✓ C

n⇥n is the set of of n⇥ n complex (Hermitian and) positive semidefinte matrices. Let s :=
(s j, j2N), V := (Vj, j2N), I := (I jk, Ik j,( j,k)2E), ` := (` jk,`k j,( j,k)2E) and S := (S jk,Sk j,( j,k)2E).
Let x̃ := (s,V, I,`,S) 2 C

6(N+1)+42M. The branch flow model for a general three-phase network is the
following power flow equations in x̃:

s j = Â
k: j⇠k

diag
�
S jk
�
, j 2 N (18.9a)

I jk = ỹ jkVj� ys
jkVk, Ik j = ỹk jVk� ys

k jVj, ( j,k) 2 E (18.9b)

` jk = I jkIHjk, `k j = Ik jIHk j, ( j,k) 2 E (18.9c)

S jk = Vj IHjk, Sk j = Vk IHk j, ( j,k) 2 E (18.9d)

where ỹ jk := ys
jk +ym

jk and ỹk j = ys
k j +ym

k j. The equation (18.9a) imposes power balance at each bus, (18.9b)
describes the Kirchhoff’s and Ohm’s laws, (18.9c) defines the squared current magnitude matrices, and
(18.9d) defines branch power in terms of the associated voltage and current. A key to generalizing single-
phase BFM to the 3-phase setting is the generalization in (18.9c)(18.9d) of the quadratic relation between
between

�
S jk,` jk

�
and

�
Vj, I jk

�
using outer products. This relation is explicit in BFM (18.9) for general

networks that include voltage and current angles, but is implicit in BFMs for radial networks that do not
include voltage and current angles (see (18.1d)(18.1e) and (18.4c)). For convenience we assume here the
vector V0, not just V f

0 , f 2 {a,b,c}, is given (see angle recovery in Chapter 18.1.3 and a backward forward
sweep method in Chapter 18.4.2). Since this model does not require assumption C18.1 and allows nonzero
shunt admittance matrices (ym

jk,y
m
k j), it is suitable for modeling three-phase transformers in YY , DD, DY

and Y D configurations.

When assumption C18.1 holds and shunt admittance matrices ym
jk = ym

k j = 0 2 C
3⇥3, we may assume

series impedance matrices zs
jk :=

⇣
ys

jk

⌘�1
exist for all ( j,k) 2 E. This allows us to adopt a directed graph

and obtain the following simpler BFM by substituting (18.3) into (18.9):

s j + Â
i:i! j

diag
�
Si j� zi j`i j

�
= Â

k: j!k
diag(S jk), j 2 N (18.10a)

Vj�Vk = z jkI jk, j! k 2 E (18.10b)

` jk = I jkIHjk, j! k 2 E (18.10c)

S jk = Vj IHjk, j! k 2 E (18.10d)

with a given V0 2 C
3. In this case the line variables are directed with s := (s j, j 2 N), V := (Vj, j 2 N),

I := (I jk, j!2 E), ` := (` jk, j! k 2 E) S := (S jk, j! k 2 E), and x̃ := (s,V, I,`,S) 2 C
6(N+1)+21M.
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18.2.2 Equivalence of BFM and BIM

We now show that BFMs (18.1) and (18.4) for radial networks and (18.9) and (18.10) for general networks
are all equivalent to the BIM (18.8), in the following sense. Define the solution sets:

V := V(V0) :=
n

(s,V ) 2 C
6(N+1) | (s,V ) satisfies (18.8) with a given V0

o

X̃ := X̃(V0) :=
n

x̃ := (s,V, I,`,S) 2 C
6(N+1)+42M | x̃ satisfies (18.9) with a given V0

o

Xtree := Xtree(V0) :=
n

x := (s,v,`,S) 2 C
12(N+1)+36M|x satisfies (18.1) with given V0 and v0 = V0VH

0

o

where N +1 is the number of nodes and M := |E| is the number of lines in G. We say that two sets A and B
are equivalent, denoted by A⌘ B, if there is a bijection between them. When assumption C18.1 holds and
shunt admittance matrices ym

jk = ym
k j = 0 2 C

3⇥3, the branch flow model (18.1) reduces to (18.4) for radial
networks and (18.9) reduces to (18.10) for general networks. It therefore suffices to prove the equivalence
of V, X̃ and Xtree.

The following theorem generalizes Theorem 5.2 of Chapter 5.2 from single-phase to unbalanced three-
phase networks.

Theorem 18.1. Suppose the network G is connected and V0 at the reference bus 0 is given.

1. Then V⌘ X̃.

2. If G is a tree then X̃⌘ Xtree.

Proof. Part 1: V ⌘ X̃. Fix any (s,V ) 2 V. We will construct an x̃ := (s,V, I,`,S) 2 X̃, i.e. x̃ satisfies
(18.9). Define (I,`,S) in terms of V by (18.9b)(18.9c)(18.9d). Therefore, to show that x̃ 2 X̃, it suffices to
show that x̃ also satisfies (18.9a). Since (s,V ) satisfies (18.8) we have

s j = Â
k: j⇠k

diag
⇣

Vj(ỹ jkVj� ys
jkVk)

H

⌘
= Â

k: j⇠k
diag

�
S jk
�

where the second equality follows from (18.9b)(18.9d). Therefore x̃ also satisfies (18.9) and hence is in X̃.
Conversely, if x̃ := (s,V, I,`,S) satisfies (18.9) then substituting (18.9b)(18.9d) into (18.9a) yields (18.8).
Hence (s,V ) 2 V.

Part 2: X̃⌘Xtree. We explicitly construct a bijection between these two sets. Fix any x̃ := (s,V, I,`,S) with
the given V0 that satisfies (18.9). The mapping x̃ 7! x is defined by x := (s,v,`,S) where v := (v j, j 2 N)
with

v j := VjVH

j (18.11)

We first show that x satisfies (18.1). Then we show that the mapping x̃ 7! x defined by (18.11) is injective
(when the network is connected and V0 is given) and surjective (when the network is a tree and the linear
cycle condition (18.1f)(18.1g) is satisfied). It is therefore a bijection between X̃ and Xtree.
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First x clearly satisfies (18.1a). To prove (18.1b), we have from (18.9b) and (18.9c)

` jk = ỹ jkv jỹHjk + ys
jkvkysH

jk � 2Re
⇣

ỹ jkVjVH

k ysH
jk

⌘
(18.12)

We have from (18.9b) and (18.9d) S jk = v jỹHjk � VjVH

k ysH
jk and hence

ỹ jkVjVH

k ysH
jk = ỹ jkv jỹHjk � ỹ jkS jk

Substituting into (18.12) yields

` jk = ỹ jkv jỹHjk + ys
jkvkysH

jk � 2Re
⇣

ỹ jkv jỹHjk� ỹ jkS jk

⌘
= �ỹ jkv jỹHjk + ys

jkvkysH
jk + 2Re

�
ỹ jkS jk

�

which is (18.1b). Similarly (18.1c) follows from (18.9b)(18.9c)(18.9d). To prove the cycle condition
(18.1f)(18.1g), use again S jk = v jỹHjk � VjVH

k ysH
jk and Sk j = vkỹHk j � VkVH

j ysH
k j to obtain

⇣
v jỹHjk�S jk

⌘H
= ys

jkVkVH

j ,
⇣

vkỹHk j�Sk j

⌘H
= ys

k jVjVH

k

ys
k j

⇣
v jỹHjk�S jk

⌘
= ys

k jVjVH

k ysH
jk , ys

jk

⇣
vkỹHk j�Sk j

⌘
= ys

jkVkVH

j ysH
k j

which implies the cycle conditions (18.1g) and (18.1f) respectively. Finally (18.11) and (18.9c)(18.9d)
implies


v j S jk
SHjk ` jk

�
=


Vj
I jk

� h
VH

j IHjk
i
,


vk Sk j
SHk j `k j

�
=


Vk
Ik j

� h
VH

k IHk j

i

which implies the psd and rank-1 conditions (18.1d)(18.1e). This completes the proof that x satisfies
(18.1).

When the network is a (connected) tree and V0 is fixed (not just \V a
0 say), Lemma 18.2 shows that the

mapping x̃ 7! x is injective. Lemma 18.3 shows that the mapping is surjective, i.e., given x := (s,v,`,S)
that satisfies (18.1) (in particular the cycle condition), there is a x̃ that satisfies (18.9). Hence it is bijective.

18.2.3 Tree topology, cycle condition, angle recovery

Consider the mapping x̃ := (s,V, I,`,S) 7! x := (s,v,`,S) from X̃ to Xtree defined through (18.11). Sup-
pose V0 is given. In this subsection we show that the mapping is injective when the network graph G is
connected, it is surjective when G is a (connected) tree and x 2 Xtree satisfies the linear cycle condition
(18.1f)(18.1g), and the linear cycle condition becomes vacuous when assumption C18.1 holds and shunt
admittances are zero, i.e., any x satisfying (18.4) also satisfies (18.17) for a radial network.

Connected graph G and uniqueness of (V, I).

Lemma 18.2 (Injectivity). Suppose the network graph G is a (connected) tree and V0 is given. Given
x := (s,v,`,S) 2 Xtree, if there exists (V (x), I(x)) such that x̃ := (s,V (x), I(x),`,S) 2 X̃, then (V (x), I(x))
is unique.
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Proof. For the sake of contradiction, suppose both x̃ := (s̃,Ṽ , Ĩ, ˜̀, S̃) 2 X̃ and x̂ = (ŝ,V̂ , Î, ˆ̀, Ŝ) 2 X̃, with
Ṽ0 = V̂0, are mapped to x = (s,v,`,S) 2 Xtree through (18.11). By definition of x̃ 7! x we have s̃ = s = ŝ,
˜̀= ` = ˆ̀, S̃ = S = Ŝ. Moreover ṼjṼH

j = v j = V̂jV̂H
j for all j 2 N. We have to show that Ṽ = V̂ and Ĩ = Î.

Since the psd rank-1 decomposition (18.2) is unique up to an arbitrary phase,
�
Ṽj, Ĩ jk

�
and (V̂j, Î jk) can

differ only by an arbitrary phase shift j jk for each ( j,k), and
�
Ṽk, Ĩk j

�
and (V̂k, Îk j) can differ only by an

arbitrary phase shift jk j for each ( j,k). We argue that j jk and jk j must be the same for all lines ( j,k) 2 E
as long as the network is connected. Moreover V̂0 = Ṽ0 implies that j jk = jk j = 0 for all ( j,k) 2 E.

It is convenient to assume (only) in this proof, without loss of generality, a graph orientation and, since
the graph is a tree, assume that all lines point towards bus 0. Start from a leaf node i and consider a line
i! j 2 E. Let

V̂i = Ṽi eiji j , Îi j = Ĩi j eiji j (18.13)

Similarly, for all lines j! k connected to j 6= 0, we have V̂j = Ṽj eij jk . Substituting V̂i,V̂j, Îi j into (18.9b)
for j 6= 0 yields

Ĩi j = ỹi jṼi � ys
i jṼj ei(j jk�ji j)

which, together with (18.9b), implies j jk = ji j for all directed lines j! k (we assume without loss of
generality that all angles are projected to (�p,p]). When j = 0 (i.e., there is no line j! k), we have
Ĩi0 = ỹi0Ṽi� ys

i0Ṽ0e�iji0 since V̂0 = Ṽ0 by assumption, and hence (18.9b) implies that ji0 = 0. Propagating
towards bus 0 in a reverse breadth-first search order, we conclude that j jk = ji0 = 0 on all directed lines
j! k 2 E since the network is connected. This implies in particular that V̂j = Ṽj for all j 2 N. For each
directed line j! k 2 E, since

�
Ṽk, Ĩk j

�
and (V̂k, Îk j) in the opposite direction can differ only by a phase

shift jk j for each ( j,k), V̂k = Ṽk for all k implies that jk j = 0 for all j! k 2 E. Hence x̃ = x̂ and the
mapping x̃ 7! x is injective.

Tree graph G, cycle condition and existence of (V, I). We now explain that a phasor (V (x), I(x)) and
hence x̃ := (s,V (x), I(x),`,S)2 X̃ can be recovered from an x := (s,v,`,S)2Xtree if and only if the network
is radial, as well as the role the linear cycle condition (18.1f)(18.1g) plays in the recovery.

We recall the following simple property of psd rank-1 matrices. Given a psd rank-1 matrix A 2 C
n⇥n,

there exists a vector x 2 C
n, unique up to an arbitrary angle, such that xxH = A, i.e., Ai j = |xi||x j|ei(qi�q j).

Therefore x can be determined explicitly from the given A as follows. Let x =: |xi|eiqi . Then |xi| =
p

Aii.
To determine qi, define a graph G := (N,E) induced by A with n nodes and m directed lines (with arbitrary
graph orientation) where there is a line i! j if and only if Ai j 6= 0. Let C denote the n⇥m incidence
matrix of G. Let b jk(A) := \A jk for j! k 2 E and let b (A) := (b jk(A), j! k 2 E). Then

b (A) = CTq and xi :=
p

Aii eiqi (18.14)

i.e., if b (A) = CTq for some q (i.e., b (A) is the row space of the incidence matrix C), then x given by
(18.14) is the rank-1 decomposition of the psd rank-1 matrix A = xxH, unique up to a reference angle.

Fix a power flow solution x 2 Xtree. First note that if an x̃ 2 X̃ exists with v j = VjVH
j , then (18.9b) and

(18.9d) implies S jk = v jỹHjk � VjVH

k ysH
jk and hence

VjVH

k =
⇣

v jỹHjk � S jk

⌘⇣
ysH

jk

⌘†
+ x jk 2 C

3⇥3, ( j,k) 2 E (18.15a)
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where
⇣

ysH
jk

⌘†
denotes the pseudo-inverse of ysH

jk and xH

jk 2 C
3⇥3 is the component of VkVH

j in null(ys
jk)

so that x jkysH
jk = 0 2 C

3⇥3 (see Theorem 20.19 on psudo-inverse in Appendix 20.1.7).3 Similarly in the
opposite direction we have

VkVH

j =
⇣

vkỹHk j � Sk j

⌘⇣
ysH

k j

⌘†
+ xk j 2 C

3⇥3, ( j,k) 2 E (18.15c)

for some xk j 2 C
3⇥3, dependent on VkVH

j , such that col(xH

k j)✓ null(ys
k j).

Motivated by (18.15) when x̃ 2 X̃ exists with v j = VjVH
j , define the 3(N + 1)⇥ 3(N + 1) matrix b(x)

by

[b(x)] j j = v j, j 2 N (18.16a)

[b(x)] jk =
⇣

v jỹHjk�S jk

⌘⇣
ysH

jk

⌘†
, ( j,k) 2 E (18.16b)

[b(x)]k j =
⇣

vkỹHk j�Sk j

⌘⇣
ysH

k j

⌘†
, ( j,k) 2 E (18.16c)

[b(x)] jk = 0 2 C
3⇥3, [b(x)]k j = 0 2 C

3⇥3, ( j,k) 62 E (18.16d)

Then, since x̃ 2 X̃ with v j = VjVH
j , (18.15) implies that

b(x) = VVH (18.16e)

Conversely (18.14) says that, if b(x) is psd rank-1, then its rank-1 decomposition V can be uniquely
recovered from b(x), given V0. Specifically let b jk(x) := diag

�
\ [b(x)] jk

�
for ( j,k) 2 E and b (x) :=

(b jk(x),( j,k) 2 E). Note that b(x) being psd implies that [b(x)]k j =
�
[b(x)] jk

�H in (18.16), and hence
bk j(x) := diag

�
\ [b(x)]k j

�
satisfies bk j(x) = �bk j(x). Suppose there exists q j := (q a

j ,q b
j ,q c

j ) for j 2 N
and q := (q j, j 2 N) 2 (�p,p]3(N+1) that satisfy

b (x) =
⇣

CT⌦ I

⌘
q (18.17)

where C is the (N +1)⇥M incidence matrix whose rank is M = N (C⌦ I is the 3(N +1)⇥3M incidence
matrix of the single-phase equivalent circuit). Then, given V0, the unique rank-1 decomposition V of b(x)

3Let ys
jk =:


Ur

U3�r

�
Sr 0
0 0

�
WH

r
WH

3�r

�
. Then Theorem 20.19 implies

⇣
ys

jk

⌘†
ys

jk

⇣
VkVH

j

⌘
= VkVH

j �W3�rWH

3�r

⇣
VkVH

j

⌘

| {z }
xH

jk

(18.15b)

and hence col
⇣

xH

jk

⌘
✓ range(W3�r) = null(ys

jk). Indeed xH

jk is exactly the component of VkVH
j that is in null(ys

jk). Recall

that the pseudo-inverse
⇣

ys
jk

⌘†
is a bijection from range(ys

jk) to range(ysH
jk ) and

⇣
ys

jk

⌘†
ys

jk

⇣
VkVH

j

⌘
projects VkVH

j , which may

contain components in null(ys
jk), onto the orthogonal subspace range(ysH

jk ) of null(ys
jk). Therefore (18.15b) says that the effect

of
⇣

ys
jk

⌘†
ys

jk is to remove the component x H
jk of VkVH

j in null(ys
jk). Of course if ys

jk is nonsingular then x jk = 0.
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is given by, from (18.14),

V f
j :=

q
vff

j eiq f
j (x), f 2 {a,b,c}, j 2 N (18.18a)

where q(x) is a solution of (18.17). This is abbreviated as

Vj(x) := diag
�pv j

�
� eiq j(x), j 2 N (18.18b)

where � denotes componentwise product. Define (I jk(x), Ik j(x)) in terms of x and V0:

If
jk(x) :=

q
`ff

jk ei
⇣

q f 0
j (x)�\Sf 0f

jk

⌘

, f 2 {a,b,c}, ( j,k) 2 E (18.19a)

If
k j(x) :=

q
`ff

k j ei
⇣

q f 0
k (x)�\Sf 0f

k j

⌘

, f 2 {a,b,c}, ( j,k) 2 E (18.19b)

The f 0 in (18.19) can be any phase in {a,b,c} because Sf 0f
jk = V f 0

j Īf
jk.

We now show that, given x2Xtree, for the existence of x̃2 X̃, it is not only necessary but also sufficient
that x 2 Xtree satisfies (18.17). The is the nonlinear cycle condition that generalizes (5.20e) from single-
phase to three-phase networks. The q(x) guaranteed by (18.17) can be used to define voltage and current
angles and hence the phasors (V (x), I(x)) according to (18.18)(18.19). Moreover (18.17) reduces to the
linear cycle condition (18.1f)(18.1g) when the network graph is a tree. We will see later that it becomes
vacuous when assumption C18.1 holds and shunt admittances are zero.

Lemma 18.3 (Surjectivity and tree graph G). Consider a general network graph G possibly with cycles
and suppose V0 is given.

1. Suppose an arbitrary x := (s,v,`,S) satisfies (18.1a)–(18.1e) (without the linear cycle condition
(18.1f)(18.1g)) and the nonlinear cycle condition (18.17). Let q(x) denote a solution of (18.17)
and construct (V (x), I(x)) according to (18.18)(18.19). Then x̃ := (s,V (x), I(x),`,S) 2 X̃.

2. Suppose G is a (connected) tree. If x 2 Xtree (in particular x satisfies the linear cycle condition
(18.1f)(18.1g)), then x satisfies (18.17) and hence x̃ 2 X̃.

Proof. Part 1. Fix an arbitrary x that satisfies (18.1a)–(18.1e) and the nonlinear cycle condition (18.17).
Construct (V (x), I(x)) from x and V0 according to (18.18)(18.19). The psd rank-1 conditions (18.1d)(18.1e)
means that the matrices in (18.1d)(18.1e) has a unique rank-1 decomposition (18.2), given V0. Moreover
the decomposition (V (x), I(x)) is determined according to (18.14). In particular v j and (` jk,`k j) are psd
rank-1 matrices and therefore

v j = Vj(x)VH

j (x), j 2 N, ` jk = I jk(x)IHjk(x), `k j = Ik j(x)IHk j(x) ( j,k) 2 E

where V (x) and (I jk(x), Ik j(x)) are given by (18.18)(18.19) respectively. Moreover (18.2) means that

S jk = Vj(x)IHjk(x) and Sk j = Vk(x)IHk j(x), specifically Sf1f2
jk =

q
vf1f1

j `f2f2
jk exp

⇣
i\Sf1f2

jk

⌘
.



832 Draft: PSA December 13, 2024

Therefore to show that x̃ := (s,V (x), I(x),`,S) 2 X̃, it suffices to show that x̃ satisfies (18.9b). Define
Î jk := ỹ jkVj(x)� ys

jkVk(x) and Îk j in the opposite direction in terms of V (x). Let Î := (Î jk, Îk j,( j,k) 2 E).
We will show that

` jk = Î jkÎHjk, S jk = Vj(x)ÎHjk, ( j,k) 2 E

and similarly in the opposite direction. Since the rank-1 decomposition (18.2) is unique given V0, this
implies I jk(x) = Î jk and Ik j(x) = Îk j, proving (18.9b).

To show S jk = Vj(x)ÎHjk we have

Vj(x)ÎHjk = v jỹHjk�VjVH

k ysH
jk (18.20)

Recall from (18.16) that V satisfies V (x)VH(x) = b(x) and hence, in view of the discussion following
(18.15a), we have

VjVH

k ysH
jk = v jỹHjk � S jk + h jk

where h jk 2 C
3⇥3 has the property h jkys

jk = 0 2 C
3⇥3 (see Theorem 20.19 on psudo-inverse in Appendix

20.1.7). Substituting into (18.20) yields S jk = Vj(x)ÎHjk�h jk.

Given the psd rank-1 matrix ` jk, we will show that Î jk := ỹ jkVj(x)�ys
jkVk(x) satisfies ` jk = Î jk(x)ÎHjk(x)

using (18.1b).

Since the rank-1 decomposition of ` jk is unique given V0, I jk(x) must be equal to Î jk(x), proving
(18.9b). We have

Î jkÎHjk =
⇣

ỹ jkVj(x)� ys
jkVk(x)

⌘⇣
ỹ jkVj(x)� ys

jkVk(x)
⌘H

= ỹ jkv jỹHjk + ys
jkvkysH

jk �2Re
⇣

ỹ jkVj(x)VH

k (x)ysH
jk

⌘

Note that ỹ jkv jỹHjk is a real matrix (since it equals its real part), and hence

Î jkÎHjk = �ỹ jkv jỹHjk + ys
jkvkysH

jk +2Re
⇣

ỹ jkv jỹHjk� ỹ jkVj(x)VH

k (x)ysH
jk

⌘

= �ỹ jkv jỹHjk + ys
jkvkysH

jk +2Re
✓

ỹ jkVj(x)
⇣

ỹ jkVj(x)� ys
jkVk(x)

⌘H◆

= �ỹ jkv jỹHjk + ys
jkvkysH

jk +2Re
⇣

ỹ jkVj(x)ÎHjk
⌘

We have
���I jk(x)� ỹ jkVj(x)+ ys

jkVk(x)
���

2

2
= ` jk + ỹ jkv jỹHjk + ys

jkvkysH
jk �2Re

�
ỹ jkS jk

�
+2Re

⇣
ys

jkVk(x)IHjk(x)
⌘

�2Re
⇣

ỹ jkVj(x)VH

k (x)ysH
jk

⌘

= 2ys
jkvkysH

jk +2Re
⇣

ys
jkVk(x)IHjk(x)

⌘
�2Re

⇣
ỹ jkVj(x)VH

k (x)ysH
jk

⌘



Draft: PSA December 13, 2024 833

where the second equality follows from (18.1b).

Since x satisfies the psd rank-1 conditions (18.1d)(18.1e), there exists (Vj, I jk) that satisfies (18.2) and
that is unique up to an arbitrary reference angle for each ( j,k) 2 E.

Clearly x̃ satisfies (18.9a). The construction (??) and the psd rank-1 condition (18.1d)(18.1e) imply
that x̃ also satisfies (18.9c)(18.9d). Finally to prove (18.9b), recall the derivation above of (18.1b) from
(18.9b)(18.9c)(18.9d) using (18.12). The argument in the reverse direction implies that, since x satisfies
(18.1b), the (I jk, Ik j) obtained from the psd rank-1 decomposition

rank-1 decompositions ` jk = I jkIHjk and `k j = Ik jIHk j are unique given V0.

x̃ must satisfies (18.9b) when (I jk, Ik j) are given by (18.9b), since the rank-1 decompositions ` jk = I jkIHjk
and `k j = Ik jIHk j are unique given V0.

To show that the mapping x̃ 7! x is surjective, we show that for any x := (s,v,`,S) that satisfies (18.1)
there is a x̃ that satisfies (18.9). Fix such an x := (s,v,`,S) 2Xtree. , when G is a tree, if (v j,` jk,S jk) satisfy
psd and rank-1 conditions (18.1d)(18.1e), then there exist (Vj, I jk, Ik j) that satisfy the rank-1 decomposition
(??). Moreover they are unique since V0 is fixed. Let x̃ := (s,V, I,`,S) where (V, I) are obtained from x
uniquely through the rank-1 decomposition. We now show that x̃ satisfies (18.9) and hence the mapping
x̃ 7! x through (18.11) is surjective.

We now show that the cycle condition is vacuous for radial networks, i.e., any x satisfying (18.4) also
satisfies (18.17) when the network is radial.

Partition C into its first row cT0 and an N⇥M matrix Ĉ of the remaining rows so that

CT =:
⇥
c0 ĈT

⇤

Similarly partition q =:
�
q0, q̂

�
2 R

3(N+1). Suppose G is a (connected) tree with M = N. Then ĈT

is N ⇥N and of full rank. Therefore c0 = ĈTh for some h 2 C
N . It is proved in Exercise 18.1 that�

ĈTh
�
⌦ I =

�
ĈT⌦ I

�
(h⌦ I). Hence (18.17) becomes

b (x) =
⇣

cT0 ⌦ I

⌘
q0 +

⇣
ĈT⌦ I

⌘
q̂ =

⇣
ĈT⌦ I

⌘�
q̂ +(h⌦q0)

�
(18.21a)

where we have used (h⌦ I)q0 = h⌦q0. Since ĈT and hence
�
ĈT⌦ I

�
are invertible, for any x satisfying

(18.4), there always exists an q =
�
q0, q̂

�
2 R

3(N+1) that satisfies (18.21a). Indeed the solution q of
(18.21a) is not unique. Given any q0 2 C

3, there is always a (unique) q̂ :=
⇣�

ĈT
��1⌦ I

⌘
b (x)�h ⌦q0

that satisfies (18.21a).4

4Here the vector q0 can be arbitrary to satisfy (18.21a) whereas a single angle e.g. q a
0 fixes all other angles in (18.2). This

is because (18.2) uses the matrix v j whereas (18.21) uses only the diagonal entries of v j.
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1in Since x satisfies the cycle condition (18.1f) (18.1g)

ys
k j

⇣
v jỹHjk�S jk

⌘
=
⇣

vkỹHk j�Sk j

⌘H⇣
ys

jk

⌘H
, ( j,k) 2 E

xxx

If G contains cycles, on the other hand, then M > N and the 3M⇥3(N +1) matrix
�
CT⌦ I

�
in (18.17)

has a column rank of 3N < 3M since rank (A⌦B) = rank A · rank B from Lemma 17.6. This means that
the column space of

�
CT⌦ I

�
does not span R

3M and hence there may be b (x) for which no q exists that
satisfies (18.17), regardless of whether q0 is given. A power flow model for a meshed network consists of
(18.4) augmented with the cycle condition (18.17).

Angle recovery. As explained in the proof of Theorem 18.1, given V0, a unique (V, I) can be obtained
from a power flow solution x of (18.1) using the psd rank-1 decomposition (18.2). The existence of such
a (V, I) guaranteed by Lemma ??. We next describe an explicit construction of (V, I) from x.

Fix a power flow solution x of (18.1). We will focus on line variables
�
I jk,` jk,S jk

�
in the direction j

to k; line variables in the opposite direction have the same properties. Given matrices
�
v j,` jk,S jk

�
from

the power flow solution x, the vectors
�
Vj, I jk

�
from the psd rank-1 decomposition (18.2) is unique up to

a reference angle j jk, one for each ( j,k) 2 E. When the network graph is a tree, j jk are the same for all
lines ( j,k) 2 E. In this case a given reference angle, e.g., \V a

0 = 0�, will fix the angles of all variables in
x. See Example 18.1 in Chapter 18.3.

If V0 is given, not just (say) V a
0 , then we can explicitly construct an x̃ := (s,V, I,`,S) 2 X̃

the power solution x := (s,v,`,S) of (18.1)

that satisfies (18.4), an

can be explicitly constructed using the iterative Algorithm 5 from [131] that makes use of the tree
topology. The basic idea in Step 5 of the algorithm is to compute the phasors Vi and Ii j recursively, starting
from bus 0 when V0 is given: since Si j = Vi IHi j , taking the Hermitian transpose and multiplying both sides
by Vi, we have

Vi IHi j = Si j ) Ii j

⇣
VH

i Vi

⌘
= SHi j Vi ) Ii j =

1
tr(vi)

SHi j Vi (18.22)

18.3 Overall model and examples

18.3.1 Overall model

Suppose assumption C18.1 holds. The overall model of a network of three-phase devices connected by
three-phase lines, its specification and analysis are similar to that in the bus injection model discuss in
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Algorithm 5: Recover x̃ = (s,V, I,`,S) from x = (s,v,`,S).
Down orientation where all lines point away from root bus 0.

Input: x = (s,v,`,S) 2 X; V0 2 C
3.

Output: x̃ = (s̃,Ṽ , Ĩ, ˜̀, S̃) 2 X̃

1: s̃  s; ˜̀  `; S̃  S;
2: Nvisit  {0};
3: while Nvisit 6= N do
4: find i! j such that i 2 Nvisit and j /2 Nvisit;
5: compute

Ĩi j  
1

tr(vi)
SHi j Ṽi

Ṽj  Ṽi� zi j Ĩi j

Nvisit  Nvisit[{ j}

6: end while

Chapter 17.2. The only difference is that the power flow equations are those for BFM rather than BIM.
Specifically the overall model consists of:

1. A network model that relates terminal voltage, current, and power (V, I,s). Any equivalent model
can be used, whichever is convenient for the problem under study, including:

• the BFM (18.4) for radial networks; or

• the BFM (18.10) for general networks.

2. A device model for each three-phase device j. For ideal devices, this can either be:

• Its internal model (15.29) and the conversion rules (15.8) and (15.9)(15.10); or

• Its external model summarized in Tables 15.3 and 15.4 when only terminal quantities are
needed.

For non-ideal devices, this can either be:

• Its internal model summarized in Table 15.2 and the conversion rules (15.8) and (15.9)(15.10);
or

• Its external model summarized in Table 15.2 when only terminal quantities are needed.

Unlike the models of Chapter 17.1.5 where, if only voltage sources, current sources and impedances are
involved, then the overall model is linear, consisting of the nodal current balance equation (17.5)(17.6)
and linear device models. Here the BFM equations (18.4) and (18.10) are quadratic, leading to a nonlinear
overall model even if power sources are absent.

A typical three-phase analysis problem can be specified and analyzed the same way as described in
Chapter 17.2 for BIM. A solution typically takes the following steps:



836 Draft: PSA December 13, 2024

1. Write down the models of the given collection of three-phase devices, either their internal models
and conversion rules or their external models (if internal variables are not required).

