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current/power


balance
network models

single-phase or 3-phase

key difference 
3-phase device models

are far subtler
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Figure 8.1: A simple model of a three-phase system consisting of a source connected through a line to a
load.

8.1.1 Internal and terminal variables











































































































(a) Y configuration












































































































(b) D configuration

Figure 8.2: Internal and external variables associated with a single-terminal device in Y and D configura-
tions.

The internal variables of a generic single-terminal device are shown in Figure 8.2 and defined as
follows:

• VY :=
�
V an,V bn,V cn� 2 C

3, IY :=
�
Ian, Ibn, Icn� 2 C

3, sY :=
�
san,sbn,scn� 2 C

3, (V n, In,sn) 2 C
3:

line-to-neutral voltages, currents, and power across the single-phase devices in Y configuration. By
definition san := V an (Ian)H is the power across the phase-a device, etc. The neutral voltage (with
respect to a common reference point) is denoted by V n and is generally nonzero. A Y -configured
device may or may not have a neutral line which may or may not be grounded and the grounding
impedance zn may or may not be zero. When present, the current on the neutral line is denoted by In

in the direction coming out of the device. The Kirchhoff current law dictates that In = Âf Ifn. The

internal power across the neutral impedance is sn :=
⇣

V n �V n0
⌘

In where In denotes the complex

conjugate of In. The term V nIY , in contrast, is the vector power delivered across the neutral and the
common reference point (e.g., the ground).



Review: single-phase BIM
Network model
1. Network 


•  : buses/nodes

•  : lines/links/edges


2. Each line  is parameterized by 

•  : series admittance

•  : shunt admittances, generally different

G := (N, E)
N := {0} ∪ N := {0} ∪ {1,…, N}
E ⊆ N × N

( j, k) (ys
jk, ym

jk , ym
kj) ∈ ℂ3

ys
jk

ym
jk , ym

kj
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where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.



Review: single-phase BIM
Admittance matrix Y ∈ ℂ(N+1)×(N+1)
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Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:



Assumption: 3-phase BIM

1. All lines are characterized by a 3-wire model

• Only to simplify exposition


• Valid if neutral lines are absent (e.g. connecting  
devices) or grounded with  (Kron reduction)


• Otherwise, 4-wire (including neutral line) or 5-wire 
(including earth return) models should be used.  


• They are conceptually similar to 3-wire model; see 
examples later

Δ
zn
j = 0
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This has exactly the same form as (8.28a), except that the variables and admittances are vectors and
matrices respectively. It generalizes (8.28a) from a single-phase model to a three-phase model. We will
hence characterize a line ( j,k) by its series and shunt admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
. The three-wire

line model (8.31a) is illustrated in Figure 8.6.

Figure 8.6: A three-wire line characterized by 3⇥3 series and shunt admittance matrices
⇣

ys
jk,y

m
jk,y

m
k j

⌘
.

(SL: Add example/exercise from [64, Section 1.A.2] where the shunt admittance ym
jk takes a particular

form that models 3 capacitors in D configuration with each terminal grounded through another capacitor,
so ym

jk itself is an admittance matrix.)

Example 8.4 (External vs internal variables). Figure 8.7 shows a three-phase voltage source connected to
a three-phase impedance load through the line in Figure 8.6. As the figure highlights, the voltages (Vj,Vk)

Figure 8.7: A voltage source connected to an impedance load through the line in Figure 8.6.

and currents (I jk, Ik j) in (8.31a) are terminal voltages and currents regardless of whether the three-phase
devices connected to terminals j and k are in Y or D configuration. The relationship between the terminal
variables and internal variables are derived in Chapters 8.3.1 and 8.3.2.

To describe the relationship between the sending-end line power and the voltages
�
Vj,Vk

�
, define the

matrices S jk,Sk j 2 C
3⇥3 by

S jk := Vj
�
I jk

�H
= Vj

�
Vj �Vk

�H⇣
ys

jk

⌘H

+ VjVH

j

⇣
ym

jk

⌘H

(8.31b)

Sk j := Vk
�
Ik j

�H
= Vk

�
Vk �Vj

�H⇣
ys

jk

⌘H

+ VkVH

k

⇣
ym

k j

⌘H

(8.31c)

2. All transformers are modeled as 3-phase lines, characterized by a 3-wire model

• We will henceforth talk about just lines in network models (even though they may be models for 

transformers)



Bus injection model
Network model

1. A network of  3-phase devices connected by 3-phase lines is 
also modeled by a graph 


2. Each line in  is characterized by  where


•  :  series phase admittance matrix


•  :  shunt phase admittance matrices


3. Each bus (node) has 3 variables 


• Only bus injections  are involved


• Branch flow models also involve branch variables 

N + 1
G

G (ys
jk, ym

jk , ym
kj)

ys
jk ∈ ℂ3×3 3 × 3

ym
jk , ym

kj ∈ ℂ3 3 × 3

(Ij, sj, Vj) ∈ ℂ9

(Ij, sj)
(Ijk, Ikj, Sjk, Skj)
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With shunt admittances. To incorporate the effect of line charging, we denote the series phase impedance
impedance discussed above by zs

jk with a superscript s and its inverse by ys
jk and denote the shunt admit-

tance matrices by
⇣

ym
jk,y

m
k j

⌘
. The terminal voltages

�
Vj,Vk

�
and the sending-end currents

�
I jk, Ik j

�
from

terminals j and terminal k respectively are related according to

I jk = ys
jk

�
Vj �Vk

�
+ ym

jk Vj, Ik j = ys
jk

�
Vk �Vj

�
+ ym

k j Vk (8.10)

This generalizes (8.6a) from a single-phase model to a three-phase model.

8.2 Bus injection models

We have seen in the last section that a three-phase impedance load can be modeled as a single-terminal
device, each terminal with three ports. Its external behavior is described by a phase impedance admittance
y j that relates the phase voltages V and currents I. A three-phase transmission line can be modeled as a
two-terminal device, each terminal with three ports. In this section we derive a bus admittance matrix Y
that models a network of such devices.

8.2.1 Bus admittance matrix Y

Consider a network with N + 1 three-phase terminals connected by three-phase lines represented as an
undirected graph G := (N,E) where every terminal j 2 N and every line ( j,k) 2 E has 3 phases, as shown
in Figure 8.5. (SL: y jk in Figure 8.5 should be ys

jk.) The formulation can be generalized to the case where
a bus or a line can have a single, two, or three phases, with a more cumbersome notation.

Scanned with CamScanner

Figure 8.5: A model of three-phase system.

