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Preface

The purpose of computing is insight, not numbers.
—- Richard W. Hamming, 1962

This book is tailored for students and researchers who are interested in both power
systems and analytical tools for understanding their structural properties. It prepares
students for research by equipping them with, not only power system knowledge, but
also analytical techniques and a way of thinking.

It complements several excellent texts on power system analysis, e.g., [1, 2, 3, 4, 5,
6, 7]. In terms of topic, it develops from scratch basic power system concepts, single-
phase and unbalanced three-phase models, and theory and algorithms for power flow
optimization. It focuses on steady state modeling and analysis, as opposed to dynamics
or electricity markets. In terms of style, it focuses on analytical tools and structural
properties. It does not focus on computational issues or specific applications such as
state estimation, unit commitment, economic dispatch, or voltage control, but uses
these applications to illustrate models and techniques that are widely applicable.
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0 Introduction

0.1 How to use this book

This book can be used as a research reference. It can also be used as a textbook and
we suggest possible courses that can be constructed from this book.

Power System Analysis I: models and operation

A 13-week course for senior undergraduate and beginning graduate students that
covers Part I of the book. It develops from scratch single-phase network models and
formulates optimal power flow problems. These models are then used to describe and
analyze power system operation such as mechanisms for balancing power, controlling
frequency, pricing electricity and reserves, estimating state, and stabilizing voltages.
This course does not require prior power system knowledge or optimization theory, but
does require linear algebra and interest in or exposure to mathematical analysis.

Specifically it covers

1 Basic concepts: Kirchho�’s laws, phasors, device models, three-phase systems,
complex power (Chapter 1).

2 Component models: transmission line (Chapter 2), transformers (Chapters 3, pos-
sibly skipping Chapter 3.1.5).

3 Network models: bus injection models (Chapter 4, possibly skipping Chapter
4.4.4), and 4.5), branch flow models (Chapter 5, possibly skipping Chapter 5.3).

4 Power system operation, I: control mechanisms for balancing power, including unit
commitment, real-time dispatch, secure operation, and primary and secondary fre-
quency control, as well as market mechanisms for pricing electricity and reserves
using locational marginal prices (Chapter 6).

5 Power system operation, II: state estimation, voltage control on distribution net-
works, and network topology identification (Chapter 7).



2 Introduction

Power System Analysis II: power flow optimization

A 13-week graduate course that covers Part II of the book on power flow optimization.
It focuses on analytical tools for and structural properties of power systems and prepares
students for research.

1 Power system basics: Reviews models and basic operation of power systems (topics
from Chapters 4, 5, 6 depending on students’ prior knowledge).

2 Convex optimization: convex analysis, optimality conditions, special convex pro-
grams, optimization algorithms, convergence analysis (Chapters 8).

3 Optimal power flow: OPF in BIM and BFM, NP-hardness, global optimality,
techniques for scalability (Chapter 9).

4 Semidefinite relaxations of OPF: SDP, chordal, SOCP relaxations of OPF, exact-
ness conditions (Chapters 10 and 11).

5 Nonsmooth convex optimization: normal cones and feasible sets, CPC functions
and subgradients, optimality conditions, special convex programs (Chapter 12).

6 Stochastic OPF: robust optimization, chance constrained optimization, convex
scenario program, two-stage optimization with recourse (Chapter 13).

Unbalance Three-phase Power System.

A 10-week undergraduate/graduate course that covers Part III of the book on un-
balanced three-phase networks. It develops from scratch three-phase component and
network models, three-phase optimal power flow and its semidefinite relaxations. It
shows how models and analysis for single-phase networks extend directly to a three-
phase setting. Prior knowledge of single-phase power networks or optimization theory
will be helpful but not absolutely necessary.

1 Review: Single-phase power networks (topics from Chapters 4 and 5 depending
on students’ prior knowledge).

2 Component models: mathematical properties of three-phase systems, three-phase
devices in . and � configurations, three-phase transmission or distribution lines,
three-phase transformers (Chapters 14 and 15).

3 Bus injection model: network model, three-phase analysis, balanced network
(Chapter 16, possibly skipping Chapter 16.4).

4 Branch flow model: network model, equivalence, examples, linear model (Chapter
17, possibly skipping Chapter 17.4).

5 Review: basic convex optimization theory and algorithms (topics from Chapter 8
depending on students’ prior knowledge).

6 Power flow optimization: three-phase OPF, semidefinite relaxations, example ap-
plications (Chapter 18).
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0.2 Overview

The book consists of three parts and an appendix.

Part I Power network: models, operation, analysis

1 Chapter 1 introduces basic concepts in modeling the steady-state behavior of an
alternating current (AC) power system, including circuit models, Kirchho�’s laws,
phasor representation, balanced three-phase systems, per-phase equivalent, and
complex power.

2 Chapter 2 develops circuit models for the terminal behavior of a balanced three-
phase transmission line that map the voltage and current at one end of the line to
those at the other end.

3 Chapter 3 develops models for balanced three-phase transformers and their per-
phase equivalent and analysis techniques for circuits containing transformers,
including per-unit normalization.

4 Chapter 4 uses the component models of previous chapters to construct a class of
network models we call the bus injection model (BIM). It introduces the network
admittance matrix . that relates linearly bus voltages and current injections, its
Kron reduction, and their analytical properties. It also introduces power flow
equations that relate nonlinearly bus voltages and power injections and presents
iterative algorithms for solving these equations. Finally it introduces a linearized
power flow model called the DC power flow model that is widely used for electricity
market operation.

5 Chapter 5 introduces the branch flow model (BFM) for radial networks with a
tree topology and proves its equivalence to the bus injection model. It presents a
fast iterative algorithm called the backward forward sweep for solving power flow
equations for radial networks. Finally it introduces a linearized model that admits
an explicit solution and bounds nonlinear power flow solutions.

6 Chapter 6 overviews three control mechanisms at di�erent timescales, unit com-
mitment, real-time dispatch and frequency control, that balance power supply and
demand. It also studies pricing of electricity and reserves using locational marginal
prices and optimality properties of these prices.

7 Chapter 7 illustrates the models and tools developed in earlier chapters through
three applications: state estimation, voltage control on distribution networks, and
topology identification.

Part II Power flow optimization

1 Chapter 8 formulates convex optimization problems and introduces some of the
most useful tools for convex analysis. We develop a general theory to charac-
terize optimal solutions and provide su�cient conditions for their existence, and
then apply the general theory to special classes of convex optimization problems
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widely used in applications. We describe iterative algorithms for solving convex
optimization problems and basic techniques for analyzing their convergence.

2 Chapter 9 formulates optimal power flow (OPF) problems that underly numerous
power system applications, in both the bus injection model and the branch flow
model. It proves that OPF is NP-hard but a subclass characterized by a Lyapunov-
like condition can be solved e�ciently to global optimality. Finally it describes
common techniques for scaling OPF solutions.

3 Chapter 10 studies the semidefinite relaxation of the nonconvex OPF problem for-
mulated in BIM as a quadratically constrained quadratically program. It develops
the concept of partial matrices and their positive semidefinite rank-1 completion
to exploit the sparsity of large networks. Finally it proves two su�cient conditions
for exact second-order cone (SOCP) relaxations of OPF on single-phase radial net-
works. Convex relaxation complements linear approximation and local iterative
algorithms as one of the main tools for dealing with the nonconvexity of OPF.

4 Chapter 11 studies the semidefinite relaxation of OPF in BFM for radial networks.
It formulates SOCP relaxation and proves its equivalence to the SOCP relaxation
in BIM. Finally it proves two su�cient conditions for exact SOCP relaxation for
single-phase radial networks.

5 Chapter 12 generalizes the structural results of Chapter 8.3 to a convex but non-
smooth setting, motivated by stochastic OPF studied in Chapter 13. It shows that
convexity is fundamental, but not smoothness, and, once the basic framework is
established, the more abstract approach here that relies only on convexity is both
more natural and simpler conceptually.

6 Chapter 13 studies basic methods for stochastic optimization, robust optimization,
chance constrained optimization, scenario programming, and two-stage optimiza-
tion with recourse. A focus is on problems (e.g., two-stage optimization) that are
convex, but often nonsmooth, to which optimality conditions studied in Chapter
12 are applicable and computation algorithms studied in Chapter 8 can be adapted
by replacing gradients with subgradients. Finally we present examples to illustrate
concepts of stochastic OPF.

Part III: Unbalanced three-phase networks

1 Chapter 14 studies the mathematical properties that underly the behavior of un-
balanced three-phase systems and derive models of three-phase voltage sources,
current sources, power sources, and impedances in . and � configurations.

2 Chapter 15 derives models of three-phase lines and transformers.
3 Chapter 16 uses the component models of Chapters 14 and 15 to extend the

bus injection model to the unbalanced three-phase setting. It also introduces the
sequence coordinate in which sequence networks become decoupled when there
is a certain symmetry in the original phase coordinate.

4 Chapter 17 extends the branch flow model to the unbalanced three-phase setting.
5 Chapter 18 extends OPF and its semidefinite relaxations (studied in Chapters 9,

10, 11) from single-phase to unbalanced three-phase networks.
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Appendix: Linear algebra preliminaries

Appendix A collects mathematical preliminaries used in the rest of the book.

0.3 Notation

Let C denote the set of complex numbers, R the set of real numbers, R+ the set of
nonnegative real numbers, R� the set of nonpositive real numbers,N the set of integers
and N+ the set of positive integers. We use i to denote

p
�1. For 0 2 C, its real and

imaginary parts are denoted by Re 0 and Im 0 respectively. Its complex conjugate is
usually denoted by 0̄ or 0H (though Ḡ also denotes a particular vector in R= when it is
clear from the context that Ḡ is a real quantity). For any set � ✓ C=, conv � denotes the
convex hull of �. For 0 2 R, [0]+ := max{0,0}. For 0,1 2 C, 0  1 means Re 0  Re 1
and Im 0  Im 1. We sometimes abuse notation to use the same symbol 0 to denote
either a complex number Re0+ i Im0 or a size 2 real vector 0 =(Re0, Im0) depending
on the context. The empty set is denoted ;.

In general scalar or vector variables are in small letters, e.g. D,F,G, H, I. Most
power system quantities however are in capital letters, e.g. ( 9: ,% 9: ,& 9: , � 9 ,+ 9 . Unless
otherwise specified, a vector is a column vector and is written interchangeably as

+ =
266664
+0

+1

+2

377775
or + = (+0,+1 ,+2)

A variable without a subscript usually denotes a vector with appropriate components,
e.g. B := (B 9 , 9 = 0, . . . ,=), ( := (( 9: , ( 9 , :) 2 ⇢). For a vector 0 = (01, . . . ,0: ), 0�8
denotes (01, . . . ,08�1,08+1,0: ) without the 08 entry. For a subset � ( {1, . . . , :}, 0�� :=
(08 , 8 8 �). For vectors G, H, G  H denotes componentwise inequality. We freely refer to
G as singular if we mean the vector G or as plural if we mean its components G1, . . . ,G=.
For example we may refer to _⇤ as a locational marginal price or locational marginal
prices.

Matrices are usually in capital letters. Let " ,# be index sets with < := |" |,
= := |# |. An < ⇥ = matrix with 08 9 2 C as its (8, 9)-th entry for 8 2 " , 9 2 # , can
be written as � = (08 9 , 8 2 " , 9 2 #). Given : := min{<,=} and scalars 01, . . . ,0: ,
diag(01, . . . ,0: ) is a : ⇥ : diagonal matrix with 08 on its diagonal. Given an < ⇥ =
matrix �, diag(�) := diag(�11, . . . , �:: ). We use �̄ to denote the componentwise
complex conjugate of a matrix �. The transpose of a matrix � is denoted by �T and
its Hermitian (or conjugate) transpose by �H := �̄T. If 0 is a scalar then 0H = 0̄ is its
complex conjugate. We use interchangeably (HB)H and HBH. A matrix � is Hermitian if
� = �H. A complex matrix � is positive semidefinite (or psd), denoted by � ⌫ 0, if �
is Hermitian and GH

�G � 0 for all G 2 C=. A real matrix � is positive semidefinite (or
psd), denoted by � ⌫ 0, if � is symmtric and GT

�G � 0 for all G 2 R=. In particular if
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� ⌫ 0 then by definition � = �H if � is complex and � = �T if � is real. 1
� is negative

semidefinite (nsd) if �� is psd. For matrices �,⌫, � ⌫ ⌫ means �� ⌫ is psd. Let S=

be the set of all =⇥= Hermitian matrices, S=+ the set of =⇥= psd matrices, and S=� the
set of =⇥= nsd matrices.

A graph⌧ = (# ,⇢) consists of a set # of nodes and a set ⇢ ✓ #⇥# of edges. If⌧ is
undirected then ( 9 , :) 2 ⇢ if and only if (: , 9) 2 ⇢ . If⌧ is directed then ( 9 , :) 2 ⇢ only
if (: , 9) 8 ⇢ ; in this case we will use ( 9 , :) and 9! : interchangeably to denote an edge
pointing from 9 to : . Therefore, for an undirected graph,

Õ
( 9,:)2⇢ G 9: includes both G 9:

and G: 9 for each edge ( 9 , :) 2 ⇢ , whereas, for a directed graph,
Õ

( 9,:)2⇢ G 9: includes a
single term G 9: for each directed edge 9! : . Sometimes, we write

Õ
( 9,:)2⇢

�
G 9: + G: 9

�
instead of

Õ
( 9,:)2⇢ G 9: to emphasize the undirected nature of the graph. By “ 9 ⇠ :”

we mean an edge ( 9 , :) if ⌧ is undirected and either 9 ! : or :! 9 if ⌧ is directed.
Sometimes we write 9 2 ⌧ or ( 9 , :) 2 ⌧ to mean 9 2 # or ( 9 , :) 2 ⇢ respectively.
A path ? := ( 91, . . . , 9 ) is an ordered set of nodes 9: 2 # so that ( 9: , 9:+1) 2 ⇢ for
: = 1, . . . , �1. In that case we refer to a link or a node in the cycle by ( 9: , 9:+1) 2 ? or
9: 2 ? respectively. A cycle is a path where 9 = 91. A simple cycle is a cycle that visits
every node at most once. Unless specified otherwise, we refer to 9 interchangeably as
a node or a bus and 9 ⇠ : interchangeably as a link, an edge, or a line.

Given a function 5 : R=! R<, m 5
mG

is the <⇥= matrix whose ( 9 , :) entry is
m 5

mG

�
9:

:=
m 5 9

mG:

(G), 9 = 1, . . . ,<, : = 1, . . . ,=

and r 5 (G) :=
⇣
m 5

mG

⌘T
is its transpose. In particular if < = 1 then m 5

mG
is a row vector and

r 5 (G) is a column vector.

We use 4 to denote the constant lim= (1+1/=)= and 4 9 2 {0,1}= the unit vector of
appropriate size = with a single 1 in the 9 th position. We use ln = log

4
to denote the

natural log. When there is no confusion we may also use log to denote ln. The vector 1=

usually denotes the vector of all 1s of size = and I= usually denotes the identity matrix
of size =. Without the subscript, the vector 1 and the identity matrix I either denote
the corresponding vector and matrix of size 3 (in unbalanced three-phase systems)
or a generic size depending on context. We overload notation and use the same letter
to denote di�erent things depending on the context; e.g., � may mean current or the
identity matrix,⌧ may mean a graph or the real part of an admittance matrix. =⌧+ i⌫,
and G may mean a generic variable or the imaginary part (reactance) of an impedance
I = A + iG.

For the study of three-phase power systems, both balanced and unbalanced, 40 :=
(1,0,0), 41 := (0,1,0), 42 := (0,0,1), and 4q

9
2 {0,1}3= is the unit vector with a single

1 in the 9qth position. We often use U := 4�i2c/3. The standard balanced vector in

1 As explained in Definition A.2 and Remark A.1 of Chapter A.5, for a complex matrix, GH
�G � 0 for all

G 2 C= implies that � is Hermitian, so including Hermitian in the definition of psd is redundant and
only for uniformity, because for a real matrix, GT

�G � 0 for all G 2 R= does not imply � is symmetric.
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positive sequence is U+ := (1,U,U2) and that in negative sequence is U� := (1,U2,U).
The following conversion matrices are key to the understanding of three-phase power
systems:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
Its properties are explained in Theorems 1.2 and 14.2. The similarity transformation
to obtain symmetrical components due to Fortescue is defined by the eigenvectors
(1,U+,U�) of �.

0.4 Units

The unit of a quantity is specified usually the first time the quantity is introduced.
Commonly used units in this book are collected here for convenience. We often overload
notations so that the same symbol may refer to di�erent quantities depending on the
context, e.g., � may denote a vector of current phasors � = (�8 , 8 = 1, . . . ,=) or the identity
matrix of appropriate size,+ may denote a vector of voltage phasors+ = (+8 , 8 = 1, . . . ,=)
or their unit volt.

1 voltage E(C),+ : volt (V).
2 current 8(C), �: ampere (A).
3 real power % : watt (W); reactive power & : volt-ampere reactive (var); complex

power ( := %+ i&, apparent power |( |: volt-ampere (VA).
4 resistance A , reactance G = il; or 1/il2, impedance I := A + iG: ohm (⌦).
5 conductance 6 := A/(A2 +G2), susceptance 1 := G/(A2 +G2), admittance H := I�1 =:
6 + i1: Siemen (S) or mho (⌦�1).

6 inductance ;: henry (H); magnetic flux linkage _(C) = ;8(C) : weber-turn (Wb-turn).
7 capacitance 2: farad (F); electric charge @(C) = 2E(C) : coulomb (C)

We will sometimes overload notation, e.g., ; is used sometimes to denote inductance,
sometimes inductance per unit length, some times a line index. The meaning should
be clear from the context.





Part I

Power network: models,
operation, analysis





1 Basic concepts

This chapter introduces basic concepts in modeling the steady-state behavior of an
alternating current (AC) power system where voltages and currents are sinusoidal
functions of time. For us, steady state means that the frequencies of voltages and
currents in the entire network are at their nominal value (e.g., 60 Hz in the US, 50 Hz
in China and Europe). In Chapter 1.1 we describe phasor representation of sinusoidal
voltages and currents, and introduce circuit models of devices that make up a single-
phase system. In Chapter 1.2 we explain balanced three-phase systems and how to
simplify their analysis using per-phase models. In Chapter 1.3 we define the concept
of complex power for single-phase and three-phase systems, and illustrate through
an example that a three-phase system saves power and conductors compared with a
single-phase system serving the same load.

1.1 Single-phase systems

An AC system consists of generators and loads connected by transmission or distribu-
tion lines and transformers. Their behavior can be described using quantities such as
voltages, currents, and power which are sinusoidal functions of time. These quantities
obey laws of physics. For our purposes they are the Kirchho�’s current law (KCL),
Kirchho�’s voltage law (KVL), and Ohm’s law. These laws allow us to analyze or sim-
ulate system behavior in the time domain. For steady-state behavior it is often easier
to transform these quantities to the phasor domain, apply the corresponding physical
laws in the phasor domain to analyze the steady state of a power network, and then
translate the results back to the time domain, as illustrated in Figure 1.1.

In this section we define voltage and current phasors, present simple models of
generators, loads, and lines using voltage sources, current sources, and impedances.
We also summarize KCL, KVL and Ohm’s law in the phasor domain. They can be
used to analyze a network of these circuit elements.
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physical system
(v(t), i(t), p(t))

analysis/sim
(time domain)

results
(time domain)

physical laws
(time domain

KC/VL, Ohm’s)

phasor
representation

(V, L, S )

analysis/sim
(phasor domain)

results
(phasor domain)

physical laws
(phasor domain
KC/VL, Ohm’s)

Figure 1.1 Phasor representation and analysis.

1.1.1 Voltage and current phasors

The quantities of interest, voltage E(C), current 8(C), and power ?(C), are physical
and can be empirically measured. The potential energy gained in moving a unit of
charge from point : to point 9 is called the voltage, or electric potential di�erence,
between 9 and : , denoted by E 9: . Its SI unit (International Systems of Units) is volt
(+), or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for
all voltages in the system under study. In that case we refer to the voltage at point 9
with respect to the reference point simply as the voltage at 9 and denote E 90 simply
by E 9 . Then the voltage between two points 9 and : is E 9: := E 9 � E: and represents
the energy required to move a unit of charge from point : to point 9 . The flow rate
of electric charge through a point is called the current through that point. Its SI unit
is ampere (�), or equivalently, coulomb/second. The rate of energy transfer when a
unit of charge is moved through an electric potential di�erence (voltage) between two
points is called electric power. Its SI unit is watt (,), or equivalently, joule/second. It
is equal to the product of voltage and current between these two points.

A sinusoidal voltage function is

E(C) =+max cos(lC + \+ ) = Re
�
+max4

i\+ · 4ilC
 

where +max is the amplitude (i.e., maximum magnitude) of the voltage E(C), l is the
steady-state frequency in radian, and \+ is the phase angle. In steady state,l is assumed
fixed systemwide, and hence a voltage function is fully specified by two parameters
(+max,\+ ). This motivates the definition of voltage phasor

+ :=
+maxp

2
4

i\+ volt (V)

such that

E(C) = Re
⇣p

2|+ | · 4i(lC+\+ )
⌘

(1.1)

The period of E(C) is ) := 2c/l. The magnitude of the voltage phasor

|+ | := +maxp
2
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is equal to the root-mean-square (RMS) value of the voltage, defined ass
1
)

π T

0
E

2 (C)3C =

s
1
)

π T

0
+

2
max cos2 (lC + \+ ) 3C =

+maxp
2

where we have used cos2
q = (1+ cos2q)/2.

Similarly let the sinusoidal current function be

8(C) = �max cos(lC + \� ) ampere (A)

with the corresponding current phasor

� :=
�maxp

2
4

i\�

such that

8(C) = Re
⇣p

2|� | · 4i(lC+\� )
⌘

(1.2)

The RMS value of the current is |� | := �max/
p

2.

1.1.2 Single-phase devices

Basic building blocks of an AC power system are generators that generate power,
loads that consume power, transmission and distribution lines, and transformers that
connect generators and loads. These devices can be modeled by circuit elements such
as impedances, voltage sources, current sources, and (later) power sources, as we now
explain.

Impedance I.

The voltage and current across a resistor A in ohm (⌦), an ideal inductor ; in henry (H),
or an ideal capacitor 2 in farad (F) satisfy a linear relation, both in the time domain
and in the phasor domain. We now derive Ohm’s law in the phasor domain from its
representation in the time domain.

Consider the circuit in Figure 1.2. The voltage E(C) across the resistor A and the

i(t)

v(t) r , l ,c

Figure 1.2 In phasor domain the voltage + and current � across a linear circuit element I are
related by + = I� where the impedances for resistor A, inductor ;, capacitor 2 are
I = A, il;, (il2)�1 respectively.
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current 8(C) through it are related by Ohm’s law:

E(C) = A 8(C)

Using (1.1)(1.2), this is equivalent to:

Re
n
+ ·
p

24ilC

o
= Re

n
A � ·
p

24ilC

o
Hence Ohm’s law in the phasor domain for a resistor is:

+ = A �

The current across a resistor is called in phase with the voltage.

An ideal inductor ; is characterized by

E(C) = ; 38(C)
3C

Substituting (1.1) and

38(C)
3C

= �l �max sin(lC + \� ) = l �max cos(lC + \� + c/2)

we have

Re
n
+ ·
p

24ilC

o
= Re

n
il; � ·

p
24ilC

o
or in the phasor domain:

+ = (il;) �

The current across an inductor is said to lag the voltage by c/2 radian.

Similarly an ideal capacitor 2 is characterized by

8(C) = 2 3E(C)
3C

Substituting (1.2) and

3E(C)
3 (C) = �l+max sin(lC + \+ ) = l+max cos(lC + \+ + c/2)

we have

Re
n
� ·
p

24ilC

o
= Re

n
il2+ ·

p
24ilC

o
or in the phasor domain:

+ =
1

il2
�

The current across a capacitor is said to lead the voltage by c/2 radian.

In summary we define the impedances of these elements, a resistor A, an ideal
inductor ;, and an ideal capacitor 2 in the phasor domain as respectively:

IA := A , I; := il;, I2 :=
1

il2



1.1 Single-phase systems 15

Instead of impedance I, sometimes it is convenient to use its inverse, called the
admittance H := I�1. The voltage + across an impedance I (or admittance H) and the
current � through it are related in the phasor domain by

+ = I� and � = H+

An important advantage of phasor representation of an AC circuit is that circuit analysis
involves only algebraic operations rather than di�erential equations in the time domain.

Example 1.1. A voltage E(C) is applied to a resistor A and an inductor ; in series
and the current through these devices is 8(C). Derive the dynamic equation that relates
(E(C), 8(C)) in the time domain and the corresponding equation that relates their phasors
(+ , �).

Solution. Let E1 (C) = A8(C) denote the voltage drop across the resistor and E2 (C) the
voltage drop across the inductor that satisfies E2 (C) = ; 3

3C
8(C). Then the relation between

(E(C), 8(C)) is given by KVL: E(C) = E1 (C) + E2 (C) or

E(C) = A8(C) + ; 3
3C

8(C)

Noting that E(C) = Re
np

2+ 4ilC

o
and 8(C) = Re

np
2� 4ilC

o
, we multiply both sides of

the equation above by 4ilC to get
p

2+ 4ilC = A

p
2� 4ilC + ;

⇣
il

p
2� 4ilC

⌘
+ = (A + il;) �

Hence the resistor and inductor in series can be modeled in the phasor domain by an
impedance I := A + il;. ⇤

Voltage source (⇢ , I).
In the phasor domain, a voltage source is a circuit model with a constant internal voltage
⇢ in series with an impedance I, as shown in Figure 1.3(a). Its external behavior is

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3 A voltage source (⇢ , I) and a current source (�, H). An ideal voltage source has I = 0
and an ideal current source has H = 0.

described by the relation between its terminal voltage and terminal (+ , �):

+ = ⇢ � I�
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Hence the open-circuit (terminal) voltage + equals the internal voltage ⇢ . We often
adopt an ideal voltage source with I = 0. In this case + = ⇢ .

Current source (�, H).
In the phasor domain, a current source is a circuit model with a constant internal
current � in parallel with an admittance H, as shown in Figure 1.3(b). Its external
behavior is described by the relation between its terminal voltage and current (+ , �):

� = � � H+

Hence the closed-circuit (terminal) current � equals the internal current �. We often
adopt an ideal current source with H = 0. In this case � = �.

Remark 1.1. 1 A nonideal voltage source (⇢ , I) and a current source (�, H) are
equivalent, i.e., have the same terminal voltage and current relationship if their
parameters satisfy

� =
⇢

I

(closed-circuit equivalent)

H := I
�1 (open-circuit equivalent)

2 Ideal voltage or current sources are reasonable models as their series impedances
or shunt admittances can be combined with the series impedance and shunt ad-
mittances of a transmission or distribution line to which they are connected, as we
will see in Chapter 2. We will therefore often use ideal voltage and current sources
in this book with series series impedances and shunt admittances.

⇤

Single-phase devices.

Basic devices in a power system are generators, loads, transmission and distribution
lines, transformers, and other control devices. A generator can be modeled by a voltage
source or current source. A load can be modeled by an impedance (or admittance), a
voltage source, or a current source. A transmission or distribution line can be modeled
by a series impedance and a shunt admittance at each end of the line; the details are
described in Chapter 2. A transformer can be modeled by a series impedance and a
shunt admittance followed by voltage and current gains; the details are described in
Chapter 3. We will introduce in Chapter 1.3 the concept of complex power. This leads
to a device model that we will call a power source that generates or draws a constant
power. These are summarized in Table 1.1. They are abstract models of physical
devices. For relation to a common load model, called ZIP, that describes how power
consumed by a load depends on the voltage magnitude |+ | across the load, see Exercise
1.1. This book develops techniques for analyzing power system models constructed
from these circuit elements.
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Device Circuit model

Generator Voltage source, current source, power source
Load Impedance, voltage source, current source, power source
Line Impedance (Chapter 2)
Transformer Impedance, voltage/current gain (Chapter 3)

Table 1.1 Circuit elements commonly used for modeling generators, loads, lines, and
transformers.

1.1.3 KVL, KCL, Ohm’s Law, Tellegen’s theorem

Consider a circuit consisting of an interconnection of resistors, inductors, capacitors,
and voltage and current sources. An ideal voltage source between two points enforces
a given voltage between these two points. An ideal current source between two points
enforces a given current between them. We now describe Kirchho�’s current law
(KCL), Kirchho�’s voltage law (KVL), Ohm’s law for a general circuit and derive a
result called Tellegen’s theorem.

We represent a circuit by a connected directed graph ⌧̂ := (#̂ , ⇢̂) with an arbitrary
orientation where #̂ is a set of nodes and ⇢̂ ✓ #̂ ⇥ #̂ is a set of links. We sometimes
abuse notation and use #̂ to denote both the set of nodes and the number of nodes
in #̂ when the meaning should be clear from the context. We allow multiple links
between two nodes 9 and : (see Figure 1.4). A link ; that points from node 9 to node
: is represented by ; = ( 9 , :) or ; = 9 ! : . Multiple links ;1, . . . , ;: between nodes
9 and : may have di�erent orientations, e.g., ;1 = 9 ! : and ;2 = : ! 9 . There are
two variables associated with each link ; = ( 9 , :) between nodes 9 and : . The voltage
across link ; is denoted by *; in the direction of ; and the branch current over link ;
from 9 to : is denoted by �; .

A link ; represents either an impedance, a voltage source, or a current source. If
link ; represents an impedance then its value I; is given and the voltage*; and branch
current �; across link ; satisfies *; = I;�; (Ohm’s law). If link ; represents a voltage
source then *; = D; is given, and if it represents a current source then �; = 9; is given.
These notations are illustrated in Figure 1.4a.

KCL, KVL.

Kirchho�’s current law (KCL) states that the incident currents at any node 9 sum to
zero:

�
’

8:8! 92⇢̂
�8 9 +

’
:: 9!:2⇢̂

� 9: = 0 (1.3a)

For the example in Figure 1.4 this means ��;1 + �;2 + �;3 + �;4 = 0 at node 2. Kirchho�’s
voltage law (KVL) states that voltage drops around any cycle 2 sum to zero. Consider
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zl1

zl3 zl4

zl2

Jl4

Jl2

Jl6 = – j6

Jl1
Jl5 Jl3

Ul3Ul5 = u5 Ul4 Ul6

Ul1 Ul2
1 2

4

3

(a) Circuit

11

2

3

4

−1 1 1 1

1

1−1

−1 −1 −1 −1

Ĉ =

l1 l2 l3 l4 l5 l6

Ĉ1 Ĉ2 Ĉ3

(b) Incidence matrix

Figure 1.4 A circuit represented as a directed graph where each link ; is either an impedance I
;
,

a voltage source*
;
, or a current source �

;
. The voltage source*

;5 = D5 and current source
�
;6 = � 96 are given. Its incidence matrix ⇠̂ is partitioned into ⇠̂1 corresponding to the

impedances, ⇠̂2 corresponding to the voltage source, and ⇠̂3 corresponding to the current
source.

a cycle 2 in the graph with an arbitrary orientation, say, clockwise. A link ; in the cycle
that is in the same direction as 2 is denoted by ; 2 2 and a link ; that is in the opposite
direction to 2 is denoted by �; 2 2. Then KVL states that the voltage drops around any
cycle 2 sum to zero: ’

;22
*; �

’
�;22

*; = 0 (1.3b)

For the cycle indicated in Figure 1.4(a) we have*;1 +*;3 �*;5 = 0.

We can represent (1.3) compactly in vector notation. Let * :=
�
*; , ; 2 ⇢̂

�
and � :=�

�; , ; 2 ⇢̂
�

denote the vectors of voltages and currents respectively across these lines.
Let ⇠̂ 2 {�1,0,1} |#̂ |⇥ |⇢̂ | be the node-by-link incidence matrix defined by:

⇠̂ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8

0 otherwise
, 9 2 #̂ , ; 2 ⇢̂

See Figure 1.4 (properties of general incidence matrices are summarized in Appendix
A.11). Then Kirchho�’s current law (1.3a) states that

KCL: ⇠̂ � = 0 (1.4a)

Kirchho�’s voltage law is equivalent to the condition that there exist nodal voltages
+ 2 C |#̂ | (with respect to the common reference point node 0) such that

KVL: * = ⇠̂T
+ (1.4b)

i.e., given line voltages *, there must exist nodal voltages such that *; = + 9 �+:
where ; = 9 ! : , from which (1.3b) follows. This seems intuitive and can be proved
mathematically using concepts in algebraic graph theory (Exercise 1.2). Without loss
of generality we use node #̂ as the common reference point for all voltages, i.e., we
have by definition

+
#̂

:= 0 (1.4c)
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Circuit analysis.

Consider a circuit represented by an incidence matrix ⇠̂. The |#̂ |⇥ |⇢̂ | incidence matrix
⇠̂ is of rank |#̂ |�1 since ⌧̂ is connected, with span(1) as its null space (see Chapter
A.11 for more details). Therefore (1.4) consists of |#̂ | + |⇢̂ | + 1 complex equations
in |#̂ | + 2|⇢̂ | complex variables (+ , �,*), of which |#̂ | + |⇢̂ | equations are linearly
independent. To obtain another |⇢̂ | equations we note that across every link ; is exactly
one of the following devices:

1 impedance with a given I;: Its behavior is described by Ohm’s law

*; = I;�; (1.5a)

2 ideal voltage source with a given D;: Its behavior is described by

*; = D; (1.5b)

3 ideal current source with a given 9;: Its behavior is described by

�; = 9; (1.5c)

Partition the set ⇢̂ of links into three disjoint sets ⇢̂ =: ⇢̂1 [ ⇢̂2 [ ⇢̂3 where ⇢̂1 is the
set of impedances, ⇢̂2 voltage sources, and ⇢̂3 current sources. Then (1.4)(1.5) specify
|#̂ | + 2|⇢̂ | + 1 equations in |#̂ | + 2|⇢̂ | variables (+ , �,*), of which at most |#̂ | + 2|⇢̂ |
equations are linearly independent:

2666666666664

0 ⇠̂ 0
0 �/ I |⇢̂1 |
0 0 I |⇢̂2 |
0 I |⇢̂3 | 0
⇠̂

T 0 �I |⇢̂ |
4

T
|#̂ | 0 0

3777777777775

266664
+

�

*

377775
=

2666666666664

0 |#̂ |
0 |⇢̂1 |
D

9

0 |⇢̂ |
01

3777777777775

(1.6)

where / := diag
�
I; , ; 2 ⇢̂1

�
is the diagonal matrix of impedances, D := (D; , ; 2 ⇢̂2) and

9 := ( 9; , ; 2 ⇢̂3) are vectors of voltage and current sources respectively, 0< is the zero
vector of size<, I< is the identity matrix of size<, and 4= 2 {0,1} |#̂ | is the unit vector
with a single 1 in the =th entry. A circuit analysis problem is to solve (1.4)(1.5), or
equivalently (1.6), for these variables. A su�cient condition is given in Theorem 1.1
for the existence and uniqueness of solution. A necessary condition for the existence
of a solution is that the given voltage and current vectors (E, 9) are consistent, e.g., if
only current sources are incident on a node : , then these given currents must satisfy
KCL at node : , or if a set of voltage sources form a cycle 2 then these given voltages
must satisfy KVL on 2.

The system of equations (1.6) can be simplified, as follows. Order the links such
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that the incidence matrix decomposes into submatrices ⇠̂1,⇠̂2,⇠̂3 corresponding to
impedances, voltage sources, and current sources respectively (see Figure 1.4b):

⇠̂ =:
⇥
⇠̂1 ⇠̂2 ⇠̂3

⇤
Partition the branch voltages* and branch currents � accordingly:

* :=
266664
*1

D

*3

377775
, � :=

266664
�1

�2

9

377775
where E and 9 are the given vectors of voltage and current sources respectively. Then
KCL and KVL are

⇠̂1�1 + ⇠̂2�2 = �⇠̂3 9

*1 = ⇠̂
T
1+ , D = ⇠̂

T
2+ , *3 = ⇠̂

T
3+

for some nodal voltages + . Use Ohm’s law*1 = / �1 to eliminate*1 to obtain

26666664

0 ⇠̂1 ⇠̂2 0
⇠̂

T
1 �/ 0 0
⇠̂

T
2 0 0 0
⇠̂

T
3 0 0 �I |⇢̂3 |

37777775

26666664

+

�1

�2

*3

37777775
=

26666664

�⇠̂3 9

0
D

0

37777775
(1.7)

The desired quantities (+ , �1, �2,*3) are solutions of (1.7) if they exist. Given �1, *1

is given by*1 = /�1.

Recall that we take without loss of generality node #̂ as the common reference point
for nodal voltages and assign +

#̂
:= 0. We can consider the ( |#̂ | � 1) ⇥ |⇢̂ | reduced

incidence matrix ⇠ obtained from ⇠̂ by deleting the last row corresponding to the
reference node #̂ . The advantage of using ⇠ is that it has a full row rank of |#̂ | � 1.
Let +�#̂ :=

�
+ 9 , 9 < #̂

�
be the vector of all non-reference nodal voltages. Similarly

partition ⇠ into ⇠ =: [⇠1 ⇠2 ⇠3]. Then (1.7) is equivalent to the following equation:

26666664

0 ⇠1 ⇠2 0
⇠

T
1 �/ 0 0
⇠

T
2 0 0 0
⇠

T
3 0 0 �I |⇢̂3 |

37777775|                          {z                          }
"

26666664

+�#̂
�1

�2

*3

37777775
=

26666664

�⇠3 9

0
D

0

37777775
(1.8)

The key feature of this model, compared with (1.7), is that it does not contain the
reference node #̂ .

Example 1.2. Consider the circuit in Figure 1.4 represented by the directed graph
⌧̂ = (#̂ , ⇢̂) with

#̂ := {1,2,3,4}
⇢̂ := {;1 := 1! 2, ;2 := 2! 3, ;3 := 2! 4, ;4 := 2! 4, ;5 := 1! 4, ;6 := 3! 4}
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The incidence matrix ⇠̂ can be partitioned into submatrices

⇠̂1 :=

26666664

1 0 0 0
�1 1 1 1
0 �1 0 0
0 0 �1 �1

37777775
, ⇠̂2 :=

26666664

1
0
0
�1

37777775
, ⇠̂3 :=

26666664

0
0
1
�1

37777775
The reduced incidence submatrices are then

⇠1 :=
266664

1 0 0 0
�1 1 1 1
0 �1 0 0

377775
, ⇠2 :=

266664
1
0
0

377775
, ⇠3 :=

266664
0
0
1

377775
The equation (1.8) becomes:

2666666666666666664

0 0 0 1 0 0 0 1 0
0 0 0 �1 1 1 1 0 0
0 0 0 0 �1 0 0 0 0
1 �1 0 �I;1 0 0 0 0 0
0 1 �1 0 �I;2 0 0 0 0
0 1 0 0 0 �I;3 0 0 0
0 1 0 0 0 0 �I;4 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 �1

3777777777777777775

2666666666666666664

+1

+2

+3

�;1

�;2

�;3

�;4

�;5

*;6

3777777777777777775

=

2666666666666666664

0
0
96

0
0
0
0
D5

0

3777777777777777775
⇤

We now discuss the existence and uniqueness of solution to (1.8).

Theorem 1.1. The matrix " in (1.8) is invertible if the following square matrices of
sizes |#̂ |�1 and |⇢̂2 | respectively are invertible:

⇠1/
�1
⇠

T
1 , ⇠

T
2

⇣
⇠1/

�1
⇠

T
1

⌘�1
⇠2

where ⇢̂2 is the set of voltage sources. ⇤

A necessary condition for ⇠1/
�1
⇠

T
1 to be nonsingular is that the graph ⌧̂ is con-

nected. In that case, if I; are real and positive (i.e., resistive network) then ⇠1/
�1
⇠

T
1

is nonsingular since / := diag(I;) is positive definite and ⇠ and hence its submatrix
⇠1 are both of full row rank. When / is complex, however, ⇠1/

�1
⇠

T
1 may be singular

even if I; are all nonzero and ⇠1 is of full row rank (see discussions in Chapter 4.2.3).
The matrix ⇠T

2 is of full row rank if and only if no voltage sources form a cycle in the
circuit.

The proof of Theorem 1.1 relies on the following fact. Let " 2 C=⇥= and partition
it into blocks:

" =

�1 ⌫

⇡ �2

�
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where �1 2 C:⇥: , : < =, and the other submatrices are of matching dimensions. If �2 is
invertible then the :⇥ : matrix"/�2 := �1�⌫��1

2 ⇡ is called the Schur complement of
block �2 of matrix " . In that case " is nonsingular if and only if "/�2 is nonsingular.
Similarly if �1 is invertible then the (=� :) ⇥ (=� :) matrix "/�1 := �2 �⇡��1

1 ⌫ is
called the Schur complement of block �1 of matrix " , and " is nonsingular if and
only if "/�1 is nonsingular; see Theorem A.4 in Appendix A.3.

Proof of Theorem 1.1 We can interchange the second and third rows and interchange
the second and third column and write (1.8) equivalently in terms of the matrix

"̃ =

26666664

0 ⇠2 ⇠1 0
⇠

T
2 0 0 0
⇠

T
1 0 �/ 0
⇠

T
3 0 0 �I |⇢̂3 |

37777775
The matrix " is nonsingular if and only if "̃ is. Since / and I |⇢̂3 | are both nonsingular,

"̃ is nonsingular if and only if the Schur complement of diag
⇣
�/ ,�I |⇢̂3 |

⌘
:

( :=


0 ⇠2

⇠
T
2 0

�
+


⇠1 0
0 0

� 
/
�1 0
0 I |⇢̂3 |

� 
⇠

T
1 0
⇠

T
3 0

�
=


⇠1/

�1
⇠

T
1 ⇠2

⇠
T
2 0

�

is nonsingular. The Schur complement ( is a square matrix of size (#̂ �1) + |⇢̂2 | where
⇢̂2 is the set of voltage sources. If ⇠1/

�1
⇠

T
1 is nonsingular then " is nonsingular if

and only if the Schur complement

(/
⇣
⇠1/

�1
⇠

T
1

⌘
:= �⇠T

2

⇣
⇠1/

�1
⇠

T
1

⌘�1
⇠2

is nonsingular. ⇤

Tellegen’s theorem

An important result in circuit theory is Tellegen’s theorem that expresses a relation
between voltage drops across links and currents on these links. It is a simple conse-
quence of Kirchho�’s laws and algebraic graph theory (see Chapter A.11 for more
details). Since the rank of the |#̂ | ⇥ |⇢̂ | incidence matrix ⇠̂ is |#̂ | � 1 assuming ⌧̂ is

connected, rank
⇣
⇠̂

T
⌘
= rank(⇠̂) = |#̂ |�1 and the dimension of the null space null(⇠̂)

is |⇢̂ |� |#̂ | +1. Recall that the subspaces null(⇠̂) and range
⇣
⇠̂

T
⌘

are orthogonal com-

plements of each other and they span C |⇢̂ | , i.e., C |⇢̂ | = null(⇠̂) + range
⇣
⇠̂

T
⌘
. The KCL

and KVL (1.4a)(1.4b) say that the branch current (vector) � is in null(⇠̂) and the branch

voltage (vector)* is in range
⇣
⇠̂

T
⌘

respectively. Therefore

Tellegen’s theorem: �
H
* = 0

It is remarkable that this relation holds for any branch current � and branch voltage
*, even if they are from di�erent networks as long as these networks have the same
incidence matrix ⇠̂.
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1.1.4 One-line diagram and equivalent circuit

A power system is often not specified as a circuit of the form we study in Chapter 1.1.3.
Instead it is usually specified by what is called a one-line diagram. A one-line diagram
is equivalent to a circuit that includes the common reference point for nodal voltages as
an addition node. Each line in the one-line diagram may represent a transmission line,
a distribution line or a transformer, single or multi-phased. As we will see below if a
single-phase line has a equivalent⇧ circuit then the line translates into three links in the
equivalent circuit. In this subsection we formally define one-line diagram and derive
its equivalent circuit. A one-line diagram can be analyzed by applying the method of
Chapter 1.1.3 to its equivalent circuit.

One-line diagram.

A one-line diagram specifies a network topology and admittance parameters associated
with the lines; see an example in Figure 1.5 for a three-bus network. Formally we
define a one-line diagram as a pair (⌧,Y) where ⌧ := (# ,⇢) is a graph and Y :=⇣
H
B

9:
, H<
9:

, H<
: 9

, ; = ( 9 , :) 2 ⇢
⌘

is a set of line parameters for every line ; 2 ⇢ (we

assume here a single-phase system and HB
9:

= HB
: 9

). Each node 9 2 # represents a bus
in the power system. We will therefore refer to 9 as a bus or a node interchangeably.
Each link ; 2 ⇢ represents a transmission or distribution line or a transformer. We will
therefore refer to ; as a line, a link or a branch interchangeably. The line parameter

H
B

9:
2 C is called the series admittance associated with line ( 9 , :) and

⇣
H
<

9:
, H<
: 9

⌘
2 C2

is called its shunt admittances. We will see below how these parameters determine the
equivalent circuit of the line. There can be multiple lines between two buses, though
for notational simplicity we often assume there is a single line between each pair of
buses in which case a line ; between buses 9 and : can be identified by ( 9 , :).

I1

I2 I3
V2

V1

V3

(a) Graph ⌧ = (# ,⇢)












































































































(b) Line parameters Y

Figure 1.5 One-line diagram for a three-bus network (⌧,Y). It is not a circuit but has an
equivalent ⇧ circuit model.

There can be a nodal device at each node 9 2 # . The device can be an impedance
I 9 , an ideal voltage source E 9 , or an ideal current source 8 9 . The interpretation is that
these devices are connected between node 9 and the common voltage reference point
and behave according to (1.5). (We will introduce later the nodal device called a power
source.)
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The behavior of the network specified by a one-line diagram is described in terms
of its equivalent circuit.

Equivalent circuit.

Associated with each node 9 are a nodal voltage+ 9 2 Cwith respect to an arbitrary but
common reference point and a nodal current injection � 9 2 C. To derive the relation
between the vectors (+ , �) of nodal voltages and currents specified by the one-line
diagram, we first derive its equivalent circuit and then apply the method of Chapter
1.1.3 to the circuit.

We illustrate this with a simple 2-bus network. The method and the conclusion
extend directly to general networks.

Example 1.3 (Equivalent ⇧ circuit of a single line). Figure 1.6(a) specifies a one-line
diagram (⌧,Y) for a network consisting of two nodes 1 and 2 connected by a line
; = (1,2). Suppose there is an ideal current source at each node with given current
injections (�1, �2). The nodal voltages are (+1,+2). The line parameter

�
H
B

12, H<12, H<21

�

( ys12 , y
m
12 , y

m
21 )

V2V1

I1 I2

(a) One-line diagram (⌧,Y)

ys12

ym12 ym21

Jl3 Jl5

Ul5 = V2

Jl4 Jl2

Ul2Ul4 = V1 Ul3

Ul1
1

3

2

I1 I2

Jl1

(b) Equivalent ⇧ circuit

Figure 1.6 One-line diagram (⌧,Y) with two nodes 1,2 connected by a line ; = (1,2) and its
equivalent ⇧ circuit. The nodal current injections (�1, �2) and the nodal voltages (+1,+2) in the
one-line diagram become current sources and branch voltages respectively between nodes 1,2
and the reference node 3 in the ⇧ circuit.

defines the equivalent circuit in Figure 1.6(b) called the⇧ circuit of line ; = (1,2). (We
will explain the origin of the equivalent circuit in Chapter 2.) The application of KVL,
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KCL, and Ohm’s law on the ⇧ circuit leads to a relation between (�1, �2) and (+1,+2),
as we now explain.

Let the directed graph ⌧̂ := (#̂ , ⇢̂) represent the ⇧ circuit where

#̂ := {1,2,3}
⇢̂ := {;1 := 1! 2, ;2 := 1! 3, ;3 := 2! 3, ;4 := 1! 3, ;5 := 2! 3}

as shown in Figure 1.6(b). Note that the graph ⌧ of the one-line diagram has 2 nodes
while the graph ⌧̂ of its equivalent circuit has 3 nodes with node 3 being the voltage
reference point. For each link ; 2 ⇢̂ let*; and �; denote the voltage and current across
link ; in the direction of ;. Let* := (*; , ; 2 ⇢̂) and � := (�; , ; 2 ⇢̂). The devices on the
links ;1, ;2, ;3 are admittances with

;1 : �;1 = H
B

12*;1 , ;2 : �;2 = H
<

12*;2 , ;3 : �;3 = H
<

21*;3

Since the nodal devices at nodes 1 and 2 are ideal current sources with given currents
�1 and �2 respectively, we have

;4 : �;4 = ��1, ;5 : �;5 = ��2
The node-by-link incidence matrix ⇠̂ of the ⇧ circuit is

⇠̂ :=
266664

1 1 0 1 0
�1 0 1 0 1
0 �1 �1 �1 �1

377775
The KCL, KVL and Ohm’s law in terms of ⇠̂,*, � for the ⇧ circuit in Figure 1.6(b)
are:

KCL : ⇠̂� = 0 (1.9a)

KVL : 9 + := (+1,+2,+3) s.t. * = ⇠̂
T
+ (1.9b)

Ohm’s law : �;1 = H
B

12*;1 , �;2 = H
<

12*;2 , �;3 = H
<

21*;3 (1.9c)

nodal current sources : �;4 = ��1, �;5 = ��2 (1.9d)

We will set the nodal voltage +3 := 0, i.e., node 3 in #̂ is chosen to be the voltage
reference point. This allows us to eliminate branch variables (*, �) from (1.9) to
obtain a relation between the nodal currents � := (�1, �2) and voltages + := (+1,+2):

�1 = H
B

12 (+1�+2) + H<12+1, �1 = H
B

12 (+2�+1) + H<21+2

In vector form this is � = .+ with

. :=

H
B

12 + H<12 �HB12
�HB12 H

B

12 + H<21

�

The matrix . is called the admittance matrix of the network, a single-line in this

example. The admittance matrix. can be expressed using the submatrix⇠1line :=


1
�1

�

of ⇠̂ corresponding to link ;1 with the series admittance HB12. Note that ⇠1line includes
every node in the equivalent circuit except the reference node 3, i.e., ⇠ describes the



26 Basic concepts

connectivity between exactly the set of nodes in the original one-line diagram. If we

let . B := [HB12] and .< :=

H
<

12
H
<

21

�
then

. := ⇠1line.
B

⇠
T
1line + diag(.<)

⇤

For a general network specified by a one-line diagram (⌧ = (# ,⇢),Y) let
+ := (+ 9 , 9 2 #) and � := (� 9 , 9 2 #) denote the vectors of nodal voltages and cur-
rent injections from the nodal devices respectively. We interpret the line parameter⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
of each line ( 9 , :) as defining a ⇧ circuit model for the line, as ex-

plained in Example 1.3. This induces an equivalent circuit for the entire network that
can be described by a directed graph ⌧̂ = (#̂ , ⇢̂) constructed from ⌧ = (# ,⇢), as
follows. The set #̂ of nodes in the equivalent circuit is

#̂ := # [ {|# | +1}

where the additional node #̂ := |# | + 1 is the reference point for all voltages, i.e.,
+
#̂

:= 0.

For each node 9 2 # in the one-line diagram, there is a link ; = 9 ! #̂ in the
equivalent circuit corresponding to the nodal device at 9 . The voltage *; across line
; = 9 ! #̂ is*; =+ 9 and the current �; across link ; in the direction of ; is �; = �� 9 . If
the nodal device at node 9 is an impedance I 9 , then + 9 =*; = I 9�; = �I; � 9 ; if it is an
ideal voltage source + 9 , then *; = + 9 is given; if it is an ideal current source � 9 , then
�; = �� 9 is given. If there is no nodal device at node 9 , then we set �; = �� 9 := 0.

For each line ( 9 , :) 2 ⇢ parametrized by
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
in the one-line dia-

gram, there are 3 links
⇣
; 9: , ; 9 #̂ , ;

: #̂

⌘
in ⇢̂ in the equivalent circuit. The currents⇣

� 9: , � 9 #̂ , �
: #̂

⌘
and voltages

⇣
* 9: ,* 9 #̂ ,*

: #̂

⌘
across these links satisfy:

; 9: = 9 ! : : � 9: = HB
9:
* 9:

;
9 #̂

= 9 ! #̂ : �
9 #̂

= H<
9:
*
9 #̂

;
: #̂

= :! #̂ : �
: #̂

= H<
: 9
*
: #̂

The set of links ; = 9 ! : corresponding to series admittances is the set ⇢ in the
one-line diagram. Let ⇢̂

#̂
denote the set of links ; = 9! #̂ connecting nodes 9 2 # to

the reference node #̂ . They correspond to the shunt admittances on each line ( 9 , :) 2 ⇢
and the nodal device at each node 9 2 # . The set ⇢̂ in the equivalent circuit is the
disjoint union of these two types of links:

⇢̂ = ⇢ [ ⇢̂
#̂

See the two-bus network in Figure 1.6 and its equivalent⇧ circuit for an example. If bus
9 2 # is connected to < 9 other buses : 2 # in the one-line diagram, then there will be
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< 9 links ;
9: #̂

= 9 ! #̂ in the equivalent circuit, for : = 1, . . . ,< 9 , all between node 9

and #̂ , representing shunt admittances H<
9:

on these lines. Therefore |⇢̂
#̂
| = |# | +2|⇢ |.

Let ⇠1line be the incidence matrix for the subgraph of the circuit consisting of non-
reference nodes # and links in ⇢ connecting them, i.e.,⇠1line describes the connectivity
between exactly the nodes in the one-line diagram:

[⇠1line] 9; :=

8>><
>>:

1 if ; = 9 ! : in ⇢
�1 if ; = 8! 9 in ⇢

0 otherwise
, 9 2 # , ; 2 ⇢

Let. B := diag
⇣
H
B

9:
, ( 9 , :) 2 ⇢

⌘
denote the diagonal matrix of series admittances on the

lines. Let.< := diag
⇣
H
<

9 9
, 9 2 #

⌘
denote the diagonal matrix of total shunt admittances

H
<

9 9
:=

Õ
::( 9,:)2⇢ H

<

9:
incident on each bus 9 . Then the linear relation between nodal

current injections and voltages found in Example 1.3:

� = .+ (1.10a)

holds for the general network with the admittance matrix . given by (Exercise 1.5)

. = ⇠1line.
B

⇠
T
1line + .< (1.10b)

The relation (1.10) serves as a formal identification of a one-line diagram (⌧,Y)
with an equivalent ⇧ circuit. Moreover given (⌧,Y) we can directly write down the
admittance matrix . without going through the circuit analysis conducted above. We
therefore often refer to the one-line diagram itself as a circuit model. This relation will
be studied in detail in Chapter 4.

1.2 Three-phase systems

To motivate three-phase systems, consider the single-phase system in Figure 1.7(a)
composed of three identical circuits each consisting of a generator modeled as a voltage
source in series with an impedance I6, a forward conductor and a return conductor
each modeled as an impedance IC , and a load modeled as an impedance I; . The same
loads can also be supplied by a three-phase system shown in Figure 1.7(b). As we will
illustrate in Chapter 1.3.3, such a three-phase system needs half as much the conductor
and incurs half as much the thermal loss as the single-phase system. In this section we
explain the operation of three-phase systems.

Three-phase sources and loads can be arranged in . (Wye) or � (Delta) configura-
tions. This is explained in Chapter 1.2.1. A three-phase system is balanced if all the
sources are balanced, loads are identical, and transmission lines are identical and have
symmetric geometry. A balanced three-phase system has several simplifying proper-
ties. In Chapter 1.2.2 we prove a theorem that summarizes the mathematical structure
of balanced three-phase systems that underlies these properties. We apply this theorem
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(b) Balanced three-phase system

Figure 1.7 A single-phase system and a balanced three-phase system that transfer power from
generators through transmission lines to loads.

to balanced system in . configuration (Chapter 1.2.3) and � configuration (Chapter
1.2.4). This leads to per-phase analysis of a balanced system described in Chapter
1.2.5. Finally we present in Chapter 1.2.6 example configurations common in a power
distribution system.
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Even though power systems are generally multiphased, single-phase models are
widely used as per-phase models of balanced three-phase systems, especially for trans-
mission system applications. Unbalanced three-phase systems are studied in Part III of
this book.

1.2.1 . and � configurations

Three single-phase devices can be arranged in either an . or a � configuration as
shown in Figure 1.8. They can be three voltage sources, three current sources, or

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n’

n

a

b

c

In'= I n
V n'

(a) . configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) � configuration

Figure 1.8 Three-phase systems, not necessarily balanced, in . and � configurations.
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three impedances and they may not be identical, e.g., the three impedances may have
di�erent values.

. configuration.

For the . configuration, the internal voltage (vector) is +. := (+0=,+1=,+2=). These
voltages are called phase-to-neutral or phase voltages. The internal current (vector)
�
. := (�0=, �1=, �2=) is defined to flow from each terminal to the neutral as shown

in Figure 1.8(a). The external behavior of a three-phase device is described by what
is measurable on the terminal of the device. The terminal (or nodal or bus) voltage
+ := (+0,+1 ,+2) are voltages with respect to an arbitrary but common reference point,
and the terminal (or line) current � :=

�
�
0, �1 , �2

�
is defined to be the current coming

out of the device as shown in the figure. If the common reference point is taken to be
the neutral of this device then+ =+. , i.e., the terminal voltage is the same as the phase
voltage for . configuration. Otherwise + = +. �+=1 where 1 is three-dimensional
vector of all 1s. As we will see in Chapters 1.2.3 and 1.2.4, for a balanced systems, the
neutrals of all . -configured devices are at the same voltage and therefore can serve as
the common reference point. This is not necessarily the case for an unbalanced system,
which we will study in Part III of this book.

Hence, for . configuration, the terminal voltage and current (+ , �) are determined
by the internal voltage and current

�
+
. , �.

�
according to (when the common reference

point for + is the neutral so that += := 0):

+ = +
. , � = ��. (1.11)

When the common reference is not the neutral of this device, we have+ =
�
+
. ++=1

�
.

Instead of the terminal voltage + it is also common to describe the behavior of the
three-phase device in terms of its line-to-line or line voltage + line :=

�
+
01 ,+12 ,+20

�
.

To relate + line to + or to +. , define the matrices � and its transpose �T:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
(1.12)

We call � and �T conversion matrices. They can be interpreted as the bus-by-line
incidence matrices of the directed graphs shown in Figure 1.9. Then

1

3 2

(a) �

1

3 2

(b) �T

Figure 1.9 Directed graphs of which � and �T are incidence matrices.
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266664
+
01

+
12

+
20

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0=

+
1=

+
2=

377775

or in vector form:

+
line = �+ = �+. (1.13)

This holds for both . and � configurations and whether or not the common reference
point for + is the neutral of a . configured device (since �1 = 0).

� configuration.

For the � configuration in Figure 1.8(b), the internal voltage (vector) is the line-to-line
voltage +� := (+01 ,+12 ,+20) = + line, and the internal current �� := (�01 , �12 , �20)
is the line-to-line current. As for the . configuration, the terminal voltage + :=
(+0,+1 ,+2) are voltages with respect to an arbitrary but common reference point.
The terminal current is � :=

�
�
0, �1 , �2

�
as shown in Figure 1.8(b). The terminal voltage

and current (+ , �) is determined by the internal voltage and current
�
+
�, ��

�
according

to

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
=

266664
+
01

+
12

+
20

377775
,

266664
�
0

�
1

�
2

377775
= �

266664
1 0 �1
�1 1 0
0 �1 1

377775|              {z              }
�T

266664
�
01

�
12

�
20

377775

or in vector form (for arbitrary common reference point for +):

�+ = +
�, � = ��T

�
� (1.14)

Equivalent . configuration.

For any � configuration with given internal voltage +� := (+01 ,+12 ,+20) and current
�
� := (�01 , �12 , �20), an equivalent . configuration is one that has the same external

behavior. This means that, if +. := (+0=,+1=,+2=) and �. := (�0=, �1=, �2=) are the
internal voltage and current of the . -equivalent then they are related to

�
+
�, ��

�
according to (from (1.13) (1.14)):

�+. = +
�, �

. = �T
�
� (1.15)

Summary.

The external behavior (1.11) and (1.14) for . and � configurations respectively as
well as their equivalence (1.15) hold for any three-phase system whether or not it is
balanced. The relation (1.13) between line-to-line voltage + line and terminal voltage +
holds for . and � configurations whether or not the system is balanced.
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The behavior of a three-phase system is determined by the mathematical properties
of the conversion matrices� and�T. When a system is balanced the conversion becomes
particularly simple because the transformation of balanced vectors under � and �T

preserves their balanced nature (Corollary 1.3). We now explain these mathematical
properties and then apply them to the analysis of balanced systems in Chapters 1.2.3
and 1.2.4.

1.2.2 Balanced vectors and conversion matrices �,�T

Definition 1.1 (Balanced vector). A vector G := (G1,G2,G3) with G 9 = |G 9 |4i\ 9 2 C,
9 = 1,2,3, is called balanced if G 9 have the same magnitude and they are separated by
120�, i.e.,

|G1 | = |G2 | = |G3 |

and either

\2� \1 = �
2c
3

and \3� \1 =
2c
3

(positive sequence) (1.16a)

or

\2� \1 =
2c
3

and \3� \1 = �
2c
3

(negative sequence) (1.16b)

In this chapter we focus on single-phase equivalent circuits of balanced systems.
In Part III of this book we study unbalanced systems and generalize the definition of
balance to allow a nonzero bias (see Definition 14.1), i.e., we will call Ĝ a (generalized)
balanced vector if it is of the form Ĝ = G +W1 and G is balanced according to Definition
1.1, for some possibly nonzero W 2 C. The bias W may models a common reference
voltage or the internal loop flow in a � configuration. We assume W = 0 in this chapter
which amounts to the assumption that loop flows are zero and that all neutrals are
grounded directly and voltages are defined with respect to the ground.

A balanced vector G is said to be in a positive sequence if G satisfies (1.16a) and in
a negative sequence set if G satisfies (1.16b). Let

U := 4�i2c/3

Clearly U2 = 4
i2c/3, U3 = 1; see Figure 1.10. (Also see Exercise 1.6 for more properties

of U.) Define the vectors

U+ :=
266664

1
U

U
2

377775
, U� :=

266664
1
U

2

U

377775
(1.17a)

Then U+ is a balanced vector in a positive sequence and U� is a balanced vector in
a negative sequence. Moreover the set of all balanced positive-sequence vectors is
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√3̄

√3̄

Figure 1.10 Phase shift U := 4�i2c/3 in Theorem 1.2.

span(U+) and the set of all balanced negative-sequence vectors is span(U�), i.e., G is a
balanced vector in a positive sequence and H a balanced vector in a negative sequence
if and only if

G = G1U+, H = H1U�, G1, H1 2 ⇠ (1.17b)

Note that U+ = U� where for any vector G, G is its complex conjugate componentwise.
Define the matrix � whose columns are U+,U� as well as 1 normalized:

� :=
1p
3

⇥
1 U+ U�

⇤
=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
(1.18)

All main properties of balanced three-phase systems originate from the mathemat-
ical properties of the vectors U+, U� and their transformation under the matrices �,�T

defined in (1.12), summarized in Theorem 1.2. Its proof is left as Exercise 1.7. The
theorem implies in particular that the transformations � and �T preserve the balanced
nature of a vector and hence ensures that the entire network stays balanced. The key en-
abling property is that the voltages and currents from balanced sources are in span(U+)
or span(U�) and (U+,U�) are eigenvectors of �,�T (according to (1.19a)(1.20a)).

Theorem 1.2 (Transformation of balanced vectors by �,�T). Let U := 4�i2c/3. Recall
the balanced vectors (U+,U�) defined in (1.17a), the matrices � in (1.18) and �,�T in
(1.12).

1 Suppose the entries G 9 of G := (G1,G2,G3) 2 C3 have the same magnitude. Then G
is balanced if and only if G1 + G2 + G3 = 0.

2 The columns of � are orthonormal. Both � and � are complex symmetric, i.e.,

�
T = � and �

T
= �, where � is the complex conjugate of � componentwise. Hence

�
�1 = �H = � =

1p
3

⇥
1 U� U+

⇤

3 � is a normal matrix, ��T = �T�. (Note that ��T = �T� are Laplacian matrices of
the graphs in Figure 1.9.)
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4 Spectral decomposition of �:
1 The eigenvalues and eigenvectors of � are

�1 = 0, �U+ = (1�U)U+, �U� = (1�U2)U� (1.19a)

where 1�U =
p

34ic/6 and 1�U2 =
p

34�ic/6.
2 Therefore the spectral decomposition of � is:

� = �

266664
0

1�U
1�U2

377775
� (1.19b)

5 Spectral decomposition of �T:
1 The eigenvalues and eigenvectors of �T are

�T
1 = 0, �T

U� = (1�U)U�, �T
U+ = (1�U2)U+ (1.20a)

where 1�U =
p

34ic/6 and 1�U2 =
p

34�ic/6.
2 Therefore the spectral decomposition of �T is:

�T = �

266664
0

1�U
1�U2

377775
� (1.20b)

The following corollary of the theorem is repeatedly used in the analysis of balanced
systems. It says that the transformation of a balanced vector G under � and �T reduces
to a scaling by (1�U) and (1�U2) respectively.

Corollary 1.3. For any balanced positive-sequence vector G 2 C3 and W 2 C, we have

1 � (G +W1) = (1�U)G.
2 �T (G +W1) = (1�U2)G.
3 ��T (G +W1) = �T� (G +W1) = 3G.

Informally a three-phase system is called balanced if all voltages and currents are
balanced vectors in, say, positive-sequence sets. The main consequence of the corollary
is the following. A three-phase system consists of voltage sources, current sources, and
impedances connected by lines. The voltage and current at any point in the system are
induced by the internal voltages of voltage sources and the internal currents of current
sources. When these sources are balanced positive-sequence sets, their internal voltages
and currents are in span(U+) and U+ is an eigenvector of � and �T. This means that
the transformation of balanced voltages and currents under �,�T reduces to a scaling
of these variables by their eigenvalues 1�U and 1�U2 respectively. Since the voltage
and current at every point in the system are linear combinations of transformed source
voltages and source currents, transformed by �, �) and line admittance matrices, they
remain in span(U+) when the sources are balanced and the lines are identical and
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phase-decoupled. This is the key property that enables balanced sources to induce
balanced voltages and currents throughout the network, leading to per-phase analysis
of three-phase systems. A formal statement and its proof have to wait till Chapter 16
(Theorem 16.7) when we develop a general model of unbalanced three-phase system.
In this chapter we will use the corollary to analyze example circuits to build intuition.

1.2.3 Balanced systems in . configuration

Figure 1.11 shows the . configuration of voltage sources and impedance loads. The
loads are said to be balanced if their impedances I are identical. An ideal three-

a

c b

Ean

Ecn Ebn
n

(a) Balanced sources

a

c b

z

zz

n

(b) Balanced loads

Figure 1.11 Balanced three-phase (a) voltage source ⇢. and (b) impedance I. := diag(I, I, I)
in . configuration.

phase voltage source in . configuration is specified by its internal voltage (vector)
⇢
. :=

�
⇢
0=,⇢1=,⇢2=

�
in the phasor domain between the terminals 0,1,2 and the

neutral = respectively. It is called balanced if ⇢. is a balanced vector according to
Definition 1.1, i.e.,

positive sequence: ⇢
0= = 1\\, ⇢

1= = 1\\ �120�, ⇢
2= = 1\\ +120�

or

negative sequence: ⇢
0= = 1\\, ⇢

1= = 1\\ +120�, ⇢
2= = 1\\ �120�

where their magnitudes are normalized to 1. See Figure 1.12(a) where \ = 0. For
a balanced voltage source in a positive sequence, the instantaneous voltages in the
time domain reach their maximum values in the order 012. We sometimes call 012
in such an order a positive sequence and the voltages

�
⇢
0=,⇢1=,⇢2=

 
a (balanced)

positive-sequence set. Whether a voltage source is in a positive or negative sequence
depends only on how one labels the wires. Therefore, unless otherwise specified, we
will always consider 012 to be a positive sequence. If there are multiple three-phase
sources connected to the same network their phase sequences must be the same.

Theorem 1.2 implies the following properties of a balanced positive-sequence volt-
age source:
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Figure 1.12 A balanced three-phase source in . configuration. (a) Its phase voltage (vector)

⇢
. :=

⇣
⇢
0=,⇢1=,⇢2=

⌘
is a balanced vector. (b) Its line voltage ⇢ line = �⇢. = (1�U)⇢. .

1 Sum to zero: ⇢0= +⇢1= +⇢2= = 0
2 All voltages and currents are in a balanced positive sequence, i.e., all are in

span(U+).
3 Phases are decoupled.

Sum to zero.

The first property follows from Theorem 1.2.1, or more directly, ⇢. = U+⇢0= and

hence 1
T
⇢
. =

⇣
1

T
U+

⌘
⇢
0= = 0.

Line voltage + line is balanced.

The second properties is due to the fact that U+ is an eigenvector of �,�T. Specifically
the line voltage ⇢ line :=

�
⇢
01 ,⇢12 ,⇢20

�
across the terminals is given by ⇢ line = �⇢.

from (1.13)). This implies 1
T
⇢

line = ⇢01 + ⇢12 + ⇢20 = 0. Moreover Corollary 1.3
implies

⇢
line = �⇢. = (1�U)⇢.

Hence ⇢ line is in a balanced positive sequence if ⇢. is, i.e., ⇢12 = 4�i2c/3
⇢
01 and

⇢
20 = 4i2c/3

⇢
01 . Since 1�U =

p
34ic/6 we have

⇢
01 =

p
34ic/6

⇢
0=, ⇢

12 =
p

34ic/6
⇢
1=, ⇢

20 =
p

34ic/6
⇢
2=

This is illustrated in Figure 1.12(b).

Balanced systems are phase-decoupled.

We start by analyzing the simple circuit in Figure 1.13(a) when a balanced three-phase
load is connected to a balanced three-phase positive-sequence voltage source in .
configuration. We will show that
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1 The neutral-to-neutral voltage is zero, +==0 = 0.
2 The internal voltage and current across the impedances are in a balanced positive

sequence.

The most important implication is that the phases are decoupled, i.e., the variables in
each phase depend on quantities only in that phase, and can be analyzed separately. We
will illustrate through examples that these conclusions hold in more general balanced
systems than the simple circuit in Figure 1.13(a). A full understanding of phase decou-
pling and per-phase analysis is postponed till Part III of this book where a balanced
system is studied in the context of general unbalanced systems.

a'a

c b c' b'

z

zz

Ean

Ecn Ebn
n n'

Ia

Ib

Ic

(a) Balanced three-phase system

zEan

Ia a'a

n n'

(b) Equivalent per-phase system

Figure 1.13 Balanced three-phase source and load in . configuration and its per-phase model.

Referring to Figure 1.13(a) let

• ⇢. :=
�
⇢
0=,⇢1=,⇢2=

�
and + 0. :=

�
+
0
0
=
0
,+1

0
=
0
,+2

0
=
0 �

denote the internal voltages
from terminals to neutrals, and � 0. :=

�
�
0
0
=
0
, �1

0
=
0
, �2

0
=
0 �

denote the internal current
between the terminals 00,10,20 and the neutral =0 across the identical impedances
I.
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• + :=
�
+
0,+1 ,+2

�
denote the terminal voltage (vector), with respect to an arbitrary

and common reference point, not necessarily the neutral = or =0;
• += and +=

0
denote the neutral voltages with respect to the common reference point.

Given the balanced positive-sequence voltage ⇢. and balanced impedances I, we wish
to show that+= =+=

0
, that+ 0. , � 0. are in a balanced positive sequence, and that phases

are decoupled.

Solution. KVL, KCL, and Ohm’s law imply

⇢
. = + �+=1, +

0. = + �+=01, +
0. = I �

0. , 1
T
�
0. = 0 (1.22)

Therefore ⇢. �+ 0. =
�
+
=
0 �+=

�
1 and hence (since 1

T
⇢
. = 0)

1
T
⇣
⇢
. �+ 0.

⌘
=

⇣
+
=
0 �+=

⌘
1

T
1 =) 3

⇣
+
=
0 �+=

⌘
= �1

T
+
0. = �I

⇣
1

T
�
0.

⌘
= 0

showing that the voltage across the neutrals +==0 = 0. Substituting it into (1.22) yields
(denoting H := I�1)

+
0. = ⇢

. +
⇣
+
= �+=0

⌘
1 = ⇢

. , �
0. = H+

0. = H⇢
.

Hence both + 0. and � 0. are in a balanced positive sequence. Moreover the phases are
decoupled in that +q=0 and �q=0 , q = 00,10,20, depend only on ⇢q= but not on voltages
on other phases.

In view of Theorem 1.2.1, the terminal voltage+ is not balanced unless+= =+=
0
= 0,

i.e., the neutral is taken as the common reference point for voltages, because

1
T
+ = 1

T
⇣
⇢
. ++=1

⌘
= 3+=

⇤

Remark 1.2. 1 Since +==0 = 0, even if = and =0 are connected, the current on that
wire will be zero. We can therefore either assume = and =

0 are connected or
disconnected in our analysis, whichever is more convenient.

2 Since the currents are balanced, �0 + �1 + �2 = 0 or 80 (C) + 81 (C) + 82 (C) = 0 at
all times C, the currents flow from and return to the sources only via the wires
connecting the sources to the loads, and no additional physical wires are necessary
for return currents. This halves the amount of required wire compared with three
separate single-phase circuits; see Chapter 1.3.3.

As a consequence, each phase of the balanced system is decoupled and equivalent
to the circuit in Figure 1.13(b). We can therefore analyze the phase 0 equivalent circuit;
see Chapter 1.2.5. The voltages and currents in phase 1 and phase 2 circuits will be the
corresponding phase 0 quantities shifted by �120� and 120� respectively, assuming
the three-phase source is of positive sequence.

These conclusions hold for more general circuits than that in Figure 1.13(a), as
Example 1.4 shows.
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Example 1.4 (Balanced three-phase system in . configuration). Figure 1.14 shows a
balanced three-phase source of positive sequence supplies two sets of balanced three-
phase loads in parallel through balanced transmission lines. The transmission lines have
a common admittance C and all loads have a constant admittance ;, as shown in the
figure. Suppose the neutrals are connected by lines with a common admittance H. De-

a1 a2a0

c0 b0 c1 b1 c2 b2

l l

t t

t

yy

t

t t

l l l l

Ean

Ecn Ebn
n0 n1 n2

One line diagram: 

Figure 1.14 Balanced three-phase system in Y configuration (Example 1.4).

note the internal voltages and currents in stage : = 1,2, by+.
:

:= (+0:=: ,+1:=: ,+2:=: )
and �

.

:
:= (�0:=: , �0:=: , �0:=: ) respectively. Denote the terminal voltages and cur-

rents from stage : � 1 to stage : , : = 1,2, by +: := (+0:�10: ,+1:�11: ,+2:�12: ) and
�: := (�0:�10: , �0:�11: , �0:�12: ) respectively.

Suppose H < 0, C = H/`, and ; = H/`2 for some real number ` < 0. Prove that

1 +=0=1 =+=1=2 = 0.
2 For : = 1,2, all voltages and currents+.

:
,+: , �.

:
, �: are balanced positive-sequence

sets.
3 The phases are decoupled, i.e.,

⇢
.

0 =+1 + +.1
+
.

1 =+2 + +.2
where ⇢.0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ).

This implies that the three phases of the balanced system in Figure 1.14 are decoupled
and can be studied by analyzing the per-phase circuit shown in Figure 1.15 where the
line admittances connecting the neutrals are set to zero.

Solution:

1 We will apply Ohm’s law and Kirchho�’s current and voltage laws (KCL and KVL)
to derive two linear equations in (+=0=1 ,+=1=2 ) and show that +=0=1 = +=1=2 = 0 is
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l zEan

a0 a2a1

n0 n2n1

t t

Figure 1.15 The per-phase equivalent circuit of the balanced system in Figure 1.14 in Y
configuration.

the only solution to these equations. By Ohm’s law across each admittance, the
currents are in terms of voltages:

�
.

:
= ;+

.

:
, �: = C+: , : = 1,2 (1.23)

This allows us to eliminate currents �.
:

, �: and express KCL and KVL in the
following in terms only of voltages +.

:
,+: .

Making use of (1.23), apply KCL at node (01,11,21) to obtain

C+
0001 = ;+

01=1 + C+0102 , C+1011 = ;+
11=1 + C+1112 , C+2021 = ;+

21=1 + C+2122

and similarly for KCL at nodes (02,12,22). This in vector form is

C+1 = ;+.1 + C+2 (1.24a)

C+2 = ;+.2 (1.24b)

Apply KCL at nodes (=0,=1,=2) to obtain

C

⇣
1

T
+1

⌘
+ H+

=0=1 = 0

;

⇣
1

T
+
.

1

⌘
+ H+

=0=1 = H+=1=2

;

⇣
1

T
+
.

2

⌘
+ H+

=1=2 = 0

where 1 := (1,1,1) is the column vector of all 1’s. Hence, since H/C = ` and
H/; = `2, we have

1
T
+1 = �`+=0=1 , 1

T
+
.

1 = �`2
+
=0=1 + `2

+
=1=2 , 1

T
+
.

2 = �`2
+
=1=2(1.25)

Finally, apply KVL around the loops from stage 0 to stage 1 to obtain

⇢
00=0 = +

0001 ++01=1 �+=0=1 , ⇢10=0 = +
1011 ++11=1 �+=0=1 , ⇢20=0 = +

2021 ++21=1 �+=0=1

and similarly for loops from stage 1 to stage 2. This in vector form is

⇢
.

0 =+1 + +.1 � +=0=11 (1.26a)

+
.

1 =+2 + +.2 � +=1=21 (1.26b)

where ⇢.0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ). Substitute (1.24b) into the last equation to
eliminate +2:

+
.

1 =
✓

1
`

+1
◆
+
.

2 � +=1=21 (1.26c)
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To obtain a system of equations that involves only (+=0=1 ,+=1=2 ), multiply (1.26)
by 1

T and apply (1.25) to obtain (using 1
T
⇢0 = 0 since the sources are balanced):

`
2 + `+3 �`2

�`2 2`2 + `+3

� 
+
=0=1

+
=1=2

�
=


0
0

�
(1.27)

We now argue that the determinant of the matrix in (1.27) is nonzero, and hence
+
=0=1 =+=1=2 = 0. Let ⌫ := `2 + `+3. Then

determinant = ⌫(⌫+ `2)� `4

If determinant is zero then

⌫ = � `
2

2

⇣
1±
p

5
⌘

By the definition of ⌫ := `2 + `+3 we therefore have

(3±
p

5)`2 + 2` + 6 = 0

It is easy to check that no real number ` satisfies this equation, and hence +=0=1 =
+
=1=2 = 0.

2 We now prove that (+.
:

,+: ) are balanced positive-sequence sets. Since +=1=2 = 0,
(1.26c) implies

+
.

2 =
`

`+1
+
.

1 (1.28)

Substitute this and (1.24b) into (1.24a) to obtain

+1 =
1
`

+
.

1 + 1
`

+
.

2 =
2`+1
`(`+1)+

.

1

Substitute into (1.26a) to get

⇢
.

0 =
2`+1
`(`+1)+

.

1 + +.1

Hence

+
.

1 =
`(`+1)
`

2 +3`+1
⇢0 and +1 =

`(2`+1)
`

2 +3`+1
⇢0

Hence +1,+.1 are balanced positive-sequence sets since ⇢0 is. Furthermore+2,+.2
are balanced positive-sequence sets from (1.28) and (1.24b). Then (1.23) implies
that all currents (�.

:
, �: ) are balanced positive-sequence sets.

3 To show that the phases are decoupled, substitute +
=0=1 = +=1=2 = 0 in

(1.26a)(1.26b).

This completes the proof. ⇤
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Remark 1.3 (Phase-decoupling of lines). 1 A key enabling property that allows the
balanced nature of voltages and currents to propagate from one node to the next is
the assumption that three-phase lines are phase-decoupled (see Example 1.4 and
Exercise 1.10). This assumption is valid only if the lines are symmetric and the
sources and loads are balanced such that currents and charges both sum to zero in
these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase
model of transmission lines should be used; see Part III of this book.

2 If the lines are symmetric but the sources or loads are unbalanced then variables of
di�erent phases are coupled. A similarity transformation can be used to transform
the system to a so called sequence coordinate in which the lines become decoupled
and single-phase analysis can then be applied in the sequence coordinate; see
Chapter 16 in Part III of this book.

1.2.4 Balanced systems in � configuration

Figure 1.16 shows the � configuration of a balanced voltage source and a balanced
impedance. An ideal voltage source in � configuration is specified by its line voltage

Ebc

Eca Eab

a

c b

(a) Balanced source

a

c b

z

z z

(b) Balanced load

Figure 1.16 Balanced three-phase (a) voltage source ⇢� and (b) impedance I� in �
configuration.

⇢
� :=

�
⇢
01 ,⇢12 ,⇢20

�
. It is balanced if ⇢� is a balanced vector according to Definition

1.1, i.e., assuming positive sequence:

⇢
12 = 4

�i2c/3
⇢
01 , ⇢

20 = 4
i2c/3

⇢
01

A balanced three-phase system in � configuration enjoys the same properties as such
a system in . configuration in Chapter 1.2.3 does. In particular the line voltages sum
to zero (see Figure 1.12(b)):

⇢
01 +⇢12 +⇢20 = 0

The three-phase voltages and currents in a balanced system in � configuration driven
by balanced three-phase positive-sequence sources are balanced positive sequences.
Moreover the phases are decoupled. We illustrate this in the next example.
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Example 1.5 (Balanced three-phase system in � configuration). Figure 1.17 shows a
balanced three-phase source connected to a balanced three-phase load through balanced
transmission lines in � configuration. The transmission lines have identical admittance
C < 0 and the loads are of constant admittance ; < 0. Suppose the internal voltage

a1a0

c0 b0 c1 b1
Eb0c0

Ec0a0 Ea0b0

t

t

t

l

l l

Figure 1.17 Example 1.5.

⇢
� := (⇢0010 ,⇢1020 ,⇢2000 ) is in a positive sequence. Denote the terminal current by

� := (�0001 , �1011 , �2021 ), the terminal voltage by+ := (+0001 ,+1011 ,+2021 ), and the line-
to-line voltage by* := (+0111 ,+1121 ,+2101 ). We will show that �,+ ,* are in balanced
positive sequences, provided the ratio

` :=
C

;

< �3

Solution. Apply KCL at nodes 01,11,21 to get (cf. (1.14)):

� = ;�T
* = C+ (1.29)

where �T is defined in (1.12). Apply KVL to get

⇢
� =* + �+ (1.30)

where � is defined in (1.12). Eliminate + from (1.29) and (1.30) to get

⇢
� =

1
`

⇣
`I + ��T

⌘
* =

1
`

266664
`+2 �1 �1
�1 `+2 �1
�1 �1 `+2

377775
* (1.31)

where ` := C/; and I is the identity matrix of size 3. The matrix `I + ��T has a
determinant of `(` + 3)2 and hence is nonsingular provided ` < 0,�3. Since ⇢� is a
balanced positive-sequence matrix we have⇣

`I + ��T
⌘
* = `⇢01 U+

It therefore su�ces to show that U+ is an eigenvector of `I + ��T with an associated
eigenvalue _, for then

* = `⇢01
⇣
`I + ��T

⌘�1
U+ =

`⇢
01

_

U+
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showing that* is also a balanced positive-sequence voltage (note that if �G = _G for a
nonsingular matrix � then ��1

G = 1
_
G). To show that U+ is an eigenvector of `I + ��T,

we apply Theorem 1.2 to get⇣
`I + ��T

⌘
U+ = `U+ + � (1�U2)U+ =

⇣
` + (1�U)

⇣
1�U2

⌘⌘
U+ = (` + 3)|   {z   }

_

U+

as desired. This shows that* is indeed a balanced positive-sequence voltage. Indeed

* =
`

`+3
⇢
�

To show that phase voltages+ are also a balanced positive sequence and decoupled,
use (1.29) and Corollary 1.3 to get

+ =
1
`

�T
* =

1
`

⇣
1�U2

⌘
* =

1�U2

`+3
⇢
�

Hence + is in a balanced positive sequence. The expression � = C+ from (1.29) then
implies that the phase current � is also in a balanced positive sequence and that the
phases are decoupled. ⇤

� and . transformation.

A balanced �-configured system also has a per-phase equivalent circuit. We now ex-
plain how to transform between� and. configuration. This is the first step in per-phase
analysis of balanced three-phase system described in Chapter 1.2.5 where all balanced
devices in � configuration are transformed into their equivalent . configuration, the
per-phase circuit of the . -equivalent network is then analyzed and the result translated
back to the original system with �-configured devices. The validity of this procedure
is formally proved in Chapter 16.3.4.

As explained in Chapter 1.2.1, given any balanced internal voltage +
� :=

(+01 ,+12 ,+20) and current �� := (�01 , �02 , �00) in � configuration, an equivalent
. configuration is one that has the same external behavior, i.e., the internal voltage
+
. := (+0=,+1=,+2=) and current �. := (�0=, �0=, �0=) of the . -equivalent satisfy

(1.15) reproduced here

�+. = +
�, �

. = �T
�
�

Assume the neutral of the . equivalent voltage source is the reference for all voltages
and += = 0. Since +. and �� are balanced vectors, Corollary 1.3 implies

(1�U)+. = +
�, �

. = (1�U2)��

Hence the . -equivalent of
�
.
�, ��

�
is

+
. =

1
1�U +

� =
1p

34ic/6
+
�, �

. =
⇣
1�U2

⌘
�
� =

p
3

4
ic/6 �

� (1.32a)
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This implies in particular that a voltage source ⇢� in � configuration has an equivalent
. -configured voltage source with ⇢. := (1� U)�1

⇢
�. It also implies that a current

source �
� in � configuration has an equivalent . -configured current source with

�
. := (1�U2)�� =

p
34�ic/6

�
�.

Consider a balanced three-phase impedance I� 2 C in � configuration as shown in
Figure 1.18(a). An . -equivalent is a balanced impedance I. 2 C as shown in Figure
1.18(b) so that their external behavior is the same, i.e., the terminal currents � are
the same when the same line-to-line voltage + line is applied to both impedances. Let

a

c b

zY

zY zY

n

a

c b
z∆

z∆ z∆

Figure 1.18 �-Y transformation of balanced loads: I. = I�/3.

+
� 2 C3 and �� 2 C3 be the internal voltage and current across the impedance I� in �

configuration. Let /� := diag
�
I
�, I�, I�

�
. Then +� = /��� and

+
line = +

� = /
�
�
�, � = ��T

�
� = �(1�U2)��

where the last equality follows from Corollary 1.3. Hence, for�-configured impedance,
the line-to-line voltage + line is related to the terminal current � according to

+
line = � 1

1�U2
/
�
�

For the. -equivalent, let+. 2 C3 and �. 2 C3 be its internal voltage and current across
the impedance I. in. configuration. Let /. := diag

�
I
. , I. , I.

�
. Then+. = /. �. and

Corollary 1.3 implies

+
line = �+. = (1�U) /. �. , � = ��.

Hence, for . -configured impedance, the line-to-line voltage + line is related to the
terminal current � according to

+
line = �(1�U)/. �

The relationships between the line-to-line voltage + line and the terminal current � for
both the �-configured impedance and its . -equivalent will be identical if and only if

I
. =

I
�

(1�U) (1�U2) =
I
�

3
(1.32b)

The corresponding admittances H. :=
�
I
.
��1 and H� :=

�
I
���1

are related by H. = 3H�.
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1.2.5 Per-phase analysis for balanced systems

A balanced three-phase system consists of balanced three-phase sources and loads
connected by balanced (identical) transmission lines. Given a balanced three-phase
system with all sources and loads in Y configuration, assuming there is no mutual
inductance between phases, then

• all the neutrals are at the same potential;
• all phases are decoupled;
• all corresponding network variables are in balanced sets of the same sequence as the

sources.

These properties lead to equivalent per-phase circuits, as explained in Chapter 1.2.3.
Even though we have only illustrated these properties for simple systems, they hold
more generally. They allow us to study such a system by analyzing a single phase,
say, phase 0. The corresponding variables in phases 1 and 2 lags those in phase 0 by
120� and 240� respectively when 012 is a positive sequence, and by 240� and 120�

respectively when 012 is a negative sequence.

When some or all of the sources and loads are in � configuration, the phases are
still decoupled and can be analyzed separately. To obtain the equivalent per-phase
circuit, however, we first transform each �-configured device into an equivalent . -
configured device using the transformation (1.32a) for voltage sources and (1.32b) for
impdances. We then analyze the equivalent circuit that consists of only . -configured
devices. Finally we translate the results for equivalent . configuration back to the
corresponding quantities in � configuration.

We emphasize that these transformations hold only in the balanced case with bal-
anced sources, identical impedances, and symmetric transmission lines. Moreover
the equivalence of these two configurations is with respect to their external behav-
ior (+01 , �0, etc); for internal behavior, we have to analyze the original circuit; see
Example 1.6.

In summary, the procedure for per-phase analysis is:

1 Convert all sources and loads in � configuration into their equivalent Y configu-
rations using (1.32a) for sources and (1.32b) for loads.

2 Solve for the desired phase 0 variables using phase 0 circuit with all neutrals
connected.

3 For positive-sequence sources, the phase 1 and 2 variables are determined by
subtracting 120� and 240� respectively from the corresponding phase 0 variables.
For negative-sequence sources, add 120� and 240� instead.

4 If variables in the internal of a � configuration are desired, derive them from the
original circuits.
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This procedure is formally justified in Chapter 16.3.4. We illustrate it with an example.

Example 1.6 (Per-phase analysis). Consider the balanced three-phase system shown in
Figure 1.19. The three-phase sources are a balanced positive sequence in � configura-
tion with line voltage ⇢01 =

p
34ic/6

⇢
0=, etc. The�-configured loads are balanced with

identical admittances ;1, and the Y-configured loads are balanced with identical admit-
tances ;2. The transmission lines are modeled by admittances C1 and C2. Find the current
81 (C) and voltage E2 (C) in the diagram. Assume 3;1;2 +3;1C2 + ;2 (C1 + C2) + C1C2 < 0.

a1 a2a0

c0 b0 c1 b1 c2 b2

l2

t1

n2
Eab = √3̄e j�/6Ean

t1

t1

t2

t2

t2

l1
i1(t)

v2(t)

One line diagram: 

(a) Balanced three-phase system

Ean

a0 a2a1

n0 n2n1

a

c b

Ean

n0

a1

c1 b1

a2

c2 b2

t1

t1

t1

t1

t2

t2

t2

t2

l2

l2

l2 l2

3l1

3l1

n1 n2

(b) Equivalent per-phase system

Figure 1.19 Balanced three-phase system and its per-phase equivalent circuit. The balanced
three-phase loads have admittances ;1 and ;2, and the transmission lines have admittances C1
and C2.
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Solution. First we convert the � sources to their equivalent . sources using (1.32a)
and � loads to their equivalent . loads using (1.32b). The result is shown in the upper
panel of Figure 1.19(b). Then we construct the equivalent per-phase circuit with all
neutrals =,=1,=2 connected, as shown in the lower panel of Figure 1.19(b).

We analyze the per-phase circuit to solve for voltages

+1 := +
01=1 and +2 := +

02=2

Applying KCL to nodes 01 and 02 we get

C1 (⇢0= �+1) = 3;1+1 + C2 (+1�+2)
C2 (+1�+2) = ;2+2

Hence 
3;1 + C1 + C2 �C2

C2 �(;2 + C2)

� 
+1

+2

�
=


C1⇢

0=

0

�

By assumption, the determinant

� := � (3;1;2 +3;1C2 + ;2 (C1 + C2) + C1C2)

is nonzero. Hence
+1

+2

�
=

1
�


�(;2 + C2) C2

�C2 3;1 + C1 + C2

� 
C1⇢

0=

0

�
=
�C1⇢0=
�


;2 + C2
C2

�
(1.33)

Since +02=2 =+2, we get:

E2 (C) =
p

2 |+2 | cos (lC + \+2)

where l is the steady-state system frequency and +2 is given by (1.33). To calculate

81 (C) =
p

2 |�0121 | cos (lC + \�0121 ) (1.34)

we use (1.32a) to first get

+
0111 =

p
34ic/6

+1

where +1 is given by (1.33). Hence

�
0111 = ;1+0111 =

p
3 ;1 4ic/6

+1

Since the sources are a positive sequence we have

�
0121 = ��0101 = ��0111

4
i2c/3 = �

p
34i5c/6 3;1+1 = 3

p
34�ic/6

;1+1

where +1 is given by (1.33). Substituting �0121 into (1.34) yields 81 (C). ⇤
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1.2.6 Example configurations and line limits

The secondary sides of three-phase distribution transformers in the US are commonly
configured as shown in Figure 1.20. For our purposes we can treat them as balanced
three-phase sources. Figure 1.20(a) shows the secondary side of a typical 5-wire three-

Vcn

n

a

c b

|Van| = 120V

|Vbn| = 120V

|Vab| = 208V

(a) 208. /120+ 3-phase .

d

a

c

b

|Vad| = 120V

|Vbd| = 120V

|Vbc| = 240V
|Vcd| = 208V

|Vab| = 240V

(b) 240+ split phase �

Figure 1.20 Common distribution transformer configurations.

phase transformer in . configuration. Three phase wires (labeled 0,1,2) and a neutral
wire (labeled =) are shown. The fifth wire, not shown, is the earth ground wire, typically
connected to neutral. A di�erent voltage magnitude can be supplied to a load depending
on how it is connected. The voltage magnitude between a phase wire and the neutral
is 120V and that between a pair of phase wires is 120

p
3V = 208V.

Figure 1.20(b) shows a 5-wire transformer in � configuration with one of the phases
center-tapped to provide three voltage levels. Four phase wires (labeled 0,1,2,3) are
shown but an earth ground wire is not shown. The voltage magnitude between wires
03 or 13 is 120V, whereas that between wire 23 is 208V (derive this). The line-to-line
voltage magnitude is 240V.

Line limits. Figure 1.21(a) shows a . -configured voltage source connected to a set
of loads in � configuration. The voltage source is the secondary side of a three-
phase 208./120V transformer shown in Figure 1.20(a). The voltage magnitude across
each load is the line-to-line voltage 208V. Figure 1.21(b) shows the electric panel
arrangement to connect the loads to the voltage source. The dot in the first row
indicates that the wires numbered 1 and 2 are connected to phase 0, the dot in the
second row indicates that the wires numbered 3 and 4 are connected to phase 1, the dot
in the third row indicates that the wires numbered 5 and 6 are connected to phase 2,
and so on. Therefore the load connected between wires 1 and 3 is connected between
phase 0 and phase 1 lines (see the corresponding labels on the loads in Figure 1.21(a)).
Similarly for the load connected between wires 2 and 4, and other loads connected
between di�erent phases.

We are interested in the currents �0 := (�0001 , �1011 , �2021 ) supplied by the three-
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c1c0 b1 c2 b2
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b0
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(a) Voltage source supplying loads in parallel
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M
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arrange-
ment

Figure 1.21 (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase
panel used to connect loads in parallel to the voltage source.

phase source to the loads. Suppose the wires connecting the three-phase source to the
loads are rated at �max. Then we require that the current magnitude in each phase be
bounded by �max:

|� ?0 ?1 |  �max, ? = 0,1,2 (1.35)

Suppose the loads are not impedance loads, but constant current loads that draw
specified currents. Let the current drawn by the load in Figure 1.21(a) between wires 1
and 3 be �0111 , that between wires 9 and 11 be �1121 , that between wires 5 and 7 be �2101 .
In general, let the load currents in the :th three-phase load be �: := (�0:1: , �1:2: , �2:0: ).
We now derive bounds on the load currents (�: , : = 1, . . . , ) that enforce the line limits
(1.35).

Before proceeding, we mention as an example application the smart charging of
electric vehicles where each load is a vehicle. We are to design an algorithm that de-
termines the charging rate, i.e., current magnitude |� ?:@: |, for each vehicle to optimize
certain objective subject to capacity constraints such as (1.35) and other constraints.
Such an algorithm can be applied periodically, e.g., every minute, to update the charg-
ing rates. Note that in this kind of applications, the system is unbalanced since the
loads |� ?:@: | are generally not identical across phases, but here we ignore the e�ect of
wires connecting these devices.
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Applying KCL at nodes (01,11,21) we have

266664
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where �: := (�0:0:+1 , �1:1:+1 , �2:2:+1 ), : = 0, . . . , �1, are the line currents from stage
: to stage : +1. In general we have

�: = �T
�: + �:+1, : = 0, . . . , �1

Hence the total supply currents are given by

�0 = �T (�0 + �1 + · · · + � ) (1.36)

when there are  three-phase constant current loads. Note that this expression does
not require that the loads are balanced. In particular, if a load (say) �0:1: is absent,
then we set �0:1: = 0 in (1.36).

Let the total load current in each leg of the � configuration be denoted by

�
01 :=

 ’
:=1

�
0:1: , �

12 :=
 ’
:=1

�
0:2: , �

20 :=
 ’
:=1

�
0:0: (1.37)

Then (1.36) can be written in terms of the total load currents as:
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The line limits (1.35) are therefore

|�0001 | = |�01 � �20 |  �
max

|�1011 | = |�12 � �01 |  �
max

|�2021 | = |�20 � �12 |  �
max

Enforcing line limits requires one to know not just the magnitudes of the load currents,
but also their phases in order to compute their sums. As explained in the caption of

Im

Re
øa0a1

Ia0a1
Ica

Iab

Figure 1.22 �
0001 = �01 � �20 . Hence by the cosine rule

|�0001 |2 =
��
�
01

��2 + |�20 |2 � 2
��
�
01

�� |�20 | cosq where q0001 := \�20 � \�01 is the angle
between �01 and �20 .
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Figure 1.22, these inequalities are equivalent to:

|�01 |2 + |�20 |2 � 2 |�01 | |�20 | cosq0001  (�max)2 (1.39a)

|�12 |2 + |�01 |2 � 2 |�12 | |�01 | cosq1011  (�max)2 (1.39b)

|�20 |2 + |�12 |2 � 2 |�20 | |�12 | cosq2021  (�max)2 (1.39c)

If we know the angles q?0 ?1 , ? = 0,1,2, between the total load currents (�01 , �12 , �20)
in each leg of the � configuration, then (1.39) are convex quadratic constraints on the
magnitudes of (�01 , �12 , �20). We next consider several special cases and derive simple
bounds on the magnitudes ( |�0:1: |, |�1:2: |, |�2:0: |) of the individual load currents that
will enforce (1.39).

Assumption 1: Current phasors �0:1: have the same, and known, phase angle \01 for
all :; similarly for �1:2: and �2:0: . From (1.37) we have

�
01 := 4

i\01

 ’
:=1

��
�
0:1:

�� , �
12 := 4

i\12

 ’
:=1

��
�
1:2:

�� , �
20 := 4

i\20

 ’
:=1

|�2:0: |

and constraints (1.39a) become 
 ’
:=1

��
�
0:1:

��
!2

+
 
 ’
:=1

|�0:0: |
!2

� 2

 
 ’
:=1

��
�
0:1:

��
!  

 ’
:=1

|�0:0: |
!

cosq0001  (�max)2(1.40)

where cosq0001 := \20 � \01 is known. Similarly for constraints (1.39b) and (1.39c).
These are quadratic constraints in the magnitudes ( |�0:1: |, |�0:2: |, |�0:0: |) of the
individual load currents that will enforce (1.39), given the angles q?0 ?1 , ? = 0,1,2,
between the load currents in di�erent legs of the � configuration.

Assumption 2: In addition to Assumption 1, the angles q?0 ?1 = 120�, for ? = 0,1,2.
Then cosq?0 ?1 = �1/2 and (1.40) becomes

 
 ’
:=1

��
�
0:1:

��
!2

+
 
 ’
:=1

|�0:0: |
!2

+
 
 ’
:=1

��
�
0:1:

��
!  

 ’
:=1

|�0:0: |
!
 (�max)2 (1.41)

Similarly for constraints (1.39b) and (1.39c).

Assumption 3 (balanced case): All load currents have the same magnitude and the
phases of currents on di�erent legs of the � di�er by 120�. That is, assuming positive
sequence, for all : = 1, . . . , , we have

�
0:1: = � 4

i\01 , �
1:2: = � 4

i\12 , �
2:0: = � 4

i\20

where � is the common magnitude of the load currents, and

\01 � \12 = 120�, \12 � \20 = 120�, \20 � \01 = 120�

Then the constraint (1.41) reduces to 3 2
�
2  (�max)2, or a bound on the common
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magnitude � of individual load currents

�  �
max

p
3 

(1.42)

Linear bounds. Many applications operate in unbalanced conditions, e.g., adaptive
electric vehicle charging where the magnitudes |� ?:@: | of the load currents are to
be determined and generally di�erent. In these cases there are two di�culties with
the line limits (1.40) and (1.41). First the angles (\01 ,\12 ,\20) may not be known.
Second even when these angles are known, the constraints are quadratic which can be
computationally too expensive to implement in real time in inexpensive devices. In
this case, we can impose linear constraints which are simpler but more conservative.

Take phase 0 as an example. Since |�0001 | = |�01 � �20 |  |�01 | + |�20 |, a simple
limit on the load currents that enforces |�0001 |  �max is to require

|�01 | + |�20 |  �max

i.e., the sum of the magnitudes of the total load currents in legs 01 and 20 should be
less than the current rating �max. From (1.37) we have

��
�
01

�� = ��Õ
:
�
0:1:

��  Õ
:
|�0:1: |.

Hence a simple linear bound on the load current magnitudes is:

 ’
:=1

⇣
|�0:1: | + |�0:0: |

⌘
 �max (1.43)

The constraints on phases 1 and 2 are similar.

For a balanced system we can easily assess how conservative the bound (1.43) is
compared with the exact limit (1.42) on the load currents. In the balanced case the
bound (1.43) reduces to

�  �
max

2 

Hence it is
p

3/2 ⇠ 87% of that in (1.42), i.e., it is conservative by ⇠ 13% for a balanced
system.

1.3 Complex power

1.3.1 Single-phase power

Instantaneous power.

When a voltage E(C) is applied across two ports and a current 8(C) flows between them,
as shown in Figure 1.23(a), energy is delivered to the network that connects the ports.
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We define the instantaneous power supplied as:

?(C) := E(C)8(C) =
+max�max

2
(cos(\+ � \� ) + cos(2lC + \+ + \� )) (1.44)

Since the last term inside the bracket of (1.44) is sinusoidal with twice the nominal
frequency l the average power delivered is

1
)

π
)

0
?(C)3C = +max�max

2
cos(\+ � \� )

where ) := 2c/l.

i(t)

v(t) p(t)

(a) Instantaneous power

I

V S

(b) Complex power

Im

Re

I

V

θV
ø

θI

S :=VI*

(c) ( = + � ⇤

Figure 1.23 Definition of power

Complex power.

Define the complex power in terms of the voltage and current phasors as:

( :=+�⇤ =
+max�max

2
4

i(\+ �\� ) = |+ | |� |4iq (1.45)

where �
⇤ denotes the complex conjugate of �. See Figures 1.23(b) and (c). Here

q := \+ � \� is called the power factor angle and cosq is called the power factor
(PF). Power engineers often says leading or lagging power factor: here lagging means
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current � lags voltage+ so that q > 0. A leading power factor has q < 0. A unity power
factor means q = 0. Figure 1.24 shows four complex powers

Q

−Q

P
θ
−θ

S1

S2

Q

−Q

−P

�−θ

−�+θ

S3

S4

Figure 1.24 Power factor angles q and power factor cosq.

(1 := %+ i&, (2 := %� i&, (3 := �%+ i&, (2 := �%� i&

with power factor angles q1 := \, q2 := �\, q3 := c� \, and q4 := �c + \ respectively.
Here %,& > 0 and \ 2 [0,c]. Their power factors are

cosq1 =
%p

%
2 +&2

= cosq2, cosq3 =
�%p
%

2 +&2
= cosq4

Therefore power factor cosq8 does not di�erentiate between (1 and (2. Power engineers
specify (1 as power factor cos\ lagging (q1 > 0 and therefore &1 :=& > 0) and (2 as
power factor cos\ leading (q2 < 0 and &2 := �& < 0). Similarly (3 has a power factor
�cos\ lagging (q3 > 0 and &3 := & > 0) and (4 has a power factor �cos\ leading
(q4 < 0 and &4 := �& < 0). For example “a load draws 100kW at a power factor of
0.707 leading” means that the real power Re(() = 100 kW and cosq = 1p

2
. Since the

power factor is leading, q = �45� and ( = 100� 9100 kVA .

Note that ( is not a phasor because
p

2|( | cos(lC +q) is not the instantaneous power
in the time domain. This complex quantity is important in power flow analysis in the
phasor domain, as we will see. The real part of (

% := |+ | |� | cosq

is called the active or real power and its unit is W (watt). The imaginary part of (

& := |+ | |� | sinq

is called the reactive power and its unit is var (volt-ampere reactive). We write both
( = %+ 9& and ( = |+ | |� |4iq . The magnitude |( | = |+ | |� | is called the apparent power
and its unit is VA (volt-ampere). Given an active power % and a power factor cosq, the
complex power ( is given by (since % = |( | cosq)

( =
%

cosq
4

iq

i.e. the complex power is completely determined by the active power % and the power
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factor angle q. Power is balanced at every node in a network. If � 9: and ( 9: are sending-
end current and power respectively from node 9 to node : , then power balance at node
9 means

Õ
:
( 9: = 0. This is a consequence of KCL

Õ
:
� 9: = 0 and the definition of

branch power ( 9: :=+ 9 �⇤
9:

.

Relation between instantaneous and complex power.

The complex power ( in the phasor domain is related to the instantaneous power in the
time domain as follows. We can use (1.44) to express the instantaneous power ?(C) in
terms of active power % and reactive power & as (Problem 1.11):

?(C) = % + % cos2(lC + \� )�& sin2(lC + \� ) (1.46)

It is then clear that the active power % is equal to the average power delivered (in the
time domain):

% =
1
)

π
)

0
?(C)3C

as the last two terms in (1.46) average to zero over a cycle ) . The reactive power &
determines the magnitude of the instantaneous power ?(C).

Power delivered to an impedance.

The current and voltage across an impedance I is related by Ohm’s law, + = I� and
hence

|I | = |+ |
|� | and \I = \+ � \� =: q

Therefore from (1.45)

( = I |� |2 = |I | |� |24iq

and

% = |I | |� |2 cosq and & = |I | |� |2 sinq

The active and reactive power for the three passive elements are given in Table 1.2.

|I | q = \I % &

Resistor I = A A 0 A |� |2 0

Inductor I = il; l; c/2 0 l; |� |2

Capacitor I = (il2)�1 (l2)�1 �c/2 0 �(l2)�1 |� |2

Table 1.2 Power delivered to RLC elements.
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Therefore the power delivered to a resistor is active (& = 0). The instantaneous
power ?(C) := E(C)8(C) is

?(C) := A82 (C) = A �
2
max cos2 (lC + \� ) = % (1+ cos2 (lC + \� ))

which is (1.46). Table 1.2 also implies that the complex power delivered to an inductor
or a capacitor is reactive. Substituting into (1.46), the instantaneous power ?(C) to a
purely reactive load depends only on the reactive power &:

?(C) =
⇢
�& sin2(lC + \� ) for inductor I = 9l;
& sin2(lC + \+ ) for capacitor I = ( 9l2)�1

i.e., the net (average) power delivered to the load is zero and the instantaneous power
is sinusoidal with twice the frequency and has an amplitude &.

Example 1.7. Suppose I = 9l; (inductance) or I = ( 9l2)�1 (capacitance). Prove
directly in time domain that the average delivered power is 0 and the amplitude of the
instantaneous power is &.

Solution: Suppose power is delivered to an inductor I = 9l;. Let the current be
8(C) = �max cos(lC + \� ). Then the voltage E(C) across the inductor is given by

E(C) = ; 38
3C

(C) = �l; �max sin(lC + \� )

and therefore

?(C) = E(C)8(C) = �l; �2max sin(lC + \� ) cos(lC + \� )

= �l; �
2
max

2
sin2(lC + \� ) = �l; |� |2 sin2(lC + \� )

= �& sin2(lC + \� )

where the last equality follows from& = |I | |� |2 sin\I =l; |� |2 since \I = c

2 . Moreover
the average power delivered is

% =
1
)

π T

0
?(C)3C = 0

The case of capacitor load I = ( 9l2)�1 is similar and omitted (see Exercise 1.13). ⇤

1.3.2 Three-phase power

Under balanced three-phase operation, the total instantaneous power delivered is con-
stant and the total complex power is 3 times the per-phase complex power.

Indeed, for a balanced three-phase positive-sequence source, we have

+
1= =+0= 4�i2c/3, �0= = �0= 4�i2c/3 and +

2= =+0= 4i2c/3, �0= = �0= 4i2c/3
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Hence

(3q =+0=�0=H ++1=�0=H ++2=�0=H = 3+0=�0=H = 3(

where ( :=+0=�0=H is the per-phase complex power.

For instantaneous power, we have from (1.44), for a balanced three-phase positive-
sequence source,

?3q (C) := E0 (C)80 (C) + E1 (C)81 (C) + E2 (C)82 (C)
= |+0 | |�0 | (cosq + cos(2lC + \+ + \� ))

+ |+0 | |�0 | (cosq + cos(2lC + (\+ �2c/3) + (\� �2c/3)))
+ |+0 | |�0 | (cosq+ cos(2lC + (\+ +2c/3) + (\� +2c/3)))

= 3|+0 | |�0 | cosq + |+0 | |�0 | (cos\ (C) + cos(\ (C)�4c/3) + cos(\ (C) +4c/3))
= 3%

where \ (C) := 2lC + \+ + \� and % is the per-phase active power. Here the last equality
follows from

cosG + cos(G�4c/3) + cos(G +4c/3) = Re
⇣
4

iG + 4i(G�4c/3) + 4i(G+4c/3)
⌘

and ⇣
4

iG + 4i(G�4c/3) + 4i(G+4c/3)
⌘
=

⇣
4

iG + 4i(G+2c/3) + 4i(G�2c/3)
⌘

= 0

where the last equality follows from Theorem 1.2.

1.3.3 Advantages of three-phase power

There are two main advantages of balanced three-phase systems over a system with a
single phase or that with other polyphases.

First it o�ers several benefits to motor operation. The total instantaneous power
?3q (C) = 3% delivered is constant over time in a balanced three-phase system. On a
generator or motor this produces a constant mechanical torque, reducing vibrations,
noise, wear and tear, and other mechanical issues. A three-phase system can also
self-start an induction motor.

In contrast, the instantaneous power

?1q (C) = % + |+ | |� | cos(2lC + \+ + \� ) =: %+ |+ | |� | cos\ (C)

in a single-phase system, where \ (C) := 2lC + \+ + \� , is a sinusoidal signal with
twice the system frequency. This is the case also with a two-phase system where the
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instantaneous power is

?2q (C) = |+0 | |�0 | (cosq+ cos(2lC + \+ + \� )) + |+0 | |�0 | (cosq+ cos(2lC + (\+ + c) + (\� + c)))
= |+0 | |�0 | (2cosq+ cos\ (C) + cos(\ (C) +2c))
= % + 2|+0 | |�0 | cos\ (C)

It can be shown that for  � 3, a balanced  -phase system has ? q (C) =  % in-
dependent of C (Exercise 1.12). Even though a balanced four-phase system also has
time-invariant instantaneous power, its design is more complex than a three-phase
system.

Second a three-phase system typically saves materials and thermal loss (A |�2 |)
compared with a single-phase system that serves the same load. For example, it is clear
that the single-phase system that consists of three identical subsystems shown in Figure
1.7(a) needs twice as much transmission line and incurs twice as much thermal loss in
transmission as the balanced three-phase system in Figure 1.7(b), since the balanced
three-phase system has zero return current and hence does not need a neutral line.

The following example compares a balanced three-phase system with a single one-
phase circuit with a higher ampacity, as opposed to three identical subcircuits in Figure
1.7(a), to supply the same load. The same conclusion holds that the three-phase system
needs half as much conductor and incurs half as much transmission loss.

Example 1.8 (Single-phase vs three-phase systems). Consider two systems that deliver
a specified apparent power |( | at a specified voltage magnitude |+ | to a constant power
load, as shown in Figure 1.25. The distance between the generation and the load is
3. The first system is single-phased and the second system is balanced three-phased.
Compare the required amount of wire and thermal loss in the line in these systems.

The line has an impedance I := A + 9G per unit length where the resistance A per unit
length is inversely proportional to the area of the line with proportionality constant d.
The current density limit of the line is X in ampere per unit area.

I
z  = r + jx

z0 = z or 0

|V||S|

Figure 1.25 A system that delivers power |( | to a load at voltage |+ |. The distance between the
generation and the load is 3. The line has an impedance I := A + 9G per unit length.

Solution. A single-phase system requires two cables, one for return current, each
carrying a current of magnitude |�1q | = |( |/|+ |. This is illustrated in Figure 1.25 with
I0 = I. A balanced three-phase system requires three cables, each carrying a per-phase
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apparent power of |( |/3 and a per-phase current of magnitude |�3q | = |( |/(3|+ |). The
per-phase equivalent circuit is illustrated in Figure 1.25 with I0 = 0.

For the single-phase system the required cross-sectional area of the cable is

�1q :=
|�1q |
X

=
|( |
X |+ |

Hence the amount of material (volume of the cable) required is

<1q := 2 �1q3 = 2
3 |( |
X |+ |

Moreover the resistance per-unit length of the cable is

A1q :=
d

�1q
=

dX |+ |
|( |

and hence the active power loss in the cable is

;1q := 2A1q |�1q |23 =
2dX |+ |
|( | · 3 |( |

2

|+ |2 = 2
dX3 |( |
|+ |

For the balanced three-phase system the required cross-sectional area of the cable
in each phase is

�3q :=
|�3q |
X

=
|( |

3X |+ |
Hence the amount of material required is

<3q := 3 �3q3 =
3 |( |
X |+ | =

1
2
<1q

Moreover the resistance A3q per unit length of the cable is

A3q :=
d

�3q
=

3dX |+ |
|( |

and hence the active power loss in the cable is

;3q := 3A3q |�3q |23 =
9dX |+ |
|( | · 3 |( |

2

9|+ |2 =
dX3 |( |
|+ | =

1
2
;1q

i.e., the balanced three-phase system uses half as much material and incurs half as
much loss as the single-phase system. ⇤

Remark 1.4. 1 Example 1.8 also shows that thermal loss A |� |2 is inversely propor-
tional to |+ |. Intuitively a higher load voltage |+ | requires a smaller load current
|� | to deliver the same amount of power |( |, resulting in a smaller thermal loss in
the grid.

2 It is shown in Exercise 2.7 that, given a desired load power, the active line loss is
inversely proportional to the square |+ |2 of the load voltage magnitude, rather than
|+ | derived here. This is because, in Exercise 2.7, the line resistance is given and
independent of load power and voltage |+ |, whereas, here, the line resistance A3q



1.4 Bibliographical notes 61

is chosen to be proportional to |+ | (reducing the dependence of line loss A3q |�3q |2
from |+ |2 to |+ |).

3 Note that + is the voltage drop across the load, not the voltage drop across trans-
mission line I which is I3� = I3(⇤/+⇤. In the case of balanced three-phase system
(where I0 = 0 in Figure 1.25), if the load power ( and voltage + are specified then
the required squared voltage magnitude at the source is

|I3� + + |2 =
����I3 (

⇤

+
⇤ + +

����
2

= |+ |2 + 3 |I |2 |( |
2

|+ |2 + 23Re (I⇤()

4 In practice most three-phase systems do include a grounded neutral line to carry
unbalanced current during asymmetrical conditions, e.g., due to line faults, and
reduce voltage transients during line switching or lightning events. Since the
unbalanced current is much smaller than the phase currents, the neutral line is
typically much smaller in size and ampacity and therefore much cheaper. ⇤

1.4 Bibliographical notes

There are many excellent textbooks on basic power system concepts, e.g., [1, 2, 3, 4].
Many materials in this chapter follow [1]. The example comparing the savings of
single-phase and three-phase systems is from [4]. Circuit theory is a well established
field. For general circuit analysis using KCL and KVL, see, e.g., [8, Chapter 12]. The
connection with algebraic graph theory is recently surveyed in [9].

1.5 Problems

Chapter 1.1.

Exercise 1.1 (ZIP load model). A common load model, called ZIP, assumes that the
real and reactive power (?,@) consumed by a load depends on the voltage magnitude
|+ | across the load:

? := 02 |+ |2 + 01 |+ | + 00, @ := 0
0
2 |+ |2 + 001 |+ | + 000



62 Basic concepts

for some real numbers (00,01,02) and (000,001,002). This can be equivalently described
in terms of the complex power B := ? + i@ consumed by the load, as 1

B := 12 |+ |2 + 11 |+ | + 10 (1.47a)

where 18 = 08 + i0
0
8
. Instead of the complex power B, a ZIP model may describe how

the apparent power |B | consumed by the load depends on |+ |:

|B | := 22 |+ |2 + 21 |+ | + 20 (1.47b)

for some real numbers (20,21,22). Given a ZIP load, specified either by (1.47a) or
(1.47b), show that its power consumption is equivalent to the sum of power consumed
by a constant impedance I, a constant current device (source) �, and a constant power
device (source) f, and express the parameters (I, �,f) of these devices in terms of the
parameters of the ZIP load.

Exercise 1.2 (KVL). Prove that Kirchho�’s voltage law (1.3b) is equivalent to (1.4b).
(Hint: See Appendix A.11 and use Theorem A.35.1 and Theorem A.35.2.)

Exercise 1.3 (Circuit analysis). Consider a 3-node 3-link circuit specified by:

incidence matrix ⇠̂ :=
266664

1 0 1
�1 1 0
0 �1 �1

377775
, impedances I12 = I23 = 1, voltage source E13

Use (??) to determine the currents �1 := (�12, �23, �13), voltages *1 := (*12,*23) and
nodal voltages + := (+1,+2), assuming without loss of generality that node 3 is the
reference node with +3 := 0.

Exercise 1.4 (Circuit analysis). For the three-bus network in Figure 1.5, derive the
current balance equation (1.10a) by analyzing the equivalent circuit using KCL, KVL,
and Ohm’s law, as explained in Chapter 1.1.4. Draw the equivalent circuit.

Exercise 1.5 (One-line diagram and⇧ circuit). Derive (1.10) � =.+ from the one-line
diagram of a general network by analyzing its equivalent circuit.

1 The power consumption may depend also on the frequency. During transient, this dependence can be
made explicit by the time-domain model

B (C) :=
⇣
02 |E (C) |2 + 01 |E (C) | + 00

⌘
(1+ 03�l (C))

where B (C) := E (C)8 (C) is the instantaneous power in the time-domain and �l (C) is the deviation from
the nominal frequency during transient.
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Chapter 1.2.

Exercise 1.6 (U := 4�i2c/3). Prove the following properties of U := 4�i\120� :

1 U
2 = U, U3 = 1, U4 = U, U: = U: mod 3 where 0 denotes the complex conjugate of
0.

2 1+U+U2 = 0.
3 1�U =

p
3\30�, 1�U2 =

p
3\�30�.

4 1+U = �U2 = 1\�60�, 1+U2 = �U = 1\60�.
5 U+ = U�, U� = U+.

Exercise 1.7 (Proof of Theorem 1.2). Let U := 4�i2c/3. Recall the matrices � defined
in (1.18) and � in (1.12), reproduced here:

� :=
1p
3

⇥
1 U+ U�

⇤
=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
, � :=

266664
1 �1 0
0 1 �1
�1 0 1

377775
1 Suppose the entries G 9 of G := (G1,G2,G3) 2 C3 have the same magnitude. Then G

is balanced if and only if G1 + G2 + G3 = 0.
2 The columns of � are orthonormal. Both � and � are complex symmetric, i.e.,

�
T = � and �

T
= �, where � is the complex conjugate of � componentwise. Hence

�
�1 = �H = � =

1p
3

⇥
1 U� U+

⇤

3 � is a normal matrix, ��T = �T�.
4 Spectral decomposition of �:

1 The eigenvalues and eigenvectors of � are

�1 = 0, �U+ = (1�U)U+, �U� = (1�U2)U� (1.48)

where 1�U =
p

34ic/6 and 1�U2 =
p

34�ic/6.
2 Therefore the spectral decomposition of � is:

� = �

266664
0

1�U
1�U2

377775
�

5 Spectral decomposition of �T:
1 The eigenvalues and eigenvectors of �T are

�1 = 0, �U� = (1�U)U�, �U+ = (1�U2)U+ (1.49)

where 1�U =
p

34ic/6 and 1�U2 =
p

34�ic/6.
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2 Therefore the spectral decomposition of �T is:

�T = �

266664
0

1�U
1�U2

377775
� (1.50)

Exercise 1.8. Show that the voltage magnitude |+23 | = 208+ in the split-phase Delta
transformer in Figure 1.20(b), assuming the system is a balanced three-phase positive
sequence.

Exercise 1.9. Consider the balanced three-phase system in . configuration shown in
Figure 1.26. Show that +=0=1 = 0 provided I < �(I1 + ;1)/3.2

a

c b

n0 n1

z1

z1

z1

z

l1l1

l1Ean

EbnEcn

One line diagram: 

Figure 1.26 Balanced three-phase system in . configuration where the impedances I, I1, ;1 are
given.

Exercise 1.10 (Balanced . loads). Consider the balanced three-phase system in .
configuration shown in Figure 1.27 where a three-phase voltage source in positive se-
quence supplies < three-phase loads in parallel. All transmission lines have a common
admittance ) = 1 and all loads have a common admittance !. Consider the following
10< variables:

2 Suppose the impedances I, I1, ;1 all have positive resistance, which is the case in practice. Then this
condition is automatically satisfied. If 3I = �(I1 + ;1) holds, however, then + =0=1 can take any value
and Kirchho�’s laws will be satisfied because � =0=1 + �0 + �1 + �2 = 0 will always be satisfied for any
value of + =0=1 .
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a0

c0 b0

Ea0n0

Ec0n0 Eb0n0

n0 n1

a1

c1 b1

am

cm bm

ll

l

nm

t

t

t

t

t

t

ll

l

One line diagram: 

Figure 1.27 Balanced three-phase system in . configuration where a three-phase voltage source
in positive sequence supplies < three-phase loads in parallel.

• a voltage and a current for each phase at each stage : = 1, . . . ,<:

+̃: :=
266664
+
0:=:

+
1:=:

+
2:=:

377775
and �̃: :=

266664
�0:=:

�1:=:

�2:=:

377775
, : = 1, . . . ,<

for a total of 6< variables.
• a current for each phase from stage : �1 to stage ::

�̃:�1,: :=
266664
�0:�10:

�1:�11:

�2:�12:

377775
, : = 1, . . . ,<

for a total of 3< currents.
• a voltage between neutrals from stage : � 1 to stage :: +=:�1=: , : = 1, . . . ,<, for a

total of < voltages.

1 Show that +=:�1=: = 0 for : = 1, . . . ,<.
2 Show that

+
0:=: = V: ⇢

00=0 , +
1:=: = V: ⇢

10=0 , +
2:=: = V: ⇢

20=0 , : = 1, . . . ,<

where V: is:

V: :=
A
:

1 A
<

2 (A2�1)� A:2 A<1 (A1�1)
A
<

2 (A2�1)� A<1 (A1�1)
and A1,A2 are given by:

A1,2 =
1
2

⇣
(! +2) ±

p
! (! +4)

⌘
(1.51)

(Hint: Derive a recursion on +̃: across stages : and solve the di�erence equation
for each phase 0,1,2 separately.)
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3 Show that +̃: , �̃: , �̃:�1,: are balanced positive-sequence sets for : = 1, . . . ,<.

Chapter 1.3.

Exercise 1.11. Show that the instantaneous power in the time domain can be expressed
in terms of real and reactive powers in the phasor domain:

?(C) = |+ | |� | (cosq+ cos(2lC + \+ + \� ))
= % (1+ cos2(lC + \� ))�& sin2(lC + \� )

where q := \+ � \� is the power factor angle, % := |+ | |� | cosq is the real power and
& := |+ | |� | sinq is the reactive power.

Exercise 1.12 (Instantaneous power). Consider a balanced  -phase system with  � 3
and for : = 0, · · · , �1,

E: (C) =
p

2|+ | cos
✓
lC +

✓
\+ + : 2c

 

◆◆
, 8: (C) =

p
2|� | cos

✓
lC +

✓
\� + :

2c
 

◆◆

Show that ? q (C) :=
Õ
 �1
:=0 E: (C)8: (C) =  % where % := (1/))

Ø
)

0 E0 (C)80 (C)3C =
|+ | |� | cos(\+ � \� ) and ) := 2c/l.

Exercise 1.13. Suppose I = 1/il2 (capacitance). Prove directly in time domain that
the average delivered power is 0 and the magnitude of the instantaneous power is &.

Exercise 1.14 (Power meter). A power meter measures voltage and current magnitudes
(rms values) ( |+ |, |� |) and instantaneous power ?(C) over 1 or more period) . In addition
to reporting ( |+ |, |� |), it usually reports real and reactive power (%,&), apparent power
|( |, and power factor as well. Explain how to calculate these quantities.

Exercise 1.15. Consider Figure 1.28.

1 Shunt capacitor is VAR source: Prove that in Figure 1.28(a), (2 = (1 + il⇠ |+ |2.
2 Short transmission line is inductive: Prove that in Figure 1.28(b), if |+2 | = |+1 | then
(2 = (H

1 .
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VC

s

S1 S2

(a) Shunt capacitor is VAR source

V1

I

L

V2S1 S2

(b) Short transmission line is inductive

Figure 1.28 Conservation of power



2 Transmission line models

An electric network consists of transmission lines that transfer power from generators
to loads. In this chapter we develop models for the terminal behavior of a three-phase
transmission line that map the voltage and current at one end of the line to those
at the other end, in two steps. In Chapter 2.1 we derive inductance and capacitance
parameters of a transmission line as functions of line geometry. In Chapter 2.2 we
use these parameters to develop circuit models for short, medium, and long-distance
transmission lines. These line models are building blocks for network models developed
in later chapters.

2.1 Line characteristics

The alternating currents in the conductors of a three-phase transmission line create
electromagnetic interactions among them that couple the voltages on, and currents and
charges in these conductors. In a balanced operation however the interactions are as if
the phases are decoupled. This allows per-phase analysis where, in each phase, the line
can be characterized as a combination of a series impedance and a shunt admittance
parameterized by:

series impedance per meter I := A + il; ⌦/m
shunt admittance per meter to neutral H := 6 + il2 ⌦�1/m

In this section we present models for these per-meter line parameters (A, ;) and (6,2).
In the next section we will use these parameters to derive lumped-circuit models of
the line. A three-phase line consists of multiple wires and therefore we need to derive
the series inductance ; and shunt capacitance 2 due to currents and charges in multiple
wires. The key property that will be important in our derivation is that the set of wires
carry currents in both directions so that the currents and charges in all the wires sum
to zero at all times, as expressed in (2.2) and (2.5) below.
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2.1.1 Series resistance A and shunt conductance 6

The direct current (dc) resistance of a conductor is

Adc :=
d)

�

⌦/m

where d) is called the conductor resistivity at temperature) and � is the cross-sectional
area of the conductor. Hence the per-meter resistance is inversely proportional to the
size of the line. The alternating current (ac) resistance (or e�ective resistance) of a
conductor is defined to be

Aac :=
%loss

|� |2 ⌦/m

where %loss is the real power loss in, and |� | is the root-mean-square of the current in
� in the conductor. The current distributes uniformly throughout the conductor’s cross-
sectional area for dc. For ac, the current density is lower at the conductor center and
higher near the conductor surface. This is called the skin e�ect and is more pronounced
at higher ac frequencies. As frequency increases, the real power loss, and hence the
ac resistance, also increase. At 60 Hz the ac resistance is at most a few percent higher
than dc resistance. These e�ects are modeled by the series resistance A in ⌦/m in
transmission line models.

Shunt conductance 6 in ⌦�1/m accounts for real power loss between conductors or
between conductors and ground, typically due to either leakage currents at insulators
or to corona. Insulator loss depends on the environment such as moisture level. Corona
occurs when a strong electric field at a conductor surface ionizes the air, causing it to
conduct. It depends on meteorological conditions such as rain. Losses due to insulator
leakage and corona are typically negligible compared to resistance loss A |� |2. It is
therefore common to assume zero shunt conductance 6 in transmission line models.

2.1.2 Series inductance ;

Roughly, the per-meter series inductance ; in henrys/m of a wire is the proportionality
constant between the current 8 in a meter of the wire and the total magnetic flux linkages
_, i.e., _(C) = ;8(C), where 8(C) is in ampere and _ is in webers. We now study how the
per-meter series inductance ; of a wire depends on the geometry of the transmission
lines.

Single conductor. Consider a straight infinitely long wire of radius A with uniform
current density in the wire with a total current 8 (dropping C from the notation for
simplicity). The total flux linkages _' per meter of the wire within a radius ' of the
wire is related to the current 8 and the geometry by:

_' =
`0

2c

✓
`A

4
+ ln

'

A

◆
8
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where `0 := 4c⇥10�7 weber/ampere-meter is the permeability of free space, and `A
is the relative permeability of the wire. If the conductor is nonmagnetic (e.g. copper
or aluminum), then `A ⇡ 1. The first term is due to flux linkages inside the wire and
the second term is due to flux linkages outside the wire up to radius '. The details are
explained in [1, pp.54–59].

Multiple conductors. We will calculate approximately the per-meter total flux linkages
_1 of conductor 1 that carries a current 81. The total flux linkages _1 is determined not
only by current 81, but also by currents 8: from other conductors : = 2, . . . ,=, that carry
currents 8: and are at distances 31: from the center of conductor 1. See Figure 2.1.

conductor 1
radius r1

current i1

ik

Rk
d1k

R1 a

Figure 2.1 Per-meter total flux linkages in a volume within a radius '1 from the center of
conductor 1 due to all conductors. Conductors : carry currents 8

:
and their centers are

distances 31: from the center of conductor 1 and '
:

from point 0.

Denote by '1 the distance of point 0 from the origin (center of conductor 1) and by
': the distance of the center of conductor : from point 0. Then the total flux linkages
of conductor 1 is

_1 = lim
'1!1

`0

2c

 
81

✓
`A

4
+ ln

'1

A1

◆
+

=’
:=2

8: ln
':

31:

!
(2.1)

where ln denotes the natural log. We make the key assumption
=’
:=1

8: (C) = 0 at all times C (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation
to load and the lines carrying the return currents follow the same physical path by
design. The implication is that the magnetic inductances due to all the lines cancel
each other at infinity. Formally, we add� ln'1

Õ
=

:=1 8: into the bracket on the right-hand
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side of (2.1) to get

_1 = lim
'1!1

`0

2c

 
81

✓
`A

4
+ ln

1
A1

◆
+

=’
:=2

8: ln
1
31:

!
+ `0

2c

=’
:=1

8: ln
':

'1

As '1!1, ln(':/'1)! 0. Hence

_1 =
`0

2c

 
81 ln

1
A
0
1

+
=’
:=2

8: ln
1
31:

!

where A 01 := A14
�`A /4 is the radius of an equivalent hollow conductor with the same

flux linkages as the solid conductor of radius A . For a nonmagnetic wire, `A ⇡ 1 and
A
0
1 ⇡ 0.78A1.

In general the total flux linkages _: of conductor : depends not only on current 8:
but currents 8:0 in other conductors as well, and is given by

_: =
✓
`0

2c
ln

1
A
0
:

◆
8: +

’
:
0<:

✓
`0

2c
ln

1
3::0

◆
8:0 (2.3)

where A 0
:

:= A:4�`A /4. In vector form this is

_ = !8

where _ := (_: , : = 1, . . . ,=), 8 := (8: , 8 = 1, . . . ,=), and the (: , : 0)-th entry of the =⇥=
matrix ! is

;::0 =

(
`0
2c ln 1

A
0
:

if : = : 0
`0
2c ln 1

3
::
0 if : < : 0

The voltage drop E: (C) between two points on conductor : that are separated by an
infinitesimal distance is related to the rate of change of the total flux linkages _: (C)
(Faraday’s law), i.e.,

E: (C) =
3

3C

_: (C) =
’
:
0
;::0

3

3C

8:0 (C)

This relation, in the phasor domain, is used in Chapter 2.2.1 to derive a circuit model
of a transmission line. In a circuit model, the term

;:: :=
`0

2c
ln

1
A
0
:

henrys/m

is called the self-inductance per meter of conductor : and the term

;::0 :=
`0

2c
ln

1
3::0

henrys/m

is called the mutual inductances per meter between conductors : and : 0. The larger
the conductor A: the smaller the self-inductance ;: .



72 Transmission line models

2.1.3 Shunt capacitance 2

Roughly, the per-meter shunt capacitance 2, in farads/m, of a wire is the proportionality
constant between the charge @, in coulombs/m, in a meter of the wire and the voltage
E on the surface of the wire, i.e., @(C) = 2E(C). We now study how the per-meter shunt
capacitance 2 of a wire depends on the geometry of the transmission lines.

Consider the situation in Figure 2.1 with multiple conductors. A similar analysis to
that in Chapter 2.1.2 shows that the voltage, with respect to a reference at infinity, at a
point on the surface of conductor : is

E: =
✓

1
2cn

ln
1
A:

◆
@: +

’
:
0<:

✓
1

2cn
ln

1
3::0

◆
@:0 (2.4)

where n is the permittivity of the medium (n = 8.854⇥10�12 farads/meter in free space
and n ⇡ 1 farad/meter in dry air). As before, A: is the radius of conductor : and 3::0
is the distance between the centers of conductors : and : 0. Here @: is the total charge
per unit length of wire : in coulombs/m. In vector form this is

E = �@

where E := (E: , : = 1, . . . ,=), @ := (@: , : = 1, . . . ,=), and the (: , : 0)-th entry of the =⇥=
matrix � is

5::0 =

(
1

2cn ln 1
A:

if : = : 0
1

2cn ln 1
3
::
0 if : < : 0

Taking time derivatives relates the currents in the conductors to the rate of change
in a voltage on the surface of the conductor relative to the reference, §E = �8(C). Let
⇠ := ��1. The diagonal entries 2:: of ⇠ are called self-capacitances per meter of
conductor : and the o�-diagonal entries 2::0 of ⇠ are called mutual capacitances per
meter between conductors : and : 0, in farads/m. The larger the conductor A: the larger
the self-capacitance 2:: .

The key assumption (among others) in deriving (2.4) is
=’
:=1

@: (C) = 0 at all times C (2.5)

Compare this assumption with the assumption (2.2), and the expressions (2.3) and
(2.4).

Example 2.1. The voltage E: in (2.4) is the potential, or voltage with respect to the
reference at infinity, at a point on the surface of conductor : . The voltage di�erence
E 9: between two points on the surfaces of two parallel conductors 9 and : that are on
a plane perpendicular to conductor 9 is:

E 9: := E 9 � E: =
1

2cn
©≠
´
@ 9 ln

3: 9

A 9

� @: ln
3 9:

A:

+
’
:
0< 9,:

@:0 ln
3::0

3 9:0

™Æ
¨
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2.1.4 Balanced three-phase line

Consider the simplest model of a symmetric three-phase transmission line in balanced
operation, as shown in Figure 2.2, with the assumptions:

1 the conductors are equally spaced at ⇡ and have equal radii A;1

2 80 (C) + 81 (C) + 82 (C) = 0 at all times C;
3 @0 (C) + @1 (C) + @2 (C) = 0 at all times C.

D D

D

r

Figure 2.2 Per-meter inductance and capacitance of a symmetric three-phase transmission line
in balanced operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the e�ect
of mutual inductances and capacitances among the transmission lines is particularly
simple, resulting in the following equal per-phase inductance for each line:

; =
`0

2c
ln
⇡

A
0 H/m

where A 0 := A4�`A /4, and equal per-phase capacitance for each line:

2 =
2cn

ln(⇡/A) F/m

Note that ; and 2 include not only the self-inductance and self-capacitance of the line,
but also mutual inductances and capacitances. Two implications are as follows.

1 Although there is magnetic coupling between phases, the conditions 80 (C) + 81 (C) +
82 (C) = 0, @0 (C) + @1 (C) + @2 (C) = 0 and the symmetry (equal radii A and distances
⇡) reduce the e�ect of the magnetic coupling to the term ln⇡. This allows us
to model the magnetic e�ect as if it consists of only self-inductance and electric
e�ect as if it consists of only self-capacitance. Moreover, the inductances and
capacitances are equal for each phase, permitting per-phase analysis.

2 To reduce the impedance per meter due to inductance or capacitance, we can
reduce the spacing ⇡ or increase the wire radius A. Both have limitations. Other
techniques are used in practice to approximate condition 1 above on the symmetry
of line geometry, e.g., conductor bundling and transposition of the transmission
lines.