2. Write down a network equation that relates the terminal variables, either the current balance equation
or a power flow equation.

3. Steps 1 and 2 specify a system of nonlinear equations that relate relevant external and internal
variables as well as given parameters. It generally needs to be solved numerically. We will describe
in Chapter 18.4 such an algorithm for radial networks, the three-phase backward-forward sweep
(BFS).

4. Usually we first compute the terminal variables
�
Vj, I j,s j

�
using network equations, together with

some of
�
g j,b j

�
, and then determine the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j

⌘
using the conversion

rules.

18.3.2 Examples

We now illustrate with examples three-phase BFMs and the analysis procedure. Suppose assumption
C18.1 holds.

Example 18.1 (Power source in Y configuration). Consider the system in Figure 18.1 where a constant-
power source sY

j 2 C
3 is connected through a three-phase line to an impedance load zY

k , both in Y con-
figuration. For simplicity we assume that both neutrals are directly grounded and all voltages are defined
with respect to the ground, so that the neutral voltages g j := V n

j = gk := V n
k = 0. Suppose the following

are given:

• The constant-power source sY
j :=

⇣
san

j ,sbn
j ,s cn

j

⌘
with \V a

0 := 0�.

• The impedance load zY
k := diag

�
zan

k ,zbn
k ,zcn

k
�
.

• The series impedance matrix z jk 2C3⇥3 of the line. Its shunt admittance matrices are assumed zero.

Derive the
�
sY

k ,vk,` jk,S jk
�

in terms of the given parameters.

Figure 18.1: Example 18.1.

Solution. The system is specified by:
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1. Netowrk model: The power flow equation (18.4) that relates terminal variables, specialized to the
two-bus system in Figure 18.1, is:

diag(S jk) = s j, diag
�
S jk� z jk` jk

�
= �sk (18.23a)

v j� vk =
⇣

z jk SHjk +S jkzHjk
⌘
� z jk ` jk zHjk (18.23b)


v j S jk
SHjk ` jk

�
� 0, rank


v j S jk
SHjk ` jk

�
= 1 (18.23c)

2. Device model: The internal model of Y -configured impedance is (since Vk =VY
k = zY

k IY
k and IY

k = I jk):

vk = zY
k ` jk zYH

k , sY
k = diag

�
zY

k ` jk
�

(18.24a)

and the conversion rule (15.8) between internal and terminal variables is:

s j = �
�
sY

j +V n
j I jk

�
= �sY

j , sk = �
�
sY

k +V n
k (�I jk)

�
= �sY

k (18.24b)

The system of quadratic equations (18.23)(18.24) cannot generally be solved in closed form, but can be
solved numerically for

�
sY

k ,vk,` jk,S jk
�

(see Chapter 18.4).

To better appreciate the structure of the three-phase model we now reduce (18.23)(18.24) to three
quadratic equations in three unknowns I jk 2 C

3. Relate ` jk to sY
j by eliminating the terminal powers

(s j,sk), line power S jk and internal power sY
k from (18.23a) (18.24):

�sY
j = diag

��
zY

k + z jk
�
` jk
�

(18.25)

This is a system of three complex quadratic equations in three unknown line currents I jk :=
⇣

Ia
jk, I

b
jk, I

c
jk

⌘

because (18.23c) means that ` jk has a rank-1 decomposition ` jk = I jkIHjk (from (18.2)). Let ZY
k := zY

k + z jk.
Then (18.25) is explicitly:

�sY
j = diag

0

B@

2

4
Zaa

k Zab
k Zac

k
Zba

k Zbb
k Zbc

k
Zca

k Zcb
k Zcc

k

3

5

2

64
Ia

jk
Ib

jk
Ic

jk

3

75
h
IaH

jk IbH
jk IcH

jk

i
1

CA

or

�san
j = Zaa

k Ia
jkIaH

jk + Zab
k Ib

jkIaH
jk + Zac

k Ic
jkIaH

jk

�sbn
j = Zba

k Ia
jkIbH

jk + Zbb
k Ib

jkIbH
jk + Zbc

k Ic
jkIbH

jk

�s cn
j = Zca

k Ia
jkIcH

jk + Zcb
k Ib

jkIcH
jk + Zcc

k Ic
jkIcH

jk

There is a power flow solution for (18.23)(18.24) if and only if (18.25) has a solution for I jk, up to an angle
to be determined (from the given \V a

0 = 0�).
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Once I jk and hence ` jk are determined from (18.25), all other variables can be obtained. Specifically
since Vk = VY

k +V n
k = VY

k by assumption, the load voltage and power are given by (18.24a):

vk = vY
k = zY

k ` jk zYH
k =

�
zY

k I jk
��

zY
k I jk
�H

, sY
k = diag

�
zY

k ` jk
�

Since vk has a rank-1 decomposition due to (18.23c), Vk :=
�
V a

k ,V b
k ,V c

k
�

can be obtained from the first
equation as Vk = zY

k I jk, up to an angle to be determined. Finally we obtain Vj from�sY
j = s j = diag

⇣
VjIHjk

⌘

due to (18.24b) and then S jk = VjIHjk. The given \V a
j = 0� then fixes the angles of

�
Vj,Vk, I jk

�
.

The next example illustrates two solution approaches for constant-power source in D configuration.
Both relate the terminal variables of each device to its parameters and then relates these terminal variables
by the power flow equation. The first approach boils down to computing the internal current ID

j from a
system of quadratic equations, which then yields

�
I j,b j

�
and all other variables. The second approach

boils down to computing the terminal current and its zero-sequence component
�
I j,b j

�
and then other

variables.

As for Example 17.8, only g j of the source needs to be given. All other variables including
�
b j,gk,bk

�

can then be determined. The solution method of these two examples is similar because the overall models
in these examples differ only in their power flow equations, BIM (17.12) versus BFM (18.10). The positive
definite and rank-1 condition in (18.23c) leads to the equivalence of BFM (18.10) to (18.23) and BIM
(17.12) (Theorems ?? and 18.1).

Example 18.2 (Power source in D configuration). Consider a three-phase power source and an impedance,
both in D configuration, connected by a three-phase line (as in Example 17.8) with the following given
parameters:

• The constant-power source
⇣

sD
j ,g j

⌘
with \V ab

j := 0�.

• The impedance load zD
k . (Note that bk need not be specified for an impedance and can be derived.)

• The series impedance matrix z jk of the line. Its shunt admittance matrices are assumed zero.

Solve for the remaining variables.

Solution 1: compute ID
j . The system is specified by:

1. Netowrk model: The power flow equation that relates terminal variables remains (18.23).

2. Device model for power source sD
j : At bus j we use the model (15.25b) and the conversion rule that

relates the terminal variables
�
Vj, I j,s j

�
to internal power sD

j and internal current ID
j :

s j := diag
⇣

VjIHj
⌘

(18.26a)

sD
j := diag

⇣
V D

j IDH
j

⌘
= diag

⇣
GVjIDH

j

⌘
, I j = �GTID

j (18.26b)
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3. Device model for impedance zD
k : At bus k the external model in Table 15.4 relates the terminal

variables (Vk, Ik,sk) to impedance zD
k through the admittance matrix ZD

k defined in (15.27b):5

sk := diag
⇣

VkIHk
⌘

, Vk = �ZDIk + gk1, 1TIk = 0 (18.26c)

The device models (18.26) relate terminal variables
�
Vj, I j,s j

�
and (Vk, Ik,sk) to the internal parameters⇣

sD
j ,zD

k

⌘
of the devices through gk (which is to be determined). The power flow equation (18.23) relates

these terminal variables.

The rank-1 condition (18.23c) (as well as KCL) connects these terminal variables and the variables�
v j,vk,` jk,S jk

�
of (18.23):

I j = I jk = �Ik, S jk = VjIHjk (18.27a)

` jk = I jkIHjk, v j = VjVH

j , vk = VkVH

k (18.27b)

The equations (18.23)(18.26)(18.27) are a system of quadratic equations in variables
⇣

Vj, I j,s j, ID
j

⌘
, (Vk, Ik,sk,gk),

and
�
I jk,v j,vk,` jk,S jk

�
. They can be solved numerically. Once these terminal variables are determined,

the internal variables
�
b j,V D

k , ID
k ,sD

k ,bk
�

can be determined. In particular once Vk is determined from the
network equations we can obtain V D

k = GVk and then ID
k = z�1

jk V D
k and hence bk.

To better appreciate the structure of this model we now reduce (18.23)(18.26)(18.27) to 3 quadratic
equations in 3 variables ID

jk for each link j! k 2 E. Theorem ?? implies the equivalence of BFMs (18.23)
and (18.10). In particular (from (18.10b))

Vj�Vk = z jk I jk

which can also be derived by substituting (18.27) into (18.23b). Substitute Vk from (18.26c) and Ik =�I jk
into this equation to eliminate Vk:

Vj = ẐD
k I jk + gk1, 1TI jk = 0 (18.28)

where ẐD
k := ZD

k +z jk is the equivalent of the line impedance in series with the load impedance. Substituting
I jk = I j =�GTID

j into (18.28) and substituting the resulting Vj into (18.26b), we obtain a quadratic equation
in ID

j (using G1 = 0):

sD
j := �diag

⇣⇣
GẐD

k GT

⌘
ID

j IDH
j

⌘
, j 2 N (18.29)

There is a power flow solution to (18.23)(18.26)(18.27) if and only if (18.29) has a solution for ID
j . Once

ID
j is determined it yields I jk = I j = �GTID

j and b j := 1
31TID

j . Since (18.29) is the same equation as

5Using the equivalent impedance model in terms of the impedance matrix Y D
k defined in (15.27a) here does not . in which

case (18.26c) is replaced by:

sk := diag
⇣

VkIHk
⌘

, Ik = �Y DVk
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(17.24) in Example 17.8, we can follow the same procedure there to derive all variables
�
Vj, I j,s j,b j

�
and

(Vk, Ik,sk,gk). Then we can obtain internal variables
�
V D

k , ID
k ,sD

k ,bk
�

and the BFM variables
�
I jk,v j,vk,` jk,S jk

�

from (18.27). In particular, Vk yields V D
k and hence ID

k and bk. (To get more insight on its solution, see the
solution of the balanced case in Exercise 17.10.)

Solution 2: compute Ij. Instead of the power source model (18.26b), we can also use the external model
in Table 15.4 to relate the terminal current I j direclty to the internal power sD

j :

sD
j := diag

⇣
V D

j IDH
j

⌘
= �diag

⇣
G
⇣

VjIHj
⌘

G†
⌘

+ b j GVj, 1TI j = 0 (18.30)

where the internal variable b j is to be determined. Substituting (18.28) into (18.30) and noting I j = I jk we
have

sD
j = �1

3
diag

⇣
GẐD

k I jkIHjkGT

⌘
+ b j GẐD

k I jk, 1TI jk = 0 (18.31)

There is a power flow solution to (18.23)(18.26)(18.27) if and only if there is a solution I jk := I jk(sD
j ) and

b j := b j(sD
j ) to (18.31). Given a solution

�
I jk,b j

�
and hence ID

jk, all other variables can be derived as in
Solution 1.

Remark 18.1. Even though the analysis in Example 18.2 makes heavy use of BFM (18.23) with phasor
variables such as

�
Vj, I jk

�
instead of variables of BFM (18.10) such as

�
v j,` jk,S jk

�
, the model (18.10) is

useful for solving optimal power flow problems through semidefinite relaxation; see Chapter .

18.4 Backward forward sweep

In this section we extend the backward forward sweep (BFS) of Chapter 5.3 for the computation of power
flow solutions from single-phase radial networks to three-phase radial networks. As explained in Chapter
5.3.1 BFS can be interpreted as a Gauss-Siedel algorithm that computes a fixed point of BFM equations.
It has two special structures that exploit the tree topology of the network. First it partitions the power flow
variable into two vectors x and y and updates them iteratively in an outer loop. Typically x consists of
branch variables, e.g., branch currents or powers, and y consists of nodal variables, e.g., nodal voltages.
Second, for each outer iteration, it computes iteratively each component of (x,y) in an inner loop that
makes use of a spatially recursive structure enabled by the tree topology. Specifically it computes the
components of x iteratively from leaf nodes towards the root of the tree (backward sweep) and then com-
putes the components of y iteratively from the root towards the leaf nodes (forward sweep). The design of
BFS involves the choice of power flow equations and variables (x,y) based on what information is given
in a power flow problem. These choices are not unique and may have different convergence properties.
The general algorithmic structure described in Chapter 5.3.1 applies to three-phase as well as single-phase
radial networks. We have presented two BFS algorithms in Chapters 5.3.2 and 5.3.3 that use different
branch flow models. In this section we describe an algorithm that extends both single-phase algorithms
to the three-phase setting. As we will see, the main addition is the computation of internal variables
associated with each three-phase device.

Recall that we assume C18.1 holds throughout this chapter.
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18.4.1 Complex form BFM

Consider a radial network modeled as a directed graph G, rooted at bus 0 and with each line pointing away
from the root bus 0. Each line is characterized by 3⇥3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. Suppose there

is exactly one three-phase power source at each bus j either in Y or D configuration. At every non-root
bus j 2 N, the internal power sY/D

j 2 C
3 of the power source is given and its terminal voltage and current

(Vj, I j) are to be determined.6 At bus 0, V0 2C3 is given and the current injection I0 and the internal power
injection sY/D

0 are to be determined. We assume for simplicity that C15.1 with zn
j = 0 holds at every bus

j 2 N that has a Y -configured power source so that V n
j = 0 (see Remark 18.3 on the case when zn

j 6= 0 so

that V n
j =�zn

j

⇣
1TI j

⌘
).

As for the single-phase BFS, let
⇣

Is
jk, j! k 2 E

⌘
be the branch current through the series admittance

matrix ys
jk 2 C

3⇥3 (see Exercise 18.3 for a BFS algorithm that computes the sending-end current I jk in-

stead). The receiving current at bus j from its parent i is
⇣

Is
i j� ym

jiVj

⌘
2 C

3 (see Figure 18.2). The current

I s
jk

k

Vj

Vi

∆ 

∆ 

Y

Y

I s
ij

sj , Ij

Figure 18.2: Notation for BFS on unbalanced three-phase radial networks.

balance equation is then

I j +
�
Is
i j� ym

jiVj
�

= Â
k: j!k

⇣
Is

jk + ym
jkVj

⌘

Rewriting this in a form suitable for backward sweep, we obtain the following three-phase branch flow

6
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model in terms of branch variables
⇣

Is
jk, j! k 2 E

⌘
and nodal variables

�
Vj, I j, j 2 N

�
:

Is
i j = Â

k: j!k
Is

jk �
�
I j � ym

j jVj
�
, j 2 N (18.32a)

Vj = Vi � zs
i jI

s
i j, j 2 N (18.32b)

where ym
j j := ym

ji +Âk: j!k ym
jk are the total shunt admittances incident on j and zs

i j :=
⇣

ys
i j

⌘�1
are the series

impedances. These network equations relate the branch currents Is
jk as well as the terminal voltages and

currents
�
Vj, I j

�
at buses across the network.

Each terminal variable
�
Vj, I j

�
is related to the internal power sY/D

j through a three-phase device
model. We adopt the following device models for reasons discussed in Remark 18.2 (from (15.17b) and
(15.25b) and recall that V n

j = 0 by assumption):

Y configuration: sY
j = diag

⇣
VjIYH

j

⌘
, I j = �IY

j (18.33a)

D configuration: sD
j = diag

⇣
GVjIDH

j

⌘
, I j = �GTID

j (18.33b)

Hence, for a non-root bus j, the given internal power sY/D
j determines, through its internal current IY/D

j ,
its terminal voltage and current (Vj, I j) according to (18.33). These terminal variables interact across the
network according to the network equations (18.32). Given Vj, the forward sweep function g j in (??) to
update

⇣
IY/D

j , I j

⌘
is:

Y : IY
j =

�
diag V̄j

��1 s̄Y
j , I j = �IY

j , j 2 N (18.34a)

D : ID
j =

�
diag

�
GV̄j
���1 s̄D

j , I j = �GTID
j , j 2 N (18.34b)

where v̄ denotes the componentwise complex conjugate of a vector v. Here, we have used, for vectors
v,w 2 C

n, diag(vwH) = diag(v)w̄ = diag(w̄)v 2 C
n where diag(v) is the diagonal matrix whose diagonal

is the vector v.

To construct the backward forward sweep, identify lines j! k 2 E by the non-root buses k 2N. Given
V0 and s :=

⇣
sY/D

j , j 2 N
⌘

, the BFS will compute the following branch and nodal variables respectively:

x :=
�
Is
i j, j 2 N

�
, y :=

⇣
Vj, I j, I

Y/D
j , j 2 N

⌘

All other variables, such as injections I0,s0,s
Y/D
0 2C3, branch flow matrices S jk 2C3⇥3, and

�
g j,b j

�
2C2

of power sources sD
j , can be computed once (x,y) are determined. The update function f in the backward

sweep to update x is defined by (18.32a) and the update function g in the forward sweep to update y is
defined by (18.32b) and (18.34). The function f is jointly linear in (x,y). The function g is linear in x but
nonlinear in y because of the power source model (18.34).

The boundary conditions are

V0 2 C
3 is given , Is

jk := 0 for all leaf nodes j, Vj(0) := V0, j 2 N (18.35a)
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In addition, given the initial voltages
�
Vj(0), j 2 N

�
, the terminal and internal currents

⇣
I j(0), IY/D(0)

j , j 2 N
⌘

are determined using (18.34):

Y : IY
j (0) =

�
diag V̄j(0)

��1 s̄Y
j , I j(0) = �IY

j (0), j 2 N (18.35b)

D : ID
j (0) =

�
diag

�
GV̄j(0)

���1 s̄D
j , I j(0) = �GTID

j (0), j 2 N (18.35c)

Specifically the BFS algorithm defined by (18.32) (18.34) (18.35) proceeds as follows.

0. Input: voltage V0 pu and internal power
⇣

sY/D
j , j 2 N

⌘
.

1. Initialization.

• Is
jk(t) := 0 for all leaf nodes j for all iterations t = 1,2, . . . .

• V0(t) := V0 for all t = 0,1, . . . .

• Vj(0) := V0 at all buses j 2 N. Compute
⇣

I j(0), IY/D
j (0)

⌘
using (18.35b)(18.35c).

2. Backward forward sweep. Iterate for t = 1,2, . . . until a stopping criterion (see below) is satisfied:

(a) Backward sweep. Starting from the leaf nodes and iterating towards bus 0, compute

Is
i j(t)  Â

k: j!k
Is

jk(t) �
�
I j(t�1)� ym

j j Vj(t�1)
�
, i! j 2 E (18.36a)

where ym
j j := ym

ji +Âk: j⇠k ym
jk.

(b) Forward sweep. Starting from bus 0 and iterating towards the leaf nodes, compute for j 2 N

Vj(t)  Vi(t) � zs
i j Is

i j(t) (18.36b)

Y : IY
j (t)  

�
diag V̄j(t)

��1 s̄Y
j , I j(t)  �IY

j (t) (18.36c)

D : ID
j (t)  

�
diag

�
GV̄j(t)

���1 s̄D
j , I j(t)  �GTID

j (t) (18.36d)

where zs
i j :=

⇣
ys

i j

⌘�1
.

3. Output: branch variable x :=
⇣

Is
i j(t), j 2 N

⌘
and nodal variable y :=

⇣
Vj(t), I j(t), I

Y/D(t)
j , j 2 N

⌘
.

A stopping criterion can be based on the discrepancy between the given internal powers sY/D
j and those

implied by the nodal variable
⇣

Vj(t), I j(t), I
Y/D(t)
j , j 2 N

⌘
in each iteration t. From the device model

(18.34), let

ŝ j(t) :=

8
<

:
diag

⇣
Vj(t)IYH

j (t)
⌘

for Y configuration

diag
⇣

GVj(t)IDH
j (t)

⌘
for D configuration
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Then a stopping criterion can be

kŝ(t)�sY/Dk2
2 := Â

j2N

⇣
ŝ j(t)�sY/D

j

⌘2
< e

for a given tolerance e > 0.

Remark 18.2 (Choice of variables). 1. We have used the current balance equation (18.32a) to relate
terminal voltages and currents (Vj, I j) across the network. This leads to a linear update function
(18.32a) for x in backward sweep. Nonlinearity shows up in the device model (18.34) for the nodal
variable y :=

⇣
Vj, I j, I

Y/D
j , j 2 N

⌘
in the forward sweep (together with (18.32b)).

2. A direct extension of the single-phase BFS in [49] to the three-phase setting is the approach in [65]
which substitutes I j in (18.32a) by I j =

�
diagV̄j

��1 s̄ j to obtain a nonlinear update function for x:

Is
i j = Â

k: j!k
Is

jk �
⇣�

diag V̄j
��1 s̄ j � ym

j jVj

⌘
, j 2 N (18.37a)

In this case the nodal variable becomes y :=
⇣

Vj,s j, I
Y/D
j , j 2 N

⌘
and the update functions (18.34)

become

Y : IY
j =

�
diag V̄j

��1 s̄Y
j , s j = �sY

j , j 2 N (18.37b)

D : ID
j =

�
diag

�
GV̄j
���1 s̄D

j , s j = �diag
⇣

VjIDH
j G

⌘
, j 2 N (18.37c)

The three-phase BFS of [65] includes only Y -configured power sources and therefore its update
functions simplifies to only (18.37a) (18.32b), with s j =�sY

j that is fixed and given. The addition
of D-configured power sources requires the nodal variable ID

j and update function (18.37c).

3. For D configuration, the device model (18.34) relates sD to (Vj, I j) through ID
j . Since

⇣
Vj, ID

j

⌘
are

determined directly from the overall model, the quantities
�
g j,b j

�
can be computed and need not be

specified. Note however that V0 is given.

Remark 18.3 (Nonzero zn
j). If we had assumed C15.1 with zn

j 6= 0 so that V n
j =�zn

j

⇣
1TI
⌘

, then the device
model (18.34a) for a Y -configured power source becomes nonlinear in I j (from (15.17b)):

Y : Vj = �
�
diag

�
Ī j
���1 sY

j � zn
j

⇣
11T
⌘

I j, j 2 N

Given voltage Vj this is a system of three quadratic equations in three unknowns I j 2 C
3:

zn
j

⇣
1TI j

⌘
Ī j + diag

�
Vj
�

Ī j + sY
j = 0

The linear update functions (18.34a) (18.35b) then become nonlinear. Moreover the update of I j is defined
only implicitly by a solution of this system of quadratic equations.

Remark 18.4 (Specification). Unlike in Examples 18.1 and 18.2, the BFS method here does not required
g j be specified, but it requires that V0 be specified.
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18.4.2 DistFlow model

Consider a three-phase radial network modeled by a directed graph with every link k ! j 2 E points
away from the root bus 0. Assume for simplicity zero shunt admittances, ym

jk = ym
k j = 0. The three-phase

DistFlow equations for the down orientation are (18.4). Given V0, hence v0 := V0VH

0 , and internal power
s :=

⇣
sY/D

j , j 2 N
⌘

, we wish to compute the other variables from (18.4).

The nonlinear equation v j` jk = |S jk|2 in (??) for the single-phase model is replaced by (18.4c)(??) in
the three-phase model, reproduced here


v j S jk
SHjk ` jk

�
� 0, rank


v j S jk
SHjk ` jk

�
= 1

These equations are an implicit description and do not directly yield an update equation for a BFS al-
gorithm, as v j` jk = |S jk|2 does in the single-phase model. Instead, they imply that there exist voltage
and current phasors (V, Ĩ) that satisfy the rank-1 decomposition in (18.2). In order to compute DistFlow
variables (v,`,S) we have to compute iteratively the voltages Vj and (sending-end) line currents Ĩ jk in the
process. Here we use Ĩ jk to denote a line current to differentiate it from the terminal current I j in a device
model (see below). Therefore, instead of designing an BFS algorithm based on (18.4), we will use the
following network equations derived from (18.4) to compute

�
V, I, Ĩ

�
:

Ĩi j = �I j + Â
k: j!k

Ĩ jk (18.38a)

Vk = Vj � z jk Ĩ jk (18.38b)

All other terminal variables such as v j = VjVH
j , ` jk = Ĩ jkĨHjk, and Si j = Vi ĨHi j , can then be derived. Note

that we have replaced the power balance equation (18.4a) by the current balance equation in (18.38a). The
network equation (18.38) is the same as (18.32) with Ĩ jk = Is

jk when ym
jk = ym

k j = 0. Hence the three-phase
DistFlow model can be solved using the BFS algorithm of Chapter 18.4.1.

18.5 Linear model

18.5.1 Three-phase LinDistFlow

Model. We generalize the linear DistFlow model from single-phase to unbalanced multiphase radial
networks. The key assumptions in our linear approximation are:

1. The real and reactive line losses z jk` jk are much smaller than line flows S jk on each line j! k, so
that we can assume ` jk = 0 in (18.4).

2. The voltages are approximately balanced, so that we can assume

V a
j

V b
j

=
V b

j

V c
j

=
V c

j

V a
j

= ei2p/3
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Recall that we adopt, without loss of generality, the graph orientation in which all lines point away from
bus 0. Then, as for the single-phase model, we set ` jk = 0 in (18.4a)(18.4b) to obtain

Â
k: j!k

diag(S jk) = diag
�
Si j
�
+ s j, j 2 N

v j� vk = z jk SHjk + S jk zHjk j! k 2 E

where bus i := i( j) is the unique parent of bus j. Given injections s j for all non-slack buses j 2 N, the first
set of equations determines uniquely s0 and the diagonal entries of S jk, but not the off-diagonal entries of
S jk. The second assumption of balanced voltage is needed to determine the off-diagonal entries of S jk.
Specifically the assumption means that the vector Vj is determined by a scalar (say) V a

j . Let

a := e�i2p/3, a+ :=

2

4
1
a
a2

3

5 (18.39a)

Then, assuming positive sequence,

Vj = V a
j

2

4
1
a
a2

3

5 = V a
j a+ (18.39b)

This makes it possible to determine the off-diagonal entries of S jk from its diagonal entries, as follows.
Let l jk denote the vector consisting of the diagonal entries of S jk:

l jk := diag(S jk) :=

2

64
V a

j Īa
jk

V b
j Īb

jk
V c

j Īc
jk

3

75

Using (18.39), the 3⇥3 line flow matrix S jk is given by:

S jk := VjIHjk = V a
j a+

h
Īa

jk Īb
jk Īc

jk

i

This expression says that the columns of S jk are in span(a+). The first column of the right-hand side is

a+V a
j Īa

jk| {z }
[S jk]11

= a+
⇥
l jk
⇤

1

The second column is (noting a�1 = a2 = ā)

a+V a
j Īb

jk =
1
a

a+
�
aV a

j
�

Īb
jk =

1
a

a+V b
j Īb

jk| {z }
[S jk]22

= ā a+
⇥
l jk
⇤

2

The third column is (noting a�2 = a = ā2)

a+V a
j Īc

jk =
1

a2 a+
�
a2V a

j
�

Īc
jk =

1
a2 a+V c

j Īc
jk| {z }

[S jk]33

= ā2 a+
⇥
l jk
⇤

3
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Putting all this together define

g := a+aH

+ =

2

4
1 a2 a
a 1 a2

a2 a 1

3

5

and we can determine the line flow matrix S jk in terms of its diagonal entries:

S jk = g diag
�
l jk
�

=
⇣

a+aH

+

⌘
diag

�
l jk
�
, j! k 2 E

where diag(x) is a diagonal matrix whose diagonal consists of entries of vector x. Then the linear model
that generalizes the single phase linear DistFlow model to three-phase radial networks is (graph is oriented
so that all lines point away from bus 0):

Â
k: j!k

l jk = li j + s j, j 2 N (18.40a)

S jk = g diag
�
l jk
�

:= a+aH

+diag
�
l jk
�
, j! k 2 E (18.40b)

v j� vk = z jk SHjk + S jk zHjk, j! k 2 E (18.40c)

where i := i( j) is the unique parent node of j, assuming positive sequence.

Solution. Given
�
v0,s j, j 2 N

�
, (18.40) can be used to determine explicitly

�
s0,v j, j 2 N

�
and

�
l jk,S jk, j! k 2 E

�
,

as follows (Exercise 18.5):

s0 = �Â
j2N

s j

li j = � Â
k2T j

sk, Si j = g diag
�
li j
�

:= a+aH

+diag
�
li j
�
, i! j 2 E

v j = v0 � Â
(i,k)2P j

⇣
zik SHik + S jk zHik

⌘
, j 2 N

where T j is the subtree rooted at bus j, including j, and Pk is the set of lines on the unique path from bus 0
to bus k; see Figure 18.3. In general the 3⇥3 solution matrices v j are not of rank 1 even if v0 = |V a

0 |2a+aH
+

is of rank 1 (and even if all lines are symmetric whose series impedances z jk satisfy (16.9a)). This is
because the linear model is an approximation and its solution may not satisfy the Kirchhoff’s laws. If
v0 = |V a

0 |2a+aH
+ then v j is Hermitian and hence has a spectral decomposition. An approximate solution

for the voltage phasor Vj can be taken to be largest spectral component of v0, i.e., if v j = Âi riuiuHi where
ri are real eigenvalues and ui are eigenvectors of v j with |r1|� |r2|� |r3|, then Vj =

pr1u1 if r1 > 0 or
Vj =�pr1u1 if r1 < 0.

18.5.2 Application example

We describe a voltage regulation algorithm adapted from [217] to illustrate the three-phase linear model.
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Figure 18.3: Linear solution of branch flow model for unbalanced three-phase radial networks.

18.6 Bibliographical notes

Algorithms for solving power flows in three-phase radial networks are developed in [61, 62, 63, 65, 67, 70].
For backward forward sweep methods for radial networks, both single-phase and three-phase networks,
see bibliographical notes in Chapter 5.5.

18.7 Problems

Chapter 18.1.

Exercise 18.1. Show that (Ab)⌦ I = (A⌦ I)(b⌦ I) where A 2 C
n⇥n, b 2 C

n, and I is the identity matrix
of size 3. (Hint: Use Lemma 17.6.)

Exercise 18.2 (BFM without shunt admittances). Derive the generalized three-phase DistFlow equations
(18.4) by substituting ỹ jk = ỹk j = ys

jk = ys
k j, ym

jk = ym
k j = 0, and (18.3) into (18.1).

Chapter 18.2.

Chapter 18.3.

Chapter 18.4.

Exercise 18.3 (Backward forward sweep). This exercise solves the same overall model as the BFS de-
scribed in Chapter 18.4.1, but here, instead of Is

jk 2 C
3 over the series impedance, we are to derive a BFS
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algorithm to compute the sending-end current I jk 2 C
3 for every line j! k, as well as the nodal variable

y :=
⇣

Vj, I j, ID
j j 2 N

⌘
. It extends Exercise 5.6 from single-phase radial networks to three-phase radial

networks.

Exercise 18.4 (Backward forward sweep). Extend the BFS described in Chapter 5.3.3 from single-phase
to three-phase radial networks. This allows the inclusion of PV buses where real power and voltage
magnitudes are given instead of internal powers.