Each line here may contain elements of transmission line, transformer, load or source. It is character-
ized by series and shunt phase admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j)

⌘
. Associated with each terminal j are

three variables
�
I j,s j,Vj

�
representing the current injection, power injection, and the voltage respectively

at terminal j. The three-phase current injection I j =
⇣

Ia
j , I

b
j , I

c
j

⌘
is in C

3 and its entries are indexed by jf ,
j 2 N,f 2 {a,b,c}. We will refer to jf as a bus or node jf . Similarly for the three-phase power injection

Assumption: 3-phase  circuit representationΠ



Current balance

1. 3-phase sending-end currents:





2. Nodal current balance:


Ijk = ys
jk (Vj − Vk) + ym

jk Vj, Ikj = ys
jk (Vk − Vj) + ym

kj Vk

Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk(Vj − Vk) + ∑

k:j∼k

ym
jk Vj

= ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk
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ym
jj := ∑

k:j∼k

ym
jk

Series and shunt admittances

• 1-phase : scalars

• 3-phase :  (3-wire)  or   (4-wire) matrices3 × 3 4 × 4



Current balance

1. 3-phase sending-end currents:





2. Nodal current balance:


Ijk = ys
jk (Vj − Vk) + ym

jk Vj, Ikj = ys
jk (Vk − Vj) + ym

kj Vk

Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk(Vj − Vk) + ∑

k:j∼k

ym
jk Vj

= ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk
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ym
jj := ∑

k:j∼k

ym
jk

Series and shunt admittances

• 1-phase : scalars

• 3-phase :  (3-wire)  or   (4-wire) matrices3 × 3 4 × 4



Bus injection model
Bus admittance matrix Y

3. In terms of    admittance matrix 





where 





3(N + 1) × 3(N + 1) Y

I = Y V

Yjj := ∑
k:j∼k

ys
jk + ym

jj

Yjk := − ys
jk
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ym
jj := ∑

k:j∼k

ym
jk

 matrices3 × 3

 matrices3 × 3

 vector3(N + 1)

 is admittance matrix of single-phase equivalentY



Bus injection model
Bus admittance matrix Y
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(b) Admittance matrix Y .

Figure 8.6: The admittance matrix Y for a 3-terminal network with no shunt admittances.

ja jb jc 

kb kc ka 

Figure 8.7: A clique of G3f corresponding to line ( j,k) in G.



Bus injection model
Bus admittance matrix Y

The   admittance matrix  leads to an equivalent circuit


which we call the single-phase equivalent of a 3-phase network


3(N + 1) × 3(N + 1) Y

Steven Low     Caltech    Network models



Bus injection model
Single-phase equivalent

Given: 3-phase network  with  buses, described

by  admittance matrix 


Single-phase equivalent circuit  with  nodes


• Each node in  is identified by bus-phase pair 


• Nodes  and  in  are connected if 


• Each line  in  forms a 6-clique in the 1-phase 
equivalent 


Single-phase analysis methods can be applied to single-
phase equivalent  using  

G 3(N + 1)
3(N + 1) × 3(N + 1) Y

G3ϕ 3(N + 1)

G3ϕ ( j, ϕ)

( j, ϕ) (k, ϕ′￼) G3ϕ Yjϕ,kϕ′￼
≠ 0

( j, k) G
G3ϕ

G3ϕ Y
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(b) Admittance matrix Y .

Figure 8.6: The admittance matrix Y for a 3-terminal network with no shunt admittances.

ja jb jc 
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Figure 8.7: A clique of G3f corresponding to line ( j,k) in G.
A clique in  

corresponding


to line  in 

G3ϕ

( j, k) G
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1. Network models: BIM

•  relation 


•  relation (power flow equations)

• Overall model (device + nodal balance)


2. Three-phase analysis


3. Balanced network


4. Symmetric network

IV (I = YV)
sV
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Review: single-phase BIM
Complex line power
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Using  :
Sjk := VjIH
jk

Sjk = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Skj = (ys
jk)

H

( |Vk |2 − VkVH
j ) + (ym

kj)
H

|Vk |2

Line loss


Sjk + Skj = (ys
jk)

H
Vj − Vk

2
+ (ym

jk)
H

|Vj |
2 + (ym

kj)
H

|Vk |2

series impedance shunt impedances



Review: single-phase BIM
Power flow equation
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Nodal power balance   :





In terms of admittance matrix 


sj = ∑k:j∼k Sjk

sj = ∑
k:j∼k

( |Vj |
2 − VjVH

k ) (ys
jk)

H
+ |Vj |

2 (ym
jj )

H

Y

sj =
N+1

∑
k=1

YH
jk Vj VH

k

 complex equations in  complex variables N + 1 2(N + 1) (sj, Vj, j ∈ N)



Bus injection model
Single-phase equivalent

Bus injection model for 3-phase network:


 


where    are th entry of the  admittance matrix 

sϕ
j = ∑

k ∈ N
ϕ′￼∈ {a, b, c}

YH
jϕ,kϕ′￼

Vϕ
j (Vϕ′￼

k )
H

Yjϕ,kϕ′￼
( jϕ, kϕ′￼) 3(N + 1) × 3(N + 1) Y
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This generalizes single-phase BIM:


sj =
N+1

∑
k=1

YH
jk Vj VH

k



Bus injection model

Nodal power balance for 3-phase network


 
sj = ∑
k:j∼k

diag (Vj(Vj − Vk)H(ys
jk)

H
+ VjVH

j (ym
jk)

H)
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generalizes single-phase:


sj = ∑
k:j∼k

( |Vj |
2 − VjVH

k ) (ys
jk)

H
+ |Vj |

2 (ym
jj )

H

sj = diag (VjI𝖧
j )

Single-phase equivalent



Overall model
Device + network
1. Device model for each 3-phase device 


• Internal model on  + conversion rules


• External model on  


• Either can be used

• Power source models are nonlinear; other devices are linear


2. Network model relates terminal vars 


• Nodal current balance (linear): 


• Nodal power balance (nonlinear): 


• Either can be used

(VY/Δ
j , IY/Δ

j , sY/Δ
j )

(Vj, Ij, sj)

(V, I, s)
I = YV

sj = ∑
k:j∼k

diag (Vj(Vj − Vk)𝖧ys𝖧
jk + VjV𝖧

j ym𝖧
jk )
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Overall model
Device + network
Overall model is linear if and only if voltage/current sources and impedances are present


• Power sources lead to nonlinear analysis


• … even though network equation  is linear, device models for power sources are nonlinearI = YV

Steven Low     Caltech    Network models



Outline

1. Network models: BIM


2. Three-phase analysis

• Device specification

• Examples

• General solution approach


3. Balanced network


4. Symmetric network
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Three-phase analysis & optimization

At each bus , there are 20 complex quantities for each 3-phase device

• External vars : 


• Internal vars : 

j
(Vj, Ij, sj), γj

(VYΔ
j , IY/Δ

j , sY/Δ
j ), βj

Steven Low     Caltech    Three-phase analysis

Given: 3-phase devices & their specifications

• Voltage/current/power sources, impedances

• … in  configurationY/Δ

Calculate remaining variables


Solution:

• Write down device+network model

• Solve numerically 

Minimize cost(controllable vars & state)


Solution:

• Write down device+network model

• Write down additional constraints

• Solve numerically 

Analysis Optimization 
Given: 3-phase devices & their specifications


• Voltage/current/power sources, impedances

• … in  configurationY/Δ



Device specification
Ideal devices

1. Voltage source   or  


•  configuration:    neutral voltage


•  configuration:    zero-seq terminal voltage,  zero-seq internal current


2. Current source   or  


3. Power source   or  


•  configuration:  spec generally depends on details of the problem


4. Impedance   or  

(EY, γj) (EΔ, γj, βj)
Y γj := Vn

j

Δ γj :=
1
3

1𝖳Vj βj :=
1
3

1𝖳IΔ

(JY, γj) JΔ

(σY, γj) (σΔ, γj or βj)
Δ

(zY, γj) zΔ
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Device specification
Summary
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{ buses with voltage sources in ,  configurations } Y Δ

{ buses with current sources in ,  configurations } Y Δ

{ buses with impedances in ,  configurations } Y Δ

{ buses with power sources in ,  configurations } Y Δ
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables
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VY/D
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⌘

and terminal variables
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�
at every bus j. This is summarized in Table 9.3.
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.