1 We use A to denote both the per-meter series resistance and the radius of the conductor; the meaning
should be clear from the context.
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Consider any point ? that is equidistant from the centers of the conductors 0,1,2,
e.g., the point at the center of the triangle in Figure 2.2. The potential, or the voltage
relative to the reference point at infinity, at this point ? can be shown to be

E? =
1

2cn

✓
@0 ln

1
3?0

+ @1 ln
1
3?1

+ @2 ln
1
3?2

◆
(2.6)

where 3?0 = 3?1 = 3?2 are the distances between ? and the centers of the conductors.
Since @0 + @1 + @2 = 0 we have E? = 0, and hence ? has the same potential as the
reference point at infinity and can therefore be taken as the reference point. We will
construct an imaginary geometric line parallel to the conductors pass through the
equidistance point from these conductors. Every point on this line is the reference
potential. By default we will pick this as the neutral potential that defines the phase-to-
neutral voltages. The current supplied to the transmission line capacitance is called the
charging current and the corresponding capacitance is also called the line charging.
Figure 2.3 shows the corresponding circuit model of a transmission line. When the

a

c b

n

c

c c

F/m to neutral 

Figure 2.3 Circuit model of the cross section of a balanced three-phase transmission line.

phase 0 line-to-neutral voltage is +0= the phase 0 charging current is

�0,charging = il2+0= A/m

from phase 0 conductor to neutral.

2.2 Line models

Consider a three-phase transmission line in balanced operation in sinusoidal steady
state, modeled as in Figure 2.3. A key conclusion of Chapter 2.1.4 is that for balanced
three-phase lines, we can analyze each phase separately. Consider now a transmission
line on one of the phases. Let

series impedance per meter I := A + il; ⌦/m
shunt admittance per meter to neutral H := 6 + il2 ⌦�1/m

where the per-meter resistance A > 0 and conductance 6 > 0 depend on the material and
size of the line, and the per-meter inductance ; > 0 and parameter 2 > 0 of the line can be
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calculated as in Chapters 2.1.2–2.1.4. In this section we derive two equivalent models
of a balanced three-phase transmission line. The first model represents the terminal
behavior, i.e., the mapping of the voltage and current between one end of the line and
those at the other end, by a transmission matrix in (2.9) below. The second model
represents the terminal behavior of the line by a linear circuit with series impedance
and shunt admittances given in (2.14) below.

2.2.1 Transmission matrix

Distributed-element model. We start by deriving the+-� relations between two ends of
a transmission line. Figure 2.4 shows a per-phase model of a balanced three-phase line
of length ✓. The voltages are phase (line-to-neutral) voltages as illustrated in Figure
2.3. We will call the left end the sending end and the right end the receiving end. When
we apply a voltage +1, with respect to neutral, at the sending end driving a current �1
towards the receiving end, the voltage drops and the current leaks from the sending
end to the receiving end so that the voltage+ (G) and current � (G) at each point G of the
line vary. We will derive a relation between the sending end (+1, �1) and the receiving
end (+2, �2) by solving for (+ (G), � (G)) in terms of (+2, �2) for all 0  G  ✓.

V1

I1
zdx

V2V(x)V(x)+dV ydx

I2I(x)

dI

dx x
ℓ

Figure 2.4 Per-phase model of a balanced three-phase line of length ✓ with impedance
parameters I, H.

To this end consider the infinitesimal segment of length 3G at a distance G from the
receiving end. This segment is modeled by the circuit with series impedance I3G and
shunt admittance H3G to neutral as shown in Figure 2.4. Let the voltage and current
at point G be + := + (G) and � := � (G) respectively. Let the corresponding quantities at
point G + 3G be + (G) + 3+ and � (G) + 3�. Applying Kirchho�’s laws to the segment, we
have

3+ = I� (G) 3G
3� = (+ (G) + 3+)H 3G ⇡ H+ (G) 3G

where the approximation results from ignoring the second-order term 3+3G. Hence
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we have "
3+

3G

3�

3G

#
=


0 I

H 0

� 
+

�

�
(2.7)

Transmission matrix.

The ordinary di�erential equation (2.7) can be easily solved using standard method
(see below for details), and the general solution is:

+ (G)
� (G)

�
=*


4
WG 0
0 4

�WG

� 
:1

:2

�
(2.8a)

for some constants :1, :2, where

* :=

/2 �/2
1 1

�
and *

�1 :=
1

2/2


1 /2

�1 /2

�
(2.8b)

Here

/2 :=
r
I

H

⌦<�1 and W :=
p
IH <

�1 (2.8c)

are called the characteristic impedance and propagation constant of the line respec-
tively. At G = 0, + (0) =+2 and � (0) = �2. From (2.8) we have

+2

�2

�
=*


:1

:2

�

and hence 
+ (G)
� (G)

�
=*


4
WG 0
0 4

�WG

� 
:1

:2

�
= *


4
WG 0
0 4

�WG

�
*
�1


+2

�2

�

The sending-end voltage and current are therefore related to the receiving-end
(+2, �2) as 

+1

�1

�
=*


4
W✓ 0
0 4

�W✓

�
*
�1


+2

�2

�

Expanding, we have 
+1

�1

�
=


cosh(W✓) /2 sinh(W✓)

/
�1
2

sinh(W✓) cosh(W✓)

� 
+2

�2

�
(2.9)

where coshG := (4G + 4�G)/2 and sinhG := (4G � 4�G)/2. This defines a linear mapping
that maps the voltage and current (+2, �2) at the receiving end to the voltage and current
(+1, �1) at the sending end. The matrix in (2.9) is called a transmission matrix.

The ratio +1/�1 at the sending end is called the driving-point impedance. It is the
equivalent impedance across the two sending-end terminals.
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Example 2.2 (Driving-point impedance). Consider the terminal model (2.9) of a
transmission line. Suppose the receiving end is connected to an impedance load /; .
Show that the driving-point impedance +1/�1 is equal to the characteristic impedance
/2 of the line under one of the following conditions:

• if the load is matched to the line, i.e., /; = /2; or
• if the line length ✓ grows to infinity, since the line parameters satisfy A ,G,6,2 > 0.

The second condition implies that as the line grows in length its impedance comes to
dominate the load impedance /; .

Solution. Since +2 = /; �2, we have from (2.9) that when /; = /2

+1

�1
= /2

cosh(W✓) + sinh(W✓)
sinh(W✓) + cosh(W✓) = /2

For the second case, we have from (2.9)

+1

�1
= /2

/; cosh(W✓) + /2 sinh(W✓)
/; sinh(W✓) + /2 cosh(W✓) = /2

/; + /2 tanh(W✓)
/; tanh(W✓) + /2

Now W =
p
IH =:

p
Ŵ where Ŵ := (A6�l2

;2) + il(A2+6;). Note that ImŴ > 0 and hence
\Ŵ 2 (0,c) and W 2 (0,c/2). If we write W =: U+ iV then U > 0. Hence

cosh(W✓) = 1
2

⇣
4
W✓ + 4�W✓

⌘
=

1
2

⇣
4
(U+iV)✓ + 4�(U+iV)✓

⌘

sinh(W✓) = 1
2

⇣
4
W✓ � 4�W✓

⌘
=

1
2

⇣
4
(U+iV)✓ � 4�(U+iV)✓

⌘

and

tanh(W✓) = 4
(U+iV)✓ � 4�(U+iV)✓

4
(U+iV)✓ + 4�(U+iV)✓ =

1� 4�2(U+iV)✓

1+ 4�2(U+iV)✓ ! 1 as ✓!1

Hence +1/�1! /2 as ✓!1. ⇤

Example 2.3 (Matched load). Suppose the line is terminated in its characteristic
impedance /2 , i.e., +2 = /2 �2. Then (2.9) yields

+1 = (cosh(W✓) + sinh(W✓))+2 = +2 4
W✓

�1 = (cosh(W✓) + sinh(W✓)) �2 = �2 4
W✓

Therefore the driving-point impedance +1/�1 is also the characteristic impedance /2
of the line. Moreover the ratio of the receiving to sending end voltages and currents
are

+2

+1
=
�2

�1
= 4

�W✓

The ratio of the receiving power to the sending power is:

�(21

(12
=
+2�
⇤
2

+1�
⇤
1

= 4
�W✓

⇣
4
�W✓

⌘⇤
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Writing W =
p
IH =

p
(A6�l2

;2) + il(A2+6;) =: U+ iV, we have

�(21

(12
= 4�2U✓

Since 4�2U✓ is real, the powers have the same phase angle \(�(21) = \(12 =: \. This
implies that the transmission e�ciency has the same ratio in terms of real power �%21

received and real power %12 sent:

�%21

%12
=
�(21 cos\
(12 cos\

= 4
�2U✓

Hence for an impedance load that is matched to the line impedance /2 , the transmission
e�ciency [ decreases exponential in the line length ✓. For high-voltage transmission
lines, U ⇡ 0 so the loss is small and [ ⇡ 1.

Indeed, for a lossless line, A = 6 = 0. Then I = il; and H = il2. Hence

/2 =
r
I

H

=

r
; ✓

2 ✓

=

r
!

⇠

is real, where ! is the total inductance of the line and ⇠ the total capacitance of the
line, and

W =
p
IH = il

p
;2

is purely imaginary (U = 0). The transmission e�ciency is [ = �%21/%12 = 1. We will
study lossless lines in more detail in Chapter 2.2.4. ⇤

Solution of (2.7).

First we note that even though (+ , �) and the parameters (H, I) are complex variables, the
variable G (distance from terminal 2) is a real variable. Hence the ordinary di�erential
equation (ode) (2.7) can be solved in the same way as an ode in the real domain. To
see this consider a general ode:

§I :=
3I

3C

= "I (2.10)

where I := G + 9 H 2 C= with G, H in R= and " := �+ 9⌫ 2 C=⇥= with �,⌫ in R=⇥=,
with the interpretation §G + 9 §H = (�+ 9⌫) (G + 9 H). Rewrite this in the real domain:

§G
§H

�
=


� �⌫
⌫ �

�
|     {z     }

"̃


G

H

�
(2.11)

Two matrices

" = �+ 9⌫ and "̃ =

� �⌫
⌫ �

�
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are equivalent, written "$ "̃ , in the sense that for any I = G + iH with G, H 2 R=,
Re("I)
Im("I)

�
= "̃


G

H

�

Since

"
2 =

⇣
�

2�⌫2
⌘
+ 9 (�⌫+⌫�) and "̃

2 =

�

2�⌫2 �(�⌫+⌫�)
�⌫+⌫� �

2�⌫2

�

we have "̃2 $ "
2, and by induction "̃: $ "

: for all : . Hence 4"̃ $ 4
" . This

implies that a trajectory I(C) 2 C= is a solution of (2.10) if and only if (G(C), H(C)) 2 R2=

with I(C) =: G(C) + iH(C) is a solution of (2.11). Hence solving (2.11) using "̃ in the
real domain is equivalent to solving (2.10) using " directly in the complex domain.

We now solve the ode (2.7). Let

� :=

0 I

H 0

�

Then the eigenvalues of � are ±W where W :=
p
HI is the propagation constant defined

in (2.8c). Recall the characteristic impedance of the line /2 :=
q
I

H
also defined in

(2.8c). The corresponding eigenvectors are (any vectors proportional to) the columns
of the matrix* defined in (2.8b). Let*�1 be its inverse. Since �* =*diag(W,�W), if
we define 

+̃ (G)
�̃ (G)

�
:=*�1


+ (G)
� (G)

�
(2.12)

then

3

3G


+̃

�̃

�
=*�1 3

3G


+

�

�
= *

�1
�


+ (G)
� (G)

�
= *

�1
�*

✓
*
�1


+ (G)
� (G)

� ◆
= diag(W,�W)


+̃ (G)
�̃ (G)

�

i.e., +̃ and �̃ are decoupled. Hence

+̃ (G) = :14
WG and �̃ (G) = :24

�WG

for some constants :1, :2. Then (2.12) implies that the general solution of (2.7) is
(2.8). ⇤

2.2.2 Lumped-element ⇧-circuit model

If we are only interested in the terminal voltages and currents of a line, then we can
represent the line by a lumped-circuit model as shown in Figure 2.5 that consists of a
series impedance / 0 and a shunt admittance . 0/2 at each end of the line. This is called
the ⇧ model or ⇧-circuit model of a transmission line. We now derive the parameters
(/ 0,. 0) in the ⇧ model in terms of line characteristics (/2 ,W).
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V1

I1

V2

I2

y'
2

zdx

y'
2

Figure 2.5 Lumped-circuit ⇧ model of a transmission line.

Applying Kirchho�’s laws we have

�1 =
.
0

2
+1 +

.
0

2
+2 + �2

+1�+2 = / 0
✓
.
0

2
+2 + �2

◆

Hence 
+1

�1

�
=


1+ / 0. 0/2 /

0

.
0(1+ / 0. 0/4) 1+ / 0. 0/2

� 
+2

�2

�
(2.13)

Comparing (2.13) and (2.9) we find that the ⇧ model in Figure 2.5 is given by:

/
0 = /2 sinh(W✓) =

r
I

H

sinh(W✓) = /

sinh(W✓)
W✓

(2.14a)

.
0

2
=

1
/2

cosh(W✓)�1
sinh(W✓) =

1
/2

sinh(W✓/2)
cosh(W✓/2) =

.

2
tanh(W✓/2)
W✓/2 (2.14b)

where / := I✓ is the total series impedance of the line and . := H✓ is the total shunt
admittance to neutral of the line.

When |W✓ | ⌧ 1 then sinh(W✓)/(W✓) ⇡ 1 and tanh(W✓/2)/(W✓/2) ⇡ 1, in which case
the ⇧ model in Figure 2.5 can be approximated by the total series impedance / and
total shunt admittance . to neutral of the line.

In summary each phase of a balanced three-phase transmission line can be modeled
as follows:

• Long line (✓ > 150 miles approximately): Use either (2.9) or the ⇧ circuit model
with / 0 and . 0 given by (2.14).

• Medium line (50 < ✓ < 150 miles approximately): Use the ⇧ circuit model with
/ := I✓ and . := H✓ instead of / 0 and . 0. Here / = ' + il! is the total series
impedance of the line and . = il⇠ is the total shunt admittance to neutral of the
line. In particular, for medium lines, the shunt resistance is negligible.

• short line (✓ < 50 miles approximately): Use the ⇧ circuit model with / only and
neglect . .
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2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1
are (from Kirchho�’s laws):

(12 :=+1�
�

1 =
✓

1
/
0

◆
� ⇣

|+1 |2�+1+
�

2

⌘
+

✓
.
0

2

◆
�

|+1 |2

(21 :=+2 (��2)� =
✓

1
/
0

◆
� ⇣

|+2 |2�+2+
�

1

⌘
+

✓
.
0

2

◆
�

|+2 |2

They are not negatives of each other because of power loss along the line. Indeed the
total complex power loss is their sum:

(12 + (21 =
✓

1
/
0

◆
�

|+1�+2 |2 +
✓
.
0

2

◆
� ⇣

|+1 |2 + |+2 |2
⌘

= /
0 |�B12 |2 +

✓
.
0

2

◆
� ⇣

|+1 |2 + |+2 |2
⌘

where �B12 denotes the current through the series impedance / 0. The first term on the
right-hand side is loss due to series impedance and the last term are losses due to shunt
admittances of the line. Suppose / 0 = 'B + i-

B and the shunt admittance is purely
capacitive, i.e., . 0 = i⌫

< with 'B ,-B ,⌫< > 0. Then, over the transmission line,

real power loss Re ((12 + (21) = 'B |�B12 |2

reactive power loss Im ((12 + (21) = -B |�B12 |2 �
⌫
<

2

⇣
|+1 |2 + |+2 |2

⌘

Remark 2.1 (High voltage reduces line loss). Consider a load supplied by a source
through a transmission line modeled by a series impedance ' + i- and zero shunt
admittances. Suppose the load draws an active power %load with power factor cosq at
a specified voltage magnitude |+load |. It can be shown that, given a desired active load
power %load, the active line loss %line is inversely proportional to the square of the load
voltage magnitude |+2 | and its power factor cosq (Exercise 2.7):

%line = ' |�load |2 = '

%
2
load

|+2 |2 cos2
q

Therefore a higher voltage (magnitude) reduces line loss.

Note that the higher voltage refers to the voltage |+2 | across the load (and eventually
the source voltage |+1 |), not the voltage across the transmission line which is |+1�+2 |;
see Figure 2.5. It is derived in Example 1.8 that, given a desired load power, the active
line loss is inversely proportional to the load voltage magnitude |+2 |, rather than |+2 |2.
This is because, in Exercise 2.7, the line resistance ' is given and independent of load
power and voltage |+2 |, whereas, in Example 1.8, the line resistance ' is chosen to
be proportional to |+2 | (reducing the dependence of line loss ' |�load |2 from |+2 |2 to
|+2 |). ⇤
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2.2.4 Lossless line

In this subsection we look at some properties of a lossless line, i.e., when A = 6 = 0. A
lossless line is an important model because a high-voltage transmission line typically
has very small power loss compared with the power flow on the line, and can be
modeled as a lossless line. As noted above we have

/2 =
r
I

H

=

r
il;

il2
=

r
;

2

⌦

W =
p
IH =

p
(il;) (il2) = il

p
;2 =: iV <

�1

with V :=l
p
;2. Therefore the characteristic impedance /2 is purely resistive while the

propagation constant W is purely reactive. The characteristic impedance /2 is called a
surge impedance for a lossless line. This implies

cosh(WG) = cos(VG) and sinh(WG) = isin(VG)

⇧-circuit model.

Substituting /2 and W into (2.9) the transmission matrix reduces to
+ (G)
� (G)

�
=


cosh(WG) /2 sinh(WG)

/
�1
2

sinh(WG) cosh(WG)

� 
+2

�2

�
=


cos(VG) i/2 sin(VG)

i/
�1
2

sin(VG) cos(VG)

� 
+2

�2

�
(2.15)

for G 2 [0,✓]. The circuit elements / 0 and . 0 in the ⇧ circuit model of a transmission
line reduces to (from (2.14)):

/
0 = /2 sinh(W✓) = i/2 sin(V✓) =: i- ⌦ (2.16a)

.
0

2
=
.

2
tanh(W✓/2)
W✓/2 =

.

2
tan(V✓/2)
V✓/2 =: i

l⇠
0

2
⌦�1 (2.16b)

where . := il2✓ and ⇠ 0 := 2✓ (tan(V✓/2)/(V✓/2)). If ✓ is small then ⇠ 0 ⇡ 2✓. When
V✓ < c radian, both / 0 > 0 and. 0 > 0, i.e., the series impedance is purely inductive and
the shunt admittances are purely capacitive. In practice, for overhead lines, 1/

p
;2 ⇡

3⇥108 ms�1. At 60 Hz (using V := l
p
;2)

c

V

=
c

2c(60)
p
;2

⇡ 2,500 km

Hence a lossless overhead transmission line less than 2,500 km can be modeled by the
simple circuit in Figure 2.6 where - and ⇠ 0 are given in (2.16). It is a model for either

V1

I1 jx

V2

I2

2
ωC'j

2
ωC'j

Figure 2.6 ⇧ circuit model for a lossless line with length ✓ < c/V.
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a single-phase line or the phase-to-neutral of a balanced three-phase line.

Voltage profile.

Usually power must be delivered to a load at a specified nominal voltage magnitude
|+2 | at the load. To see how the voltage magnitude changes along a line from the source
G = ✓ to the load G = 0, we determine the voltage + (G) for G 2 [0,✓] using (2.15):

+ (G) =+2 cos(VG) + i/2 �2 sin(VG) (2.17)

Suppose the line terminates at an impedance load /load := 'load + i-load. Then the
voltage + (G) at each point G depends on the load impedance because +2 = /load�2.
There are four cases of load impedance:

1 No load �2 = 0: + (G) = +2 cos(VG) is real. Hence the voltage magnitude + (G)
increases from the source at G = ✓ to the end of the line at G = 0 as long as V✓ < c/2
radian.

2 Surge impedance load /load = /2: The voltage magnitude |+ (G) | is constant. More-
over the power delivered ((G) at every point G 2 [0,✓] is real and constant |+2 |2//2 ,
so only real power is delivered. See Exercise 2.4.

3 Full load: Since �2 =+2//load we have

+ (G) =
✓
cos(VG) + i

/2

/load
sin(VG)

◆
+2

=
✓
cos(VG) + /2-load

|/load |2
sin(VG) + i

/2'load

|/load |2
sin(VG)

◆
+2 (2.18)

In Exercise 2.5 we derive for special cases su�cient conditions under which the
voltage magnitude |+ (G) | decreases from the source at G = ✓ to the load /load at
G = 0.

4 Short circuit +2 = 0: + (G) = i/2 �2 sin(VG). Hence the voltage magnitude |+ (G) |
decreases from the source at G = ✓ to the load at G = 0 as long as V✓ < c/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude

no load I2 = 0

full load

SIL z load = zc 

short circuit V2 = 0

|V(x)|

x = ℓ x = 0

Figure 2.7 Voltage magnitude |+ (G) | on a lossless line.
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towards the load (case 3 above) can be problematic because loads are generally designed
to work with specific voltages. As mentioned above low load voltage also increases line
loss in the network. Voltages are regulated tightly around their nominal values through
various voltage compensation devices in generating units and inside the network.

Example 2.4 (Steady-state stability limit). To derive the power delivered to a generic
load we have from (2.16) that

�2 =
+1�+2

i-
� i

l⇠
0

2
+2

Hence the complex power delivered is

�(21 =+2 (�⇤2) = �
 
|+2 |2�+2+

⇤
1

�i-
� i

l⇠
0

2
|+2 |2

!

and the real power delivered is

�%2 =
|+1 | |+2 |
-

sinX

where X := \+1 � \+2 is the angle di�erence between +1 and +2. Hence the maximum
power is delivered on a lossless line if X = c/2 and the maximum power would have
been |+1 | |+2 |/- . This X = c/2 is called the steady-state stability limit. If the load
exceeds this limit, there is no solution for X for this equation. In practice a transmission
network operates with X⌧ c/2 because a line is typically limited by three other factors.
First the voltage drop from the source to the load must be small, e.g., |+2 |/|+1 | � 95%.
Second X is usually limited to 30� or 35� by transient stability. Third X can be limited
by the thermal rating of the conductor insulation materials. ⇤

2.2.5 Short line

Consider a three-phase transmission line connecting two buses in balanced operation so
we can analyze each phase separately. Assume the line is short and can be modeled by a
⇧ equivalent circuit with only a series impedance / = '+ i- and no shunt admittances.
We explain some properties of complex power transfer over this line.

Let +8 and �8 be the voltages and currents at buses 8 = 1,2. Let (8 9 , 8, 9 = 1,2, be the
sending-end complex power from bus 8 to bus 9 , 8 < 9 , and �8 9 be the complex current
from bus 8 to bus 9 . Then

(8 9 =+8 �⇤8 9 = +8

+
⇤
8
�+⇤

9

/
⇤ =

1
/
⇤

⇣
|+8 |2�+8+⇤9

⌘
(2.19)

If the voltage magnitudes |+8 |, 8 = 1,2, are fixed, the branch powers depend only on the
power angle \8 9 := \8 � \ 9 :

(8 9 =
1
/
⇤

⇣
|+8 |2� |+8 | |+ 9 |4 9 \8 9

⌘



2.2 Line models 85

Taking the sum of the branch powers in (2.19), the complex loss over the line is

(12 + (21 =
|+1�+2 |2

/
⇤ = / |�12 |2

where �12 is the current from buses 1 to 2. In particular the real power loss is %12+%21 =
' |�12 |2.

Nose curve and voltage collapse.

Suppose bus 1 has a generator with a fixed +1 := |+1 |\0� supplying a load at bus
2 through a line with impedance / . Let the power supplied to the load be �(21 =
|(21 | (cosq+ isinq) =: %(1+ i tanq) where % > 0 is the active load power and q is the
power factor angle. The power flow equation (2.19) hence becomes

%(1+ i tanq) = � 1
/
⇤

⇣
|+2 |2� |+2 | |+1 | 4i\21

⌘
(2.20)

where \21 := \+2 � \+1 = \+2. Voltage support is typically available on the generator
side, so we assume |+1 | is fixed even when the load power varies.2 Voltage support
may not be available on the load side and we are interested in the behavior of the load
voltage |+2 | as the active load power % increases while keeping the power factor angle
q constant.

Fix+1 and q. For each %, (2.20) defines two real equations in two variables |+2 | and
\21. For this simple system we can analytically solve for |+2 | for each %. Depending
on the value of %, there may be zero, one, or two solutions for |+2 |. As % varies, the
solutions |+2 | trace out a curve called a nose curve. As % increases from zero with
fixed power factor angle q, there are exactly two solutions for |+2 |, one with a high
voltage and the other with a low voltage. The di�erence between the high-voltage
solution and the low-voltage solution of |+2 | decreases until they coincide. This is the
point where the active load power % = %max is maximum and represents the limit of
power transfer from the voltage source +1 through the transmission line / to the load.
If % increases further, real solutions for |+2 | cease to exist. This phenomenon is called
voltage collapse. This is studied in Exercise 2.9. See Chapter ?? for discussions on
voltage collapse beyond the infinite bus model.

Short and lossless line ' = 0.

Suppose the series resistance is negligible (which is a reasonable approximation for
high voltage transmission lines), / = i- . Then (2.19) reduces to

(8 9 = i
1
-

⇣
|+8 |2�+8+⇤9

⌘

2 An ideal voltage source whose complex bus voltage is fixed regardless of its power generation is called
an infinite bus.
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Hence

%12 =
|+1 | |+2 |
-

sin\12 = �%21 (2.21)

&12 =
1
-

⇣
|+1 |2� |+1 | |+2 | cos\12

⌘

&21 =
1
-

⇣
|+2 |2� |+1 | |+2 | cos\12

⌘

where \12 := \+1� \+2. This has the following implications.

1 Transmission e�ciency. The transmission e�ciency [ := �%21/%12 = 1 since there
is zero real power loss. The maximum power transfer |+1 | |+2 |/- is proportional
to voltage magnitude product. This is another reason why transmission networks
tend to operate at very high voltage levels. Indeed doubling the voltage increases
the maximum power transfer capability by fourfold.

2 DC power flow model. When voltage magnitudes are fixed, the real power depends
only on the power angle \12. When the power angle is small |\12 | ⇡ 0, sin\12 ⇡ \12

and the real powers %8 9 are roughly linear in the phase angles (\1,\2). These
assumptions are called the DC power flow approximation (' = 0, fixed |+8 |, small
|\8 9 |, ignore &8 9 ); see Chapter 4.6.2 for more details.

3 Decoupling. When |\12 | ⇡ 0, there is a decoupling between real and reactive
powers:

m%12

m\12
= �m%21

m\12
=
|+1 | |+2 |
-

cos\12 ⇡
|+1 | |+2 |
-

m%12

m |+8 |
= �m%21

m |+8 |
=
|+ 9 |
-

sin\12 ⇡ 0

Hence the real powers %8 9 depend strongly on \12 but not on the voltage magnitudes
|+: |.

On the other hand

m&8 9

m\12
=

|+1 | |+2 |
-

sin\12 ⇡ 0

i.e., the reactive powers &8 9 depend weakly on the power angle \12. Moreover

m&12

m |+2 |
= � |+1 |

-

cos\12 < 0,
m&21

m |+2 |
=

1
-

(2|+2 |� |+1 | cos\12)

Typically |+1 | ⇡ |+2 | and hence the second expression above is positive. Hence to
maintain a high load voltage |+2 |, we should increase&21 and/or decrease&12, i.e.,
the load should supply reactive power and the generation should absorb reactive
power. This motivates the use of reactive power to regulate voltage magnitudes.
The decoupling property holds in a network setting as well and leads to a fast
algorithm to solve power flow problems; see Chapter 4.4.3.

4 Out-of-step generators. When generators are not synchronized, i.e., they operate
with slightly di�erent frequencies, the long-run average active power transmitted



2.3 Bibliographical notes 87

across a lossless line is zero. To see this, consider voltages at buses 1 and 2 given
by

E1 (C) =
p

2|+1 | cos(l0C + \1)
E2 (C) =

p
2|+2 | cos(lC + \2)

where the frequency l0 at bus 1 is slightly out of step, with l0 ⇡ l. Write

E1 (C) =
p

2|+1 | cos(lC + \ 01 (C))

with a slowly-varying phase \ 01 (C) := \1 + (l0 �l)C. If the phase \ 01 (C) varies
slowly enough, we can still use the steady-state expressions above as reasonable
approximations of powers. Then the short-term active power is given by (from
(2.21)):

%12 =
|+1 | |+2 |
-

sin ((l0 �l)C + \12)

Hence the long-term average of active power transfer is zero. This is not only
ine�ective, but highly undesirable because the line current can be very large. In
practice protective devices would remove the out-of-step generator.

2.3 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials
in this chapter follow [1]; see also [2, Chapter 4]. We develop line characteristics in
Chapter 2.1 based on basic results in physics that we do not elaborate. For example, the
derivation of shunt capacitance 2 of a transmission line in Chapter 2.1.3 is explained in
[1, Chapters 3.7–3.8] or [2, Chapters 4.8–4.12]). The expression (2.6) for the potential
E? at the center of a balanced three-phase transmission line is from [1, Example 3.8,
p. 79]. Some of the materials on lossless lines follow [2].

2.4 Problems

Chapter 2.1.

Exercise 2.1. Consider the simplest model of a symmetric three-phase transmission
line in balanced operation, as shown in Figure 2.2, with the assumptions

• the conductors are equally spaced at ⇡ and have equal radii A;
• 80 (C) + 81 (C) + 82 (C) = 0 at all times C;
• @0 (C) + @1 (C) + @2 (C) = 0 at all times C.
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where 8: (C) are currents and @: are the total charge per unit length of wire : in
coulombs/meter. Show that the per-phase inductance per meter of the three-phase
transmission line is

; =
`0

2c
ln
⇡

A
0 (in H/m)

where A 0 := A4�`A /4, and the per-phase capacitance per meter is

2 =
2cn

ln(⇡/A) (in F/m)

Chapter 2.2.

Exercise 2.2. Consider the per-phase transmission line model described by (2.9). We
are to determine the line characteristic impedance /2 and propagation constant W✓
from two measurements:

1 Open-circuit test. The load side is open-circuited so that �2 = 0 and the driving-
point impedance is measured as

/>2 :=
+1

�1

2 Short-circuit test. The load side is short-circuited so that +2 = 0 and the driving-
point impedance is measured as

/22 :=
+1

�1

Derive /2 and W✓ in terms of />2 and /B2 (sign ambiguity is fine).

Exercise 2.3 (Lumped-circuit⇧model). Consider a general transmission matrix) that
maps the receiving-end voltage and current (+2, �2) to those (+1, �1) at the sending-end:

+1

�1

�
=


0 1

2 3

�
|  {z  }

)


+2

�2

�

1 Show that the transmission matrix ) in (2.9) has the property 03 � 12 = 1.
2 Suppose 1 < 0 in) . Show that the condition 03�12 = 1 is necessary and su�cient

for interpreting the transmission matrix ) as a ⇧ equivalent circuit consisting of
a series impedance / < 0 and shunt admittances (line charging) .1 and .2 at the
sending and receiving ends respectively (note that .1 may not necessarily equal
.2).
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Exercise 2.4 (Surge impedance load (SIL) on lossless line.). Consider a lossless line
with A = 6 = 0 that terminates in an impedance load that is equal to the characteristic
(surge) impedance /load = /2 =

p
;/2 ⌦ of the line. The power delivered by a lossless

line to the resistive load /2 is called the surge impedance loading (SIL).

1 Show that the voltage magnitude |+ (G) | is constant over G 2 [0,✓].
2 Calculate SIL.

Exercise 2.5 (Voltage drop along lossless line). We have derived in Chapter 2.2.4 the
voltage + (G) at each point G 2 [0,✓] along a lossless line terminating at an impedance
load /load = 'load + i-load to be (from (2.18)):

+ (G) =
✓
cos(VG) + /2-load

|/load |2
sin(VG) + i

/2'load

|/load |2
sin(VG)

◆
+2

Assume V✓ < c/4. Prove the following:

1 If the load is purely resistive /load = 'load then |+ (G) | is an increasing function for
all G 2 [0,✓] (i.e., the voltage magnitude |+ (G) | drops from the source at G = ✓ to
the load /load at G = 0) if and only if 'load  /2 .

2 If the load is purely inductive /load = i-load with -load > 0 then |+ (G) | is an
increasing function for all G 2 [0,✓] if and only if

-load 
sin(2V✓)

1� cos(2V✓) /2

3 If /load = 'load (1+ i) then |+ (G) | is an increasing function for all G 2 [0,✓] if and
only if

'load 
 s

1+ 1

sin2 (2V✓)
� cot(2V✓)

!�1

/2

Exercise 2.6 (Voltage, reactive power compensation). Consider a generator with volt-
age and power injection (+ 9 , B 9 ) supplying a load with voltage and power injection
(+: , B: ) through a transmission line parametrized by series and shunt admittances⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. Power balance at the load bus : is (with HB

: 9
= HB

9:
)

B: =
⇣
H
B

: 9

⌘H ⇣
|+: |2�+:+H

9

⌘
+

⇣
H
<

: 9

⌘H
|+: |2 (2.22)

Let HB
: 9

=: 6B
: 9

+ i1
B

: 9
and H<

: 9
=: 6<

: 9
+ i1

<

: 9
and suppose 6B

: 9
� 0, 1B

: 9
< 0 (inductive)

and 6<
: 9
� 0, 1<

: 9
� 0 (capacitive). Let B: =: ?: + i@: , and +8 =: |+8 | 4i\8 , 8 = 9 , : . Use

(2.22) to express the receiving real power �?: and receiving reactive power �@: in
terms of the voltage magnitudes |+ 9 |, |+: |, and the angle di�erence \: 9 := \: � \ 9 .
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Suppose H<
: 9

= 0 (zero shunt), 6B
9:

= 0 (loss line), and 0 < |\: 9 |  c/2 (power flow
solution stability).

1 Show that real power is delivered to the load (i.e., �?: > 0) if and only if �c/2 
\: 9 < 0.

2 The next few questions study the relation between load voltage magnitude |+: |
and reactive power injection @: . Show that:

1 For DC load (i.e., @: = 0), we must have |+: | < |+ 9 |, i.e., the load voltage
magnitude must be smaller than the generator voltage magnitude.

2 On the other hand, |+: | = |+ 9 | implies that @: > 0, i.e., the load must inject
reactive power to maintain a high load voltage magnitude.

3 If �@: > 0 (i.e., the load withdraws reactive power), then |+: | < |+ 9 | cos\: 9
(i.e., load voltage magnitude will be further suppressed).

3 The power factor angle is q: := tan�1 (@:/?: ) and the power factor PF is cosq: .
Show that

1 + tanq: tan\: 9 =
|+: |

|+ 9 | cos\: 9

When |+: | = |+ 9 | cos\: 9 , what is the PF and is the load withdrawing or injecting
real power?

4 Suppose further that + 9 := 1\0� and 1
B

9:
= �1. Suppose that the load voltage

magnitude |+: | must lie between [1� n ,1+ n].
1 At unity power (@: = 0), find the maximum received power �?: and the

corresponding load voltage phasor+: = |+: | 4i\: . Conclude that the maximum
received real power satisfies �?:  1

2 .
2 Show that the maximum received real power is �?: = (1+ n) when the load

must inject the reactive power @: = (1� n)2.

Exercise 2.7 (Voltage, line loss and voltage drop). Consider two buses 1 and 2 con-
nected by a transmission line modeled by a per-phase ⇧ circuit model with series
impedance / and shunt admittance (line charging) ./2 at each end of the line, as
shown in Figure 2.8. Let (12 be the sending-end complex power from buses 1 to 2 and
(21 be the sending-end complex power from buses 2 to 1 (or, equivalently, �(21 is the
receiving-end complex power at bus 2). Note that the direction of load current �2 is
opposite to the convention we used in Chapter 2.2.2.

1 Calculate the complex line loss as a function of voltages (+1,+2). Can you express
the complex line loss in terms of the load voltage and current (+2, �2) instead?

2 Suppose bus 2 is connected to a load that draws a fixed active power %load with
a fixed power factor cosq at a fixed voltage magnitude |+2 |. Suppose / = ' + i-

and the shunt admittance ./2 = i⌫/2 is purely reactive (i.e., zero conductance).
Calculate the active power loss %line over the line in terms of the active load power
%load, the power factor angle q, and the load voltage |+2 |.
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V1

I1

S12 S21

V2

I2

y
2

y
2

z

V2V1

S12 S21

z
2
y

2
y,,( )

One line diagram: 

Figure 2.8 Two buses connected by a transmission line.

For the following subproblems, assume . = i⌫ = 0 (short transmission line).

3. Given the fixed active load power %load, show that the active line loss %line derived
in part 2 of the problem is inversely proportional to the squared load voltage |+2 |2
and to the squared power factor cos2

q.
4. Suppose now the load at bus 2 is an electric vehicle that draws an active power

of %load = 20 kW with unity power factor at a voltage magnitude of |+2 | = 200V.
Calculate the ratio of the active power loss to the active load power if ' = 0.04⌦
(wires with gauge number 6 at 100ft).

5. What is the magnitude of the voltage drop |+1 �+2 | across the transmission
line (the series impedance /), relative to the load voltage |+2 |, in terms of
/ ,%load, |+2 |, cosq?

Exercise 2.8. Consider the short-line model (12 = (/⇤)�1 �
|+1 |2�+1+

⇤
2

�
of a transmis-

sion line with / := H�1
4

iq that connects bus 1 and bus 2. Let +1,+2 be the complex
voltages at buses 1 and 2 respectively and assume |+1 | = |+2 | = 1. Let \12 := \+1� \+2.

1 For what value of \12 is (12 real and nonzero?
2 What is the maximum real power �%21 that can be received at bus 2 and what is
\12 that delivers it?

Exercise 2.9 (Nose curve and voltage collapse). Consider a voltage source with a
fixed magnitude |+1 | supplying a load through a line modeled by a series impedance
I := |I | 4i\I with |\I | < c/2. Let the power supplied to the load be (2 = |(2 | (cosq +
isinq) =: %(1+ i tanq) where % > 0 is the active load power and q is the power factor
angle. The power flow equation is:

%(1+ i tanq) = � 1
I
⇤

⇣
|+2 |2� |+2 | |+1 | 4i\21

⌘
(2.23)

where \21 := \+2� \+1.
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1 For each %, solve (2.23) for |+2 | with |+1 | and q fixed.
2 Show that |+2 | behaves as follows as % increases from % = 0 with the power factor

angle q kept constant: |+2 | is a nonunique rool of a polynomial equation in %. As
% increases, the resulting nonunique roots |+2 | trace out a curve called the nose
curve. As % keeps increasing, eventually, the polynomial equation has no real root,
which is the phenomenon of voltage collapse.

3 Find the maximum power transfer % = %max at which solutions for |+2 | exist.
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A large electric network is composed of multiple areas that have di�erent nominal
voltage magnitudes. These areas are connected by transformers that convert between
di�erent voltage levels. The ease of converting between voltage levels is an important
advantage of AC over DC transmission systems. It allows, for example, the transmission
network to operate at 765:+ to reduce power loss and household appliances to operate
at 120+ for safety. In this chapter we develop transformer models and explain how to
analyze a balanced three-phase system that contains transformers.

We start in Chapter 3.1 with models of a single-phase transformer and use them
in Chapter 3.2 to develop models of three-phase transformers in balanced operation.
We describe in Chapter 3.3 how to refer impedances from one side of a transformer
to the other side. We apply this method in Chapter 3.4 to simplify per-phase analysis
of circuits that contain transformers. We explain in Chapter 3.5 per-unit normalization
that further simplifies the analysis of balanced three-phase systems.

3.1 Single-phase transformer

We first model an ideal single-phase transformer by a transmission matrix and then
describe circuit models of a nonideal single-phase transformer.

3.1.1 Ideal transformer

An ideal transformer has no loss (zero resistance), no leakage flux, and the magnetic
core has infinite permeability. Let #1 be the number of turns in the primary winding,
#2 that in the secondary winding, and

= :=
#2

#1
, 0 :=

1
=

=
#1

#2

An ideal transformer is represented schematically in Figure 3.1. We will call = the
voltage gain and its reciprocal 0 the turns ratio. The voltage gain = relates the voltages
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v1

i1 i2

v2

N1

N2n := N2

N1a := 

N1  :  N2

Figure 3.1 Single-phase ideal transformer.

and currents in the primary and secondary circuits, both at all times in the time domain:

E2 (C)
E1 (C)

= =,
82 (C)
81 (C)

= 0

and in the phasor domain:

+2

+1
= =,

�2

�1
= 0

This relation can also be written as
+1

�1

�
=


0 0
0 =

� 
+2

�2

�
(3.1)

The matrix on the right-hand side is called a transmission matrix of an ideal transformer.
It maps (+2, �2) to (+1, �1). The dot notation indicates that the currents �1, �2 are defined
to be positive when one flows into and the other out of the dotted terminals, as indicated
in Figure 3.1. This notation is convenient when we use single-phase transformers to
construct three-phase transformers.

The ratio of the complex receiving-end to sending-end power is

�(21

(12
:=
+2�
⇤
2

+1�
⇤
1

= = · 0 = 1

i.e., an ideal transformer has no power loss.

3.1.2 Nonideal transformer

A real transformer has power losses due to resistance in the windings (A |� |2), eddy
currents and hysteresis losses. It also has nonzero leakage fluxes and finite permeability
of the magnetic core. Figure 3.2(a) shows elements of a (nonideal) transformer. The
primary winding has #1 turns around the magnetic core and the secondary winding
has #2 turns. The mutual flux�< due to the currents 81 and 802 links all the turns of the
primary and secondary coils. The two dots indicate that the mutual flux components
due to 81 and 802 add when these currents both enter (or exit) the dotted terminals
according to the right-hand rule. The leakage fluxes �;1 and �;2 links the individual
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Φl1

Φl2

v2v1

core

primary 
winding
N1 turns

secondary
winding
N2 turns

i1 i2'
Φm

(a) Nonideal transformer

ym

zp zs

V̂1V1 V̂2

I1 I2

N1   :   N2

Îm

V2

(b) Circuit model

Figure 3.2 Single-phase nonideal transformer. The dotted box represents an ideal transformer
with 0 := #1/#2.

coils. The flux linkages _;1 =: !;181 and _;2 =: !;2802 due to�;1 and�;2 are proportional
to the currents 81 and 802 respectively. The proportionality constants !;1,!;2 are called
inductances. Then the total flux linkages of the primary and secondary circuits are the
sums of the leakage flux linkages and the mutual flux linkage:

_1 = _;1 +#1�<, _2 = _21 +#2�<

The voltages are

E1 = A181 +
3_1

3C

= A181 + !;1
381

3C

+#1
3�<
3C

(3.2a)

E2 = A28
0
2 +

3_2

3C

= A28
0
2 + !;2

38
0
2

3C

+#2
3�<
3C

(3.2b)

where A181 and A28
0
2 represent power losses in the core. The model for an ideal trans-

former neglects losses (A1 = A2 = 0) and leakage fluxes (_;1 = _;2 = 0) in (3.2) and hence
E1 = #1

3�<
3C

and E2 = #2
3�<
3C

, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 802 is proportional to the
mutual flux �<:

� = #181 +#28
0
2 = '�< (3.3)

where ' is called the reluctance of the core. The model for an ideal transformer
assumes infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) =
#2/#1. In practice the magnetic core has finite permeability, i.e., ' > 0 and the the
magnetomotive force � is nonzero. When the secondary circuit is open, 802 = 0. The
resulting primary current, denoted 8̂<, is called the primary magnetizing current and
satisfies #18̂< = '�< from (3.3).1 Define

Ê1 := #1
3�<
3C

= !<

38̂<

3C

, Ê2 := #2
3�<
3C

=
#2

#1
Ê1

1 Instead of 8< := ('/#1)�<, we can define 80
<

:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit.
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where !< := #2
1/'. Substituting into (3.2) yields, denoting 82 := �802, we have

Nonideal elements: E1 = A181 + !;1
381

3C

+ Ê1, Ê1 = !<

38̂<

3C

, E2 = �A282� !;2
382

3C

+ Ê2

Ideal transformer: Ê2 =
#2

#1
Ê1, 82 =

#1

#2

�
81� 8̂<

�
where the last equality follows from substituting '�< = #18̂< into (3.3). This set of
equations in the phasor domain is

Nonideal elements: +1 = I? �1 + +̂1, �̂< = H<+̂1, +̂2 = IB �2 ++2 (3.4a)

Ideal transformer: +̂2 =
#2

#1
+̂1, �2 =

#1

#2

�
�1� �̂<

�
(3.4b)

where the series impedances I? := A1 +l!;1 and IB := A2 +l!;2 model the core losses
and leakage fluxes in the primary and secondary circuits respectively, and the shunt
admittance H< := 1/(l!<) = '/(l#2

1 ) models the finite permeability of the core.
The model (3.4) can be interpreted as the circuit in Figure 3.2(b). Variables with hats
denote internal variables.

The end-to-end behavior of the nonideal transformer can be described by a trans-
mission matrix that maps (+2, �2) to (+1, �1) (see Chapter 2.2.1 for the transmission
matrix of a transmission line). Eliminating the internal variables (with hats) from (3.4),
the transmission matrix is given by (Exercise 3.1)

+1

�1

�
=


0
0

0
0
IB +=I?

0H< =+ 0IBH<

� 
+2

�2

�
(3.5)

where = := #2/#1, 0 := #1/#2, and 00 := 0(1+ I?H<). We will refer to such a model
that describes the end-to-end behavior as an external model. An equivalent external
model to the transmission matrix is an admittance matrix that maps (+1,+2) to (�1,��2):

�1

��2

�
=

1
[


=+ 0IBH< �1
�1 0

0

� 
+1

+2

�

where [ := 00IB + =I? . We will freely use either matrix for describing the end-to-end
behavior of a two-terminal device such as a transformer or a transmission line.

In the following we present three circuit models derived from that in Figure 3.2(b).
Their relation is shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a )
equivalent circuit (Chapter 3.1.3). The ) equivalent circuit can be approximated by a
simplified model whose parameters can be determined by short-circuit and open-circuit
tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to a circuit
consisting of two ideal transformers connected by a unitary voltage network (Chapter
3.1.5). The unitary voltage network can be generalized to model nonstandard trans-
formers with multiple windings, e.g., split-phase transformer. These models reduce to
the same model when the shunt admittance H< in Figure 3.2(b) is assumed zero (i.e.,
open-circuited). We emphasize that, by equivalence, we only mean that two circuits
have the same end-to-end behavior, i.e., same transmission or admittance matrices,
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circuit model

T equivalent
circuit

unitary voltage
network

simplified model
≈

Figure 3.3 Relation between di�erent circuit models of transformers.

but their internal variables may take di�erent values. This is important, e.g., when we
try to determine transformer parameter values from measurements using these circuit
models; the derivation should use only terminal variables, not internal variables, as we
discuss in Chapter 3.1.3.

3.1.3 ) equivalent circuit

ym

zp

V1

I1 I2

N1   :   N2

V2

a2zs

Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Even though the circuit model in Figure 3.2(b) and the ) equivalent circuit in
Figure 3.4 have the same transmission matrix, their internal variables may not be equal
because of the reference of IB to the primary side. Indeed (3.4) describes the internal
variables of the model in Figure 3.2(b), but not necessarily those in the ) equivalent
circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
+2 = 0, the internal variables +̂1 and +̂2 are nonzero in general in Figure 3.2(b), as
determined by (3.4), but these voltages are zero in Figure 3.4. This has implications
on parameter determination as we now explain.
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Parameter determination.

Two simple tests are often used to determine transformer model parameters:

1 Short-circuit test (+2 = 0). With the secondary circuit short-circuited, the primary
voltage +B2 and primary current �B2 are measured. The primary short-circuit
voltage +B2 is called the impedance voltage.

2 Open-circuit test (�2 = 0). With the secondary circuit open, the primary voltage
+>2 and primary current �>2 are measured.

To determine the parameters (I? , IB , H<) of the transmission matrix) in (3.5), note that
during the short-circuit test, the voltage on the primary side of the ideal transformer is
zero. Hence

+B2 =

 
I? +

✓
H< + 1

0
2
IB

◆�1
!
�B2 (3.6a)

During the open-circuit test, the secondary current �2 = 0 and hence there is zero
current on the primary side of the ideal transformer. Hence

+>2 =
✓
I? +

1
H<

◆
�>2 (3.6b)

Since there are three unknowns (I? , IB , H<), they cannot be uniquely determined from
the two equations in (3.6). Additional measurements will be needed to determine
(I? , IB , H<), e.g. measurements of separate dc resistances in the primary and sec-
ondary circuits. Sometimes H< is assumed to be zero (open-circuited) so that (3.6a)
becomes +B2 = (I? + 02

IB)�B2 , yielding the total leakage impedance I? + IB . Alter-
natively assuming I? = [IB with known [ results in two nonlinear equations in two
unknowns (IB , H<).

It may seem that we can measure the current �2 in the ) equivalent circuit in Figure
3.4 during a short-circuit test and use it to determine (I? , IB , H<), but this is not the
case because it will involve internal variables. Even though we have informally justified
(3.6) using internal variables in the ) equivalent circuit, e.g., the voltage and current
on the primary side of the ideal transformer, we should be careful with this line of
reasoning. A more rigorous derivation of (3.6) uses the circuit model in Figure 3.2(b),
by setting +2 = 0 in (3.4) (Exercise 3.2). In this case, even if the short-circuit current
�2 is also measured, there are 6 unknowns (+̂1,+̂2, �̂<; I? , IB , H<) but only 5 equations
in (3.4) and hence these unknowns cannot be uniquely determined from just the short-
circuit and open-circuit tests either. This implies that we cannot apply the measured
value of short-circuit current �2 to determine (I? , IB , H<).
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3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).

ym

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(a) Simplified model

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I

;
:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.

Transmission matrix.

Apply KCL, KVL and Ohm’s law to the model in Figure 3.5(a) to get:

+1 = I; �1 + 0+2, �1 = H< (0+2) + =�2
Hence the transmission matrix "̂ is given by

+1

�1

�
=


0 (1+ I;H<) =I;

0H< =

�
|                   {z                   }

"̂


+2

�2

�
(3.7a)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7a). When
H< = 0 the relation (3.7a) can be equivalently expressed in terms of an admittance
matrix . : 

�1

��2

�
=

1
I;


1 �0
�0 0

2

�
|          {z          }

.


+1

+2

�
(3.7b)

When I; = H< = 0 the model (3.7a) reduces to (3.1) for an ideal transformer.
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Approximation to ) equivalent circuit.

We now justify the model in Figure 3.5(a) with I; = I? + 02
IB as a reasonable approx-

imation of the ) equivalent circuit in Figure 3.4(b) when H< is small. Let " and "̂
denote that transmission matrices in (3.5) and (3.7a) respectively. Their di�erence is

"̂ �" =

0 (1+ I;H<) =I;

0H< =

�
�


0

�
1+ I?H<

�
0(1+ I?H<)IB +=I?

0H< =+ 0IBH<

�
= n


0 �=I?
0 �=

�

where n := 02
IBH<. The conductance in the shunt admittance is negligible in practice

and hence the shunt admittance H< due to the primary magnetizing current takes the
form H< = (iG<)�1 = �i1< with 1< > 0. The leakage impedance I? takes the form
I? = A? + iG? with A? > 0 and G? > 0; similarly for IB . Suppose I? = [IB for some real
number [ > 0 and |n | ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

k"̂ �" k
k" k < |n | ⌧ 1

where the matrix norm k�k is the sum norm k�k :=
Õ
8, 9 |�8 9 |, or the ;1 vector norm

when the =⇥ = matrix � is treated as a vector in C=
2

(see Appendix A.8.3 for matrix
norms). Note that for 0 < 1, the model parameters (I; , H<) should be on the high
voltage side. When the shunt admittance is neglected H< = 0, these two models are the
same, i.e., "̂ = " .

Parameter determination.

The parameters (I; , H<) of the simplified model in Figure 3.5(a), or equivalently, in
(3.7a), can be uniquely determined from two simple tests:

1 Short-circuit test (+2 = 0). With the secondary circuit short-circuited, the primary
voltage +B2 and current �B2 are measured. Then, from Figure 3.5,

I; =
+B2

�B2

The primary short-circuit voltage +B2 is called the impedance voltage.
2 Open-circuit test (�2 = 0). With the secondary circuit open, the primary voltage
+>2 and current �>2 are measured. Then +>2 = (I; +1/H<)�>2 and hence

1
H<

=
+>2

�>2

� +B2
�B2

Example 3.1 (Parameter determination). Consider a single-phase distribution (step-
down) transformer with the following ratings: 2.9 MVA, 7.2 kV / 240 V. Construct the
equivalent circuit model in Figure 3.5 from the following test results:

1 Short-circuit test (+2 = 0). With the secondary circuit short-circuited, a voltage
|+B2 | = 500V is applied to the primary circuit that causes the rated primary current
|�B1 | to flow.
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2 Open-circuit test (�2 = 0). With the secondary circuit open, the rated voltage
|+>2 | = 7.2kV is applied to the primary circuit. This caused a current of |�>2 | = 7A
to flow in the primary circuit.

Assume I; = iG; and H< = (iG<)�1. Determine G; and G<.

Solution. In the short-circuit test the secondary voltage +2 = 0. Hence the voltage
on the primary side of the ideal transformer is zero and the shunt reactance G<
is e�ectively short-circuited, leaving only the leakage reactance G; in the primary
circuit. Since the rated primary current is |�B2 | = 2.9MVA/7.2kV = 403A, we have
|+B2 | = |�B2I; | = |�B2 | G; . Hence G; = 500V/403A = 1.24 ⌦.

In the open-circuit test the secondary current �2 = 0 and hence there is zero current
on the primary side of the ideal transformer (see Figure 3.5). Hence |+>2 | = |�>2 (I; +
1/H<) | = |�>2 | (G; + G<), and G< = |+>2 |/|�>2 |� G; = 7.2kV/7A�1.24 = 1.03k⌦.

As expected, |H< | ⌧ 1/|I; |. ⇤

In transformer ratings, the ratio of secondary open-circuit voltage to the primary
open-circuit voltage is usually taken to be the voltage gain =, even though more precisely
it should be

+2

+1
= = · 1/H<

I; +1/H<
In practice the resistances due to core losses are much smaller than the reactances due
to leakage fluxes and finite permeability of the core so that I; ⇡ iG; and H< ⇡ �i1<.
Moreover 1< ⌧ 1/G; . For Example 3.1

+2

+1
= =

G<

G; + G<
=

1.03k⌦
1.03k⌦+1.24⌦

' =

Parameter determination from transformer ratings when H< := 0.

If H< := 0 then the model parameter is just the leakage impedance I; in the primary
circuit, which can be determined from the short-circuit test, I; =+B2/�B2 . Moreover its
magnitude can be determined from typical transformer ratings, as follows.

A typical specification of a three-phase transformer includes:

• Three-phase power rating |(3q |.
• Rated primary line-to-line voltage |+pri | and rated primary line current |�pri |.
• Rated secondary line-to-line voltage |+sec | and rated secondary line current |�sec |.
• Impedance voltage V on the primary side, per phase, as a percentage of the rated

primary voltage. The shunt admittance is assumed zero.

As mentioned above, the impedance voltage is the voltage drop across the leakage
impedance I; on the primary side of each single-phase transformer in a short-circuit test.
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The V specification means that the voltage needed on the primary side to produce the
rated primary current across each single-phase transformer is V, as a percentage of the
rated primary voltage. We emphasize that the short-circuit voltage and current needed
to derive I; should be those across each single-phase transformer, which depends on the
configuration of the primary circuit. If the primary circuit is in � configuration then the
short-circuit voltage and current on the primary side of the single-phase transformer
are (assuming balanced positive sequence):

� configuration: |+B2 | = |+01 | = V |+pri |, |�B2 | = |�01 | =
���� �prip

3
4

ic/6
����

If the primary circuit is in. configuration then the short-circuit voltage and current on
the primary side of the single-phase transformer are:

. configuration: |+B2 | = |+0= | = V

���� +prip
34ic/6

���� , |�B2 | = |�0= | = |�pri |

Since I; =+B2/�B2 we therefore have,

� configuration: |I; | =
p

3V |+pri |
|�pri |

; . configuration: |I; | =
V |+pri |p
3|�pri |

(3.8a)

We reiterate that+pri denotes the line-to-line voltage even for. configuration; otherwise
|I; | = V |+pri |/|�pri | for . configuration if the rated voltage +pri is line-to-neutral.

Sometimes the primary line current |�pri | is not specified directly. In that case I;
can be determined from the power and voltage ratings ( |(3q |, |+pri |), as follows. If
the primary circuit is in � configuration then the short-circuit voltage and current
on the primary side of the single-phase transformer are (assuming balanced positive
sequence):

� configuration: |(3q | = 3|(q | = 3|+01 | |�01 |

|+B2 | = |+01 | = V |+pri |, |�B2 | = |�01 | =
|(3q |
3|+pri |

Note that |(3q |
3 |+pri | is the rated primary current produced in the short-circuit test. If the

primary circuit is in . configuration then the short-circuit voltage and current on the
primary side of the single-phase transformer are:

. configuration: |(3q | = 3|(q | = 3|+0= | |�0= |

|+B2 | = |+0= | = V

���� +prip
34ic/6

���� , |�B2 | = |�0= | =
|(3q |

3
��� +prip

34ic/6

��� =
|(3q |p
3|+pri |

Since I; =+B2/�B2 we therefore have,

� configuration: |I; | =
3V |+pri |2
|(3q |

; . configuration: |I; | =
V |+pri |2
|(3q |

(3.8b)

As mentioned above, +pri denotes the line-to-line voltage even for . configuration;
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Figure 3.6 The transformer ratings.

otherwise |I; | = 3V |+pri |2/|(3q | for . configuration if the rated voltage +pri is line-to-
neutral.

Example 3.2 (Transformer ratings). Figure 3.6 shows a typical specification of a
three-phase transformer in �. configuration:

• Three-phase power rating |(3q | = 150kVA.
• Rated primary line-to-line (high) voltage |+pri | = 480V in � configuration with rated

primary line current |�pri | = 180A.
• Rated secondary line-to-line (low) voltage |+sec | = 208./120V in . configuration

with rated secondary line current |�sec | = 416A. This notation means that the
secondary side is . -configured with a line-to-line voltage of 208V and line-to-
neutral voltage of 120V.

• Impedance voltage V = 5.45% on the primary side (the shunt admittance is assumed
zero).

Verify that the rated line currents on the primary and secondary sides are consistent
with the power rating and voltage ratings. Determine the magnitude |I; | of the leakage
impedance of the transformer.

Solution. The primary side is in � configuration and hence we have

|(3q | = 3 |(01 | = 3 |+01 �̄01 | = 3 |+pri | |�01 |

Since (assuming balanced positive sequence)

�0 = �01 � �20 = �01

⇣
1� 4i2c/3

⌘
= �01 ·

p
34�ic/6

we have |�pri | =
p

3 |�01 |. Hence

|(3q | =
p

3 |+pri | |�pri |

The rated line-to-line voltage |+pri | = |+01 | = 480V. The rated line current |�pri | = |�0 | =
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180A. Hence
p

3 |+pri | |�pri | =
p

3 ·480 ·180 = 149.65 kVA

which is approximately the power rating |(3q | = 150 kVA.

The secondary side is in . configuration and hence we have

|(3q | = 3 |(0= | = 3 |+0= �̄0= | = 3
��� +secp

34ic/6

��� |�sec | =
p

3 |+sec | |�sec |

where the third equality follows since +sec = +01 = +0=
⇣p

34ic/6
⌘

is the line-to-end

voltage. The rated secondary line-to-line voltage is |+sec | = 208V and the line current
|�sec | = 416A, and hence

p
3 |+sec | |�sec | =

p
3 ·208 ·416 = 149.87kVA

which is approximately the power rating 150 kVA.

From (3.8a) the magnitude |I; | of the leakage impedance of each single-phase
transformer is (V is the impedance voltage on the primary side)

|I; | =
p

3V |+pri |
|�pri |

=

p
3 ·5.45% ·480V

180A
= 0.2517⌦

⇤

Distribution system transformers.

In the US, single-phase or three-phase stepdown transformers are typical in the distri-
bution system. The most common three-phase system voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude)
and hence the line-to-neutral voltage is |+0= | = 12.47/

p
3 = 7.2kV. A typical primary

side current rating is |�0= | = 400A. Hence the total (three-phase) rated apparent power
is |(3q | = 3|+0= | |�0= | = (3) (7.2) (400) = 8.6MVA. Other common distribution system
voltages and their total power at 400A are shown in Table 3.1. The advantages of a

line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|+
01

| |+0= | |(3q |

4.8 2.8 3.3

12.47 7.2 8.6

22.9 13.2 15.9

34.5 19.9 23.9

Table 3.1 Typical distribution system voltages (line-to-line) and their total (three-phase) power
rating at 400A current.

higher-voltage system include:
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• It can carry more power for a given ampacity.
• It has a smaller voltage drop for a given level of power flow, requiring fewer voltage

regulators and capacitor banks for voltage support (see Exercise 2.7.5).
• It has a smaller line loss for a given level of power flow (see Exercise 2.7).
• It can cover a larger service area since it has a smaller voltage drop and a smaller

line loss. Roughly, for the same load density, the area covered increases linearly
with voltage.

• It requires fewer substations since it covers a larger service area, which can be a big
cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.
• Crew safety is a bigger concern with a higher voltage.
• Higher voltage equipment costs more, from transformers to cables to voltage regu-

lators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary
phases and the other end connects to the transformer case which is connected to the
neutral wire of the three-phase system and also earth ground. On the secondary side,
the 240V is center-tapped and the center neutral wire is grounded, making the two ends
“hot” with respect to the center tap. These three wires run down the service drop to
the meter and electric panel of a house. This is shown in Figure 3.7. Connecting a load

240V

120V

120V

abcn

Figure 3.7 A common single-phase distribution transformer in the US.

between either hot wire and the neutral gives 120V while connecting it between both
hot wires gives 240V. Note that the transformer is single-phase. This is the split-phase
120/240 V system typical in the US.
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3.1.5 Model with unitary voltage network

Single-phase two-winding transformer.

As far as the end-to-end behavior is concerned, the transformer model in Figure 3.2(b)
is equivalent to the model in Figure 3.8(a) where the ideal transformer with turns ratio
#1/#2 is replaced by two ideal transformers in series with turns ratios #1 and 1/#2.
Referring the leakage impedances (I? , IB) and shunt admittance H< to the other sides

ym

zp

V1

I1

N1  :  1 1  :  N2

zs
I2

V2

(a) Equivalent model

V1

I1

N1  :  1 1  :  N2

I2

V2

z1 z2

y0

unitary voltage network

(b) Unitary voltage network

Figure 3.8 Models of nonideal transformer with unitary voltage network.

of the ideal transformers using (3.14) in Chapter 3.3, this model is equivalent to the
one in Figure 3.8(b) where

H0 := #
2
1 H<, I1 :=

I?

#
2
1

, I2 :=
IB

#
2
2

(3.9)

The network between the two ideal transformers is sometimes referred to as a unitary
voltage network because the nominal voltage of the network is 1 pu if the scaled
nominal voltages +nom

1 /#1 = +nom
2 /#2 on both sides of the (nonideal) transformer is

used as the voltage base for per-unit normalization (per-unit normalization is studied
in Appendix 3.5). Note that no nodes in the transformer models may be grounded. The
main advantage of modeling a nonideal transformer this way is that the unitary voltage
network can be generalized from the simple network in Figure 3.8(b) to a more general
network that can be used to model nonstandard transformers with multiple windings;
see below.

We now derive the admittance matrix that maps (+1,+2) to (�1,��2). First focus on
the unitary voltage network, shown in Figure 3.9, where H1 := 1/I1 = #2

1 H? , H2 := 1/I2 =
#

2
2 HB with H? := 1/I? , HB := 1/IB . Variables with hats denote internal variables.2 The

y0

y2y1

V̂0V̂1 V̂2

Î2Î1
Î0 := 0

Figure 3.9 Unitary voltage network of the model in Figure 3.8(b).

2 The explicit separation of internal variables (e.g., +̂8 , �̂8) and terminal variables (e.g., +8 , �8) may not be
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variables (+̂0,+̂1,+̂2) are defined as voltage drops as shown in the figure and ( �̂0, �̂1, �̂2)
are the current injections at these nodes with �̂0 := 0. Then

�̂1 = H1 (+̂1� +̂0), �̂2 = H2 (+̂2� +̂0), �̂0 + �̂1 + �̂2 = H0+̂0 (3.10)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter
4)

266664
�̂0

�̂1

�̂2

377775
=

266664
H0 + H1 + H2 �H1 �H2

�H1 H1 0
�H2 0 H2

377775
266664
+̂0

+̂1

+̂2

377775
Since �̂0 = 0 we can eliminate +̂0 and derive the Kron-reduced admittance matrix .uvn

that maps (+̂1,+̂2) to ( �̂1, �̂2). Let �̂ := ( �̂1, �̂2) and +̂ := (+̂1,+̂2). Then �̂ = .uvn+̂ where
.uvn is the Schur complement of H0 + H1 + H2 (see Appendix A.3.1 for details of Schur
complement):

.uvn :=

H1 0
0 H2

�
� 1Õ2

8=0 H8


H1

H2

� ⇥
H1 H2

⇤
=

1Õ
8
H8


H1 (H0 + H2) �H1H2

�H1H2 H2 (H0 + H1)

�

(3.11a)

Next connect the two ideal transformers to each side of the unitary voltage network;
see Figure 3.8(b). Let � := (�1,��2) and+ := (+1,+2). The conversion between internal
variables (+̂ , �̂) and terminal variables (+ , �) is +̂ = "+ and �̂ = "�1

� where

" :=

1/#1 0

0 1/#2

�
(3.11b)

Substituting into �̂ = .uvn*̂ we obtain the relation between the terminal variables + to
�:

� = (".uvn")+ (3.11c)

where ".uvn" is called the admittance matrix of the transformer. It can be shown that
(3.11) is equivalent to the) equivalent circuit (3.5) (Exercise 3.4). As a consequence the
model parameters (H0, H1, H2) cannot be uniquely determined by just the short-circuit
and open-circuit tests.

We often do not know the numbers #1, #2 of turns of the primary and secondary
windings respectively, but can determine the turns ratio 0 := #1/#2 from the specified
rated voltages. The admittance matrix ".uvn" can also be written in terms of the
turns ratio 0 (Exercise 3.5):

... := ".uvn" =
H?HB

0
2
H< + 02

H? + HB


1+ 02

H</HB �0
�0 0

2 (1+ H</H?)

�
(3.11d)

If H0 = H< = 0 then both (3.5) and (3.11) are equivalent to the simplified model in
Figure 3.5(b). In this case the model parameter is just the leakage impedance I; in the

significant for single-phase devices but turns out to be crucial in modeling three-phase devices; see
Chapters 14 and 15.
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primary circuit, which can be determined from standard power ratings as described
above. Recall that I; = I? + 02

IB and hence the leakage admittance in the simplified
model is

H; =
1
I;

=
1

1/H? + 021/HB
=

H?HB

0
2
H? + HB

Indeed, when H< = 0, the admittance matrix ... is the same for both the simplified
model and the unitary voltage network model, from (3.11d):

... = ".uvn" = H;


1 �0
�0 0

2

�

which is the same as (3.7b).

Multi-winding transformers.

The single-phase circuit model in Figure 3.8(b) can be generalized in two ways, or a
combination. First, multiple copies of the single-phase model can be connected in �
or . configuration on each side to create models for three-phase transformers. This
is derived in detail in Chapter 15.3 for unbalanced three-phase systems. Second, the
unitary voltage network can be generalized to model nonstandard transformers with
more than two windings. As an illustration we now use this approach to model a
split-phase transformer.

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages

y0

y1
I1 I2

I3

unitary voltage network

V1

V2

V3

N1  :   1 1  :  N3

1  :  N2

y2

V̂3

V̂2

y3

Î2Î1

Î3V̂1 V̂0

Figure 3.10 Single-phase split-phase transformer.

(+̂0,+̂1,+̂2,+̂3) and currents ( �̂0, �̂1, �̂2, �̂3) on the unitary voltage network are defined in
the figure. The admittance matrix that maps these voltages to currents is given by:

26666664

�̂0

�̂1

�̂2

�̂3

37777775
=

26666664

Õ3
8=0 �H1 �H2 �H3

�H1 H1 0 0
�H2 0 H2 0
�H3 0 0 H3

37777775

26666664

+̂0

+̂1

+̂2

+̂3

37777775
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Let +̂ := (+̂1,+̂2,+̂3) and �̂ := ( �̂1, �̂2, �̂3). Since �̂0 = 0 we can eliminate +̂0 to relate
�̂ = .uvn+̂ where .uvn is the Kron-reduced admittance matrix:

.uvn :=
266664
H1 0 0
0 H2 0
0 0 H3

377775
� 1Õ3

8=0 H8

266664
H1

H2

H3

377775
⇥
H1 H2 H3

⇤

=
1Õ
8
H8

266664
H1 (H0 + H2 + H3) �H1H2 �H1H3

�H2H1 H2 (H0 + H1 + H3) �H2H3

�H3H1 �H3H2 H3 (H0 + H1 + H2)

377775
(3.12a)

This extends in a straightforward manner .uvn in (3.11) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in
Figure 3.10. The terminal voltages + := (+1,+2,+3) and currents � := (�1,��2,��3), as
well as the internal current �̂3 into the third winding, are defined in the figure. Let
" := diag(1/#1,1/#2,1/#3). Then +̂ = "+ and, using �2 + �3 + �̂3 = 0,

�̂ = "
�1

266664
�1

��2
�̂3

377775
= "

�1

266664
�1

��2
��2� �3

377775
=: "�1

��

where

� :=
266664
1 0 0
0 1 0
0 1 1

377775
(3.12b)

Substituting into �̂ = .uvn+̂ we obtain the relation between the terminal variables + to
�:

� = �
�1 (".uvn")+ (3.12c)

3.2 Balanced three-phase transformers

In this section we develop models for a balanced three-phase transformer and derive
its per-phase equivalent.

3.2.1 Ideal transformers

The primary and secondary circuits of a three-phase transformer can be arranged in
four di�erent configurations: .. , ��, �. , .�. Figure 3.11(a) shows a primary three-
phase winding in . configuration and its schematic diagram. The winding on the first
magnetic core goes from terminal 0 to neutral = and then connects with the neutral
terminals on the second and third magnetic cores. It matches the connectivity in the
schematic diagram where the windings are indicated by the thick lines. Figure 3.11(b)



110 Transformer models

I1
a

I1
b

I1
c

I1
a

I1
b

I1
c

V1
a V1

a

V1
b

V1
b

V1
c V1

c

n1

n1

(a) Primary winding in . configuration

I2
a I2

a

I2
b

I2
c

I2
b

I2
c

V2
a

V2
b

V2
c

V2
a

V2
b

V2
c

(b) Secondary winding in � configuration

Figure 3.11 Primary and secondary windings in . and � configurations respectively. The thick
lines in the schematic diagrams represent transformer windings.

shows a secondary three-phase winding in � configuration and its schematic diagram.
In both diagrams, the windings go from terminal 0 on the first magnetic core to terminal
1 on the second magnetic core to terminal 2 on the third magnetic core. The winding
of an ideal three-phase transformer in .. configuration and its schematic digram are
shown in Figure 3.12(a). The parallel lines in the schematic diagram indicate corre-
sponding primary and secondary windings in the single-phase transformers. Similarly
the winding of an ideal three-phase transformer in �� configuration and its schematic
digram are shown in Figure 3.12(b), and those for �. and.� configurations are shown
in Figure 3.13. The di�erent configurations of three-phase transformer banks can also
be represented compactly as in Figure 3.14 (see its caption for details).

Recall that the internal voltages and currents are denoted by+.
9

:= (+0=
9

,+1=
9

,+2=
9
) 2

C
3. �.

9
:= (�0=

9
, �1=
9

, �2=
9
) 2 C3 for . configuration and +�

9
:= (+01

9
,+12
9

,+20
9
) 2 C3,

�
�
9

:= (�01
9

, �12
9

, �20
9
) 2 C3 for � configuration (see Figure 3.11). The terminal voltages

and currents are denoted by + 9 := (+0
9
,+1
9
,+2
9
) 2 C3 and � 9 := (�0

9
, �1
9
, �2
9
) 2 C3, with

the current �1 flowing into the primary side of the transformer and �2 flowing out of its
secondary side. The external behavior of an ideal three-phase transformer is defined
by the ratio of the line-to-line voltages on the secondary and the primary sides, and
the ratio of the line currents on the secondary and the primary sides. We refer to these
ratios as its external model. The phases of a balanced transformer are decoupled and
therefore it can be represented by its phase 0 model, called its per-phase equivalent.

The external model of an ideal balanced three-phase transformer and its per-phase
equivalent can be derived using the following procedure:

1 Internal model. Derive the internal voltage and current gains based on the pairing
of primary and secondary windings in di�erent configurations (see Figures 3.12
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Figure 3.12 Ideal three-phase transformers in .. and �� configurations. The parallel lines in
the schematic diagram indicate corresponding primary and secondary windings.

and 3.13):

.. : +
.

2 = =+
.

1 , ��.2 = 0�
.

1 (3.13a)

��: +
�
2 = =+

�
1 , ���2 = 0�

�
1 (3.13b)

�. : +
.

2 = =+
�
1 , ��.2 = 0�

�
1 (3.13c)

.�: +
�
2 = =+

.

1 , ���2 = 0�
.

1 (3.13d)

2 Conversion rules. Apply the conversion rules (1.13) (1.14) to express line-to-line
voltages and line currents on both sides in terms of the internal voltages and
currents respectively:

. config: +
line
9

= �+.
9

= (1�U)+.
9

=
p

34ic/6
+
.

9
, � 9 = ±�.

9

(3.13e)

� config: � 9 = ± �T
�
�
9
= ± (1�U2) ��

9
= ±
p

34�ic/6
�
�
9
, +

line
9

= +
�
9

(3.13f)

where we have assumed the balanced voltages +.
9

and currents ��
9

are in positive
sequence, i.e., in span(U+), and used Corollary 1.3.

3 External model. Derive the line-to-line voltage gains  (=) 2 C and line current
gains 1/ ̄ (=) 2 C for the three-phase transformer by eliminating the internal
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Figure 3.13 Ideal three-phase transformers in �. and .� configurations. The parallel lines in
the schematic diagram indicate corresponding primary and secondary windings.

variables from the internal model in Step 1 and the conversion rule in Step 2:

+
line
2 =  (=)+ line

1 , �2 =
1

 ̄ (=)
�1 (3.13g)

The fact that the voltage gain  (=) is a scalar means that the phases of a balanced
three-phase transformer are decoupled. The results for di�erent configurations are
given in Table 3.2 (see Example 3.3 for derivation).

Property Gain

Voltage gain  (=)
Current gain 1

 ̄ (=)
Power gain 1
Sec I

;
referred to pri I;

| (=) |2

Configuration Gain

..  .. (=) := =
��  �� (=) := =
�.  �. (=) :=

p
3= 4ic/6

.�  
.� (=) := =p

3
4
�ic/6

Table 3.2 Ideal complex transformer properties.

4 Per-phase equivalent. The .. -equivalent of a balanced three-phase transformer is
a balanced transformer in .. configuration that has the same external model, i.e.,
they have the same voltage gain  (=) and current gain 1/ ̄ (=) given in (3.13g).
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Figure 3.14 Compact representation of ideal three-phase transformers in (a) .. , ��
configurations and (b) �. , .� configurations. For instance, in the .. configuration, the
vertical arrow represents the vector +0= in the complex plane. The arrow from 1 to 0 (not
shown) represents the vector +01 . The parallel lines in the diagram indicate corresponding
primary and secondary windings.

Since the phases are decoupled, the per-phase equivalent is the phase 0 model of
the .. -equivalent, i.e., a single-phase transformer with voltage gain  (=). See
Example 3.3.

Example 3.3 (External models and per-phase equivalents). In this example we apply
the method outlined above to derive the external models of ideal balanced three-
phase transformers in .. , ��, �. and .� configurations as well as their per-phase
equivalents.
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1 .. configuration. To derive the external model, eliminate the internal variables
from (3.13a)–(3.13f):

+
line
2 = (1�U)+.2 = (1�U)=+.1 = =+

line
1

�2 = ��.2 = 0�
.

1 = 0�
.

1

giving the voltage gain  .. (=) := = and the current gain 1/ ̄.. (=) := 1/= =: 0.
The per-phase equivalent is simply an ideal single-phase transformer with voltage
gain  .. (=) := =.

2 �� configuration. Similarly the external model is, from (3.13a)–(3.13f):

+
line
2 = +

�
2 = =+

�
1 = =+

line
1

�2 = �(1�U2)��2 = (1�U2)0��1 = 0�1

giving the same gains  �� (=) := = and 1/ ̄�� (=) := 0 as those for the .. config-
uration. Hence the per-phase equivalent is also an ideal single-phase transformer
with voltage gain  �� := =.

3 �. configuration. The external model is, from (3.13a)–(3.13f):

+
line
2 = (1�U)+.2 = (1�U)=+�1 = (1�U)=+ line

1

�2 = ��.2 = 0�
�
1 =

0

1�U2
�1 =

0

1� Ū �1

giving the voltage gain  �. (=) := (1�U)= and current gain 1/ ̄�. (=) := 0(1�
U)�1. Hence the per-phase equivalent is an ideal single-phase transformer with
voltage gain  �. (=) := (1� U)= =

p
34ic/6

=. The �. configuration has several
advantages (e.g., a gain of

p
3 in addition to the gain = due to turns ratio) and is

the most commonly adopted transformer in practice.
4 .� configuration. The external model is, from (3.13a)–(3.13f):

+
line
2 = +

�
2 = =+

.

1 =
=

1�U +
line
1

�2 = �(1�U2)��2 = (1�U2)0�.1 = (1�U2)0 �1 = (1� Ū)0 �1
giving the voltage gain .� (=) := =/(1�U) and current gain 1/ ̄.� (=) := (1� Ū)0.
Hence the per-phase equivalent is an ideal single-phase transformer with voltage
gain  .� (=) := =/(1�U) = =/(

p
34ic/6). ⇤

Hence the voltage gain  (=) and the current gain 1/ ̄ (=) given in Table 3.2 apply
to line voltages/currents in both the original transformer and its .. equivalent. For �
configuration on the primary or secondary side, its . -equivalent in terms of the line
voltage + line

9
and line current � 9 can be derived from (3.13e)(3.13f) (also explained in

(1.32a)). Specifically the . -equivalent of (+�
9
, ��
9
) is

+
. eq
9

=
1

1�U +
�
9

=
1p

34ic/6
+
�
9
, �

. eq
9

= ±
⇣
1�U2

⌘
�
�
9
= ±

p
3

4
ic/6 �

�
9

Using the per-phase equivalent of an ideal balanced transformer (i.e., phase 0 model
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of an equivalent transformer in .. configuration), we conclude that its complex power
gain is 1:

�(2

(1
:=

+
0=

2 (��̄0=2 )
+
0=

1 ( �̄0=1 )
=  (=) 1

 (=) = 1

It often simplifies per-phase analysis of a balanced system to refer series impedances
and shunt admittances on one side to the other side of a transformer. This is explained
in Chapter 3.3. In particular, a secondary series impedance I; is referred to the primary
as I;/| (=) |2 according to (3.14) below. When terminated in a symmetric three-
phase impedance load Iload on the secondary side so that +0=2 = Iload�

0=

2 (using .. -
equivalent), the per-phase driving-point impedance on the primary side is:

+
0=

1

�
0=

1

=
+
0=

2 / (=)
�
0=

2  ̄ (=)
=

Iload

| (=) |2

These relations are also summarized in Table 3.2.

3.2.2 Nonideal transformers

In this section we first present circuit models of (nonideal) three-phase transformers
and then their per-phase equivalent circuits after all �-configured transformers have
been converted into their . -equivalents. Each non-ideal single-phase transformer is
modeled using the simplified model studied in Chapter 3.1.4.

Per-phase equivalent circuits. Figure 3.15(a) shows a model of balanced three-phase
(nonideal) transformers in .. configuration and Figure 3.15(b) shows its per-phase
equivalent circuit. The per-phase circuit is identical to that in Figure 3.5(a). Figure

a

n n

b

c

a

b

c

ym

ym ym

zl

z l

z l

(a) .. configuration

ym

zl

V1
an

I1
a I2

a

1  :  n

V2
an

KYY (n) = n

(b) Per-phase circuit

Figure 3.15 Model of three-phase transformers in .. configuration and its per-phase equivalent
circuit.

3.16(a) shows a model of balanced three-phase transformers in �� configuration.
Its .. equivalent and per-phase circuit are identical to those in Figure 3.15 except
that the equivalent leakage impedance I;/3 is one-third of the value in the original
�� circuit and the shunt admittance 3H< is three times the value in the original ��
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K∆∆(n) = n

(b) Per-phase circuit

Figure 3.16 Model of three-phase transformers in �� configuration and its per-phase
equivalent circuit.

circuit. This can be verified by checking the secondary open-circuit equivalent and
the secondary short-circuit equivalent of the original �� circuit. Figure 3.17 shows
a model of balanced three-phase transformers in �. configuration and its per-phase
equivalent circuit. Finally Figure 3.18 shows the model for .� configuration and its
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e i�/6

(b) Per-phase circuit

Figure 3.17 Model of three-phase transformers in �. configuration and its per-phase equivalent
circuit.

per-phase circuit.
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(b) Per-phase circuit

Figure 3.18 Model of three-phase transformers in .� configuration and its per-phase equivalent
circuit.

Hence balanced three-phase transformers in .. , ��, �. and .� configurations all
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have the same per-phase equivalent circuit, with appropriate values for their leakage
impedance and shunt admittance and the corresponding (complex) transformer gains
 (=).

3.3 Equivalent impedance in transformer circuit

In this subsection we explain how to derive an “equivalent” impedance when looking
into the terminal, either on the primary side or on the secondary side of a transformer.
Consider the singe-phase equivalent circuit of a balanced three-phase transformer. A
series impedance IB in the secondary circuit of the transformer can be equivalently
replaced by a series impedance I? in the primary circuit, and vice versa, provided they
are related by:

I? =
IB

| (=) |2 or equivalently IB = | (=) |2 I? (3.14a)

The first operation in (3.14a) is called referring IB in the secondary to the primary.
The second operation is called referring I? in the primary to the secondary. A shunt
admittance HB in the secondary circuit of the transformer can be equivalently replaced
by a shunt admittance H? in the primary circuit, and vice versa, provided they are
related by:

H? = | (=) |2 HB or equivalently HB =
H?

| (=) |2 (3.14b)

These operations will be used as a shortcut in the analysis of circuits that contain
transformers the same way we use the Thévenin equivalent of impedances in series or
in parallel; see Chapter 3.4.

Here “equivalence” means that the external behavior remains unchanged when a
series impedance or a shunt admittance on one side is referred to the other. Specifically
we consider two kinds of external behavior. In the first case, explained in Chapter
3.3.1, the external behavior is the transmission matrix that maps (+2, �2) to (+1, �1). In
the second case, explained in Chapter 3.3.2, the external behavior is the driving-point
impedance on one side of the transformer when the other side is connected to an
impedance. We next derive (3.14) as a simple consequence of Kirchho�’s and Ohm’s
laws.

3.3.1 Transmission matrix

Consider the per-phase transformer circuits in Figure 3.19 of a balanced three-phase
system, one with a series impedance in the secondary circuit and the other in the
primary circuit. Let )B and )? denote the transmission matrices that maps (+2, �2) to
(+1, �1) in Figure 3.19(a) and Figure 3.19(b) respectively. We claim that the relation



118 Transformer models
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(a) Series impedance IB in the secondary
circuit.
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ideal
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(b) Series impedance I? in the primary cir-
cuit.

Figure 3.19 Referring series impedance in the secondary to the primary.

(3.14a) between series impedances I? and IB ensures that )B = )? . It is in this sense
that we say these two circuits are equivalent.

To show that )B = )? let (+ , �) denote the voltage and current at the secondary
terminal of the ideal transformer in Figure 3.19(a). Then + =+2 + IB � and � = �2, or

+

�

�
=


1 IB

0 1

� 
+2

�2

�

Hence 
+1

�1

�
=


 
�1 (=) 0
0  ̄ (=)

� 
1 IB

0 1

� 
+2

�2

�
=


 
�1 (=)  

�1 (=)IB
0  ̄ (=)

�
|                      {z                      }

)B


+2

�2

�

Similarly, for the circuit in Figure 3.19(b), we have
+1

�1

�
=


1 I?

0 1

� 
 
�1 (=) 0
0  ̄ (=)

� 
+2

�2

�
=


 
�1 (=)  ̄ (=)I?
0  ̄ (=)

�
|                   {z                   }

)?


+2

�2

�

Hence )B = )? if and only if (3.14a) holds.

The relation (3.14b) between shunt admittances H? and HB ensures that the transmis-
sion matrix for the circuit in Figure 3.20(a) is the same as that in Figure 3.20(b). This

V1

I1 I2

V2K(n)

ideal
transformer

ys

(a) Shunt admittance HB in the secondary
circuit.

V1

I1 I2

V2K(n)

ideal
transformer

yp

(b) Shunt admittance H? in the primary cir-
cuit.

Figure 3.20 Referring shunt admittance in the secondary to the primary.
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is left as Exercise 3.8. The operations in (3.14) can be repeatedly applied to a circuit
involving multiple impedances and admittances, as illustrated in the next example.

Example 3.4. A combination of a series impedance IB and a shunt admittance HB in
the secondary circuit, as shown in Figure 3.21(a), can be referred to the primary one
element at a time, starting from the element that is closest to the ideal transformer. The

ys

zs

V1

I1 I2

N1  :  N2

V2

ideal
transformer

(a) (IB , HB) in the secondary cir-
cuit.

ysV1

I1 I2

N1  :  N2

V2

ideal
transformer

a2zs

(b) Refer IB to the primary.

n2ys

a2zs

V1

I1 I2

N1  :  N2

V2

ideal
transformer

(c) Refer HB to the primary.

Figure 3.21 Referring (IB , HB) in the secondary to the primary.

transformer gain is  (=) = = = 1/0 := #2/#1. Referring the series impedance IB to
the primary yields the equivalent circuit in Figure 3.21(b) with an equivalent primary
impedance 02

IB . Referring then the shunt admittance HB to the primary yields the
equivalent circuit in Figure 3.21(c) with an equivalent shunt admittance =2

HB . ⇤

3.3.2 Driving-point impedance

In the second case the external behavior is the driving point impedances on one side
of the transformer when the other side is connected to an impedance. In general sup-
pose we apply a voltage + across two terminals that are connected to a network of
impedances and transformers. Suppose a current � flows between these two terminals
through the network. The ratio +/� is called the driving-point impedance at these
terminals. For networks consisting of a cascade of impedances in series and in par-
allel, the driving-point impedance is also called the Thévenin equivalent impedance.
The Thévenin equivalent impedance of such a network can be derived by repeatedly
applying simple reduction rules for the two basic configurations shown in Figure 3.22.
For two impedances I1, I2 in series depicted in Figure 3.22(a), the Thévenin equivalent
impedance Ieq is defined such that the two networks in Figure 3.22(a) have the same
driving-point impedance:

+

�

= I1 + I2 =: Ieq (3.15a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted
in Figure 3.22(b) is defined to be:

+

�

=
✓

1
I1

+ 1
I2

◆�1

=: Ieq (3.15b)
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Figure 3.22 (a) Thévenin equivalent Ieq of two impedances I1, I2 in series. (b) Thévenin
equivalent Ieq of two impedances I1, I2 in parallel.

These are simple consequences of Kirchho�’s and Ohm’s laws. Repeated application
of (3.15) reduces a cascade of impedances in parallel and series into a single equivalent
impedance that preserves the driving-point impedance.

When such a network contains not just impedances, but also transformers, the
relation (3.14) allows us to reduce it to a single Thévenin equivalent impedance with
the same driving-point impedance. As we explain below, the key element of this
procedure is the driving-point impedance seen from two terminals of one side of a
single-phase transformer when the other side is connected to an impedance Ieq that
may be the Thévenin equivalent of a network of impedances. This yields an equivalent
network where the transformer and Ieq is replaced by a scaled impedance and the
number of transformer is reduced by 1. Repeated application of (3.14) and (3.15)
can then be used to remove all transformers from the equivalent network, allowing
the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as
we will see in Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side
of an ideal transformer is connected to an impedance I2,eq as shown in Figure 3.23(a),
the transformer and the impedance I2,eq can be replaced by the Thévenin equivalent
impedance I2,eq/| (=) |2 in the sense that the driving-point impedance +1/�1 on the
primary side is the same in both circuits in Figure 3.23(a). This is the same operation
that refers I2,eq in the secondary to the primary expressed in (3.14a). It is a consequence
of the Kirchho�’s and Ohm’s laws and is derived in Exercise 3.10. Similarly when
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ideal
transformer

K(n) z2,eq V1

I1

z2,eq|K(n)|2
1

(a) +1/�1 on the primary side

V2

I2

ideal
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K(n)z1,eq V2

I2

|K(n)|2z1,eq

(b) +2/�2 on the secondary side

Figure 3.23 Driving-point impedances
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the primary side is connected to an impedance I1,eq as shown in Figure 3.23(b),
the transformer and the impedance I1,eq can be replaced by the Thévenin equivalent
impedance | (=) |2 I1,eq in the sense that the driving-point impedance +2/�2 on the
secondary side is the same in both circuits in Figure 3.23(b). This is the same operation
that refers I1,eq in the primary to the secondary expressed in (3.14a) (Exercise 3.10).

We caution that the shortcut (3.14) and (3.15) are not always applicable. For example
they may not be applied to a circuit that contains parallel paths; see Example 3.8 in
Chapter 3.4.2. In that case we analyze the circuit using Kirchho�’s and Ohm’s laws.
The shortcut is usually applicable to a radial system that does not contain parallel paths.
We now illustrate its application in the derivation of the driving-point impedances on
the primary and the secondary side.

Example 3.5 (+1/�1 on the primary side.). Consider the network in Figure 3.24(a)
where the secondary side is connected to a network whose Thévenin equivalent is
I2,eq. What is the driving-point impedance +1/�1? We first derive the driving-point
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I1 I1' I2'

V1' V2'

ideal
transformer

K(n) z2,eq

z1,eq

y1,eq

(a) Transformer circuit

V1

I1

z2,eq|K(n)|2
1

z1,eq

y1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.24 Driving-point impedance +1/�1 on the primary side.

impedance directly using Kirchho�’s and Ohm’s laws. We then use the result to verify
the shortcut expressed in (3.14) and (3.15).

Circuit analysis. We have for the primary circuit
+1

�1

�
=


1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
+
0
1
�
0
1

�

Hence 
+1

�1

�
=


1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
 
�1 (=) 0
0  ̄ (=)

� 
+
0
2
�
0
2

�

Substituting + 02 = I2,eq �
0
2 we have

+1

�1

�
=


1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
| (=) |�2 0

0 1

� 
I2,eq

1

�
 ̄ (=) � 02

=

1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
I2,eq/| (=) |2

1

�
 ̄ (=) � 02



122 Transformer models

Hence the driving-point impedance is

+1

�1
=

(1+ I1,eq H1,eq)
�
I2,eq/| (=) |2

�
+ I1,eq

H1,eq
�
I2,eq/| (=) |2

�
+1

= I1,eq +
✓
H1,eq +

1
I2,eq/| (=) |2

◆�1

(3.16)

It is the Thévenin equivalent on the primary side of a network consisting of impedances,
admittances, as well as an ideal transformer. The Thévenin equivalent (3.16) has a
simple interpretation, as we now explain.

Shortcut.. Use (3.14a) to refer I2,eq in the secondary to the primary, we can replace
the ideal transformer and I2,eq by the equivalent impedance I2,eq/| (=) |2 and arrive at
the equivalent circuit in Figure 3.24(b) seen from the primary side. The application of
(3.15) then yields the driving-point impedance (3.16). ⇤

Example 3.6 (+2/�2 on the secondary side.). Consider the circuit in Figure 3.25(a)
where the primary side is connected to the impedance I1,eq. Use (3.14a) to refer I1,eq

V2

I2

ideal
transformer

K(n)z1,eq

z2,eq

y2,eq

(a) Transformer circuit

V2

I2z2,eq

y2,eq|K(n)|2z1,eq

(b) Equivalent circuit seen on the sec-
ondary side

Figure 3.25 Driving-point impedance +2/�2 on the secondary side.

in the primary to the secondary, we can replace the ideal transformer and I1,eq by the
equivalent impedance | (=) |2 I1,eq and arrive at the equivalent circuit in Figure 3.25(b)
seen from the secondary side. The application of (3.15) then yields the driving-point
impedance:

+2

�2
=

✓
H2,eq + 1

I2,eq + | (=) |2 · I1,eq

◆�1

(3.17)

⇤

3.4 Per-phase analysis

In this section we apply the techniques developed in the previous sections in the
analysis of a balanced three-phase power system consisting of generators, transformers,
transmission lines, and loads, in a mix of . and � configurations. We first explain how
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to obtain a per-phase equivalent circuit of the system and then illustrate, through an
example, the per-phase analysis using the shortcut (3.14) and (3.15). Finally we discuss
a circuit that contains parallel paths to which the shortcut is not applicable. We explain
why the end-to-end complex transformer gains on these paths should be equal.

3.4.1 Analysis procedure

We have explained in Chapter 1.2.5 how to convert all sources, series impedances,
shunt admittances in � configurations into their equivalent. configurations and obtain
a per-phase equivalent circuit. Chapter 3.2.1 shows that an ideal balanced three-phase
transformer has a per-phase equivalent model specified by a complex voltage gain (=)
that relates the voltages and currents on two sides of the transformer. Chapter 3.2.2
shows how to incorporate the transformer series impedance and shunt admittance into
the per-phase model for both . and � configurations. Chapter 3.3.1 explains how to
refer series impedances and shunt admittances on one side to the other and Chapter
3.3.2 explains how to use this shortcut to simplify circuit analysis the same way we use
Thévenin equivalent of impedances in series or in parallel. Putting everything together
the procedure for per-phase analysis of a balanced three-phase system is as follows:

1 Convert all sources and loads in � configuration into their . equivalents using
(1.32a) for sources and (1.32b) for loads.

2 Convert all ideal transformers in � configuration into their . equivalents with
voltage gains  (=) given in Table 3.2.

3 Obtain the phase 0 equivalent circuit by connecting all neutrals.
4 Solve for the desired phase 0 variables. Use Thévenin equivalent of series

impedances and shunt admittances in a network containing transformers to sim-
plify the analysis when applicable, e.g., for a radial system.

5 Obtain variables for phases 1 and 2 by subtracting (or adding) 120� and 240�

from the phase 0 variables for positive-sequence (negative-sequence) sources. If
variables in the internal of the � configurations are desired, derive them from the
original circuits.

We illustrate this procedure in the next example.

Example 3.7. Consider the balanced system described by the one-line diagram in
Figure 3.26(a) where a three-phase generator is connected to a stepup three-phase
transformer bank (primary on the left) in�. configuration, which is connected through
a three-phase transmission line to a stepdown transformer bank (primary on the right)
in �. configuration, and then to a load. The terminal line voltage of the generator
is +line. The transmission line is modeled by a series impedance Iline and the load is
assumed to be an impedance Iload. The transformer banks are made up of identical
single-phase transformers each specified by a series impedance of 3I; and a turns ratio
of 0 := 1/=.
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Vline

z line

z load
Y Y∆ ∆

(a) One-line diagram

1 : √3̄n

transformer T1 transmission line transformer T2

√3̄n : 1

z load e i�/6 e i�/6

z line

V2 V3

I1 I2 I3zl zl

V1

(b) Per-phase circuit

Figure 3.26 Example 3.7.

Find the generator current, the transmission line current, the load current, the load
voltage, and the complex power delivered to the load in terms of the given parameters.

Solution. The per-phase equivalent circuit is shown in Figure 3.26(b). Note that the
stepdown �. transformer near the load has its primary side on the right and secondary
side on the left so that, going from left to right, the voltage (current) angle is shifted
down (down) by 30� and their magnitudes scaled down (up) by

p
3=; see Exercise 3.6.

The primary sides of both the stepup and stepdown transformers have been converted
from � to its . equivalent, with an equivalent series impedance I; that is 1/3 of the
original impedance 3I; . The phase voltage of the generator in the per-phase equivalent
circuit is

+1 :=
+linep
34ic/6

Our solution strategy is as follows. We will use (3.14) and (3.15) to refer all the
(load, transformer, and transmission line) impedances to the primary side of the stepup
transformer. This calculates the driving-point impedance seen at the generator. Given
generator phase voltage +1, we can derive the generator current �1. We then propagate
this towards the load to calculate the other quantities.

Let  (=) :=
p

3=4ic/6. Going from right to left, we cross the stepdown transformer
)2 from the primary to the secondary. Referring the impedance I1,eq := Iload + I; on
the primary to the secondary (see Figure 3.23(b)), the equivalent impedance at the
right-end of the transmission line is

| (=) |2 (Iload + I;)

Hence the equivalent impedance at the secondary side of the stepup transformer )1 is

I2,eq := Iline + | (=) |2 (Iload + I;)
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Referring this impedance to the primary side of )1 (see Figure 3.23(a)), the driving
point impedance at the generator is:

+1

�1
= I; +

1
| (=) |2 ·

⇣
Iline + | (=) |2 (Iload + I;)

⌘

= 2I; +
Iline

| (=) |2 + Iload

Hence the primary side of )1 sees the series impedance I; of the two transformers, a
scaled down version of the line impedance Iline, and the load Iload, all in series. Note
that, seen from the generator, the load Iload goes through a stepdown transformer and
a stepup transformer and therefore the scaling e�ects of these two transformers are
canceled out.

Given the bus voltage +1 of the generator, the generator current is then

�1 =
+1

2I; + Iline
| (=) |2 + Iload

The transmission line current is

�2 =
�1

 ̄ (=)
=

+1

 ̄ (=)
⇣
2I; + Iline

| (=) |2 + Iload

⌘
The load current is

�3 =  ̄ (=) �2 = �1

i.e., the e�ects of stepup and stepdown transformers cancel each other and the load
current is equal to the generator current. The load voltage is

+3 = Iload �3 = Iload �1 = +1 ·
Iload

2I; + Iline
| (=) |2 + Iload

Hence +3 relates to +1 according to the voltage-divider rule where +1 is the voltage
drop across the series of impedances 2I; + Iline

| (=) |2 + Iload and +3 is the voltage drop
across Iload. The complex power delivered to the load is

+3 �̄3 = Iload ·
�����

+1

2I; + Iline
| (=) |2 + Iload

�����
2

= Iload ·
|+line |2

3
���2I; + Iline

| (=) |2 + Iload

���2
⇤

Simplified per-phase diagram for external behavior.

In Example 3.7, only the transmission line current �2 that is in between the pair of
transformers depends on the connection-induced phase shift 4ic/6 in the complex
transformer gain  (=). Outside the pair of transformers, the driving point impedance
+1/�1, the generator current �1, the load current �3, the load voltage +3, and the power
delivered to the load do not. They depend only on | (=) |2. This is the case even if we
use the more detailed ⇧ model of the transmission line instead of the short-line model
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used here. Indeed, suppose the series impedance Iline in Figure 3.26(b) is replaced by
the transmission matrix in (2.9) or (2.13)(2.14) as in Figure 3.27(a). Then the voltage

V1

I1 I2

V2[
transmission

line

A
C

B
D

e i�/6e i�/6 ]
1 : √3̄n √3̄n  : 1

(a) Transmission line ⇧-model

V1

I1 I2

V2[
transmission

line

A
C

B
D]

1 : √3̄n √3̄n  : 1

(b) Equivalent circuit without connection-induced
phase shift

Figure 3.27 ⇧-model of transmission line in place of the series impedance Iline model in Figure
3.26(b).

and current (+1, �1) on the left is related to the voltage and current (+2, �2) by
+1 | (=) | 4ic/6

�1 | (=) |�1
4

ic/6

�
=


� ⌫

⇠ ⇡

�
·

+2 | (=) | 4ic/6

�2 | (=) |�1
4

ic/6

�

+1 | (=) |
�1 | (=) |�1

�
=


� ⌫

⇠ ⇡

�
·

+2 | (=) |
�2 | (=) |�1

�

Therefore the external behavior is as if the connection-induced phase shift 4ic/6 is
absent, as shown in Figure 3.27(b). This motivates a simplified per-phase diagram for
external behavior that ignores all the connection-induced phase shifts of transformers
as long as every path contains stepup and stepdown transforms in pairs and wired in
opposite directions. This is generally true for radial networks in practice where no
transmission lines nor transformers are in parallel. Radial networks are a special case
of a normal system that we discuss next.

3.4.2 Normal system

A system is called normal if, in the per-phase equivalent circuit, the product of the
complex ideal transformer gains around every loop is 1. Equivalently, on each parallel
path,

1 the product of ideal transformer gain magnitudes is the same, and
2 the sum of ideal transformer phase shifts is the same.
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Normal systems have a normalization that greatly simplifies analysis which we will
discuss in Chapter 3.5. The following example motivates such a system.

Example 3.8 (Loop flows). Consider a generator and a load connected by two three-
phase transformer banks in parallel forming a loop as shown in Figure 3.28(a). The

load
gen

zl'

zl'

1 : K1

1 : K2

(a) Transmission line ⇧-model

zl

zl
z loadVloadVgen

Iload

I2'

I1'I1
K1

K2
I2

(b) Equivalent circuit

Figure 3.28 Two buses connected in a loop with two parallel transformers.

transformer in the upper path is characterized by a series impedance and a complex gain
 1. The transformer in the lower path is characterized by the same series impedance and
a possibly di�erent complex gain  2. Suppose line-to-neutral voltage of the generator
bus is +gen, the series impedance I; of the transformer and the load impedance Iload

in the per-phase equivalent circuit are given, as shown in Figure 3.28(b). Derive the
currents �load, � 01, � 02 in terms of +gen, I; , Iload. Discuss the implications when

1  2 =  1. This is the case if both transformer banks are .. -configured.
2  2 =  1 4

i\ . This is the case if the upper transformer bank is .. -configured with
a voltage gain of = but the lower transformer bank is �. -configured with a voltage
gain of =/

p
3 and \ = c/6.

3  2 = : · 1, : > 0. This is the case if both transformer banks are .. -configured
but with di�erent turns ratios.

Solution. We cannot directly apply the shortcut (3.14) and (3.15) to refer the impedances
Iload and I; to the primary side because of the parallel paths, and must analyze the
per-phase circuit using Kirchho�’s and Ohm’s laws.

We have five unknowns currents �load, � 01, � 02, �1, �2. The five equations that relate
them are

�load = � 01 + � 02
Iload �load =  1 ·

�
+gen � I; �1

�
Iload �load =  2 ·

�
+gen � I; �2

�
�
0
9
=
� 9

 ̄ 9

, 9 = 1,2

where the first equation expresses KCL, the second and third equations express the
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load voltage seen on the upper and lower paths, respectively, and follow from the
transformer equation and KVL, and the last equations express current gains of the
transformers. Eliminating �load, � 01, � 02 we have

Iload

✓
�1

 ̄1
+ �2

 ̄2

◆
=  1 ·

�
+gen � I; �1

�

Iload

✓
�1

 ̄1
+ �2

 ̄2

◆
=  2 ·

�
+gen � I; �2

�
or 

I; + Iload | 1 |�2
Iload ( 1  ̄2)�1

Iload ( ̄1 2)�1
I; + Iload | 1 |�2

�
·

�1

�2

�
=


+gen

+gen

�

Inverting the matrix, we obtain

�1 =
+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� ·U1

�2 =
+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� ·U2

where

U1 = 1 + Iload

I;

·  1� 2

 1 | 2 |2

U2 = 1 + Iload

I;

·  2� 1

| 1 |2 2

Hence

�
0
1 =

�1

 ̄1
=

+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� · U1

 ̄1

�
0
2 =

�2

 ̄2
=

+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� · U2

 ̄2

and

�load = �
0
1 + � 02 =

+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� ·
✓

1

 ̄1
+ 1

 ̄2

◆

where we have used

U1

 ̄1
+ U2

 ̄2
=

✓
1

 ̄1
+ Iload

I;

·  1� 2

| 1 |2 | 2 |2
◆
+

✓
1

 ̄2
+ Iload

I;

·  2� 1

| 1 |2 | 2 |2
◆

=
1

 ̄1
+ 1

 ̄2

1 When  2 =  1, then U1 = U2 = 1 and

�
0
1 = �

0
2 =

+gen

I; + Iload
�
2 | 1 |�2

� · U1

 ̄1
=

 1+gen

| 1 |2I; + 2Iload

and

�load =
+gen

| 1 |2I; + 2Iload|               {z               }
�0

·2 1 = �0 ·2 1 (3.18)
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2 When  2 =  1 4
i\ , then, for 8 = 1,2,

�
0
8
=

+gen

I; + Iload
�
2 | 1 |�2

� · U8
 ̄8

=
+gen

| 1 |2I; + 2Iload
· (U8  8)

Since U1 1 + U2 2 =  1 + 2 =  1 (1+ 4i\ ) and | 1 | = | 2 |, we have

�load =
+gen

| 1 |2I; + 2Iload
·
⇣
1+ 4i\

⌘
 1 = �0

⇣
1+ 4i\

⌘
 1

Hence �load reduces to the load current in (3.18) when the transformer gains are
equal with \ = 0. When the transformer gains  1 and  2 are not in phase,

�
1+ 4i\

�
can be much smaller than 2 and the current |�load | that enters the load can be much
smaller than the currents |� 0

8
|, 8 = 1,2. In particular

|�load |
|� 01 |

=
|1+ 4i\ |
|U1 |

and
|�load |
|� 02 |

=
|1+ 4i\ |
|U2 |

To appreciate the issue, take  1 = 10,  2 = 104ic/6, +gen = 8 kV, I; = 90.05⌦,
Iload = 800\0�⌦. Then

�
0
1 = 3,754.99 \�164.85 A

�
0
2 = 4,527.24 \14.88 A

�load = � 01 + � 02 = 772.50 \13.57 A
|�load |
|� 01 |

= 20.57%,
|�load |
|� 02 |

= 17.06%

Hence |� 01 | and |� 02 | are much larger than |�load |. The interpretation is that most of
the current loops between the two transformer banks without entering the load.
This is undesirable because the circulating current serves no purpose and heats up
the transformers. The problem arises because the connection-induced phase shifts
in the two parallel paths are di�erent. In practice we will not parallelize these
transformers.

The complex generation power and load power are respectively

(gen :=+get ( �̄1 + �̄2) = 182.98 \70.97� MVA

(load := Iload |�load |2 = 59.68 \0� MVA

Again the apparent load power is a small fraction of the apparent generation
power. However, since the transformers have zero resistance, their real powers are
the same:

%gen = %load = 59.68 MW
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3 When  2 = : · 1, we have

�
0
1 =

 1 +gen

| 1 |2I; +
�
1+ :�2

�
Iload

·U1

�
0
2 =

 1 +gen

| 1 |2I; +
�
1+ :�2

�
Iload

· U2

:

�load =
+gen

| 1 |2I; +
�
1+ :�2

�
Iload

·
✓
1+ 1

:

◆
 1

Hence

|�load |
|� 01 |

=
1+ :�1

|U1 |
and

|�load |
|� 02 |

=
1+ :
|U2 |

If we take  1 = 10,  2 = 20, +gen = 8 kV, I; = 90.05 ⌦, Iload = 800\0� ⌦. Then

�
0
1 = 3,260.76 \76.40 A

�
0
2 = 3,213.39 \�86.58 A

�load = � 01 + � 02 = 959.23 \�2.29 A
|�load |
|� 01 |

= 29.42%,
|�load |
|� 02 |

= 29.85%

Again |� 01 | and |� 02 | are much larger than |�load | and there is a large loop flow
between the transformer banks. This time the problem arises because the voltage
gains in the two parallel paths are di�erent. In practice we will not parallelize these
transformers.

⇤

3.5 Appendix: Per-unit normalization

In this appendix we describe a normalization method that will simplify the analysis
of balanced three-phase systems. For a normal system where all connection-induced
phase shifts of transformers can be ignored in the per-phase equivalent circuit, the
system after normalization will contain no transformers if there is no o�-nominal
transformer in the original system. For general systems, normalization may simplify
the equivalent circuit and per-phase analysis, but the system after normalization may
contain ideal transformers with real or complex voltage gains. Normalization was
important before the widespread use of powerful computers because it simplifies
computation significantly. It is less important today, and some people argue, sometimes
more error-prone than worth the e�ort.

We are usually interested in four types of generally complex quantities: power (,
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voltages + , currents �, and impedances / and functions of these quantities. We will
choose base values for these quantities and define the quantities in per unit as:

quantity in p.u. :=
actual quantity

base value of quantity

The base values are chosen to be real positive values and have the same units as the
corresponding actual quantities. For example a power base (⌫ will be in unit VA
when it serves as the base value for complex power, W for real power, var for reactive
power. Hence the per-unit quantities generally have di�erent magnitudes from, but
always the same phase as, the corresponding actual quantities. Furthermore they are
dimensionless. The base values are chosen so that the per-unit quantities behave exactly
as the actual quantities do, as we now explain.

Consider a power network that consists of multiple areas connected by transformers.
It represents either a single-phase system or the per-phase equivalent circuit of a
balanced three-phase system. The nominal voltage magnitudes are the same within
each area and those in neighboring areas are related by transformer turns ratios. It is
common to choose the power base value (1⌫ for the entire network and the voltage
base value +1⌫ for one of the areas, say, area 1. For example the base value +1⌫ can be
chosen to be the nominal voltage magnitude for area 1 and the base value (⌫ can be
the rated apparent power of one of the transformers in area 1, so that its rated voltage
is 1 pu and the rated power is 1 pu. The base values for all other quantities in the entire
network are then calculated from these two values ((⌫,+1⌫) so that these base values
satisfy:

• Kirchho�’s laws within each area;
• ideal transformer gains across areas;
• three-phase relations.

We derive in Chapter 3.5.1 the base values within area 1 and in Chapter 3.5.2 the base
values of other areas connected by transformers to area 1. In Chapter 3.5.3 we describe
the normalization of o�-nominal transformers. In Chapter 3.5.4 we describe how to
calculate base values of three-phase quantities in a balanced three-phase system. In
Chapter 3.5.5 we summarize the procedure for per-unit per-phase analysis.

3.5.1 Kirchho�’s and Ohm’s laws

Consider a single-phase system or the per-phase equivalent circuit of a three-phase
system. Start with area 1 for which we have the power base (⌫ in +� (or, or var for
real and reactive powers respectively) for the entire network, and the voltage base +1⌫

in + . The base values �1⌫,/1⌫ of currents and impedances respectively are calculated
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as:

�1⌫ :=
(⌫

+1⌫
�, /1⌫ :=

+
2
⌫

(⌫

⌦ (3.19)

so that the base values satisfy the Kirchho�’s laws:

+1⌫ = /1⌫ �1⌫ + , (⌫ = +1⌫ �1⌫ +�

Since

+1

+1⌫
=

/1�1

/1⌫ �1⌫
,

(1

(⌫

=
+1�
⇤
1

+1⌫ �1⌫

the per-unit quantities satisfy Kirchho�’s laws as the actual quantities do:

+1pu = /1pu �1pu, (1pu = +1pu �
⇤
1pu

We can therefore perform circuit analysis using the per-unit quantities instead of the
actual quantities. We can convert the result of the analysis back to the original quantities
by multiplying the per-unit quantities by their base values.

Extensions to other related quantities are straightforward. For example (⌫ is also
the base value for real power in, and reactive power in var so that

%1pu :=
%1

(⌫

, &1pu :=
&1

(⌫

and (1pu = %1pu + 9&1pu. /⌫ is the base value for resistances and reactances so that

'1pu :=
'1

/1⌫
, -1pu :=

-1

/1⌫

and /1pu = '1pu+ 9 -1pu. Similarly.1⌫ := 1//1⌫ in⌦�1 is the base value for admittances
.1 := 1//1 =⌧� 9⌫ in⌦�1 as well as conductances⌧ and susceptances ⌫ also in⌦�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a
transformer. We choose the bases for di�erent sides of the transformer in a way that
respects the transformer gains. Consider the circuit in Figure 3.29(a) where areas 1 and
2 are connected through a transformer with a voltage gain  (=). If it is a single-phase
system then  (=) = =, the reciprocal of the turns ratio. If it is the per-phase equivalent
of a balanced three-phase system then  (=) may be complex if the transformer is not
in .. or �� configuration. Given the bases ((⌫,+1⌫, �1⌫,/1⌫) for area 1 calculated in
Chapter 3.5.1, the bases for the other side of the transformer are calculated according
to:

+2⌫ := | (=) |+1⌫ + , �2⌫ :=
�1⌫

| (=) | �, /2⌫ := | (=) |2 /1⌫ ⌦(3.20)
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V1

I1 I2

V2Ṽ1

Ĩ1

ym

zl

K(n)

(a) In standard unit

V1pu

I1pu Ĩ1pu =  I2pu

Ṽ1pu =V2puympu

zlpu

(b) In per unit

Figure 3.29 Per-phase equivalent circuit of balanced three-phase transformers with gain  (=).

The base power value remains (⌫ =+1⌫ �1⌫ =+2⌫ �2⌫ for all areas since the power gain
across an ideal transformer is 1. Even though  (=) may be complex all base values
remain real positive numbers.

Referring to Figure 3.29(a), the per-unit quantities (+̃1pu, �̃1pu) at the input and the
per-unit quantities (+2pu, �2pu) at the output of the ideal transformer satisfy (0 := 1/=)

+̃1pu =
+̃1

+1⌫
=

+2

 (=)
| (=) |
+2⌫

= +2pu 4
� 9\ (=)

�̃1pu =
�̃1

�̃1⌫
=

 
⇤ (=)�2

| (=) |�2⌫
= �2pu 4

� 9\ (=)

This also implies that the per-unit power (̃1pu := +̃1pu �̃
⇤
1pu = +2pu�

⇤
2pu = (2pu. If \ (=)

can be taken as zero then on the input side of the transformer, (+̃1pu, �̃1pu, (̃1pu) can
be replaced by (+2pu, �2pu,(2pu), i.e., the voltages, currents, and power remain the
same, in per unit, when crossing an ideal transformer. Within each side of the ideal
transformer the per-unit quantities ((8pu,+8pu, �8pu,/8pu) satisfy the Kirchho�’s laws as
explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified
into that in Figure 3.29(b) where the ideal transformer has disappeared. The voltage
gain angle \ (=) = 0 if (i) the system is single phased, or (ii) it is balanced three phased
with transformers in .. or �� configuration, or (iii) it is a normal system where the
connection induced phase shift \ (=) can be ignored for external behavior. Hence ideal
transformers and connection-induced phase shifts can be omitted in a normal per-phase
system if we use the simplified per-phase diagram and the per-unit normalization. This
simplified per-phase per-unit diagram is called an impedance diagram. Otherwise the
per-unit circuit will contain a phase-shifting transformer with voltage gain 4 9\ (=) ; see
Example 3.10.

We proceed in a similar manner to calculate the base values ((⌫,+8⌫, �8⌫,/8⌫)
in each neighboring area 8, until all connected areas are covered. It can be easily
checked that the per-unit quantities in each area satisfy the Kirchho�’s laws, as long
as the per-unit quantities in area 1 satisfy the Kirchho�’s laws and those in other
areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer
gain magnitudes is the same, and (ii) the sum of ideal transformer phase shifts is the
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same. As discussed above these properties prevent loop flows between transformers, as
illustrated in Example 3.8. Note that in Figure 3.28(b) of that example, the secondary-
side voltages of the two ideal transformers are the same but their primary-side voltages
are di�erent when  2 =  14

9 \ with \ < 0. The first property also ensures that the
calculation (3.20) of base values across areas is consistent, i.e., does not depend on the
order in which the areas are chosen for calculation; see Exercise 3.13.

Example 3.9 (Single-phase system). Consider the single-phase system in Figure 3.30
where the voltage source has a nameplate rated voltage magnitude of E V and a
nameplate rated power of B VA. Calculate the base values for the system.

1  :  N1 N2  :  1

area 1 area 2 area 3

zl zlz line

z load yve jθ

Figure 3.30 Single-phase system for Example 3.9 with a rated voltage magnitude of E in V and
a rated apparent power of B in VA.

Solution. Let the base value for power be (⌫ := B in +� for the entire system and the
base value for voltage in area 1 (where the voltage source is) be +1⌫ := E in + . Then
the base values for currents and impedances in area 1 are respectively:

�1⌫ :=
B

E

� and /1⌫ :=
E

2

B

⌦

The base values in area 2 connected by the first transformer with a voltage gain =1 are:

+2⌫ := =1+1⌫ = =1 E +

�2⌫ :=
�1⌫

=1
=

B

=1E
�

/2⌫ := =2
1 /1⌫ =

(E1E)2

B

⌦, .2⌫ :=
1
/2⌫

=
B

(E1E)2
⌦�1

The base values in area 3 connected by the second transformer are:

+3⌫ :=
+2⌫

=2
=

=1

=2
E +

�3⌫ := =2 �2⌫ =
=2

=1

B

E

�

/3⌫ :=
1

=
2
2

/2⌫ =
=

2
1

=
2
2

E
2

B

⌦, .3⌫ :=
1
/3⌫

=
=

2
2

=
2
1

B

E
2
⌦�1

⇤
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3.5.3 O�-nominal transformer

Power systems employ two types of regulating transformers. The first type regulates
voltage magnitudes, e.g., through variable taps on some of its windings that control the
number of turns and hence the voltage gain. Such a transformer is usually connected
at the end of a line to regulate the voltage magnitude at a node. Its turns ratio may be
variable and di�erent from the ratio of the voltage bases in its primary and secondary
areas. The second type regulates phase angle displacement between two nodes. Their
voltage gains may be complex  (=) = d\q where q may be variable and cannot be
omitted in normalization. These transformers are said to be o�-nominal. They will not
disappear under per-unit normalization but will appear as a transformer with a di�erent
(normalized) voltage gain, as we now explain.

Consider an ideal transformer with a possibly complex voltage gain +2
+1

=:  (=) as
shown in Figure 3.31(a). Suppose the ratio of the voltage base in area 2 to that in area

V1

I1 I2

1  :  K(n)

V2

(a) O�-nominal transformer (standard
unit)

V1

I1

1  :  1  :  ρ

I2

V2

K(n)
ρ

(b) Equivalent transformer in series (standard
unit)

1  :  K(n)
ρ

V1pu

I1pu I2pu

V2pu

(c) Per-unit equivalent circuit

Figure 3.31 Normalization of an o�-nominal transformer.

1 is +2⌫
+1⌫

=: d. Since

+2 =  (=)+1 =
 (=)
d

· d+1

the transformer is equivalent to two ideal transformers in series with voltage gains
d and  (=)/d respectively as shown in Figure 3.31(b). Since the first transformer
has an voltage gain of d, it disappears in per-unit normalization and hence the per-unit
equivalent circuit of the original transformer has a gain reduced by d as shown in Figure
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3.31(c). For instance for a phase shifting transformer with voltage gain  (=) = d\q its
voltage gain in the per-unit circuit will be 1\q.

Example 3.10 (Normalization with connection-induced phase shifts). Consider a bal-
anced three-phase ideal transformer in �. or .� configuration with a complex volt-
age gain  (=). Let the bases for one side of the transformer be ((⌫,+1⌫, �1⌫,/1⌫).
Choose the bases for the other side according to (3.20). Suppose we cannot ignore the
connection-induced phase shift. Then the per-unit equivalent circuit of the ideal trans-
former will be an o�-nominal phase shifting transformer with a gain  (=)

| (=) | = \ (=)
as shown in Figure 3.32. ⇤

V1

I1 I2

1  :  e i   K(n)

V2

Figure 3.32 Normalization when connection-induced phase shifts cannot be ignored.

As we will see in Chapter 4.2 a nonideal transformer, whether in standard unit or
per unit, can be represented by a phase impedance matrix for power flow analysis.

3.5.4 Three-phase quantities

In Chapters 3.5.1–3.5.3 we explain how to choose bases for a single-phase system.
They are also applicable to the per-phase equivalent of a three-phase system where the
voltages and currents are line-to-neutral voltages and line-to-neutral currents. Suppose
the base values ((1q

⌫
,+1q
⌫

, �1q
⌫

,/1q
⌫
) for a single-phase system are given. When single-

phase devices (sources, loads, impedances, transformers) are connected to form a
balanced three-phase system, three-phase quantities are created for which base values
need to be defined. For instance the ratings of a three-phase transformer are always
specified in terms of three-phase power and line-to-line voltages. In this subsection we
will derive these base values, in terms of ((1q

⌫
,+1q
⌫

, �1q
⌫

,/1q
⌫
), in a way that respects

three-phase relations. The main issue is to define the meaning of these base values and
the relation they intend to capture in . and in � configurations.

Let ((1q ,+1q , �1q ,/1q) denote respectively the power generated or consumed by
a single-phase device, the voltage across and current through the device, and the
impedance of the device. We are interested in the following three-phase quantities. The
three-phase power (3q is defined to be the sum of power generated or consumed by
each device in either . or � configuration. The line-to-line voltages + ll and terminal
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(line) currents �3q are external quantities. In an . configured three-phase device, a
line-to-neutral voltage + ln and a three-phase impedance /3q are equal to the voltage
+

1q and impedance /1q respectively associated with each single-phase device. For a �
configured three-phase device+ ln and /3q are defined to be the line-to-neutral voltage
and the impedance respectively in its . equivalent circuit. As explained in Chapter 1
these quantities are related to the corresponding single-phase quantities according to:3

(
3q = 3(1q , +

ll =
p

34ic/6
+

ln (3.21a)

�
3q =

⇢
�0= = �

1q for . configuration
�01 � �20 =

p
34� 9 c/6�1q for � configuration

(3.21b)

+
ln =

(
+

1q for . configuration⇣p
34 9 c/6

⌘�1
+

1q for � configuration
(3.21c)

/
3q =

⇢
/

1q for . configuration
/

1q/3 for � configuration
(3.21d)

Motivated by the three-phase relations (3.21) we define the base values
((3q
⌫

,+ ll
⌫

, �3q
⌫

,+ ln
⌫

,/3q
⌫
) for the three-phase quantities ((3q ,+ ll, �3q ,+ ln,/3q) in terms

of the single-phase base values ((1q
⌫

,+1q
⌫

, �1q
⌫

,/1q
⌫
) as follows:

(
3q
⌫

:= 3(1q
⌫

, +
ll
⌫

:=
p

3+ ln
⌫

(3.22a)

�
3q
⌫

:=

(
�
1q
⌫

for . configurationp
3 �1q
⌫

for � configuration
(3.22b)

+
ln
⌫

:=

8>><
>>:
+

1q
⌫

for . configuration⇣p
3
⌘�1

+
1q
⌫

for � configuration
(3.22c)

/
3q
⌫

:=

(
/

1q
⌫

for . configuration
/

1q
⌫
/3 for � configuration

(3.22d)

In light of (3.19) we could also have defined the base values �3q
⌫

and /3q
⌫

in terms of

(
3q
⌫

and + ll
⌫

as (see Exercise 3.14):

�
3q
⌫

:=
(

3q
⌫p

3+ ll
⌫

, /
3q
⌫

:=

�
+

ll
⌫

�2

(
3q
⌫

(3.22e)

These definitions replace (3.22b) and (3.22d) and are applicable for both . and �
configurations (note that+ ll

⌫
are di�erent functions of+1q

⌫
for. and � configurations).

With these base values the per-unit quantities satisfy the following relations (see

3
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Exercise 3.15):

(
3q
pu = (

1q
pu , +

ll
pu = +

ln
pu, /

3q
pu = /

1q
pu (3.23a)����3qpu

��� =
����1qpu

��� , ��
+

ln
pu

�� =
���+1q

pu

��� (3.23b)

Therefore in per unit, the three-phase power, voltage, current and impedance equal
their per-phase quantities (at least in magnitude). In particular when one says that the
voltage magnitude is 1 pu, it means that the line-to-line voltage magnitude is 1 pu
(i.e., equal to its base value + ll

⌫
which is

p
3+1q
⌫

for . configuration and +1q
⌫

for �
configuration), and the phase voltage magnitude is 1 pu (i.e., equal to its base value

+
ln
⌫

which is+1q
⌫

for. configuration and
⇣p

3
⌘�1

+
1q
⌫

). We sometimes need not specify
whether a per-unit voltage is line-to-line or line-to-neutral, or whether a per-unit power
is single-phase or three-phase. In � configuration the line-to-neutral voltage + ln

pu is

related to single-phase voltage +1q
pu according to

+
ln
pu :=

+
ln

+
ln
⌫

=

⇣p
348 c/6

⌘�1
+

1q

⇣p
3
⌘�1

+
1q
⌫

= 4
�8 c/6

+
1q
pu

Similarly for line currents �3qpu and �1qpu .

The next example illustrates the calculation of three-phase bases from single-phase
bases. It shows in particular that impedances, including transformer parameters, will
have the same per-unit values in single-phase or three-phase circuits and regardless of
. or � configuration.

Example 3.11 (Three-phase system). Consider a single-phase distribution transformer
with nameplate ratings of

• Power rating (1q): 50 kVA;
• Voltage ratio: 408 V – 120 V;
• Transformer parameter: -; = 0.1 pu, -< = 100 pu (referred to the primary).

They are used to build three-phase transformer banks in .. , ��, �. or .� config-
urations. Find the per-unit normalization “induced” by the nameplate ratings and the
impedance diagram of the per-phase circuit in per unit.

Solution. The nameplate-induced base for the single-phase transformer is such that the
power rating is 1pu and voltage rating is 1pu. Hence

(
1q
⌫

:= 50kVA, +
1q
1⌫ := 408V, +

1q
2⌫ := 120V

Therefore the current bases are

�
1q
1⌫ :=

(
1q
⌫

+
1q
1⌫

=
50kVA
408V

= 122.55A, �
1q
2⌫ :=

(
1q
⌫

+
1q
2⌫

=
50kVA
120V

= 416.67A
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Since ( = |+ |2// , the impedance base for the single-phase transformer induced by the
nameplate ratings is:

/
1q
1⌫ =

⇣
+

1q
1⌫

⌘2

(
1q
⌫

=
(408V)2

50kVA
= 3.33⌦, /

1q
2⌫ =

⇣
+

1q
2⌫

⌘2

(
1q
⌫

=
(120V)2

50kVA
= 0.29⌦

Hence the actual transformer reactances -; and -< in ⌦ in the single-phase system
are:

-; = (0.1) /1q
1⌫ = 0.333⌦, -< = (100) /1q

1⌫ = 333⌦

Consider now a three-phase transformer bank obtained from connecting three of
these single-phase transformers. We consider first the base values for the primary side;
the base values for the secondary side can be similarly chosen. What we will find is
that if we choose our bases ((3q

⌫
,+ ll
⌫

, �3q
⌫

,/3q
⌫
) according to (3.22), then the impedance

diagram of the per-phase equivalent circuit is independent of . or � configuration.

Case 1: primary side in. configuration. From (3.22), the base values of the three-phase
power and line-to-line voltage induced by the nameplate ratings are

(
3q
⌫

:= 3(1q
⌫

= 3(50) = 150kVA

+
ll
1⌫ :=

p
3+1q

⌫
=
p

3 (408) = 706.68V

These three-phase quantities are used as the power and voltage ratings on the three-
phase transformer nameplate. Hence a line voltage of 1 pu corresponds to the rated
primary voltage (706.68 V) on the nameplate. The base values for the terminal currents
and impedances are:

�
3q.
1⌫ := �

1q
1⌫ = 122.55 �, /

3q.
1⌫ := /

1q
1⌫ = 3.33⌦

It can be checked that ((3q
⌫

,+ ll
⌫

, �3q
⌫

,/3q
⌫
) as defined indeed satisfy three-phase rela-

tions:

�
3q.
1⌫ =

(
3q
⌫p

3+ ll
1⌫

, /
3q.
1⌫ =

�
+

ll
⌫

�2

(
3q
⌫

Since /3q.
1⌫ = /1q

1⌫ , -; = 0.1pu and -< = 100pu as before for the three-phase trans-
former.

Case 2: primary side in� configuration. From (3.22), the base values of the three-phase
power and line-to-line voltage induced by the nameplate ratings are

(
3q
⌫

:= 3(1q
⌫

= 3(50) = 150kVA, +
ll
1⌫ := +

1q
⌫

= 408V

The terminal current and the impedance bases are:

�
3q.
1⌫ :=

p
3 �1q1⌫ =

p
3(122.55) = 212.26 �, /

3q�
1⌫ =

/
1q
⌫

3
=

3.33
3

= 1.11 ⌦
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To convert the transformer circuit model in � configuration to its equivalent . config-
uration, the transformer reactances are reduced by a factor of 3, i.e., -.

;
= -;/3 and

-
.

<
= -</3. Hence the transformer reactances in pu are:

-
.

;pu :=
-
.

;

/
3q
1⌫

=
-;/3
/

1q
1⌫/3

=
-;

/
1q
1⌫

= 0.1 pu

-
.

<pu :=
-
.

<

/
3q
1⌫

=
-</3
/

1q
1⌫/3

=
-<

/
1q
1⌫

= 100 pu

as expected.

In summary, with the three-phase base values defined in (3.22), the transformer
reactances -; and -< remain the same in pu regardless of how the single-phase trans-
formers are connected into a three-phase transformer bank. The impedance diagram
of its per-phase circuit is shown in Figure 3.33. ⇤

V1pu V2pu

I2puI1pu

jxmpu

jxlpu

Figure 3.33 Impedance diagram of a three-phase transformer bank.

3.5.5 Per-unit per-phase analysis

Consider a balanced three-phase normal system. Recall that the nameplate ratings of
three-phase transformers are specified in terms of their three-phase power and line-to-
line voltages. The procedure for per-unit per-phase analysis is summarized as follows:

1 For a single-phase system, pick a power base (1q
⌫

for the entire system and a
voltage base + ln

1⌫ in one of the areas, e.g., induced by the nameplate ratings of one
of the single-phase transformers.

2 For a balanced three-phase system, pick a three-phase power base (3q
⌫

and line-to-
line voltage base + ll

1⌫ induced by the nameplate ratings of one of the three-phase
transformers in area 1 (choose either the primary or secondary circuit as area 1).
Then choose the power and voltage bases for the per-phase equivalent circuit of
the balanced three-phase system according to (3.22a):

(
1q
⌫

:=
(

3q
⌫

3
and +

1q
1⌫ :=

+
ll
1⌫p
3

(
1q
⌫

will be the power base for the entire per-phase circuit.
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3 Calculate the current and impedance bases in that area by:

�1⌫ :=
(

1q
⌫

+
1q
1⌫

and /1⌫ :=

⇣
+

1q
1⌫

⌘2

(
1q
⌫

4 Calculate the base values for voltages, currents, and impedances in areas 8 con-
nected to area 1 by the magnitudes =8 of the transformer gains (assuming area 1 is
the primary side of the transformers):

+
1q
8⌫

:= =8+
1q
1⌫ , +

ll
8⌫

:= =8+
ll
1⌫ �8⌫ :=

1
=8

�1⌫, /8⌫ := =
2
8
/1⌫

Continue this process to calculate the voltage, current, and impedance base values
for all areas.

5 For real, reactive, apparent power in the entire system, use (1q
⌫

as the base value.
For resistances and reactances, use /8⌫ as the base value in area 8. For admittances,
conductances, and susceptances, use .8⌫ := 1//8⌫ as the base value in area 8.

6 Draw the impedance diagram of the entire system, and solve for the desired per
unit quantities.

7 Convert back to actual quantities if desired.

3.6 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many ma-
terials in this chapter follow [1]. Some of the materials on per-unit normalization,
e.g., o�-nominal regulating transformer in Chapter 3.5.3, follow [2]. [10] describes a
rigorous approach that treats per-unit normalization as a similarity transformation of
a dynamical system in the time domain. The per-unit normalization presented in this
chapter represents the steady-state of the per-unit dynamical system of [10].

3.7 Problems

Chapter 3.1.

Exercise 3.1 () model of transformer). For the ) equivalent circuit of transformer in
Figure 3.34, show that the transmission matrix is given in (3.5). If H< = 0 then

+1

�1

�
=


0 =

�
I? + 02

IB

�
0 =

� 
+2

�2

�

which is the same as the transmission matrix in (3.7a).
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V1

I1 I2

N1  :  N2

V2Û1 ym

zp
nI2

aV̂2

a2zs

Figure 3.34 Exercise 3.1: ) equivalent circuit of transformer with = := #2/#1 and 0 := #1/#2.

Exercise 3.2 () model of transformer). Given the primary voltages and primary
currents (+B2 , �B2) and (+>2 , �>2) of a short-circuit and open-circuit tests respectively,
derive (3.6), reproduced here:

+B2 =

 
I? +

✓
H< + 1

0
2
IB

◆�1
!
�B2 , +>2 =

✓
I? +

1
H<

◆
�>2 (3.24)

from (3.4), reproduced here:

Nonideal elements: +1 = I? �1 + +̂1, �̂< = H<+̂1, +̂2 = IB �2 ++2

(3.25a)

Ideal transformer: +̂2 =
#2

#1
+̂1, �2 =

#1

#2

�
�1� �̂<

�
(3.25b)

where the series impedances

Exercise 3.3 (Simplified model). Consider the transformer model in Figure 3.5 and its
transmission matrix "̂ in (3.7a). This question shows that when the shunt admittance
matrix H< is small compared with the series admittances IB , "̂ is a good approximation
the transmission matrix " in (3.5). Let n := 02

IBH<.

1 Show that their di�erence is "̂ �" = n

0 �=I?
0 �=

�
.

2 Suppose I? = [IB = [(AB + iGB) for some real number [ > 0 with AB > 0 and GB > 0,

H< = �i1< with 1< > 0, and |n | ⌧ 1. Show that k"̂�" kk" k < |n | ⌧ 1, where k�k
denotes the sum norm k�k :=

Õ
8, 9 |�8 9 |.

Exercise 3.4 (Unitary voltage network). Show that the ) equivalent circuit described
by (3.5) is equivalent to the transformer model � = (".uvn")+ given by (3.11).

Exercise 3.5 (Unitary voltage network). Show that, instead of the numbers #1, #2

of turns of the primary and secondary windings respectively, the admittance matrix
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".uvn" in (3.11) can equivalently be written in terms of the turns ratio 0 := #1/#2:

".uvn" =
H?HB

0
2
H< + 02

H? + HB


1+ 02

H</HB �0
�0 0

2 (1+ H</H?)

�

Chapter 3.2.

Exercise 3.6 (�. and .� configurations). Consider ideal balanced three-phase trans-
formers in �. and .� configurations shown in Figure 3.14(b). Show that an .�
transformer with single-phase voltage gains 1/= is equivalent to a �. transformer with
single-phase voltage gains = with its primary and secondary sides switched.

Exercise 3.7 (Nonideal�. transformer). Consider a balanced three-phase transformers
in �. configuration and its per-phase equivalent circuit shown in Figure 3.17. Show
that the transmission matrix of the per-phase equivalent circuit is given by:

+
0=

1
�
0

1

�
=


 
�1
�. (=) (1+ I;H<)  ̄�. (=) (I;/3)
 
�1
�. (=) (3H<)  ̄�. (=)

� 
+
0=

2
�
0

2

�

where  �. (=) :=
p

3= 4ic/6.

Exercise 3.8 (Referring shunt admittance in one side to the other). Show that the
transmission matrix for the circuit in Figure 3.20(a) is the same as that in Figure
3.20(b) provided that the relation (3.14b) between shunt admittances H? and HB holds.

Exercise 3.9 (Transmission matrix). Consider a balanced three-phase ideal transformer
with a complex gain  (=) connected to a balanced three-phase series impedance IB
and a balanced three-phase shunt admittance HB on the secondary side. The per-phase
equivalent circuit is shown in Figure 3.35(a). Show directly that transmission matrix of
the circuit in Figure 3.35(a) is the same as that in Figure 3.35(b) provided the relation
(3.14) between impedances/admittances (I? , H?) and (IB , HB) holds.

.

Exercise 3.10 (Driving-point impedance). Refer to Figure 3.23.

1 Show that the driving-point impedance +1/�1 on the primary side is the same in
both circuits in Figure 3.23(a).
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V2

I2I1

V1 V

I

ysK(n)

zs

ideal
transformer

(a) (IB , HB) in the secondary

V1

I1 I2

V2yp

zp

K(n)

ideal
transformer

(b) (I? , H?) in the primary

Figure 3.35 Referring (IB , HB) on the secondary to the primary for an ideal transformer with a
complex gain  (=).

2 Show that the driving-point impedance +2/�2 on the secondary side is the same in
both circuits in Figure 3.23(b).

Exercise 3.11 (Driving-point impedance on primary side). Suppose the secondary
sides of the (equivalent) circuits in Figure 3.35 are connected to an identical load /load

so that +2 = /load �2 in both circuits.

