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Overview

nodal

device models —¥ current/power

key difference
3-phase device models
are far subtler
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Review: single-phase BIM

Network model

1. Network G := (N, E)
« N:={0}UN :={0}uU/{l,...,N} : buses/nodes
« E C N XN : lines/links/edges

2. Eachline (J, k) is parameterized by (y]f‘}(, Vies y,’j]) e C’
* Yj ' series admittance
. y]?};‘, y,’g]? : shunt admittances, generally different

Q O ATy
k { *
o I-—s V. , \\i *j'

(a) Graph representation (b) IT equivalent circuit
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Review: single-phase BIM

Admittance matrix Y € CH+Dx(V+D

2

kejnk

In vector form:

I = YV where ij=
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otherwise



Assumption: 3-phase BIM

1. All lines are characterized by a 3-wire model R

* Only to simplify exposition

T ]
« Valid if neutral lines are absent (e.g. connecting A : 1.
. . n . V' ,‘_ —_—

devices) or grounded with 7 = O (Kron reduction) ) I)k

» Otherwise, 4-wire (including neutral line) or 5-wire
(including earth return) models should be used.

» They are conceptually similar to 3-wire model; see
examples later

2. All transformers are modeled as 3-phase lines, characterized by a 3-wire model

« We will henceforth talk about just lines in network models (even though they may be models for
transformers)
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Bus injection model

Network model

1. A network of N + 1 3-phase devices connected by 3-phase lines is
also modeled by a graph G

. . . . S m m
2. Each line in G is characterized by <yjk, Yiks ykj> where
abe abef T, 8¢
. ;}C e C>3:3 x 3 series phase admittance matrix (e 599 ) i
. Jf}’j, y,g.’ € C’:3 X 3 shunt phase admittance matrices ;

4y
3. Each bus (node) has 3 variables <I- S V-) e C° —

b 9
A Assumption: 3-phase I1 circuit representation

« Only bus injections <IJ, sj> are involved

. Branch flow models also involve branch variables <Ijk, Lij» Sik Skj>
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Current balance phase el

» 3-phase : 3 X 3 (3-wire) or 4 X 4 (4-wire) matrices

1. 3-phase sending-end currents: l

o= (V- v) + o dy= (Ve v) + v
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Current balance phase el

» 3-phase : 3 X 3 (3-wire) or 4 X 4 (4-wire) matrices

1. 3-phase sending-end currents: l
Ly = ﬁ(vj_vk) + Ve g = ﬁc(vk_‘/j) + Vi Vi

2. Nodal current balance:

h= 2l = Xv=vo + | 2|V,
kij~k k:j~k kij~k
)
—_ § m nm . m
— 2 ik T Yji 2 yjk i 2 Yik
\ k:j~k ) kij~k kij~k
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Bus injection model
Bus admittance matrix Y

3. Intermsof 3(N+ 1) X 3(N+ 1) admittance matrix Y
I = YV 3(N + 1) vector

where

- S m
Y, = Z Yik + Yij 3 X 3 matrices
kij~k
m

o—— __ 1S ; — m
Y., : ik 3 % 3 matrices Y= Z v
k:jmk

Y is admittance matrix of single-phase equivalent
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Bus injection model
Bus admittance matrix Y

aa

Vi3

ba

Vi3

ca

Vi3

aa

Vi3
ba
—[ V13

ca
Vi3

Vi3 Y23

(a) 3-bus example.
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ab
Vi3

bb
Vi3

cb
Vi3

ab
Vi3
bb
Vi3

cb
Vi3

ac

Vi3

bc

Vi3

cc

Vi3

ac
Vi3

bc
Vi3

cc
Vi3

[ aa
Va3

ba
Va3
ca

| V23
[ aa
Va3

ba
Va3

ca
| V23

ab
Va3
bb
Va3

cb
Vo3

ab
Va3
bb
Va3

cb
Va3

ac T
Va3

bc
Vo3

cc
Va3 |

ac T
Va3

bc
Y23

cc
Vo3 |

[ aa ab ac’

Yiz- Yiz Vi3
ba bb bc

(Vi3 Vi3 Vi3

ca cb cc
| Yiz Vi3 Vs |

[ aa ab ac
Yoz Yoz Y3
bb

ba bc
(Va3 Va3 Va3

ca cb cc
| Y23 Va3 Vo3 |

aa aa ab ab ac ac’l
Yiz ¥ Y3 Yz ¥ Yoz Viz + Vo3
ba ba _bb bb _ be be
Yizs ¥ Y3 Vi3t Y3 Vi Y3

ca ca cb cb cc cc
Yiz ¥ Y3 Yiz Y3 Vi3 Vo3

(b) Admittance matrix Y.