Device specification
Neutral voltage  for -configured devicesγj Y

1. Neutral voltage  for every -configured device 


•   may be specified directly (e.g.  pu)


•   may be determined from other information (more likely)


2. Indirect specification of 


• Assumption C8.1 (neutral is grounded and voltage ref is ground): 


• Assumption C8.1 with  : 


• Neutral not grounded but  : 


• Such indirect specification provides additional equations to solve for 


3. Neutral voltage  and zero-seq voltage


• For -configured device: 


•    if and only if   

γj := Vn
j Y

γj γj := 1
γj

γj

γj = Vn
j = − zn

j (1𝖳Ij)
zn
j = 0 γj = Vn
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1𝖳VY
j = 0 γj =

1
3
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γj
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Y Vj = VY
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j 1

γj := Vn
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1
3

1𝖳Vj 1𝖳VY
j = 0
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Device specification
Zero-sequence voltage  for -configured devicesγj Δ

1. For -configured voltage sources, zero-seq voltages  need to be specified


•   may be specified by one of its terminal voltages, say, 


2. For -configured current sources and impedances,  need not be specified


•   can be determined once its terminal voltages  is determined from network equations

Δ γj :=
1
3

1𝖳Vj

γj Va
j

Δ γj

γj :=
1
3

1𝖳Vj Vj
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices
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⌘
, determine some or all of the internal variables

⇣
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j , IY/D
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⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Given:  
• device spec in 

• line model


Determine:  
• Some or all of internal variables

• Some or all of terminal variables

blue



Show: 




where    is the Thevenin equivalent of line in series with load 

IΔ
k = Z−1

ThEΔ
j , VΔ

k = zΔ
k Z−1

ThEΔ
j

ZTh := Γzs
jkΓ

𝖳 + zΔ
k

voltage divider rule

Example
-configurationΔ
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To determine the internal voltage and current
�
VY

k , IY
k
�
, apply the conversion rule (8.8) to the terminal

voltage and current (Vk, Ik) to get

VY
k = Vk � V n

k 1 = Vk, IY
k = �Ik

Example 9.4 (Generator/load in D configuration). Repeat Example 9.3 when the devices are in D config-
uration as shown in Figure 9.6, Suppose the following are given:

Figure 9.6: Example 9.4: Three-phase generator in D configuration connected through a three-phase line
to an impedance load in D configuration.

• The voltage source parameters
⇣

ED
j ,g j := 1

3Vj

⌘
.

• The impedance parameters
�
zD

k ,b j := 1
3 ID

k
�
. Let yD

k :=
�
zD

k
��1.

• The line parameters
⇣

ys
jk,y

m
jk := 0,ym

k j := 0
⌘

. We have assumed for simplicity that shunt admittances
are zero.

Show that the voltage V D
k :=

�
V ab

k ,V bc
k ,V ca

k
�

and current ID
k :=

�
Iab
k , Ibc

k , Ica
k

�
internal to the D configuration

are given by

V D
k = G

⇣
zs

jk Y D + I

⌘�1
✓

1
3

GTED
j + g j1

◆

ID
k =

1
3

GY D
⇣

zs
jk Y D + I

⌘�1
✓

1
3

GTED
j + g j1

◆
+ bk1

where Y D := GTyD
k G.

Solution. The current balance equation (9.1) with ym
jk = ym

k j = 0 is:

Ik = ys
jk

�
Vk �Vj

�
= �I j (9.6a)

Given:

• Voltage source 

• Impedance 


• Line parameters 

(EΔ
j , γj, βj)

zΔ
k

(ys
jk, ym

jk = ym
kj = 0)
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Figure 9.6: Example 9.4: Three-phase generator in D configuration connected through a three-phase line
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Show that the voltage V D
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where Y D := GTyD
k G.

Solution. The current balance equation (9.1) with ym
jk = ym

k j = 0 is:

Ik = ys
jk

�
Vk �Vj

�
= �I j (9.6a)

Given:

• Voltage source 

• Impedance 


• Line parameters 

(EΔ
j , γj, βj)

zΔ
k

(ys
jk, ym
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kj = 0)

Solution:

• Current balance:  


• Conversion rule : 




• Internal model:  


Vk = Vj − zs
jkIj

VΔ
k = ΓVk, EΔ

j = ΓVj, Ij = − Ik = Γ𝖳IΔ
k

⟹ VΔ
k = EΔ

j − Γzs
jkΓ

𝖳IΔ
k

VΔ
k = zΔ

k IΔ
k

⟹ (Γzs
jkΓ

𝖳 + zΔ
k ) IΔ

k = EΔ
j
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Solution procedure 
1. Write down current balance equation that relates terminal vars 


2. Write down internal models and conversion rules (or external device models)


3. Solve numerically for desired vars

(V, I)
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D

j , ID
j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j
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j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j
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V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.
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3. Power source
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sY ,g j

�
or
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�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
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⇣
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Details: overall system of equations 

1. Network equation:    


2. Voltage sources:   


3. Current sources:    


4. Impedances:         


Iv

Ic

Ii

=
YvvYvcYvi

YcvYccYci

YivYic Yii

Y

Vv

Vc

Vi

Vv := Γ†
vEv + γv ⊗ 1

Ic := − Γ𝖳
c Jc

Vint
i = Zi Iint

i

Ii = − Γ𝖳
i Iint

i

ΓiVi = Vint
i + γi ⊗ 1
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Solution procedure 
1. Write down current balance equation that relates terminal vars 


2. Write down internal models and conversion rules (or external device models)


3. Solve numerically for desired vars

(V, I)
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or
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�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.
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or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Remark (nonlinearity) 
1. Can always use  in Step 1 (instead of nonlinear power flow equations)


2. If there is no power source, device models are linear  overall system is linear


3. Otherwise, power sources models are nonlinear  overall system is nonlinear

I = YV

⇒

⇒
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Solution procedure 
1. Write down current balance equation that relates terminal vars 


2. Write down internal models and conversion rules (or external device models)


3. Solve numerically for desired vars

(V, I)
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�
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i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D
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j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j

⇣
VY

j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j

⇣
V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Reduced system 

 1.  Solve for 





2. Derive all other variables analytically in terms of 

(Vc, Iint
i )

[𝕀c ⊗ 𝕀ZciΓ𝖳
i

0ΓiZiiΓ𝖳
i + Zi] [

Vc

Iint
i ] = [ Zcc

ΓiZic] Ic − [Acv

Aiv] Vv − [ 0
γi ⊗ 1]

(Vc, Iint
i )
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j
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j ,b j

⌘
,
�
Vj, I j,s j,g j

�
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j

⌘
,
�
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�
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j ,b j

⌘
,
�
Vj, I j,s j,g j

�
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,
�
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

With power sources 
1. Write down current balance equation that relates terminal vars 


2. Write down internal models and conversion rules (or external device models)


3. Solve numerically for desired vars

(V, I)
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
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j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�
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j