Chapter 18.5.

Exercise 18.5 (Three-phase BFM linear solution). Given
�
v0,s j, j 2 N

�
, show that an explicit solution�

s0,v j, j 2 N,S jk, j! k 2 E
�

of (18.40) is

s0 = �Â
j2N

s j, li j = � Â
k2T j

sk, i! j 2 E (18.41a)

Si j = g diag
�
li j
�

:= a+aH

+diag
�
li j
�
, i! j 2 E (18.41b)

v j = v0 � Â
(i,k)2P j

⇣
zik SHik + S jk zHik

⌘
, j 2 N (18.41c)

where T j is the subtree rooted at bus j, including j, and Pk is the set of lines on the unique path from bus
0 to bus k.



Chapter 19

Power flow optimization

In this chapter we study optimal power flow (OPF) problems for unbalanced three-phase networks. As for
single-phase networks studied in Chapter 9, OPF is a constrained optimization that takes the form

min
u,x

c(u,x) subject to f (u,x) = 0, g(u,x) 0

The cost function c may represent generation cost, voltage deviation, power loss, or user disutility. The
variable u collects control decisions such as generator commitment, generation setpoints, transformer taps,
capacitor switch status, electric vehicle charging levels, thermostatic settings, or inverter reactive power.
The variable x collects network state such as voltage levels, line currents, or power flows. The constraint
functions f ,g describe current or power balance, generation or consumption limits, voltage or line limits,
and stability and security constraints, as well as other operational requirements. OPF is a fundamental
problem because it underlies numerous power system operation and planning applications. While the
structure of OPF remains the same as for single-phase networks, in this chapter, the cost function c and
constraint functions f ,g models three-phase devices and networks.

In Chapter 19.1 we formulate OPF in both the bus injection model and the branch flow model. In
Chapters 19.2 and 19.3 we derive their semidefinite relaxations. Finally we illustrate in Chapter 19.4 these
results in example applications.

19.1 Three-phase OPF

In Chapter 19.1.1 we describe device models that will be used in both the bus injection model and the
branch flow model. We formulate in Chapter 19.1.2 OPF in the bus injection model and show in Chapter
19.1.3 that it is equivalent to a nonconvex quadratically constrained quadratic program (QCQP), general-
izing OPF in Chapter 9.1 from a single-phase to three-phase setting. In Chapter 19.1.4 we formulate OPF
in the branch flow model for radial networks.

850



Draft: PSA December 13, 2024 851

19.1.1 Three-phase devices

A key assumption underlying our OPF formulation is that all controllable devices are the single-phase
devices that make up three-phase devices. Therefore internal variables u j are optimization variables (i.e.,
VY/D

j for voltage sources, IY/D
j for current sources,

⇣
sY/D

j , ID
j

⌘
for power sources). Their values deter-

mine the terminal variables (Vj, I j,s j) through conversion rules. These terminal variables interact over the
network through either the current balance equation I = YV or the power balance equation, but they are
typically not directly controllable. In this chapter we use the power balance equation to relate the terminal
voltages and power injections (V,s). A device model therefore consists of:

• A conversion rule (and external models of impedances) from Chapter 15.3 that relates an internal
variable u j device j to its terminal voltage and power (Vj,s j).

• Operational constraints on the internal variable u j. These constraints are local to j.

We describe each of them next.

Conversion rules.

1. Voltage source u j :=VY/D
j : For an ideal voltage source its internal voltage VY/D

j 2C3 is an optimiza-
tion variable. It is related to the terminal voltage Vj through a linear constraint (from the conversion
rules (15.8) and (15.9a)):

Y configuration: Vj = VY
j + gY

j 1 (19.1a)

D configuration: GVj = V D
j (19.1b)

We assume here that the neutral voltage gY
j := V n

j of a Y -configured device is a given parameter.
For example, gY

j = 0 if the neutral of the Y -configured device directly grounded and all voltages are
defined with respect to the ground.

2. Current source u j := IY/D
j : For an ideal current source its internal current IY/D

j 2 C
3 is an optimiza-

tion variable. It is related to the terminal variables
�
Vj,s j

�
through a quadratic constraint (from the

conversion rules (15.8) and (15.10c)):

Y configuration: s j = �diag
⇣

VjIYH
j

⌘
(19.1c)

D configuration: s j = �diag
⇣

VjIDH
j G

⌘
(19.1d)

3. Power source u j :=
⇣

sY/D
j , IY/D

j

⌘
: For an ideal power source we assume that the internal power and

current
⇣

sY/D
j , IY/D

j

⌘
are optimization variables. We assume the neutral voltage gY

j := V n
j of a Y -

configured power source is a given parameter, e.g., gY
j = 0 if the neutral is directly grounded and



852 Draft: PSA December 13, 2024

all voltages are defined with respect to ground. They are related to the terminal variables
�
Vj,s j

�

according to the conversion rules (15.8) and (15.10c):

Y configuration: s j = �diag
⇣

VjIYH
j

⌘
, sY

j = �s j� gY
j IY

j (19.1e)

D configuration: s j = �diag
⇣

VjIDH
j G

⌘
, sD

j = diag
⇣

GVjIDH
j

⌘
(19.1f)

For a Y -configured power source, if gY
j = 0, then the optimization variable is sY

j and the conversion
rule reduces to

Y configuration: s j = �sY
j

It is possible to formulate OPF in which a power source is characterized only by its internal power
u j := sY/D

j instead of u j :=
⇣

sY/D
j , IY/D

j

⌘
, but the formulation is more complicated; see Exercise 19.5.

4. Impedance
⇣

zY
j ,gY

j

⌘
or zD

j : An impedance, if not controllable, does not introduce any addition
optimization variable but imposes an additional constraint on the terminal variables (Vj,s j) (from
(15.19a) and Theorem 15.4):

Y configuration: s j = �diag
⇣

Vj
�
Vj� gY

j 1
�H yYH

j

⌘
(19.1g)

D configuration: s j = �diag
⇣

VjVH

j Y DH
j

⌘
(19.1h)

where yY/D
j :=

⇣
zY/D

j

⌘�1
, Y D

j := GTyDG. The neutral voltage gY
j := V n

j is usually a fixed parameter,
e.g. gY

j = 0.

The conversion rule (19.1) takes the form f Y/D
j
�
u j,Vj,s j

�
= 0 and is local to each bus j. Note the structural

similarity between Y and D configurations when gY
j := V n

j = 0: (19.1) reduces to

Voltage source: Vj = VY
j , GVj = V D

j

Current source: s j = �diag
⇣

VjIYH
j

⌘
, s j = �diag

⇣
VjIDH

j G
⌘

Power source: s j = �diag
⇣

VjIYH
j

⌘
, s j = �diag

⇣
VjIDH

j G
⌘

sY
j = �s j, sD

j = diag
⇣

GVjIDH
j

⌘

Impedance: s j = �diag
⇣

VjVH

j yYH
j

⌘
, s j = �diag

⇣
VjVH

j Y DH
j

⌘

Once an optimal solution
✓

u
opt,V opt

j ,sopt
j

j

◆
of an OPF problem is chosen, other internal variables for each

device j can be derived (possibly requiring additional information e.g. b j of an ideal voltage source).

Remark 19.1 (Implicit optimization over (g j,b j)). The constraint (19.1b) for a D-configured device does
not determined the terminal voltage Vj uniquely and therefore an optimal Vj also determines an optimal
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zero-sequence voltage gD
j := 1

31TVj. If gD
j is given instead, then (19.1b) should be replaced by Vj =

G†V D
j + g j1. Similarly for other devices, e.g., D-configured impedance.

Optimization over ID
j in current source and power source implicitly chooses an optimal zero-sequence

current b j := 1
31Tb D

j . If b j is given then it imposes an additional constraint through the conversion rule
ID

j =�1
3GI j +b j1 (and express I j in terms of

�
Vj,s j

�
).

Device constraints. The operational constraints on the devices are also local to each bus j and are
inequality constraints on the internal variables u j only, of the form gY/D

j
�
u j
�
 0:

1. Voltage source u j := VY/D
j :

vY/Dmin
j  diag

⇣
u juHj

⌘
 vY/Dmax

j (19.2a)

2. Current source u j := IY/D
j :

diag
⇣

u juHj
⌘
 `

Y/Dmax
j (19.2b)

3. Power source u j := (u j1,u j2) :=
⇣

sY/D
j , IY/D

j

⌘
:

sY/Dmin
j  u j1  sY/Dmax

j , diag
⇣

u j2 uHj2
⌘
 `

Y/Dmax
j (19.2c)

19.1.2 Bus injection model

Consider a three-phase network modeled as an undirected graph G := (N,E) where there are N +1 buses
j 2 N and M lines in E. Each line ( j,k) 2 E is characterized by 3⇥3 admittance matrices

⇣
ys

jk,y
m
jk

⌘
2C

6

and
⇣

ys
k j,y

m
k j

⌘
2 C

6. We now explain the variables, power flow equations, cost function, and constraints
that define an OPF problem. As we will see the OPF formulation (19.5) below does not require the
assumption ys

jk = ys
k j (C17.1 for BIM and C18.1 for BFM). It can therefore accommodate standard three-

phase transformers, e.g., in DY and Y D configurations. As for the single-phase OPF we studied in Chapter
9.1.2 we assume there is exactly one three-phase device at each bus j. We will then interchangeably
refer to j as a bus or a device. See Chapter 9.1.2 on how to relax this assumption. We now describe
the optimization variables, network equations and operational constraints, as well as a cost function that
define a three-phase OPF.

Optimization variables. As mentioned above a key assumption underlying our formulation is that all
controllable devices are the single-phase devices that make up three-phase devices. There are therefore
two types of optimization variables (u,x). The internal variable u := (u j, j 2 N) represents controllable
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quantities of the three-phase devices discussed in Chapter 19.1.1. The terminal variable x :=
�
Vj,s j, j 2 N

�

represents the terminal voltages and power injections. The conversion rule relates u to x which interact
over the network through either the current balance equation I = YV or the power balance equation. The
terminal variables are typically not directly controllable (even though they are optimization variables).

Network constraints. The power flow equations relate the terminal variables x := (V,s), from (17.12):

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (19.3)

which directly extend the single-phase equations (9.3). This constraint is global as it couples voltages and
powers (Vj,s j) at all neighboring buses.

The operational constraints on x := (V,s) are the same as (9.4) for single-phase OPF, except that the
variables and their bounds are 3-dimensional vectors, rather than scalars, for three-phase networks:

injection limits: smin
j  s j  smax

j , j 2 N (19.4a)

voltage limits: vmin
j  diag

⇣
VjVH

j

⌘
 vmax

j , j 2 N (19.4b)

line limits: diag
⇣

I jk(V ) IHjk(V )
⌘
 `max

jk , diag
⇣

Ik j(V ) IHk j(V )
⌘
 `max

k j , ( j,k) 2 E (19.4c)

where
�
I jk(V ), Ik j(V )

�
in (19.4c) are given by (17.1) reproduced here:

I jk(V ) = ys
jk
�
Vj�Vk

�
+ ym

jk Vj, Ik j(V ) = ys
k j
�
Vk�Vj

�
+ ym

k j Vk

The constraint (19.4a) can be due to limits on the busbar to which the three-phase device is connected.
The constraints (19.4a)(19.4b) are local at each bus j but (19.4c) is global.

Cost function. As for single-phase OPF, the cost function C(u,x) may represent generation cost, real
power loss, estimation error, voltage deviations, or user disutility, depending on applications. For instance
to minimize the cost of real power generations we can use

C(u,x) := C(u,V,s) := Â
gens. j

c j 1TRe
⇣

sY/D
j

⌘

Other example costs include estimation error in state estimation and user disutility in demand response.

OPF. Define the feasible set

V3p := {(u,x) := (u,V,s) | (u,x) satisfies (19.1)(19.2)(19.3)(19.4)} (19.5a)

Then the simple OPF formulation in the three-phase setting is

min
(u,x)

C(u,x) s.t. (u,x) 2 V3p (19.5b)
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The constraint (19.2) describes local operational constraints on the internal variables u of the three-phase
devices, (19.3)(19.4) describe the network equation and operational constraints on the terminal variable
x := (V,s), and the conversion rule (19.1) relates u and x and is also a local constraint. Since the constraints
(19.3)(19.4c) do not require assumption C17.1 that ys

jk = ys
k j, the OPF formulation (19.5) can accommo-

date three-phase transformers whose admittance matrices Y are not block symmetric, e.g., transformers in
DY and Y D configurations.

Remark 19.2 (Uncontrollable parameters). As for single-phase OPF, the formulation (19.5) allows the
case where a quantity is not an optimization variable but a given parameter. For instance a given un-
controllable constant-power load or a given renewable generation at bus j can be represented by setting
sY/D

j = sY/D min
j = sY/D max

j to the specified value.

Structurally the three-phase OPF (19.5) takes the form with x := (V,s):

min
(u,x)

C(u,x) (19.6a)

s.t. f Y/D
j
�
u j,Vj,s j

�
= 0, gY/D

j
�
u j
�
 0, j 2 N (19.6b)

f (V,s) = 0, g(V,s)  0 (19.6c)

where the local constraint (19.6b) represents operational constraints (19.2) on the internal variables u j of
device j and the conversion rules (19.1) that relate u j to its terminal variables x j, and the global constraint
(19.6c) represents the power flow equation (19.3) and operational constraint (19.4) on the terminal variable
x. The local constraint (19.6b) generalizes (9.6) from single-phase systems to three-phase systems.

19.1.3 Three-phase OPF as QCQP

The three-phase OPF (19.5) can be written as a QCQP in (V,u), following the same procedure studied in
Chapter 9.1.3 for single-phase OPF.

Device constraints as quadratic forms. We start by writing the local device constraints (19.2), repre-
sented by gY/D

j
�
u j
�
 0 in (19.6b), as quadratic forms. Let

ea := (1,0,0), eb := (0,1,0), ec := (0,0,1), Ef := ef efT 2 C
3⇥3, f 2 {a,b,c} (19.7)

Then the device constraints (19.2) become the quadratic forms local to each bus j:

1. Voltage source u j := VY/D
j :

v(Y/D)f min
j  uHj Ef u j  v(Y/D)f max

j (19.8a)

2. Current source u j := IY/D
j :

uHj Ef u j  `
(Y/D)f max
j (19.8b)
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3. Power source u j := (u j1,u j2) :=
⇣

sY/D
j , IY/D

j

⌘
:

sY/Dmin
j  u j1  sY/Dmax

j , uHj2Ef u j2  `
(Y/D)f max
j (19.8c)

Network constraints as quadratic forms. Next we eliminate the power flow equation (19.3), repre-
sented by f (V,s) = 0 in (19.6c), by substituting s j(V ) as functions of V into the network constraint (19.4)
on the terminal variables represented by f (V,s) = 0 in (19.6c). This reduces (19.6c) to a single inequality
constraint of the form

g(V,s(V ))  0

where components of g are quadratic forms in V . The conversion into quadratic forms follows the same
derivation in Chapter 9.1.3, but applied to the single-phase equivalent circuit.

Let

e j 2 {0,1}N+1, ef
j 2 {0,1}3(N+1), Ef

j := ef
j

⇣
ef

j

⌘H
, f 2 {a,b,c} (19.9)

where e j is of size N + 1 and has a single 1 in its jth position, ef
j is of size 3(N + 1) and has a single 1

in its jf th position, and Ef
j is the 3(N + 1)⇥ 3(N + 1) diagonal Hermitian matrix with a single 1 in the

( jf , jf)th entry and 0 everywhere else.

1. Injection limits: Let Y 2 C
3(N+1)⇥3(N+1) denote the single-phase equivalent admittance matrix. De-

fine the matrix Y f
j := ef

j efH
j Y where ef

j 2 {0,1}3(N+1) is the unit vector with a single 1 at the ( j,f)th
entry and 0 elsewhere. Define the Hermitian and skew Hermitian components of Y fH

j :

Ff
j :=

1
2

⇣
Y fH

j +Y f
j

⌘
and Yf

j :=
1
2i

⇣
Y fH

j �Y f
j

⌘
(19.10a)

Then

pf
j := Re

⇣
sf

j

⌘
= VHFf

j V and qf
j := Im(sf

j ) = VHYf
j V

and the injection limits become

pf min
j  VHFf

j V  pf max
j , qf min

j  VHYf
j V  qf max

j , j 2 N (19.10b)

2. Voltage limits: The terminal voltage limits are

vf min
j  VHEf

j V  vf max
j , j 2 N (19.10c)

where Ef
j is defined in (19.9).
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3. Line limits: The same derivation as that for single-phase OPF shows that the limit on the sending-end
current If

jk in the phase-a line is (Exercise 19.1)
���If

jk

���
2

:= VH Ŷ f
jk V  `f max

jk , ( j,k) 2 E (19.10d)

where Ŷ f
jk := ỸH

jk Ef Ỹjk is a 3(N +1)⇥3(N +1) matrix and Ỹjk is a 3⇥3(N +1) matrix given by

Ỹjk :=
⇣
(e j� ek)

T⌦ ys
jk + eTj ⌦ ym

jk

⌘

(Here Ef is defined in (19.7) and e j in (19.9).) The matrix Ŷjk is Hermitian and hence VHŶ f
jkV is

indeed a real number. Similarly for
���If

k j

���
2
.

Conversion rules as quadratic forms. Finally we eliminate s j from the the conversion rule (19.1) for
three-phase devices, represented by the local equality constraint f Y/D

j
�
u j,Vj,s j

�
= 0 in (19.6b). This

reduces f Y/D
j
�
u j,Vj,s j

�
= 0 to an equality constraint of the form

f Y/D
j
�
u j,V,s j(V )

�
= 0, j 2 N

where f Y/D
j is a quadratic form in (u j,V ). It also transforms the original local constraints into global

constraints since the function s j(V ) depends on Vk at all neighbors k of j; see (19.11).

Recall that s j(V ) :=
⇣

sa
j(V ),sb

j(V ),sc
j(V )

⌘
and

sf
j (V ) = VH

⇣
Y fH

j

⌘
V = VH

⇣
Ff

j + iYf
j

⌘
V, f 2 {a,b,c}, j 2 N (19.11)

where Y f
j := ef

j efT
j Y and Ff

j and Yf
j are defined in (19.10a). Then Vj 2 C

3 can be written in terms of
V 2 C

3(N+1) as follows:

Vj =
�
e j⌦ I

�HV =
⇣

eHj ⌦ I

⌘
V, V f

j = efH
j V, f 2 {a,b,c} (19.12)

where I is the identity matrix of size 3.

We now use (19.7)(19.9)(19.11)(19.12) to convert the conversion rule f Y/D
j in (19.1) into inhomoge-

neous quadratic forms in (u j,V ). They can then be homogenized using the identity (9.15) in Remark 9.4.

1. Voltage source u j := VY/D
j : Application of (19.12) to the conversion rules (19.1a) (19.1b) leads to

the following linear constraints in (u j,V ):

Y configuration:
⇣

eHj ⌦ I

⌘
V = u j + gY

j 1 (19.13a)

D configuration: G
⇣

eHj ⌦ I

⌘
V = u j (19.13b)

where gY
j := V n

j is assumed given (e.g., gY
j = 0). These constraints remain local as they depend on

V only through Vj 2 C
3.
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2. Current source u j := IY/D
j : The conversion rules (19.1c)(19.1d) for a current source are equivalent

to the following inhomogeneous quadratic equations in (u j,V ) (Exercise 19.2):

Y configuration: sf
j (V ) = �uHj

⇣
eHj ⌦Ef

⌘
V (19.13c)

D configuration: sf
j (V ) = �uHj

⇣
eHj ⌦ (GEf )

⌘
V (19.13d)

where s j(V ) is given in (19.11). These constraints are global as s j(V ) depend on Vk at neighboring
buses k.

3. Power source u j :=
⇣

sY/D
j , IY/D

j

⌘
: For a Y -configured power source let u j =: (u j1,u j2) where u j1 :=

sY
j and u j2 := IY

j . Then the conversion rule (19.1e) is equivalent to the following inhomogeneous
quadratic equations in (u j,V ) (Exercise 19.3):

Y : sf
j (V ) = �uHj2

⇣
eHj ⌦Ef

⌘
V, s j(V ) = �u j1� gY

j ū j2, f 2 {a,b,c} (19.13e)

where s j(V ) is given in (19.11) and gY
j := V n

j is assumed given (e.g., gY
j = 0).

For a D-configured power source let u j =: (u j1,u j2) where u j1 := sD
j and u j2 := ID

j . Then the con-
version rule (19.1f) is equivalent to the following inhomogeneous quadratic equations in (u j,V )
(Exercise 19.3):

D : sf
j (V ) = �uHj2

⇣
eHj ⌦ (GEf )

⌘
V, ufj

j1 = uHj2
⇣

eHj ⌦
⇣

Ef G
⌘⌘

V, fj 2 {ab,bc,ca}
(19.13f)

where s j(V ) is given in (19.11).

4. Impedance
⇣

zY
j ,gY

j

⌘
or zD

j : The equality constraint (19.1g) or (19.1h) imposed by an impedance
⇣

zY
j ,gY

j

⌘
or zD

j respectively is equivalent to the following inhomogeneous quadratic equation in V
(Exercise 19.4):

Y configuration: sf
j (V ) = VH

⇣⇣
e jeHj

⌘
⌦
⇣

yYH
j Ef

⌘⌘
V � ḡ j

⇣
eHj ⌦

⇣
1HyYH

j Ef
⌘⌘

V (19.13g)

D configuration: sf
j (V ) = �VH

⇣⇣
e jeHj

⌘
⌦
⇣

Y DH
j Ef

⌘⌘
V (19.13h)

where gY
j := V n

j is assumed given (e.g., gY
j = 0), Y D

j := GTyD
j G and yD

j :=
⇣

zD
j

⌘�1
.

Note the structural similarity between Y and D configurations when gY
j := V n

j = 0

Three-phase OPF as QCQP. We have thus eliminated the power flow equation f (V,s) = 0 in (19.6),
and expressed the local device constraints gY/D

j
�
u j
�
 0, the network constraints g(V,s(V ))  0, and
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conversion rules f Y/D
j
�
u j,Vj,s j(V )

�
= 0 as quadratic forms in (u,V ). Therefore (19.6) is equivalent to the

inhomogeneous QCQP (assuming C is also expressed as a quadratic form in (u,V )):

min
(u,V )

C(u,V,s(V )) (19.14a)

s.t. (19.8) (19.10) (19.13) (19.14b)

where s(V ) is given by (19.11). The inhomogeneous quadratic constraints in (19.14b) can be homogenized
(see (9.15) in Remark 9.4).

19.1.4 Branch flow model: radial networks

Since the branch flow model is most useful for radial networks, we make the same assumptions as in the
single-phase setting studied in Chapter 9.2:

• zs
jk = zs

k j, or equivalently ys
jk = ys

k j, for every line ( j,k) (assumption C18.1).

• ym
jk = ym

k j = 0 for every line ( j,k). This is a reasonable assumption on distribution lines where ym
jk

and ym
k j are typically much smaller in magnitude than the series admittance ys

jk.

Consider a three-phase radial network G = (N,E) with N + 1 buses and M = N lines. The assumptions
allow us to adopt a directed graph G = (N,E) and include branch variables in only one direction. We
denote a line in E from bus j to bus k either by ( j,k) 2 E or j ! k. It is characterized by its series
impedance zs

jk. Without loss of generality we take bus 0 as the root of the tree. We now describe the
three-phase optimization variables, device models, power flow equations, operational constraints, and the
cost function that define a three-phase OPF problem.

Optimization variables. As in BIM, we assume that only the single-phase devices that make up three-
phase devices are directly controllable. There are therefore two types of optimization variables (u,x). The
internal variable u := (u j, j 2 N) represents controllable quantities of the three-phase devices, as in BIM.
The variable x represents both the terminal variables (e.g., a nodal voltage Vj) as well as the line variables
(e.g., a line power S jk). The variables x interact over the network through the power balance equation.
Both BIM and BFM use the same device models and their operational constraints. Their difference lies in
the power flow equations that, for BFM, include line variables as well.

Device constraints. The device models are described in Chapter 19.1.1. The internal variables u j, j 2N,
their conversion rules (19.1) and operational constraints (19.2) on u j are the same as for the bus injection
model.

Network constraints. Power flow equations relate the following terminal variables and line variables
(see Chapter 18.1.3 for three-phase branch flow model):

s j 2 C
3, v j 2 S

3
+, Vj 2 C

3, j 2 N

` jk 2 S
3
+, S jk 2 C

3⇥3, Ĩ jk 2 C
3, j! k 2 E
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where S
n
+ ✓ C

n⇥n is the set of of n⇥ n complex (Hermitian and) positive semidefinte matrices. Let
s := (s j, j 2 N),v := (v j, j 2 N), ` := (` jk,( j,k) 2 E), S := (S jk,( j,k) 2 E). Here (s,v,`,S) directly
generalize the corresponding variables in the single-phase model. The voltage phasor V :=

�
Vj, j 2 N

�
is

introduced here in order to express the conversion rule (19.1) for three-phase devices and the line current
phasor Ĩ :=

�
Ĩ jk, j! k 2 E

�
is introduced for convenience. Let x := (s,v,`,S,V, Ĩ).

The power flow equations we use are (18.4) in Chapter 18.1, reproduced here:

Â
k: j!k

diag(S jk) = Â
i:i! j

diag
�
Si j� zs

i j`i j
�
+ s j, j 2 N (19.15a)

v j� vk =
⇣

zs
jk SHjk +S jkzsH

jk

⌘
� zs

jk ` jk zsH
jk , j! k 2 E (19.15b)


v j S jk
SHjk ` jk

�
� 0, rank


v j S jk
SHjk ` jk

�
= 1, j! k 2 E (19.15c)

v j = VjVH

j , ` jk = Ĩ jkĨHjk, S jk = VjĨHjk, j! k 2 E (19.15d)

where V0 2 C
3 is given and bus i := i( j) is the unique parent of bus j in (19.15a). Given matrices�

v j,` jk,S jk
�
, the vectors

�
Vj, Ĩ jk

�
, j 2 N, j ! k 2 E, are determined uniquely up to a reference angle.

These constraints are global.

The operational constraints on x are similar to those (19.4) in the bus injection model:

injection limits: smin
j  s j  smax

j , j 2 N (19.16a)

voltage limits: vmin
j  diag

�
v j
�
 vmax

j , j 2 N (19.16b)

line limits: diag
�
` jk
�
 `max

jk , ( j,k) 2 E (19.16c)

The constraint (19.16a) can be due to limits on the busbar to which the three-phase device is connected.
All constraints in (19.16) are local at each bus j or on each line ( j,k). While the voltage and line limits
(19.4b)(19.4c) in BIM are generally nonconvex, these limits (19.16b)(19.16c) in BFM are linear in x.

Cost function. Let C(u,x) denote the cost function. For instance to minimize the thermal loss in the
network we can use

C(u,x) := Â
( j,k)2E

diagT
�
Re(z jk)

�
diag

�
` jk
�

OPF. We assume V0 2 C
3 is given and impose v0 = V0VH

0 . Let the feasible set be

T3p :=
n
(u,x) := (u,s,v,`,S,V, Ĩ) | (u,x) satisfies (19.1)(19.2)(19.15)(19.16),v0 = V0VH

0

o
(19.17a)

Then the three-phase OPF problem is:

min
u,x

C(u,x) subject to (u,x) 2 T3p (19.17b)

As for the bus injection model, the local constraint (19.2) describes the operational constraint on the
internal variable u j of the three-phase device j, the global constraint (19.15)(19.16) describes the network
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equation and operational constraint on the terminal variable x := (V,s). The conversion rule (19.1) is local
and relates u j and x j at each bus j. By Theorems 18.1, the feasible set T3p in (19.17) is equivalent to
the feasible set V3p of the three-phase OPF (19.5) in BIM. Hence these problems are equivalent, provided
their cost functions are the same. OPF (19.17) in the branch flow model can also be reformulated as QCQP
using a similar method described in Chapter 19.1.3 for the bus injection model (see Chapter 19.3.2).

19.2 Semidefinite relaxation: BIM

Consider the three-phase OPF (19.5) in the bus injection model. In Chapter 19.2.1 we reformulate the
constraints in (19.5) as semidefinite and rank constraints and in Chapter 19.2.2 we derive an SDP relaxation
of three-phase OPF. Finally in Chapter 19.2.3 we show that if the three-phase network is radial then the
relaxation is equivalent to a chordal relaxation because the single-phase equivalent of the network is a
chordal graph.

19.2.1 Reformulation

The conversion rule (19.1) and the local operational constraint (19.2) in the device model are expressed in
terms of the internal variable u j := VY/D

j for a voltage source and u j :=
⇣

sY/D
j , IY/D

j

⌘
for a power source.

The network equation and constraint (19.3)(19.4) are expressed in terms of the terminal variable x := (V,s).
We will reformulate these constraints as semidefinite and rank constraints using a different set of variables;
see Table 19.1. We first reformulate the network equation and constraint (19.3)(19.4) and then reformulate

OPF int vars: voltage int vars: power dev model terminal vars net model
(19.5) VY/D

j 2 C
3

⇣
sY/D

j , IY/D
j

⌘
2 C

6 (19.1)(19.2) (V,s) 2 C
6(N+1) (19.3)(19.4)

(19.23) WY/D
j 2 C

3⇥3 sY/D
j 2 C

3 (19.22) W 2 C
3(N+1)⇥3(N+1) (19.20)(19.21)

XD
j 2 C

3⇥3 s 2 C
3(N+1)

`D
j 2 C

3⇥3

Table 19.1: Internal and terminal variables of voltage and power sources for OPF (19.5) and its equivalent
semidefinite reformulation (19.23).

the device model (19.1)(19.2).

Network equations and constraints. The power flow equations (19.3) are reproduced here:

s j = Â
k: j⇠k

diag
✓

Vj(Vj�Vk)
H

⇣
ys

jk

⌘H
+ VjVH

j

⇣
ym

jk

⌘H◆
, j 2 N (19.18)

Consider the 3(N +1)⇥3(N +1) matrix W = VVH and its 3⇥3 submatrices Wj j and Wjk defined by:

Wj j = VjVH

j , j 2 N, Wjk = VjVH

k , ( j,k) 2 E (19.19)
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Then (19.18) is equivalent to the following equation that is linear in W :

s j = Â
k: j⇠k

diag
✓�

Wj j�Wjk
�⇣

ys
jk

⌘H
+ Wj j

⇣
ym

jk

⌘H◆
, j 2 N (19.20a)

The network constraints (19.4) can be expressed also as linear functions of (s,W ):

injection limits: smin
j  s j  smax

j , j 2 N (19.20b)

voltage limits: vmin
j  diag

�
Wj j
�
 vmax

j , j 2 N (19.20c)

line limits: diag
�
` jk
�
Wj j,Wjk,Wkk

��
 `max

jk , ( j,k) 2 E (19.20d)

diag
�
`k j
�
Wj j,Wk j,Wkk

��
 `max

k j , ( j,k) 2 E (19.20e)

where, motivated by I jk(V ) =
⇣

ys
jk + ym

jk

⌘
Vj� ys

jkVk and Ik j(V ) =
⇣

ys
k j + ym

k j

⌘
Vk� ys

k jVj, we define the
3⇥3 matrices:

` jk
�
Wj j,Wjk,Wkk

�
:=
⇣

ys
jk + ym

jk

⌘
Wj j

⇣
ys

jk + ym
jk

⌘H
�2Re

⇣⇣
ys

jk + ym
jk

⌘
Wjk ysH

jk

⌘
+ ys

jkWkk ysH
jk

`k j
�
Wj j,Wk j,Wkk

�
:=
⇣

ys
k j + ym

k j

⌘
Wkk

⇣
ys

k j + ym
k j

⌘H
�2Re

⇣⇣
ys

k j + ym
k j

⌘
Wk j ysH

k j

⌘
+ ys

k jWj j ysH
k j

Here the lower and upper bounds in (19.20b) – (19.20e) are 3-dimensional complex or real vectors. Instead
of the quadratic equations (19.19) we use the following equivalent specification that is easy to convexify:

W ⌫ 0, rank(W ) = 1 (19.21)

Therefore the power flow equations and constraints (19.3)(19.4) are equivalent to the linear constraints
(19.20) and the convex and nonconvex constraints in (19.21). These constraints are global. The semidef-
inite relaxation of the three-phase OPF (19.5) is obtained by omitting the nonconvex rank-1 constraint in
(19.21).