Bus injection model

Bus admittance matrix Y

The 3(N+ 1) X 3(N + 1) admittance matrix Y leads to an equivalent circuit

which we call the single-phase equivalent of a 3-phase network
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Bus injection model

Single-phase equivalent

Given: 3-phase network G with 3(NV + 1) buses, described
by 3(N + 1) X 3(N + 1) admittance matrix Y
Single-phase equivalent circuit G>? with 3(N+ 1) nodes
« Each node in G*? is identified by bus-phase pair (j, )
. Nodes (j, ¢) and (k, ¢") in G°? are connected if Yip i # 0

« Eachline (J, k) in G forms a 6-clique in the 1-phase
equivalent G>?

Single-phase analysis methods can be applied to single-
phase equivalent G>? using Y

Steven Low Caltech Network models
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Outline

1. Network models: BIM

« sV relation (power flow equations)
* OQOverall model (device + nodal balance)

2. Three-phase analysis
3. Balanced network

4. Symmetric network
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Review: single-phase BIM

Complex line power

UsingS V
H 2 H H 2
i = (y;k) (1vP=vv) + () v,

H 2 H H 2
so= () (1lP=vv) + (o) 1w

Line loss
H 2 H 5 H 5

— S m m
St g = (yjk> ‘Vj—Vk‘ + (yjk> [V;I™ + <ykj> Vil
series impedance shunt impedances
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Review: single-phase BIM

Power flow equation

Nodal power balance s; = Zk:ij S

H H
2 s 2(.m
5j = Z("’j' _VJ'VI?> (yjk) + 1Vl ()@;)

k:j~k

In terms of admittance matrix Y
N+1

_ Hy, H
S = Z Y Vivi
k=1

N + 1 complex equations in 2(N + 1) complex variables <Sj, VJ-,j = ]V)
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Bus injection model
Single-phase equivalent

Bus injection model for 3-phase network:

H

b oy (v

sho= 2 Y, (Vk>
ke N

¢' € {a,b,c}

where Y, 4 are (jg, k¢p')th entry of the 3(NV + 1) X 3(N + 1) admittance matrix Y

This generalizes single-phase BIM:
N+1

— H H
S; = Z e ViV
k=1
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Bus injection model
Single-phase equivalent

Nodal power balance for 3-phase network

kej~k

Z diag <Vj(Vj - Vk)H(ny}C)H + V.V (yjk>H)

generalizes single-phase:

5 = Z(lVl —VVH> <yjk)H +

kij~k

V.

J

(

m

i

.
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Overall model

Device + network

1. Device model for each 3-phase device

. Internal model on <VjY/A,IjY/A, sjY/A> + conversion rules

. External model on <V], I, Sj)
* Either can be used

 Power source models are nonlinear; other devices are linear

2. Network model relates terminal vars (V, I, s)
« Nodal current balance (linear): [ = YV

Nodal power balance (nonlinear): s; = 2 diag (VJ(V] — Vk)Hyj“}(H + VjVijJfZH>
kij~k

e Either can be used
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Overall model

Device + network

Overall model is linear if and only if voltage/current sources and impedances are present

* Power sources lead to nonlinear analysis

... even though network equation I = YV is linear, device models for power sources are nonlinear
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Outline

1. Network models: BIM

2. Three-phase analysis
* Device specification
 Examples
e General solution approach

3. Balanced network

4. Symmetric network
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Three-phase analysis & optimization

At each bus j, there are 20 complex quantities for each 3-phase device

. Externalvars : (V,, I, 5)), 7,

. Internal vars : (VJ-YA, IjY/A, sjY/A>,ﬂj

Analysis

Optimization

Given: 3-phase devices & their specifications
» \Voltage/current/power sources, impedances
« ...in Y/A configuration

Calculate remaining variables

Solution:

¢ Write down device+network model
* Solve numerically

Given: 3-phase devices & their specifications
» \oltage/current/power sources, impedances
« ...in Y/A configuration

Minimize cost(controllable vars & state)

Solution:

¢  Write down device+network model
¢ Write down additional constraints
* Solve numerically
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Device specification

Ideal devices

1. Voltage source (EY, yj> or (EA, yj,ﬁj)

- Y configuration: y; := V' neutral voltage

{

1
. A configuration: V= §1TVJ- zero-seq terminal voltage, ,BJ = §1T1A zero-seq internal current
Y A
2. Current source (] ,;/j> or J

3. Power source <0Y, }/j> or ((;A, y;or ﬂ]>

« A configuration: spec generally depends on details of the problem

4. Impedance (zy,yj) or z2

Steven Low Caltech Three-phase analysis



Device specification

Summary

{ buses with voltage sources in Y, A configurations }
{ buses with current sources in Y, A configurations }
{ buses with impedances in Y, A configurations }