⌘
,
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⌘
,
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�
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,
�
Vj, I j,s j

�
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⌘
,
�
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Details: overall system of equations 

1. Network equation:    


2. Voltage sources:   


3. Current sources:    


4. Impedances:         


Iv

Ic

Ii

=
YvvYvcYvi

YcvYccYci

YivYic Yii

Y

Vv

Vc

Vi

Vv := Γ†
vEv + γv ⊗ 1

Ic := − Γ𝖳
c Jc

Vint
i = Zi Iint

i

Ii = − Γ𝖳
i Iint

i

ΓiVi = Vint
i + γi ⊗ 1

same equations 

as before
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�
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i zY

j , g j
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j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�
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j
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V D
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j ,b j

⌘
,
�
Vj, I j,s j,g j

�
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,
�
Vj, I j,s j

�
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p sD

j , g j

⇣
V D
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⌘
,
�
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Details: overall system of equations 
5. Power sources: internal model





   Conversion rules:





σp = diag (Vint
p Iint𝖧

p )

Ip = − Γp Iint
p

ΓpVp = Vint
p + γp ⊗ 1

additional (nonlinear) equations 

for power sources
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Solution procedure 
1. Write down current balance equation that relates terminal vars 


2. Write down internal models and conversion rules (or external device models)


3. Solve numerically for desired vars

(V, I)
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
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jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j
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j ,sD
j

⌘
,
�
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�
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j := JD
j
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⌘
,
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�
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,
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,
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,
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Remark (nonlinearity) 
1. Can always use  in Step 1 (instead of nonlinear power flow equations)


2. If there is no power source, device models are linear  overall system is linear


3. Otherwise, power sources models are nonlinear  overall system is nonlinear

I = YV

⇒

⇒
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Solution procedure 
1. Write down current balance equation that relates terminal vars 


2. Write down internal models and conversion rules (or external device models)


3. Solve numerically for desired vars

(V, I)
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices
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⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY
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j

⌘
,
�
Vj, I j,s j
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v V D
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j
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,
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�
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,
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Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Reduced system 

 1.  Solve for 





2. Derive all other variables analytically in terms of 

(Vc, Iint
i )

[𝕀c ⊗ 𝕀ZciΓ𝖳
i

0ΓiZiiΓ𝖳
i + Zi] [

Vc

Iint
i ] = [ Zcc

ΓiZic] Ic − [Acv

Aiv] Vv − [ 0
γi ⊗ 1]

(Vc, Iint
i )
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2. Three-phase analysis


3. Balanced network

• Three-phase analysis

• Per-phase network

• Per-phase analysis


4. Symmetric network

Steven Low     Caltech    Balanced network



Three-phase analysis

At each bus , there are 20 complex quantities for each 3-phase device

• External vars : 


• Internal vars : 

j
(Vj, Ij, sj), γj

(VYΔ
j , IY/Δ

j , sY/Δ
j ), βj

Steven Low     Caltech    Three-phase analysis

Given: 3-phase devices & their specifications

• Voltage/current/power sources, impedances

• … in  configurationY/Δ

Calculate remaining variables


Solution:

• Write down device+network model

• Solve numerically 

Analysis 

Special case:

• Devices are balanced

• Lines are balanced & decoupled



Device specification 
1. Devices are balanced positive-seq sets:


2. External model of voltage sources:





3. External model of current sources:


Vv = ̂λv ⊗ α+ + γv ⊗ 1

Ic = − ̂μc ⊗ α+

Balanced devices

Steven Low     Caltech    Three-phase analysis




where 

VY/Δ
j := λjα+, j ∈ Nv

IY/Δ
j := μjα+, j ∈ Nc

zY/Δ
j := ζj𝕀, j ∈ Ni

λj, μj, ζj ∈ ℂ
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D

j , ID
j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j

⇣
VY

j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j

⇣
V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.



Device specification 
4. Internal impedance model and conversion rules





Vint
i = (ζi ⊗ 𝕀) Iint

i

Ii = − Γ𝖳
i Iint

i

ΓiVi = Vint
i + γ0

i ⊗ 1

Balanced devices

Steven Low     Caltech    Three-phase analysis
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D

j , ID
j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j

⇣
VY

j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j

⇣
V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.



Balanced lines

Steven Low     Caltech    Three-phase analysis

1. All lines are balanced, i.e.


    


2. Define per-phase admittance matrix 





3.  admittance matrix   becomes 


4. Current balance equation  becomes


ys
jk = ηs

jk𝕀, ym
jk = ηm

jk 𝕀, ym
kj = ηm

kj 𝕀, ηs
jk, ηm

jk , ηm
kj ∈ ℂ

Y1ϕ ∈ ℂ(N+1)×(N+1)

Y1ϕ
jk :=

−ηs
jk, ( j, k) ∈ E, ( j ≠ k)

∑
k:j∼k

(ηs
jk + ηm

jk), j = k

0 otherwise

3(N + 1) × 3(N + 1) Y Y = Y1ϕ ⊗ 𝕀

I = YV

I = (Y1ϕ ⊗ 𝕀) Y



Three-phase analysis problem

Steven Low     Caltech    Three-phase analysis
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3. Power source
�
sY ,g j

�
or

�
sD,g j

�
: It is specified by its internal power and zero-sequence voltage⇣

sY/D,g j

⌘
. See Example 9.11 for other power source specifications and their solution methods.

4. Impedance
�
zY ,g j

�
or zD: A Y -configured impedance j is specified by its internal impedance zY

j and
the neutral voltage g j. A D-configured impedance j is specified by zD

j . Its zero-sequence voltage and
current

�
g j,b j

�
can generally be derived from network equations as we will see in Chapter 9.2.3.

A three-phase analysis problem is: given devices specified as above connected by lines with given
admittance matrices

⇣
ys

jk,y
m
jk,y

m
k j

⌘
, determine some or all of the internal variables

⇣
VY/D

j , IY/D
j ,sY/D

j ,b j

⌘

and terminal variables
�
Vj, I j,s j,g j

�
at every bus j. This is summarized in Table 9.3.

Buses j Specification Unknowns
NY

v VY
j := EY

j , g j

⇣
IY

j ,sY
j

⌘
,
�
Vj, I j,s j

�

ND
v V D

j := ED
j , g j,b j,

⇣
ID

j ,sD
j

⌘
,
�
Vj, I j,s j

�

NY
c IY

j := JY
j ,g j

⇣
VY

j ,sD
j

⌘
,
�
Vj, I j,s j

�

ND
c ID

j := JD
j

⇣
V D

j ,sD
j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
i zY

j , g j

⇣
VY

j , IY
j ,sY

j

⌘
,
�
Vj, I j,s j

�

ND
i zD

j

⇣
V D

j , ID
j ,sD

j ,b j

⌘
,
�
Vj, I j,s j,g j

�

NY
p sY

j , g j

⇣
VY

j , IY
j

⌘
,
�
Vj, I j,s j

�

ND
p sD

j , g j

⇣
V D

j , ID
j ,b j

⌘
,
�
Vj, I j,s j

�

Table 9.3: Three-phase analysis problem: given the specification in blue, compute the remaining un-
knowns in black.

We make a few remarks on the voltage g j. See Remark 9.1 on how the loop flow bk of an impedance
k may depend on b j of a current source j.