Conversion rules and device constraints. We apply the same method to reformulate the device models
(19.1)(19.2). To simplify notation we assume:

• Only three-phase voltage and power sources are included, in Y or D configurations.

• The neutrals of all Y -configured devices are directly grounded and all voltages are defined with
respect to the ground, so that all neutral voltages gY

j := V n
j = 0.

The conversion rules (19.1) are:

1. Voltage source VY/D
j 2 C

3:

Y configuration: Vj = VY
j

D configuration: GVj = V D
j
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We reformulate this using a matrix variable u j := WY/D
j 2 C

3⇥3, as follows:

Y configuration: Wj j = WY
j , WY

j ⌫ 0, rank
�
WY

j
�

= 1 (19.22a)

D configuration: GWj jGT = W D
j , W D

j ⌫ 0, rank
⇣

W D
j

⌘
= 1 (19.22b)

Note that Wj j is the 3⇥ 3 principal submatrix of the 3(N + 1)⇥ 3(N + 1) matrix W defined in
(19.21) associated with the vector V of terminal voltages while WY/D

j is a 3⇥ 3 matrix associated

with the internal voltage VY/D
j of device j. The conditions (19.22a)(19.22b) ensure that there exists

an internal voltage VY/D
j , unique up to a rotation, so that WY/D

j = VY/D
j

⇣
VY/D

j

⌘H
.

The device constraints (19.2a) on the internal voltage magnitudes can be expressed as a linear func-
tion of the internal variable u j := WY/D

j :

vY/Dmin
j  diag

�
u j
�

:= diag
⇣

WY/D
j

⌘
 vY/Dmax

j (19.22c)

where the lower and upper bounds
⇣

vY/Dmin
j ,vY/Dmax

j

⌘
2 C

6 are given vectors.

2. Power source
⇣

sY/D
j , IY/D

j

⌘
2 C

6:

Y configuration: s j = �diag
⇣

VjIYH
j

⌘
, s j = �sY

j

D configuration: s j = �diag
⇣

VjIDH
j G

⌘
, sD

j = diag
⇣

GVjIDH
j

⌘

We reformulate this using an internal variable u j :=
⇣

sY/D
j ,XD

j ,`D
j

⌘
where sY/D

j 2C
3 is the vector of

terminal power injections and XD
j ,`D

j are 3⇥3 matrices for a D-configured power source, as follows:

Y configuration: s j = �sY
j (19.22d)

D configuration: s j = �diag
⇣

XD
j G
⌘

, sD
j = diag

⇣
GXD

j

⌘
(19.22e)

0 �


Wj j XD
j

XDH
j `D

j

�
, 1 = rank


Wj j XD

j
XDH

j `D
j

�
(19.22f)

For a D-configured power source, the conditions (19.22e)(19.22f) ensure that there exist a terminal
voltage Vj and an internal current ID

j so that Wj j = VjVH
j , `D

j = ID
j IDH

j , and XD
j = VjIDH

j .
The device constraints (19.2c) on the internal powers and currents can be expressed as linear func-
tions of the internal variable u j :=

⇣
sY/D

j ,XD
j ,`D

j

⌘
:

sY/Dmin
j  sY/D

j  sY/Dmax
j , diag

⇣
`D

j

⌘
 `Dmax

j (19.22g)

where the lower and upper bounds are given vectors.

Therefore the conversion rule (19.1) and the device constraint (19.2) are equivalent to the constraint (19.22)
in terms of the new set of internal variables u j and terminal variables (W,s), as summarized in Table 19.1.
These constraints are local at each bus j. The rank-1 constraints in (19.22a)(19.22b)(19.22f) are nonconvex
and the other constraints are convex (or linear). These rank-1 constraints will be omitted to derive a SDP
relaxation of the three-phase OPF (19.5).
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Equivalent OPF. In summary, let s2CN+1 denote the terminal power injections and W 2C3(N+1)⇥3(N+1)

denote the terminal variable associated with terminal voltages. Let u := (u j, j 2 N) denote the internal
variables defined by

u j :=

8
<

:
WY/D

j if device j is a voltage source⇣
sY/D

j ,XD
j ,`D

j

⌘
if device j is a power source

Finally we assume the terminal voltage V0 at bus 0 is given and imposes the constraint W00 =V0VH

0 . Putting
all this together the three-phase OPF (19.5) is equivalent to

min
(u,s,W )

C(u,s,W ) s.t. W00 = V0VH

0 , (19.20)(19.21)(19.22) (19.23)

where V0 2 C
3 is given.

19.2.2 SDP relaxation

Define the matrix M(A,B,D) 2 C
6⇥3 as a function of 3⇥3 Hermitian matrices A,D, and a 3⇥3 arbitrary

matrix B:

M (A,B,D) :=


A B
BH D

�
(19.24)

Then M (A,B,D) is Hermitian. For instance the matrix in (19.22f) is M
⇣

Wj j,XD
j ,`D

j

⌘
.

Let NY
v and ND

v denote the set of voltage sources in Y and D configuration respectively, and NY
p and

ND
p the set of power sources in Y and D configuration respectively. Omitting the rank-1 constraints in

(19.22a)(19.22b)(19.22f) yields an SDP relaxation of (19.23):

min
(u,s,W )

C(u,s,W ) (19.25a)

s.t. W00 = V0VH

0 , (19.20), W ⌫ 0 (19.25b)

Wj j = WY
j , WY

j ⌫ 0, j 2 NY
v (19.25c)

GWj jGT = W D
j , W D

j ⌫ 0, j 2 ND
v (19.25d)

s j = �sY
j , j 2 NY

p (19.25e)

s j = �diag
⇣

XD
j G
⌘

, j 2 ND
p (19.25f)

sD
j = diag

⇣
GXD

j

⌘
, M

⇣
Wj j,XD

j ,`D
j

⌘
⌫ 0, j 2 ND

p (19.25g)

where V0 2 C
3 is given and M

⇣
Wj j,XD

j ,`D
j

⌘
is defined in (19.24). Let (uopt,sopt,W opt) denote an optimal

solution of the SDP relaxation (19.25). We say (19.25) is exact if the psd matrices of every optimal solution
(uopt,sopt,W opt) are of rank 1, i.e., rank(W opt) = 1 and

rank
⇣

WY opt
j

⌘
= 1, rank

⇣
W Dopt

j

⌘
= 1, rank

⇣
M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘⌘
= 1 (19.26)
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If rank(W opt) = 1 then all its principal submatrices W opt
j j are of rank 1 and therefore, by (19.25c)(19.25d),

WY opt
j and W Dopt

j are of rank 1 as well. The following result implies that the network matrix W opt being psd
rank-1 is insufficient to ensure exact relaxation. It is necessary for exact relaxation that all D-configured
power sources must satisfy rank

⇣
M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘⌘
= 1.

Lemma 19.1 ([164]). Suppose the matrix M(A,B,D) 2 C
6⇥3 defined in (19.24) is positive semidefinite

and rank(A) = 1. Then A is psd rank-1, B is rank-1, and D is psd.

Lemma 19.1 says that B is rank-1 but may not be psd, and D is psd but may not be rank-1. Indeed it
implies that the matrix M(A,B,D)⌫ 0 takes the form

M(A,B,D) =


x
z

�⇥
xH zH

⇤
+


0 0
0 KKH

�
(19.27)

for some vectors x,z and matrix K. The structure (19.27) have three implications on the exactness of SDP
relaxation (19.25). First if there are no D-configured power sources, then (19.25) is exact if, for every
optimal solution (uopt,sopt,W opt) of (19.25), the network matrix W opt is of rank 1. Second if there are D-
configured power sources in ND

p , then rank(W opt) = 1 is insufficient to guarantee exactness because the last
condition in (19.26) may not be satisfied. Third, however, any optimal optimal solution (uopt,sopt,W opt)

with rank(W opt) = 1 is sufficient for recovering an optimal solution of OPF (19.23), even if `Dopt
j in uopt

j

and hence M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘
may not be of rank 1, provided that the cost C(u,s,W ) does not depend

on `D
j (e.g., C depends only on

⇣
s j,s

Y/D
j

⌘
) [164, Theorem 1]. This is because Lemma 19.1 guarantees that

there exists vectors
⇣

V opt
j , IDopt

j

⌘
2C

6 such that, since W opt is psd rank-1 and M
⇣

W opt
j j ,XDopt

j ,`Dopt
j

⌘
⌫ 0,

W opt
j j = V opt

j

⇣
V opt

j

⌘H
, XDopt

j = V opt
j

⇣
IDopt

j

⌘H
, j 2 ND

p (19.28a)

Then consider the point (ũ,sopt,W opt) obtained from (uopt,sopt,W opt) by replacing `Dopt
j in uopt

j by

˜̀D
j := IDopt

j

⇣
IDopt

j

⌘H
, j 2 ND

p (19.28b)

It can then be checked that (ũ,sopt,W opt) is feasible for OPF (19.23). Since the cost C is independent of
˜̀D
j , (ũ,sopt,W opt) is also optimal for OPF (19.23).

Remark 19.3 (Strong exactness). As discussed in Remarks 10.3 and 10.4, even when a relaxation is not
exact under our definition, an optimal solution of the original OPF problem may still be recoverable from
an optimal solution of its relaxation under certain conditions. Theorems 10.6 and 10.9 provide two such
conditions for single-phase radial network. The discussion above shows that rank(W opt) = 1 is sufficient
for recovering an optimal solution of the original three-phase OPF (19.23) from an optimal solution of its
SDP relaxation (19.25), provided that the cost C is independent of `D

j for D-configured power sources.

The method (19.28) to recover an optimal solution (ũ,sopt,W opt) of OPF (19.23) from an optimal
solution of its relaxation may not work well in practice because of inevitable numerical errors. Even if
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W opt
j j is close to being rank-1, i.e., its second largest eigenvalue is several orders of magnitude smaller than

its largest eigenvalue, XD
j can be far from being rank-1, e.g., it can have multiple large eigenvalues of the

same magnitude (see [164, Remark 1]). In this case IDopt
j may not be obtained from XDopt

j using (19.28a).
Two methods are suggested in [164] to address this numerical issue. The first method substitutes V opt

j

obtained from W opt
j j = V opt

j

⇣
V opt

j

⌘H
into (19.25g):

sDopt
j = diag

✓⇣
GV Dopt

j

⌘⇣
IDopt

j

⌘H◆
=) IDopt

j :=
⇣

diag
⇣

GV̄ Dopt
j

⌘⌘�1
s̄Dopt

j

where x̄ is the componentwise complex conjugate of a vector x. The second method adds l Â j tr
⇣
`D

j

⌘
to

the cost function of the SDP relaxation (19.25) for a positive but small weight l > 0. This produces an
optimal solution in which `Dopt

j tends to be of low rank.

19.2.3 Radial network

A special case that is particularly simple is a network where

• all three-phase devices are either voltage or power sources in Y configuration;

• all voltages are defined with respect to the ground and the neutral voltages gY
j := V n

j of all these
Y -configured devices are gY

j := 0.

In this case the internal variables can be simply expressed in terms of terminal variables, VY
j =Vj, IY

j =�I j,

and sY
j =�s j, and the operational constraints gY/D

j
�
u j
�
 0 on u j are included in the network constraints

(19.10). Hence the internal variable u can be eliminated from the QCQP (19.14) which then consists of
only network constraints (19.10) and no device models, as follows:

min
V

C(V,s(V )) s.t. (19.10) (19.29)

We now study the semidefinite relaxation of (19.29) when the network graph G is a tree.

Consider a network graph G := (N,E) with N + 1 buses. Suppose each line ( j,k) 2 E is character-
ized by three 3⇥ 3 admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, i.e., we assume ys

jk = ys
k j. Recall its single-phase

equivalent circuit described in Chapter 17.1.2 by a graph G3f :=
⇣

N3f
,E3f

⌘
where N3f contains 3(N +1)

nodes identified by jf , j 2 N, f 2 {a,b,c}. There is a link ( jf ,kf 0) in E3f if and only if the ( jf ,kf 0)
entry Y ff 0

jk of the three-phase admittance matrix Y is nonzero.

Even when G is a tree (i.e., the three-phase network is radial), its single-phase equivalent G3f contains
cycles. The key observation is that G3f is a chordal graph. To see this, note that G3f has a maximal clique
with 6 nodes consisting of the set

n
jf ,kf 0 2 N3f : f ,f 0 2 {a,b,c}

o
of buses if and only if ( j,k) is a line

in G. See Figure 19.1 for an example. Two nodes jf and kf 0 in the equivalent circuit G3f are adjacent
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Figure 19.1: The graph G3f of the single-phase equivalent circuit of a radial network with three buses
i, j,k connected by (three-wire) three-phase lines.

either because of a physical line between buses j and k in the graph G (in which case f = f 0) or because
of electromagnetic interactions across phases f and f 0 (in which case f 6= f 0). Indeed G3f consists of a
macro tree in which every link in the macro tree is such a clique and these are the only cliques in G3f .
This means that G3f is a chordal graph.

Theorem 10.4 suggests solving the chordal relaxation of (19.29). It computes a (N + 1)⇥ (N + 1)
Hermitian partial matrix WG3f :

WG3f :=
⇣

[WG3f ]
ff
j j , jf 2 N3f

, [WG3f ]
ff 0
jk ,( jf ,kf 0) 2 E3f

⌘

The set of maximal cliques of G3f correspond to the following 6⇥6 principal submatrices of WG3f :

WG3f ( j,k) =


w j j w jk
wk j wkk

�
2 C

6⇥6, ( j,k) 2 E

where

w j j :=

2

4
[WG3f ]aa

j j [WG3f ]ab
j j [WG3f ]ac

j j
[WG3f ]ba

j j [WG3f ]bb
j j [WG3f ]bc

j j
[WG3f ]ca

j j [WG3f ]cb
j j [WG3f ]cc

j j

3

5 , w jk :=

2

64
[WG3f ]aa

jk [WG3f ]ab
jk [WG3f ]ac

jk
[WG3f ]ba

jk [WG3f ]bb
jk [WG3f ]bc

jk
[WG3f ]ca

jk [WG3f ]cb
jk [WG3f ]cc

jk

3

75

The chordal relaxation of (19.29) is then (using (19.10)):

min
WG3f

tr(C0WG3f ) (19.30a)

s.t. pf min
j  tr

⇣
Ff

j WG3f

⌘
 pf max

j , j 2 N, f 2 {a,b,c} (19.30b)

qf min
j  tr

⇣
Yf

j WG3f

⌘
 qf max

j , j 2 N, f 2 {a,b,c} (19.30c)

vf min
j  tr

⇣
Ef

j WG3f

⌘
 vf max

j , j 2 N, f 2 {a,b,c} (19.30d)

tr
⇣

Ŷ f
jkWG3f

⌘
 `f max

jk , ( j,k) 2 E, f 2 {a,b,c} (19.30e)

tr
⇣

Ŷ f
k jWG3f

⌘
 `f max

k j , ( j,k) 2 E, f 2 {a,b,c} (19.30f)

WG3f ( j,k) ⌫ 0, ( j,k) 2 E (19.30g)

w00 = V0VH

0 (V0 is given) (19.30h)
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Let W opt
G3f be an optimal solution of (19.30). If every 6⇥ 6 principal submatrix W opt

G3f ( j,k) of the partial
matrix W opt

G3f satisfies

rank
⇣

W opt
G3f ( j,k)

⌘
= 1, ( j,k) 2 E

then an optimal solution V opt of (19.29) can be uniquely recovered from W opt
G3f according to Theorem 10.3.

This is because a chordal relaxation is exact if and only if the principal submatrix W opt
G3f (q) of W opt

G3f is psd
rank-1 for every clique q of the chordal graph G3f (Theorem 10.1) and, as noted above, the only maximal
cliques of G3f are those 6-node cliques corresponding to lines ( j,k) 2 E.

The method in Chapter 10.1.4 to recover an optimal V opt from W opt
G3f applies directly here. Since

rank
⇣

W opt
G3f ( j,k)

⌘
= 1 for all ( j,k)2E, they satisfy the cycle condition (Theorem 10.1). Take any spanning

tree of G3f with root at, say, node 0a. Let
���V f

j

��� :=
q

[W opt
G3f ]

ff
j j for j 2N,f 2 {a,b,c}. Let Pf

j be the unique

path from the root 0a to the node jf in the spanning tree. A link ( j0f 0, j00f 00) in the path Pf
j is denoted by

( j0f 0, j00f 00) 2 Pf
j . Then for all nodes jf in the equivalent single-phase network G3f ,

\V f
j := \V a

0 � Â
( j0f 0, j00f 00)2Pf

j

\
h
W opt

G3f

if 0f 00

j0 j00
mod 2p

19.3 Semidefinite relaxation: BFM

As for the bus injection model we reformulate in Chapter 19.3.1 the three-phase OPF (19.17) in the branch
flow model for radial networks, and derive in Chapter 19.3.2 its semidefinite relaxation.

19.3.1 Reformulation

Consider the three-phase OPF (19.17) in BFM for radial networks studied in Chapter 19.1.4, reproduced
here:

min
(u,x)

C(u,x) s. t. (19.1)(19.2)(19.15)(19.16), v0 = V0VH

0 (19.31)

where (u,x) := (u,s,v,`,S,V, Ĩ), u denotes the internal variables of three-phase devices and x denotes the
terminal variables that interact through power flow equations. The devices are modeled by the conversion
rules (19.1) on (u j,x j) and the operational constraints (19.2) on u j. The power flow equation is (19.15)
and the operational constraint on x is (19.16).

To simplify notation we consider, as in Chapter 19.2.1, only three-phase voltage and power sources
and assume that all neutral voltages gY

j := V n
j = 0. Then the internal variables for these devices are
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u := (u j, j 2 N) where

u j :=

8
<

:
vY/D

j if device j is a voltage source⇣
sY/D

j ,XD
j ,`D

j

⌘
if device j is a power source

(19.32)

The device models (19.1)(19.2) have been reformulated as (19.22) in Chapter 19.2.1, with the 3⇥3 matrix
variables Wj j and WY/D

j in BIM replaced by v j and vY/D
j respectively in BFM.

Without voltage sources, we no longer need the variable Vj for the conversion rule that relates Vj to
the internal voltage VY/D

j . Hence we will omit (Vj, Ĩ jk) and the quadratic constraints (19.15d), v j = VjVH
j ,

` jk = Ĩ jkĨHjk, and S jk = VjĨHjk. Let the BFM variables be x := (s,v,`,S) where v j,` jk,S jk is each a 3⇥ 3
matrix. Finally we assume the terminal voltage V0 at bus 0 is given and imposes the constraint v0 = V0VH

0 .
Then the three-phase OPF (19.31) can be reformulated as follows. Let the feasible set be

T3p :=
n

(u,x) := (u,s,v,`,S) | (u,x) satisfies (19.15a)� (19.15c)(19.16)(19.22),v0 = V0VH

0

o

(19.33a)

where u is defined in (19.32). The three-phase OPF problem (19.31) is equivalent to:

min
u,x

C(u,x) subject to (u,x) 2 T3p (19.33b)

19.3.2 Semidefinite relaxation

OPF (19.33) is nonconvex due to the rank-1 constraint (19.15c) in the power flow equations and the rank-
1 constraints (19.22a)(19.22b)(19.22f) in the device models. Omitting these rank-1 constraints yields a
semidefinite relaxation. Recall the function M(A,B,D) that constructs a 6⇥6 matrix from 3⇥3 matrices
A,B,D, defined in (19.24) and reproduced here:

M (A,B,D) :=


A B
BH D

�
(19.34)

where A,D are Hermitian and B is arbitrary. Then the psd constraints in (19.15c) and in (19.22f) can be
written in terms of M as respectively.

M
�
v j,S jk,` jk

�
=


v j S jk
SHjk ` jk

�
⌫ 0, j! k 2 E

M
⇣

v j,XD
jk,`

D
jk

⌘
=

"
v j XD

jk
XDH

jk `D
jk

#
⌫ 0, j! k 2 E
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The feasible set of the semidefinite relaxation is defined by the following constraints:

network: v0 = V0VH

0 , (19.15a)(19.15b), (19.16), (19.35a)
0 � M

�
v j,S jk,` jk

�
, ( j,k) 2 E (19.35b)

devices: v j = vY
j , vY

j ⌫ 0, j 2 NY
v (19.35c)

Gv jGT = vD
j , vD

j ⌫ 0, j 2 ND
v (19.35d)

s j = �sY
j , j 2 NY

p (19.35e)

s j = �diag
⇣

XD
j G
⌘

, sD
j = diag

⇣
GXD

j

⌘
, M

⇣
v j,XD

j ,`D
j

⌘
⌫ 0, j 2 ND

p

(19.35f)

where V0 2 C
3 is given. Define the feasible set as

T
+
3p := {(u,x) := (u,s,v,`,S) | (u,x) satisfies (19.35)} (19.36a)

where u is defined in (19.32). The set T+
3p is a convex superset of T3p. The semidefinite relaxation of the

three-phase OPF problem (19.33) is:

min
u,x

C(u,x) subject to (u,x) 2 T
+
3p (19.36b)

Let (uopt,xopt) denote an optimal solution of the SDP relaxation (19.36). We say (19.36) is exact if the
psd matrices of every optimal solution (uopt,xopt) are of rank 1, i.e.,

rank
⇣

M
⇣

vopt
j ,XDopt

j ,`Dopt
j

⌘⌘
= 1, rank

⇣
vY/Dopt

j

⌘
= 1, j 2 N (19.37a)

rank
⇣

M
⇣

vopt
j ,Sopt

jk ,`opt
jk

⌘⌘
= 1, ( j,k) 2 E (19.37b)

This means that (uopt,xopt) is feasible and therefore optimal for the original OPF (19.33).

Suppose the terminal voltage satisfies rank
⇣

vopt
j

⌘
= 1. Then the internal voltage vY/Dopt

j is also of rank

1 by (19.35c)(19.35d). Unfortunately M
⇣

vopt
j ,XDopt

j ,`Dopt
j

⌘
and M

⇣
vopt

j ,Sopt
jk ,`opt

jk

⌘
may not be of rank 1

because `Dopt
j and `opt

jk respectively may not be rank-1; see Lemma 19.1. As discussed after Lemma 19.1,
even though the SDP relaxation (19.36) may not be exact, it is still possible to recover an optimal solution
of OPF (19.33) from an optimal solution (uopt,xopt) of its relaxation (19.36) when rank

⇣
vopt

j

⌘
= 1 for all

j 2 N, provided that the cost function C is independent of `D
j .

Equivalence. When the network graph is a tree, then it can be shown that OPF (19.33) and its relaxation
(19.36) in BFM are equivalent to OPF (19.23) and its relaxation (19.25) respectively in BIM (see [164,
Proposition 1]).
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19.4 Example applications

19.5 Bibliographical notes

As for most chapters, this section is now a placeholder with references collected in a somewhat random
fashion during the writing of the text. Major rewrite later.

There has been a great deal of research on OPF since Carpentier’s first formulation in 1962 [113]. An
early solution appears in [114] and extensive surveys can be found in e.g. [115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 58, 128]. It is nonconvex and has been shown to be NP-hard in general
[129, 96, 97].

Many references for 3-phase OPF: e.g. [130, 131, 132]

There are many excellent texts on optimization theory especially for convex problems, e.g., [133, 80,
74]. Optimization texts with power system applications include [134, 135]. In particular Chapter 7.5.3
mostly follows the presentation in [80, Chapter 11]. A popular interior-point solver for OPF problems is
[136].

A classic text on computational complexity is [102]. OPF has been shown to be NP-hard in general
[129, 96, 97, 99, 101]. [104] surveys combinatorial OPF and proves approximation results and conditions
for exactness (when there are no discrete variables). It shows that OPF with discrete injections cannot be
efficiently approximated. The hardness results complement those in [100, 95, 96, 97]; see [104, Chapter
5] and its Section 5.6 for comparison.

Chapter ?? on global optimality is taken form [107, 106]

[139] shows that, by dualizing clique tree conversion, a class of nonconvex problems, including OPF
problems, the per-iteration cost of an interior-point method is linear O(n) in time and in memory, so an
e-accurate and e-feasible iterate is obtained after O(

p
n log(1/e)) iterations in O(n1.5 log(1/e)) time.

19.6 Problems

Chapter 19.1

Exercise 19.1 (3-phase OPF as QCQP: line limit). Derive the line limit (19.10d) in three-phase OPF.

Exercise 19.2 (3-phase OPF as QCQP: current source). Derive the conversion rule (19.13c)(19.13d) for a
current source u j := IY/D

j .

Exercise 19.3 (3-phase OPF as QCQP: power source). Derive the conversion rule (19.13e)(19.13f) for a
power source u j := (u j1,u j2) :=

⇣
sY/D

j , IY/D
j

⌘
.
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Exercise 19.4 (3-phase OPF as QCQP: impedance). Derive the conversion rule (19.13g)(19.13h) for an
impedance

⇣
zY

j ,gY
j

⌘
or zD

j .

Exercise 19.5 (3-phase OPF as QCQP: power source). For a power source, we use u j :=
⇣

sY/D
j , IY/D

j

⌘
as

the internal variable. This exercise shows that this approach is simpler for a Y -configured power source
than if the optimization variable is taken to be u j := sY

j instead. Consider a Y -configured ideal power source
where the optimization variable is the internal power (only) u j := sY

j and its neutral voltage gY
j := V n

j is
given. If gY

j = 0 then s j =�sY
j . Suppose gY

j 6= 0.

1. Show that u j is related to the terminal voltage and current
�
Vj,s j

�
as:

s j = �diag

 
V f

j

V f
j � gY

j

,f = a,b,c

!
u j

2. Y configuration: Show that the conversion rule in part 1 is equivalent to the following set of inho-
mogeneous equality constraints on

⇣
V,u j,w

f
j ,f 2 {a,b,c}

⌘
2 C

12(N+1)+3: for each j 2 N,

VH

⇣
gY

j Y fH
j

⌘
V = ūHj

⇣
ef efH

j

⌘
V + wfH

j

⇣
Y fH

j

⌘
V, f 2 {a,b,c}

ejH
k wf

j = VH

⇣
ef

j ejH
j

⌘
V, k 2 N, f ,j 2 {a,b,c}

where wf
j 2 C

3(N+1) is an auxiliary variable, one for each f 2 {a,b,c}. For each j 2 N, this is a set

of 9(N +1)+3 quadratic equations in
⇣

V,u j,w
f
j ,f 2 {a,b,c}

⌘
.

Chapter 19.2

Exercise 19.6 (SDP relaxation in BIM [164]). 1. Prove Lemma 19.1.

2. Give an example where M(A,B,D) is not of rank 1.
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Chapter 20

Appendix: mathematical preliminaries

In this chapter we review some basic concepts in linear algebra, algebraic graph theory and optimization
that we have used in this book. There are numerous excellent books on each of these topics and our goal is
not to be comprehensive or systematic in coverage, but to collect concepts and properties used throughout
this book in one place for convenience of the readers who have already had exposures to these topics.

More details (on semidefinite relaxations) and can be found in, e.g., [80, 218, 79, 142, 143, 219, 156,
140].

20.1 Linear algebra

20.1.1 Vector spaces, basis, rank, nullity

20.1.1.1 Vector spaces, subspaces, span

This subsection mostly follows [39, Chapter 0]. We restrict ourselves mostly to finite vector spaces.
Underlying a vector space is its field F , which is a set of scalars that is closed under two binary operations,
called “addition” (a+b) and “multiplication” (ab). Most often, F =R or C for us, but in general F can be
the set of rational numbers, or a set of integers modulo a specified prime number, etc. The two operations
must be associative and commutative, and each must have an identity element in the set; inverses must
exist in the set for all elements under addition and for all elements except the additive identity under
multiplication; multiplication must distribute over addition.

Definition 20.1 (Vector space). A vector space V , or linear space, over a field F is a set V of objects,
called vectors, that is closed under two binary operations:

• vector addition: + : V ⇥V !V denoted by x+ y;

• scalar multiplication: · : F⇥V !V denoted by a · x =: ax;

and satisfies the following properties: for all x,y,z 2V and a,b 2 F ,

874
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1. Associativity of vector addition: x+(y+ z) = (x+ y)+ z.

2. Commutativity of vector addition: x+ y = y+ x.

3. Identity element of vector addition: There exists 0 2V , called the zero vector, such that x+0 = x.

4. Inverse elements of vector addition: There exists �x 2V , called the additive inverse of x, such that
x+(�x) = 0.

5. Associativity of scalar multiplication: a(bx) = (ab)x.

6. Identity element of scalar multiplication: There exists 1 2 F , called the multiplicative identity in F
such that 1x = x.

7. Distributivity of scalar multiplication over vector addition: a(x+ y) = ax+by.

8. Distributivity of scalar multiplication over field addition: (a+b)x = ax+bx.

A subspace of a vector space V over a field F is a subset of V that is itself a vector space over F with the
same binary operations as in V .

If F = R then V is called a real vector space. If F = C then V is called a complex vector space. Given
F and an integer n the set V := Fn of n-tuples with components from F forms a vector space over F
where the vector addition “+” is defined by componentwise addition: [x + y]i = xi + yi. The vector space
Fn is important because any finite dimensional vector space can be identified with Fn for some integer n
(see Example 20.1 and the next subsection for a formal definiteion). Note that Rn is a real vector space
(V = R

n over F = R) while C
n is both a real vector space (V = C

n over F = R) and a complex vector
space (V = C

n over F = C).

A vector space V is however not restricted to V = Fn. An important finite dimensional vector space
over F is the set Mm,n(F) of m⇥ n matrices whose entries [M]i j 2 F for any finite m and n. We can
vectorize A 2 Mm,n(F) and treat A as a vector in V = Fmn, but we will mostly treat A as an array of
scalars in V = Fm⇥n. Note that matrix multiplication is not involved in the definition of V = Fm⇥n as a
vector space (it can be treated as a composition of linear transformations when a matrix is viewed as a
linear transformation from Fn to Fm; see below). If m = n we abbreviate Mm,n(F) to Mm,n. If F = C we
abbreviate Mm,n(C) to Mm,n.