{ buses with power sources in Y, A configurations }

Steven Low Caltech Three-phase analysis

Buses j | Specification
Ny |V =EY
N} | VR =ER Y, B,
NS I =07
N2 | 1=
NS 12
N} | 2
Ny ol
N3 GJ-A, Vi




Device specification

Neutral voltage y; for Y-configured devices

1. Neutral voltage y; := V;" for every Y-configured device
 ¥; may be specified directly (e.g. Y= 1 pu)
< ¥; may be determined from other information (more likely)
2. Indirect specification of Vi
. Assumption C8.1 (neutral is grounded and voltage ref is ground): y; = VJ?" = — z]?“ <1TIJ-)

Assumption C8.1 with z].” =0: V= V]” =0

Neutral not grounded but 1TVjY =0:y= g‘ITVJ-

Such indirect specification provides additional equations to solve for Y

3. Neutral voltage Yi and zero-seq voltage
« For Y-configured device: V; = VjY+ V;H
) .
. V= VJ” = §1TVJ- if and only if 1TVJ.Y =0
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Device specification

Zero-sequence voltage Vi for A-configured devices

1. For A-configured voltage sources, zero-seq voltages Y= §1TVJ- need to be specified

. Y; may be specified by one of its terminal voltages, say, Vja

2. For A-configured current sources and impedances, Vi need not be specified

1
. V= _1ij can be determined once its terminal voltages VJ is determined from network equations
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Three-phase analysis problem

Given:

» device spec in blue
* line model

Determine:
« Some or all of internal variables
« Some or all of terminal variables

Steven Low Caltech Three-phase analysis

Buses j | Specification Unknowns
Ny |V =EY 17,5 ), (Vi,1j,s))
N | VR=EN 7By | (13,55 ), (Vi dj,sj)
NS =Yy, vEs), (Vidys))
N2 | 1= VA3, Bi ), (Vi vi)
NS 12 Vi sh ), (Vidy,s))
ks VAR5 B;). (Visljis;.)
NY | ol V,'YJ}V)’ (Vju1j55)
NA | oy V,-A,If,ﬁj), (Vi 1)




Example

A-configuration

Given:
A
* Voltage source (E] , yj,ﬁj>
« Impedance zkA

. Line parameters (yj:?{, y]’;: = ylg? = O)

IkA = Z'Fl’l\EjA’ VkA = ZkA Z—FéE}A voltage divider rule

where Ztp = FZ;}CFT + ZkA is the Thevenin equivalent of line in series with load
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Example
A-configuration
Given:

A
* Voltage source (E] , yj,ﬁj>
« Impedance zkA

. Line parameters (yj:?{, y]’;: = ylg? = O)

e W \
g c _ | e

Solution:

. Current balance: Vi = V; — 23/,

. Conversionrule: Vi =T'V,, E} =TV, L[ =—L=T"I}
A _ A T7A

= Vi = B> -Igl

. VA _ATA

« Internal model: Vk = klk
T A\ A _ A

- <FzJ§CF + z; )Ik = [

J
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General solution approach

Buses j | Specification Solution procedure

Nf VjY = E}/, Y 1. Write down current balance equation that relates terminal vars (V, I)

N} | V& :=E%S,v;,Bj, | 2. Write down internal models and conversion rules (or external device models)

NS =Ty 3. Solve numerically for desired vars
A A._ A

N, I]- = Jj

NS 12

N} | 2

Steven Low Caltech Three-phase analysis



General solution approach

Buses j | Specification
Ny | VI=EY
NvA VjA = E]A’ ’yj’ﬁ]"
NS =Ty
N} | =08
NS g
N} | 2

Steven Low Caltech Three-phase analysis

Details: overall system of equations

Iv vachYvi
Ic = chchYci
1. Network equation:
Ii i Yiinc Yii_
Y

2. Voltage sources: V, := FZEV + 7, @1

3. Currentsources: . := —TI1J.
4. Impedances: Vli.nt = Zl-Ili-nt
] = — FTIint
i = iti

LV, = Vzi'nt +7 &1

SIS



General solution approach

Buses j | Specification Solution procedure
Nf VjY = E}/, Yi 1. Write down current balance equation that relates terminal vars (V, I)
N} | V& :=E%S,v;,Bj, | 2. Write down internal models and conversion rules (or external device models)
NS =Ty 3. Solve numerically for desired vars
N} | =08
NY z?, Y; Remark (nonlinearity)
NiA A 1. Can always use I = YV in Step 1 (instead of nonlinear power flow equations)

J

2. If there is no power source, device models are linear = overall system is linear

3. Otherwise, power sources models are nonlinear = overall system is nonlinear

Steven Low Caltech Three-phase analysis



General solution approach

Buses j | Specification Solution procedure

Nf VjY = E}/, Y 1. Write down current balance equation that relates terminal vars (V, I)