Remark 9.3 (Voltage g j). 1. Y configuration. The voltage parameter g j needs to be specified for every
Y -configured device in our formulation here. It may be specified explicitly, or more likely, indirectly.
By that, we mean information additional to generic device models is available to either compute their
values, provide additional equations, or eliminate them in terms of other variables. For instance if
the neutral of a Y -configured device is grounded and all voltages are defined with respect to the
ground, then g j = V n

j = �zn
j

⇣
1TI j

⌘
, which allows the elimination of g j from the model. If the

neutral is grounded directly (i.e., zn
j = 0), then g j = 0. If the neutral is not grounded but the internal

voltage VY
j is known to satisfy 1TVY

j = 0, then g j = 1
31TVj. This is studied in detail in Examples 9.3

and 9.4 for three-wire models as we have been assuming in almost all of our analysis.

For a Y -configured current source, g j is usually not needed to determine its terminal voltage Vj, but
needed to compute its internal voltage VY

j = Vj � g j1 from the terminal voltage Vj.

Given 
• device spec in 

• line model


Determine 
• some or all remaining vars

blue



Balanced voltages & currents
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Theorem 
1. Any solution  consists of generalized balanced vectors in positive sequence, 

i.e.,   for some 


2. All   are balanced if


• For all voltage sources: 


• For all  configured impedances:  

x
xj = ajα+ + bj1 aj, bj ∈ ℂ

xj = ajα+

γv = 0

Y γY
i := (Vn

j , j ∈ NY
i ) = 0



Balanced voltages & currents
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1. Use reduced system to show  consists of generalized balanced vectors


2. Derive all other vars in terms of  and show that they consist of generalized 
balanced vectors

(Vc, Iint
i )

(Vc, Iint
i )

Proof sketch



Balanced voltages & currents
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Lemma 

Reduced system becomes


𝕀c ⊗ 𝕀 (Z1ϕ
ci ⊗ 𝕀) Γ𝖳

i

0 Γi (Z1ϕ
ii ⊗ 𝕀) Γ𝖳

i + (ζi ⊗ 𝕀)
M

[
Vc

Iint
i ] = a′￼⊗ α+ + b′￼⊗ 1

Proof sketch: step 1



Balanced voltages & currents
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Lemma 

Reduced system becomes


𝕀c ⊗ 𝕀 (Z1ϕ
ci ⊗ 𝕀) Γ𝖳

i

0 Γi (Z1ϕ
ii ⊗ 𝕀) Γ𝖳

i + (ζi ⊗ 𝕀)
M

[
Vc

Iint
i ] = a′￼⊗ α+ + b′￼⊗ 1

Proof sketch: step 1

Lemma 

Each  block of  is of the form  


where   and   is one of  

3 × 3 M−1 [M−1]jk
:= vjk 𝕀 + wjk Wjk

vjk, wjk ∈ ℂ Wjk ∈ ℂ3×3 𝕀, Γ, Γ𝖳, ΓΓ𝖳, Γ𝖳Γ



Balanced voltages & currents
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-th  block of  is of the form





because 


             

j 3 × 3 (Vc, IΔ
k )

∑
k

[M−1]jk (a′￼kα+ + b′￼k1) = ∑
k

a′￼k (vjk𝕀 + wjkWjk) α+ + ∑
k

b′￼k (vjk𝕀 + wjkWjk) 1

= ajα+ + bj1

Wjkα+ =

α+  if  Wjk = 𝕀
(1 − α)α+  if  Wjk = Γ

(1 − α2)α+  if  Wjk = Γ𝖳

3α+  if  Wjk = ΓΓ𝖳 or Γ𝖳Γ

Wjk1 = {1  if  Wjk = 𝕀
0  else 

Proof sketch: step 1



Decoupling & per-phase analysis
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Reduced system implies (  coordinate):
α+

̂iv

− ̂μc

̂ii

=
Y1ϕ

vv Y1ϕ
vc Y1ϕ

vi

Y1ϕ
cv Y1ϕ

cc Y1ϕ
ci

Y1ϕ
iv Y1ϕ

ic Y1ϕ
ii

̂λv

̂vc

̂vi

Positive-seq per-phase network

Defines per-phase network 

• Admittance matrix:  


• Voltage sources: 


• Current sources: 


• Impedances :  

Y1ϕ

̂λv

− ̂μc

̂ηi
̂ii = − ̂ηi ̂vi 4 sets of equations in 4 sets of vars ( ̂vc, ̂vi, ̂iv, ̂ii)



Decoupling & per-phase analysis
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Reduced system implies (  coordinate):
1

̂βv

0
̂βi

=
Y1ϕ

vv Y1ϕ
vc Y1ϕ

vi

Y1ϕ
cv Y1ϕ

cc Y1ϕ
ci

Y1ϕ
iv Y1ϕ

ic Y1ϕ
ii

γv

̂γc

̂γi

Zero-seq per-phase network

Defines per-phase network 

• Admittance matrix:  


• Voltage sources: 


• Current sources:  (no device at buses j where current sources are connected)


• Impedances :  

Y1ϕ

γv

0
̂ηi

̂βi = − ̂ηi ( ̂γi − γi) 4 sets of equations in 4 sets of vars ( ̂γc, ̂γi, ̂βv, ̂βi)



Decoupling & per-phase analysis
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Set    and    if


• For all voltage sources: 


• For all  configured impedances:  

̂γ−v := 0 ̂β−c := 0
γv = 0

Y γY
i := (Vn

j , j ∈ NY
i ) = 0

Zero-seq per-phase network



Decoupling & per-phase analysis
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1. Solve positive-seq per-phase network for 


2. Solve zero-seq per-phase network for 


3. Derive terminal voltages  





4. Determine terminal currents  


( ̂vc, ̂vi, ̂iv, ̂ii)
( ̂γc, ̂γi, ̂βv, ̂βi)

V−v

Vj =: vint
j α+ + (γint

j + γj) 1, j ∈ NY
c ∪ NY

i

Vj =: vjα+ + γj1, j ∈ NΔ
c ∪ NΔ

i

I−c

Ij =: iint
j α+ + βint

j 1, j ∈ NY
v ∪ NY

i

Ij =: ijα+, j ∈ NΔ
v ∪ NΔ

i

Per-phase analysis



Outline

1. Network models: BIM


2. Three-phase analysis


3. Balanced network


4. Symmetric network

• Sequence impedances and sources

• Sequence line 

• Three-phase analysis
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Symmetric components
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1. In an unbalanced network, phases are coupled and per-phase analysis is generally not 
applicable


2. If the network has certain symmetry, similarity transformation may lead to sequence 
networks that are decoupled 


• e.g., impedances are balanced, lines are transposed (even if lines are coupled and generations and loads are 
unbalanced)


3. Single-phase analysis can then be applied to each of the decoupled sequence networks.  
This is most useful for fault analysis


4. Without any symmetry, symmetric components may offer no advantage.



Recall: similarity transformation
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1. Complex symmetric Fortescue matrix  and its inverse :





F F−1 = F

F =
1

3
[1 α+ α−] =

1

3

1𝖳

α𝖳
+

α𝖳
−

:=
1

3

1 1 1
1 α α2

1 α2 α

F =
1

3
[1 α− α+] =

1

3

1𝖳

α𝖳
−

α𝖳
+

:=
1

3

1 1 1
1 α2 α
1 α α2

Sequence variables



Recall: similarity transformation
Sequence variables

2.  defines a similarity transformation:





3.  is called the sequence variable of .  Its components are





They are also called symmetric components.