1 Show that the driving-point impedances on the primary side of the circuit in Figure
3.35(a) is:

+1

�1
=

1
| (=) |2

 
/B + 1

.B + /�1
load

!
(3.26a)

The term in the bracket is the Thévain equivalent impedance in the secondary
circuit, seen from the output of the ideal transformer.

2 Show that the driving-point impedances on the primary side of the circuit in Figure
3.35(b) is:

+1

�1
= /? + 1

.? + | (=) |2 /�1
load

(3.26b)

3 Show that (3.26a) and (3.26b) are equivalent provided that (/? ,.?) and (/B ,.B)
satisfy (3.14).

Exercise 3.12. Consider the balanced three phase system in Figure 3.36 where the
line-to-line voltage of the three-phase generator in� configuration is+gen. The 3q trans-
former consists of single-phase transformers in �. configuration. Each single-phase
transformer is modeled by a series impedance /; (and negligible shunt admittance) on
the primary side followed by an ideal transformer with turn ratio =. The transmission
line is modeled by a⇧-model with a series impedance /B and a shunt admittance.</2
at each end of the line. The transmission line is connected to a balanced 3q impedance
load in . configuration with an impedance /load in each phase.
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Vgen
z load

Y∆

transmission
line1 : n

zl

z line 2
ym

2
ym,,( )

Figure 3.36 A three-phase generator in � configuration connected to a three-phase �.
transformer and then to a three-phase load in . configuration through a three-phase AC
transmission line.

1 Draw the equivalent per-phase circuit.
2 Derive the complex power delivered to the load /load in each phase.

Exercise 3.13 (Bases across transformers). For a normal system, on each parallel path
in its per-phase equivalent circuit, the product of ideal transformer gain magnitudes is
the same. Show that this property allows us to consistently define base values between
two neighboring areas using (3.20). (Hint: Show that around any loop, (3.20) holds
only if the product of voltage gain magnitudes around the loop is 1.)

Exercise 3.14 (Terminal current and three-phase impedance bases). Show the def-
inition (3.22b) (3.22d) for base values �3q

⌫
and /

3q
⌫

respectively are equivalent to
definition (3.22e).

Exercise 3.15 (Per unit properties). Prove the per-unit properties (3.23).

Exercise 3.16 (Caltech ACN: transformers). Figure 3.37 shows the layout of the
Adaptive Charging Network (ACN) for electric vehicles (EVs) in a Caltech garage. The

Figure 3.37 Caltech Adaptive Charging Network (ACN) layout. (March 9, 2025: Remove this
figure? Poor resolution from Naomi Choppra.)

Caltech ACN consists of two three-phase stepdown transformers in �. configuration
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with � on the primary side. Each of these transformers is connected to an electric
panel, to which charging stations and subpanels are connected. Figure 3.38(a) shows
the two three-phase transformers and the two electric panels. Figure 3.38(b) shows the

(a) Transformers and panels (b) Transformer ratings

Figure 3.38 (a) The two 150 kVA transformers and two electric panels in Caltech ACN to
which charging stations and electric subpanels are connected. (b) The transformer ratings.

ratings of each of the three-phase transformers:

• Power rating 150 kVA (three-phase).
• Primary (high voltage) side: 480V in Delta configuration with rated line current of

180A.

• Secondary (low voltage) side: 208Y/120V in Wye configuration with rated line
current of 416A.

• Impedance voltage (percentage impedance): V = 5.45% on the primary side (the
shunt admittance is negligible).

The impedance voltage is the voltage drop across the series impedance /; on the
primary side of the transformer in a short-circuit test, as a percentage of the rated
primary voltage. In a short-circuit test the secondary side is short-circuited. The V
specification means that the voltage needed on the primary side to produce a rated
primary current is V times the rated primary voltage.

Verify that the rated line currents on the primary and secondary sides are consistent
with the power rating and voltage ratings. Determine the magnitude |/; | of the series
impedance of the transformer and draw the circuit model of the three-phase transformer.

Exercise 3.17 (Caltech ACN: estimating distribution line impedances). Suppose the
transformer in Exercise 3.16 is connected to a three-phase voltage source with a line
voltage of |+line | = 480+ on the primary side through a three-phase distribution line
modeled by a series impedance /line,1, and to a three-phase load on the secondary side
through another three-phase distribution line modeled by a series impedance /line,2,
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as shown in Figure 3.39. Suppose the system is balanced. The load is a three-phase

Vline
load

Y∆

distribution
line

distribution
line 1 : n

zl

z line,2z line,1

Figure 3.39 The three-phase transformer is connected to a three-phase voltage source and a
three-phase load through two three-phase lines.

constant-current load in � configuration with a known current �load from phase 0 to
phase 1. The voltage is measured to be +2 across the load between phase 0 and phase
1. The phase 0 voltage on the secondary side of the transformer (before the distribution
line) is measured to be +0=.

Determine the distribution line impedances /line,1 and /line,2 in terms of the line
voltage |+line |, the series impedance /; of the transformer, and the complex gain  (=)
of the ideal �. transformer, as well as the measured voltages +2,+0= and current �load.
Assume without loss of generality that the voltage source has +01 = |+line |\0� and the
sources are in positive sequence.

Exercise 3.18 (Caltech ACN: network design). This problem considers the deployment
costs of di�erent network designs for ACN. Referring to Figure 3.38(a), the output
(secondary side) of each of the 150 KVA transformers is connected to the input of one
of the two electric panels. A wire connects a circuit breaker in the panel to an electric
vehicle (EV) charger or a subpanel and these wires are housed in conduits. We consider
the network that connects all the EV chargers to one of the two panels in Figure 3.38(a).
In this network, the main components are wires, conduits, and subpanels and the types
and sizes of these hardware determine the deployment costs, both parts and labor. The
types and sizes depend on the current limit (ampacity) of each wire segment required
to carry the current to chargers it supplies and the distance of that wire segment.
Consider an idealized layout in Figure 3.40 where the network connects a total of =:
EV chargers to the electric panel. These chargers are clustered into = groups. Each
group 8 is associated with a junction 8 = 1, . . . ,= as shown in the figure. Every group
consists of : identical chargers labeled by ⇢+1, . . . ,⇢+: . Each charger can draw a
maximum current of � (in A).

Design 1. The first design runs a wire from the electric panel at junction 0 directly to
each charger following the path labeled in black in Figure 3.40(a). Let (⇡, �8) denote
the distance and the cross-sectional area of the wire between each junction 8� 1 to 8.
Let (3,0) denote the distance and the cross-sectional area of the wire from a junction
to every EV in its group. The cross-sectional area of a wire depends on the maximum
current it needs to supply. We assume the maximum current that can be drawn by any
charger is the same, and therefore the wires from a junction to any EV in its group all
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0 1 2 n
(D,A1)

(d,a) (d,a) (d,a)

(D,A2) (D,An)

EV1 EVk EV1 EVk EV1 EVk

(a) Design 1

EV1 EVk EV1 EVk EV1 EVk

0 1 2 n
(D,A1)

(d,a) (d,a) (d,a)

(D,A2) (D,An)

(b) Design 2

Figure 3.40 Caltech ACN network design.

have the same size 0. The wire size �8 between junctions 8 � 1 and 8 depends on the
layout. In design 1, �8 = 0 for all 8. This will be di�erent in design 2 (see below).

For example, the wire connecting ⇢+1 in group 1 goes from junction 0 (electric
panel) to junction 1 to the charger, as shown in blue, and has a total length of ⇡ +3 and
size 0. The wire connecting ⇢+: in group = goes from junction 0 to junctions 1, . . . ,=,
to the charger, and has a total length of =⇡ + 3 and size 0.

Design 2. In this design a single wire of length ⇡ and size �1 connects the electric
panel at junction 0 to an electric subpanel at junction 1; see Figure 3.40(b). Then :
wires each of length 3 and size 0 connects the : chargers in group 1 to the subpanel.
A single wire of length ⇡ and size �2 < �1 connects the subpanel at junction 1 to a
subpanel at junction 2, and : wires each of (3,0) then connects the : chargers in group
2, and so on.

For both design 1 and design 2, the cross-sectional area of the wire used for any
segment of the layout depends on the maximum current (called the ampacity of the
wire in ampere) that it needs to carry. That is, the wire sizes 0, �8 above are functions
U(G) where G is the ampacity. See below for an example of U(G).

Deployment costs. The total deployment cost (parts and labor) involve mainly three
types of hardware.

1 Wire. The cost of deploying a wire of length _ and cross-sectional area U is denoted
by the function ⇠F (_,U).
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2 Conduit. The cost ⇠2 (_,U) of deploying a conduit of length _ that carries wires
with a total cross-sectional areas U has two components:

⇠2 (_,U) := ⇠21 (_,U) + ⇠22 (U)

The first component ⇠21 (_,U) depends on the length _ and total wire size U, the
longer and larger the conduit, the higher the cost. The second component ⇠22 (U)
depends only on the total wire size U and is usually a step function: when the total
wire size exceeds a threshold, a special machine is needed to deploy the conduit
at an extra cost. In Design 1, all wires that share the same segment (say) between
junctions 8� 1 to 8 will be housed in the same conduit. For example, the conduit
between junction 1 and junction 2 will carry (=�1): wires. We assume that if a
conduit carries wires of areas U1, . . . ,U<, then the total wire size is simply its sum
U :=

Õ
<

8=1U8 .
3 Subpanel. For simplicity we assume every subpanel (in design 2) has the same

cost 2B .

Assumptions on cost functions. Assume the cost functions take the following form:

⇠F (_,U) := 2F _U, ⇠21 (_,U) := 22 _U, ⇠22 (U) = V1(U � g)(3.27a)

Figure 3.41(a) shows the wire size dependence U(G) on ampacity G from (a version
of) the American Wire Gauge (AWG) standard. Based on the data, Figure 3.41(b)
shows that U(G) can be well approximated by a quadratic function

U(G) := G2 +0.6G +4 (3.27b)

with G in A and U(G) in mm2. The quadratic term represents the fact that the thermal

AWG"#" ""
area"

(mm^2)" ""
ampacity"

(enclosed,"A)"
10   5.269   33 
8   8.347   46 
6   13.332   60 
4   21.156   80 
2   33.593   100 
1   42.429   125 
0   53.456   150 
00   67.491   175 
000   84.949   200 

0000   107.146   225 

(a) AWG table

y#=#0.9558x2#+#0.5749x#+#3.7561#

0.000#

20.000#

40.000#

60.000#

80.000#

100.000#

120.000#

33# 46# 60# 80# 100# 125# 150# 175# 200# 225#

area"(mm^2)"vs"ampacity"(A)"

(b) AWG plot

Figure 3.41 (a) American Wire Gauge (AWG) standard: dependence of wire cross-sectional
area U(G) on ampacity G. (b) The data for U(G) in the table can be approximated by the
quadratic function in (3.27b). The black solid line is the plot of the data and the orange dashed
line is the quadratic fit.

power loss due to a current �0 through a wire with resistance A is roughly A �20 . Doubling
the current means that the resistance must be scaled down by a factor of 4 in order
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to maintain the same heat loss. Since A is inversely proportional to the cross-sectional
area of the wire, this requires a wire with 4 times the area.

1 Evaluate the total cost of network design 1 and design 2.
2 Prove that design 1 is always less expensive than design 2 as long as the maximum

current � that can be drawn by a charger is at least 2A.4

Exercise 3.19 (Caltech ACN: network design). This problem generalizes problem
3.18 to show that design 2 is more expensive even for very general cost functions and
wire size dependency. Suppose the cost functions ⇠F (_,U),⇠21 (_,U),⇠22 (U) and the
dependency of wire size U(G) on its ampacity satisfy the following conditions:

C1: For any fixed U, ⇠F (_,U) is linear in _. For any fixed _, ⇠F (_,U) linear and
increasing in U.

C2: ⇠21 (_,U) is increasing in U for any fixed _. ⇠22 (U) is increasing in U.
C3: There is an ampacity set - such that for all G 2 - , U(8G) � 8U(G) for any integer

8 � 1.

Prove that design 2 is more expensive for any ampacity G 2 - .

It can be easily verified that the cost functions and U(G) in (3.27) satisfy these
conditions. In particular the ampacity set - in condition C3 is - = {G � 2A}. Therefore
the conditions C1–C3 allow a much larger set of cost functions and U(G) than (3.27).

We now interpret these conditions to illustrate that they are realistic. Condition
C1 says that the total deployment cost (parts and labor) grows linearly in wire length
_ and in wire size U. If either one doubles, the cost exactly doubles. Condition C2
says that regardless of its length, both the first and second cost components of the
conduit increase as the cross-sectional area of the conduit increases. Finally condition
C3 implies in particular that, for any ampacity G in - , doubling the ampacity more
than doubles the cost. As explained immediately after (3.27b), since thermal loss is
quadratic in ampacity, the required wire size satisfies this condition. The proof reveals
that this is the key condition that makes design 2 more expensive than design 1, i.e.,
it is always cheaper to use more and longer small wires because the wire size grows
faster than linearly in ampacity.

Exercise 3.20 (Caltech ACN: network design). Problem 3.19 shows that, under very
general and realistic conditions, design 2 is always more expensive than design 1. This
assumes that, in design 2, the ampacity of the wire between junction 8�1 and 8 must be
the sum of the ampacities of all the downstream wires supplying groups 8, 8+1, . . . ,=. In

4 Currently a level-2 EV charger typically has a current limit of 32A or higher.
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practice however it is unlikely all the EV chargers in these groups will draw maximum
currents simultaneously and therefore it is reasonable to install a smaller ampacity
between junction 8 � 1 and 8, i.e., each subpanel can be over-subscribed. Discuss
over-subscription conditions under which design 2 is less expensive than design 1
(open-ended problem).



4 Bus injection models

In previous chapters we introduce mathematical models of basic power system com-
ponents. In this and the next chapter we use these component models to describe a
power network consisting of an interconnection of components such as generators,
loads, transmission and distribution lines, and transformers. In Chapter 4.1 we sum-
marize the component models from previous chapters. In Chapter 4.2 we explain how
to model a power network by a matrix that linearly relates nodal current injections to
nodal voltages of the network. In Chapter 4.3 we present power flow equations that
relate nodal power injections and nodal voltages. In Chapter 4.4 we discuss classical
solution methods. In Chapter 4.6 we study a linearized model, called the DC power flow
model, that is widely used in power systems applications such as electricity markets.

4.1 Component models

B+

The component models summarized in this section will be used to construct network
models in Chapters 4.2 and 4.3.

4.1.1 Single-phase sources and impedance

In Chapters 1.1.2 and 1.3.1 we describe circuit models of single-phase single-terminal
devices. They are also per-phase models of balanced three-phase devices. Associated
with each device 9 is its terminal voltage, current, and power (+ 9 , � 9 , B 9 ) 2 C3. There
is an arbitrary reference point with respect to which all voltages are defined. If the
common reference point is taken to be the ground then voltage + 9 is the voltage drop
between terminal 9 and the ground. The current from terminal 9 flows from the terminal
to the reference point (see Figure 4.1). Such a single-terminal device is characterized
by relations between the terminal variables (+ 9 , � 9 , B 9 ).

1 Voltage source
�
⇢ 9 , I 9

�
. This is a device with a constant internal voltage ⇢ 9 in
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series with an impedance I 9 as shown in Figure 1.3(a). Its external model is the
relation+ 9 = ⇢ 9 �I 9 � 9 between its terminal voltage and current

�
+ 9 , � 9

�
. This yields

a relation B 9 =+ 9 �H
9
=+ 9

�
⇢ 9 �+ 9

�H /IH
9

between the terminal variables
�
+ 9 , B 9

�
.

2 Current source
�
� 9 , H 9

�
. This is a device with a constant internal current � 9 in

parallel with an admittance H 9 as shown in Figure 1.3(b). Its external model is the
relation � 9 = � 9 � H 9+ 9 between its terminal voltage and current

�
+ 9 , � 9

�
. This yields

a relation B 9 =+ 9 �H
9
=+ 9

�
� 9 � H 9+ 9

�H between the terminal variables
�
+ 9 , B 9

�
.

3 Power source
�
f9 , I 9

�
. This is a device with a constant internal power f9 in series

with an impedance I 9 . Its external model is the relationf9 =
�
+ 9 � I 9 � 9

�
�

H
9

between

(+ 9 , � 9 ). Its terminal power is B 9 =+ 9 �H
9
= f9 + I 9 |� 9 |2.

4 Impedance I 9 . The external (and internal) model is + 9 = I 9 � 9 and B 9 =
��
+ 9

��2 /IH
9
.

We often assume the voltage, current, or power sources are ideal in which case I 9 and
H 9 are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the ⇧ circuit model of a single-phase transmission or
distribution line. It is also a per-phase model of balanced three-phase lines. A line
has two terminals ( 9 , :) and is specified by a three-tuple (HB

9:
, H<
9:

, H<
: 9
) 2 C3 where

H
B

9:
= HB

: 9
is the series admittance of the line, H<

9:
is the shunt admittance of the line

at terminal 9 , and H<
: 9

is the shunt admittance of the line at terminal :; see Figure
4.1. Recall that (H<

9:
, H<
: 9
) models the line capacitance, called line charging or shunt

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1 ⇧ circuit model of a single-phase line.

admittances of line ( 9 , :), and the currents through these shunt admittances model the
current supplied to the line capacitance called the charging current.

Associated with terminal 9 is the terminal voltage + 9 , and the sending-end line
current � 9: and power ( 9: from 9 to : . Similarly, associated with terminal : is
(+: , �: 9 ,(: 9 ) 2 C3. Unlike in Chapter 2.2.2 we have defined here �: 9 to be the current
injected from the right terminal into the line. A line is characterized by the relation
between the terminal voltages (+ 9 ,+: ) and line currents

�
� 9: , �: 9

�
or that between

(+ 9 ,+: ) and line powers
�
( 9: ,(: 9

�
, which we now explain.
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�+ relation.

The terminal voltages with respect to, and the sending-end currents flowing from the
terminals to, the reference point are related by

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

: 9
(+: �+ 9 ) + H

<

: 9
+: (4.1a)

This defines a matrix.line for a line that maps terminal voltages to sending-end currents:

� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#

|                        {z                        }
.line


+ 9

+:

�
(4.1b)

where we have used the fact that HB
9:
= HB

: 9
to obtain a symmetric.line. The o�-diagonal

entries of .line are the negatives of the series admittances while the diagonal entries
are the sum of series and shunt admittances. As we will see this structure holds for
general networks.

In general the sending-end currents
�
� 9: , �: 9

�
are not negative of each other when

the shunt admittances are nonzero. Since HB
9:

= HB
: 9

, their sum represents the total
current loss along the line due to shunt admittances:

� 9: + �: 9 = H<9:+ 9 + H<: 9+: < 0

Thermal limits on branch current flows should be imposed on both |� 9: | and |�: 9 |:

|� 9: | =
���HB
9:
(+ 9 �+: ) + H

<

9:
+ 9

���  �max
9:

|�: 9 | =
���HB
: 9
(+: �+ 9 ) + H

<

: 9
+:

���  �max
: 9

not just on
���HB
9:
(+ 9 �+: )

��� unless the shunt admittances are zero.

B+ relation.

The sending-end line power flows from terminals 9 to : and that from terminals : to
9 are respectively (using (4.1a)):

( 9: :=+ 9 �H
9:

=
⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9:

⌘H
|+ 9 |2 (4.2a)

(: 9 :=+: �H
: 9

=
⇣
H
B

: 9

⌘H ⇣
|+: |2�+:+H

9

⌘
+

⇣
H
<

: 9

⌘H
|+: |2 (4.2b)

They are not negatives of each other because of power loss along the line. Since
H
B

9:
= HB

: 9
, the total complex power loss is:

( 9: + (: 9 =
⇣
H
B

9:

⌘H ��
+ 9 �+:

��2 +
⇣
H
<

9:

⌘H
|+ 9 |2 +

⇣
H
<

: 9

⌘H
|+: |2 (4.3)

The first term on the right-hand side is loss due to series impedance and the last two
terms are losses due to shunt admittances of the line. Thermal limits on branch power
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flows should be imposed on both |( 9: | and |(: 9 |:

|( 9: | =
����
⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9:

⌘H
|+ 9 |2

����  (max
9:

|(: 9 | =
����
⇣
H
B

: 9

⌘H ⇣
|+: |2�+:+H

9

⌘
+

⇣
H
<

: 9

⌘H
|+: |2

����  (max
: 9

not just on

����
⇣
H
B

9:

⌘H �
|+ 9 |2�+ 9+H

:

� ���� and

����
⇣
H
B

: 9

⌘H ⇣
|+: |2�+:+H

9

⌘���� unless the shunt ad-

mittances are zero.

If the shunt admittances H<
9:

and H<
: 9

of the line are zero then the power loss has a
simple relation with line currents. Setting H<

9:
= H<

: 9
= 0 in (4.3) and (4.1a) and using

H
B

9:
= HB

: 9
, we have

( 9: + (: 9 = IB
9:
·
���HB
9:

���2 ��+ 9 �+: ��2 = I
B

9:

��
� 9:

��2
because � 9: = HB

9:
(+ 9 �+: ) = ��: 9 when the shunt elements are zero and HB

9:
= HB

: 9
.

This is not the case otherwise.

4.1.3 Single-phase transformer

In Chapters 3.1 and 3.2 we describe circuit models of a single-phase transformer. They
are also per-phase models of balanced three-phase transformers. A transformer has
two terminals ( 9 , :) and is specified by its voltage gain = 9: which is the reciprocal
of the turns ratio 0 9: := 1/= 9: . If the single-phase transformer is the per-phase model
of a balanced three-phase transformer, then the voltage gain  (= 9: ) can be complex,
e.g.,  (= 9: ) =

p
3= 9: 4ic/6 for �. configuration. In addition to the voltage gain = 9: , a

single-phase transformer also has series resistance and leakage inductance and shunt
admittance due to the primary and secondary magnetizing currents. These e�ects can
be modeled by a series admittance H̃B

9:
and shunt admittance H̃<

9:
in the primary circuit,

as shown in Figure 4.2(a).

Vj

Ijk , Sjk Skj , Ikj

1  :  K(njk)

Vk

reference
point

ỹ s
jk

ỹm
jk

(a) Non-ideal transformer

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

(b) ⇧ circuit model (real = 9: )

Figure 4.2 Single-phase transformer.

As for a line model, associated with terminals 9 and : are the terminal voltages,
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sending-end line currents and sending-end line power flows (+ 9 , � 9: ,( 9: ) 2 C3 and
(+: , �: 9 ,(: 9 ) 2 C3 respectively. Notice that the direction of �: 9 at terminal : is opposite
to that in Chapter 3. The behavior of the transformer in Figure 4.2 is characterized by
the relation between the terminal voltages (+ 9 ,+: ) and line currents

�
� 9: , �: 9

�
or that

between (+ 9 ,+: ) and line powers
�
( 9: ,(: 9

�
, which we now summarize.

Real voltage gain  (= 9:) = = 9: .

Using Kirchho�’s and Ohm’s laws and transformer gains we have

� 9: = H̃
B

9:

�
+ 9 � 0 9:+:

�
, � 9: = H̃

<

9:
0 9:+: += 9: (��: 9 ) (4.4a)

where 0 9: := 1/= 9: . This defines a matrix .transformer for the single-phase transformer:


� 9:

�: 9

�
=

"
H̃
B

9:
�0 9: H̃B

9:

�0 9: H̃B
9:

0
2
9:

⇣
H̃
B

9:
+ H̃<

9:

⌘
#

|                                {z                                }
.transformer


+ 9

+:

�
(4.4b)

Since transformer gains = 9: are real,.transformer is symmetric and their terminal behavior
can be modeled by a ⇧ circuit, the same way a transmission line is. Specifically

.transformer can be rewritten in terms of admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
of a ⇧ circuit:

.transformer :=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#
(4.5a)

where

H
B

9:
:= 0 9: H̃

B

9:
, H

<

9:
:= (1� 0 9: ) H̃B

9:
, H

<

: 9
:= 0 9: (0 9: �1) H̃B

9:
+ 02

9:
H̃
<

9:

(4.5b)

as illustrated in Figure 4.2(b). In particular the shunt admittances H<
9:

and H
<

: 9
of

the ⇧ circuit model are di�erent unless (1� 02) H̃B
9:

= 02
H̃
<

9:
. Moreover (H<

9:
, H<
: 9
) are

generally nonzero even if the transformer shunt admittance H̃<
9:
= 0.

Complex voltage gain  (=).
A physical transformer always has a real voltage gain =. The per-phase model of three-
phase transformer in a balanced setting however can have a complex voltage gain  (=)
as we have seen in Chapter 3.2. In that case �=�: 9 in the above derivation should be
replaced by  H

9:
(=)�: 9 , leading to:


� 9:

�: 9

�
=

"
H̃
B

9:
�H̃B

9:
/ 9: (=)

�H̃B
9:
/ ̄ 9: (=)

⇣
H̃
B

9:
+ H̃<

9:

⌘
/| 9: (=) |2

#

|                                                {z                                                }
.transformer


+ 9

+:

�
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In this case the matrix .transformer is not symmetric. This means that the terminal
behavior of the transformer does not have an equivalent⇧ circuit model and we have to
use the admittance matrix.transformer for power flow analysis. In this case the transformer
is characterized by two pairs of admittances, (HB

9:
, H<
9:
) from 9 to : and (HB

: 9
, H<
: 9
) in the

opposite direction, defined by transformer parameters
⇣
 (=), H̃B

9:
, H̃<
9:

⌘
. Equivalently,

the admittance matrix .transformer is not symmetric and takes the form:

.transformer :=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#
(4.6a)

where

H
B

9:
:=

H̃
B

9:

 9: (=)
, H

<

9:
:=

✓
1� 1

 9: (=)

◆
H̃
B

9:
(4.6b)

H
B

: 9
:=

H̃
B

9:

 ̄ 9: (=)
, H

<

: 9
:=

1� 9: (=)
| 9: (=) |2

H̃
B

9:
+ 1
| 9: (=) |2

H̃
<

9:
(4.6c)

The admittance matrix reduces to (4.5) when  (=) = =. The relation between powers
(( 9: ,(: 9 ) and voltages (+ 9 ,+: ) is the same as for transmission and distribution lines,
even though HB

9:
and HB

: 9
may not be equal:

( 9: := + 9 �
H
9:

=
⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9:

⌘H
|+ 9 |2

(: 9 := +: �
H
: 9

=
⇣
H
B

: 9

⌘H ⇣
|+: |2�+:+H

9

⌘
+

⇣
H
<

: 9

⌘H
|+: |2

where the admittances are given in (4.6). If HB
9:
< HB

: 9
then the line loss is not given by

(4.3).

4.2 Network model: �+ relation

In this section we explain how to use the component models of Chapter 4.1 to model
a single-phase network consisting of generators and loads connected by a network of
transmission or distribution lines and transformers. We will construct an equivalent
circuit consisting of ideal voltage and current sources connected by a network of series
and shunt admittances. The nodal current injections � are linearly related to nodal
voltages + through a matrix . called an admittance matrix, � = .+ . This relation
represents the Kirchho�’s laws and the Ohm’s law. In this section we derive the
admittance matrix . and study its properties.

We start in Chapter 4.2.1 with a few examples and present in Chapter 4.2.2 our
abstract line model. In Chapter 4.2.3 we define the admittance matrix . for a general
network and study su�cient conditions for the invertibility of . . In Chapter 4.2.4.1
we explain Kron reduction of an admittance matrix . and study the invertibility of a
Kron-reduced admittance matrix. In Chapter 4.2.5 we present a common method for
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solving � =.+ numerically. When the network graph is a tree, called a radial network,
a reduced admittance matrix is always invertible and we derive explicitly its inverse in
Chapter 4.2.6.

4.2.1 Examples

In this subsection we derive the admittance matrix . of a single-phase network shown
in Figure 4.3 where:

1 The generator on the left end is modeled as a current source with parameters
(�1, H1).

2 The non-ideal single-phase transformer has a real voltage gain =, a series admit-
tance H̃B and shunt admittance H̃< in the primary circuit.

3 The transmission line is modeled as a series admittance H (and zero shunt admit-
tances).

4 The motor load on the right end is modeled as another current source (�2, H2).

generator

load

transmission line
transformer

Figure 4.3 One-line diagram of a generator supplying a load through a transformer and a
transmission line.

We will derive the admittance matrix . for the overall system in two steps.

Example 4.1 (Non-ideal transformer and transmission line). Figure 4.4 shows the
circuit model of the non-ideal transformer in series with the transmission line. To

V1

I1 = I13 I23 = I2

V2

I31 I32

V3

y

I3 = 0

1  :  n

ỹm

ỹ s

Figure 4.4 A non-ideal transformer in series with a transmission line.

determine the admittance matrix that relates (�1, �2) to (+1,+2), we introduce an ad-
ditional network node 3 between the transformer and the transmission line H with an
auxiliary voltage +3 and an auxiliary injection current �3 at node 3, as shown in the
figure.

Since the voltage gain = is real, use the transformer model (4.4b) and the line model
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(4.1) to get
�13

�31

�
=


H̃
B �0 H̃B

�0 H̃B 0
2 ( H̃B + H̃<)

� 
+1

+3

�
,


�32

�23

�
=


H �H
�H H

� 
+3

+2

�

Kirchho�’s current law at each node gives:

�1 = �13, 0 = �3 = �31 + �32, �2 = �23

Eliminating branch currents relates nodal currents (�1, �2, �3) to nodal voltages
(+1,+2,+3) through matrix .1:

266664
�1

�2

�3

377775
=

266664
H̃
B 0 �0H̃B

0 H �H
�0H̃B �H H + 02 ( H̃B + H̃<)

377775|                                   {z                                   }
.1

266664
+1

+2

+3

377775
(4.7)

The matrix .1 is complex symmetric and is therefore an admittance matrix that can be
represented as a ⇧ circuit as shown in Figure 4.5 where HB13 := 0H̃B , H<13 := (1� 0) H̃B

V1

I1= I13 I23= I2

V2

I31 I32

ym13

ys13

ym31 V3

y

I3= 0

transformer line

Figure 4.5 ⇧ circuit model of the system in Figure 4.4.

and H<31 := 0(0�1) H̃B + 02
H̃
<. ⇤

Example 4.2 (Overall system). Finally the circuit model of the overall system that
includes the two current sources that model the generator and the load is shown in Figure
4.6(a). The only changes to the admittance matrix, compared with the admittance matrix
.1 in (4.7), are the additional shunt admittances H1, H2 at nodes 1 and 2 respectively.
They should be added to the first two diagonal entries of .1. The overall network can
therefore be modeled by an admittance matrix . that relates nodal current injections
and nodal voltages (setting �3 = 0):

266664
�1

�2

0

377775
=

266664
H̃
B + H1 0 �0H̃B

0 H + H2 �H
�0H̃B �H H + 02 ( H̃B + H̃<)

377775
266664
+1

+2

+3

377775
The external behavior can be modeled by a 2⇥2 admittance matrix that relates (�1, �2)
and (+1,+2) which can be obtained from . through Kron reduction making use of the
fact that the internal injection �3 = 0; see Chapter 4.2.4.1. ⇤
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V1 V2
y

y1 y2 I2I1

generator load

(a) One-line diagram

ys13

y1 y2ym13 ym31

V2V3V1

I1 I2

y

generator transformer line load

(b) Equivalent circuit model

Figure 4.6 Generator, transformer, transmission line and load.

4.2.2 Line model

In general we model a power network by a connected undirected graph ⌧ = (# ,⇢) of
# +1 nodes and " lines, where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . Each
node 9 in # may represent a bus and each edge ( 9 , :) in ⇢ may represent a transmission
or distribution line or transformer. We also write 9 ⇠ : instead of ( 9 , :) 2 ⇢ . We use
“bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.

j k
Vj VkIjk ,Sjk

Ij , sj
Skj , Ikj

sk , Ik
( ysjk , y

m
jk ) , ( yskj , y

m
kj )

Figure 4.7 Network graph and notations.

For each line ( 9 , :) 2 ⇢ let
�
+ 9 ,+:

�
denote the terminal (or nodal) voltages at each

end of the line. Let � 9: denote the sending-end line current from 9 to : and �: 9 the
sending-end line current from : to 9 . Each line ( 9 , :) 2 ⇢ is characterized by four

admittances
⇣
H
B

9:
, H<
9:

⌘
2 C2 from 9 to : and

⇣
H
B

: 9
, H<
: 9

⌘
2 C2 from : to 9 ; see Figure

4.7. We call
⇣
H
B

9:
, HB
9:

⌘
the series admittances and

⇣
H
<

9:
, H<
9:

⌘
the shunt admittances of
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line ( 9 , :). They define the relation between
�
+ 9 ,+:

�
and

�
� 9: , �: 9

�
:

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

: 9
(+: �+ 9 ) + H

<

: 9
+: (4.8a)

or in matrix form:
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�
(4.8b)

We emphasize that the series admittances HB
9:

and HB
: 9

may be di�erent and therefore
this general model may not have a ⇧ circuit representation. It can model a single-
phase transmission or distribution line, a single-phase transformer, or the per-phase
model of a balanced three-phase transformer with a real or complex voltage gain, as
summarized in Chapters 4.1.2 and 4.1.3. Specifically when ( 9 , :) models a transmission
or distribution line, the line parameters (HB

9:
= HB

: 9
, H<
9:

, H<
: 9
) are the series and shunt

admittances of the transmission or distribution line. When ( 9 , :) models a transformer,
the line parameters (HB

9:
, H<
9:
) and (HB

: 9
, H<
: 9
) are given by (4.6) in terms of transformer

voltage gain and leakage and shunt admittances ( (=), H̃B
9:

, H̃<
9:
). Note that HB

: 9
and

H
B

9:
may be di�erent, and (H<

9:
, H<
: 9
) are generally di�erent and nonzero even if the

transformer shunt admittance H̃<
9:

= 0. When the voltage gain  (=) = = is real, (4.6)
reduces to (4.5) with HB

: 9
= HB

9:
. As we have seen in Example 4.2, a line ( 9 , :) in the

graph ⌧, the matrix . 9: may also contain generator and load impedances.

We will often restrict ourselves to the special case where the following assumption
holds:

C4.1: The series admittances HB
9:
= HB

: 9
for every line ( 9 , :) 2 ⇢ .

In this case (4.8) reduces to

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

9:
(+: �+ 9 ) + H

<

: 9
+: (4.9a)

or in terms of . 9: :
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�
(4.9b)

Since. 9: is symmetric, it has a⇧ circuit representation and behaves like a transmission
or distribution line (though with generally di�erent H<

9:
and H<

: 9
). We characterize such

a line by three admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. As noted above, this model cannot be used

as the per-phase model of a balanced three-phase transformer in�. or.� configuration
that has a complex voltage gain  (=). It is however widely applicable, e.g., when the
network does not contain transformers with complex voltage gains or when used in per
unit systems where (nominal) transformers disappear. We therefore often adopt this
model and will explicitly state it as assumption C4.1 when we use it.
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4.2.3 Admittance matrix . and its properties

In bus injection models we are interested in nodal variables (+ 9 , � 9 , B 9 ) 2 C3, 9 2 # ,
where+ 9 is the complex voltage at bus 9 with respect to an arbitrary but fixed common
reference point, e.g., the ground. Here � 9 and B 9 are the complex nodal current and
power injections respectively into the network at bus 9 . These nodal variables are
related by B 9 = + 9 �H

9
for each bus 9 2 # . As mentioned above the current and power

injections can be interpreted as flowing from terminal 9 to the common reference point
in the circuit model. In this section we construct the admittance matrix . that linearly
relates nodal voltages + to nodal current injections � and study its properties.

4.2.3.1 Admittance matrix .

The nodal current injections � := (� 9 , 9 2 #) and voltages + := (+ 9 , 9 2 #) are linearly
related. The admittance matrix. relates, not the line currents, but the net nodal current
injections � to nodal voltages + . Applying (4.8) to KCL � 9 =

Õ
:: 9⇠: � 9: at each node

9 , we have1

� 9 =
’
:: 9⇠:

� 9: = ©≠
´
’
:: 9⇠:

H
B

9:
+ H

<

9 9

™Æ
¨
+ 9 �

’
:: 9⇠:

H
B

9:
+: , 9 2 # (4.10a)

where H<
9 9

denotes the total shunt admittance of the lines connected to bus 9 :

H
<

9 9
:=

’
:: 9⇠:

H
<

9:
(4.10b)

In vector form, this is � = .+ where the matrix . is given by:

. 9: =

8>>><
>>>:

�HB
9:

, 9 ⇠ : ( 9 < :)Õ
;: 9⇠; H

B

9;
+ H

<

9 9
, 9 = :

0 otherwise

(4.10c)

We refer to . that maps nodal voltages to nodal current injections as an admittance
matrix, or a network admittance matrix or bus admittance matrix. Equation (4.10c)
prescribes a way to write down the admittance matrix . by inspection of the network
connectivity and line admittances: its o�-diagonal entries are the negatives of series

admittances
⇣
H
B

9:
, HB
: 9

⌘
in each direction on line ( 9 , :) while its diagonal entries are the

sum of the series and shunt admittances incident on the corresponding buses. Note that
. 9: and .: 9 may not be equal if ( 9 , :) models a transformer. If we restrict ourselves to
the special where HB

9:
= HB

: 9
for all ( 9 , :) 2 ⇢ (assumption C4.1) then each line ( 9 , :)

has a ⇧ circuit representation and the admittance matrix . is complex symmetric. It is
not Hermitian unless . is a real matrix.

Example 4.3. Consider the three-bus network shown in Figure 4.8. Under condition

1 If there is a load attached to bus 9 with shunt admittance Hsh
9

, then the net injection becomes

� 9 � Hsh
9
+9 =

Õ
:: 9⇠: � 9: instead of � 9 on the left-hand side of (4.10a).
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I1 I2

I3

V2V1

V3

( ys12 , y
m
12 , y

m
21 )

( ys13 , y
m
13 , y

m
31 ) ( ys23 , y

m
23 , y

m
32 )

I12 I21

I13

Figure 4.8 Three-bus network of Example 4.3.

C4.1, each line ( 9 , :) is modeled by a ⇧ circuit with series and shunt admittances⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. The sending-end branch current from bus 9 to bus : is � 9: and that

from bus : to bus 9 is �: 9 . Applying Kirchho�’s current law and Ohm’s law at bus 1
gives

�12 = HB12 (+1�+2) + H<12+1

�13 = HB13 (+1�+3) + H<13+1

) �1 = �12 + �13 =
�
H
B

12 + HB13 + H<12 + H<13

�
+1 � HB12+2 � HB13+3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain

266664
�1

�2

�3

377775
=

266664
H
B

12 + HB13 + H<11 �HB12 �HB13
�HB12 H

B

12 + HB23 + H<22 �HB23
�HB13 �HB23 H

B

13 + HB23 + H<33

377775|                                                            {z                                                            }
.

266664
+1

+2

+3

377775

where

H
B

9:
= H

B

: 9
, H

<

9 9
:=

’
:: 9⇠:

H
<

9:

Again the o�-diagonal entries of the admittance matrix . are given by the series
admittances on the lines:

. 9: :=

(
�HB

9:
if 9 ⇠ : ( 9 < :)

0 otherwise

and the diagonal entries of . by the sum of series and shunt admittances incident on
buses 9 :

. 9 9 :=
’
:: 9⇠:

H
B

9:
+ H

<

9 9

⇤

Under Assumption C4.1, the admittance matrix . given in (4.10) can also be
expressed in terms of more elementary matrices. Fix an arbitrary orientation for the
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graph ⌧ := (# ,⇢) so that a line ; = 9 ! : 2 ⇢ is now considered pointing from bus 9
to bus : . Let ⇠ 2 {�1,0,1} |# |⇥ |⇢ | be the bus-by-line incidence matrix defined by:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

(4.11)

Let ⇡B
H

:= diag
⇣
H
B

;
, ; 2 ⇢

⌘
be the |⇢ |⇥ |⇢ | diagonal matrix with the series admittances

H
B

;
as its diagonal entries. Let ⇡<

H
:= diag

⇣
H
<

9 9
, 9 2 #

⌘
be the |# | ⇥ |# | diagonal ma-

trix with the total shunt admittances H<
9 9

in (4.10b) as its diagonal entries. Then the
admittance matrix in (4.10c) is, when HB

9:
= HB

: 9
,

. = ⇠ ⇡B
H
⇠

T + ⇡
<

H
(4.12)

Clearly the matrix⇠⇡B
H
⇠

T has zero row and column sums. It verifies that. is symmetric
but not Hermitian unless ⇡B

H
and ⇡<

H
are real matrices. This representation can be used

to study the inverse of . ; see Exercise 4.7.

Bus 0 is often called the slack bus. Its voltage is fixed and we sometimes assume
that +0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the reference
point is 1\0�. A bus 9 2 # can have a generator, a load, both or neither and

�
� 9 , B 9

�
are the net current and power injections (generation minus load) at bus 9 , as the next
remark shows.

Remark 4.1 (Nodal devices). Our notation for current injection � 9 suggests that there
is a single device at each bus 9 . This simplifies notation and loses no generality. If

there are multiple devices connected to bus 9 , e.g., a non-ideal voltage source
⇣
⇢ 9 , IE

9

⌘
,

a non-ideal current source
⇣
� 9 , H2

9

⌘
, and a bus shunt admittance H0

9
or equivalently its

impedance I8
9
=

⇣
H
0

9

⌘�1
, as shown in Figure 4.9. then � 9 is the net current injection

networkVj

Ej
Jj

bus j

zj
v

yj
c yj

a

Figure 4.9 Multiple devices connected to the same bus.

from bus 9 to the rest of the network:

� 9 =
⇢ 9 �+ 9
I
E

9|   {z   }
voltage source

+
⇣
� 9 � H29+ 9

⌘
|        {z        }
current source

� H
0

9
+ 9|{z}

shunt admittance
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This assumes all voltages are defined with respect to the ground and if a single-phase
device is the per-phase model of a three-phase . configured device, then its neutral is
grounded directly. Then (4.10a) becomes

⇢ 9 �+ 9
I
E

9

+
⇣
� 9 � H29+ 9

⌘
� H0

9
+ 9 = ©≠

´
’
:: 9⇠:

H
B

9:
+ H

<

9 9

™Æ
¨
+ 9 �

’
:: 9⇠:

H
B

9:
+: , 9 2 #

⇤

In the rest of this subsection we collect some analytical properties of the admittance
matrix . , particularly on their invertibility. Invertibility is of interests because given
� 2 C#+1 we may be interested in inverting . to obtain + 2 C#+1 from � = .+ as
discussed in Chapter 4.2.5. The inverse /bus := .�1 is called a bus impedance matrix
or an impedance matrix and is useful for fault analysis (which we will not cover in this
book). The admittance matrix . can be constructed easily by inspection of a network
graph or its one-line diagram as specified by (4.10c). It inherits the sparsity structure
of the network graph. The impedance matrix / on the other hand cannot be easily
inferred from the one-line diagram and is usually dense even for a sparse network.
LU decomposition can be used for both computing / and solving + from � = .+ (see
Chapter 4.2.5).

We first consider the case where the shunt admittances of lines are negligible, i.e.,
H
<

9 9
= 0 for all 9 2 # , so that all row sums of . are zero. In this case . is not invertible

and we present its pseudo-inverse. We then discuss su�cient conditions under which
. with nonzero shunt admittances is invertible. We often assume C4.1 holds in this
section and will explicitly state it where it is needed.

4.2.3.2 Pseudo-inverse and Takagi decomposition

Suppose H<
9 9
= 0 for all 9 2 # so that. has zero row (and hence column) sums.2 Then.

is not invertible. Its pseudo-inverse always exists and can be obtained through singular
value decomposition (see Chapter A.6 for singular value decomposition and Chapter
A.7 for pseudo-inverse). Let .̄ denote the componentwise complex conjugate of. , i.e.,
[.̄ ] 9: =

�
. 9:

�H. Then . = .T =
�
.̄

�H. Let the singular value decomposition of . be

. = *⌃,H

where ⌃ := diag (f0, · · · ,f# ) is a (# +1) ⇥ (# +1) real nonnegative diagonal matrix
whose diagonal entries f9 � 0, called the singular values of . , are the nonnegative
square roots of the eigenvalues of ..̄ , and *,, 2 C(#+1)⇥(#+1) are unitary matrices
(see discussion after Theorem A.11 in Chapter A.6 for their derivation). The pseudo-
inverse of . is then

.
† :=,⌃†*H

2 If . were real symmetric with zero row sums, then its rank is # and its null space is span(1) when the
network is connected. This property may not hold when . is complex symmetric; see Exercise 4.2 for a
su�cient condition for this property.
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where ⌃† is the real nonnegative diagonal matrix obtained from ⌃ by replacing the
nonzero singular values f9 by 1/f9 .

If null(. ) =span(1) then, for each current vector � with 1
T
� = 0, there is a subspace

of solutions to � = .+ given by

+ = .†
� + W1, W 2 C

parametrized by W. Hence+ is unique up to an arbitrary reference voltage. For example
the solution+ =.†

� corresponds to a solution with W = 0. Alternatively W can be chosen
so that +0 = 1\0� at bus 0. If null(. ) �span(1) then � needs to be orthogonal to all
vectors in null(. ) for � = .+ to have a solution for + .

Under assumption C4.1, . is symmetric. Since it is generally not Hermitian, it may
not be unitarily diagonalizable. A matrix is unitarily diagonalizable if and only if it is
normal (Theorem A.13 in Appendix A.6).. may or may not be normal. See Exercise 4.3
for su�cient conditions under which . is normal and hence unitarily diagonalizable.
Even when . is not normal, it can still be diagonalized but the unitary matrix * may
consist of neither the singular vectors nor the eigenvectors of . , according to Theorem
A.17 in Appendix A.6.

Theorem 4.1 (Takagi decomposition of. ). Suppose H<
9 9
= 0 for all 9 2 # and condition

C4.1 holds. There exists a unitary matrix * 2 C(#+1)⇥(#+1) and a real nonnegative
diagonal matrix⌃ :=diag(f1, . . . ,f#+1) such that. =*⌃*T where the diagonal entries
f9 � 0 of ⌃ are the singular values of . . ⇤

Since*T <*H in general, the Takagi decomposition is generally di�erent from the
singular decomposition of . and therefore .† is generally not equal to*⌃†*T.

4.2.3.3 Inverse of .

In this subsection we derive the inverse of . , assuming it is invertible, in terms of its
real and imaginary parts when either is invertible. Using the result in this subsection
we will study conditions under which . is invertible in Chapter 4.2.3.4.

Let. =:⌧+ i⌫with⌧,⌫ 2R(#+1)⇥(#+1) . Let / := '+ i- with ',- 2R(#+1)⇥(#+1) .
By definition .�1 exists and is equal to / if and only if there exist unique (',-) such
that /. = ./ = �, the identity matrix. Consider

./ = (⌧ + i⌫) (' + i-) = (⌧'�⌫-) + i(⌫' +⌧-) = �

or 
⌧ �⌫
⌫ ⌧

�
|      {z      }

"


'

-

�
=


�

0

�
(4.13a)
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Therefore .�1 exists if and only if the matrix " :=

⌧ �⌫
⌫ ⌧

�
is nonsingular. Suppose

⌧ is nonsingular. According to Theorem A.4 in Appendix A.3.1, " is nonsingular if
and only if the Schur complement "/⌧ :=⌧ +⌫⌧�1

⌫ of ⌧ is nonsingular (given that
⌧ is nonsingular). Moreover the inverse of " is

"
�1 =


("/⌧)�1 ("/⌧)�1

⌫⌧
�1

�⌧�1
⌫("/⌧)�1

⌧
�1�⌧�1

⌫("/⌧)�1
⌫⌧
�1

�

Hence if both ⌧ and "/⌧ are nonsingular, then . is nonsingular and, from (4.13a),
its inverse / := ' + i- is given by

'

-

�
=


("/⌧)�1

�⌧�1
⌫("/⌧)�1

�
=


(⌧ +⌫⌧�1

⌫)�1

�⌧�1
⌫(⌧ +⌫⌧�1

⌫)�1

�
(4.13b)

Suppose ⌫ is nonsingular. Then (4.13a) can be written equivalently as
⌫ ⌧

⌧ �⌫

�
|      {z      }

"
0


'

-

�
=


0
�

�
(4.14a)

Applying again Theorem A.4 in Appendix A.3.1, " 0 is nonsingular if and only if
the Schur complement " 0/⌫ := �⌫ �⌧⌫�1

⌧ of ⌫ is nonsingular (given that ⌫ is
nonsingular). Moreover the inverse of " 0 is

"
0�1 =


⌫
�1 +⌫�1

⌧ (" 0/⌫)�1
⌧⌫
�1 �⌫�1

⌧ (" 0/⌫)�1

�(" 0/⌫)�1
⌧⌫
�1 (" 0/⌫)�1

�

Hence if both ⌫ and " 0/⌫ are nonsingular, then . is nonsingular and, from (4.14a),
its inverse / := ' + i- is given by

'

-

�
=


�⌫�1

⌧ (" 0/⌫)�1

(" 0/⌫)�1

�
=


⌫
�1
⌧ (⌫+⌧⌫�1

⌧)�1

�(⌫+⌧⌫�1
⌧)�1

�
(4.14b)

To recap, . is invertible when both ⌧ and "/⌧ are invertible or when both ⌫

and " 0/⌫ are invertible. When neither ⌧ nor ⌫ is invertible, . = ⌧ + i⌫ may still be
invertible though its inverse / := ' + i- is not given by (4.13b) or (4.14b) (Exercise
4.4).

4.2.3.4 Properties of .

We now use (4.13)(4.14) to study the invertibility of . . Nonzero shunt admittances do
not guarantee the invertibility of . . A strictly diagonally dominant matrix is invertible
(Theorem A.8 in Appendix A.3). Shunt admittances however does not guarantee strict
diagonal dominance, i.e., |.88 | >

Õ
9: 9<8 |.8 9 | may not hold for some 8. This can be the

case for a transmission line since the susceptances of line charging admittances and
those of series admittances are typically of di�erent signs. Strict diagonal dominance
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is however only su�cient for invertibility and a network of transmission lines typically
has an invertible . (see Remark 4.3). We now discuss two su�cient conditions for .
to be invertible.

The first su�cient condition builds on (4.13) and (4.14). It ensures both⌧ and "/⌧
are nonsingular, or both ⌫ and " 0/⌫ are nonsingular. Recall that a real matrix � is
positive definite, denoted � � 0, if � is symmetric and ET

�E > 0 for all real vectors E
(See Remark A.1 in Appendix A.5). A positive definite matrix is nonsingular since all
its eigenvalues are strictly positive. A real matrix � is negative definite, denoted � � 0,
if �� � 0.

Theorem 4.2. Consider a complex symmetric matrix . = ⌧ + i⌫ (i.e., . satisfies
condition C4.1).

1 If Re(. ) � 0 then .�1 exists, is symmetric, and Re(.�1) � 0.
2 If Im(. ) � 0 then .�1 exists, is symmetric, and Im(.�1) � 0.

Proof For part 1, suppose Re(. ) = ⌧ � 0. The Schur complement "/⌧ of ⌧ is,
from (4.13a), "/⌧ := ⌧ + ⌫⌧�1

⌫. Since ⌫ = ⌫T and ⌧,⌧�1 are positive definite,
"/⌧ := ⌧ + ⌫⌧�1

⌫ � 0. Therefore both ⌧ and "/⌧ are nonsingular, and hence
. is nonsingular according to Theorem A.4 in Appendix A.3.1. It also implies that
Re(.�1) � 0 since, from (4.13b), Re(.�1) = ("/⌧)�1 which is positive definite since
"/⌧ is.

Finally if / :=.�1 then / is the unique matrix such that ./ = /. = � where � is the
identity matrix. Then

/
T
.

T = .
T
/

T = /
T
. = ./

T = �

Hence /T = .�1. Since inverse is unique, /T = / , i.e., .�1 is (complex) symmetric.

Part 2 follows the same argument and is left as Exercise 4.5. (Also see Exercise 4.6
for an alternative proof of the nonsingularity of . .) ⇤

Remark 4.2 (Generalization). Theorem 4.2 holds with small modifications as long as
either Re(. ) or Im(. ) is not indefinite. Specifically if . is complex symmetric then

1 .
�1 exists and is symmetric if (a) Re(. ) � 0; or (b) Re(. ) � 0; or (c) Im(. ) � 0;

or (d) Im(. ) � 0.
2 (a) If Re(. ) � 0 then Re(.�1) � 0; and (b) if Re(. ) � 0 then Re(.�1) � 0.
3 (a) If Im(. ) � 0 then Im(.�1) � 0; and (b) if Im(. ) � 0 then Im(.�1) � 0.

⇤

The second set of su�cient conditions for the invertibility of . is in terms of the
series admittances HB

9:
and shunt admittances H<

9:
. These conditions ensure either
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Re(. ) or Im(. ) is either positive or negative definite, and hence . is nonsingular by
Theorem 4.2 and Remark 4.2.

Let . = ⌧ + i⌫, i.e., for all ( 9 , :) 2 ⇢ ,

H
B

9:
=: 6B

9:
+ i1

B

9:
, H

<

9:
=: 6<

9:
+ i1

<

9:
, H

<

: 9
=: 6<

: 9
+ i1

<

: 9

Recall H<
9 9

:=
Õ
:: 9⇠: H

<

9:
and let 6<

9 9
:=

Õ
:: 9⇠: 6

<

9:
, 1<

9 9
:=

Õ
:: 9⇠: 1

<

9:
. Previous discus-

sion implies that, for. to be invertible, it is necessary to have at least one nonzero shunt

element. Additional conditions on
⇣
6
B

9:
,6<
9:

,6<
: 9

⌘
are needed to guarantee invertibility,

as follows.

C4.2: For all lines ( 9 , :) 2 ⇢ , 6B
9:

,6<
9:

,6<
: 9

are nonnegative.

C4.3a: For all buses 9 2 # , 6<
9 9

:=
Õ
:::⇠ 9 6

<

9:
< 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 6<
9:
< 0.

C4.3b: For all lines ( 9 , :) 2 ⇢ , 6B
9:
< 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 6<
9
0
:
0 < 0.

Condition C4.2 can be replaced by: for all lines ( 9 , :) 2 ⇢ , all nonzero 6B
9:

,6<
9:

,6<
: 9

have the same sign, and the invertibility conditions below will still hold with obvious
modifications. Indeed if 6B

9:
,6<
9:

,6<
: 9

are all nonpositive then the proof below shows
that Re(. ) � 0 (see Remark 4.2).

Theorem 4.3. Suppose the network is connected and the admittance matrix. satisfies
condition C4.1. If C4.2 and one of C4.3a and C4.3b hold, then

1 Re(. ) � 0.
2 .

�1 exists, is symmetric, and Re(.�1) � 0.

Proof Recall that Re(. ) =: ⌧ 2 R(#+1)⇥(#+1) is given by ⌧ 9: = �6B
9:

if 9 ⇠ : ,Õ
8: 9⇠8 (6B98 +6<98) if 9 = : , and 0 otherwise. Hence for any nonzero vector d 2 R#+1 we

have

d
T
⌧d =

’
9

’
:

d 9 d:⌧ 9: =
’
9

©≠
´
’
:: 9⇠:
�d 9 d:6B

9:
+ d

2
9

’
8: 9⇠8

(6B
98
+6<

98
)™Æ
¨

=
’

( 9,:)2⇢

⇣
d

2
9
�2d 9 d: + d2

:

⌘
6
B

9:
+

’
92#

d
2
9
6
<

9 9

=
’

( 9,:)2⇢

�
d 9 � d:

�2
6
B

9:
+

’
92#

d
2
9
6
<

9 9

Every summand is nonnegative by C4.2. Moreover if C4.3a holds then the second
summation is strictly positive since d < 0. If C4.3b holds then for the first summation
to be zero, d 9 = d: . Since the network is connected this implies d 9 = d1 for all 9 .
Then the second summation becomes

Õ
9
d

2
9
6
<

9 9
� d2

16
<

9
0
:
0 > 0 since d < 0. Therefore

Re(. ) = ⌧ � 0. Theorem 4.2 then completes the proof. ⇤
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Instead of
⇣
6
B

9:
,6<
9:

,6<
: 9

⌘
conditions on

⇣
1
B

9:
,1<
9:

,1<
: 9

⌘
can also ensure the invert-

ibility of . .

C4.4: For all lines ( 9 , :) 2 ⇢ , 1B
9:

,1<
9:

,1<
: 9

are nonpositive.

C4.5a: For all buses 9 2 # , 1<
9 9

:=
Õ
:::⇠ 9 1

<

9:
< 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 1<
9:
< 0.

C4.5b: For all lines ( 9 , :) 2 ⇢ , 1B
9:
< 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 1<
9
0
:
0 < 0.

As before C4.2 can be replaced by: for all lines ( 9 , :) 2 ⇢ , all nonzero 1B
9:

,1<
9:

,1<
: 9

have the same sign, and the invertibility conditions below will still hold with obvious
modifications.

Theorem 4.4. Suppose the network is connected and the admittance matrix. satisfies
condition C4.1. If C4.4 and one of C4.5a and C4.5b hold, then

1 Im(. ) � 0.
2 .

�1 exists, is symmetric, and Im(.�1) � 0.

Proof The proof is similar to that for Theorem 4.3. For Im(. ) =: ⌫, for any nonzero
real vector d, the same calculation yields

d
T
⌫d =

’
( 9,:)2⇢

�
d 9 � d:

�2
1
B

9:
+

’
92#

d
2
9
1
<

9 9

Every summand is nonpositive by C4.4. Moreover if C4.5a holds then the second
summation is strictly negative since d < 0. If C4.5b holds then for the first summation
to be zero, d 9 = d1 for all 9 since the network is connected. Then the second summation
becomes

Õ
9
d

2
9
1
<

9 9
 d2

11
<

9
0
:
0 < 0 since d < 0. Therefore Im(. ) = ⌫ � 0. Theorem 4.2

then completes the proof. ⇤

Remark 4.3 (Transmission line). A transmission line ( 9 , :) typically has nonnegative
series conductance 6B

9:
� 0 and negative series susceptance 1B

9:
< 0 (inductive line). Its

shunt conductances 6<
9:
� 0 are usually nonnegative, but shunt susceptances 1<

9:
� 0

are usually nonnegative (capacitive).

1 Hence the conditions in Theorem 4.3 are usually satisfied for transmission lines
(but not for transformers; see Example 4.4).

2 Since 1
B

9:
< 0 but 1<

9:
� 0 for a typical transmission line, condition C4.4 in

Theorem 4.4 is usually not satisfied.

⇤

Remark 4.4 (Distribution feeder test systems). 1 The validity of Re(.�1) � 0 has
been checked on a set of test distribution feeders in [11, Section VI] ....
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The conditions in Theorems 4.3 and 4.4 are su�cient but not necessary. The next
example shows that, even though Condition C4.2 in Theorem 4.3 is usually not satisfied
for a transformer, the admittance matrix may nonetheless be nonsingular.

Example 4.4 (Su�ciency only). Consider Example 4.1. An alternative solution ap-
proach is to introduce an internal node 3 on the primary side of the ideal transformer,
not the secondary side as in Example 4.1. 3 Then the parameters of lines (1,3) and
(2,3) are

(HB13, H<13, H<31) := ( H̃B ,0, H̃<)
(HB23, H<23, H<32) := (=H, (1�=)H,=(=�1)H)

where = is the voltage gain of the transformer, H is the series admittance of the line
and ( H̃B , H̃<) are the series and shunt admittances of the transformer. The admittance
matrix is therefore

. =
266664
H̃
B 0 �H̃B

0 H �=H
�H̃B �=H H̃

B + H̃< +=2
H

377775
Let the admittances be of the form:

H =: 6B + i1
B , H̃

B =: 6̃B + i1̃
B , H̃

< =: i1̃
<

and suppose 6B , 6̃B > 0, 1B , 1̃B  0, and 1̃< � 0. We now show that the admittance
matrix. does not satisfy condition C4.2 in Theorem 4.3, but. is invertible if and only
if 1̃< > 0.

We have

H
B

13 = H
B

31 = 6̃
B + i1̃

B , H
B

23 = H
B

32 = =6
B + i=1

B

H
<

11 = 0, H
<

22 = (1�=)6B + i(1�=)1B , H
<

33 = =(=�1)6B + i
�
=(=�1)1B + 1̃<

�
Hence condition C4.1 is satisfied but C4.2 is not since 6<23 := (1� =)6B and 6<32 :=
=(=�1)6B have opposite signs unless = = 1. For any complex symmetric matrix .̂ with
line parameters ( ĤB

9:
, Ĥ<
9:

, Ĥ<
: 9
), for any nonzero vector UH, one can show (Exercise 4.9)

U
H
.̂U = ©≠

´
’

( 9,:)2⇢
6̂
B

9:

��
U 9 �U:

��2 + ’
92#

6̂
<

9 9
|U 9 |2™Æ

¨
+ i

©≠
´

’
( 9,:)2⇢

1̂
B

9:

��
U 9 �U:

��2 + ’
92#

1̂
<

9 9
|U 9 |2™Æ

¨
Hence

Re
⇣
U

H
.U

⌘
=

⇣
6̃
B |U1�U3 |2 +=6B |U2�U3 |2

⌘
+

⇣
(1�=)6B |U2 |2 +=(=�1)6B |U3 |2

⌘
= 6̃B |U1�U3 |2 + 6

B |U2�=U3 |2

Therefore

Re
⇣
U

H
.U

⌘
= 0 if and only if U1 = U3 =

U2

=

(4.15)

3
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On the other hand

Im
⇣
U

H
.U

⌘
=

⇣
1̃
B |U1�U3 |2 +=1B |U2�U3 |2

⌘
+

⇣
(1�=)1B |U2 |2 +

�
=(=�1)1B + 1̃<

�
|U3 |2

⌘
= 1; |U1�U3 |2 + 1

B |U2�=U3 |2 + 1̃
< |U3 |2

In light of (4.15), if 1̃< > 0 then UH
.U = 0 if and only if U1 = U2 = U3 = 0. Hence if

1̃
<
> 0 then . is invertible.

Conversely if 1̃< = 0 then there exists nonzero U 2 C3 with UH
.U = 0. Exercise 4.8

says that, since . is complex symmetric (but not Hermitian), this does not necessarily
imply .U = 0 and hence may not imply that . is singular. Using the admittance matrix

given above, however, it can be verified that, when H< = i1̃
< = 0, U :=

⇥
1 = 1

⇤T
is

indeed an eigenvector of. corresponding to zero eigenvalue. Hence. is singular if the
(only) shunt element 1̃< in the model is zero, even when H<22 and H<33, which originate
from the e�ect of an ideal transformer, are nonzero. ⇤

4.2.4 Kron reduction ./.22 and its properties

In many applications we are interested in the relation between the current injections
and voltages at only a subset #red ⇢ # of the buses. For example we are interested
in the external behavior of a system defined by the relationship between currents and
voltages of the end devices. In this subsection we define Kron reduction that describes
the relation between the nodal voltages and current injections at buses in #red and
study its properties.

4.2.4.1 Kron reduction ./.22

Denote the number of buses in #red also by #red. Without loss of generality we can
partition the buses such that �1 2 C#red denotes the first #red current injections and
�2 the remaining # + 1�#red current injections. Similarly partition the voltages into
(+1,+2) with +1 2 C#red , +2 2 C#+1�#red . Partition the admittance matrix . so that

�1

�2

�
=


.11 .12

.21 .22

�
|       {z       }

.


+1

+2

�

If .22 is invertible then we can eliminate +2 by substituting +2 = �.�1
22 .21+1 +.�1

22 �2 to
obtain ⇣

.11�.12.
�1
22 .21

⌘
+1 = �1 � .12.

�1
22 �2 (4.16)

The #red ⇥ #red matrix ./.22 := .11 �.12.
�1
22 .21 is the Schur complement of .22 of

matrix . (see Appendix A.3 for its properties). It can be interpreted as the admittance
matrix of the reduced network consisting only of buses in #red and describes the
e�ective connectivity and line admittances of the reduced network. The quantity �1 �
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.12.
�1
22 �2 describes the e�ective current injections at these buses. This is called a Kron

reduction of network⌧. If. is complex symmetric, its Kron reduced admittance matrix
./.22 is also complex symmetric and hence satisfies Assumption C4.1 (Exercise 4.10).
Two buses 9 and : are adjacent in the Kron-reduced network, i.e., [./.22] 9: < 0, if
and only if 9 and : are adjacent in the original graph (i.e., . 9: < 0) or if there is a path
in the original graph that connects 9 and : .

Example 4.5 (Kron reduction). Consider the network shown in Figure 4.10(a). Under

1

2 3

4

(a) Original network

1

2 3

(b) Kron reduced network

Figure 4.10 Kron reduction: #red := {1,2,3} with internal bus 4. While the original network is
a tree, the Kron reduced network is fully connected.

condition C4.1 its admittance matrix . is (0 and symmetric entries are omitted for
simplicity)

. :=

266666664

H
B

14 + H<11 �HB14
H
B

24 + H<22 �HB24
H
B

34 + H<33 �HB34Õ
9
H
B

94 + H<44

377777775
with .22 :=

Õ
9
H
B

94 + H<44. The Schur complement ./.22 of .22 is

.11 � .12.
�1
22 .21

=
266664
H
B

14 + H<11
H
B

24 + H<22
H
B

34 + H<33

377775
� 1

.22

266664
�HB14
�HB24
�HB34

377775
⇥
�HB14 �HB24 �HB34

⇤

=

266666664

H
B

14
.22

⇣
H
B

24 + HB34

⌘
+

�
H
<

11 +W HB14

� �HB14H
B

24
.22

�HB14H
B

34
.22

H
B

24
.22

⇣
H
B

14 + HB34

⌘
+

�
H
<

22 +W HB24

� �HB24H
B

34
.22

H
B

34
.22

�
H
B

14 + HB24

�
+

⇣
H
<

33 +W HB34

⌘
377777775

where W := H<44/.22 = H<44/
⇣Õ

9
H
B

94 + H<44

⌘
. The Kron reduced network corresponding to

./.22 is fully connected as shown in Figure 4.10(b).

The e�ective current injections in the Kron reduced network are

266664
�1

�2

�3

377775
� .12.

�1
22 �3 =

266664
�1

�2

�3

377775
+

266664
H
B

14
H
B

24
H
B

34

377775
�3

.22
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⇤

An admittance matrix . has zero row, and hence column, sums if and only if all
line charging admittances are zero, H<

9:
= H<

: 9
= 0 for ( 9 , :) 2 ⇢ . In that case the Kron-

reduced admittance matrix ./.22 also has zero, and hence column, sums (Exercise
4.10). The converse may not hold.

Given current injections � = (�1, �2), we can obtain +1 in terms of the Schur com-
plement ./.22 and the e�ective current injections:

+1 =
⇣
.11�.12.

�1
22 .21

⌘�1 ⇣
�1 � .12.

�1
22 �2

⌘

In many applications current injections �2 = 0. For example the buses in # \#red

represent internal buses without generators or loads (see Example 4.1). Then (4.16)
reduces to:

�1 =
⇣
.11�.12.

�1
22 .21

⌘
|                {z                }

. /.22

+1

and the reduced network is described by the Schur complement ./.22 that directly
relates +1 and �1.

4.2.4.2 Properties of .22

We now study su�cient conditions for the existence of Kron reduction, i.e., of .22.
The principal submatrix.22 may not be strictly diagonal dominant nor invertible.4 The
situation is similar to the invertibility of . and Theorems 4.3 and 4.4 to .22 and their
proofs extend directly to its submatrix .22.

Let � ( # denote the set of buses corresponding to .22 and assume � is a strict
subset of # . For the rest of this subsection denote the ( 9 , :) entry of a matrix " by
" [ 9 , :], e.g., . [ 9 , :],.22 [ 9 , :]. Note that the indices 9 , : of .22 take values in �, e.g.,
if .22 corresponds to the last = buses, they run from # � =+2, . . . ,# +1, not 1, . . . ,=.
The argument is similar to that for the invertibility of . . By definition .22 is singular
if and only if zero is an eigenvalue of .22. 5 If _ is an eigenvalue and U 2 C= is a
corresponding eigenvector then

U
H
.22U =

’
92�

’
:2�

. [ 9 , :]UH
9
U: = _ | |U | |22 (4.17)

where | | · | |2 denotes the Euclidean norm. Hence for .22 to be invertible it is su�cient,
but not necessary, that UH

.22U < 0 for all nonzero vectors U 2 C= (see Exercise 4.8).

4 This is in contrast to the Laplacian matrix. = ! in the DC power flow model for which a strict principal
submatrix is always strictly diagonally dominant and hence invertible. See Chapter 4.6.2.

5
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We have from (4.10c)

.22 [ 9 , 9] =
’

:8�:( 9,:)2⇢
H
B

9:
+

’
:2�:( 9,:)2⇢

H
B

9:
+ H

<

9 9
, 9 2 �

Substituting this and . [ 9 , :] = �HB
9:

for 9 ⇠ : into (4.17) we have

U
H
.22U =

’
92�

©≠
´
©≠
´

’
:8�:( 9,:)2⇢

H
B

9:
+

’
:2�:( 9,:)2⇢

H
B

9:
+ H

<

9 9

™Æ
¨
|U 9 |2 �

’
:2�:( 9,:)2⇢

H
B

9:
U

H
9
U:

™Æ
¨

=
’

9,:2�:( 9,:)2⇢

⇣
H
B

9:
|U 9 |2� HB

9:
U

H
9
U: � HB

: 9
U

H
:
U 9 + HB

: 9
|U: |2

⌘
+

’
92�

©≠
´

’
:8�:( 9,:)2⇢

H
B

9:
+ H<

9 9

™Æ
¨
|U 9 |2

=
’

9,:2�:( 9,:)2⇢
H
B

9:

��
U 9 �U:

��2 +
’
92�

©≠
´

’
:8�:( 9,:)2⇢

H
B

9:
+ H<

9 9

™Æ
¨
|U 9 |2

where the third equality uses from H
B

9:
= HB

: 9
when condition C4.1 holds. The first

term sums over links in the subgraph induced by �. The second term sums over links
between the subgraph induced by � and that by # \ �. Recall HB

9:
=: 6B

9:
+ i1

B

9:
and

H
<

9 9
=: 6<

9 9
+ i1

<

9 9
. Then

Re
⇣
U

H
.22U

⌘
=

’
9,:2�:( 9,:)2⇢

6
B

9:

��
U 9 �U:

��2 +
’
92�

©≠
´

’
:8�:( 9,:)2⇢

6
B

9:
+ 6<

9 9

™Æ
¨
|U 9 |2(4.18a)

Im
⇣
U

H
.22U

⌘
=

’
9,:2�:( 9,:)2⇢

1
B

9:

��
U 9 �U:

��2 +
’
92�

©≠
´

’
:8�:( 9,:)2⇢

1
B

9:
+ 1<

9 9

™Æ
¨
|U 9 |2(4.18b)

The subgraph corresponding to .22 may consist of multiple connected components
⇠8 ✓ �. Each connected component ⇠8 is a disjoint set of buses that are connected to
each other and to no buses outside ⇠8 such that [8⇠8 = �. Let

⌧ 9 :=
’

:8�:( 9,:)2⇢
6
B

9:
+ 6<

9 9
, ⌫ 9 :=

’
:8�:( 9,:)2⇢

1
B

9:
+ 1<

9 9
, 9 2 � (4.19a)

Then we can rewrite (4.18) in terms of the connected components ⇠8 and ⌧ 9 ,⌫ 9 :

Re
⇣
U

H
.22U

⌘
=

’
8

©≠
´

’
9,:2⇠8 :( 9,:)2⇢

6
B

9:

��
U 9 �U:

��2 +
’
92⇠8

⌧ 9 |U 9 |2™Æ
¨

(4.19b)

Im
⇣
U

H
.22U

⌘
=

’
8

©≠
´

’
9,:2⇠8 :( 9,:)2⇢

1
B

9:

��
U 9 �U:

��2 +
’
92⇠8

⌫ 9 |U 9 |2™Æ
¨

(4.19c)

These expressions are similar to dT
⌧d and dT

⌫d in the proofs of Theorems 4.3 and
4.4 respectively. Hence Theorems 4.3 and 4.4 extend directly to .22 as stated in the
next two results.

Consider the following conditions on the conductances 6B
9:

and ⌧ 9 :
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C4.6: For all lines ( 9 , :) 2 ⇢ , 6B
9:
� 0 and for all buses 9 2 # , ⌧ 9 � 0.

C4.7a: For all buses 9 2 # , ⌧ 9 < 0,
C4.7b: For all lines ( 9 , :) 2 ⇢ , 6B

9:
< 0. Furthermore on each connected component

⇠8 there exists a bus 98 2 ⇠8 such that ⌧ 98
< 0.

Conditions C4.6 can be changed to 6B
9:

,⌧ 9 having the same sign.

Theorem 4.5. Suppose the admittance matrix . satisfies condition C4.1. If C4.6 and
one of C4.7a and C4.7b hold, then the strict principal submatrix .22 satisfies

1 Re(.22) � 0.
2 .

�1
22 exists, is symmetric, and Re

�
.
�1
22

�
� 0.

Proof The proof is similar to that for Theorem 4.3. Condition C4.6 implies that
every summand in (4.19b) is nonnegative. Moreover if C4.7a holds then the second
summation is strictly positive if U < 0. If C4.7b holds then for the first summation to be
zero, U 9 = U: for all 9 , : in each connected component⇠8 . Then the second summation
becomes, on each ⇠8 ,

Õ
92⇠8 ⌧ 9 |U 9 |2 � ⌧ 98

|U 98 |2 > 0 unless U 9 = U 98 = 0 for all 9 2 ⇠8 .
Therefore Re

�
U

H
.22U

�
> 0 if d < 0, i.e., Re(.22) � 0. Since .22 is symmetric Theorem

4.2 then completes the proof. ⇤

Consider the following conditions on the susceptances 1B
9:

and ⌫ 9 :

C4.8: 1B
9:
 0 for all lines ( 9 , :) 2 ⇢ and ⌫ 9  0 for all buses 9 2 # .

C4.9a: For all buses 9 2 # , ⌫ 9 < 0,
C4.9b: For all lines ( 9 , :) 2 ⇢ , 1B

9:
< 0. Furthermore on each connected component

⇠8 there exists a bus 98 2 ⇠8 such that ⌫ 98 < 0.

Conditions C4.8 can be changed to 1B
9:

,⌫ 9 having the same sign respectively.

Theorem 4.6. Suppose the admittance matrix . satisfies condition C4.1. If C4.8 and
one of C4.9a and C4.9b hold, then the strict principal submatrix .22 satisfies

1 Im(.22) � 0.
2 .

�1
22 exists, is symmetric, and Im

�
.
�1
22

�
� 0.

The invertibility conditions in Theorems 4.5 and 4.6 for the submatrix .22 are less
restrictive than those in Theorems 4.3 and 4.4 for . , as we explain in Remark 4.5.
Therefore if conditions of Theorem 4.3 or 4.4 are satisfied then .�1, .�1

22 and ./.22 all
exist.

Remark 4.5 (Transmission line). As discussed in Remark 4.3, for a transmission line,
we usually have 6B

9:
� 0, 1B

9:
< 0, 6<

9 9
� 0 and 1<

9 9
� 0.
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1 If all lines ( 9 , :) have strictly positive conductances, then conditions C4.6 and
C4.7b are satisfied. This is the case even with zero shunt admittances H<

9:
= H<

: 9
= 0

in which case . has zero row sums and is singular.
2 For C4.8, even though 1B

9:
and 1<

9 9
have opposite signs, the shunt susceptances

1
<

9:
are typically much smaller than the series susceptances 1B

9:
such that usually

⌫ 9 in (4.19a) has the same sign as 1B
9:

. Hence both C4.8 and C4.9a are likely to
be satisfied since 1B

9:
are usually nonzero for transmission lines.

When shunt admittances H<
9:
= H<

: 9
= 0.

When H<
9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ a symmetric admittance matrix . has zero

row and column sums and is hence singular. In this case⌧ 9 and ⌫ 9 in (4.19a) becomes

⌧ 9 :=
’

:8�:( 9,:)2⇢
6
B

9:
, ⌫ 9 :=

’
:8�:( 9,:)2⇢

1
B

9:
, 9 2 �

Hence Theorems 4.5 and 4.6 imply the following simple conditions for the invertibility
of a strict principal submtirx .22 of . .

Corollary 4.7. Suppose the admittance matrix . satisfies condition C4.1 and H<
9:

=
H
<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . Consider the strict principal submatrix .22.

1 If 6B
9:

> 0 for all lines ( 9 , :) 2 ⇢ then .�1
22 exists and is symmetric. Moreover both

Re(.22) � 0 and Re
�
.
�1
22

�
� 0.

2 If 1B
9:

< 0 for all lines ( 9 , :) 2 ⇢ then then .�1
22 exists and is symmetric. Moreover

Im(.22) � 0 but Im
�
.
�1
22

�
� 0.

For a real symmetric Laplacian matrix ! with zero row and column sums (which is
the admittance matrix of the DC power flow model studied in Chapter 4.6), Theorem
4.13 shows that any strict principal submatrix !22 is nonsingular. See Remark 4.9
for connection of the invertibility conditions of Corollary 4.8 for complex symmetric
matrices . to that in Theorem 4.13 for real symmetric Laplacian matrix !.

When not all 6B
9:

are strictly positive and not all 1B
9:

are strictly negative, then neither
Re(.22) � 0 nor Im(.22) � 0 may hold. It turns out however that Re(.22)� Im(.22) � 0
as long as 6B

9:
� 0 and 1B

9:
 0 because they cannot be zero simultaneously, i.e., IB

9:
< 0

if ( 9 , :) 2 ⇢ . This implies the nonsingularity of .22, as the following result from [12]
shows.

Theorem 4.8. Suppose the admittance matrix . satisfies condition C4.1 and H<
9:

=
H
<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . If 6B

9:
� 0 and 1B

9:
 0 for all lines ( 9 , :) 2 ⇢ then the

strict principal submatrix .22 satisfies

1 Re(.22) ⌫ 0, Im(.22) � 0, but Re(.22)� Im(.22) � 0.
2 .

�1
22 exists and is symmetric.
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Proof Write . =:⌧ + i⌫ and .22 =:⌧22 + i⌫22. Denote the ( 9 , :) element of a matrix
" by " [ 9 , :], e.g., . [ 9 , :], ⌧22 [ 9 , :], etc. Since H<

9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢

and hence . has zero row (and column) sums, each row of ⌧22 and ⌫22 are diagonally
dominant:

|⌧22 [ 9 , 9] | =

������
’

:8�:( 9,:)2⇢
6
B

9:
+

’
:2�:( 9,:)2⇢

6
B

9:

������ �
’

:2�:( 9,:)2⇢
6
B

9:
=

’
:2�::< 9

|⌧22 [ 9 , :] | , 9 2 �

|⌫22 [ 9 , 9] | =

������
’

:8�:( 9,:)2⇢
1
B

9:
+

’
:2�:( 9,:)2⇢

1
B

9:

������ �
’

:2�:( 9,:)2⇢
�1B

9:
=

’
:2�::< 9

|⌫22 [ 9 , :] | , 9 2 �

Since⌧22 and ⌫22 are real and symmetric their eigenvalues are all real. The Ger�gorin
disc theorem states that all eigenvalues of a real matrix " 2 R=⇥= lie in the union of =
discs

[=
8=1

(
I 2 C= : |I�"88 | 

’
9: 9<8

|"8 9 |
)

Therefore all eigvenvalues of the⌧22 are nonnegative and those of ⌫22 are nonpositive,
i.e., ⌧22 ⌫ 0 and ⌫22 � 0, since ⌧22 and ⌫22 are real symmetric. This implies that
⌧22�⌫22 ⌫ 0.

We now show that, indeed, ⌧22 � ⌫22 � 0 because the network is connected and
� ⇢ # is a strict subset. Since ⌧22 �⌫22 is real symmetric, consider, for any nonzero
real vector d,

d
T (⌧22�⌫22)d =

’
92�

’
:2�

d 9 (⌧22 [ 9 , :] �⌫22 [ 9 , :])d:

=
’
92�

’
:2�:( 9,:)2⇢

d 9 (�6B
9:
+ 1B

9:
)d: +

’
92�

d
2
9

©≠
´

’
:2�:( 9,:)2⇢

(6B
9:
� 1B

9:
) +

’
:8�:( 9,:)2⇢

(6B
9:
� 1B

9:
)™Æ
¨

=
’

9,:2�:( 9,:)2⇢

�
d 9 � d:

�2 (6B
9:
� 1B

9:
) +

’
92�

d
2
9
(⌧ 9 �⌫ 9 )

where the third equality uses 6B
9:

= 6B
: 9

and 1B
9:

= 1B
: 9

from C4.1. Here ⌧ 9 � ⌫ 9 =Õ
:8�:( 9,:)2⇢ (6B9: � 1B9: ) for 9 2 � and the summation is not vacuous because the

network is connected and � ( # . For every line ( 9 , :) 2 ⇢ , HB
9:
< 0 and hence 6B

9:
�

1
B

9:
> 0 since 6B

9:
� and 1

B

9:
� 0. This implies ⌧ 9 � ⌫ 9 > 0 as well for all 9 2 �.

Therefore for dT (⌧22�⌫22)d > 0 for any real vector d < 0, i.e., ⌧22�⌫22 � 0.

Finally we use ⌧22 �⌫22 � 0 to show that .22 is nonsingular (it is clear that .�1
22 is

symmetric if it exists). If .22 is singular then it has a nonzero eigenvector U = d + in

corresponding to the zero eigenvalue and hence

0 = .22U = (⌧22 + i⌫22) (d + in) = (⌧22d�⌫22n) + i (⌧22n +⌫22d)

Therefore

⌧22d�⌫22n = 0, ⌫22d +⌧22n = 0
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To solve for (d,n), subtract the second equation from the first to get (⌧22 � ⌫22)d =
(⌧22+⌫22)n . Since⌧22�⌫22 � 0 we have d = (⌧22�⌫22)�1 (⌧22+⌫22)n . Substituting
into the first equation we have

0 =
⇣
⌧22 (⌧22�⌫22)�1 (⌧22 +⌫22)�⌫22

⌘
n

=
⇣
⌧22 (⌧22�⌫22)�1

⌧22 +⌧22 (⌧22�⌫22)�1
⌫22�⌫22

⌘
n

But ⌧22 (⌧22�⌫22)�1
⌫22�⌫22 = (⌧22� (⌧22�⌫22)) (⌧22�⌫22)�1

⌫22 = ⌫22 (⌧22�
⌫22)�1

⌫22 and hence

0 =
⇣
⌧22 (⌧22�⌫22)�1

⌧22 +⌫22 (⌧22�⌫22)�1
⌫22

⌘
n

Multiplying on the left by nT we have

0 = n
T
⇣
⌧22 (⌧22�⌫22)�1

⌧22 +⌫22 (⌧22�⌫22)�1
⌫22

⌘
n

which implies n = 0 since (⌧22�⌫22)�1 � 0. But then d = (⌧22�⌫22)�1 (⌧22+⌫22)n =
0 and therefore U = d + in = 0, contradicting that the eigenvector U is nonzero. Hence
.22 is nonsingular. ⇤

4.2.4.3 Properties of ./.22

Theorem 4.2 extends directly to the Schur complement ./.22 := .11�.12.
�1
22 .

T
12.

Theorem 4.9. Consider a complex symmetric matrix . =:

.11 .12

.
T
12 .22

�
(i.e., . satisfies

condition C4.1). Suppose .22 is nonsingular.

1 If Re(. ) � 0, then (./.22)�1 exists and is symmetric. Moreover Re(./.22) � 0
and Re

�
(./.22)�1� � 0.

2 If Im(. ) � 0, then (./.22)�1 exists and is symmetric. Moreover Im(./.22) � 0
but Im

�
(./.22)�1� � 0.

Proof Since . is symmetric, .�1
22 and ./.22 are symmetric as well (Exercise 4.10).

From Theorem A.4 in Appendix A.3.1, . is nonsingular if and only if ./.22 is
nonsingular, given that .22 is nonsingular. If Re(. ) � 0 or Im(. ) � 0, Theorem 4.2
implies that .�1 exists and Re(.�1) � 0 or Im(.�1) � 0 respectively. Hence ./.22 is
nonsingular if Re(. ) � 0 or Im(. ) � 0.

Write .�1 in terms of the Schur complement ./.22 (from Theorem A.4):

.
�1 =


(./.22)�1 �(./.22)�1

.12.
�1
22

�.�1
22 .

T
12 (./.22)�1

�

�

where � :=.�1
22 +.�1

22 .
T
12 (./.22)�1

.12.
�1
22 . If Re(. ) � 0 then Theorem 4.2 implies that

Re(.�1) � 0. Hence all the principal submatrices of Re(.�1) are (symmetric and)
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positive definite. In particular Re
�
(./.22)�1� � 0. But (./.22)�1 is symmetric and

therefore Theorem 4.2 implies that Re(./.22) � 0.

If on the other hand Im(. ) � 0, then Theorem 4.2 implies that Im(.�1) � 0. Hence
its principal submatrix Im

�
(./.22)�1� � 0. But (./.22)�1 is symmetric and therefore

Remark 4.2 implies that Im(./.22) � 0. ⇤

4.2.5 Solving � = .+

Suppose we are given � 2 C#+1 and want to determine + 2 C#+1 from � = .+ . In
Chapter 4.2.3.4 we study su�cient conditions under which . is invertible. For large
networks taking the inverse of . can be di�cult computationally even when it exists.
In this section we present a common method for solving � =.+ using !* factorization
of. , i.e., factorize. into. = !* where ! is a lower triangular matrix with all diagonal
entries being 1 and * an upper triangular matrix. Any square matrix � 2 C=⇥= has an
LU factorization after possibly an appropriate re-ordering of the rows, i.e., there exists
a permutation matrix % such that %� = !* for some !,*. If � is invertible then it
admits an LU factorization without permutation (i.e., � = !* for some !,*) if and
only if all its leading principal minors are nonzero.6 In that case, the !* factorization
is unique. For a singular �, necessary and su�cient conditions for the existence and
uniqueness of !* factorization are known but are more involved.

Possibly after an appropriate permutation of . (such that e.g. .11 < 0), we can
compute the entries of ! and* recursively. From

26666666664

.00 .01 .02 · · · .0#

.10 .11 .12 · · · .1#

.20 .21 .22 · · · .2#
...

...
...

. . .
...

.# 0 .# 1 .# 2 · · · .##

37777777775
=

26666666664

1 0 0 · · · 0
!10 1 0 · · · 0
!20 !21 1 · · · 0
...

...
...

. . .
...

!# 0 !# 1 !# 2 · · · 1

37777777775

26666666664

*00 *01 *02 · · · *0#

0 *11 *12 · · · *1#

0 0 *22 · · · *2#
...

...
...

. . .
...

0 0 0 · · · .##

37777777775
we proceed as follows:

1 The 0th row of* is set to the 0th row of . since !00 = 1:

*0 9 = .0 9 , 9 = 0, . . . ,#

6 Consider a matrix � 2 C=⇥=. Let � := {81, . . . , 8: } ✓ {1, . . . ,=}, � := { 91, . . . , 9; } ✓ {1, . . . ,=}, and
�� � denote the submatrix obtained from deleting rows not in � and columns not in � .

• If : = ;, i.e., �� � is square, then the minor "� � of � is the determinant of the submatrix �� � .
• If � = � , then �� � is called a principal submatrix and "� � a principal minor of �.
• If � = � = {1, . . . , : } with :  =, then �� � is called a leading principal submatrix of order : and "� �

a leading principal minor of order :.
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2 To compute row-1 entry !10 of !, we have

.10 = !10*00 ) !10 =
.10

*00

To compute row-1 entries*1 9 of*, we have for columns 9 = 1, . . . ,# ,

.1 9 = !10*0 9 +*1 9 ) *1 9 = .1 9 � !10*0 9

3 In general, to compute row-8 entries !8 9 of ! (8 = 2, . . . ,#), we have for columns
9 = 0, . . . , 8�1,

.80 = !80*00 ) !80 =
.80

*00

.81 = !80*01 + !81*11 ) !81 =
1
*11

(.81� !80*01)

...
...

.
8 (8�1) =

8�2’
9=0

!8 9* 9 (8�1) + !8 (8�1)*(8�1) (8�1) ) !
8 (8�1) =

1
*(8�1) (8�1)

©≠
´
.
8 (8�1) �

8�2’
9=0

!8 9* 9 (8�1)
™Æ
¨

To compute row-8 entries*8 9 of* (8 = 2, . . . ,#), we have for columns 9 = 8, . . . ,# ,

.88 =
8�1’
9=0

!8 9* 98 +*88 ) *88 = .88 �
8�1’
9=0

!8 9* 98

.
8 (8+1) =

8�1’
9=0

!8 9* 9 (8+1) +*8 (8+1) ) *
8 (8+1) = .

8 (8+1) �
8�1’
9=0

!8 9* 9 (8+1)

...
...

.8# =
8�1’
9=0

!8 9* 9# +*8# ) *8# = .8# �
8�1’
9=0

!8 9* 9#

Once the factorization is obtained we have � = .+ = !*+ . Hence, given �, + can
be solved in two steps from:

� = !+̃ (4.20a)

+̃ =*+ (4.20b)

In step 1, +̃ is solved using (4.20a) by forward substitution (compute +̃1 then +̃2 and
so on). In step 2, + is solved using (4.20b) by backward substitution (compute += then
+=�1 and so on).

Example 4.6. Suppose

. =
266664
2(0.5� 9) + 90.5 �0.5+ 9 �0.5+ 9
�0.5+ 9 (0.5� 9) + 90.1 0
�0.5+ 9 0 (0.5� 9) + 90.2

377775
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Then

. =
266664

1 0 0
�0.6154+ 90.0769 1 0
�0.6154+ 90.0769 �1.6763+ 90.8960 1

377775
266664
1� 91.5 �0.5+ 9 �0.5+ 9

0 0.2692� 90.2462 �0.2308+ 90.6538
0 0 0.4682+ 91.1566

377775
Given �, + can be obtained in two steps: solve for +̃ from:

266664
�1

�2

�3

377775
=

266664
1 0 0

�0.6154+ 90.0769 1 0
�0.6154+ 90.0769 �1.6763+ 90.8960 1

377775
266664
+̃1

+̃2

+̃3

377775
and then solve for + from:

266664
+̃1

+̃2

+̃3

377775
=

266664
1� 91.5 �0.5+ 9 �0.5+ 9

0 0.2692� 90.2462 �0.2308+ 90.6538
0 0 0.4682+ 91.1566

377775
266664
+1

+2

+3

377775

4.2.6 Radial network

Suppose

• The network graph ⌧ is a (connected) tree.
• Assumption C4.1 holds (i.e., HB

9:
= HB

: 9
) and H<

9:
= H<

: 9
= 0 for all ( 9 , :) 2 ⇢ .

Distribution systems are mostly radial, i.e., its graph⌧ is a tree. The second assumption
is reasonable if all ( 9 , :) model distribution lines (not transformers) where shunt
admittances (H<

9:
, H<
: 9
) are often negligible.

Inverses of reduced incidence and admittance matrices (⇠̂,.̂ ).
Under these assumption the admittance matrix . is complex symmetric and has zero
row and column sums. Such a matrix is sometimes called a complex Laplacian matrix.
From (4.12), we can write

. = ⇠ ⇡
B

H
⇠

T (4.21)

where the incidence matrix ⇠ is defined in (4.11) and the # ⇥ # diagonal matrix

⇡
B

H
:= diag

⇣
H
B

;
, ; 2 ⇢

⌘
of series admittances HB

;
is nonsingular. Clearly⇠ is singular. The

null space null(⇠T) = span(1) and its (# +1)⇥# pseudo-inverse is (⇠T)† =⇠
�
⇠

T
⇠

��1

(Exercise 5.2). Hence . is nonsingular with null(. ) = span(1). Consider the reduced
incidence matrix ⇠̂ obtained from⇠ by removing its row corresponding to the reference
bus 0 and the reduced admittance matrix .̂ obtained from . by removing the row and
column corresponding to the reference bus 0. We now show that, for a radial network,
both of the # ⇥# matrices ⇠̂ and .̂ are invertible. Moreover the inverse .̂�1 has a very
useful structure.
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Denote by 2T
0 the first row of the incidence matrix ⇠ corresponding to bus 0 and by

⇠̂ the # ⇥# submatrix consisting of the remaining rows of ⇠:

⇠ =:

2

T
0
⇠̂

�
(4.22a)

The submatrix ⇠̂ is called the reduced incidence matrix. Then

. =

2

T
0
⇠̂

�
⇡
B

H

⇥
20 ⇠̂

T⇤ =

2

T
0⇡

B

H
20 2

T
0⇡

B

H
⇠̂

T

⇠̂⇡
B

H
20 ⇠̂⇡

B

H
⇠̂

T

�
=:


.00 .01

.10 .̂

�
(4.22b)

Hence the # ⇥ # reduced admittance matrix is .̂ = ⇠̂⇡B
H
⇠̂

T. Suppose the lines are
directed with an arbitrary orientation. Let T 9 denote the subtree rooted at bus 9 ,
including 9 , and P 9 denote the unique path from bus 0 to bus 9 . Buses : in T 9 are
called descendants of 9 . If : 2 T 9 and they are adjacent, ( 9 , :) 2 ⇢ , then 9 is called a
parent of : . We use “; 2 P 9” to mean a directed line ; in P 9 that points away from bus
0, and “�; 2 P 9” to mean a directed line ; in P 9 that points towards bus 0. The proof
of the next theorem is left as Exercise 4.11.

Theorem 4.10 (Radial network: inverses of ⇠̂ and .̂ ). Consider a radial network for
which ⌧ is a (connected) tree. Suppose assumption C4.1 holds (i.e., HB

9:
= HB

: 9
) and

H
<

9:
= H<

: 9
= 0 for all ( 9 , :) 2 ⇢ .

1 The reduced incidence matrix ⇠̂ is nonsingular and

⇥
⇠̂
�1⇤

; 9
=

8>><
>>:
�1 ; 2 P 9

1 �; 2 P 9
0 otherwise

(4.23)

Furthermore ⇠̂�T
20 = �1 where ⇠̂�T :=

⇣
⇠̂

T
⌘�1

.

2 The reduced admittance matrix .̂ is nonsingular and /̂ := .̂�1 = ⇠̂�T
⇡
B

I
⇠̂
�1, i.e.,

/̂ 9: =
’

;2P 9\P:

I
B

;
=

’
;2P 9\P:

1/HB
;

(4.24)

where ⇡B
I

:= diag
⇣
1/HB

9:
, ( 9 , :) 2 ⇢

⌘
. Hence /̂ 9: is the sum of impedances on the

common segment of the unique paths from the reference bus 0 to buses 9 and : .
3 Suppose 8 is a parent of 9 , i.e., (8, 9) 2 ⇢ and 9 2 T8 . Then

/̂ 9: � /̂8: =

(
I
B

8 9
if : 2 T 9

0 if : 8 T 9

Remark 4.6. 1 The nodal voltages and currents (+̂ , �̂) at non-reference buses are
not related by �̂ = .̂+̂ . From (4.22b) they are related by

�̂ =
⇣
⇠̂⇡

B

H
20

⌘ ⇣
2

T
0⇡

B

H
20

⌘�1
�0 +

✓
.̂ �

⇣
⇠̂⇡

B

H
20

⌘ ⇣
2

T
0⇡

B

H
20

⌘�1 ⇣
2

T
0⇡

B

H
⇠̂

T
⌘◆

|                                              {z                                              }
. /.00

+̂
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If the current injection �0 = 0 then �̂ = (./.00)+̂ where the # ⇥# matrix ./.00 is
the Kron reduction of . studied in Chapter 4.2.4.1.

2 Corollary 4.8 and Theorem 4.8 says roughly that, for a general network, su�cient
conditions for a strict leading submatrix .22, such as .̂ , to be nonsingular are
6
B

9:
> 0 for all lines ( 9 , :) 2 ⇢ or 6B

9:
� 0, 1B

9:
 0 for all ( 9 , :) 2 ⇢ . In the former

case, Re(.22) � 0 whereas in the latter case, Re(.22)� Im(.22) � 0. Theorem 4.10
shows that, for a radial network, .̂ is always nonsingular, even though the positive
definite properties may not hold.

3 The nonsingularity of .̂ and the simple structure of its inverse /̂ originate from
the inverse ⇠̂�1 in (4.23) of the reduced incidence matrix ⇠̂ of a tree graph, and
are independent of whether the “weight matrix” ⇡B

H
is real or complex, positive or

not, as long as ⇡B
H

is nonsingular. It therefore applies to the real Laplacian matrix
! := ⇠⌫⇠T of the DC power flow model of Chapter 4.6.2, the linear DistFlow
model of Chapter 5.4.2 (see Theorem 5.3), and the linearized polar-form power
flow model of Chapter 7.15. The expression (4.24) for /̂ = .̂�1 is particularly
useful for various applications in radial networks. We illustrate its application for
voltage control in Chapter 7.2 and topology identification in Chapter 7.3. ⇤

Radiality condition.

Many applications can be formulated as a constrained optimization problem, e.g.,
state estimation, voltage regulation, feeder reconfiguration, or topology identification.
Some of these applications involve computing an operational network from a set of
possibilities, e.g. feeder reconfiguration and topology identification. A common setup
in these applications assumes that a typically meshed infrastructure network is given.
Some of the lines contain switches that can be opened or closed. The switches are
configured so that at any time the operational network is a spanning tree that connects
all nodes. Let there be # +1 nodes and " � # +1 lines in the infrastructure network,
and assume without loss of generality that every line has a switch that can be configured.
Our goal is to identify/optimally choose the set of switches that are/should be closed.
As part of an optimization problem, this can be specified as two constraints:

• The number of switches that are closed should be exactly # .
• The resulting network should be connected.

These two conditions ensure that the resulting graph is a (connected) tree.

A convenient way to specify the second condition is the following linear constraint
from [13] on the reduced incidence matrix ⇠̂ of the resulting network, defined in
(4.22a), among an arbitrary set of (# + 1) ⇥ # incidence matrices ⇠. It says that a
network is a (connected) tree if and only if there is a power flow solution when all non-
reference buses inject a unit of power into the network. This property is used in [13]
for joint optimization of feeder reconfiguration and volt/var control on a distribution
grid.
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Lemma 4.11 (Connectivity). Suppose a network ⌧ has # +1 buses and # lines with
a reduced incidence matrix ⇠̂. It is connected (i.e., a tree) if and only if there exists a
line flow % 2 R# such that ⇠̂% = 1.

Proof Exercise 4.11 shows that if the network is radial and connected then ⇠̂ is
invertible, and therefore % = ⇠̂�1

1 is well defined. Conversely suppose there exists
% that satisfies ⇠̂% = 1. Since there are # + 1 buses and only # lines, the network
is connected if and only if it is a tree. Suppose then the network is not connected.
Consider a maximal connected component that does not contain the reference bus
0, and let #1 ( # denote its nodes. Without loss of generality we can partition ⇠̂
into a block-diagonal matrix according to nodes in #1 and those in its complement
#0 := # \#1:

⇠̂ =:

⇠̂0 0
0 ⇠̂1

�

where ⇠̂1 is the (full) incidence matrix of the maximal connected component #1.
Since⇠T

1 = 0 we have ⇠̂T
1 11 = 0 (whereas ⇠̂T

0 10 may not be the zero vector as ⇠̂0 is the
reduced incidence matrix of the subgraph #0 that contains bus 0). This means that 11

is in the null space of ⇠̂T
1 and therefore orthogonal to the range space of ⇠̂1, i.e., there

does not exist any %1 such that ⇠̂1%1 = 11. This contradicts ⇠̂% = 1 for some %. ⇤

4.2.7 Summary

We have explained how to model a power network as a graph with lines parameterized
by admittances (HB

9:
, H<
9:
) and (HB

: 9
, H<
: 9
). This can be described by an admittance

matrix . which is complex symmetric if and only if HB
9:

= HB
: 9

. The equation � = .+
expresses nodal current balance due to KCL. We derive structural properties of . and
its Kron reduction ./.22, especially su�cient conditions under which . is invertible
and ./.22 exists. Finally we have shown that the reduced admittance matrix .̂ of a
connected radial network is always invertible, because the reduced incidence matrix
⇠̂ is always invertible, and its inverse .̂�1 has a simple structure that we will use in
Chapters 7.2 and 7.3 for voltage control and topology identification respectively.

4.3 Network models: B+ relation

In Chapter 4.2 we model a power network by its admittance matrix . that relates
linearly the nodal current injections and voltages, � = .+ . This is simple as it involves
linear equations only. Given (+ , �) the power injection at each node 9 can be computed
as B 9 = + 9 �H

9
. All other quantities, such as line power flows or real power loss over a

network, can be computed from+ (Exercise 4.12). In many applications however loads
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and generators are not specified as current or voltage sources. They may be described
instead in terms of power injections or removals. For instance, for electric vehicle
charging, the travel need is specified in terms of the number of miles required which
translates to the amount of energy in kWh required that must be delivered by a deadline.
For example it requires roughly 3 kWh for an electric vehicle to travel 10 miles. Hence
a charging facility is often characterized by its power requirement to support a certain
electric vehicle charging capacity. In this section we present power flow equations that
describe the relation between nodal power injections B 9 and voltages+ 9 on the network.
As we will see this involves nonlinear equations which are much more di�cult to solve.

We often use B 9 to denote both the complex number ? 9 + i@ 9 2 C and the real pair
(? 9 ,@ 9 ) 2 R2 depending on the context.

4.3.1 Complex form

The bus injection model (BIM) in its complex form is defined by power balance
B 9 =

Õ
:: 9⇠: ( 9: at each node 9 where ( 9: are sending-end line powers from 9 to its

neighbors : . Given line admittances (HB
9:

, H<
9:
) and (HB

: 9
, H<
: 9
), the power flows on line

( 9 , :) 2 ⇢ are

( 9: := + 9 �
H
9:

=
⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9:

⌘H
|+ 9 |2 (4.25a)

(: 9 := +: �
H
: 9

=
⇣
H
B

: 9

⌘H ⇣
|+: |2�+:+H

9

⌘
+

⇣
H
<

: 9

⌘H
|+: |2 (4.25b)

This leads to the power flow equations that relate power injections and voltages:

B 9 =
’
:: 9⇠:

⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9 9

⌘H
|+ 9 |2, 9 2 # (4.26a)

where, from (4.10b), the total shunt admittance H<
9 9

:=
Õ
:: 9⇠: H

<

9:
associated with bus

9 is the sum of shunt admittances H<
9:

of all lines ( 9 , :) incident on bus 9 . We can also
express (4.26a) in terms of the elements of the admittance matrix . as

B 9 =
#’
:=0

.
H
9:
+ 9+

H
:

, 9 2 # (4.26b)

where . is given by:

. 9: =

8>>><
>>>:

�HB
9:

, 9 ⇠ : ( 9 < :)Õ
8: 9⇠8

⇣
H
B

98
+ H

<

98

⌘
9 = :

0 otherwise

(4.26c)

When the total shunt admittance H<
9 9
=

Õ
8: 9⇠8 H

<

98
= 0, (4.26a) reduces to

B 9 =
’
:: 9⇠:

⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
, 9 2 #
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For convenience we include +0 in the vector variable + := (+ 9 , 9 2 #) with the un-
derstanding that +0 := 1\0� is fixed. There are # +1 equations in (4.26a) in 2(# +1)
complex variables (B 9 ,+ 9 , 9 2 #).

This model does not require assumption C4.1.

Remark 4.7 (Nodal devices). If bus 9 in Remark 4.1 includes, in addition, a power
source with a fixed power injection f?

9
, then B 9 is the net bus injection (assuming all

neutrals are grounded and all voltages are defined with respect to the ground):

B 9 = �
⇣
I
EH
9

⌘�1 ⇣
|+ 9 |2�+ 9⇢H

9

⌘
|                           {z                           }

voltage source

+ + 9

⇣
� 9 � H29+ 9

⌘H

|              {z              }
current source

� H
0H
9
|+ 9 |2|    {z    }

shunt admittance

+ f
?

9|{z}
power source

and (4.26a) becomes:

�
⇣
I
EH
9

⌘�1 ⇣
|+ 9 |2�+ 9⇢H

9

⌘
+ + 9

⇣
� 9 � H29+ 9

⌘H
� H0H

9
|+ 9 |2 + f

?

9

=
’
:: 9⇠:

⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9 9

⌘H
|+ 9 |2, 9 2 #

⇤

4.3.2 Polar form

We may alternatively treat (4.26) as 2(# + 1) equations in 4(# + 1) real variables
(? 9 ,@ 9 , |+ 9 |,\ 9 , 9 2 #) where B 9 := ? 9 + i@ 9 are the complex injections and + 9 :=
|+ 9 | 4i\ 9 are the complex voltages. Let HB

9:
=: 6B

9:
+ i1

B

9:
denote the series admittance

and H<
9:

=: 6<
9:
+ i1

<

9:
the shunt admittance of line ( 9 , :) from 9 to : , and similarly

(HB
: 9

, H<
: 9
) in the opposite direction. As discussed in Remark 4.5, if ( 9 , :) models a

transmission or distribution line then usually 6B
9:
� 0, 1B

9:
< 0 (inductive line), 6<

9:
� 0,

but 1<
9:
� 0 (capacitive shunt). Moreover 1B

9:
+ 1<

9:
 0 typically since |1<

9:
| is usually

much smaller than |1B
9:
|.

Substituting all this into (4.26) the admittance matrix is defined by

. 9: =

8>>><
>>>:

�(6B
9:
+ i1

B

9:
), 9 ⇠ : ( 9 < :)Õ

8: 9⇠8
⇣
6
B

98
+6<

98

⌘
+ i

Õ
8: 9⇠8

⇣
1
B

98
+ 1<

98

⌘
9 = :

0 otherwise

and the power flow equations become:

B 9 =
’
:::⇠ 9

⇣
(6B
9:
+6<

9:
)� i(1B

9:
+ 1<

9:
)
⌘ ��
+ 9

��2 � ’
:::⇠ 9

⇣
6
B

9:
� i1

B

9:

⌘ ��
+ 9

�� |+: | 4i\ 9:
9 2 #

where \ 9: := \ 9 � \: is the voltage phase angle di�erence across each line ( 9 , :) 2 ⇢ .
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Then we can write (4.26a) in the polar form:

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 2 #(4.27a)

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 2 #(4.27b)

This model does not require assumption C4.1.

4.3.3 Cartesian form

The power flow equations (4.26) or (4.27) can also be reformulated in the real domain by
writing + 9 in terms of its real and imagineary components (2 9 ,3 9 ), i.e., + 9 =: 2 9 + i3 9 .
Then (4.27) becomes (using 2 9 = |+ 9 | cos\ 9 and 3 9 = |+ 9 | sin\ 9 )

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘ ⇣
2

2
9
+ 32

9

⌘
�

’
:::⇠ 9

⇣
6
B

9:
(2 92: + 3 93: ) + 1B

9:
(3 92: � 2 93: )

⌘
, 9 2 #(4.28a)

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘ ⇣
2

2
9
+ 32

9

⌘
�

’
:::⇠ 9

⇣
6
B

9:
(3 92: � 2 93: )� 1B

9:
(2 92: + 3 93: )

⌘
, 9 2 #(4.28b)

These are 2(# + 1) quadratic equations in 4(# + 1) variables (? 9 ,@ 9 ,2 9 ,3 9 , 9 2 #).
This model does not require assumption C4.1.

4.3.4 Types of buses

Each set of power flow equations (4.26)(4.27)(4.28) is a set of 2(# +1) nonlinear real
equations in 4(# +1) real variables (? 9 ,@ 9 , |+ 9 |,\ 9 , 9 2 #) Given any 2(# +1) of these
real variables, these equations can be used to solve for the remaining 2(# + 1) real
variables. There can be zero, unique or multiple solutions. Solving for these solutions
is the power flow or load flow problem (Chapter 4.4).

A popular formulation of the power flow problem uses the polar form where each
bus 9 is classified into one of three types based on which two of the four real variables
(? 9 ,@ 9 , |+ 9 |,\ 9 ) are specified:

• %+ bus. This is a bus where the real power injection ? 9 and the voltage magnitude
|+ 9 | are specified and the reactive power injection @ 9 and voltage angle \ 9 are to
be determined. It usually models a bus with a conventional generator.

• %& bus. This is a constant-power bus where the injection (? 9 ,@ 9 ) is specified and
the complex voltage |+ 9 | 4 9 \ 9 is to be determined. It usually models a load but
can also model a renewable generator with undispatchable generation.

• Slack bus. Bus 0 is taken as a slack bus where +0 = |+0 | \0� is specified and the
injection B0 = (?0,@0) is to be determined. This is usually used for mathematical
convenience to avoid an ill specified power flow problem that has no solution.
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A slack bus (or a set of slack buses) is needed because power needs to be balanced
over the network. For example if the resistance of every line is zero then

Õ
9
? 9 must

be zero. If all buses are %+ or %& buses then all active powers ? 9 are specified; if the
specified values do not satisfy power balance then the set of power flow equations will
have no solution. This is resolved by taking an arbitrary bus (denoted by bus 0 here)
as a slack bus with its power injection B0 unspecified in order to balance power. For
instance a distribution system with a substation at bus 0 and # constant power loads or
generations can be modeled by a slack bus and # PQ buses with+0 and (? 9 ,@ 9 , 9 2 #)
specified. The power flow problem solves the power flow equations for the # complex
voltages (+ 9 , 9 2 #), and the power injection B0 (see Chapter 4.4).

For optimal power flow problems ? 9 and |+ 9 | on generator buses or B 9 on load buses
can be variables as well. For instance economic dispatch optimizes real power gener-
ations ? 9 at generator buses; demand response optimizes demands B 9 at load buses;
and volt/var control optimizes reactive powers @ 9 at capacitor banks, tap changers, or
inverters. We will discuss optimal power flow problems in Part II of the book.

4.4 Computation methods

Suppose we are given a set of power flow equations in the bus injection model. Suppose
2(# + 1) of the 4(# + 1) real variables are specified and we are interested in solving
for the remaining variables. We now present four solution methods. These methods do
not require assumption C4.1.

An important application of iterative algorithms for solving a system of equations
is in optimization where the system of equations specify an optimality condition (e.g.
the KKT condition). We will therefore postpone the convergence analysis of iterative
algorithms to Chapter 8.6 after we have introduced a basic theory of and popular
algorithms for optimization.

4.4.1 Gauss-Seidel algorithm

Consider the power flow equations (4.26a) in the complex form. To illustrate the basic
idea consider first the case with a slack bus and load buses only.

Case 1: Given +0 and (B1, . . . , B# ), determine B0 and (+1, . . . ,+# ). The power flow
equations are:

B0 =
’
:

.
H
0:+0+

H
:

(4.29a)

B 9 =
’
:

.
H
9:
+ 9+

H
:

, 9 2 # (4.29b)
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Once we have computed (+1, . . . ,+# ), B0 can be evaluated using (4.29a). Hence the
main task is to compute (+1, . . . ,+# ) from (4.29b). We have from (4.29b):

B
H
9

+
H
9

= . 9 9+ 9 +
#’
:=0
:< 9

. 9:+: , 9 2 #

Rearrange to obtain

+ 9 =
1
. 9 9

©≠≠≠
´
B

H
9

+
H
9

�
#’
:=0
:< 9

. 9:+:

™ÆÆÆ
¨

=: 5 9 (+1, . . . ,+# ) , 9 2 #

Hence a power flow solution+ := (+1, . . . ,+# ) is a fixed point of 5 := ( 51, . . . , 5# ) with

+ = 5 (+)

The Gauss algorithm is the standard fixed point iteration + (C +1) = 5 (+ (C)), or

+1 (C +1) = 51 (+1 (C), . . . ,+# (C))
+2 (C +1) = 52 (+1 (C), . . . ,+# (C))

...

+# (C +1) = 5= (+1 (C), . . . ,+# (C))

Starting from an initial vector+ (0) (e.g.,+ 9 (0) = 1\0� pu for all 9), the Gauss algorithm
produces a sequence+ (1),+ (2), . . . . If the sequence converges to a limit+ lim then+ lim

is a fixed point of 5 and a power flow solution.

When +2 (C + 1) is to be computed, +1 (C + 1) is already known and can be used in
the computation of +2 (C +1), and so on. This is the Gauss-Seidel algorithm where the
latest value +8 (C +1) is used to compute + 9+1 (C +1) for 9 > 8:

+1 (C +1) = 51 (+1 (C),+2 (C), . . . ,+# (C))
+2 (C +1) = 52 (+1 (C +1),+2 (C), . . . ,+# (C))

...

+# (C +1) = 5# (+1 (C +1), . . . ,+#�1 (C +1),+# (C))

Case 2: Given (+0,+1, . . . ,+<) and (B<+1, . . . , B# ), determine (B0, B1, . . . , B<) and
(+<+1, . . . ,+# ). In this case, first determine (+<+1, . . . ,+# ) from the reduced set of
power flow equations (4.29b) for 9 = < + 1, . . . ,# , using the same algorithm. Then
determine (B0, B1, . . . , B<) given (+0, . . . ,+# ).

The Gauss-Seidel algorithm is simple and does not require the evaluation of any
derivatives. If the function 5 is a contraction mapping then it has a unique fixed point
+

lim and the Gauss or Gauss-Seidel algorithm converges geometrically to + lim. The
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formal definition and convergence properties of a contraction mapping are studied in
Chapter 8.6.1 (but see Exercise 4.13 for an example). Otherwise there is no guarantee
that the algorithms will converge, but if it does, it produces a fixed point which is a
power flow solution + lim. Whether it converges can depend on the choice of the initial
vector + (0), as the next example shows. The convergence of Gauss-Seidel algorithm
is studied in Chapter 8.6.2.

Example 4.7 (Fixed-point iteration). Take for an example G = 5 (G) := G2 for G 2 R as
shown in Figure 4.11. It has two fixed points Glim = 0 or 1. The fixed point iteration

x*= 0 x1x2 x0

f (x) = x2

y = x

x

(a) Convergence

x1 x2x0

f (x) = x2

y = x

x

(b) Divergence

Figure 4.11 The fixed point iteration G(C +1) = 5 (G(C)) := G2 (C) is not a contraction mapping
and its convergence depends on the initial point G(0) = G0.

G(C + 1) = 5 (G(C)) = G2 (C) converges to Glim = 0 if the initial point G(0) 2 (�1,1) and
diverges to positive infinity if |G(0) | > 1. The fixed point Glim = 0 is stable in the sense
that the iterate G(C) converges back to the origin after a small perturbation. The fixed
point Glim = 1 is unstable in the sense that G(C) leaves and will not return after a small
perturbation in the positive direction. ⇤
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4.4.2 Newton-Raphson algorithm

The Newton-Raphson algorithm is popular for iteratively solving the equation

5 (G) = 0

where G 2 R= and 5 is a vector-valued function 5 :R=!R=. The iteration is motivated
by the Taylor series expansion of 5 . Suppose we have computed G(C) and wish to
determine the next iterate G(C +1) =: G(C) +�G(C). The Taylor series of 5 around G(C) is

5 (G(C) +�G(C)) = 5 (G(C)) + � (G(C))�G(C) + higher-order terms

where � (G(C)) is the Jacobian of 5 evaluated at G(C):

� (G) :=
m 5

mG

(G) =

26666664

m 51
mG1

(G) · · · m 51
mG=

(G)
...

...
...

m 5=

mG1
(G) · · · m 5=

mG=

(G)

37777775
If we ignore the higher-order terms in the Taylor expansion and set 5 (G(C +1)) = 0 then
we have

� (G(C))�G(C) = � 5 (G(C)) (4.30)

This is illustrated in Figure 4.12. If � (G(C)) is invertible then �G(C) =

x (t +2)
x (t +1)

x (t)

f (x)

f̂ (x) = f (x(t))+J(x(t))(x−x(t))

x

Figure 4.12 Newton-Raphson algorithm: The next iterate G(C +1) is obtained by approximating
5 by its linear approximation at G(C) and setting the linear approximation 5̂ (G) = 0.

���1 (G(C)) 5 (G(C)), yielding the Newton-Raphson iteration:

G(C +1) = G(C) � ��1 (G(C)) 5 (G(C)) (4.31)

In practice we usually do not evaluate the inverse ��1 (G(C)) except for very small
systems. Instead we solve the linear equation (4.30) for �G(C). The next iterate is then
G(C +1) = G(C) +�G(C).

We now apply this method to solve the power flow equations in the polar form.
To illustrate the idea we consider the case where every bus in the network is either
the slack bus (with +0 specified and B0 unknown), a %+ bus (with (? 9 , |+ 9 |) specified
and (@ 9 ,\ 9 ) unknown), or a %& bus (with (? 9 ,@ 9 ) specified and (\ 9 , |+ 9 |) unknown).
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The idea can be extended to more general cases. As mentioned before, (? 9 ,@ 9 ) can
be evaluated directly from the power flow equations once all (\ 9 , |+ 9 |) are determined.
Hence the main task is to solve for those (\ 9 , |+ 9 |) that are not specified.

Let #?@ ✓ # be the set of %& buses where |+ 9 | (as well as \ 9 ) are unknown. We
abuse notation and use #?@ to also denote the number |#?@ | of buses in #?@ . Let

\ := (\ 9 , 9 2 #)
|+ | := ( |+ 9 |, 9 2 #?@)

i.e., \ collects all unknown phase angles and |+ | collects all unknown voltage magni-
tudes. Rewrite (4.27) as (right-hand sides are given constants):

? 9 (\, |+ |) = ? 9 , 9 2 #
@ 9 (\, |+ |) = @ 9 , 9 2 #?@

where we have abused notation to use (? 9 ,@ 9 ) to denote both power injections and as
functions of (\, |+ |) given by:

? 9 (\, |+ |) :=
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(4.32a)

@ 9 (\, |+ |) :=�
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(4.32b)

where \ 9: := \ 9 � \: . Define the function 5 : R#+#?@ ! R#+#?@ by

5 (\, |+ |) :=

�?(\, |+ |)
�@(\, |+ |)

�
:=


?(\, |+ |)� ?
@(\, |+ |)� @

�
(4.33)

where ? := (? 9 , 9 2 #), @ := (@ 9 , 9 2 #?@) are constants and

?(\, |+ |) :=

2666664

?1 (\, |+ |)
...

?# (\, |+ |)

3777775
, @(\, |+ |) :=

2666664

@1 (\, |+ |)
...

@#?@
(\, |+ |)

3777775
Our goal is to compute a root of 5 (\, |+ |) = 0 iteratively. The Jacobian of 5 is the
(# +#?@)⇥ (# +#?@) matrix

� (\, |+ |) :=

"
m?

m\

m?

m |+ |
m@

m\

m@

m |+ |

#
(4.34)

Hence the Newton-Raphson algorithm is:

1 Choose an initial point (\ (0), |+ | (0)).
2 Iterate until converge (or the maximum number of iterations has been reached):

1 Solve (�\ (C),�|+ | (C)) from

� (\ (C), |+ | (C))

�\ (C)
�|+ | (C)

�
= �


�?(\ (C), |+ | (C))
�@(\ (C), |+ | (C))

�
(4.35)
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2 Set 
\ (C +1)
|+ | (C +1)

�
:=


\ (C)
|+ | (C)

�
+


�\ (C)
�|+ | (C)

�

The right-hand side of (4.35) is defined in (4.33) and represents the mismatch in injec-
tions at iteration C. This mismatch is used to compute the increment (�\ (C),�|+ | (C))
that updates the current iterate (\ (C), |+ | (C)).

The Newton-Raphson algorithm is widely used in industry to compute power flow
solution and solve optimal power flow problems. It converges, typically quadratically,
to a solution if it starts close to a solution; see Kantorovich Theorem in Exercise 4.15.
Like the Gauss-Seidel algorithm, it may not converge if the initial point is far away
from a solution. The convergence of the Newton-Raphson algorithm is analyzed in
Chapter ??.

Remark 4.8. Usually the injection @ 9 at a %+ bus 9 must be constrained within a
range. After solving for (\, |+ |) and evaluating the resulting @ 9 at bus 9 , if it hits or
exceeds its limit then @ 9 is set to the limit and bus 9 is re-classified as a %& bus
with |+ 9 | (as well as \ 9 ) to be determined. The updated power flow equations are then
re-solved for the remaining unknown quantities.

4.4.3 Fast decoupled algorithm

We now take a closer look at the Jacobian � in (4.34). Using (4.32) it can be shown
that the diagonal blocks are (Exercise 4.16):

m? 9

m\:

=

8>>>><
>>>>:

�|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 ⇠ : , 9 , : 2 #

�@ 9 (\, |+ |) �
⇣Õ

8:8⇠ 9 1
B

98
+ 1<

98

⌘
|+ 9 |2, 9 = : , 9 2 #

(4.36a)

m@ 9

m |+: |
=

8>>>><
>>>>:

�|+ 9 |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 ⇠ : , 9 , : 2 #?@

@ 9 (\ , |+ |)
|+9 | � Õ

8:8⇠ 9
⇣
1
B

98
+ 1<

98

⌘
|+ 9 |, 9 = : , 9 2 #?@

(4.36b)



4.4 Computation methods 195

and the o�-diagonal blocks are:

m? 9

m |+: |
=

8>>>><
>>>>:

�|+ 9 |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 ⇠ : , 9 2 # , : 2 #?@

? 9 (\ , |+ |)
|+9 | + Õ

8:8⇠ 9
⇣
6
B

98
+6<

98

⌘
|+ 9 |, 9 = : , 9 , : 2 #?@

(4.36c)

m@ 9

m\:

=

8>>>><
>>>>:

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 ⇠ : , 9 2 #?@ , : 2 #

? 9 (\, |+ |) �
Õ
8:8⇠ 9

⇣
6
B

98
+6<

98

⌘
|+ 9 |2, 9 = : , 9 2 #?@

(4.36d)

Hence the sparsity of the network graph induces a sparse Jacobian matrix �.

Moreover if line losses and angle di�erences \ 9: are small then it is reasonable
to approximate 6B

9:
= 6<

9:
= 0 and sin\ 9: = 0 for all ( 9 , :) 2 ⇢ . In this case it can be

verified that the o�-diagonal blocks are approximately zero (Exercise 4.16), i.e.,

m? 9

m |+: |
⇡ 0 and

m@ 9

m\:

⇡ 0, 8 9 , :

This means that the voltage magnitudes and the real power injections (at the same or
di�erent buses) are approximately decoupled, and the voltage angles and the reactive
power injections are approximately decoupled. This motivates a fast decoupled algo-
rithm where an approximate Jacobian �̂ matrix with the o�-diagonal blocks of � set to
zero is used in place of � in the Newton-Raphson’s algorithm (step 2):

�̂ (\, |+ |) :=

"
m?

m\
0

0 m@

m |+ |

#

Then equation (4.35) to compute the increments in the Newton-Raphson algorithm is
replaced by the following equations that decouple active and reactive power:

m?

m\

(\ (C), |+ | (C)) �\ (C) = ��?(\ (C), |+ | (C)) (4.37a)

m@

m |+ | (\ (C), |+ | (C)) �|+ | (C) = ��@(\ (C), |+ | (C)) (4.37b)

There are other properties of � one can exploit to obtain symmetric matrices that
saves storage and computation in executing the exact Newton-Raphson algorithm; see
[1, p. 350–351]. The fast decoupled algorithm (4.37) can be further simplified with
more approximations; see [1, p. 353–354].

4.4.4 Holomorphic Embedding Load-flow Method (HELM)

We now explain a solution method from [14] for solving power flow equations that
adopts a very di�erent approach from those in Chapters 4.4.1, 4.4.2 and 4.4.3.



196 Bus injection models

Holomorphic functions.

A complex-valued function 5 : C! C is complex di�erentiable at I 2 C if

5
0(I) := lim

⌘2C
⌘!0

5 (I+ ⌘)� 5 (I)
⌘

(4.38)

exists. When 5
0(I) exists we will call it the complex derivative or derivative of 5 at

I 2 C. Note that 5 0(I) is generally a complex number. If 5 is complex di�erentiable at
every I 2 / ✓ C then 5 is called holomorphic on / . Complex di�erentiability in (4.38)
is a much stronger notion than di�erentiability of real-valued functions because ⌘must
approach 0 from all directions in the complex plane; see Chapter A.9 for details. The
most important property of holomorphic functions is that they are (complex) analytic,
i.e., they can be expressed as a power series. Specifically a complex-valued function
5 : / ! C on an open set / ✓ C is holomorphic on / if and only if at every point
I0 2 / there is a neighborhood ⌫X (I0) := {I 2 / : |I� I0 | < X} around I0 such that

5 (I) =
1’
:=0

0: (I� I0): , I 2 ⌫X (I0) (4.39)

wher 0: =
5
(:) (I0)
:! , i.e., 5 (I) can be expressed as a Taylor series on ⌫X (I0). The

neighborhood ⌫X (I0) is called the region of convergence for (4.39).

Power flow equations.

Suppose the voltage phasor +0 at bus 0 and power injections B := (B 9 , 9 2 #) at buses
9 < 0 are given. Bus 0 is referred to as a slack bus where its voltage+0 is specified and its
power injection B0 is a variable. Our goal is to compute a solution+ := (+ 9 , 9 2 #) 2 C#
to the complex-form power flow equations:

#’
:=0

. 9:+: =
B̄ 9

+̄ 9

, 9 2 # (4.40)

where . 9: are the 9 :th entries of the admittance matrix . 2 C(#+1)⇥(#+1) and for
0 2 C, 0̄ denotes its complex conjugate. Here is a summary of the HELM procedure
(see [14] for details).

Holomorphic embedding

Introduce a new variable _ 2 C and embed (4.40) in C#+1 so that the voltage + :=
+ (_) := (+ 9 (_), 9 2 #) becomes a vector function of _, i.e., consider the polynomial
equations

. 90+0 +
#’
:=1

. 9:+: (_) =
_B̄ 9

+̄ 9 (_̄)
, 9 2 # (4.41)
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Note that the denominator on the right-hand side is +̄ 9 (_̄), not +̄ 9 (_), in order for+ 9 (_)
to be a holomorphic function. Instead of solving (4.40) for + , HELM solves (4.41)
rewritten as:

. 90+0 +
#’
:=1

. 9:+: (_) =
_B̄ 9

+̃ 9 (_)
, .̄ 90+̄0 +

#’
:=1

.̄ 9:+̃: (_) =
_B 9

+ 9 (_)
, 9 2 # (4.42a)

+̃ 9 (_) = +̄ 9 (_̄), 9 2 # (4.42b)

for two sets of complex-valued functions (+ (_),+̃ (_)) := (+ 9 (_),+̃ 9 (_), 9 2 #).

At _ = 0, (4.42a) reduces to

. 90+0 +
#’
:=1

. 9:+: (0) = 0, .̄ 90+̄0 +
#’
:=1

.̄ 9:+̃: (0) = 0, 9 2 #

Decomposing the admittance matrix. =:

,00 ,

T
10

,10 ,11

�
according to+0 and+ := (+ 9 , 9 2

#) where,00 2 C and,11 2 C#⇥# , the system of equations above becomes

,11+ (0) = �+0,10, ,̄11+̃ (0) = �+̄0,̄10

where ,̄11 and ,̄10 are the componentwise complex conjugates of ,11 and ,10

respectively. If,11 is nonsingular then the unique solution is

+ (0) = �+0,
�1
11,10, +̃ (0) = �+̄0,̄

�1
11 ,̄10 (4.43)

Note that the solution (+ (0),+̃ (0)) satisfies (4.42b) as well. This is the solution driven
by the given voltage source +0 at bus 0 and zero injections at other buses.

The solution to the original power flow equation (4.40) corresponds to a solution
(+ (_),+̃ (_)) of (4.42) at _ = 1. HELM uses a continuation method to compute this
solution, starting from (+ (0),+̃ (0)) in (4.43).

Power series.

To show that the functions (+ 9 (_),+̃ 9 (_), 9 2 #) are holomorphic, Gröbner basis can
be used to express +̃1, (+2,+̃2), . . . , (+# ,+̃# ) in terms of +1 and reduce (4.42a) to a
polynomial equation in +1:

P(+1) :=
"’
:=0

?: (_)+ :1 = 0 (4.44)

The degree " of the polynomial in (4.44) is generally exponential in the number
# of original variables. This defines an algebraic curve which then implies that
(+ 9 (_),+̃ 9 (_), 9 2 #) are indeed holomorphic functions everywhere except at a fi-
nite number of points.

Therefore, for each 9 2 # , we can write + 9 (_) and 1/+ 9 (_) as power series in a



198 Bus injection models

neighborhood of _ = 0, from (4.39),

+ 9 (_) =
1’
8=0

0 98_
8 ,

1
+ 9 (_)

=
1’
8=0

1 98_
8 , 9 2 # (4.45)

for some sequences (0 98 , 8 � 0, 9 2 #) and (1 98 , 8 � 0, 9 2 #). Hence 1/+̃ 9 (_) =�
1/+ 9 (_H)

�H =
Õ1
8=0 1̄ 98_

8 . Substituting into (4.42) we have

. 90+0 +
#’
:=1

. 9:

1’
8=0

0:8_
8 = _B̄ 9

1’
8=0

1̄ 98_
8 , 9 2 # (4.46a)

or in vector form

+0,10 +
1’
8=0

(,1108)_8 =
1’
8=0

�
B̄ � 1̄8

�
_
8+1 (4.46b)

where B := (B 9 , 9 2 #) is the vector of injections at buses 9 < 0, and for 8 � 0, 08 :=
(0 98 , 9 2 #) and 18 := (1 98 , 9 2 #) are #-dimensional column vectors of coe�cients.
For two vectors G and H, G � H is the column vector of componentwise products, i.e.,
(G � H) 9 := G 9 H 9 . We can compute these coe�cients (08 ,18 , 8 � 0) iteratively from
(4.46), as follows. Setting _ := 0, (4.46) yields, when,11 is nonsingular,

+0,10 +,1100 = 0, =) 00 = �+0,
�1
11,10 (4.47a)

Di�erentiating successively (4.46b) with respect to _ and setting _ := 0 yields

,1101 = B̄ � 1̄0, · · · , ,1108 = B̄ � 1̄8�1, · · · , (4.47b)

Since + 9 (_)
�
1/+ 9 (_)

�
= 1 for all _, we have 1 =

�Õ1
8=0 0 98_

8
� �Õ1

8=0 1 98_
8
�

for all _ for
9 2 # , or in vector form

1# =

 1’
8=0

08_
8

!
�

 1’
8=0

18_
8

!

where 1# is the column vector of all 1s of size # . Hence

1# = 00 � 10 + (00 � 11 + 01 � 10)_ + (00 � 12 + 01 � 11 + 02 � 10)_2 + · · ·

=
’
8�0

 
8’
:=0

0: � 18�:
!
_
8 , 8_ (4.47c)

Since (4.47c) holds for all _, the coe�cients of _8 must be equal on both sides for all
8 � 0. From (4.47) we can obtain (08 ,18 , 8 � 0) iteratively: 00 from (4.47a) and then 10

from (4.47c) by equating the coe�cients of _0:

00 = �+0,
�1
11,10, 10 = 1# ↵ 00 (4.48a)

where, for two vectors G and H, G ↵ H is the column vector of componentwise division,
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i.e., (G ↵ H) 9 := G 9/H 9 . For 8 � 1, we have from (4.47b) and (4.47b) by equating the
coe�cients of _8 , assuming,11 is nonsingular,

08 = ,
�1
11

�
B̄ � 1̄8�1

�
, 18 = �

 
8’
:=1

0: � 18�:
!
↵ 00, 8 � 1 (4.48b)

With the coe�cients (08 , 8 � 0) = (0 98 , 9 2 # , 8 � 0) from (4.48), the solution + 9 (_)
is given by (4.45) as a power series in _. In practice only an approximation +̂ 9 (_) :=Õ
 

8=0 0 98_
8 of + 9 (_) with a finite number of terms is computed.

Analytic continuation.

We are interested in+ (_) := (+ 9 (_), 9 2 #) at _ = 1. Even though, for _ 2 ⌫X (0) in the
region of convergence around _ = 0,

+ 9 (_) =
1’
8=0

0 98_
8 , 9 2 #

and we have the coe�cients (08 , 8 � 0) = (0 98 , 9 2 # , 8 � 0) from (4.48), the radius
X of convergence is typically much smaller than 1 so we may not be able to simply
substitute _ = 1 into the power series as the infinite sum may not converge. To deal with
this, Padé approximation is used to approximate the power series. Padé approximation
approximates a power series by a rational function and typically has much better
convergence properties than a power series (Taylor series). The power solution + 9 (_)
is computed as the analytic continuation of the Padé approximation, starting from
+ 9 (0) in (4.43). See [14] for details.

Example 4.8 (Two-bus system [14]). ⇤

4.5 Properties of power flow solutions

Example 4.9 (Two-bus network). Consider two buses 1 and 2 connected by a line
with admittance H = 6 + i1 with 6 > 0,1 < 0. Assume zero charging admittances, and
we ignore reactive powers. Assume +1 := 1\0� and +2 = 4i\ , i.e., voltage magnitudes
are fixed at 1 pu. Then the real power injections (?1, ?2) depend on \ according to the
power flow equations in polar form are:

?1 := ?1 (\) := 6 � 6 cos\ � 1 sin\ (4.49a)

?2 := ?2 (\) := 6 � 6 cos\ + 1 sin\ (4.49b)

or in vector form

%�61 = �

cos\
sin\

�
(4.50)
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where 1 := [1 1]T and � is an invertible (indeed negative definite) matrix:

� :=

�6 �1
�6 1

�

Show that, as \ ranges from 0 to 2c, (?1 (\), ?2 (\)) traces out an ellipse.

4.6 Linear power flow model

4.6.1 Laplacian matrix !

In this section we collect some basic properties of graph Laplacian matrix ! that are
useful in the analysis of linearized models such as the DC power flow model (4.55).
In this section, ! is taken to be a real symmetric matrix with zero row and column
sums. It is the admittance matrix of the linearized power flow models. These properties
are extensively used in, e.g., electricity market (Chapter 6.4), voltage control (Chapter
7.2), topology identification (Chapter 7.3), cascading failure, and other power system
applications where a linearized model is applicable.

Consider a graph⌧ := (# ,⇢) where # := {1, . . . ,=} is a set of = nodes and ⇢ ✓ #⇥#
is a set of < := |⇢ | lines. For an undirected graph we refer to its line by ( 9 , :) 2 ⇢
or 9 ⇠ : 2 ⇢ . We assume there are no self-loops, i.e., ( 9 , 9) 8 ⇢ for any 9 2 # . We
sometimes endow the graph with an arbitrary orientation in which case we refer to
a line in ⇢ by ( 9 , :), 9 ⇠ : , or 9 ! : interchangeably. With respect to this graph
orientation, let ⇠ 2 {�1,0,1}=⇥< denote the node-by-line incidence matrix defined in
(4.11) and reproduced here:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Unless otherwise specified we usually assume ⌧ is connected.

Associated with each line ; := ( 9 , :) 2 ⇢ is a parameter 1; and let ⌫ := diag(1; , ; 2 ⇢).
A key property we assume is that 1; > 0 for all ; 2 ⇢ , so ⌫ is positive definite and
invertible. The Laplacian matrix ! associated with ⌧ is defined to be

! := ⇠⌫⇠
T (4.51a)

Since the Laplacian matrix ! is symmetric it is often simpler to treat⌧ as an undirected
graph when working with !. The entries of ! are given by (Exercise 4.17):

! 9: :=

8>><
>>:
�1 9: ( 9 , :) 2 ⇢Õ
8:8⇠ 9 18 9 9 = :

0 otherwise
(4.51b)

The defining properties of the Laplacian matrix ! are:
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• It is real symmetric. For notational convenience we define, for each ( 9 , :) 2 ⇢ , both
1 9: and 1: 9 with 1 9: = 1: 9 .

• All row sums, and column sums, are zero.
• 1; > 0 for all ; 2 ⇢ .

For the DC power flow model studied in Chapter 4.6.2, row/column sums are zero
because the shunt admittances ( H̃<

9:
, H̃<
: 9
) are assumed zero, and 1 9: > 0 becasuse

1 9: := �1̃B
9:
|+ 9 | |+: | where 1̃B

9:
< 0 are the series line susceptances and |+ 9 | are given

voltage magnitudes.

This leads to the following important property from which many other properties
of ! follow.

Lemma 4.12. For all G 2 R= we have GT
!G =

Õ
( 9,:)2⇢ 1 9: (G 9 � G: )2 � 0.

Proof We have from (4.51)

G
T
!G =

’
9

’
:

! 9:G 9G: =
’
9

G 9

©≠
´
’
8:8⇠ 9

18 9G 9 +
’
:: 9⇠:
�1 9:G:™Æ

¨
=

’
(8, 9)2⇢

18 9

⇣
G

2
8
�2G8G 9 + G2

9

⌘

=
’

(8, 9)2⇢
18 9 (G8 � G 9 )2

where the third equality follows because we have defined both 1 9: = 1: 9 for each
( 9 , :) 2 ⇢ . ⇤

An immediate consequence of the lemma is a set of useful properties in Theorem
4.13. Before presenting them we review the concept of pseudo-inverse (see Appendix
A.7 for more details).