N} | V& :=E%S,v;,Bj, | 2. Write down internal models and conversion rules (or external device models)

NS =Ty 3. Solve numerically for desired vars
A A._ JA
NA | 1=
NY 12 Reduced system
NA | 1. Solve for (Vc,ll!“t>
[|c® |]Zcir;r VC — [ ch] [ — [Acv] Vo - [ O]
orzIr} +2, Izl'nt I'Z.] * Ayl 7i® 1

2. Derive all other variables analytically in terms of <VC, Ilint>

Steven Low Caltech Three-phase analysis



General solution approach

Buses j | Specification
Ny | VI=ELY
N3 | VA =E} 7, B;,
N L=y
N2 | 1=
NS
N} 2
N} 7
N3 7

Steven Low Caltech Three-phase analysis

With power sources
1. Write down current balance equation that relates terminal vars (V, I)
2. Write down internal models and conversion rules (or external device models)

3. Solve numerically for desired vars



General solution approach

Buses j | Specification

Y Y ._ Y

NI | Vi=EYy
A A._ A

NV V] —Ej,y],ﬁj,
Y Y . 7Y

N =Yy

A A._ gA
N, 17 =J;

NS g
N} 2

N} 7
N3 o, Y

Steven Low Caltech Three-phase analysis

Details: overall system of equations

IV YVVYVCYVZ VV
IC = YCVYCCYCZ VC
1. Network equation:
I; | Yo Y Y | Vi
Y
2. Voltage sources: V, := FIEV + 7, &1
3. Currentsources: . := —T1J
4. Impedances: Vlint = Zillint
l; = - FiTIzi'nt

IV, = Vz!nt +7 Q1

same equations
as before



General solution approach

Buses j | Specification Details: overall system of equations
Y Y ._ Y 5. Power sources: internal model
N, Vi =E;.;
A A._ A — A int 7intH
N, Vi i=EZ ¥ Bj, 0, = diag <Vp L, )
Y Y Y additional (nonlinear) equations
N, Ij = J]. » Yj Conversion rules: for power sources
A A._ JA - int
N; Ij .—Jj Ip = Fplp
Y Y . _ int
Ni Zj,YJ Fpr = Vp +}’p®1
A A
N; Z;
Y Y
Np G,
A A
N, C;, Y

Steven Low Caltech Three-phase analysis



General solution approach

Buses j | Specification Solution procedure
Nf VjY = E}/, Yi 1. Write down current balance equation that relates terminal vars (V, I)
N} | V& :=E%S,v;,Bj, | 2. Write down internal models and conversion rules (or external device models)
NS =Ty 3. Solve numerically for desired vars
N} | =08
NY z?, Y; Remark (nonlinearity)
NiA A 1. Can always use I = YV in Step 1 (instead of nonlinear power flow equations)

J

2. If there is no power source, device models are linear = overall system is linear

3. Otherwise, power sources models are nonlinear = overall system is nonlinear

Steven Low Caltech Three-phase analysis



General solution approach

Buses j | Specification Solution procedure

Nf VjY = E}/, Y 1. Write down current balance equation that relates terminal vars (V, I)

N} | V& :=E%S,v;,Bj, | 2. Write down internal models and conversion rules (or external device models)

NS =Ty 3. Solve numerically for desired vars
A A._ JA
NA | 1=
NY 12 Reduced system
NA | 1. Solve for (Vc,ll!“t>
[|c® |]Zcir;r VC — [ ch] [ — [Acv] Vo - [ O]
orzIr} +2, Izl'nt I'Z.] * Ayl 7i® 1

2. Derive all other variables analytically in terms of <VC, Ilint>
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Outline

1. Network models: BIM
2. Three-phase analysis

3. Balanced network
* Three-phase analysis
* Per-phase network
* Per-phase analysis

4. Symmetric network
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Three-phase analysis

At each bus j, there are 20 complex quantities for each 3-phase device
« External vars: (V, Ij, SJ-), i

. Internal vars : (VJ-YA, IjY/ A, sjY/ A) P

Analysis
Given: 3-phase devices & their specifications

« \oltage/current/power sources, impedances
« ...in Y/A configuration

Calculate remaining variables

Solution: Special case:
*  Write down device+network model

: e Devices are balanced
* Solve numerically

* Lines are balanced & decoupled
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Balanced devices

Device specification

Buses j | Specification

Ny | VI=ELY

A A._ A
NV V] .—Ej,’)/j,ﬁj,
Y . 7Y

A A._ gA
N, 17 = J;

1. Devices are balanced positive-seq sets:

V&= da,, jEN,
IjY/A = Ho, JEN,
77 = g, jEN,

where 4;, y;, &; € C

Y Y
NA ZA.
! J 2. External model of voltage sources:

V, = 4, Qa, + 7,Q1
3. External model of current sources:

Ic = _ﬂc®a+

Steven Low Caltech Three-phase analysis



Balanced devices

Device specification

Buses j | Specification
Y Y. ¥ a
N, Vj .—Ej . Y

N2 V]-A ::EJA, ¥, Bj,

4. Internal impedance model and conversion rules

vit=(Gen

_ T 7int
NS =0y, li=—=1i1;
int
N |1} =T8 V,=Vit+r ®1
N 2L
NA ZA.