The components xi of vectors x 2 V may not be from F . Possibly infinite dimensional examples
include: the set of polynomials with real or with complex coefficients (of up to a specified degree or of
arbitrary degree) is a real or complex vector space respectively; the set of real-valued or complex-valued
functions on subsets of R or C is a real or complex vector space respectively.

If S ✓ V is a nonempty subset of the vector space V over a field F then span(S) is the intersection of
all subspaces of V that contain S. It consists of all linear combinations of finitely many vectors in S:

span(S) = {a1x1 + · · ·+akxk : x1, . . . ,xk 2 S, a1, . . . ,ak 2 F, k = 1,2, . . .}
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It can be checked that span(S) is always a subspace whether or not S is a subspace. S is said to span V
if span(S) = V . Let S1 and S2 be subspaces of a vector space over a field F . The sum of S1 and S2 is the
subspace

S1 +S2 := span{S1[S2} = {x+ y : x 2 S1, y 2 S2}

If S1\S2 = {0} then S1 +S2 is called a direct sum and we write it as S1�S2. Every vector z 2 S1�S2 can
be uniquely written as z = x+ y with x 2 S1 and y 2 S2.

Example 20.1. Consider S := {1, t, t2, . . . , tn�1}. Even though S is not a vector space its span

span(S) = {a0 +a1t + · · ·+an�1tn�1 : a0, . . . ,an�1 2 F}

is an n-dimensional vector space V that can be identified with Fn where x 2 V is defined by xi = ai,
i = 0, . . . ,n�1.

20.1.1.2 Basis, dimension, linear transformation, rank and nullity

A finite set of vectors x1, . . . ,xk in a vector space V over a field F is linearly dependent if and only if
there are scalars a1, . . . ,ak 2 F , not all zero, such that a1x1 + · · ·+akxk = 0 2V . The vectors x1, . . . ,xk are
linearly independent if they are not linearly dependent. A linearly independent set B := {v1,v2, . . . ,}✓V
of vectors that spans the vector space V is called a basis. Any vector x 2 V can be uniquely expressed as
a linear combination of the basis, i.e., x = Âk akvk for a unique set of scalars ak 2 F , k = 1,2, . . . . If there
is a positive integer n such that B := {v1, . . . ,vn} is a basis of V , then all bases of V consists of exactly n
vectors and n is the dimension of V , denoted by dimV . This is because adding any vector to a basis will
render it linearly dependent and removing any vector from the basis will prevent it from spanning V . In
this case V is finite dimensional. If no such integer n exists then V is infinite dimensional. For an infinite
dimensional vector space, there is a one-to-one correspondence between the vectors in any two bases. A
subspace of a (finite) n-dimensional vector space has dimension no more than n; it is a proper subspace if
its dimension is strictly less than n.

The real vector space Rn has dimension n. The complex vector space Cn has dimension n over the field
F = C but dimension 2n over the field F = R. A basis of a vector space Fn is a set of vectors {v1, · · · ,vn}
such that any vector x 2 Fn can be expressed as a linear combination of vectors in the basis, i.e., x = Ba
for some a 2 Fn where the columns of B are the vectors {v1, · · · ,vn}. If the basis vectors are orthogonal,
i.e., vHj vk = 0 for j 6= k, then the basis is called an orthogonal basis. If the basis vectors are both orthogonal
and of unit Euclidean norm (kv jk2 = 1 for all j), then the basis is called an orthonormal basis. The basis
{e1, · · · ,en} of Fn in which the n-vector ei has a 1 in its ith entry and 0s elsewhere is called the standard
basis or the unit basis. It is an orthonormal basis. Two vector spaces U and V over the same filed F is
called isomorphic if there is an invertible function f : U !V such that f (ax+by) = a f (x)+b f (y) for all
x,y2U and a,b2 F . Then f is called an isomorphism. Any n-dimensional real vector space is isomorphic
to R

n and any n-dimensional complex vector space is isomorphic to C
n.

Let V be a finite-dimensional vector space and let S1,S2 be two given subspaces of V . Then

dim(S1\S2) + dim(S1 +S2) = dimS1 + dimS2
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Hence

dim(S1\S2) � dimS1 + dimS2 � dimV

since S1 +S2 := span{S1[S2}✓V . By induction we have dim(S1\ · · ·\Sk) � dimS1 + · · ·+dimSk�(k�
1)dimV . If d := dimS1 + · · ·+dimSk� (k�1)dimV � 1 then S1\ · · ·\Sk contains at least d � 1 linearly
independent vectors. For example, for the vector space V := R

3 and subspaces S1,S2 defined by two
non-parallel planes, their intersection S1 \ S2 is a line in V and has a dimension at least 2 + 2� 3 = 1.
In fact its dimension is exactly 1 because S1 + S2 = V . If S3 is a plane that is not parallel to S1 or
S2, dim(S1 \ S2 \ S3) � 2 + 2 + 2� (2)(3) = 0. It is exactly 0 (their intersection is a point) because
S1 +S2 +S3 = V .

We can view a matrix Mm,n(F) as a vector in the vector space Fmn, or an array of scalars F in the vector
space Fm⇥n. A third perspective is to view a matrix A 2Mm,n(F) as a linear transformation A : Fn! Fm

mapping x to Ax. Then

• The domain of A is Fn.

• The range of A is the subspace range(A) := {Ax 2 Fm : x 2 Fn}✓ Fm. The dimension of range(A)
is called the rank of A, denoted by rank(A).

• The null space of A is the subspace null(A) := {x 2 F
n : Ax = 0}✓ Fn. The dimension of null(A) is

called the nullity of A, denoted by nullity(A).

The span range(A) is also called the column space of A. Similarly {yTA : y 2 Fm} is called the row space
of A. The rank-nullity theorem states that

rank(A) + nullity(A) = n = rank
⇣

AH

⌘
+ nullity(A) (20.1)

where the last equality holds if F =C or R and follows since rank(A) = rank
�
AH
�
. Note that range

�
AH
�
✓

Fn whereas range(A)✓ Fm.

Henceforth we use Mm,n := Mm,n(C) to denote the set of m⇥n matrices whose elements are in C. We
abbreviate them to Mn := Mn(C) if m = n and use M := M(C) when m and n are arbitrary. Similarly for
Mm,n(R), Mn(R) and M(R) for matrices whose elements are in R. We often write A2Cm⇥n (or A2Rm⇥n)
and call A a complex (or real) matrix to mean a matrix A in M (or M(R)) of size m⇥n.

20.1.2 Polyhedral set and extreme point

We follow [74, Chapter 2] and define a polyhedral set X ✓ R
n as a nonempty set specified by a finite

number of affine inequalities:

X := {x 2 R
n : Ax b}

for a given A 2 R
m⇥n and b 2 R

m. Hence a polyhedral set is nonempty closed and convex. An important
characterization of a polyhedral set is the following result e.g. [74, Proposition 2.3.3, p.106].
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Theorem 20.1 (Minkowski-Weyl representation). A set X ✓R
n is polyhedral if and only if there is a finite

set {v1, . . . ,vm} and a finitely generated cone K := cone(a1, . . . ,ak) such that

X = conv(v1, . . . ,vm) + cone(a1, . . . ,ak)

i.e.

X =

(
x 2 R

n : x =
m

Â
i=1

aivi + y, ai � 0,Â
i

ai = 1, y 2 K

)

Given a nonempty convex set X ✓ R
n a vector x 2 X is an extreme point if there does not exist y 6= x,

z 6= x, and a 2 (0,1) such that x = az + (1�a)y, or equivalently, if x is not a convex combination of
other vectors in X that are distinct from x. Several facts are useful. An interior point cannot be an extreme
point and an open set has no extreme points. A cone may have at most one extreme point, the origin. A
polyhedral set has at most finitely many extreme points, and the minimum of a linear program is attained
at an extreme point of its polyhedral feasible set. A polyhedral set may not possess any extreme points
e.g. X = {(x1,x2) : x1 = x2}. The following result from [74, Propositions 2.1.5 and 2.1.3, p.98] provides
an exact characterization of the existence of extreme points for polyhedral sets.

Lemma 20.2. 1. Let X := {x 2Rn : Ax b} for some A 2Rm⇥n and b 2Rm be a polyhedral set. Then
X has an extreme point if and only if A has n linearly independent rows, i.e., rank A = n.

2. Let X ✓ R
n be a closed convex set. If for some A 2 R

m⇥n of rank n and b 2 R
m we have Ax b for

all x 2 X . Then X has at least one extreme point.

A convex set that is compact is the convex hull of its extreme points; see e.g. [173, Theorem 2.3.4,
p.111]. Carathéodory theorem then implies that every vector is a convex combination of at most n + 1
extreme points. These constituent extreme points, however, may be different for different vectors.

Lemma 20.3. Let X ✓ R
n be convex and compact. Then

1. X = conv{extreme points of X}.

2. If x 2 X then x = Ân+1
i=1 aivi where ai 2 [0,1] and Âi ai = 1, and vi are extreme points of X .

20.1.3 Schur complement and matrix inversion formula

20.1.3.1 Schur complement

Let M 2 C
n⇥n and partition it into blocks:

M =


A B
D C

�
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such that C 2 C
k⇥k, k < n, is invertible and the other submatrices are of appropriate dimensions. The

(n� k)⇥ (n� k) matrix M/C := A�BC�1D is called the Schur complement of block C of matrix M. If A
is invertible then the k⇥k matrix M/A := C�DA�1B is called the Schur complement of block A of matrix
M.

Example 20.2 (Gaussian elimination). Schur complement arises from applying Gaussian elimination to a
system of linear equations such as:


A B
D C

� 
x
y

�
=


b1
b2

�
,


Ax+By
Dx+Cy

�
=


b1
b2

�

When C is invertible, Gaussian elimination expresses y in terms of x by multiplying the second equation
by BC�1 and subtracting the result from the first equation. This corresponds to multiplying the equations
on the left by a block lower-triangular matrix:


In�k �BC�1

0 C�1

�
A B
D C

�
x
y

�
=


A�BC�1D 0

C�1D Ik

�
x
y

�
=


b̂1
b̂2

�
(20.2a)

where


b̂1
b̂2

�
:=


b1�BC�1b2

C�1b2

�

If the Schur complement of C is invertible then the solutions for (x,y) can be read off equation (20.2a) as

x =
�
A�BC�1D

��1 b̂1 = (M/C)�1 b̂1

y = �C�1Dx + b̂2 = �C�1D(M/C)�1 b̂1 + b̂2

This means that


A�BC�1D 0
C�1D Ik

��1
=


(M/C)�1 0

�C�1D(M/C)�1 Ik

�
(20.2b)

Gaussian elimination can be represented as


In�k �BC�1

0 Ik

� 
A B
D C

� 
In�k 0
�C�1D Ik

�
=


A�BC�1D 0

0 C

�
(20.3)

This equation implies (since det(M1M2) = det(M1)det(M2))

det(M) = det(C) det(M/C)

rank(M) = rank(C) + rank(M/C)

Theorem 20.4 (Schur complement). Let M 2 C
n⇥n be partitioned as above with nonsingular C. Let

M/C := A�BC�1D be the Schur complement of C of matrix M.
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1. M is nonsingular if and only if M/C is nonsingular (given C is nonsingular).

2. det(M) = det(C) det(M/C).

3. rank(M) = rank(C) + rank(M/C).

4. M is positive definite if and only if C and M/C are positive definite.

5. If M and C are invertible, then M/C is invertible and

M�1 =


(M/C)�1 �(M/C)�1 BC�1

�C�1D(M/C)�1 C�1 +C�1D(M/C)�1 BC�1

�

6. If M and A are invertible, then M/A := C�DA�1B is invertible and

M�1 =


A�1 +A�1B(M/A)�1DA�1 �A�1B(M/A)�1

�(M/A)�1DA�1 (M/A)�1

�

Proof. Assertions 1, 2, 3 follow from (20.3). Example 20.2 shows that (from (20.2a)):


In�k �BC�1

0 C�1

� 
A B
D C

�
=


A�BC�1D 0

C�1D Ik

�
(20.4)

M is singular if and only if there exists a nonzero vector (x,y) in null(M). Since the first matrix on the
left-hand side of (20.4) is of full rank, this is equivalent to:


A�BC�1D 0

C�1D Ik

�
x
y

�
= 0 , (A�BC�1D)x = 0, y = C�1Dx

Hence M is singular if and only if A�BC�1D is singular. Applying det(M1M2) = det(M1)det(M2) to
(20.4) we have det(M) = det(C) det(A�BC�1D) = det(C) det(M/C).

To prove 4, we have from (20.2)


A B
D C

��1In�k �BC�1

0 C�1

��1
=


A�BC�1D 0

C�1D Ik

��1
=


(M/C)�1 0

�C�1D(M/C)�1 Ik

�

Hence


A B
D C

��1
=


(M/C)�1 0

�C�1D(M/C)�1 Ik

�
In�k �BC�1

0 C�1

�

=


(M/C)�1 �(M/C)�1 BC�1

�C�1D(M/C)�1 C�1D(M/C)�1 BC�1 +C�1

�

The last assertion can be proved in the same way by eliminating x instead of y in Example 20.2; see
Exercise 20.3.

Let I := {i1, . . . , ik}✓ {1, . . . ,n}, J := { j1, . . . , jl}✓ {1, . . . ,n}, and AIJ denote the submatrix obtained
from deleting rows not in I and columns not in J.
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• If k = l, i.e., AIJ is square, then the minor MIJ of A is the determinant of the submatrix AIJ .

• If I = J, then AIJ is called a principal submatrix and MIJ a principal minor of A.

• If I = J = {1, . . . ,k} with k  n, then AIJ is called a leading principal submatrix of order k and MIJ
a leading principal minor of order k.

Theorem 20.5 (Slyvester’s criterion). Suppose A is Hermitian. Then

1. A is positive definite if and only if all its leading principal minors are positive. This involves n
determinants: those of the upper left 1⇥1 matrix, upper left 2⇥2 matrix, . . . , det(A).

2. A is positive semidefinite if and only if all its principal minors are nonnegative. This involves✓
n
1

◆
+

✓
n
2

◆
+ · · ·+

✓
n
n

◆
determinants.

20.1.3.2 Matrix inversion lemma

A useful identity is the matrix inversion lemma or Sherman-Morrison-Woodbury formula. Let A 2 C
n⇥n,

B 2 C
n⇥k, C 2 C

k⇥k and D 2 C
k⇥n. Suppose A, C and the k⇥ k matrix

Ĉ := C�1 +DA�1B (20.5a)

are invertible. Then

(A+BCD)�1 = A�1 � A�1 �BĈ�1D
�

A�1 (20.5b)

An important case is when k⌧ n. Then the k⇥k matrix C is much smaller than A and the multiplication
of C by B and D on the left and right respectively produces an n⇥n matrix BCD of the right size for addition
with A. Similarly reversing the order of multiplication produces a much smaller k⇥ k matrix DA�1B for
addition with C�1 to produce the matrix Ĉ in (20.5a). We can thus view the role of (B,D) as transforming
between sizes n and k to simplify the inversion of large matrices. In many applications BCD represents a
low-rank update of A in a dynamical system or an additive noise to a transmitted signal A so that A+BCD
is the received signal. Suppose A�1 has been precomputed. Then Ĉ is much smaller and easier to invert
than A + BCD. The matrix inversion formula allows us to compute the inverse of the updated or noisy
matrix A+BCD in terms of A�1 and Ĉ�1 when they exist.

Many special cases are useful. For instance when A = In and C = Ik we have:

(In +BD)�1 = In � B(Ik +DB)�1 D

Note that BD is n⇥ n while DB is k⇥ k and hence the inverse on the right-hand side can be much easier
to compute than that on the left-hand side. Using the push-through identity (see Exercise 20.4) this is
equivalent to:

(In +BD)�1 = In � (In +BD)�1 BD = In � BD(In +BD)�1
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When k = n and B = D = In we have the inversion formula for sum of two matrices:

(A+C)�1 = A�1 � A�1 �C�1 +A�1��1 A�1

Merging A�1 �C�1 +A�1��1 A�1 we have Hua’s identity:

(A+C)�1 = A�1 �
�
A+AC�1A

��1

20.1.4 Change of basis, diagonalizability, Jordan form

Recall that we can interpret any m⇥ n complex matrix M as a linear transformation that maps a vector
x 2 C

n to a vector y = Mx 2 C
m, where the basis in the domain C

n is the standard basis consisting of
the columns of the n⇥ n identity matrix In and the basis in the range C

m is the standard basis consisting
of the columns of Im. Suppose we want to change the basis of the domain to (the columns of) an n⇥ n
nonsingular matrix V and the basis of the range to (the columns of) an m⇥m nonsingular matrix U . What
is the new matrix M̃ that represents the same linear map with respect to the new bases?

20.1.4.1 Similarity transformation

Since V and U are bases of Cn and C
m respectively we can express a ny x 2 C

n in terms of V and any
vector y 2 C

m in terms of U as

Inx = V x̃ and Imy = U ỹ

Hence the linear transformation M that maps any vector x 2 C
n to a vector y = Mx 2 C

m with respect to
the standard bases implies

U ỹ = y = Mx = MV x̃

Hence

ỹ = U�1MV| {z }
M̃

x̃

This means that any vector x̃ in the domain C
n with respect to the new basis U is mapped to the (same)

vector ỹ in the range C
m with respect to the new basis V by the matrix

M̃ := U�1MV or M = UM̃V

For the special case where n = m and the new bases for the domain and the range are the same, U = V ,

M̃ = U�1MU (20.6)

i.e., the new matrix M̃ represents the linear transformation under the new basis U . The mapping of M
to U�1MU is called a similarity transformation of M by the nonsingular similarity matrix U . This is
illustrated in Figure 20.1.
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Scanned with CamScanner

Figure 20.1: Change of bases. The new matrix M̃ = U�1MU is similar to the original matrix M when
n = m and U = V .

20.1.4.2 Diagonalizabilty and Jordan form

For the case where n = m and U = V , if the basis U in (20.6) is such that M̃ = L is diagonal then the
diagonal entries li of L are the eigenvalues of M with the ith columns ui of U as their corresponding
eigenvectors, since

MU = UL or Mui = liui, i = 1, . . . ,n

M is said to be diagonalizable in this case, i.e., by definition, M is diagonalizable if it is similar to a
diagonal matrix L.

Not all n⇥n matrix M over the complex field is diagonalizable through a similarity transformation. We
see above that M is diagonalizable if M has n linearly independent eigenvectors. Indeed having n linearly
independent eigenvectors is also necessary for M’s diagonalizability.1 When M has fewer than n linearly
independent eigenvectors, M is not similar to a diagonal matrix, but to a Jordan form, i.e., there exists an
invertible matrix V such that

V�1MV = J :=

2

64
J1

. . .
Jm

3

75

where Ji, i = 1, . . . ,m, are Jordan blocks of M:

Ji :=

2

6664

li 1

li
. . .
. . . 1

li

3

7775

1A square matrix M 2Cn⇥n is said to be unitarily diagonalizable if U�1 =UH in (20.6). It can be shown that any M 2Cn⇥n

is unitarily diagonalizable if and only if it is normal (MM⇤ = M⇤M); see Chapter 20.1.6.
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To compute the columns of V , consider Jordan block Ji and suppose without loss of generality that it
corresponds to columns 1,2, . . . ,ki. Equate these ki columns on both sides of MV = V J to get

M

2

4
| | |

v1 v2 · · · vki
| | |

3

5 =

2

4
| | |

v1 v2 · · · vki
| | |

3

5

2

6664

li 1

li
. . .
. . . 1

li

3

7775

Therefore v1 is the eigenvector corresponding to the eigenvalue li and can be computed from

(M�liIn)v1 = 0 (20.7a)

The other columns v2, . . . ,vki are not eigenvectors. They satisfy Mv j = v j�1 +liv j, j = 2, . . . ,ki, and can
be computed from

(M�liIn)v j = v j�1, j = 2, . . . ,ki (20.7b)

Multiplying both sides by M�liIn yields (M�liIn)2v j = v j�2. Repeated multiplications then imply that
the columns v1, . . . ,vki satisfy:

(M�liIn)v1 = 0 (v1is eigenvector)
(M�liIn)

2v2 = 0 (v j are generalized eigenvectors, j = 2, . . . ,ki)
...

(M�liIn)
kivki = 0

The characteristic polynomial p(x) := det(xIn�M) of M can be expressed in terms of the eigenvalues li:

p(x) := det(xIn�V JV�1) = det
�
V (xIn� J)V�1� = det(xIn� J) =

m

’
i=1

det(xIki� Ji)

where Ji is the ith Jordan block of size ki⇥ki, and Iki is the identity matrix of the same size. Since a Jordan
block is upper triangular we have

det(xIki� Ji) = (x�li)
ki

and hence

p(x) =
m

’
i=1

(x�li)
ki

There can be more than one Jordan block whose diagonal entries are the repeated eigenvalue li. Let
q be the number of distinct eigenvalues l j, j = 1, . . . ,q, and let m j be the number of Jordan blocks corre-
sponding to the distinct eigenvalue l j, so that m = Âq

j=1 m j. Then the characteristic polynomial can also
be expressed in terms of distinct eigenvalues as:

p(x) =
m

’
i=1

(x�li)
ki =

q

’
j=1

m j

’
i=1

(x�l j)
ki

For each distinct eigenvalue l j, there are two quantities of interest:
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1. geometric multiplicity of l j: This is the number m j of Jordan blocks corresponding to l j. It is the
dimension of the null space of M�l jIn since each such block yields a single eigenvector of M.

2. algebraic multiplicity of l j: This is the sum Âm j
i=1 ki of the sizes ki of all these Jordan blocks. It is

the maximum degree of the factor x�l j in the characteristic polynomial p(x) of M.

Hence for each distinct eigenvalue l j

algebraic multiplicity
m j

Â
i=1

ki � geometric multiplicity m j

We summarize implications of algebraic and geometric multiplicities on the diagonalizability of M in the
following theorem.

Theorem 20.6. With the notations above,

1. For each distinct eigenvalue l j, algebraic multiplicity = geometric multiplicity = m j if and only
if all Jordan blocks corresponding to l j have sizes ki = 1. In this case, there are m j eigenvectors
corresponding to l j, they are linearly independent, and the null space of M�l jIn has dimension
m j.

2. M is diagonalizable if and only if algebraic multiplicity = geometric multiplicity for all eigenval-
ues, if and only if all Jordan blocks have sizes 1 and hence all superdiagonal entries are zero, if and
only if M has n linearly independent eigenvectors.

3. As a special case, M is diagonalizable if M has n distinct eigenvalues (and hence all Jordan blocks
are of size 1, m j = ki = 1 = algebraic multiplicity = geometric multiplicity).

20.1.5 Special matrices

Definition 20.2 (Square matrices). 1. A real or complex matrix A 2 F
n⇥n, with F = R or C, is sym-

metric if AT = A, skew-symmetric if AT =�A, and orthogonal if AT = A�1.

2. A complex matrix A 2 C
n⇥n is Hermitian if AH = A, skew-Hermitian if AH = �A, and unitary if

AH = A�1.

3. A complex matrix A 2 C
n⇥n is normal if AAH = AHA. If A is real, this reduces to AAT = ATA.

4. Positive semidefiniteness.

• A complex matrix A 2 C
n⇥n is positive semidefinite (psd) (or positive definite (pd)) if xHAx is

real and nonnegative (or real and positive) for all x 2 C
n.

• A real symmetric matrix A 2 R
n⇥n is positive semidefinite (psd) (or positive definite (pd)) if

xTAx� 0 (or xTAx > 0) for all x 2 R
n.

• A complex or real matrix A is negative semidefinite (nsd) (or negative definite (nd)) if �A is
psd (or pd). It is indefinite if there are vectors y,z 2 F 2 {C,R} such that y⇤Ay < 0 < z⇤Az.
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Remark 20.1. 1. A real orthogonal matrix or a unitary matrix has columns (or rows) that are an or-
thonormal list of vectors; indeed they are orthonormal basis of Rn or Cn. A complex orthogonal
matrix however is generally not unitary and their columns (or rows) are generally not orthonormal.

2. All Hermitian (symmetric), skew-Hermitian (skew-symmetric), or unitary complex matrices are
normal, but the converse is not generally true. A real symmetric matrix is normal, but a complex
symmetric matrix may or may not be normal (see Chapter 20.1.6.4). If A is both triangular and
normal, then A is diagonal.

3. A complex Hermitian (skew-Hermitian) matrix behaves like a real symmetric (skew-symmetric)
matrix, e.g., they have real eigenvalues and are normal matrices. It therefore has a spectral decom-
position according to Theorem 20.13. A complex Hermitian matrix has real diagonal entries.

4. A complex symmetric matrix may or may not be normal. It therefore may or may not have a spectral
decomposition (Theorem 20.13). It always have a singular value decomposition (Theorem 20.11)
and a Takagi decomposition (Theorem 20.17), and these are generally different decompositions.

5. Our definition of psd (or pd) requires symmetry for real matrices, but does not require Hermitian for
complex matrices. This is because, for a complex matrix A 2 C

n⇥n, A is psd (or pd) if and only if
A is Hermitian and its eigenvalues are nonnegative (or positive), so our Definition 20.2 for complex
matrices implies Hermitian. For a real matrix A 2 R

n⇥n, on the other hand, A can satisfy xT Ax � 0
for all x 2 R

n but not be symmetric (as long as its symmetric component (A + AT )/2 is psd or pd).
Following [39, Definition 4.1.11, p. 231], we therefore restrict our definition to real symmetric
matrices. Then A is psd (or pd) if and only if all its eigenvalues are nonnegative (or positive) [39,
Theorem 4.1.10, p.231].

Theorem 20.7 (Eigenvalues). 1. A matrix A, real or complex, is invertible if and only if all its eigen-
values are nonzero.

2. If a matrix A is real symmetric or complex Hermitian, then all its eigenvalues are real.

3. A matrix A, real or complex, is psd (pd) if and only if AH = A and all its eigenvalues are real and
nonnegative (positive).

Definition 20.3 (Diagonal dominance). A matrix A 2 C
n⇥n is diagonally dominant if

|Aii| � Â
j: j 6=i

|Ai j| for all rows i

A is strictly diagonally dominant if the inequalities are strict for all rows i.

The Geršgorin disc theorem states that all eigenvalues of a matrix A 2 C
n⇥n lie in the union of n discs

[n
i=1

(
z 2 C

n : |z�Aii| Â
j: j 6=i

|Ai j|
)
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If A is strictly diagonally dominant then the origin is outside Geršgorin discs, i.e., all eigenvalues of A are
nonzero. The geometry of the Geršgorin discs also implies the following property.

Theorem 20.8. 1. A strictly diagonally dominant matrix is invertible (but not necessarily positive def-
inite).

2. Suppose A 2 C
n⇥n is Hermitian with (real) nonnegative diagonal entries Aii � 0.

• If A is diagonally dominant then it is positive semidefinite.
• If A is strictly diagonally dominant then it is positive definite and invertible.

Proof. Part 1 follows from the Geršgorin disc theorem. For part 2, for any x 2 C
n we have

x⇤Ax = Â
i, j

Ai jx⇤i x j = Â
i

 
Aii|xi|2 + Â

j: j 6=i
Ai j x⇤i x j

!

Substitute Aii � Â j: j 6=i |Ai j| (diagonal dominance) to get

x⇤Ax � Â
i

Â
j: j 6=i

�
|Ai j||xi|2 + Ai j x⇤i x j

�
= Â

(i, j):i6= j

�
|Ai j||xi|2 + |A ji||x j|2 + Ai j x⇤i x j +A ji x⇤j xi

�

Since A ji = A⇤i j (A is Hermitian) we have

x⇤Ax � Â
(i, j):i 6= j

|Ai j|
�
|xi|2 + |x j|2 � |x⇤i ||x j|� |x⇤j ||xi|

�
= Â

(i, j):i6= j
|Ai j|

�
|xi|� |x j|

�2 � 0

If A is strictly diagonally dominant then the inequality is strict and therefore A is positive definite.

Unitary matrices have the following properties (e.g. [39, Theorem 2.1.4, p.84]).

Lemma 20.9. Consider a complex matrix U 2Mn := Mn(C). The following are equivalent:

• U is unitary.

• UHU = I.

• The columns of U are orthornormal.

• UH is unitary.

• UUH = I.

• The rows of U are orthornormal.

• kUxk2 = kxk2 for all x 2 C
n where k ·k2 is the Euclidean norm.

In fact, the Euclidean norm is the only vector norm that is unitarily invariant, i.e., kUxk = kxk for all
x 2 C

n and all unitary matrices U with keik= 1; see Chapter 20.1.8.1.

Recall that a unitary matrix is normal because UUH = UHU = I, and hence unitarily diagonalizable
(Theorem 20.13).
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Lemma 20.10. Suppose U 2Mn := Mn(C) is unitary and symmetric. Then

1. If U = diag(a1, · · · ,an) is diagonal then a j = eiq j for some q j 2 R
n.

2. Spectral decomposition. There exist real orthogonal matrix Q 2 R
n⇥n and real q1, · · · ,qn in [0,2p)

such that

U = Q diag
⇣

eiq1 , · · · ,eiqn
⌘

| {z }
L

QT =: QLQT

where l j := eiq j are the eigenvalues of U and the columns of Q are an orthonormal set of corre-
sponding (real) eigenvectors of U .

3. It has a square root, i.e., there is a unitary symmetric matrix B := QL1/2 QT such that Q = B2.

For proof that U is unitarily diagonalizable, i.e., U = QLQ, see Corollary [39, 2.5.18, p.139]. The
existence of the square root B relies on the fact that U is unitarily diagonalizable whose eigenvalues
l j satisfy |l j| = 1, so that BBH = I. Lemma 20.10 justifies the interpretation of a unitary matrix as a
rotation operator, i.e., the product Ux rotates the vector x without expanding its Euclidean norm, kUxk=
kQLQxk= kLQxk= kQxk= kxk.

20.1.6 SVD, spectral decompositions, complex symmetric matrices

In this subsection we review the various matrix decompositions and their relationship, as shown in Figure
20.2.