Spectral decomposition and pseudo-inverse.

An arbitrary complex matrix � 2 C=⇥= has a singular value decomposition

� = +⌃,H

where ⌃ = diag(f9 , 9 = 1, . . . ,=) is a diagonal matrix of singular values f9 � 0, and
+ and, are unitary matrices whose columns are orthonormal sets of eigenvectors of
��

H and �H
� respectively (Theorem A.11 in Appendix A.6.1). The pseudo-inverse

of � is defined to be

�
† := ,⌃†+H

where ⌃† is a diagonal matrix obtained by replacing the positive f9 by 1/f9 in ⌃. The
main properties of pseudo-inverse are summarized in Theorem A.19 and Corollary
A.20 in Appendix A.7.



202 Bus injection models

If � 2 C=⇥= is a normal matrix then it has a spectral decomposition

� = *⇤*H =
’
9

_ 9D 9D
H
9

where _8 2 C are complex eigenvalues of � and the columns (D 9 , 9 = 1, . . . ,=) of the
unitary matrix* are an orthonormal basis ofC= (Theorem A.15 of Appendix A.6.2). If
� 2 C=⇥= is positive semidefinite (necessarily Hermitian), then the eigenvalues _ 9 � 0
are real and nonnegative. Moreover Theorem A.16 shows that the singular value
decomposition coincides with the spectral decomposition of �, i.e., � = +⌃,H =
*⇤*H and f9 = _ 9 � 0. If � 2 R=⇥= is a real positive semidefinite matrix (necessarily
symmetric by definition), then * can be taken as a real and orthogonal matrix. In this
case

�
† = *⇤†

*
T =

’
9:_ 9>0

1
_ 9

D 9D
T
9

where ⇤† is a diagonal matrix obtained by replacing the positive _ 9 by 1/_ 9 in ⇤. Let
rank � = =� : and

0 = _1 = · · · = _: < _:+1  · · ·  _=
Then

� = *⇤*T =
’
9>:

_ 9D 9D
T
9
, �

† = *⇤†
*

T =
’
9>:

1
_ 9

D 9D
T
9

(4.52)

Theorem 4.13 (Laplacian matrix !). Suppose the graph ⌧ = (# ,⇢) consists of  � 1
connected components. Consider its Laplacian matrix ! defined in (4.51).

1 ! is positive semideifinite.
2 ! is of rank =� with the null space of ! spanned by vectors that have G 9 = G:

for all buses 9 , : in the same connected component. In particular if⌧ is connected
( = 1) then ! is of rank =�1 with span(1) as its null space.

3 Suppose the graph ⌧ is connected, i.e.,  = 1. Then
• The pseudo-inverse !† of ! is given by

!
† =

✓
! + 1

=

11
T
◆�1

� 1
=

11
T =

#’
9=2

1
_ 9

E 9E
T
9

(4.53)

where 0 = _1 < _2  · · ·  _= are the eigenvalues of ! and E 9 are the corre-
sponding eigenvectors.

• Both ! and !† are symmetric and have zero row (and hence column) sums.
• We have

!!
† = !

†
! = I= �

1
=

11
T

where I= is the identity matrix of size =. Hence for all G 2 R= with 1
T
G = 0,

we have !†!G = G and !!†G = G.
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4 Suppose the graph ⌧ is connected, i.e.,  = 1. Then
• Any : ⇥ : principal submatrix " of ! is positive definite and hence invertible,

:  =�1.
• Moreover both " and its inverse "�1 are symmetric.

Proof 1 Lemma 4.12 implies that ! is positive semidefinite since 1; > 0 for all
; 2 ⇢ .

2 First we claim that E is in the null space of ! if and only if ET
!E = 0. To see

the su�ciency, we have from (4.52) that ET
!E =

Õ
9
_ 9 (DT

9
E)2. Hence ET

!E = 0
implies that DT

9
E = 0 for all 9 such that _ 9 > 0, i.e., E 2 null(!) since (D 9 ,8 9) forms

a basis of R=. Suppose E 2 null(!). Lemma 4.12 then implies that E8 = E 9 for all
buses 8, 9 in the same connected component. If #: ✓ # , : = 1, . . . , , are connected
components of the graph ⌧, then an orthonormal basis of the null space consists
of  orthogonal vectors E: whose entries are:

E
:

8
:=

1(8 2 #: )p
|#: |

, 8 = 1, . . . ,=, : = 1, . . . , 

where 1(·) is the indicator function. Hence the null space of ! has a dimension of
 . Since dim(null(!)) + rank(!) = =, rank(!) = =� .

3 Suppose now  = 1. By definition, ! is symmetric and has zero row sums. That
!
† =

Õ
9�2 (1/_ 9 )E 9ET

9
follows directly from (4.52). The formula (4.53) for !† is

proved in Exercise 4.18. The formula implies that !† is also symmetric. Its row
sum is

!
†
1 =

 ✓
! + 1

=

11
T
◆�1

� 1
=

11
T

!
1 =

✓
! + 1

=

11
T
◆�1

1 � 1

To show that this is zero multiply both sides by ! + 1
=
11

T to get:✓
! + 1

=

11
T
◆
!
†
1 = 1 �

✓
! + 1

=

11
T
◆

1 = 1 � 1 = 0

Since ! + 1
=
11

T is nonsingular, !†1 must be a zero vector, i.e., row sums of !† are
all zero.

Finally, since E 9 are orthonormal eigenvectors of !, we have from (4.53)

!!
† = !

’
9�2

1
_ 9

E 9E
T
9
=

’
9�2

E 9E
T
9
= I= �

1
=

11
T

where the last equality follows because
Õ
9�1 E 9E

T
9
= I= and E1 = 1/p=. Similarly

!
†
! = ©≠

´
’
9�2

1
_ 9

E 9E
T
9

™Æ
¨
! =

’
9�2

E 9E
T
9
= I= �

1
=

11
T

4 Consider a : ⇥ : principal submatrix " of ! with :  = � 1. Without loss of
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generality we assume " consists of the first : rows and columns of !. As in
Lemma 4.12 we have for any nonzero G 2 R:

G
T
"G =

:’
8=1

:’
9=1

!8 9G8G 9 =
:’
8=1

!88G
2
8
+

’
8:

’
9:
8< 9

!8 9G8G 9

=
’
8:

©≠≠
´
’
9
0:
8⇠ 90

18 90 +
’
9
0
>:

8⇠ 90

18 90
™ÆÆ
¨
G

2
8
+

’
8:

’
9:
8⇠ 9

�18 9G8G 9

=
’

(8, 9)2⇢
8, 9:

18 9

⇣
G

2
8
�2G8G 9 + G2

9

⌘
+

’
8:

’
9
0
>:

8⇠ 90

18 90G
2
8

=
’

(8, 9)2⇢
8, 9:

18 9 (G8 � G 9 )2 +
’
8:

’
9
0
>:

8⇠ 90

18 90G
2
8

> 0 (4.54)

where the second to last equality follows because 18 9 = 1 98 and the inequality
follows because ⌧ is connected, : < =, and G < 0. Hence " is positive definite
and hence invertible.

Since ! is symmetric, so is the : ⇥ : principal submatrix " . The inverse of any
symmetric nonsingular matrix is symmetric. To see this, first note that if " is a
nonsingular square matrix and ""̂ = �, then "̂ is unique because the 9 th column
"̂ 9 of "̂ is uniquely determined by ""̂ 9 = 4 9 . Since the inverse of " satisfies
""̂ = �, "̂ must be the inverse. If " is symmetric then ""̂

T = ("̂"T)T =
("̂")T = � where the last equality follows because "̂ is an inverse of " . This
means that "̂T is also an inverse of " and hence "̂T = "̂ , i.e., the inverse of "
is symmetric.

⇤

Hence a strict principal submatrix " of ! is always positive definite and invert-
ible, but it is not necessarily strictly diagonally dominant (only diagonally dominant)
even though 1 9: > 0 for all ( 9 , :) 2 ⇢ because strict diagonal dominance requiresÕ
9<8 |"8 9 | < |"88 | for all rows 8. The theorem is illustrated in Exercise 4.19.

Remark 4.9 (Comparison with complex symmetric admittance matrix). To summa-
rize:

1 For a complex symmetric admittance matrix . , a strict principal submatrix .22

is not always nonsingular. Theorems 4.5 and 4.6 provide su�cient conditions
(Re(.22) � 0 or Im(.22) � 0) for a strict principal submatrix.22 to be nonsingular.

2 For a complex symmetric admittance matrix . for a connected radial network, a
principal submatrix .̂ corresponding to removing any leaf node is always nonsin-
gular and .̂�1 has a simple structure, according to Theorem 4.10. By induction, this
holds for any strict principal submatrix .22 if the reduced network graph remains
a (connected) tree.
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3 For a real symmetric Laplacian matrix ! with zero row and column sums, any
strict principal submatrix " is nonsingular, according to Theorem 4.13. This is
because all o�-diagonal entries ! 9: = �1 9: , 9 < : , are nonzero and of the same
sign, resulting in a positive definite " (when 1 9: > 0). Otherwise, it is possible
for a real symmetric matrix . with zero row sums whose o�-diagonal entries . 9:
may be of di�erent signs to have a rank strictly less than =�1 (see Exercise 4.2).

Indeed one can interpret Corollary 4.8 as an extension of the result here to a complex
symmetric admittance matrix. Corollary 4.8 shows that, for a complex symmetric
admittance matrix . with zero row and column sums, if 6B

9:
> 0 for all ( 9 , :) 2 ⇢ or

if 1B
9:

< 0 for all ( 9 , :) 2 ⇢ , then indeed Re(.22) � 0 or Im(.22) � 0 respectively, and
therefore.22 is nonsingular. The proof that Re(.22) � 0 or Im(.22) � 0 is essentially the
same as that for Theorem 4.13 for a real Laplacian matrix (compare (4.54) and (4.19)).
In this sense we can regard the conditions Re(.22) � 0 or Im(.22) � 0 in Theorems
4.5 and 4.6 as the generalization of sign definiteness of o�-diagonal entries . 9: for a
complex symmetric admittance matrix . . ⇤

4.6.2 DC power flow model

We again model a power network by a connected graph ⌧ = (# ,⇢) of # +1 nodes and
" lines, where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . Each line ( 9 , :) 2 ⇢
is characterized by series admittance and shunt admittances ( H̃B

9:
, H̃<
9:
) and ( H̃B

: 9
, H̃<
: 9
).

In this section we assume H̃B
9:

= H̃B
: 9

(assumption C4.1) and H̃<
9:

= H̃<
: 9

= 0. A popular
linearized model, called the DC power flow model, makes the following additional
assumptions:

• Line losses are negligible, i.e., the series conductances 6̃B
9:
⇡ 0, so H̃B

9:
⇡ i1̃

B

9:
. The

series susceptances 1̃B
9:

< 0.
• Voltage angle di�erences are small across each line, i.e., sin(\ 9 � \: ) ⇡ \ 9 � \: for

all lines ( 9 , :) 2 ⇢ .
• Voltage magnitudes |+ 9 | are given and fixed for all buses 9 2 # .
• Ignore reactive power, so the variables in the DC power flow model are (? 9 ,\ 9 , 9 2

#).

The DC power flow model is widely used in the industry, e.g., in economic dispatch
of generators. The assumptions are reasonable for many problems in transmission
networks where the voltage magnitudes are high and real power losses are small. The
last two assumption in the model are justified because on transmission networks where
loss is low, there is decoupling between voltage angle \ 9 and reactive power @: and
between voltage magnitude |+ 9 | and real power ?: ; see Chapter 4.4.3. Hence it is
implicitly assumed that reactive power injections @: can be chosen to stabilize the
voltage magnitudes |+ 9 | separately from the determination of (? 9 ,\ 9 , 9 2 #). These
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assumptions are not suitable for distribution systems where voltages are much lower,
the ratio of line resistance to reactance is high, and reactive power is often used to
stabilize voltages. The linear branch flow model of Chapter 5.4 is more suitable for
distribution systems.

Under these assumptions, the DC power flow model is defined by (substituting
6̃ 9: = 0, H̃<

9:
= H̃<

: 9
= 0 and replace sin\ 9: with \ 9 � \: in (4.27a)):

? 9 =
’
:: 9⇠:

(�1̃B
9:
|+ 9 | |+: |) (\ 9 � \: ) =:

’
:: 9⇠:

1; (\ 9 � \: ) 9 2 # (4.55a)

where 1; := �1̃B
9:
|+ 9 | |+: | > 0 where |+ 9 |, |+: | are given voltage magnitudes. ClearlyÕ

9
? 9 =

Õ
9

Õ
:
1; (\ 9 � \: ) = 0. This is a consequence of the lossless assumption

6̃
B

9:
= 0 and H̃<

9:
= H̃<

: 9
= 0.7

We can write the DC model (4.55a) in vector form, as follows. Let ⌫ = diag(1; , ; 2
⇢) � 0 be the (weighted) susceptance matrix. Let ? := (? 9 , 9 2 #) be the power
injections at buses in # . Let \ := (\ 9 , 9 2 #) be the voltage phase angles at these buses.
Let % := (%; , ; 2 ⇢) be the real power flows on line ;. The DC power flow model is
specified by the following equations in (?,%,\):

? = ⇠%, % = ⌫⇠
T
\ (4.55b)

Eliminate % to relate voltage angles \ directly to injections ?:

? = ⇠⌫⇠T
\ =: ! \

where the (# + 1) ⇥ (# + 1) matrix ! := ⇠⌫⇠T is the Laplacian matrix of the graph
⌧. This is (4.55a). When ⌧ is connected, ! has rank # and the null space is span(1)
(Theorem 4.13). Hence, given an injection vector ? that is orthogonal to span(1), i.e.,
power is balanced over the network 1

T
? =

Õ
92# ? 9 = 0, the DC power flow equation

(4.55b) has a subspace of solutions (%,\) given by:

% = ⌫⇠
T
!
†
?, \ = !

†
? + 01, 0 2 R (4.55c)

For example we can choose 0 so that \0 = 0 at bus 0. It is important that the line flows %
are unique regardless of the choice of \ because ⇠T

1 = 0. The models (4.55a), (4.55b)
and (4.55c) are equivalent models.

There is yet another way to specify the DC power flow model. Let ⇠̂ denote the
# ⇥" reduced incidence matrix obtained from ⇠ by removing the row corresponding
to the reference bus 0. Let !̂ := ⇠̂⌫⇠̂T be the reduced Laplacian matrix. Hence !̂ can
be obtained from ! by removing its row and column corresponding to bus 0. Then
!̂ is of rank # and invertible according to Theorem 4.13. Let ?̂ := (? 9 , 9 2 #) and
\̂ := (\ 9 , 9 2 #) be the power injections and voltage angels at non-reference buses.

7 For the special case of the flat voltage profile +9 = + flat for all 9 2 # where + flat is a common nominal
voltage, e.g., + flat = 1\0�, (4.55a) is also the linearization of the polar form power flow equation
(4.27a) around the flat voltage profile and the resulting injections (?flat,@flat) = (0,0); see Exercise 7.8.
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Then, given any ?̂, the solution of (4.55b) can also be expressed in terms of !̂�1 and
( ?̂, \̂) at non-reference buses as:

% = ⌫⇠̂
T
!̂
�1
?̂, \̂ = !̂

�1
?̂ (4.55d)

This solution is unique and assumes that bus 0 is the angle reference bus, i.e., \0 := 0.
It is a special case of the solution (4.55c) in terms of the pseudo-inverse !† with 0
chosen so that \0 = 0. The solution (4.55c) is therefore more flexible since it works
for any reference bus whereas !̂ in (4.55d) generally changes when a di�erent bus is
chosen as a reference. We will mostly use !† in our analysis. The next result formally
states this relation; in particular, it shows that the line flow % is independent of the
choice of the angle reference bus or !̂.

Lemma 4.14. Consider the DC power flow model (4.55). For any injections ? with
1

T
? = 0 we have

% = ⌫⇠̂
T
!̂
�1
?̂ = ⌫⇠

T
!
†
?, \̂ = !̂

�1
?̂ (4.56)

when \0 := 0. This implies ⇠T
!
†
? = ⇠̂T

!̂
�1
?̂ and ⇠T

!
†
⇠ = ⇠̂T

!̂
�1
⇠̂.

Proof Write

⇠ =

2

T
0
⇠̂

�
, ? =


?0

?̂

�
, \ =


\0

\̂

�

where 2T
0 is the first row of ⇠ corresponding to bus 0. Then

! =

2

T
0⌫20 2

T
0⌫⇠̂

T

⇠̂⌫20 !̂

�

with !̂ = ⇠̂⌫⇠̂T and the power flow equations (4.55b) become:

?0 = 20⌫2
T
0 \0 + 20⌫⇠

T
\̂, ?̂ = ⇠̂⌫2

T
0 \0 + !̂ \̂ (4.57a)

% = ⌫
⇥
2

T
0 ⇠̂

T⇤ 
\0

\̂

�
= ⌫2

T
0\0 + ⌫⇠̂

T
\̂ (4.57b)

The power flow solution (4.56) corresponds to choosing 0 in (4.55c) so that \0 = 0
(% = ⌫⇠T

!
†
? is independent of the choice of 0 because !†1 = 0). Hence (4.57) implies

% = ⌫⇠T
!
†
? = ⌫⇠̂T

!̂
�1
?.

Finally equating % in (4.55) and (4.57) gives ⌫�1
% = ⇠

T
!
†
? = ⇠̂T

!̂
�1
?̂ for any

? with 1
T
? = 0. Substituting ? := ⇠ 9 and ?̂ := ⇠̂ 9 to be the 9 th columns of ⇠ and ⇠̂

respectively (which satisfies 1
T
? = 0), we have ⇠T

!
†
⇠ 9 = ⇠̂T

!̂
�1
⇠̂ 9 . Since this holds

for all 9 we have ⇠T
!
†
⇠ = ⇠̂T

!̂
�1
⇠̂. This completes the proof. ⇤

The quantities in the lemma are illustrated in Exercise 4.20. The lemma is general-
ized in Chapter 6.4.3.4 to the case where there can be a reference bus for angle and a
di�erent reference (slack) bus for pricing electricity (both are taken to be bus 0 here).
It is shown in Theorem 6.3 that the line flows %, and the optimal dispatch and LMP
(?⇤,_⇤) are independent of the choices of reference buses.
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Remark 4.10 (Loop flow and uniqueness of %). We call a line flow vector % a loop
flow if it satisfies power balance with zero injections, i.e., ⇠% = 0. Hence %f is a loop
flow if and only if it is in the null space of⇠. Given any balanced injection vector ? withÕ
9
? 9 = 0, the line flows % that satisfy ? = ⇠% are not unique. If % satisfies ? = ⇠%,

so does %+%f for any loop flow %f . The DC power flow model (4.55b) requires both
? = ⇠% and % = ⌫⇠T

\. The second equation ensures that loop flow %f = 0 and the
line flows % in a DC power flow solution are unique. To see this, suppose both (%,\)
and (%+%f , \̃) are power flow solutions, i.e., they satisfy

? = ⇠%, % = ⌫⇠
T
\

? = ⇠ (%+%f), %+%f = ⌫⇠
T
\̃

This implies ⇠%f = 0 and ⌫
�1
%f = ⇠T (\̃ � \) and hence %f and ⌫

�1
%f are in

orthogonal subspaces, i.e., %T
f

�
⌫
�1
%f

�
= 0 yielding %f = 0 since ⌫ is positive definite.

⇤

Power loss.

The DC power flow model assumes zero real power loss. It is possible to augment the
basic equation (4.55) by adding a loss term, as the next example shows.

Example 4.10 (Loss in linear mdoel). Suppose H̃B
9:

= H̃B
: 9

for all lines ( 9 , :) 2 ⇢
(assumption C4.1) and H̃<

9:
= H̃<

: 9
= 0. Write + 9 := |+ 9 | 4i\ 9 and H̃B

9:
=: 6̃B

9:
+ i1̃

B

9:
. Then

the total real power loss over a network is given by (Exercise 4.12):

2(\) :=
’
92#

? 9 =
’

9!:2⇢
6̃
B

9:

��
+ 9 �+:

��2 =
’

9!:2⇢
6̃
B

9:

⇣
|+ 9 |2 + |+: |2�2|+ 9 | |+: | cos\ 9:

⌘

where \ 9: := \ 9 � \: . As in the DC power flow model (4.55) we assume here voltage
magnitudes |+ 9 | are fixed and the total loss 2 is a function of the voltage angles \.

Recall the flat voltage profile where +flat
9

= `4i\
flat

for all 9 2 # , so that the resulting

power injection is
�
?

flat,@flat� = (0,0). To compute the Taylor expansion of 2(\) around
the flat voltage profile we have:

2(\flat) = 0

m2

m\8

(\flat) =
’

8!:2⇢
2`2

6̃
B

8:
sin\flat

8:
+

’
9!82⇢

�2`2
6̃
B

98
sin\flat

98
= 0

m
2
2

m\8m\ 9

(\flat) =

8>>>>><
>>>>>:

�2`2
6̃
B

8 9
cos\flat

8 9
= �2`2

6̃
B

8 9
if 8! 9 2 ⇢

�2`2
6̃
B

98
cos\flat

98
= �2`2

6̃
B

98
if 9 ! 8 2 ⇢Õ

::(8,:) or (:,8)2⇢ 2`2
6̃
B

8:
if 8 = 9

0 otherwise

Hence the second derivative m
2
2

m\
2 is a real symmetric Laplacian matrix with zero row

and column sums, and is therefore positive semidefinite. Let 6; := 2`2
6̃
B

;
for ; 2 ⇢ and
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⌧ := diag (6; , ; 2 ⇢). Define

!loss :=
m

2
2

m\
2
(\flat) = ⇠⌧⇠

T (4.58a)

where ⇠ is the incidence matrix of the network graph. Then a loss term can be
taken as the second-order Taylor expansion of 2(\) around the flat voltage profile (the
perturbation variable \ now denotes the deviations from \

flat):

2̂(\) = 2(\flat) + m2

m\

(\flat) \ + 1
2
\

T
!loss\ =

1
2
\

T
!loss\ (4.58b)

Since the matrix !loss in (4.58a) is positive semidefinite the loss 2̂(\) is a convex
quadratic function of \. ⇤

4.6.3 Distribution factors

4.7 Bibliographical notes

The description of !* decomposition to solve � =.+ and algorithms to compute power
flow solutions are adapted from [1]. For properties of complex symmetric matrices
such as the admittance matrix . , see [15, Chapter 4.4]. For invertibility of . , the first
part of Theorem 4.2 is from [16, Lemma 1] though we have used properties of Schur
complement to simplify its proof. See also [17? ].

The DC power flow model has been widely used in applications, e.g., for formulating
DC OPF [18, 19].

The use of Newton-Raphson algorithm for solving power flow problems is first pro-
posed in [20]. An implementation at BPA is reported in [21] with major improvements,
especially a heuristic to optimize the order of Gaussian elimination of the Jacobian
matrix in solving � (G(C))�G(C) = � 5 (G(C). A method is introduced in [22] that com-
putes a new voltage solution + 0 = + +Õ

;
8 9;:;

(4 9; � 4:; ) to � = . 0+ 0 in terms of the
old voltage solution + to � = .+ when the admittance matrix changes from . to . 0

(line changes). The quantities 8 9;:; are called compensation currents and are computed
from using the old admittance matrix . . This method, well explained in [23], has the
advantage of not having to factorize new matrix . 0 into its !* decomposition when
relatively few number of lines are changed. The Fast Decoupled algorithm is proposed
in [18].
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4.8 Problems

Chapter 4.2

Exercise 4.1 (Ideal transformer and transmission line). Consider the cascade in the
one-line diagram of Figure 4.13(a) of an ideal transformer with voltage gain = and
a transmission line modeled by a series admittance H (and zero shunt admittances).
Show that its external behavior is equivalent to that of the ⇧ circuit model in Figure

V1 V2

1 : n

y

nV1

aI1 I2I1

(a) One-line diagram

V1

I1

V2

I2
ny

n(n−1)y (1−n)y

(b) Equivalent ⇧ circuit model

Figure 4.13 An ideal transformer with turns ratio 0 = =�1 followed by a transmission line
modeled by a series admittance H.

4.13(b).

Exercise 4.2 (Real Laplacian matrix). Suppose the =⇥ = admittance matrix . of a
connected graph is real symmetric with zero row sums (e.g., . is the admittance
matrix of a DC network), i.e., . 9: = .: 9 for all 9 < : and . 9 9 = �

Õ
:: 9<:. 9: for all 9 .

1 If . 9: have the same sign for all ( 9 , :) 2 ⇢ , show that rank . = =�1 and hence .
is not invertible and null(. ) = span(1).

2 If . 9: have the same sign for all ( 9 , :) 2 ⇢ , show that the (=�1) ⇥ (=�1) matrix
.
0 obtained from . by removing the 9 th row and column, for any 9 , has rank =�1

and is hence invertible.
3 If . 9: may have di�erent signs for ( 9 , :) 2 ⇢ , give a counterexample to part 1.

Exercise 4.3 (Unitary diagonalizability of . ). Suppose condition C4.1 holds. Let the
bus admittance matrix . := ⌧ + i⌫ where ⌧ and ⌫ are real matrices (whose rows may
not sum to zero).
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1 Show that . is normal (i.e., ..� = .�. ) and hence unitarily diagonalizable if
and only if ⌧ and ⌫ commute, or if and only if ⌫⌧ is symmetric.

2 Suppose all lines have the same RX ratio, i.e., for some real U, 1B
9:

= U6B
9:

for all

( 9 , :) 2 ⇢ and 1<
9 9
= U6<

9 9
for all 9 2 # (or all shunt elements are zero). Show that

. is normal. (Hint: Use part 1.)

Exercise 4.4 (Inverse of. ). Consider a complex matrix � =:⌧+ i⌫where⌧,⌫ 2R=⇥=.
Show that, even if both⌧ and ⌫ are singular, its inverse ��1 =: '+ i- may exist though
not given by the formulae (4.13b) or (4.14b). This is the case even if ⌧ and ⌫ are
symmetric.

Exercise 4.5 (Invertibility of . ). Prove part 2 of Theorem 4.2.

Exercise 4.6 (Invertibility of. , [16]). This is an alternative proof from [16, Lemma 1]
of (part of) Theorem 4.2: a complex symmetric matrix . is nonsingular if Re(. ) � 0
or if Im(. ) � 0. Prove the claim by showing that there exists no nonzero vector U such
that .U = 0.

Exercise 4.7 (Invert . using matrix inversion lemma). Recall that, under condition
C4.1, the admittance matrix . can be written in terms of the incidence matrix ⇠ as
(from (4.12)):

. = ⇠ ⇡B
H
⇠

T + ⇡
<

H

where ⇡B
H

:= diag
⇣
H
B

;
, ; 2 ⇢

⌘
and ⇡<

H
:= diag

⇣
H
<

9 9
, 9 2 #

⌘
. Suppose HB

;
< 0 for all ; and

H
<

9 9
< 0 for all 9 so that the diagonal matrices . B and .< are invertible.

1 Show that . is invertible if and only if the " ⇥" matrix

⇢̂ :=
⇣
⇡
B

H

⌘�1
+⇠T

⇣
⇡
<

H

⌘�1
⇠

is invertible.
2 If . is invertible then

.
�1 =

⇣
⇡
<

H

⌘�1
� (⇡<)�1

⇣
⇠

�
⇢̂

��1
⇠

T
⌘ ⇣
⇡
<

H

⌘�1

(Hint: For part 1 use the property that a matrix is nonsingular if and only if a principal
submatrix and its Schur complement are both nonsingular, according to Theorem A.4
in Appendix A.3. For part 2 use the matrix inversion lemma in Appendix A.3.2.)
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Exercise 4.8 (Invertibility of complex symmetric vs psd matrices). Let � 2 C=⇥=.

1 Prove that � is invertible if E� �E < 0 for all nonzero E 2 C=.
2 Show that the converse is not true by providing a counterexample � that is Hermi-

tian (including real symmetric) and a counterexample � that is complex symmetric.
(Hint: Consider 2⇥2 diagonal matrices.)

3 Suppose � is (Hermitian and) positive semidefinite. Then the following are equiv-
alent:
• � is invertible
• E� �E < 0 for all nonzero E 2 C=.
• � is positive definite.

4 Why Lemma 4.12 applies to real Laplacian matrices but not complex Laplacian
matrices?

Exercise 4.9 (Alternative proof of Theorem 4.3). Consider the complex symmetric
admittance matrix . 2 C(#+1)⇥(#+1) . Let _ be an eigenvalue of . and U 2 C#+1 a
corresponding eigenvector. Then UH

.U = _ | |U | |2 where | | · | | denotes the Euclidean
norm. A su�cient (but not necessary) condition for . to be invertible is that UH

.U < 0
for all nonzero vectors U 2 C#+1. Let HB

9:
=: 6B

9:
+ i1

B

9:
, H<

9 9
=: 6<

9 9
+ i1

<

9 9
.

1 Suppose condition C4.1 holds. Show that

U
H
.U = ©≠

´
’

( 9,:)2⇢
6
B

9:

��
U 9 �U:

��2 + ’
92#

6
<

9 9
|U 9 |2™Æ

¨
+ i

©≠
´

’
( 9,:)2⇢

1
B

9:

��
U 9 �U:

��2 + ’
92#

1
<

9 9
|U 9 |2™Æ

¨
2 Show that the conditions in Theorem 4.3 imply that UH

.U > 0 for all nonzero
vectors U 2 C#+1.

Exercise 4.10 (Kron reduction). Suppose condition C4.1 holds so that an admittance
matrix . is complex symmetric. Consider its Kron-reduction ./.22 (assume .22 is
invertible):

. =:

.11 .12

.
T
12 .22

�
, ./.22 := .11 � .12.

�1
22 .

T
12

1 Show that .�1
22 and ./.22 are symmetric.

2 Show that if . has zero row (and hence column) sums, i.e., H<
9:

= H<
: 9

= 0 for
( 9 , :) 2 ⇢ , so does ./.22.

3 Show that the converse does not necessarily hold. (Hint: Consider Example 4.5.)
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Exercise 4.11 (Radial Network: inverses of ⇠̂ and .̂ ). Prove Theorem 4.10. (Hint: Let
⌫ be the matrix defined in (4.23) and verify directly that ⇠̂⌫ equals the identity matrix.
Use part 1 to derive /̂ 9: .)

Chapter 4.3

Exercise 4.12 (Real power loss). Let (? 9 , 9 2 #) denote the real nodal power injections.
For each line ( 9 , :) 2 ⇢ , let its series and shunt admittances be HB

9:
= 6B

9:
+ i1

B

9:
and

H
<

9:
= 6<

9:
+ i1

<

9:
, and similarly for (HB

: 9
, H<
: 9
). Define the total real power loss over the

network, as a function of + : injection !1 (+) :=
Õ
9
? 9 (+). Suppose HB

9:
= HB

: 9
for all

( 9 , :) 2 ⇢ (assumption C4.1).

1 Show that

!1 (+) =
’

( 9,:)2⇢

⇣
6
B

9:

��
+ 9 �+:

��2 + 6<
9:

��
+ 9

��2 + 6
<

: 9
|+: |2

⌘

If C4.1 does not hold, why will the loss depend also on series subsceptances
(1B
9:

,1B
: 9
)?

2 A popular concept is the thermal loss on transmission or distribution lines. Define
the total thermal loss as:

!2 (+) :=
’

( 9,:)2⇢
A
B

9:
|� 9: (+) |2

where IB
9:
= AB

9:
+ iG

B

9:
:= 1/HB

9:
and � 9: (+) is the sending-end current on line ( 9 , :)

from 9 to : . Show that !1 (+) reduces to !2 (+) when 6<
9:
= 6<

: 9
= 0.

Chapter 4.4

Exercise 4.13 (Gauss algorithm). Consider solving for the roots of

6(G) = 0G2� G (4.59)

i.e., finding G such that 6(G) = 0. An G is a root of 6 if and only if it is a fixed point of
5 (G) := 0G2, i.e., if and only if G = 5 (G). The Gauss algorithm computes a fixed point
of 5 (G) by performing the fixed-point iteration:

G(C +1) := 5 (G(C)) (4.60)

Let - ✓ R be closed and convex and suppose 5 maps - into - . We say 5 is a contraction
mapping on - if there exists an U 2 [0,1) such that

| 5 (H)� 5 (G) |  U |H� G |, for all G, H 2 - (4.61)
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If 5 is a contraction mapping on - then there is a unique fixed point G⇤ 2 - and
the fixed-point iteration (4.60) always converges to G⇤, starting from any initial point
G(0) 2 - .

1 What are the roots of 6 in (4.59)?
2 Whenever |0 | < 1, 5 maps - := [�1,1] into - . Show that 5 is a contraction

mapping on - if and only if |0 | < 1/2. In that case, what is the root of 6 that (4.60)
computes?

3 Show that (4.60) converges to G⇤ = 0 if and only if G(0) satisfies |0G(0) | < 1, in
which case the convergence is quadratic (i.e., the error ratio |G(C +1) |/|G2 (C +1) | =
|0 | a constant).

4 Use part 3 to argue that 5 being a contraction mapping is not necessary for the
Gauss algorithm (4.60) to compute a root of 6? What is the advantage, if any, if 5
is indeed a contraction mapping?

Exercise 4.14 (Newton algorithm). The Newton algorithm solves iteratively for G 2 R=
such that 6(G) = 0 where 6 : R= ! R=. In each iteration, it approximates 6 by its
linearization at the current iterate G(C) and moves to G(C + 1) where the linearization
vanishes. Show that if 6 is linear, 6(G) = �G +1 where � is invertible, then the Newton
algorithm solves 6(G) = 0 in one step wherever it starts.

Exercise 4.15 (Kantorovich Theorem). The Newton algorithm converges if the initial
point is close to a solution. This is made precise by the Kantorovich Theorem. Consider
6 : ⇡! R= where ⇡ ✓ R= is an open convex set. Suppose 6 is di�erentiable on ⇡ and
r6 is Lipschitz on ⇡, i.e., there is an ! such that

kr6(H)�r6(G)k  !kH� Gk, for all G, H 2 ⇡

where [r6(G)]
8 9

:= m68

mG 9

(G). Suppose G0 2 ⇡ and that r6(G0) is invertible. Let

V �
��(r6(G0))�1

�� , [ �
��(r6(G0))�1

6(G0)
��

⌘ := V[!, A :=
1�
p

1�2⌘
⌘

[

The Kantorovich Theorem says that if the closed ball ⌫A (G0) ✓ ⇡ and ⌘  1/2 then
the Newton iteration

G(C +1) := G(C) � (r6(G(C)))�1
6(G(C))

converges to a solution G⇤ of 6(G) = 0 in the closed ball ⌫A (G0).

1 Apply the Kantorovich Theorem to 6(G) := 0G2 � G to prove that the Newton
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iterates converge to a root of 6 if the initial point G0 satisfies either of the following
conditions, assuming 0 > 0:

G0 
1
20

✓
1� 1p

2

◆
or G0 �

1
20

✓
1+ 1p

2

◆

Which root will the Newton iteration compute in each case?
2 The Kantorovich Theorem provides only a su�cient condition for convergence

of the Newton iterates. Show that, for 6(G) := 0G2 � G, as long as G0 < (20)�1 =
minG 6(G), the Newton iterates will converge. (Hint: use part 1.)

Exercise 4.16 (Fast decoupled algorithm). 1 Use (4.32) to prove (4.36).
2 Show that if 6B

9:
= 6<

9:
= 0 and sin\ 9: = 0 for all ( 9 , :) 2 ⇢ then the Jacobian

reduces to the approximating block-diagonal matrix �̂ (\, |+ |) :=

"
m?

m\
0

0 m@

m |+ |

#
.

Chapter 4.6

Exercise 4.17 (Laplacian matrix !). Show that the entries of Laplacian matrix ! :=
⇠⌫⇠

T are given by:

!8 9 :=

8>><
>>:
�18 9 8 ⇠ 9 (8 < 9)Õ
:⇠8 18: 8 = 9

0 otherwise

Exercise 4.18 (Pseudo-inverse of a psd matrix). Consider an positive semidefinite
(and necessarily Hermitian) matrix � 2 C=⇥= with rank =� : . Let its eigenvalues be

0 = _1 = · · · = _: < _:+1  · · ·  _=

and a set of corresponding orthonormal eigenvectors be D1, . . . ,D=. Then � =*⇤*T

and �† =*⇤†
*

T where the columns of* are D8 . Show that

�
† =

 
� +

’
8:

D8D
T
8

!�1

�
’
8:

D8D
T
8

(4.62)

(Hint: Use (4.52) to verify the inverse of �+Õ
8: D8D

T
8
.)

Exercise 4.19 (Laplacian matrix !). Consider the Laplacian matrix

! :=


1 �1
�1 1

�

Compute its spectral decomposition, !†, !!† and !†!.
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Exercise 4.20 (DC power flow model). Consider the 3-bus network shown in Figure
4.14. Assuming the (weighted) susceptance matrix ⌫ = I3 is the identity matrix.

1 Write down the incidence matrix ⇠ and reduced incidence matrix ⇠̂ using the
graph orientation shown in the figure and bus 0 as the reference bus.

2 Write down the Laplacian matrix ! and its pseudo-inverse !†, the reduced Lapla-
cian matrix !̂ and its inverse !̂�1.

3 Write down the line flows % in terms of the injections ? with
Õ
9
? 9 = 0, and

evaluate % when ? = (2,�1,�1).
4 Suppose the injection is changed from ? = (2,�1,�1) to ?̃ = (2,0,�2). Calculate

the new line flows %̃.

0

1 2

Figure 4.14 Exercise 4.20.

Exercise 4.21 (DC power flow model).



5 Branch flow models: radial
networks

In Chapter 5.1 we introduce branch flow models for radial networks with a tree topology.
They are useful for modeling distribution systems as most distribution systems are
radial. Whereas bus injection models of Chapter 4 consist of only nodal variables
(nodal voltages and nodal power or current injections), branch flow models involve
also branch power flows and branch currents. In Chapter 5.2 we prove their equivalence
by first extending branch flow models to general networks with cycles. Branch flow
models are most useful for radial networks where they enjoy two important advantages:
a fast iterative algorithm studied in Chapter 5.3, called the backward forward sweep,
for power flow computation, and a linearized model studied in Chapter 5.4 that admits
an explicit solution and bounds on nonlinear branch powers and voltage magnitudes.

Except in Chapter 5.2 or otherwise specified we will focus in this chapter on radial
networks without cycles.

5.1 BFM for radial networks

5.1.1 Line model

We use the same line model as that in Chapter 4.2.2 where a power network with
# + 1 buses and " lines is represented as a connected undirected graph ⌧ = (# ,⇢)
where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥#; see Figure 4.7. For each bus
9 2 # let+ 9 denote its voltage phasor and B 9 its complex power injection. For each line
( 9 , :) 2 ⇢ , let (� 9: , �: 9 ) denote the sending-end line currents from buses 9 to : and
buses : to 9 respectively. Similarly let (( 9: ,(: 9 ) denote the sending-end line power
flows in each direction. Let+ := (+ 9 , 9 2 #), B := (B 9 , 9 2 #), � := (� 9: , �: 9 , ( 9 , :) 2 ⇢),
and ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢).

Each line ( 9 , :) 2 ⇢ is characterized by two pairs of series and shunt admittances,⇣
H
B

9:
, H<
9:

⌘
2C2 from 9 to : and

⇣
H
B

: 9
, H<
: 9

⌘
2C2 from : to 9 . It may model a transmission

or distribution line, a single-phase transformer, the per-phase model of a three-phase
transformer in balanced setting, and may contain admittances of sources and loads.
Specifically when ( 9 , :) models a transmission or distribution line, the line parame-
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ters (HB
9:

= HB
: 9

, H<
9:

, H<
: 9
) are the series and shunt admittances of the transmission or

distribution line. When ( 9 , :) models a transformer, the line parameters (HB
9:

, H<
9:
) and

(HB
: 9

, H<
: 9
) are given by (4.6) in terms of transformer voltage gain and leakage and shunt

admittances ( (=), H̃B
9:

, H̃<
9:
). Hence HB

: 9
and HB

9:
may be di�erent, and (H<

9:
, H<
: 9
) are

generally di�erent and nonzero even if the transformer shunt admittance H̃<
9:

= 0. Let

I
B

9:
:=

⇣
H
B

9:

⌘�1
and IB

: 9
:=

⇣
H
B

: 9

⌘�1
.

We will often restrict ourselves to the special case where the series admittances

are equal HB
9:
= HB

: 9
, and characterize a line by three admittances

⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. This

model can be represented as a ⇧ circuit and behaves like a transmission or distribution
line though with generally di�erent H<

9:
and H<

: 9
; see Figure 5.1. It is not suitable as

ymjk ymkj

y sjk= yskj
Ikj ,SkjSjk , Ijk

Vj Vk

sj sk

Figure 5.1 Line model under assumption C5.1.

the per-phase model of a balanced three-phase transformer in �. or .� configuration
that has a complex voltage gain  (=), but is still widely used as an approximation.

As in Chapter 4.2.2 we label the following assumption and will explicitly state it
when it is required:

C5.1: The series admittances HB
9:

= HB
: 9

or equivalently the series impedances
I
B

9:
= IB

: 9
for every line ( 9 , :) 2 ⇢ .

In this section we assume the network graph ⌧ is a (connected) tree.

5.1.2 With shunt admittances

Transformers are important devices in a distribution system, especially three-phase
transformers in �. or .� configuration whose per-phase equivalent circuit does not
satisfy assumption C5.1. Their shunt admittances H<

9:
and H<

: 9
may not be negligible

even when the transformer shunt admittance H̃<
9:

= 0 (see (4.6)). This motivates a
branch flow model that includes shunt admittances and allows HB

9:
< HB

: 9
.

The key feature of a branch flow model for radial networks is that it does not involve
phase angles of voltage and current phasors. For each bus 9 let
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• B 9 := (? 9 ,@ 9 ) and B 9 := (? 9 + i@ 9 ) represent the real and reactive power injections at
bus 9 . Let B := (B 9 , 9 2 #).1

• E 9 represent the squared voltage magnitude at bus 9 . Let E := (E 9 , 9 2 #).

For each line ( 9 , :) let

• ✓ 9: represent the squared magnitude of the sending-end current from bus 9 to
bus : , and ✓: 9 represent the squared current magnitude from : to 9 . Let ✓ :=
(✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢).

• ( 9: = (% 9: ,& 9: ) and ( 9: = % 9: + i& 9: represent the sending-end real and reactive
branch power flow from bus 9 to bus : , and (: 9 represent the sending-end power
from : to 9 . Let ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢).

We will introduce power flow equations below in terms of the real vector G :=
(B,E,✓,() 2 R3(#+1)+6" that does not involve voltage and current phase angles as
variables. The vector E includes E0 and B includes B0. The angle information is however
embedded in, and can be recovered from, G; see (5.12) below.

Define for each ( 9 , :) 2 ⇢

U 9: := 1+ IB
9:
H
<

9:
, U: 9 := 1+ IB

: 9
H
<

: 9

Note that U 9: = U: 9 if and only if IB
9:
H
<

9:
= IB

: 9
H
<

: 9
and U 9: = U: 9 = 1 if and only if

H
<

9:
= H<

: 9
= 0 since |IB

9:
| < 0. A branch flow model for radial networks that allows

shunt admittances of lines is:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.1a)

|U 9: |2E 9 � E: = 2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , ( 9 , :) 2 ⇢ (5.1b)

|U: 9 |2E: � E 9 = 2Re
⇣
U: 9 Ī

B

: 9
(: 9

⌘
� |IB

: 9
|2✓: 9 , ( 9 , :) 2 ⇢ (5.1c)��

( 9:

��2 = E 9 ✓ 9: ,
��
(: 9

��2 = E: ✓: 9 , ( 9 , :) 2 ⇢ (5.1d)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (5.1e)

These equations express four properties that a power flow solution G := (B,E,✓,()
satisfies:

1 Power balance: (5.1a) enforces power balance at each bus and is the consequence
of KCL.

2 Ohm’s law and KCL: (5.1b) and (5.1c) originates from the Ohm’s law and KCL
� 9: = HB

9:
(+ 9 �+: ) + H<

9:
+ 9 and similarly for �: 9 in the opposite direction; see

(5.23) in the proof of Theorem 5.2.

1 We abuse notation and use B to denote both the complex power injection B = (? + i@) and the real pair
B = (?,@) , depending on the context. Similarly for ( = (% + i&) and ( = (%,&) , and for I = (A + iG)
and I = (A , G) .
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3 Apparent power: (5.1d) defines the apparent powers and is obtained from ( 9: =
+ 9 �

H
9:

and (: 9 =+: �H
: 9

.
4 Cycle condition: We call (5.1e) a cycle condition and it ensures that the line angles

implied by a power flow solution G can indeed be realized by nodal voltage angles;

see Chapter 5.1.4. It says + 9+H
:
=

⇣
+:+

H
9

⌘H
where (+ 9 ,+: ) are not part of the

model but can be recovered from a power flow solution (see (5.25) in the proof of
Theorem 5.2).

The complex notation in (5.1) is only a shorthand for a system of 2(# +1) +6" =
8# + 2 real equations in the vector G of 3(# + 1) + 6" = 9# + 3 real variables (recall
that " = # for a tree). For instance (5.1a) is a shorthand for ? 9 =

Õ
:: 9⇠: % 9: and

@ 9 =
Õ
:: 9⇠:& 9: and (5.1d) is a shorthand for E 9✓ 9: = %2

9:
+&2

9:
and E:✓: 9 = %2

: 9
+&2

: 9
.

All equations are linear in G except (5.1d) which are quadratic. Given (2# + 1) of
these variables (e.g., given E0 = 1 and non-slack bus injections (? 9 ,@ 9 ), 9 2 #), the
power flow problem is to determine the remaining 7# + 2 real variables from these
equations. There can be zero, one or more than one solutions. In this example there
are more (nonlinear) equations than the number of variables, but see Example 5.6 for
a linear example where the resulting set of equations is not linearly independent. As
mentioned above, this model does not require assumption C5.1 and allows nonzero
shunt admittances (H<

9:
, H<
: 9
), and therefore is suitable for modeling transformers as

well as distribution lines (see Example 5.1).

Example 5.1 (Two buses connected by a transformer). Consider two buses 9 and :
connected by a transformer characterized by its voltage gain  (possibly complex, e.g.,
 =
p

3=4ic/6), a series admittance H̃B and a shunt admittance H̃<. The bus injection
model of this 2-bus network is given by (4.26a) in complex form. Derive the branch
flow model (5.1) in terms of transformer parameters ( , H̃B , H̃<). (We will show in
Chapter 5.2 that the branch flow model and the bus injection model are equivalent.)

Solution. The abstract line parameters in terms of the transformer parameters are given
by (4.6) reproduced here:

H
B

9:
:=

H̃
B

 

, H
<

9:
:=

✓
1� 1

 

◆
H̃
B ,

H
B

: 9
:=

H̃
B

 ̄

, H
<

: 9
:=

1
| |2 ((1� ) H̃B + H̃<) ,

Define ĨB := ( H̃B)�1 and Ũ := 1+ ĨB H̃<. Then

I
B

9:
:= (HB

9:
)�1 =  Ĩ

B , I
B

: 9
:= (HB

: 9
)�1 =  ̄ Ĩ

B , U 9: =  , U: 9 = Ũ/ 

For a single line we can substitute ( 9: = B 9 and (: 9 = B: and the branch flow model
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(5.1) becomes:

E 9 � E:
.
| |2 = 2Re

⇣
( ĨB)H

B 9

⌘
� | ĨB |2 ✓ 9:

|Ũ/ |2 E: � E 9 = 2Re
⇣
Ũ ( ĨB)H

B:

⌘
� | ĨB |2 ✓: 9��

B 9

��2 = E 9 ✓ 9: , |B: |2 = E: ✓: 9

E 9 � ( ĨB)H
B 9 =

⇣
Ũ/| |2

⌘
E: � ĨB B̄:

This is a system of 6 real (nonlinear) equations in 8 real variables
(B 9 , B: ,E 9 ,E: ,✓ 9: ,✓: 9 ). ⇤

5.1.3 Without shunt admittances

Consider a radial network where lines have zero shunt admittances and hence
U 9: = U: 9 = 1. Moreover we suppose assumption C5.1 holds. This is a reasonable
model if ( 9 , :) models a (short) transmission line or a distribution line. It may be un-
suitable if ( 9 , :) models a transformer because, as noted above, the shunt admittances
(H<
9:

, H<
: 9
) corresponding to a single-phase nonideal transformer are generally nonzero

(see Example 5.1).

A consequence of substituting IB
9:

= IB
: 9

and H<
9:

= H<
: 9

= 0 into (5.1) for all lines
( 9 , :) 2 ⇢ is the relation between the sending-end power flows ( 9: and (: 9 (see
Exercise 5.3):

( 9: + (: 9 = IB
9:
✓ 9: , ✓ 9: = ✓: 9 (5.2)

It says that the sum of sending-end power flows is equal to the complex line loss across
the series impedance IB

9:
. Hence �(: 9 = ( 9: � IB

9:
✓ 9: is the receiving-end power from

9 to : . For each line ( 9 , :) 2 ⇢ , we can use (5.2) to eliminate from (5.1) the branch
variables (✓: 9 ,(: 9 ) in the direction : to 9 . This leads to a simpler set of equations
based on a directed, rather than undirected, graph ⌧, as we now explain. In particular
the linear cycle condition (5.1e) becomes vacuous.

In this subsection we assume ⌧ = (# ,⇢) is directed. We denote a line in ⇢ from
bus 9 to bus : either by ( 9 , :) 2 ⇢ or 9! : 2 ⇢ . Associated with each line 9! : 2 ⇢
are branch variables (✓ 9: ,( 9: ). It is important to remember that, unlike models in the
previous sections, (✓: 9 ,(: 9 ) in the opposite direction are not defined in the models in
this subsection, unless otherwise specified. Let (B,E) := (B 9 ,E 9 , 9 2 #) and (✓,() :=
(✓ 9: ,( 9: , 9 ! : 2 ⇢). In particular the vector E includes E0 and B includes B0. Let
G := (B,E,✓,() in R3(#+1+" ) with " = # since ⌧ is a tree. To simplify notation we

sometimes omit the superscript on I
B

9:
and write I 9: = (A 9: ,G 9: ) =

⇣
H
B

9:

⌘�1
as the

series impedance of line ( 9 , :). Then the branch flow model (5.1) reduces to what is
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called the DistFlow equations as follows:’
:: 9!:

( 9: =
’
8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 # (5.3a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (5.3b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (5.3c)

This model is first proposed in [24, 25] for radial networks and is the most commonly
used branch flow model in the literature. These equations express the same properties
as (5.1) and can be derived by substituting (5.2) into (5.1) to eliminate (✓: 9 ,(: 9 ) on
each line 9 ! : 2 ⇢ (Exercise 5.4):

1 Power balance: (5.1a) reduces to (5.3a).
2 Ohm’s law: (5.1b)(5.1c) reduce to (5.3b).
3 Apparent power: (5.1d) reduces to (5.3c).
4 Cycle condition: (5.1e) becomes vacuous under assumption C5.1 and when H<

9:
=

H
<

: 9
= 0.

Comparing with (5.1), the inclusion of nonzero shunt admittances (H<
9:

, H<
: 9
) introduces

two requirements in modeling: the need for line variables in both directions and for the
cycle condition (5.1e).

Despite the complex notation, (5.3) is a set of 2(# + 1 +") real equations in
3(# +1+") real variables G = (?8 ,@8 ,E8 ,✓ 9: ,% 9: ,& 9: ) and a shorthand for:’

:: 9!:
% 9: =

’
8:8! 9

�
%8 9 � A8 9✓8 9

�
+ ? 9 , 9 2 #

’
:: 9!:

& 9: =
’
8:8! 9

�
&8 9 � G8 9✓8 9

�
+ @ 9 , 9 2 #

E 9 � E: = 2
�
A 9:% 9: + G 9:& 9:

�
� (A2

9:
+ G2

9:
)✓ 9: , 9 ! : 2 ⇢

E 9✓ 9: = %
2
9:
+&2

9:
, 9 ! : 2 ⇢

Since " = # , there are (4# +2) equations in (6# +3) real variables. Given (2# +1)
of these variables (e.g., given E0 = 1 and non-slack bus injections (? 9 ,@ 9 ), 9 2 #),
the power flow problem is to determine the remaining 4# + 2 variables from these
equations. There can be zero, one or more than one solutions.

This model can also be written compactly in vector form in terms of the (# +1)⇥#
incidence matrix ⇠ defined as:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

(5.4)

Let ⇠+ := max{⇠,0} and ⇠� := min{⇠,0} denote the matrices containing only the
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source nodes and destination nodes respectively of the (directed) lines. Then (5.3) is:

B = ⇠(�⇠�I✓ (5.5a)

⇠
T
E = 2Re

⇣
I

H
(

⌘
� ĪI✓ (5.5b)

|( |2 = diag
⇣
(⇠+)T

E✓
T
⌘

(5.5c)

where I := diag(I 9: , 9 ! : 2 ⇢), Ī is the componentwise complex conjugate of the
diagonal matrix I, and |( |2 is the vector |( |2 := ( |( 9: |2, 9 ! : 2 ⇢).

Example 5.2 (Graph orientation). Intuitively nodal injections and voltages (B,E)
should not depend on the orientation of the graph while branch currents and pow-
ers (✓,() do, since branch variables are defined only in the direction of the lines, not
in the opposite direction. We can formally relate the power flow solutions defined for
opposite graph orientations. Specifically, consider the opposite orientation where the
direction of every line is reversed from that in (5.3). The resulting power flow equations
are: ’

:: 9!:
(̂ 9: =

’
8:8! 9

⇣
(̂8 9 � IB8 9 ✓̂8 9

⌘
+ B̂ 9 , 9 2 # (5.6a)

Ê: � Ê 9 = 2Re
⇣
Ī
B

9:
(̂: 9

⌘
� |IB

9:
|2✓̂: 9 , :! 9 2 ⇢ (5.6b)

Ê: ✓̂: 9 = |(̂: 9 |2, :! 9 2 ⇢ (5.6c)

An example is the down and up orientations below. Then it can be shown that (5.3)
and (5.6) are equivalent in the sense that there is a bijection 6 such that G is a power
flow solution of (5.3) if and only if Ĝ := 6(G) is a power flow solution of (5.6) (Exercise
5.5). Indeed Ĝ = 6(G) is given by:

B̂ 9 := B 9 , Ê 9 := E 9 , ✓̂: 9 := ✓ 9: , (̂: 9 := �
⇣
( 9: � IB

9:
✓ 9:

⌘
(5.7)

⇤

Without loss of generality we take bus 0 as the root of the tree. Two particularly
convenient graph orientations are where every line points away from bus 0 and where
every line points towards bus 0; see Figure 5.2. For every bus 9 there is a unique node
8 that is adjacent to 9 on the path from bus 0 to bus 9 . We present two equivalent sets
of power flow equations, one for each graph orientation.

Down orientation: lines point away from bus 0.

When all lines point away from bus 0, the DistFlow equations (5.3) reduce to:’
:: 9!:

( 9: = (8 9 � IB8 9✓8 9 + B 9 , 9 2 # (5.8a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (5.8b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (5.8c)
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i

0

j

k

(a) Down orienta-
tion

i

0

j

k

(b) Uporientation

Figure 5.2 Graph orientations for radial networks.

where, in (5.8a), (8 9 � I8 9✓8 9 is the receiving-end power at bus 9 from 8, and bus 8 := 8( 9)
denotes the unique adjacent node of 9 on the path from node 0 to node 9 , with the
understanding that when 9 = 0 then (80 = 0 and ✓80 = 0. When 9 is a leaf node2 , all
( 9: = 0 in (5.8a).

Up orientation: lines point towards bus 0.

When the graph orientation is opposite to that in Case 1, BFM is specified by the
following equations in G := (B,E,✓,() 2 R3(2#+1) :

( 98 =
’
:::! 9

⇣
(: 9 � IB

: 9
✓: 9

⌘
+ B 9 , 9 2 # (5.9a)

E: � E 9 = 2Re
⇣
Ī
B

: 9
(: 9

⌘
� |IB

: 9
|2✓: 9 , :! 9 2 ⇢ (5.9b)

E:✓: 9 = |(: 9 |2, :! 9 2 ⇢ (5.9c)

where 8 := 8( 9) in (5.9a) denotes the node adjacent to 9 on the unique path between
node 0 and node 9 . The boundary condition is defined by ( 98 = 0 in (5.9a) when 9 = 0
and (: 9 = 0,✓: 9 = 0 in (5.9a) when 9 is a leaf node. For an advantage of this orientation
see Remark 5.2.

2 A node 9 is a leaf node if there exists no : such that 9! : 2 ⇢ .
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5.1.4 Angle recovery

We now explain how to obtain voltage and current angles (\+ 9 ,\� 9: ) from a power
flow solution G of (5.1). It applies to a solution G of the DistFlow equations (5.3), (5.8)
or (5.9) with U 9: := 1 in (5.10).

Given any G define the vector V(G) 2 R2" of line angles as a function of G by

V 9: (G) := \
⇣
Ū 9:E 9 � ĪB

9:
( 9:

⌘
, ( 9 , :) 2 ⇢ (5.10a)

V: 9 (G) := \
⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘
, ( 9 , :) 2 ⇢ (5.10b)

It can be shown that, if G is a power flow solution of (5.1), then (V 9: (G), V: 9 (G)) are
voltage angle di�erences across line ( 9 , :) (Exercise 5.1), i.e.,

V 9: (G) = \+ 9 � \+: , V: 9 (G) = \+: � \+ 9 , ( 9 , :) 2 ⇢ (5.11)

This implies in particular that V 9: (G) = �V: 9 (G), even in the absence of assumption
C5.1.

Recall the (# +1)⇥# incidence matrix ⇠ defined in (5.4). It is proved in Theorem
5.2 below that the cycle condition (5.1e) is equivalent to:

9\ 2 R#+1 s.t. V(G) = ⇠
T
\ (5.12a)

where V(G) := (V 9: (G), ( 9 , :) 2 ⇢). When the network graph ⌧ is a (connected) tree,
its incidence matrix ⇠T has rank # = " . The null space of ⇠T is span(1) and its
pseudo-inverse

�
⇠

T�† = ⇠ �
⇠

T
⇠

��1 (Exercise 5.2 shows that ⇠T has full row rank and
its pseudo-inverse is therefore given by Corollary A.20.2 of Appendix A.7). Given a
power flow solution G of (5.1), a solution of (5.12a) is therefore

\ = ⇠
⇣
⇠

T
⇠

⌘�1
V(G) + q1 (5.12b)

for an arbitrary angle q 2 R. The angle q can be fixed by choosing (say) bus 0 as a
reference for voltage angles, i.e., setting \0 := 0. An equivalent way to compute \ is to
use (5.11) iteratively. Let P 9 denote the unique path from bus 0 to bus 9 in the directed
graph with orientation pointing away from bus 0. Set \\0 to an arbitrary value. For
9 = 1, . . . ,# +1,

\\ 9 := \\0 �
’

(8,:)2P 9
\V8: (5.12c)

The voltage and current phasors can then be recovered from (5.11) and
(5.12a)(5.12b). Pick any solution \ (G) in (5.12b), and without loss of generality, we
can project it to \ 9 (G) 2 (�c,c]. The voltage and current phasors (+ , �) can then be
obtained in terms of G as:

+ 9 :=
p
E 9 4

i\ 9 (G) , � 9: :=
p
✓ 9: 4

i(\ 9 (G)�\( 9:) (5.12d)

where \( 9: := tan�1 (& 9:/% 9: ) is the power factor angle.
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5.1.5 Power flow solutions

In this section we first illustrate the solution of the branch flow model (5.9) using a
simple two-bus network. The power flow solutions in the example lie on the surface of
an ellipse. We prove that this feature of hollow solution set is general.

Example 5.3 (Two buses connected by a line). Consider two buses 0 and 1 connected
by a line characterized by a series impedance I = A + iG and zero shunt admittances.
The power balance at bus 0 (noting that (0: := 0) and the other DistFlow equations
over line 1! 0 are given by:

?0 � A✓ = �?1, @0 � G✓ = �@1 (5.13a)

E1 � E0 = 2 (A ?1 + G@1) � (A2 + G2)✓ (5.13b)

?
2
1 + @

2
1 = E1✓ (5.13c)

where the voltage E0 and the injections ?1, @1 are given. Suppose A = G = 1, E0 = 1pu
and @1 = 0.

1 Show that power flow solutions (?0,@0,E1,✓) exist if and only if

1
2

⇣
1�
p

2
⌘
 ?1 

1
2

⇣
1+
p

2
⌘

2 For each injection value ?1 that satisfies the condition in part 1, find (?0,@0,E,✓)
and show in particular that there are two voltage solutions E1 given by

E1 =
1
2

⇣
1+2?1⌥

p
�
⌘

where � := 4?1 (1� ?1) +1.
3 Show that the locus (E1, ?1) that satisfies (5.13) is a (rotated) ellipse. Plot the two

solutions for E1 in Part 2 as functions of ?1. These two curves form the ellipse.
4 Show that the lowest voltage solution is E1 = 0 pu attained at ?1 = 0 pu and the

highest voltage solution is E1 = 2 pu attained at ?1 = 1 pu.

Solution.

1 Since (?1,@1,E0) are given and we are to solve for (?0,@0,E1,✓), substitute E1

from (5.13b) into (5.13c) to get (noting @1 = 0 and E0 = A = G = 1):

2✓2� (1+2?1)✓ + ?2
1 = 0 (5.14)

There is a solution for ✓ if and only

(1+2?1)2 � 8?2
1 = 1+4?1�4?2

1 � 0

or if and only if

1
2

⇣
1�
p

2
⌘
 ?1 

1
2

⇣
1+
p

2
⌘
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2 Let � := 4?1 (1� ?1) +1. We have from (5.14)

✓ =
1
4

⇣
1+2?1 ±

p
�
⌘

Hence

?0 = ✓� ?1 =
1
4

⇣
1�2?1 ±

p
�
⌘

@0 = ✓ =
1
4

⇣
1+2?1 ±

p
�
⌘

E1 = 1+2?1�2✓ =
1
2

⇣
1+2?1⌥

p
�
⌘

3 The set of points G 2 R= that satisfy

(G� 2)) �(G� 2) = G
)

�G � 22) G + k2k2 = 1

is an ellipse if 2 2R= and � is a real (symmetric) positive definite matrix. Substitute

E1✓ = ?2
1 + @2

1 into (5.13b) to get E1�1 = 2?1�2
?

2
1
E1

, i.e.,⇣
2?2

1�2?1E1 + E2
1

⌘
� E1 = 0

⇥
?1 E1

⇤ 
2 �1
�1 1

� 
?1

E1

�
�

⇥
0 1

⇤ 
?1

E1

�
= 0

⇥
?1 E1

⇤ 
8 �4
�4 4

�
|      {z      }

�


?1

E1

�
� 2

⇥
0 2

⇤
|  {z  }
2
)


?1

E1

�
+ 1 = 1

Since � � 0 is positive definite, (?1,E1) traces out an ellipse. It is shown in Figure
5.3 as the high voltage solution and the low voltage solution for E1 as functions of
?1.

Figure 5.3 High and low voltage solutions E1 as functions of injection ?1.

4 The figure confirms that the lowest voltage solution is attained at E1 = 0 pu (point
A when ?1 = 0) and the highest voltage is attained at E1 = 2 pu (point B when
?1 = 1 pu). This can also be proved analytically, as follows.

Let D(?1) and D(?1) denote the low voltage solution and the high voltage
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solution respectively:

D(?1) :=
1
2

⇣
1+2?1 �

p
4?1 (1� ?1) +1

⌘

D(?1) :=
1
2

⇣
1+2?1 +

p
4?1 (1� ?1) +1

⌘

Their derivatives are:

D
0(?1) := 1 � 1�2?1p

4?1 (1� ?1) +1

D
0(?1) := 1 + 1�2?1p

4?1 (1� ?1) +1

Therefore D0(?1) = 0 if and only if

1�2?1 =
p

4?1 (1� ?1) +1 (5.15)

Taking square on both sides (which may introduce spurious solution for ?1),
D
0(?1) = 0 only if

?1 (?1�1) = 0

i.e., ?1 = 0 or 1. Clearly, ?1 = 1 does not satisfy (5.15) and hence is not a solution.
Moreover it can be checked that D0(0) = 0, D(?1) is decreasing for ?1  0 and
increasing for ?1 � 0. Hence ?1 = 0 is a minimum and D(0) = 0 pu.

Similarly D0(?1) = 0 if and only if

2?1�1 =
p

4?1 (1� ?1) +1 (5.16)

Taking square on both sides, D0(?1) = 0 only if

?1 (?1�1) = 0

i.e., ?1 = 0 or 1. Clearly, ?1 = 0 does not satisfy (5.16) and hence is not a solution.
Moreover it can be checked that D0(1) = 0, D(?1) is increasing for ?1  1 and
decreasing for ?1 � 1. Hence ?1 = 1 is a maximum and D(1) = 2 pu. ⇤

For the two-bus network in Example 5.3 power flow solutions, when projected onto
the (?1,E1) coordinate, form an ellipse without the interior. This feature of hollow
solution set is generally true for the DistFlow model (5.3), (5.8), or (5.9) as the
following result shows. Let

Xdf := {G : (B,E,✓,() 2 R6#+3 | G satisfies (5.3)}

Theorem 5.1 (Hollow solution set). Suppose the network graph ⌧ is connected. If
Ĝ and G̃ are distinct power flow solutions in Xdf with the same voltage Ê0 = Ẽ0 at the
root bus 0, then no convex combination of Ĝ and G̃ can be in Xdf. In particular Xdf is
nonconvex.
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Proof Suppose Ĝ < G̃ are distinct power flow solutions in Xdf. Fix any 0 2 (0,1) and
consider G := 0Ĝ + (1� 0)G̃. We now show that if G 2 Xdf then Ĝ = G̃, contradicting that
Ĝ and G̃ are distinct.

Suppose G 2 Xdf. In particular E 9✓ 9: = |( 9: |2 by (5.3c). Substituting G := (Ĝ + G̃)/2,
we have

1
4
(Ê 9 + Ẽ 9 ) (✓̂ 9: + ✓̃ 9: ) =

1
4

��
(̂ 9: + (̃ 9:

��2 , 9 ! : 2 ⇢

Substituting Ê 9 ✓̂ 9: = |(̂ 9: |2 and Ẽ 9 ✓̃ 9: = |(̃ 9: |2 yeilds

Ê 9 ✓̃ 9: + Ẽ 9 ✓̂ 9: = 2 Re
⇣
(̂

H
9:
(̃ 9:

⌘
(5.17a)

The right-hand side satisfies

2 Re
⇣
(̂

H
9:
(̃ 9:

⌘
 2 |(̃ 9: | |(̂ 9: | (5.17b)

with equality if and only if \(̂ 9: = \(̃ 9: (mod 2c). The left-hand side of (5.17a) is

Ê 9 ✓̃ 9: + Ẽ 9 ✓̂ 9: = [ 9 |(̃ 9: |2 + [�1
9
|(̂ 9: |2 � 2 |(̃ 9: | |(̂ 9: | (5.17c)

with equality if and only if [ 9 |(̃ 9: | = |(̂ 9: |, where for 9 2 # , [ 9 := Ê 9/Ẽ 9 . But (5.17)
implies that equalities are attained in both (5.17b) and (5.17c), and hence

[ 9 (̃ 9: = (̂ 9: and [ 9 ✓̃ 9: = ✓̂ 9: , 9 2 # (5.18)

(The second equation in (5.18) follows from (5.17c): [ 9 ✓̃ 9: + ✓̂ 9: = 2|(̃ 9: | |(̂ 9: |/Ẽ 9 =
2
q
[ 9 ✓̃ 9: ✓̂ 9: and squaring both sides yields the equation.) Define [0 := Ê0/Ẽ0 = 1. Then

for each line 9 ! : 2 ⇢ we have, using (5.3b),

[: =
Ê:

Ẽ:

=
Ê 9 �2Re(IH

9:
(̂ 9: ) + |I 9: |2✓̂ 9:

Ẽ 9 �2Re(IH
9:
(̃ 9: ) + |I 9: |2✓̃ 9:

=
[ 9

⇣
Ẽ 9 �2Re(IH

9:
(̃ 9: ) + |I 9: |2✓̃ 9:

⌘
Ẽ 9 �2Re(IH

9:
(̃ 9: ) + |I 9: |2✓̃ 9:

= [ 9

where the third equality follows from (5.18). This implies, since the network graph ⌧
is connected, that [ 9 = [0 = 1 for all 9 2 # , i.e. Ê 9 = Ẽ 9 , 9 2 # .

We have thus shown that (̂ = (̃, ✓̂ = ✓̃, Ê = Ẽ, and hence, by (5.3a), B̂ = B̃, i.e., Ĝ = G̃.
This completes the proof. ⇤

This property of the power flow solution set is illustrated vividly in several numerical
examples in [26, 27, 28, 29]. It is used in Theorem 11.1 of Chapter 11.3 to prove that
if any convex relaxation of OPF on a radial network is exact in a strong sense, then the
optimal solution of the relaxation is unique.
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5.2 Equivalence

The branch flow models for radial networks are (5.1) with shunt admittances and
without assumption C5.1 and the DistFlow equations(5.3), (5.8) and (5.9), when shunt
admittances are zero and assumption C5.1 holds. They are defined by di�erent sets
of power flow equations from the bus injection model (4.26a) studied in Chapter 4.3,
reproduced here:

B 9 =
’
:: 9⇠:

⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9 9

⌘H
|+ 9 |2, 9 2 # (5.19)

Yet all of them are models of Kirchho�’s and Ohm’s laws. In this section we show that
these models are equivalent in a precise sense.

To this end we first extend the branch flow model (5.1) to general networks. We then
use these generalized branch flow models, (5.20) and (5.21) below, as a bridge to relate
BFM (5.1), (5.3), (5.8), (5.9) for radial networks to BIM (5.19) for general networks.

5.2.1 Extension to general networks

Complex form.

The branch flow model for a general network possibly with cycles in the complex form is
defined by the following power flow equations in the variables (B,+ , �,() 2 C2(#+1)+4"

(from (4.1)(4.2)):

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.20a)

� 9: = H̃ 9:+ 9 � HB
9:
+: , �: 9 = H̃: 9+: � HB

: 9
+ 9 , ( 9 , :) 2 ⇢ (5.20b)

( 9: = + 9 �
H
9:

, (: 9 = +: �
H
: 9

, ( 9 , :) 2 ⇢ (5.20c)

where in (5.20b),

H̃ 9: := H
B

9:
+ H<

9:
, H̃: 9 := H

B

: 9
+ H<

: 9

Equation (5.20a) imposes power balance at each bus, (5.20b) describes the Ohm’s law
and KCL, and (5.20c) defines branch power in terms of the associated voltage and
current. For convenience we include+0 in the vector variable+ := (+ 9 , 9 2 #) with the
understanding that +0 := 1\0� is fixed. This model does not require assumption C5.1
and allows nonzero shunt admittances (H<

9:
, H<
: 9
). It serves as a bridge between the bus

injection model (5.19) in complex form and the branch flow models in the real domain.
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Real form.

The following branch flow model relaxes the angles of voltages and currents and are
applicable to general networks:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.21a)

��
U 9:

��2
E 9 � E: = 2Re

✓
U 9:

⇣
I
B

9:

⌘H
( 9:

◆
�

���IB
9:

���2 ✓ 9: , ( 9 , :) 2 ⇢ (5.21b)

��
U: 9

��2
E: � E 9 = 2Re

✓
U: 9

⇣
I
B

: 9

⌘H
(: 9

◆
�

���IB
: 9

���2 ✓: 9 , ( 9 , :) 2 ⇢ (5.21c)

��
( 9:

��2 = E 9 ✓ 9: ,
��
(: 9

��2 = E: ✓: 9 , ( 9 , :) 2 ⇢ (5.21d)

9\ 2 R#+1 s.t. V 9: (G) = \ 9 � \: , V: 9 (G) = \: � \ 9 , ( 9 , :) 2 ⇢ (5.21e)

where V 9: (G) and V: 9 (G) are defined in (5.10) and reproduced here:

V 9: (G) := \
✓
U

H
9:
E 9 �

⇣
I
B

9:

⌘H
( 9:

◆
, V: 9 (G) := \

✓
U

H
: 9
E: �

⇣
I
B

: 9

⌘H
(: 9

◆

Compared with (5.1) for radial networks, the model (5.21) di�ers only in its cycle
condition: the linear cycle condition (5.1e) for radial networks becomes a nonlinear
cycle condition (5.21e) for general networks. It ensures that the line angles V(G) :=
(V 9: (G), ( 9 , :) 2 ⇢) implied by a power flow solution G of (5.21) is consistent with
voltage angles in model (5.20). Since (5.21e) implies that V(G) = ⇠T

\ and V 9: (G) =
�V: 9 (G), the nodal voltage angles \ are also given by (5.12).

The model (5.21) does not require assumption C5.1 and allows nonzero shunt ad-
mittances (H<

9:
, H<
: 9
). Let G := (B,E,✓,() = (? 9 ,@ 9 ,E 9 ,✓ 9: ,✓: 9 ,% 9: ,%: 9 ,& 9: ,&: 9 , 9 2

# , ( 9 , :) 2 ⇢). Then (5.21) is a set of 2(# +1) +6" real equations in the 3(# +1) +6"
real variables in G and # + 1 variables in \. The power flow problem is: given
2(# +1) of these variables (e.g., (? 9 ,@ 9 , 9 2 #) and (E0,\0)), determine the remain-
ing 2(# + 1) + 6" variables from (5.21). Equations (5.21d) are quadratic, the cycle
condition (5.21e) is nonlinear, and the rest are linear in G. The major simplification for
radial networks is the replacement of the nonlinear cycle condition (5.21e) for general
networks by the linear cycle condition (5.1e). When shunt admittances are assumed
zero and assumption C5.1 holds, then the cycle condition becomes vacuous for radial
networks as in the DistFlow equations.

5.2.2 Equivalence of BFM and BIM

Let the set of solutions (B,+) of BIM be:

V := V(\0) := {(B,+) 2 C2(#+1) | (B,+) satisfies (5.19)}
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where we have fixed a reference angle \+0 = \0. Let the sets of solutions of BFM be:

X̃ := X̃(\0) := {G̃ : (B,+ , �,() 2 C2(#+1)+4" | G̃ satisfies (5.20)}
Xmeshed := Xmeshed (\0) := {G : (B,E,✓,() 2 R3(#+1)+6" ) | G satisfies (5.21)}
Xtree := Xtree (\0) := {G : (B,E,✓,() 2 R3(#+1)+6" | G satisfies (5.1)}
Xdf := Xdf (\0) := {G : (B,E,✓,() 2 R3(#+1+" ) | G satisfies (5.3) under C5.1 and H<

9:
= H<

: 9
= 0}

where a reference angle \+0 = \0 is fixed so that voltage phasors can be uniquely
recovered from power flow solutions in Xmeshed (\0), Xtree (\0) and Xdf (\0). We say
two sets � and ⌫ are equivalent, denoted by � ⌘ ⌫, if there is a bijection between them.
The equivalence of these power flow models is clarified in the following theorem and
illustrated in Figure 5.4.
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Figure 5.4 Equivalence of BFM and BIM. Proof focuses on X̃ ⌘ Xmeshed and Xmeshed ⌘ Xtree.

Theorem 5.2 (Equivalence). Suppose the network ⌧ is connected.

1 V ⌘ X̃ ⌘ Xmeshed.
2 If ⌧ is a tree then Xmeshed ⌘ Xtree.
3 Suppose HB

9:
= HB

: 9
(assumption C5.1) and H<

9:
= H<

: 9
= 0 for all lines ( 9 , :). If ⌧

is a tree then Xtree ⌘ Xdf.

Proof Part 1: V ⌘ X̃ ⌘ Xmeshed. It is obvious V ⌘ X̃ since, given (B,+) 2 V, define
� by (5.20b) and ( by (5.20c) and the resulting (B,+ , �,() 2 X̃. Conversely given
(B,+ , �,() 2 X̃, substituting (5.20b)(5.20c) into (5.20a) shows (B,+) 2 V. Clearly these
two mappings are the inverses of each other.

To show X̃ ⌘ Xmeshed, fix an G̃ := (B,+ , �,() 2 X̃. Define (E,✓) by:

E 9 := |+ 9 |2, ✓ 9: := |� 9: |2, ✓: 9 := |�: 9 |2 (5.22)
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We now show that G := (B,E,✓,() 2 Xmeshed. That G satisfies (5.21a) follows from
(5.20a). Taking the squared magnitude on both sides of (5.20c) gives (5.21d). For
(5.21b) rewrite the first equation in (5.20b) as

+: = U 9:+ 9 � IB
9:

✓
( 9:

+ 9

◆H
(5.23)

where we have substituted � 9: := (H
9:
/+H

9
from (5.20c). Taking the squared magnitude

on both sides gives

E: =
��
U 9:

��2
E 9 +

���IB
9:

���2 ✓ 9: � 2Re
✓
U 9:

⇣
I
B

9:

⌘H
( 9:

◆

which is (5.21b). Similarly (5.21c) can be derived from the second equation in (5.20b).
From (5.20b) and (5.20c) we have

+ 9+
H
:

= U
H
9:
|+ 9 |2 �

⇣
I
B

9:

⌘H
( 9: , +:+

H
9

= U
H
: 9
|+: |2 �

⇣
I
B

9:

⌘H
(: 9

The definitions of V 9: (G) and V: 9 (G) in (5.10) then imply that V 9: (G) = \+ 9 � \+: =
�V: 9 (G) and hence the cycle condition (5.21e) holds with \ 9 := \+ 9 . This shows
G 2 Xmeshed.

Conversely fix an G := (B,E,✓,() 2 Xmeshed, i.e., G satisfies (5.21). Since V 9: (G)
defined in (5.10) satisfy (5.21e), i.e., V(G) = ⇠T

\ for some \, we can construct (+ , �)
from G as:

+ 9 :=
p
E 9 4

i\ 9 , � 9: :=
p
✓ 9: 4

i(\ 9�\( 9:) (5.24)

We now verify that G̃ := (B,+ , �,() satisfies (5.20). Clearly (5.20a) is (5.21a). For
(5.20c), we have from (5.21d) and the construction (5.24) of (+ , �) that

|( 9: | =
���+ 9 �H

9:

��� , \( 9: = \+ 9 � \� 9:

Hence ( 9: = + 9 �H
9:

. Similarly (: 9 = +: �H
: 9

. We next show that (5.20b) follows from

(5.21b)(5.21c). First note that (5.20b) is equivalent to IB
9:

�
( 9:/+ 9

�H = U 9:+ 9 � +:

which is equivalent to

+ 9+
H
:

= U
H
9:
E 9 � IBH

9:
( 9: (5.25)

We now show that (5.21b) implies that the quantities on both sides of (5.25) have equal
magnitudes and angles, thus establishing their equality. For their angles, the definition
of V 9: (G) in (5.10) implies

\
⇣
U

H
9:
E 9 � IBH

9:
( 9:

⌘
= V 9: (G) = \ 9 � \: = \

⇣
+ 9+

H
:

⌘
where the last two equalities follow from the construction (5.24) of+ 9 ,+: . The squared
magnitude of the right-hand side of (5.25) is���UH

9:
E 9 � IBH

9:
( 9:

���2 =
��
U 9:

��2
E

2
9
� 2E 9 Re

⇣
U 9: I

BH
9:
( 9:

⌘
+

���IB
9:

���2 ��
( 9:

��2
= E 9

✓��
U 9:

��2
E 9 � 2Re

⇣
U 9: I

BH
9:
( 9:

⌘
+

���IB
9:

���2 ✓ 9:
◆
= E 9E:
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which is the squared magnitude of the quantity on the left-hand side of (5.25). The
second equality above follows from |( 9: |2 = E 9✓ 9: from (5.21d) and the last equality
follows from (5.21b). Similarly for �: 9 in the opposite direction and hence (5.20b)
follows from (5.21b)(5.21c). This proves G̃ 2 X̃. Finally the mappings defined by (5.22)
and (5.24) are inverses of each other, given a fixed reference angle \+0 = \0. We hence
conclude X̃ ⌘ Xmeshed.

Part 2: Xmeshed ⌘ Xtree. Suppose ⌧ is a tree. We will show that G := (B,E,✓,() satisfies
(5.21) if and only if it satisfies (5.1). It su�ces to show that G satisfies (5.21e) if and only
if it satisfies (5.1e). Suppose G satisfies (5.21e) which implies that V 9: (G) = �V: 9 (G).
Using (5.10) we have

\
⇣
U

H
9:
E 9 � IH

9:
( 9:

⌘
= V 9: (G) = �V: 9 (G) = �\

⇣
U

H
: 9
E: � IH

: 9
(: 9

⌘
i.e., the quantities on both sides of (5.1e) have equal angles. We now show that they
have equal magnitudes as well. Indeed���UH

9:
E 9 � IH

9:
( 9:

���2 = ��
U 9:

��2
E

2
9
+
��
I 9:

��2 |( 9: |2�2Re
⇣
U 9: I

H
9:
E 9 ( 9:

⌘
= E 9 E:

where the last equality follows from multiplying both sides of (5.1b) by E 9 and then
substituting (5.1d). Similarly���UH

: 9
E: � IH

: 9
(: 9

���2 = E: E 9 =
���UH
9:
E 9 � IH

9:
( 9:

���2

This shows that UH
9:
E 9 � I

H
9:
( 9: =

⇣
U

H
: 9
E: � IH

: 9
(: 9

⌘H
. Hence G satisfies (5.1e).

Conversely suppose G satisfies (5.1e). Adopt an arbitrary orientation of the network

graph and define V 9: (G) := \
⇣
U

H
9:
E 9 � IH

9:
( 9:

⌘
for each directed line 9 ! : (only).

Since ⌧ is a tree, the (# + 1) ⇥ # incidence matrix ⇠ has a full column rank of #
and therefore \ := ⇠

�
⇠

T
⇠

��1
V(G) + q1 as given by (5.12b) exists and is unique given

a reference angle \0. Moreover \ is a solution to (5.21e) since (5.1e) implies that
V: 9 (G) = �V 9: (G). This shows that Xmeshed ⌘ Xtree.

Part 3: Xtree ⌘ Xdf. This can be proved by substituting (5.2) into (5.1) to eliminate
(✓: 9 ,(: 9 ) from (5.1) (see Exercise 5.4). ⇤

Given the bijection between the solution sets of BIM and BFM, any result in one
model is in principle derivable in the other. Some results however are much easier to
state or derive in one model than the other. For instance BIM, which is widely used
in transmission network problems, allows a much cleaner formulation of semidefinite
program (SDP) relaxation (see Chapter 10). BFM for radial networks has a convenient
recursive structure that allows a more e�cient computation of power flows and leads
to a useful linear approximation; see Chapters 5.3 and 5.4. The su�cient condition
for exact relaxation in Chapter ?? provides intricate insights on power flows that are
hard to formulate or prove in BIM. BFM for radial networks seems to be much more
stable numerically than BIM as the network size scales up. Finally, since BFM directly
models branch flows ( 9: and currents � 9: , it is easier to use for some applications. One
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should freely use either model depending on which is more convenient for the problem
at hand.

5.3 Backward forward sweep

General iterative methods for solving power flow equations are studied in Chapter
4.4. These methods can be used not only for solving bus injection models but also
branch flow models of this chapter. Tree topology however induces a spatially recursive
structure in power flow equations and this structure allows an e�cient computation
method for solving power flow equations, called a backward forward sweep (BFS), that
is unique to radial networks. The Newton-Raphson algorithm of Chapter 4.4.2 needs to
compute Jacobian or solve a linear system in each iteration, a significant computational
burden for large networks. The Fast Decoupled Algorithm of Chapter 4.4.3 reduces
the computational e�ort of the Newton-Raphson algorithm, but assumes line losses
are small, which is a good approximation for high-voltage transmission networks but
not for distribution systems. In contrast BFS is simple, accurate, and tends to converge
quickly in practice.

An outline of BFS is as follows. A power flow solution is partitioned into two
groups of variables G and H. Starting from an initial vector H, the components G8 can
be successively computed starting from leaf nodes and propagating towards the root
(backward sweep). Given the newly updated vector G, the components H8 are then
updated successively starting from the root and propagating towards the leaf nodes
(forward sweep). A BFS method iterates on a backward sweep followed by a forward
sweep, until convergence. It can be interpreted as a special Gauss-Seidel algorithm
that exploits a spatially recursive structure enabled by tree topology.

Di�erent BFS algorithms di�er in their choices of variables G and H and the associ-
ated power flow equations. In the following we first provide in Chapter 5.3.1 a general
formulation of BFS and then illustrate in Chapters 5.3.2 and 5.3.3 BFM algorithms
using the complex form BFM and the DistFlow model. Their convergence of these
two algorithms will be analyzed in Chapter 8.6 as examples of convergence analysis
of iterative algorithms.

5.3.1 General BFS

The method of backward forward sweep can be interpreted as a Gauss-Seidel algorithm
studied in Chapter 4.4.1 to compute a fixed point, with two special features.
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Outer loop.

First it partitions a power flow variable into two vectors G 2 �=1 and H 2 �=2 where �
is either C or R. BFS consists of an outer loop which updates (G(C), H(C)) from (G(C �
1), H(C � 1)) and, for each outer iteration, two inner loops, one updating successively
each component G8 (C) using the Gauss-Seidel method with components of H(C�1) held
fixed and the other updating successively each component H8 (C) using the Gauss-Seidel
method with the newly updated G(C) held fixed. We represent the outer iteration as a
fixed-point iteration:

Outer loop: G(C) := 5 (G(C); H(C �1)), H(C) := 6(G(C); H(C)) (5.26a)

where 5 : �=1+=2! �
=1 and 6 : �=1+=2! �

=2 . By this notation we mean that each outer
iteration in (5.26a) is computed iteratively in two inner loops that update components
G 9 (C) and then H 9 (C) in turn, always using the latest available values, i.e.,

Inner loop 1: G 9 (C) := 5 9 (G1 (C), . . . ,G 9�1 (C),G 9 (C �1), . . . ,G=1 (C �1); H(C �1)), 9 = 1, . . . ,=1

(5.26b)

Inner loop 2: H 9 (C) := 6 9 (G(C); H1 (C), . . . , H 9�1 (C), H 9 (C �1), . . . , H=2 (C �1)), 9 = 1, . . . ,=2

(5.26c)

Inner loops (backward and forward sweeps).

Second the inner loops make use of a spatially recursive structure enabled by the tree
topology. Specifically the partitions G and H are chosen so that, given a vector H, the
update function 5 9 in (5.26b) for each component G 9 depends only on (G1, . . . ,G 9�1),
but not other components of G. This means that, starting from G: (C) at leaf nodes : and
propagating towards the root of the tree, G 9 (C) at nodes at successive layers are updated
according to (backward sweep):

G 9 (C) := 5 9 (G1 (C), . . . ,G 9�1 (C); H(C �1)), 9 = 1, . . . ,=1

Similarly, given an G, the update function 6 9 in (5.26c) for each component H 9 depends
only on (H1, . . . , H 9�1). Starting from the root and propagating towards leaf nodes, H 9 (C)
are updated successively according to (forward sweep):

H 9 (C) := 6 9 (G(C); H1 (C), . . . , H 9�1 (C)), 9 = 1, . . . ,=2

We can visualize the two inner loops using the tree topology. Consider a tree network
⌧ := (# ,⇢) where # := {0,1, . . . ,#} with its root at bus 9 = 0 (instead of 9 = 1). Fix
any graph orientation (it is sometimes convenient to use the up orientation if E0 is
fixed and B0 is variable). Due to the tree topology we can always identify variables
associated with a line 9 ! : , such as the line current � 9: or power flow ( 9: , by either
the from node 9 or the to node : depending on the design of ( 5 ,6) (see Chapters 5.3.2
and 5.3.3).
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Typically the partitioning of variables into (G, H) and the update functions ( 5 ,6)
are designed so that G 9 depends only on G: at its child nodes : (i.e., : is adjacent to
9 and farther away from the root than 9 regardless of the graph orientation). More
generally let T�

9
denote the set of buses in the subtree rooted at bus 9 , not including

9 . Let GT�
9

:=
⇣
G: , : 2 T�

9

⌘
denote the variables G: in the subtree T�

9
. We say that the

function 5 := ( 5 9 ,8 9) is spatially recursive if, given H, 5 9 depends only on GT�
9

, but not
other components of G:

G 9 = 5 9

⇣
GT�

9

; H
⌘
, 9 2 #

This means that, at each outer iteration C, starting from the leaf nodes and propagating
towards the root (bus 0) in the reverse breadth-first search order, G 9 can be successively
updated given vector H(C �1):

Backward sweep at C: G 9 (C) := 5 9

⇣
GT�

9

(C); H(C �1)
⌘
, 9 2 #

as illustrated in Figure 5.5(a). The recursion is initialized at leaf nodes 9 where T�
9
:= ;

so that G 9 (C) := 5 9 (;, H(C �1)) =: 5 9 (H(C�1)) with a given H(0) for outer iteration C = 0.

j

0

spatial initialization
xk(t) := fk (y(t−1)) , y(0) given 

Tº
j

xj(t) := fj (x   (t) ; y(t−1))Tºj

(a) Backward sweep

j

y0
spatial initialization
yi(t) := gi (x(t) ; y0)

yj(t) := gj(x(t) ; y   (t))Pºj

Pº
j

(b) Forward sweep

Figure 5.5 General backward forward sweep.

Similarly (G, H) and ( 5 ,6) are chosen so that, given G, the components H 9 depends
only on H8 in the path from the root to 9 , not on variables at other buses further away
from the root. Specifically let P�

9
denote the set of buses in the unique path from the

root to bus 9 , including the root bus 0 but not including 9 . Let HP�
9

:=
⇣
H8 , 8 2 P�

9

⌘
. The

function 6 := (6 9 ,8 9) is spatially recursive if, given G, 6 9 depends only on HP�
9

, but not
other components of H:

H 9 = 6 9
⇣
G; HP�

9

⌘
, 9 2 # , H0 given
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At each outer iteration C, starting from the children of the root and propagating towards
leaf nodes, H 9 can be successively updated given vector G(C):

Forward sweep at C: H 9 (C) := 6 9

⇣
G(C); HP�

9

(C)
⌘
, 9 2 #

as illustrated in Figure 5.5(b). The recursion is initialized at children 8 of the root bus 0
where P�

8
:= {0} so that H8 (C) := 68 (G(C); H0 (C)) := 68 (G(C); H0) for all outer iterations

C, given H0.

Summary.

Let G := (G 9 , 9 2 #) and H := (H 9 (C), 9 2 #). A pair (G, H) is a power flow solution if it
satisfies the following power flow equations that have a spatially recursive structure:

G 9 = 5 9

⇣
GT�

9

; H
⌘
, 9 2 # , H 9 = 6 9

⇣
G; HP�

9

⌘
, 9 2 # (5.27a)

T�
8
= ; for all leaf nodes 9 H0 given (5.27b)

A BFS algorithm is a special Gauss-Seidel algorithm that computes a fixed point of
(5.27) in which each outer iteration C consists of two inner loops:

Backward sweep at C: G 9 (C) := 5 9

⇣
GT�

9

(C); H(C �1)
⌘
, 9 2 # (5.28a)

Forward sweep at C: H 9 (C) := 6 9

⇣
G(C); HP�

9

(C)
⌘
, 9 2 # (5.28b)

starting from the spatial initial conditions in (5.27b) and given temporal initial condi-
tions H(0) and H0 (C) = H0 for all C. A more detailed description is in Algorithm 1. If
the algorithm converges and the update functions ( 5 ,6) are continuous then the limit
point is a fixed point of (5.27) and therefore a power flow solution. An advantage of
BFS is that it does not need to calculate derivatives of power flow equations and tends
to converge quickly in practice.

The design of BFS boils down to the choice of ( 5 ,6) and the partitioning (G, H)
that define the power flow equations in (5.27). Given ( 5 ,6) with the spatial recursive
structure in (5.27), the iterative algorithm is defined by the inner loops (5.28). These
design choices are not unique and may have di�erent convergence properties. We will
study two examples in Chapters 5.3.2 and 5.3.3. Most BFS algorithms compute line
currents or power flows in the backward sweep and voltages in the forward sweep.
Typically the voltage at the substation (the root of the tree) is specified and that the line
current or power out of a leaf node is zero. These two boundary conditions mean that
the computation of line currents or powers must start from the leaf nodes and propagate
backward, while that of voltages must start from the root and propagate forward.

Remark 5.1. 1 We assume for notational simplicity that each G 9 or H 9 is a scalar,
but the description remains unchanged if G 9 and H 9 are vectors and the update
functions 5 9 and 6 9 are vector-valued; see Example 5.4 below.
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Algorithm 1: Backward forward sweep

Input: ( 5 9 ,T�9 , 9 2 #), (6 9 ,P�9 , 9 2 #), H0 and H(0).
Output: a solution (G, H) of (5.27).
1. Initiatization:

• T�
9
:= ; for all leaf notes 9 .

• H0 (C) H0 for C = 0,1, . . . .
• C 0.

2. while stopping criterion not met do

1. C C +1;
2. Backward sweep: for 9 starting from leaf nodes and iterating towards bus 0 do

G 9 (C) 5 9

⇣
GT�

9

(C); H(C �1)
⌘
, 9 2 #

3. Forward sweep: for 9 starting from children of bus 0 and iterating towards leaf
nodes do

H 9 (C) 6 9

⇣
G(C); HP�

9

(C)
⌘
, 9 2 #

3. Return: G := G(C), H := H(C).

2 If ( 5 9 ,6 9 ) in (5.27a) depend not only on (GT�
9

, HP�
9

), but also on (G 9 , H 9 ), then the
update functions ( 5 9 ,6 9 ) in (5.28) become:

G 9 (C) = 5 9

⇣
GT�

9

(C),G 9 (C �1); H(C �1)
⌘
, 9 2 #

H 9 (C) := 6 9

⇣
G(C); HP�

9

(C), H 9 (C �1)
⌘
, 9 2 #

i.e., 5 9 only needs its own state and the state G: at its child nodes, but not at
upstream nodes and similarly for 6 9 .

3 In most applications, T�
9

contains only the children of 9 and P�
9

contains only the
parent of 9 . ⇤

In the next two subsections we illustrate this general BFS formulation using the
complex form BFM (5.20) of Chapter 5.2.1 and the DistFlow model (5.9) of Chapter
5.1.3. The convergence of these two BFS algorithms will be analyzed in Chapter
8.6 as applications of general convergence analysis of iterative algorithms for solving
systems of equations. These equations often arise as optimality conditions (e.g. the
KKT condition) and we will therefore postpone the convergence analysis of iterative
algorithms to after we have introduced a basic theory of optimization.
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5.3.2 Complex form BFM

We consider the complex form BFM (5.20) of Chapter 5.2.1 but assume that the
network graph ⌧ := (# ,⇢) is radial and C5.1 holds (HB

9:
= HB

: 9
). We can then adopt

a directed graph ⌧ and need to involve line variables such as
�
� 9: ,( 9:

�
only in the

direction of the line 9 ! : , but not variables
�
�: 9 ,(: 9

�
in the opposite direction, as

explained at the beginning of Chapter 5.1.3. Without loss of generality we assume the
down orientation where each line points away from the root (and reference) bus 0.

With these assumptions the complex form BFM (5.20) reduces to

B 9 =
’
:: 9⇠:

+ 9 �
H
9:

, � 9: = H̃ 9:+ 9 � HB
9:
+: (5.29)

Suppose+0 and injections B 9 at all non-reference buses 9 < 0 are given. To solve (5.29)
for (B0,+ 9 , � 9: , 9 2 # , 9! : 2 ⇢), instead of � 9: , we will first compute the currents �B

9:

through the series admittances HB
9:

:

�
B

9:
:= � 9: � H<9:+ 9

as well as+ 9 . All other variables in (5.20), such as the injection B0 and the sending-end
branch flows (� 9: ,( 9: ), can be computed once (+ 9 , �B

9:
) for all 9 2 # and all 9! : 2 ⇢

are determined. Instead of �B
9:

, we can also design a BFS algorithm that computes the
branch current � 9: directly (Exercise 5.6).

To this end we will choose two sets of power flow equations in (+ 9 , �B
9:
) that are

spatially recursive. For each bus 9 , let 8( 9) denote the parent of bus 9 (i.e., 8 := 8( 9)
is the bus adjacent to 9 on the unique path from bus 0 to 9). By Ohm’s law we have
+ 9 �+: = IB

9:
�
B

9:
where IB

9:
:= 1/HB

9:
is the series impedance of line ( 9 , :). Under

assumption C5.1, the receiving-end current at bus 9 from 8 := 8( 9) is �B
8 9
� H<

98
+ 9 .3 The

current injection at bus 9 is (B 9/+ 9 )H. Hence KCL at each non-reference bus 9 is (see
Figure 5.6) ✓

B 9

+ 9

◆H
+

⇣
�
B

8 9
� H<

98
+ 9

⌘
=

’
:: 9!:

⇣
�
B

9:
+ H<

9:
+ 9

⌘
, 9 2 #

This is the basis for the BFS algorithm of [30] which adopts the power flow equations:

�
B

8 9
=

’
:: 9!:

�
B

9:
�

 ✓
B 9

+ 9

◆H
� H<

9 9
+ 9

!
=: 5 9 , 9 2 # (5.30a)

+ 9 = +8 � IB8 9 �B8 9 =: 6 9 , 9 2 # (5.30b)

where 8 := 8( 9) denotes the unique parent of 9 and H<
9 9

:= H<
98
+Õ

:: 9!: H
<

9:
is the total

shunt admittance incident on bus 9 . The boundary conditions are

{: : 9 ! :} := ; for leaf nodes 9 , +0 is given , + 9 (0) :=+0, 9 2 # (5.30c)

3 Note that the received power at bus 9 from 8 ( 9) is +9
⇣
�
B

8 9
� H<

98
+9

⌘H
, not +8

⇣
�
B

8 9
� H<

98
+9

⌘H
.
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k

I sjk

I sij

Vi

Vj
sj

Figure 5.6 Spatially recursive structure of power flow equations (5.30).

This defines the partitioning (G, H) and the update functions ( 5 ,6) in (5.27) (recall that
the injections B 9 at all non-reference buses 9 are given):

• G 9 := �B
8 9

for 9 2 # are the complex line currents across the series impedance IB
8 9

from buses 8 to 9 . The backward sweep functions 5 9 are given by (5.30a). Let

G :=
⇣
�
B

8 ( 9) 9 , 9 2 #
⌘
= (�B

9:
, 9 ! : 2 ⇢) and 5 := ( 5 9 , 9 2 #).

• H 9 :=+ 9 for 9 2 # are the complex voltages at buses 9 . The forward sweep functions
6 9 are given by (5.30b). Let H :=

�
+ 9 , 9 2 #

�
and 6 := (6 9 , 9 2 #).

• The initialization is given by (5.30c).

The update function 5 is linear in G given H, but not jointly linear in (G, H). The function
6 is linear in (G, H).

The functions ( 5 ,6) are spatially recursive because 5 9 depends on G :=⇣
�
B

8 ( 9) 9 , 9 2 #
⌘

only through GT�
9

and 6 9 depends on H :=
�
+ 9 , 9 2 #

�
only through

HP�
9

. This translates automatically into a BFS algorithm defined by the inner loops
(5.28) and Algorithm 1. Given voltages H(C � 1), propagating (5.30a) backward from
the leaf nodes towards the root (bus 0) in the reverse breadth-first search order, the
current �B

8 9
(C) can be updated once all the currents �B

9:
(C) in the previous level have been

determined; see Figure 5.6. In the forward direction, given currents G(C), propagating
(5.30b) from the root towards the leaf nodes, the voltage + 9 (C) can be updated once
its parent +8 (C) has been determined. The detailed instantiation of Algorithm 1 for
(5.30) is given in Algorithm 2. A stopping criterion for Algorithm 2 can be based
on the discrepancy between the given injections B 9 and the injections B 9 (C) implied by
G(C) := (�B

9:
(C), 9! : 2 ⇢) and H(C) := (+ 9 (C), 9 2 #) at the end of each outer iteration

C. Motivated by (5.30a), let

B 9 (C) := + 9 (C) ©≠
´

’
:: 9!:

�
B

9:
(C)� �B

8 9
(C)™Æ

¨
H

+ H<H
9 9

��
+ 9 (C)

��2 , 9 2 #

Then a stopping criterion can be

kB(C)� Bk2 :=
’
92#

�
B 9 (C)� B 9

�2
< n
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Algorithm 2: BFS for (5.30)
Input: voltage +0 and injections (B8 , 8 2 #).
Output: currents G := (�B

9:
, 9 ! : 2 ⇢) and voltages H :=

�
+ 9 , 9 2 #

�
that are a

solution of (5.30).
1. Initiatization:

• {: : 9 ! :} := ; for leaf nodes 9

• + 9 (0) :=+0 at all buses 9 2 # .
• +0 (C) :=+0 at bus 9 = 0 for all C = 0,1, . . . .

2. while stopping criterion not met (see below) do

1. C C +1;
2. Backward sweep: for 9 starting from leaf nodes and iterating towards bus 0 do

�
B

8 9
(C) 

’
:: 9!:

�
B

9:
(C) �

 ✓
B 9

+ 9 (C �1)

◆H
� H<

9 9
+ 9 (C �1)

!
, 8! 9 2 ⇢

where H<
9 9

:= H<
98
+Õ

:: 9⇠: H
<

9:
and 8 := 8( 9) is the unique parent of 9 .

3. Forward sweep: for 9 starting from children of bus 0 and iterating towards leaf
nodes do

+ 9 (C) =+8 (C) � IB8 9 �B8 9 (C), 9 2 #

where IB
8 9

:=
⇣
H
B

8 9

⌘�1
and 8 := 8( 9) is the unique parent of 9 .

3. Return: G :=
⇣
�
B

9:
(C), 9 ! : 2 ⇢

⌘
, H :=

�
+ 9 (C), 9 2 #

�
.

for a given tolerance n > 0.

The convergence of Algorithm 2 is analyzed in Example 8.18 of Chapter 8.6.2 as a
Gauss-Seidel algorithm.

5.3.3 DistFlow model

The BFS algorithm defined by (5.30) assumes all power injections B 9 at non-reference
buses 9 are given and computes �B

9:
in the backward sweep. If some buses have their

voltage magnitudes |+ 9 | and real power ? 9 given instead (i.e., these are PV buses),
we can develop BFS algorithms based on the DistFlow model of Chapter 5.1.3. The
advantage of the DistFlow model is that the BFS algorithms need not compute the
voltage angles \ 9 . Phase angles can be recovered using (5.12) after BFS has produced a
solution. As in Chapter 5.1.3, we assume IB

9:
= IB

: 9
(assumption C5.1) and H<

9:
= H<

: 9
= 0.

We will present two algorithms, one where +0 and (B 9 , 9 2 #) are given, as in
Chapter 5.3.2, and the other where (+0,E 9 , 9 2 #) and (? 9 , 9 2 #) are given. In both
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cases only E0 is needed in BFS but the angle \+0 ensure a unique angle vector \ in
(5.12) from the solution of BFS. It will be convenient to adopt a graph orientation
where every line :! 9 points towards the root bus 0.

Example 5.4 (Given (+0, B 9 )). Suppose the complex voltage +0 and (B 9 , 9 2 #) for all
non-reference buses 9 are given. We will use the DistFlow equation (5.9) for the up
orientation to compute

�
(: 9 ,✓: 9 , :! 9 2 ⇢

�
and (E 9 , 9 2 #).

The equations (5.9a) and (5.9c) lead to the following backward sweep to compute�
(: 9 ,✓: 9 , :! 9

�
:

( 98 = B 9 +
’
:::! 9

⇣
(: 9 � IB

: 9
✓: 9

⌘
, 9 2 # (5.31a)

✓ 98 =
|( 98 |2
E 9

, 9 2 # (5.31b)

where 8 := 8( 9) in (5.31a) denotes the parent node of 9 on the unique path between node
0 and node 9 . The equation (5.9b) leads to a forward sweep to compute (E 9 , 9 2 #):

E 9 = E8 + 2Re
⇣
I
BH
98
( 98

⌘
� |IB

98
|2✓ 98 , 9 2 # (5.31c)

The boundary conditions are

{: : :! 9} := ; for leaf nodes 9 , +0 given , E 9 (0) := |+0 |2, 9 2 # (5.31d)

This defines the partitioning (G, H) and the update functions ( 5 ,6) in (5.27):

• G :=
�
(
98 ( 9) ,✓ 98 ( 9) , 9 2 #

�
. The backward sweep functions 5 := ( 5 9 , 9 2 #) are given

by (5.31a)(5.31b).
• H := (E 9 , 9 2 #). The forward sweep functions 6 := (6 9 , 9 2 #) are given by (5.31c).
• The initialization is given by (5.31d).

The update function 5 is linear in G given H, but not jointly linear in (G, H). The function
6 is linear in (G, H). Since ( 5 ,6) are spatially recursive, (5.31) translates automatically
into a BFS algorithm defined by the inner loops (5.28); see Algorithm 1. ⇤

Example 5.5 (Given (E 9 , ? 9 )). Suppose the complex voltage +0, squared voltage
magnitudes (E 9 , 9 2 #) and real power injections (? 9 , 9 2 #) for all non-reference
buses 9 are given. We will compute the reactive power injections (@ 9 , 9 2 #) as well
as the line flows (( 98 , 9 ! 8 2 ⇢). All other variables can then be determined.

Eliminating ✓: 9 from (5.31a)(5.31b) we can compute ( 98 :=
�
% 98 ,& 98

�
in a backward

sweep and @ 9 in a forward sweep:

( 98 = B 9 +
’
:::! 9

 
(: 9 � IB

: 9

|(: 9 |2
E:

!
, 9 2 # (5.32a)

@ 9 = & 98 �
’
:::! 9

 
&: 9 � GB

: 9

|(: 9 |2
E:

!
, 9 2 # (5.32b)
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where IB
: 9

=: AB
: 9
+ iG

B

: 9
. The boundary conditions are

{: : :! 9} := ; for leaf nodes 9 , E 9 given 9 2 # , @ 9 (0) given 9 2 # (5.32c)

This defines the partitioning (G, H) and the update functions ( 5 ,6) in (5.27):

• G :=
�
(
98 ( 9) , 9 2 #

�
. The backward sweep functions 5 := ( 5 9 , 9 2 #) are given by

(5.32a).
• H := (@ 9 , 9 2 #). The forward sweep functions 6 := (6 9 , 9 2 #) are given by (5.32b).
• The initialization is given by (5.32c).

Both functions 5 and 6 are nonlinear in G ( 5 is linear in and 6 is independent of H).
Since the functions ( 5 ,6) are spatially recursive, (5.32) translates automatically into a
BFS algorithm defined by the inner loops (5.28); see Algorithm 1. ⇤

5.4 Linear power flow models

We now present linear approximations of BFM for radial networks when the line
losses IB

9:
✓ 9: are small compared with the line flows ( 9: . The linear models have two

advantages. Given injections B, the voltages Elin
9

and line flows (lin
9:

of the linearized

model can be solved explicitly in terms of B. Moreover the linear solution (Elin,(lin)
provides bounds on line flows ( and voltages E of nonlinear branch flow models
(5.8)(5.9).

5.4.1 With shunt admittances

Recall the general branch flow model (5.1) in Chapter 5.1.2 for a radial network with
# +1 buses and " lines where shunt admittances (H<

9:
, H<
: 9
) may be nonzero and HB

9:

and HB
: 9

may be unequal (i.e., assumption C5.1 may not hold). A linear approximation
is the following model obtained from (5.1) by setting ✓ 9: = ✓: 9 = 0 in (5.1):

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.33a)

|U 9: |2E 9 � E: = 2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
, ( 9 , :) 2 ⇢ (5.33b)

|U: 9 |2E: � E 9 = 2Re
⇣
U: 9 Ī

B

: 9
(: 9

⌘
, ( 9 , :) 2 ⇢ (5.33c)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (5.33d)

It is a set of 2(# + 1) + 4" = 6# + 2 linear real equations in 3(# + 1) + 4" = 7# + 3
real variables G := (B 9 ,E 9 ,( 9: ,(: 9 , 9 2 # , ( 9 , :) 2 ⇢). Given 2# + 1 variables, e.g.,
(E0, ? 9 ,@ 9 , 9 2 #), the linear power flow problem solves the remaining 5# +2 variables
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from the set of 6# +2 linear equations (5.33). Even though there are more equations
than variables these equations are typically linearly dependent, as the next example
shows.

Example 5.6 (Two buses connected by a transformer). For the two-bus network in
Example 5.1, ( 9: = B 9 and (: 9 = B: . Hence the linear approximation (5.33) is a set of
4 equations in 6 variables (B,E):

E 9 � E:
.
| |2 = 2Re

⇣
( ĨB)H

B 9

⌘

|Ũ/ |2 E: � E 9 = 2Re
⇣
Ũ ( ĨB)H

B:

⌘

E 9 � ( ĨB)H
B 9 =

⇣
Ũ/| |2

⌘
E: � ĨB B̄:

where  is the voltage gain (possibly complex), Ũ := (1+ ĨB H̃<) and ĨB and H̃< are the
leakage and shunt admittance of the transformer. Let Ã + iG̃ := ĨB denote the resistance
and reactance of the leakage impedance of the transformer. Then this system of linear
equations can be written as

26666664

1 1/| |2
�1 |Ũ/ |2
1 �Re(Ũ)/| |2
0 �Im(Ũ)/| |2

37777775


E 9

E:

�
=

26666664

2Ã 2G̃ 0 0
0 0 2Re

�
Ũ

H
Ĩ
B
�

2Im
�
Ũ

H
Ĩ
B
�

Ã G̃ �Ã �G̃
�G̃ Ã �G̃ Ã

37777775

26666664

? 9

@ 9

?:

@:

37777775
We now demonstrate that the system of linear equations are typically linearly dependent.

Suppose H̃< = 0 so that Ũ = 1. Suppose further that (?: ,@: ,E 9 ) are given and we
are to solve (? 9 ,@ 9 ,E: ). Then (? 9 ,@ 9 ,E: ) satisfies four equations (only three of which
are linearly independent):

26666664

2Ã 2G̃ �1/| |2
0 0 1/| |2
Ã G̃ 1/| |2
�G̃ Ã 1/| |2

37777775|                     {z                     }
�

266664
? 9

@ 9

E:

377775
=

26666664

0 0 1
2Ã 2G̃ 1
Ã G̃ 1
G̃ �Ã 0

37777775

266664
?:

@:

E 9

377775

Elementary row operation reduces the matrix � to the following rank-3 matrix:

26666664

(Ã/G̃) (Ã2 + G̃2) 0 0
0 Ã

2 + G̃2 0
0 0 1/| |2
0 0 0

37777775
⇤



246 Branch flow models: radial networks

5.4.2 Without shunt admittances

Suppose HB
9:

= HB
: 9

(assumption C5.1) and H
<

9:
= H<

: 9
= 0. Then we can consider a

directed graph with an arbitrary orientation. To simplify notation we sometimes omit
the superscript and write H 9: and I 9: for HB

9:
and IB

9:
respectively.

The linear approximation from [25] is obtained by setting ✓ 9: := 0 in the DistFlow
equation (5.3) of Chapter 5.1.3:’

:: 9!:
( 9: =

’
8:8! 9

(8 9 + B 9 , 9 2 # (5.34a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
, 9 ! : 2 ⇢ (5.34b)

The linear model (5.34) can also be derived from (5.33) by setting U 9: = U: 9 = 1 (i.e.,
H
<

9:
= H<

: 9
= 0) and H

B

9:
= HB

: 9
in (5.33) so that (: 9 = �( 9: and the cycle condition

(5.33d) becomes (5.34b). We can also write (5.34a)(5.34b) in vector form in terms
of the bus-by-line incidence matrix ⇠ defined in (5.4). Let ⇡A := diag(A; , ; 2 ⇢) � 0
and ⇡G := diag(G; , ; 2 ⇢) � 0 be the # ⇥# positive definite diagonal matrices of line
resistances and reactances. Let B := (B 9 , 9 2 #), E := (E 9 , 9 2 #) and ( := ((; , ; 2 ⇢).
Then the linear model in vector form is:

B = ⇠ (, ⇠
T
E = 2 (⇡A% + ⇡G&) (5.34c)

The matrix ⇠ is of rank # since the graph is connected, i.e., its columns are linearly
independent. The null space of ⇠T is span(1). Any # ⇥# submatrix of ⇠ obtained by
removing any row of ⇠ is invertible (Theorem A.36 of Appendix A.11).

5.4.3 Linear solution and its properties

Suppose the reference bus voltage E0 and the injections B̂ :=
�
B 9 , 9 2 #

�
at other buses

are given.

5.4.3.1 Linear solution

The linear model (5.34) can be solved explicitly for non-reference bus voltages
Ê :=

�
E 9 , 9 2 #

�
and line flows (, from which B0 can also be determined. Recall the

decomposition in (4.22a) of the incidence matrix ⇠ into the row 2
T
0 corresponding to

bus 0 and the remaining reduced incidence matrix ⇠̂, reproduced here:

⇠ =:

2

T
0
⇠̂

�

Then the linear model (5.34) when (E0, ? 9 ,@ 9 , 9 2 #) are given is:

B̂ = ⇠̂ (, B0 = 2
T
0( (5.35a)

E0 20 + ⇠̂T
Ê = 2 (⇡A% + ⇡G&) (5.35b)
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Let P 9 denote the unique path from bus 0 to bus 9 , including both buses 0 and 9 . We
use “; 2 P 9” to refer to a directed line ; in the path P 9 that points away from bus 0 and
“�; 2 P 9” to refer to a directed line ; in P 9 that points towards bus 0. Theorem 4.10
shows that the reduced incidence matrix ⇠̂ is nonsingular and

⇥
⇠̂
�1⇤

; 9
=

8>><
>>:
�1 ; 2 P 9

1 �; 2 P 9
0 otherwise

, ⇠̂
�T
20 = �1

where ⇠̂�T :=
⇣
⇠̂

T
⌘�1

. Then (5.35) can be solved using Theorem 4.10.

Theorem 5.3 (Linear solution). Suppose the network graph ⌧ is a (connected) tree,
assumption C5.1 holds and H<

9:
= H<

: 9
= 0. Fix any E0 and B̂ = ( ?̂, @̂) 2 R2# . Then

1 The solution to (5.35) is

( = ⇠̂�1
B̂, B0 = 2

T
0⇠̂
�1
B̂ (5.36a)

Ê = E0 1 + 2 ('?̂ + -@̂) (5.36b)

where ' := ⇠̂�T
⇡A ⇠̂

�1 and - := ⇠̂�T
⇡G⇠̂

�1.
2 ' � 0 and - � 0 are positive definite matrices and

' 9: =
’

;2P 9\P:

A; , - 9: =
’

;2P 9\P:

G; (5.36c)

The solution (5.36a)(5.36b) can be obtained by multiplying both sides of (5.35)
by ⇠̂

�1. The positive definiteness of ' and - follows from ⇡A � 0 and ⇡G � 0.
The explicit expressions in (5.36c) follow from Theorem 4.10 and have a simple
interpretation: the ( 9 , :) entries of ' and - are the total resistance and reactance
respectively in the common segment of the paths from bus 0 to buses 9 and : . If we
interpret !̂ := ⇠̂ (⇡�1

A
)⇠̂T as a reduced Laplacian matrix, then ' = !̂�1 (similarly for

-).

5.4.3.2 Analytical properties

We now study some analytical properties of the linear model (5.34). These properties
hold for general graph orientations but are particularly transparent in two special
orientations.

Down orientation: lines point away from bus 0.

The linear model (5.34) reduces to:’
:: 9!:

(
lin
9:
= (lin

8 9
+ B 9 , 9 2 # (5.37a)

E
lin
9
� Elin

:
= 2Re

⇣
I

H
9:
(

lin
9:

⌘
, 9 ! : 2 ⇢ (5.37b)
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where bus 8 := 8( 9) in (5.37a) denotes the bus adjacent to 9 on the unique path from
bus 0 to bus 9 . The boundary condition is: (lin

80 := 0 in (5.37a) when 9 = 0 and (lin
9:
= 0

in (5.37a) when 9 is a leaf node.

Up orientation: lines point towards bus 0.

The linear model (5.34) reduces to:

(

lin
98
=

’
:::! 9

(

lin
: 9
+ B 9 , 9 2 # (5.38a)

E
lin
:
� Elin

9
= 2Re

⇣
I

H
: 9
(

lin
: 9

⌘
, :! 9 2 ⇢ (5.38b)

where 8 := 8( 9) in (5.38a) denotes the node adjacent to 9 on the unique path between

node 0 and node 9 . The boundary condition is defined by (
lin
98
= 0 in (5.38a) when 9 = 0

and (
lin
: 9

= 0,✓: 9 = 0 in (5.38a) when 9 is a leaf node.

Denote by T 9 the subtree rooted at bus 9 , including 9 . We write “; 2 T 9” to mean
either a bus ; or a line ; in the subtree T 9 , depending on the context. If there is danger of
confusion we write “( 9 , :) 2 T 9” to mean line ; := ( 9 , :) in T 9 . The following corollary
is proved in Exercise 5.8.

Corollary 5.4 (Linear solutions). Under the assumptions of Theorem 5.3 let

(Elin,(lin) 2 R#+2" be the solution of (5.37) and (Elin,(
lin) 2 R#+2" the solution

of (5.38). Then

1 For (8, 9) 2 ⇢

(
lin
8 9

= �
’
:2T 9

B: , 8! 9

(

lin
98
=

’
:2T 9

B: , 9 ! 8

Hence (lin
8 9

= �(lin
98

.

2 For 9 2 # , Elin
9
= Elin

9
= E0 +2

Õ
:

�
' 9: ?: + - 9:@:

�
where ' 9: and - 9: are given

in (5.36c).

Corollary 5.4 says that, on each line (8, 9) 2 ⇢ , the power flow (8 9 from 8 to 9 , or
the power flow ( 98 in the opposite direction, equals the total load �Õ

:2T 9 B: in the
subtree rooted at node 9 . These linear line flows neglect line losses and underestimate

the required power to supply these loads. With zero line loss, we have (lin
8 9

= �(lin
98

.
Since all entries of ' and - are nonnegative, both real and reactive power injections
(?,@) always increase voltage magnitudes E according to the linear approximation.

This is not the case for solutions of nonlinear power flow equations (5.8) or (5.9).
Indeed fix any E0 and injections B̂ 2 R2# at non-reference buses in # . We can recurse
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on the power flow equations (5.8), starting from the leaf nodes for (8 9 and bus 0 for
E 9 , to show that any solution (E,✓,() of (5.8) must satisfy (Exercise 5.9):

(8 9 = �
’
:2T 9

B: + ©≠
´
I8 9✓8 9 +

’
;2T 9

I;✓;

™Æ
¨

(5.39a)

E 9 = E0 �
’
;2P 9

⇣
2Re

⇣
I

H
;
(;

⌘
� |I; |2✓;

⌘
(5.39b)

Similarly we can recurse on (5.9) to show that

( 98 =
’
:2T 9

B: �
’
;2T 9

I;✓; (5.39c)

E 9 = E0 +
’
;2P 9

⇣
2Re

⇣
I

H
;
(;

⌘
� |I; |2✓;

⌘
(5.39d)

Summing (5.39a) and (5.39c) shows that

(8 9 + ( 98 = I8 9✓8 9

as we saw earlier in (5.2). Note that given E0 and B 2 R2# , Corollary 5.4 provides

the unique solution (Elin,(lin) to (5.37) (or unique solution (Elin,(
lin) to (5.38)). For

nonlinear model (5.8) or (5.9), the solutions (E,✓,() or (E, B,() may not be unique.
Any nonlinear solution however must satisfy (5.39).

It is proved in Exercise 5.8 that, for 9 2 # , the linear solutions satisfy:

E
lin
9
= E0 �

’
;2P 9

2Re
⇣
I

H
;
(

lin
;

⌘
(5.40a)

E
lin
9
= E0 +

’
;2P 9

2Re
⇣
I

H
;
(

lin
;

⌘
(5.40b)

Comparing these relations and (5.39) leads to bounds on the nonlinear solutions in the
following corollary (proved in Exercise 5.10). Recall that, by definition, G is a power
flow solution only if E � 0 and ✓ � 0 componentwise (assuming I; = (A; ,G;) > 0 for any
line ; 2 ⇢ .).

Corollary 5.5 (Bounds on nonlinear solutions). Suppose the network graph ⌧ is a
(connected) tree, assumption C5.1 holds and H<

9:
= H<

: 9
= 0. Fix any E0 and B̂ 2 R2# .

Let (E,✓,() and (E,✓,() in R#+3" be any (possibly nonunique) solutions of (5.8) and

(5.9) respectively. Let (Elin,(lin) and (Elin,(
lin) in '#+2" be the unique solutions of

their linearizations (5.37) and (5.38) respectively. Then

1 For 8! 9 2 ⇢ , (8 9 � (lin
8 9

with equality if only if ✓8 9 and all ✓:; in T 9 are zero.

2 For 9 ! 8 2 ⇢ , ( 98  (
lin
98

with equality if and only if all ✓:; in T 9 are zero.

3 For 9 2 # , E 9 = E 9  Elin
9
= Elin

9
.
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Remark 5.2. 1 Up orientation. While it is easy to prove E 9  Elin
9

from (5.39d) and
(5.40b), it does not seem easy to prove E 9  Elin

9
directly, except by relating the

variables (E 9 ,Elin
9
) to (E 9 ,Elin

9
) in the opposite direction. This is an advantage of

the models (5.9) and (5.38) in the up orientation.
2 Bounds for SOCP relaxation. The bounds in Corollary 5.5 do not depend on the

quadratic equalities (5.8c) and (5.9c) as long as ✓ 9: � 0. In particular the bounds
hold if the equalities are relaxed to inequalities E 9✓ 9: � |( 9: |2. These bounds are
used in Chapter ?? in a su�cient condition for exact SOCP relaxation of optimal
power flow problems for radial networks.

3 Linear approximation. For radial networks, the linear approximation (5.34) of
BFM has two advantages over the (linear) DC approximation of BIM studied in
Chapter 4.6.2. First the linear models (5.37) and (5.38) with special graph ori-
entations have a recursive structure that leads to simple bounds on power flow
quantities. Second DC approximation assumes A 9: = 0, fixes voltage magnitudes,
and ignores reactive power, whereas (5.34) does not. This is important for distri-
bution systems where A 9: are not negligible, voltages can fluctuate significantly
and reactive powers are used to regulate them. On the other hand (5.34), (5.37) and
(5.38) are applicable only to radial networks whereas DC approximation applies
to meshed networks as well. ⇤

5.5 Bibliographical notes

A branch flow model, called the DistFlow equations, is proposed in [24, 25] for
radial networks. Its key feature is that it does not involve phase angles of voltage and
current phasors. This is extended to general meshed network in [31] by introducing
a cycle condition. All of these models assume zero shunt admittances on the lines.
Shunt admittances of the lines are added to the branch flow model in [32]. The main
di�erence of the model (5.1) from the model in [24, 25, 31] is the use of undirected
rather than directed graph when shunt elements are included so that line currents and
power flows are defined in both directions. The equivalence of BFM and bus injection
model (BIM) is proved in [33]. The equivalence of DistFlow to BFM in complex form
and hence equivalent to BIM follows from [31, Theorems 2, 4]. Theorem 5.1 is from
[34]. For BFM and SOCP relaxations when a radial network contain ideal transformers
and multiple lines between two buses, see [35].

The linearized model (5.34) is first proposed in [25] and called the Simplified
DistFlow equations. The paper also states an explicit solution for the squared voltage
magnitude E8 as an a�ne function of the injections B 9 whose coe�cients b8 9 are the
total impedances on the common paths P�

8
and P�

9
from the root (bus 0) to buses 8

and 9 respectively. This is the same solution as that in Theorem 5.3. The properties in
Theorem 5.3 and Corollary 5.5 of the linear model seem to have been independently
observed in several papers, e.g., [36, 37, 38, 39, 40] where E8 � E 9 is sometimes
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approximated by 2( |+8 | � |+ 9 |) since |+8 | ⇡ 1 pu. Our discussion on the local volt/var
control algorithm follows [37, 38].

Backward forward sweep (edit later).

Power flow solutions for general networks are mostly based on Newton-Raphson and
its variants, or more recently, interior-point methods. Another approach has been de-
veloped for radial networks, both single-phase and three-phase networks, that exploits
their tree structure. The idea of backward forward sweep (BFS) is first proposed in
[41] for three-phase distribution systems. Early examples of BFS algorithms for three-
phase radial networks are designed in [42][43, Chapter 10.1.3]. The BFS method for
single-phase networks described in Chapter 5.3.2 is from [30]. It is extended in [44]
to allow PV buses by computing line power flows ( 9: instead of currents �B

9:
. Both

algorithms (with extensions for meshed networks) were developed for weakly meshed
transmission systems as well as distribution systems. Another variant of BFS, pro-
posed in [? ], calculates voltages in both forward and backward iterations in linear
feeders with voltage-dependent loads. The BFS algorithm in [30] is extended in [45]
from single-phase to three-phase networks, and in [? ] to four-wire neutral-grounded
networks. In [? ], three-phase voltages and line currents are calculated with generalized
line models that incorporate transformers and constant impedance loads. Transformers
of di�erent configurations have been included in BFS through modified augmented
nodal analysis [? ]. Some of these works are briefly discussed in [46]. BFS algorithms
tend to have better convergence properties than general algorithms such as Newton-
Raphson. Simulation results in [47] suggest however that Newton-Raphson converges
in a smaller number of iterations.

The solution approach in the original DistFlow paper [25] uses one-time backward
sweep to express all variables in terms of the power injections at the feeder head and all
branch points followed by a Newton-Raphson algorithm to solve for these injections.
The existence and uniqueness of solutions are studied in [48]. By exploiting the ap-
proximate sparsity of the Jacobian matrix in [25], approximate fast decoupled methods
are developed and their convergence properties analyzed in [49]. These methods are
extended to three-phase radial networks in [47]. The existence and uniqueness of power
flow solutions of three-phase DistFlow model is analyzed in [50].

5.6 Problems

Chapter 5.1.

Exercise 5.1 (Line angles V(G)). Justify the definition of line angles in (5.10) using
(5.20b)(5.20c).
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Exercise 5.2 (Incidence matrix ⇠). Consider the (# +1)⇥" incidence matrix ⇠ of a
(connected) radial network defined by:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Show that ⇠ has rank # = " , the null space of ⇠T is span(1) and its pseudo-inverse�
⇠

T�† =⇠ �
⇠

T
⇠

��1. (See Theorem 4.10 for the inverse of the reduced incidence matrix
⇠̂.)

Exercise 5.3 (Line loss). Consider a radial network where lines have zero shunt
admittances. Show that, under assumption C5.1, (5.1) leads to:

( 9: + (: 9 = IB
9:
✓ 9: = I

B

9:
✓: 9

Exercise 5.4 (DistFlow equations). Suppose assumption C5.1 holds and H<
9:
= H<

: 9
= 0

for all lines ( 9 , :) 2 ⇢ . Show that Xtree ⌘ Xdf (these sets are defined in Chapter 5.2.2)

Exercise 5.5 (Graph orientation). Prove (5.7) under assumption C5.1, i.e., G satisfies
(5.3) if and only if Ĝ := 6(G) satisfies (5.6)

Chapter 5.3

Exercise 5.6 (Backward forward sweep). The BFS algorithm in Chapter 5.3.2, based
on the branch flow model (5.20) in complex form, computes (+ 9 , �B

9:
).

1 Show that all other variables in (5.20) can be computed once (+ 9 , �B
9:
) for all 9 2 #

and all 9 ! : 2 ⇢ are determined.
2 Design a BFS algorithm that solves the same power flow equations under the same

assumptions but computes the sending-end currents � 9: directly, instead of �B
9:

over the series admittances, as well as the voltage + 9 .

Exercise 5.7 (Backward forward sweep). Consider a 2-bus network and prove a su�-
cient condition for BFS to converge under assumption C5.1.
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Chapter 5.4.

Assumption C5.1 and H<
9:

= H<
: 9

= 0 are assumed in Chapter 5.4 for linear DistFlow
models and hence for problems in this section.

Exercise 5.8 (Linear solution). Prove Corollary 5.4. Also show that for 9 2 #

E
lin
9
= E0 �

’
;2P 9

2Re
⇣
I

H
;
(

lin
;

⌘
(5.41a)

E
lin
9
= E0 +

’
;2P 9

2Re
⇣
I

H
;
(

lin
;

⌘
(5.41b)

Hence Elin
9
= Elin

9
. (Hint: Use (5.36) or induction.)

Exercise 5.9 (Nonlinear recursion). Derive (5.39) from the DistFlow equations (5.8)
and (5.9). (Hint: Use induction.)

Exercise 5.10 (Bounds). Prove Corollary 5.5.



6 System operation: power balance

The primary function of a power system is to deliver electricity reliably, and, subject
to reliable operation, economically. In this and next chapters we explain some of the
operational components using the network models developed in previous chapters.
This chapter focuses on a hierarchy of control mechanisms at di�erent timescales to
balance power supply and demand. Chapter 7 presents applications in state estimation,
voltage control on a distribution feeder, and network identification. Our focus is on
mathematical analysis of these applications; see, e.g. [1, 2, 3], for detailed description
of the physical systems and operations.

After some background information in Chapter 6.1 we describe in Chapter 6.2 the
problem of unit commitment and real-time dispatch to balance power on daily and 5-15
minute basis respectively. In Chapter 6.3 we explain frequency control that balances
power on a second by second basis. In Chapters 6.4 we study how to price electricity
to incentivize optimal real-time dispatch.

6.1 Background

6.1.1 Overview

Electricity has two important di�erences from most commodities such as rice and
minerals. First there is not yet large-scale energy storage in our power system so that
inventory control as a means to match supply and demand for most commodities is not
applicable. Instead generation and load must be balanced on a second-by-second basis
at all points on the network. Second electricity cannot yet be routed from generators to
loads at will but must follow paths determined power flow equations. The nonlinearity
of power flow equations introduces computational challenges. These di�erences have
strong implications on how the network is operated and how markets are organized.

The central control problem is to balance supply and demand, continuously and
everywhere, without violating operational constraints such as capacity limits of gen-
erators and loads, bounds on voltage magnitudes, and thermal and stability limits of
transmission lines and transformers. Thermal generators such as gas, coal and nuclear
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generators still generate the majority of electricity today. For example, in 2023, fos-
sil fuels generated 60.0% and nuclear generated 18.5% of all electricity in the US
[51, Table 1.1]. Hydro-generation produced 5.9% of electricity and other renewable
generations 15.5%. Thermal and hydro generators are fully controllable and can pro-
duce a specified amount of electricity at a specified time and location. Traditionally
a power system operator forecasts demand, which is assumed inelastic, and schedules
bulk generators to meet the forecast demand. As we decarbonize our energy system by
replacing fossil fuel generators by wind and solar farms, our ability to control genera-
tion decreases and we must also exploit flexibility in demand to match volatile supply.
Di�culties arise from the variability and uncertainty of undispatchable demand and
supply, the need to match the speed of control and that of disturbances, as well as
random unscheduled outages of generators, loads, lines and transformers.

A transmission network is a high-voltage long-distance network that connects bulk
power producers to power consumers. These consumers are called load centers and
represent aggregate loads such as substations of a local utility company that feeds
a small city. The operation of a transmission network is typically coordinated by an
independent system operator that commits and dispatches generation units to meet
demand at timescales ranging from hours to minutes to seconds. Control and market
operations are tightly integrated in a power system in order to balance supply and
demand on a second-by-second basis everywhere in the grid.

An overview of the hierarchy of control mechanisms to balance power, as well as
the associated pricing of electricity and reserves is as follows:

1 Unit commitment and real-time dispatch (Chapter 6.2). Bulk generators such as
gas, coal, and nuclear generators need nontrivial amounts of time and cost to start
up and shut down, e.g., the startup time for a nuclear plant can be hours. This
motivates a day-ahead market which usually closes 12–36 hours in advance of
energy delivery and determines which generators will be online and their output
levels for each hour or half an hour over a 24-hour horizon. This is the problem of
unit commitment and is discussed in Chapter 6.2.1.

The commitment decisions are determined based on forecast of loads and vari-
able generations such as wind and solar power 12–36 hours in advance. A real-time
market computes, every 5–15 minutes in advance of energy delivery, adjustments
to generation and consumption levels relative to the schedules produced by the
day-ahead market as uncertainty in consumption, generation, and network state is
resolved. This is the problem of real-time dispatch and is discussed in Chapter
6.2.2.

2 Frequency control (Chapter 6.3). Balancing on a second-by-second basis within a
real-time dispatch interval takes the form of frequency control, currently organized
at two timescales. When there is excess supply the rotating machines in bulk
generators will speed up and the system frequency will rise. When there is a
shortage the rotating machines will slow down and the system frequency will drop.
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Frequency deviation is used as a control signal for generators and controllable
loads to adjust their power. A generating unit that participates in the primary
control uses a governor to automatically adjusts its power in proportion to its local
frequency deviation in a decentralized manner. Primary control rebalances power
and stabilizes the frequency to a new equilibrium value in 30 seconds or so. This
is studied in Chapter 6.3.2.

The secondary control adjusts generator setpoints around their dispatch values
in order to restore system frequency to its nominal value and restore tie-line
powers between balancing areas to their scheduled values within a few minutes
(the dispatched setpoint and scheduled tie-line flows are determined by real-time
dispatch studied in Chapter 6.2.2). These adjustments are determined centrally
within each area based on real-time measurements of tie-line flow deviations and
frequency deviations in the area. Secondary control is studied in Chapter 6.3.3.

3 Pricing electricity (Chapter 6.4). Chapters 6.2 and 6.3 focus on control mechanisms
to balance power at timescales from subseconds to a day. The day-ahead and real-
time markets determine not only generation schedules, but also electricity prices.
In Chapter 6.4.2 we formulate the real-time dispatch problem for market operation
and design electricity prices. In Chapter 6.4.3 we show that these prices incentivize
optimal dispatch and are revenue adequate for the system operator.

The system operator needs to deal with uncertainties, both discrete uncertainties
due to outages of generators, transmission or distribution lines and transformers,
and continuous uncertainties due to random fluctuations of renewable generations
or loads. In Chapter 6.4.4 we extend basic economic dispatch to security con-
strained economic dispatch that jointly optimizes energy and reserves. In Chapter
6.4.5 we show how to incorporate security constrained economic dispatch in unit
commitment in day-ahead markets.

6.1.2 Basic optimization concepts

Many power system applications can be formulated as optimization problems. In
this subsection we introduce some basic concepts of optimization. They provide the
language in the rest of this chapter to explain control mechanisms for balancing power
supply and demand

A constrained optimization problem is specified by a primal variable G 2 R=, an
objective or cost function 5 : R= ! R, and constraint functions 6 : R= ! R< and
⌘ : R=! R; . It takes the form:

min
G2R=

5 (G) subject to 6(G) = 0, ⌘(G)  0 (6.1)

i.e., our objective is to choose an G⇤ that minimizes the cost 5 (G) among all G that
satisfies the constraints 6(G) = 0 and ⌘(G)  0. The set - := {G 2 R= : 6(G)  0, ⌘(G) 
0} is called a feasible set. An G 2 - is called a feasible solution of (6.1). A feasible
solution G⇤ that attains the minimum of 5 over - (i.e., 5 (G⇤)  5 (G) for all G 2 -) is
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called a (primal) optimal solution/optimum or a minimizer. Suppose 5 ,6,⌘ are convex
and continuously di�erentiable functions. If there is no constraint then G⇤ minimizes
5 (G) if and only if r 5 (G⇤) = 0. This optimality condition generalizes to constrained
optimization as follows.

Associate with each constraint 68 (G) = 0 a variable _8 2 R and each constraint
⌘ 9 (G)  0 a variable ` 9 2 R. The vector (_,`) := (_8 , 8 = 1, . . . ,<; ` 9 , 9 = 1, . . . , ;) is
called a Lagrange multiplier (vector) or a dual variable. The problem (6.1) is called
a convex program/problem when 5 ,6,⌘ are convex functions. Then a primal variable
G
⇤ 2 R= is an optimal solution of (6.1) if and only if there exists a dual variable
(_⇤,`⇤) 2 R<+; such that the following conditions are satisfied:

Stationarity : r 5 (G⇤) +r6(G⇤)_⇤ +r⌘(G⇤)`⇤ = 0 (6.2a)

Primal feasibility : 6(G⇤) = 0, ⌘(G⇤)  0 (6.2b)

Dual feasibility : `
⇤ � 0 (6.2c)

Complementary slackness : `
⇤T
⌘(G⇤) = 0 (6.2d)

where r 5 is the column vector whose 8th entry is m 5

mG8

, r6 is the =⇥< matrix whose

(8, 9) entry is m6 9

mG8

. and r⌘ is the =⇥ ; matrix whose (8, 9) entry is m⌘ 9

mG8

. This is the
KKT Theorem 8.15 studied in Chapter 8.3.2. The condition (6.2) is called the KKT
condition associated with (6.1) and reduces to r 5 (G⇤) = 0 when there is no constraint.
The dual variable (_⇤,`⇤) in this case is called dual optimal. Hence the KKT condition
is necessary and su�cient for (G⇤,_⇤,`⇤) to be primal and dual optimal when (6.1) is
a convex program; it is necessary but generally not su�cient otherwise.