4. Sequence voltage and current:


 

F

x = Fx̃, x̃ := F−1x = Fx
x̃ x

x̃0 :=
1

3
1𝖧x, x̃+ :=

1

3
α𝖧

+x, x̃− :=
1

3
α𝖧

−x

Ṽ = FV, Ĩ = FI

Steven Low     Caltech    Mathematical properties

zero-sequence positive-sequence negative-sequence



Sequence networks
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General method to derive sequence networks: for each (linear) device or line/transformer


1. Write its external model  that relates terminal voltage and current 

• e.g., impedances are balanced, lines are transposed (even if lines are coupled and generations and loads are 

unbalanced)


2. Substitute  and  to obtain the external model  relating the 
sequence vars 


3. With symmetry,  turns out to be diagonal and hence can be interpreted as 3 separate 
devices on 3 decoupled networks called sequence networks


4. Each sequence network can be analyzed separately like a single-phase network

I = AV (V, I)

V = FṼ I = FĨ Ĩ = (FAF) Ṽ
(Ṽ, Ĩ)
F̃AF



Sequence impedance
 configuration Y (zY, zn)
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1. External model (from Ch 8) is, under assumption C8.1:





2. Substituting   to get sequence impedance matrix  :


V = − ZYI  with  ZY := zY + zn 11𝖳 =
zan + zn zn zn

zn zan + zn zn

zn zn zcn + zn

V = FṼ, I = FĨ Z̃Y

Ṽ = − FZYF
⏟

Z̃Y

Ĩ = − Z̃Y Ĩ



Sequence impedance
 configuration Y (zY, zn)
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1. If impedance is balanced, i.e., , then





2. External model   in sequence coordinate becomes decoupled 


zan = zbn = zcn

Z̃Y =
zan + 3zn 0 0

0 zan 0
0 0 zan

Ṽ = − Z̃Y Ĩ

Ṽ0

Ṽ+

Ṽ−

= −
zan + 3zn 0 0

0 zan 0
0 0 zan

Ĩ0

Ĩ+

Ĩ−

diagonal  =  decoupled !



Sequence impedance
 configuration Y (zY, zn)
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Interpretation 

1. The external model  defines sequence impedances on 3 separate (decoupled) 
sequence networks:





2. Each of these decoupled sequence networks can be analyzed like a single-phase network


Ṽ = − Z̃Y Ĩ

zero-seq impedance: Ṽ0 = − (zan + 3zn) Ĩ0

positive-seq impedance: Ṽ+ = − zanĨ+

negative-seq impedance: Ṽ− = − zanĨ−



Sequence impedance
 configuration Δ (zΔ, zn)
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1. External model (from Ch 8) is:


         with


      


2. Substituting   to convert to sequence coordinate:


  


V = − ZΔI + γ1, 1𝖳I = 0

ZΔ :=
1
9

Γ𝖳 zΔ (𝕀 −
1
ζ

1 z̃Δ𝖳)
̂zΔ

Γ

V = FṼ, I = FĨ
Ṽ = − (FZΔF)

Z̃Δ

Ĩ + γ F1, 1𝖳FĨ = 0



Sequence impedance
 configuration Δ (zΔ, zn)

Steven Low     Caltech    Symmetric network

1. If impedance is balanced, i.e., , then





2. External model in sequence coordinate becomes decoupled


zab = zbc = zca

ZΔ =
zab

3 (𝕀 −
1
3

11𝖳), Z̃Δ =
zab

3 [
0 0 0
0 1 0
0 0 1]

0
Ṽ+

Ṽ−

= −
zab

3 [
0 0 0
0 1 0
0 0 1]

Ĩ0

Ĩ+

Ĩ−

, Ĩ0 =
1

3
(Ia + Ib + Ic) = 0

 is KCL because there is no neutral wireĨ0 = 0



Sequence impedance
 configuration Δ (zΔ, zn)
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Interpretation 

1. The relation  defines sequence impedances on 2 decoupled sequence networks:





2.  means zero-seq impedance is open-circuited (no device) in the zero-seq network


3. Positive and negative-seq impedances are , as in a balanced network

Ṽ = − Z̃ΔĨ
zero-seq impedance: null  (Ĩ0 = 0, Z̃0 = ∞, open circuit)

positive-seq impedance: Ṽ+ = −
zab

3
Ĩ+

negative-seq impedance: Ṽ− = −
zab

3
Ĩ−

Ĩ0 = 0
zab/3



Sequence voltage source
 configuration Y (EY, zY, zn)

Steven Low     Caltech    Symmetric network

1. External model (from Ch 8) is, under assumption C8.1:





2. Substituting   to convert to sequence coordinate


V = EY − ZYI  with  ZY := zY + zn 11𝖳 =
zan + zn zn zn

zn zan + zn zn

zn zn zcn + zn

V = FṼ, I = FĨ

Ṽ = FEY
⏟

ẼY

− FZYF
⏟

Z̃Y

Ĩ =: ẼY − Z̃Y Ĩ



Sequence voltage source
 configuration Y (EY, zY, zn)

Steven Low     Caltech    Symmetric network

1. If impedance is balanced, i.e.,  (internal voltage  may be unbalanced), then 
external model in sequence coordinate becomes decoupled:





2. Interpretation: voltage sources on 3 decoupled sequence networks:


zan = zbn = zcn EY

Ṽ0

Ṽ+

Ṽ−

=
ẼY

0

ẼY
+

ẼY
−

−
zan + 3zn 0 0

0 zan 0
0 0 zan

Ĩ0

Ĩ+

Ĩ−

zero-seq voltage source: Ṽ0 = ẼY
0 − (zan + 3zn) Ĩ0

positive-seq voltage source: Ṽ+ = ẼY
+ − zanĨ+

negative-seq voltage source: Ṽ− = ẼY
− − zanĨ−



Sequence voltage source
 configuration Y (EY, zY, zn)

Steven Low     Caltech    Symmetric network

1. If  and  is balanced:





2. Interpretation: voltage source and impedances on decoupled sequence networks:


zan = zbn = zcn EY = Eanα+

Ṽ0

Ṽ+

Ṽ−

=
0

3 Ean

0
−

zan + 3zn 0 0
0 zan 0
0 0 zan

Ĩ0

Ĩ+

Ĩ−

zero-seq impedance: Ṽ0 = − (zan + 3zn) Ĩ0

positive-seq voltage source: Ṽ+ = 3 Ean − zanĨ+

negative-seq mpedance: Ṽ− = − zanĨ−
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Figure 9.8: The sequence networks of a balanced voltage source
�
EY ,zY ,zn� in Y configuration.

where z̃D := zD1 is a column vector and z := 1Tz̃D is a scalar. This is similar to the model (9.41) of D-
configured impedance with the extra term ĜED. Convert to the sequence domain by substituting V = FṼ
and I = FĨ to get