20.1.6.1 Singular value decomposition for any matrix

Consider a complex matrix A2Cm⇥n. Suppose there exists a real value s � 0 and nonzero vectors v2Cm,
w 2 C

n such that

Aw = s v (20.8)

In this case, (s ,v,w) are called respectively a singular value, associated left singular vector and right
singular vector of A. The next result says that every matrix A has m orthonormal left singular vectors
v1, . . . ,vm 2C

m, n orthonormal right singular vectors w1, . . . ,wn 2C
n, and at most q := min{m,n} strictly

positive singular values s1, . . . ,sq. Like eigenvalues the singular values si are unique. Like eigenvectors,
left and right singular vectors (vi,wi) are generally not unique. As we will see below, they are eigenvectors
of AAH and AHA respectively; but the converse may not hold, i.e., not every eigenvector of AAH and that
of AHA may satisfy (20.8). For example, if (vi,wi) are singular vectors of unit Euclidean norm, so are
(eiq vi, eiq wi) for any q 2 R. Moreover the matrix A can be factorized as follows [39, Theorem 2.6.3,
p.150].
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Figure 20.2: Matrix decompositions. Correction: For complex symmetric A, the unitary factor U in Takagi
factorization is generally not eigenvectors of AAH.
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Consider an m⇥n matrix S and a diagonal matrix Sq = diag(s1, · · · ,sq) of size q := min{m,n}. We
will abuse notation and call S diagonal, even if m 6= n, if S is of the form:

S =

8
>><

>>:

Sq if m = n⇥
Sq 0

⇤
if n > m = q

Sq
0

�
if m > n = q

(20.9)

Theorem 20.11 (Singular value decomposition). For any matrix A 2 C
m⇥n, there exists unitary matrices

V 2 C
m⇥m and W 2 C

n⇥n, and a real diagonal matrix S 2 R
m⇥n of the form in (20.9) with

s1 � s2 · · · � sq � 0

such that

AW = V S or A = V SWH (20.10)

with V�1 = VH and W�1 = WH. Moreover

1. The nonzero singular values of A are the positive square roots of the eigenvalues of AAH (or equiva-
lently of AHA):

si = +
q

li(AAH) = +
q

li(AHA), i = 1, . . . ,q

2. If r  q of the q singular values si are positive, then A is of rank r and

A =
r

Â
i=1

si viwH

i

3. If V and W are unitary matrices such that A = V SWH then

• the columns of V are an orthonormal set of eigenvectors of AAH because AAH = V S2VH, and

• the columns of W are an orthonormal set of eigenvectors of AHA because AHA = WS2WH;

but the converse does not necessarily hold.

If A is real then V and W can be taken as real orthogonal matrices.

The rank of A is the number its positive singular values, which is no less than (and can be greater than)
the number of its nonzero eigenvalues of A. As we will see below (Theorem 20.13) rank(A) is equal to
the number of nonzero (generally complex) eigenvalues if A is normal.

Theorem 20.11 does not provide a method to compute the unitary factors (V,W ) in the singular value
decomposition (20.10). This is because not every pair of orthonormal sets of eigenvectors of AAH and AHA
respectively may be the unitary factors (V,W ) in (20.10) when the eigenvalues associated with AAH or
with AHA are not distinct. We describe how to compute unitary factors (V,W ) in (20.10) when A is square
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(m = n) (see [39, Theorem 2.6.3, p.150] for details). When A is not normal, AAH and AHA are not equal,
but they are unitarily similar since they have the same eigenvalues, i.e., there exists a unitary matrix Y
such that AHA = Y (AAH)YH. Moreover YA is normal and hence it has a spectral decomposition according
to Theorem 20.13, YA = XLXH where L := diag(l1, · · · ,ln) consists of the eigenvalues of YA and the
columns of X are an arbitrary orthonormal set of corresponding eigenvectors of YA. Let li = |li|eiqi ,
Sq := diag(|l1|, · · · , |ln|), D := diag

�
eiq1 , · · · ,eiqn

�
so that L = SqD. Then, since YA = XSqDXH, we

have

A =
⇣

YHX
⌘

| {z }
V

Sq

⇣
DXH

⌘

| {z }
WH

(20.11)

i.e., V := YHX and W := XDH. We illustrate this in the next example.

Example 20.3. Consider A :=


0 1
1 0

�
. Show that

1. Not arbitrary orthonormal sets of eigenvectors of AAH and AHA can be the unitary matrices (V,W )
in the SVD (20.10).

2. Compute (V,W ) according to the prescription (20.11). (Since A is real symmetric and hence normal,
an alternative way to compute a (possibly different) pair (V,W ) is given in Theorem 20.16; see
Example 20.4.)

Solution. The matrices AAH and AHA are

AAH = AHA = A2 =


1 0
0 1

�
= I

Therefore the eigenvalues of AAH and those of AHA are 1 and S = I. Moreover every vector x is an eigen-
vector of AAH and of AHA, but not arbitrary orthonormal sets of eigenvectors can be (V,W ) in SVD (20.10).
For instance, if Q is any unitary matrix (and hence its columns are an orthonormal set of eigenvectors of
AAH and of AHA), V = W = Q does not satisfy (20.10):

QSQH = QQH = I 6= A

It is therefore necessary that V and W are different matrices in (20.10).

To compute (V,W ) using (20.11), we choose Y = I to be the identity matrix that relates AAH and AHA
through unitary similarity, i.e., AHA = I = Y (AAH)YH. Next we compute the spectral decomposition of
YA: the eigenvalues of YA = A are l1 := 1, l2 :=�1 with corresponding orthonormal set of eigenvectors
(unique up to a rotation)

x1 :=
1p
2


1
1

�
, x2 :=

1p
2


1
�1

�

Hence

YA = A = XLXH =
1
2


1 1
1 �1

� 
1 0
0 �1

� 
1 1
1 �1

�
=


0 1
1 0

�
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Then D := diag
�
eiq1 ,eiq2

�
= diag(1,�1) and hence

Sq := diag(|l1|, |l2|) = I, V := YHX =
1p
2


1 1
1 �1

�
, W := XDH =

1p
2


1 �1
1 1

�

It can be verified that indeed A = V SqWH.

Suppose m  n but rank(A) =: r < m. For a given V in the theorem, even though A = V SWH, W
defined by WH := S†VHA generally does not satisfy the singular value decomposition (20.10) because in
that case V SWH = V S

�
S†VHA

�
6= A because V SS†VH 6= Im; see Exercise 20.7. Here S† is obtained from

S by replacing its positive singular values si by 1/si and taking the transpose.

The set of singular values making up S is unique. The unitary factors (V,W ) is non-unique, but given
a pair, all possible pairs can be related, according to the following result from [39, Theorem 2.6.5, p.152].

Theorem 20.12 (Uniqueness of (V,W )). Let A 2 C
m⇥n have a singular value decomposition A = V SWH

as in Theorem 20.11. Then

1. A = V̂ SŴ for some unitary matrices (V̂ ,Ŵ ) if and only if there are unitary block-diagonal matrices
Ṽ and W̃ such that

V̂ = VṼ , Ŵ = WW̃

2. If A is square (m = n) and nonsingular then Ṽ = W̃ .

Properties of singular values.

1. Matrix transpose and conjugate: si(A) = si(AT ) = si(AH) = si(A).

2. Unitary transformation: for any unitary matrices U and V , si(A) = si(UAV ). In particular si(A) =
si(UA) = si(AV ) (setting V = I or U = I).

3. Interlacing properties:

• If B denote A with one of its rows or columns deleted, then

si+1(A)  si(B)  si(A)

• If B denote A with one of its rows and columns deleted, then

si+2(A)  si(B)  si(A)

• If B denote any (m� k)⇥ (n� l) submatrix of A, then

si+k+l(A)  si(B)  si(A)
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4. Singular values of A+B: for any A,B 2 C
m⇥n

• Âk
i=1 si(A+B)  Âk

i=1 (si(A)+si(B)), k = min{m,n}.
• si+ j�1(A+B)  si(A)+s j(B), i+ j�1min{m,n}.

5. Singular values of AB: for any A,B 2 C
m⇥n

• sn(A)si(B)  si(AB)  s1(A)si(B).
• ’k

i=1 si(AB)  ’k
i=1 si(A)si(B).

6. Singular value and eigenvalues: For any matrix A 2 C
n⇥n

• If A is normal, then si(A) = |li(A)|, i = 1, . . . ,n. (Note that li(A) 2 C.)
Proof: Spectral theorem gives A =ULUH; hence AAH =ULLUH =U |L|2UH. Hence |li(A)|2
are eigenvalues of AAH, implying si(A) =

p
li(AAH) = |li(A)|.

• Weyl’s theorem: Assume eigenvalues satisfy |l1(A)| � · · · � |ln(A)|. Then

k

’
i=1

|li(A)| 
k

’
i=1

si(A), k = 1, . . . ,n

Consider the set of complex square matrices, i.e., m = n. Every square matrix A 2 C
n⇥n is similar to a

Jordan form J, i.e., there exists an invertible matrix P 2 C
n⇥n such that

A = PJP�1

A is said to be diagonalizable if its Jordan form J =: L is diagonal. Therefore A is diagonalizable if and
only if A has n linearly independent eigenvectors; see Theorem 20.6. In that case the columns of P are
these eigenvectors, L has the corresponding eigenvalues on its diagonal, and AP = PL.

20.1.6.2 Spectral decomposition for normal matrices

Recall that A is normal if AAH = AHA and that all unitary, Hermitian, or skew-Hermitian matrices are
normal (the converse is not generally true). For any matrices A,B 2 C

n⇥n, if BA = I then B is unique and
B = A�1. This is because A being nonsingular means that Ax = b and xT A = bT has a unique solution x
for any b 2 C

n; take b to be each column of I.

Normal matrices are exactly those that are unitarily diagonalizable to which the spectral theorem
applies [39, Theorem 2.5.3, p.133].

Theorem 20.13 (Spectral theorem for normal matrices). A complex square matrix A 2 C
n⇥n is normal

if and only if it is unitarily diagonalizable, i.e., there exists a unitary matrix U 2 C
n⇥n and a complex

diagonal matrix L 2 C
n⇥n with

A = ULUH =
n

Â
i=1

liuiuHi (20.12)

where
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1. the diagonal entries of L = diag(l1, . . . ,ln) are eigenvalues of A (generally complex);

2. the columns of U are an arbitrary orthonormal set of corresponding eigenvectors of A.

Hence if A is normal, then rank A = number of nonzero eigenvalues and the sum in (20.12) becomes

A = ULUH =
rank A

Â
i=1

liuiuHi

Hence while A is diagonalizable if and only if it has n linearly independent eigenvectors, A is unitarily
diagonalizable (or equivalently normal) if and only if it has an orthonormal set of n eigenvectors.

The eigenvalues L of A in Theorem 20.13 are unique, but the eigenspace of A always has more than
one orthonromal basis. Since two basis U and V can always be related by a unitary matrix, we have the
following uniqueness result from [39, Theorem 2.5.4, p.134].

Theorem 20.14 (Uniqueness of unitary U). Let A 2 C
n⇥n be normal with spectral decomposition A =

ULUH where U is unitary and L is diagonal matrix consisting of the eigenvalues of A. Then

1. A = V LVH for a unitary matrix V if and only if there is a block-diagonal unitary matrix W such that
U = VW .

2. In particular, if A has n distinct eigenvalues then W is a diagonal unitary matrix of the form W =
diag

�
eiq1 , · · · ,eiqn

�
.

3. Two normal matrices A and B are unitarily similar, i.e., A = WBWH for some unitary matrix W , if
and only if they have the same eigenvalues.

For a normal matrix A the eigenvalues li are complex in general. A normal matrix A is Hermitian if
and only if all its eigenvalues are real. If A is Hermitian then the eigenvalues are real [220, Theorem 4.1.5,
p.171].

Theorem 20.15 (Spectral theorem for Hermitian matrices). A complex square matrix A 2 C
n⇥n is Her-

mitian if and only if it is unitarily diagonalizable with real eigenvalues, i.e., there exist a unitary matrices
U 2 C

n⇥n and a real diagonal matrix L 2 R
n⇥n with

A = ULUH =
n

Â
i=1

liuiuHi (20.13)

where

1. L =diag(l1, . . . ,ln) is real and consists of the eigenvalues of A;
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2. the columns of U are an arbitrary orthonormal set of corresponding eigenvectors of A.

Hence if A is Hermitian, then rank A = number of nonzero eigenvalues and the sum in (20.13) becomes

A = ULUH =
rank A

Â
i=1

liuiuHi

Moreover, if A is real and symmetric then U above can be taken as real and orthogonal.

To explain the last statement let A be a real symmetric matrix. First a Hermitian matrix A has real
eigvenvalues l because if v are the corresponding eivenvectors, then Av = lv and hence vHAv = lkvk2.
Taking Hermitian transpose shows vHAHv = vHAv = l̄kvk2 where l̄ denotes the complex conjugate of l .
Therefore l̄ = l , i.e., l is real. Next for eigenvector v, take the Hermitian transpose of Av = lv we have
vHAH = vHA = lvH since l is real. If A is real symmetric then taking the transpose we have Av̄ = l v̄
where v̄ is the componentwise complex conjugate of v. Therefore if v is an eigenvector of a real symmetric
matrix A corresponding to the real eigenvalue l then so is its complex conjugate v̄ as well as the real vector
v+ v̄, i.e., the eigenvector of A can be taken to be real.

For general matrices, about the only characterization of its eigenvalues is that they are roots of the char-
acteristic polynomial (see the discussion leading up to Theorem 20.6). For Hermitian matrices, however,
the spectral theorem leads to a variational characterization of eigenvalues [220, Theorem 4.2.2, p.176]. If
A 2 C

n⇥n is Hermitian then

lmin  xHAx
xHx  lmax, 8x 2 C

n

and

lmin = min
x 6=0

xHAx
xHx

and lmax = max
x 6=0

xHAx
xHx

Theorem 20.15 implies that A is positive semidefinite if and only if A is Hermitian and all its eigen-
values are (real and) nonnegative, and that A is positive definite if and only if A is Hermitian and all its
eigenvalues are (real and) positive.

20.1.6.3 SVD and unitary diagonalization

Consider a normal matrix A 2 C
n⇥n. Since AAH = AHA, they have the same eigenvectors. This does not

mean, in general, that W = V in a singular value decomposition A = V SWH. Indeed, if W = V then it
is necessary that A = V SVH is positive semidefinite, but a normal A may not be positive semidefinite.
The eigenvalues of a normal matrix are complex, those of a Hermitian matrix are real, and those of a
positive semedefinite matrix are real and nonnegative. The following relationship between singular value
decomposition of a normal matrix A and its unitary diagonalization is proved in Exercise 20.9.

Theorem 20.16 (SVD and unitary diagonalization). Consider a normal matrix A 2 C
n⇥n and let A =

ULUH be a unitary diagonalization of A described in Theorem 20.13 where L := diag(li) has the eigen-
values li 2C of A on its diagonal and the columns of U are an arbitrary orthonormal set of corresponding
eigenvectors. Write li = |li|eiqi for some qi 2 R; set qi = 0 if li = 0. Let D := diag(eiq1 , . . . ,eiqm). Then
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1. V := U,S := |L|,W := UDH form a singular value decomposition A = V SWH of A.

2. The pseudo-inverse of A is A† := UL†UH where the diagonal matrix L† is obtained from L by
replacing nonzero li 2 C by their reciprocals.

3. A is Hermitian if and only if D in W is a real matrix, i.e., eiqi = 1 or �1.

4. A is positive semidefinite if and only if V =W :=U and S := L forms a singular value decomposition
A = V SWH = ULUH, i.e., SVD and unitary diagonalization of A coincide.

The theorem also prescribes a way to compute a singular value decomposition A = V SW when A is
normal. In this case we can take the columns of V to be an arbitrary orthonormal set of eigenvectors of A
(which will also be eigenvectors of AA⇤). This may not be the case if A is not normal and the more general
method prescribed by (20.11) is needed to compute SVD (see Example 20.3). The theorem is illustrated
in the following example.

Example 20.4. Use Theorem 20.16 to compute the SVD of the normal matrix A in Example 20.3.

Solution. Clearly A = AH = AT = Ā and A is real symmetric and hence normal. Its eigenvalues are li = ±1
with corresponding eigenvectors in the columns of U in the unitary diagonalization:

A = ULUH :=
1p
2


1 1
1 �1

�
1
�1

�
1 1
1 �1

�
1p
2

Note that A is not positive semidefinite and therefore W 6= U in the singular value decomposition of A.
According to Theorem 20.16, the angle matrix D = diag(1,�1) and the unitary factors (V,W ) in the SVD
A = V SWH are given by

S := |L| = I, V := U =
1p
2


1 1
1 �1

�
, W := UDH =

1p
2


1 �1
1 1

�

which agrees with those computed in Example 20.3. (The decomposition in these two examples agree
because the matrix Y in Example 20.3 has been chosen to be Y = I so that YA = A.)

20.1.6.4 Complex symmetric matrices

Consider a complex symmetric matrix A 2 C
n⇥n with A = AT. Then AH = Ā where Ā is the matrix

obtained from A by taking its complex conjugate componentwise. A is not Hermitian unless A is a real
matrix. The following result, from [39, Corollary 2.6.6, p.153], is called the Takagi’s factorization for
complex symmetric matrices.

Theorem 20.17 (Takagi’s decomposition). A complex matrix A 2 C
n⇥n is symmetric A = AT if and only

if there is a unitary matrix U 2 C
n⇥n and a real nonnegative diagonal matrix S :=diag(s1, . . . ,sn) such

that

A = USUT (20.14)

where S consists of the nonnegative square roots of the eigenvalues of AĀ.
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The columns of the unitary matrix U in (20.14) are generally neither the singular vectors nor the eigen-
vectors of A; see the proof below. A Takagi decomposition of a complex symmetric matrix A is therefore
generally different from its singular value decomposition. A Takagi decomposition of a real symmetric
matrix may not have real factors. In contrast, its spectral decomposition in terms of its eigenvalues, rather
than singular values, can always use real orthogonal factors according to Theorem 20.15.

We provide a sketch of the proof from [39, Corollary 2.6.6, p.153].

Proof sketch of Theorem 20.17. Let a singular value decomposition of A be A = V SWH according to The-
orem 20.11. Since A = AT we have A = V SWH = W̄SV̄H where (V̄ ,W̄ ) are componentwise complex
conjugate of (V,W ). The uniqueness Theorem 20.12 then implies the existence of unitary block-diagonal
matrices (Ṽ ,W̃ ) such that

V̄ = WṼ , W̄ = VW̃ (20.15a)

Indeed, according to Autonne’s uniqueness theorem ([39, Theorem 2.6.5, p.152]), Ṽ and W̃ can be taken
to have identical blocks except the last block corresponding to the diagonal zero-block in (20.9). Specifi-
cally suppose A has rank r and d distinct positive singular values s1 > s2 > · · · > sd > 0 with (algebraic)
multiplicities n1, · · · ,nd . Then r := Âd

i=1 ni  n. We can separate the diagonal of the n⇥ n matrix S into
d +1 diagonal blocks of diagonal submatrices siIni and 0n�r:

S = diag(s1In1 , · · · ,sdInd ,0n�r) (20.15b)

where Ik denotes the identity matrix of size k and 0k denotes the k⇥ k zero matrix. (If A is of full rank
r = n then the zero block 0n�r is absent.) Then Autonne’s uniqueness theorem ([39, Theorem 2.6.5, p.152])
implies that A = V SWH = W̄SV̄H if and only if there are unitary matrices Vi of sizes ni and Vd+1,Wd+1 of
size n� r such that

Ṽ = diag(V1, · · · ,Vd,Vd+1) , W̃ = diag(V1, · · · ,Vd,Wd+1) (20.15c)

and V̄ = WṼ , W̄ = VW̃ . But Ṽ = WHV̄ =
�
VHW̄

�T
= W̃T and hence Vi = VT

i are symmetric matrices
for i = 1, . . . ,d.

Lemma 20.10 then implies that there exist unitary symmetric matrices Ri 2 C
ni⇥ni such that Vi = R2

i
for i = 1, · · · ,d. Substitute this and (20.15) into A = W̄SV̄H, we have A = W̄SVT = VW̃SVT. But (taking
Wd+1 := In�r)

W̃S = diag
�
R2

1, · · · ,R2
d, In�r

�
·diag(s1In1 , . . . ,sdInd ,0n�r) =: RSR

where R := diag(R1, · · · ,Rd, In�r). Hence

A = V (W̃S)VT = V (RSR)VT = (V R)| {z }
U

S (V R)T| {z }
UT

where the last equality uses the symmetry of R. This completes the proof.

A complex symmetric matrix A 2 C
n⇥n may or may not be normal. Complex symmetric matrices are

useful for power systems because the admittance matrix Y (see Chapter 4.2) are complex symmetric, and
generally not Hermitian. See Exercise 17.23 for a complex symmetric matrix that is not diagonalizable
(and hence not normal). See Exercise 17.24 for a complex symmetric matrix that is normal and hence
unitarily diagonalizable, and Exercise 4.3 for characterizations of symmetric and normal matrices.
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20.1.7 Pseudo-inverse

Consider a matrix A 2 C
m⇥n. Let null(A) denote the null space (also called kernel) of A, i.e., null(A) :=

{x 2Cn : Ax = 0}. Let range(A) denote the range space (also called column space) of A, i.e., range(A) :=
{y 2 C

m : y = Ax for some x 2 C
n}. In this subsection we treat A as a mapping from C

n to C
m and

AH a mapping from C
m to C

n. Then null(A) and range(AH) are linear spaces and they are orthogonal
complements of each other because, if x1 2 null(A) and x2 2 range(AH) so that x2 = AHy for some y, then

xH2 x1 = yHAx1 = 0

We denote this fact by the notation C
n = range(AH)� null(A), as shown in the upper panel of Figure

20.3(a). This implies

dim(range(AH)) + dim(null(A)) = n (20.16)

The rank of a matrix A 2Cm⇥n, denoted rank A, is the largest number of linearly independent columns
of A, or equivalently the largest number of linearly independent rows of A. By definition rank A =
dim(range(A)). A square matrix A 2 C

n⇥n is called nonsingular if rank A = n; it is called singular if
rank A < n. Some simple facts are collected in the following.

Theorem 20.18. 1. For any A 2 C
m⇥n, rank A = rank AH = rank AT = rank Ā.

2. For any A 2 C
m⇥n, rank Amin{m,n}.

3. If A 2 C
m⇥m and C 2 C

n⇥n are nonsingular, then for any B 2 C
m⇥n, rank B = rank ABC, i.e., left

or/and right multiplication by a nonsingular matrix does not change rank.

4. For any A 2 C
m⇥n, rank A + dim(null(A)) = n. This follows from substituting rank AH = rank A

into (20.16).

If we consider the matrix A 2 C
m⇥n as a mapping from C

n to C
m and restrict it to A : range(AH)!

range(A), then A is surjective and injective (see Exercise 20.10). Hence an inverse always exists from
range(A)! range(AH). We will denote this inverse by A†; see Figure 20.3(b). Let A = V SWH be its
singular value decomposition and let rank A = r min{m,n}. We will show that

A† = WS†VH (20.17)

where S† is a real diagonal n⇥m matrix of rank r obtained from the m⇥n diagonal matrix S by replacing
the (positive) singular values si by 1/si and taking the transpose. When r = m = n, S† =diag

⇣
1

s1
, . . . , 1

sn

⌘
=

S�1 so that A† = A�1 since

A†A =
⇣

WS�1VH

⌘⇣
V SWH

⌘
= In

In general A†A 6= In but the next result shows that A†A equals In plus a matrix whose columns are in
null(A). Specifically, let A 2 C

m⇥n with rank A = r  min{m,n}. Let A = V SWH be its singular value
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Figure 20.3: (a) Decomposition of Cn into orthogonal complements null(A) and range(AH) and C
m into or-

thogonal complements null(AH) and range(A). (b) A and A† are bijective between range(AH) and range(A)
inverses of each other. (c) A†A projects x 2 C

n onto range(AH) and AA† projects y 2 C
m onto range(A).

See Theorem 20.19.
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decomposition. Decompose the various matrices such that

S =

2

6664

2

64
s1

. . .
sr

3

75 0

0 0

3

7775
=:


Sr 0
0 0

�
, V =:

⇥
Vr Vm�r

⇤
, W =:

⇥
Wr Wn�r

⇤

where Sr is r⇥ r diagonal matrix, the matrices Vr 2 C
m⇥r and Wr 2 C

n⇥r consist of the first r columns of
V and W respectively, and the matrices Vm�r 2 C

m⇥(m�r) and Wn�r 2 C
n⇥(n�r) consist of the remaining

columns of V and W respectively. Then

A =
⇥
Vr Vm�r

⇤Sr 0
0 0

�
WH

r
WH

n�r

�
= VrSrWH

r

A† =
⇥
Wr Wn�r

⇤S�1
r 0
0 0

�
VH

r
VH

m�r

�
= WrS�1

r VH

r

and AH = WrSrVH
r . Hence the range spaces of A,A†,AH depend only on the nonzero singular values

and the first r columns of V and W . The remaining columns Vm�r,Wn�r span their null spaces and can
be interpreted as a measure of how different the pseudo-inverse A† is from an inverse, as the following
theorem shows. The theorem is illustrated in Figures 20.4 and 20.3(c).

Figure 20.4: Orthogonal decomposition of Cn and C
m using singular value decomposition of matrix M.

Theorem 20.19. With the notations above,

1. A† := WS†VH satisfies (In denotes the n⇥n identity matrix)

A†A = In � Wn�rWH

n�r

AA† = Im � Vm�rVH

m�r

2. null(A) = range(Wn�r) and range(AH) = range(Wr).
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3. null(AH) = range(Vm�r) = null(A†) and range(A) = range(Vr).

4. A†A is the orthogonal projection of x 2 C
n onto range(AH). In�A†A is the orthogonal projection of

x 2 C
n onto null(A), i.e., if x̂ := (In�A†A)x then Ax̂ = 0.

5. Similarly AA† is the orthogonal projection of y 2 C
m on to range(A) and Im�AA† is the orthogonal

projection of y 2 C
m onto null(AH).

6. AA†A = A, A†AA† = A†, and AHAA† = AH.

Proof. We have

A†A =
⇥
Wr Wn�r

⇤S�1
r 0
0 0

�
VH

r
VH

n�r

�
·
⇥
Vr Vn�r

⇤Sr 0
0 0

�
WH

r
WH

n�r

�

=
⇥
Wr Wn�r

⇤Ir 0
0 0

�
WH

r
WH

n�r

�
= WrWH

r

Even though WH =W�1, WH
r is not the inverse of Wr (unless r = n 6= m) since Wr is not even square. Since

WWH =
⇥
Wr Wn�r

⇤WH
r

WH
n�r

�
= WrWH

r + Wn�rWH

n�r = In

we have

A†A = In � Wn�rWH

n�r

Similarly AA† = Im � Vm�rVH
m�r.

To show that null(A) = range(Wn�r) consider any x 2 C
n. Since columns of W are an orthonormal

basis of Cn we can write x = Â j b jw j for some b j 2 C where w j are columns of W . Then

Ax = V SWHÂ
j

b jw j = V SÂ
j

b j

2

64
wH

1 w j
...

wH
n w j

3

75 = V S

2

64
b1
...

bn

3

75 = V

2

6664

s1b1
...

srbr
0n�r

3

7775

where 0n�r is the zero vector of size n� r. Since V is nonsingular and s j > 0, Ax = 0 if and only if
b1 = · · · = br = 0. Hence null(A) = range(Wn�r) if and only if x 2 range(Wn�r). That range(AH) =
range(Wr) follows from AH = WSTVH = WrSrVH

r .

The proof of null(A†) = range(Vm�r) follows the same argument and is presented in the matrix notation
as follows. Any y 2 C

m can be written in terms of the columns of V , i.e., y = Vrbr +Vm�rbm�r for some
br,bm�r. Then

A†y = WrS�1
r VH

r (Vrbr +Vm�rbm�r) = WrS�1
r VH

r Vrbr

since VH
r Vm�r = 0r⇥(m�r). Hence A†y = 0 if and only if br = 0 and y = Vm�rbm�r. This means null(A†) =

range(Vm�r). Since AH = WrSrVH
r the same argument shows that null(AH) = range(Vm�r).
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The remaining assertions follow from parts 1, 2, 3. For example

AA†A = A
⇣

In � Wn�rWH

n�r

⌘
= A � AWn�rWH

n�r = A

Similarly A†AA† = A†, and AHAA† = AH.

We remark on some implications of Theorem 20.19.

Remark 20.2 (Ax = b). 1. The theorem implies that A† in (20.17) and A are inverses of each other
when restricted to range(AH) and range(A) (see Exercise 20.11). Therefore, even though (V,W )
in the singular value decomposition are generally not unique, A† is uniquely defined. Treated as a
mapping from C

m to C
n, A† is called a pseudo-inverse of A.

2. There is a solution x for Ax = b if and only if b is in range(A) or equivalently b is orthogonal to null
(AH), in which case the set of solutions is given by

x = A†b + w, w 2 null(A) = range(Wn�r)

Moreover A†b is the solution to Ax = b with the smallest Euclidean norm kxk2 = kA†bk2 +kwk2.

3. Consider Ax = b when b is not in range(A) and therefore there is no x that satisfies this equation.
The theorem says that x̂ = A†b is a ‘best estimate’ of x from b in that Ax̂ equals the projection of b
onto range(A) and the estimation error b�Ax̂ = (Im�AA†)b is the projection of b onto null(AH).
This achieves the minimum estimation error under the Euclidan norm; see Exercise 20.14.

4. Theorem 20.19.6 is easy to understand given Lemmas 20.19.4 and 20.195. Consider any vector
y 2 C

m. The operation AA† removes y’s component in the null space of AH. We can first project
y to range(A) to obtain AA†y and then map it back into C

n to A†(AA†y). Since AA†y is already in
range(A) over which A† is an inverse of A, this operation should be the same as A†, i.e., A†AA†y =
A†y for all y. Similarly the projection operation A†A to range(AH) followed by the mapping A is the
same operation as the mapping A.

For general matrix A 2 C
m⇥n, its pseudo-inverse is given in terms of its singular value decomposition

by (20.17). For special matrices the next result provide some explicit formulae.

Corollary 20.20. Consider a matrix A 2 C
m⇥n with rank A = r  min{m,n}. Let A = V SWH be its

singular value decomposition and A† = WS†VH be its pseudo-inverse.

1. If m = n and A is positive semidefinite then A+Vn�rVH
n�r is invertible and

A† =
⇣

A+Vn�rVH

n�r

⌘�1
�Vn�rVH

n�r

2. If r = m n then A† = AH
�
AAH

��1.

3. If r = n m then A† =
�
AHA

��1 AH.
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4. If r = m = n then A† = A�1.

Proof. Since A is positive semidefinite its singular value decomposition coincides with its spectral decom-
position according to Theorem 20.16.3, so

A = V SWH = V LVH = VrLrVH

r

where V is a unitary matrix whose columns are orthonormal eigenvectors of A, L := diag(li) is the diag-
onal matrix of eigenvalues

l1 � · · · � lr > 0 = lr+1 = · · · = ln

and matrices are decomposed as before:

L =:


Lr 0
0 0

�
, V =:

⇥
Vr Vn�r

⇤
, x =:


xr

xn�r

�
2 C

n

To show that A +Vn�rVH
n�r is invertible consider any x 2 C

n in the null space of A expressed in terms of
the basis V as x = Va =: Vrar +Vn�ran�r. We have

(A+Vn�rVH

n�r)x =
⇣

VrLrVH

r +Vn�rVH

n�r

⌘
(Vrar +Vn�ran�r) = VrLrar + Vn�ran�r

where we have used VH
r Vn�r = 0. Hence

(A+Vn�rVH

n�r)x =
⇥
Vr Vn�r

⇤Lrar
an�r

�
= V


Lrar
an�r

�

Since V and Lr are nonsingular, (A +Vn�rVH
n�r)x = 0 if and only if a = 0, proving the nonsingularity of

A+Vn�rVH
n�r.