J
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Balanced lines

1. All lines are balanced, i.e.

e = mbo oo = omih vy o= gl Mg €C
2. Define per-phase admittance matrix Y'? e CW+DxWV+D)
s (J,k) EE, (j#Kk)
Vo= 3 D (ng +onp). J=k
kij~k
0 otherwise

3. 3(N+ 1) X 3(N + 1) admittance matrix ¥ becomes Y = V!¢ ® I

4. Current balance equation I = YV becomes
I = (YY®ny
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Three-phase analysis problem

Buses j | Specification Given

NY VY =EY y, * device spec in blue
g / « line model

N2 1% ::EJA, ¥, Bj,

J Determine
Y Y ._ gy i
N, I = J;.7; * some or all remaining vars
A A._ A
N 17 =J;
Y Y o
NA ZA.

J
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Balanced voltages & currents

Theorem
1. Any solution x consists of generalized balanced vectors in positive sequence,

e, x; =aaq, + bj1 for some a;, bj e C

2. Allx; = ajor, are balanced if
« For all voltage sources: y, = 0

. For all Y configured impedances: yl-Y = <Vj”,j € Nf) =0
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Balanced voltages & currents

Proof sketch

1. Use reduced system to show (VC, Ilint> consists of generalized balanced vectors

2. Derive all other vars in terms of (VC, I;nt) and show that they consist of generalized
balanced vectors
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Balanced voltages & currents
Proof sketch: step 1

Lemma
Reduced system becomes

c

I, Q| (z¢@1)r7 v
o = d®a, + be
0 I (Zi%qb ® ”) Iy + (G®10) [Il!nt] e

M
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Balanced voltages & currents
Proof sketch: step 1

Lemma
Reduced system becomes

1
1, ® (Z¢@1)IT V. |
il = aQ@a, + b'Q1
0 T, (Zl.%@n)rj + (o) | [k
M
Lemma
Each 3 X 3 block of M~ ! is of the form [M‘l]jk = vl + owy W

where v, wy € C and Wy € C3*isoneof I, [, T, ITT, I''T
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Balanced voltages & currents
Proof sketch: step 1

J-th 3 X 3 block of (VC, IkA) is of the form

3 ) G t) = T (i) s+ (s + )
k

k k
= ao, + bj1
because
( a, if Wy =

W (1 -a)a, if Wy=T - {1 it Wy =

04 = < . =

E (1 - 052)05+ it Wy = rt " 0 else

3a, it Wy =IT"or[''T
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Decoupling & per-phase analysis

Positive-seq per-phase network

Reduced system implies (o, coordinate):

A [ Vievievie ]| [ -

L, mevacquviqb /1‘}

1 — 1 1 1 A
—H — YC\?ch(chi(p Ve
B B b e e rid MR

Defines per-phase network
- Admittance matrix: Y'¢

« Voltage sources: /fv

« Current sources: — /i,

A A

» Impedances #;: 1; = —1,V;

Steven Low Caltech Balanced network

4 sets of equations in 4 sets of vars <



Decoupling & per-phase analysis
Zero-seq per-phase network

Reduced system implies (1 coordinate):

31 [revenie]
— 1
o| = [vivievie| |7,

1 1 1 :
_Yivd) Yic¢ Yii gb_ /i

Defines per-phase network

. Admittance matrix: Y'?

- Voltage sources: y,

« Current sources: 0 (no device at buses j where current sources are connected)

. Impedances ﬁi: ﬂi = — ﬁl. (;’}l — 71‘) 4 sets of equations in 4 sets of vars (770 Vs [)'Av, /2)
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Decoupling & per-phase analysis
Zero-seq per-phase network
Set y_,:=0 and ﬂA_c =0 if

« For all voltage sources: y, = 0

. Forall Y configured impedances: yl.Y = <Vj”,j S NZY> =0

Steven Low Caltech Balanced network



Decoupling & per-phase analysis
Per-phase analysis

1. Solve positive-seq per-phase network for <f/c, ) l-)

A

2. Solve zero-seq per-phase network for <}7C, Vis By ﬁAl)

3. Derive terminal voltages V_,

V= v]i.nta+ + (ﬁnt+yj>1, jENIUN!