Ṽ = FĜED
| {z }

ẼD

� FZDF| {z }
Z̃D

Ĩ + gF1 =: ẼD � Z̃DĨ + Ṽ0e1, 1TFĨ = 0

where 1TFĨ =
p

3Ĩ0 = 0. This is similar to (9.42) with the extra term (Exercise 9.13)

ẼD := FĜED = L†F
✓

I� 1
z

z̃D 1T
◆

ED with L† :=

2

4
0

(1�a)�1

(1�a2)�1

3

5

If the impedance is balanced, i.e., zab = zbc = zca then z̃D := zab1, z := 3zab, and (Exercise 9.13 and
from (9.43a))

ẼD =

2

4
0

(1�a)�1ẼD
+

(1�a2)�1ẼD
�

3

5 , ZD =
zab

3

✓
I� 1

3
11T

◆
, Z̃D =

zab

3

2

4
0 0 0
0 1 0
0 0 1

3

5

where the sequence voltages are ẼD
+ := 1

3aH
+ED and ẼD

� := 1
3aH

�ED. The zero-sequence voltage ẼD
0 = 0

because there is no neutral line in D configuration. Hence the sequence voltage and current
�
Ṽ , Ĩ

�
satisfy

2

4
0

Ṽ+

Ṽ�

3

5 =

2

4
0

(1�a)�1ẼD
+

(1�a2)�1ẼD
�

3

5 � zab

3

2

4
0
Ĩ+
Ĩ�

3

5 , Ĩ0 =
1p
3

⇣
Ia + Ib + Ic

⌘
= 0 (9.45a)

Hence the voltage sources in the sequence coordinate are unbalanced but decoupled:

zero-seq voltage source: null (Ĩ0 = 0, Z̃0 = •, open circuit)

positive-seq voltage source: Ṽ+ =
ED

+

1�a
� zab

3
Ĩ+

negative-seq voltage source: Ṽ� =
ED

�
1�a2 � zab

3
Ĩ�



Sequence voltage source
 configuration Δ (EΔ, zΔ)

Steven Low     Caltech    Symmetric network

1. External model (from Ch 8) is:


        with





2. Substituting   to convert to sequence domain


V = Γ̂EΔ − ZΔI + γ1, 1𝖳I = 0

Γ̂ :=
1
3

Γ𝖳 (𝕀 −
1
ζ

z̃Δ 1𝖳), ZΔ :=
1
9

Γ𝖳zΔ (𝕀 −
1
ζ

1 z̃Δ𝖳) Γ

V = FṼ, I = FĨ

Ṽ = FΓ̂EΔ

ẼΔ

− FZΔF
Z̃Δ

Ĩ + γF1 =: ẼΔ − Z̃ΔĨ + Ṽ0e1, 3Ĩ0 = 0

 is KCL because there is no neutral wireĨ0 = 0



Sequence voltage source
 configuration Δ (EΔ, zΔ)

Steven Low     Caltech    Symmetric network

1. If impedance is balanced, i.e.,  (internal voltage  may be unbalanced), then external 
model in sequence domain becomes decoupled:





2. Interpretation: voltage sources on positive and negative-sequence networks:


zab = zbc = zca EY

0
Ṽ+

Ṽ−

=
0

(1 − α)−1ẼΔ
+

(1 − α2)−1ẼΔ
−

−
zab

3

0
Ĩ+

Ĩ−

, Ĩ0 = 0

zero-seq voltage source: null  (Ĩ0 = 0, Z̃0 = ∞, open circuit)

positive-seq voltage source: Ṽ+ =
EΔ

+

1 − α
−

zab

3
Ĩ+

negative-seq voltage source: Ṽ− =
EΔ

−

1 − α2
−

zab

3
Ĩ−

voltage source

voltage source



Sequence voltage source
 configuration Δ (EΔ, zΔ)

Steven Low     Caltech    Symmetric network

1. If  and  is balanced:





2. Interpretation: voltage source in positive-seq network and impedance on negative-seq network:


zab = zbc = zca EΔ = Eabα+

0
Ṽ+

Ṽ−

=
0

e−iπ/6 Eab

0
−

zab

3

0
Ĩ+

Ĩ−

zero-seq voltage source: null  (Ĩ0 = 0, Z̃0 = ∞, open circuit)

positive-seq voltage source: Ṽ+ = e−iπ/6 Eab −
zab

3
Ĩ+

negative-seq impedance: Ṽ− = −
zab

3
Ĩ−

voltage source

impedance



Sequence current source
 configuration Y (JY, yY, zn)

Steven Low     Caltech    Symmetric network

1. External model (from Ch 8) is





2. Substituting   to convert to sequence coordinate


I = − JY − yY (V − Vn1)
V = FṼ, I = FĨ

Ĩ = − FJY
⏟̃

JY

− FyYF
⏟

ỸY

Ṽ + VnFyY1



Sequence current source
 configuration Y (JY, yY, zn)

Steven Low     Caltech    Symmetric network

1. If admittance  is balanced, then under assumption C8.1, external model in sequence 
coordinate becomes decoupled (though unbalanced):





2. Interpretation: current sources on 3 decoupled sequence networks:


yY := yan𝕀

(1 + 3 yan zn) Ĩ0

Ĩ+

Ĩ−

= −
J̃Y

0

J̃Y
+

J̃Y
−

− yan
Ṽ0

Ṽ+

Ṽ−

zero-seq current source: Ĩ0 = −
J̃Y

0

1 + 3 yan zn
−

yan

1 + 3 yan zn
Ṽ0

positive-seq current source: Ĩ+ = − J̃Y
+ − yanṼ+

negative-seq current source: Ĩ− = − J̃Y
− − yanṼ−



Sequence current source
 configuration Y (JY, yY, zn)

Steven Low     Caltech    Symmetric network

1. If  and  is balanced then the sequence networks become
yY := yan𝕀 JY := Janα+

zero-seq admittance: Ĩ0 = −
yan

1 + 3 yan zn
Ṽ0

positive-seq current source: Ĩ+ = − 3Jan − yanṼ+

negative-seq admittance: Ĩ− = − yanṼ−

current source
admittance

admittance



Sequence current source
 configuration Δ (JΔ, yΔ)

Steven Low     Caltech    Symmetric network

1. External model (from Ch 8) is





2. Substituting   to convert to sequence coordinate


I = − (Γ𝖳JΔ + YΔ V)
V = FṼ, I = FĨ

Ĩ = − FΓ𝖳JΔ

J̃Δ

+ FYΔF
ỸΔ

Ṽ =: − (J̃Δ + ỸΔṼ)



Sequence current source
 configuration Δ (JΔ, yΔ)

Steven Low     Caltech    Symmetric network

1. If admittance  is balanced, then external model in sequence coordinate becomes 
decoupled (though unbalanced):





2. Interpretation: current sources on 3 decoupled sequence networks:


yΔ := yab𝕀

Ĩ0

Ĩ+

Ĩ−

= −
J̃Δ

0

J̃Δ
+

J̃Δ
−

− 3yab
0

Ṽ+

Ṽ−

zero-seq current source: Ĩ0 = − J̃Δ
0

positive-seq current source: Ĩ+ = − J̃Δ
+ − 3yabṼ+

negative-seq current source: Ĩ− = − J̃Δ
− − 3yabṼ−

non-ideal current source

ideal current source

non-ideal current source



Sequence current source
 configuration Δ (JΔ, yΔ)
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1. If  and  is balanced then the sequence networks become
yΔ := yab𝕀 JΔ := Jabα+

zero-seq current source: null  (Ĩ0 = 0)
positive-seq current source: Ĩ+ = − 3e−iπ/6Jab − 3yabṼ+

negative-seq admittance: Ĩ− = − 3yabṼ−

current source

admittance 3yab

open circuit (no device)