In this chapter we will formulate various control and pricing mechanisms as con-
strained optimization of the form

min
D,G

5 (D,G) s.t. 6(D,G) = 0, ⌘(D,G)  0

This is called an optimal power flow (OPF) problem and it is a basic building block
that underlies numerous power system applications. The optimization variable (D,G)
consists of control D and network state G and can span multiple time periods, e.g., in
unit commitment problems. The optimization variable (D,G), the cost function 5 and
the constraint functions 6, ⌘ depend on the application under study. There are usually
two types of constraint. The first is power flow equations in various forms studied in
Chapters 4 and 5 for single-phase networks and Chapters 16 and 17 for unbalanced
multiphase networks. The second type of constraint consists of operational limits such
as voltage limits, capacity limits on generators and loads, and thermal and stability
limits on transmission lines and transformers.

Structural properties of general OPF problems and algorithms for solving them are
studied in detail in Part II.
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6.2 Unit commitment and real-time dispatch

In this and next section we describe a hierarchy of control mechanisms for balancing
power at timescales from daily to minutes to subseconds. In Chapter 6.4 we explain
how to price electricity to incentivize optimal dispatch.

6.2.1 Unit commitment

The problem of unit commitment is typically solved by the system operator in the
day-ahead market 12–36 hours in advance of energy delivery to decide which units
will be turned on for each hour or half an hour over a 24-hour period. Integral to the
commitment decision is also a dispatch decision that determines the output levels of
those units that will be online. The commitment decision is made assuming that the
dispatch decision will be optimized at delivery time. This can be formulated as a two-
stage optimization problem. For most day-ahead markets, the commitment decision
is binding but the dispatch decision can be binding or advisory, to be adjusted by
economic dispatch in the real-time market. We will discuss in detail the problem of
real-time dispatch in Chapter 6.2.2, so we will focus on formulating the commitment
decision in this section.

Consider a time horizon ) := {1,2, . . . ,)} and a power network represented as
a graph ⌧ := (# ,⇢) as before. For example, each time C represents an hour and
) = 24. For each period C 2 ) let D(C) := (D 9 (C), 9 2 #) denote controllable real and
reactive power injections at time C, + (C) := (+ 9 (C), 9 2 #) the voltage phasor, ((C) :=�
( 9: (C),(: 9 (C), ( 9 , :) 2 ⇢

�
the complex line flows. We call D(C) a dispatch and G(C) :=

(+ (C),((C)) a network state at time C. Let D := (D(C), C 2)) and G := (G(C), C 2)). They are
complex vectors of appropriate sizes. Let ^ 9 (C) 2 {0,1} be the binary variable indicating

that unit 9 will be on at time C if ^ 9 (C) = 1 and o� otherwise. Let ^(C) :=
⇣
^ 9 (C), 9 2 #

⌘
and ^ := (^(C), C 2 )).

Our OPF formulation includes only three features of the unit commitment problem.
The first is injection bounds on a unit when it is turned on. This can be expressed as
the constraint:

D
9
(C)^ 9 (C)  D 9 (C)  D 9 (C)^ 9 (C), 9 2 # (6.3a)

where D
9
(C) and D (C) 9 are given bounds on the active and reactive injections respec-

tively at bus 9 at time C.1 The second feature is the startup and shut down costs incurred
by a bulk unit when it is turned on or o�. This can be expressed as a cost function 3C

1 All variables are complex and, by 0  0 where 0,0 2 C, we mean separate bounds on the real and
imaginary parts, Re 0  Re 0 and Im 0  Im 0.
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that is positive when the on/o� status of the unit changes:

3 9C (^ 9 (C �1), ^ 9 (C)) :=

8>><
>>:

startup cost if ^ 9 (C)� ^ 9 (C �1) = 1
shutdown cost if ^ 9 (C)� ^ 9 (C �1) = �1
0 if ^ 9 (C)� ^ 9 (C �1) = 0

(6.3b)

Once turned on or o�, if a bulk generator must stay in the same on/o� state for a
minimum amount of time, this imposes constraints that keep track of the time since
the last on/o� state change:

^ 9 (C)� ^ 9 (C �1)  ^
g

9
, 8g 2 {C +1, C +up

9
�1} (6.3c)

^ 9 (C �1)� ^ 9 (C)  1� ^g
9
, 8g 2 {C +1, C +down 9 �1} (6.3d)

where up 9 and down 9 are the minimum up and down time respectively once turned on
or o�.

We illustrate how unit commitment can be posed as an OPF using the simplest
formulation that includes only the three features in (6.3). Unit commitment is then the
following two-stage optimization problem:

min
^2{0,1}(#+1))

’
C

’
9

3 9C

�
^ 9 (C �1), ^ 9 (C)

�
+ 5

⇤ (^) (6.4a)

s.t. (6.3c)(6.3d) (6.4b)

where the startup/shut down costs 3 9C are given by (6.3b). Given a commitment decision
^, 5 ⇤ (^) is the optimal real-time dispatch cost over the entire optimization horizon:

5
⇤ (^) := min

(D,G)

’
C

5C (D(C),G(C); ^(C)) (6.4c)

s.t. 6C (D(C),G(C); ^(C)) = 0, ⌘C (D(C),G(C); ^(C))  0, C 2 ) (6.4d)

6̃(D,G) = 0, ⌘̃(D,G)  0 (6.4e)

Here 5C is the dispatch cost, e.g., fuel cost, at time C. The constraints (6.4d) include power
flow equations and capacity limits such as (6.3a) at each time C, and the constraints (6.4e)
are inter-temporal constraints such as ramp rate limits of the form |D 9 (C)�D 9 (C�1) | 
d 9 . Hence the commitment decision ^ is chosen in (6.4a) in anticipation that the dispatch
decisions (D(C),G(C)) will be optimized in the second-stage problem (6.4c)(6.4d)(6.4e).

The second-stage problem (6.4c)(6.4d)(6.4e) approximates real-time dispatch prob-
lem (6.6) explained in Chapter 6.2.2, even though real-time dispatch operates in 5-15
minute intervals (instead of hourly or half-hourly) and may not include temporal
constraints (6.4e). It uses the forecast of uncontrollable injections (generations and
loads) as parameters in power flow equations in (6.4d). The revised forecast of these
parameters is typically much better when real-time dispatch is computed.

Remark 6.1 (Unit commitment in practice). The unit commitment problem (6.4) is
nonconvex and computationally challenging for large networks. Nonconvexity is due
both to the binary variable ^ and the nonlinear power flow equations. In practice these
nonlinear power flow equations are usually replaced by their linear approximations
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such as the DC power flow model (see an example in Chapter 6.4.5). This reduces the
problem to a mixed integer linear program (MILP) and can often be solved within the
available time using branch and bound methods (Chapter 8.5.6) or Benders decomposi-
tion (see Example 8.17 in Chapter 8.5.7). The solution (^⇤,D⇤,G⇤) of the MILP however
may not satisfy the original nonlinear constraints. Typically the nonlinear power flow
model is then used to check if the commitment and dispatch decisions (^⇤,D⇤) will
produce a state G that satisfies operational constraints such as voltage and line limits.
This involves solving nonlinear power flow equations. If operational constraints are
violated, the MILP is modified and the procedure is repeated.

Active e�ort is underway in the R&D community and industry to scale computation
methods for mixed integer nonlinear programs to large networks, so that the OPF
problem (6.4) can be applied in day-ahead markets. See Chapter 9.5 for an example. ⇤

6.2.2 Real-time dispatch

After the on-o� status of generating units and large controllable loads have been
determined by a day-ahead market, a real-time market computes every 5-15 minutes
optimal injection levels of those units that are online. This is the problem of optimal,
or economic, dispatch. While the control, or dispatch, interval C for unit commitment
is typically an hour or half an hour, the dispatch interval C for economic dispatch
is 5-15 minutes. The most common, and simplest, form of the problem computes
an optimal dispatch in each interval without taking into account decisions in future
intervals (except for security constrained economic dispatch studied in Chapter 6.4.4).
We hence fix a control interval and drop the time index C in our notation.

In this subsection we formulate the real-time dispatch problem and discuss causes for
intra-interval imbalance. In the next section we describe frequency control mechanisms
that balance power within a dispatch interval.

OPF formulation.

Consider a set of buses# and assume there is a generator or controllable load at each bus
9 2 # . Let D := (D 9 , 9 2 #) denote the complex controllable injections,+ := (+ 9 , 9 2 #)
the voltage phasors, and ( :=

�
( 9: ,(: 9 , ( 9 , :) 2 ⇢

�
the complex line flows. We call D

a dispatch and G := (+ ,() a network state. They are complex vectors of appropriate

sizes. Let f :=
⇣
f9 , 9 2 #

⌘
be given complex uncontrollable injections. For real-time

dispatch the objective function 5 (D,G) may represent fuel cost which may be convex
quadratic in real power generation:

5 (D,G) =
’

generators 9

⇣
0 9

�
Re(D 9 )

�2 + 1 9 Re(D 9 )
⌘

for some 0 9 � 0, 1 9 � 0.
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The relation between the line flows ( :=
�
( 9: , ( 9 , :) 2 ⇢

�
and voltages + :=⇣

+ 9 , 9 2 #
⌘

is specified by the power flow equation

( = ((+) (6.5a)

where we have abused notation to use ( 9: to denote both a line flow and a function
of voltages. For example we can write the line flow ( 9: in terms of + in the complex
form (4.25) reproduced here:

( 9: (+) =
⇣
H
B

9:

⌘
�

⇣
|+ 9 |2�+ 9+�:

⌘
+

⇣
H
<

9:

⌘
�

|+ 9 |2, ( 9 , :) 2 ⇢

(: 9 (+) =
⇣
H
B

9:

⌘
�

⇣
|+: |2�+:+�9

⌘
+

⇣
H
<

: 9

⌘
�

|+: |2, ( 9 , :) 2 ⇢

where (HB
9:

, H<
9:
) and (HB

: 9
, H<
: 9
) are series and charging admittances of line ( 9 , :), or

in polar form (see (4.27)):

% 9: (+) =
⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 � |+ 9 | |+: |

⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, ( 9 , :) 2 ⇢

& 9: (+) =
⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 � |+ 9 | |+: |

⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, ( 9 , :) 2 ⇢

where (6B
9:

,1B
9:
) and (6<

9:
,1<
9:
) are series and charging admittances of line ( 9 , :)

and \ 9: := \+ 9 � \+: . Similarly for
�
%: 9 (+),&: 9 (+)

�
in the opposite direction on line

( 9 , :). Di�erent power flow equations lead to di�erent OPF formulations with di�erent
computational properties. Then power balance is expressed as2

D 9 + f9 =
’
:: 9⇠:

( 9: , 9 2 # (6.5b)

The most common operational constraints are:

• Injection limits (e.g., generator or load capacity limits):

D
9
 D 9  D 9 , 9 2 # (6.5c)

where D
9
and D 9 are given bounds on the active and reactive injections respectively

at buses 9 .3

• Voltage limits:

E
9
 |+ 9 |2  E 9 , 9 2 # (6.5d)

where E
9

and E 9 are given lower and upper bounds on the squared voltage mag-
nitudes. We assume E

9
> 0 to avoid triviality (in practice E 9 ⇡ 1 pu).

2 If HB
9:

= HB
: 9

and H<
9:

= H<
: 9

= 0 then we can model the network by a directed graph described by a
node-by-line incidence matrix ⇠. In this case (6.5b) takes the form D + f =⇠(.

3 All variables are complex and, by 0  0 where 0,0 2 C, we mean separate bounds on the real and
imaginary parts, Re 0  Re 0 and Im 0  Im 0.
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• Line limits: Thermal limits can be expressed as upper bounds on the magnitudes of
line currents, on the magnitudes of real and reactive line power, or on the apparent
line power, as:

|( 9: |  ( 9: , |(: 9 |  (: 9 , ( 9 , :) 2 ⇢ (6.5e)

The real-time dispatch problem is then the following constrained optimization:

min
D,G

5 (D,G) s.t. (6.5) (6.6)

where (D,G) := (D,+ ,() 2 C2(#+1+" ) and # +1," are the numbers of buses and lines
respectively. It is solved by the system operator for every control interval (e.g., every 5
minutes). It is what the second-stage problem (6.4c)(6.4d)(6.4e) in unit commitment
approximates, although at a coarser timescale (hourly or half-hourly) and less accurate
forecast of uncontrollable injections f in (6.5b). We call D a feasible dispatch if
(D,G) := (D,+ ,() satisfies (6.5) for some network state G. We call Dopt an optimal
dispatch if

�
D

opt,Gopt� := (Dopt,+opt,(opt) is an optimal solution of (6.6) for some
network state Gopt. The key parameter of (6.6) is the uncontrollable injection f in
(6.5b). We often abuse notation and write Dopt (f) for an optimal dispatch as a function
of f. We also say that the optimal dispatch Dopt (f) is driven by f.

The interpretation of an optimal (Dopt,Gopt) is that the controllable generators and
loads will produce and consume according to the dispatch command Dopt from the
system operator. The injection Dopt will drive the voltage +opt and line flow (

opt on
the network to a solution of the power flow equations (6.5a)(6.5b) that satisfies the
operational constraints (6.5c)(6.5d)(6.5e). In particular this should guarantee power
balance at all points of the network given an uncontrollable injection f. The reality is
more complicated as we will see below.

Remark 6.2. We have assumed without loss of generality that there is at most one
controllable generator or load at each bus with injection D 9 . It is straightforward to
extend to the case where there are multiple generators and loads at buses 9 . If there
is no controllable injection at bus 9 then we can set D

9
= D 9 = 0 or remove D 9 as an

optimization variable. ⇤

Remark 6.3 (Economic dispatch in practice). The nonlinearity of power flow equa-
tions (6.5a) makes the real-time dispatch problem (6.6) nonconvex and the standard
economic theory inapplicable. Most markets today adopt a linear approximation of
(6.5a), e.g., the DC power flow model together with methods to determine reactive
injections, to compute electricity prices together with a candidate dispatch D. This
problem is usually called DC OPF or economic dispatch.4 Given a candidate dispatch
D from an economic dispatch problem a system operator may check using AC power
flow equations (6.5a)(6.5b) whether the resulting network state G := (+ ,() satisfies the
operational constraints (6.5c)(6.5d)(6.5e), i.e., whether (D,+ ,() is feasible for (6.6). If

4 In the literature, economic dispatch usually refers to the special case of DC OPF where line limits are
ignored (i.e., formulation (6.22) without the constraint (6.22c)), but we do not make this distinction.
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it is, then the system operator may price electricity according to a dual optimal solution
of the economic dispatch problem and dispatch the injection D. Otherwise the system
operator may adjust the parameters of the DC OPF problem and repeat the cycle.
Even though this procedure may not produce an optimal solution of (6.6) it avoids the
complication of nonconvex pricing. We will study the pricing of electricity in detail in
Chapters 6.4 and 6.4.4. ⇤

Intra-interval imbalance.

Suppose the uncontrollable injection (vector) f := (f(C), C 2 R+) is a continuous-time
stochastic process with the mean process <(C) := ⇢f(C). This can model wind or solar
generation or inelastic demand. A realization f(b) := (f(b, C), C 2 R+) of the process
is indexed by b associated with a probability space, though we may omit b and use f or
f(C) to refer to a realization when there is no risk for confusion. For each realization b
and time C � 0 let D (f(b, C)) denote an actual injection that can maintain power balance
at all points of the network at time C. For instance D (f(b, C)) is an optimal dispatch
driven by the realization f(b, C), i.e., there exists a network state G (f(b, C)) such that
(D (f(b, C)) ,G (f(b, C))) is an optimal solution of the (deterministic) problem

min
(D,G):=(B,+ ,()

5 (G) s.t. (6.5a)(6.5c)(6.5d)(6.5e) (6.7a)

D 9 + f9 (b, C) =
’
:: 9⇠:

( 9: , 8 9 (6.7b)

It is of course impractical to compute such an optimal dispatch for each realization
b at each time C � 0. Moreover the power flow model in (6.7) describes the steady
state behavior and is not suitable for analyzing fast dynamics required for correcting
intra-interval imbalances. For this we study dynamic models in Chapter 6.3.

Instead, a dispatch is computed by the real-time market in each discrete time period
=X, = = 0,1, . . . , where X is the duration of each control interval, e.g., X = 5 minutes.
Suppose the system operator’s dispatch for the =th control interval is an optimal solution
D

opt (<̂(=)) of (6.6), or its linear approximation, driven by a certain forecast <̂(=) of
the uncontrollable injection f(b, C) over the interval. The imbalance at time C is then
the di�erence between the injection required for power balance and the operator’s
dispatch:

�D(b, C) := D (f(b, C)) � D
opt (<̂(=)) , C 2 [=X, (=+1)X), = = 0,1, . . . (6.8)

In Exercise 6.1 we describe an error model in which this imbalance decomposes into
three types of errors:

�D(b, C) = �1 (b, C) + �2 (C) + �3 (b, C)

where �1 (b, C) is a random error, �2 (C) a discretization error and �3 (C) a prediction
error. In this error model, the mean random error ⇢�1 (C) = 0, the time average of the
discretization error �2 (C) is zero over each control interval, and the mean prediction
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error ⇢�3 (C) is small if the mean process <(C) is slowly time-varying. In particular if
f is stationary then ⇢�3 (C) = 0.

The imbalance �D(b, C) is corrected by frequency control. The operator dispatch
D

opt (<̂(=)) is not the actual power injection but provides setpoints for controllable
generators and loads for the =th control interval. While these setpoints D̂(=) are up-
dated every control interval (5-15 minutes), frequency control operates continuously to
determine the actual power injection. We study frequency control in Chapter 6.3 using
a dynamic model that includes the fast timescale generator and frequency dynamics
and the feedback control to maintain frequency around its nominal value.

Before that, we first discuss how to handle large imbalances due contingency events.

6.2.3 Security constrained OPF

Power system security refers to the ability to withstand large disturbances. The small
random imbalances are handled by real-time optimal dispatch and frequency control
mechanisms discussed in Chapters 6.2.2 and 6.3 respectively. In this section we ex-
plain techniques to handle large disturbances due to contingency events such as the
unanticipated loss of a bulk generator or wind or solar farm, the switching on or o�
of a large industrial load, or the outage of a transmission line or transformer in the
transmission network.

Contingency events are rare but their potential impacts are large. North American
Electric Reliability Corporation’s (NERC) # �1 rule states that the outage of a single
piece of equipment (e.g., generator, line, transformer) should not result in flow or
voltage limit violations. As volatile generation from wind and solar farms continues to
displace thermal generators, a large deviation of such nondispatchable generation from
its predicted value may also count as a contingency event in the future. For instance
the random generation can be modeled as taking one of a finite number of values, each
triggering a contingency response if it di�ers significantly from its predicted value.

Secure operation is achieved through three main mechanisms: (i) analyze credible
contingencies that may lead to voltage or line limit violations, (ii) account for these
contingencies in optimal commitment and dispatch schedules, and (iii) monitor system
state in real time and take corrective actions when a contingency occurs. We summarize
each of these functions.

Contingency analysis

When a generator or load contingency occurs the resulting power flows might violate
line limits and lead to transmission outages where transmission lines or transformers are
disconnected. If reserve capacity is insu�cient to re-balance generation and demand,
frequency excursion will continue which can disconnect other generators to protect
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them from damage, potentially leading to involuntary load shedding and even system
collapse. When a transmission line or transformer is disconnected power flows in
the network will redistribute and line limits can be violated, potentially leading to
cascading line outages. Furthermore a transmission outage can result in reactive losses
in the network which can suppress voltage magnitudes, leading to voltage violations.

The impacts of these contingency events can be assessed by solving AC power flow
equations that describe the network state after each contingency. Currently this set of
post-contingency equations are solved in the industry mostly using Newton-Raphson
or the decoupled power flow methods because they have good speed and convergence
properties. Due to the large number of contingencies that must be assessed in order
to satisfy # � : security for : � 1, it is a common practice to first use the DC power
flow model to quickly screen contingencies and select a much smaller subset that
result in voltage or line limit violations for more detailed analysis using the AC
power flow model, especially for contingency scenarios where voltage magnitudes
and reactive flows are important. For instance the DC power flow model can quickly
estimate incremental line flow changes due to a contingency from the pre-contingency
operating point determined by the AC power flow model, through the use of pre-
computed quantities called the power transfer distribution factor and the line outage
distribution factor. Contingency scenarios in which line or voltage limits are violated are
called credible contingencies. (Chapter 9.5.3 presents some techniques for contingency
screening for industrial-scale security constrained AC OPF.)

Security constrained dispatch and commitment

The credible contingencies that have been identified in contingency analysis are taken
into account in day-ahead (e.g., 12–36 hours) unit commitment and real-time (e.g.,
5–15 minutes) dispatch as well as automatic generation control (seconds to minutes).
Capacities are reserved for normal operation (regulation and load-following reserves)
and for contingencies (contingency reserves).

There are two approaches to account for credible contingencies in scheduling dis-
patch. The preventive approach augments the optimal dispatch problem studied in
Chapter 6.2.2 with additional constraints so that the network state under the optimal
dispatch will satisfy operational constraints even after contingency events. This allows
the dispatch to remain unchanged until the next real-time dispatch period even if a
contingency occurs in the middle of the current period. The intra-period imbalance
due to contingency will be handled by the frequency control mechanisms studied in
Chapter 6.3. The corrective approach, on the other hand, will compute in advance
optimal dispatches both for normal operation and after each contingency event. This
allows the system operator to dispatch a response immediately after a contingency is
detected without having to wait till the next dispatch period. Both approaches can be
formulated as security constrained OPF problems, as we will see below.
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System monitoring

A system operator’s energy management system collects and processes measurements
of voltages, currents, line flows, and the status of circuit breakers and switches at all
transmission substations. Other measurements such as frequencies, generator outputs,
and transformer tap positions are also measured at various locations of a transmission
network, e.g., using phasor measurement units. These measurements are used for state
estimation (Chapter 7.1), real-time dispatch (Chapter 6.2.2), and automatic generation
control (Chapter 6.3), among other applications. Based on these measurements the
system can be classified as in a normal state, in an emergency state, or in a restoration
state after a contingency, with default actions in each of these states.

Security constrained OPF

We contrast the preventive and the corrective approaches to handling contingencies
using the real-time dispatch problem of Chapter 6.2.2 as an example. These approaches
can also be applied to unit commitment; see Example ??. Security constrained OPF
are used in both control and market applications.

The real-time dispatch problem (6.6) without security constraints studied:

min
(D0,G0)

50 (D0,G0)

s.t. 60 (D0,G0) = 0, ⌘0 (D0,G0)  0 (6.9)

serves as the base or pre-contingency case. Here D0 is a vector representing controls
such as real power injections of controllable generators and loads, generator voltage
magnitudes, transformer tap positions, G0 is a vector representing the network state
such as bus voltage magnitudes and angles at load buses, 60 (G0,D0) represents linear
or nonlinear power flow equations, and ⌘0 (G0,D0) represents operational constraints
such as voltage and line flow limits, all in the base case.

Let credible contingencies be indexed by : = 1, . . . , . After a contingency : , the
dispatch D0 remains unchanged in the short term (e.g., 1–5 mins). The network state
however changes immediately from G0 to a new system state G̃: determined by the post-
contingency network and frequency control actions. The choice of pre-contingency
dispatch D0 can take the new network state into account, in three ways.

Some operational constraints such as thermal limits may be temporarily relaxed
immediately after the contingency, provided corrective actions will be implemented
quickly. A preventive approach chooses D0 so that emergency operational constraints
in the short term are satisfied before corrective actions take e�ect. Let 6̃: denote the
power flow equations for the post-contingency network, and ⌘̃: models the emergency
operational constraints after contingency : . The pre-contingency control D0 and the
post-contingency network state G̃: in the short term must satisfy:

6̃: (D0, G̃: ) = 0, ⌘̃: (D0, G̃: )  0, : = 1, . . . , (6.10)
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A preventive security-constrained OPF (SCOPF) problem chooses an optimal con-
trol decision D0 that will remain secure after each contingency : = 1, . . . , , before
corrective actions are implemented, i.e., it is of the form

min
(D0,G0, G̃: , :�1)

50 (D0,G0) s.t. (6.9)(6.10)

In the corrective approach a new dispatch D: is applied after contingency : . In
addition to changes in injections, the corrective control D: may also include changes to
network topology such as line switching or circuit breaker actions. These changes are
captured in new power flow equations 6: . While 6̃: in (6.10) is determined only by the
contingency, e.g., a line or generator outage, 6: may include topology changes as part
of the corrective control. The operational constraints, modeled by ⌘: , are generally
di�erent from the pre-contingency constraints ⌘0 and the emergency constraints ⌘̃:
immediately after contingency : . Besides constraints such as voltage and line limits
under control D: , ⌘: may also include constraints due to capacity reserves (see Chapter
6.4). The corrective control D: and the resulting network state G: therefore must satisfy

6: (D: ,G: ) = 0, ⌘: (D: ,G: )  0, : = 1, . . . , (6.11a)

Often the corrective control D: is constrained to be close to the base control D0, e.g.,
because of limited ramp rates d: of large generators or loads:

kD: �D0k  d: , : = 1, . . . , (6.11b)

Then a corrective SCOPF takes the form

min
(D: ,G: , :�0)

’
:�0

F: 5: (D: ,G: ) s.t. (6.9)(6.11) (6.12)

where 5: are costs that can depend on the contingency and F: � 0 are nonnegative
weights, e.g., the probability of contingencies : .

This corrective approach ignores the emergency constraints (6.10) and assumes the
system will ride through the small delay between the time a contingency occurs and
when the corrective control D: takes e�ect. This allows more flexibility in the base
control D0 and lowers the cost of normal operation. A more secure and potentially more
costly approach will impose both the emergency constraints as well as constraints on
the corrective control:

min
(D: ,G: , G̃:+1, :�0)

’
:�0

F: 5: (D: ,G: ) subject to (6.9)(6.10)(6.11)

6.3 Frequency control

The power delivered by a thermal generator is determined by the mechanical power
output of a prime mover such as a steam turbine or water turbine. The output level is
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controlled by opening or closing valves that regulate steam or water flow. For example
if the load increases the valve of a generator must open wider to increase the generated
power. When there is excess supply the rotating machines in bulk generators will speed
up and the system frequency will rise. When there is a shortage the rotating machines
will slow down and the system frequency will drop. If power is not re-balanced by
adjusting generators or flexible loads, frequency excursion will continue which can
disconnect generators to protect them from damage, potentially leading to involuntary
load shedding and even system collapse. Frequency deviation from its nominal value
is used as a control signal for generators and controllable loads that participate in
frequency control to adjust their power.

Frequency control, also referred to as automatic generation control, consists of
three mechanisms operating at timescales from seconds to minutes. A generating unit
that participates in the primary control, also called droop control, uses a governor to
automatically adjusts the mechanical power output of a turbine in proportion to its
local frequency deviation. Primary frequency control is decentralized. It rebalances
power and stabilizes the frequency to a new equilibrium value in 30 seconds or so.
The secondary control adjusts generator setpoints around their dispatch values in order
to restore system frequency to its nominal value within a few minutes, e.g., up to 10
minutes after a contingency event. In an interconnected power system consisting of
multiple balancing areas, each managed by a single operator, the secondary control
additionally restores interchanges of tie-line power between areas to their scheduled
values. The adjustments are determined centrally within each area based on real-time
measurements of tie-line flow deviations. The dispatched setpoint and scheduled tie-
line flows are determined by the tertiary control that operates on a timescale of 5–15
minutes. They are chosen to attain economic e�ciency as well as restoring the reserve
capacities deployed in primary and secondary control so that they are available for
contingency response. This is typically determined by solving a real-time dispatch
problem as discussed in Chapter 6.2.2 and in Chapters 6.4 and 6.4.4 in the context of
electricity pricing.

We now present a linear dynamic model of the primary and secondary control
that clarifies the relation between system operator’s dispatch D

opt (<̂(=)) for each
interval and the actual (active) power generation. A description of the physical system,
including a generator, a turbine-governor system, a frequency control system, and a
voltage control system, as well as their detailed models, are beyond the scope of this
book. Our goal in this section is to use a simple model to connect real-time dispatch
studied in Chapter 6.2.2 with its realization at a fast timescale.

6.3.1 Assumptions and notations

Consider a control interval [=X, (=+1)X) for which the tertiary control has determined
an optimal dispatch Dopt (<̂(=)) with the associated network state G(=) including sched-
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uled tie-line flows. We assume that the primary and secondary control converges on a
much faster timescale than X so that the dispatch remains unchanged and serves as the
operating point for our incremental model below. We fix a random realization b of the
uncontrollable injection f(b, C). The dynamic model is deterministic with this fixed
realization. We hence omit the indices = and b in the rest of this section.

We make several simplifying assumptions:

• There is a synchronous generator at each bus that determines the frequency dynamics
at the bus. This assumption is only to simplify exposition and can be removed.

• Voltage regulation operates at a faster timescale so that voltage magnitudes |+ 9 | are
fixed for the analysis of frequency control. The e�ect of voltage regulation can
be incorporated into the inertia constant " and damping constant ⇡ of (the rotor
angle transfer function of) the generator; see below.

• The rotor angles, the internal and terminal (bus) voltage phase angles of generators
swing together, i.e., the deviations of these angles from their operating points are
equal at all times.

• The lines are lossless, i.e., their shunt admittances
⇣
H
<

9:
, H<
: 9

⌘
are zero and series

admittances are inductive HB
9:
= i1 9: with 1 9: < 0.

With these assumptions our dynamic model focuses on how active power in generating
units change the voltage angles and their derivatives, i.e., frequencies. It makes similar
assumptions to those in the DC power flow model. In fact the DC power flow describes
the steady state of the dynamic model.

The tertiary control (i.e., the real-time dispatch in Chapter 6.2.2) determines active
power dispatch D0

9
for the generators and the associated voltage angles \0

9
and active

line flows %0
9:

driven by estimates f0
9

of uncontrollable real power injections. They
define the operating point around which we linearize our dynamic model. In particular
they satisfy power balance:

D
0
9
+ f

0
9
=

’
:: 9⇠:

%
0
9:

, 9 2 #

Define the following variables and their perturbations around the operating point:

• D 9 (C) denotes the setpoint of generator 9 at time C. Let �D 9 (C) := D 9 (C) �D0
9

denote

the adjustment to the optimal dispatch D0
9
. The adjustment will be computed by

the secondary frequency control.
• \ 9 (C) denotes the (terminal) voltage angle at bus 9 at time C, relative to a rotating

frame of the operating-point frequency l0 (which is expected to be close but
not necessarily equal to the nominal frequency), i.e., the instantaneous voltage is
E 9 (C) =

p
2|+ 9 | cos

�
l

0
C + \ 9 (C)

�
. Define the incremental angle �\ 9 (C) := \ 9 (C) �

\
0
9
.
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• l 9 (C) denotes the voltage frequency at bus 9 defined to be the derivative of the
phase angle l0

C + \ 9 (C), i.e., l 9 (C) = l0 + §\ 9 (C). Hence the frequency deviation
�l 9 (C) := l 9 (C)�l0

9
satisfies �l 9 (C) = � §\ 9 (C).

• % 9: (C) denotes the line flow from bus 9 to bus : on line ( 9 , :). Let %: 9 (C) :=�% 9: (C).
Let �% 9: (C) := % 9: (C)�%0

9:
and similarly for �%: 9 (C).

• ?
"

9
(C) denotes the mechanical power output of the prime mover (e.g., gas or

water turbine). Let %"0
9

denote its value associated with the operating point⇣
D

0
9
,\0
9
,l0,%0

9:
,f0

9
, 9 2 # , ( 9 , :) 2 ⇢

⌘
and �?"

9
(C) := ?"

9
(C)�%"0

9
.

• 0 9 (C) denotes the valve position of the turbine-governor at bus 9 . Let 00
9

denote its

value associated with the operating point
⇣
D

0
9
,\0
9
,l0,%0

9:
,f0

9
, 9 2 # , ( 9 , :) 2 ⇢

⌘
and �0 9 (C) := 0 9 (C)� 00

9
.

We will remark on
⇣
0

0
9
, ?"0
9

⌘
below when we describe the turbine-governor model. A

common model of the instantaneous line flow % 9: (C) as a function of voltage angles

\ (C) :=
⇣
\ 9 (C), 9 2 #

⌘
is (cf. the polar form power flow equation (4.27a)):

% 9: (C) = |+ 9 | |+: |
�
�1 9:

�
sin

�
\ 9 (C)� \: (C)

�
, ( 9 , :) 2 ⇢

where
�
�1 9:

�
> 0. We will adopt its linearization around the operating point as our

model:

% 9: (C) = |+ 9 | |+: |
�
�1 9:

�
sin

⇣
\

0
9
� \0

:

⌘
|                               {z                               }

%
0
9:

+ )9:

�
�\ 9 (C)��\: (C)

�
, ( 9 , :) 2 ⇢

where )9: := |+ 9 | |+: |
�
�1 9:

�
cos

⇣
\

0
9
� \0

:

⌘
are called sti�ness coe�cients. Hence

�% 9: (C) = )9:
�
�\ 9 (C)��\: (C)

�
, ( 9 , :) 2 ⇢ (6.13)

The coe�cient )9: measures power exchange over line ( 9 , :) with respect to changes
in phase angles.

The model has three components (see Figure 6.1): (i) a turbine-governor that pro-
duces mechanical power ?"

9
(C) based on the setpoint D 9 (C); (ii) a power generator that

converts ?"
8
(C) of the turbine-governor into electric power that serves the local load

�f9 (C) and injects power
Õ
:
% 9: (C) into the transmission system; and (iii) two feed-

back control mechanisms for primary and secondary frequency control. It describes the
dynamics of the incremental variables �\ 9 , �l 9 , etc. In the following we will describe
dynamic models for the turbine-governor and the generator in Figure 6.1, leading to
Figure 6.4.
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networkuj(t)

generating unit j

generatorturbine
governor

σj(t)

Pjk(t)

pMj (t)

Figure 6.1 Generating unit 9 , its setpoint D 9 (C), local injection f9 (C), and line power %
9:
(C).

6.3.2 Primary control

Turbine-governor model

A second-order model of the turbine-governor with droop control is:

)6 9 §0 9 = �0 9 (C) + D 9 (C)�
�l 9 (C)
A 9

, 9 2 #

)C 9 §?"9 = �?"
9
(C) + 0 9 (C), 9 2 #

where the states 0 9 (C) and %"
9
(C) are the valve position and mechanical power output

of the turbine respectively. The constant A 9 is called a regulation constant or a droop
constant. The term �l 9 (C)/A 9 increases the valve position when the frequency drops
below l

0 and decreases it otherwise. This is referred to as the droop control or the
primary frequency control. This model makes several simplifying assumptions, e.g., it
ignores the saturation of the valve position 0 9 (C), but is reasonable when the frequency
deviation �l 9 (C) is small.

We define
⇣
0

0
9
,%"0

9

⌘
to be the equilibrium point, defined by §0 9 = §?"

9
= 0, when

frequency deviations �l 9 (C) = 0 and setpoint D 9 (C) = D0
9

is the optimal dispatch, i.e.,

?
"0 = 0

0
9

= D
0
9
, 9 2 #

Then the incremental variable
⇣
�0 9 ,�%"

9

⌘
:=

⇣
0 9 � 00

9
, %"

9
�%"0

9

⌘
satisfies the same

equations:

)6 9 � §0 9 = ��0 9 (C) + �D 9 (C) �
�l 9 (C)
A 9

, 9 2 # (6.14a)

)C 9 � §?"9 = ��?"
9
(C) + �0 9 (C), 9 2 # (6.14b)

This incremental model is what we will use. The block diagram representation of
(6.14) is in Figure 6.2.

As we will see in Chapter 6.3.3 the setpoint adjustment �D 9 (C) is changed by
the secondary control at a much slower timescale (several minutes) than that of the
primary control (approximately 30 secs). Hence a quasi steady-state of (6.14) is defined
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turbine governor

∆ωj

∆uj

Ftj(s)

∆pMj

1
rj

(1+ sTgj) (1+ sTtj)
1

Figure 6.2 Block diagram in Laplace domain of the turbine-governor dynamic (6.14).

by a constant value of the setpoint adjustment �D 9 (C) = �D 9 . In this steady state, the
frequency deviation �l⇤

9
is generally nonzero and the incremental mechanical power

output �?"⇤
9

is related to the frequency deviation by

�?"⇤
9

= �0⇤
9

= �D 9 �
1
A 9

�l⇤
9
, 9 2 #

Remark 6.4. The time constants )68 ,)C8 characterize the responsiveness of the gover-
nor and turbine respectively to a change in their input. Typical value of )68 and )C8 are
approximately 0.1 second and 0.5 second respectively. Since the governor responds
much faster than the turbine the model is sometimes simplified to a first-order model

)C 9 � §?"9 = ��?"
9
(C) + �D 9 (C)�

�l 9 (C)
A 9

, 9 2 #

⇤

Generator model.

The frequency deviation �l 9 (C) is determined by the rotating speed of a generator
driven by the mechanical power output ?"

9
(C) of the turbine. A dynamic model of the

generator in terms of the incremental variables is:

� §\ 9 = �l 9 (C), 9 2 # (6.15a)

" 9� §l 9 + ⇡ 9�l 9 (C) = �?"
9
(C) + �f9 (C) �

’
:: 9⇠:

�% 9: (C), 9 2 # (6.15b)

where �f9 (C) is the deviation of the uncontrollable injection from its forecast f0
9

and
�% 9: (C) are the incremental line flows given by (6.13). The block diagram represen-
tation of (6.15) is in Figure 6.3. Here " 9 is the inertia constant of generator 9 , and
⇡ 9 is the sum of damping constant of generator 9 and the frequency sensitivity of
motor-type injection at bus 9 , as we now explain.

If f9 (C) < 0 represents a load, a common model consists of both frequency sensitive

load f1 9

⇣
l

0
9
+l 9 (C)

⌘
such as a motor and frequency insensitive load f2 9 (C) due

to the switching on or o� of an electrical device that draws a specified amount of
power. Approximate the frequency sensitive load by its linear approximationf1 9

�
l

0� +
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∆ωj ∆θj

∆θnj

∆θ1

∆Pjk∑
k : j~k

∆σj

∆pM
j

Fgj(s)

1
sDj  + sMj

1

generator

Tjnj

Tj1∆pj1

∆pjnj

Figure 6.3 Block diagram in Laplace domain of the generator dynamic (6.15).

mf1 9

ml 9

�
l

0��l 9 (C) and write the frequency insensitive load as f2 9 (C) = f0
2 9 +�f2 9 (C).

Then the deviation mf1 9

ml 9

�
l

0��l 9 (C) of the frequency sensitive load is absorbed into
⇡ 9�l 9 (C) in (6.15b). The uncontrollable load f9 (C) is then the sum of the remaining
terms:

f9 (C) =
⇣
f1 9

⇣
l

0
⌘
+f0

2 9

⌘
|               {z               }

f
0
9

+ �f2 9 (C)|   {z   }
�f 9 (C)

In summary the primary frequency control is modeled by (6.13)(6.14)(6.15) repro-
duced here:

)6 9 � §0 9 = ��0 9 (C) + �D 9 (C) �
�l 9 (C)
A 9

, 9 2 # (6.16a)

)C 9 � §?"9 = ��?"
9
(C) + �0 9 (C), 9 2 # (6.16b)

" 9� §l 9 + ⇡ 9�l 9 (C) = �?"
9
(C) + �f9 (C) �

’
:: 9⇠:

�% 9: (C), 9 2 # (6.16c)

�% 9: (C) = )9:

�
�\ 9 (C)��\: (C)

�
, ( 9 , :) 2 ⇢ (6.16d)

� §\ 9 = �l 9 (C), 9 2 # (6.16e)

This closes the droop control loop. The block diagram representation combines those in
Figures 6.2 and 6.3 and is shown in Figure 6.4 (which is a detailed version of Figure 6.1).
The input to the system are external disturbance �f9 (C) at each each generating unit
9 and the adjustment �D 9 (C) to the dispatch setpoint. Since the secondary control that
updates the setpoint operates at a much slower timescale than the primary frequency
control timescale, we can understand the behavior of the (quasi) steady state of the
primary control by assuming a constant setpoint adjustment �D 9 (C) = �D 9 .

Consider then a step disturbance in the uncontrollable injection where �f9 (C)
changes at time C = 0 from 0 to a constant value �f9 . We say that G

⇤ :=�
�l⇤,�%⇤,�\⇤,�0⇤,�?"⇤

�
is an equilibrium point of (6.16) driven by the step change



274 System operation: power balance

∆ωj

∆uj
∆pMj

1
rj

∆ωj ∆θj

∆θnj

∆θ1

∆Pjk∑
k : j~k

∆σj

1
s

Tjnj

Tj1∆pj1

∆pjnj

Ftj(s) Fgj(s)

generating unit j

Figure 6.4 Block diagram of primary frequency control (6.16).

�f and constant setpoint �D 9 if, at G⇤,

� §l 9 = � §0 9 = � §?"
9

= 0, 9 2 #

We do not require � §\ = 0 in the definition of equilibrium point. Indeed � §\ is generally
nonzero when primary control converges. Recall the bus-by-line incidence matrix ⇠
defined by:

⇠ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8

0 otherwise
, 9 2 # , ; 2 ⇢

The next result calculates the equilibrium frequency and line flows (its proof is left as
Exercise 6.2). It motivates secondary control discussed in Chapter 6.3.3.

Theorem 6.1 (Steady state of primary control). Suppose the network is connected. If
G
⇤ is an equilibrium point of (6.16) driven by a step changes �f and constant setpoints
�D then:

1 Local frequency deviations converge to a new value equal to the total disturbance
divided by the system damping:5

�l⇤
9
= �l⇤ :=

Õ
:
(�D: +�f: )Õ
:
(⇡: +1/A: )

, 9 2 #

2 Line flow deviations converge to

�%⇤ = )⇠) !† (�D + �f � �l⇤3)

where ) := diag()9: , ( 9 , :) 2 ⇢), !† is the pseudo inverse of the Laplacian matrix
! := ⇠)⇠) , and 3 := (⇡ 9 +1/A 9 , 9 2 #).

5 We abuse notation to use �l⇤ to both denote a scalar and the vector whose entries are all �l⇤. The
meaning should be clear from the context.
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Remark 6.5. 1 Intuitively the larger the disturbance or the smaller the system damp-
ing, the larger will frequency deviation �l⇤ be. Theorem 6.1 clarifies precisely
the simple relationship among them. Droop control A 9 adds to the system damping
and reduces frequency deviation.

2 The theorem says that frequency can be restored to the operating-point value, i.e.,
�l⇤ = 0, only if we change the setpoints so that the total setpoint changes cancel
out the total disturbances ’

:

(�D: +�f: ) = 0

3 To restore all line flows, i.e., �%⇤ = 0, requires canceling disturbances locally at
each bus,

�D: +�f: = 0, : 2 #

The next example illustrates a benefit of interconnecting multiple areas.

Example 6.1 (Interconnected system). Consider # +1 balancing areas each modeled
as a single bus. Suppose �D 9 = 0 for all areas 9 and that there is a step change of
the uncontrollable injection where �f9 (C) changes at time 0 from 0 to a value �f9 .
Suppose �f9 are independent random variables with mean �f̄9 and variance a2

9
. We

will evaluate the equilibrium frequency deviation �l⇤ using Theorem 6.1 when the
primary frequency control converges.

Case 1: Independent operation. Suppose these buses are not connected. Then the
equilibrium frequency deviation in each area 9 is

�l⇤
9
=
�f9
3 9

, 9 2 #

where 3 9 := ⇡ 9 +1/A 9 with mean �f̄9/3 9 and variance a2
9
/32

9
.

Case 1: Interconnected system. Suppose these buses are connected. Then the equilib-
rium frequency deviation for the entire interconnected system is

�l⇤ =

Õ
9
�f9Õ
9
3 9

=
1

# +1

’
9

�f9
3̂

where 3̂ :=
Õ
9
3 9/(# +1) is the average system damping. Define the average mean and

variance of �f9 respectively:

�f̂ :=
1

# +1

’
9

�f̄9 , â
2 :=

1
# +1

’
9

a
2
9

Then the mean and variance of �l⇤ are respectively

mean (�l⇤) =
�f̂

3̂

, var (�l⇤) =
1

# +1
â

2

3̂
2

The simple case when the random variables �f9 are i.i.d. (independently and
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identically distributed) with mean �f̄1 and variance a2
1. Suppose also 3 9 = 31 for all 9 .

Then �f̂ = �f̄1, â2 = a2
1, and 3̂ = 31. Hence the mean of the interconnected system is

the same as that of each area in independent operation, but the variance is reduced by a
factor of # +1. The bigger the interconnection, i.e., larger # , the smaller the variance
in equilibrium frequency deviation �l⇤. ⇤

6.3.3 Secondary control

The first objective of the secondary control is to restore system frequency, i.e., to drive
�l(C) to zero. The second objective is to restore line flows to their scheduled values,
i.e., to drive �%(C) to zero. This is less important and sometimes not pursued for an
island system managed by a single operator. In an interconnected system consisting
of multiple areas managed by separate operators the interchanges of tie-line power
between areas have financial implications. Such a system usually operates under the
principle that (i) each area absorbs its own load changes, and (ii) scheduled tie-line
flows are maintained. If each bus in (6.16) models an entire area this requires driving
�%(C) to zero.

Theorem 6.1 suggests that the objectives of the secondary control can only be
achieved by adjusting the setpoints D(C) of the generators to cancel the disturbances
(see Remark 6.5). Suppose each bus 9 in (6.16) represents an area and the setpoint
adjustment �D 9 (C) represents an aggregate adjustment that will then be shared by all
generators in area 9 that participate in the secondary control. The adjustment is based
on the area control error (ACE) which is a weighted sum of frequency and line flow
deviations:

ACE 9 (C) :=
’
:: 9⇠:

�% 9: (C) + V 9�l 9 (C), 9 2 #

where V 9 > 0 is called a frequency bias setting. The setpoint adjustment �D 9 (C) inte-
grates ACE 9 in order to drive it to zero:

� §D 9 = �W 9 ©≠
´
’
:: 9⇠:

�% 9: (C) + V 9�l 9 (C)™Æ
¨

, 9 2 # (6.17)

The computation (6.17) requires real-time measurement of tie-line flow deviations
�% 9: (C) with all neighboring areas : . This information is sent to area 9’s system
operator which centrally computes the aggregate adjustment �D 9 (C) for the entire
area using (6.17). It then dispatches in real time setpoint adjustments U 98�D 9 (C) with
U 98 � 0 and

Õ
8
U 98 = 1 to participating generators 8 in area 9 . The weights U 98 are called

participation factors.

In summary the primary and secondary frequency control in area 9 is modeled by
the system (6.16)(6.17). It is driven by the uncontrollable injection �f9 (C) and consists
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of two feedback control mechanisms, the droop control with regulation parameter A 9
and setpoint adjustment based on ACE 9 (C). Its block diagram is shown in Figure 6.5.

∆ωj

∆uj
ACEj

∆pMj

1
rj

−γj
s

∆ωj ∆θj

∆θnj

∆θ1

∆Pjk∑
k : j~k

∆σj

1
s

Tjnj

Tj1

ßj

∆pjnj

Ftj(s) Fgj(s)

generating unit j

Figure 6.5 Block diagram of primary and secondary frequency control (6.16) (6.17) in area 9 .

To understand the behavior of the entire interconnected system it is convenient to
write (6.16)(6.17) in vector form:

)6� §0 = ��0(C) + �D(C) � '�1�l 9 (C) (6.18a)

)C � §?" = ��?" (C) + �0(C) (6.18b)

"� §l + ⇡�l(C) = �?" (C) + �f(C) � ⇠�%(C) (6.18c)

�%(C) = )⇠)�\ (C) (6.18d)

� §\ = �l(C) (6.18e)

� §D = �� (⇠�%(C) + ⌫�l(C)) (6.18f)

where )6,)C ,) ,�,⌫ are diagonal gain matrices, ' is the diagonal matrix of droop
parameters, " ,⇡ are diagonal matrices of generator parameters, and ⇠ is the (# +
1)⇥" incidence matrix.

Consider a step change in uncontrollable injection where �f(C) changes
at time 0 from the 0 vector to a constant vector �f. We say that G

⇤ :=�
�D⇤,�l⇤,�%⇤,�\⇤,�0⇤,�?"⇤

�
is an equilibrium point of (6.18) driven by the step

change �f if, at G⇤,

� §D = � §l = � §0 = � §?" = 0

Note that we do not require� §\ = 0 in the definition of equilibrium point. The next result
proves that indeed the objectives of the secondary control are achieved (its proof is left
as Exercise 6.3).Furthermore � §\ = �l⇤ = 0 in equilibrium when frequency deviation
is driven to zero.

Theorem 6.2 (Steady state of secondary control). Suppose the network is connected.
If G⇤ is an equilibrium point of (6.18) driven by a step change �f then:
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1 Frequencies are restored to l0 and �l⇤ = 0.
2 Line flows are restored to their scheduled values %0 and �%⇤ = 0.
3 Disturbances are compensated for locally at each bus �D⇤ +�f = 0.

6.4 Pricing electricity and reserves

In previous sections we focus on control mechanisms to balance power at timescales
from subseconds to a day. The day-ahead and real-time markets determine not only
generation schedules, but also electricity prices. In this section we derive properties of
electricity prices and show that they incentivize optimal dispatch, even in contingencies.

6.4.1 DC power flow model

Consider a power network modeled by the DC power flow model summarized here
(see Chapter 4.6.2 for details). The network is represented by a connected graph
⌧ = (# ,⇢) of # +1 nodes and " := |⇢ | lines where # := {0}[# , # := {1,2, . . . ,#}
and ⇢ ✓ # ⇥# . We assume there are no self-loops, i.e., ( 9 , 9) 8 ⇢ for any 9 2 # . We
endow the graph with an arbitrary orientation and we refer to a line in ⇢ by ( 9 , :),
9 ⇠ : , or 9 ! : interchangeably. With respect to this graph orientation, let ⇠ denote
the (# +1)⇥" incidence matrix defined in (4.11) and reproduced here:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Each line ; := ( 9 , :) 2 ⇢ is parametrized by its susceptance 1; > 0. Let ⌫ := diag(1; , ; 2
⇢) � 0 be the diagonal matrix of (weighted) line susceptances. The Laplacian matrix
! associated with ⌧ is defined to be

! := ⇠⌫⇠
T (6.19)

The (# +1)⇥ (# +1) Laplacian matrix ! is real symmetric with zero row and column
sums. Since the network is connected, rank(!) = # and its null space is span(1).
Properties of ! are studied in Chapter 4.6.1.

We assume without loss of generality that there is a single controllable unit 9 at each
bus 9 (including multiple units at the same bus is straightforward). Let ? 9 represent the
net real power injections at buses 9 . A unit can be a generator, a load, or a prosumer
that can both generate and consume. We will sometimes call 9 a generator bus if ? 9 > 0
and a load bus if ? 9 < 0, even though the unit at bus 9 can be a prosumer. The real
power flows % on the lines induced by the nodal injections ? are given by

% = ⌫⇠
T
!
†
?
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where !† is the pseudo-inverse of the Laplacian matrix !. To simplify notation we
define the (# +1)⇥" matrix ( that maps line variables to nodal variables:

( := !
†
⇠⌫ s.t. % = (T

? (6.20)

The matrix ( has zero row sums, 1
T
( = 1

T
!
†
⇠⌫ = 0 (Theorem 4.13). It maps line

congestion prices to nodal congestion prices, as we will see in Chapter 6.4.3.2. The
matrix ( or its transpose (T is referred to as a shift factor, an injection shift factor, or
a power transfer distribution factor, because % = (T

? describes how nodal injections
impact line flows. We know from Chapter 4.6.2 that (6.20) is valid if and only if the
injection ? satisfies

1
T
? = 0 (6.21)

In our context this means that supply and demand must be balanced.

6.4.2 Economic dispatch and LMP

As noted in Remark 6.3 a simple OPF problem, called DC OPF or economic dispatch,
is solved every 5-15 minutes using the DC power flow model. We now formulate this
problem and design electricity prices called locational marginal prices.

Let 5 9 (? 9 ) denote the cost function of unit 9 , i.e., 5 9 (? 9 ) models the generation
cost at a generator bus with ? 9 � 0 and � 5 9 (? 9 ) models the utility of consuming
�? 9 � 0 at a load bus. We assume 5 9 are di�erentiable. For a generator 9 , 5 0

9
(? 9 )

represents the marginal cost at production level ? 9 whereas for a load bus, 5 0
9
(? 9 )

represents the marginal utility at consumption level ? 9 . To simplify exposition we
often do not di�erentiate between a generator and a load in which case we will refer
to 5

0
9
(? 9 ) as the marginal cost. Let ?min

9
< ?

max
9

be the generation/consumption limits.

Let ? := (? 9 , 9 2 #) and (?min, ?max) := (?min
9

, ?max
9

,2 #).

Welfare maximization.

The problem of economic dispatch is to schedule generation and consumption levels ?
that minimize the total dispatch cost

Õ
9
5 9 (? 9 ) subject to three constraints. The power

must be balanced as required in (6.21). The generation or consumption levels must
respect their capacity limits:

?
min  ?  ?

max

Finally the power flow % 9: on each line 9 ! : 2 ⇢ is directional (i.e, % 9: < 0 means
power flows from buses : to 9). There are line capacity limits %min

9:
< 0 < %

max
9:

in each

direction and the line flows % = (T
? induced by ? must lie within line limits:

%
min  % = (

T
?  %

max
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Economic dispatch is the following problem that chooses ? to minimize the total
dispatch cost subject to capacity limits, nodal power balance, and line limits:

min
?

min??max

’
92#

5 9 (? 9 ) (6.22a)

s.t. 1
T
? = 0 [W] (6.22b)

%
min  (T

?  %max [^�, ^+] (6.22c)

where ( is defined in (6.20). This problem is also called a social welfare optimization.
The dispatch variable ? in (6.22) is called a primal variable. Associated with the scalar
constraint (6.22b) is a scalar dual variable or Lagrange multiplier W 2 R. Similarly,
associated with the pair of vector constraints in (6.22c) is a pair of vector dual variables
or Lagrange multipliers (^�, ^+) 2 R2" . We use ^ to denote the di�erence ^ := ^�� ^+.
When there is no danger of confusion we also use ^ to denote the pair ^ := (^�, ^+)
depending on the context.

Locational marginal price _⇤.

Given any dual variable (W, ^) define the (# +1)-vector:

_ := _(W, ^) := W1 + (^ 2 R
#+1 (6.23)

where ^ := ^� � ^+ and ( := !†⇠⌫. The system operator solves (6.22) to determine an
optimal dispatch ?⇤ and an associated (dual optimal) Lagrange multiplier (W⇤, ^⇤). It
computes _⇤ := _(W⇤, ^⇤) based on the Lagrange multiplier. The vector _⇤ is called a
locational marginal price (LMP) or nodal price (vector), and used to price electricity:
a generator that provides ? 9 > 0 amount of electricity will be paid _⇤

9
? 9 by the system

operator and a load that consumes �? 9 > 0 amount of electricity will pay �_⇤
9
? 9 to

the system operator. Besides setting the energy prices _⇤, in many North American
markets, the system operator also makes binding dispatch decisions, i.e., unit 9 will be
required to generate/consume the amount ?⇤

9
obtained from the socially optimal ?⇤.

In other markets, however, units may make their own injection decisions ? and pay
the LMPs _⇤. As we will see these two approaches are equivalent in theory because
the LMP _⇤ is incentive compatible, i.e., it is in the best interest of individual units to
choose the socially optimal injections by setting ? 9 = ?⇤

9
.

KKT condition.

We will study basic optimization theory in Chapter 8. As summarized in Chapter 6.1.2,
if the cost functions 5 9 are convex and the economic dispatch (6.22) has a finite optimal
value, then there exist optimal Lagrange multipliers (W⇤, ^�⇤, ^+⇤) and hence an LMP
_
⇤ such that a dispatch ?

⇤ is optimal for (6.22) if and only if ?⇤ and (W⇤, ^�⇤, ^+⇤)
satisfy the Karush-Kahn-Tucker (KKT) condition (the Slater Theorem 8.17 of Chapter
8.3.4):
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1 Primal feasibility: ?min  ?⇤  ?max, 1
T
?
⇤ = 0, %

min  (
T
?
⇤  %

max.
2 Dual feasibility: ^�⇤ � 0, ^+⇤ � 0.
3 Stationarity:

5
0
9
(?⇤
9
)

8>>><
>>>:

= _
⇤
9

if ?
min
9

< ?
⇤
9
< ?

max
9

> _
⇤
9

only if ?
⇤
9
= ?min

9

< _
⇤
9

only if ?
⇤
9
= ?max

9

(6.24a)

4 Complementary slackness:

(^�⇤)T
⇣
(

T
?
⇤
⌘
= 0,

�
^
+⇤�T

⇣
(

T
?
⇤ �%max

⌘
= 0 (6.24b)

As we will see in Chapter 6.4.3 all properties of optimal dispatch ?⇤ and associated
LMP _⇤ are consequences of the DC power flow model represented by (6.19)(6.20)
and the KKT condition (6.24).

Remark 6.6 (Reference buses). The formulation here uses the pseudo-inverse !† of
the Laplacian matrix ! in the shift factor ( := !†⇠⌫, the line flow constraint (6.22c),
and the LMP _⇤ in (6.23). Alternatively one can designate a bus as a reference bus
for injections and prices (slack bus) and a potentially di�erent bus for voltage angles,
obtain a submatrix !̂ of ! that is invertible, and define a reduced shift factor (̂ := !̂�1

⇠̂⌫

in terms of !̂�1. The choice of reference buses does not change the optimal dispatch ?⇤

nor the LMP _⇤ (but can change the Lagrange multiplier W⇤), and seems unnecessary;
see Chapter 6.4.3.4. ⇤

Example 6.2 (Two-bus network). Consider two buses connected by a line with sus-
ceptance 1 so that

⇠ :=


1
�1

�
, ⌫ :=

⇥
1

⇤
(6.25)

At each bus 9 , 9 = 1,2, suppose there are:

• A generator with a strictly convex increasing cost function 5 9 (? 9 ) = 1
22 9 ?

2
9

with
21 < 22 and 0  ? 9  ?max

9
, i.e., generator 1 is cheaper than generator 2.

• A fixed and given load 3 9 > 0.

Let ? := (?1, ?2) and 3 := (31,32).

1 Compute the Laplacian ! and its pseudo-inverse !†.
2 Write down the social welfare optimization (6.22) and the KKT condition (6.24).
3 Compute optimal dispatch ?⇤, LMP _⇤, and the resulting line flow %

⇤.

Solution. The Laplacian and its pseudo-inverse are respectively (Exercise 4.19):

! := ⇠⌫⇠
T = 1


1 �1
�1 1

�
, !

† =
1

41


1 �1
�1 1

�
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The social welfare maximization (6.22) problem is:

min
0??max

2’
9=1

5 9 (? 9 ) (6.26a)

subject to 1
T (?� 3) = 0 [W] (6.26b)

�%max  ⌫⇠
T
!
†(?� 3)  %

max [^�, ^+] (6.26c)

where %max
> 0 is the line limit and the line flow % from buses 1 to 2 is

% := ⌫⇠
T
!
†(?� 3) =

1
2

⇥
1 �1

⇤
(?� 3) =

1
2
((?1� 31)� (?2� 32)) (6.27)

The optimal dispatch ?⇤ and Lagrange multipliers (W⇤, ^�⇤, ^+⇤) are given by the KKT
condition (6.24): primal feasibility, dual feasibility, and

5
0
9
(?⇤
9
)

8>>><
>>>:

= _
⇤
9

if 0 < ?
⇤
9
< ?

max
9

> _
⇤
9

only if ?
⇤
9
= 0

< _
⇤
9

only if ?
⇤
9
= ?max

9

(
T (?⇤ � 3⇤)

8>><
>>:

= �%max if ^
⇤
> 0

= %
max if ^

⇤
< 0

2 (�%max,%max) only if ^
⇤ = 0

where ^⇤ := ^�⇤ � ^+⇤ and ( := !†⇠⌫. For simplicity, we will suppose 0 < ?
⇤
9
< ?

max
9

so that 5 0
9
(?⇤
9
) = _⇤

9
.

Without congestion. If (T (?⇤ �3⇤) 2 (�%max,%max), then ^⇤ = ^�⇤ = ^+⇤ = 0 and hence’
9

5
0�1
9

(W⇤) =
’
9

3
⇤
9

which has a unique solution for W⇤ since 5 9 are strictly convex. When 5 9 (? 9 ) = 1
22 9 ?

2
9

the optimal dispatch and LMPs are

W
⇤ =

 ’
9

1
2 9

!�1 ’
9

3
⇤
9
, ^

⇤ = ^
�⇤ = ^

+⇤ = 0, _
⇤
9
= W

⇤

?
⇤
9
=
W
⇤

2 9

=
1/2 9

1/21 +1/22
(31 + 32) , 9 = 1,2 (6.28)

i.e., the generators 9 share the total load 31 + 32 in proportion to their 1/2 9 . Since
21 < 22 we have ?⇤1 > ?

⇤
2 and %⇤ > 0.

With congestion ˜̂⇤ < 0. Suppose ?max
1 � 31 > %

max. Then, since 21 < 22 (generator
1 is cheaper), the line congestion price (optimal Lagrange multiplier) ˜̂+⇤ must be
strictly positive and ˜̂⇤ := ˜̂�⇤ � ˜̂+⇤ < 0. Complementary slackness then implies that
%̃
⇤ = (T ( ?̃⇤ � 3⇤) = %max where %̃⇤ is given by (6.27) and ( ?̃⇤1, ?̃⇤2) is given by (6.28).

Furthermore

_̃
⇤
1 = W̃

⇤ + 1
2

˜̂⇤, _̃
⇤
2 = W̃

⇤ � 1
2

˜̂⇤ (6.29a)
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Therefore 5
0
1 ( ?̃⇤1) = _̃⇤1 < _̃⇤2 = 5

0
2 ( ?̃⇤2) even though ?̃⇤1 may be greater or smaller than

?̃
⇤
2. Since ˜̂⇤ < 0 and

Õ
9
?
⇤
9
=

Õ
9
?̃
⇤
9
=

Õ
9
3 9 , we must have ?̃⇤1 < ?

⇤
1 and ?̃

⇤
2 > ?

⇤
2.

Power balance means

5
0�1
1

�
_̃
⇤
1

�
+ 5 0�1

2

�
_̃
⇤
2

�
= 31 + 32 (6.29b)

Substituting (6.27) into %⇤ = (T ( ?̃⇤ � 3⇤) = %max we have

5
0�1
1

�
_̃
⇤
1

�
� 5 0�1

2

�
_̃
⇤
2

�
= 2%max + (31� 32) (6.29c)

When 5 9 (? 9 ) = 1
22 9 ?

2
9

we have from (6.29b)(6.29c) �_̃⇤ = 1 with

� =

1/21 1/22

1/21 �1/22

�
, 11 := 31 + 32, 12 := 2%max + (31� 32)

Therefore
_̃
⇤
1
_̃
⇤
2

�
=


21 (31 +%max)
22 (32�%max)

�
,


?̃
⇤
1
?̃
⇤
2

�
=


31 +%max

32�%max

�
, %̃

⇤ = %
max

From (6.29a), we have

W̃
⇤ =

1
2
(_̃⇤1 + _̃⇤2) =

1
2
(2131 + 2232� (22� 21)%max)

˜̂+⇤ = 2232� 2131� (21 + 22)%max, ˜̂�⇤ = 0

⇤

6.4.3 LMP properties

We now study properties of an optimal dispatch ?⇤ and the associated LMP _⇤. These
properties are derived from the optimality condition (6.24) for economic dispatch.

6.4.3.1 Competitive equilibrium

Consider the case where the system operator sets prices and allows generators and
loads to freely choose their injections in a way that optimizes their own surpluses.
An important justification for pricing electricity according to LMP is that an optimal
dispatch and LMP (?⇤,_⇤) satisfies the following properties:

1 Market clearing. The supply of equals the demand for power. This is ensured by
(6.22b).

2 Capacity limits. The line flows respect their capacity constraints. This is ensured
by (6.22c).

3 Welfare optimization. The pair (?⇤,_⇤) solves the economic dispatch problem
(6.22) that optimizes social welfare.
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4 Incentive compatibility. Suppose the generators/loads are price takers, i.e., their
bids will not alter the LMP computed by the system operator. Given any generation-
price pair (? 9 ,_ 9 ) at bus 9 , if 9 is a generator it incurs a cost 5 9 (? 9 ) and is paid
_ 9 ? 9 whereas if it is a load it attains a utility � 5 9 (? 9 ) and pays �_ 9 ? 9 . When
presented with the LMP _

⇤
9

it is rational for the unit 9 to choose its level of
production/consumption so as to maximize its surplus, i.e., it chooses ? 9 to solve

max
?

min
9
? 9 ?max

9

_
⇤
9
? 9 � 5 9 (? 9 )

The stationarity condition (6.24a) implies that the socially optimal dispatch ?⇤
9
is a

solution of individual surplus maximization given the LMP _⇤
9
. If unit 9’s injection

limits are not binding, then the LMP _⇤
9
equals its marginal cost 5 0

9
(?⇤
9
) according

to (6.24a); such a unit is called a marginal unit. If _⇤
9
> 5

0
9
(?⇤
9
), then the LMP

exceeds the marginal cost and therefore unit 9 generates at its peak ?
⇤
9
= ?max

9
.

Similarly if the LMP is not su�cient to cover the marginal cost, _⇤
9
< 5

0
9
(?⇤
9
), then

unit 9 generates at its minimum ?
⇤
9
= ?min

9
.

Therefore LMP _⇤ aligns individual optimality with social optimality in that, when
units are paid or charged according to_⇤, their individual surplus-maximizing decisions
?
⇤
9

will coincide with the optimal dispatch the system operator would have chosen to
optimize the social welfare (6.22). For this reason (?⇤,_⇤) is also called a competitive
equilibrium.

6.4.3.2 LMP _⇤ and line congestion price ^⇤

To simplify exposition we do not distinguish between generators and loads, and refer to
5 9 (? 9 ) and 5

0
9
(? 9 ) as costs and marginal costs. The LMP _⇤

9
defined in (6.23) consists

of two components:

_
⇤ := W

⇤
1 + 2⇤ := W

⇤
1 + (^⇤

where ^⇤ := ^�⇤ � ^+⇤ and ( := !†⇠⌫. We will call the first component W⇤ the energy
price (W⇤ is also called the system _), and the second component 2⇤ := (^⇤ the nodal
congestion prices, for the following reasons.

Energy price W⇤.

The first component W⇤ is the same at every bus 9 and equals the LMP if none of the line
constraints are binding so that ^�⇤

;
= ^+⇤

;
= 0. In that case_⇤

9
= W⇤ = 5 0

9
(?⇤
9
) at all marginal

units 9 where their generation capacities are not binding. If 5 9 are nondecreasing, when
the network is not congested, the LMP _⇤

9
� 0 are always nonnegative and the same

at every bus. In this case all marginal units 9 produce (consume) at their common
marginal costs (marginal utilities) 5 0

9
(?⇤
9
) = W⇤. More generally, W⇤ = (# +1)�1 Õ

9
_
⇤
9

is the average LMPs across the network since 1
T
!
† = 0 (Theorem 4.13).
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Line congestion price ^⇤ := ^�⇤ � ^+⇤.
To understand the second component 2⇤ of LMP, we first interpret ^⇤

;
:= ^�⇤

;
� ^+⇤

;
as the

line congestion price or shadow price at ; 2 ⇢ , for two reasons. First it is the marginal
value of relaxing the line capacities (%min,%max): if we denote by 5

⇤ (%min,%max) the
optimal value of the economic dispatch problem (6.22) as a function of (%min,%max)
then (see Chapter 8.3.5)

m 5
⇤

m%
min
;

(%min,%max) = ^
�⇤
;

,
m 5
⇤

m%
max
;

(%min,%max) = �^+⇤
;

i.e., ^�⇤
;

is approximately the increase in the optimal dispatch cost 5 ⇤ if the lower line
limit %min

;
is increased (tightened) by 1 unit; and ^+⇤

;
is the reduction in 5

⇤ if %max
;

is increased (relaxed) by 1 unit. These prices (^�⇤
;

, ^+⇤
;
) are nonnegative and at most

one of them can be strictly positive due to complementary slackness. They provide
a valuation for the line capacities (%min

;
,%max
;

) in the sense that each additional unit
of line capacities will reduce the optimal cost 5 ⇤ by (^�⇤

;
, ^+⇤
;
) � 0 respectively. We

therefore refer to both the pair (^�⇤, ^+⇤) and ^⇤ := ^�⇤ � ^+⇤ as line congestion prices.

Second, recall that the line flows are % = (T
?. Since the summands in (6.24b) are

all nonpositive we have

^
�⇤
;

⇣
%

min
;
�%⇤

;

⌘
= 0, ^

+⇤
;

�
%
⇤
;
�%max

;

�
= 0, ; 2 ⇢

Complementary slackness (6.24b) implies that ^⇤
;

is zero if line flow %
⇤
;

is strictly
within its capacity limits (%min

;
,%max
;

). If ^⇤
;
= �^+⇤

;
< 0 then %⇤

;
= %max

;
> 0 reaches the

line capacity in the direction for which %; is defined. If ^⇤
;
= ^�⇤

;
> 0 then %⇤

;
= %min

;
< 0

reaches the line capacity in the opposite direction. Therefore the product �^⇤
;
%
⇤
;

is
always nonnegative at optimality. We will therefore interpret �^⇤

;
%
⇤
;
� 0 as the cost of

carrying line flow %
⇤
;

on line ;.

Nodal congestion price 2⇤ := (^⇤.

This leads to the following justification for treating 2⇤ := (^⇤ as the nodal congestion
prices. Since % = (T

?, the shift factor (T = m%

m?
describes the increases in line flows for

each additional units of nodal injections. Suppose the injection at bus 9 is increased
by �? 9 . This increases the line flow at line ; by ( 9;�? 9 , and thus increases the line
congestion cost at line ; by �^⇤

;
(( 9;�? 9 ). This means that each additional �? 9 of

injection at 9 increases the congestion cost over the network by �Õ
;
( 9;^

⇤
;
�? 9 , or

equivalently, each additional �? 9 of withdrawal (load) at 9 increases the congestion
cost over the network by

�Õ
;
( 9;^

⇤
;

�
�? 9 . We can therefore interpret 2⇤

9
:=

Õ
;
( 9;^

⇤
;

as
the nodal congestion price, the price of serving an additional unit of load from bus 9 . It
is in this sense that we say the matrix ( maps the line congestion price ^⇤ to the nodal
congestion price 2⇤.
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Negative LMP _⇤
9
< 0.

The LMP _⇤
9
= W⇤ + 2⇤

9
is the sum of the energy price and the nodal congestion price.

Since the nodal congestion price 2⇤
9

of serving a load at bus 9 can be positive or
negative, the LMP at bus 9 may be negative in which case a load is paid to consume or
a generator pays to produce at bus 9 . In addition to line congestion, LMP _⇤

9
can also

be negative due to generation limits (?min, ?max). In practice it is not uncommon for
LMP to become negative, e.g., during the day time in California when there is excess
solar generation.

6.4.3.3 LMP _⇤ and merchandizing surplus

The system operator collects a payment _⇤
9
(�?⇤

9
) from every load 9 and pays _⇤

9
?
⇤
9

to
every generator 9 . The residue

MS := �
’
9

_
⇤
9
?
⇤
8

= � (_⇤)T
?
⇤ (6.30)

is called the merchandizing surplus. It is left-over money with the system operator.
Substitute _⇤ = W⇤1+ (^⇤ into (6.30) one obtains (Exercise 6.7):

MS =
�
^
+⇤�T

%
max + (^�⇤)T (�%min) (6.31)

Recall that %min
;

< 0 < %
max
;

on each line ; 2 ⇢ and (^�⇤, ^+⇤) � 0. This means that
every term on the right-hand side of (6.31) is nonnegative. Therefore MS� 0, i.e., the
system operator will not run cash negative. This is called revenue adequacy. Moreover
MS = 0 if and only if ^�⇤

;
= ^+⇤

;
= 0, i.e., if and only if there is no congestion in the

network.

The congestion price (^�⇤
;

, ^+⇤
;
) induces a value ^+⇤

;
%

max
;

+^�⇤
;
(�%min

;
) � 0 on the line

capacity (%min
;

,%max
;

), explained in Chapter 6.4.3.2. This value is called the congestion
rent of line ; 2 ⇢ . The relation (6.31) says that MS is equal to the congestion rent
over the entire network. The MS is therefore also called the congestion rent. Since the
system operator is non-profit the MS is distributed to market participants as financial
transmission rights.

Using ?⇤ = ⇠%⇤ we can also express the MS in terms of optimal line flows %⇤ and
the di�erence in LMP at each end of a line:

MS = � (_⇤)) ⇠%⇤ =
’

9!:2⇢

⇣
_
⇤
:
�_⇤

9

⌘
%
⇤
9:

One might think that % 9: on line ( 9 , :) always flows from the bus with a lower LMP
towards one with a higher LMP, but this is not always the case. Recall that line flows
are directional with a fixed but arbitrary direction and hence if % 9: is defined then %: 9
is not a variable in our model. The summand above consists of the LMP di�erence that
is opposite to the direction in which % 9: is defined. Therefore, on each line 9 ! : ,
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if
⇣
_
⇤
:
�_⇤

9

⌘
%
⇤
9:

> 0 then power flows towards the node with a higher LMP, but if⇣
_
⇤
:
�_⇤

9

⌘
%
⇤
9:

< 0 then power flows towards the node with a lower LMP.

6.4.3.4 LMP _⇤ and price reference bus

In the literature a particular bus A is sometimes designated as the price reference bus
or a slack bus where it is assumed that injections ?�A at all other buses can be arbitrary
and are always balanced by the injection ?A := �1

T
?�A at the price reference bus A .

This is often a bus with a large generator with many lines connecting the bus to the
rest of the grid so local congestion is rare. We still assume bus 0 is the reference bus
for voltage angles, i.e., \0 := 0. The price reference bus A may or may not be bus 0
(we assume A = 0 in Chapter 4.6.2 on the DC power flow model). The DC power flow
equations can be rewritten in terms of the injections ?�A at non-price reference buses.
It is important to keep in mind that this set of equations depends on the choice of
the price reference bus A. We show in Theorem 6.3 below, however, that the optimal
dispatch and LMP (?⇤,_⇤) do not.

To write DC power flow equations in terms of the injections ?�A at non-price
reference buses, let 2T

0 and 2T
A

denote the rows corresponding to the angle reference
bus 0 and the price reference bus A respectively, and⇠�0 and⇠�A denote the remaining
submatrices after removing 2T

0 and 2T
A

respectively form ⇠. We will refer to them as
row 0 and row A , but for convenience they may not appear as the first or Ath row of ⇠,
i.e., we may write ⇠ as (after possibly rearranging/relabeling rows):

⇠ =:

2

T
0

⇠�0

�
=:


⇠�A
2

T
A

�

(Instead of ⇠̂ as in Chapter 4.6.2, we write ⇠�0 here to emphasize the symmetry in
angle and price reference buses.) Rewrite the DC power flow equation (4.55b) as (after
possibly rearranging/relabeling rows):

?�A
?A

�
=


⇠�A
2

T
A

�
%, % = ⌫

⇥
20 ⇠

T
�0

⇤ 
\0

\�0

�
(6.32)

Since \0 := 0 by definition, we have the DC power flow model in terms of (⇠�0,⇠�A ):

?�A = ⇠�A%, % = ⌫⇠
T
�0\�0

yielding the relationship in terms of the # ⇥# matrix !A := ⇠�A⌫⇠T
�0:

?�A =
⇣
⇠�A⌫⇠

T
�0

⌘
\�0 =: !A \�0 (6.33)

The matrix !A can also be obtained from the Laplacian matrix ! :=⇠⌫⇠T by removing
the column of ! corresponding to bus 0 and its row corresponding to bus A. It is not a
principal submatrix of ! unless A = 0 and hence !0 is symmetric but !A is generally
not. While any strict principal submatrix of ! is nonsingular (Theorem 4.13), !A may
be singular. This is the main disadvantage of this model.
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Assuming !A := ⇠�A⌫⇠T
�0 in (6.33) is nonsingular. Then, given any injections ?�A

at non-reference buses, the line flows are given by

% =
⇣
⌫⇠

T
�0!

�1
A

⌘
?�A =: (T

A
?�A (6.34)

The matrix (A := !�T
A
⇠�0⌫ is also referred to as a shift factor and it depends on the

choice of the price reference bus and the nonsingularity of !A . The line flows %,
however, do not depend on the choice of A, i.e., % = (T

A
?�A = (T

? where ( := !†⇠⌫
defined in (6.20) (see Exercise 6.8). The expression (6.34) generalizes the expression
% = ⌫⇠T

�0!
�1
0 ?�0 in Lemma 4.14 of Chapter 4.6.2 which assumes that A = 0. We now

show that the economic dispatch (6.22) can be reformulated in terms of !�1
A

instead of
!
†, but that the optimal dispatch and LMP (?⇤,_⇤) turn out to be independent of the

choice of A .

Substituting (6.34) into (6.22), economic dispatch is equivalent to:

min
?

min??max

’
92#

5 9 (? 9 ) (6.35a)

subject to 1
T
? = 0 [W] (6.35b)

%
min  (T

A
?�A := ⌫⇠T

�0!
�1
A
?�A  %max [^�, ^+] (6.35c)

with associated Lagrange multipliers (W, ^�, ^+) 2 R1+2" with ^� � 0, ^+ � 0. The
di�erence between (6.35) with a price reference bus and (6.22) without is in the line
limit expression (6.35c). Since the line flow % is independent of A , we expect the optimal
dispatch ?⇤ to remain the same; the exact relation between these two formulations are
clarified in Theorem 6.3. Given an optimal Lagrange multiplier vector (W⇤, ^�⇤, ^+⇤),
the LMP is given by

_
⇤ :=


_
⇤
�A
_
⇤
A

�
:= W

⇤
1 +


(A ^
⇤

0

�
(6.36)

where ^⇤ := ^�⇤ � ^+⇤. It can be shown that a dispatch ?⇤ and a Lagrange multiplier
(W⇤, ^�⇤, ^+⇤) are optimal for (6.36) and its dual problem if and only if (?⇤,W⇤, ^�⇤, ^+⇤)
satisfies the KKT condition (6.24), with the line flow (

T
?
⇤ in the primal feasibility

condition and the complementary slackness condition (6.24b) replaced by (T
A
?
⇤
�A (the

Slater Theorem 8.17 of Chapter 8.3.4).

The choice of the reference bus A does not a�ect the optimal dispatch or LMP
(?⇤,_⇤), though it may a�ect the values of (W⇤, ^�⇤, ^+⇤). Specifically the next result
implies that a dispatch ?⇤ is optimal for (6.35) with a price reference bus A if and only
if ?⇤ is optimal for (6.22) without designating a price reference bus. Moreover their
associated LMPs are equal. This is a consequence of the key fact that line flows are
independent of A , % = (T

A
?�A = (T

?. See Exercise 6.8 for a proof.

Theorem 6.3 (Arbitrary choice of A). Suppose the cost functions 5 9 are convex (and
hence di�erentiable) so that the KKT condition (6.24) is necessary and su�cient for
optimality for both (6.35) and (6.22). Fix a dispatch ?

⇤. Consider two sets of dual
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variables (W⇤, ^�⇤, ^+⇤) and (W̃⇤, ˜̂�⇤, ˜̂+⇤) that satisfy

W̃
⇤ = W

⇤ � BT
A
^
⇤, ˜̂�⇤ = ^

�⇤, ˜̂+⇤ = ^
+⇤ (6.37)

where ^⇤ := ^�⇤ � ^+⇤ and BT
A

denotes row A of ( := !†⇠⌫.

1 Let _̃⇤ := W̃⇤1+ ( ˜̂⇤ and _⇤ be defined in (6.36). Then _̃⇤ = _⇤.
2 The dispatch ?⇤ and (W̃⇤, ˜̂�⇤, ˜̂+⇤) satisfy the KKT condition (6.24) if and only if
?
⇤ and (W⇤, ^�⇤, ^+⇤) satisfy (6.24) with the line flow (

T
?
⇤ in the primal feasibility

condition and the complementary slackness condition (6.24b) replaced by (T
A
?
⇤
�A .

Theorem 6.3 is illustrated in Exercise 6.10. Its implications are collected in the
following remark.

Remark 6.7 (Theorem 6.3: implications). 1 The shift factor (A := !
�)
A
⇠�0⌫ in

(6.34) with a price reference bus A and ( := !†⇠⌫ in (6.20) without a price
reference bus are related as follows (Exercise 6.8):

(A

0

�
= ( � 1#+1B

T
A
, (A = [(]�A �1# B

T
A

where BT
A

denotes row A of (, [(]A denotes the submatrix of ( obtained by removing
row A , and 1= is the vector of all 1s of size =. Recall that each row 9 of ( is the
marginal increase in all line flows due to an additional injection �? 9 at bus 9 . By
designating a price reference (slack) bus A, we renormalize the shift factor (A so
that its row 9 is now the marginal increase due to an additional increase at 9 , in
excess of the marginal increase BT

A
due to an additional injection at A . This underlies

the relation (6.37) between the two sets of prices.
2 The LMP _⇤

A
= W⇤ in (6.36) at the reference bus A is generally not the energy price

discussed in Chapter 6.4.3.2, but the average LMP 1
T
_
⇤ (# +1)�1 is; see Exercise

6.9.
3 The main disadvantage of formulating the economic dispatch and LMP with

a designated price reference bus A is that the submatrix !A is not a principal
submatrix of the Laplacian ! and therefore may be singular (unless A = 0, i.e.,
the price reference bus is the same as the angle reference bus). The resulting DC
power flow equations and the shift factor (A will depend on the choice of A and the
nonsingularity of !A . In contrast the DC power flow model (4.55c) in terms of !†

and the shift factor ( in (6.20) do not. Furthermore the LMP _⇤ decomposes into
an energy price W̃⇤ and congestion prices 2⇤ := ( ˜̂⇤, but not in terms of (W⇤, ^⇤) in
(6.36).

⇤
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6.4.4 Security constrained economic dispatch

There are two techniques to deal with uncertainties, both discrete uncertainties due
to outages of generators, transmission or distribution lines and transformers, and con-
tinuous uncertainties due to random fluctuations of renewable generations or loads.
The first is to commit and dispatch generation resources or controllable loads to bal-
ance deterministic forecasts of supply and demand and deal with uncertainty through
reserves requirements where a certain amount of generation capacity is set aside to
handle contingencies or random fluctuations of supply and demand; e.g., the total re-
serve amount is greater than the capacity of the largest generator in the system or the
maximum dispatch amount. The second technique is two-stage stochastic optimization
with recourse where random scenarios are explicitly taken into account in dispatch
decisions, in the form of a security constrained OPF discussed in Chapter 6.2.3. In
this subsection we extend the economic dispatch problem of Chapter 6.4.2 to security
constrained economic dispatch that jointly optimizes energy and reserves for each
scenario.

6.4.4.1 Joint energy and reserve optimization

Suppose the uncontrollable generation and demand are uncertain and take one of  
values (6: ,3: ) 2 R2(#+1)

+ with probabilityF: > 0 such that
Õ
 

:=1F: = 1. Suppose each
unit 9 can decide not just a dispatch ? 9 before (6,3) is realized, but also an adjustment
A: 9 if (6: ,3: ) is later realized so that the actual injection at delivery time is ? 9 + A: 9
in scenario : . Unit 9 must reserve some down and up reserve capacities (Amin

9
,Amax
9

) in
the first stage for its adjustment A: 9 in the second stage so that

A
min
9
 A: 9  A

max
9

, ?
min
9
 ? 9 + Amin

9
 ? 9 + Amax

9
 ?

max
9

, 9 2 # (6.38a)

The first-stage decision consists of the dispatch ? and reserve capacities Amin :=⇣
A

min
9

, 9 2 #
⌘

and Amax :=
⇣
A

max
9

, 9 2 #
⌘
, but this decision must be made taking into

account of the second-stage actions A: := (A: 9 , 9 2 #) for each scenario : = 1, . . . , .
We will formulate this as a two-stage stochastic program with recourse. In a typical
application, this program is solved before (6,3) is realized for both the first-stage
decision (?,Amin,Amax) and the second-stage decisions (A: ,8:) in order to produce an
optimal schedule in advance. After (6,3) is realized, the optimal action A: can then be
applied if (6,3) = (6: ,3: ).

Besides (6.38a) suppose there is also a system-wide reliability requirement on the
reserves (Amin,Amax) imposed by the system operator. For example, a popular reserve
requirement is that the total reserve must be su�cient to cover the outage of the largest
generating unit, i.e.,

Õ
9< 9: A

min
9
� max 9 ?max

8
where 9: := argmax 9 ?max

9
. We assume

the reliability requirement in each scenario : depends only on (Amin,Amax), not on the
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dispatch ?, and is separable in 9 , i.e., it is of the form:

⌘: (Amin,Amax) :=
’
9

⌘: 9 (Amin
9

,Amax
9

) � 0 (6.38b)

where ⌘: 9 : R2 ! R. 6 For the example above, ⌘: 9 (Amin
9

,Amax
9

) = Amin
9
� U 9 ?max

9:

for
9 < 9: with U 9 � 0 and

Õ
9< 9: U 9 = 1, i.e., U 9 is the fraction of the largest possible

capacity lost ?max
9:

that unit 9 can provide in scenario : . In general ⌘: 9 (Amin
9

,Amax
9

) can
be positive or negative. The capacity and reserve constraints (6.38a) are decentralized
across 9 , but the systemwide reliability requirement (6.38b) couples their reserve
decisions (Amin

9
,Amax
9

).

Suppose the cost for unit 9 to provide ? 9 + A: 9 amount of energy is 5: 9 (? 9 + A: 9 ) if
scenario : materializes. Then the joint energy and reserve optimization, called security
constrained economic dispatch, is the following two-stage optimization with recourse:

min
?,Amin,Amax

 ’
:=1

F:&: (?,Amin,Amax) (6.39a)

s.t. ?
min  ? + Amin, ? + Amax  ?max [U�,U+] (6.39b)

⌘:

⇣
A

min,Amax
⌘

:=
’
9

⌘: 9

⇣
A

min
9

,Amax
9

⌘
� 0 [`: ] (6.39c)

where, for each : = 1, . . . , , &: solves the economic dispatch in scenario ::

&: (?,Amin,Amax) := min
A:

5: (? + A: ) :=
’
9

5: 9 (? 9 + A: 9 ) (6.39d)

s.t. 1
T (? + A: +6: � 3: ) = 0 [W: ] (6.39e)

%
min  (

T (? + A: +6: � 3: )  %
max [^�

:
, ^+
:
] (6.39f)

A
min  A:  A

max [V�
:
, V+
:
] (6.39g)

The cost in (6.39a) is the expected optimal second-stage cost &: . The constraints
(6.39b)(6.39c) on the first-stage decisions (?,Amin,Amax) do not involve any uncer-
tainty. For each scenario : , the second-stage problem (6.39d)–(6.39f) optimizes the
reserve decision A: in response to the random realization of (6: ,3: ), given a first-
stage decision (?,Amin,Amax). It is the same as economic dispatch (6.22) with reserve
capacity constraints, power balance and line limits.

The second-stage problems &: (?,Amin,Amax) are separable in : . We can therefore
interchange expectation and minimization over A: and write (6.39) as a single-stage

6 A less stringent requirement is to have enough reserve to cover the outage of the largest dispatched
generating unit, i.e.,

Õ
9< 9

:

A
min
9
� max 9 ?8 where 9: := argmax 9 ? 9 . The formulation and results here

extend to the case where the dispatch decision ? and the reserve decisions (Amin,Amax) are coupled.
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program:

min
?,Amin,Amax

(A: ,:�1)

’
:

F: 5: (? + A: ) :=
’
:

F:

’
9

5: 9 (? 9 + A: 9 ) (6.40a)

s.t. (6.39b)(6.39c)(6.39e)� (6.39g) (6.40b)

Denote the primal and dual variables for (6.40) by

G
⇤ := (?⇤,Amin⇤,Amax⇤,A⇤

:
, : � 1)

b
⇤ := (W: , ^�⇤: , ^+⇤

:
,U�⇤,U+⇤, V�⇤

:
, V+⇤
:

,`⇤
:
, : � 1)

Let ^⇤
:

:= ^�⇤
:
� ^+⇤

:
, U⇤ := U�⇤ �U+⇤, and V⇤

:
:= V�⇤

:
� V+⇤

:
. Define the LMP _⇤

:
for each

scenario : (cf. (6.23)):

_
⇤
:

:= W
⇤
:
1 + (^⇤

:
(6.41)

We assume all functions 5: 9 ,⌘: 9 are real-valued, convex and continuously di�eren-
tiable and the parameters are appropriately chosen such that (6.40) has a finite optimal
value, and the Slater condition is satisfied, e.g., ?min

< ?
max. Then the Slater Theorem

8.17 of Chapter 8.3.4 implies that optimal Lagrange multipliers b⇤ and hence LMPs
(_⇤
:
,8:) always exist. Moreover a primal-dual feasible (G⇤,b⇤) is primal-dual optimal

for (6.40) if and only if (G⇤,b⇤) satisfies stationarity:

F:r 5: (?⇤ + A⇤: ) = _
⇤
:
+ V⇤

:
,

’
:

`
⇤
:
r⌘:

⇣
A

min⇤,Amax⇤
⌘
= 0, U

⇤ =
’
:

V
⇤
:

(6.42)

complementary slackness for decentralized constraints:

(U�⇤)T
⇣
?

min� ?⇤ � Amin⇤
⌘
= 0,

�
U
+⇤�T (?⇤ + Amax⇤ � ?max) = 0 (6.43a)

�
V
�⇤
:

�T
⇣
A

min⇤ � A⇤
:

⌘
= 0,

�
V
+⇤
:

�T �
A
⇤
:
� Amax⇤� = 0 (6.43b)

and that for coupling constraints (Exercise 6.11):

`
⇤
:
⌘:

⇣
A

min⇤,Amax⇤
⌘
= 0 (6.43c)

(^�⇤)T
⇣
%

min� (T (?⇤ + A⇤
:
+6: � 3: )

⌘
= 0 (6.43d)

�
^
+⇤�T

⇣
(

T (?⇤ + A⇤
:
+6: � 3: )�%max

⌘
= 0 (6.43e)

The stationarity condition (6.42) has three implications. First the probability-weighted
marginal cost F:r 5: is the sum of LMP _⇤

:
plus the “reserve capacity price” V⇤

:
in

the second stage. Moreover the “reserve capacity price” U⇤ in the first stage (which
is independent of scenarios :) is simply the sum of the reserve capacity prices V⇤

:
.

Finally the total marginal reliability cost
Õ
:
`
⇤
:
r⌘:

�
A

min⇤,Amax⇤� is zero. Interestingly
complementary slackness (6.43c) says that the total reliability cost is also zero (we
will return to this point shortly).
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6.4.4.2 ICRA settlement rule

For economic dispatch (6.22) without uncertainty, it is desirable to price electricity
using the Lagrange multipliers (W⇤, ^⇤) associated with coupling constraints (power
balance and line limits) because they price the externalities caused by units 9 and
align individual optimality with social optimality (see Chapter 6.4.3). We apply the
same intuition to the two-stage problem (6.40) and design prices using the Lagrange
multipliers associated only with the coupling constraints, power balance (6.39e), line
limits (6.39f), as well as the systemwide reliability requirement (6.39c).

Let (G⇤,b⇤) be a primal-dual optimal solution of (6.40) and _⇤
:

be the LMP defined
in (6.41) for scenarios : . Consider the following settlement rule:

1 Energy prices (scenario-dependent LMP) _⇤
:
/F: : If the scenario : materializes

at delivery time then unit 9 that provides energy
�
? 9 + A: 9

�
is paid by the system

operator the amount _⇤
: 9

�
? 9 + A: 9

�
/F: .

2 Reserve payment
Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
: Regardless of scenario at delivery time,

unit 9 that provides reserve capacities (Amin
9

,Amax
9

) is paid by the system operator

the amount
Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
.

The settlement rule enjoys three desirable properties:

• Incentive compatible. When unit 9 is faced with the scenario-dependent LMP_⇤
: 9
/F:

in scenario : and the reserve payment
Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
, it would have

preferred to choose G⇤
9
:= (?⇤

9
,Amin⇤
9

,Amax⇤
9

,A⇤
: 9

, : � 1) that maximizes its expected
profit, i.e., it solves:

max
G 9

’
:

F:

⇣
_
⇤
: 9
(? 9 + A: 9 )/F: � 5: 9 (? 9 + A: 9 )

⌘
+
’
:

`
⇤
:
⌘: 9 (Amin

9
,Amax
9

) (6.44a)

s.t. (6.39b)(6.39g) (6.44b)

The settlement rule is called incentive compatible in expectation if a primal
optimal solution G⇤ of (6.40) also solves the expected profit maximization (6.44)
for all units under the settlement rule. Note that the individual optimization (6.44)
relaxes all coupling constraints but includes all local constraints.

• Revenue adequate. If all units provide their energy and reserves according to a primal
optimal solution G⇤, then the total payment to the system operator in each scenario
: , called the merchandizing surplus, under the settlement rule is:

MS: := �
’
9

1
F:

_
⇤
: 9
(?⇤
9
+ A⇤

: 9
+6: � 3: ) �

’
8

’
9

`
⇤
8
⌘8 9

⇣
A

min
9

,Amax
9

⌘
(6.45)

The settlement rule is called revenue adequate in each scenario : � 1 if MS: � 0.
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• Reserve payment balanced. The reserve payments are said to be balanced under the
settlement rule if ’

9

’
:

`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
= 0 (6.46)

This means that those units that need more reliability exactly compensate those
that can provide more reliability.

Theorem 6.4 (ICRA). Suppose 5: 9 ,⌘: 9 are real-valued, convex, and continuously dif-
ferentiable. Let (G⇤,b⇤) be a primal-dual optimal solution of (6.40). Then the settlement
rule is:

• incentive compatible in expectation: G⇤ solves (6.44).
• revenue adequate in each scenario : � 1: MS: � 0 in (6.45).

• reserve payment balanced:
Õ
9

Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
= 0 in (6.46).

The theorem is proved in Exercise 6.12. Indeed the settlement rule is also incentive
compatible in each scenarios : � 1 in the sense that, after the first-stage commitment
(?⇤,Amin,Amax) when the scenario : is realized, A⇤

: 9
from an optimal solution of (6.40)

will also maximize unit 9’s profit in scenario : . The formulation here can be extended to
allow the network (shift factor () and nodal injection sets to depend on contingencies :
to model outages, or to include additional local constraints, ramp rates, network losses,
reserve costs, and per-area reliability requirements, or to allow reserve constraints
⌘: 9 (? 9 ,Amin

9
,Amax
9

) to depend on both the dispatch decision and reserve decisions.

6.4.5 Security constrained unit commitment

The unit commitment problem (6.4) can be extended to include corrective reserves by
replacing the real-time dispatch problem (6.4c)(6.4d)(6.4e) by a security constrained
OPF similar to (6.40).

For example let the first-stage decisions be the binary commitments D 9 (C) 2 {0,1}
for units 9 in periods C. For each C let FC : denote the probability of scenario : such
that FC : � 0 and

Õ
:
FC : = 1. Let the second-stage decisions be dispatch and reserve

amounts G(C) := (?(C),Amin (C),Amax (C),A: (C), : � 1) for all units in periods C. Security
constrained unit commitment can be formulated as the following problem (cf. (6.4)):

min
D2{0,1}(#+1))

’
C

’
9

2 9C

�
D 9 (C �1),D 9 (C)

�
+ 5

⇤ (D) (6.47a)

s.t. D 9 (C)�D 9 (C �1)  D
g

9
, 8g 2 {C +1, C +up

9
�1} (6.47b)

D 9 (C �1)�D 9 (C)  1�Dg
9
, 8g 2 {C +1, C +down 9 �1} (6.47c)

where 2 9C is the commitment cost such as the startup/shut down cost defined in (6.3b)
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and reproduced here

2 9C (D 9 (C �1),D 9 (C)) :=

8>><
>>:

startup cost if D 9 (C)�D 9 (C �1) = 1
shutdown cost if D 9 (C)�D 9 (C �1) = �1
0 if D 9 (C)�D 9 (C �1) = 0

(6.47d)

and (6.47b)(6.47c) imposes minimum up/down time once unit 9 is turned on/o�.

Given a commitment decision D, 5 ⇤ (D) in (6.47a) is the optimal expected security
constrained real-time dispatch cost over the entire optimization horizon (cf. (6.40)):

5
⇤ (D) := min

G (C)

’
C

’
:

FC : 5C : (?(C) + A: (C)) :=
’
C

’
:

FC :

’
9

5C : 9 (? 9 (C) + A: 9 (C))

s.t. ?
min � D(C)  ?(C) + Amin (C), ?(C) + Amax (C)  ?max � D(C) (6.47e)

⌘C :

⇣
A

min (C),Amax (C)
⌘

:=
’
9

⌘C : 9

⇣
A

min
9

(C),Amax
9

(C)
⌘
� 0 (6.47f)

1
T (?(C) + A: (C) +6: (C)� 3: (C)) = 0 (6.47g)

%
min  (

T (C) (?(C) + A: (C) +6: (C)� 3: (C))  %
max (6.47h)

A
min (C)  A: (C)  A

max (C) (6.47i)

|?(C)� ?(C �1) |  ?
ramp (6.47j)

This problem for each C would have been the same as the security constrained economic
dispatch (6.40) if it were not for two features. First, for two vectors 0 and 1, 0 � 1 in
(6.47e) denotes componentwise product, i.e., (0 � 1) 9 := 0 91 9 . If D 9 (C) = 1 (unit 9
on) then (6.47e) is the same as (6.39b). If D 9 (C) = 0 (unit 9 o�) then (6.47e) forces
? 9 (C) = Amin

9
(C) = Amax

9
(C) = A: 9 (C) = 0. Second the new constraint (6.47j) imposes a

limit ?ramp on ramping of the dispatch ?. Without this ramping constraint, the problem
5
⇤ (D) is decoupled across C and the time-C subproblems can be solved independently

of each other.

The security constrained unit commitment problem (6.47) is a mixed integer linear
program. It can be solved to optimality using branch and bound methods (Chapter
8.5.6) or Benders decomposition (see Example 8.17 in Chapter 8.5.7).

6.5 Bibliography

There are many excellent texts on various aspects of power system operations in
much more detail than this book, e.g., [1, 3, 2]. Automatic generation control that
encompasses voltage control and load frequency control is discussed in detail in e.g.
[1, Chapter 11], [52].
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6.6 Problems

Chapter 6.2

Exercise 6.1 (Imbalance and error model). The optimal dispatch (6.6) is a deterministic
problem driven by a forecast <̂(=) of the random injection f(b, C) that is solved in the
=th control interval.

1 Discuss three types of error: random error �1 (b, C) := D(f(b, C)) � Dopt (<(C)),
discretization error �2 (C) := Dopt (<(C)) � Dopt (<̄(=)) where <̄(=) is the time av-
erage of <(C) over [=X, (= + 1)X), and prediction error �3 (b, C) := Dopt (<̄(=)) �
D

opt (<̂(=)) at each time C 2 [=X, (=+1)X), where <̂(=) is an estimate of <̄(=).
2 Consider a 2-bus network described by the DC power flow model. Bus 1 has an

uncontrollable load f := (f(C), C 2 R+) with mean (<(C), C 2 R+) and bus 2 has
a controllable generator with output level D(C). Suppose the generator and line
capacities are high so that the injection and line limits are never active.
(a) Suppose we use the prediction

<̂(=) := <̂(b,=) :=
1
X

π
=X

(=�1) X
f(b, C) 3C, = = 0,1, . . . (6.48)

Show that the imbalance at time C is the di�erence between the actual load at
time C and the time average load over the pervious interval.

(b) Suppose f is a white Gaussian process with mean ⇢f(C) = <(C) and correla-
tion function  (C, C 0) = a2 if C = C 0 and  (C, C 0) = 0 if C < C 0 for C, C 0 � 0. Then,
under appropriate integrability assumptions, F(g) :=

Ø
g

0 f(C)3C is a Wiener
process with the property that non-overlapping increments are independent
Gaussian random variables, i.e., for any C 0 < C  g0 < g, the random variables

F(C)�F(C 0) :=
π

C

C
0
f(B)3B and F(g)�F(g0) :=

π
g

g
0
f(B)3B

are independent and Gaussian with means
Ø
C

C
0 <(B)3B and

Ø
g

g
0 <(B)3B respec-

tively and variance a2 (C � C 0) and a2 (g� g0) respectively. Derive the various
errors and properties in Table 6.1.

Expression Random Var Mean Variance

Random error �1 (b, C) �f(b, C) +<(C) Gaussian zero a
2

Discretiz. error �2 (C) �<(C) + <̄(=) constant �<(C) + <̄(=) 0
Prediction error �3 (b, C) �<̄(=) + <̂(b,=) Gaussian �<̄(=) + <̄(=�1) a

2/X
Imbalance �D(b, C) �1 (C) +�2 (C) +�3 (C) Gaussian �<(C) + <̄(=�1) a

2 (1+1/X)

Table 6.1 Exercise 6.1: Imbalance and underlying errors.

(c) Verify the following properties: (i) The mean random error ⇢�1 (C) = 0. (ii)
The time average of the discretization error �2 (C) is zero over each control
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interval. (iii) The mean prediction error ⇢�3 (C) is small if the mean process
<(C) is slowly time-varying. In particular if f is stationary then ⇢�3 (C) = 0.

Chapter 6.3

Exercise 6.2 (Primary frequency control). Proof Theorem 6.1.

Exercise 6.3 (Secondary frequency control). Proof Theorem 6.2.

Exercise 6.4 (Optimality of primary frequency control). Formulate underlying opti-
mization problem solved by primary frequency control (c.f. Changhong2014TAC).

Exercise 6.5 (Optimality of secondary frequency control). Formulate underlying op-
timization problem solved by secondary frequency control (c.f. LinaCZ paper).

Chapter 6.4

Exercise 6.6 (3-bus network). Recall the conversion matrix �T defined in (1.12) and
reproduced here:

�T :=
266664

1 0 �1
�1 1 0
0 �1 1

377775
Treat �T as the incidence matrix of the 3-node network in Figure 1.9(b). Assume line
susceptances 1; = 1 for all ;.

1 Show that the Laplacian matrix ! := �T� and its pseudo-inverse !† are

! =
266664

2 �1 �1
�1 2 �1
�1 �1 2

377775
, !

† =
1
9
!

2 Show that the shift factor ( := !†�T
⌫ = 1

3�
T.

3 Show that line flows % = 1
3�? and LMP _ = W1+ 1

3�
T
^.

Exercise 6.7 (Merchandizing surplus). Prove (6.31).

Exercise 6.8 (Theorem 6.3: proof). This exercise proves Theorem 6.3 step by step.
Consider the DC power flow model (6.34) and the economic dispatch formulation
(6.35) in terms of (A := !�T

A
⇠�0⌫. Assume !�1

A
exists so (A is well defined.
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1 Show that % = (T
A
?�A = (T

? where ( := !†⇠⌫ is defined in (6.20), i.e., the line
flows % given in (6.34) are independent of the choice of the price reference bus A .

2 Show that (A is related to ( as:
(A

0

�
= ( � 1#+1B

T
A
, (A = [(]�A �1# B

T
A

where BT
A

denotes row A of (, [(]A denotes the submatrix of ( obtained by removing
row A , and 1= is the vector of all 1s of size =, i.e., (A is obtained from the submatrix
[(]�A of ( by subtracting row A from every row in [(]�A .

3 Prove Theorem 6.3 using parts 1 and 2.

Exercise 6.9 (Energy price). Use (6.36) to show that
Õ
9
_
⇤
9
= (# + 1)W̃⇤ where W̃⇤ is

the energy price defined in (6.37). (This is what should be expected given that _̃⇤ = _⇤

according to Theorem 6.3.)

Exercise 6.10 (Theorem 6.3: illustration). Consider the two-bus network and the
economic dispatch (6.26) of Example 6.2. An equivalent formulation is to replace the
line flow ⌫⇠

T
!
†(?� 3) in the line limit (6.26c) by

�%max  ?1� 31  %
max

This is equivalent to using (6.26b) to eliminate ?2 from ⌫⇠
T
!
†(? � 3). This means

that bus 2 is chosen as the price reference bus A in the economic dispatch formulation
(6.35).

1 For the formulation (6.35), calculate !2,!�1
2 ,(2 and derive expressions for LMP

_
⇤.

2 Compare with the corresponding quantities in Example 6.2 and verify that the
LMPs are the same in both formulations, as asserted by Theorem 6.3.

Chapter 6.4.4

Exercise 6.11. Consider the two-stage economic dispatch problem (6.40) and the
LMP _⇤

:
defined in (6.41) for scenarios : . Show that a primal-dual feasible (G⇤,b⇤) is

primal-dual optimal for (6.40) if and only if (G⇤,b⇤) satisfies (6.42)(6.43).

Exercise 6.12. Prove Theorem 6.4. (Hint: Show that F: MS: =
�
^
+⇤
:

�T
%

max ��
^
�⇤
:

�T
%

min. For incentive compatibility, note that (G⇤,b⇤) satisfies the complemen-
tary slackness conditions (6.43c)(6.43e) for the coupling constraints.)



7 System operation: estimation and
control

In this chapter we illustrate the network models of Chapters 4 and 5 in several ap-
plications. The emphasis is on the use of structural properties of these models to
attain conceptual understanding of applications or design solutions with performance
guarantees, not on the scalable computation of these models. To make this chapter
self-contained we summarize the models used in each application.

7.1 State estimation

Consider a power network modeled by a connected undirected graph ⌧ = (# ,⇢) of
# +1 nodes and " lines, where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . The
state of the network is the complex voltage + 9 2 C at each bus 9 2 # . We assume
the voltage angle \0 := 0 at the reference bus 0, and hence the state is a 2# + 1
dimensional real vector G := (\, |+ |) := (\ 9 , |+0 |, |+ 9 |, 9 2 #) 2 R2#+1. The problem of
state estimation is to estimate the state G := (\, |+ |) from a set of noisy measurements
H 2 R . It is a key building block for numerous power system applications, e.g.,
in energy management systems that dispatch controllable generators and loads in
transmission systems or control voltages on distribution systems.

The measurements H may consist of voltage angles and magnitudes (\ 9 , |+ | 9 ) at a
subset #1 ⇢ # of the buses 9 2 #1. These are partial and noisy state measurements.
We assume the measurement noise is additive, i.e.,

H2 9 = \ 9 + I2 9 , H2 9+1 = |+ 9 | + I2 9+1, 9 2 #1 (7.1)

where (I2 9 , I2 9+1) are additive measurement noises. The measurements H may also
include real and reactive power injections (? 9 ,@ 9 ) at a subset #2 ⇢ # of the buses
9 2 #2, i.e.,

H2 9 = ? 9 + I2 9 , H2 9+1 = @ 9 + I2 9+1, 9 2 #2

where (I2 9 , I2 9+1) are additive measurement noises. The injections satisfy power flow
equations, e.g., in polar form, that relate (? 9 ,@ 9 ) to the state G, i.e,

? 9 = 5 9 (G), @ 9 = 6 9 (G)



300 System operation: estimation and control

where (from (4.27))

5 9 (G) :=
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(7.2a)

6 9 (G) := �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(7.2b)

Substituting into (H2 9 , H2 9+1) we have

H2 9 = 5 9 (G) + I2 9 , H2 9+1 = 6 9 (G) + I2 9+1, 9 2 #2 (7.2c)

The measurements H may also include real and reactive powers (% 9: ,& 9: ) on a subset
⇢1 ✓ ⇢ of the lines ( 9 , :) 2 ⇢1. Then

H2; = %; (G) + I2; , H2;+1 = &; (G) + I2;+1, ; 2 ⇢1 (7.3a)

where

% 9: (G) :=
⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 � |+ 9 | |+: |

⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(7.3b)

& 9: (G) := �
⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 � |+ 9 | |+: |

⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(7.3c)

In general we have a measurement model

H = 5 (G) + I

where G := (\, |+ |) 2 R2#+1 is the state of the network, H 2 R is the measurement
vector, I 2 R is additive noise, and 5 : R2#+1! R is a network model of the form
in (7.1)(7.2)(7.3) that maps a network state to measurement.

Unconstrained formulation. The simplest formulation of state estimation is the fol-
lowing problem to determine an estimate Ĝ of G from H:

Ĝ := arg min
G2R2#+1

(H� 5 (G))T
'
�1 (H� 5 (G)) (7.4)

where ' is a (symmetric) positive definite normalization matrix. A common normal-
ization matrix is the covariance matrix ⇢ (I�⇢I) (I�⇢I)T of the noise I, estimated
from the measurement as ' := ⇢̂ (HHT)� ⇢̂ H⇢̂ HT where ⇢̂ I := (1/:)Õ:

8=1 I8 denotes the
sample mean of : samples I1, . . . , I: of I, or its unbiased version (see discussion in
Exercise 7.2). This optimization problem is called a least square estimation or nonlin-
ear regression problem. It is a convex problem if 5 (G) = �G is a linear function. We
will study a basic theory of and algorithms for solving convex optimization problems
in Chapter 8.

A linearized version of the state estimation problem (7.4) can be obtained by
linearizing 5 (G) around an operating point G0, i.e., we assume the measurement model
H =: H0+�H = 5 (G0) + m 5

mG
(G0)�G+ I. We assume 5 (G0) is known and H0 = 5 (G0). Hence

we have

�H = ��G + I
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where � := m 5

mG
(G0) is the  ⇥ (2# +1) Jacobian matrix of 5 at the operating point G0.

Then the least square estimation is the following linear regression:

�̂G := arg min
�G2R2#+1

(�H���G)T
'
�1 (�H���G) (7.5a)

where �H := H� 5 (G0) is obtained from the measurement H and the operating point G0.
Let the estimation error be the minimum weighted norm of the noise I:

n
2 := min

�G
I

T
'
�1
I = min

�G
(�H���G)T

'
�1 (�H���G) (7.5b)

To simplify notation consider quantities normalized by the positive definite matrix '

�H̄ := '
�1/2�H, �̄ := '

�1/2
� (7.6a)

For example if ' := diag(f2
8
) is the (sample) variance of the noise I then (7.6a)

normalizes the measurements �H by its standard deviation. Then the linear regression
(7.5) becomes

min
�G

I
T
'
�1
I = min

�G

���H̄� �̄�G��2
2 (7.6b)

An optimum �̂G and the resulting minimum estimation error n2 can be solved in closed
form. The general solution is �̂G = �̄†�H̄where �̄† is the pseudo-inverse of �̄ := '�1/2

�

(see Chapter A.7, particularly Remark A.2).

There are two special cases where �̄† has simple expressions in terms of �̄ according
as �̄ has full column or row rank:

1 More measurements than state variables  � 2# + 1: Redundant measurements
allow us to estimate the network state by solving the linear regression (7.6). When
the columns of � (and hence �̄) are linearly independent, the unique optimal
solution is (Exercise 7.1):

�̂G =
⇣
�̄

T
�̄

⌘�1
�̄

T�H̄ (7.7a)

and the minimum error is

n
2 =

���H̄� �̄�̂G��2
2 = k�H̄k22 �

����
⇣
�̄

T
�̄

⌘�1/2
�̄

T�H̄
����

2

2
(7.7b)

The estimated state is

G0 + �̂G = G0 +
⇣
�

T
'
�1
�

⌘�1
�

T
'
�1�H (7.7c)

where �H := H� 5 (G0) and � := m 5

mG
(G0).

2 Fewer measurements than state variables  < 2# + 1: When � and hence �̄ has
full row rank, then �̄ has  linearly independent columns and the estimation error
n

2 = 0. The unique optimal solution to (7.6) is the solution to �̄�G = �H̄ (see
Corollary A.20 in Chapter A.7):

�̂G = �̄
T
⇣
�̄ �̄

T
⌘�1
�H̄
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Since  < 2# +1, there is a subspace of solutions to �̄�G = �H̄ and �̂G is one with
the minimum Euclidean norm. There is no reason the state of the power network is
closed to such a solution and generally the lack of su�cient measurement produces
poor state estimates (even though n2 = 0).

Constrained formulation. State estimation can also include operational constraints
such as injection limits, voltage limits and line limits. The injection limits take the form
(?min
9

,@min
9

)  ( 5 9 (G),6 9 (G))  (?max
9

,@max
9

) from (7.2), the voltage limits take the form

+
min
9
 0T

9
G +max

9
, and the line limits take the form (%min

9:
,&min

9:
)  (% 9: (G),& 9: (G)) 

(%max
9:

,&max
9:

) from (7.3). The constrained version of state estimation (7.4) is then:

Ĝ := arg min
G2R2#+1

(H� 5 (G))T
'
�1 (H� 5 (G)) (7.8a)

s.t. ⌘(G)  0 (7.8b)

where ⌘(G) represents operational constraints. There is generally no analytical solution
for (7.8). We will study iterative algorithms in Chapter 8.5 for solving constrained
optimization problems.

7.2 Volt/var control on radial networks

In this section we apply the linear DistFlow model (5.34) or (5.35) of Chapter 5.4 and
Theorem 4.10 of Chapter 4.2.6 for voltage control on radial networks. The expression
(4.24) for /̂ = .̂�1 in Theorem 4.10 is useful for various power system applications on
radial networks. As explained in Remark 4.6 this structure originates from the inverse
⇠̂
�1 in (4.23) of the reduced incidence matrix ⇠̂ of a tree graph and is independent of

the “weight matrix” ⇡B
H

as long as ⇡B
H

is nonsingular. In many applications, ⇡B
H

is not
only nonsingular but also positive or negative definite. In this section we apply this
result to the linear DistFlow model of Chapter 5.4.2 for voltage control (or Theorem
5.3 that specializes Theorem 4.10 to linear DistFlow model). In Chapter 7.3 we apply
Theorem 4.10 to a linearized polar-form power flow model for topology identification.

7.2.1 Linear DistFlow model

Consider a radial network ⌧ := (# ,⇢) with # +1 buses and " lines, modeled by the
linear DistFlow equations (5.34) with a given E0, or equivalently, by (5.35) of Chapter
5.4.3.1 reproduced here:

B̃ = ⇠̂ (, E0 20 + ⇠̂T
E = 2 (⇡A% + ⇡G&) (7.9)

where ( B̃,E) here denote the real and reactive net injections and squared voltage
magnitudes at non-reference buses, ( := (%,&) are real and reactive line flows, ⇠T :=
[20 ⇠̂

T] is the transpose of the node-by-line incidence matrix ⇠, in particular ⇠̂
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is the # ⇥ # reduced incidence matrix corresponding to non-reference buses, and
⇡A := diag(A; , ; 2 ⇢), ⇡G := diag(G; , ; 2 ⇢) are diagonal matrices of line resistances
and reactances respectively. As in Chapter 5.4.2, we assume throughout this section
without stating it explicitly that the network graph ⌧ is a (connected) tree, HB

9:
= HB

: 9

(assumption C5.1) and H<
9:

= H<
: 9

= 0. To simplify notation, we will use (?,@) 2 R2#

and E 2 R# in this section to denote variables at non-reference buses (instead of B̂, Ê
as in Chapter 5.4).

We assume at each bus 9 there is a fixed and given active and reactive load B0
9

:=⇣
?

0
9
,@0
9

⌘
. In addition there is possibly an inverter on bus 9 with a fixed active power

injection ? 9 and an adaptable reactive power injection @ 9 . For example, ? 9 may
represent solar generation. Hence the net injections B̃ in (7.9) are B̃ = (?� ?0,@� @0).
The problem of volt/var control is to adapt the reactive outputs @ 9 in order to stabilize
voltages on the network. To this end, since the network is radial, the reduced incidence
matrix ⇠̂ is nonsingular and we can apply Theorem 5.3 of Chapter 5.4.3.1 to solve
(7.9) and express E in terms of the net injections:

E = E0 1 + 2
⇣
'(?� ?0) + - (@� @0)

⌘

where ' := ⇠̂�T
⇡A ⇠̂

�1 and - := ⇠̂�T
⇡G⇠̂

�1 are positive definite. We write E := E(@)
explicitly as a function of the control @:

E(@) = 2-@ + Ẽ (7.10)

where Ẽ := E0 1+2'
�
?� ?0� �2-@0 does not depend on @.

A common model of inverters constrains the reactive power @ 9 to the sector {@ 9 :
?

2
9
+@2

9
 f2} with a power factor limit �q 9  tan�1 (@ 9/? 9 )  q 9  c/2. Equivalently

the control @ 9 is constrained to the sector* 9 determined by the given active power ?̃ 9 :

* 9 :=
n
@ 9 : @

9

 @ 9  @ 9
o

, 9 = 1, . . . ,# (7.11)

where @
9
:= min

n
? 9 tanq 9 ,

q
f

2� ?2
9

o
and @

9

:= max
n
�? 9 tanq 9 , �

q
f

2� ?2
9

o
. Let

* :=*1 ⇥ · · ·⇥*# . If the reactive power @ 9 of the inverter at bus 9 is fixed and not
controllable, this can be modeled by setting @

9

= @ 9 = @ 9 . If there is no inverter at bus

9 , then we set ? 9 = @
9

= @
9
:= 0.

7.2.2 Decentralized control: convergence and optimality

Let Eref be a given vector of reference voltages at buses 9 > 0. Our goal is to choose
control @ 2 * to drive voltages towards Eref. We require our control to be local, i.e.,
@ 9 (C + 1) depends only on voltage E 9 (C) at bus 9 , not voltages E: (C) at other buses
: < 9 , and memoryless, i.e., @ 9 (C + 1) depends only on E 9 (C) but not E 9 (B), B < C. In
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particular, @ 9 is a function only of voltage discrepancy E 9 (C)� Eref
9

, of the form

@ 9 (C +1) =
h
D 9

⇣
E 9 (C)� Eref

9

⌘i
* 9

, 9 = 1, . . . ,#

where E 9 (C) is the measured local voltage, D 9 : R! R is a control function that
maps a voltage deviation E 9 (C) � Eref

9
into a potential reactive power setting, [0]* 9 :=

max
n
@
9

,min
�
0,@

9

 o
is the projection onto * 9 . Such a local memoryless control is

simple to implement as it requires no communications among controllers at di�erent
buses.

The local volt/var control problem in our formulation boils down to the design of
the control function D 9 . Many functions D 9 have been proposed and analyzed in the
literature. We now present such a control from [37, 38]. From Theorem 5.3,

mE 9

m@ 9

= 2- 9 9 = 2
’
;2P 9

G; > 0

Therefore it is natural to choose a control function D 9 that is nonincreasing in voltage
discrepancy E 9 (C)� Eref

9
. An example D 9 is shown in Figure 7.1(a).

−α

−αδ
2− δ

2

uj (vj)

vj

(a) Piecewise linear control D 9 (E9 )

uj−1(qj)

qj

1
α−

1
α−

δ
2

δ
2−

(b) Inverse D�1
9
(@ 9 )

cj (qj)

qj

(c) Implied cost 2 9 (@ 9 )

Figure 7.1 Piecewise linear control with a deadband (�X/2,X/2).
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Closed-loop behavior.

Consider the closed-loop system under a local control D 9 . Suppose the voltages evolve
according to (7.10), i.e., suppose the measured voltages at time C is E 9 (C) = E 9 (@(C)).
Then the closed-loop system is a discrete-time dynamical system defined by the control
function D 9 : R! R followed by a projection onto* 9 :

@ 9 (C +1) =
h
D 9

⇣
E 9 (@(C))� Eref

9

⌘i
* 9

, 9 = 1, . . . ,# (7.12)

where E 9 (@) is given by (7.10). If @⇤ =
⇥
D

�
E(@⇤)� Eref� ⇤

*
then @⇤ is called a fixed

point, or an equilibrium point, of (7.12).

We now analyze the convergence and optimality of the dynamical system (7.12) for
a class of D 9 that satisfies the following assumptions:

C5.1: The control functions D 9 are di�erentiable on R and there exist U 9 such that���D0
9
(E 9 )

���  U 9 for all E 9 2 R.
C5.2: The control functions D8 are strictly decreasing on R.

The di�erentiability assumption in C5.1 can be relaxed to allow control functions
with a deadband and saturation as shown in Figure 7.1(a) (see [38]). The proof of the
convergence and optimality properties in the next two theorems uses concepts in convex
optimization theory that we will study in detail in Chapter 8. Let � := diag(U 9 , 9 2 #).

Theorem 7.1 (Convergence). Suppose assumption C5.1 holds. If the largest singular
value fmax (�-) < 1/2 then there exists a unique equilibrium point @⇤ 2 * and the
volt/var control (7.12) converges to @⇤ geometrically, i.e.,

k@(C)� @⇤k  VC k@(0)� @⇤k ! 0

for some V 2 [0,1).

Proof Applying the mean value theorem to the control function D 9 (E 9 ) we have

D 9 (E 9 )�D 9 (Ê 9 ) = D09 (F) (E 9 � Ê 9 )

where F = _E 9 + (1�_)Ê 9 for some _ 2 [0,1]. Therefore

kD(E)�D(Ê)k22 =
’
9

��
D 9 (E 9 )�D 9 (Ê 9 )

��2  ’
9

��
U 9 (E 9 � Ê 9 )

��2 = k�(E� Ê)k22

where the inequality follows from the mean value theorem and assumption C5.1.
Hence kD(E) � D(Ê)k2  k�(E � Ê)k2. Applying the chain rule to �E = �E(@) as a
vector-valued function of @ we have

m�E

m@

(@) = � mE
m@

= 2 �-
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Therefore���D ⇣
E(@)� Eref

⌘
� D

⇣
E(@̂)� Eref

⌘���
2
 k�E(@)� �E(@̂)k2  k2�- k2 k@� @̂k2

where the first inequality follows from kD(E) � D(Ê)k2  k�(E � Ê)k2. The second
inequality follows from the mean value Theorem A.34 for vectored-valued functions
in Appendix A.10 that says that if 5 : R=! R= is continuously di�erentiable then

k 5 (H)� 5 (G)k 
����m 5
mG

(I)
���� kH� Gk

for any induced matrix norm k · k where I := `G + (1� `)H for some ` 2 [0,1]. Since
the induced matrix norm k" k2 = fmax (") (Exercise 7.3) we have���D ⇣

E(@)� Eref
⌘
� D

⇣
E(@̂)� Eref

⌘���
2
 2fmax (�-) k@� @̂k2

Therefore the control function D
�
E(@)� Eref� as a function of @ is a contraction when

fmax (�-) < 1/2. Since projection onto* is nonexpansive by the Projection Theorem
8.9 of Chapter 8.2.3, the function on the right-hand side of (7.12), as a function of @, is
a contraction. The theorem then follows from the Contraction Mapping Theorem 8.33
of Chapter 8.6.1. ⇤

We next show that the equilibrium point @⇤ guaranteed by Theorem 7.1 under
assumption C5.1 implicitly optimizes a cost function implied by the control function
D. Under assumption C5.2, the inverse functions D�1

9
exist and are strictly decreasing

on R. We hence can define 2 9 : R! R by

2 9 (@ 9 ) := �
π

@ 9

0
D
�1
9
(@̂ 9 ) 3@̂ 9 , 9 2 #

Moreover 2 9 is strictly convex since 200
9
(@ 9 ) = �1/D0

9
(@ 9 ) > 0 under assumptions C5.1

and C5.2. Consider the optimization problem

min
@2*

’
9

2 9 (@ 9 ) + @
T
-@ + @

T�Ẽ (7.13)

where �Ẽ := Ẽ� Eref.

Theorem 7.2 (Optimality). Suppose assumptions C5.1 and C5.2 hold. Then the unique
equilibrium point @⇤ 2* of (7.12) is the unique minimizer of (7.13).

Proof Let⇠ (@) :=
Õ
9
2 9 (@ 9 ) + @T

-@ + @T�Ẽ denote the objective function of (7.13).
Since - is positive definite and 2 9 are strictly convex,⇠ (@) is strictly convex (and hence
also continuous on R# ). This implies, in particular, that if a minimizer of (7.13) exists
(e.g., if * is bounded), then it is unique. It therefore su�ces to show that @⇤ is an
equilibrium point of (7.12) if and only if it is a minimizer of (7.13).

Since (7.13) is a convex problem, @⇤ 2* is optimal if and only if

(r⇠ (@⇤))T (@� @⇤) � 0 8@ 2*
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Since each* 9 in (7.11) is a box constraint, this means the optimal @⇤ 2* is optimal if
and only if (Exercise 7.4)

@
⇤
9
2 (@

9

,@
9
) only if [r⇠ (@⇤)]

9
= 0 (7.14a)

@
⇤
9
= @

9

if [r⇠ (@⇤)]
9
> 0 (7.14b)

@
⇤
9
= @

9
if [r⇠ (@⇤)]

9
< 0 (7.14c)

We have from (7.10) and (7.12)

r⇠ (@⇤) = r2(@⇤) + 2-@⇤ + �Ẽ = r2(@⇤) +
⇣
E(@⇤) � Eref

⌘

where r2(@⇤) = (20
9
(@⇤
9
) = �D�1

9
(@⇤
9
), 8 2 #). Therefore

[r⇠ (@⇤)]
9
= �D�1

9
(@⇤
9
) +

⇣
E 9 (@⇤9 ) � Eref

9

⌘

Since D 9 (E 9 ) is strictly decreasing in E 9 we have

[r⇠ (@⇤)]
9
= 0 () D 9

⇣
E 9 (@⇤9 ) � Eref

9

⌘
= @

⇤
9

[r⇠ (@⇤)]
9
> 0 () D 9

⇣
E 9 (@⇤9 ) � Eref

9

⌘
< @

⇤
9

[r⇠ (@⇤)]
9
< 0 () D 9

⇣
E 9 (@⇤9 ) � Eref

9

⌘
> @

⇤
9

Substituting this into (7.14) shows that @⇤ =
⇥
D

�
E(@⇤)� Eref� ⇤

*
, i.e., @⇤ is the unique

equilibrium point of (7.12). This shows that @⇤ is an equilibrium point of (7.12) if and
only if it is a minimizer of (7.13). ⇤

Remark 7.1. Theorem 7.2 shows that the control function in (7.12) implies an objective
function ⇠ (@) in (7.13) that an equilibrium implicitly optimizes. This is often referred
to as reverse engineering. One can also start by designing an objective function ⇠ (@)
and deriving a control function as an iterative algorithm to solve the optimization
problem (7.13). This is referred to as forward engineering; see e.g. [37, 38]. Often
these algorithms require some communications among controllers at di�erent buses
but are guaranteed to converge under less stringent requirement than that in Theorem
7.1.

The formulation here imposes limits [@,@] on the control @. It is pointed out
in [53] that local memoryless control such as (7.12) may not be able to stabilize
the equilibrium voltages E(@⇤) to within an apriori range [E,E] (see Exercise 7.6).
Alternative formulation imposes apriori limits [E,E] on equilibrium voltages E(@⇤) but
relaxes limits on the control @ using control laws with internal state, see e.g. [53] ⇤
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7.3 Tree topology identification

In this section we illustrate the use of polar form power flow equation (4.27) of Chapter
4.3.2 and Theorem 4.10 of Chapter 4.2.6 for topology identification of radial networks
from measurements of nodal voltage magnitudes. A distribution network typically
consists of a meshed network with sectionalizing switches on some of the lines. At
any time the switches are configured so that the operational network is a spanning tree
with the substation at its root. We assume the system operator knows the topology
of the meshed network, but may not know the switch configurations and hence the
operational network. We first derive a linearized model using the polar form power
flow equation (4.27). We then present two methods to identify the operational network,
one making use of statistical properties of random voltage measurements and the other
uses a graphical-model method.

7.3.1 Linearized polar-form AC model

Consider a radial network represented by a (connected) tree ⌧ := (# ,⇢) with # + 1
buses and " = # lines and modeled by the polar-form power flow equations (4.27)
reproduced here:

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 2 #

(7.15a)

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 2 #

(7.15b)

We will linearize (7.15) under the following assumptions:

C4.3: The series admittances HB
9:

= HB
: 9

= 6B
9:
+ i1

B

9:
(Assumption C4.1) and the

shunt admittances H<
9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ .

C4.4: 6B
9:

> 0 and 1B
9:

< 0 for all ( 9 , :) 2 ⇢ .

Consider the “flat voltage profile” where +flat
9

= `4i\ for all 9 2 # , so that the result-

ing power injection is
�
?

flat,@flat� = (0,0). Abuse notation and now let the variables
(\, |+ |) denote perturbations around the flat voltage profile +flat = (`4i\ , 9 2 #) and
(?,@) denote the perturbations around

�
?

flat,@flat� = (0,0). Let |+̂ | := ( |+ 9 |, 9 2 #) and
( ?̂, @̂) := (? 9 ,@ 9 , 9 2 #) denote the (perturbations of the) nodal voltage magnitudes
and the (perturbations of the) power injections respectively at non-reference buses.
Let ⇠̂ be the # ⇥ # reduced incidence matrix obtained from the node-by-line inci-
dence matrix ⇠ by removing the first row of ⇠ corresponding to the reference bus 0.
Partition the admittance matrix . into the reference bus 0 and non-reference buses,
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. =

.00 H

T
0

H0 .̂

�
where .̂ := ⇠̂⇡B

H
⇠̂

T is the reduced admittance matrix. Let 6̂0 := Re(H0)

and 1̂0 := Im(H0) be the real and imaginary parts respectively of the first non-reference
column of . .

Then it is shown in Exercise 7.8 that the linearization of the polar form power flow
equation (7.15) yields the following linear model for how |+̂ | depends on the power
injections ( ?̂, @̂) at non-reference buses:

|+̂ | = '̂ ?̂ + -̂ @̂ � Ê0 (7.16a)

where '̂ := ⇠̂�T
⇡1⇠̂

�1 � 0, -̂ := �⇠̂�T
⇡2⇠̂

�1 � 0 are positive definite matrices, and

Ê0 := |+0 |
⇣
'̂6̂0 + -̂ 1̂0

⌘
. Here ⇡1 and ⇡2 are # ⇥# diagonal matrices defined as:

⇡6 := diag(6B
;
) � 0, ⇡1 := diag(1B

;
) � 0

⇡1 :=
⇣
⇡6 +⇡1⇡�1

6
⇡1

⌘�1
� 0, ⇡2 :=

⇣
⇡1 +⇡6⇡�1

1
⇡6

⌘�1
� 0

Let A; and G; denote the diagonal entries of ⇡1 and ⇡2 respectively. Then Theorem
4.10 says that '̂ and -̂ are given by:

'̂ 9: =
’

;2P 9\P:

A; > 0, -̂ 9: =
’

;2P 9\P:

G; > 0 (7.16b)

where P 9 denotes the unique path from bus 0 to bus 9 . Hence '̂ 9: and -̂ 9: are the
sums of A; and G; respectively on the common segment of the unique paths from the
reference bus 0 to buses 9 and : .

7.3.2 Covariance of voltage magnitudes and powers

The method of [40] to identify the operational network exploits statistical properties
of voltage magnitudes. Define the covariance matrix ⌃E := ⇢ [|+̂ | � ⇢ ( |+̂ |)] [( |+ | �
⇢ ( |+ |)]T of voltage magnitudes +̂ at non-reference buses and similarly the covariance
matrices (⌃? ,⌃@) of power injections ( ?̂, @̂), as well as cross-covariance matrices
⌃?@ := ⇢ ( ?̂ � ⇢ ?̂) (@̂ � ⇢@̂)T and ⌃@? := ⇢ (@̂ � ⇢@̂) ( ?̂ � ⇢ ?̂)T. Suppose the power
injections at the same bus are positively correlated and those at di�erent buses are
uncorrelated, i.e. (�[8, 9] denotes the (8, 9)th entry of matrix �),

C4.5:⌃? [ 9 , 9] > 0,⌃@ [ 9 , 9] > 0,⌃?@ [ 9 , 9] =⌃@? [ 9 , 9] > 0 for all 9 , and⌃? [ 9 , :] =
⌃@ [ 9 , :] = ⌃?@ [ 9 , :] = ⌃@? [ 9 , :] = 0 for all 9 < : .

The key insight on which the method of [40] is based is explained in the next result. It
says that the variance of voltage magnitude strictly increases as one moves away from
the reference bus 0 where |+0 | is fixed, and it also provides a way to identify the parent
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of a bus. This is the consequence of (7.16a) that relates the covariance ⌃E of voltage
magnitudes to the convariances of the power injections:

⌃E = '̂⌃? '̂T + -̂⌃@ -̂T + '̂⌃?@ -̂T + -̂⌃@? '̂T (7.17)

The 9 th diagonal entry ⌃E [ 9 , 9] = ⇢
�
|+ 9 |�⇢ |+ 9 |

�2 =: var( |+ 9 |) is the variance of
voltage magnitude |+ 9 | (deviation from its nominal value).

Recall that bus : is called a descendant of 9 if 9 is on the unique path from the
reference bus 0 to bus : . Bus 9 is called a parent of : if ( 9 , :) 2 ⇢ and : is a descendant
of 9 . Let var(? 9 ) and var(@ 9 ) denote the variance of the real and reactive power
injections respectively at bus 9 , and cov(? 9 ,@ 9 ) := ⇢

�
(? 9 �⇢? 9 ) (@ 9 �⇢@ 9 )

�
denote

the covariance of (? 9 ,@ 9 ) at bus 9 .

Theorem 7.3 (Topology identification). Suppose assumptions C4.3, C4.4 and C4.5
hold.

1 If a non-reference bus 9 2 # is a descendant of bus 8 then var( |+ 9 |) > var( |+8 |).
2 If bus 8 is a parent of bus 9 2 # then the variance of the voltage magnitude

di�erence |+8 |� |+ 9 | is given by:

⇢

�
( |+8 |� |+8 |)�⇢ ( |+ 9 |� |+ 9 |)

�2 =
’
:2T 9

⇣
A

2
8 9

var(?: ) + G2
8 9

var(@: ) + 2A8 9G8 9cov(?: ,@: )
⌘

(7.18)

Proof For part 1, suppose first 8 is a parent of 9 . Theorem 4.10 and (7.16b) imply

'̂ 9: = '̂8: + A8 9 , '̂8: =
’
;2%8

A; , if : 2 T 9 (7.19a)

'̂8: = '̂ 9: , if : 8 T 9 (7.19b)

Therefore the diagonal entry of the first matrix on the right-hand side of (7.17) yields⇣
'̂⌃? '̂T

⌘
[ 9 , 9] �

⇣
'̂⌃? '̂T

⌘
[8, 8] =

’
:

’
:
0
⌃? [: 0, :]

�
'̂ 9:0 '̂ 9: � '̂8:0 '̂8:

�

=
’
:

⌃? [: , :]
�
'̂ 9: + '̂8:

� �
'̂ 9: � '̂8:

�

=
’
:2T 9

⌃? [: , :]
 
2
’
;2P8

A; + A8 9
!
A8 9 > 0

where the second equality follows because ⌃? [: 0, :] = 0 if : 0 < : , the last equality
follows from (7.19), and the strict inequality follows because ⌃? [: , :] > 0 for all :
and A; > 0 for all ;. Similarly

�
-̂⌃@ -̂T� [ 9 , 9] > �

-̂⌃@ -̂T� [8, 8]. The diagonal entry of
the third matrix on the right-hand side of (7.17) yields⇣

'̂⌃?@ -̂T
⌘
[ 9 , 9] �

⇣
'̂⌃?@ -̂T

⌘
[8, 8] =

’
:

⌃?@ [: , :]
�
'̂ 9: -̂ 9: � '̂8: -̂8:

�
> 0
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where the equality follows from ⌃?@ [: 0, :] = 0 if : 0 < : and the strict inequality uses
(7.16b) and ⌃?@ [: , :] > 0. Similarly

�
-̂⌃@? '̂T� [ 9 , 9] > �

-̂⌃@? '̂T� [8, 8]. This shows
that var( |+ 9 |) = ⌃E [ 9 , 9] > ⌃E [8, 8] = var( |+8 |) when 8 is a parent of 9 . When 9 is
a descendant of 8, the argument above applies pairwise on the path from 8 to 9 to
conclude that ⌃E [ 9 , 9] > ⌃E [8, 8].