. - A A
VJ-:. vay + i1, JENZUN;

4. Determine terminal currents [_.

I =: i]i.nta+ + ,B]i-nt1, jENUN'
I = ia,, ]'ENVAUNl-A
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Outline

1. Network models: BIM
Three-phase analysis

Balanced network

> WD

Symmetric network

» Sequence impedances and sources
e Sequence line

* Three-phase analysis
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Symmetric components

1. In an unbalanced network, phases are coupled and per-phase analysis is generally not
applicable

2. If the network has certain symmetry, similarity transformation may lead to sequence
networks that are decoupled

* e.g., impedances are balanced, lines are transposed (even if lines are coupled and generations and loads are
unbalanced)

3. Single-phase analysis can then be applied to each of the decoupled sequence networks.
This is most useful for fault analysis

4. Without any symmetry, symmetric components may offer no advantage.
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Recall: similarity transformation

Sequence variables

1. Complex symmetric Fortescue matrix F' and its inverse Fl'=F

Bl

1
NG

3

1 oy o]

— [1 a_ a+]

Steven Low Caltech Symmetric network

1

3

e
NG

1

3

1
3

e

S Sy =y

QQH

S

S

QQ;—A




Recall: similarity transformation

Sequence variables

2. F defines a similarity transformation:
x = F%, ¥ = Flx = Fx
3. X is called the sequence variable of x. Its components are

1 1 1
%, = —1Hy, X, H ¥ = —a'x

V3 N Y

zero-sequence positive-sequence negative-sequence

They are also called symmetric components.

4. Sequence voltage and current:
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Sequence networks

General method to derive sequence networks: for each (linear) device or line/transformer

1. Write its external model I = AV that relates terminal voltage and current (V, I)

* e.g., impedances are balanced, lines are transposed (even if lines are coupled and generations and loads are
unbalanced)

2. Substitute V = FV and I = FI to obtain the external model [ = (FAF) V relating the
sequence vars (V, I )

3. With symmetry, FAF turns out to be diagonal and hence can be interpreted as 3 separate
devices on 3 decoupled networks called sequence networks

4. Each sequence network can be analyzed separately like a single-phase network
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Sequence impedance

Y configuration (ZY, Z”)

1.

Steven Low

External model (from Ch 8) is, under assumption C8.1:

V = —Z¥T with

Z'=7" + 117 =

7+ "

n

<

n

<

n

Z
7"+ 7"

n

<

Substituting V = FV, I = FI to get sequence impedance matrix Z :

V = —FZYF ]

~

ZY

Caltech Symmetric network

= -7

n

<

n

Z
"+ 7"




Sequence impedance

Y configuration (ZY, Z”)

1. If impedance is balanced, i.e., " = 72" = 7" then

2 +32" 0 0
z" 0 20
- O O Zan_
2. External model V = — Z'T in sequence coordinate becomes decoupled
0 2 +3z27 0 0| (Lo
n — 0 z" 0 n diagonal = decoupled !
7 0 0 z i
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Sequence impedance

Y configuration (ZY, Z”)

Interpretation

1. The external model V = — Z¥] defines sequence impedances on 3 separate (decoupled)
sequence networks:
zero-seq impedance: \70 = — (Za” + 32”> 70
positive-seq impedance: V,=-zI,
negative-seq impedance: V_=—z79]_

2. Each of these decoupled sequence networks can be analyzed like a single-phase network
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Sequence impedance

A configuration <ZA, Z”)

1. External model (from Ch 8) is:

V. = =Z3T + 91, 1T = 0  with
A 1 7 A L AT
/° = —=I''7 [ ——17 I
9 ¢

zA

2. Substituting V = FV, I = FI to convert to sequence coordinate:

~

V=—(FZ*F)I + yF1, 1"FI = 0

ZA
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Sequence impedance

A configuration <ZA, Z”)

1. If impedance is balanced, i.e., 7% = Zbc = z¢a then

ab 1 _ a [O O O
ZA = Z3 (”—5111_), ZA — < [0 1 0

3 o o1
2. External model in sequence coordinate becomes decoupled
0 Lab [00 07 | o ) i
o = =3[0 1 o] L I, = —(L,+L,+1.) = 0
A 00 1|7 3

I, = 0 is KCL because there is no neutral wire
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Sequence impedance

A configuration <ZA, Z”)

Interpretation

1. The relation V = — Z2] defines sequence impedances on 2 decoupled sequence networks:
zero-seq impedance: null (I~0 = 0, Zo = 00, open circuit)
~ 70 _
positive-seq impedance: V,=- TLF
~ 7 _
negative-seq impedance: V_=- TI_