To show that A† =
�
A+Vn�rVH

n�r
��1�Vn�rVH

n�r we will prove that A† +Vn�rVH
n�r is the inverse of

A+Vn�rVH
n�r. We have (using again VrVH

n�r = 0)
⇣

A† +Vn�rVH

n�r

⌘⇣
A+Vn�rVH

n�r

⌘
=

⇣
VrL�1

r VH

r +Vn�rVH

n�r

⌘⇣
VrLrVH

r +Vn�rVH

n�r

⌘

= VrVH

r + Vn�rVH

n�r = V VH = In

as desired.

If If r = m n then Vr = V and

S =:
⇥
Sr 0

⇤
, W =:

⇥
Wr Wn�r

⇤

Then A = V SWH = V SrWH
r and hence AAH =

�
V SrWH

r
��

WrSrVH
�
= V S2

rVH is invertible since WH
r Wr =

Ir. Since V is unitary we have
�
AAH

��1
= V S�2

r VH. Hence

AH

⇣
AAH

⌘�1
=

⇣
WrSrVH

⌘⇣
V S�2

r VH

⌘
= WrS�1

r VH = WS†VH = A†

The case of r = nm is similarly proved in Exercise 20.12. If r = m = n then S† = S�1 so that A† = A�1

since A†A =
�
WS�1VH

��
V SWH

�
= In.
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Consider a partitioned matrix A = [B C]. In general A† 6=


B†

C†

�
. 2 Several expressions for A† in

terms of B† and C† are derived in [221] under various necessary and sufficient conditions. The particularly
simple case is the following result from [221, Corollary 1.4].

Lemma 20.21. Suppose A = [B C]. Then

A† =


B†

C†

�

if and only if (I�BB†)C = C (i.e., if and only if C is in null(BH)).

20.1.8 Norms and inequalities

20.1.8.1 Vector norms

This subsection mostly follows [39, Chapter 5].

Definition 20.4 (Normed linear space). Let V be a vector space over the field F with F = R or C. A
function k ·k : V ! R is a norm, or vector norm, on V if, for all x,y 2V and all c 2 F ,

1. Positivity: kxk � 0 and kx| = 0 if and only if x = 0.

2. Homogeneity: kcxk= |c|kxk.

3. Triangular inequality: kx+ yk  kxk+kyk.

The real or complex vector space together with a norm (V,k ·k) is called a normed linear space or normed
vector space.

Examples of vector norms on V = C
n include: for any x 2 C

n,

• Sum norm (l1 norm): kxk1 := Âi |xi|.

• Euclidean norm (l2 norm): kxk2 :=
p

Âi |xi|2.

• Max norm (l• norm):kxk• := maxi |xi|.

• lp norm: kxkp := (Âi |xi|p)1/p, p� 1.

It can be shown that kxk• = limp!• kxkp for all x 2Cn. We therefore often define lp norms for p 2 [1,•].
The Euclidean norm, and positive scalar multiples of the Euclidean norm, are the only norms on C

n that
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Figure 20.5: The boundaries of unit balls for l1, l2 and l• norms.

are unitarily invariant: kUxk2 = kxk2 for any x 2 C
n and any unitary matrix U 2 C

n⇥n (Exercise 20.17).
The unit balls B := {x 2 R

2 : kxk  1} for l1, l2 and l• norms are shown in Figure 20.5.

An example of infinite dimensional normed vector spaces is the set C[a,b] of all continuous real or
complex-valued functions f : [a,b]! R or f : [a,b]! C on the real interval [a,b]. The Lp norms on
C[a,b] are

• L1 norm: k fk1 :=
R b

a | f (t)|dt.

• L2 norm: k fk2 :=
qR b

a | f (t)|2dt.

• Lp norm: k fkp :=
⇣R b

a | f (t)|pdt
⌘1/p

, p� 1.

• L• norm: k fk• := max{| f (x)| : x 2 [a,b]}.

There are two important properties of finite dimensional real or complex vector spaces V (i.e., F = R

or C) that do not necessarily hold for infinite dimensional vector spaces. First all norms are equivalent in
the sense that, given two norms k ·ka and k ·kb on a finite dimensional vector space V , there exist cm,cM
such that (e.g., [39, Corollary 5.4.5, p.327])

cm kxka  kxkb  cM kxka , x 2V (20.18)

This means that if a sequence {xi} ✓ V converges in some norm, it converges in all norms. For lp norms
the best bounds are [39, Problem 5.4.P3, p.333]: for 1 p1 < p2 < •,

kxkp2  kxkp1  n
⇣

1
p1
� 1

p2

⌘

kxkp2

2Let the singular value decompositions of B and C be B = V1S1WH

1 and C = V2SWH

2 . We can write

A =
⇥
V1 V2

⇤S1 0
0 S2

�
WH

1 0
0 WH

2

�

However
�
V MWH

�†
= WM†VH only if V and W are unitary [221, Lemma 1]. The matrix [V1 V2] is not unitary.
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For example kxk2  kxk1 
p

nkxk2, kxk•  kxk1  nkxk•, kxk•  kxk2 
p

nkxk• (see Figure 20.5).
In contrast, for an infinite dimensional vector space such as C[a,b], a sequence { fk} of functions in C[a,b]
may converge under the L1 norm, remains bounded under L2 norm, but diverge under the L• norm (un-
bounded k fkk•).

Second a sequence {xi} ✓ V converges to a vector in a finite dimensional vector space V if and only
if it is a Cauchy sequence, i.e., for any e > 0 there exists a positive integer N(e) such that kxi� x jk  e
for any i, j � N(e). A normed linear space V is said to be complete with respect to its norm k ·k if every
sequence in V that is a Cauchy sequence with respect to k ·k converges to a point in V . Therefore all finite
dimensional real or complex vector spaces are complete with respect to any norm, but infinite dimensional
normed vector spaces, such as C[a,b] with the L1 norm, may not be complete.

Definition 20.5 (Inner product space). Let V be a (finite or infinite dimensional) vector space over the
field F with F = R or C. A function h·, ·i : V ⇥V ! F is an inner product if, for all x,y,z 2 V and all
c 2 F ,

1. Positivity: hx,xi � 0 and hx,xi= 0 if and only if x = 0.

2. Additivity: hx+ y,zi= hx,zi+ hy,zi.

3. Homogeneity: hcx,yi= chx,yi.

4. Hermitian property: hx,yi= hx,yi.

where a denotes the complex conjugate of a 2 F . The real or complex vector space together with an inner
product (V,h·, ·i) is called an inner product space.

Note that regardless of F = R or C, a norm in Definition 20.4 takes value in R whereas an inner
product in Definition 20.5 takes value in F . Implicit in the nonnegativity property is that, while hx,yi 2 F ,
hx,xi 2 R. The function defined on C

n by hx,yi := xHy 2 F := C is an inner product called the Euclidean
inner product. Let M 2 F

n⇥n be a positive definite matrix and define the function hx,yiM := yHMx. Then
h·, ·iM is also an inner product.

If h·, ·i is an inner product on a real or complex vector space V , then the function k · k : V ! [0,•)
defined by kxk := hx,xi1/2 is a norm on V . Such a norm is said to be derived from an inner product.
The Euclidean norm k · k2 is a norm derived from the Euclidean inner product. An inner product space
is therefore also a normed linear space with its derived norm. Not all norms are derived from an inner
product, e.g., k ·k1, k ·k• are not derived norms.

Inner products are defined for infinite dimensional vector spaces as well. For example an inner product
on the vector space C[a,b] of all continuous real or complex-valued functions on the real interval [a,b] is

h f ,gi :=
Z b

a
f (t)g(t)dt, f ,g 2C[a,b]

The L2 norm k fk2 :=
qR b

a | f (t)|2dt defined above is derived from the inner product h f , f i.
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20.1.8.2 Cauchy-Schwartz inequality, Hölder’s inequality, dual norm

We now present an extremely useful inequality, the Cauchy-Schwarz inequality, and two generalizations.

Cauchy-Schwartz and Hölder’s inequalities. The Cauchy-Schwarz inequality is an important property
of all inner products on any finite or infinite dimensional vector space. The inequality holds regardless
of whether the norm on the vector space is derived from the inner product. Hence hx,xi, hy,yi on the
right-hand side of (20.19) may not be the squared norms on V .

Theorem 20.22 (Cauchy-Schwarz inequality). Let (V,h·, ·i) be an inner product space over a field F with
F = R or C. Then

|hx,yi|2  hx,xihy,yi, x,y 2V (20.19)

with equality if and only if x = ay for some a 2 F (i.e., x and y are linearly dependent).

Proof. To prove the Cauchy-Schwarz inequality suppose without loss of generality y 6= 0 (the inequality
holds if x = y = 0). Let z := hy,yix� hx,yiy. Then, since ha1u1 + a2u2,b1v1 + b2v2i = a1b1hu1,v1i+
a1b2hu1,v2i+a2b1hu2,v1i+a2b2hu2,v2i,

0  hz,zi = hhy,yix�hx,yiy, hy,yix�hx,yiyi
= hy,yi2hx,xi � hx,yihy,yihy,xi = hy,yi

�
hx,xihy,yi � |hx,yi|2

�

which implies the inequality since hy,yi> 0.

Cauchy-Schwarz inequality has numerous applications. One example is the following bounds on sam-
ples in terms of their sample mean and standard deviation. Let x1, . . . ,xn be n given real numbers with
sample mean µ and sample standard deviation s defined by:

µ :=
1
n Â

i
xi, s :=

 
1
n Â

i
(xi�µ)2

!1/2

It can then be shown that (Exercise 20.18)

µ � s
p

n�1  xi  µ + s
p

n�1, i = 1, . . . ,n

with equality for some i if and only if xp = xq for all p,q 6= i.

Hölder’s inequalities. A generalization of the Cauchy-Schwarz inequality is Hölder’s inequality. Hölder’s
inequality holds for general Lp spaces (the vector space of measurable functions f for which its Lp norm
is finite), but we will restrict ourselves to V = R

n or Cn with lp norms.
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Theorem 20.23 (Hölder’s inequality). Consider the vector space V = Fn with F = R or C with lp norms,
p 2 [1,•]. Then for any p,q� 1 such that 1

p + 1
q = 1 (with the interpretation that if p = 1 then q = •)

n

Â
i=1

|xiyi|  kxkp kykq , x, y 2V (20.20)

with equality if and only if xp := (xp
i , i = 1, . . . ,n) and yq := (yq

i , i = 1, . . . ,n) are linearly dependent, i.e.,
xp = ayq for some scalar a 2 F .

The theorem can be proved by applying the following property to the convex function f (x) = xp for
p > 1: for all ai � 0, Ân

i=1 ai = 1, for all xi,

f

 
n

Â
i=1

aixi

!


n

Â
i=1

ai f (xi)

Setting p = q = 2 leads to the Cauchy-Schwarz inequality

���xHy
��� 

n

Â
i=1

|xiyi| 
 

n

Â
i=1

x2
i

!1/2 n

Â
i=1

y2
i

!1/2

= kxk2 kyk2, x, y 2V

with equality if and only if the vectors x and y are linearly dependent (xp = ayq , x = a1/pyq/p). Note
that this inequality is weaker than Hölder’s inequality, though the Cauchy-Schwarz inequality holds for
general inner products on arbitrary vector spaces with arbitrary norms.

Dual norm. Another generalization of the Cauchy-Schwarz inequality holds with dual norm, as we
define now. Consider any norm k · k on the vector space V = Fn with F = R or C. Define its dual norm
k ·k⇤ by: for any x 2 Fn

kxk⇤ := max
y:kyk=1

RexHy = max
y:kyk=1

���xHy
��� (20.21)

The maximization is attained since inner product is continuous and the feasible set is compact. (If we
think of xH as an 1⇥n matrix then kxk⇤ is the matrix norm induced by the general vector norm k ·k on F

n;
see below.)

A very useful inequality is

RexHy 
���xHy

���  kxkkyk⇤ 8x,y 2 F
n (20.22)

which follows directly from the definition of the dual norm. It says that the absolute inner product of any
two vectors are upper bounded by the product of the norm of one of the vectors and its dual norm of the
other vector. For the Euclidean norm k · k2 this is the Cauchy-Schwarz inequality, but (20.22) holds for
any norm. Comparing this with Hölder’s inequality (20.20), the left-hand side of (20.22) is smaller than
that of (20.20),

��xHy
��Âi |xiyi|. The norms on the right-hand side of (20.22) are not restricted to lp norms

as those in (20.20) are. Indeed we now use Hölder’s inequality to show that lp and lq norms are the dual
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of each other if 1/p + 1/q = 1, and hence kxkkyk⇤ reduces to the norms in Hölder’s inequality if k · k is
an lp norm.

To simplify exposition we allow p,q with 1/p+1/q = 1 to take values in [1,•] with the interpretation
that if p = 1 then q := •.

Lemma 20.24. Let p,q 2 [1,•] and 1/p+1/q = 1. The lp norm and the lq norm are dual of each other.

Proof. We prove the case of 1 < p < •; the case of p = 1 or p = • follows a similar idea. Fix a pair
1 < p,q < • with 1/p+1/q = 1. Hölder’s inequality implies, for all x 2 Fn,

kxkq � max
y:kykp=1

Â
i

|xiyi| � max
y:kykp=1

���xHy
��� = kxk⇤

Therefore kxkq � kxk⇤, the dual norm of k ·kp. To prove the reverse inequality we have from (20.22)

kxk⇤ � (kykp)
�1
���xHy

��� =

 

Â
i

|yi|p

!�1/p �����Âi
xiyi

����� , 8y 2 F
n

Choose

yi := |xi|q/p xi

|xi|

so that the inequality becomes (using q = 1+ q
p )

kxk⇤ �
 

Â
i

|xi|q
!�1/p

Â
i

|xi|1+q/p =

 

Â
i

|xi|q
! 1

q

= kxkq

Hence kxk⇤ = kxkq when k ·k= k ·kp.

In light of Lemma 20.24, examples of (20.22) include:
���xHy

���  kxkp kykq
�

p�1 +q�1 = 1
�

���xHy
���  kxk2 kyk2 (p = q = 2, Cauchy-Schwarz inequality)

kxk2
2  kxk1 kxk• (y := x, p = 1,q = •)

A crucial fact for the vector space V = R
n or Cn is that the dual of a dual norm is the original norm,

i.e., k ·k⇤⇤ = k ·k for an arbitrary norm k ·k on V (see [39, Theorem 5.5.9, p.338]). For the special case of
lp norms, this is implied by Lemma 20.24. Moreover the only lp norm that is its own dual is the Euclidean
norm k ·k2 ([39, Theorem 5.4.17, p.331]). This fact and a remarkable property of dual norm specialized to
R

n are used in Chapter 20.1.10 to prove a mean value theorem for vector-valued functions (Lemma 20.34).
Specifically, for the vector space V = R

n, it is shown in Chapter 20.1.10 that, given any x 2 R
n, there is

a normalized y⇤(x) 2 R
n with ky⇤(x)k⇤ = 1 such that the norm kxk is attained by their inner product,

kxk= xTy⇤(x). Similarly, there exists an y(x) with ky(x)k= 1 such that kxk⇤ = xTy(x). This is remarkable
because it says that any norm k · k and its dual norm are always attained by the Euclidean inner product
even if k ·k may not be a derived norm, e.g., k ·k1, k ·k•.
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20.1.8.3 Matrix norms

This subsection mostly follows [39, Chapter 5.6]. The set Mm,n := Mm,n(C) of all m⇥n complex matrices
is a vector space whether we view an element A 2Mmn as a vector in V = C

mn over field F = C or R or
an array of numbers in V = C

m⇥n over F = C or R. A matrix norm on Mmn therefore follows the same
definition as in Definition 20.4.

Definition 20.6 (Matrix norm). A function k ·k : Mm,n! R is a matrix norm, or simply a norm, if, for all
complex matrices A,B 2Mm,n, c 2 C,

1. Positivity: kAk � 0 and kAk= 0 if and only if A = 0.

2. Homogeneity: kcAk= |c|kAk.

3. Triangular inequality: kA+Bk  kAk+kBk.

A key difference between the vector spaces Cmn and C
m⇥n is that matrix multiplication is defined for

elements A,B of Cm⇥n. We would therefore like to estimate the ‘size’ of a matrix product AB in terms of
the ‘sizes’ of A and B. This is done by matrix norms k ·k that also satisfies a fourth property:

4. Submultiplicativity: kABk  kAkkBk when A and B have compatible sizes (e.g., m = n) and the
norms are properly defined for AB, A and B.

Not all matrix norms are submultiplicative. Some authors include submultiplicativity in the definition of
matrix norm when restricted to square matrices (m = n), e.g., [39, Chapter 5.6]. In the following we first
discuss a special class of matrix norms, called induced norms, that are not only submultiplicative, but also
have a certain minimality property. Then we discuss vector norms that are lp norms on the vector space
Cn2

. They may or may not be submultiplicative. See Figure 20.6.

Figure 20.6: Matrix norms.

Induced norms. A widely used matrix norm k · km,n on Mm,n(C) is an induced norm, induced by any
vector norms k ·kn and k ·km on Cn and Cm respectively, defined by: for A 2Mm,n,

kAkm,n := max
x:kxkn=1

kAxkm = max
x:x 6=0

kAxkm

kxkn
(20.23)

It is sometimes called an operator norm. Every induced norm is submultiplicative: for A2Cm⇥n, B2Cn⇥k

with arbitrary norms k ·km, k ·kn, k ·kk on C
m, Cn, Ck respectively,

kABkm,k = max
x:x 6=0
kBxk6=0

kABxkm

kxkk
= max

x:x 6=0
kBxk6=0

kABxkm

kBxkn

kBxkn

kxkk
 max

y:y6=0

kAykm

kykn
max
x:x 6=0

kBxkn

kxkk
= kAkm,n kBkn,k

It also satisfies the additional properties:
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1. kIkm,n = 1 for the identity matrix I.

2. kAxkm  kAkm,nkxkn for any A 2 C
m⇥n and any x 2 C

n (follows from submultiplicativity).

3. kAkm,n = max{|yHAx| : kxk= kyk⇤ = 1, x 2 C
n,y 2 C

m}.

Examples of induced norms on Mm,n are norms induced by the lp norm on both C
n and C

m:

kAkp := max
x:kxkp=1

kAxkp = max
x:x 6=0

kAxkp

kxkp

Theorem 20.25. Let A 2 Mm,n a m⇥ n complex matrix. Then the induced norms k · k1, k · k2 and k · k•
satisfy:

1. Max column sum (induced by l1 norm): kAk1 = max j Âi |Ai j|.

2. Max row sum (induced by l• norm):kAk• = maxi Â j |Ai j|.

3. Spectral norm (induced by l2 norm): kAk2 = smax(A) =
q

lmax
�
AHA

�
where smax(A) is the largest

singular value of A and lmax
�
AHA

�
� 0 is the largest eigenvalue of the positive semidefinite matrix

AHA.

4. If A is square and nonsingular then kA�1k2 = 1/smin(A), the reciprocal of the smallest singular
value of A.

5. kAHAk2 = kAAHk2 = kAk2
2.

6. kAk2 = max{|yHAx| : kxk2 = kyk2 = 1, x 2 C
n,y 2 C

m}.

A norm k ·k is unitarily invariant if kAk= kUAVk for all A2Mn and for all unitary matrices U,V 2Mn.
It is self-adjoint if kAk = kAHk for all A 2Mn. The following result shows that the spectral norm is the
only induced norm that is unitarily invariant and self-adjoint [39, Theorems 5.6.34, 5.6.35].

Lemma 20.26. Let k ·k be a submultiplicative matrix norm on Mn. The following are equivalent:

1. k ·k is the spectral norm.

2. k · k is an induced norm that is unitarily invariant, i.e., kAk = kUAVk for all A 2 Mn and for all
unitary matrices U,V 2Mn.

3. k ·k is an induced norm that is self-adjoint, i.e., kAk= kAHk for all A 2Mn.
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Other matrix norms. We can also view a complex matrix A 2 Mm,n as a vector in C
mn and treat the

lp norms on C
mn as matrix norms on Mm,n. We sometimes refer these norms as vector norms on Mm,n.

Examples include

• l1 norm: kAksum := Âi, j |Ai j|.

• l2 or Frobenius norm: kAkF :=
�
Âi, j |Ai j|2

�1/2.

• l• norm: kAkmax := maxi, j |Ai j|.

The Frobenius inner product on complex matrices in Mm,n is defined to be

hA,BiF := tr BHA =
m

Â
i=1

n

Â
j=1

Bi jAi j

It is simply the Euclidean inner product when we view a matrix A2Mm,n as a vector in C
mn. The Forbenius

norm is then derived from the Frobenius inner product, kAkF :=
p
hA,AiF .

They satisfy the following properties

Theorem 20.27. Let A 2Mn be a n⇥n complex matrix.

1. k · ksum and k · kF are submultiplicative matrix norms, but k · kmax is a matrix norm that is not sub-
multiplicative.

2. The Frobenius norm is given by

kAkF =
���tr
⇣

AAH

⌘���
1/2

=
r

Â
i

s2
i (A) =

r
Â

i
li
�
AAH

�

where si(A) denote the singular values of A and li(AAH) denote the eigenvalues of the positive
semidefinite matrix AAH.

3. kAkF = kAHkF = kUAVkF for any unitary matrices U,V 2Mn (unitarily invariant).

Hence while the spectral norm k · k2 is the only unitarily invariant and the only self-adjoint induced
norm (Lemma 20.26), the Frobenius norm k · kF is a unitarily invariant and self-adjoint norm that is not
induced by a vector norm on C

n.

Since Mn is a finite dimensional vector space over field F = C or R, all matrix norms, whether or not
they are submultiplicative, are equivalent in the sense of (20.18) and therefore have the same convergence
sequences. In particular a matrix norm that is not submultiplicative is equivalent to every submultiplicative
matrix norm, and vice versa. Moreover any vector norm on Mn becomes a submultiplicative matrix norm
when scaled up sufficiently [39, Theorems 5.7.8, 5.7.11, pp. 372].

Lemma 20.28. 1. Given any matrix norm N(·) (e.g., a vector norm) on Mn and any submultiplicative
matrix norm k ·k on Mn, there exists finite positive constants cm,cM such that

cmkAk  N(A)  cMkAk, A 2 Mn (20.24)

2. Let N(·) be a vector norm on Mn and c(N) := maxN(A)=1=N(B) N(AB). Then gN(·) is a submulti-
plicative matrix norm on Mn if and only if g � c(N)
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Spectral radius, matrix norm and convergence. Induced norms have a certain minimality property
among matrix norms. This can be useful, e.g., in analyzing iterative algorithms of the form x(t + 1) =
Ax(t). We now describe the relationship between the spectral radius r(A) of a matrix A, its matrix kAk,
and convergence properties of Ak and Â jk A j.

Theorem 20.29 (Spectral radius, singular values, norms). Let k ·k be a submultiplicative matrix norm on
Mn and A 2Mn. Let li and si be the eigenvalues and singular values of A respectively with

|l1| � · · · � |ln|, s1 � · · · � sn

Let r(A) := |l1| denote the spectral radius of A.

1. |l1| s1 and |ln|� sn > 0, i.e., |li| 2 [sn,s1].

2. For all i, 1/kA�1k  |li| r(A) kAk if A is nonsingular.

3. Given any e > 0 there is a submultiplicative matrix norm k · k such that r(A)  kAk  r(A)+ e .
Moreover

r(A) = inf{kAk : k ·k is an induced norm}

In Theorem 20.29, 1 is proved in [39, Theorem 5.6.9], 2 follows from 1 by taking k ·k to be the spectral
norm, and 3 is proved in [39, Lemma 5.6.10, p.347]. See Exercise 20.22 for details.

As mentioned above Mn is a finite dimensional vector space over field F = C or R, convergence of
matrices is defined in the same way as the convergence of elements in any normed vector space (V,k ·k),
i.e., a sequence {xk}✓V converges to a limit x 2V if kxk� xk! 0 as k! •.

Definition 20.7 (Matrix convergence). We say a sequence {Ak}✓Mn (or a power series {Â jk A j}✓Mn)
converges if there exists a matrix A 2Mn such that Ak! A (or Â jk A j! A) as k! • with respect to the
underlying matrix norm k ·k, i.e., if limk!• kAk�Ak= 0 (or limk!• kÂ jk A j�Ak= 0).

All matrix norms, whether or not they are submultiplicative, are norms on Mn and therefore equivalent
in the sense of (20.18). Hence if Ak converges under a norm, it converges under all norms.

Theorem 20.30 (Sequence convergence). Let k ·k be a submultiplicative matrix norm on Mn and A 2Mn.
Let r(A) denote the spectral radius of A.

1. If kAk< 1 then limk!• Ak = 0, i.e.,
��[Ak]i j

��! 0 as k! • for all i, j.

2. r(A) < 1 if and only if limk!• Ak = 0.

3. Gelfand formula: r(A) = limk!• kAkk1/k.

In Theorem 20.30, 1 is proved in [39, Lemma 5.6.11] and uses the fact that if Ak converges then it
converges under the vector norm kAkmax := maxi, j |Ai j|, and 2 is proved in [39, Lemma 5.6.12] and says
that, unlike kAk< 1, r(A) < 1 is both necessary and sufficient for the convergence of limk!• Ak. Theorem
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20.30.3 holds not only for multiplicative matrix norms, but also for any matrix norm, including vector
norms [39, Corollary 5.6.14, Theorem 5.7.10]. It follows from the fact that, under a submultiplicative
matrix norm, Ã := (r(A) + e)�1A has spectral radius strictly less than 1 and converges for any e > 0,
implying that kAkk1/k  r(A)+ e for sufficiently large k. On the other hand r(A)  kAkk1/k and hence
r(A) = limk!• kAkk1/k. Extension to norms that are no submultiplicative makes use of (20.24).

Remark 20.3. We often want to establish kAk < 1 for some matrix norm in order to prove convergence
of sequences or power series of A. We are therefore interested in a minimal matrix norm k · k, i.e., a
submultiplicative norm on Mn such that the only submultiplicative norm N(·) on Mn with N(A) kAk for
all A 2Mn is N(·) = k · k. It can be shown that a submultiplicative matrix norm on Mn is minimal if and
only if it is an induced norm [39, Theorem 5.6.32, p.356].

The sum Sk := Âk
j=0 a j of a finitely many complex numbers a j 2 C does not depend on the order in

which a j are summed. An infinite series S := limk!• Sk = Â•
j=0 a j may, e.g., S := 1� 1 + 1� 1 + · · ·

where the partial sums Sk oscillate between 1 and �1. This motivates a stronger notion of conver-
gence. Specifically an infinite sum Â•

j=0 a j of complex numbers a j 2 C is said to converge absolutely
if limk!• Âk

j=0 |a j| = a for some real number a 2 R.

Definition 20.8 (Series convergence). Considered a norm vector space (Mn,k ·k). We say a power series
{Â jk A j}✓Mn

1. converges if there exists a matrix A2Mn such that Â jk A j! A as k!•, i.e., if limk!• kÂ jk A j�
Ak= 0.

2. converges absolutely if there exists a matrix A 2Mn such that Â jk A j! A) as k! • with respect
to the underlying matrix norm k ·k, i.e., if limk!• kÂ jk A j�Ak= 0.

For a complex power series S(z) := limk!• Âk
j=0 a jz j, it is known that there is a radius of convergence

R� 0, possibly •, such that the power series converges absolutely for |z| < R, diverges if |z| > R, and may
converge or diverge if |z| = R. For any complex n⇥ n matrix A 2 Mn and any submultiplicative matrix
norm k ·k we have

�����Âk
akAk

�����  Â
k

|ak|kAkk  Â
k

|ak|kAkk

where the first inequality is due to the triangular inequality and the second due to submultiplicativity.
This means that a matrix power series Â•

k=0 akAk converges absolutely if there exists a matrix norm k · k
such that kAk < R, the radius of convergence for Âk akzk, i.e., see Exercise 20.24. Such a norm exists if
and only if r(A) < R because, given any e > 0, there exists a (submultiplicative) matrix norm k · k with
r(A) kAk  r(A)+e [39, Lemma 5.6.10, p.347]. This fact and some corollaries are summarized in the
next result [39, pp.350-351].

Theorem 20.31 (Series convergence). Let A 2Mn.

1. Let R be the radius of convergence of a scalar power series Â•
k=0 akzk. The matrix power series

Â•
k=0 akAk converges if r(A) < R, which holds if there exists a multiplicative matrix norm k · k on

Mn such that kAk< R.
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Let k ·k be a submultiplicative matrix norm on Mn.

2. If kI�Ak< 1 then A is nonsingular and

A�1 =
•

Â
k=0

(I�A)k

3. If kAk< 1 then I�A is nonsingular and

(I�A)�1 =
•

Â
k=0

Ak

4. If kIk= 1 (e.g., if k ·k is an induced norm) and kAk< 1 then

1
1+kAk  k(I�A)�1k  1

1�kAk

The theorem is proved in Exercise ??.

20.1.9 Differentiability, complex differentiability, analyticity

Differentiability of real-valued functions. A real-valued function f : R!R is said to be differentiable
at x 2 R if the limit

f 0(x) := lim
h2R
h!0

f (x+h)� f (x)
h

(20.25)

exists. If f 0(x) exists, it is called the gradient or derivative of f at x 2 R. If f is differentiable at every
x 2 X ✓R then f is called differentiable on X . The straight line {h 2R : f (x)+ f 0(x)h} can be interpreted
as a linear approximation of f at x in the sense that the error e(h) is smaller than linear, i.e.,

lim
h!0

e(h)

h
:= lim

h!0

f (x+h)� ( f (x)+ f 0(x)h)

h
= 0

We use this to generalize differentiability to R
n: a real-valued function f : Rn! R is said to be differen-

tiable at x 2 R
n if there exists a vector m 2 R

n such that

lim
h2Rn
h!0

f (x+h)� f (x)�mTh
khk = 0

When this holds, m is called the gradient or derivative of f at x 2 R
n and denoted — f (x). If f is differen-

tiable at every x 2 X ✓R
n then f is called differentiable on X . If f is differentiable with respect to x j 2R,

when all other xk,k 6= j are held fixed, then it is called partially differentiable at x 2 R
n with respect to x j.

The derivative is called the partial derivative of f at x with respect to x j and denoted ∂ f
∂x j

(x):

∂ f
∂x j

(x) := lim
t2R
t!0

f (x+ te j)� f (x)
t
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where e j 2 R
n is the unit vector with 1 in the j position and 0 elsewhere. The row vector of partial

derivatives of f at x 2 R
n is

∂ f
∂x

(x) :=
h

∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
i

The partial derivative ∂ f
∂x (x) describes the behavior of f at x only along the coordinate axes whereas the

derivative — f (x) describes its behavior in all directions. If f is differentiable then it is partially differen-
tiable, but the converse does not generally hold.

Theorem 20.32. If f : Rn! R is differentiable at x 2 R
n then it is partially differentiable at x (i.e., ∂ f

∂x (x)
exists). Moreover its gradient — f (x) is given by

— f (x) =


∂ f
∂x

(x)
�T

The following example shows that the converse may not hold.

Example 20.5. Consider f : R2! R defined by:

f (x,y) :=
⇢

0 if xy = 0
1 if x 6= 0 or y 6= 0

i.e., f = 0 on the x and y-axes and f = 1 everywhere else. It is partially differentiable over R
2. It is

discontinuous at every point on the axes and hence cannot be differentiable at those points.