For part 2, suppose bus 8 is a parent of bus 9 then

⇢

�
( |+8 |�⇢ |+8 |)� ( |+ 9 |)� |+ 9 |)

�2 = ⌃E [8, 8] +⌃E [ 9 , 9] �2⌃E [8, 9] (7.20)

Consider ⌃E [8, 8] �⌃E [8, 9]. The first matrix on the right-hand side of (7.17) yields⇣
'̂⌃? '̂T

⌘
[8, 8] �

⇣
'̂⌃? '̂T

⌘
[8, 9] =

’
:

⌃? [: , :] '̂8:
�
'̂8: � '̂ 9:

�
=

’
:2T 9

⌃? [: , :]
’
;2P8

A; (�A8 9 )

⇣
'̂⌃? '̂T

⌘
[ 9 , 9] �

⇣
'̂⌃? '̂T

⌘
[ 9 , 8] =

’
:

⌃? [: , :] '̂ 9:
�
'̂ 9: � '̂8:

�
=

’
:2T 9

⌃? [: , :]
 ’
;2P8

A; + A8 9
!
(A8 9 )

where we have used ⌃? [: 0, :] = 0 if : 0 < : and (7.19). Summing these two expressions
gives the part f1 of (7.20) due to the first matrix in (7.17):

f1 :=
⇣
'̂⌃? '̂T

⌘
[8, 8] +

⇣
'̂⌃? '̂T

⌘
[ 9 , 9] � 2

⇣
'̂⌃? '̂T

⌘
[8, 9] = A

2
8 9

’
:2T 9

⌃? [: , :]

Similarly the part f2 of (7.20) due to the second matrix in (7.17) is

f2 :=
⇣
-̂⌃@ -̂T

⌘
[8, 8] +

⇣
-̂⌃@ -̂T

⌘
[ 9 , 9] � 2

⇣
-̂⌃@ -̂T

⌘
[8, 9] = G

2
8 9

’
:2T 9

⌃@ [: , :]

The third matrix on the right-hand side of (7.17) yields:⇣
'̂⌃?@ -̂T

⌘
[8, 8] �

⇣
'̂⌃?@ -̂T

⌘
[8, 9] =
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:

⌃?@ [: , :] '̂8:
�
-̂8: � -̂ 9:

�
=

’
:2T 9

⌃?@ [: , :]
’
;2P8

A; (�G8 9 )

⇣
'̂⌃?@ -̂T

⌘
[ 9 , 9] �

⇣
'̂⌃?@ -̂T

⌘
[ 9 , 8] =

’
:

⌃?@ [: , :] '̂ 9:
�
-̂ 9: � -̂8:

�
=

’
:2T 9

⌃?@ [: , :]
 ’
;2P8

A; + A8 9
!
(G8 9 )

and hence

f3 :=
⇣
'̂⌃?@ -̂T

⌘
[8, 8] +

⇣
'̂⌃?@ -̂T

⌘
[ 9 , 9] � 2

⇣
'̂⌃?@ -̂T

⌘
[8, 9] = A8 9G8 9

’
:2T 9

⌃?@ [: , :]

(7.21)

Similarly

f4 :=
⇣
-̂⌃@? '̂T

⌘
[8, 8] +

⇣
-̂⌃@? '̂T

⌘
[ 9 , 9] � 2

⇣
-̂⌃@? '̂T

⌘
[8, 9] = A8 9G8 9

’
:2T 9

⌃@? [: , :]

Summing these expressions yields

⌃E [8, 8] �⌃E [8, 9] =
4’
:=1

f: =
’
:2T 9

⇣
A

2
8 9
⌃? [: , :] + G2

8 9
⌃@ [: , :] + 2A8 9G8 9⌃?@ [: , :]

⌘

proving (7.18). ⇤
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Part 1 of Theorem 7.3 allows us to identify a leaf node 9 as one that has the
largest var(? 9 ). Part 2 of the theorem allows us to identify 9’s parent 8 as one that most
closely satisfies (7.18). The theorem therefore suggests the following iterative method to
identify the topology of the operational network from empirical estimates of variances
var( |+ 9 |), var(? 9 ), var(@ 9 ) and the covariance cov(? 9 ,@ 9 ) of voltage magnitudes and
power injections at each bus 9 . In each iteration the algorithm identifies a leaf node
9 among the set of unidentified nodes (whose parents have not been identified), and
then uses (7.18) to identify 9’s parent 8. Then the algorithm removes node 9 from the
set of unidentified nodes and the cycle repeats. The parent identification step that uses
(7.18) needs the knowledge of the underlying meshed network topology and its line
parameters (A8 9 ,G8 9 ).

7.3.3 Graphical-model method

7.4 Bibliographical notes

7.5 Problems

Chapter 7.1

Exercise 7.1 (State estimation). Derive the optimal state estimate �̂G in (7.7).

Exercise 7.2 (State estimation). Suppose G8 2 R, 8 = 1, . . . ,=, are = iid samples of a
scalar random variable G with mean ` and variance f2. Consider the sample mean and
sample variance:

Ḡ :=
1
=

=’
8=1

G8 , f̄
2 :=

1
=

=’
8=1

(G8 � Ḡ)2

Show that (treating G8 as iid random variables with the same distribution as G):

1 For each 8, ⇢ (ḠG8) = ⇢Ḡ2 = `2 +f2/=.
2 ⇢ (f̄2) = =�1

=
f

2, i.e., f̄2 is a biased estimator of f2 with mean smaller than f2.
3 An unbiased estimator is the scaled sample variance (i.e., ⇢ (f̂2) = f2):

f̂
2 :=

1
=�1

=’
8=1

(G8 � Ḡ)2
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Chapter 7.2

Exercise 7.3 (Induced matrix norm). For any =⇥ = matrix � show that the induced
norm

k�k2 := max
kG k2=1

k�Gk2 = fmax (�)

where fmax (�) is the largest singular value of �.

Exercise 7.4. [Local volt/var control] Let* 9 := {G 9 : G
9
 G 9  G 9 }, 9 = 1, . . . ,=, and

* :=*1⇥ · · ·⇥*=. Let 5 : R=! R=. Show that

G
⇤ 2 *, 5

T(G⇤) (G� G⇤) � 0 8G 2* (7.22)

if and only if

G
⇤
9
2 (G

9
,G 9 ) only if 5 9 (G⇤) = 0 (7.23a)

G
⇤
9
= G

9
if 5 9 (G⇤) > 0 (7.23b)

G
⇤
9
= G 9 if 5 9 (G⇤) < 0 (7.23c)

Exercise 7.5. [Local volt/var control] Let the control function in (7.12) be D 9 (E 9 ) =
�W 9 E 9 with W 9 > 0. Derive the condition for convergence and the resulting cost function
⇠ (@).

Exercise 7.6. [Local volt/var control] Suppose it is desirable to asymptotically stabilize
the voltages E to within a certain bounds [E,E] while maintaining the limits [@,@] on
the reactive power.

1 Show that there exists Ẽ such that no equilibrium point of (7.12) can lie in [E,E].
2 Fix Ẽ. For each bus 9 , find the maximum E

9
and minimum E 9 for which it is

possible to asymptotically stabilize E 9 to within [E
9
,E 9 ]. Note that it may not be

possible for E 9 to attain E
9

(or E 9 ) smultaneously for all 9 .

Exercise 7.7 (Voltage control with batteries). We are given a set of battery locations
on a distribution system and have to decide the optimal energy capacity for each battery
and its optimal charging/discharging rate during operation. This exercise formulates
the problem as a two-stage optimization with recourse.

Consider a feeder with # +1 buses indexed by 8with 8 = 0 denoting the substation bus
where voltage is fixed and real and reactive powers are variables. Candidate battery
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locations are a subset #1 of the buses. Consider a typical day divided into ) time
periods indexed by C. The parameters are:

• Eref
8

: the nominal voltages at buses 8;
• 28: the unit cost of battery capacities at buses 8; and
• (?8 (C;l),@8 (C;l)): the random real and reactive injections at non-substation buses

8 < 0 at each time C where the uncertainty is indexed by l defined over a suitable
probability space.

• D
8
 D8: the lower and upper bounds on battery charging rate D8 (C,l) at bus 8.

Our objective is to decide how much battery capacities to install at 8 2 #1 and how
to operate them so as to minimize a weighted sum of capital cost (due to 28) for
installation and voltage deviations from their nominal values during operation. The
design decisions are:

• ⌫8 � 0: battery capacity to be installed at bus 8 (battery will be installed at bus 8 if
⌫8 > 0).

• D8 (C;l): the charging (when D8 (C;l) � 0) or discharging (when D8 (C;l)  0) rate of
the battery at bus 8 at time C so that the net real injection at bus 8 is ?8 (C;l)�D8 (C;l)
at time C.

The battery capacities ⌫8 must be determined before the realization of l, but the
charging rates D8 (C;l) can be chosen in response after l is realized (and batteries
installed). Formulate this problem as a two-stage optimization where ⌫8 are the first-
stage decisions and D8 (C;l) are the second-stage decisions adapted to l. Incorporate
appropriate power flow models and voltage constraints from Chapters 4 or 5.

Chapter 7.3

Exercise 7.8 (Linearized polar form). Consider a radial network for which ⌧ is a
(connected) tree. Suppose assumptions C4.3 and C4.4 hold.

1 Show that linearization of the polar form of the power flow equation (7.15) around
(+flat, ?flat,@flat) is given by (7.16) where '̂ and -̂ are positive definite matrices.
Assume without loss of generality that ` = 1.

2 Show that if 6B
9:

= 0 for all ( 9 , :), the linearized model reduces to the DC power

flow model (4.55a) with |+ 9 | = ` for all 9 2 # .

Exercise 7.9 (Topology identification). Consider the network in Exercise 7.8. De-
note the variance of the voltage magnitude di�erence at buses 9 and : by E( 9 , :) :=
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⇢

�
( |+ 9 |� |+: |)�⇢ ( |+ 9 |� |+: |)

�2. Consider any non-reference bus 9 2 # . Show that
among buses : that are not descendants of 9 , 9’s parent uniquely minimizes E( 9 , :),
i.e., if 8 9 is the (unique) parent of 9 then

8 9 = argmin
:8T 9

E( 9 , :)





Part II

Power flow optimization





8 Smooth convex optimization

In this chapter we study the following questions:

1 How to specify an optimization problem (Ch 8.1 and 8.2)?
2 How to characterize its optimal solutions and determine if one exists (Ch 8.3 and

8.4)?
3 How to compute an optimal solution iteratively when one exists (Ch 8.5)?
4 How to ensure the correctness of the computation (Ch 8.6)?

Specifically we formulate convex optimization problems (Chapter 8.1) and introduce
some of the most useful tools for convex analysis (Chapter 8.2). We develop a general
theory to characterize optimal solutions and provide su�cient conditions for their
existence (Chapter 8.3). We then apply the general theory to special classes of convex
optimization problems widely used in applications (Chapter 8.4). We describe iterative
algorithms based on optimality conditions of Chapter 8.3 for solving these problems
(Chapter 8.5) and explain basic techniques for analyzing their convergence (Chapter
8.6).

Convexity is a simplifying structure that enables a rich theory on algorithm design
and analysis for convex optimization. Even though optimal power flow problems are
nonconvex, convex optimization theory is useful for two reasons. First, iterative algo-
rithms that have been designed and analyzed for convex problems are often used also
for solving nonconvex problems. Unlike for convex problems, there is typically no guar-
antee on optimality or convergence for nonconvex problems, but they often perform
well nonetheless. Second, an important method to deal with a nonconvex problem is
solving its convex relaxation where an approximate convex problem is solved instead.
We will study optimal power flow problems in Chapter 9 and their convex relaxations
in Chapters 10 and 11.
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8.1 Convex optimization

A convex program is defined by a convex set and a convex function. We start by defining
some basic concepts that are used both in this chapter on smooth convex optimization
and in Chapter 12.1 on nonsmooth convex optimization.

8.1.1 A�ne hull and relative interior

Consider a nonempty set - 2 R=. A point G 2 R= is called a closure point or a limit
point of - if there is a sequence {G: 2 -} ✓ - that converges to G. The closure of
- , denoted by cl(-), is the set of all closure points of - . We say that - is closed
if cl(-) = - , i.e., - contains all its limit points. The closure of - is the smallest
closed set that contains - . The set - is called open if its complement is closed, i.e.,
{G 2 R= : G 8 -} is closed. It is called bounded if there exists a finite 1 such that kGk  1
for all G 2 - .1 It is called compact if it is closed and bounded.

An alternative approach to defining open and closed sets is to define a topological
space by specifying all subsets of an ambient set . that are open in that topological
space. In this approach the empty set ; and the ambient set . are always defined to be
open sets in any topology. When the ambient set. := R= := (�1,1)=, R= is both open
and closed in the topological space regardless of topology. This is consistent with the
definition above in terms of limit points (under the usual topology induced by a norm)
because, e.g., the sequence G: := (: , . . . , :) does not converge as :!1 since it tends
to (1, . . . ,1) which is not a point in . := R=. If . := R= [ {�1,1}= is an extended
space under the usual topology induced by a norm, however, R= is open but not closed.

A point G is called an interior point of - if there exists an open neighborhood of G
that is contained in - , i.e., there is n > 0 such that ⌫n (G) := {H : kH�Gk < n} ✓ - . The
interior of - , denoted by int(-), is the set of all interior points of - . A point G 2 cl(-)
that is not an interior point of - is called a boundary point of - . A boundary point
may or may not be in - . The set of all boundary points is called the boundary of - .

A concept that is important in convex optimization theory is relative interior of a set
- , which we now define. A set . is called an a�ne set if . contains all the lines that
pass through pairs of distinct points G, H 2 . . The a�ne hull of - , denoted by a�(-), is
the intersection of all a�ne sets containing - . The a�ne hull a�(-) is itself an a�ne
set. A point G 2 - ✓ R= is called a relative interior point of - if there exists an open
neighborhood ⌫n (G) ✓ R= such that ⌫n (G)\ a�(-) ✓ - , i.e., G is an interior point of
- relative to a�(-). The set of all relative interior points of - is called the relative
interior of - , denoted by ri(-). The set - is called relatively open if ri(-) = - . A

1 The norm k · k defines the usual topology. Since all norms are equivalent on a finite dimensional space,
these concepts remain the same regardless of topology.
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point G 2 cl(-) that is not a relative interior point is called a relative boundary point
of - . The set of all relative boundary points of - is called the relative boundary of - .

Example 8.1 (ri(-)). Consider the set - := {G 2 R3 : G1 = G2, G1 2 (0,1),G2 2 (0,1)}. It
is not an a�ne set since G1,G2 are bounded. Its a�ne hull is a�(-) = {G 2 R3 : G1 = G2}.
The set - is not open in R3 as it has no interior point relative to R3. It is relatively open
because every point G 2 - is an interior point relative to a�(-) and hence ri(-) = - .
The closure of - is cl(-) = {G 2 R3 : G1 = G2, G1 2 [0,1],G2 2 [0,1]}. ⇤

8.1.2 Convex set

A set is called convex if, given any two points in the set, every point in between lies in
the set.

Definition 8.1 (Convex set). A set ⇡ ✓ R= is convex if, given any G, H 2 ⇡,

UG + (1�U)H 2 ⇡, 8U 2 [0,1]

⇤

For instance, if ⇡ is an open set, then for any G0 2 ⇡ there exists A > 0 such that the
A-ball around G0,

⌫A (G0) := { G 2 ⇡ | kG� G0k2  A }

is contained in ⇡, where kGk2 :=
q
G

2
1 + G2

2 + · · · + G2
=

is the Euclidean norm. Moreover
⌫A (G0) is convex for any A > 0, G0 2 ⇡. The definition is illustrated in Figure 8.1.

y

x

(a) Convex set.

y

x

(b) Nonconvex set.

Figure 8.1 Definition of a convex set: every point in between two points in the set lies in the set.

Definition 8.2 (Convex hull). Let - ✓ R= be a nonempty set. The convex hull of - ,
denoted conv(-), is the intersection of all convex sets containing - . ⇤

The convex hull conv(-) of any set - ✓ R= is contained in its a�ne hull a�(-).
When - is a convex set, the dimension of - is defined to be the dimension of a�(-).
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Three types of convex sets are the most useful in engineering applications (the proof
that these sets are convex is left as an exercise):

1 Polyhedral set � ✓ R=. A polyhedral set is specified by a�ne equalities or in-
equalities. A hyperplane is a set �1 := {G 2 R= : 2T

G = 1} specified by an a�ne
equality with 2 2 R= and 1 2 R. A polyhedral set, or a polyhedron, is a set
�2 := {G 2 R= : �G  1} specified by a finite number of a�ne inequalities. We
may call the intersection �1 := {G 2 R= : �G = 1} of hyperplanes with � 2 R<⇥=
and 1 2 R< a hyperplane or a polyhedron.

2 Second-order cone (SOC)  soc ✓ R=. A second-order cone (SOC) is defined as:

 soc := {G 2 R= | kG=�1k2  G=}, = � 2 (8.1)

where G =: (G=�1,G=), i.e., G=�1 denotes the subvector of G consisting of its first
=�1 entries. A ball ⌫G= (0) := {G=�1 : kG=�1k2  G=} in R=�1 centered at the origin
for a fixed radius G= is a cross section of the second-order cone. SOC  soc is a
special type of convex set called a convex cone. We will study in more detail cones,
convex cones, and second-order cones in Chapter 8.2.1.

3 Semidefinite cones  psd, nsd ⇢ S=. A real matrix - 2 R=⇥= is symmetric if - = -T,
i.e., -8 9 = - 98 for all 8, 9 = 1, . . . ,=. Let S= ⇢ R=⇥= denote the set of all real
symmetric matrices. It is a vector space (or linear space) over the field R (see
Appendix A.1.1 for definitions of vector space and subspace). A real matrix - is
positive semidefinite (psd) if - is symmetric and GT

-G =
Õ
8, 9 -8 9G8G 9 � 0 for all

G 2 R=. Given a symmetric matrix - 2 R=⇥= the following are equivalent:
1 - is positive semidefinite.
2 All eigenvalues of - are nonnegative.
3 - = ⌫⌫T for some matrix ⌫ 2 R=⇥< and some natural number <.

A real matrix - is negative semidefinite (nsd) if �- is psd. We denote the set of
all positive semidefinite matrices by  psd and the set of all negative semidefinite
matrices by  nsd. We write - 2  psd or - ⌫ 0 to denote that - is positive semidef-
inite. Similarly - 2  nsd or - � 0 denotes that - is negative semidefinite. These
sets are special convex sets called semidefinite cones in the vector space S= ⇢ R=⇥=
over the field R. In Chapter 8.2.2 we extend these notions to the complex domain
and treat the set S= ⇢ C=⇥= of complex Hermitian matrices as a vector space over
the field R (not C), define the inner product in S=, and the semidefinite cones of
complex matrices in the vector space S=.

Given these three basic convex sets we can create other convex sets through simple
convexity-preserving operations. LetX andY be linear subspaces. For exampleX :=R=

and Y := R<.

1 Linear transformation: Let 5 : X! Y be linear.
1 If � ✓ X is convex then 5 (�) := { 5 (G) : G 2 �} ✓ Y is convex.
2 If ⌫ ✓ Y is convex then 5

�1 (⌫) = {G : 5 (G) 2 ⌫} ✓ X is convex.
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2 Arbitrary direct product: Let � ✓ X, ⌫ ✓ Y be convex. Then �⇥⌫ := {(G, H) : G 2
�, H 2 ⌫} is convex. In fact the direct product of an arbitrary collection of (e.g.,
uncountably many) convex sets is convex.

3 Finite sum: Let �,⌫ ✓ X be convex. Then �+⌫ := {0+1 : 0 2 �,1 2 ⌫} is convex.
Therefore the sum of any finite number of convex sets is convex.

4 Arbitrary intersection: Let �,⌫ ✓ X be convex. Then the intersection �\ ⌫ is
convex, even if the intersection is empty. In fact the intersection of an arbitrary
collection of (e.g., uncountably many) convex sets is convex.

The proof that these set operations preserve convexity is left as an exercise. If �,⌫
are convex, then �\ ⌫ is convex, but the converse may not hold; e.g., � := {G : G �
0}[ {G : G  0} ✓ R= and ⌫ := {G : G � 0} ✓ R=. In contrast to intersection the union
of two convex sets can be nonconvex.

Example 8.2. Consider the ellipsoid

⇢ := {G 2 R= | GT
�G  2}

where � 2 R=⇥= is a psd matrix. It is easy to show that ⇢ is convex by verifying
Definition 8.1. In this example we show that ⇢ is convex by deriving it from the
application of convexity-preserving operations on a convex set. Since � is psd it can
be expressed as � := ⌫⌫T for some ⌫ 2 R=⇥<. Hence GT

�G = GT
⌫⌫

T
G = k⌫T

Gk22.

Let H = ⌫T
G. Then the set ⇠ := {(H, C) 2 R<+1 | kHk2  C} is a (convex) SOC. Hence

the set ⇡ := {H 2 R< | kHk2  2} is convex since it is the intersection of two convex
sets:

⇡ = ⇠ \ (R<⇥ {C = 2})

Then ⇢ = 5
�1 (⇡) where 5 (G) := ⌫T

G is a linear function from R= to R<. Hence ⇢ is
convex as desired. Note that if 2 < 0 then ⇢ = ; which is convex. ⇤

8.1.3 Derivative, directional derivative and partial derivative

In this subsection we review di�erent notions of derivatives of real-valued functions 5
on R= (see Chapter A.9 for more details).

Consider a real-valued function 5 : - ! R where - ✓ R= is an open set. At each
G 2 - and for each E 2 R= the one-sided directional derivative of 5 at G in the direction
E is defined as

35 (G;E) := lim
C 2R+
C#0

5 (G + CE)� 5 (G)
C

provided the limit exists, possibly ±1. Since - is open and 5 is real-valued, 35 (G;E)
if exists is always real valued for any E 2 R=. The function 5 is said to be di�erentiable
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at G 2 - if the directional derivative 35 (G;E) exists at G for all directions E 2 R= and is
a linear function of E, i.e., if there exists a vector <G 2 R= such that, for all E 2 R=,

35 (G;E) := lim
C 2R+
C#0

5 (G + CE)� 5 (G)
C

= <
T
G
E

In this case the column vector <G 2 R= is called the gradient or derivative of 5 at
G 2 - and denoted by r 5 (G). If 5 is di�erentiable at every G 2 - then 5 is called
di�erentiable on - .

At each G 2 - and for the unit vector 4 9 2 {0,1}= that has a single 1 in its 9 th
position, if the directional derivatives 35 (G;4 9 ) and 35 (G;�4 9 ) exist in both directions
and are equal, then they are called the partial derivative of 5 at G 2 - with respect to
G 9 and denoted by m 5

mG 9

(G):

m 5

mG 9

(G) := lim
C 2R
C!0

5 (G + C4 9 )� 5 (G)
C

In this case 5 is called partially di�erentiable at G 2 - with respect to G 9 . The row
vector of partial derivatives of 5 at G 2 - is

m 5

mG

(G) :=
h
m 5

mG1
(G) · · · m 5

mG=

(G)
i

If 5 is partially di�erentiable at all G 2 - then it is called partially di�erentiable
on - . The partial derivative m 5

mG
(G) describes the behavior of 5 at G only along the

coordinate axes whereas the derivative r 5 (G) describes its behavior in all directions. If
5 is di�erentiable then it is partially di�erentiable, but the converse does not generally
hold. If 5 is not only partially di�erentiable but m 5

mG
(G) is also continuous at G, then

the converse holds at G 2 - . Such an 5 is called continuously di�erentiable at G. If 5
is continuously di�erentiable at all G 2 - then it is continuously di�erentiable on - .

Lemma 8.1 (Di�erentiability and partial di�erentiability). Consider a real-valued
function 5 : -! R where - ✓ R= is an open set.

1 If 5 is di�erentiable at G 2 - then it is partially di�erentiable at G. Moreover its
gradient r 5 (G) is given by

r 5 (G) =

m 5

mG

(G)
�T

2 If 5 is continuously di�erentiable at G 2 - then it is di�erentiable at G.

The following example shows that a partially di�erentiable function may not be
di�erentiable when the partial derivative m 5

mG
(G) is discontinuous at G. Indeed a par-

tially di�erentiable function may not even be continuous at all G 2 - . A continuously
di�erentiable function is always continuous.
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Example 8.3. 1 Consider 5 : R2! R defined by:

5 (G, H) :=
⇢

0 if GH = 0
1 if G < 0, H < 0

Its partial derivative on the axes exists only at the origin where m 5

m(G,H) (0,0) = [0 0].
The function 5 is however not di�erentiable at (0,0) as it is discontinuous at every
point on the axes. Clearly m 5

m(G,H) is discontinuous at the origin.

2 Consider 5 : R2! R defined by:

5 (G, H) :=

(
G
0
H
0

G
20+H20 if (G, H) < (0,0)

0 if (G, H) = (0,0)

It is discontinuous at the origin along the line G = H (Exercise 8.3). Therefore the
directional derivative of 5 along G = H does not exist. ⇤

Hence 5 is di�erentiable at G 2 - if and only if 35 (G;E) = ETr 5 (G) = m 5

mG
(G) E for

all E 2 R=. For convex but non-di�erentiable functions, derivatives are generalized in
Chapter 12.3.2 to subdi�erentials.

For a vector-valued function 5 : R=! R< that maps an G 2 R= to a vector 5 (G) 2
R
<, the Jacobian � (G) :=

h
m 5

mG
(G)

i
of 5 at G is the < ⇥ = matrix whose 8 9 th entry

�8 9 (G) := m 58

mG 9

(G) is the partial derivative of 58 with respect to G 9 evaluated at G. The

gradient or derivative of 5 at G is r 5 (G) := �T (G).

8.1.4 Convex function

Definition 8.3 (Convex function). A function 5 : - ! R defined over a convex set
- ✓ R= is convex if, for all G, H 2 - and all U 2 [0,1],

5 (UG + (1�U)H)  U 5 (G) + (1�U) 5 (H)

It is strictly convex if the inequality is strict for G < H and U 2 (0,1). A vector-valued
function 5 : - ! R< is convex or strictly convex if every component 58 : - ! R is
convex or strictly convex respectively. A function 5 is concave (strictly concave) if � 5
is convex (strictly convex). ⇤

The definition says that, for a scalar-valued function 5 , the straight line connecting
5 (G) and 5 (H) lies above 5 between G and H, or equivalent, the linear approximation
of 5 is always an underestimate, as illustrated in Figure 8.2(a).

Example 8.4. If 5 (G) = G2 then for any G, H and U 2 [0,1]

U 5 (G) + (1�U) 5 (H)� 5 (UG + (1�U)H) = U(1�U) (G� H)2
> 0

for G < H and U 2 (0,1). Hence 5 is strictly convex. ⇤
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x y

f (x)

x

α f (x)+(1−α) f (y)

(a) Convex function.

x y

f (x)

x

∆

f (x)T(y− x)
f (y)− f (x)

(b) Convex function.

f (x)

x

(c) Nonconvex func-
tion.

Figure 8.2 Convex function: The straight line connection 5 (G) and 5 (H) lies above 5 . The
linear approximation of a di�erentiable convex function 5 lies below 5 .

Checking if a function is convex by verifying the convexity definition is often
di�cult. The following theorem provides three di�erent ways to check the convexity
of a function. Consider 5 : - ! R over a convex domain - ✓ R=. Let r 5 (G) denote
the column vector of partial derivatives of 5 (whereas m 5

mG
denotes the row vector of

partial derivatives). Let

r2
5 (G) :=

m
2
5

mG
2

:=
h
m

2
5

mG8 mG 9

i

denote the =⇥= symmetric Hessian matrix.

Theorem 8.2 (Convex function). Consider a function 5 defined on a convex open set
- ✓ R=. The function 5 is convex if and only if any one of the following holds:

1 For G 2 - and all E 2 R= the function

6(C) := 5 (G + CE) (8.2)

is convex on {C 2 R | G + CE 2 -}.
2 For a di�erentiable function 5 ,

5 (H)� 5 (G) � r 5 (G)T (H� G), 8G, H 2 - (8.3)

3 For a twice di�erentiable function 5 ,

r2
5 (G) ⌫ 0, 8G 2 -

i.e., the Hessian matrix is positive semidefinite (all eigenvalues are nonnegative).

The condition in Theorem 8.2.1 does not require di�erentiability of 5 and says that,
if we take any cross section of the surface 5 defined by (G,E), i.e., from G in the direction
of E or �E, the corresponding scalar function 6(C) is convex. The first-order condition
in Theorem 8.2.2 says that the function 5 always lies above its linear approximation,
i.e., 5 (H) is always greater than or equal to the tangent plane to 5 at any point G. This
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is illustrated in Figure 8.2(b). The second-order condition in Theorem 8.2.3 roughly
says that the gradient at any point G is increasing around G.

Proof of Theorem 8.2 1 Suppose 5 is convex. Fix any G 2 - and any E 2 R=. We
will show that 6(C) := 5 (G + CE) is convex in C, i.e., for B < D such that G + BE and
G +DE are both in - , we have, for any C := UB+ (1�U)D with U 2 [0,1],

6(C)  U6(B) + (1�U)6(D)

From Figure 8.3 we have

x

x+uv
x+sv

s ≤ t ≤ u

x+ tv

Figure 8.3 Proof of Theorem 8.2.1.

G + CE = U(G + BE) + (1�U) (G +DE)

Hence, since 5 is convex,

6(C) = 5 (G + CE) = 5 (U(G + BE) + (1�U) (G +DE))  U6(B) + (1�U)6(D)

i.e., 6 is convex. Conversely suppose 6 is convex but 5 is not, i.e., there exists two
points G, H 2 - and a point I := (1�U)G +UH, U 2 [0,1], in between such that

5 (I) > (1�U) 5 (G) +U 5 (H)

Define 6(C) := G + CE where E := H� G. Then I = G +UE and, since 6 is convex,

5 (I) = 6(U)  (1�U)6(0) +U6(1) = (1�U) 5 (G) +U 5 (H)

contradicting that 5 is not convex.
2 We first prove the result for a scalar di�erentiable function 6 : R! R. Then we

use the result to prove the theorem for a di�erentiable function 5 : - ! R where
- ✓ R= with = � 1.

Consider first 6 : R! R. We prove that the following are equivalent:
(a) 6 is convex.
(b) 6(C)�6(B) � 60(B) (C � B) for any B < C 2 R.
(c) 60(C) � 60(B) for any C � B in R, i.e. 6 has nondecreasing slope.
Suppose (a): 6 is convex. Fix any B, C 2 - . For any U 2 [0,1] we have 6(B +U(C �
B))  (1�U)6(B) +U6(C) and hence

6(C)�6(B) � 6(B+U(C � B))�6(B)
U

Taking limit

lim
U#0

6(B+U(C � B))�6(B)
U(C � B) (C � B) = 60(B) (C � B)
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we have (b). Conversely suppose (b) and we want to prove (a), i.e.

U6(C) + (1�U)6(B) � 6(I) � 0 (8.4)

for any I := B+U(C � B), U 2 [0,1]. Compare the di�erence 6(C)�6(I) and 6(B)�
6(I) in terms of gradient at the common point I:

6(C)�6(I) � 6
0(I) (C � I) and 6(B)�6(I) � 6

0(I) (B� I)

To obtain (8.4), multiply the first inequality by U and the second inequality by
1�U and sum, noting that C � I = (1�U) (C � B) and B� I = �U(C � B) so that the
right-hand sides of these two inequalities sum to zero. This proves (a), (b).

Now suppose (b). Fix any C � B and compare 6(C) �6(B) in terms of slope at B
and at C:

6
0(B) (C � B)  6(C)�6(B)  60(C) (C � B)

yielding (c). Conversely suppose (c) and fix any C � B. By the mean value theorem
we have, for some I 2 [B, C], 6(C) � 6(B) = 6

0(I) (C � B) � 6
0(B) (C � B), which is

(b). This proves (b), (c).
Now consider 5 : -! R where - ✓ R= with = � 1. We use the result above on

scalar functions to prove the theorem. Suppose 5 is convex and fix any G, H 2 - .
Define the scalar function 6 : R! R by

6(B) := 5 (G + BH), for B 2 R such that G + BH 2 - (8.5)

It is easy to show that 6(B) is convex. By the mean value theorem there exists an
B 2 [0,1] such that

5 (G + H)� 5 (G) = 6(1)�6(0) = 6
0(B)

By (c) above we have 60(B) � 60(0) = (r 5 (G))T
H and hence

5 (G + H)� 5 (G) � (r 5 (G))T
H

establishing (8.3). Moreover if 5 is strictly convex then the inequalities above are
strict.

Conversely suppose (8.3) holds. To prove the convexity of 5 , use the same proof
above for (b)) (a). Take I := G +U(H� G) for any U 2 [0,1]. We have

5 (H)� 5 (I) � (r 5 (I))T (H� I) and 5 (G)� 5 (I) � (r 5 (I))T (G� I)

Multiply the first inequality by U and the second inequality by 1�U and sum to
obtain:

U 5 (H) + (1�U) 5 (G) � 5 (I) � (r 5 (I))T (U(H� I)� (1�U) (I� G)) = 0

proving the convexity of 5 . Moreover if the inequalities above are strict then 5 is
strictly convex.
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3 To prove the second-order condition, fix any G, H 2 - , and define the scalar function
6(B) := 5 (G + B(H� G)). Applying the second-order Taylor expansion to 6:

5 (H)� 5 (G) = 6(1)�6(0) = 6
0(0) + 1

2
6
00(B)

= (r 5 (G))T (H� G) + 1
2
(H� G)Tr2

5 (G + B(H� G)) (H� G)

for some B 2 [0,1]. Ifr2
5 (I) ⌫ 0 for all I 2 - , then 5 (H)� 5 (G) � (r 5 (G))T (H�G)

which is equivalent to the convexity of 5 from part 2.
Conversely, suppose 5 is convex but r2

5 (G) � 0 for some G 2 - . Then there
exists a vector E 2 R= such that ETr2

5 (G)E < 0. Since 5 is convex, part 1 shows
that the scalar function 6(C) := 5 (G + CE) is convex in C. Then the proof of part
2(c) shows that, when 6 is twice di�erentiable, 600(C) � 0 for all C 2 R such that
G+ CE 2 - . But 600(C) = ETr2

5 (G+ CE)E and hence ETr2
5 (G)E < 0 means 600(0) < 0,

contradicting that 6 is convex.

⇤

Theorem 8.2 provides an exact characterization for convexity. For strict convexity,
the second-order characterization is su�cient but not necessary: e.g., 5 (G) = G4 is
strictly convex but 5 00(G) = 0 at G = 0. The following result can be proved following
the argument for Theorem 8.2 (Exercise 8.7).

Corollary 8.3 (Strictly convex function). Consider a function 5 defined on a convex
open set - ✓ R=.

1 The function 5 is strictly convex if and only if the function 6(C) in (8.2) is strictly
convex on {C 2 R | G + CE 2 -}.

2 For a di�erentiable function 5 , 5 is strictly convex if and only if strict inequality
holds in (8.3) for G < H.

3 For a twice di�erentiable function 5 , 5 is strictly convex if r2
5 (G) � 0 for all

G 2 - .

A common mistake is to confuse the second-order condition in Theorem 8.2.3 that
r2
5 (G) is positive semidefinite with the condition that

G
Tr2

5 (G)G � 0 for all G 2 -

For any G 2 - , r2
5 (G) ⌫ 0 if and only if

H
Tr2

5 (G)H � 0 for all H 2 R=

i.e., regardless of what - is, the test on r2
5 (G) is for all H 2 R=. This is illustrated in

the next example.

Example 8.5. Consider the function

5 (G1,G2) = G1G2
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over the domain - :=
�
(G1,G2) 2 R2 : G1 > 0,G2 > 0

 
with

r2
5 (G) =


0 1
1 0

�

We have GTr2
5 (G)G = 2G1G2 > 0 for all G 2 - , but r2

5 (G) is not positive semidefinite.
Indeed its eigenvalues are 1 and �1 and hence 5 is convex along the eigenvector
corresponding to eigenvalue 1, but concave along that corresponding to eigenvalue
�1. Specifically the function value along the direction G1 = G2 corresponding to the
eigenvalue-eigenvector pair

�
1, [1 1]T� is given by

6(C) := 5

✓ 
G1

G2

�
+ C ·


1
1

� ◆
= (G1 + C) (G2 + C), C > �min{G1,G2}

Hence 6(C) is convex in C, i.e. 5 is convex along G1 = G2. Along the direction G1 = �G2

corresponding to the eigenvalue-eigenvector pair
�
�1, [1 �1]T� the function value is

6(C) := 5

✓ 
G1

G2

�
+ C ·


1
�1

� ◆
= (G1 + C) (G2� C), �G1  C  G2

Therefore 6(C) is concave in C, i.e., 5 is concave along G1 = �G2. ⇤

Example 8.6. We illustrate Theorem 8.2 using 5 (G) = logG for G > 0.

1 We have 5 0(G) = G�1 and for G < H > 0 (such that H
G
< 1)

5 (H)� 5 (G) = log
H

G

<

H

G

�1 =
1
G

(H� G) = 5
0(G) (H� G)

where the inequality follows from log I < I � 1 for I > 0 and I < 1. Hence 5 is
strictly concave by Theorem 8.2.2.

2 To use Theorem 8.2.3 we have

5
00(G) = � 1

G
2

< 0

implying strict concavity of 5 .

⇤

The addition, multiplication by a positive constant, and supremum operations pre-
serve convexity. Specifically suppose 51 and 52 are two convex functions on the same
domain. Then (Exercise 8.8):

1. 5 := U 51 + V 52, U, V � 0, is convex.
2. 5 :=max{ 51, 52} is convex. In fact 5 (G) := sup

H2. 5 (G; H) is convex in G for arbitrary
set . , provided that, for every H 2 . fixed, 5 (G; H) is convex in G.

3. 5 (G, H) := |G | + |H | defined on R2 is convex as it can be expressed in terms of the
supremum and addition operations ( 5 (G, H) = max{G,�G} +max{H,�H}).
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4. 5 (6(G)) is convex if 6 : R=! R< is convex (componentwise) and 5 : R<! R is
convex and nondecreasing (componentwise), i.e., 5 (H1)  5 (H2) for H1, H2 2 R<
with H1  H2.

Convex functions define another important class of convex sets. Let 5 : - ! R
where - ✓ R=. If - is a convex set and 5 a convex function then for each 0 2 R the
level set -0 := {G 2 - | 5 (G)  0} is convex. For a vector-valued function 5 : -! R<
where 5 := ( 51, . . . , 5<) with 58 : -! R. Then the set specified by:

-1 := {G 2 - | 5 (G)  1}, 1 2 R<

is convex if 5 is convex, i.e, if each 58 is convex. This is because the level sets
-18

:= {G 2 - | 58 (G)  18} are convex for all 8 = 1, . . . ,<, and hence their intersection
-1 = \<

8=1-18 is convex. Note that the converse may not hold, i.e., a level set that is
convex may be specified by nonconvex functions. For example the second-order cone
 soc may be specified as  soc = {G 2 R= : 5 (G)  0,G= � 0} where 5 (G) := kG=�1k22�G2

=

is nonconvex (see the discussion after (8.16)).

An important property of a real-valued convex function is that it is continuous on
the interior of its domain, as the following lemma from [54, Proposition 1.3.11] shows.
See Lemma 12.15 for generalization to proper extended real-valued convex functions.
Lemma 12.15 also implies that a real-valued convex function over a compact set - is
Lipschitz continuous on - .

Lemma 8.4 (Continuity of convex functions). Let 5 : - ! R where - ✓ R=. If 5 is
convex on - then it is continuous on int(-).

Proof Fix any point H̃ 2 int(-) and consider any sequence {H: } such that H: < H̃ and
lim: H: = H̃. We will show that

limsup
:

5 (H: )  5 ( H̃)  liminf
:

5 (H: ) (8.6)

implying lim: 5 (H: ) = 5 ( H̃). Since H̃ 2 int(-) there exists X > 0 such that the compact
set ⌫X ( H̃) := {G : kG� H̃k1  X} ✓ - . We will consider su�ciently large integers : such
that H: 2 ⌫X ( H̃) for all (such) : .

Since any G 2 ⌫X ( H̃) is within distance 1 from H̃ along each coordinate, we can
write G in terms of a convex combination of the unit bases 4 9 , i.e., G = H̃ +Õ

=

9=1U 94 9

for some U 9 � 0 with
Õ
9
U 9 = 1. Then

5 (G) = 5

 ’
9

U 9 ( H̃ + 4 9 )
!


’
8

U8 5 ( H̃ + 4 9 ) =: � (8.7)

We now establish the first inequality in (8.6). For each : , since H: 2 ⌫X ( H̃), we can
find a I: 2 ⌫X ( H̃) that is X distance from H̃ such that H: is a convex combination of H̃
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and I: (see Figure 8.4):

H: = H̃ + k�H: k
X

(I: � H̃)

The convexity of 5 then implies

ỹ yk

||∆yk ||

xk zk

δ δ

Figure 8.4 Proof of Lemma 8.4: Construction of (G
:
, I
:
) from H̃ and H

:
.

5 (H: ) 
✓
1� k�H: k

X

◆
5 ( H̃) + k�H: k

X

5 (I: ) 
✓
1� k�H: k

X

◆
5 ( H̃) + k�H: k

X

�

where the last inequality follows from (8.7). Taking limsup
:

therefore yields the first
inequality in (8.6) since �H: ! 0.

The second inequality in (8.6) follows a similar argument. For each : , let G: 2 ⌫X ( H̃)
be the vector that is X distance from H̃ such that H̃ is a convex combination of G: and
H: (see Figure 8.4):

H̃ = G: +
X

X+ k�H: k
(H: � G: )

Hence

5 ( H̃)  k�H: k
X+ k�H: k

5 (G: ) +
X

X+ k�H: k
5 (H: ) 

k�H: k
X+ k�H: k

�+ X

X+ k�H: k
5 (H: )

Taking liminf: therefore yields the second inequality in (8.6) since �H: ! 0. ⇤

Strong convexity.

A function 5 is strictly convex if r2
5 (G) � 0 for all G 2 - (Corollary 8.3). Its curvature

however may be arbitrarily flat, i.e., HTr2
5 (G)H > 0 can be arbitrarily close to zero. A

stronger form of convexity bounds this away from zero uniformly in G, i.e., for some
U > 0, r2

5 (G) ⌫ U� for all G 2 R=.

Definition 8.4 (Strong convexity). Let 5 : R=! R be continuously di�erentiable on
R
=. It is called strongly convex with parameter U on a set - ✓ R= if there exists U > 0

such that

(r 5 (H)�r 5 (G) )T (H� G) � U kH� Gk22 8G, H 2 - ✓ R= (8.8)

Definition 8.4 implies that kr 5 (H) �r 5 (G)k2 � U kH� Gk2 for all G, H 2 - . Strong
convexity is stronger than strict convexity.
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Lemma 8.5 (Strong convexity). Let 5 : R= ! R= be continuously di�erentiable on
R
=. If 5 is strongly convex on - ✓ R= then it is strictly convex on - .

Proof As in the proof of Lemma 8.32, fix any G, H 2 - and consider the (scalar)
function along the path from G to H in a straight line:

6(B) := 5 (G + BH) for B 2 [0,1]

with 60(B) = HTr5 (G + BH) as the directional derivative of 5 at G + BH in the direction
H. Then

5 (G + H)� 5 (G) =
π 1

0
6
0(B)3B =

π 1

0
H

Tr5 (G + BH)3B

=
π 1

0

⇣
H

Tr5 (G) + H
T (r5 (G + BH)�r5 (G))

⌘
3B

� HTr5 (G) +
π 1

0

1
B

U kBHk22 3B

= HTr5 (G) + U

2
kHk22 (8.9)

where the inequality follows from (8.8). Corollary 8.3 then implies the strict convexity
of 5 . ⇤

Definition 8.4 does not require 5 to be twice continuously di�erentiable. For a twice
continuously di�erentiable function 5 , if it is strongly convex and 5 is finite on - , then
the Hessian r2

5 (G) is both lower and upper bounded uniformly on - , as explained in
the next result.

Theorem 8.6 (Strong convexity). Let 5 :R=!R= be twice continuously di�erentiable
on R=.

1 (8.8) is equivalent to r2
5 (G) ⌫ UI for all G 2 - where I is the identity matrix of

size =.
2 Suppose 5 is strongly convex and sup

G2- 5 (G) <1. Then
• r2

5 (G) � VI for all G 2 - where V is a finite upper bound on the maximum
eigenvalue _max (G) on - .

• The gradient r 5 is Lipschitz continuous with Lipschitz constant V:

kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 - (8.10)

Proof For part 1, suppose r2
5 (G) ⌫ UI for all G 2 - . We will show that 5 is strongly

convex, i.e., 5 satisfies (8.8). Fix any G, H 2 - and let

⌘(B) := r5 (G + B(H� G))T (H� G)

Then

⌘
0(B) = (H� G)Tr2

5 (G + B(H� G)) (H� G)
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and

(r5 (H)�r 5 (G))T (H� G) = ⌘(1)� ⌘(0) =
π 1

0
⌘
0(B)3B

=
π 1

0
(H� G)Tr2

5 (G + B(H� G)) (H� G) 3B � U kH� Gk22

where the inequality follows from r2
5 (G) ⌫ UI. Hence 5 (G) is strongly convex. Con-

versely suppose 5 is strongly convex. To estimate r2
5 (G) we have for any G 2 - ,

H 2 R=,

H
Tr2

5 (G) H = lim
_!0

1
_

✓
m 5

mG

(G +_H)� m 5
mG

(G)
◆
H � lim

_!0

1
_

2

⇣
U k_Hk22

⌘
= U kHk22

where the inequality follows from the strong convexity of 5 . Hence r2
5 (G) ⌫ U� as

desired. This shows the equivalence of (8.8) and r2
5 (G) ⌫ UI for all G 2 - .

For Part 2 we will show that if 5 is strongly convex, i.e., r2
5 (G) ⌫ U� on - , then

it is also upper bounded, i.e., r2
5 (G) � VI for a finite V, provided sup

G2- 5 (G) < 1.
Since r2

5 (G) is symmetric and positive definite, its eigenvalues are positive for all
G 2 - and

H
Tr2

5 (G)H  max
H
0 2R=

(H0)Tr2
5 (G)H0

kH0k22
kHk22 = _max (G)kHk22, G 2 - , H 2 R=

where _max (G) > 0 is a largest eigenvalue of r2
5 (G) and the last equality follows

from the variational inequalities for eigenvalues of symmetric matrices (see (A.15) in
Chapter A.6.2). This is equivalent to

r2
5 (G)  _max (G)I, G 2 -

It thus su�ces to show that _max (G) is finite over - .

For all G, H 2 - , we have

5 (H) = 5 (G) + m 5
mG

(G) (H� G) + 1
2
(H� G)Tr2

5 (I) (H� G)

� 5 (G) + m 5
mG

(G) (H� G) + U
2
kH� Gk22 (8.11)

for some I between G and H. (That (8.9) and (8.11) are the same is why (8.8) is
equivalent to r2

5 (G) ⌫ U�.) If 5 max := sup
G2- 5 (G) < 1, then fix an G 2 - and we

have, for all H 2 - ,

5
max � 5 (H) � 5 (G) + m 5

mG

(G) (H� G) + U
2
kH� Gk22

This implies that H 2 - must be bounded. Since this holds for all H 2 - , - must
be a bounded set and therefore its closure cl(-) is a compact set. Eigenvalues are
continuous functions of their matrix entries and 5 is twice continuously di�erentiable,
and hence V := max

G2cl(- ) _max (G) is finite (Theorem 8.16).
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Finally for (8.10), we have (Lemma A.34 in Chapter A.10)

kr 5 (H)�r 5 (G)k 
��r2

5 (I)
�� kH� Gk,8G, H

for any vector norm and any induced matrix norm, and for some I between G and H.
For the spectral norm (induced by the ;2 vector norm; see Theorem A.25 of Chapter
A.8.3), r2

5 (G)  VI implies that kr2
5 (G)k2  V because

kr2
5 (G)k2 = max

kH k2=1
kr2

5 (G)Hk2 = max
kH k2=1

q
H

T �
kr2

5 (G)
�2
H = _max (G)  V

This proves (8.10) and completes the proof of Theorem 8.6. ⇤

Theorem 8.6 is critical in the convergence analysis of gradient algorithms. We
explain its implications in the next remark.

Remark 8.1 (Strong convexity and convergence analysis). 1 The condition 5 max :=
sup

G2- 5 (G) < 1 is not restrictive even if 5 (G)!1 as G recedes in - along a
certain direction (e.g., 5 (G) = G2). For instance if a feasible point G0 2 - is known
then the feasible set - can be replaced by - 0 := {G 2 - : 5 (G)  5 (G0)} without
a�ecting minimization, and 5

max in the proof can be replaced by 5 (G0).
2 Strong convexity in terms of the gradient r 5 (G) in Definition 8.4 is equivalent to
r2
5 (G) � UI for all G 2 - . The variational inequality for eigenvalues of symmetric

matrices says that min
G:kG k2=1 G

Tr2
5 (G)G = _min (G) > 0, a minimum eigenvalue

of r2
5 (G) (see (A.15) in Chapter A.6.2). Hence the strong convexity parameter U

can be any finite lower bound, e.g., U := min
G2cl(- ) _min (G) > 0.

3 Suppose 5 max := sup
G2- 5 (G) <1. Then Theorem 8.6 implies

UI � r2
5 (G) � VI, G 2 - ⇢ R= (8.12a)

where U > 0, V <1 are lower and upper bounds on the minimum and maximum
eigenvalues of r2

5 (G) on - respectively. This implies the following bounds on
the gradient r 5 (G)

UkH� Gk2  kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 - (8.12b)

4 As explained in Theorem 8.36 of Chapter 8.6.3 on the convergence of the steepest
descent algorithm, the upper bound in (8.12b) guarantees strict descent while
the lower bound in Definition 8.4 guarantees geometric convergence. Hence the
steepest descent algorithm converges to a unique optimal point geometrically
(exponentially fast).

8.1.5 Convex program

Consider an optimization problem of the form:

min
G2R=

5 (G) subject to G 2 - (8.13)
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- ✓ R= is called the feasible set and 5 : R=! R the objective function. An G 2 - is
called a feasible solution of (8.13). A feasible solution G⇤ that attains the minimum of
5 over - (i.e., 5 (G⇤)  5 (G) for all G 2 -) is called a (global) optimal solution/optimum
or a (global) minimizer. A feasible solution G⇤ that attains the minimum of 5 over a
neighborhood of G⇤ (i.e., 5 (G⇤)  5 (G) for all G 2 ⌫A (G⇤)\ - for some A > 0) is called
a local optimal solution/optimum or a local minimizer.

The problem (8.13) is called a convex program/problem if 5 is a convex function
and - is a convex set. It is tractable if - can be e�ciently represented. For instance

- := {G 2 R= | 6(G)  1}

for a vector-valued convex function 6 :R=!R< and a 1 2R<. By setting D(G) =� 5 (G),
the following maximization problem is also called a convex program if D(G) is a concave
function and - is a convex set:

max
G2R=

D(G) subject to G 2 -

Importance of convexity.

As we will see in Chapter 8.3 the existence of optimal solutions and their characteri-
zation may not require the cost function 5 to be a convex function or the feasible set -
to be a convex set. Convexity of 5 and - is important for e�cient computation of an
optimal solution. This is because for a convex objective function, local optimality im-
plies global optimality. Moreover only the first-order condition is required to guarantee
local optimality. Specifically, for an unconstrained minimization problem

min
G2R=

5 (G)

a necessary condition for a point G⇤ to be a local minimizer is (assuming 5 is di�eren-
tiable)

r 5 (G⇤) = 0

If 5 is convex then this is also su�cient for G⇤ to be globally optimal, as illustrated in
Figure 8.2. For constrained minimization problem (8.13) where - is nonempty, closed
and convex, the first-order necessary condition for G⇤ 2 - to be a local minimizer
becomes: there is a neighborhood ⌫A (G⇤) for some A > 0 such that

(r 5 (G⇤))T (G� G⇤) � 0 8G 2 ⌫A (G⇤)\ - (8.14)

i.e., moving away from G
⇤ to any other feasible point G in ⌫A (G⇤) can only locally

increase the function value 5 (see Figure 8.16). If 5 is convex then this is both
necessary and su�cient for G⇤ to be globally optimal. To see this, suppose (8.14) holds
but there is another Ĝ 2 - such that 5 (Ĝ) < 5 (G⇤). Consider I(U) := UĜ + (1�U)G⇤.
Since - is convex I(U) is feasible for U 2 [0,1]. Since 5 is convex we have, for any
U 2 (0,1],

5 (I(U))  U 5 (Ĝ) + (1�U) 5 (G⇤) < 5 (G⇤)
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But, for small enough U > 0 so that I(U) 2 ⌫A (G⇤), this contradicts

5 (I(U)) � 5 (G⇤) +rT
5 (G⇤) (I(U)� G⇤) � 5 (G⇤)

where the first inequality follows from Theorem 8.2.2 and the second inequality from
(8.14). Hence G⇤ is globally optimal in - .

Example 8.7 (Optimality condition for constrained optimization). Consider

min
G2R

5 (G) := G2 subject to G � 0

See Figure 8.5. It is clear from the figure that the unique minimizer is 0 where

f (x)

x

∆

f (x2*)>0

[ [∆

f (x1*)>0 a2a1

Figure 8.5 Example 8.7: minG�0 G2. If 0  0 then the unique minimizer is G⇤1 = 0 where
5
0(G⇤) = 0. If 0 > 0 then the unique minimizer is G⇤2 = 0 where 5 0(G⇤) > 0.

5
0(0) = 0 if 0  0 and 0 where 5 0(0) > 0 if 0 > 0. We will derive this conclusion from

the optimality condition (8.14) which is

5
0(G⇤) (G� G⇤) � 0, 8G � 0 (8.15)

First suppose 0  0. If 0  G⇤ < 0 then 5
0(G⇤) < 0 and there exists a feasible G > G⇤

where (8.15) cannot be satisfied. Similarly if G⇤ > 0 � 0 then 5
0(G⇤) > 0 and there

exists a feasible 0  G < G⇤ where (8.15) cannot be satisfied. Hence the unique optimal
is G⇤ = 0 where 5 0(G⇤) = 0. Suppose next 0 > 0. Then 5

0(G) > 0 for any feasible G � 0.
Then the only way (8.15) can be satisfied is if G⇤ = 0.

Therefore the optimality condition reduces for this example (for any 0 2 R) to: G⇤ is
optimal if and only if there exists a ?⇤ such that

G
⇤ � 0, ?⇤ � 0, 5 0(G⇤) = ?⇤, ?⇤ (G⇤ � 0) = 0

This is an example of the Karush-Kuhn-Tucker (KKT) condition (see Chapter 8.3.2).
⇤
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8.2 Properties of convex sets and convex cones

In this section we study some of the most useful properties of convex sets and cones.
For example the Projection Theorem 8.9 is used to prove the separating hyperplane
Theorems 8.10 and 8.11 which are used to prove the Farkas Lemma (Theorem 8.12).
We will also use the Projection Theorem 8.9 to prove in Chapter 8.6 some convergence
properties of optimization algorithms, use the Farkas Lemma (Theorem 8.12) to prove
in Chapter 8.4.2 linear program duality, and use the separating hyperplane theorems
to prove convex duality in Chapters 12.7.2 and 12.7.3.

8.2.1 Second-order cone  soc in R=

Cones in R=.

A set  ✓ R= is called a cone if G 2  implies that WG 2  for all W > 0. A cone  may
not contain the origin though the closure of a nonempty cone always contains the origin.
A cone is not necessarily convex. For example  := {W101 : W1 � 0}[ {W202 : W2 � 0}
for some 01,02 2 R= is a cone consisting of two rays from the origin and is nonconvex
unless 01 = W02 for some W 2 R. A cone  is called pointed if G 2  and �G 2  
implies that G = 0. Figure 8.6 shows pointed and non-pointed cones that may be convex
or not, a subspace or not. A cone  is called proper if (i)  is closed and convex; (ii)

K

(a) Pointed convex
cone

K

K

(b) Non-pointed nonconvex
cone

K

(c) Non-pointed convex cone

Figure 8.6 Cones and their a�ne hulls. (a) A pointed convex cone  . It is not a subspace; its
a�ne hull a�( ) = R2. (b) A non-pointed nonconvex cone  . It is not a subspace; its a�ne
hull a�( ) = R2. (c) A non-pointed convex cone  which is a subspace. Hence a�( ) =  .

has a nonempty interior; and (iii) is pointed.2 Common examples are the nonnegative
quadrantR=+ := {G 2 R= : G � 0}, the second-order cone soc := {G 2 R= : kG=�1k2  G=},
2 A proper cone  can be used to define a partial ordering on R= through a generalized inequality � :

G � H , H� G 2  

It also defines a strict partial ordering on R=:

G � H , H� G 2 int  

where int( ) is the interior of  . We also write G ⌫ H for H � G and G � H for H � G. We will
usually write directly H� G 2  instead of G � H.
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and the set  psd ⇢ S= of positive semidefinite matrices in the linear space S= of
Hermitian matrices.

Definition 8.5 (cone(-)). Let - ✓ R= be a nonempty set. The cone generated by - ,
denoted cone(-), is the set of all nonnegative combination of vectors in - , i.e.,

cone(-) :=

(
<’
8=1

U8G8 : G8 2 - ,U8 � 0, integers < > 0

)

If {01, . . . ,0=} are the column vectors of � 2 R<⇥= then cone({01, . . . ,0=}) ✓ R< is
abbreviated as cone(�). ⇤

The set cone(-) is always a convex cone that contains the origin for arbitrary
nonempty - . See Figure 8.7 for examples. It therefore contains the set {WG : W � 0,G 2

cone (X)

X

cone (X) = R2

X
cone (X)

X

Figure 8.7 Cones cone(-) generated by - ✓ R=.

-} which may not be convex, e.g., - := {01,02} with 01 < W02. It is not necessarily
closed even if - is compact (see [54, Figure 1.2.2, p.21] for an example). We will
mostly be dealing with closed convex cones in this book.

Recall from Definition 8.2 that conv(-) of an arbitrary set - is the intersection of
all convex sets containing - . A convex combination of G1, . . . ,G< in - is the vector
G :=

Õ
<

8=1U8G8 with U8 � 0 and
Õ
<

8=1U8 = 1. Any convex combination of vectors in -
is in conv(-). The next fundamental result implies the converse, e.g., [54, Proposition
1.2.1, p.20].

Theorem 8.7 (Carathéodory Theorem). Let - ✓ R= be a nonempty set.

1 If G 2 conv(-) is nonzero, then G =
Õ
<

8=1U8G8 for some <  = + 1, U8 > 0 withÕ
<

8=1U8 = 1, and G8 2 - .
2 If G 2 cone(-) is nonzero, then G =

Õ
<

8=1U8G8 for some <  =, U8 > 0 and linearly
independent G8 2 - . ⇤

The convex hull conv(-) of an arbitrary set - is not necessarily closed, e.g.,
- = (0,1) = conv(-). A consequence of the Carathéodory theorem is that conv(-)
is compact if - is compact. Suppose G 2 conv(-) is given by G =

Õ
<

8=1 V8H8 for some
< > =, V8 > 0 with

Õ
<

8=1 V8 = 1, and H8 2 - . At most = of H8 2 - can be linearly
independent, say, H1, . . . , H: are linearly independent with :  =. Therefore other H8 for
8 > : can be written as linear combinations of H1, . . . , H: , and we can write G =

Õ
:

8=1_8H8
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with :  =. The coe�cients _8 , however, may not form a convex combination of H8 ,
unlike in the Carathéodory theorem. In other words, any G 2 conv(-) can be written
as a linear combination of :  = vectors H8 2 - (these H8 depend on G) and as a convex
combination of<  =+1 vectors G8 2 - (these G8 depend on G). An example application
of the Carathéodory theorem is in Exercises 12.9, 13.12 and 13.13.

Second-order cone.

A particularly useful convex cone is the second-order cone, defined by

 soc :=
⇢
(G, C) 2 R= ⇥R :

q
G

2
1 + · · · + G2

=
 C

�
(8.16)

It is also called the Lorentz cone or ice-cream cone. It has several equivalent specifica-
tions. It is equivalent to soc = {(G, C) : kGk22  C2, C � 0} or the intersection soc =  ̃\�
where  ̃ := {(G, C) : kGk22  C2} and � := {(G, C) : C � 0} is a halfspace. While  soc is a
convex cone,  ̃ is a nonconvex cone; see Figure 8.8 and Exercise 8.11 (see Theorem
12.10 in Chapter 12.1.4 for more properties of  soc). The second-order cone  soc can

t

x2

x1

(a) Nonconvex cone -̃

t

x2

x1

(b) Convex cone  

Figure 8.8 (a) Nonconvex cone  ̃ := {(G, C) 2 R=+1 : kGk22  C
2}. (b) Second-order cone

 soc =  ̃ \�.

also be specified as a level set of a constraint function,  soc := {(G, C) : ⌘1 (G, C)  0}
where ⌘1 (G, C) := kGk2 � C is convex. Equivalently  soc := {(G, C) : ⌘2 (G, C)  0, C � 0}
where ⌘2 (G, C) := kGk22 � C2 is nonconvex (Exercise 8.11). Hence a convex set can
be specified by constraint functions that may not all be convex functions. This has
important implications on structural and computational properties of equivalent rep-
resentations of a constrained optimization; see Chapter 8.3.7.

A rotated second-order cone is the set

 rsoc := {(G, H, I) 2 R= ⇥R2 : kGk22  HI, H � 0, I � 0} (8.17)

It can be represented as a linear transformation (a rotation) of the standard second-order
cone  soc defined in (8.16) using the equivalence:

kGk22  HI, H � 0, I � 0 ()
����


2G
H� I

�����
2

 H + I
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i.e., (F, C) = �(G, H, I) 2  soc ✓ R=+2 if and only if (G, H, I) 2  rsoc for a (=+2)⇥ (=+2)
nonsingular matrix �. Indeed (Exercise 8.12)

 soc = � rsoc, � =
266664
2I= 0= 0=
0T
=

1 �1
0T
=

1 1

377775
(8.18a)

 rsoc = �
�1
 soc, �

�1 =
1
2

266664
I= 0= 0=
0T
=

1 1
0T
=
�1 1

377775
(8.18b)

See Corollary 12.11 in Chapter 12.1.4 for more properties of  rsoc.

SOC constraint.

A convex set specified in terms of a second-order cone  soc ✓ R=+1 in (8.16) is

⇠ := {G 2 R= : (�G + 1,2T
G + 3) 2  soc} = {G 2 R= : k�G + 1k2  2T

G + 3} (8.19)

where � 2 R<⇥=, 1 2 R<, 2 2 R=, and 3 2 R. It is a convex set because ⇠ is the
pre-image of a convex set  soc under an a�ne function (see also Exercise 8.13). The
constraint in (8.19) is called a second-order cone (SOC) constraint, even though ⇠ in
general may not be a cone itself. For example

• If � = 0 then ⇠ is a halfspace, generally not a cone.
• If 2 = 0 then ⇠ is an ellipsoid (3 > 0), generally not a cone.

The set defined in (8.16) is a special case of (8.19) with 1 = 0,3 = 0, 2 = 4= the unit
vector with a single 1 as its =th entry, and � =

⇥
I=�1 0=�1

⇤
where I=�1 and 0=�1 are

the identity matrix and 0 vector respectively of size =�1.

Example 8.8 (SOC constraint). Consider ⇠ defined in (8.19) where

� :=

1 0
0 1

�
, 2 := U


1
1

�
, 1 := 0, 3 := 0

⇠ = ⇠̃ \� where ⇠̃ := {G : k�G + 1k22  (2T
G + 3)2} and � := {G : 2T

G + 3 � 0} is a
halfspace. Then ⇠̃ =

�
G 2 R2 : GT

�̃G  0
 

where

�̃ := �
T
�� 22T =


1�U �U
�U 1�U

�

whose eigenvalues are 1 and 1�2U. Therefore if U  1/2 then �̃ is positive semidefinite
and ⇠̃ is convex. Otherwise ⇠̃ is nonconvex. In both cases ⇠ = ⇠̃ \� is convex.

For example when U = 1/2, ⇠̃ = {G : 1
2 (G1 � G2)2  0} = {G : G1 = G2}. When U = 1,

⇠̃ = {G : G1G2 � 0} = {G : G � 0}[ {G : G  0}. These sets and their intersections with
the halfspace � := {G : G1 + G2 � 0} are shown in Figure 8.9. ⇤



342 Smooth convex optimization

C

x2

x1

C̃

H

(a) Convex ⇠̃

H

x2

x1
C̃

C

(b) Nonconvex ⇠̃

Figure 8.9 Exampel 8.8. (a) When U = 1/2, ⇠̃ = {G : G1 = G2} is convex. (b) When U = 1,
⇠̃ = {G : G � 0}[ {G : G  0} is nonconvex. In both cases ⇠ = ⇠̃ \� is convex.

Similarly a convex set can be specified in terms of a rotated second-order cone
 rsoc ✓ R<+2 in (8.17):

⇠A := { G 2 R= : (�G + 1, 2T
1G + 31, 2T

2G + 32) 2  rsoc }
= { G 2 R= : k�G + 1k22  (2T

1G + 31) (2T
2G + 32), 2T

1G + 31 � 0, 2T
2G + 32 � 0 }

where � 2 R<⇥=, 1 2 R<, 2 2 R=, and 3 2 R. It is a convex set because ⇠A is the
pre-image of a convex set  rsoc under an a�ne function. The constraints that define
⇠A are also called second-order cone constraints, even though ⇠A in general may not
be a cone itself. This form of constraint is used in Chapter 11 to relax the nonconvex
quadratic constraint E 9✓ 9: = |( 9: |2 into a second-order cone constraint E 9✓ 9: � |( 9: |2.

We study properties of SOC constraints in Chapter 12.1.4.

8.2.2 Semidefinite cone  psd in S=

Numerous power system applications can be formulated as a constrained optimization
problem often using complex variables in the phasor domain. Moreover some solution
methods for solving these problems give rise to constraints or variables involving
matrices (see e.g. Chapter 10). Even though any optimization problem in the complex
domain can be converted into one in the real domain, it is sometimes more convenient to
use complex variables. In this subsection we define inner product on complex matrices
and dual cones in the linear space of Hermitian matrices (all these concepts apply
directly to the vector space of real symmetric matrices). We will use these concepts
in Chapter 8.4.5 to define an important class of convex optimization problems called
semidefinite program and study its duality and optimality properties.

Inner product, polar cone and dual cone.

For two complex matrices G 2 C<⇥= and H 2 C<⇥= (not necessarily square), the (Frobe-
nius) inner product is G · H := tr

�
H

H
G

�
=

Õ
9,: G 9: H̄ 9: where HH = ( H̄)T is the Hermitian

transpose of matrix H, H̄ 9: is the complex conjugate of the scalar H 9: and H̄ is the entry-
wise complex conjugate of matrix H. If G, H 2 C= are complex vectors, then G · H = HH

G
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reduces to the normal inner product on C=. It can be checked that G · H satisfies the
three properties that are sometimes used to define inner product:

1 Conjugate symmetry: G · H = H · G.
2 Linearity in the first argument: For any 0,1 2 C and any fixed H 2 C<⇥=, (01G1 +
02G2) · H = 01 (G1 · H) + 02 (G2 · H).

3 Positive-definiteness: G · G � 0 with equality if and only if G = 0.

Let G 2 C=⇥= be a square matrix. It is called a Hermitian matrix if G 9: = Ḡ: 9 for
all 9 , : . If G is Hermitian its diagonal entries G 9 9 are necessarily real. Let S= ⇢ ⇠=⇥=
denote the set of all =⇥= Hermitian matrices. If G, H 2 S= then

G · H =
’
9

G 9 9 H̄ 9 9 +
’
9<:

�
G 9: H̄ 9: + G: 9 H̄: 9

�
=

’
9

G 9 9 H 9 9 +
’
9<:

�
G 9: H̄ 9: + Ḡ 9: H 9:

�

i.e., G · H is a real number. This means that if G, H 2 S= are Hermitian matrices then

G · H = H · G 2 R (8.20)

This implies that, for Hermitian matrices, the order of inner product in Definition 8.6
does not matter. We will consider S= as a vector (or linear) space over the fieldR of real
numbers, not overC (see Appendix A.1.1 for definitions of vector space and subspace).
We can then call a set  ✓ S= of Hermitian matrices a cone in the vector space S= if
G 2  implies that WG 2  for any W > 0 in the field R. As for a cone  of vectors in
R
=, a cone in S= is not necessarily convex, e.g.,  := {W1G1 : W1 � 0}[ {W2G2 : W2 � 0}

is a nonconvex set unless G1 = WG2 for some W 2 R. We define the notion of dual cone
in S=

Definition 8.6 (Cones in S=). Consider the vector space S= ⇢ C=⇥= of Hermitian
matrices. Let - ✓ S= be a nonempty set.

1 The polar cone of - is -� := {H 2 S= : H · G  0 8G 2 -}
2 The dual cone of - is -⇤ := �-� = {H 2 S= : H · G � 0 8G 2 -}.
3 A cone  is called self-dual if  ⇤ =  . ⇤

The nonnegativity cone R=+ ⇢ R=, the second-order cone  soc ⇢ R=, and the positive
semidefinite cone  psd ⇢ S= of positive semidefinite matrices are all self-dual proper
cones (recall a proper cone is closed, convex, pointed and has nonempty interior).

Polar and dual cones in R= are defined in exactly the same way in Chapter 12.1.1.
Their properties are given in Proposition 12.1 and extend directly to cones in the
vector space S=. For example for an arbitrary nonempty set - ✓ S= of matrices, its
polar cone -� and dual cone -⇤ are closed convex cones. If - is itself a closed convex
cone then (-�)� = - . The following property of the dual cone underlies the definition
of dual problem and duality. Consider a cone  in an underlying vector space  +,
e.g.,  + := R= or  + := S=. Then the minimum value over  of the inner product
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with another vector H is 0 if H 2  ⇤ and �1 if otherwise. It follows directly from the
definition of dual cone and therefore applies to cones in both vector spaces R= and S=.

Lemma 8.8 (Duality over cone). Let  + be a vector space with an inner product
G · H = H · G which is in R. Let  ✓  + be a nonempty cone. Then

min
G2 

H · G = min
G2 

G · H =
⇢

0 if H 2  ⇤
�1 if H 2  + \ ⇤

⇤

Lemma 8.8 holds whether or not the cone  is self dual or not; if  ⇤ =  then we
can replace  ⇤ by  in the lemma. The minimization over G 2  arises, e.g., in partial
dualization of a constrained optimization (see Remark 8.4).

Remark 8.2 (Semidefinite cones in S=). The vector space S= can be partitioned into the
cone  psd of positive semidefinite matrices, the cone  nsd of negative semidefinite with
 psd\ nsd = {0} the zero matrix 0, and the set of indefinite Hermitian matrices (those
with both positive and negative eigenvalues). Both  psd and  nsd are self-dual proper
cones. They are also polar cones of each other, i.e.,  psd =  �nsd and  nsd =  �psd. ⇤

8.2.3 Projection theorem

Given a set - ✓ R= the projection of G 2 R= onto - is defined to be:

[G]
-

:= argmin
H2-

kG� Hk2 (8.21)

where k · k2 is the Euclidean norm. Hence [G]- is the unique point in - that is closest
to G 2 R= in the Euclidean norm. They are illustrated in Figure 8.10.

X

y

x

z = [x]X

Figure 8.10 The point I := [G]- is the unique closest point to G in the convex set - under the
Euclidean norm. For all other points H 2 - , the inner product of H� I and G� I is nonpositive.
(April 19, 2025: Arrow I! H is too obscure.)

Theorem 8.9 (Projection theorem). Suppose - ✓ R= is a nonempty, closed and convex
set.

1 For every G 2 R= there exists a unique [G]- defined by (8.21).
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2 For every G 2 R=, I = [G]- if and only if I 2 - and (H� I)T (G� I)  0 for all
H 2 - .

3 The projection mapping ) : R= ! X defined by ) (G) := [G]- is continuous and
nonexpansive under the Euclidean norm, i.e.,

k [H]- � [G]- k2  kH� Gk2 8G, H 2 R=

Note that Theorem 8.9 does not require - to be bounded (compact), only closed.
This is because since - is nonempty there is an F 2 - . Hence the minimization in the
projection (8.21) can be equivalently restricted to the compact set {H 2 - | kG � Hk2 
kG�Fk2}.

8.2.4 Separating hyperplanes

Recall that for any set - ✓ R=, cl(-) denotes the closure of - , int(-) denotes the
interior of - , ri(-) denotes the relative interior of - , and cl(-) \ int(-) is the boundary
of cl(-).

Definition 8.7 (Separating hyperplane). 1 A hyperplane is a set � := {G 2 R= :
0

T
G = 1} for some 0 2 R= and 1 2 R.

2 Two sets - ,. ✓ R= are separated by a hyperplane � = {G 2 R= : 0T
G = 1} if each

lies in a di�erent closed halfspace associated with �, i.e., ether

0
T
G  1  0

T
H, G 2 - , H 2 . or 0

T
G � 1 � 0

T
H, G 2 - , H 2 .

� is called a separating hyperplane.
3 If G⇤ is in the boundary cl(-) \ int(-) of - ✓ R=, the hyperplane � := {G 2 R= :
0

T
G = 0T

G
⇤} that separates cl(-) (or -) and {G⇤} is called a supporting hyperplane

of cl(-) (or -) at G⇤. ⇤

If point G⇤ is not in the interior of a set - then either G is on the boundary of -
or G⇤ is not in the closure of - . The next result says that such a point G⇤ can always
be separated from - by a hyperplane if - is convex. The hyperplane is a supporting
hyperplane of - at G⇤ if and only if G⇤ is on the boundary of - . It is a straightforward
consequence of the Projection Theorem 8.9.

Theorem 8.10 (A point G⇤ and a convex set -). Suppose - ✓ R= is nonempty convex
and G⇤ 2 R= \ int(-).

1 There exists a hyperplane that passes through G⇤ that contains - in one of its
halfspaces, i.e., there exists a nonzero 0 2 R= such that

0
T
G  0T

G
⇤, G 2 cl(-) (8.22a)

A separating hyperplane is � := {G 2 R= : 0T
G = 0T

G
⇤}.
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2 If G⇤ 8 cl(-) then the inequality in (8.22a) is strict. Hence there exists 1 2
(0T

Ĝ
⇤,0T

G
⇤) such that the hyperplane � := {G 2 R= : 0T

G = 1} strictly separates
cl(-) and G⇤, i.e.,

0
T
G < 1 < 0

T
G
⇤, G 2 cl(-) (8.22b)

where Ĝ⇤ is the projection of G⇤ onto the convex set cl(-).

Proof We prove part 2 first and then part 1.

Part 2: G⇤ 8 cl(-). Let Ĝ⇤ < G⇤ be the projection of G⇤ onto cl(-), i.e., Ĝ⇤ :=
argmin

G2cl(- ) kG�G⇤k2. Then (G⇤ � Ĝ⇤)T (G� Ĝ⇤)  0 for all G 2 cl(-) by the Projection
Theorem 8.9. Define the normalized (error) vector

0 :=
G
⇤ � Ĝ⇤

kG⇤ � Ĝ⇤k2
< 0 (8.23a)

Therefore

0
T
G  0

T
Ĝ
⇤ = 0

T
G
⇤ � 0T (G⇤ � Ĝ⇤) < 0

T
G
⇤, G 2 cl(-) (8.23b)

where the last inequality follows because 0T (G⇤ � Ĝ⇤) = kG⇤ � Ĝ⇤k2 > 0. By definition,
(8.23) says that cl(-) is in a halfspace associated with the hyperplane � := {G 2
R
= : 0T

G = 0T
G
⇤}, as shown in Figure 8.11(a). Another separating hyperplane is the

supporting hyperplane � := {G 2 R= : 0T
G = 0T

Ĝ
⇤} of cl(-) at Ĝ⇤ (the dashed line in

8.11(a)).

cl(X )

a H

x*

x̂*

(a) Case 1: G⇤ 8 cl(- )

a1 x1a2
x2

xk

cl(X )

aH

x*
x̂2
x̂1

(b) G⇤ 2 cl(- ) \ int(- )

Figure 8.11 Proof of Theorem 8.10. The vectors 0,08 are in the normal cones of cl(-) at Ĝ⇤ and
Ĝ8 respectively and � := {G 2 R= : 0T

G = 0T
G
⇤} is a hyperplane separating cl(-) and G⇤. In

Case 1 the separating hyperplane is nonunique: even with the same 0, 1 can take any value in
(0T

Ĝ
⇤,0T

G
⇤) and {G : 0T

G = 1} will be a separating hyperplane.

We now show (8.22b) by explicitly constructing a 1 2 (0T
Ĝ
⇤,0T

G
⇤) so that � := {G 2

R
= : 0T

G = 1} is a separating hyperplane (see Figure 8.11(a)). We claim that we can
choose any I = VĜ⇤ + (1� V)G⇤ between Ĝ⇤ and G⇤ for some V 2 (0,1) and let 1 := 0T

I.
To see this we have from (8.23b)

0
T
G  0

T
Ĝ
⇤ = 0T

I� 0T (I� Ĝ⇤) < 0
T
I, G 2 cl(-)

proving the first half of (8.22b), where the last inequality follows because

0
T (I� Ĝ⇤) = (1� V) 0T (G⇤ � Ĝ⇤) = (1� V)kG⇤ � Ĝ⇤k2 > 0
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For the second half of (8.22b) we have

0
T (G⇤ � I) = V0

T (G⇤ � Ĝ⇤) > VkG⇤ � Ĝ⇤k2 > 0

as desired.

Part 1. In view of part 1 we only need to consider G⇤ 2 cl(-) \ int(-). In this case
Ĝ
⇤ = G⇤ and hence we cannot define 0 by (8.23). Take a sequence {G8} not in cl(-)

such that lim8 G8 = G⇤. Let Ĝ8 be the projection of G8 onto the convex set cl(-), i.e.,
Ĝ8 := argmin

G2cl(- ) kG � G8 k2. Then (G8 � Ĝ8)T (G � Ĝ8)  0 for all G 2 cl(-) by the
Projection Theorem 8.9. Define the normalized (error) vectors

08 :=
G8 � Ĝ8
kG8 � Ĝ8 k2

, 8 = 1,2, . . .

Therefore

0
T
8
G  0T

8
Ĝ8 = 0

T
8
G8 � 0T

8
(G8 � Ĝ8)  0

T
8
G8 , G 2 cl(-) (8.24)

where the second inequality follows because 0T
8
(G8 � Ĝ8) = kG8 � Ĝ8 k2. Since k08 k = 1

the sequence {08 , 8 = 1,2, . . . } has a subsequence {08: , : = 1,2, . . . } that converges to a
nonzero vector 0. Taking limit as :!1 in (8.24) yields 0T

G  0T lim: G8:
= 0T

G
⇤ for

all G 2 cl(-) as desired. This completes the proof of (8.22a). ⇤

Theorem 8.11 (Two convex sets - and . ). Suppose two disjoint sets - ,. 2 R= are
nonempty convex.

1 There exists a nonzero 0 2 R= and 1 2 R such that

0
T
G  1  0

T
H, G 2 cl(-), H 2 cl(. )

i.e. - and . are contained in di�erent halfspaces of the hyperplane � := {G 2 R= :
0

T
G = 1}.

2 If cl(-)\cl(. ) = ;, i.e., min
G2cl(- ) min

H2cl(. ) kG� Hk2 > 0, then there exists 1 2 R
such that the hyperplane � := {G 2 R= : 0T

G = 1} strictly separates - and . :

0
T
G < 1 < 0

T
H, G 2 cl(-), H 2 cl(. )

Proof Consider the set, := {G� H : G 2 - , H 2 . }., is nonempty convex. Moreover
the origin 0 8, . Apply Theorem 8.10 to, and G⇤ = 0. Then there exists a nonzero 0
such that 0T (G� H)  0 for all G� H 2 cl(,), or 0T

G  0T
H for all G 2 cl(-), H 2 cl(. ).

When cl(-) \ cl(. ) = ;, then G⇤ 8 cl(,) and hence Theorem 8.10 guarantees a
1 2 (0T

Ĝ
⇤,0T

G
⇤) such that the inequalities are strict, where Ĝ⇤ is the projection of G⇤

onto, . ⇤

8.2.5 Farkas Lemma

A very useful result is the following theorem which, e.g., underlies the strong dual-
ity of linear programming. It is a simple consequence of the separating hyperplane
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Theorem 8.10. Recall that if {01, . . . ,0=} are the column vectors of � 2 R<⇥= then
cone(�) :=cone({01, . . . ,0=}) ✓ R<.

Theorem 8.12 (Farkas Lemma). Let � 2 R<⇥= and 1 2 R<. Then

1 Exactly one of the following holds:
1 1 2 cone(�): There exists an G 2 R= such that �G = 1 and G � 0.
2 1 8 cone(�): There exists an H 2 R< such that HT

� � 0 and HT
1 < 0.

2 Exactly one of the following holds:
1 1 2 range(�): There exists an G 2 R= such that �G = 1.
2 1 8 range(�): There exists an H 2 R< such that HT

� = 0 and HT
1 < 0.

A variant of Theorem 8.12.1 is: Exactly one of the following holds:

1 There exists an G � 0 such that �G  1.
2 There exists an H � 0 such that HT

� � 0 and HT
1 < 0.

Its proof is similar to that for Theorem 8.12 but considers . := {H 2 R< : �G  H,G �
0} = {�G + B : G � 0, B � 0} instead of cone(�). (Exercise 8.14).

Proof of Theorem 8.12 For part 1, we clearly cannot have both because otherwise,
H

T
1 = HT

�G � 0 contradicting HT
1 < 0. According to the Carathéodory Theorem 8.7,

any 1 2 cone(�) can be expressed as 1 =
Õ
:

8=1U808 for some :  <, U8 > 0, and :
linearly independent column vectors 08 of �. Therefore �G = 1 for some G � 0 if
and only if 1 2 cone(�) ✓ R<. Suppose there exists no such G. We now prove that
there must exist H 2 R< such that HT

� � 0 and HT
1 < 0, by applying Theorem 8.10

to the closed convex cone cone(�) and the point 1. Since 1 8 cone(�) there exists
H 2 R< such that HT

1 < H
T
I for all I 2 cone(�).3 Since 0 2 cone(�) we have HT

1 < 0.
Moreover HT

� � 0 because otherwise, if n := HT
08 < 0 for any column vector 08 of

�, then C08 2 cone(�) for any C � 0 and HT (C08) = Cn !�1 as C!1, contradicting
H

T
1 < H

T
I for all I 2 cone(�).

Part 2 of the theorem is a consequence the rank-nullity theorem which says that R<

can be decomposed into two orthogonal subspaces, null(�T) and range(�) (see (A.1) in
Chapter A.1.2). Decompose 1 2 R< into two orthogonal components 1 =: 11 +12 with
11 2 null(�T) and 12 2 range(�), i.e., �T

11 = 0 and 12 = �G for some G 2 R=. Either
1 is in range(�) (i.e., 11 = 0 and �G = 1) or there exists a nonzero H := 11 2 null(�T)
such that �T

H = 0 and

H
T
1 = HT

11 + H
T
12 = k11k2 > 0

where the last equality follows because 11 and 12 are orthogonal. ⇤

Part 1 of Theorem 8.12 is illustrated in Figures 8.12. Either 1 is in cone(�) or 1 is not.
3 The argument here that concludes HT

1 < 0  HT
� is typical and is used in many proofs in this chapter

and in Chapter 12. It originates from the Projection Theorem 8.9.
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cone (a1,a2)

a1

a2

b

(a) 1 2 cone(01,02)

cone (a1, a2)

a1

a2

b

y

yTA ≥0 , yTb < 0

(b) 1 8 cone(01,02)

Figure 8.12 Theorem 8.12.1: Farkas Lemma

In the first case, 1 = �G for some G � 0 according to the Carathéodory Theorem 8.7, as
shown in Figures 8.12(a). Otherwise, let cone⇤ (�) := {H 2 R< : HT

I � 08I 2 cone(�)};
see Figures 8.12(b). This is called the dual cone of cone(�) and studied in Chapter
12.1.1. Since 1 is outside cone(�), there must exist an H in the intersection of cone⇤ (�)
and the set {1}� := {H 2 R< : HT

1  0} (called the polar cone of {1} in Chapter 12.1.1)
such that HT

� � 0 and HT
1 < 0. Part 2 of Theorem 8.12 is illustrated in Figure 8.13.

b = b2

range(A)

null(AT)

(a) 1 2 range(�)

b

y = b1

range(A)

null(AT)

b2

(b) 1 8 range(�)

Figure 8.13 Theorem 8.12.2: Decomposition of R< into range(�) and null(�T).

See Exercise 12.6 for an application of the Farkas Lemma to derive the polar cone
of a pre-image of the nonpositive quadrant under a linear transformation.

We next study various characterizations of optimal solutions, including the KKT
condition, on which many optimization algorithms are based.

8.3 General theory: optimality conditions

Consider the optimization problem (8.13) reproduced here:

min
G2R=

5 (G) subject to G 2 -

In this section we develop a basic theory to answer the following questions:
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Q1 How to characterize optimal solutions?
Q2 When will optimal solutions exist and when will it be unique?

Associated with (8.13) is a dual problem max` 3 (`). Q1 is important because many
algorithms to compute an optimal solution (studied in Chapter 8.5) are based on
necessary conditions for optimality; these conditions are often su�cient for convex
programs. To answer Q1 we show in Chapter 8.3.1 that a saddle point (G⇤,`⇤) is
optimal for both the primal and the dual problems and closes the duality gap (Saddle-
point Theorem 8.14). This characterization does not require the cost function 5 to be
smooth (e.g. continuous or di�erentiable) or convex or the feasible set - to be convex.
In Chapter 8.3.2 we show that (G⇤,`⇤) is a saddle point if and only if it satisfies the
KKT condition (KKT Theorem 8.15). This characterization requires the cost function
5 and constraint functions to be continuously di�erentiable and convex (with a�ne
equality constraints). These results characterize the primal and dual optimal solutions
but do not ensure their existence.

For Q2 we show in Chapter 8.3.3 that continuity of the cost function 5 and compact-
ness of the feasible set - is su�cient for the existence of primal solutions G⇤ (Theorem
8.16). Strict convexity of 5 ensures the uniqueness of G⇤. We show in Chapter 8.3.4 that
if the primal optimal value is finite and a kind of feasibility condition called constraint
qualification is satisfied then the duality gap is zero and dual optimal solutions exist
(Slater Theorem 8.17). These results are summarized in Table 8.1.

Primal-dual characterization Assumptions

Th 8.14 saddle point = p-d optimality + strong duality arbitrary 5 ,6,⌘
Th 8.15 KKT point = saddle point di�. conv. 5 and ⌘, a�ne 6

Existence

Th 8.16 primal optimal G⇤ cont. 5 , compact -
Th 8.17 dual optimal _⇤ & strong duality conv. 5 and ⌘, a�ne 6,

finite 5 ⇤, Slater cond.

Co 8.18 combination of Ths 8.14, 8.15, 8.16, 8.17 intersection

Table 8.1 Summary of characterization and existence of primal and dual optimal solutions.

As summarized in Table 8.1 smoothness is required for the KKT Theorem (contin-
uously di�erentiable cost and constraint functions) and the existence of primal optimal
solutions (continuous cost function). Neither the Saddle-point Theorem 8.14 nor the
Slater Theorem 8.17 requires smoothness. These results are generalized to a nonsmooth
setting in Chapter 12 when the feasible set is convex.
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8.3.1 Characterization: saddle point = p-d optimality + strong duality

Primal problem.

We now study the case where the feasible set - ✓ R= is specified by a set of equality
and inequality constraints. Consider

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.25)

where 5 : R=! R, 6 : R=! R< and ⌘ : R=! R; are arbitrary real-valued functions.
In particular 5 ,6,⌘ are not necessarily convex or di�erentiable or even continuous. We
will call this problem the primal problem.

Associated with every constrained optimization problem (8.25) (at least partially)
specified by equality and inequality constraints is a dual problem, defined as follows.

Dual problem.

Associated with the equality constraint is the dual variable _ 2 R< and associated with
the inequality cosntraint is the dual variable ` 2 R;+. Define the Lagrangian function
or the Lagrangian associated with (8.25) as the function ! : R=+<+;! R:

! (G,_,`) := 5 (G) + _T
6(G) + `

T
⌘(G), G 2 R=, _ 2 R<, ` 2 R; (8.26a)

For any (_,`) define the dual function by the unconstrained minimization of the
Lagrangian over the primal variable G:

3 (_,`) := min
G2R=

! (G,_,`) (8.26b)

The dual problem of (8.25) is defined to be:

3
⇤ := max

_2R<,`2R;
3 (_,`) s.t ` � 0 (8.26c)

Let - := {G 2 R= : 6(G) = 0, ⌘(G)  0} denote the primal feasible set and. := {(_,`) 2
R
<+; : ` � 0} the dual feasible set. A primal feasible point G⇤ 2 - is called primal

optimal if G⇤ solves (8.25) and a dual feasible point (_⇤,`⇤) 2 . is called dual optimal
if (_⇤,`⇤) solves (8.26). We also called such an (G⇤,_⇤,`⇤) primal-dual optimal. It is
important that the minimization over G in the dual problem (8.26) is unconstrained. It
converts the constrained minimization (8.25) into an unconstrained minimization over
G under certain conditions; see Remark 8.5.

The dual problem (8.26) always provides a lower bound on the primal problem
(8.25) for arbitrary cost and constraint functions 5 ,6,⌘ (even extended real-valued
functions studied in Chapter 12).

Lemma 8.13 (Weak duality). If (G,_,`) 2 - ⇥. is a primal-dual feasible point then
3 (_,`)  5 (G).
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Proof Since (G,_,`) is primal-dual feasible we have _T
6(G) = 0 and `T

⌘(G)  0 and
hence ! (G,_,`)  5 (G) from (8.26a). Therefore

3 (_,`) := min
G
0 2R=

! (G 0,_,`)  ! (G,_,`)  5 (G)

as desired. ⇤

The weak duality Lemma 8.13 implies in particular that the dual objective value 3⇤

lower bounds the primal objective value 5 ⇤:

3
⇤ := max

_,`�0
3 (_,`)  min

G2-
5 (G) =: 5

⇤ (8.27)

This holds whether or not the primal problem is convex and whether or not these
values are bounded: if the primal optimal value is 5 ⇤ = �1 then the dual problem is
infeasible; if the dual optimal value is 3⇤ =1 then the primal problem is infeasible. The
gap 5 ⇤ �3⇤ is called the duality gap. For general nonlinear optimization the duality gap
can be strictly positive, and even unbounded. If the primal problem (8.25) is convex
and a certain constraint qualification is satisfied, then the duality gap is zero (Theorem
8.17). In this case we say strong duality holds. Before we study in Chapters 8.3.3 and
8.3.4 the existence of primal and dual optimal solutions (G⇤,_⇤,`⇤) that closes the
duality gap, we first characterize them.

Saddle point.

For the duality gap to be zero and for the primal and dual problems to both attain their
optimal values, it is necessary and su�cient that a saddle point exists for arbitrary
5 ,6,⌘. To define a saddle point we first claim that the primal problem can be written
in terms of !:

5
⇤ = min

G

max
_,`�0

! (G,_,`) (8.28)

To prove (8.28), note that given any infeasible G 8 - := {G : 6(G) = 0, ⌘(G)  0}, it
is clear that max_,`�0 ! (G,_,`) is unbounded. Therefore

min
G

max
_,`�0

! (G,_,`) = min
G2-

max
_,`�0

! (G,_,`) (8.29a)

Fix any G 2 - . On the one hand, ! (G,_,`)  5 (G) for any ` � 0, and hence

min
G2-

max
_,`�0

! (G,_,`)  min
G2-

5 (G) =: 5
⇤ (8.29b)

On the other hand, max_,`�0 ! (G,_,`) � ! (G,_,0) = 5 (G) since G 2 - , and hence

min
G2-

max
_,`�0

! (G,_,`) � min
G2-

5 (G) =: 5
⇤ (8.29c)

Combining (8.29) gives

5
⇤ = min

G

max
_,`�0

! (G,_,`) = min
G2-

max
_,`�0

! (G,_,`) (8.30)
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proving (8.28). Therefore weak duality (8.27) can also be expressed symmetrically in
terms of the Lagrangian !:

3
⇤ := max

(_,`)2.
min
G2R=

! (G,_,`)  min
G2R=

max
(_,`)2.

! (G,_,`) =: 5
⇤ (8.31)

An important feature of (8.31) is that the minimization over G is unconstrained.4

Definition 8.8 (Saddle point). A point (G⇤,_⇤,`⇤) 2 R= ⇥. is called a saddle point of
the Lagrangian ! if it satisfies

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2R=

! (G,_⇤,`⇤) (8.32)

where . := {(_,`) 2 R<+; : ` � 0}. ⇤

Remark 8.3 (Equivalent definitions of saddle point). 1 If (G⇤,_⇤,`⇤) 2 R= ⇥. is
a saddle point then necessarily G

⇤ 2 - is primal feasible because otherwise,
max(_,`)2. ! (G⇤,_,`) is unbounded but ! (G⇤,_⇤,`⇤) is finite since 5 ,6,⌘ are
real-valued. Therefore, when 5 ,6,⌘ are real-valued, we can define a saddle point
without loss of generality as a primal-dual feasible point (G⇤,_⇤,`⇤) 2 - ⇥. that
satisfies (8.32).

2 An equivalent specification of a saddle point (G⇤,_⇤,`⇤) is (Exercise 8.15):

(G⇤,_⇤,`⇤) 2 - ⇥. , ! (G⇤,_⇤,`⇤) = min
G2R=

! (G,_⇤,`⇤), `
⇤T
⌘(G⇤) = 0 (8.33)

i.e., max(_,`)2. ! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) in (8.32) can be replaced by primal
feasibility and complementary slackness. ⇤

Remark 8.4 (Partial dualization). The minimization over G in Definition 8.8 is uncon-
strained because all constraints of (8.25) have been dualized. The constraints can also
be partially dualized. Specifically suppose (8.25) takes the form

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, 6(G) = 0, ⌘(G)  0 (8.34a)

where - 0 ✓ R=. The Lagrangian ! is still defined by (8.26a), but the dual function is
now defined to be 3 (_,`) := minG2- 0 ! (G,_,`) and the dual problem is

3
⇤ := max

(_,`)2.
min
G2- 0

! (G,_,`) (8.34b)

where . := {(_,`) 2 R<+; : ` � 0}. Instead of (8.31) and (8.32), strong duality holds
if

max
(_,`)2.

min
G2- 0

! (G,_,`) = min
G2- 0

max
(_,`)2.

! (G,_,`)

and (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point if

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤)

4 The weak duality (8.31) can be interpreted as a two-person zero-sum game where a player tries to
maximize ! (G,_,`) over (_,`) 2. and the other player tries to minimize ! (G,_,`) over G 2 R=.
The inequality (8.31) expresses the second-mover advantage: the player that makes the first move is
generally disadvantaged. A saddle point (G⇤,_⇤,`⇤) is a Nash equilibrium of this game.
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All saddle point results extend to the case of partial dualization with obvious modifi-
cations (see also Chapter 12.7). ⇤

The next result Theorem 8.14 states that a saddle point (G⇤,_⇤,`⇤) of ! solves both
the primal and the dual problems and closes the duality gap. It does not require any
of the functions 5 ,6,⌘ to be convex or smooth (e.g., di�erentiable or continuous) or
the feasible sets - ,. to be compact (. is obviously not compact). It is simply a re-
interpretation of a saddle point in terms of the primal problem (8.28) and dual problem
(8.26). It only characterizes a saddle point but does not ensure its existence. We will
study the existence of primal and dual optimal solutions in Chapters 8.3.3 and 8.3.4.

Theorem 8.14 (Saddle-point Theorem). Consider the primal problem (8.25) and its
dual (8.26). A point (G⇤,_⇤,`⇤) is a saddle point if and only if

1 It is primal-dual optimal, i.e., G⇤ is optimal for (8.25) and (_⇤,`⇤) is optimal for
(8.26); and

2 The duality gap is zero at (G⇤,_⇤,`⇤), i.e.,

3 (_⇤,`⇤) = 3
⇤ = 5

⇤ = 5 (G⇤) (8.35)

In particular a saddle point (G⇤,_⇤,`⇤), if it exists, attains both the primal and dual
objective values ( 5 ⇤,3⇤).

Proof Suppose (G⇤,_⇤,`⇤) is a saddle point, i.e., it satisfies (8.32). As explained in
Remark 8.3, when the functions 5 ,6,⌘ are real-valued, a saddle point is necessarily
primal-dual feasible, in particular, G⇤ 2 - . Then we have

5 (G⇤) = ! (G⇤,_,0)  max
(_,`)2.

! (G⇤,_,`) = min
G2R=

! (G,_⇤,`⇤) =: 3 (_⇤,`⇤)

where the second equality follows from (8.32) and the last equality follows from the
definition of the dual objective function 3. Since (G⇤,_⇤,`⇤) 2 - ⇥. is feasible, the
weak duality Lemma 8.13 implies that

5 (G⇤) = 3 (_⇤,`⇤)

The definition of 5 ⇤ and 3⇤ and weak duality (8.27) then imply

3 (_⇤,`⇤)  3
⇤  5

⇤  5 (G⇤) = 3 (_⇤,`⇤)

which is (8.35). This also shows that (G⇤,_⇤,`⇤) is primal-dual optimal.

Conversely suppose (G⇤,_⇤,`⇤) 2 - ⇥. is primal-dual optimal and satisfies (8.35).
Since 6(G) = 0 and `T

⌘(G)  0 for any (G,_,`) 2 - ⇥. , we have

! (G⇤,_⇤,`⇤)  max
(_,`)2.

! (G⇤,_,`)  5 (G⇤) = 3 (_⇤,`⇤) := min
G2R=

! (G,_⇤,`⇤)  ! (G⇤,_⇤,`⇤)

where the second inequality follows because 6(G⇤) = 0 and ⌘(G⇤)  0, the first equality
follows from (8.35), and the second equality follows from the definition of 3. Hence
all inequalities above hold with equality, proving that (G⇤,_⇤,`⇤) is a saddle point. ⇤
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Theorem 8.14 and (8.33) lead to a common characterization of attainment of opti-
mality and strong duality: (G⇤,_⇤,`⇤) attains primal-dual optimality and strong duality
5
⇤ = 3⇤ if and only if (G⇤,_⇤,`⇤) 2 - ⇥. is primal-dual feasible and

G
⇤ 2 arg min

G2R=
! (G,_⇤,`⇤), `

⇤T
6(G⇤) = 0

Remark 8.5 (Solving dual problems). It is important that the minimization over G 2 R=
in the primal problem (8.25) and its dual (8.26c), reproduced here:

5
⇤ := min

G2R=
max

(_,`)2.
! (G,_,`) (8.36)

3
⇤ := max

(_,`)2.
min
G2R=

! (G,_,`) (8.37)

is unconstrained. We can interpret the dual problem as converting the constrained
primal problem (8.25) into an unconstrained minimization where the primal constraints
are replaced by the penalty terms _T

6(G) + `T
⌘(G) in the Lagrangian ! (G,_,`). Given

an (_,`) 2 . , solving the inner unconstrained problem minG ! (G,_,`) can be much
easier than solving (8.25), e.g., when rG! (G,_,`) = 0 can be solved explicitly. In this
case, if strong duality holds, we can solve (8.25) by solving the dual problem (8.37).

When the primal constraints are partially dualized, as explained in Remark 8.4, the
primal and dual problems become

5
⇤ := min

G2- 0
max

(_,`)2.
! (G,_,`)

3
⇤ := max

(_,`)2.
min
G2- 0

! (G,_,`)

Solving the dual problem is advantageous if strong duality holds and, given an (_,`) 2
. , solving the inner problem minG2- 0 ! (G,_,`) is much easier than solving (8.25).

Even if strong duality does not hold, solving the dual problem yields a lower bound
on the primal objective value 5 ⇤ which can be useful in practice. ⇤

8.3.2 Characterization: KKT point = saddle point

We now consider the primal problem (8.25) and its dual problem (8.26) under the
assumption that the cost function 5 and the inequality function ⌘ are convex and
continuously di�erentiable (see Chapter 12.3.1 on continuously di�erentiability), and
the equality function 6(G) = �G�1 is a�ne. While the duality theory can be developed
when some or all of the constraints are dualized (see Remark 8.4), the KKT theory
needs all constraints to be dualized.
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KKT condition.

The KKT condition on (G,_,`) associated with the primal and dual problems
(8.25)(8.26) is defined by the following system of equations:

Stationarity : rG! (G,_,`) = 0 (8.38a)

Primal feasibility : 6(G) = 0, ⌘(G)  0 (8.38b)

Dual feasibility : ` � 0 (8.38c)

Complementary slackness : `
T
⌘(G) = 0 (8.38d)

where rG! is the column vector whose 8th entry is m!

mG8

. The stationarity (8.38a) is
explicitly:

Stationarity : r 5 (G) + r6(G)_ + r⌘(G)` = 0 (8.38e)

where r6(G) =
h
m6

mG

iT
2 R=⇥< and r⌘(G) =

⇥
m⌘

mG

⇤T 2 R=⇥; are the Jacobian functions
of 6 and ⌘ respectively.

Definition 8.9 (KKT point). A primal variable G⇤ is called a stationary point and a
dual variable (_⇤,`⇤) a Lagrange multiplier (vector) of (8.25) if (G⇤,_⇤,`⇤) satisfies
(8.38), i.e., if

rG! (G⇤,_⇤,`⇤) = 0, 6(G⇤) = 0, ⌘(G⇤)  0, `
⇤ � 0, `

⇤T
⌘(G⇤) = 0 (8.39)

We also call such a point (G⇤,_⇤,`⇤) 2 - ⇥. a KKT point. ⇤

Like a saddle point, a KKT point is necessarily primal-dual feasible. For general
functions 5 ,6,⌘, the KKT condition is necessary for (G⇤,_⇤,`⇤) to be primal-dual
optimal. If 5 ,⌘ are convex and continuously di�erentiable functions and 6 is a�ne,
then it is also su�cient; moreover a KKT point is a saddle point and attains strong
duality.

Theorem 8.15 (KKT Theorem). Consider the primal problem (8.25) and its dual
(8.26). Suppose 5 ,⌘ are convex and continuously di�erentiable and 6(G) = �G � 1 is
a�ne. Consider an arbitrary point (G⇤,_⇤,`⇤). The following are equivalent:

1 (G⇤,_⇤,`⇤) is a saddle point.
2 (G⇤,_⇤,`⇤) satisfies the KKT condition (8.39).
3 (G⇤,_⇤,`⇤) is primal-dual optimal and closes the duality gap, i.e., 3 (_⇤,`⇤) = 3⇤ =
5
⇤ = 5 (G⇤).

Proof As discussed above, a saddle point (Remark 8.3), a KKT point and a primal-
dual optimum are necessarily primal-dual feasible and hence we can restrict ourselves
without loss of generality to (G⇤,_⇤,`⇤) 2 - ⇥. . The equivalence of the first and the
third assertions is proved in Theorem 8.14 and holds for arbitrary functions 5 ,6,⌘,
not necessarily convex or continuously di�erentiable. To show the equivalence of the
first two assertions, since (G⇤,_⇤,`⇤) is primal-dual feasible, we only need to show
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the complementary slackness condition (8.38d) and the stationarity condition (8.38a).
As we will see complementary slackness does not require 5 ,6,⌘ to be convex or
continuously di�erentiable; stationarity being a first-order condition requires both.

Suppose (G⇤,_⇤,`⇤) is a saddle point, i.e.,

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G

! (G,_⇤,`⇤) (8.40)

The second equality in (8.40) means that G⇤ is an unconstrained minimizer of
! (G,_⇤,`⇤). It is therefore necessary that rG! (G,_⇤,`⇤) = 0 as long as 5 ,6,⌘ are
continuously di�erentiable, proving stationarity (8.38a). The first equality in (8.40)
reads, substituting 6(G⇤) = 0 (since G⇤ 2 -),

5 (G⇤) + max
(_,`)2.

`
T
⌘(G⇤) = 5 (G⇤) + `

⇤T
⌘(G⇤)

But max(_,`)2. `T
⌘(G⇤) = 0 since ⌘(G⇤)  0 and ` � 0, and hence `⇤T⌘(G⇤) = 0. Hence

if (G⇤,_⇤,`⇤) is a saddle point, then the KKT condition (8.39) is satisfied, for arbitrary
(continuously di�erentiable) functions 5 ,6,⌘.

Conversely suppose (G⇤,_⇤,`⇤) satisfies the KKT condition (8.39). We now
show that the saddle point condition (8.40) is satisfied. Since 5 ,⌘ are convex and
6(G) = �G� 1 is a�ne, ! (G,_⇤,`⇤) is convex in G and hence the stationarity condition
rG! (G,_⇤,`⇤) = 0 implies that ! (G⇤,_⇤,`⇤) = minG ! (G,_⇤,`⇤), proving the second
equality of (8.40). For the first equality, since 6(G⇤) = 0 and `⇤T⌘(G⇤) = 0, we have
5 (G⇤) = ! (G⇤,_⇤,`⇤). Hence

! (G⇤,_⇤,`⇤) = 5 (G⇤) � max
(_,`)2.

5 (G⇤) +_T
6(G⇤) + `T

⌘(G⇤) � ! (G⇤,_⇤,`⇤)

proving ! (G⇤,_⇤,`⇤) =max(_,`)2. ! (G⇤,_,`). This completes the proof of the theorem.
⇤

Remark 8.6 (Comparison: Saddle point and KKT theorems). 1 The saddle point
Theorem 8.14 holds without requiring 5 ,6,⌘ in the primal problem (8.25) to
be convex or di�erentiable. It says that a saddle point (G⇤,_⇤,`⇤) is primal-dual
optimal and closes the duality gap.

2 The KKT Theorem 8.15 requires that 5 ,⌘ be convex and continuously di�eren-
tiable and 6 be a�ne. It implies that, for a primal-dual feasible point (G⇤,_⇤,`⇤),
the saddle point condition (8.40) is equivalent to stationarity and complementary
slackness conditions:

rG! (G⇤,_⇤,`⇤) = 0, `
⇤T
⌘(G⇤) = 0

The consequence of rG! (G⇤,_⇤,`⇤) = 0 is that G⇤ is an unconstrained minimizer of
!, i.e., ! (G⇤,_⇤,`⇤) = minG ! (G,_⇤,`⇤). As demonstrated in the proof of Theorem
8.15, if 5 ,6,⌘ are not convex, then primal-dual optimality of (G⇤,_⇤,`⇤) and strong
duality imply the KKT condition (8.39), but the converse may not hold.

3 Like Theorem 8.14, Theorem 8.15 only shows that a KKT point (G⇤,_⇤,`⇤) is
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primal-dual optimal and closes the duality gap, but does not guarantee its existence.
We now study the existence and uniqueness of a KKT point.

⇤

8.3.3 Existence: primal optimal solutions

In general an optimal primal solution of a constrained optimization may not exist, even
when the optimal primal value is finite, dual optimal solutions exist and strong duality
holds, as the next two examples show.

Example 8.9 (Nonexistence of primal optimal). Consider

5
⇤ := inf

G2R
5 (G) := G2 s.t. G > 1

Clearly the primal optimal value is finite, 5 ⇤ = 1, but no primal optimal G⇤ exists such
that 5 (G⇤) = 5

⇤.

The Lagrangian is ! (G,`) := G2 + `(1� G) = G2� `G + `, the dual function is

3 (`) := min
G

! (G,`) = � `
2

4
+ `

and hence 3⇤ := max`�0 3 (`) = 3 (2) = 1 = 5
⇤, i.e., strong duality holds and `⇤ = 2

attains the dual optimal.

Theorem 8.15 says that for a feasible G⇤ to be optimal, (G⇤,`⇤) must satisfy the KKT
condition. In particular 2G⇤ = `⇤ and `⇤ (1� G⇤) = 0, which cannot be satisfied when
`
⇤ = 2 and G⇤ > 1. ⇤

The reason the primal optimal is not attained in Example 8.9 is that the primal
feasible set is not closed. The next example possesses a closed (but unbounded) feasible
set and has no primal optimal solution either.

Example 8.10 (Nonexistence of primal optimal). Consider

5
⇤ := inf

G2R
5 (G) := 4�G s.t. G � 0

Clearly the primal optimal value is finite, 5 ⇤ = 0, but no finite G⇤ 2 R exists such that
5 (G⇤) = 5

⇤.

The Lagrangian is ! (G,`) := 4�G � `G, the dual function is

3 (`) := min
G

4
�G � `G =

⇢
0, ` = 0
�1, ` > 0

and hence 3⇤ := max`�0 3 (`) = 3 (0) = 0 = 5
⇤, i.e., strong duality holds and `⇤ = 0

attains the dual optimal.

Theorem 8.15 says that for a feasible G⇤ to be optimal, (G⇤,`⇤) must satisfy the KKT
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condition. In particular 4�G
⇤
= �`⇤, which cannot be satisfied by any finite G⇤ when

`
⇤ = 0. ⇤

We now formalize the intuition from these two examples. Consider the general
optimization problem (8.13), reproduced here

min
G2R=

5 (G) subject to G 2 - (8.41)

where - ✓ R= and 5 : R= ! R is an arbitrary real-valued function. The next result
provides a su�cient condition for the existence of a primal optimal solution G⇤.

Theorem 8.16 (Existence and uniqueness of G⇤). Consider the optimization problem
(8.41). Suppose - is nonempty and compact (closed and bounded) and 5 is continuous
on - . Then

1 An optimal solution G⇤ exists.
2 Moreover the optimal solution G⇤ is unique if 5 is strictly convex.

The su�cient condition in Theorem 8.16 is a consequence of the Weierstrass the-
orem (Theorem 12.22 in Chapter 12.6). For an exact condition see Theorem 12.26 in
Chapter 12.6. The existence of an optimal solution G⇤ only requires 5 to be contin-
uous, not necessarily convex. Convexity is important for the e�cient computation of
an optimal solution because a local first-order condition is not only necessary but also
su�cient for optimality when the cost function is a convex function and the feasible
set is a convex set. Note that a real-valued convex function is continuous on the interior
of its domain, according to Lemma 8.4.

8.3.4 Existence: dual optimal solutions and constraint qualifications

Consider the primal and dual problems (8.25)(8.26) where the feasible set is spec-
ified by a set of equalities and inequalities. Conditions that guarantee the existence
and uniqueness of Lagrange multipliers (_⇤,`⇤) are called constraint qualification
conditions. We describe three of them.

Constraint qualifications.

Suppose G⇤ is a local optimal of (8.25). Let . (G⇤) be the set of Lagrange multipliers
associated with G⇤:

. (G⇤) :=
�
(_,`) 2 R<+; : (G⇤,_⇤,`⇤) satisfies KKT condition (8.39)

 
If. (G⇤) is nonempty then it is a convex polyhedral set whether or not (8.25) is a convex
program. (Recall that a set ⌫ ✓ R= is a polyhedral set if ⌫ = {G 2 R= : �G  1} for some
matrix � and vector 1 of appropriate sizes; see Chapter 8.1.2.)
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The set. (G⇤) of Lagrange multipliers associated with a local optimal G⇤ is nonempty
if and only if the following condition holds at G⇤:

rank
m6

mG

(G⇤) = <, 9b 2 #
✓
m6

mG

(G⇤)
◆

s.t.
m⌘

� (G⇤)
mG

(G⇤) b < 0 (8.42)

where # (�) is the null space of matrix � and � (G⇤) is the set of indices of inequality
constraints that are active at G⇤ and

m⌘
� (G⇤ )
mG

(G⇤) is the |� (G⇤ | ⇥ = matrix of partial
derivatives of ⌘8 that are active at G⇤:

� (G⇤) := {8 : ⌘8 (G⇤) = 0},
m⌘

� (G⇤)
mG

(G⇤) :=
✓
m⌘8

mG

(G⇤), 8 2 � (G⇤)
◆

The condition (8.42) is called the Mangasarian-Fromovitz constraint qualification
(MFCQ). The second condition of MFCQ says that the local optimal G⇤ can move
infinitesimally in the direction of b and become strictly feasible.

The second constraint qualification guarantees not only the existence, but also the
uniqueness, of the Lagrangian multiplier associated with a local optimal G⇤:

the rows of
m6

mG

(G⇤),
m⌘

� (G⇤)
mG

(G⇤) are linearly independent (8.43)

This is called the linear independence constraint qualification (LICQ) and it guarantees
that . (G⇤) is a singleton. This originates from the unique representation of the normal
cone vector in terms of r6(G⇤) and r⌘

� (G⇤) (G⇤); see Theorem 12.4 and Example 12.4.
Using the Farkas lemma (Theorem 8.12) it can be shown that LICQ implies MFCQ
(Exercise 8.17).

Both LICQ and MFCQ presume the existence of an optimal solution G⇤ for the primal
problem (8.25). When an optimal G⇤ exists and if one of the condition is satisfied then
an optimal Lagrange multiplier (_⇤,`⇤) 2 . (G⇤) exists and (G⇤,_⇤,`⇤) is a KKT point.
Theorem 8.15 then implies that (G⇤,_⇤,`⇤) is a saddle point that closes the duality
gap and solves both the primal and the dual problems, provided 5 ,⌘ are convex and
continuously di�erentiable and 6 is a�ne.

We next discuss the third constraint qualification, called the Slater condition, that
does not require the existence of a primal optimal solution G⇤. We will restrict ourselves
to the version of the primal problem (8.25) where the equality constraint function 6(G)
is a�ne. Consider the following problem:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G)  0 (8.44)

where 5 : R= ! R and ⌘ : R= ! R; are real-valued functions, and � 2 R<⇥=, 1 2
R
<. Suppose ⌘1 (G), . . . ,⌘;̄ (G) are a�ne functions and ⌘

;̄+1 (G), . . . ,⌘; (G) are nonlinear
convex functions. Then the constraint qualification is:

Slater condition: There exists Ḡ such that

�Ḡ = 1, ⌘8 (Ḡ)  0, 8 = 1, . . . , ;̄, ⌘8 (Ḡ) < 0, 8 = ;̄ +1, . . . , ; (8.45)
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The Slater condition is often stated as having a strictly feasible point Ḡ because Ḡ
satisfies the nonlinear inequality constraints strictly. If all ⌘8 (G) are a�ne then the
Slater condition reduces to primal feasibility.

Strong duality and dual optimality.

Let the Lagrangian function ! :R=+<+;!R associated with the primal problem (8.44)
be

! (G,_,`) := 5 (G) +_T (�G� 1) + `T
⌘(G), G 2 R=, _ 2 R<, ` 2 R; (8.46a)

The dual function is

3 (_,`) := min
G2R=

! (G,_,`), _ 2 R<, ` 2 R; (8.46b)

and the dual problem is

3
⇤ := max

_,`�0
3 (_,`) (8.46c)

Let - := {G 2 R= : �G = 1, ⌘(G)  0} denote the primal feasible set and . := {(_,`) 2
R
<⇥R; : ` � 0} the dual feasible set.

When 5 ,⌘ are convex the Slater condition ensures that strong duality and the
existence of a dual optimal solution (_⇤,`⇤) that attains the dual optimal value,
3 (_⇤,`⇤) = 3⇤.

Theorem 8.17 (Slater Theorem). Consider the primal problem (8.44) and its dual
(8.46). Suppose the following conditions hold:

• Finite primal value: 5 ⇤ is finite, i.e., �1 < 5
⇤
<1.

• Convexity: 5 ,⌘ are convex.
• Slater condition: (8.45) holds.

Then

1 5
⇤ = 3⇤.

2 There exists a dual optimal solution (_⇤,`⇤) with 3 (_⇤,`⇤) = 3⇤. Moreover the set
of dual optimal solutions is nonempty, convex and closed.

3 If there exists Ḡ such that ⌘(Ḡ) < 0 (i.e., the Slater condition is strict and there is
no equality constraint), then the set of dual optimal solutions is nonempty, convex
and compact.

Note that Theorem 8.17 does not require 5 ,⌘ to be smooth but only convex, e.g., it
may not be continuously di�erentiable or even continuous. This result will be extended
and proved in a nonsmooth setting in Chapter 12.7.1 as Theorem 12.28. Part 3 of
Theorem 8.17 on the compactness and convexity of the dual optimal set is proved
in Exercise 8.19. In particular it shows that the set ⇡⇤ of dual optimal solutions is
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bounded by the weak duality gap at the strict Slater point Ḡ divided by the worst-case
“constraint gap“ [55, Lemma 1]

max
`2⇡⇤
k`k2  max

`2⇡⇤
k`k1 

5 (Ḡ)� 3⇤
min8 (�⌘8 (Ḡ))

=
5 (Ḡ)� 5 ⇤

min8 (�⌘8 (Ḡ))

Since 5
⇤ is finite, weak duality implies that the dual problem can only be finite

feasible or infeasible. The Slater condition in Theorem 8.17 guarantees that it is
feasible and attained. It does not however guarantee that the finite primal optimal is
attained, i.e., there may not be a feasible G⇤ such that 5 (G⇤) = 5

⇤ when the feasible set
is not compact, as Examples 8.9 and 8.10 show. In these examples, both conditions
in Theorem 8.17 are satisfied and hence 5

⇤ is finite, dual optimal solutions exist and
strong duality holds. If a primal optimal solution G⇤ does exist and (_⇤,`⇤) is the
associated Lagrange multiplier, i.e., (G⇤,_⇤,`⇤) is a KKT point, then Theorem 8.15
implies that (G⇤,_⇤,`⇤) is also a saddle point that is primal-dual optimal and closes the
duality gap. Note that for both the Slater Theorem 8.17 and the KKT Theorem 8.15,
it is not enough for the feasible set to be convex. It has to be specified by a convex
constraint function ⌘(G) for these theorems to apply. We will discuss in Chapter 8.3.7
potential issues that may arise when the convex feasible set is represented by nonconvex
constraint functions.

The next example shows that the importance of the Salter condition.

Example 8.11 (Nonexistence of dual optimal solution). Consider

5
⇤ := inf

G2R
5 (G) := 2G s.t. G

2  0

The feasible set is {G = 0} and the Slater condition does not hold. We now show that
the dual problem is feasible, but dual optimality is not attained even though 5 ⇤ is finite
and attained, 5 ⇤ = 5 (0) = 0, all functions are convex, and strong duality holds.

The Lagrangian is ! (G,`) := 2G + `G2 and the dual function 3 (`) := infG2R ! (G,`)
is

3 (`) =
⇢
�1/` if ` > 0
�1 if `  0

Hence

3
⇤ := sup

`>0
3 (`) = � inf

`>0

1
`

= 0

i.e., dual optimal `⇤ does not exists in R even though 3⇤ = 0 = 5
⇤ = 5 (0). ⇤

The counterexamples to primal optimality (Theorem 8.16) and dual optimality
(Slater Theorem 8.17) are summarized in Table 8.2. These examples are all primal and
dual feasible. They show that one of the (primal and dual) problems having an optimal
solution generally does not guarantee that the other also has an optimal solution, except
for linear programs (see Chapter 8.4.2).
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Compact Primal Slater Dual Strong Example
feasible set optimality condition optimality duality

no no G⇤ yes 3
⇤ = 3 (`⇤) finite 5 ⇤ = 3⇤ 8.9, 8.10

yes 5
⇤ = 5 (G⇤) no no `⇤ finite 5 ⇤ = 3⇤ 8.11

Table 8.2 Primal-dual feasible counterexamples to Theorems 8.16 and 8.17.

In summary Theorems 8.14 and 8.15 characterize a primal-dual optimal solution
(G⇤,_⇤,`⇤) as a saddle point and a KKT point that closes the duality gap. Theorems 8.16
and 8.17 provide su�cient conditions for the existence of primal and dual solutions.
These conditions combine to give the following result.

Corollary 8.18 (Existence, uniqueness, characterizations). Consider the primal prob-
lem (8.44) and its dual (8.46). Suppose

• Convexity and smoothness: 5 ,⌘ are convex and continuously di�erentiable.
• Compact -: The primal feasible set - := {G 2 R= : �G = 1, ⌘(G)  0} is compact;
• Finite primal value: 5 ⇤ is finite, i.e., �1 < 5

⇤
<1;

• Slater condition: (8.45) holds;

Then there exists a primal-dual optimal solution (G⇤,_⇤,`⇤) 2 - ⇥. to (8.44)(8.46),
i.e., both the primal and dual optimal values are attained, 5 ⇤ = 5 (G⇤) and 3⇤ = 3 (_⇤,`⇤).
Moreover

1 Strong duality holds 5 ⇤ = 3⇤.
2 (G⇤,_⇤,`⇤) 2 - ⇥. is a saddle point of the Lagrangian !.
3 (G⇤,_⇤,`⇤) 2 - ⇥. is a KKT point.
4 If 5 is strictly convex then the primal optimal solution G⇤ is unique.

5 If LICQ (8.43) holds, i.e., if the rows of � and
n
m⌘8

mG
(G⇤) : ⌘8 (G⇤) = 0

o
are linearly

independent, then the dual optimal solution (_⇤,`⇤) is unique.

8.3.5 Perturbed problem and local sensitivity

A dual optimal solution (_⇤,`⇤) can be interpreted as the sensitivity of the optimal
value 5

⇤ to constraint perturbations. Specifically, for any (D,E) 2 R<+; , consider the
perturbed problem with the perturbation vector (D,E):

5
⇤ (D,E) := min

G2R=
5 (G) s.t. 6(G) = D, ⌘(G)  E (8.47)

where 5 : R= ! R, 6 : R= ! R< and ⌘ : R= ! R; are real-valued functions. We
do not assume that these functions are convex. The function 5

⇤ : R<+; ! R maps
a perturbation vector (D,E) to a (primal) optimal value. If the perturbed problem is
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infeasible at (D,E), then 5
⇤ (D,E) :=1. The primal problem (8.44) is a special case of

(8.47) with (D,E) = (0,0) and 6(G) = �G�1. We discuss two properties of the function
5
⇤ (D,E): an a�ne lower bound on 5

⇤ (D,E) and the local sensitivity m 5
⇤

m(D,E) (0,0).

Suppose strong duality holds and dual optimality is attained for the unperturbed
problem (8.47) with the perturbation vector (0,0), e.g., when the conditions of the
Slater Theorem 8.17 hold. Let (_⇤,`⇤) be any dual optimal solution of the unperturbed
problem. The first property is an a�ne lower bound on the function 5

⇤ (D,E) in terms
of the optimal value 5 ⇤ (0,0) and the dual optimal solution (_⇤,`⇤) of the unperturbed
problem:

5
⇤ (D,E) � 5

⇤ (0,0)�_⇤TD� `⇤TE, 8(D,E) 2 R<+; (8.48)

The inequality (8.48) bounds the function 5
⇤ (D,E) by an a�ne function in (D,E). To

prove (8.48) let Ḡ be any feasible solution of the perturbed problem with the perturbation
vector (D,E) 2 R<+; , i.e., 6(Ḡ) = D and ⌘(Ḡ)  E. Then

5
⇤ (0,0) = 3 (_⇤,`⇤) := inf

G2R=
5 (G) +_⇤T6(G) + `⇤T⌘(G)

 5 (Ḡ) +_⇤T6(Ḡ) + `⇤T⌘(Ḡ)  5 (Ḡ) +_⇤TD + `⇤TE

where the first equality follows from strong duality for the unperturbed problem, and
the last inequality follows since Ḡ is feasible for the perturbed problem and `⇤ � 0.
Hence

5 (Ḡ) � 5
⇤ (0,0)�_⇤TD� `⇤TE for all feasible Ḡ of perturbed problem

from which (8.48) follows.

The second property is local sensitivity of the optimal value 5 ⇤ (D,E) to constraint
perturbations around (D,E) = (0,0). Suppose again strong duality holds and dual op-
timality is attained for the unperturbed problem (8.47) with the perturbation vector
(0,0). Suppose further that the function 5

⇤ (D,E) is di�erentiable at (D,E) = (0,0).
Then the lower bound (8.48) implies

5
⇤ (C48 ,0)� 5 ⇤ (0,0) � �C_⇤

8
, C 2 R

where 48 2 R< is the 8th unit vector with a single 1 in the 8th entry. Therefore, taking
the limit C! 0 from above and below, we have

lim
C!0, C>0

5
⇤ (C48 ,0)� 5 ⇤ (0,0)

C

� �_⇤
8
, lim

C!0, C<0

5
⇤ (C48 ,0)� 5 ⇤ (0,0)

C

 �_⇤
8

Similarly for `⇤, and we conclude (since 5 ⇤ (D,E) is di�erentiable at (D,E) = (0,0) by
assumption):

m 5
⇤

mD8

(0,0) = �_⇤
8
,

m 5
⇤

mE8

(0,0) = �`⇤
8

(8.49)
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8.3.6 Envelope theorems

Consider a constrained optimization. Let (G, H) denote the primal and dual variables
and ? a parameter in the objective and/or constraint functions. For example, in optimal
power flow problems, ? may be line limits or nodal powers of uncontrollable loads or
renewable generations. Let (G(?), H(?)) denote the primal-dual optimal point given the
parameter ?. Define the value function + (?) := ! (G(?), H(?); ?) to be the Lagrangian
evaluated at the optimal point (G(?), H(?)), as a function of ?. Envelope theorems
provide su�cient conditions for the di�erentiability of + (?). The main conclusion
is that the derivative of + (?) is the partial derivative r?! (G(?), H(?); ?) of the
Lagrangian with respect to ?, evaluated at the optimal point (G(?), H(?)). When
the feasible set is independent of ? or is defined by only equality constraints then
+ (?) := 5 (G(?); ?) can be defined to be the optimal cost as a function of ?. Its
derivative is the sensitivity of the optimal cost to ? and therefore of great interest in
applications. This subsection collects several variants of envelope theorems.

The following saddle-point envelope theorem is from [56, Theorem 298]. It makes
mild assumptions, e.g., does not need convexity or di�erentiability (except di�erentia-
bility in parameter ?), and unifies several variants.

Theorem 8.19 (Saddle-point Envelope Theorem [56]). Let - and . be metric spaces
and % ✓ R= be an open set. Let ! : -⇥. ⇥% ! R. For each ? 2 %, let (G⇤ (?), H⇤ (?)) 2
- ⇥. be a saddle point of !, i.e.,

! (G⇤, H; ?)  ! (G⇤ (?), H⇤ (?); ?)  ! (G, H⇤ (?); ?), G 2 - , H 2 . (8.50)

and define the value function as

+ (?) := ! (G⇤ (?), H⇤ (?); ?)

Suppose:

1 G
⇤ (?) and H⇤ (?) are continuous functions (in particular, this assumes that there is

a unique saddle point (G⇤ (?), H⇤ (?)) for each ? 2 %).
2 r? ! (G, H; ?) exists and is jointly continuous on - ⇥. ⇥%.

Then + is continuously di�erentiable and

r+ (?) = r? ! (G⇤ (?), H⇤ (?); ?)

i.e., m+
m?8

(?) = m!

m?8

(G, H; ?) evaluated at (G, H) = (G⇤ (?), H⇤ (?)).

Proof We will prove that the directional derivative of+ at each ? 2 % in each direction
⌘ 2 R=:

3+ (?;⌘) := lim
C#0

+ (? + C⌘)�+ (?)
C
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exists5 and equals m+

m?
(?) · ⌘. This is equivalent to the di�erentiability of 5 . Moreover

we will show that r+ (?) is continuous on %.

Let ⌘ 2 R= be such that [?, ? + ⌘] ⇢ % where [?, ? + ⌘] := {? + C⌘ : 0  C  1} (such
⌘ always exists since % is open). By definition we have

+ (? + ⌘)�+ (?) = ! (G⇤ (? + ⌘), H⇤ (? + ⌘); ? + ⌘) � ! (G⇤ (?), H⇤ (?); ?)

The saddle point property (8.50) then implies the inequalities in the following:

+ (? + ⌘)�+ (?) = ! (G⇤ (? + ⌘), H⇤ (? + ⌘); ? + ⌘)� ! (G⇤ (? + ⌘), H⇤ (?); ? + ⌘)|                                                                       {z                                                                       }
�0

+ ! (G⇤ (? + ⌘), H⇤ (?); ? + ⌘)� ! (G⇤ (? + ⌘), H⇤ (?); ?) (8.51)

+ ! (G⇤ (? + ⌘), H⇤ (?); ?)� ! (G⇤ (?), H⇤ (?); ?)|                                                   {z                                                   }
�0

Since ! (G, H; ?) is di�erentiable with respect to ? for each (G, H), we can apply the
mean value theorem to (8.51) to get

+ (? + ⌘)�+ (?) � m!
m?

(G⇤ (? + ⌘), H⇤ (?); ?1 (⌘)) · ⌘

for some ?1 (⌘) 2 [?, ? + ⌘]. Similarly we have

+ (? + ⌘)�+ (?) = ! (G⇤ (? + ⌘), H⇤ (? + ⌘); ? + ⌘) � ! (G⇤ (?), H⇤ (? + ⌘); ? + ⌘)|                                                                        {z                                                                        }
0

+ ! (G⇤ (?), H⇤ (? + ⌘); ? + ⌘) � ! (G⇤ (?), H⇤ (? + ⌘); ?)
+ ! (G⇤ (?), H⇤ (? + ⌘); ?) � ! (G⇤ (?), H⇤ (?); ?)|                                                     {z                                                     }

0

 m!
m?

(G⇤ (?), H⇤ (? + ⌘); ?2 (⌘)) · ⌘

for some ?2 (⌘) 2 [?, ? + ⌘]. Combining, and replacing ⌘ by C⌘, we have

m!

m?

(G⇤ (? + C⌘), H⇤ (?); ?1 (C⌘)) · C⌘  + (? + C⌘)�+ (?)  m!
m?

(G⇤ (?), H⇤ (? + C⌘); ?2 (C⌘)) · C⌘

Dividing throughout by C, taking C # 0 and using the continuity of m!
m?

, G(?) and H(?)
we get

3+ (?;⌘) = m!
m?

(G⇤ (?), H⇤ (?); ?) · ⌘

for all ? 2 % and all ⌘ 2 R=. Hence

m+

m?

(?) = m!
m?

(G⇤ (?), H⇤ (?); ?)

exists. Moreover it is continuous since m!

m?
is continuous on - ⇥. ⇥%. ⇤

5 Since + (?) is not assumed to be convex, the limit in the definition of 3+ (?;⌘) may not exist.
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Remark 8.7. It is important that the feasible sets (- ,. ) are independent of ?. The
saddle point property (8.50) can still hold if the feasible sets (-? ,.?) depend on ?,
i.e., for all ? 2 %,

! (G⇤ (?), H; ?)  ! (G⇤ (?), H⇤ (?); ?)  ! (G, H⇤ (?); ?), G 2 -? , H 2 .?
Yet the conclusion of Theorem 8.19 in general does not hold. This is because the
inequalities in + (? + ⌘)�+ (?) above rely on inequalities of the form:

! (G⇤ (?), H⇤ (?); ?) � ! (G⇤ (?), H⇤ (@); ?)
! (G⇤ (@), H⇤ (?); ?) � ! (G⇤ (?), H⇤ (?); ?)

which may not hold if H⇤ (@) is in .@ \.? or G⇤ (@) is in -@ \ -? . See Exercise 8.20 for
more. ⇤

An important implication of Remark 8.7 is that for a two-stage stochastic program
with recourse, since the feasible set for the second-stage problem usually depends on
the first-stage decision G, envelope theorems generally do not guarantee the di�er-
entiability of the second-stage value function or recourse function &(G) in (13.118).
Hence a rigorous study of the two-stage stochastic program requires nonsmooth convex
optimization theory covered in Chapter 12.

The following version is the classical envelope theorem. The key condition is that
the first-order stationarity condition holds with equality, which is the reason for - to
be open so that the optimal point G⇤ (?) is in the interior of - . Note that convexity is
not assumed since the proof only needs the necessity of the stationarity condition.

Theorem 8.20 (Saddle-point Envelope Theorem [56]). Let - ✓ R= and % ✓ R; be
open sets. Consider the constrained optimization for each ? 2 %:

min
G2-

5 (G, ?) s.t. 6(G, ?) = 0

where 5 : - ⇥%!R and 6 := (61, . . . ,6<) : - ⇥%!R<. Let G⇤ (?) denote an optimal
solution and+ (?) := 5 (G⇤ (?), ?) the optimal value. Let H 2R< denote the dual variable
and define the Lagrangian

! (G, H; ?) := 5 (G, ?) + HT
6(G, ?), G 2 - , H 2 R<

Suppose

1 5 , 61, . . . ,6< are continuously di�erentiable on - ⇥%.
2 Stationarity in G: For each ? 2 %, there exist H⇤ (?) 2 R< such that the first-order

stationarity condition holds with equality:

rG! (G⇤ (?), H⇤ (?); ?) = rG 5 (G⇤ (?), ?) + rG6(G⇤ (?), ?)H⇤ (?) = 0

3 G
⇤ (?) and H⇤ (?) are continuously di�erentiable functions (in particular, this as-

sumes that the optimal primal and dual solutions exist and are unique).
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Then + (?) is continuously di�erentiable and

r+ (?) = r? ! (G⇤ (?), H⇤ (?); ?) = r? 5 (G⇤ (?), ?) + r?6(G⇤ (?), ?)H⇤ (?)

The theorem can be proved by appealing to Theorem 8.19 but a direct proof is
simpler.

Proof of Theorem 8.20 + (?) is continuously di�erentiable since 5 (G, ?) and G⇤ (?)
are. Since G⇤ (?) satisfies 6(G⇤ (?), ?) = 0 we have

+ (?) = ! (G⇤ (?), H⇤ (?); ?) = 5 (G⇤ (?), ?) +
’
9

H
⇤
9
(?) 6 9 (G⇤ (?), ?)

Di�erentiability assumptions yield

m+

m?;

(?) =
’
8

m 5

mG8

(G⇤ (?), ?) ·
mG
⇤
8

m?;

(G⇤ (?), ?) + m 5

m?;

(G⇤ (?), ?) +
’
9

mH
⇤
9

m?;

(?) · 6 9 (G⇤ (?), ?)

+
’
9

H
⇤
9
(?)

 ’
8

m6 9

mG8

(G⇤ (?), ?) ·
mG
⇤
8

m?;

(G⇤ (?), ?) +
m6 9

m?;

(G⇤ (?), ?)
!

Feasibility and stationarity in G imply:

6 9 (G⇤ (?), ?) = 0,
m 5

mG8

(G⇤ (?), ?) +
’
9

H
⇤
9
(?)

m6 9

mG8

(G⇤ (?), ?) = 0

Substituting into m+/m?; yields m+

m?;

= m 5

m?;

+Õ
9
H 9

m6 9

m?;

, i.e.,

r?+ (?) = r? 5 (G⇤ (?), ?) + r?6(G⇤ (?), ?)H⇤ (?)

as desired. ⇤

Remark 8.8. It is important that the set - is open so that the first-order stationarity
condition holds with equality. If the feasible set -? depends on ?, then either -? is
assumed open or G⇤ (?) is in the interior of -? . This means that if the constraint G 2 -?
is represented by ⌘(G, ?)  0, the corresponding Lagrange multipliers will be zero at
optimality so that the stationarity condition and the conclusion of the theorem will
remain unchanged.

When the feasible set does not depend on ?, only the cost function does, the saddle-
point envelope theorems reduce to Danskin’s Theorem. If the function 5 (G, ?) in The-
orem 8.21 represents the Lagrangian function of a constrained optimization and (G, ?)
represents primal and dual variables, then the theorem implies the di�erentiability of
the dual function when the optimal G(?) is unique.

Theorem 8.21 (Danskin’s Theorem). Let - ✓ R= be nonempty and 5 : - ⇥R; ! R
be a continuous function. Suppose 5 (G, ?) is convex in ? for every G 2 - . Let

+ (?) := sup
G2-

5 (G, ?)
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1 Suppose - is compact so that a maximizer G⇤ (?) always exists with + (?) =
5 (G⇤ (?), ?). Let the set of maximizers be

-
⇤ (?) := {G 2 - :+ (?) = 5 (G, ?)}

Then
1 The function + : R;! R is convex and has directional derivative 3+ (?;⌘) at
? in the direction of ⌘ 2 R< given by:

3+ (?;⌘) := lim
C#0

+ (? + C⌘)�+ (?)
C

= max
G2-⇤ (?)

35 (G,⌘; ?)

where 35 (G,⌘; ?) := lim
C#0

5 (G+C⌘,?)� 5 (G,?)
C

is the directional derivative of the
function 5 (·, ?).

2 If -⇤ (?) = {G⇤ (?)} is a singleton and 5 (G⇤ (?), ·) is di�erentiable in its second
argument at ?, then + (?) is di�erentiable at ? and

r?+ (?) = r? 5 (G⇤ (?), ?) =
✓
m 5

m? 9

(G⇤ (?), ?), 9 = 1, . . . ,<
◆

3 If - is compact and convex and 5 (G, ?) is convex in G for every ? 2 R<, then
-
⇤ (?) is nonempty, convex and compact (according to Theorem 12.26).