2. I~O = () means zero-seq impedance is open-circuited (no device) in the zero-seq network

3. Positive and negative-seq impedances are z%°/3, as in a balanced network
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Sequence voltage source

Y configuration (EY, zY, Z”)

1. External model (from Ch 8) is, under assumption C8.1:

[ 701 4 7" 7"
V = EY—ZYT with Z¥:=7¥ + 77117 = 7" 7 4
n ZI’Z

2. Substituting V = FV, I = FI to convert to sequence coordinate

V. = FE' — FZ'FI = E" - 7']

~

EY

~

ZY
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Sequence voltage source

Y configuration (EY, zY, Z”)

1. If impedance is balanced, i.e., " = b = zon (internal voltage EY may be unbalanced), then
external model in sequence coordinate becomes decoupled:

Vo Ey e 3zn 00 0] |
vl = |8l -| o = oL
a EY 0 0 z¢ i
2. Interpretation: voltage sources on 3 decoupled sequence networks:
zero-seq voltage source: Vo= EY — (z*+3z") I,
positive-seq voltage source: \7+ = EJ{ — 7] +
negative-seq voltage source: V.= EY — 7]
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Sequence voltage source

Y configuration (EY, zY, Z”)

1. 1§79 = 76" = ;" and EY = E%"q, is balanced:
+

Vo 0| i3 0 0] |l
V.| = [V3E™| - 0 z 0|l
v 0 0 0z |7
2. Interpretation: voltage source and impedances on decoupled sequence networks:
zero-seq impedance: \70 = — (Za” + 3Zn) 70
positive-seq voltage source: \7+ = \/g E™ — 7] +
negative-seq mpedance: V. =—z79] R g@}%

Steven Low Caltech Symmetric network
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Sequence voltage source

A configuration (EA, ZA)

1. External model (from Ch 8) is:

V=TEr~Z%+y, 177 =0 with

. 1 1 1 1
[ = —rT<|]——zA1T), ZA = T A (u--m“)r
3 c 9 4

2. Substituting V = FV, I = FI to convert to sequence domain
V = FIE®*— FZ°FT + yF1 = E*> — 71 + Ve, V3l = 0

EA Vi

I, = 0 is KCL because there is no neutral wire
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Sequence voltage source

A configuration (EA, ZA)

1. If impedance is balanced, i.e., z*? = 7€ = 7@ (internal voltage E¥ may be unbalanced), then external
model in sequence domain becomes decoupled:

0 0 , |0
~ C1EA 2 |5 .
V. = (I-—a)7EL | — =— I, I, =0
V_ (1-a?)EA 7|
2. Interpretation: voltage sources on positive and negative-sequence networks:
zero-seq voltage source: null (70 = 0, Zo = 00, Open circuit)
A b
- e E+ Za ¥ voltage source
positive-seq voltage source: V., = — I,
l -« 3
_ EA Zab _
negative-seq voltage source: V_ = . — >~ 5 voltage source
—a
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Sequence voltage source

A configuration (EA, ZA)

1. If 790 = 7%¢ = 7% and E® = E%a, is balanced:

Y 0 v |9
V. = o~ inl6 pab - |1
V_ 0 _ I
2. Interpretation: voltage source in positive-seq network and impedance on negative-seq network:
zero-seq voltage source: null (1~0 = 0, Z() = 00, open circuit)
ab
4 Y —inl6 grab o
positive-seq voltage source: V+ = € E — 3 I+ voltage source
Zab
negative-seq impedance: V_= — Tl_ impedance
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Sequence current source

Y configuration (JY,yY, Z”)

1. External model (from Ch 8) is

I = =J" — y"'(v—-v")
2. Substituting V = FV, I = FI to convert to sequence coordinate
[ = —FJ' — BHYYFV + V'Fy"
J 24
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Sequence current source

Y configuration (JY,yY, Z”)

1. If admittance yY = y“'[ is balanced, then under assumption C8.1, external model in sequence
coordinate becomes decoupled (though unbalanced):

(1+3ymz") ], ] Ty A
i+ = — |y - v,
I 7 A
2. Interpretation: current sources on 3 decoupled sequence networks:
- J 0 y -
zero-seq current source: Iy = — — Vo
1 + 3 yanzn 1 + 3 yanzr
positive-seq current source: I L == J L y“”V+
negative-seq current source: [ =-J' — y»my_
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Sequence current source

Y configuration (JY,yY, Z”)

1. Ify' ==y and J¥ := J*"a, is balanced then the sequence networks become

. _ = y ~ _
zero-seq admittance: Iy = — 123 admittance
+ yan Zn
T . T — _ an __  ,any;
positive-seq current source: L= \/§J yv, current source
/ admittance