The partial derivative ∂ f
∂x (x) in Example 20.5 exists, but not continuous, on the axes. If f : X ! R is

partially differentiable on an open set X ✓ R
n and ∂ f

∂x (x) is continuous on X (i.e., the partial derivative
∂ f
∂x (x) exists and is continuous at every x 2 X), then f is called continuously differentiable on X .

Theorem 20.33. If f : X!R is continuously differentiable on an open set X ✓R
n, then it is differentiable

on X .

Complex differentiability of complex-valued functions. A complex-valued function f :C!C is com-
plex differentiable at z 2 C if

f 0(z) := lim
h2C
h!0

f (z+h)� f (z)
h

(20.26)

exists. When f 0(z) exists we will call it the complex derivative or derivative of f at z 2 C. Note that
f 0(z) is generally a complex number. If f is complex differentiable at every z 2 Z ✓ C then f is called
holomorphic on Z.

Even though complex differentiability in (20.26) looks similar to differentiability in (20.25), (20.26)
is a much stronger notion because h must approach 0 from all directions in the complex plane. To see this
we can reformulate a complex-valued function and complex differentiability in R

2 where f : C! C is
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written in terms of its real and imaginary parts, f (x,y) =: fr(x,y)+ i fi(x,y) where x,y 2 R and fr, fi 2 R.
Then (20.26) implies, taking h = t(1+ i0) and h = t(0+ i) respectively,

f 0(x,y) = lim
t2R
t!0

f (x+ t,y)� f (x,y)
t(1+ i0)

= lim
t2R
t!0

✓
fr(x+ t,y)� fr(x,y)

t
+ i fi(x+ t,y)� fi(x,y)

t

◆

f 0(x,y) = lim
t2R
t!0

f (x,y+ t)� f (x,y)
t(0+ i1)

= lim
t2R
t!0

✓
fr(x,y+ t)� fr(x,y)

it
+ i fi(x,y+ t)� fi(x,y)

it

◆

Hence if f =: fr + i fi is holomorphic on Z then it must satisfy

∂ fr

∂x
=

∂ fi

∂y
,

∂ fi

∂x
= �∂ fr

∂y

on Z. These equations are called the Cauchy-Riemann equations.

Analyticity. A real-valued function f : X ! R on an open set X ✓ R is said to be real analytic on X if
at every point x0 2 X there is an open neighborhood Bd (x0) := {x 2 X : |x� x0| < d} around x0 such that

f (x) =
•

Â
k=0

ak(x� x0)
k, x 2 Bd (x0) (20.27a)

Equivalently f is real analytic on X if it is infinitely differentiable so that the Taylor series around every
point x0 2 X converges to f (x) for all x 2 Bd (x0), i.e.,

f (x) =
•

Â
k=0

f (k)(x0)

k!
(x� x0)

k, x 2 Bd (x0) (20.27b)

with ak := f (k)(x0)/k!. The neighborhood Bd (z0) is called the region of convergence for (20.27). A
function f defined on a subset of R is said to be real analytic at x 2 R if there is a neighborhood Bd (x) of
x on which f is real analytic.

A complex-valued function f : Z ! C on an open set Z ✓ C is said to be complex analytic on Z or
analytic on Z if at every point z0 2 Z there is a neighborhood Bd (z0) := {z 2 Z : |z� z0| < d} around z0
such that

f (z) =
•

Â
k=0

ak(z� z0)
k, z 2 Bd (z0) (20.28a)

Equivalently f is analytic on Z if it is infinitely complex differentiable so that the Taylor series around
every point z0 2 Z converges to f (z) for all z 2 Bd (z0), i.e.,

f (z) =
•

Â
k=0

f (k)(z0)

k!
(z� z0)

k, z 2 Bd (z0) (20.28b)

with ak := f (k)(x0)/k!. A function f defined on a subset of C is said to be analytic at z 2 C if there is a
neighborhood Bd (z) of z on which f is analytic.

An important property of holomorphic function is: f : C!C is holomorphic on an open set Z ✓ C if
and only if it is complex analytic on Z.
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20.1.10 Mean value theorems

When restricted to the vector space R
n endowed with any norm k ·k, the definition of dual norm k ·k⇤ in

(20.21) reduces to: for any x 2 R
n,

kxk⇤ := max
y:kyk=1

xTy = max
y:kyk=1

���xTy
��� (20.29)

The maximization is attained since inner product is continuous and the feasible set is compact. Hence
there is a normalized y(x) 2 R

n that satisfies

xTy(x) = kxk⇤ and ky(x)k = 1 (20.30a)

Recall a crucial fact that, for the vector space V = R
n or Cn, the dual of a dual norm is the original norm,

i.e., k ·k⇤⇤ = k ·k for an arbitrary norm k ·k on V (see [39, Theorem 5.5.9, p.338]). Therefore, given any
x 2 R

n, there exists an y⇤(x) 2 R
n such that

xT y⇤(x) = kxk and ky⇤(x)k⇤ = 1 (20.30b)

because

kxk = kxk⇤⇤ = max
y:kyk⇤=1

xT y = xT y⇤(x)

where y⇤(x) is a maximizer (which clearly exists).3 Remarkably, for Rn, (20.30) says that both the norm
and its dual norm of any vector can be attained by the inner product of the vector with another vector, for
any norm that may not be derived from an inner product, e.g., k ·k1, k ·k•.

We now use (20.22) and (20.30b) to prove the mean value theorem for vector-valued functions.

Lemma 20.34. Consider a continuously differentiable function f : Rn! R
m. Given any x,y,w in R

n we
have

wT ( f (y)� f (x)) = wT ∂ f
∂x

(z)(y� x) (20.31a)

k f (y)� f (x)k 
����

∂ f
∂x

(z)
���� ky� xk (20.31b)

where z := ax+(1�a)y for some a 2 [0,1], k ·k is any norm, and for matrix, it denotes the induced norm.
If we take w = ei we obtain the usual mean value theorem for a scalar valued function: fi(y)� fi(x) =
∂ fi
∂x (z)(y� x).

3For the p-norm the dual is the q-norm with p�1 +q�1 = 1 (see Lemma 20.24) and

(y(x))i :=
xp�1

i

kxkp�1
p

sign((xi)
p)

so that xT y(x) = kxkp and ky(x)kq = 1.
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Proof of Lemma 20.34. Fix any x,y,w in R
n. Let z(a) := (1�a)x + ay for a 2 [0,1] so that z(0) = x

and z(1) = y, and z(a) traces the straight path from x to y. Define the function

g(a) := gw(a) := wT f (z(a))

as a function of a 2 [0,1]. Since g is from R to R the standard mean value theorem implies that

g(1)�g(0) = g0(b )

for some b 2 [0,1] that depends on w. Since g(0) = wT f (x) and g(1) = wT f (y) this becomes (using chain
rule)

wT ( f (y)� f (x)) = wT ∂ f
∂x

(z(b ))(y� x)

proving (20.31a).

To prove (20.31b), use (20.30b) to choose w 2 R
n such that4

wT ( f (y)� f (x)) = k f (y)� f (x)k and kwk⇤ = 1

Substituting this w into (20.31a) yields

k f (y)� f (x)k = wT ( f (y)� f (x)) = wT ∂ f
∂x

(z(b ))(y� x)

 kwk⇤ ·
����

∂ f
∂x

(z(b ))(x� y)
����


����

∂ f
∂x

(z(b ))

���� ·kx� yk

proving (20.31b). In the above, the first inequality follows from (20.22) and the second inequality follows
from the definition of the induced norm of ∂ f

∂x . This completes the proof of Lemma 20.34.

20.2 Algebraic graph theory

Consider a graph G = (N,E) with N := {1, . . . ,n}. G can either be undirected or directed with an arbitrary
orientation. Two nodes j and k are adjacent if j ⇠ k 2 E. A complete graph is one where every pair of
nodes is adjacent. A subgraph of G is a graph F = (N0,E 0) with N0 ✓ N and E 0 ✓ E. A clique of G is a
complete subgraph of G. A maximal clique of G is a clique that is not a subgraph of another clique of G.

4 If the norm k ·k is Euclidean then the argument below simplifies to: setting w := f (y)� f (x) in (20.31a) yields

k f (y)� f (x)k2
2 = ( f (y)� f (x))T ∂ f

∂x
(z(b ))(y� x)

 k f (y)� f (x)k2 ·
����

∂ f
∂x

(z(b ))

����
2
ky� xk2

proving (20.31b). This is done in [222].
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By a path connecting nodes j and k we mean either a set of distinct nodes ( j,n1, . . . ,ni,k) such that
( j ⇠ n1),(n1 ⇠ n2), . . . ,(ni ⇠ k) are edges in E or this set of edges, depending on the context. A cycle
(n1, . . . ,ni) is a path such that (n1 ⇠ n2), . . . ,(ni ⇠ n1) are edges in E. By convention we exclude a pair of
adjacent nodes ( j,k) as a cycle. G is connected if there is a path between every pair of nodes. G is k-vertex
connected or k-connected, k = 1, . . . ,n, if it remains connected after removing fewer than k nodes. G is
k-edge-connected, k = 1, . . . ,n, if it remains connected after removing fewer than k edges. Hence if G is
k-connected (k-edge-connected) then it is j-connected ( j-edge-connected), j k. A connected component
of G is a subgraph of G that is connected.

A cycle in G that has no chord (an edge connecting two nodes that are non-adjacent in the cycle) is
called a minimal cycle. G is chordal if all its minimal cycles are of length 3 (recall that an edge ( j,k) is
not considered a cycle). A chordal extension of G is a chordal graph on the same set of nodes as G that
contains G as a subgraph. Every graph has a chordal extension; e.g. the complete graph on the same set
of nodes is a trivial chordal extension.

Consider a directed graph G = (N,E) with |N| = N +1 and |E| = M with an arbitrary orientation. Let
C denote the (N +1)⇥M incidence matrix defined by:

C jl =

8
<

:

1 if l = j! k for some bus k
�1 if l = i! j for some bus i
0 otherwise

Let the N⇥M matrix C denote the reduced incidence matrix of G obtained from C by removing its first
row. If G has c connected components, then rank C = N + 1� c. In particular if G is connected then
rank C = N. Indeed C can be written as a block diagonal matrix with the kth diagonal block Ck being the
incident matrix of the kth connected component that has nk vertices. It can be proved that rank Ck = nk�1.

We take R
N+1 as the node space of G and it has a simple structure. The null space null

⇣
CT
⌘

consists

of all q 2 R
N+1 such that CT q = 0. This implies that q i = q j if (i, j) 2 E is a link, i.e., a vector q is

in null(C) if and only if q i takes the same value at every node in the same connected component. In
particular, if G is connected, then null

⇣
CT
⌘

is span(1) and therefore its orthogonal complement range(C)

has dimension N and consists of all vectors p 2 R
N+1 such that 1T p = 0. See Figure 20.7.

We take RM as the edge space of G.5 Since rank CT
= rank C = N for a connected G, null(C) = M�N;

see Figure 20.7. A cycle in G is a set of edges in E that forms a cycle subgraph. Given a cycle s in G,
pick an orientation for s , say, clockwise. Define the indicator function (vector) z(s) as

zl(s) =

8
><

>:

+1 if edge l is in s and has the same orientation as s
�1 if edge l is in s and has the opposite orientation as s
0 otherwise

Partition N into two nonempty disjoint subsets N1 and N2. A cut in G is a set of edges in E each of which
has one endpoint in N1 and the other endpoint in N2. Given a cut k in G, pick an orientation, say, from N1

5All results in this section extend to the case where the edge space is CM instead.
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to N2. Define the indicator function (vector) z(k) as

zl(k) =

8
><

>:

+1 if edge l is in k and has the same orientation as k
�1 if edge l is in k and has the opposite orientation as k
0 otherwise

Both the vectors z(s) and z(k) are in {0,1,�1}M. Given a partition of N into N1 and N2, the indicator

range ̅'! : dim = ,
{- cut 1, 3 : 3 ∈ 1}

null ̅' : dim = 6 − ,
{- cyc 1, 3 : 3 ∈ 9\1}

ℝ! ℝ"#$

̅"

̅"! range ̅' : dim = ,
{ ; ∶ =!; = 0 }

null ̅'! : dim = 1
span(1)

Figure 20.7: The edge space of a connected graph G is RM = null(C)� range
⇣

CT
⌘

. The cycle subspace

null(C) has dimension M�N with a basis {z(cyc(T, l)) : l 2 G\T}, and the cut subspace range
⇣

CT
⌘

has

dimension N with a basis {z(cut(T, l)) : l 2 T}. The vertex space is RN+1 = null
⇣

CT
⌘
� range(C) with

dimension N and 1.

function z(k) of the cut can be expressed as

z(k) := ±1
2

 

Â
i2N1

ci� Â
i2N2

ci

!

where ci are the ith rows of C. This means that z(k) is in the range space of CT , and hence is orthogonal
to the kernal of C, i.e., if Cz̃ = 0 then zT (k)z̃ = 0. Call the null space of C the cycle subspace of G and its
orthogonal complement the cut subspace of G; see Figure 20.7.

Fix any spanning tree T of G. For each edge l of G not in T , there is a unique cycle consisting of l
and only edges in T ; denote this cycle by cyc(T, l). For each edge l of T , there is a unique cut consisting
of l and only edges not in T ; denotes this cut by cut(T, l). Give cyc(T, l) and cut(T, l) the orientations
that coincide with the orientation of l in G. These definitions are illustrated in Figure 20.8. The following
properties of the edge space of G are illustrated in Figure 20.7.
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(a) Graph and spanning tree T (in purple) (b) Node-edge incidence matrix

T

l = 3

T
1

2
3

4

5 D =

1      1      1      0      0
−1    0      0      0      1
0   −1     0   −1   −1
0      0   −1     1      0

"

#

$
$
$
$

%

&

'
'
'
'

(c) dim(cycle space) = 2;  

T

(d) dim(cut space) = 3; 
l̂ = 4

z cyc T, l̂( )( ) = (0,−1,1,1, 0) z cut T, l( )( ) = (0, 0,1,−1,0)

̅"

Figure 20.8: (a) A connected graph with a spanning tree T . (b) 4⇥ 5 incidence matrix C. (c) The cycle
subspace null(C) with dimension 2, one for each edge not in the spanning tree T , and an example basis
vector z(cyc(T, l)) 2 null(C). (d) The cut subspace range(CT

) with dimension 3, one for each edge in
T , and an example basis vector z(cut(T, l)) 2 range(CT

). The examples z(cyc(T, l)) and z(cut(T, l)) are
indeed orthogonal.
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Theorem 20.35 (Edge space R
M of G). 1. The cycle subspace null(C) is a vector space of dimension

M�N; z(s) 2 null(C) for any cycle s .

2. Given a spanning tree T , the set {z(cyc(T, l)) : l 2 G\T} forms a basis that spans null(C).

3. The cut subspace range
⇣

CT
⌘

is a vector space of dimension N; z(k) 2 range
⇣

CT
⌘

for any cut k .

4. Given a spanning tree T , the set {z(cut(T, l)) : l 2 T} forms a basis that spans range
⇣

CT
⌘

.

5. The edge space of G is the orthogonal direct sum of its cycle subspace and cut subspace, i.e.,
R

M = null(C)� range
⇣

CT
⌘

and zT
s zk = 0 for any zs 2 null(C) and zk 2 range

⇣
CT
⌘

.

Theorem 20.36. 1. (Poincaré 1901) Any square submatrix of the incidence matrix C of a graph G has
determinant equal to 0,+1, or �1.

2. Let F ✓ E with |F | = N. Let CF be an N⇥N submatrix of C, consisting of the intersection of those
N columns of C corresponding to the N edges in F and any N rows of C. Then CF is invertible if
and only if the subgraph induced by F is a spanning tree of G.

3. (Inverse of CT ) Let T be a spanning tree of G. Let CT denote the corresponding N⇥N submatrix.
Then

⇥
C�1

T
⇤

li = ±1 if edge l is in the unique path in T joining node i and the reference node 0
corresponding to the row excluded from CT . Otherwise

⇥
C�1

T
⇤

li = 0.

A basis for the cycle subspace null(C) and that of the cut subspaces range
⇣

CT
⌘

can be explicitly

determined in terms of the incidence matrix C, as follows. Partition C such that columns 1, . . . ,N are the
edges of a spanning tree T of G. Partition C as (node 0 is the reference bus):

C =


CT C�T
d0T d�0T

�
(20.32a)

By Theorem 20.36, CT is invertible and its N rows form a basis since T is a spanning tree of G. Let Zs
denote the M⇥(M�N) matrix whose columns are the basis {z(cyc(T, l)) | l 2G\T} of the cycle subspace
null(C), written as (possibly after rearranging the columns):

Zs =


ZT

IM�N

�
(20.32b)

The lower submatrix of Zs is IM�N because these rows correspond to edges not in the spanning tree T and
the orientations of the cycles have been chosen so that they coincide with the orientation of these edges.
By the definition of Zs we have the important topological relation C Zs = 0. Using (20.32) we have

ZT = �C�1
T C�T

From Theorem 20.36.3, each column of ZT corresponds to a directed edge i! j not in the spanning tree
T , and its nonzero entries correspond to edges on the unique path between node i and node j in T . Hence
a basis for the cycle subspace is given by the columns of

Zs =


�C�1

T C�T
IM�N

�
(20.33a)
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Note that Theorem 20.36 implies that C�1
T has integral entries, so Z also has integral entries. Similarly,

we can explicitly determine the cut matrix. Let Zk denote the M⇥N matrix whose columns are the basis
{z(cut(T, l)) | l 2 T} of the cut subspace range

⇣
CT
⌘

, written as (possibly after rearranging the columns):

Zk =


IN

Z�T

�

Since every column of Kk belongs to the orthogonal complement of null(C), we have ZT
s Kk = 0. Hence

Z�T = CT
�T C�T

T

where M�T := (M�1)T = (MT )�1 for any invertible matrix M and the basis for the cut space is

Zk =


IN

CT
�T C�T

T

�
(20.33b)

Since Zs = �C�1
T C�T and Zk = CT

�T C�T
T we have ZT

s + Zk = 0(M�N)⇥N . This implies for l 2 T and
l̂ 2 G\T that

l 2 cyc(T, l̂) , l̂ 2 cut(T, l)

Example 20.6. For the graph in Figure 20.8 we have

Zs =

2

66664

0 1
�1 �1
1 0
1 0
0 1

3

77775
and Zk =

2

66664

1 0 0
0 1 0
0 0 1
0 1 �1
�1 1 0

3

77775

One can verify that, indeed, ZT
s +Zk = 0.

This structure can be used to understand loop flows in the DC power flow model. We call a line flow
vector P a loop flow if it satisfies power balance with zero injections, i.e., CP = 0. Hence Ps is a loop flow
if and only if it is in the cycle subspace null(C) of G, i.e., Ps = Zs a for some vector a 2 R

M�N . Given
any balanced injection vector p with Â j p j = 0, the line flows P that satisfy p = CP are not unique. If P
satisfies p = CP, so does P+Ps for any loop flow Ps . See Remark 4.10.

A matrix is called totally unimodular if any square submtrix has determinant equal to 0,+1, or �1.
Hence Theorem 20.36.1 implies that the incidence matrix D of any directed graph G is totally unimodular.

Theorem 20.37. Given any (directed) graph G,

1. D is totally unimodular.
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2. If A is a totally unimodular matrix and b is an integral vector, then, for any c, the solution of the
linear program

min
x

cT x subject to Ax b

has an optimal solution which is integral, provided a finite solution exists.

The significance of the theorem is that many optimization problem on graphs have LP formulations
where A is the incidence matrix or its variant, e.g. max flow, shortest path problems.

20.3 Bibliographical notes

There are many excellent texts on linear algebra. Most of the materials in Chapter 20.1.6 can be found in
[220, Chapter 7.3] for singular value decomposition and properties of singular values, in [220, Chapters
2.5, 4.1] for spectral theorems for normal and Hermitian matrices, and [220, Chapter 4.4.] for complex
symmetric matrices. The basic notions of algebraic graph theory in Chapter 20.2 mostly follow [223].

There are many classic texts on nonsmooth convex analysis and optimization (e.g. Rockafellar, Clarke,
...). The materials in Section ?? mostly follow [74, Chapter 5], [173]. Books on nonsmooth analysis
include [224, 173, 225] with [224] focuses more on control theory for applications of nonsmooth analysis
and [173, 225] more on nonsmooth convex optimization. The emphasis of [173] is on R

n whereas that of
[225] is on infinite dimensional vector spaces.

20.4 Problems

Chapters 20.1.3–20.1.6.
Exercise 20.1 (Matrix sum and product). Let A,B 2 C

n⇥n.

1. Show that if A,B are nonsingular then AB is nonsingular but A+B can be singular.

2. Show that if A � 0 and B � 0 then A + B � 0 but AB may not be positive definite. Show that if
AB = BA or if A and B have the same set of eigenvectors then AB � 0. Give an example of A � 0
and B� 0 that share the same set of eigenvectors and hence AB� 0. (Hint: AB = BA if and only if
A and B are simultaneously diagonalizable.)

3. AB = BA is only sufficient for AB � 0. Suppose A � 0, B � 0, and AB 6= BA. Give an example of
A,B where AB� 0 and another example where AB 6� 0.

Exercise 20.2 (Quadratic). Let M = A + iB where A,B 2 R
n⇥n and a = r + ie where r,e 2 R

n. Show
that, if M is (complex) symmetric, then

aHMa = (rTAr + eTAe) + i(rTBr + eTBe)

Show that, if M is (complex) symmetric, then
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1. If A� 0 then M�1 exists and Re(M�1)� 0.

2. If B� 0 then M�1 exists and Im(M�1)� 0.

Exercise 20.3 (Schur complement). Let M 2 C
n⇥n and partition it into blocks:

M =


A B
D C

�

such that A 2 C
(n�k)⇥(n�k), k < n, and the other submatrices are of appropriate dimensions. If M and A

are invertible then

M�1 =


A�1 +A�1B(M/A)�1DA�1 �A�1B(M/A)�1

�(M/A)�1DA�1 (M/A)�1

�

where M/A := C�DA�1B is the Schur complement of A of matrix M.

Exercise 20.4 (Push-through identities). Let A 2 C
n⇥n, B 2 C

n⇥k and C 2 C
k⇥n. Then

1. (In +BC)�1B = B(Ik +CB)�1 provided the inverses exist.

2. (A+BC)�1B = B(A+CB)�1 provided n = k, AB = BA and the inverses exist.

Note that when k⌧ n, Ik +CB can be much easier to invert than In +BC.

Exercise 20.5. Find the singular value decomposition, pseudo-inverse A†, null(A), range(A), null(AT ) and
range(AT ) of the following:

1. A =


a
b

�
.

2. A = [1 2].

3. A =


1 1
0 0

�
.

4. A =


1 1
1 1

�
.

Discuss the existence and uniqueness of solutions to Ax = b given b.
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Exercise 20.6. Consider A =


1 1
1 �2

�
. Let B :=


1
1

�
and C :=


1
�2

�
so that A = [B C]. Show that

A† = A�1 6=


B†

C†

�
.

Exercise 20.7 (Singular value decomposition). On the uniqueness of the unitary matrix W in Theorem
20.11, suppose m n but rank(A) =: r < m. For a given V given in Theorem 20.11, show that W defined
by W ⇤ := S†V ⇤A generally does not satisfy the singular value decomposition (20.10). Here S† is obtained
from S by replacing its positive singular values si by 1/si and taking the transpose.

Exercise 20.8 (Singular value decomposition). Let x 2 C
n be an n⇥1 matrix. Compute a singular value

decomposition of x.

Exercise 20.9 (SVD and unitary diagonalization). Prove Theorem 20.16.

Chapter 20.1.7.

Exercise 20.10 (Pseudo-inverse of A). Consider a matrix A 2 C
m⇥n as a mapping A : Cn ! C

m and its
Hermitian transpose A⇤ : Cm ! C

n. Show that the mapping A restricted from range(A⇤) to range(A) is
surjective and injective. This means that an inverse, denoted A† : range(A)! range(A⇤), always exists for
any matrix A.

Exercise 20.11 (Pseudo-inverse of A). For the mapping A in Exercise 20.10, show that A† = WS†V ⇤, i.e.,
A and A† are inverse of each other when restricted to range(A⇤) and range(A).

Exercise 20.12 (Pseudo-inverse of A). Consider a matrix A 2 C
m⇥n with rank A = r  min{m,n}. Let

A = V SW ⇤ be its singular value decomposition and A† = WS†V ⇤ be its pseudo-inverse. Prove (Corollary
20.20.3): If r = n m then A† = (A⇤A)�1 A⇤.

Exercise 20.13 (Pseudo-inverse of A). Consider a matrix A 2Cm⇥n with rank A = rmin{m,n}. Instead
of using the formula A† = WS†V ⇤, use the fact that A† and A are inverse of each other when restricted to
range(A⇤) and range(A) to prove:

1. If r = m n then A† = A⇤ (AA⇤)�1.
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2. If r = n m then A† = (A⇤A)�1 A⇤.

Exercise 20.14 (Pseudo-inverse and norm minimization). Consider a matrix A2Rm⇥n with rank A = m
n. Show that the pseudo-inverse solution A†b of Ax = b is the optimal solution of the quadratic program

min
x2Rn

1
2
kxk2

2 s.t. Ax = b

Optimization problems often have multiple equivalent formulations that involve different variables and
constraints. The next two exercises explore the relationship between these equivalent constraints and their
Lagrange multipliers when the constraints are affine. See also Exercise ?? on equivalent formulations of
economic dispatch with reduced model.

Exercise 20.15 (Equivalent constraints). Consider the equations A1x = b1 and A2x = b2 with x 2 R
n,

A1 2 R
m⇥n, A2 2 R

k⇥n, b1 2 R
m, b2 2 R

k, and m may not be equal to k. Suppose

• Feasibility: b1 2 range(A1) and b2 2 range(A2) so solutions for these equations always exist.

• Equivalence: x satisfies A1x = b1 if and only if it satisfies A2x = b2.

Remark 20.2 implies that the solution set of A1x = b1 is given by

X1 := {x : x = A†
1b1 +w1, w1 2 null(A1)}

and the solution set of A2x = b2 is given by

X2 := {x : x = A†
2b2 +w2, w2 2 null(A2)}

Show that there is a bijection between X1 and X2.

Exercise 20.16 (Equivalent constraints). Consider the setup in Exercise 20.15 and the equivalent problems

min
x

f (x) subject to A1x = b1 [l1] (20.34)

min
x

f (x) subject to A2x = b2 [l2] (20.35)

with Lagrange multipliers l1,l2 respectively. Suppose f is differentiable (not necessarily convex). Let
(x⇤,l ⇤1 ) be a primal-dual optimal point with zero duality gap for (20.34) and (x⇤,l ⇤2 ) be a primal-dual
optimal point with zero duality gap for (20.35). Show that AT

1 l ⇤1 = AT
2 l ⇤2 .
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Chapter 20.1.8.

Exercise 20.17 (Euclidean norm). Show that the Euclidean norm k ·k2 on C
n is the only unitarily invariant

norm with keik= 1. Positive scalar multiples of Euclidean norms are also unitarily invariant with keik not
necessarily 1.

Exercise 20.18 (Cauchy-Schwarz inequality). Let x1, . . . ,xn be n given real numbers with sample mean µ
and sample standard deviation s defined by:

µ :=
1
n Â

i
xi, s :=

 
1
n Â

i
(xi�µ)2

!1/2

It can then be shown that (Exercise 20.18)

µ � s
p

n�1  xi  µ + s
p

n�1, i = 1, . . . ,n

with equality for some i if and only if xp = xq for all p,q 6= i.

Exercise 20.19 (Hölder’s inequality). Prove Theorem 20.23 on the vector space V = Cn or Rn with lp
norms (Hölder’s inequality): For any p,q� 1 such that 1

p + 1
q = 1

n

Â
i=1

|xiyi|  kxkp kykq , x, y 2V

with equality if and only if xp := (xp
i , i = 1, . . . ,n) and yq := (yq

i , i = 1, . . . ,n) are linearly dependent, i.e.,
xp = ayq for some scalar a 2 F .

Exercise 20.20 (Induced norms). Let A 2Mm,n be a m⇥n complex matrix. Prove Theorem 20.25:

1. Max column sum (induced by l1 norm): kAk1 = max j Âi |Ai j|.

2. Max row sum (induced by l• norm):kAk• = maxi Â j |Ai j|.

3. Spectral norm (induced by l2 norm): kAk2 = smax(A) =
q

lmax
�
AHA

�
where smax(A) is the largest

singular value of A and lmax
�
AHA

�
� 0 is the largest eigenvalue of the positive semidefinite matrix

AHA.

4. If A is square and nonsingular then kA�1k2 = 1/smin(A), the reciprocal of the smallest singular
value of A.

5. kAHAk2 = kAAHk2 = kAk2
2.
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6. kAk2 = max{|yHAx| : kxk2 = kyk2 = 1, x 2 C
n,y 2 C

m}.

Exercise 20.21 (Vector norms on matrices). Prove Theorem 20.27: Let A2Mn be a n⇥n complex matrix.

1. k · ksum and k · kF are submultiplicative matrix norms, but k · kmax is a matrix norm that is not sub-
multiplicative.

2. The Frobenius norm is given by

kAkF =
���tr
⇣

AAH

⌘���
1/2

=
r

Â
i

s2
i (A) =

r
Â

i
li
�
AAH

�

where si(A) denote the singular values of A and li(AAH) denote the eigenvalues of the positive
semidefinite matrix AAH.

3. kAkF = kAHkF = kUAVkF for any unitary matrices U,V 2Mn (unitarily invariant).

Exercise 20.22 (Spectral radius, singular values, norms). Let A 2 Mn. Let k · k be a submultiplicative
matrix norm on Mn and A 2 Mn. Let li and si be the eigenvalues and singular values of A respectively
with

|l1| � · · · � |ln|, s1 � · · · � sn

Let r(A) := |l1| denote the spectral radius of A. Prove Theorem 20.29:

1. |l1| s1 and |ln|� sn > 0, i.e., |li| 2 [sn,s1].

2. For all i, 1/kA�1k  |li| r(A) kAk if A is nonsingular.

3. Given any e > 0 there is a submultiplicative matrix norm k · k such that r(A)  kAk  r(A)+ e .
Moreover

r(A) = inf{kAk : k ·k is an induced norm}

Exercise 20.23 (Sequence convergence). Let k ·k be a submultiplicative matrix norm on Mn and A 2Mn.
Let r(A) denote the spectral radius of A. Prove Theorem 20.30:

1. If kAk< 1 then limk!• Ak = 0, i.e.,
��[Ak]i j

��! 0 as k! • for all i, j.

2. r(A) < 1 if and only if limk!• Ak = 0.

3. Gelfand formula: r(A) = limk!• kAkk1/k.

Exercise 20.24 (Series convergence). Suppose there exists a matrix norm k · k such that kAk < R where
R is the radius of convergence for the power series Âk akzk. Show that the matrix power series Âk akAk

converges absolutely, i.e., limk!• |ak|kAkk
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rithms, I: fundamentals. Springer Verlag, 1993.

[174] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic program-
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