2 The conclusions of 1 hold if, instead of assuming - is compact, we assume that
• -

⇤ (?) is nonempty for every ? 2 R<; and
• For every sequence {?: } converging to some ?, there exists a bounded sequence

{G⇤
:
} of maximizes G⇤

:
2 -⇤ (?) for all : (so that {G⇤

:
} has a convergent

subsequence).

Remark 8.9. 1 As for Theorem 8.19, it is important that the feasible set - does not
depend on ?, for the same reason discussed in Remark 8.7.

2 Theorem 8.21 is generalized in Theorem 12.19 to the case where 5 may not be
continuous in G, - may not be compact, and -⇤ (?) may not be a singleton. ⇤

Theorem 8.21 guarantees the existence of directional derivative of + (?) if 5 is
jointly continuous in (G, ?) and convex in ? for every G 2 - . Di�erentiability of +
however needs uniqueness of the maximizer G⇤ (?) and di�erentiability of 5 (G⇤ (?), ·).
It 5 (G, ?) is convex in ? for every G 2 - then + (?) := sup

G2- 5 (G, ?) is convex in ?.
For* (?) := infG2- 5 (G, ?) when 5 (G, ?) is jointly convex in (G, ?) (this is not the case
with Lagrangian functions), see Remark 12.7.

8.3.7 Equivalent representations

Consider the following two convex optimization programs:

min
G2R=

5 (G) s.t. �G = 1, ⌘1 (G)  0 (8.52a)

min
G2R=

5 (G) s.t. �G = 1, ⌘2 (G)  0 (8.52b)
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where 5 is a convex function. Suppose the feasible sets {G 2 R= : �G = 1, ⌘1 (G)  0}
and {G 2 R= : �G = 1, ⌘2 (G)  0} are the same, so (8.52a) and (8.52b) are equivalent
representations of the same problem in the sense that they have the same cost function
5 and the same feasible set.

Equivalent representations of the same problem can have di�erent structural and
computational properties. Judicious choice of problem formulation is therefore impor-
tant in application. For example, the dual problem, the optimal dual value and strong
duality generally depend on the primal and dual representations and may be di�erent
for di�erent (even if equivalent) representations.

1 If both ⌘1 (G) and ⌘2 (G) are convex functions, the Slater condition is satisfied
for both representations in (8.52), and their optimal primal value is finite, then
the Slater Theorem 8.17 applies to both representations and hence strong duality
holds and dual optimality is attained for both representations. The KKT Theorem
8.15 also applies to both representations. Even though they may have di�erent
dual problems and di�erent KKT conditions, their optimal dual values will be the
same.

2 If on the other hand ⌘1 (G) is convex but ⌘2 (G) is not, then even if the Slater
condition is satisfied for both problems and their common optimal primal value is
finite and the same, neither the Slater Theorem 8.17 nor the KKT Theorem 8.15
applies to (8.52b). Indeed, for (8.52b), strong duality may not hold and its dual
problem may be infeasible, as the following example shows.

Example 8.12 (Equivalent representations). Consider what is called a second-order
cone program (studied in Chapter 8.4.4):

5
⇤
1 := min

G2R=
2

T
G s.t. kG=�1k2  G= (8.53a)

where 2 2 R=. Its constraint function ⌘1 (G) := kG=�1k2 � G= is not di�erentiable at G
where G=�1 = 0. To bypass this di�culty the following formulation is often solved
instead:

5
⇤
2 := min

G2R=
2

T
G s.t. kG=�1k22  G2

=
, G= � 0 (8.53b)

Both problems have the same convex feasible set, the standard second-order cone
 soc ✓ R= defined in (8.16), and therefore have the same optimal primal value. They
arise from two equivalent representations of  soc using di�erent constraint functions.

The constraint function ⌘1 (G) := kG=�1k2� G= in (8.53a) is a convex function while
the constraint function ⌘2 (G) := kG=�1k22� G2

=
in (8.53b) is nonconvex (Exercise 8.11).

If the optimal primal value 5 ⇤1 = 5 ⇤2 is finite, the Slater Theorem 8.17 applies to problem
(8.53a) (the Slater condition is always satisfied) and hence strong duality holds and a
dual optimal solution exists. The KKT Theorem 8.15 also applies at at G where G=�1 < 0
and ⌘1 is continuously di�erentiable. Since ⌘2 (G) is nonconvex, neither theorem applies
to problem (8.53b) even though its feasible set is convex.
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Indeed Exercise 8.27 shows that, if k2=�1k2  2=, then strong duality holds and dual
optimality is attained for (8.53a) with 5

⇤
1 = 5

⇤
2 = 0, but as long as 0 < k2=�1k2  2=,

5
⇤
2 = 0 > �1 = 3⇤2, i.e., the duality gap is unbounded and the dual problem is infeasible

for (8.53b).

Hence when we formulate di�erent representations of a convex program:

1 It is important to check that the Slater Theorem 8.17 and the KKT Theorem 8.15
are applicable so that strong duality and optimality conditions hold.

2 If points of nonsmoothness are relevant for the application, nonsmooth analysis
studied in Chapter 12 should be used to derive optimality conditions at these
points. For (8.53a), G⇤ = 0, where ⌘1 (G) is nondi�erentiable, is optimal if and only
if 2 2  soc (see Figure 8.15 or (12.61c)). ⇤

8.4 Special convex programs

In this section we apply the general theory developed in Chapter 8.3 to special classes
convex optimization problems widely used in applications.

8.4.1 Summary: general method

Consider the convex problem (8.25) reproduced here:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G)  0 (8.54)

where 5 : R= ! R and ⌘ : R= ! R; are convex functions, and � 2 R<⇥=, 1 2 R<.
The classes of problems studied in this section and in Chapter 12.8 using nonsmooth
methods are summarized in Figure 8.14 and the conclusions are summarize in Table

convex
inequality

conic
programSDPSOCPQPLP

Figure 8.14 Special classes of convex problems studied in this section and Chapter 12.8 using
nonsmooth methods.

8.3.
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5 (G) ⌘(G)  0 su�cient condition 5
⇤ = 3⇤ = 3 (_⇤,`⇤)

KKT, saddle pt

LP linear a�ne: ⌫G + 3 2 R;+ finite 5 ⇤ Th 8.23

QP quadratic a�ne: ⌫G + 3 2 R;+ feasibility (if & � 0) Th 8.24, 8.25

SOCP convex ⌘(G) 2  soc finite 5 ⇤, �Ḡ = 1 Th 8.26, 8.27
⌘(G) := ⌫̃G + 3̃ ⌘(Ḡ) 2 ri( soc)

SDP convex ⌘(G) 2  psd finite 5 ⇤, �Ḡ = 1 Th 8.28
⌘(G) := ⌫0 +

Õ
=

8=1 G8⌫8 ⌘(Ḡ) 2 ri( psd)

Conic prog. convex ⌘(G) 2  finite 5 ⇤, �Ḡ = 1 Th 12.31, 12.32
⌘(G) := ⌫G + 3 ⌘(Ḡ) 2 ri( )

Convex prog. convex convex finite 5 ⇤, �Ḡ = 1 Exercise 12.21
⌘(Ḡ) < 0

Table 8.3 Summary: strong duality, dual optimality and KKT condition.

The classes in Figure 8.14 di�er mainly in the convex constraint ⌘(G)  0:

1 Linear program (LP): 5 (G) = 2T
G and ⌘(G)  0 specifies ⌫G + 3 2 R;+ := {G 2 R; :

G � 0}, i.e., an a�ne transformation of G is in the nonnegativity cone.
2 Quadratic program (QP): 5 (G) = GT

&G + 22G with a positive semidefinite cost
matrix & and an a�ne constraint ⌫G + 3 2 ';+.6

3 Second-order cone program (SOCP): ⌘(G)  0 specifies ⌫G + 3 2  soc := {G 2 R; :
kG;�1k2  G;}, i.e., an a�ne transformation of G is in the second-order cone.

4 Semidefinite program (SDP): ⌘(G)  0 specifies ⌫G + 3 2  psd ⇢ S; , i.e., an a�ne
transformation of G is in the semidefinite cone.

5 Conic program: ⌘(G)  0 specifies ⌫G + 3 2  ✓ R; , i.e., an a�ne transformation
of G is in a closed convex cone  .

6 Convex inequality: ⌘ : R=! R; is a convex function.

The theory developed in Chapter 8.3 are used to derive three types of results for these
convex programs. The general derivation method is as follows. Some of the results in
Chapter 8.3 (Saddle-point Theorem 8.14 and primal optimality Theorem 8.16) apply
to nonconvex problems as well.

1 Dual problem. Given the primal problem (8.54), define the Lagrangian function
! (G,_,`) : R=+<+;! R:

! (G,_,`) := 5 (G)�_T (�G� 1) + `⌘(G), G 2 R=, (_,`) 2 R<+; (8.55a)

6 Sometimes QP is used to denote problems with a convex quadratic cost 5 and a general conic constraint
⌫G +3 2  .
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Then the dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

(_,`)2R<+;
3 (_,`) s.t. ` � 0 (8.55b)

2 Strong duality and dual optimality. Recall that (i) 5 and ⌘ are convex functions.
Suppose (ii) the Slater condition is satisfied, i.e., there exists Ḡ with �Ḡ = 1 and
⌘(Ḡ) < 0, and (iii) the optimal primal value 5 ⇤ is finite, i.e., �1 < 5

⇤
<1. Then

the Slater Theorem 8.17 implies strong duality and the existence of a dual optimal
solution (_⇤,`⇤) with 5

⇤ = 3⇤ = 3 (_⇤,`⇤). This does not guarantee the existence
of a primal optimal G⇤.

3 KKT condition and primal optimality. Recall that (i) 5 and ⌘ are convex functions.
Suppose (ii) the Slater condition is satisfied, i.e., there exists Ḡ with �Ḡ = 1 and
⌘(Ḡ) < 0. Then the KKT Theorem 8.15 implies that a feasible G⇤ 2 R= is optimal
if and only if there exists dual feasible (_⇤,`⇤) 2 R<+; such that

r 5 (G⇤) = �T
_
⇤ �r⌘(G⇤)`, `

⇤T
⌘(G⇤) = 0, `

⇤ � 0 (8.55c)

where (only) the first condition is rG! (G⇤,_⇤,`⇤) = 0 and requires continuous
di�erentiability of 5 and ⌘. Such a point (G⇤,_⇤,`⇤) is a saddle point that closes the
duality gap and attains primal and dual optimality, i.e., 5 ⇤ = 5 (G⇤) = 3 (_⇤,`⇤) = 3⇤.
Hence the KKT condition can be derived simply by taking the derivative of ! with
respect to G and it is su�cient for primal-dual optimality when 5 and ⌘ are convex.
This method is not applicable if 5 or ⌘ are not continuously di�erentiable.

Remark 8.10 (Nonsmooth extension). Smoothness (di�erentiability) of the cost and
constraint functions 5 ,⌘ is not important. As long as 5 ,⌘ are convex functions these
results hold verbatim at points of di�erentiability and extends naturally at nondi�er-
entiable points using set-theoretic tools. These tools, developed in Chapter 12, exploit
convexity properties, are conceptually simple and can treat a larger class of convex
problems (e.g., see Theorem 8.26 and Remark 8.11).

For example for a general conic program whose feasible set is specified, not explicitly
by a constraint function ⌘(G)  0, but abstractly by a closed convex cone as G 2  , the
Lagrangian dual problem is defined by (8.55a)(8.55b), where the penalty term `⌘(G)
in ! (G,_,`) is replaced by `G and dual feasibility ` � 0 is replaced by ` 2  ⇤. Here
 
⇤ := {` 2 R; : `T

I � 0 8I 2  } is called the dual cone of  (ses Chapter 12.1.1).
Strong duality and dual optimality hold verbatim. The KKT condition (8.55c) defined
only at points where 5 and ⌘ are continuously di�erentiable can be generalized to
a nondi�erentiable point using the concept of subgradients b⇤ 2 m 5 (G⇤) and normal
cones (see Chapter 12.8.4). ⇤

In the rest of this section we apply this general method to LP, SOCP and SDP. Refer-
ring to Table 8.3, the results on strong duality, dual optimality and the KKT condition
for QP are derived in Exercise 8.23 and those for convex problems specified by the
convex inequality ⌘(G)  0 are derived in Exercise 12.21. General conic programs are
studied in Chapter 12.8 using nonsmooth methods.
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8.4.2 Linear program (LP)

Consider the linear program:

5
⇤ := min

G2R=
2

T
G s.t. �G � 1 (8.56a)

where 2 2 R=, � 2 R<⇥= and 1 2 R<. From (8.26) the Lagrangian ! : R=+<! R of
(8.56) is

! (G,`) :=
⇣
2� �T

`

⌘T
G + 1T

` G 2 R=, ` 2 R<

the dual function is

3 (`) := min
G2R=

! (G,`) =
⇢
1

T
` if �

T
` = 2

�1 if �
T
` < 2

and the dual problem is

3
⇤ := max

`�0
3 (`) = max

`�0
1

T
` s.t. �

T
` = 2 (8.56b)

Let - := {G 2 R= : �G � 1} and . := {` 2 R< : �T
` = 2, ` � 0} be the feasible sets.

The primal and dual problems in (8.56) can each be finite feasible, feasible but
unbounded, or infeasible. By definition the primal problem is feasible if 5 ⇤ < 1 and
the dual problem is feasible if 3⇤ > �1. Strong duality of LP implies that only four,
instead of nine, scenarios are possible (see Table 8.4 and its caption). Moreover a
feasible solution (G⇤,`⇤) is optimal if and only if it satisfies complementary slackness,
as we will show. We start by stating in the next lemma that a finite 5

⇤ (feasibility is
insu�cient) implies the existence of a primal optimal solution G⇤ 2 - with 5 (G⇤) = 5

⇤;
indeed a finite 5

⇤ also implies the existence of dual optimal `⇤ and strong duality
(Theorem 8.23). Lemma 8.22 applies to the dual problem (8.56b) if 3⇤ is finite.

Lemma 8.22 (LP primal optimality). Consider the linear program (8.56a). If �1 <

5
⇤
<1 then an optimal solution G⇤ 2 - exists with 2T

G
⇤ = 5

⇤.

Proof Let - := {G 2 R= : �G � 1} be the feasible set of (8.56a). Since 5
⇤ is finite,

- is nonempty and closed. If the feasible set - is bounded or if there is a W 2 R such
that the level set +W is nonempty and bounded, then - \+W is a compact (closed and
bounded) set. The minimization (8.56a) can be taken over - \+W and a minimizer G⇤

therefore exists by Theorem 8.16.

Consider then the case where - is unbounded and every nonempty level set +W :=
{G 2 R= : 2T

G  W} is unbounded. Let {+W: } be a nested sequence of level sets with
W: # 5 ⇤. The set of solutions of (8.56a) is -⇤ := \1

:=1

�
- \+W:

�
. The finiteness of 5 ⇤

means that - \+W: < ; for each : . Moreover - \+W: is polyhedral for each : . Then
-
⇤ < ; follows from the following fact (see e.g. [54, Props. 1.4.9, 1.4.10, pp.58–61]

for a proof) which underlies the simplicity of linear programs.
Fact. Consider a sequence {⇠: } of nonempty sets ⇠: .
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1 The intersection \1
:=1⇠: < ; if and only if there is a sequence {G: } that is bounded

where G: 2 ⇠: , i.e., there is A with kG: k  A for all : .
2 If {⇠: } are polyhedral (which is the case for linear programs), then \1

:=1⇠: < ;.

⇤

The next theorem is the main result on LP duality and optimality. Though the proof
below appeals to the Slater Theorem 8.17, it can also be proved directly using the
Farkas Lemma (Theorem 8.12); see Exercise 8.22.

Theorem 8.23 (LP duality and KKT). Consider the linear program and its dual (8.56).

1 Strong duality and primal-dual optimality. Exactly one of the following holds:
1 If �1 < 5

⇤
<1 or �1 < 3

⇤
<1 then both primal and dual problems attain

optimality and strong duality holds, i.e., there exists (G⇤,`⇤) 2 - ⇥. such that

2
T
G
⇤ = 5

⇤ = 3
⇤ = 1

T
`
⇤

2 If the primal problem is feasible but unbounded then 5
⇤ = �1 = 3⇤, i.e., the

dual problem is infeasible.
3 If the dual problem is feasible but unbounded then 3⇤ =1 = 5 ⇤, i.e., the primal

problem is infeasible.
4 Otherwise, both are infeasible, i.e., 5 ⇤ =1 and 3⇤ = �1.

2 KKT characterization. A feasible G⇤ 2 - is optimal if and only if there is a dual
feasible `⇤ 2 . that satisfies complementary slackness, i.e.,

�
T
`
⇤ = 2, `

⇤T (�G⇤ � 1) = 0, `
⇤ � 0 (8.57)

Such a point (G⇤,`⇤) is a saddle point and a KKT point and is hence primal-dual
optimal with 2T

G
⇤ = 1T

`
⇤.

Proof Suppose 5
⇤ is finite (If 3⇤ is finite, Lemma 8.22 applies to the dual problem

(8.56b) and the argument below is symmetric and omitted). Then Lemma 8.22 implies
the existence of a primal optimal solution G⇤ 2 - with 2T

G
⇤ = 5

⇤. This also implies that
the Slater condition (8.45) is satisfied. The Slater Theorem 8.17 then implies that there
exists a dual optimal solution `⇤ 2 . such that 5 ⇤ = 3⇤ = 3 (`⇤). (For linear programs,
this step can be proved using the Farkas Lemma (Theorem 8.12); see Exercise 8.22.)

If 5 ⇤ = �1 then weak duality Lemma 8.13 implies that 3⇤  5 ⇤ = �1. Similarly if
3
⇤ =1 then 5

⇤ =1 by weak duality. The only case that is not covered by the three
cases above is when both 5 ⇤ =1 and 3⇤ =�1. This is possible as Example 8.14 shows.

Finally given any primal feasible point G⇤ 2 - and any `⇤ � 0, we need to show that
(G⇤,`⇤) is primal-dual optimal if and only if (G⇤,`⇤) satisfies (8.57). Suppose (G⇤,`⇤)
satisfies (8.57). Then `⇤ 2 . and

1
T
`
⇤ = 2

T
G
⇤ � `⇤T (�G⇤ � 1)  2

T
G
⇤ (8.58)
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where the first equality follows from `
⇤ 2 . and the inequality follows from (G⇤,`⇤) 2

-⇥. . Moreover the complementary slackness in (8.57) implies that equality is attained
in (8.58), i.e., 1T

`
⇤ = ! (G⇤,`⇤) = 2T

G
⇤. The weak duality Lemma 8.13 then implies

that (G⇤,`⇤) is primal-dual optimal and closes the duality gap. Conversely suppose
(G⇤,`⇤) 2 - ⇥. is primal-dual optimal. Then both 5 ⇤ = 5 (G⇤) and 3⇤ = 3 (`⇤) are finite
and therefore by part 1, strong duality holds, i.e., 1T

`
⇤ = 2T

G
⇤. This and (8.58) then

imply `⇤T (�G⇤ �1) and therefore (G⇤,`⇤) satisfies (8.57). Such a point is a saddle-point
and a KKT point according to Theorem 8.15. ⇤

Example 8.13 (Equality and nonnegativity constraints). Adapt Theorem 8.23 to linear
program of the form:

1 5
⇤ := minG2R= 2T

G s.t. �G = 1, G � 0 where 2 2 R=, � 2 R<⇥= and 1 2 R<.
2 5

⇤ := minG2R= 2T
G s.t. �G = 1, ⌫G + 3 � 0 where 2 2 R=, � 2 R<⇥=, 1 2 R<,

⌫ 2 R;⇥= and 3 2 R; .

Solution. For part 1 we will show that the condition for strong duality and primal-dual
optimality remains that same as in Theorem 8.23 but the KKT condition (8.57) is
modified to

�
T
_
⇤ + `⇤ = 2, `

⇤T
G
⇤ = 0, `

⇤ � 0 (8.59)

The Lagrangian ! : R2=+<! R is

! (G,_,`) :=
⇣
2� �T

_� `
⌘T
G + 1T

_ G 2 R=, _ 2 R<, ` 2 R=

the dual function is

3 (_,`) := min
G2R=

! (G,_,`) =
⇢
1

T
_ if �

T
_+ ` = 2

�1 if �
T
_+ ` < 2

and the dual problem is

3
⇤ = max

_2R<,`�0
1

T
_ s.t. �

T
_+ ` = 2

Let - := {G 2 R= : �G = 1,G � 0} and . := {(_,`) 2 R<+= : �T
_+ ` = 2, ` � 0} be the

feasible sets. All the structural results of Theorem 8.23 holds. The only change is that
(8.58) becomes, since �G⇤ = 1,

1
T
`
⇤ = 2

T
G
⇤ � `⇤TG⇤  2

T
G
⇤

and hence a feasible G⇤ 2 - is optimal if and only if there exists a dual optimal
(_⇤,`⇤) 2 R<+= that satisfies (8.59).

Part 2 can be converted to the problem in part 1 by introducing the slack variable
B 2 R;: 5 ⇤ := min(G,B)2R=+; 2

T
G s.t. �G = 1, ⌫G+3� B = 0, B � 0. Then (8.59) becomes

�
T
_
⇤ +⌫T

`
⇤ = 2, `

⇤T
B
⇤ = 0, `

⇤ � 0

⇤
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As Theorem 8.23 shows, weak and strong duality imply that only 4 feasibility cases
are possible for the primal and dual problems, instead of 9 cases, as explained in
Table 8.4 and its caption. The only case where the optimal values are attained at finite
(G⇤,_⇤,`⇤) is when both problems are bounded feasible.

primal
bounded feasible unbounded feasible infeasible

dual
bounded feasible (G⇤,_⇤,`⇤) ⇥ (sd) ⇥ (sd)
unbounded feasible ⇥ (sd) ⇥ (wd) 5

⇤ = 3⇤ =1
infeasible ⇥ (sd) 5

⇤ = 3⇤ = �1 3
⇤ = �1 <1 = 5

⇤

Table 8.4 Four possibilities: Strong duality in Theorem 8.23 excludes 4 possibilities labeled
“⇥(sd)”. The 5th impossibility, labeled “⇥(wd)”, violates weak duality. Optimal values are attained
only in one case.

Example 8.14 (LPs with infinite values). 1 Infeasible LP pair. Consider the LP

minG G such that


1
�1

�
G �


0
1

�
. Its dual is max`�0 `2 such that �`2 = 1. Clearly

neither the primal nor the dual is feasible and hence 3⇤ = �1 <1 = 5
⇤.

2 Unbounded primal, infeasible dual. Consider

5
⇤ := min

G�0
�G1 +UG2 s.t. G1� G2 = 0

where U < 1. Then the optimal primal value is 5 ⇤ = �1 and there is no finite G
that attains it. From Example (8.13) the dual function is

3 (_,`) :=

8>><
>>:

0 if

�1
U

�
=


1
�1

�
_+ `

�1 otherwise

Multiplying both sides of the equality constraint by (1,1) yields `1 + `2 = �(1�
U) < 0. Hence there is no (_,`) that satisfies ` � 0. Therefore the dual problem is
infeasible, or 3⇤ := �1 = 5

⇤. ⇤

Optimal basic feasible solution.

The first widely used algorithm for solving linear programs is the simplex algorithm
which makes use of the fact that if a LP has a finite optimal solution G⇤ then it has
an optimal solution that is an extreme point (vertex) of the feasible set - := {G 2 R= :
�G � 1} where � 2 R<⇥=. A finite 5

⇤ implies < � =. For each feasible point G 2 -
let �̂ (G) := {8 2 {1, . . . ,<} : 0T

8
G = 18} be the set of all active constraints at G, where

0
T
8

is the 8th row of �. A feasible G is an extreme point of - if and only if �̂ (G)
contains =  < linearly independent active constraints at G, i.e., {08 : 8 2 �̂ (G)} contains
= linearly independent 08 . In the simplex algorithm literature a feasible extreme point
is called a basic feasible solution and an optimal extreme point is called an optimal
basic feasible solution. The simplex algorithm starts from a basic feasible solution
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and moves to another basic feasible solution with a lower cost until an optimal basic
feasible solution is found. Even though the simplex algorithm is usually replaced by
interior point methods in modern LP solvers, it reveals the following useful structure
of an optimal basic feasible solution G⇤ of linear programs.

For each extreme point G of - let � (G) ✓ �̂ (G) denote any collection of = linearly
independent constraints, i.e., {08 : 8 2 � (G)} is a set of = linearly independent vectors.
Decompose (�,1) according to � = � (G):

� =:

�
� (G)

��� (G)

�
, 1 =:


1
� (G)

1�� (G)

�

so that �
� (G)G = 1� (G) and ��� (G)G > 1�� (G) . Then �

� (G) is a =⇥= nonsingular matrix
whose columns form a basis of R=. Hence an optimal basic feasible solution (extreme
point) G⇤ of the linear program (8.56) satisfies

G
⇤ = �

�1
� (G⇤) 1� (G⇤) (8.60)

In Exercise 8.22 the set � (G) (or �̂ (G)) is used to construct an optimal dual variable `⇤.

The basic idea is to use the Farkas lemma to show that 2 2 cone
⇣
�

T
� (G⇤)

⌘
and hence

2 = �T
� (G⇤)`

⇤
� (G⇤) for some `⇤

� (G⇤) � 0.

8.4.3 Convex quadratic program (QP)

A quadratic program (QP) has a quadratic cost function and a�ne constraints and a
quadratically constrained quadratic program (QCQP) has a quadratic cost function and
quadratic constraints. In this subsection we study QPs that are convex.

Convex quadratic program (QP).

Consider first an unconstrained convex quadratic program:

5
⇤
1 := min

G2R=
5 (G) := G

T
&G + 22T

G (8.61)

where & 2 R=⇥= is positive semidefinite, i.e., & ⌫ 0, and 2 2 R=. The cost function
5 is convex if and only if & ⌫ 0. Since & is positive semidefinite it has a spectral
decomposition

& = *⇤*T =
⇥
*A *=�A

⇤ 
⇤A 0
0 0

� 
*

T
A

*
T
=�A

�
= *A⇤A*T

A
(8.62a)

where A is the rank of &, ⇤A is a diagonal (sub)matrix of the A positive eigenvalues
of & and the columns of *A 2 R=⇥A are the corresponding A  = (real) orthonormal
eigenvectors. The columns of*=�A 2R=⇥(=�A ) are =�A orthonormal (real) eigenvectors
corresponding to the 0 eigenvalue, if any. The matrix & is positive definite if A = = and
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positive semidefinite but not positive definite if A < =. The range space, null space and
the pseudo-inverse &† of & are respectively:

range(&) = span(*A ), null(&) = span(*=�A ), &† :=*A⇤�1
A
*

T
A
, A  = (8.62b)

because*T
A
*=�A = 0 (see Chapter A.7 on pseudo-inverse and Theorem A.16 on orthog-

onal diagonalization for psd matrices). If A = = then &† = &�1. Unconstrained convex
QP can be solved explicitly, as stated below and proved in Exercise 8.23.

Theorem 8.24 (Unconstrained convex QP). Consider the unconstrained QP (8.61).

1 If 2 2 range(&) then a minimizer G⇤ and the minimal value 5 ⇤1 are respectively:

G
⇤ = �&†

2, 5
⇤
1 = �2T

&
†
2

where &† is the pseudo-inverse of & defined in (8.62b). Moreover the set of
minimizer is G⇤ = �&†

2+null(&).
2 If 2 8 range(&) then 5

⇤
1 = �1.

3 If & � 0 is positive definite then the unique minimizer G⇤ and the minimum value
5
⇤
1 are respectively:

G
⇤ = �&�1

2, 5
⇤
1 = �2T

&
�1
2

In particular range(&) = R= and &† =&�1.

Consider next an a�nely constrained version of (8.61):

5
⇤
2 := min

G2R=
5 (G) := G

T
&G + 22T

G s.t. �G = 1, ⌫G + 3 � 0 (8.63)

where & ⌫ 0, 2 2 R=, � 2 R<⇥=, 1 2 R<, ⌫ 2 R;⇥= and 3 2 R; . The quadratic program
(8.63) reduces to a linear program if & = 0. We next state strong duality and the KKT
condition for (8.63) when & � 0 is positive definite. The result is proved in Exercise
8.24 for the more general case when & ⌫ 0. When & � 0 let

&̂ :=

�

⌫

�
&
�1 ⇥

�
T

⌫
T⇤ , 2̂ :=


�1
3

�
�


�

⌫

�
&
�1
2 (8.64)

Theorem 8.25 (Constrained convex QP). Suppose the QP (8.63) is feasible and& � 0.

1 Dual problem. The dual problem is

3
⇤ := �2T

&
�1
2 � min

_2R<,`2R;+

✓ ⇥
_

T
`

T⇤
&̂


_

`

�
+ 2 2̂T


_

`

� ◆

where R;+ := {` 2 R; : ` � 0}.
2 Strong duality, dual optimality, KKT condition. Strong duality holds and dual

optimality is attained. Moreover a feasible G⇤ is optimal if and only if there exists
(_⇤,`⇤) 2 R<+; such that `⇤ � 0 and

G
⇤ = &

�1 (�T
_
⇤ +⌫T

`
⇤ � 2), `

⇤T (⌫G⇤ + 3) = 0 (8.65)
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Such a point is a saddle point and a KKT point that is primal-dual optimal and
closes the duality gap, i.e., 5 ⇤2 = 5 (G⇤) = 3 (_⇤,`⇤) = 3⇤.

Exercise 8.25 studies the following convex quadratically constrained quadratic pro-
gram (QCQP):

5
⇤ := min

G2R=
5 (G) := G

T
&0G + 22T

0G s.t. G
T
&1G + 22T

1G  3

where&0 � 0 is positive definite,&1 ⌫ 0 is positive semidefinite, 20,21 2 R= and 3 2 R.
It shows that the dual problem is:

3
⇤ := � min

`2R+
3` + (20 + `21)T (&0 + `&1)�1 (20 + `21)

strong duality holds and dual optimality is attained if 5 ⇤ is finite and there exists Ḡ
such that ḠT

&1Ḡ + 22T
1 Ḡ < 3. In that case a feasible G⇤ is optimal if and only if there

exists `⇤ 2 R such that `⇤ � 0 and

(&0 + `⇤&1)G⇤ + (20 + `⇤21) = 0, `
⇤ (G⇤T&1G

⇤ + 22T
1G
⇤ � 3) = 0

8.4.4 Second-order cone program (SOCP)

A second-order cone program (SOCP) is a convex optimization problem where either
the variable G or its a�ne transformation ⌫̃G + 3̃ is in the standard second-order cone
 soc := {G 2 R= : kG=�1k2  G=} defined in (8.16),

Second-order cone.

Consider the convex optimization problem:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  soc (8.66a)

where 5 : R=! R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, and  soc ✓ R=
is the standard second-order cone defined in (8.16), reproduced here (G: := (G1, · · · ,G: )
denotes the vector consisting of the first : entries of G),

 soc := {G 2 R= : kG=�1k2  G=} (8.66b)

This problem is called a second-order cone program (SOCP). It reduces to a linear
program (8.56a) if  soc is polyhedral (e.g.,  soc = {G 2 R= : G � 0}) and 5 is linear. In
this chapter we assume 5 is continuously di�erentiable though this is not important (see
the extension to nonsmooth convex setting in Chapter 12.8.3). Let ⌘(G) := kG=�1k2�G=.
Then ⌘(G) is convex, di�erentiable if and only if G=�1 < 0, and G 2  soc is equivalent
to ⌘(G)  0.

To derive the dual problem of (8.66) and the KKT condition, let the Lagrangian
function ! : R=+<+1! R be

! (G,_,`) := 5 (G) � _T (�G� 1) + `
⇣
kG=�1k2� G=

⌘
, G 2 R=, _ 2 R<,` 2 R
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Then the dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

_,`�0
3 (_,`) (8.66c)

Let - :=
�
G 2 R= : �G = 1, kG=�1k2  G=

 
and . :=

�
(_,`) 2 R<+1 : ` � 0

 
be the fea-

sible sets.

Theorem 8.26 (SOCP duality and KKT). Consider the SOCP and its dual (8.66).

1 Strong duality and dual optimality. Suppose 5 ⇤ is finite, and there exists Ḡ such that
�Ḡ = 1 and kḠ=�1k2 < Ḡ=. Then there exists a dual optimal solution (_⇤,`⇤) 2 .
that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2 KKT characterization. A primal and dual feasible point (G⇤,_⇤,`⇤) 2 - ⇥. with
[G⇤]=�1 < 0 is primal-dual optimal and closes the duality gap if and only if and

r 5 (G⇤) = �
T
_
⇤ + `⇤


�[G⇤]=�1

k [G⇤]=�1k2

�
, `

⇤
⇣
k [G⇤]=�1k2� G⇤=

⌘
= 0 (8.67)

Such a point (G⇤,_⇤,`⇤) is a saddle point and a KKT point.

Proof Part 1 follows from the Slater Theorem 8.17 since the constraint function
⌘(G) := kG=�1k2�G= in (8.66b) is convex (and di�erentiable if and only if G=�1 < 0). Part
2 follows from the KKT Theorem 8.15 because (8.67) in the theorem are the stationarity
condition rG! (G⇤,_⇤,`⇤) = 0 and the complementary slackness condition. ⇤

Remark 8.11. 1 Primal optimality. Unlike for a linear program, a finite 5 ⇤ and the
Slater condition do not guarantee that the optimal value 5

⇤ is attained at a finite
G
⇤. In particular, even when a dual optimal solution exists that closes the duality

gap under the Slater condition, there may not be any feasible G⇤ that satisfies the
KKT condition; see Examples 8.9 and 8.10.

2 KKT under Slater condition. If we assume the Slater condition, i.e., there exists
Ḡ with �Ḡ = 1 and kḠ=�1k2 < Ḡ=, then the KKT characterization in Theorem 8.26
can be strengthened to: a feasible G⇤ 2 - is optimal if and only if there exist
(_⇤,`⇤) 2 . such that (8.67) holds. Without the Slater condition, the existence of a
primal optimal G⇤ (and hence finite 5 ⇤) does not guarantee the existence of a dual
optimal (_⇤,`⇤). ⇤

The condition [G⇤]=�1 < 0 in Theorem 8.26 is needed because the constraint function
⌘(G) := kG=�1k2 � G= is nondi�erentiable if G=�1 = 0. The di�erentiability of the cost
and constraint functions is however unimportant as long as these functions are convex.
When [G⇤]=�1 = 0, the KKT condition requires the Slater condition that there exists Ḡ
such that �Ḡ = 1 and kḠ=�1k2 < Ḡ=. Then

1 Case G⇤
=
> k [G⇤]=�1k2 = 0: G⇤ is optimal if and only if there exists _⇤ 2 R< such

that r 5 (G⇤) = �T
_
⇤.
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2 Case G⇤ = 0: G⇤ = 0 is optimal if and only if there exist _⇤ 2 R< and [⇤ 2  soc such
that r 5 (0) = �T

_
⇤ +[⇤.

This is derived in Chapter 12.8.3 using techniques for nonsmooth analysis (see (12.61)).
Figure 8.15 illustrates why the optimality condition does not depend on di�erentiability.

xn−1

x*= 0
f *= cTx*= 0

xn

−c decreasing
||cn−1||2 ≤ cn

Ksoc

(a) 2 2  soc

xn−1

xn
*→∞
f *= cTx*→ −∞

xn

−c decreasing
||cn−1||2 > cn

Ksoc

(b) 2 8  soc

Figure 8.15 Theorem 8.26: optimality condition at G⇤ = 0 where ⌘(G) is nondi�erentiable with
5 (G) := 2T

G and without �G = 1. (a) 2 2  soc: G⇤ = 0 and 5
⇤ = 0. (b) 2 8  soc: 5 ⇤ = �1.

SOC constraint.

Consider the convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, k⌫G + 3k2  VT

G + X (8.68)

where 5 : R= ! R is a real-valued convex continuously di�erentiable function, � 2
R
<⇥= and 1 2 R<, ⌫ 2 R(;�1)⇥=, 3 2 R;�1, V 2 R= and X 2 R. The constraint k⌫G+3k2 
V

T
G+X is the second-order cone constraint studied in Chapter 8.2.1. The problem (8.68)

is also called a second-order cone program (SOCP) because the quadratic constraint
says that an a�ne transformation of G lies in the second-order cone  soc. It reduces to
a linear program when ⌫ = 0 or ; = 1 and 5 (G) is linear. It subsumes (8.66) as a special
case. The assumption that 5 is continuously di�erentiable is relaxed in Chapter 12.8.3.

To derive the dual problem of (8.68) and the KKT condition, we reduce it to the case
of (8.66) with an auxiliary variable I and an additional equality constraint. Consider
the equivalent problem:

5
⇤ := min

(G,I)2R=+;
5 (G) s.t. �G = 1, I = ⌫̃G + 3̃, I 2  soc (8.69a)

where  soc is the second-order cone defined in (8.66b) and

⌫̃ :=

⌫

V
T

�
, 3̃ :=


3

X

�
(8.69b)
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The Lagrangian ! : R=+; ⇥R<+;+1! R is: for G 2 R=, I 2 R; ,_ 2 R<,W 2 R; ,` 2 R,

! (G, I,_,W,`) := 5 (G) � _T (�G� 1) � WT (⌫̃G + 3̃ � I) + `
⇣
kI;�1k2� I;

⌘
The dual problem is (Exercise 8.26):

3
⇤ := max

_,W

⇣
1

T
_� 3̃T

W

⌘
+ 30 (_,W) s.t. W 2  soc (8.69c)

where

30 (_,W) := min
G2R=

⇣
5 (G)� (�T

_+ ⌫̃T
W)T

G

⌘
(8.69d)

For example when the cost function in (8.69a) is linear 2T
G the dual problem is:

3
⇤ := max

(_,W)2R<+;
1

T
_� 3̃T

W s.t. �
T
_+ ⌫̃T

W = 2, kW;�1k2  W;

Let - :=
�
G 2 R= : �G = 1, k⌫G + 3k2  VT

G + X
 

and . :=
�
(_,`) 2 R<+1 : ` � 0

 
.

Note that - ⇥. does not contain the auxiliary variable I and the corresponding dual
variable W. Even though the dual problem does not depend on `, the complementary
slackness in the KKT condition does.

Theorem 8.27 (SOCP duality and KKT). Consider the SOCP and its dual (8.69).
Suppose there exists Ḡ such that �Ḡ = 1 and k⌫Ḡ + 3k2 < V

T
Ḡ + X so that the Slater

condition (8.45) is satisfied.

1 Strong duality and dual optimality. Suppose 5 ⇤ is finite. Then there exists a dual
optimal solution (_⇤,W⇤,`⇤) that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,W⇤,`⇤).

2 KKT characterization. A point G⇤ 2 - with ⌫G⇤ + 3 < 0 is optimal if and only if
there exist (_⇤,`⇤) 2 . such that

r 5 (G⇤) = �
T
_
⇤ + `⇤

⇣
�⌫T (⌫G⇤ + 3) + V(VT

G
⇤ + X)

⌘

0 = `
⇤
⇣
k⌫G⇤ + 3k2� (VT

G
⇤ + X)

⌘

Such a point (G⇤,_⇤,`⇤), together with I⇤ := ⌫̃G⇤ + 3̃ and W⇤ = `⇤

�[I⇤];�1

k [I⇤];�1k2

�
2

 soc, is a saddle point and a KKT point for (8.69).

Proof If there exists an Ḡ such that �Ḡ = 1 and k⌫Ḡ + 3k2 < VT
Ḡ + X then there exists

a Ī such that Ī = ⌫̃G + 3̃ and k Ī;�1k2 < Ī; . This is the Slater condition for (8.69a) and
hence part 1 follows from Theorem 8.26.

For part 2 we derive the stationarity condition rG! (G⇤, I⇤,_⇤,W⇤,`⇤) = 0 and
rI! (G⇤, I⇤,_⇤,W⇤,`⇤) = 0 as well as the complementary slackness condition in the
KKT Theorem 8.15. When I;�1 < 0 we have

rG! (G, I,_,W,`) = r 5 (G)� �T
_ � ⌫̃T

W, rI! (G, I,_,W,`) = W + `
"

I
;�1

kI;�1 k2
�1

#
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Hence the KKT condition in terms of (G⇤, I⇤) and (_⇤,W⇤,`⇤) is:

r 5 (G⇤) = �
T
_
⇤ + ⌫̃T

W
⇤, W

⇤ = `
⇤
"
�[I⇤ ];�1

k [I⇤ ];�1 k2
1

#
, `

⇤
⇣
k [I⇤];�1k2� I⇤;

⌘
= 0

Eliminating I⇤ and W⇤ yields the KKT condition in the theorem. The remaining claim
follows from the KKT Theorem 8.15. ⇤

As in Theorem 8.26, the condition ⌫G⇤ + 3 < 0 is needed because the constraint
function ⌘(I) := kI;�1k2� I; is nondi�erentiable if I;�1 = ⌫G+3 = 0. When ⌫G⇤+3 = 0,
the KKT condition requires the Slater condition in the theorem that there exists Ḡ such
that �Ḡ = 1 and k⌫Ḡ + 3k2 < VT

Ḡ + X. Then a point G⇤ 2 - with ⌫G⇤ + 3 = 0 is optimal
if and only if

1 Case VT
G
⇤ + X > 0: there exists _⇤ 2 R< such that r 5 (G⇤) = �T

_
⇤.

2 Case VT
G
⇤ + X = 0: there exists _⇤ 2 R< and [⇤ 2  soc such that r 5 (0) = �T

_
⇤ +

⌫̃
T
[
⇤.

This is derived in Chapter 12.8.3 using techniques for nonsmooth analysis (see (12.64)).

Conic program.

A generalization of SOCP (8.66) and (8.68) is the following convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  (8.70)

where 5 :R=!R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, and  ✓ R= is a
general closed convex cone. The Slater Theorem 8.17 and the KKT Theorem 8.15 are
formulated in this chapter for problems where the constraint functions are explicitly
given and continuously di�erentiable. Even though part of the constraints in (8.70)
is not explicit, since  is a convex cone, a dual problem can be formulated in terms
of what is called its dual cone. We derive in Chapter 12.8.4 a su�cient condition for
strong duality and dual optimality and the KKT condition for the general conic program
(8.70) where the constraint functions are not fully specified and the cost function 5 is
convex but not necessarily continuously di�erentiable (Theorem 12.31).

8.4.5 Semidefinite program (SDP)

Recall the vector space S= of Hermitian matrices over the field R of real numbers,
not over C, and the cone  psd of positive semidefinite matrices in the vector space S=,
studied in Chapter 8.2.2. For two Hermitian matrices G, H 2 S=, their inner product is
G · H := tr

�
H

H
G

�
=

Õ
9,: G 9: H 9: is a real number and satisfies G · H = H · G. Furthermore

 psd is a proper self-dual cone.
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Consider the following convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G) 2  psd (8.71a)

where 5 : R=! R is a real-valued convex function, � 2 R<⇥=, 1 2 R<,  psd ✓ S; is
the cone of positive semidefinite matrices, and ⌘ : R=! S; is the function

⌘(G) := ⌫0 +
=’
8=1

G8⌫8 , ⌫8 2 S; , 8 � 0 (8.71b)

The constraint ⌘(G) 2  psd is called a linear matrix inequality and is sometimes denoted
as ⌘(G) ⌫ psd 0 or simply ⌘(G) ⌫ 0 if the underlying cone  psd is understood. SDP
(8.71) reduces to LP if ; = 1 (see Example 8.13 of Chapter 8.4.2). It also includes
SOCP (8.66a) as a special case because G 2  soc if and only if the “arrow matrix”
G= [G=�1]T

G
=�1

G=I=�1

�
2  psd. This is because, if G= > 0, then the arrow matrix is psd if and

only if its Schur complement G= � kG=�1]k22/G= � 0. (Theorem A.4 in Chapter A.3.1).

To define the dual problem let _ 2 R< and / 2  ⇤psd ✓ S; denote dual variables,

where  ⇤psd is the dual cone of  psd. The Lagrangian is7 , for G 2 R=,_ 2 R<,/ 2  ⇤psd,

! (G,_,/) := 5 (G)�_T (�G� 1)� / ·
 
⌫0 +

=’
8=1

G8⌫8

!
(8.72a)

The dual function 3 (_,/) := minG2R= ! (G,_,/) is:

3 (_,/) =
⇣
1

T
_ � / · ⌫0

⌘
+ 30 (_,/)

30 (_,/) := min
G2R=

5 (G)�_T
�G�

’
8

G8 (/ · ⌫8) (8.72b)

Hence the dual problem is

3
⇤ := max

_2R<,/ 2S;

⇣
1

T
_ � tr(⌫H

0 /)
⌘
+ 30 (_,/) s.t. / 2  ⇤psd (8.72c)

If 5 (G) = 2T
G then

3
⇤ := max

_2R<,/ 2 ⇤psd

⇣
1

T
_� tr(⌫H

0 /)
⌘

s.t. 28 =
’
9

� 98_ 9 + tr(⌫H
8
/), 8 = 1, . . . ,=

A point (G⇤,_⇤,/⇤) 2 R= ⇥R<⇥S; is a saddle point if

min
G2R=

! (G,_⇤,/⇤) = ! (G⇤,_⇤,/⇤) = max
_2R<,/ 2 ⇤psd

! (G⇤,_,/)

Strong duality, dual optimality and KKT characterization of SDP (8.71) is stated in
the following theorem. Since  psd is self-dual, i.e.,  ⇤psd =  psd,  ⇤psd above can all be
replaced by  psd. This property is not important and therefore we continue to use  ⇤psd
in the theorem.
7 A justification for the definition of Lagrangian is weak duality: for any feasible G and any / 2  ⇤psd,
! (G,_,/ )  5 (G) since ⌘ (G) 2  psd and hence / · ⌘ (G) � 0.
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Theorem 8.28 (SDP strong duality and KKT). Consider the SDP (8.71) and its dual
(8.72). Suppose there exists Ḡ 2 R= such that �Ḡ = 1 and ⌘(Ḡ) 2 ri( psd). Then

1 Strong duality and dual optimality. If 5 ⇤ is finite then there exists a dual optimal
solution (_⇤,/⇤) 2 R<⇥ ⇤psd that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,/⇤).

2 KKT characterization. A feasible G⇤ is optimal if and only if there exists a dual
feasible (_⇤,/⇤) 2 R<⇥ ⇤psd such that

tr(⌘(G⇤)H
/
⇤) = 0,

m 5

mG8

(G⇤) =
’
9

� 98_ 9 + tr(⌫H
8
/
⇤), 8 = 1, . . . ,=

In this case (G⇤,/⇤) is a saddle point that closes the duality gap and is primal-dual
optimal. ⇤

Theorem 8.28, as well as Theorem 8.29 below, are obtained by applying the Slater
Theorem 12.27 and the generalized KKT Theorem 12.21 to the vector space of S= and
SDP.

We often use the following form of the semidefinite program with inequality con-
straints:

3
⇤ := min

/ 2 psd
tr

⇣
⌫

H
0 /

⌘
s.t. tr

⇣
⌫

H
8
/

⌘
 28 , 8 = 1, . . . ,= (8.73)

where  psd ⇢ S; . For instance the semidefinite relaxation of optimal power flow prob-
lems in Chapter 10.1.1 takes this form. This is equivalent to problem (8.72) without
the a�ne constraint �G = 1, noting that  ⇤psd =  psd. We now derive its dual problem.

Let the Lagrangian be

! (/ ,G) := tr
⇣
⌫

H
0 /

⌘
+

=’
8=1

G8

⇣
tr(⌫H

8
/)� 28

⌘
, / 2  psd, G 2 R=+

and the dual function be 5 (G) := min/ 2 psd ! (/ ,G) = �2T
G+min/ 2 psd / · ⌘(G), where

⌘(G) is defined in (8.71b). Since the constraint / 2  psd is not dualized, the minimiza-
tion over / in 5 (G) is over  psd, not S; . If ⌘(G) 2  ⇤psd then / · ⌘(G) � 0 for all / 2  psd

whereas if ⌘(G) 8  ⇤psd then, by the definition of dual cone, there exists /̄ 2  psd such

that /̄ · ⌘(G) < 0. Hence

min
/ 2 psd

/ · ⌘(G) =

(
0 if ⌘(G) 2  ⇤psd

�1 otherwise

Since  ⇤psd =  psd, the dual function is then (recalling that G � 0)

5 (G) =
⇢
�2T

G if G � 0, ⌘(G) 2  psd

�1 otherwise
(8.74a)

The dual problem 5
⇤ := maxG2R= 5 (G) is

5
⇤ := � min

G2R=
2

T
G s.t. G � 0, ⌘(G) 2  psd (8.74b)
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Recall that all eigenvalues of a matrix / 2  psd are nonnegative. The interior int( psd)
of  psd is the set of all positive definite matrices whose eigenvalues are strictly positive.

Theorem 8.29 (SDP strong duality and KKT). Consider the SDP (8.73) and its
dual (8.74). Suppose there exists a positive definite matrix /̄ 2 int( psd) such that
tr

�
⌫

H
8
/̄

�
 28 , for 8 = 1, . . . ,=. Then

1 Strong duality and dual optimality. If 3⇤ is finite then there exists a dual optimal
solution G 2 R= that closes the duality gap, i.e., 3⇤ = 5

⇤ = 5 (G⇤).
2 KKT characterization. A feasible /⇤ 2  psd is optimal if and only if there exists

an G⇤ 2 R= such that

⌘(G⇤) 2  psd, G
⇤ � 0, G

⇤
8
(28 � /⇤ · ⌫8) = 0, 8 = 1, . . . ,=

In this case (G⇤,/⇤) is a saddle point that closes the duality gap and is primal-dual
optimal. ⇤

8.5 Optimization algorithms

Even though OPF can be formulated as an optimization problem in the complex domain
using the complex form of power flow equations (e.g., in (9.9) or (9.16) for single-phase
OPF in BIM), in computing a solution, it is first converted into a problem in the real
domain; see Remark 9.2. OPF can also be formulated directly in the real domain using
the polar form (4.27) or the Cartesian form (4.28) of the power flow equations. We
therefore present and analyze algorithms for solving OPF in the real domain.

Consider the problem

min
G

5 (G) subject to G 2 - (8.75)

where 5 : R=! R is continuously di�erentiable and - ✓ R= is nonempty, closed and
convex. Let the column vector r 5 (G) denote the gradient of 5 evaluated at G, i.e.,
[r 5 (G)]8 := m 5 /mG8 , 8 = 1, . . . ,=. Recall that a point G⇤ is a local minimizer if 5 (G⇤) is
minimum on a neighborhood of G⇤, i.e., there exists A > 0 such that 5 (G⇤)  5 (G) for
all G 2 ⌫A (G⇤)\ - . It is a global minimizer if 5 (G⇤)  5 (G) for all G 2 - .

If - = R= then the minimization is unconstrained. The condition r 5 (G⇤) = 0 is
necessary for G⇤ to be a local minimizer; if 5 is convex then it is also su�cient for G⇤

to be a global minimizer. For constrained minimization where - is a strict subset of
R
=, the condition r 5 (G⇤) = 0 is generalized to: if G⇤ 2 - is a local minimizer for (8.75)

then there is a neighborhood ⌫A (G⇤) for some A > 0 such that

(r 5 (G⇤))T (G� G⇤) � 0 8G 2 ⌫A (G⇤)\ - (8.76)

i.e., moving away from G
⇤ to any other feasible point G in ⌫A (G⇤) can only increase

the function value 5 . If 5 is a convex function (- is assumed convex) then this is both
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necessary and su�cient for G⇤ to be a global optimum of (8.75). This is illustrated in
Figure 8.16.

X

x

decreasing
cost

level sets
x*

∆

f (x*)

Figure 8.16 Moving away from G
⇤ to another feasible G locally increases the cost.

In most applications an optimum of (8.75) cannot be solved in closed form and must
be computed iteratively. Iterative algorithms generally take the form

G(C +1) = 6(G(C)) (8.77a)

i.e., the next iterate G(C +1) is determined from the current iterate G(C) according to an
algorithm represented by the function 6 :R=!R=, until a certain termination criterion
is met, e.g., when G(C +1) satisfies the optimality condition (8.76) approximately. This
is also called a fixed-point iteration that computes a fixed point G⇤ satisfying G⇤ = 6(G⇤)
(fixed-point iteration is studied in Chapter 8.6.1). For example a gradient descent
algorithm can be interpreted as the following fixed-point iteration:

G(C +1) = [G(C)�W⌧ (G(C))r 5 (G(C)]
-

=: 6(G(C)) (8.77b)

where W > 0 is a stepsize, ⌧ (G) � 0 is a scaling matrix, and [·]- is the projection
to the feasible set - . A fixed point G⇤ of the gradient algorithm (8.77b) satisfies the
optimality condition (8.76).

In this section we present several algorithms for solving (8.75). The convergence of
some of these algorithms are analyzed in Chapter 8.6.

8.5.1 Steepest descent algorithm

Steepest descent is the most widely used class of iterative algorithms for solving
optimization problems. For (8.75), it is given by the following iteration: starting from
an initial point G(0) = G0,

G(C +1) := [ G(C)�Wr 5 (G(C)) ]
-

(8.78)
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where W > 0 is a constant stepsize and - is a nonempty, closed and convex subset of
R
=. Here [G]

-
denotes the projection of G onto the nonempty, closed and convex set

- , i.e., for any G 2 R=,

[G]
-

:= argmin
H2-

kG� Hk2

where k · k2 is the Euclidean norm. Hence [G]- is the unique point in - that is closest
to G 2 R= in the Euclidean norm. As mentioned above, a fixed point G⇤ defined by
G
⇤ = [G⇤ �Wr 5 (G⇤)]

-
satisfies the optimality condition (8.76):

m 5

mG

(G⇤) (G� G⇤) � 0 8G 2 -

when 5 is a convex function and - a convex set. A termination criterion for (8.78) can
be kG(C +1)� G(C)k < n for a pre-determined n > 0.

Variants of the steepest descent algorithm can be obtained by using an iteration-
dependent stepsize W(C) > 0 or a scaling matrix W 2 R=⇥=. The steepest descent algo-
rithm is called a first-order algorithm because it uses only the first derivative of the
objective function 5 . A second-order algorithm, such as the Newton-Raphson algo-
rithm widely used for solving optimal power flow problems, uses the second derivative
to construct a time-dependent scaling matrix W(C) in each iteration, as we now explain.

A popular algorithm for regression and machine learning applications is the stochas-
tic gradient descent. In the simplest form it is an algorithm to solve

min
G2R=

<’
8=1

58 (G)

The standard gradient descent algorithm computes G(C + 1) := G(C) � WÕ
8
r 58 (G(C))

at time C. A stochastic gradient descent algorithm approximates the true gradientÕ
8
r 58 (G(C)) by the gradient at a sample 8, chosen randomly or in an online fashion:

G(C +1) := G(C)�Wr 58 (G(C))

Typically, each 8 represents a sample. For example we are given < samples (D8 , H8) 2
R
= ⇥R, 8 = 1, . . . ,<, and we are to choose weights G to minimize the mean square

error
Õ
8
(DT
8
G � H8)2 or a loss function

Õ
8
5 (G;D8 , H8). In an online setting, the Cth

sample (DC , HC ) may be revealed only at time C and the existing weights G(C) are then
updated with the approximate gradient r 5C (G(C)) = 2(DT

C
G(C) � HC )DC or r 5C (G(C)) =

rG 5 (G(C);DC , HC ) respectively. Even though solution may take more iterations with
approximate gradient, each iteration can be much easier to compute than with true
gradient. A generalization is to use a small number : ⌧ < of gradients in each
iteration, i.e., G(C +1) := G(C)�WÕ

:

8=1r 58 (G(C)).
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8.5.2 Newton-Raphson algorithm

As explained in Chapter 4.4.2, Newton-Raphson is an iterative algorithm for solving
nonlinear equations � (H) = 0 where � : R=! R=. It computes iteratively

H(C +1) = H(C) + �H(C) where � (H(C))�H(C) = �� (H(C)) (8.79)

where � (H) := m�

mH
(H) is the Jacobian of � at H. In this section we apply it to optimization

problems where the equation � (H) = 0 represents the KKT condition. A solution Hopt

of � (H) = 0 then produces an optimal solution if the underlying optimization problem
is convex. For simplicity we assume solutions exist for all the optimization problems
considered unless otherwise specified.

Specifically we will present algorithms for:

1 Linear equality constrained problems. The idea is to approximate the cost function
by a quadratic function around the next iterate (to be determined). This results in
a quadratic program in each iteration whose KKT condition is a system of linear
equations that can be solved analytically for the next iterate. We will also describe
another algorithm that generalizes to nonlinear constraints.

2 Nonlinear equality constrained problems. In contrast to the KKT condition of
an approximating quadratic program, the KKT condition of these problems is
generally nonlinear and cannot be solved analytically. The idea is to solve the
KKT condition iteratively using the Newton-Raphson method.

3 Inequality constrained problems. The KKT condition of these problems involves
inequalities and Newton-Raphson is not directly applicable. The idea is to re-
place the inequality constraint by a penalty term in the cost function to obtain an
approximate problem that has no inequality constraints.

Nonlinear program with linear equality constraint.

Consider the following problem with an equality constraint:

min
G2R=

5 (G) s.t. �G = 1 (8.80)

where 5 : R=! R is twice continuously di�erentiable and � 2 R<⇥=. We will derive
two equivalent algorithms. The first algorithm relies on the linearity of the constraint
and is generally not applicable to problems with nonlinear constraints. It approximates
the cost function 5 (G) by a quadratic function in each iteration and solves the resulting
quadratic program directly. The second algorithm solves the KKT condition for (8.80)
and extends directly to problems with nonlinear equality constraints.

For the first algorithm, given the current iterate G(C), approximate the cost 5 (G(C) +
�G(C)) at the next iterate by

5̂ (G(C) +�G(C)) := 5 (G(C)) + m 5
mG

(G(C))�G(C) + 1
2
�G(C)T m

2
5

mG
2
(G(C))�G(C) (8.81a)
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and consider the optimization over �G(C)

min
�G2R=

5̂ (G(C) +�G(C)) s.t. �(G(C) +�G(C)) = 1 (8.81b)

This is a quadratic program in �G(C) with a fixed G(C) and can be solved analytically.
Let _(C) 2 R< be the Lagrange multiplier of (8.81). If 5 is convex then (8.81) is a
convex program and the KKT condition is both necessary and su�cient for optimality.
The KKT condition is (Exercise 8.28)"

m
2
5

mG
2 (G(C)) �

T

� 0

#

|                {z                }
 (C)


�G(C)
_(C)

�
= �


r 5 (G(C))
�G(C)� 1

�
|        {z        }

3 (G (C))

(8.82a)

This is system of =+< linear equations in =+< unknowns (�G(C),_(C)). The matrix
 (C) on the left-hand side of (8.82a) is called a KKT matrix. If  (C) is nonsingular8

then �G(C) can be computed directly. If  (C) is singular but the given vector 3 (G(C))
on the right-hand side is orthogonal to the null space of  (C), then there is a subspace
of solutions (�G(C),_(C)) to (8.82a) and � †(C)3 (G(C)) is the minimum-norm solution
where  †(C) is the pseudo inverse of  (C). Neither  (C) nor 3 (G(C)) depends on _(C).
Hence in both cases �G(C) can be computed from just the current iterate G(C) and
(8.82a) always allows pure primal iterations,

G(C +1) = G(C) +�G(C) (8.82b)

for solving (8.80).

The second algorithm does not use the second-order approximation of 5 (G) and con-
siders (8.80) directly. Specifically let _ 2 R< denote the Lagrange multiplier associated
with the < constraints in (8.80). The Lagrangian is

! (G;_) := 5 (G) + _T (�G� 1)

Let H := (G,_) 2 R=+< and define � : R=+<! R=+< by

� (H) :=

rG ! (G,_)
r_ ! (G,_)

�
=


r 5 (G) + �T

_

�G� 1

�

The KKT condition is � (H) = 0. This specifies a system of =+< nonlinear equations in
=+< unknowns (G,_), in contrast to the linear KKT condition (8.82a) for the second-
order approximation (8.81). It generally needs to be solved iteratively. The Jacobian
� (H) := m�

mH
of � is:

� (H) =

"
m

2
5

mG
2 (G) �

T

� 0

#

(which is the KKT matrix  (C) in (8.82a).) Hence the Newton-Raphson iteration is
G(C +1)
_(C +1)

�
=


G(C)
_(C)

�
+


�G(C)
�_(C)

�
(8.83a)

8 See [57, Chapter 10.1, p.523] for equivalent conditions of the nonsingularity of the KKT matrix  (C) .



392 Smooth convex optimization

where the increment �H(C) is given by � (H(C))�H(C) = �� (H(C)), i.e.,"
m

2
5

mG
2 (G(C)) �

T

� 0

# 
�G(C)
�_(C)

�
= �


r 5 (G(C)) + �T

_(C)
�G(C)� 1

�
(8.83b)

We compare the two algorithms (8.82) and (8.83). Both algorithms solve a linear
equation with the KKT matrix (C) in each iteration. As mentioned above, the approach
of (8.82) solves the KKT condition for the second-order approximation (8.81) of 5 . This
is possible because the linearity of the constraint allows a second-order approximation
of only the cost function but not of the constraint, resulting in a quadratic program
that can be solved analytically. It leads to a primal algorithm that iterates only on G(C).
This is generally inapplicable if the constraint is nonlinear. The approach of (8.83),
on the other hand, solves the KKT condition � (G,_) = 0 for the original problem
(8.80) iteratively using the Newton-Raphson algorithm (8.79). It leads to a primal-dual
algorithm that updates both the primal and the dual variables. It will be extended to
problems with a nonlinear constraint in (8.85).

These two algorithms are equivalent in that both produce the same sequence of
(G(C),_(C)) starting from the same initial point. Indeed, given the current iterate
(G(C),_(C)) of the primal and dual variables, (�G(C),�_(C)) satisfies (8.83) if and only
if (�G(C),_ := _(C) +�_(C)) satisfies (8.82). To see this, suppose (�G(C),_(C) +�_(C))
satisfies (8.82), i.e.,"

m
2
5

mG
2 (G(C)) �

T

� 0

# ✓ 
�G(C)
�_(C)

�
+


0
_(C)

� ◆
= �


r 5 (G(C))
�G(C)� 1

�

which yields (8.83). Suppose the converse holds. Write the right-hand side of (8.83)
as 

r 5 (G(C)) + �T
_(C)

�G(C)� 1

�
=


r 5 (G(C))
�G(C)� 1

�
+

"
m

2
5

mG
2 (G(C)) �

T

� 0

# 
0
_(C)

�

which, together with (8.83), yields (8.82). The only di�erence between these algorithms
is that (8.83) computes �_(C) from (G(C),_(C)) and forms _(C + 1) whereas (8.82)
computes _(C +1) directly from G(C).

Nonlinear program with equality constraint.

Consider the following problem with a possibly nonlinear equality constraint

min
G2R=

5 (G) s.t. 6(G) = 0 (8.84)

where 5 :R=!R and 6 :R=!R< are twice continuously di�erentiable. The approach
of (8.83) generalizes directly to this problem. Let_ 2R< denote the Lagrange multiplier
associated with the < constraints. The Lagrangian is

! (G;_) := 5 (G) + _T
6(G)
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Let H := (G,_) 2 R=+< and define � : R=+<! R=+< by

� (H) :=

rG ! (G,_)
r_ ! (G,_)

�
=

"
r 5 (G) + m6

mG
(G)T

_

6(G)

#
(8.85a)

The KKT condition is � (H) = 0 which specifies a system of =+< nonlinear equations
in =+< unknowns (G,_). Hence the Jacobian � (H) := m�

mH
of � is:

� (H) :=

"
m

2
!

mG
2

m
2
!

m_mG

m
2
!

mGm_

m
2
!

m_
2

#
=

"
m

2
5

mG
2 (G) + Õ

:

m
2
6:

mG
2 _:

m6

mG
(G)T

m6

mG
(G) 0

#
(8.85b)

which reduces to the Jacobian in (8.83b) when 6(G) = �G� 1. Here m
2
!

m_mG
=

⇣
m

2
!

m_mG

⌘T
is

=⇥<. The Newton-Raphson algorithm for solving (8.84) is the iteration (8.79) where
� (H) and its Jacobian � (H) are given by (8.85). It is a primal-dual algorithm that
iterates on both G(C) and _(C).

When the cost function 5 (G) or the feasible set {G 2 R= : 6(G) = 0} is nonconvex,
there is generally no guarantee that the Newton-Raphson algorithm will converge and
if it does, it will produce a local or global optimum. In practice, for OPF problems, the
algorithm often converges to a local, and even global, optimum despite nonconvexity.

When 5 and 6 are homogeneous quadratic functions the nonlinear program reduces
to the following QCQP with equality constraints:

min
G2R=

1
2
G

T
⇠0G s.t.

1
2
G

T
⇠:G = 1: , : = 1, . . . ,<

where ⇠: 2 R=⇥=, : � 0, are real symmetric matrices and 1: 2 R, : � 1. Then (8.85)
reduces to:

� (H) :=

rG ! (H)
r_ ! (H)

�
=

266666664

�(_)T
G

1
2G

T
⇠1G� 11

...
1
2G

T
⇠<G� 1<

377777775
where �(_) := ⇠0 +

Õ
:
_:⇠: and

� (H) :=

"
m

2
!

mG
2

m
2
!

m_mG

m
2
!

mGm_

m
2
!

m_
2

#
=

266666664

�(_)T
⇠

T
1 G · · · ⇠T

<
G

G
T
⇠1
... 0

G
T
⇠<

377777775
Nonlinear program with inequality constraint.

Consider the following problem with an inequality constraint

min
G2R=

5 (G) s.t. ⌘(G)  0 (8.86)
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where 5 : R=! R and ⌘ : R=! R; are twice continuously di�erentiable. Let ` 2 R;
denote the Lagrange multiplier associated with the < constraints. The KKT condition
involves inequalities, of the form

rG ! (G,`) = rG 5 (G) + m⌘

mG

(G)T
` = 0, r` ! (G,`) = ⌘(G)  0

` � 0, `
T
⌘(G) = 0

The standard Newton-Raphson method cannot be applied directly to solve this system
of equalities and inequalities. There are however many Newton-like methods that have
been developed for inequality constrained problems.

One approach is to introduce a slack variable I 2 R; and convert (8.86) into a
problem with a ‘simple’ inequality constraint:

min
(G,I)2R=+;

5 (G) s.t. ⌘(G) + I = 0, I � 0

Algorithms for solving equality constrained problems can be modified by projecting
I(C) to the nonnegative quadrant in each iteration; see e.g. [58]. Another approach is
to replace the constraint ⌘(G)  0 in (8.86) by a penalty term (1/C)q(G) in the cost
function and solve the resulting unconstrained approximate problem

min
G2R=

5 (G) + 1
C

q(G)

where C > 0 is a parameter that controls the accuracy of the approximation. Newton-
Raphson can be applied to solve the optimality condition r 5 (G) + (1/C)rq(G) = 0.
This is the approach of the interior point methods which we describe next.

8.5.3 Interior-point algorithm

Consider the following problem with an equality and an inequality constraints:

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.87)

where 5 :R=!R, 6 :R=!R<, and ⌘ :R=!R; are twice continuously di�erentiable.
The idea is to approximate (8.87) by an equality constrained problem by replacing the
inequality constraint ⌘(G)  0 by a penalty term in the cost function, and then solving
the equality constrained problem using Newton methods.

Log barrier function.

A popular barrier function is i : R� ! R defined by:

iC (D) := �1
C

log(�D), D < 0

where C > 0 is a parameter. For each C > 0, the function iC (D) is convex increasing over
its domain D < 0 and approaches 1 as D! 0. It is an approximation of the indicator
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function which takes the value 0 if D  0 and 1 if D > 0. The larger the parameter
C is, the more accurate the approximation will be. While the indicator function is
discontinuous, the log barrier function iC (D) is continuously di�erentiable over its
domain D < 0 for each C > 0.

The logarithmic barrier q : R=! R is

q(G) := �
;’
8=1

log(�⌘8 (G)) (8.88a)

over the domain

dom(q) := {G 2 R= : ⌘8 (G) < 0, 8 = 1, . . . , ;}

The log barrier q(G) grows without bound as ⌘8 (G) ! 0 for any 8. Its gradient and
Hessian are:

rq(G) =
;’
8=1

1
�⌘8 (G)

r⌘8 (G) (8.88b)

m
2
q

mG
2
(G) =

’
8

1

⌘
2
8
(G)
r⌘8 (G)r⌘T

8
(G) +

’
8

1
�⌘8 (G)

m
2
⌘8

mG
2
(G) (8.88c)

The approximate problem.

Fix any C > 0. An approximate problem to (8.87) with an equality constraint is

min
G2R=

5 (G) + 1
C

q(G) s.t. 6(G) = 0

It is more convenient to consider the following equivalent approximate problem (they
have the same minimizers):

Problem(C) : min
G2R=

C 5 (G) +q(G) s.t. 6(G) = 0 (8.89)

Unlike (8.87) Problem(C) (8.89) has only equality constraints and therefore can be
solved using the Newton-Raphson algorithm defined by (8.79)(8.85). If 5 is convex
and 6 is a�ne then Problem(C) is a convex problem. In that case, if the Newton-
Raphson algorithm converges to a solution (GC ,_C ), then the solution satisfies the KKT
condition and is therefore primal and dual optimal, i.e., GC solves (8.89) and _C solves
its dual. Otherwise, Problem(C) is nonconvex and there is generally no guarantee that
the Newton-Raphson algorithm will converge. If it does converge, it will produce a
feasible solution but there is no guarantee that it is a local or global optimum. In
practice, for OPF problems, the algorithm often converges to a local, and even global,
optimum despite nonconvexity.

Suppose the Newton-Raphson algorithm converges and produces a solution (GC , _̂C )
that satisfies the KKT condition of Problem(C) (8.89). We now show that GC , together
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with an associated (_C ,`C ) to be defined, satisfy approximately the KKT condition of
the original problem (8.87). Define the Lagrangian of Problem(C):

!C (G, _̂) := C 5 (G) +q(G) + _̂T
6(G)

The KKT condition for Problem(C) consists of primal feasibility and stationarity,
�C (GC , _̂C ) = 0 where

�C (GC , _̂C ) :=

rG!C (GC , _̂C )
r
_̂
!C (GC , _̂C )

�
=


Cr 5 (GC ) +rq(GC ) +r6(GC )_̂C

6(GC )

�

Substitute rq(G) = Õ
;

8=1
1

�⌘8 (G)r⌘8 (G) from (8.88b) and define:

_C :=
_̂C

C

, `C ,8 :=
1

�C⌘8 (GC )
> 0

with `C := (`C ,8 , 8 = 1, . . . ;). Then �C (GC , _̂C ) = 0 becomes:

r 5 (GC ) +r6(GC )_C +r⌘(GC )`C = 0, 6(GC ) = 0 (8.90a)

We have also, from the strict feasibility of GC and the definition of `C ,

⌘(GC ) < 0, `C > 0, `
T
C
⌘(GC ) = �

;

C

(8.90b)

This would be the KKT condition for the original problem (8.87) were the condition
`

T
C
⌘(GC ) = �;/C in (8.90b) replaced by complementary slackness `T

C
⌘(GC ) = 0. Hence

the KKT condition for Problem(C) is approximately the KKT condition for (8.87) for
large C.

A popular interior point method, called the barrier method, is based on solving a
sequence of the approximate problems (8.89) with increasing C until the approximation
is su�ciently accurate. To describe it we first explain how to estimate the gap between
the optimal value of the original problem (8.87) and the objective value of a solution
of its approximation (8.89).

Suboptimality gap.

The theory of the barrier method is most complete for convex problems. For simplicity,
we make the following assumptions:

C8.1: The original problem (8.87) is convex, i.e., 5 ,⌘ are convex functions and
6(G) = �G� 1 for some � 2 R<⇥= and 1 2 R<.
C8.2: For every C > 0 the approximate problem (8.89) has a unique primal solution
G(C) and the Newton-Raphson algorithm converges to G(C).

We call the optimal solution G(C) of (8.89) a central point and the set {G(C) : C > 0} of
central points the central path. The assumption of unique G(C) for each C > 0 means
that there is a unique central path. In this case the barrier method will use the Newton-
Raphson algorithm to follow this unique path, as we will see.
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Let 5 ⇤ denote the optimal value of the original problem (8.87). The next result
shows that a central point G(C) is a feasible solution of (8.87) with a suboptimality gap
that is strictly decreasing in C > 0. A certificate for the suboptimality gap is provided
by a dual feasible solution for (8.87) associated with a central point G(C).

Theorem 8.30 (Central point G(C)). Under assumptions C8.1 and C8.2, for each C > 0:

1 The central point G(C) is feasible for the original problem (8.87).
2 Its objective value is at most ;/C away from the optimal value 5 ⇤, i.e.,

5 (G(C))� 5 ⇤  ;

C

In particular 5 (G(C))! 5
⇤ as C!1.

Proof Since (8.89) is convex by assumption, the optimality of G(C) means that the
Slater condition is satisfied and hence strong duality holds and an optimal dual variable
_̂(C) 2 R< exists by the Slater Theorem 8.17. Moreover the KKT Theorem 8.15 implies
that

�
G(C), _̂(C)

�
satisfies the KKT condition for (8.89):

Cr 5 (G(C)) +rq (G(C)) + m6
T

mG

(G(C)) _̂(C) = 0, 6(G(C)) = �G(C)� 1 = 0 (8.91a)

Because of the log barrier q we must have ⌘8 (G(C)) < 0 for all 8 = 1, . . . , ;. This means
that G(C) is also (strictly) feasible for the original problem (8.87), i.e., G(C) satisfies

⌘(G(C)) < 0, 6(G(C)) = �G(C)� 1 = 0 (8.91b)

We now use (8.91) to estimate the suboptimality gap of G(C). Define the Lagrangian
of the original problem (8.87)

! (G,`,_) := 5 (G) +_T
6(G) + `T

⌘(G)

where the dual variables are _ 2 R< and ` 2 R;+. Let the dual function be

3 (`,_) := min
G2R=

! (G,`,_)

Define

`8 (C) :=
1

�C⌘8 (G(C))
, _8 (C) :=

_̂8 (C)
C

and let _(C) := (_8 (C), 8 = 1, . . . ,<) and `(C) := (`8 (C), 8 = 1, . . . , ;). Since ⌘8 (G(C)) < 0,
we have `8 (C) > 0 and hence (`(C),_(C)) is dual feasible for (8.87). Dividing by C the
first condition in (8.91a) and substituting (8.88b) we have

rG ! (G,`(C),_(C)) = r 5 (G(C)) +
;’
8=1

`8 (C)r⌘8 (G(C)) +
m6

T

mG

(G(C))_(C) = 0
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which implies that G(C) minimizes ! (G,`(C),_(C)) over G. Hence the dual function of
the original problem (8.87) evaluated at (`(C),_(C)) is

3 (`(C),_(C)) = ! (G(C),`(C),_(C)) = 5 (G(C)) +_T (C)6(G(C)) + `T (C)⌘(G(C)) (8.92)

But 6(G(C)) = 0 from (8.91) and 3 (`(C),_(C))  5 ⇤ from weak duality for (8.87). Hence

5 (G(C)) � 5
⇤  �

;’
8=1

`8 (C)⌘8 (G(C)) =
;

C

from the definition of `8 (C). ⇤

The central point G(C) and the dual variable (_(C),`(C)) are primal-dual feasible for
the original problem (8.87). By (8.92) their duality gap is exactly ;/C:

3 (`(C),_(C))� 5 (G(C)) = `
T (C)⌘(G(C)) =

;

C

Hence Problem(C) is an approximation of (8.87) both in the sense that, for large C,
(G(C),_(C),`(C)) is feasible and an approximate KKT point for (8.87) (see (8.90)) and
that the suboptimality gap 5 (G(C))� 5 ⇤ is small when the problem is convex.

The barrier method.

Theorem 8.30 says that, when (8.87) is convex, the central point G(C) computed by the
Newton-Raphson algorithm is feasible for the original problem (8.87) and its objective
value 5 (G(C)) is at most ;/C away from the optimal value 5 ⇤. This motivates the barrier
method, also known as the path-following method, that solves Problem(C) in (8.89) to
compute a central point G(C), sequentially for increasing C > 0.

Specifically the barrier method solves a sequence of the approximate problems
(8.89) with increasing C > 0, using the solution of the previous problem as the initial
point for the current problem, as follows. Fix a parameter W > 1 and solve Problem(C) in
(8.89) with parameter C using the Newton-Raphson algorithm. Geometrically increase
the parameter C by multiplying it by W > 1 and solve (8.89) again starting from the
solution of the previous problem. Repeat until C is su�ciently large so that the solution
produced by Newton-Raphson is an accurate enough solution to the original problem
(8.87). This method is described more precisely as Algorithm 3 when (8.87) is convex.
Under C8.1 and C8.2, Algorithm 3 returns a feasible solution G that is n-optimal, i.e.,
5 (G)� 5 ⇤  n by Theorem 8.30. The barrier method is also widely used for nonconvex
problems even though convergence or optimality is not guaranteed. In the nonconvex
case, a di�erent stopping criterion based on the primal or dual iterates may be used.

In principle one can solve Problem(C) in (8.89) with parameter C := ;/n instead
of solving a sequence of (8.89) with increasing C as in Algorithm 3. In practice this
method does not work well unless the problem is small, the required accuracy n is
moderate and a good starting point is available. Therefore the barrier method is usually
preferred.
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Algorithm 3: Barrier method
Input: strictly feasible G, initial C := C0, scaling factor W > 1, tolerance n .
Output: an n-optimal solution G when (8.87) is convex.
1. while C  ;

n
do

1. Solve Problem(C) in (8.89) to compute G(C) using the Newton-Raphson
algorithm starting from G.

2. G G(C).
3. C WC.

2. Return: G.

Strictly feasible initial point.

Algorithm 3 requires an initial point G that is strictly feasible for the original problem
(8.87), i.e. G satisfies

6(G) = 0, 5 (G) < 0

There are various methods to produce a strictly feasible point and we explain a simplest
one (see [57, Chapter 11.4] for others). When necessary, such a method can be used to
compute a strictly feasible G before the barrier method is executed. Starting from such
an initial point, all subsequent iterates, across Problem(C) for di�erent C, will remain
strictly feasible because of the log barrier q.

Consider the feasibility problem

inf
(G,B)2R=+1

B s.t. 6(G) = 0, ⌘8 (G)  B, 8 = 1, . . . , ; (8.93)

where B 2 R, and as before, 6 : R= ! R<, and ⌘ : R= ! R; are twice continuously
di�erentiable. Suppose we are given an initial G0 such that 6(G0) = 0 and G0 2 dom(⌘1)\
· · ·\dom(⌘;), i.e., ⌘8 (G0) < 1, 8 = 1, . . . , ;. Then (8.93) is feasible because (G0, B0) is
a feasible point with B0 := max<

8=1 58 (G0). Note that the feasible set is closed but not
necessarily bounded and hence an optimal point of (8.93) may not exist or the infimum
may not be attained by any G.

A strictly feasible point G for (8.87) exists if and only if the optimal value Bopt

of (8.93) is strictly negative (can be �1); see Exercise 8.29. Solving (8.93) either
produces such an G or proves that none exists, according to the sign of Bopt.

8.5.4 Dual and primal-dual gradient algorithms

Consider again the problem (8.87) reproduced here:

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.94)
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where 5 :R=!R, 6 :R=!R<, and ⌘ :R=!R; are twice continuously di�erentiable.
The Lagrangian is

! (G,_,`) := 5 (G) +_T
6(G) + `T

⌘(G)

where the dual variables are _ 2 R<, ` 2 R;+. Let the dual function be

3 (_,`) := min
G2R=

! (G,_,`) (8.95a)

and the dual problem be

max
(_,`)2R<+;

3 (_,`) s.t. ` � 0 (8.95b)

The steepest descent algorithm (8.78) solves the primal problem (8.94) by iterating
on the primal variable G and projects to the feasible set - in each iteration. This is
sometimes referred to as a primal algorithm. A dual algorithm iterates on the dual
variable (_,`) to solve the dual problem (8.95) instead, and a primal-dual algorithm
iterates on both the primal and dual variables (G,_,`) to seek a saddle point of the
Lagrangian !.

In this subsection we describe the dual algorithm and the primal-dual algorithm.
Both algorithms produce a saddle point (G⇤,_⇤,`⇤) of (8.94) when they converge,
provided that the problem is convex ( 5 ,⌘ are convex and 6(G) = �G� 1). The Saddle-
point Theorem 8.14 then implies that (G⇤,_⇤,`⇤) is primal-dual optimal and strong
duality holds.

Dual algorithm.

The key di�erence between (8.94) and (8.95a) is that the minimization over G is uncon-
strained in (8.95a). A dual algorithm can be used when the unconstrained minimization
in (8.95a) is easy to solve, e.g., a minimizer can be obtained analytically. Given (_,`)
let G(_,`) denote an unconstrained minimizer of !:

G(_,`) 2 arg min
G2R=

! (G,_,`) (8.96a)

When ! is convex in G, G(_,`) is a solution of rG! (G,_,`) = 0. Then a dual algorithm
is a steepest ascent algorithm for solving the dual problem (8.95):

_(C +1) = _(C) + W_r_! (G(_(C),`(C)),_(C),`(C)) (8.96b)

`(C +1) =
⇥
`(C) + W`r`! (G(_(C),`(C)),_(C),`(C))

⇤+
(8.96c)

where (W_,W`) 2 R2 are positive constant stepsizes and [H]+ := max{0, H} componen-
twise for a vector H. For convex problems, if (8.96) converges and produces a dual
optimum (_⇤,`⇤) of (8.95) then G(_⇤,`⇤) will be optimal for (8.94) (Saddle-point The-
orem 8.14). Variants of the steepest ascent algorithm (8.96) can be obtained by using
iteration-dependent stepsizes (W_ (C),W` (C)) or scaling matrices W_ 2 R<⇥<, W` 2 R;⇥; .

An important application of the dual algorithm is in distributed computation. When
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the problem (8.94) has a certain decentralized structure, e.g., if the cost function
5 (G) = Õ

8
58 (G8) is separable in 8 and the constraints are a�ne, the dual algorithm

decomposes naturally into a distributed method, as the next example shows.

Example 8.15 (Distributed dual algorithm). Consider the utility maximization:

max
G2R=

’
8

*8 (G8) s.t. 'G  2 (8.97)

where *8 : R! R for 8 = 1, . . . ,=, are continuously di�erentiable and strictly concave
increasing utility functions, ' 2 {0,1};⇥= and 2 2 R; . The Lagrangian is

! (G,`) :=
’
8

*8 (G8) � `T ('G� 2), ` 2 R;+

and the dual function is

3 (`) := max
G2R=

! (G,`) =
=’
8=1

max
G8 2R

©≠
´
*8 (G8)� G8

;’
9=1

' 98` 9

™Æ
¨
+ `T

2

i.e., the unconstrained maximization over the vector G decomposes into a distributed
maximization over individual components G8 . Given `, the distributed maximization
over G8 can be solved in closed form:

G8 (`) := *
0�1
8

©≠
´
;’
9=1

' 98` 9

™Æ
¨
=: * 0�1

8
(?8 (`)) , 8 = 1, . . . ,= (8.98a)

where ?8 (`) :=
Õ
9
' 98` 9 , * 0

8
is the derivative of *8 and * 0�1

8
is its inverse (which

exists since*8 is strictly concave). We write this in vector form as

G(`) := (rG*)�1
⇣
'

T
`

⌘

The strict concavity of *8 implies that the maximizer G8 (`) is unique and hence
Danskin’s Theorem 8.21 implies that the dual function 3 (`) is di�erentiable with

r`3 (`) = r`! (G(`),`) = �('G(`)� 2)

Then the dual algorithm for solving the dual problem min`�0 3 (`) is

`(C +1) =
⇥
`(C)�Wr`3 (`(C))

⇤+ = [`(C) +W('G(`(C))� 2)]+

Therefore the dual update also decomposes into a distributed computation, given G:

` 9 (C +1) =
⇥
` 9 (C) +W

�
H 9 (C)� 2 9

� ⇤+
, 9 = 1, . . . , ; (8.98b)

where H 9 (C) :=
Õ
8
' 98G8 (`(C)) and G8 (`(C)) is given by (8.98a).

Hence the dual algorithm for (8.97) is the distributed algorithm given by (8.98).
This is a model of Internet congestion control algorithm. In this application, each 8
represents a sender that wishes to send its data packets at a rate G8 packets/sec that
is as high as possible and each 9 represents a link (bu�er) in the network whose
processing speed is limited to 2 9 packets/sec. The matrix ' is a routing matrix that
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specifies the path in the network of each sender 8 from its source node to its destination
node, consisting of links 9 with ' 98 = 1. The optimal sending rate vector G is one
that maximizes the aggregate utility

Õ
8
*8 (G8) subject to the constraint that the input

rates H 9 :=
Õ
8
' 98G8 at optimality do not exceed link capacities 2 9 for every link 9 ..

The Lagrange multiplier ` 9 � 0 can be interpreted as a congestion price at link 9 and
?8 :=

Õ
9
' 98` 9 is the end-to-end congestion price (i.e., sum of the link congestion

prices ` 9 along 8’s path) observed by sender 8. Then the algorithm (8.98) specifies the
local decision by each sender 8 and link 9 : sender 8 sets its sending rate to G8 (C) in
(8.98a) based on the end-to-end congestion price ?8 (C) it observes locally, and link 9

updates its congestion price ` 9 (C) according to (8.98b) based on the local input flow
rate H 9 (C) at link 9 . In particular the congestion price ` 9 (C) is incremented if the input
flow rate H 9 (C) at link 9 exceeds the link capacity 2 9 and decremented otherwise. ⇤

Primal-dual algorithm.

When the unconstrained minimization over G in (8.96a) is di�cult to solve, we can
replace (8.96a) by iteration on the primal variable G:

G(C +1) = G(C) � WGrG! (G(C),_(C),`(C)) (8.99a)

_(C +1) = _(C) + W_r_! (G(C),_(C),`(C)) (8.99b)

`(C +1) =
⇥
`(C) + W`r`! (G(C),_(C),`(C))

⇤+
(8.99c)

where [H]+ := max{0, H} componentwise for a vector H. This is called a primal-dual
algorithm or a saddle point algorithms. It seeks a saddle point of the Lagrangian !
through steepest descent in the primal variable G(C) and steepest ascent in the dual
variable (_(C),`(C)). For convex problems, if (8.99) converges and produces a saddle
point (G⇤,_⇤,`⇤) of ! then it is primal and dual optimal for (8.94)(8.95) and strong
duality holds (Saddle-point Theorem 8.14).

For Example 8.15 the primal-dual version of (8.98) replaces (8.98a) by

G8 (C +1) = G8 (C) + WG
�
*
0
8
(G(C))� ?8 (`(C))

�
, 8 = 1, . . . ,=

where ?8 (`(C)) :=
Õ
;

9=1 ' 98` 9 (C), i.e., a sender increments its sending rate G8 (C) if
its marginal utility * 0

8
(G(C)) exceeds its end-to-end price ?8 (C), and decrements it

otherwise. It remains a distributed algorithm.

8.5.5 Alternating direction method of multipliers (ADMM)

Consider

min
G2R=1 , H2R=2

5 (G) +6(H) s.t. G 2 - , H 2 . (8.100a)

�G +⌫H = 2 (8.100b)
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where 5 :R=1!R,6 :R=2!R, - ✓ R=1 ,. ✓ R=2 , � 2 R<⇥=1 , ⌫ 2 R<⇥=2 , and 2 2 R<.
The key feature of (8.100) is that the cost function and the possibly nonlinear constraints
in (8.100a) are separable in G, H. The coupling between G and H is only through the
linear constraint (8.100b). This is similar to the problem structure in Example 8.15
and therefore a dual algorithm can be applied to obtain a distributed solution. Dual
algorithm however often converges slowly because the Lagrangian is a�ne, as opposed
to strictly concave, in the dual variable.

The alternating direction method of multipliers (ADMM) combines the distributed
structure of dual decomposition with better convergence properties of augmented La-
grangian methods. Specifically define the augmented Lagrangian function that relaxes
the coupling constraint (8.100b): for (G, H) 2 R=1+=2 and _ 2 R<,

!d (G, H,_) := 5 (G) +6(H) +_T (�G +⌫H� 2) + d
2
k�G +⌫H� 2k22 ,

where d � 0 is a parameter that controls the degree of augmentation (ADMM reduces
to dual decomposition when d = 0). The ADMM algorithm is

G(C +1) = argmin
G2-

!d (G, H(C), _(C)) (8.101a)

H(C +1) = argmin
H2.

!d (G(C +1), H, _(C)) (8.101b)

_(C +1) = _(C) + d (�G(C +1) +⌫H(C +1)� 2) (8.101c)

The update (8.101c) is _(C +1) = _(C) + dr_!d (G(C +1), H(H+1),_). Hence, compared
with (8.96), (8.101) is a dual algorithm with stepsize d and two di�erences: it uses
an augmented Lagrangian function !d for better convergence properties, and the
subproblem (8.101b) and the dual update (8.101c) use the latest available data, G(C +1)
and (G(C +1), H(C +1)) respectively (this is called one pass of a Gauss-Seidel method).

Suppose 5 ,6 are convex and continuously di�erentiable on R=1 and R=2 respec-
tively and - ,. are convex sets. If the ADMM algorithm converges to a fixed point
(G⇤, H⇤,_⇤) 2 - ⇥. ⇥R< of (8.101), then

!d (G⇤, H⇤,_⇤)  !d (G, H⇤,_⇤) , G 2 - (8.102a)

!d (G⇤, H⇤,_⇤)  !d (G⇤, H,_⇤) , H 2 . (8.102b)

�G
⇤ +⌫H⇤ � 2 = 0 (8.102c)

The (un-augmented) Lagrangian of (8.100) is !0 with d := 0. We now show that
(G⇤, H⇤,_⇤) is a saddle point of !0 and hence is primal-dual optimal for (8.100).

By (8.102c), (G⇤, H⇤) is feasible and this has two implications. First it
means r_!0 (G⇤, H⇤,_⇤) = 0 and hence H

⇤ maximizes !0 (G⇤, H⇤, ·) given (G⇤, H⇤),
i.e., !0 (G⇤, H⇤,_)  !0 (G⇤, H⇤,_⇤) for all _. Second it implies !d (G⇤, H⇤,_⇤) =
!0 (G⇤, H⇤,_⇤) = 5 (G⇤) +6(H⇤) and hence (8.102a)(8.102b) become:

!0 (G⇤, H⇤,_⇤)� !0 (G, H⇤,_⇤)  0, G 2 - (8.103a)

!0 (G⇤, H⇤,_⇤)� !0 (G⇤, H,_⇤)  0, H 2 . (8.103b)
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This turns out to be equivalent to !0 (G⇤, H⇤,_⇤)  !0 (G, H,_⇤) that is required for
(G⇤, H⇤,_⇤) to be a saddle point. Notice

!0 (G, H⇤,_⇤)� !0 (G, H,_⇤) = !0 (G⇤, H⇤,_⇤)� !0 (G⇤, H,_⇤)  0, G 2 - , H 2 .

where the inequality follows from (8.103b), i.e., (8.103b) implies that H⇤ minimizes
!0 (G, H,_⇤) over H 2 . for any fixed G 2 - . We therefore have

!0 (G⇤, H⇤,_⇤)� !0 (G, H,_⇤) = (!0 (G⇤, H⇤,_⇤)� !0 (G, H⇤,_⇤)) +
�
!0 (G, H⇤,_⇤)� !0 (G, H, _̃)

�
 0, G 2 - , H 2 .

We conclude

!0 (G⇤, H⇤,_)  !0 (G⇤, H⇤,_⇤)  !0 (G, H,_⇤), (G, H) 2 - ⇥. , _ 2 R<

i.e., (G⇤, H⇤,_⇤) is a saddle point of !0 and hence primal-dual optimal for (8.100)
(Saddle-point Theorem 8.14).

8.5.6 Branch and bound

Branch and bound (B&B) methods are algorithms for solving optimization problems
that involve integer variables, such as an integer linear program (ILP) where all vari-
ables are integers:

min
G2N=

2
T
G s.t. �G  1

N being the set of integers, or a mixed integer linear program (MILP) where some of
the variables are integers:

5
⇤ := min

G2R=
2

T
G s.t. �G  1, G 9 2 N 8 9 2 � (8.104)

� ✓ {1, . . . ,=} being a subset of variable indices.9 Clearly a MILP reduces to a linear
program if � = ; and an ILP if � = {1, . . . ,=}.

MILP is generally NP-hard. We present three methods for solving MILP. The
security constrained unit commitment problem (6.47) of Chapter 6.4.5 is a mixed
integer linear program and can be solved using these methods.

LP relaxation.

The simplest method is to relax the integral constraint and solve the resulting linear
program instead of (8.104):

5
⇤
lp := min

G2R=
2

T
G s.t. �G  1 (8.105)

This enlarges the feasible set and therefore provides a lower bound on the original
MILP (8.104), i.e., 5 ⇤lp  5 ⇤.
9 The solution methods of this subsection extends directly mixed integer nonlinear programs.
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Dual relaxation.

Another relaxation is to solve the dual of the MILP. The Lagrangian of (8.104) is

! (G,`) := 2
T
G + `T (�G� 1), G 2 R=, ` 2 R<

the dual function is

3 (`) := min
G2R=

! (G,`) =
⇢
�1T

` if (2+ �T
`)T = 0

�1 otherwise

and the dual problem is

3
⇤
milp := max

`�0
�1T

` s.t. (2+ �T
`)T = 0 (8.106)

The Lagrangian and hence the dual problem (8.106) are the same as those of the linear
program (8.105). If MILP (8.104) is feasible, so is LP (8.105). Theorem 8.23 on LP
duality then implies that both the primal and dual optima of (8.105) are attained and
strong duality holds, i.e., 3⇤milp = 5

⇤
lp  5 ⇤. Hence dual relaxation also provides a lower

bound on the MILP (8.104).

Branch and bound.

While LP relaxation (8.105) and dual relaxation (8.106) are linear programs that
provide (the same) lower bound to MILP (8.104), branch and bound methods are
exponential algorithms that solve for an optimal mixed integer solution of (8.104).
There are many variants and the main idea is as follows.

We can treat MILP (8.104) as searching for a minimum over the feasible set -0 :=
{G : �G  1, G 9 2 N 8 9 2 �}. Branch and bound iteratively divides the feasible set -0

into subsets and search for a minimum over each of these subsets to eventually arrive
at a global optimum G

⇤ 2 -0 with 2T
G
⇤ = 5

⇤. We can represent the process as iteratively
constructing a search tree, starting with -0 at its root and, in each iteration, either
grow the search tree by splitting a node -8 ✓ -0 into new child nodes (i.e., partition
the set -8 into subsets) or prune the node -8 (i.e., stop further partitioning -8). To
determine if -8 will create new branches or if it will be pruned, a LP relaxation of (the
subproblem defined by the feasible subset) -8 is solved (bounding), resulting in one of
three outcomes:

1 -8 contains no optimal solution of (8.104), in which case -8 will be pruned;
2 A feasible solution in -0 is found which is a candidate optimal solution of (8.104),

in which case -8 will be pruned (i.e., -8 is not further partitioned);
3 Otherwise, -8 may or may not contain an optimal solution of (8.104) amd -8 is

further partitioned (branching).

This branch and bound procedure repeats until every leaf node of the search tree is
pruned, and the candidate solution with the minimum value is a global optimum of
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MILP (8.104). In summary the key components of a branch and bound method are a
bounding function that computes a lower bound on a subproblem defined by -8 and a
branching function that determines how to split node -8 into child nodes if -8 is not
pruned.

This method is illustrated in the following example that uses LP relaxation as the
bounding function.

Example 8.16 (Branch and bound). Consider the following integer linear program:

5
⇤ := min

G2N2
G1�4G2 s.t. G 2 -0 (8.107)

where -0 := {G 2 N2 : �G1 +3G2  0,G1 +3G2  9,G � 0}. Let 5 (G) := G1�4G2.

1 Initialization.
• Let the global upper bound be 5 max := 5 (0) = 0. As the algorithm proceeds, 5 max

will be updated but remain a global upper bound throughout, i.e., 5 ⇤  5 max.
• Let & denote a queue of leaf nodes (feasible sets of subproblems) in the search

tree and initialize it to & := {-0}.
2 Bounding and branching: -0.
• Remove -0 from &.
• Its LP relaxation is min

G2R2 5 (G) s.t. G 2 - lp
0 := {G 2R2 :�G1+3G2  0,G1+3G2 

9,G � 0} with a unique minimizer Glp
0 := (4.5,1.5).

• Let a lower bound of -0 be 5 min
-0

:= 5 (Glp
0 ) = �1.5.

• Since 5 min
-0

< 5
max and Glp

0,1 = 4.5 is fractional, we partition -0 into two subsets:

-11 := -0\ {G 2 N2 : G1  4}, -12 := -0\ {G 2 N2 : G1 � 5}

• Add -11 and -12 to &.
3 Bounding and branching -11. Remove -11 from &. Its LP relaxation is

min
G2R2 5 (G) s.t. G 2 - lp

11 := - lp
0 \ {G 2 R2 : G1  4} with a unique minimizer

G
lp
11 := (4,4/3). Let a lower bound on -11 (not necessarily a lower bound on 5

⇤)

be 5 min
-11

:= 5 (Glp
11) = �4/3.

Since 5 min
-11

< 5
max and Glp

11,2 = 4/3 is fractional, we partition -11 into two subsets:

-21 := -11\ {G 2 N2 : G2  1}, -22 := -11\ {G 2 N2 : G2 � 2}

Add -21 and -22 to &.
4 Bounding and branching: -12. Remove -12 from &. Its LP relaxation is

min
G2R2 5 (G) s.t. G 2 - lp

12 := - lp
0 \ {G 2 R2 : G1 � 5} with a unique minimizer

G
lp
12 := (5,4/3). Let the local lower bound on -12 be 5 min

-12
:= 5 (Glp

12) = �1/3. This
is an example of the lower bound obtained in a subproblem being local and may
not bound 5 ⇤: for -12, the lower bound is 5 min

-12
= �1/3 but, as we will show below,

5
⇤ = �1.
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Since 5 min
-12

< 5
max and Glp

12,2 = 4/3 is fractional, we partition -12 into two subsets:

-23 := -12\ {G 2 N2 : G2  1}, -24 := -12\ {G 2 N2 : G2 � 2}

Add -23 and -24 to &.
5 Bounding and pruning. Similarly, for each node -21,-22,-23,-24 in &, LP relax-

ation computes a lower bound, as illustrated in Figure 8.17.
• For -21, the minimizer is an integer solution Glp

21 = (3,1) with optimal value

5
min
-21

:= 5 (Glp
21) = �1. Reduce the global upper bound to 5

max := �1. Since

5
min
-12

= 5
max, Glp

21 is currently the best candidate optimal solution of (8.107)
and -21 is pruned (i.e., not further partitioned).

• For -23, the minimizer is an integer solution Glp
23 = (5,1) with optimal value

5
min
-23

:= 5 (Glp
21) = 1. Since 5

min
-12

> 5
max, -23 contains no optimal solution of

(8.107) and it is pruned.
• The subproblems for both -22 and -24 are infeasible and pruned.

6 Since & is empty, the global optimum of (8.107) is Glp
21 = (3,1) and the optimal

value is 5 ⇤ = 5
max = �1. ⇤

X0

x l
0
p = (4.5 , 1.5)

0 ≤ f *≤ −1.5

X21

x l
2
p
1

 = (3 ,1)

−1≤ f *≤ −1

X23

x l
2
p
3

 = (5 ,1)

1≤ f *≤ 1

X22

infeasible

X24

infeasible

X11

x l
1
p
1 = (4 , 1.33)

−1.33≤ f *≤ 0

X12

x l
1
p
2 = (5 , 1.33)

−0.33≤ f *≤ 0

x2

3

94 5
x1

1.5

x2

2

1

4
x1

3 5

x1 ≤ 4

x2 ≤ 1 x2 ≥ 2 x2 ≤ 1 x2 ≥ 2

x1 ≥ 5

x2

2

5 9
x1

4

1

Figure 8.17 Example 8.16. Optimal value 5 ⇤ = �1 which is upper bounded by 5
max throughout

the algorithm. The shaded areas are the feasible sets of various subproblems. (May 18, 2025:
-2 box: 5min

0 = �1.5 < 0 = 5
max � 5 ⇤; -11 box: 5min

11 = �1.33 < 0 = 5
max � 5 ⇤; -12 box:

5
min
12 = �0.33 < 0 = 5

max � 5 ⇤; -21 box: 5min
21 = �1 = 5

max � 5 ⇤; -23 box:

5
min
23 = 1 > �1 = 5

max � 5 ⇤; )

We summarize the branch and bound process illustrated in Example 8.16.

1 Initialization.
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• Compute the currently best known upper bound 5
max on the optimal value

5
⇤ of MILP (8.104), e.g., from a known G0 2 -0 or set 5 max := 1. It is a

global bound in the sense that 5 ⇤  5 max throughout the algorithm as 5 max

is updated.
• Initialize the queue of leaf nodes (subproblem feasible sets) in the search tree to

& := {-0}.
2 Bounding.
• Remove a node - from &. This defines a MILP subproblem whose feasible set

is - .
• Compute a minimizer Glp of the LP relaxation of (the subproblem defined by)

- . Denote its optimal value by 5
min
-

. It is a local lower bound on - and may
not be a lower bound on 5

⇤.
3 Branching or pruning.
• If 5 min

-
� 5 max, then - is pruned. This includes the case where the LP relaxation

of - is infeasible ( 5 min
-

=1).
• If 5 min

-
< 5

max and Glp is a mixed integer solution in -0, then reduce the global
bound to 5

max := 5
min
-

. An optimal solution of the subproblem defined by -
is found (which is a candidate solution of (8.104)).

• If 5 min
-

< 5
max but Glp is fractional, then a branching rule partitions - into two

or more subsets -8 .
• Add each -8 to &.

4 Iterate.
• If & is empty then the optimal value of MILP (8.104) is 5

max and a global
optimum is the mixed integer solution found in Step 3 that attained 5

max.
• Otherwise, goto Step 2.

There are numerous variants of branch and bound methods. They di�er on the bounding
function in Step 2, rules for pruning and branching in Step 3, and the rule for selecting
the next node - in & to process. In addition, valid inequalities, called cuts, can be
added in the branching step to further prune the search space.

8.5.7 Benders decomposition

Consider

min
G,H

5 (G, H) s.t. � (G, H)  0, G 2 - , H 2 . (8.108)

where 5 : R=⇥R;! R, � : R=⇥R;! R<, and - ✓ R= and . ✓ R; are nonempty. The
key feature of (8.108) studied in this subsection is that given a feasible H, often called
the complicating variable, the minimization over G is a much simpler problem than
solving (8.108) directly over (G, H). For example . is the set of integers, H is a discrete
vector in unit commitment, and (8.108) is a mixed integer linear program. An e�ective
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solution approach is then to decompose (8.108) into a master problem that computes
a minimizer H:

min
H

6(H) s.t. H 2 ⌧ (8.109a)

where the feasible set ⌧ is

⌧ := {H 2 . : � (G, H)  0 for some G 2 -} (8.109b)

and the cost function 6 : R;! R is the optimal value of minimization over G given H:

6(H) := min
G

5 (G, H) s.t. � (G, H)  0, G 2 - (8.109c)

The minimization (8.109c) over G may either decompose further into independent
subproblems each involving a di�erent subvector of G, or have a simple structure, e.g.,
is a convex program. In the former case the subproblem (8.109c) is decentralized and
can be solved in parallel. In this subsection we study the latter case and present Benders
decomposition for its solution when (8.109c) is a linear program over G, given H. See
[59] for generalized Benders decomposition when (8.109c) is a convex program, i.e.,
for each H 2 . , 5 (G, H) and ⌧ (G, H) are convex functions in G and - is a convex set.

We start with an example.

Example 8.17 (Unit commitment). The unit commitment problem (6.4) of Chap-
ter 6.2.1 is a mixed integer nonlinear program and can be solved using Benders
decomposition. If the constraint functions 6C , 6̃ in the real-time dispatch problem
(6.4c)(6.4d)(6.4e) are a�ne and ⌘C , ⌘̃ are convex, then the subproblem (8.109c) is a
convex program. If ⌘C , ⌘̃ are also a�ne then it is a linear program.

The security constrained unit commitment problem (6.47) of Chapter 6.4.5 is a
mixed integer linear program and can be solved to optimality in finitely (but potentially
exponentially) many steps using Benders algorithm, as we now describe. ⇤

Consider

min
G,H

2
T
G + 5 (H) s.t. �G +� (H)  1, G � 0, H 2 . (8.110)

where 2 2 R=, � 2 R<⇥=, 1 2 R<, . ✓ R; is nonempty, 5 : . ! R, and � : . ! R<.
Decompose (8.110) into a master problem:

min
(H0,H)2R1+;

H0 s.t. (H0, H) 2 ⌧ 0 (8.111a)

and a linear program over G given a (H0, H) 2 R1+; with H 2 . :

6(H0, H) := min
G2R=

H0 s.t. �̃G  1̃(H0, H), G � 0 (8.111b)

where ⌧ 0 := {H 2 . : �̃G  1̃(H0, H) for some G � 0} and

�̃ :=

2

T

�

�
, 1̃(H0, H) :=


H0� 5 (H)
1�� (H)

�
(8.111c)



410 Smooth convex optimization

We first reformulate the subproblems in (8.111) into a more convenient form.

The linear program (8.111b) is a feasibility problem. A variant of the Farkas lemma
from Exercise 8.14 implies that exactly one of the following holds:

1 (8.111b) is feasible. There exists an G � 0 such that �̃G  1̃(H0, H), i.e.,
2 (8.111b) is infeasible. There exists an (`0,`) � 0 such that (`0,`)T

�̃ � 0 and
(`0,`)T

1̃(H0, H) < 0, i.e.,

`02+ `T
� � 0 and `0 (H0� 5 (H)) + `T (1�� (H)) < 0 (8.112)

To shorten notation, define

⇠ := {(`0,`) 2 R1+< : `02+ `T
� � 0, (`0,`) � 0}

6(H0, H;`0,`) := D0 (H0� 5 (H)) + `T (1�� (H))

Note that ⇠ is nonempty (e.g. 0 2 ⇠); moreover the first condition in (8.112) does not
depend on (H0, H). Therefore, for each (`0,`) 2 ⇠, the linear program (8.111b) defined
by each (H0, H) with H 2 . is infeasible if and only if 6(H0, H;`0,`) < 0. Consider the
two subproblems:

min
(H0,H)

H0 s.t. (H0, H) 2 ⌧ (8.113a)

min
G�0

2
T
G s.t. �G  1�� (H) (8.113b)

where

⌧ :=
Ÿ

(`0,`)2⇠
{(H0, H) 2 R1+; : 6(H0, H;`0,`) � 0, H 2 . } (8.113c)

i.e., (H0, H) 2 ⌧ if and only if H 2 . and 6(H0, H;`0,`) � 0 for every (`0,`) 2 ⇠. The
feasible set ⌧ is empty if there exists a (`0,`) 2 ⇠ such that 6(H0, H;`0,`) < 0 for all
(H0, H) with H 2 . .

The following result is the basis of Benders decomposition (its proof is Exercise
8.30). It establishes the equivalence of (8.113) and (8.111), and hence (8.110). It
suggests solving (8.110) by iteratively computing a solution (H⇤0, H⇤) of (8.113a) and
then a solution G⇤ of the linear program (8.113b). Then (G⇤, H⇤) is an optimum of
(8.110) with optimal value H⇤0.

Theorem 8.31. 1 (8.110) is infeasible if and only if (8.113a) is infeasible.
2 Suppose (G⇤, H⇤) is an optimal solution of (8.110). Then
• (H⇤0, H⇤) is optimal for (8.113a) where H⇤0 := 2T

G
⇤ + 5 (H⇤).

• G⇤ is optimal for the linear program (8.113b) with H = H⇤.
3 Conversely suppose (H⇤0, H⇤) is an optimal solution of (8.113a). Then
• (8.113b) with H = H⇤ has an optimum G

⇤ with optimal value 2T
G
⇤ = H⇤0� 5 (H⇤).

• (G⇤, H⇤) is optimal for (8.110) with optimal value H⇤0.
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The theorem also implies that (8.110) is feasible but does not attain optimality if
and only if (8.113a) is feasible but does not attain optimality.

The challenge of this solution approach is solving (8.113a) which can be nonconvex
and/or mixed-integer. Moreover it is not obvious how to compute ⌧. Benders decom-
position provides a finite procedure to build up⌧ and solve (8.110) systematically. The
basic idea is to start with a relaxation of (8.113a) with a superset ⌧ of ⌧ as its feasible
set. The solution of the relaxation defines a linear program (8.113b). Instead of solving
(8.113b), we solve its dual. The solution of the dual identifies either an additional
constraint to add to ⌧ and the cycle repeats, or an optimal solution of (8.110) and the
procedure terminates. This procedure does not avoid the di�cult step of solving a pos-
sibly nonconvex and/or mixed-integer program (8.113a) but it solves a sequence of this
problem starting from a simple feasible set, adding a constraint in each iteration that
strictly tightens the relaxation, and terminates after a finitely many iterations. When
it terminates, it either identifies a finite optimal solution of (8.110) or determines that
none exists (i.e., (8.110) is either infeasible or feasible but unbounded).

We next describe this procedure in more detail under the assumptions:

C8.3: . is compact.
C8.4: 5 (H) and � (H) are continuous on an open set . ✓ R; containing . .

For each H 2 . , the (partial) Lagrangian of (8.113a) is

! (G,`; H) := 2T
G + `T (�G� 1 +� (H)) = (� (H)� 1)T

`+ (2+ �T
`)T

G, G � 0,` � 0

Hence the dual of (8.113a) is

max
`�0

(� (H)� 1)T
` s.t. 2+ �T

` � 0 (8.114)

Note that the feasibility of (8.114) does not depend on H, only its objective function
does. It can be shown that, under C8.3 and C8.4, (8.114) is infeasible if and only if
H0 has no lower bound on ⌧, i.e., if and only if the optimal value of (8.113a) is �1
(Exericse 8.31).

Let & be any subset of ⇠ and define a relaxation ⌧ (&) of ⌧:

⌧ (&) :=
Ÿ

(`0,`)2&
{(H0, H) | 6(H0, H;`0,`) � 0, H 2 . } (8.115a)

As we will explain below, Benders algorithm identifies a new element (`00,`0) to add to
& in each iteration, introducing the additional constraint 6(H0, H;`00,`0) � 0 on (H0, H)
that strictly tightens the relaxation⌧ (&), until an optimal solution of (8.110) is found.
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Consider the following subproblems:

NLP(&): 5 (&) := min
(H0,H)

H0 s.t. (H0, H) 2 ⌧ (&) (8.115b)

LP(H): 2(H) := min
G�0

2
T
G s.t. �G  1�� (H) (8.115c)

DP(H): 3 (H) := max
`�0

(� (H)� 1)T
` s.t. 2+ �T

` � 0 (8.115d)

Since NLP(&) (8.115b) is a relaxation of (8.113a), if (8.115b) is infeasible then
(8.113a) is infeasible (and hence (8.110) is infeasible by Theorem 8.31). On the other
hand, if (H⇤0, H⇤) is an optimal solution of (8.115b), then it is also optimal for (8.113a)
if and only if the optimal value of the dual problem DP(H⇤) (8.115d) satisfies:

3 (H⇤) = H⇤0� 5 (H⇤) (8.116)

This follows from Theorem 8.31 and strong duality between the linear programs
(8.115c) and (8.115d) since the optimal value H⇤0� 5 (H⇤) of LP(H⇤) is finite.

The Benders algorithm proceeds as follows. Starting with any subset & ✓ ⇠, the
resulting nonlinear program NLP(&) (8.115b) is solved, with three possible outcomes:

1 unbounded 5 (&) = �1: This happens if and only if the feasible set % := {` 2 R< :
2+ �T

` � 0,` � 0} of DP(H) (8.115d) is empty (Exericse 8.31). It implies that the
original problem (8.110) is feasible but unbounded. The algorithm terminates.

2 infeasible 5 (&) =1: This happens only if % is nonempty and implies that (8.110)
is infeasible since 5 (&) is a relaxation of (8.113a). The algorithm terminates.

3 bounded �1 < 5 (&) <1: This happens only if % is nonempty. Suppose ( H̄0, H̄) 2
R

1+; is a minimizer of NLP(&). The dual problem DP( H̄) is then solved.

The solution of DP( H̄) also leads to three possible next steps, depending on whether
DP( H̄) is bounded:

4 Suppose 3 ( H̄) is bounded and attained by ¯̀. Then strong duality implies that
LP( H̄) (8.115c) has an optimal solution Ḡ (Theorem 8.23). The minimizer ( H̄0, H̄)
of NLP(&) and the primal-dual optimal solution (Ḡ, ¯̀) of LP( H̄) and its dual
DP( H̄) satisfy (Exericse 8.32):

H̄0  2T
Ḡ + 5 ( H̄) = (� ( H̄)� 1)T ¯̀ + 5 ( H̄) (8.117)

with equality if and only if ( H̄0, H̄) is feasible and hence optimal for (8.113a).
Theorem 8.31 therefore implies that, if equality holds in (8.117), then (Ḡ, H̄) is
optimal for (8.110) with optimal value H̄0. The algorithm terminates.

5 On the other hand, suppose the inequality is strict in (8.117). Then 5 (&) > �1
implies that 2+ �T ¯̀ � 0, i.e., (1, ¯̀) 2 ⇠. Therefore the strict inequality in (8.117)
means that ( H̄0, H̄) violates the constraint 6(H0, H;1, ¯̀) � 0 in the definition of ⌧
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in (8.113c), i.e., (1, ¯̀) is in ⇠ but not &. We add (1, ¯̀) to &, introducing the
additional constraint

(H0� 5 (H)) + ¯̀T (1�� (H)) � 0

in the feasible set ⌧ (&) in (8.115a), and solve NLP(&) again.
6 Suppose DP( H̄) is unbounded, i.e., 3 ( H̄) = 1. Then LP duality (Theorem 8.23)

implies that LP( H̄) is infeasible, i.e., there is no G � 0 such that �G  1 � � ( H̄).
The Farkas lemma implies that (8.112) is satisfied by some ( ¯̀0, ¯̀) 2 ⇠ for which
6( H̄0, H̄; ¯̀0, ¯̀) � 0 is violated in ⌧ and which should be added to &.

To identify such a ( ¯̀0, ¯̀), note that, since 3 ( H̄) =1, there must be a feasible
point ā of DP( H̄) and a direction ¯̀ such that (i) the halfline ā+U ¯̀ is in the feasible
set of DP( H̄) for all U � 0 ( ¯̀ is called a direction of recession; see Definition 12.5),
and (ii) (� ( H̄) � 1)T ¯̀ > 0. The first condition implies that (0, ¯̀) 2 ⇠ because
2 + �T (ā + U ¯̀) = (2 + �T

ā) + U(�T ¯̀) � 0 which can hold for all U � 0 if and
only if �T ¯̀ � 0. The second condition therefore identifies (0, ¯̀) 2 ⇠ for which
6( H̄0, H̄;0, ¯̀) � 0 is violated in ⌧, i.e., (0, ¯̀) 2 ⇠ \&. We add (0, ¯̀) to& and solve
NLP(&) is again with the additional constraint:

¯̀T (1�� (H)) � 0

The overall algorithm for Benders decomposition is summarized in Figure 8.18.

solve NLP(Q)
original  
problem 

infeasible 

infeasible 

check if P is empty

P := u ≥ 0 : ATu+ c ≥ 0{ }
original  
problem 

unbounded 

P empty 

P nonempty: 
NLP(Q) finite  
or infeasible 

x0, y( )
x0  finite

NLP$

DLP$

= 

Add constraint
v T b−F(y)( ) ≥ 0

optimal (x, y ) 
opt value x0

solve DLP(y )

F(y )− b( )T u ≥ x0 − f (y )

> 

Add constraint
x0 − f (y)( )+uT b−F(y)( ) ≥ 0

u

unbounded:

F(y )− b( )T v > 0

update Q 

NLP$

DLP$

Figure 8.18 Benders decomposition (May 18, 2025: Changes: (i) DLP –> DP; PLP –> LP; (ii)
G0! H̄0; H! H̄; (iii) D! ¯̀, ā! ¯̀; (iii) “unbounded (� (H)� 1)) a > 0” –> “unbounded
¯̀T (1�� ( H̄)) < 0”; (iv) (� (H)� 1)) D̄ � G0 � 5 (H)! ( H̄0 � 5 ( H̄)) + ¯̀T (1�� ( H̄))  0; (v)
“Add constraint (H0 � 5 (H)) + ¯̀T (1�� (H)) � 0 to ⌧ (&)”; (vii) “Add constraint
¯̀T (1�� (H)) � 0 to &”. Delete “update ⌧ (&)”.)

The Benders algorithm terminates in a finite number of steps. This is because ⇠ is
a polyhedral pointed cone, it is the convex hull of finitely many extreme halflines. In
each iteration in which the algorithm does not terminate an extreme halfline, which is
not already in &, is added to &.
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8.6 Convergence analysis

Consider the problem (8.75), reproduced here:

5
⇤ := min

G

5 (G) subject to G 2 - (8.118)

where 5 : R=! R and - ✓ R=. Iterative algorithms for solving (8.118) generally take
the form (8.77a), reproduced here:

G(C +1) = 6(G(C)) (8.119a)

where 6 : R=! R=. For example a gradient descent algorithm can be interpreted as
the following fixed-point iteration

G(C +1) = [G(C)�W⌧ (G(C))r 5 (G(C)]
-

=: 6(G(C)) (8.119b)

where W > 0 is a stepsize, ⌧ (G) � 0 is a scaling matrix, and [·]- is the projection to
the feasible set - . A fixed point G⇤ of the gradient algorithm (8.119b) satisfies the
optimality condition (8.76). The fixed-point iteration (8.119) can be used not only for
solving an optimization problem, but also for solving a system of nonlinear equations
⌘(G) = 0 with the corresponding fixed-point iteration G(C +1) = G(C) + ⌘(G(C)). Indeed
many of the optimization algorithms can be interpreted as solving a system of equations
representing the KKT condition.

We assume:

C8.5: The objective function 5 is lower bounded on - , continuously di�erentiable
and convex. The feasible set - is nonempty, closed and convex.

C8.5 guarantees that (8.118) is feasible and gradient algorithms (8.119b) are well
defined.

8.6.1 Convergence theorems

In this subsection we prove some basic results that are widely used for convergence
analysis of constrained optimization (8.118).

Since the feasible set - in (8.118) is not necessarily compact (bounded), the optimum
may not be attained (e.g., 5 (G) = 4�G on - = R). Moreover the sequence (G(C), C =
0,1, . . . ) generated by the gradient projection algorithm (8.78) may not stay bounded
and hence may not have any convergent subsequence (the Bolzano-Weierstrass theorem
states that a sequence (G(C), C = 0,1, . . . ) has a convergent subsequence if it is bounded).
To guarantee that the gradient projection algorithm makes progress towards minimizing
5 , we need:
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C8.6: The gradient of 5 is Lipschitz continuous with Lipschitz constant V, i.e.,

kr 5 (H)�r 5 (G)k2  VkH� Gk2 8G, H 2 R=

Note that the norm is Euclidean.10 C8.6 implies the following useful result which is
used in Theorem 8.35 to prove the optimality of gradient projection algorithm (8.78).

Lemma 8.32 (Descent Lemma.). If 5 : R= ! R is continuously di�erentiable and
satisfies C8.6 then

5 (G + H)  5 (G) + HTr 5 (G) + V
2
kHk22 8G, H 2 R=

Proof We estimate the di�erence 5 (G + H)� 5 (G) by considering the scalar function
6(B) defined by the intersection of the 5 (G) surface with the vertical plane at G in the
direction H. Fix any G, H 2 R= and define

6(B) := 5 (G + BH) for B 2 [0,1]

As B ranges from 0 to 1, G + BH moves from G to G + H in a straight line and

6
0(B) = HTr5 (G + BH)

is the directional derivative of 5 at G + BH in the direction H. Then

5 (G + H)� 5 (G) = 6(1)�6(0) =
π 1

0
6
0(B)3B =

π 1

0
H

Tr5 (G + BH)3B

=
π 1

0

⇣
H

Tr5 (G) + H
T (r5 (G + BH)�r5 (G))

⌘
3B

 HTr5 (G) +
π 1

0
kHk2 kr5 (G + BH)�r5 (G)k2 3B

 HTr5 (G) + kHk2
π 1

0
V kBHk2 3B

= HTr5 (G) + V

2
kHk22

where the first inequality follows from the Cauchy-Schwarz inequality and the second
inequality follows from condition C8.6. ⇤

As we will see in Chapter 8.6.3, under condition C8.6, the gradient projection
algorithm generates a sequence (G(C), C = 0,1, . . . ) such that 5 (G(C)) monotonically
decreases. The sequence (G(C), C = 0,1, . . . ) may not converge, but any converging
subsequence converges to an optimal point (Theorem 8.35). When 5 is strongly convex
(Definition 8.4) then the gradient projection algorithm indeed converges and does so
geometrically. This is because strong convexity implies that the gradient projection
algorithm is a contraction mapping, as we now explain.

10 In contrast, the norm that defines a contraction mapping can be arbitrary (see Definition 8.10 below).
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Definition 8.10 (Contraction). Consider a function ) : -! - from a subset - of R=

into itself. ) is called a contraction mapping or simply a contraction if there exists an
U 2 [0,1) such that

k) (H)�) (G)k  UkH� Gk 8G, H 2 -

for an arbitrary norm k · k.

A function ) can be a contraction under a certain norm, but not under a di�erent
norm, so the proper choice of norm is critical.

Theorem 8.33 (Contraction mapping theorem). Suppose ) : - ! - is a contraction
mapping on a closed subset - of R=. Then

1 There exists a unique fixed point G⇤ such that G⇤ = ) (G⇤).
2 Starting from any initial point G(0) 2 - , the contraction iteration G(C+1) :=) (G(C))

converges geometrically to G⇤:

kG(C)� G⇤k  UC kG(0)� G⇤k 8C � 0

Proof Consider the contraction iteration G(C +1) := ) (G(C)). Definition 8.10 implies

kG(C +1)� G(C)k  U kG(C)� G(C �1)k  · · ·  U
C kG(1)� G(0)k

Hence, for all C � 0 and B � 1, we have

kG(C + B)� G(C)k =
�����
B�1’
<=0

(G(C +< +1)� G(C +<))
�����


B�1’
<=0

kG(C +< +1)� G(C +<)k  kG(1)� G(0)kUC
B�1’
<=0

U
<

 U
C

1�U kG(1)� G(0)k

Since U 2 [0,1), G(C) is a Cauchy sequence (i.e., given any n > 0, there exists = such
that for all B, C > =, kG(C + B)� G(C)k < n) and hence must converge to a point G⇤ in R=.
Since - is closed, G⇤ 2 - . Since ) is continuous,

G
⇤ = lim

C

G(C +1) = lim
C

) (G(C)) = ) (lim
C

G(C)) = ) (G⇤)

and hence G⇤ is a fixed point of ) . Moreover, the fixed point is unique for, otherwise,
if G⇤ and H⇤ are both fixed points then

kH⇤ � G⇤k = k) (H⇤)�) (G⇤)k  U kH⇤ � G⇤k

implying H⇤ = G⇤ since U 2 [0,1). This completes the proof of part 1.

For part 2, we have for all C � 1,

kG(C)� G⇤k = k) (G(C �1))�) (G⇤)k  U kG(C �1)� G⇤k

Hence kG(C)� G⇤k  U
C kG(0)� G⇤k. ⇤



8.6 Convergence analysis 417

When a function ) : - ! - from a subset - of R= into itself has a fixed point
G
⇤ 2 - , we call ) a pseudocontraction mapping or simply a pseudocontraction if there

exists an U 2 [0,1) such that

k) (G)� G⇤k  UkG� G⇤k 8G 2 -

for an arbitrary norm k · k. Pseudocontraction is a weaker notion than contraction,
i.e., if ) is a contraction then it is a pseudocontraction, but the converse may not
hold. Theorem 8.33 however extends to pseudocontraction, i.e, the fixed point G⇤ in
the definition of pseudocontraction is the unique fixed point in - and the fixed-point
iteration converges geometrically to G⇤. Note however that the existence of a fixed
point G⇤ is part of the definition of pseudocontraction and G⇤ is often unavailable in
applications.

If a function 5 is strongly convex on - then Theorem 8.6 implies (see (8.12))

UkH� Gk2  kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 -

In particular it satisfies C8.6. The proof of Theorem 8.6 (see (8.11)) and the Descent
Lemma 8.32 show that

H
Tr5 (G) + U

2
kHk22  5 (G + H)� 5 (G)  H

Tr5 (G) + V
2
kHk22

A consequence is that the gradient projection algorithm (8.78) is a contraction mapping
and therefore converges geometrically to the unique optimal point, as explained in
Theorem 8.36.

8.6.2 Gauss-Seidel algorithm

The Gauss algorithm introduced in Chapter 4.4.1 is a fixed-point iteration of the form

G(C +1) = 6(G(C)) (8.120)

where G 2 R=, 6 : -! - and - is a nonempty subset of R=. The goal of (8.120) is to
compute a fixed point G⇤ that satisfies G⇤ = 6(G⇤). Almost all iterative algorithms for
constrained optimization can be interpreted as a fixed-point iteration (8.120), including
gradient algorithms. The advantage of the class of Gauss algorithms however is that
gradient is not necessary, simplifying computation, e.g., the backward-forward sweep
of Chapter 5.3. We study the convergence of Gauss algorithms in this subsection and
that of gradient algorithms in Chapter 8.6.3.

If 6 is a contraction mapping then the Contraction Mapping Theorem 8.33 im-
plies that the fixed-point iteration (8.120) will converge to a unique fixed point G⇤

geometrically.

Suppose - =
Œ
<

8=1 -8 where each -8 ✓ R=8 is nonempty such that =1 + · · · +=< = =.
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Decompose G 2 R= into G = (G1, . . . ,G<) where G8 2 -8 . We are given a norm k · k8 on
R
=8 for each 8. Define the norm k · k on R= by

kGk := max
8

kG8 k8 (8.121)

If =8 = 1 and kG8 k8 := |G8 | then kGk = max8 |G8 | is the ;1 norm. The Gauss algorithm
(8.120) updates all components G8 simultaneously. A Gauss-Seidel algorithm updates
one component at a time and the computation of component G8 (C + 1) uses the latest
value G1 (C +1), . . . ,G8�1 (C +1):

G8 (C +1) = 68 (G1 (C +1), . . . ,G8�1 (C +1),G8 (C), . . . ,G< (C)), 8 = 1, . . . ,<

We will show that, if the Gauss algorithm (8.120) is a contraction mapping, so is
Gauss-Seidel algorithm with the same (unique) fixed point. To this end we define a
mapping ⌘ : -! - that represents the Gauss-Seidel update after every < updates.

Let 68 : - ! -8 and ⌘8 : - ! -8 denote the 8th block-components of 6 and ⌘

respectively:

6(G) = (61 (G), . . . ,6< (G)), ⌘(G) = (⌘1 (G), . . . ,⌘< (G))

Given a Gauss algorithm 6 : -! - in (8.120), the corresponding Gauss-Seidel algo-
rithm ⌘ : -! - is defined recursively through its block-components:

⌘1 (G) := 61 (G1, . . . ,G<) (8.122a)

⌘8 (G) := 68 (⌘1 (G), . . . ,⌘8�1 (G),G8 , . . . ,G<), 8 = 2, . . . ,< (8.122b)

Theorem 8.34 (Gauss-Seidel algorithm). Suppose - ✓ R= is closed. Suppose 6 : -!
- is a contraction mapping with a unique fixed point G⇤ and parameter U 2 [0,1) under
the norm (8.121), i.e.,

k6(H)�6(G)k  UkH� Gk, 8G, H 2 -

Then ⌘ in (8.122) is also a contraction with the same (unique) fixed point G⇤ and
parameter U. Hence the sequence G(C) generated by ⌘ converges geometrically to G⇤.

Proof The assumption of Cartesian product - =
Œ
<

8=1 -8 and the definition of the
norm (8.121) imply that the 8th block-components of 6 satisfy

k68 (H)�68 (G)k8  max
9

k6 9 (H)�6 9 (G)k 9 = k6(H)�6(G)k  UkH� Gk = Umax
9

kH 9 � G 9 k 9

Therefore ⌘8 in (8.122) satisfy

k⌘8 (H)� ⌘8 (G)k8  Umax
⇢
max
9<8

k⌘ 9 (H)� ⌘ 9 (G)k 9 , max
9�8
kH 9 � G 9 k 9

�
, 8 = 1, . . . ,<

Induction on 8 then shows that k⌘8 (H) � ⌘8 (G)k8  UkH � Gk for all 8, implying that
k⌘(H)� ⌘(G)k  UkH� Gk. It is easy to show that the unique fixed point of ⌘ is also G⇤

and the remaining claim follows from the Contraction Mapping Theorem 8.33. ⇤
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Example 8.18 (Backward-forward sweep [60]). We analyze the convergence of the
backward-forward sweep (BFS) Algorithm 2 in Chapter 5.3.2:

�
B

8 9
(C) =

’
:: 9!:

�
B

9:
(C) �

 ✓
B 9

+ 9 (C �1)

◆H
� H<

9 9
+ 9 (C �1)

!
, 9 2 #

+ 9 (C) = +8 (C) � (HB
8 9
)�1
�
B

8 9
(C), 9 2 #

where 8 := 8( 9) denotes the unique parent of 9 and H<
9 9

:= H<
98
+Õ

:: 9!: H
<

9:
is the total

shunt admittance incident on bus 9 . This can be represented compactly using the
(# +1)⇥# incidence matrix ⇠ defined in (5.4) and reproduced here:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

The matrix⇠ is of rank # . Decompose⇠ into the #⇥# non-singular reduced incidence
matrix ⇠̂ and the first row 2

T
0 corresponding to the root bus 0:

⇠ =:

2

T
0
⇠̂

�

Define # ⇥# diagonal matrices:

B̂ := diag
�
B 9 , 9 2 #

�
, Ĥ

< := diag
⇣
H
<

9
, 9 2 #

⌘
, Ĥ

B := diag
⇣
H
B

8 9
, 9 2 #

⌘
Then the BFS algorithm consists of the following nonlinear iteration:

⇠̂ �
B (C) = B̂

H
+
�H (C �1)� Ĥ<+ (C �1) (8.123a)

�
B (C) = Ĥ

B

⇣
20+0 + ⇠̂T

+ (C)
⌘

(8.123b)

where the column vector +�H := (1/+H
9
, 9 2 #); and B̂

H takes the componentwise
conjugate of the diagonal matrix B̂. Substituting (8.123b) into (8.123a) to eliminate
�
B (C) yields a Gauss algorithm in terms of + only:

+ (C) = !̂
�1

⇣
B̂

H
+
�H (C�1)� Ĥ<+ (C�1)� ⇠̂ ĤB20+0

⌘
=: 6(+ (C �1)) (8.124)

where the reduced Laplacian matrix !̂ := ⇠̂ ĤB⇠̂T is nonsingular and encodes the net-
work topology and series admittances. (Properties of !̂ and !̂�1 for radial networks
are given in Theorem 4.10.) We next prove a su�cient condition for the fixed-point
iteration 6 in (8.124) to be a contraction.

Define column vectors of nonnegative real numbers for non-reference buses:

|B | := ( |B1 |, . . . , |B# |) , |H< | :=
�
|H<1 |, . . . , |H<

#
|
�
, |� | := |B |

1� n + (1+ n) |H< |

and # ⇥# real matrices:

| ĤB | := diag
⇣
|HB
8 9
|, 8 9 2 #

⌘
, | !̂ | := ⇠̂ | ĤB |⇠̂T.
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Consider the following set of voltages with magnitudes within n of |+0 |:

V :=
�
+ 2 C# : |+0 |� n  |+ 9 |  |+0 | + n , 9 2 #

 
(8.125)

for a given n 2 (0,1). Assuming +0 ⇡ 1 pu, V is a set of voltages of practical interest,
one that is closer to 1 pu. The following result provides su�cient conditions under
which 6 in (8.124) maps V onto V and, moreover, is a contraction. These conditions
are su�cient, but not necessary, for the fixed-point iteration (8.124) to converge to a
unique power flow equation +⇤ 2 V. Specifically:

1 Suppose the vector | !̂ |�1 |� | satisfies

1
n

���| !̂ |�1 |� |
���
1
 1 (8.126)

where k0k1 := max8 |08 | for vector 0. Then + 2 V implies 6(+) 2 V.
2 Suppose condition (8.126) holds and

d :=
1

( |+0 |� n)2

��
!̂
�1
B̂

H��
2 +

��
!̂
�1
Ĥ
<

��
2 < 1 (8.127)

where k�k2 is the spectral norm of matrix �. Then 6 is a contraction with parameter
d and therefore:
• There is a unique fixed point, i.e., power flow solution, +⇤ of (8.124) in V.
• Starting from any + (0) 2 V, the sequence (+ (C), C � 1) produced by (8.124)

converges geometrically to +⇤, i.e., k+ (C)�+⇤k2  dC k+ (0)�+⇤k2.

We prove these two claims. For the first claim let 1# and 0# denote the column
vectors of # 1’s and 0’s respectively. We have

⇠
T
1#+1 = 20 + ⇠̂T

1# = 0#

and thus !̂�1
⇠̂ Ĥ

B
20+0 = (⇠̂�T

20) = �+01# . This simplifies the fixed-point iteration 6
in (8.124) to:

6(+) = !̂
�1

⇣
B̂

H
+
�H� Ĥ<+

⌘
++01# (8.128)

If + 2 V in (8.125), then ��
B̂

H
+
�H� Ĥ<+

��  |� | (8.129)

where the right-hand side is a nonnegative column vector and the left-hand side takes
componentwise magnitudes. Theorem 4.10 of Chapter 4.2.6 implies that, for radial
networks, the (8, 9)th entry of !̂�1 = ⇠̂�T ( ĤB)�1

⇠̂
�1 is the sum of (HB

;
)�1 over lines

; on the common segment of paths from bus 8 to the root and from bus 9 to the
root. Hence the componentwise magnitudes of !̂�1 are upper-bounded by | !̂ |�1. Then
(8.129) implies ���!̂�1

⇣
B̂

H
+
�H� Ĥ<+

⌘���  | !̂ |�1 |� | (8.130)

where again the right-hand side is a nonnegative column vector and the left-hand side
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takes componentwise magnitudes. Therefore, if condition (8.126) is satisfied, then by
(8.128)(8.130), we have |+0 |� n  |6 9 (+) |  |+0 | + n for all 9 2 # , i.e., + 2 V implies
6(+) 2 V.

For the second claim, by (8.128), for any*,+ 2 V:

k6(*)�6(+)k2 
��
!̂
�1
B̂

H��
2

��
*
�H�+�H��

2 +
��
!̂
�1
Ĥ
<

��
2 k* �+ k2


✓

1
( |+0 |� n)2

��
!̂
�1
B̂

H��
2 +

��
!̂
�1
Ĥ
<

��
2

◆
k* �+ k2 = d k* �+ k2

(8.131)

where the first inequality uses the subadditivity of vector norms and the definition of
induced matrix norms. The second inequality is because

��
*
�H�+�H��

2 =

vut’
92#

 
1

*
H
9

� 1

+
H
9

! ✓
1
* 9

� 1
+ 9

◆
=

vt’
92#

|* 9 �+ 9 |2
|* 9 |2 |+ 9 |2

 1
( |+0 |� n)2

s’
92#

|* 9 �+ 9 |2 =
1

( |+0 |� n)2
k* �+ k2

where the inequality uses *,+ 2 V defined in (8.125). Inequality (8.131), condition
(8.127), and part 1 imply that 6 is a contraction from V onto V. Since V is a closed
subset of C# , the second claim follows from Theorem 8.33. 11 ⇤

8.6.3 Steepest descent algorithm

Recall the gradient projection algorithm (8.78) of Chapter 8.5.1, reproduced here:

G(C +1) := [ G(C)�Wr 5 (G(C)) ]
-

(8.132)

where W > 0 is a constant stepsize, - ✓ R= is nonempty, closed and convex, and [G]
-

denotes the projection of G onto - .

Conditions C8.5 and C8.6 do not guarantee that the sequence (G(C), C = 0,1, . . . )
generated by the gradient projection algorithm has any convergent subsequence, but
if it does then the subsequence converges to an optimal point G⇤ of (8.118). Note that
(G(C), C = 0,1, . . . ) may have multiple convergent subsequences in which case all their
limits points are optimal. This implies that, when 5 is strictly convex so that the optimal
point G⇤ is unique, then (G(C), C = 0,1, . . . ) itself converges to G⇤, provided the stepsize
W is su�ciently small. This result does not require the gradient projection algorithm
(8.132) to be a contraction and is thus less conservative.