~a
I
I
<

Q

S

|<

negative-seq admittance:
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Sequence current source
A configuration (J/2, y*)

1. External model (from Ch 8) is

I = —(TV* + Y*V)

2. Substituting V = FV, I = FI to convert to sequence coordinate

I = —|Frvs + Frarv| = — (P + 79
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Sequence current source
A configuration (J/2, y*)

1. If admittance yA = y"b[l is balanced, then external model in sequence coordinate becomes
decoupled (though unbalanced):

~ ~A g —
Iy Jo 0
7 _ 7A ab | Y/
I j \a
2. Interpretation: current sources on 3 decoupled sequence networks:
zero-seq current source: I, = —J@ ideal current source
" . Fo_ _ A aby; .
positive-seq current source: I, =—-J0 — 3y*V, non-ideal current source
negative-seq current source: I =-J* — 3y"bV_ non-ideal current source
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Sequence current source
A configuration (J/2, y*)

1. IfyA = y"b[l and J2 := J"ba+ is balanced then the sequence networks become

zero-seq current source: nul ([, = 0) open circuit (no device)
positive-seq current source: I, =— 3e b jab _ 3y"b \7+ current source
negative-seq admittance: [ = -3y?V_ admittance 3y’
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Sequence line

1. Line model with zero shunt admittances

Vi= Ve = il

2. Substituting V = FV, I = FI to convert to sequence coordinate

~ ~ ~

V- Vo= (FF)L = 5

=S
Z ik
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Sequence line

1. If phase impedance matrix z]“;( iS symmetric:

_zl + 272 0 0
Z;k - O Zl —Z2 O
I 0 0 Z1 _Z2
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Sequence line

2. Interpretation: the 3-phase line becomes 3 separate (decoupled) sequence networks

zero-seq impedance: \7]-,0 — Vk,() = (Z s 2Z2) 7]-;(,0
positive-seq impedance: ‘7j,+ — Vk,+ = (Zl — Zz) ijk,+
negative-seq impedance: ‘7J _— Vk,_ = (Zl — Zz) ijk,_
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Outline

1. Network models: BIM
Three-phase analysis

Balanced network

> WD

Symmetric network

* Three-phase analysis
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Symmetric network

A 3-phase network is symmetric if

1. All impedances are symmetric, ij/A = zj“”/“bl]

2. All voltage sources have symmetric series impedances ZjY/ A= Zj‘m/ ab]

3. All current sources have symmetric shunt admittances yjY/ A= yj“”/ ab

1 .2 2
Sk Lk Lk
4. Alllines (j, k) have symmetric series impedances zjsk = ij Zjl ZJ%C and zero shunt
2 2 .1
Sk Lk Lk

admittances - -

It can be shown that its sequence networks are decoupled (see textbook)
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Example

Symmetric network

(E*, X‘fﬁﬂ 3n Z’,

Calculate
1. Terminal load voltage V, := ( 4 Ve, Vf)
2. Internal current IJ := ( an_pon, 120”) and total complex power 175 delivered to Y-configured load

3. Internal current I2 := (I$2, I%¢, I5*) and total complex power 1752 delivered to A-configured load
2 2 2
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Example

Sequence networks

zero-seq '\‘(Lo 7 (,: ]
Far B2y - ' s 3;”3;7, Solution strategy
I, 20~ © J°
7ot 5 ragn 3, 1. Construct sequence networks (decoupled)
L S . . ~
2. Determine terminal sequence voltage V,
positive-seq g 7 and terminal sequence currents [ 1, I %
s L S g
e [T - 32~ fs| J o : :
El 3, Lo Q ¥t 3. Terminal phase variables are then
E:; j S:n 3:5/3 > l[jf__jb N;Jr ~ 1 "’1 2 "’2
. - . 4. Determine internal currents (I Y IZA) and
negative-seq Y - - 3- . .
fﬂ P - - 13- & ¥ power (SZY, SZA) using conversion rules
I, - - 3"
76! 2 L‘f
L N |
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Example

Solution sketch

1.
2.

Determine terminal sequence voltage V, by analyzing each sequence network separately
Terminal sequence load currents are then, in terms of V2
V2,0

g+ 328

il 1 9 _ 2 T 2 2 _ 2
Ly = I, = ’ I, = I, = 0, 15

Terminal phase variables are then
V,=FV,, I, =Fl,, I}=FI;

Internal voltages are (under assumption C8.1) and currents are

Vi= Vo=V = Vo, + (11T)L, V2 = TV,
n=-5 = —%rlg + p1

Hence load powers are (total power ‘ITszA is independent of 3,
sy = diag (V/B") = —diag <V2121H + zg(ﬁT)Izllle)
s = diag (VzAleH) = —diag (FVZISHFT) + BV,
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