Sequence line

Steven Low     Caltech    Symmetric network

1. Line model with zero shunt admittances





2. Substituting   to convert to sequence coordinate


Vj − Vk = zs
jk Ijk

V = FṼ, I = FĨ

Ṽj − Ṽk = (Fzs
jkF)

z̃s
jk

Ĩjk =: z̃s
jk Ĩjk



Sequence line

Steven Low     Caltech    Symmetric network

1. If phase impedance matrix  is symmetric:





then the sequence impedance matrix  is diagonal (decoupled):


zs
jk

zs
jk =

z1 z2 z2

z2 z1 z2

z2 z2 z1

z̃s
jk

z̃s
jk =

z1 + 2z2 0 0
0 z1 − z2 0
0 0 z1 − z2



Sequence line

Steven Low     Caltech    Symmetric network

2. Interpretation: the 3-phase line becomes 3 separate (decoupled) sequence networks





zero-seq impedance: Ṽj,0 − Ṽk,0 = (z1 + 2z2) Ĩjk,0

positive-seq impedance: Ṽj,+ − Ṽk,+ = (z1 − z2) Ĩjk,+

negative-seq impedance: Ṽj,− − Ṽk,− = (z1 − z2) Ĩjk,−



Outline

1. Network models: BIM


2. Three-phase analysis


3. Balanced network


4. Symmetric network

• Sequence impedances and sources

• Sequence line 

• Three-phase analysis

Steven Low     Caltech    Symmetric network



Symmetric network

Steven Low     Caltech    Symmetric network

A 3-phase network is symmetric if 


1. All impedances are symmetric, 


2. All voltage sources have symmetric series impedances 


3. All current sources have symmetric shunt admittances 


4. All lines  have symmetric series impedances  and zero shunt 

admittances


zY/Δ
j = zan/ab

j 𝕀

zY/Δ
j = zan/ab

j 𝕀

yY/Δ
j = yan/ab

j 𝕀

( j, k) zs
jk =

z1
jk z2

jk z2
jk

z2
jk z1

jk z2
jk

z2
jk z2

jk z1
jk

It can be shown that its sequence networks are decoupled (see textbook)



Example
Symmetric network
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We illustrate the analysis of sequence networks with an example. (SL: [2, Chapter 8] contains good
examples.)

Example 9.11 (Sequence network analysis). Consider the network shown in Figure 9.9 where a voltage
source and a current source supply power through two lines to two loads in parallel. Suppose the network

Figure 9.9: Example 9.11: Three-phase unbalanced sources supplies power two balance loads in parallel
through symmetric lines.

is symmetric (Definition 9.1) and C8.1 holds (i.e., all neutrals are grounded and voltages are defined with
respect to the ground). Given the Y -configured voltage source

�
EY ,zY ,zn�, the D-configured current source�

JD,yD�
, the balanced impedances

�
zY ,zn�, zD, and the symmetric lines with series impedance matrices

(z12,z23), calculate:

1. the terminal load voltages V2 :=
�
V a

2 ,V b
2 ,V c

2
�
;

2. the internal current IY
2 :=

�
Ian
2 , Ibn

2 , Icn
2

�
and the total complex power 1TsY

2 delivered to the Y -configured
load;

3. the internal current ID
2 :=

�
Iab
2 , Ibc

2 , Ica
2

�
and the total complex power 1TsD

2 delivered to the D-configured
load;

Solution. The network equation (9.51) and the device models (9.52) decompose into separate 0/+/� se-
quence networks as shown in Figure 9.10. We will first determine the terminal sequence voltage Ṽ2 and
then the terminal sequence currents Ĩ1

2 and Ĩ2
2 coming out of the Y -configured and D-configured impedances

respectively. The terminal phase variables are then V2 = FṼ2, I1
2 = FĨ1

2 , and I2
2 = FĨ2

2 . Given these terminal
variables we can determine internal currents

�
IY
2 , ID

2
�

and powers
�
sY

2 ,sD
2
�

using the conversion rules.

To determine Ṽ2, apply KCL at bus 2 of the zero-sequence networks to get

ẼY
1,0 �Ṽ2,0�

zan
1 +3zn

1
�
+

�
zs

12 +2zm
12

� =
Ṽ2,0

zan
2 +3zn

2
+ J̃D

3,0 (9.53a)

Calculate 

1. Terminal load voltage 


2. Internal current  and total complex power  delivered to -configured load


3. Internal current  and total complex power  delivered to -configured load

V2 := (Va
2, Vb

2, Vc
2)

IY
2 := (Ian

2 , Ibn
2 , Icn

2 ) 1𝖳sY
2 Y

IΔ
2 := (Iab

2 , Ibc
2 , Ica

2 ) 1𝖳sΔ
2 Δ



Example
Sequence networks
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Figure 9.10: Example 9.11: Sequence networks.
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Figure 9.10: Example 9.11: Sequence networks.
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Figure 9.10: Example 9.11: Sequence networks.

zero-seq

positive-seq

negative-seq

Solution strategy 

1. Construct sequence networks (decoupled)


2. Determine terminal sequence voltage  
and terminal sequence currents 


3. Terminal phase variables are then 





4. Determine internal currents  and 
power  using conversion rules


Ṽ2
Ĩ1

2, Ĩ2
2

V2 = FṼ2, I1
2 = FĨ1

2, I2
2 = FĨ2

2

(IY
2 , IΔ

2 )
(sY

2 , sΔ
2 )



Example
Solution sketch
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1. Determine terminal sequence voltage  by analyzing each sequence network separately


2. Terminal sequence load currents are then, in terms of 





3. Terminal phase variables are then 




4. Internal voltages are (under assumption C8.1) and currents are







5. Hence load powers are (total power  is independent of 


Ṽ2

Ṽ2

Ĩ1
2,0 = −

Ṽ2,0

zan
2 + 3zn

2
, Ĩ1

2,+ = −
Ṽ2,+

zan
2

, Ĩ1
2,− = −

Ṽ2,−

zan
2

Ĩ2
2,0 = 0, Ĩ2

2,+ = −
3Ṽ2,+

zab
2

, Ĩ2
2,− = −

3Ṽ2,−

zab
2

V2 = FṼ2, I1
2 = FĨ1

2, I2
2 = FĨ2

2

VY
2 = V2 − Vn

21 = V2 + zn
2 (11𝖳) I1

2 , VΔ
2 = ΓV2

IY
2 = − I1

2 , IΔ
2 = −

1
3

ΓI2
2 + β21

1𝖳sΔ
2 β2

sY
2 := diag (VY

2 IY𝖧
2 ) = − diag (V2I1𝖧

2 + zn
2 (11𝖳) I1

2I1𝖧
2 )

sΔ
2 := diag (VΔ

2 IΔ𝖧
2 ) = − diag (ΓV2I2𝖧

2 Γ†) + β2ΓV2