Theorem 8.35 (Optimality of gradient projection algorithm). Suppose conditions C8.5
and C8.6 hold, and suppose 0 < W < 2/V. Let (G(C), C = 0,1, . . . ) denote the sequence

11 Theorem 8.33 applies to real vector spaces. To apply it here, we can treat + = (Re(+ ) , Im(+ )) as a
vector in R2# . The ;2 norm in C# naturally extends to the ;2 norm in R2# and the set V defined in
(8.125) becomes a closed subset of R2# .
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produced by the gradient projection algorithm (8.132). Then the limit point G⇤ of any
convergent subsequence (G(C: ), : = 1,2, . . . ) is an optimal solution of (8.118).

Proof We prove the theorem in three steps. First we show the sequence ( 5 (G(C)), C =
0,1, . . . ) of objective values produced by the gradient projection algorithm (8.132)
converges monotonically. Moreover the di�erence sequence (G(C+1)�G(C), C = 0,1, . . . )
converges to zero. Specifically, by the Descent Lemma 8.32, we have

5 (G(C +1))  5 (G(C)) + (G(C +1)� G(C))Tr 5 (G(C)) + V
2
kG(C +1)� G(C)k22 (8.133)

Theorem 8.9.2 implies that for all C

( H� G(C +1) )T ( G(C)�Wr 5 (G(C)) � G(C +1) )  0 8H 2 - (8.134)

In particular let H = G(C) and we have, after rearranging,

( G(C +1)� G(C) )Tr 5 (G(C))  � 1
W

kG(C +1)� G(C)k22

Substituting into (8.133) we have

5 (G(C +1))  5 (G(C)) �
✓
1
W

� V
2

◆
kG(C +1)� G(C)k22 (8.135)

Hence the sequence ( 5 (G(C)), C = 0,1, . . . ) is strictly decreasing as long as G(C+1) < G(C)
provided W < 2/V. Since 5 is lower bounded on - (condition C8.5), the sequence
( 5 (G(C)), C = 0,1, . . . ) is bounded and monotone and thus converges. Rearranging
(8.135), we also have

kG(C +1)� G(C)k22 
✓
1
W

� V
2

◆�1

( 5 (G(C))� 5 (G(C +1)))

Since 5 (G(C)) converges this means that the di�erences G(C +1)�G(C) converge to zero
(though this does not guarantee that G(C) itself converges).

Second suppose there is a subsequence (G(C: ), : = 1,2, . . . ) that converges to G⇤.
Consider the sequence (G(C: + 1), : = 1,2, . . . ). By Theorem 8.9.3, the iteration G(C +
1) = [G(C) � Wr 5 (G(C))]- defined by (8.132) is a projection and hence a continuous
function of G(C). Hence the sequence (G(C: + 1), : = 1,2, . . . ), being the image of a
continuous function on G(C: ), also converges. We now show that it converges to G⇤ as
:!1. Fix any n > 0. We have to show that there exists a  such that

kG(C: +1)� G⇤k2 < n 8: >  

Since G(C: )! G
⇤ there exists an  0 such that

kG(C: )� G⇤k2 <
n

2
8: >  0 (8.136a)

Step 1 above shows that G(C: +1) � G(C: ) converges to zero and hence there exists  00

such that

kG(C: +1)� G(C: )k2 <
n

2
8: >  00 (8.136b)
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Combining (8.136) we have for : >  := max{ 0, 00}

kG(C: +1)� G⇤k2  kG(C: +1)� G(C: )k2 + kG(C: )� G⇤k2 < n

as desired.

Finally note that (8.134) holds for all C. In particular consider C = C: , : = 1,2, . . . .
Taking :!1, (8.134) yields✓
H� lim

:

G(C: +1)
◆T ✓

lim
:

G(C: ) � W lim
:

r 5 (G(C: )) � lim
:

G(C: +1)
◆
 0, 8H 2 -

Since 5 is continuously di�erentiable and lim: G(C: ) = lim: G(C: +1) = G⇤, we have

W ( H� G⇤ )T r 5 (G⇤) � 0 8H 2 -

Hence G⇤ satisfies the optimality condition (8.76) and is globally optimal since 5 is a
convex function over a convex set - . ⇤

Suppose 5 is strongly convex on - ✓ R= with parameter U > 0 (Definition 8.4):

(r 5 (H)�r 5 (G) )T (H� G) � UkH� Gk22 8G, H 2 - (8.137a)

If maxG2- 5 (G) <1 then Theorem 8.6 implies

kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 - (8.137b)

where V is a finite bound on the maximum eigenvalue of r2
5 (G) on - , i.e., it satisfies

C8.6. The upper bound in (8.137b) guarantees strict descent for su�ciently small
stepsize W > 0 while the lower bound in (8.137a) guarantees geometric convergence.
This implies that the mapping defined by the gradient projection algorithm (8.132) is
a contraction. Theorem 8.33 then implies that the algorithm converges geometrically
to the unique optimal solution of (8.118). The condition sup

G2- 5 (G) < 1 is not
restrictive; see Remark 8.1.

Theorem 8.36 (Geometric convergence of gradient projection algorithm). Suppose
condition C8.5 holds. Suppose 5 is twice continuously di�erentiable, is strongly convex
with parameter U > 0 and maxG2- 5 (G) <1. If 0 < W < 2U/V2 then

1 There is a unique optimal solution G⇤ for (8.118).
2 The gradient projection algorithm (8.132) converges geometrically to G⇤.

Proof The gradient project algorithm (8.132) is the iteration G(C +1) =) (G(C)) where
) : -! - is defined by ) (G) := [ G�Wr 5 (G) ]- . We will show that ) is a contraction
when 5 is strongly convex. Then the assertions follow from Theorem 8.33.

We have under the Euclidean norm

k) (H)�) (G)k22 = k [H�Wr 5 (H)]- � [G�Wr 5 (G)]- k22
 k (H� G)�W (r 5 (H)�r 5 (G))k22
= kH� Gk22 � 2W (r 5 (H)�r 5 (G))T (H� G) + W

2kr 5 (H)�r 5 (G))k22
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where the inequality above follows from the fact that the projection operation is non-
expansive (Theorem 8.9.3). Conditions in the theorem imply that (8.137) holds and
hence (r 5 (H) �r 5 (G))T (H � G) � UkH � Gk22 and kr 5 (H) �r 5 (G))k22  V2kH � Gk22.
Therefore

k) (H)�) (G)k22 
⇣
1�2UW +W2

V
2
⌘
kH� Gk22

Hence ) is a contraction if and only if d(W) := W2
V

2�2UW +1 2 [0,1).

Strong convexity of 5 implies (when sup
G2- 5 (G) <1; see Remark 8.1)

UkH� Gk2  kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 -

and hence 0 < U  V. This implies that d(W) � 0 for all W. Moreover d(W) = 1�W(2U�
V

2
W) < 1 if W < 2U/V2. Hence ) is a contraction if 0 < W < 2U/V2. Theorem 8.33 then

implies that G(C) converges geometrically to a unique fixed point G⇤ of ) and Theorem
8.35 guarantees that G⇤ is the optimal solution of (8.118). ⇤

The condition number k (r2
5 (G))�1kkr2

5 (G)k of the Hessian matrix can a�ect
greatly the convergence of gradient algorithms. The bound on the stepsize W in The-
orem 8.35 is W < 2/V and that in Theorem 8.36 is W < (2/V) (U/V). As discussed in
Remark 8.1, U = minG2- _min (G) and V = maxG2- _max (G) (assuming - is closed). If
the minimization in U and the maximization in V are attained at the same point G̃,
then, since r2

5 (G̃) is symmetric and positive definite, its condition number is V/U
under the spectral norm. Hence the bound on the stepsize W is scaled down by the
condition number of the Hessian to ensure (geometric) convergence of the sequence
(G(C), C = 0,1, . . . ).

8.6.4 Interior-point algorithm

Consider the convex program (8.87) with an equality and an inequality constraints,
reproduced here:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G)  0 (8.138)

where � 2 R<⇥=, 1 2 R<, and 5 : R= ! R and ⌘ : R= ! R; are convex and twice
continuously di�erentiable. Recall that interior-point methods approximate (8.138) by
an equality constrained problem with the inequality constraint ⌘(G)  0 replaced by
a penalty term, and then solve a sequence of equality constrained problems (8.89),
reproduced here:

min
G2R=

C 5 (G) +q(G) s.t. 6(G) = 0 (8.139a)

using Newton methods. Here q is the logarithmic barrier function (defined in (8.88)):

q(G) := �
;’
8=1

log(�⌘8 (G)) (8.139b)
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defined over dom(q) := {G 2 R= : ⌘8 (G) < 0, 8 = 1, . . . , ;}.

The convergence of the barrier method Algorithm 3 for solving the convex program
(8.138) has three components:

1 The solution of (8.93) to compute a strictly feasible point if the barrier method
does not start at such a point. This is a one-o� computational e�ort.

2 The convergence of the Newton-Raphson algorithm for (8.139) for each C. This
determines the computational e�ort of each outer iteration in Algorithm 3.

3 How the suboptimality gap in solving (8.138) decreases as a function of the outer
iteration C. This determines how many outer iterations are needed to achieve a
desired accuracy.

For optimal power flow problems the “flat start” where +8 = 1\0� pu for all nodes 8
is often a strictly feasible point. If strictly feasible point is not available, the one-o�
computation e�ort for solving (8.93) is analyzed, e.g., in [57, Chapter 11.5.4, p,592].

The convergence analysis of the Newton-Raphson algorithm is complicated and
out of the scope of this book. The algorithm generally proceeds in two phases. In the
first phase, called the damped Newton phase, the gradient kr 5 (G: )k2 is greater than
a threshold [ > 0 and each Newton step : (in the iterative solution of (8.139) for a
fixed C) decreases the cost 5 (G: ) by a least a constant amount. If the optimal objective
value 5

⇤ is finite then the damped Newton phase will terminate after a finite number
of steps. Then the algorithm enters the second phase, called the pure Newton phase
where kr 5 (G: )k2 < [. In this phase the algorithm converges extremely rapidly (called
quadratic convergence) where the optimality gap 5 (G: ) � 5 ⇤ decreases as 2�2: , i.e.,
roughly, the number of correct digits doubles every iteration : . For details see e.g. [57,
Chapter 9.5.3, p,488] for unconstrained problems and [57, Chapter 10.2.4, p,529] for
equality constrained problems.

Finally, Theorem 8.30 shows that the suboptimality gap of the central point G(C) for
each problem (8.139) with parameter C is ;/C (under conditions C8.1 and C8.2). Hence
if the scaling factor in Algorithm 3 is W and a sequence of problems with parameters
C0,WC0,W2

C0, . . . , are solved, the suboptimality gap decreases at least geometrically as
(;/C0) (W)�C . Hence the desired accuracy n is achieved after

Cmax :=
log(;/nC0)

logW
iterations.

8.6.5 ADMM

Consider the special case of (8.100) where - := R=1 and . := R=2 :

?
⇤ := min

G2R=1 , H2R=2
5 (G) +6(H) s.t. �G +⌫H = 2 (8.140)
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where 5 : R=1 ! R and 6 : R=2 ! R are convex and continuously di�erentiable, � 2
R
<⇥=1 , ⌫ 2 R<⇥=2 , and 2 2 R<. In this subsection we analyze the convergence and

optimality properties of the ADMM algorithm (8.101), reproduced here:

G(C +1) = arg min
G2R=1

!d (G, H(C), _(C)) (8.141a)

H(C +1) = arg min
H2R=2

!d (G(C +1), H, _(C)) (8.141b)

_(C +1) = _(C) + d (�G(C +1) +⌫H(C +1)� 2) (8.141c)

on the convex problem (8.140).

Recall the augmented Lagrangian of (8.140):

!d (G, H,_) := 5 (G) +6(H) +_T (�G +⌫H� 2) + d
2
k�G +⌫H� 2k22 ,

The un-agumented Lagrangian of (8.140) is !0 (G, H,_). A point (G⇤, H⇤,_⇤) is
primal-dual optimal for (8.140) if and only if it satisfies the KKT condition
rG,H,_!0 (G⇤, H⇤,_⇤) = 0 in terms of the un-augmented Lagrangian, i.e.,

r_!0 (G⇤, H⇤,_⇤) = �G
⇤ +⌫H⇤ � 2 = 0 (8.142a)

rG!0 (G⇤, H⇤,_⇤) = r 5 (G⇤) + �T
_
⇤T = 0 (8.142b)

rH!0 (G⇤, H⇤,_⇤) = r6(H⇤) +⌫T
_
⇤T = 0 (8.142c)

Such a point (G⇤, H⇤,_⇤) is also a saddle point of !0 (Theorem 8.15). Our goal is to
show that the iterates (G(C), H(C),_(C)) produced by the ADMM algorithm (8.141) will
satisfy (8.142) asymptotically. It is in this sense that we interpret the ADMM algorithm
as computing a KKT point.

Our analysis will proceed in three steps. First we will show that (H(C),_(C)) satis-
fies condition (8.142c) at every C. Then we will show that (G(C), H(C),_(C)) satisfies
(8.142a)(8.142b) asymptotically. Finally we show that, as a consequence, the cost
5 (G(C)) + 6(H(C)) converges to the optimal cost ?⇤. This does not imply that the
sequence (G(C), H(C),_(C)) converges, but we will show that the limit point of any
convergent subsequence is a saddle point of !0 and hence primal-dual optimal.

Define the primal residual

A (G, H) := �G +⌫H� 2, A (C) := A (G(C), H(C)) := �G(C) +⌫H(C)� 2

Then the derivatives of the augmented Lagrangian !d are:

r_!d (G, H,_) = �G +⌫H� 2 = A (G, H)
rG!d (G, H,_) = r 5 (G) + �T

_+ d�T (�G +⌫H� 2) = r 5 (G) + �T
_+ d�T

A (G, H)
rH!d (G, H,_) = r6(H) +⌫T

_+ d⌫T (�G +⌫H� 2) = r6(H) +⌫T
_+ d⌫T

A (G, H)

where we have used rI k"I + 0k22 = 2"T ("I + 0). Hence the derivatives of !d equal
those of the un-augmented Lagrangian in (8.142) if A (G, H) = 0, i.e., if (G, H) is primal
feasible.
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Since the minimizations in (8.141a)(8.141b) are unconstrained, the Gauss-Seidel
update means that the minimizers (G(C +1), H(C +1)) satisfy12

rG!d (G(C +1), H(C),_(C)) = 0 (8.143a)

rH!d (G(C +1), H(C +1),_(C)) = 0 (8.143b)

We examine the implication of each. First (8.143b) implies

0 = r6(H(C +1)) +⌫T
_(C) + d⌫T

A (C +1) = r6(H(C +1)) +⌫T
_(C +1) (8.144a)

where the last equality uses _(C +1) = _(C) + dA (C +1) from (8.141c). This shows that
the ADMM iterates (H(C),_(C)) satisfy the stationarity condition (8.142c) at all C.

Then (8.143a) implies

0 = r 5 (G(C +1)) + �T
_(C) + d�T

A (G(C +1), H(C))
= r 5 (G(C +1)) + �T (_(C) + dA (G(C +1), H(C +1))) + d�T

⌫(H(C)� H(C +1))

where the last equality uses A (G(C +1), H(C))�A (G(C +1), H(C +1)) = ⌫(H(C)� H(C +1)).
Hence, since _(C) + dA (C +1) = _(C +1), we have

r 5 (G(C +1)) + �T
_(C +1) = B(C +1) (8.144b)

where B(C), called the dual residual, is:

B(C) := d�
T
⌫ (H(C)� H(C �1))

Hence (G(C),_(C)) satisfies (8.142b) if the dual residual B(C) = 0.

We next show that the primal and dual residuals (A (C), B(C))! 0 as C!1, implying
that the other two KKT conditions (8.142a)(8.142b) will be satisfied asymptotically
by (G(C), H(C),_(C)). Moreover 5 (G(C)) +6(H(C))! ?

⇤.

Theorem 8.37 (ADMM convergence). Suppose C8.1 holds and a saddle point
(G⇤, H⇤,_⇤) of the un-augmented Lagrangian !0 exists. Then as C!1

1 A (C)! 0, B(C)! 0.
2 5 (G(C)) +6(H(C))! ?

⇤.

Hence the limit point of any convergent subsequence is a saddle point of !0 and a
primal-dual optimum of (8.140).

Proof Let ?(C) := 5 (G(C)) +6(H(C)). We prove the theorem in 3 steps.

Step 1: prove (8.145). We derive upper and lower bounds on ?(C +1)� ?⇤:

�AT (C +1)_⇤  ?(C +1)� ?⇤  �AT (C +1)_(C +1) + BT (C +1) (G(C +1)� G⇤) (8.145)

We prove A (C)! 0 and B(C)! 0 below and use these bounds to conclude ?(C)! ?
⇤.

12 If - ( R=1 or . ( R=2 , then the convergence analysis replaces (8.143) by the optimality condition
rT
5 (G (C +1)) (G� G (C +1)) � 0, rT

6 (H (C +1)) (H� H (C +1)) � 0 for all G 2 - , H 2. .
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Since (G⇤, H⇤,_⇤) is a saddle point of !0, (G⇤, H⇤) is primal feasible and (Saddle-point
Theorem 8.14)

?
⇤ = !0 (G⇤, H⇤,_⇤)  !0 (G(C +1), H(C +1),_⇤) = ?(C +1) +_⇤TA (C +1)

which proves the lower bound in (8.145).

For the upper bound in (8.145) we will use (8.144). Specifically (8.144b) implies that
G(C +1) minimizes the function 5 (G) +

�
�

T
_(C +1)� B(C +1)

�T
G and (8.144a) implies

that H(C +1) minimizes the function 6(H) +
�
⌫

T
_(C +1)

�T
H. Hence

5 (G(C +1)) +
⇣
�

T
_(C +1)� B(C +1)

⌘T
G(C +1)  5 (G⇤) +

⇣
�

T
_(C +1)� B(C +1)

⌘T
G
⇤

6(H(C +1)) +_T (C +1)⌫H(C +1)  6(H⇤) +_T (C +1)⌫H⇤

Adding these inequalities and using �G⇤ +⌫H⇤ = 2, �G(C +1) +⌫H(C +1) = A (C +1) + 2,
we have

?(C +1) +_T (C +1) (A (C +1) + 2)� BT (C +1) (G(C +1)� G⇤)  ?
⇤ +_T (C +1)2

which proves the upper bound in (8.145).

Step 2: prove (8.146). We will take (H(C),_(C)) as the state of the ADMM algorithm and
treat G(C +1) as an intermediate quantity as a function of (H(C),_(C)). Then (8.141) de-
scribes the state evolution from (H(C),_(C)) to (H(C +1),_(C +1)). Define the Lyapunov
function for this dynamical system:

+ (C) := dk⌫(H(C)� H⇤)k22 +
1
d

k_(C)�_⇤k22

Therefore + (C) � 0 with equality if and only if H(C) = H⇤ and _(C) = _⇤ (It is possible
however that+ (C) converges to a constant+⇤ > 0 if (H(C),_(C)) converges to a di�erent
saddle point ( H̃, _̃).) We will lower bound the decrement in + (C) with each iteration:

+ (C +1)�+ (C)  �dk⌫(H(C +1)� H(C))k22� dkA (C +1)k22 (8.146)

This requires a tighter analysis than using triangular inequality of k · k2.

The inequalities in (8.145) imply (substituting B(C) := d�T
⌫(H(C)� H(C �1)))

(_(C +1)�_⇤)T
A (C +1)� d (H(C +1)� H(C))T

⌫
T
� (G(C +1)� G⇤)  0

Eliminate G⇤ and G(C +1) using �G⇤ = 2� ⌫H⇤ and �G(C +1) = 2� ⌫H(C +1) + A (C +1)
to get

(_(C +1)�_⇤)T
A (C +1) + d(H(C +1)� H(C))T

⌫
T(⌫(H(C +1)� H⇤)� A (C +1))  0 (8.147)

in terms of (H(C),_(C)). We now use (8.147) to prove (8.146).

Write

+ (C +1)�+ (C) = �d�+1 (C)�
1
d

�+2 (C) (8.148a)
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where

�+1 (C) := k⌫(H(C)� H⇤)k22� k⌫(H(C +1)� H⇤)k22 (8.148b)

�+2 (C) := k_(C)�_⇤k22� k_(C +1)�_⇤k22 (8.148c)

Substituting H(C) � H⇤ = (H(C) � H(C +1)) + (H(C +1) � H⇤) into (8.148b) and expanding
k⌫(H(C)� H⇤)k22 and similarly for k_(C)�_⇤k22 in (8.148c), we have

�+1 (C) = k⌫(H(C +1)� H(C))k22�2(⌫(H(C +1)� H(C)))T
⌫(H(C +1)� H⇤)

�+2 (C) = k_(C +1)�_(C)k22�2(_(C +1)�_(C))T (_(C +1)�_⇤)
= kdA (C +1)k22�2dAT (C +1) (_(C +1)�_⇤)

where the last equality follows from_(C+1) =_(C) +dA (C+1). Substituting into (8.148a)
gives:

+ (C +1)�+ (C) = �dk⌫(H(C +1)� H(C))k22� dkA (C +1)k22 +2/

where

/ := A
T (C +1) (_(C +1)�_⇤) + d(H(C +1)� H(C))T

⌫
T
⌫(H(C +1)� H⇤)

It therefore su�ces to show that /  0 to establish (8.146). From (8.147) we have

/  d(H(C +1)� H(C))T
⌫

T
A (C +1)

We now show that (H(C +1)� H(C))T
⌫

T
A (C +1)  0.

Recall that H(C + 1) minimizes !d (G(C + 1), H,_(C)) over H 2 R=2 and satisfies
(8.144a):

0 = r6(H(C +1)) +⌫T
_(C) + d⌫T

A (C +1)

Multiplying both sides by (H(C +1)� H(C))T and rearranging we have

d(H(C +1)� H(C))T
⌫

T
A (C +1) = rT

6(H(C +1)) (H(C)� H(C +1))� (H(C +1)� H(C))T
⌫

T
_(C)

 6(H(C))�6(H(C +1))� (H(C +1)� H(C))T
⌫

T
_(C)

=
⇣
6(H(C)) +_T(C)⌫H(C)

⌘
�

⇣
6(H(C +1)) +_T(C)⌫H(C +1)

⌘
 0

where the first inequality follows from the convexity of 6 and the last inequality follows
from the observation above that (8.144a) implies that H(C) minimizes 6(H) +_T(C)⌫H
over H 2 R=2 . Hence /  0. This completes the proof of (8.146).

Step 3: prove A (C)! 0, B(C)! 0, and ?(C)! ?
⇤. Iterating on (8.146) gives

+ (C)�+ (0)  �d
C’
g=1

⇣
k⌫(H(g)� H(g�1))k22 + kA (g)k22

⌘

Hence 0  + (C)  + (0) � dÕ
C

g=1

�
k⌫(H(g)� H(g�1))k22 + kA (g)k22

�
. Taking the limit
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we have
1’
g=1

⇣
k⌫(H(g)� H(g�1))k22 + kA (g)k22

⌘
 + (0)

implying that A (C)! 0 and B(C) := d�T
⌫(H(C)� H(C�1))! 0. (Note that this does not

imply + (C)! 0, nor (G(C), H(C))! (G⇤, H⇤), since the series sum may be strictly less
than + (0).)

To prove ?(C)! ?
⇤, note that + (C) remaining finite as C!1 means that _(C) and

H(C) remain finite as C !1. Since A (C) = �G(C) + ⌫H(C) � 2 is finite, �G(C) remains
finite as C!1. Then, since the second term in the upper bound in (8.145) is

B
T (C +1) (G(C +1)� G⇤) = d (⌫(H(C +1)� H(C)))T

� (G(C +1)� G⇤)

A (C)! 0 and ⌫(H(C)� H(C �1))! 0 imply that ?(C)! ?
⇤ in view of (8.145).

Finally suppose a subsequence of (G(C), H(C),_(C)) converges to (G̃, H̃, _̃). Then it is
proved in Chapter 8.5.5 that (G̃, H̃, _̃) is a saddle point of !0 and hence is primal-dual
optimal for (8.140). ⇤

8.7 Bibliographical notes

There are many excellent texts on convex analysis and optimization. We have used materials from [61, 62,
57, 54]. The envelope theorems in Chapter 8.3.6 are from [56] and [61, Proposition A.43, p.649]. See [63,
Theorems 1, 2, 3] for envelope theorems that allow nonunique maximizer G⇤ (?) but requires an upper bound
on |m 5 (G, ?)/m?8 | uniformly in ?8 . The main reference for Benders decomposition in Chapter 8.5.7 is
[64]. See [59] for generalized Benders decomposition when (8.109c) is a convex program. The convergence
analysis in Chapters 8.6.1–8.6.3 mostly follow [61], the analysis on interior-point method in Chapter 8.6.4
is from [57], and that on ADMM in Chapter 8.6.5 is from [65, Appendix A].

Interior-point methods were first employed to solve power system problems in the early 1990s for the
purpose of state estimation [66]. See [67] for empirical performance of interior-point methods for large-scale
OPF problems.

8.8 Problems

Chapter 8.1.

Exercise 8.1 (Convex sets). Prove that the following sets are convex:

1. A�ne set: ⇠ = {G 2 R= | �G = 1} where � 2 R<⇥= and 1 2 R<, <,= � 1.
2. Second-order cone: ⇠ = {(G, C) 2 R=+1 | kGk2  C}, = � 1. Here kGk2 :=q

G
2
1 + G2

2 + · · · + G2
=

is the Euclidean norm.
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3. Positive semidefinite matrices: ⇠ = {� 2 S=⇥= | � ⌫ 0}, = � 1, where S=⇥= is the set
of symmetric =⇥= real matrices and � ⌫ 0 means GT

�G � 0 for any G 2 R=.

Exercise 8.2 (Operations preserving set convexity). Let X and Y be linear subspaces.

1. Linear transformation: Let 5 : X! Y be linear. Prove:
1 If � ✓ X is convex then 5 (�) := { 5 (G) : G 2 �} is convex.
2 If ⌫ ✓ Y is convex then 5

�1 (⌫) = {G 2 R= : 5 (G) 2 ⌫} is convex.
2. Arbitrary direct product: Let � ✓ X, ⌫ ✓ Y be convex.

1. Prove that the product space X⇥Y := {(G, H) : G 2 X, H 2 Y} with + and · defined
by

(G1, H1) + (G2, H2) := (G1 + G2, H1 + H2) 8(G1, H1), (G2, H2) 2 X⇥Y;

_(G, H) := (_G,_H) 8_ 2 R, 8(G, H) 2 X⇥Y

is also a linear space.
2. Prove that the direct product �⇥⌫ := {(G, H) : G 2 �, H 2 ⌫} is convex. In fact the

direct product of an arbitrary number of convex sets is convex.
3. Finite sum: Let �,⌫ ✓ X be convex. Prove that the set �+⌫ := {0+1 : 0 2 �,1 2 ⌫}

is convex. Therefore the sum of any finite number of convex sets is convex.
4. Arbitrary intersection: Let �,⌫ ✓ X be convex. Prove that the intersection �\⌫ is

convex. In fact the intersection of an arbitrary collection of convex sets is convex.
5. Union can be nonconvex. Let �,⌫ ✓ X be convex. Give an example where the union
�[⌫ is nonconvex. [Hint: Consider X = R].

Exercise 8.3 (Directional derivatives and di�erentiability). Show that

5 (G, H) :=

(
G
0
H
0

G
20+H20 if (G, H) < (0,0)

0 if (G, H) = (0,0)

is not continuous, and hence not di�erentiable, at the origin.

Exercise 8.4 (Convex functions). Prove that the following functions are convex:

1. Exponential: 5 (G) := 40G where 0,G 2 R.
2. Entropy: 5 (G) := G lnG defined on R++ := (0,1).
3. Log-exponential: 5 (G1,G2) := ln(4G1 + 4G2 ), G8 2 R.

Exercise 8.5 (Convex functions). [57, Exercise 3.6] For each of the following functions
determine if it is convex, concave, or neither.
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• 5 (G) = 4G �1 on R.
• 5 (G) = G1G2 on

�
(G1,G2) 2 R2 | G1 > 0,G2 > 0

 
.

• 5 (G) = 1
G1G2

on
�
(G1,G2) 2 R2 | G1 > 0,G2 > 0

 
.

• 5 (G) = G1/G2 on
�
(G1,G2) 2 R2 | G1 > 0,G2 > 0

 
.

Exercise 8.6 (Convexity tests). Verify the convexity conditions of Theorem 8.2 on

5 (G) := 5 (G1,G2) := G2
1 �4G1G2 +4G2

2 = (G1�2G2)2

Exercise 8.7 (Strict convexity). Prove Corollary 8.3.

Exercise 8.8 (Operations preserving function convexity). Suppose 51 and 52 are two
convex functions on the same domain. Prove that:

1. 5 := U 51 + V 52, U, V � 0, is convex.
2. 5 := max{ 51, 52} is convex.
3. 5 (G, H) := |G | + |H | defined on R2 is convex. [Hint: use part 2.]
4. 5 (6(G)) is convex if 6 : R=! R< is convex (componentwise) and 5 : R<! R is

convex and nondecreasing (componentwise), i.e., 5 (H1)  5 (H2) for H1, H2 2 R<
with H1  H2.

Exercise 8.9 (Level set and convex problem). 1 Level set. Let 5 :⇠!Rwhere⇠ ✓
R
=. Prove that the level set {G 2 ⇠ | 5 (G)  U} is convex for any U 2 R provided

that ⇠ is a convex set and 5 is a convex function.
2 Convex problem. Consider

min
G

5 (G) s.t. �G = 1, 68 (G)  0, 8 = 1, . . . , :

where � 2 R<⇥=, 1 2 R<, : � 1, and 5 , 61, . . . ,6: are scalar functions defined on
R
=. Prove that if 5 ,61,62, . . . ,6: are convex then the feasible set

- := {G 2 R= | �G = 1, 68 (G)  0, 8 = 1, . . . , :}

is convex.
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Chapter 8.2.

Exercise 8.10 (Carathéodory theorem). Prove Theorem 8.7.

Exercise 8.11 (Second-order cone). 1 The second-order cone  soc =  ̃ \� where
 ̃ := {(G, C) 2 R=+1 : kGk22  C2} and � := {(G, C) : C � 0} is a halfspace. Show that
while  soc is a convex cone,  ̃ is a cone but nonconvex.

2 Show that ⌘1 (G, C) := kGk2 � C is a convex function while ⌘2 (G, C) := kGk22 � C2 is
nonconvex.

Exercise 8.12 (Rotated second-order cone). Show that the rotated second-order cone

 rsoc :=
�
(G, H, I) 2 R= ⇥R2 : kGk22  HI, H � 0, I � 0

 
is a linear transformation of the standard second-order cone

 soc :=
�
(F, C) 2 R=+1⇥R : kFk  C

 
i.e., (F, C) = �(G, H, I) 2  soc ✓ R=+2 if and only if (G, H, I) 2  rsoc for a (=+2)⇥ (=+2)
nonsingular matrix �. Derive � and its inverse.

Exercise 8.13 (SOC constraint). Consider the second-order cone  soc in Exercise 8.11
and the set defined in terms of  soc:

⇠ := {G : (�G + 1,2T
G + 3) 2  soc} = {G : k�G + 1k2  2T

G + 3} ✓ R<

where � 2 R=⇥<, 1 2 R=, 2 2 R<, and 3 2 R. Since ⇠ is the pre-image of an a�ne
function on  soc, it is convex.

1 Verify directly the convexity of ⇠ using the definition of convex sets.
2 Write⇠ = ⇠̃\� where ⇠̃ := {G : k�G+1k22  (2T

G+3)2} and� := {G : 2T
G+3 � 0}

is a halfspace. Give an example where ⇠̃ is not convex and illustrate how the
intersection with � yields a convex set.

Exercise 8.14 (Farkas Lemma). Prove the following variant of Theorem 8.12: Exactly
one of the following holds:

1 There exists an G � 0 such that �G  1.
2 There exists an H � 0 such that HT

� � 0 and HT
1 < 0.

where � 2 R<⇥=, 1, H 2 R< and G 2 R=. (Hint: Consider . := {H 2 R< : �G  H,G �
0} = {�G + B : G � 0, B � 0}.)
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Chapter 8.3

Exercise 8.15 (Equivalent property of saddle point). Consider the primal problem and
its partial dual (8.34) with the undualized constraint set - 0, the dualized constraint set
- := {G 2 R= : 6(G) = 0,⌘(G)  0} and dual feasible set . := {(_,`) 2 R<+; : ` � 0}.
Show that (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point, i.e.,

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤)

if and only if

! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤), G
⇤ 2 - , `

⇤T
⌘(G⇤) = 0

Exercise 8.16 (KKT condition). This problem derives the KKT condition for the
constrained optimization problem:

(P) : min
G2R=

5 (G) s.t. �G = 1, ⌘8 (G)  0, 8 = 1, . . . , ;

where � 2 R<⇥=, 1 2 R<, : � 1, and 5 , ⌘1, . . . ,⌘; are scalar functions defined on R=.
Let _ 2 R<,` 2 R;+ = [0,1); , and define

! (G,_,`) := 5 (G) +_T (�G� 1) + `T
⌘(G)

where ⌘(G) = (⌘1 (G),⌘2 (G), . . . ,⌘; (G))T.

1 Unconstrained optimization. Let 3 (_,`) := minG2R= ! (G,_,`) denote the uncon-
strained optimization over G for fixed (_,`). Assume that Problem (P) has an
optimal solution and denote it by G⇤. Show that 3 (_,`)  5 (G⇤) for any _ 2 R<
and ` 2 R;+.

2 Dual problem. Consider the dual problem

(D) : max
(_,`)2R<+;

3 (_,`) s.t. ` � 0

Assume (D) has an optimal solution (_⇤,`⇤).
1. Show that 3 (_⇤,`⇤) � 5 (G⇤)  Õ

;

8=1 `
⇤
8
⌘8 (G⇤)  0. It implies that Problem (D)

provides a lower bound for Problem (P). Note that this holds whether or not
5 ,⌘1, . . . ,⌘; are convex.

2. Assume now 5 ,⌘1, . . . ,⌘; are convex and di�erentiable. Show that the equality
is attained, i.e., 3 (_⇤,`⇤) = 5 (G⇤) +Õ

;

8=1 `
⇤
8
⌘8 (G⇤), if and only if

rG! (G⇤,_⇤,`⇤) = 0

3. Show that if there exists (G,_,`) such that G is feasible for (P), (_,`) is feasible
for (D), rG! (G,_,`) = 0, and `8⌘8 (G) = 0 for 8 = 1, . . . , ;, then G solves (P) and
(_,`) solves (D). These are the KKT conditions.
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Exercise 8.17 (LICQ implies MFCQ). Suppose G⇤ is a local optimal of the constrained
optimization problem (8.25). Let .̄ (G⇤) be the set of Lagrange multipliers associated
with G⇤:

.̄ (G⇤) :=
⇢
(_,`) 2 R<+; :

m!

mG

(G⇤,_,`) = 0, 6(G⇤) = 0, ⌘(G⇤)  0, ` � 0, `T
⌘(G⇤) = 0

�

Prove that the linear independence constraint qualification (8.43) implies the
Mangasarian-Fromovitz constraint qualification (8.42). (Hint: Use the Farkas Lemma
8.12.)

Exercise 8.18 (Slater Theorem). For

5
⇤ := inf

G2R
5 (G) := 4�G s.t. G = 0

check that the conditions in the Slater Theorem 8.17 are satisfied and derive the
primal-dual optimal solution (G⇤,_⇤).

Exercise 8.19 (Slater Theorem: dual optimal set). [55, Lemma 1] Consider the
following primal problem with only the inequality constraint and its dual:13

5
⇤ := min

G2R=
5 (G) s.t. ⌘(G)  0

3
⇤ := max

`�0
3 (`) := max

`�0

✓
inf
G2R=

5 (G) + `T
⌘(G)

◆

Suppose:

• Convexity: 5 ,⌘ are convex.
• Finite primal value: 5 ⇤ is finite, i.e., �1 < 5

⇤
<1.

• Strict Slater condition: there exists Ḡ such that ⌘(Ḡ) < 0.

Then Theorem 8.17 says that strong duality holds and dual optimal solutions `⇤ exist.
Fix any ¯̀ 2 R; with ¯̀ � 0 and let ⇡̄ := {` 2 R; : 3 (`) � 3 ( ¯̀)} be the level set defined
by ¯̀. Let ⇡⇤ denote the set of dual optimal solutions. Show that [55, Lemma 1]:

1 The level set ⇡̄ is compact and convex.
2 The dual optimal set ⇡⇤ is compact and convex. In particular ⇡⇤ is bounded by the

weak duality gap at the strict Slater point Ḡ divided by the worst-case “constraint
gap“:

max
`2⇡⇤
k`k2  max

`2⇡⇤
k`k1 

5 (Ḡ)� 3⇤
min8 (�⌘8 (Ḡ))

=
5 (Ḡ)� 5 ⇤

min8 (�⌘8 (Ḡ))
The boundedness of the dual optimal set ⇡⇤ is also proved in Lemma 12.30 in

13 The absence of equality constraint is only important for the upper bound on k` k below. That ⇡⇤ is
bounded can be proved without this assumption as in Lemma 12.30.
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the context of MC/MC problem where ⌘(Ḡ) < 0 corresponds to the condition
0 2 int

�
⇡
"

�
(not just 0 2 ri

�
⇡
"

�
). The argument there is by contradiction and

does not provide an explicit bound on k`k.

The following problem studies Theorem 8.19 when the feasible set -? depends on
?. It shows that the theorem generally no longer holds.

Exercise 8.20 (Saddle-point envelope theorem). Consider the master problem:

min
G

5 (G) := (G� ?)2 s. t.
?

4
 G  ?

2
(8.149)

for ? 2 % := (0,2). Clearly the unique minimizer G⇤ (?) = ?/2. We study three ways to
dualize, resulting in di�erent Lagrangian functions, -? , and saddle points.

1 Dualize both constraints with dual variables H := (H1, H2) � 0 and the Lagrangian

! (G, H; ?) := 5 (G) + H1

⇣
?

4
� G

⌘
+ H2

⇣
G� ?

2

⌘

Exhibit that Theorem 8.19 holds.
2 Consider the form of (8.149)

min
G2-?

5 (G) := (G� ?)2 s. t. G � ?

4
(8.150)

with -? := {G : G  ?/2}, and Lagrangian

!1 (G, H1; ?) := 5 (G) + H1

⇣
?

4
� G

⌘

Show that Theorem 8.19 does not hold because of the reason explained in Remark
8.7 (even though all other conditions in Theorem 8.19 hold).

3 Consider the following form of (8.149)

min
G2-?

5 (G) := (G� ?)2 s. t. G  ?

2
(8.151)

with -? := {G : G � ?/4}, and Lagrangian

!2 (G, H2; ?) := 5 (G) + H2

⇣
G� ?

2

⌘

Show that Theorem 8.19 holds because G⇤ (?) 2 -@ for all ?,@ 2 %.

Chapter 8.4.

Exercise 8.21 (Convex programs). Show how the di�erent classes of convex problems
in Figure 8.14 reduce to each other.
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Exercise 8.22 (LP duality). Consider the linear program (8.56a) and suppose �1 <

5
⇤
<1. Lemma 8.22 then implies the existence of an optimal primal solution G⇤ 2 - .

Use Farkas Lemma (Theorem 8.12) to show that there exists a dual optimal solution
`
⇤ 2 . that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 1T

`
⇤.

Exercise 8.23 (Unconstrained quadratic program). This exercise proves step by step
Theorem 8.24 on unconstrained convex QP:

5
⇤
1 := min

G2R=
5 (G) := G

T
&G + 22T

G

where & ⌫ 0 and 2 2 R=.

1 Suppose & � 0 is positive definite. Show that the unique minimizer G⇤ and the
minimum value 5 ⇤1 are respectively

G
⇤ = �&�1

2, 5
⇤
1 = �2T

&
�1
2

2 Suppose & ⌫ 0 but not positive definite. Let the spectral decomposition of & be

& = *⇤*T =
⇥
*A *=�A

⇤ 
⇤A 0
0 0

� 
*

T
A

*
T
=�A

�
= *A⇤A*T

A

Write & = 'T
' where ' := ⇤1/2

A
*

T
A
2 RA⇥=.

1 Show that it is possible to complete the square, i.e., write

5 (G) = G
T
'

T
'G +22T

G = k'G + 2̃k22� k2̃k22
if and only if 2 2 range(&). Determine 2̃.

2 Show that if 2 2 range(&) then the set of minimizers G⇤ and the minimum
value 5 ⇤1 are respectively

G
⇤ = �&†

2 + null(&), 5
⇤
1 = �2T

&
†
2

where &† :=*A⇤�1
A
*

T
A

is the pseudo-inverse of &.
3 Show that if 2 8 range(&) then 5

⇤
1 = �1. (Hint: Transform to the coordinate

defined by the basis*.)

Exercise 8.24 (Constrained quadratic program). This exercise proves a slightly more
general version of Theorem 8.25 step by step for the a�nely constrained convex QP:

5
⇤
2 := min

G2R=
5 (G) := G

T
&G + 22T

G s.t. �G = 1, ⌫G + 3 � 0

where & ⌫ 0, 2 2 R=, � 2 R<⇥=, 1 2 R<, ⌫ 2 R;⇥= and 3 2 R; . Here we replace the
condition & � 0 by the weaker condition 5

⇤
2 > �1.
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1 Dual problem. Show that the Lagrangian dual problem is:

3
⇤ := �2T

&
†
2 � min

_2R<,`2R:+

✓ ⇥
_

T
`

T⇤
&̂


_

`

�
+ 2 2̂T


_

`

� ◆

where R;+ := {` 2 R; : ` � 0} and

&̂ :=

�

⌫

�
&

† ⇥
�

T
⌫

T⇤ , 2̂ :=

�1
+3

�
�


�

⌫

�
&

†
2 (8.152)

2 Strong duality, dual optimality, KKT condition. Show that strong duality holds and
dual optimality is attained. Moreover a feasible G⇤ is optimal if and only if there
exists (_⇤,`⇤) 2 R<+; such that `⇤ � 0 and

�
T
_
⇤ +⌫T

`
⇤ �&G⇤ = 2, `

⇤T (⌫G⇤ + 3) = 0

Exercise 8.25 (QCQP). Consider the convex quadratically constrained quadratic pro-
gram (QCQP):

5
⇤ := min

G2R=
5 (G) := G

T
&0G + 22T

0G s.t. G
T
&1G + 22T

1G  3

where&0 � 0 is positive definite,&1 ⌫ 0 is positive semidefinite, 20,21 2 R= and 3 2 R.

1 Dual problem. Show that the Lagrangian dual problem is:

3
⇤ := � min

`2R+
3` + (20 + `21)T (&0 + `&1)�1 (20 + `21)

2 Strong duality, dual optimality, KKT condition. Suppose 5
⇤ is finite and there

exists Ḡ such that ḠT
&1Ḡ + 22T

1 Ḡ < 3. Show that strong duality holds and dual
optimality is attained. Moreover a feasible G⇤ is optimal if and only if there exists
`
⇤ 2 R such that `⇤ � 0 and

(&0 + `⇤&1)G⇤ + (20 + `⇤21) = 0, `
⇤ (G⇤T&1G

⇤ + 22T
1G
⇤ � 3) = 0

Exercise 8.26 (Dual problem of SOCP). For the second-order constraint problem
(8.69):

1 Derive the dual problem. (Hint: Use (8.154): minG2R= (0kGk2� 1G) = 0 if k1k2  0
and �1 otherwise.)

2 When the cost function is linear 5 (G) := 2T
G, show that the dual problem is

3
⇤ := max

(_,W)2R<+;
1

T
_� 3̃T

W s.t. �
T
_+ ⌫̃T

W = 2, kW;�1k2  W;
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Exercise 8.27 (Equivalent representations: SOCP). Consider SOCP (8.66) and an
alternative representation (??) of SOCP, reproduced here

5
⇤
1 := min

G2R=
2

T
G s.t. �G = 1, kG=�1k2  G= (8.153a)

5
⇤
2 := min

G2R=
2

T
G s.t. �G = 1, kG=�1k22  G2

=
, G= � 0 (8.153b)

They are equivalent representations in the sense that they have the same cost function
and feasible set. The constraint function ⌘1 (G) := kG=�1k2 � G= in (8.153a) is nondif-
ferentiable at G = 0 and the constraint function ⌘2 (G) := kG=�1k22 � G2

=
in (8.153b) is

nonconvex. In this exercise we show that they have di�erent duality and optimality
properties.

Separate the first =�1 columns of � from the last column and the first =�1 entries
of 2� �T

_ from the last:

� =:
⇥
�
=�1

0=

⇤
, d :=


d
=�1

d=

�
:=


2
=�1� (�=�1)T

_

2= � 0T
=
_

�
:= 2� �T

_

1 Consider the SOCP (8.153a).
1 Show that, if 6(G) := 0kGk2� 1T

G, then

min
G2R=

6(G) =
⇢

0 if k1k2  0
�1 otherwise

(8.154)

2 Use (8.154) to show that the Lagrangian dual function of (8.153a) is

31 (_,`) := min
G2R=

! (G,_,`) =
⇢
_

T
1 if kd=�1k2  d= = `
�1 otherwise

and hence the dual problem is an SOCP:

3
⇤
1 := max

_2R<
_

T
1 s.t. k2=�1� (�=�1)T

_k2  2= � 0T
=
_ (8.155)

2 Consider the SOCP (8.153b). Show that the Lagrangian dual function is:

32 (_,`) := min
G2R=

! (G,_,`) =
⇢
_

T
1 if d=�1 = 0, d= = ` � 0, `1 = 0
�1 otherwise

and hence the dual problem is a LP:

3
⇤
2 := max

_2R<
_

T
1 s.t. (�=�1)T

_ = 2=�1, 0T
=
_  2=

whose feasible set is a subset of that of (8.155).
3 Strong duality and dual optimality. Consider now the case where the constraint
�G = 1 is absent in SOCP (8.153):

5
⇤
1 := min

G2R=
2

T
G s.t. kG=�1k2  G= (8.156)

5
⇤
2 := min

G2R=
2

T
G s.t. kG=�1k22  G2

=
, G= � 0 (8.157)

Show that, if k2=�1k2  2=, then strong duality holds and dual optimality is attained
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for (8.156), but, as long as 0 < k2=�1k2  2=, 5 ⇤2 = 0 > �1 = 3⇤2, i.e., the duality
gap is unbounded and the dual problem is infeasible, for (8.157).

Chapter 8.5.

Exercise 8.28 (Linear equality constraint). For the quadratic program (8.81) over
�G(C), Derive its KKT condition is given by (8.82a).

Exercise 8.29 (Interior-point method - strictly feasible point). Consider the following
problem to compute a strictly feasible point for (8.87):

min
(G,B)2R=+1

B s.t. 6(G) = 0, ⌘8 (G)  B, 8 = 1, . . . , ; (8.158)

Assume (8.158) is feasible. Show that a strictly feasible point for (8.87) exists if and
only if the optimal value Bopt of (8.158) is strictly negative (possibly �1), whether or
not the minimum of (8.158) is attained.

Exercise 8.30 (Benders decomposition). Prove Theorem 8.31.

Exercise 8.31 (Benders decomposition). Suppose C8.3 and C8.4 hold. Then H0 has
no lower bound on ⌧ if and only if (8.114) is infeasible, provided ⌧ < ;.

Exercise 8.32 (Benders decomposition). Prove (8.117) reproduced here:

H̄0  2T
Ḡ + 5 ( H̄) = (� ( H̄)� 1)T ¯̀ + 5 ( H̄) (8.159)

with equality if and only if ( H̄0, H̄) 2⌧. In particular, if strict inequality holds in (8.159),
then there is a (`00,`0) 2⇠ \&. (Hint: use LP duality Theorem 8.23 and Theorem 8.31).

Chapter 8.6.



9 Optimal power flow

As we see in Chapter 6 optimal power flow (OPF) is a fundamental problem that un-
derlies numerous applications in power system operation and planning. In this chapter
we study computational issues of OPF as a general constrained optimization that takes
the form

min
D,G

2(D,G) subject to 5 (D,G) = 0, 6(D,G)  0

The cost function 2 may represent generation cost, voltage deviation, power loss, or
user disutility. The variable D collects control decisions such as generator commitment,
generation setpoints, transformer taps, capacitor switch status, electric vehicle charging
levels, thermostatic settings, or inverter reactive power. The variable G collects network
state such as voltage levels, line currents, or power flows. The constraint functions 5 ,6
describe current or power balance, generation or consumption limits, voltage or line
limits, and stability and security constraints, as well as other operational requirements.

In Chapter 9.1 we use the single-phase models of Part I to formulate OPF in the bus
injection model. In Chapter 9.2 we formulate OPF in the branch flow model for radial
networks and show that it is equivalent to OPF in the bus injection model. In Chapter 9.3
we prove that OPF is NP-hard and in Chapter 9.4 we prove that a subclass characterized
by a Lyapunov-like condition can be solved e�ciently to global optimality. In Chapter
9.5 we describe techniques for scaling OPF solutions. Popular algorithms for solving
OPF problems are studied in Chapter 8.5 and example applications are discussed in
Chapter 6.

9.1 Bus injection model

In Chapter 9.1.1 we describe how to represent di�erent devices in terms of their nodal
power injections and voltages (B 9 ,+ 9 ). The interaction of these terminal variables over
the network is described by power flow equations. We formulate in Chapter 9.1.2
OPF in the bus injection model and then express it in Chapter 9.1.3 as a standard
quadratically constrained quadratic program.
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9.1.1 Single-phase devices

For simplicity we will assume voltages are defined with respect to the ground and
every single-phase device is connected between its terminal (bus) and the ground. We
will model the devices we encounter by one of the following:

1 Voltage source + 9 : An ideal voltage source 9 fixes its voltage + 9 2 C if it is
uncontrollable and it adjusts + 9 if it is controllable.

2 Current source � 9 : An ideal current source fixes its current � 9 2 C if it is uncon-
trollable and it adjusts � 9 if it is controllable. An example current source is a load
model for an electric vehicle charger whose charging current is controllable.

3 Power source B 9 : An ideal power source fixes its power injection B 9 2 C if it is
uncontrollable and adjusts B 9 if it is controllable.

4 Impedance I 9 : An impedance I 9 connected between the terminal and the ground
fixes the relationship between the nodal voltage and current + 9 = �I 9 � 9 where the
negative sign indicates that � 9 is defined in the direction of ground-to-terminal.

The bus injection model studied in Chapter 4 focuses on the nodal power injections
and voltages

�
+ 9 , B 9

�
of these devices. The relation among the nodal variables at each

bus 9 is B 9 = + 9 �̄ 9 . The nodal variables at di�erent buses interact with each other
over the network through current balance equation � = .+ or power flow equations
B 9 = 5 9 (+). We now formulate OPF for single-phase systems.

9.1.2 Single-phase OPF

Consider a single-phase network modeled as an undirected graph ⌧ := (# ,⇢) where
there are # + 1 buses 9 2 # := {0,1, . . . ,#} and " lines in ⇢ . Each line ( 9 , :) 2 ⇢
is characterized by admittances

⇣
H
B

9:
, H<
9:

⌘
2 C2 and

⇣
H
B

: 9
, H<
: 9

⌘
2 C2. We now explain

the variables, power flow equations, cost function, and constraints that define an OPF
problem. As we will see the OPF formulation (9.5) below does not require assumption
C4.1 that HB

9:
= HB

: 9
. It can therefore accommodate single-phase transformers that have

complex turns ratios.

OPF.

Without loss of generality we first make the following assumptions and present a simple
OPF formulation:

1 The OPF involves only voltage sources and power sources.
2 There is exactly one single-phase device (voltage or power source) at each bus 9 .

We therefore interchangeably refer to 9 as a bus, a node, a terminal or a device.
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We will explain below how to relax these assumptions.

Under these assumptions, associated with each bus 9 is its bus (nodal) power
injection B 9 and voltage + 9 . The vectors B := (B 9 , 9 2 #) and + := (+ 9 , 9 2 #) are the
optimization variables. The cost function ⇠ (B,+) may represent the cost of generation
(e.g. in economic dispatch), estimation error (e.g. in state estimation), line loss (e.g. in
volt/var control in distribution systems), and user disutility (e.g., in demand response).
For instance to minimize a weighted sum of real power generations we can use

⇠ (B,+) :=
’
9:gens

2 9 Re(B 9 )

To minimize the total real power loss over the network we can use

⇠ (B,+) :=
’
9

Re
�
B 9

�

There are two type constraints on (B,+). The first is power flow equations, the
complex form of which is derived in Chapter 4.2 as follows. The sending-end line
currents from buses 9 to : in terms of+ and those from buses : to 9 are given in (4.1a)
and reproduced here:

� 9: (+) = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 (+) = H

B

: 9
(+: �+ 9 ) + H

<

: 9
+: , ( 9 , :) 2 ⇢(9.1)

The sending-end complex power flow from buses 9 to : and that from buses : to 9 are
respectively (from (4.2)):

( 9: (+) := + 9 �̄ 9: (+) = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9:
|+ 9 |2, ( 9 , :) 2 ⇢ (9.2a)

(: 9 (+) := +: �̄: 9 (+) = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄

<

: 9
|+: |2, ( 9 , :) 2 ⇢ (9.2b)

The bus injection model in complex form is therefore (from (4.26a)):

B 9 =
’
:: 9⇠:

( 9: (+) :=
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9 9
|+ 9 |2, 9 2 # (9.3)

where H<
9 9

:=
Õ
:: 9⇠: H

<

9:
are the total shunt admittances incident on buses 9 . Instead of

the complex form (9.3), we can also use the polar form or the Cartesian form of power
flow equations.

The second type of constraints on (B,+) is operational constraints. We will consider
only three constraints:

1 Injection limits: These can represent generation or load capacity limits and take
the form:

B
min
9
 B 9  B

max
9

, 9 2 # (9.4a)

where Bmin
9

, Bmax
9
2 C are given bounds on the injections at buses 9 . Recall that

01 + i11  02 + i12 is a shorthand for two real inequalities 01  02 and 11  12.



444 Optimal power flow

2 Voltage limits: These are limits on voltage magnitudes:

E
min
9
 |+ 9 |2  E

max
9

, 9 2 # (9.4b)

where Emin
9

, Emax
9
2 R are given lower and upper bounds on the squared voltage

magnitudes. We assume Emin
9

> 0 to avoid triviality.
3 Line limits: Thermal limits can be expressed in terms of line currents�

� 9: (+), �: 9 (+)
�

in (9.1):���HB
9:
(+ 9 �+: ) + H

<

9:
+ 9

���2  ✓
max
9:

,
���HB
: 9
(+: �+ 9 ) + H

<

: 9
+:

���2  ✓
max
: 9

, ( 9 , :) 2 ⇢
(9.4c)

which are quadratic inequalities in + .
Alternatively line limits can be expressed in terms of complex line power:

(
min
9:
 ( 9: (+)  (

max
9:

, (
min
: 9
 (: 9 (+)  (

max
: 9

, ( 9 , :) 2 ⇢

or in terms of apparent power:

|( 9: (+) |  (
max
9:

, |(: 9 (+) |  (
max
: 9

, ( 9 , :) 2 ⇢

where
�
( 9: (+),(: 9 (+)

�
are given by (9.2). The limits on apparent power can be

expressed in terms of a degree four polynomial in + which can be converted into
quadratic constraints with additional variables (see Exercise 9.2).

Depending on the application there can be many more constraints, e.g., stability and
security constraints, ramp limits, limits on battery state of charge and charging rates. For
illustration purpose we will mostly restrict ourselves to these three types of constraints.

A simple OPF problem in the bus injection model is then

min
(B,+ )

⇠ (B,+) s.t. (9.3)(9.4) (9.5)

Since the constraints (9.3)(9.4c) do not require assumption C4.1 that HB
9:

= HB
: 9

, the
OPF formulation (9.5) can accommodate single-phase transformers that have complex
turns ratios.

Remark 9.1 (Uncontrollable parameters and reference voltage). This is a general
formulation that allows the power injection B 9 and voltages + 9 at every bus 9 to
be optimization variables. If there is practically no bound on the injection at bus 9
then B

min
9

:= �1� i1 or Bmax
9

:= 1 + i1 which removes the lower or upper bound
on the function B 9 (+) of + . On the other hand the inequality constraints also allow
the case where a quantity is not an optimization variable but a parameter, by setting
B

min
9

= Bmax
9

to the specified value. For instance B 9 (+) = Bmin
9

= Bmax
9

may represent a
given uncontrollable constant-power load or a given renewable generation. For the
slack bus 0, unless otherwise specified, we always assume +0 := 1\0� pu so that
E

min
0 = Emax

0 = 1 and Bmin
0 = �1� i1, Bmax

0 =1+ i1. Therefore we sometimes replace
9 2 # in (9.3)(9.4) by 9 2 # . ⇤
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Other devices.

Single-phase devices other than voltage and power sources can also be included in the
OPF formulation. For instance an electric vehicle charger can be modeled by a current
source. If it is controllable then its current � 9 is an additional optimization variable and
it imposes a quadratic equality constraint on (B 9 ,+ 9 , � 9 ):

B 9 = + 9 �
H
9

If the current source is uncontrollable with a fixed � 9 , then the constraint above is a
linear constraint on (B 9 ,+ 9 ). A nodal impedance I 9 introduces a quadratic equality
constraint on (B 9 ,+ 9 ):

B 9 = �
��
+ 9

��2
Ī 9

where the negative sign indicates that the direction of B 9 is ground-to-terminal through
the impedance. A nodal admittance H 9 , such as a capacitor tap, can be incorporated by
including the the variable H 9 and quadratic equality constraint on (B 9 ,+ 9 , H 9 ):

B 9 = �H̄ 9
��
+ 9

��2
where the negative sign indicates that the direction of B 9 is ground-to-terminal through
the admittance.

We assume in the OPF formulation (9.5) that each bus 9 has a single device with the
nodal variable

�
B 9 ,+ 9

�
. If multiple devices are connected to bus 9 in parallel with power

injections B 9: , : = 1, . . . , 9 , they introduce additional variables
�
B 9: , : = 1, . . . , 9

�
and

impose the linear constraint

B 9 =
’
:

B 9:

Hence other devices can be incorporated and they impose local constraints at each
bus 9 . If a devices at bus 9 is controllable, it introduces an additional optimization
variable D 9 (e.g., � 9 of a controllable current source) and a local constraint of the form

5 9

�
D 9 , B 9 ,+ 9

�
= 0, 9 2 # (9.6a)

Otherwise, it does not introduce additional variable at bus 9 (e.g., impedance I 9 ) and
(9.6a) reduces to a local constraint of the form 5 9 (B 9 ,+ 9 ) = 0 where the local device
(e.g, I 9 ) is a parameter of the constraint function 5 9 . When an additional optimization
variable D 9 is introduced, there may also be an operational constraint on D 9 of the form

6 9

�
D 9

�
 0, 9 2 # (9.6b)

Most applications indeed involve other variables in addition to (B 9 ,+ 9 ). For example,
the unit commitment problem in Chapter 6.2.1 includes binary variables to indicate if
a unit will be on or o�. In distributed energy resource optimization, battery charging
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rates and their states of charge as well as the temperature setpoint of a thermostat may
be additional variables. In volt/var control that optimizes over the reactive power output
of an inverter given its real power input, the reactive power needs to satisfy a sector
constraint. For single-phase networks, however, we will focus on the simple OPF (9.5)
and study its computational properties. In particular we will omit variables D 9 and the
associated local constraints (9.6).

OPF in terms of + only.

We can treat the power flow equation (9.3) as defining B 9 (+) as a function of + :

B 9 (+) =
’
:: 9⇠:

( 9: (+) :=
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9 9
|+ 9 |2, 9 2 # (9.7)

where H
<

9 9
:=

Õ
:: 9⇠: H

<

9:
are the total shunt admittances incident on buses 9 . Us-

ing (9.1)(9.2)(9.7) for single-phase networks, we can express powers and currents�
B 9 ,( 9: , � 9:

�
in terms of voltages+ and formulate OPF as an optimization over+ only.

For instance the cost function to minimize a weighted sum of real power generations
is:

⇠ (+) :=
’
9:gens

2 9 Re(B 9 (+)) =
’
9:gens

2 9 Re
©≠
´
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9 9
|+ 9 |2™Æ

¨
The cost function to minimize the total real power loss over the network is:

⇠ (+) :=
’
9

Re
©≠
´
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9 9
|+ 9 |2™Æ

¨
which can be shown to be a quadratic form ⇠ (+) = +HRe(. )+ in terms of the admit-
tance matrix . (Exercise 9.1). The total real power loss equals the total thermal (A |� |2)
loss in the network lines if line shunt admittances are reactive, i.e., if H<

9:
and H<

: 9
are

pure imaginary:

⇠ (+) :=
’

( 9,:)2⇢
A 9: |�B

9:
(+) |2

where A 9: := Re
⇣
I
B

9:

⌘
= Re

✓⇣
H
B

9:

⌘�1
◆

is the series resistance of the line and �B
9:
(+) :=

H
B

9:
(+ 9 �+: ) is the current through the series impedance of the line. All these costs

are quadratic functions of + (Exercise 9.1).

For operational constraints, the voltage limits (9.4b) and the line limits (9.4c) are
already quadratic inequalities in + . We can use (9.7) to express the injection limits
B

min
9
 B 9 (+)  Bmax

9
also as quadratic inequalities in + :

B
min
9


’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9 9
|+ 9 |2  B

max
9

, 9 2 # (9.8)
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If we use the polar form (4.27) BIM then the injection limits become:

?
min
9


’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
 ?

max
9

, 9 2 #

@
min
9
 �

’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
 @

max
9

, 9 2 #

For notational simplicity only, we will mostly use the complex form (9.8) as injection
limits.

The simple OPF (9.5) can be equivalently formulated in terms of + only:

min
+

⇠ (+) s.t. (9.8)(9.4b)(9.4c) (9.9)

As mentioned before, this formulation does not require assumption C4.1 that HB
9:
= HB

: 9

and hence can accommodate single-phase transformers that have complex turns ratios.
To avoid triviality we will assume unless otherwise specified that OPF (9.9) is feasible.

9.1.3 OPF as QCQP

As we have seen above the constraints in OPF (9.9) are quadratic in+ . We now explain
how to express (9.9) as a quadratically constrained quadratic program (QCQP).

QCQP.

A QCQP is the following problem:

min
G2C=

G
H
⇠0G (9.10a)

s.t. GH
⇠;G  1; , ; = 1, . . . ,! (9.10b)

where G 2 C= is a vector, ⇠; 2 S= for ; = 0, . . . ,!, are Hermitian matrices so that GH
⇠;G

are real values, and 1; 2 R are given scalars. If⇠; , ; = 0, . . . ,!, are positive semidefinite
(psd) then (9.10) is a convex QCQP. Otherwise it is nonconvex. If Gopt is optimal for
(9.10), so is �Gopt.

The inequality constraints (9.10b) can include equality constraints (0 = 1, 0 
1, 1  0). Sometimes equality constraints are specified explicitly as in

min
G2C=

G
H
⇠0G

s.t. GH
⇠;G  1; , ; = 1, . . . ,!

G
H
⇠̃;G = 1̃; , ; = 1, . . . , !̃

Remark 9.2 (Equivalent real QCQP). In computing a solution of (9.10), the QCQP is
first converted into a problem in the real domain. Indeed the complex QCQP (9.10) is
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equivalent to the following QCQP in the real domain of twice the dimension (Exercise
9.5):

min
H2R2=

H
T
⇡0H s.t. H

T
⇡;H  1; , ; = 1, . . . ,! (9.11a)

where

H :=

Re(G)
Im(G)

�
, ⇡; :=


Re(⇠;) �Im(⇠;)
Im(⇠;) Re(⇠;)

�
, ; = 0,1, . . . ,! (9.11b)

Note that ⇡; are symmetric matrices. ⇤

The problem (9.10) is called a homogeneous QCQP because each term, called a
monomial, in the polynomial GH

⇠;G is of degree 2. An inhomogeneous QCQP contains
monomials with degree 1 and takes the form

min
G2C=

G
H
⇠0G +

⇣
2

H
0 G + GH

20

⌘
(9.12a)

s.t. GH
⇠;G +

⇣
2

H
;
G + GH

2;

⌘
 1; , ; = 1, . . . ,! (9.12b)

Note that
�
2

H
;
G + GH

2;

�
are real numbers. This problem can be homogenized by intro-

ducing a scalar complex variable C 2 C because, if we set G := ĜC̄ and require |C |2 = 1
(i.e., C = 4i\ for some \), then

G
H
⇠;G + 2H

;
G + GH

2; = Ĝ
H
⇠; Ĝ + 2H

;
(ĜC̄) + (ĜC̄)H

2; =
⇥
Ĝ

H
C
H⇤ 

⇠; 2;

2
H
;

0

� 
Ĝ

C

�

Hence the inhomogeneous QCQP (9.12) is equivalent to the following homogeneous
QCQP with equality and inequality constraints:

min
Ĝ2C= , C 2C

⇥
Ĝ

H
C
H⇤ 

⇠0 20

2
H
0 0

� 
Ĝ

C

�
(9.13a)

s.t.
⇥
Ĝ

H
C
H⇤ 

⇠; 2;

2
H
;

0

� 
Ĝ

C

�
 1; , ; = 1, . . . ,! (9.13b)

⇥
Ĝ

H
C
H⇤ 

0 0
0 1

� 
Ĝ

C

�
= 1 (9.13c)

If (Ĝopt, Copt) 2 C=+1 is optimal for (9.13), then the product Gopf := Ĝopt
C̄
opt = Ĝopt

4
�i\

opt

is optimal for (9.12).

We will hence study, without loss of generality, homogeneous QCQP (9.10) with
inequality constraints.

Remark 9.3 (Real QCQP). If the variable G is in R= instead of C= and ⇠; are =⇥ =
real symmetric matrices, ; = 0, . . . ,!, then (9.10) is a real homogeneous QCQP:

min
G2R=

G
T
⇠0G s.t. G

T
⇠;G  1; , ; = 1, . . . ,!
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A real inhomogeneous QCQP

min
G2R=

G
T
⇠0G +

⇣
2

T
0G + GT

20

⌘

s.t. GT
⇠;G +

⇣
2

T
;
G + GT

2;

⌘
 1; , ; = 1, . . . ,!

is equivalent to the following real homogeneous QCQP

min
Ĝ2R= , C 2R

⇥
Ĝ

T
C

⇤ 
⇠0 20

2
T
0 0

� 
Ĝ

C

�

s.t.
⇥
Ĝ

T
C

⇤ 
⇠; 2;

2
T
;

0

� 
Ĝ

C

�
 1; , ; = 1, . . . ,!

⇥
Ĝ

T
C

⇤ 
0 0
0 1

� 
Ĝ

C

�
= 1

in that, if (Ĝopt, Copt) 2 R=+1 is optimal for the homogeneous QCQP, then Gopt := Ĝopt
C
opt

is optimal for the original nonhomogeneous QCPQ (Copt 2 {�1,1}). ⇤

Remark 9.4 (Linear and bilinear cost or constraints). For any ; � 0,⇠; = 0 corresponds
to a linear cost or constraint. It can be homogenized in exactly the same way above,
i.e., (9.13) allows any of the matrices ⇠; to be zero. For example, in the scalar case
= = 1, a linear constraint can be homogenized by setting G := ĜC̄ and requiring |C |2 = 1,
so that

2
H
G + GH

2 = 2
H (ĜC̄) + 2(ĜC̄)H =

⇥
Ĝ

H
C
H⇤ 

0 2;

2
H
;

0

� 
Ĝ

C

�
, |C |2 = 1(9.14a)

Note that the two linear terms must be complex conjugates of each other so that they
sum to a real number. For a linear inequality 3H

G  1 where 1 := 1A + i18 is complex,
we can rewrite it as two real inequalities:

1
2

⇣
3

H
G + GH

3

⌘
 1A ,

1
2i

⇣
3

H
G� GH

3

⌘
 18 (9.14b)

The first inequality takes the form of (9.14a) with 2 := 3/2. The second inequality
takes the form of (9.14a) with 2 := i3/2.

A block bilinear term of the form G
H
⇠H can be homogenized as follows. For any

variables (G, H) 2 C2= and any square matrices ⇠,⇡ 2 C=⇥=

G
H
⇠H + H

H
⇡G =

⇥
G

H
H

H⇤ 
0 ⇠

⇡ 0

� 
G

H

�
(9.15)

Note that⇠ and ⇡ may not be Hermitian of each other so that the product GH
⇠H+ HH

⇡G

may be a complex number. Its real and imaginary parts can be written as quadratic
forms of (G, H) in terms of the following Hermtian matrices respectively:

� :=
1
2


0 ⇠ +⇡H

⇠
H +⇡ 0

�
,  :=

1
2i


0 ⇠ �⇡H

�⇠H +⇡ 0

�

We emphasize that we convert QCQPs to their homogenized form mainly so that
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we can focus only on homogeneous QCQP in our study of structural properties. In
computation, one may not convert an inhomogeneous constraint, especially a linear
constraint, into a homogeneous quadratic constraint. ⇤

Example 9.1 (Polynomial cost or constraints). A polynomial can be expressed as a
quadratic with auxiliary variables. Write the following as quadratic constraints:

1
�
|+ 9 |2�1

�2  n .
2 00G

3 + 01G
2 + 02G  U with 08 ,G,U 2 C.

Solution.

1 We have
�
|+ 9 |2�1

�2  n if and only if there exist C 9 2 C such that
�
+ 9 , C 9

�
satisfies��

C 9 �1
��2  n , C 9 = |+ 9 |2

which are quadratic equality and inequality constraints that can be homogenized
as discussed above. Note that C 9 = +2

9
is not a quadratic form when

�
+ 9 , C 9

�
are

complex.
2 Let G =: H + iI with H, I 2 R. First convert the constraint into two real polynomial

constraints in H and I, each of the form’
(8, 9):8+ 9=3

18 9 H
8

I
9 +

’
(8, 9):8+ 9=2

28 9 H
8

I
9 +

’
(8, 9):8+ 9=1

38 9 H
8

I
9  V

for some real coe�cients 18 9 ,28 9 ,38 9 and real V. To write this as a quadratic
constraint in (H, I) 2 R2, introduce auxiliary variables C = H2, D = I2. Then write
H

3 = CH, H2
I = CI, HI2 = HD, I3 = DI. These quadratic expressions can then be

homogenized as discussed above.

⇤

OPF as QCQP.

We now assume the cost function ⇠ (+) := +H
⇠0+ is a quadratic form in + for some

positive semidefinite matrix⇠0. We can then express OPF (9.9) as a QCQP, by deriving
the cost matrices ⇠; underlying the quadratic constraints (9.4b)(9.4c)(9.8).

1 Injection limits: To express the injection B 9 in (9.8) as a quadratic form, use � =.+
to write

B 9 =+ 9 �H
9

=
⇣
4

H
9
+

⌘ ⇣
4

H
9
�

⌘H
= 4

H
9
++

H
.

H
4 9

where 4 9 is the (# +1)-dimensional vector with 1 in the 9 th entry and 0 elsewhere.
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Since tr(�⌫) = tr(⌫�), we have1

B 9 = tr
⇣
4

H
9
++

H
.

H
4 9

⌘
= tr

⇣⇣
.

H
4 94

H
9

⌘
++

H
⌘
=: +H

.
H
9
+

where . 9 := 4 94H
9
. is an (# +1)⇥ (# +1) matrix with its 9 th row equal to the 9 th

row of the admittance matrix. and all other rows equal to the zero vector.. 9 is not
Hermitian so that +H

.
H
9
+ is in general a complex number. Its real and imaginary

parts can be expressed in terms of the Hermitian and skew Hermitian components
of .H

9
defined as:

� 9 :=
1
2

⇣
.

H
9
+. 9

⌘
and  9 :=

1
2i

⇣
.

H
9
�. 9

⌘

Then � 9 and  9 are Hermitian matrices and (Exercise 9.4)

Re(B 9 ) = +
H� 9+ and Im(B 9 ) = +

H 9+

They will be upper and lower bounded by

?
min
9

:= Re Bmin
9

and ?
max
9

:= Re Bmax
9

@
min
9

:= Im B
min
9

and @
max
9

:= Im B
max
9

These quantities will be used to rewrite below OPF as a standard QCQP of the
form (9.10).

2 Voltage limits: Let ⇢ 9 := 4 94H
9

denote the Hermitian matrix with a single 1 in

the ( 9 , 9)th entry and 0 everywhere else. Then squared voltage magnitude |+ 9 |2 =
+

H
⇢ 9+ is a quadratic form. It will be lower and upper bounded by Emin

9
and Emax

9

in (9.4b) respectively.
3 Line limits: For the first set of constraints in (9.4c), use (9.1) to write

� 9: = HB
9:
(+ 9 �+: ) + H

<

9:
+ 9 =

⇣
H
B

9:
(4 9 � 4: )T + H

<

9:
4

T
9

⌘
+

Hence |� 9: |2 =+H
.̂ 9:+ , which will be upper bounded by ✓max

9:
, where

.̂ 9: :=
⇣
H̄
B

9:
(4 9 � 4: ) + H̄

<

9:
4 9

⌘ ⇣
H
B

9:
(4 9 � 4: )T + H

<

9:
4

T
9

⌘

The matrix .̂ 9: is Hermitian and hence +H
.̂ 9:+ is indeed a real number. Similarly

for bounds on |�: 9 |2.

1 The inner product of two complex matrices is defined to be � ·⌫ := tr(�H
⌫) = Õ

8, 9 �8 9⌫8 9 and is not
equal to tr(�⌫) = Õ

8, 9 �8 9⌫ 98 unless � is Hermitian; see Exercise 9.3.
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Putting all this together, OPF (9.9) can be written as a standard QCQP

OPF : min
+ 2C#+1

+
H
⇠0+ (9.16a)

s.t. ?min
9
 +

H� 9+  ?
max
9

, 9 2 # (9.16b)

@
min
9
 +

H 9+  @
max
9

, 9 2 # (9.16c)

E
min
9
 +

H
⇢ 9+  E

max
9

, 9 2 # (9.16d)

+
H
.̂ 9:+  ✓

max
9:

, ( 9 , :) 2 ⇢ (9.16e)

+
H
.̂: 9+  ✓

max
: 9

, ( 9 , :) 2 ⇢ (9.16f)

This form will be used to derive a convex relaxation in Chapter 10.2. As mentioned
above the OPF formulation here does not require assumption C4.1 that HB

9:
= HB

: 9
, and

hence can accommodate single-phase transformers that have complex turns ratios. To
avoid triviality we will assume unless otherwise specified that OPF (9.16) is feasible.

Instead of (9.16e)(9.16f), line limits are sometimes expressed in terms of line power
flows. The next example shows how to express such limits on real and reactive line
flows as quadratic constraints. See Exercise 9.2 on how to express limits on apparent
powers |( 9: (+) |, |(: 9 (+) | as inhomogeneous quadratic constraints.

Example 9.2 (Quadratic line power limit). Use (9.2) to write the line limit

(
min
9:
 ( 9: (+)  (max

9:
, (

min
: 9
 (: 9 (+)  (max

: 9
, ( 9 , :) 2 ⇢ (9.17)

as quadratic forms in + .

Solution. We will rewrite the first constraint in (9.17) on ( 9: (+) as a quadratic con-
straint; the constraint on (: 9 (+) can be similarly converted. Using the expression of
� 9: , ( 9: (+) in quadratic form is:

( 9: (+) =+ 9 �H
9:

=
⇣
4

H
9
+

⌘ ⇣
H
B

9:
(4 9 � 4: )T

+ + H
<

9:
4

T
9
+

⌘H

= 4H
9

⇣
++

H
⌘ ⇣⇣

H̄
B

9:
+ H̄<

9:

⌘
4 9 � H̄B

9:
4:

⌘

= tr
⇣
.̃

H
9:

⇣
++

H
⌘⌘

=: +
H
.̃

H
9:
+

where

.̃ 9: := 4 9
⇣⇣
H
B

9:
+ H<

9:

⌘
4

H
9
� HB

9:
4

H
:

⌘
(9.18a)

or explicitly

⇥
.̃ 9:

⇤
<=

:=

8>>>><
>>>>:

⇣
H
B

9:
+ H<

9:

⌘
< = = = 9⇣

�HB
9:

⌘
< = 9 , = = :

0 otherwise



9.2 Branch flow model: radial networks 453

which is symmetric if and only if HB
9:

= HB
: 9

. .̃ 9: is not Hermitian and hence +H
.̃ 9:+

is a complex number. Define the Hermitian and skewed Hermitian components of .̃ 9: :

�̃ 9: :=
1
2

⇣
.̃

H
9:
+ .̃ 9:

⌘
and  ̃ 9: :=

1
2i

⇣
.̃

H
9:
� .̃ 9:

⌘
(9.18b)

so that

Re
�
( 9:

�
= +

H�̃ 9:+ and Im
�
( 9:

�
= +

H ̃ 9:+ (9.18c)

Hence the constraint (min
9:
 ( 9: (+)  (max

9:
becomes a pair of quadratic constraints:

Re
⇣
(

min
9:

⌘
 +

H�̃ 9:+  Re
⇣
(

max
9:

⌘

Im
⇣
(

min
9:

⌘
 +

H ̃ 9:+  Im
⇣
(

max
9:

⌘
⇤

9.2 Branch flow model: radial networks

DistFlow model.

Since the branch flow model is most useful for radial networks, we first formulate OPF
in the DistFlow model that assumes:

• IB
9:
= IB

: 9
, or equivalently HB

9:
= HB

: 9
, for every line ( 9 , :) (assumption C5.1).

• H
<

9:
= H<

: 9
= 0 for every line ( 9 , :). This is a reasonable assumption on distribution

lines where H<
9:

and H<
: 9

are typically much smaller in magnitude than the series
admittance HB

9:
.

Consider a single-phase radial network ⌧ = (# ,⇢) with # +1 buses and " = # lines.
The assumptions allow us to adopt a directed graph ⌧ = (# ,⇢) and include branch
variables in only one direction. We denote a line in ⇢ from bus 9 to bus : either
by ( 9 , :) 2 ⇢ or 9 ! : . It is characterized by its series impedance I 9: := IB

9:
(we

sometimes omit the superscript when there is no danger of confusion). Without loss
of generality we take bus 0 as the root of the tree.

The device models are the same as those for the bus injection model described in
Chapter 9.1.1. OPF in the branch flow model di�ers only in the terminal variables and
power flow equations that relate them. We use the DistFlow model (5.8) with down
orientation (all lines point away from bus 0), reproduced here:’

:: 9!:
( 9: = (8 9 � IB8 9✓8 9 + B 9 , 9 2 # (9.19a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (9.19b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (9.19c)
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where, in (9.19a), bus 8 := 8( 9) denotes the unique adjacent node of 9 on the path from
node 0 to node 9 , with the understanding that when 9 = 0 then (80 := 0 and ✓80 := 0.
The injection, voltage and line limits are:

B
min
9
 B 9  B

max
9

, E
min
9
 E 9  E

max
9

, ✓ 9:  ✓
max
9:

, 9 2 # , ( 9 , :) 2 ⇢
(9.19d)

Denote by (B,E) := (B 9 ,E 9 , 9 2 #) 2 R3(#+1) the bus injections and squared voltage
magnitudes, and by (✓,() := (✓ 9: ,( 9: , 9 ! : 2 ⇢) 2 R3" the squared line current
magnitudes and line powers. The vector E includes E0 and B includes B0. Let G :=
(B,E,✓,() in R3(2#+1) since ⌧ is a tree. Let the cost function in the branch flow model
be ⇠ (G). Let the feasible set be

Xdf := {G := (B,E,✓,() 2 R6#+3 | G satisfies (9.19)} (9.20a)

Then the optimal power flow problem in the branch flow model is:
OPF:

min
G

⇠ (G) subject to G 2 Xdf (9.20b)

To avoid triviality we will assume unless otherwise specified that OPF (9.20) is feasible.
We assume the cost functions ⇠ (G) here and ⇠ (+) in the single-phase OPF problem
(9.9) or (9.16) in the bus injection model represent the same function but in terms
of di�erent variables. Since Xdf ⌘ V by Theorem 5.2, the single-phase OPF problem
(9.20) in the branch flow model is equivalent to (9.9) or (9.16) in the bus injection
model. (See the proof of Theorem 11.2 in Chapter 11.1.2 for an explicit construction
of a bijection between Xdf and a set equivalent to the feasible set V of (9.9).)

Remark 9.5 (Current sources and impedances). The model (9.19) includes only volt-
age and power sources whose controllable variables are E 9 and B 9 respectively. A
current source will introduce its current � 9 2 C as an additional variable and an equal-
ity constraint |B 9 |2 = E 9 |� 9 |2 that relate � 9 to (B 9 ,E 9 ). An impedance I 9 will introduce
an equality constraint B 9 = �E 9/IH

9
on (B 9 ,E 9 ). If I 9 is controllable, e.g., representing a

switched capacitor, then I 9 is an additional variable. For simplicity we restrict ourselves
to voltage and power sources only. (See Chapter 9.1.2 for more discussions.) ⇤

General radial network.

The feasible set Xdf is based on the DistFlow equations (9.19a)–(9.19c) that as-
sume IB

9:
= IB

: 9
and H

<

9:
= H<

: 9
= 0. OPF can also be formulated without these as-

sumptions, based on the branch flow model (5.1) that includes branch variables
✓ :=

�
✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢

�
, ( :=

�
( 9: ,(: 9 , ( 9 , :) 2 ⇢

�
in both directions, reproduced
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here:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (9.21a)

|U 9: |2E 9 � E: = 2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , ( 9 , :) 2 ⇢ (9.21b)

|U: 9 |2E: � E 9 = 2Re
⇣
U: 9 Ī

B

: 9
(: 9

⌘
� |IB

: 9
|2✓: 9 , ( 9 , :) 2 ⇢ (9.21c)��

( 9:

��2 = E 9 ✓ 9: ,
��
(: 9

��2 = E: ✓: 9 , ( 9 , :) 2 ⇢ (9.21d)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (9.21e)

where

U 9: := 1+ IB
9:
H
<

9:
, U: 9 := 1+ IB

: 9
H
<

: 9

The operation limits are the same as (9.19d) but include line limits in both directions:

B
min
9
 B 9  Bmax

9
, E

min
9
 E 9  Emax

9
, ✓ 9:  ✓max

9:
, ✓: 9  ✓max

: 9
, 9 2 # , ( 9 , :) 2 ⇢

(9.21f)

The feasible set is

Xtree := {G : (B,E,✓,() 2 R9#+3 | G satisfies (9.21)} (9.22a)

and the OPF problem is:
OPF:

min
G

⇠ (G) subject to G 2 Xtree (9.22b)

Since Xtree ⌘ V by Theorem 5.2, the single-phase OPF problem (9.22) for a general
radial network is equivalent to (9.9) or (9.16) in the bus injection model, provided the
cost functions ⇠ (G) here and ⇠ (+) in the bus injection model are the same.

9.3 NP-hardness

Since the feasible set of OPF is generally nonconvex (see e.g. (9.16)), OPF is a
nonconvex problem. Moreover OPF has been shown to be NP-hard in [68, 69, 70,
71, 72, 73, 74]. We present the result of [70] that shows that even determining the
feasibility of an OPF on a tree network is NP-hard. As hardness results describe
worst-case complexity this suggests that there are OPF instances that are hard to scale.
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9.3.1 OPF feasibility on a tree network

Consider a tree network represented by a graph (# ,⇢) with # + 1 buses and " = #
lines described by the polar-form power flow equations (4.27):

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 2 #

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 2 #

We make the following assumptions:

• fixed voltage magnitudes |+ 9 | := 1 pu for all 9 2 #;
• H

B

9:
= HB

: 9
and H<

9:
= H<

: 9
= 0;

• H
B

9:
= 6 + i1 for all ( 9 , :) 2 ⇢ with 6 � 0, 1  0.

Assume also that each bus either has a fixed and given injection (? 9 ,@ 9 ) or a dis-
patchable generation (? 9 ,@ 9 ) with the requirement ? 9 � 0 (no constraint on @ 9 ). Let
#! ⇢ # denote the set of fixed injections and #⌧ ⇢ # the set of generations. We are
to determine if there are generations (? 9 ,@ 9 , 9 2 #⌧) to balance the given injections
(? 9 ,@ 9 , 9 2 #!) subject to the inequality constraints that ? 9 � 0 for 9 2 #⌧ and a
common line limit of the form:

|\ 9 � \: |  \, ( 9 , :) 2 ⇢

for a given \ 2 (0,c/2]. Exercise 9.8 shows that this constraint is equivalent to a limit
on the squared apparent line flow %

2
9:
+&2

9:
over \ 2 (0,\). Hence the OPF feasibility

problem is to find nonnegative real power injections (? 9 , 9 2 #⌧) � 0 at generation
buses, voltage angles (\ 9 , 9 2 #) at all buses, and line flows (% 9: ,& 9: , ( 9 , :) 2 ⇢) that
satisfy the following constraints

OPF feasibility: ? 9 =
’
:: 9⇠:

% 9: , @ 9 =
’
:: 9⇠:

& 9: , 9 2 #!

(9.23a)

? 9 � 0, 9 2 #⌧
(9.23b)

% 9: = 6 9: (1� cos\ 9: )� 1 9: sin\ 9: , ( 9 , :) 2 ⇢ (9.23c)

& 9: = �1 9: (1� cos\ 9: )�6 9: sin\ 9: , ( 9 , :) 2 ⇢ (9.23d)

|\ 9 � \: |  \, ( 9 , :) 2 ⇢ (9.23e)

These constraints define the feasible set of an OPF on the tree network. An instance
of the OPF feasibility problem is specified by (#⌧ [ #! ,⇢), (6 9: ,1 9: , ( 9 , :) 2 ⇢),
\ 2 (0,c/2], and (? 9 ,@ 9 , 9 2 #!).
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9.3.2 OPF is NP-hard

We often say a function is computable in polynomial time (tractable) or a problem is
NP hard (intractable). We first describe these notions more precisely by summarizing
basic concepts of complexity theory (see e.g. [75] for more details). We then state the
theorem that OPF feasibility problem is NP-hard.

P and NP.

NP-hardness is formally defined first for language problems. Let ⌃ be a finite set of
symbols called an alphabet and ⌃⇤ denote the set of all finite strings of symbols in ⌃.
A language ! over ⌃ is any subset of ⌃⇤. A deterministic Turing machine (DTM) is
a model for computation that takes an input f from ⌃⇤, performs computation (e.g.,
read, write, state transition), and then either halts in one of a set of designated states or
does not halt. We will focus on classes of languages ! ✓ ⌃⇤ for which a DTM always
halts in one of two states, “yes” or “no” (these are called decidable decision problems).
Given a DTM " , the time complexity function 2" : N+! N+ of " (N+ is the set of
positive integers) is:

2" (=) := max{< : 9f 2 ⌃⇤ with |f | = = s.t. " takes < steps to halt on f}

A DTM " is called a polynomial time DTM if there exists a polynomial ? such that
2" (=)  ?(=) for all = 2 N+. The set

!" := {f 2 ⌃⇤ : " halts on f in “yes” state } (9.24)

is called the language recognized by " . The class P of languages is

P := {! ✓ ⌃⇤ : 9 polynomial time DTM " for which ! = !" }

Informally the class P consists of all languages over ⌃ that are recognizable by a DTM
in time upper bounded by a polynomial in the length of the input string.

While P is meant to capture the “solvability” of a problem, NP is meant to capture
the “verifiability” of a problem, i.e., given a guess, verify if it is a solution. For many
problems, it is much easier to verify if a given candidate is a solution than computing
a solution. For instance, it is di�cult (NP-complete) to find a cycle in an arbitrary
graph that visits every node exactly once, but much easier to verify if a candidate path
is a solution. This is called the Hamiltonian circuit/cycle problem and is a special
case of traveling salesman problem where the distances between adjacent cities are 1.
Formally, given a nondeterministic Turing machine (NDTM) " , the time complexity
function of " is:

2" (=) := max{< : 9f 2 ⌃⇤ with |f | = = s.t. " takes < steps to halt on f in “yes” state}

If " does not halt in “yes” state for any f with |f | = =, then 2" (=) := 1. (For decidable
problems, which are what we focus on, " will halt in “no” state on f.) Then " is
called a polynomial time NDTM if there exists a polynomial ? such that 2" (=)  ?(=)



458 Optimal power flow

for all = 2 N+. The language recognized by a NDTM " is !" as defined in (9.24)
except for a NDTM " . Then

NP := {! ✓ ⌃⇤ : 9 polynomial time NDTM " for which ! = !" }

Informally the class NP consists of all languages over ⌃ that are recognizable by a
NDTM (or equivalently, verifiable by a DTM) in time upper bounded by a polynomial
in the length of the input string. NP contains P as a subclass.

A function 5 : ⌃⇤1! ⌃⇤2 is a language ! 5 := {(f, 5 (f)) : f 2 ⌃⇤1} ✓ ⌃⇤1 ⇥⌃⇤2. We
say a DTM " computes 5 if !" = ! 5 . Let !1 ✓ ⌃⇤1 and !2 ✓ ⌃⇤2 be two languages.
A polynomial transformation or polynomial reduction from !1 to !2 is a function
5 : ⌃⇤1 ! ⌃⇤2 which can be computed by a polynomial time DTM such that, for all
f 2 ⌃1, f 2 !1 if and only if 5 (f) 2 !2. Note the asymmetry between !1 and !2. A
language ! is NP-hard if for every ! 0 2 NP there exists a polynomial reduction from
!
0 to !. It is NP complete if ! is NP-hard and ! 2 NP. NP-complete languages are in

a sense the “hardest” languages in NP.

A decision problem is a problem whose solution is either “yes” or “no”. Such a
problem is defined by a (possibly countably infinite) set ⇧ of finite instances, usually
described in terms of sets, graphs, functions, real numbers, etc. These instances are
finite in the sense that each instance in ⇧ can be represented by a finite number of
symbols. Even though the specification of an instance can involve real numbers such
as

p
7/3,cos(c/3), they are typically described symbolically in terms of integers. We

consider decision problems ⇧ that can be “encoded” into language problems defined
over some alphabet ⌃. Informally, an encoding is a mapping from ⇧ to ⌃⇤. For any
instance H 2 ⇧ let f(H) 2 ⌃⇤ denote the result of the mapping, i.e., the encoding of the
instance H. We sometimes refer to H or f(H) interchangeably as a decision problem
instance when the underlying encoding is understood.

Let . ✓ ⇧ be the subset of instances of the decision problem ⇧ whose solutions
are “yes”. We will refer to . either as a set of problem instances (from ⇧) or simply
as a problem by itself. Let !. := {f(H) : H 2 . } ✓ ⌃⇤ be the language defined by the
instances in . , i.e., the solution of an instance H is “yes” if and only if its encoding
f(H) 2 !. . Hardness properties of the problem (instances) . are then defined in terms
of the hardness properties of its encoding !. . For example the problem (instances) .
is said to be in P if !. 2 P and it is said to be NP-complete if !. is NP-complete. The
OPF feasibility problem (9.23) is such a decision problem.

Computation problems such as solving a system of equations or optimization prob-
lems can likewise be encoded into a language ! for which hardness properties can
be formally defined. The hardness properties of ! then endow a computation or op-
timization problem with the corresponding hardness properties. A large number of
prototypical problems have been proved to be NP-complete. No polynomial time algo-
rithms are known for solving these problems. Moreover a polynomial time algorithm
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for solving one of these problems will lead to polynomial time algorithms for all of
them. It is in this sense that NP-complete problems are the ”hardest” problems.

Hardness result.

We can now state the hardness result.

Theorem 9.1 (OPF NP-hardness [70]). The OPF feasibility problem (9.23) is NP-hard.

Remark 9.6. 1 The OPF feasibility problem is not proved to be in the class of NP
(and hence NP-complete) because solutions of (9.23) can be irrational.

2 Consider a decision problem defined by the set⇧ of all its instances. Each instance
f (or more precisely, the encoding f(H) of each H 2 ⇧) has len(f), which is a
measure of the size of the specification of f, and max(f), which is a measure of
the magnitude of numerical parameters of f ((#⌧ ,#! ,⇢ ,6,1,\, ? 9 ,@ 9 , 9 2 #!)
in our case). Let ? be a polynomial over integers and .? ✓ ⇧ be the set of all
problem instances with max(f)  ?(len(f)), i.e., .? is the subset of ⇧ instances
for which all numerical parameters are bounded by the single polynomial ? in the
size of the input instance. The problem.? is called strongly NP-hard if there exists
a polynomial ? such that .? is NP-hard. It is called strongly NP-complete if .? is
strongly NP-hard and .? 2 NP [76].

We will prove Theorem 9.1 below by reducing the NP-complete subset sum
problem to our OPF feasibility problem. The theorem does not imply that (9.23) is
strongly NP-hard because the subset sum problem is NP-complete but not strongly
NP-complete. See [73] for a proof that determining OPF feasibility is strongly NP-
hard by a polynomial reduction of the strongly NP-complete one-in-three 3SAT
problem.

3 The more restrictive the class of OPF instances to which all instances of the
subset sum problem can be reduced, the stronger the hardness result because
computation complexity is about the performance on worst-case instances. For
example the constraints in (9.23) apply to networks with meshed topology, but
the NP-hardness proof reduces any instance of the subset sum problem to OPF
feasibility instances that use only star networks. Theorem 9.1 says that even the
OPF feasibility problem ⇧1 in which all instances are restricted to star networks is
NP-hard. The larger class of OPF feasibility problem ⇧2 � ⇧1 in which instances
may be meshed networks is therefore also NP-hard. It suggests that OPF as an
optimization problem is NP-hard.

4 Theorem 9.1 does not mean that all instances of OPF are hard to solve. Indeed
we study in Chapters 10 and 11 subclasses of OPF on tree networks that are
polynomial time solvable. These subclasses fall outside the subclass defined by
the OPF feasibility problem (9.23) ((9.23) does not satisfy the su�cient conditions
in Chapter 10 and 11 for exact convex relaxations). We will also study in Chapter
9.4 another class of OPF that can be solve e�ciently.

5 Besides nonconvexity another source of hardness is involvement of discrete vari-
ables in OPF such as in unit commitment. The hardness of approximation and
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approximation ratios of such problems are studied in [72, 74]. See also [77, Chap-
ter 5] for a collection of hardness and approximation results. ⇤

9.3.3 Proof of Theorem 9.1

To show that the OPF feasibility problem is NP-hard we will reduce an arbitrary
instance of the NP-complete subset sum problem to an instance of (9.23).

Subset sum problem (�,f):
Problem instance: a set � of positive integers and a positive integer f.
Decision: whether there is a subset �0 ✓ � such that

Õ
02�0

0 = f.

OPF feasibility (#⌧[#! ,⇢), (6 9: ,1 9: , ( 9 , :) 2 ⇢), \ 2 (0,c/2], and (? 9 ,@ 9 , 9 2 #!):
Problem instance: a graph (star) (#⌧[#! ,⇢), |#! | rational numbers (? 9 ,@ 9 , 9 2 #!),
|⇢ | rational numbers (6 9: ,1 9: , ( 9 , :) 2 ⇢), and rational number \ 2 (0,c/2] that define
an instance of the OPF feasibility problem (9.23).
Decision: whether there exist nonnegative real power injections (? 9 , 9 2 #⌧) � 0 at gen-
eration buses, voltage angles (\ 9 , 9 2 #) at all buses, and line flows (% 9: ,& 9: , ( 9 , :) 2
⇢) that satisfy (9.23).

An instance of the subset sum problem specified by (�,f) is said to be solvable
if a solution �0 exists. In the following we will describe a polynomial reduction of
an arbitrary instance (�,f) to an instance of the OPF feasibility problem, and show
that (�,f) is solvable if and only if the corresponding instance of the OPF feasibility
problem is feasible. Let

%̂(\) := 6(1� cos\)� 1 sin\, &̂(\) = �1(1� cos\)�6 sin\ (9.25)

for some (6,1) to be chosen later. We now prove Theorem 9.1 in three steps.

Step 1: Polynomial reduction. Fix an arbitrary subset sum instance (�,f). We specify
the parameters (#⌧ [#! ,⇢), (? 9 ,@ 9 , 9 2 #!), (6 9: ,1 9: , ( 9 , :) 2 ⇢) and \ 2 (0,c/2]
that defines an instance of the OPF feasibility problem (9.23). Choose (6,1,\) such
that 1 < 0 < 6, %̂(�\) < 0 in (9.25), and \ := (0,c/2]. Construct the following star
network (#⌧ [#! ,⇢) with |�| generator buses connected to a single load bus where

• #⌧ := �, #! := {0} with ?0 := f%̂(�\) and @0 := f&̂(�\) at the load bus 9 = 0.
• For all lines (0,0) 2 ⇢ and all 0 2 �, 600 := 06 and 100 := 01.

Denote this OPF feasibility problem instance as ) (�,f). This reduction is polynomial
in the size of (�,f) since the construction only uses rational numbers and finitely
many real numbers constructed from integers 0 2 �, basic arithmetic operations, sin
and cos. We next show that (�,f) is solvable if and only if ) (�,f) has a feasible
solution G := (? 9 , 9 2 #⌧; \ 9 , 9 2 #⌧ [#!; % 9: ,& 9: , ( 9 , :) 2 ⇢) for (9.23).
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Step 2: (�,f) is solvable) ) (�,f) is feasible. Let �0 ✓ � be a solution of (�,f).
Define G by (recall that the only load bus is 9 = 0):

\0 := 0, \0 := \, 80 2 �0

%00 := 0%̂(�\), &00 := 0&̂(�\), 80 2 �0

?0 := %00 := 0%̂(\), &00 := 0&̂(\), 80 2 �0

and for all buses outside the solution set,

?0 := \0 := %00 := &00 := %00 := &00 := 0, 80 2 � \ �0

We show that G satisfies (9.23). Clearly the line flows (9.23c)(9.23d) and the line limits
(9.23e) are satisfied by construction. The injection at each generator bus 0 2 � is

?0 := %00 = 0(6(1� cos\)� 1 sin\) � 0

where the inequality follows from 0 being a positive integer, 1 < 0 < 6 and \ 2 (0,c/2],
which is (9.23b). Finally the power balance (9.23a) at the load bus 9 = 0 is:’

02�
%00 = %̂(�\)

’
02�0

0 = f%̂(�\) = ?0

where the second equality follows because �0 is a solution of (�,f) and the other
equalities are due to construction. Similarly’

02�
&00 = &̂(�\)

’
02�0

0 = f&̂(�\) = @0

Hence G is a feasible solution of (9.23).

Step 3: ) (�,f) is feasible ) (�,f) is solvable. Let G := (? 9 , 9 2 #⌧; \ 9 , 9 2
#⌧ [ #!; % 9: ,& 9: , ( 9 , :) 2 ⇢) be a solution of (9.23). Consider the line flow
%00 = 0%̂(\00) := 0 (6(1� cos\00)� 1 sin\00) on each line (0,0) 2 ⇢ . Suppose
\00 < 0. Then it can be shown that %̂(\00) < 0 (Exercise 9.9). But this implies
?0 = %00 = 0%̂(\00) < 0, contradicting (9.23b). Therefore \00 � 0 for all 0 2 �.

Let �0 := {0 2 � : \00 > 0}. We now show that
Õ
02�0

0 = f. From (9.23a) we have
at bus 0,

f%̂(�\) =: ?0 =
’
02�

%00 =
’
02�

0%̂(\00) (9.26)

f&̂(�\) =: @0 =
’
02�

&00 =
’
02�

0&̂(\00)

Since %̂(�\) < 0 by construction, we have &̂(�\) > 0 (Exercise 9.9), and hence we
can divide both sides by %̂(�\) and &̂(�\) to obtain:

’
02�

0

✓
%̂(\00)
%̂(�\)

� &̂(\00)
&̂(�\)

◆
= 0



462 Optimal power flow

or ’
02�

0

⇣
&̂(�\)%̂(\00)� %̂(�\)&̂(\00)

⌘
= 0

It can be shown that %̂(�\)&̂(\00) � &̂(�\)%̂(\00) with equality if and only if \00 2
{0,\} (Exercise 9.9). Therefore \00 = 0 or \ for all 0 2 �. Note that %̂(0) = 0 and
\00 = �\00, and hence we have from (9.26)

f%̂(�\) =
’
02�0

0%̂(�\)

i.e., �0 is a solution of (�,f). ⇤

9.4 Global optimality: Lyapunov-like condition

OPF is NP-hard in theory, but seems easy in practice in that polynomial time algorithms
often produce globally optimal solutions. In this subsection we study Lyapunov-like
conditions for global optimality. Su�cient conditions for global optimality through
semidefinite relaxation are studied in Chapters 10 and 11.

9.4.1 Convex relaxation

Consider

min
G

5 (G) s.t. G 2 - ✓ R= (9.27)

and

min
G

5 (G) s.t. G 2 -̂ ✓ R= (9.28)

where - is a nonempty compact set (not necessarily convex), -̂ is an arbitrary compact
and convex superset of - , and 5 :R=!R is a convex (and hence continuous) function.
Hence optimal solutions exist for both (9.27) and (9.28) according to Theorem 8.16.
Problem (9.27) is a nonlinear program and generally NP-hard (Exercise 9.10). Problem
(9.28) is called a convex relaxation of (9.27). Since it is a convex problem it is
polynomial time solvable (assuming -̂ is e�ciently represented). If an optimal solution
G
⇤ of (9.28) is feasible for (9.27) then G⇤ is optimal for (9.27). In Chapters 10 and 11

we study the semidefinite relaxations of OPF where -̂ is restricted to be a semidefinite
cone or a second-order cone, but in this section we allow any convex relaxation.

The cost function of OPF is typically convex but its feasible set is nonconvex due
to nonlinear power flow equations. Most algorithms used for solving OPF are local
algorithms such as Newton-Raphson or interior-point methods (studied in Chapter
8.5). First order conditions are available to guarantee that these algorithms converge
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to produce a global optimum for convex problems. Since OPF is nonconvex there is
usually no guarantee that a local algorithm will converge or will produce a global
(or local) optimum when it does. Solving convex relaxations of OPF is also widely
studied, and in general, there is no guarantee that relaxations will be exact. Yet there is
significant evidence that, in practice, local algorithms and convex relaxations tend to
produce globally optimal solutions, e.g., [78].

9.4.2 Conditions for global optimality

We now present conditions from [79, 80] for the nonlinear program (9.27) to simulta-
neously have exact convex relaxation and no spurious local optima. These conditions
help explain the empirical experience that local algorithms and convex relaxations for
OPF tend to work well in practice.

Definition 9.1 (Exact relaxation). 1 A point G⇤ 2 - is called a local optimum of
(9.27) if there exists a X > 0 such that 5 (G⇤)  5 (G) for all G 2 - with kG�G⇤k < X.
It is called a global optimum or an optimum if 5 (G⇤)  5 (G) for all G 2 - .

2 If every optimal solution G⇤ of (9.28) is feasible for, and therefore a global optimum
of, (9.27) then we say that the convex relaxation (9.28) is exact with respect to
(9.27).

The optimality conditions rely on, for every infeasible point G 2 -̂ \ - , finding a
path that takes G back to the feasible set - along which the cost is nonincreasing.

Definition 9.2 (Path). 1 A path in . ✓ R= connecting point 0 to point 1 is a contin-
uous function ⌘ : [0,1]! . such that ⌘(0) = 0 and ⌘(1) = 1.

2 An arbitrary set {⌘8 : 8 2 �} of paths in . is called
1 uniformly bounded if there exists a finite number � such that k⌘8 (C)k1  �

for all C 2 [0,1] and all 8 2 �;
2 uniformly equicontinuous if for any n > 0, there exists X > 0 such that k⌘8 (C2)�
⌘8 (C1)k1 < n for all 8 2 � whenever |C2� C1 | < X.

As an example, if all paths in {⌘8 : 8 2 �} consist of at most < linear segments
for some finite <, then (the arc-length reparametrized version of) {⌘8 : 8 2 �} is both
uniformly bounded and uniformly equicontinuous; see [79].

Definition 9.3 (Lyapunov-like function). A Lyapunov-like function associated with
(9.27) and (9.28) is a continuous function + : -̂! R+ such that + (G) = 0 if G 2 - and
+ (G) > 0 if G 2 -̂ \ - .

We can now state a su�cient condition and a necessary condition for (9.27) to
simultaneously have exact convex relaxation and no spurious local optima. The first
condition C9.1 says that every infeasible point G can be brought back to the feasible
set - with a strictly lower cost along a path on which neither the cost 5 nor the
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Lyapunov function + increases. Condition C9.3(b) requires that the cost decreases
su�ciently along the path, not just nonincreasing, in order to eliminate the possibility
of pseudo local optimum (see Definition 9.4 below). C9.2 is a regularity condition on
the set of paths for all infeasible points. It is needed for the Arzelà-Ascoli Theorem
that guarantees that this set of paths has a uniformly convergent subsequence in order
to prove that all local optima are global optima.

C9.1: There is a Lyapunov-like function + associated with (9.27) and (9.28) and,
for every infeasible point G 2 -̂ \ - , there is a path ⌘G in -̂ such that

1 ⌘G (0) = G, ⌘G (1) 2 - , and 5 (⌘G (1)) < 5 (G).
2 Both 5 (⌘G (C)) and + (⌘G (C)) are nonincreasing for C 2 [0,1].

C9.2: The set {⌘G : G 2 -̂ \-} of paths in C9.1 is uniformly bounded and uniformly
equicontinuous.
C9.3: At least one of the following holds:

1 All local optima of (9.27) are isolated, i.e., every local optimum has an open
neighborhood that contains no other local optimum.

2 For the set {⌘G : G 2 -̂ \-} of paths in C9.1, there exists U > 0 such that for all
infeasible points G 2 -̂ \- and all 0  B < C  1, we have 5 (⌘G (B))� 5 (⌘G (C)) �
Uk⌘G (B)� ⌘G (C)k for some norm k · k.

Theorem 9.2 (Su�ciency). Suppose conditions C9.1, C9.2, C9.3 hold. Then

1 The convex relaxation (9.28) is exact with respect to (9.27).
2 Every local optimum of (9.27) is a global optimum.

Moreover if C9.3(a) holds then the optimal point is unique.

A set. ✓ R= is semianalytic if every G 2R= has a neighborhood* such that.\* can
be represented as a finite Boolean combination of sets {G : 6(G) = 0} and {G : ⌘(G) < 0}
for some analytic functions 6,⌘ (i.e., for every G0, 6(G) = Õ1

==0 0= (G � G0)= for some
real coe�cients 0= in a neighborhood of G0, and similarly for ⌘). Engineering problems
are often specified in terms of analytic functions and semianalytic sets.

Theorem 9.3 (Necessity). Suppose the feasible set - is semianalytic and the cost
function 5 is analytic. If (9.28) is exact with respect to (9.27) and every local optimum
of (9.27) is a global optimum, then there exists Lyapunov-like function + and a family
of paths {⌘G : G 2 -̂ \ -} that satisfy C9.1, C9.2.

Remark 9.7 (Su�ciency). 1 Conditions C9.1 and C9.2 imply that the feasible set
- of (9.27) is connected. For OPF however it is possible that the feasible set is
disconnected. In that case convex relaxation may not be exact in the strong sense
of Definition 9.1 that all optimal points of (9.28) are optimal for (9.27). Theorems
9.2 and 9.3 hold however for - restricted to a connected component of the feasible
set. We can also consider a weaker notion of exactness that requires at least one
global optimum of (9.28) to be feasible and hence optimal for (9.27). See [79,
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Theorem 4] for a similar su�cient condition that guarantees weak exactness of
(9.28) and no spurious local optimum for (9.27).

2 As we will show in Lemma 9.4 below the exactness of (9.28) with respect to (9.27)
is equivalent to the existence of a path ⌘G for each infeasible point G 2 -̂ \ - that
satisfies C9.1. Indeed proofs of exact relaxations in Chapters 10 and 11 can be
interpreted as constructing such a path. The existence of a Lyapunov-like function
and all other conditions in Theorem 9.2 are needed to prove the global optimality
of every local optimum.

3 Consider the dynamical system

§G = 5 (G(C)), C � 0, G(0) = G0 (9.29)

and suppose G⇤ is an equilibrium point where 5 (G⇤) = 0. The equilibrium point G⇤

is said to be globally asymptotically stable if the trajectory G(C) of (9.29) stays close
to G⇤ whenever the initial point G0 is close to G⇤ and G(C)! G

⇤ for any initial point
G0. The standard Lyapunov stability theory says that G⇤ is globally asymptotically
stable if there exists a continuously di�erentiable Lyapunov function + (G) such
that + (G) > + (G⇤) and §+ (G) < 0 for all G < G⇤. In this case (9.29) specifies the
trajectory (path) that G(C) takes starting from a given G0 and the Lyapunov function
+ certifies a stability property of the equilibrium point G⇤. There is no general
method to construct + except on a case-by-case basis.

In our case, the Lyapunov-like function + in Theorem 9.2 certifies that a local
optimum G

⇤ 2 - of (9.27) is a global optimum. Since there is no dynamics, there
is no requirement on the di�erentiability of + . We however have to construct a
path ⌘G for every infeasible point G 2 -̂ \ - that takes G back to a feasible point in
- with a strictly lower cost. No general methods to construct + or ⌘G are known
(see an example in Chapter 9.4.4). ⇤

Figure 9.1 illustrates the NP hardness of OPF and the set of problem instances that
both have exact convex relaxation and no spurious local optimum characterized by
Theorems 9.2 and 9.3.

9.4.3 Proof of Theorem 9.2

We next prove the su�ciency condition taken from [80]; see [79] for the proof of
Theorem 9.3.

Lemma 9.4. The convex relaxation (9.28) is exact with respect to (9.27) if and only
if, for every infeasible point G 2 -̂ \ - , there exists a path ⌘G that satisfies C9.1.

Proof of Lemma 9.4. Suppose (9.28) is exact and let G⇤ 2 - be a global optimum of
(9.27), which exists due to Theorem 8.16. Given any infeasible point G 2 -̂ \ - , let ⌘G
be the line segment connecting G to G⇤. Then ⌘G is in -̂ since -̂ is convex. Moreover
5 (G) > 5 (G⇤) since (9.28) is exact, and hence C9.1 for ⌘G follows from the convexity
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NP-hard (OPF)

P (OPF)

exact
relaxation

no spurious
local optimum

theorems

Figure 9.1 Problem instances of OPF. Theorems 9.2 and 9.3 provide a su�cient condition and
a necessary condition respectively that characterize the intersection.

of 5 . Conversely suppose every G 2 -̂ \ - has a path ⌘G in -̂ that satisfies C9.1. If
a global optimum G

⇤ of (9.28) is not in - then 5 (⌘G⇤ (1)) < 5 (G⇤), contradicting the
optimality of G⇤. Hence G⇤ 2 - and is a global optimum of (9.27). ⇤

Lemma 9.4 says that, for exact relaxation, it is su�cient if every infeasible point
G 2 -̂ \- has a path ⌘G that satisfies just Condition C9.1. For global optimality of local
optima of (9.27), we need to di�erentiate between two types of local optima that are
not global optima; see Figure 9.2.

Definition 9.4 (Pseudo local optimum). A local optimum G
⇤ 2 - that is not a global

optimum is called

1 a pseudo local optimum if there is a path ⌘ : [0,1]! - that starts at ⌘(0) = G⇤ and
ends at a point ⌘(1) that is not a local optimum, such that 5 (⌘(C)) ⌘ 5 (G⇤) for all
C 2 [0,1].

2 a genuine local optimum if it is a local optimum but neither a global optimum nor
a pseudo local optimum.

A local optimum G
⇤ is a pseudo local optimum if it can be strictly improved without

incurring a higher cost in the process.

Definition 9.5 (Improvable). A point G 2 - is called improvable in - if there is a path
⌘G : [0,1]! - with ⌘G (0) = G such that

1 5 (⌘(C)) is nonincreasing for C 2 [0,1];
2 5 (⌘(1)) < 5 (G) or ⌘(1) is not a local optimum.

A local optimum is a pseudo local optimum if and only if it is improvable in - .
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X

a d

b

c

Figure 9.2 Three types of local optima. The cost function decreases in the direction of the
arrow. Point 1 is a global optimum, 2 a pseudo local optimum, and 0,3 are genuine local
optima.

The next lemma, together with Lemma 9.4, says that conditions C9.1 and C9.2 almost
imply Theorem 9.2, except for the possibility of pseudo local optima.

Lemma 9.5. Suppose conditions C9.1 and C9.2 hold. Then every local optimum of
(9.27) is either a global optimum or a pseudo local optimum.

Proof of Lemma 9.5. Fix an G 2 - that is a local but not global optimum of (9.27).
We will show that G is improvable in - and hence a pseudo local optimum.

Let G⇤ < G be a global optimum of (9.27) with 5 (G⇤) < 5 (G). Let ✓ : [0,1]! -̂ be
the line segment connecting G to G⇤, ✓(C) := (1� C)G + CG⇤ for C 2 [0,1]. The convexity
of 5 implies that 5 (✓(C)) is nonincreasing in C because, for any 0  g < C  1, ✓(C) =
U✓(g) + (1�U)G⇤ for some U 2 [0,1] and hence

5 (✓(C)) = U 5 (✓(g)) + (1�U) 5 (G⇤)  5 (✓(g))

If ✓(C) 2 - for all C 2 [0,1], i.e., the line segment is in - , then ✓ defines the path ⌘G
in Definition 9.5 with 5 (⌘G (1)) < 5 (G). Therefore G is improvable in - and hence a
pseudo local optimum.

Suppose then part of ✓ lies in -̂ \ - and define the first time the line segment ✓
leaves - (see Figure 9.3):

C
† := sup

g2 [0,1]
C s.t. ✓(g) 2 - 8g  C

Since - is closed, C† 2 - . First note that 5 (✓(C)) is strictly decreasing in C until
5 (✓(B)) = 5 (G⇤) for some B and 5 (✓(C)) ⌘ 5 (G⇤) over C 2 [B,1]. To see this suppose
5 (✓(g)) ⌘ 5 (✓(g1)) over any interval g 2 [g1,g2] with 0  g1 < g2  1. Then, since
✓(g2) = U✓(g1) + (1�U)G⇤ for some U 2 [0,1), we have

5 (✓(g1)) = 5 (✓(g2))  U 5 (✓(g1)) + (1�U) 5 (G⇤)

implying 5 (✓(g)) = 5 (G⇤) over [g1,g2] and that 5 (✓(C)) is strictly decreasing in C

until 5 (✓(B)) = 5 (G⇤) for some B. Then, since 5 (G) > 5 (G⇤), the convexity and hence
continuity of 5 imply that 5 (✓(C)) is strictly decreasing in C until at least ✓(C) is at the
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boundary of - . Therefore G can only be on the boundary of - to be a local optimum,
i.e., C† = 0 and G = ✓(C†) = ✓(0).

We will show that G = ✓(0) is improvable in - by constructing the path ⌘ in Definition
9.5, i.e., constructing an ⌘ : [0,1]! - with ⌘(0) = G such that 5 (⌘(C)) is nonincreasing
for C 2 [0,1] and either 5 (⌘(1)) < 5 (G) or ⌘(1) is not a local optimum. Conditions
C9.1 and C9.2 are required for this construction because G is on the boundary of -
but the path ⌘ must lie entirely in - (as opposed to be in -̂ as ✓ is). The notation
for the rest of the proof is illustrated in Figure 9.3. The basic idea is as follows. For

X

X̂

h2(1)

h2
h1

hm(1)

hm

h(1)

h

ℓ(t†)

ℓ(tm) ℓ(t2) ℓ(t1)

x

x*

h2(1)

Figure 9.3 Notation for the proof of Lemma 9.5. Point G and ✓(C†) will be proved to be identical.

a sequence C1, C2, . . . that converges to C† = 0, C9.1 provides a sequence ⌘1,⌘2, . . . of
paths in -̂ (not -) that takes the infeasible points ✓(C1),✓(C2), . . . to some feasible
points ⌘1 (1),⌘2 (1), . . . in - with strictly lower costs. C9.2 implies that the sequence
⌘1,⌘2, . . . of paths has a convergent subsequence that converges to a limit function
⌘ : [0,1]! -̂ which is then proved to satisfy Definition 9.5. In particular, even though
each ⌘< is a path in -̂ , their limit ⌘ will be the required path in -; see Figure 9.3 (the
Lyapunov function + is needed in this step to certify that ⌘(C) 2 - .). We now make
this precise.

By the definition of C† there exists a decreasing sequence C1 > C2 > · · · > C† such that
lim< C< = C† = 0 and ✓(C<) 2 -̂ \- for all <. Since 5 (G) > 5 (G⇤) and 5 (✓(C)) is strictly
decreasing in C until a certain B 2 (0,1], we have for C<  B

5 (✓(C<)) < 5 (✓(0)) = 5 (G) (9.30)

Moreover lim< 5 (✓(C<)) = 5 (G) monotonically because 5 (✓(C<)) is a nondecreasing
sequence in <. C9.1 therefore guarantees a sequence ⌘< of paths in -̂ (not -) with
⌘< (0) = ✓(C<) and ⌘< (1) 2 - with a strictly lower cost. Since the sequence {⌘< : < =
1,2, . . . } of paths are uniformly bounded and uniformly equicontinuous, the Arzelà-
Ascoli Theorem implies that it has a uniformly convergent subsequence with a limit
point ⌘ : [0,1]! -̂ . Without loss of generality we denote the convergent subsequence
by {⌘< : < = 1,2, . . . , }.

We now show that ⌘ is in - (not just in -̂) and satisfies Definition 9.5:
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1 ⌘(C) 2 - for C 2 [0,1]: Fix any C 2 [0,1] and consider the convergent (sub)sequence
{⌘< (C) : < = 1,2, . . . , }. The continuity of the Lyapunov-like function + implies

+ (⌘(C)) = +

⇣
lim
<

⌘< (C)
⌘
= lim

<

+ (⌘< (C))  lim
<

+ (⌘< (0))

where the inequality follows because + (⌘< (C)) is nonincreasing in C due to C9.1.
Substituting + (⌘< (0)) =+ (✓(C<)) from the definition of ⌘< we have

+ (⌘(C))  lim
<

+ (✓(C<)) = +

⇣
lim
<

✓(C<)
⌘
= + (✓(0)) = + (G) = 0

since lim< ✓(C<) = ✓(lim< C<) = G 2 - . Hence + (⌘(C)) = 0 and ⌘(C) 2 - .
2 ⌘(0) = G: We have ⌘(0) = lim< ⌘< (0) = lim< ✓(C<) = ✓(lim< C<) = ✓(0) = G.
3 5 (⌘(C)) nonincreasing in C: This follows from 5 (⌘(C)) = 5 (lim< ⌘< (C)) =

lim< 5 (⌘< (C)) and 5 (⌘< (C)) is nonincreasing in C by C9.1.
4 5 (⌘(1)) < 5 (G) or ⌘(1) is not a local optimum: Suppose 5 (⌘(1)) = 5 (G). We will

show that ⌘(1) cannot be a local optimum. For each < we have

5 (⌘< (1)) < 5 (⌘< (0)) = 5 (✓(C<)) < 5 (✓(0)) = 5 (G) = 5 (⌘(1))

where the first inequality and the first equality follow from C9.1, and the second
inequality follows from (9.30). This means that there are infinitely many < such
that 5 (⌘< (1)) < 5 (⌘(1)) and ⌘< (1)! ⌘(1). Therefore there is no neighborhood
of ⌘(1) in which 5 attains minimum.

This shows that G, which is a local but not global optimum of (9.27), is improvable in
- and hence a pseudo local optimum. ⇤

Finally we show that C9.3 eliminates the possibility of pseudo local optimum. This,
together with Lemmas 9.4 and 9.5, proves Theorem 9.2.

Lemma 9.6. Suppose conditions C9.1, C9.2 and C9.3 hold. Then every local optimum
of (9.27) is a global optimum.

Proof of Lemma 9.6. If C9.3(a) holds, then clearly a local optimum G cannot be a
pseudo local optimum. Lemma 9.5 then implies that G is a global optimum. Moreover
if there are multiple local (and hence global) optima G and Ĝ then, since 5 is convex,
any convex combination of G and Ĝ is optimal, contradicting that G and Ĝ are isolated
optima. (For the DistFlow model, this uniqueness properties is Theorem 11.1.)

Suppose C9.3(b) holds and G is a local but not a global optimum of (9.27). Following
the proof of Lemma 9.5 we have a uniformly convergent (sub)sequence {⌘< : < =
1,2, . . . } whose limit point is the path ⌘ : [0,1]! - with ⌘(0) = G. Since 5 (⌘< (B))�
5 (⌘< (C)) � Uk⌘< (B) � ⌘< (C)k for any B < C by C9.3(b), taking limit as <!1 we
have,

5 (⌘(B))� 5 (⌘(C)) � Uk⌘(B)� ⌘(C)k > 0 whenever ⌘(B) < ⌘(C) (9.31)

Let B0 := inf{B 2 (0,1] : ⌘(B) < G}. Then ⌘(B0) = G since ⌘ is continuous. The proof of
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Theorem 9.2 shows that 5 (⌘(1)) < 5 (G) or ⌘(1) is not a local optimum. This means
that ⌘(1) < G, and hence 0  B0 < 1. We claim that ⌘(B0 + n) < G for any n 2 (0,1� B0],
because

5 (⌘(B0 + n)) < 5 (⌘(B0)) = 5 (G)

where the first inequality follows from substituting B := B0 and C := B0 + n into (9.31).
Therefore 5 (G) > 5 (⌘(C)) for all C 2 (B0,1], contradicting the local optimality of G. ⇤

9.4.4 Application to OPF on radial network

Consider the single-phase OPF (9.20) formulated in Chapter 9.2 on a radial network
⌧ = (# ,⇢) with # +1 buses and" = # lines modeled by the DistFlow equation (9.19),
reproduced here (all lines pointing away from bus 0):’

:: 9!:
( 9: = (8 9 � IB8 9✓8 9 + B 9 , 9 2 # (9.32a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (9.32b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (9.32c)

and operational constraints:

B
min
9
 B 9  B

max
9

, E
min
9
 E 9  E

max
9

, ✓ 9:  ✓
max
9:

, 9 2 # , ( 9 , :) 2 ⇢
(9.32d)

Denote by (B,E) := (B 9 ,E 9 , 9 2 #) 2 R3(#+1) the bus injections and squared voltage
magnitudes, and by (✓,() := (✓ 9: ,( 9: , 9 ! : 2 ⇢) 2 R3" the squared line current
magnitudes and line powers. The vector E includes E0 and B includes B0. Let G :=
(B,E,✓,() in R3(2#+1) since ⌧ is a tree. Let

- := {G := (B,E,✓,() 2 R3(2#+1) | G satisfies (9.32)} (9.33a)

Let the cost function be a real-valued function 5 (G). Then OPF formulated in (9.20)
and reproduced here is:

min
G

5 (G) s.t. G 2 - (9.33b)

The feasible set - is nonconvex because of the nonlinear constraint (9.32c). Relax it
to a second-order constraint (studied in Chapter 8.2.1):

E 9✓ 9: � |( 9: |2, 9 ! : 2 ⇢ (9.34)

Consider the relaxed convex feasible set

-̂ := {G 2 R3(2#+1) | G satisfies (9.32a)(9.32b), (9.34), (9.32d) } (9.35a)

and the convex relaxation of (9.33)

min
G

5 (G) s.t. G 2 -̂ (9.35b)
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We assume the problem parameters are such that the following condition is satisfied:

C9.4: The feasible set - is nonempty and compact, the convex feasible set -̂ is
compact, and the real-valued cost function 5 (G) is convex and continuous.

Then (9.33) and (9.35) are an example of (9.27) and (9.28) to which Theorem 9.2
applies.

To construct a Lyapunov-like function + and paths ⌘G for every infeasible point
G 2 -̂ \ - , we need additional assumptions:

C9.5: The cost function 5 (G) = 5 (?,@,E,✓) is independent of line flows ( = (%,&)
and continuously di�erentiable in (?,@,✓) with nonnegative r? 5 (G) � 0 and
r@ 5 (G) � 0 for all G 2 -̂ . Moreover there exists 2 > 0 such that m 5

m✓;

(G) � 2 for all

; 2 ⇢ and all G 2 -̂ .
C9.6: For each 9 2 # , the injection limit Bmin

9
= �1� i1.

C9.7: For each 9 ! : 2 ⇢ , I 9: =: (A 9: ,G 9: ) > 0 and the line limit satisfies
|I 9: |2✓max  Emin

9
.

C9.5 implies that ⇠ is strictly increasing in each component of ✓ 9 . Moreover, given
any G := (?,@,E,✓,() 2 -̂ , any nonnegative (X?,X@,0,X✓) � 0, and any scalar C � 0 we
have (Exercise 9.12)

5 ((?,@,E,✓) + C (X?,X@,0,X✓)) � 5 (?,@,E,✓) � 2C

’
( 9,:)2⇢

X✓ 9: = 2CkX✓k1 (9.36)

where kHk1 :=
Õ
9
|H 9 | is the ;1 norm. This property will be used in the proof below.

C9.6 means that demands are large enough not to pose a constraint. C9.7 is realistic
because typically + 9 = (1+ n 9 )4i\ 9 pu where n 9 2 [�0.1,0.1] and the angle di�erences
\ 9: := \ 9 �\: are typically small in magnitude. Then the maximum value of |+ 9 �+: |2 =��(1+ n 9 )4i\ 9: � (1+ n: )

��, which is |I 9: |2✓max, should be much smaller than Emin
9
⇡ 1 pu.

Theorem 11.3 of Chapter 11.2 shows that C9.5 and C9.6 imply that the SOCP
relaxation (9.35) is exact with respect to (9.33). We now show that conditions C9.4–
C9.7 guarantee that every local optimum of (9.33) is a global optimum.

Theorem 9.7 (Global optimality of (9.33)). Suppose C9.4–C9.7 holds for OPF (9.33)
on radial networks. Then every local optimum of (9.33) is a global optimum.

Proof We will construct a Lyapunov-like function + and a path ⌘G in -̂ for each
infeasible point Ĝ 2 -̂ \ - that, for OPF (9.33), satisfy C9.1–C9.3. The theorem then
follows from Theorem 9.2.

Let

+ (G) :=
’

9!:2⇢

⇣
E 9✓ 9: � |( 9: |2

⌘
(9.37)
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Clearly + (G) � 0 for all G 2 -̂ with equality if and only if G 2 - , and hence + (G) is a
Lyapunov-like function.

Fix an G 2 -̂ \ - . To construct a path ⌘G in -̂ , let " := {( 9 , :) 2 ⇢ : E 9✓ 9: > |( 9: |2}
be the set of lines where the quadratic equality is violated. For each ( 9 , :) 2 " , let q 9:
be the quadratic function:

q 9: (0) :=
|I 9: |2

4
0

2 +
�
E 9 �Re

�
Ī 9:( 9:

� �
0 +

⇣
|( 9: |2� E 9✓ 9:

⌘
(9.38)

Since q 9: (0) < 0, q 9: has a unique positive root. Define � 9: to be this positive root if
( 9 , :) 2 " and 0 otherwise. Furthermore for ( 9 , :) 2 " ,

E 9 �Re( Ī 9:( 9: ) � E 9 � |I 9: | |( 9: | > E 9 � |I 9: |
p
E 9✓ 9: � E 9 �

q
E 9 · |I 9: |2✓max

9:
| � E 9 �

p
E 9 · E 9 = 0

where the second inequality follows from ( 9 , :) 2 " , and the last inequality follows
from C9.7. This implies that the quadratic function q 9: (0) is negative and strictly
increasing over [0,� 9: ]. Consider the path ⌘G (C) :=

�
B̃(C), Ẽ(C), ✓̃(C), (̃(C)

�
for C 2 [0,1]

where

B̃ 9 (C) := B 9 �
C

2

’
8:8! 9

I8 9�8 9 �
C

2

’
:: 9!:

I 9:� 9: , 9 2 # (9.39a)

Ẽ 9 (C) := E 9 , 9 2 # (9.39b)

✓̃ 9: (C) := ✓ 9: � C� 9: , 9 ! : 2 ⇢ (9.39c)

(̃ 9: (C) := ( 9: �
C

2
I 9:� 9: , 9 ! : 2 ⇢ (9.39d)

Therefore ⌘G (C) := G � C��(G) where the vector �(G) := (� 9: , ( 9 , :) 2 ⇢) depends on
G through the quadratic function q 9: (0), � is the following 3(2# +1)⇥# matrix

� :=

2666666666664

1
2 |⇠ |'
1
2 |⇠ |-

0
I#
1
2'
1
2-

3777777777775

with ' := diag(A 9: , 9 ! : 2 ⇢), - := diag(G 9: , 9 ! : 2 ⇢)

(9.40)

and I 9: =: (A 9: ,G 9: ). Here |⇠ | is obtained from the node-by-line incidence matrix ⇠
by replacing �1 by 1, and 0 and I# denote the zero and identity matrices of appropriate
sizes. Since I 9: > 0 (C9.7) and� 9: � 0 by construction, each entry of the vector ��(G)
is nonnegative and hence, for OPF (9.33), we have

1
T
��(G) =

’
:

[��(G)]
:
= k��(G)k1, G 2 -̂ (9.41)

where kGk1 :=
Õ
:
|G: | is the ;1 norm. This is a property needed to establish C9.3 below.

We now show that + in (9.37) and {⌘G : G 2 -̂ \ -} in (9.39) satisfy C9.1–C9.3.



9.4 Global optimality: Lyapunov-like condition 473

1 Clearly ⌘G (0) = G in -̂ \ - . It can be shown that ⌘G (C) 2 -̂ for all C 2 [0,1] and
⌘G (1) 2 - (Exercise 9.12). It su�ces to show that both 5 (⌘G (C)) and + (⌘G (C))
are strictly decreasing in C on [0,1] for C9.1 to be satisfied. Since 5 is strictly
increasing in ✓ (C9.5) and � 9: > 0 for ( 9 , :) 2 " , ✓̃�✓ is nonnegative and nonzero
from (9.39c) for C > 0. Hence 5 (⌘G (C)) = 5 (G� C��(G)) is strictly decreasing in C
on [0,1]. For + (⌘G (C)) we have from (9.37) and (9.39)

+ (⌘G (C)) :=
’

( 9,:)2⇢

⇣
E 9 (✓ 9: � C� 9: )� |( 9: � (C/2)I 9:� 9: |2

⌘
= �

’
( 9,:)2"

q 9: (C� 9: )

because E 9✓ 9: = |( 9: |2 for ( 9 , :) 8 " . Since q 9: (0) is strictly increasing in 0 over
[0,� 9: ], + (⌘G (C)) is strictly decreasing in C over [0,1]. This proves C9.1.

2 C9.2 follows because -̂ is a compact set and ⌘G (C) = G� C��(G) is linear in C.
3 For C9.3 we will use (9.36) and (9.41) to show that there exists U > 0 such that for

all infeasible points G 2 -̂ \- and all 0  g < C  1, we have 5 (⌘G (g))� 5 (⌘G (C)) �
Uk⌘G (g) � ⌘G (C)k1. Fix 0  g < C  1. Since ⌘G (C) = G � C��(G), C9.5 and (9.40)
imply

5 (⌘G (g))� 5 (⌘G (C)) = 5 ((?,@,E,✓)� g(X?,X@,XE,X✓)) � 5 ((?,@,E,✓)� C (X?,X@,XE,X✓))

where 
X?

X@

�
=

 1
2 |⇠ |'
1
2 |⇠ |-

�
�(G), XE = 0, X✓ = �(G)

Hence (9.36) implies

5 (⌘G (g))� 5 (⌘G (C)) � 2(C � g)kX✓k1 = 2(C � g)k�(G)k1 (9.42)

We will compare the right-hand side with k⌘G (g) � ⌘G (C)k1 = (C � g)k��(G)k1.
We have

k⌘G (g)� ⌘G (C)k1 = (C � g)1T
��(G)  (C � g) 2̃

’
( 9,:)2⇢

� 9: (G) = (C � g) 2̃ k�(G)k1

where the first equality follows from (9.41), the last equality follows because every
entry of �(G) is positive, and 2̃ := max: [1T

�]: > 0 (recall that every entry of � is
nonnegative). Substituting into (9.42) yields

5 (⌘G (g))� 5 (⌘G (C)) �
2

2̃

k⌘G (g)� ⌘G (C)k1

which is C9.3.

⇤

Remark 9.8 (Strong increase in Condition C9.5). 1 C9.5 assumes 5 is strongly in-
creasing in ✓ in the sense that m 5

m✓ 9

(G) � 2 > 0. Instead of ✓, we can assume that 5
is strongly increasing in ? or in @ and Theorem 9.7 continues to hold. Specifically
C9.5 can be modified to: there exists 2 > 0 such that for all G 2 -̂ , m 5

m✓;

(G) � 2 for all

; 2 ⇢ , or m 5

m? 9

(G) � 2 for all 9 2 # , or m 5

m@ 9

(G) � 2 for all 9 2 # . Moreover Theorem
11.3 of Chapter 11.2 on exact relaxation continues to hold (see condition C11.1).
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2 Continuous di�erentiability in C9.5 is not necessary because, since 5 is convex
(C9.4), it is always subdi�erentiable and we can replace m 5

m✓ 9

(G) � 2 > 0 by b 9 �
2 > 0 for all subgradient b 9 of 5 with respect to ✓ 9 , for all 9 and all G 2 -̂ . ⇤

9.5 Techniques for scalability: case study

Practical OPF problems can be di�cult to solve. This can be due to the sheer number
of variables and constraints relative to available solution time. It can also arise from
the nonsmoothness or the nonconvexity of the objective or constraint functions that
often lead to numerical issues. The nonsmoothness or nonconvexity can take di�erent
forms, e.g., nonlinear power flow equations, discrete variables, nondi�erentiability of
the objective or constraint functions, complementarity or disjunctive constraints. All of
these features are embodied in security constrained OPF (SCOPF). Practical solutions
for a large optimization problem require not only the understanding of basic optimiza-
tion theory, but also the development of many heuristics tailored to the structure of the
specific problem.

In this section we illustrate these computational challenges and some solution tech-
niques through an SCOPF problem proposed by the US Advanced Research Projects
Agency - Energy (ARPA-E) in a multi-year Grid Optimization (GO) Competition.
The GO Competition aims to accelerate the development of algorithms and software
for solving large OPF problems. It was staged as a series of challenges. Challenge 1,
which was conducted over the course of 2019, focused on real-time SCOPF [81]. In
Chapter 9.5.1 we formulate the SCOPF problem and discuss computational challenges
embodied in this problem. These challenges are also commonly found in other energy
applications. In Chapters 9.5.2 and 9.5.3 we describe some of the techniques used by
the top three winners of the GO Challenge 1 in addressing the nonsmoothness and scal-
ability of SCOPF respectively [82, 83, 84]. The e�ective treatment of complementarity
constraints, e�cient contingency screening, and robust parallelization of computation
have proved to be essential in devising a practical solution.

9.5.1 SCOPF formulation

The detailed SCOPF formulation is described in the o�cial specification [81]. We
present a highly simplified version to illustrate the main algorithmic ideas in [82, 83, 84]
to overcome some of the computational challenges.

Constraints.

We start by formulating the constraints of the GO Challenge 1 problem. It can some-
times be di�cult to exactly satisfy equality and inequality constraints in a realistic
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problem. This can be due to modeling or numerical errors, not just the lack of compu-
tational resources. Energy management systems in practice however must recommend
a decision even when it is impossible to satisfy all constraints of the model. One way
to deal with this is to allow some constraint violations in order to practically eliminate
infeasibility, but penalize them in the objective.

Let : = 0 denote the base case and : = 1, . . . , denote contingencies, though we
will often refer to the base case also as contingency : = 0. Let

�
?
D

:8
,@D
:8

�
denote

uncontrollable loads (or generations) and (?:8 ,@:8) denote controllable generation
levels at buses 8 2 # in contingencies : � 0. For notational simplicity we assume
without loss of generality that there is exactly one uncontrollable injection and one
controllable generator at each bus 8. We impose the standard voltage and generation
limits:

E
:8
 |+:8 |  E:8 , ?

8

 ?:8  ?8 , @
8

 @:8  @8 , : � 0, 8 2 # (9.43)

where E
:8
 E:8 , ?

8

 ?
8
, and @

8

 @
8

are given constants.

For each line (8, 9) 2 ⇢ , let
�
%:,8 9 ,&:,8 9

�
denote the sending-end real and reactive

power from buses 8 to 9 and
�
%:, 98 ,&:, 98

�
denote the sending-end line power in the

opposite direction in contingencies : � 0. Instead of exact real and reactive power
balance at bus 8, we impose

?:8 � ?
D

:8
=

’
9: 9⇠8

%:,8 9 + f
?+
:8
� f?�

:8
,

⇣
f
?+
:8

,f?�
:8

⌘
� 0, : � 0, 8 2 # (9.44a)

@:8 � @D:8 =
’
9: 9⇠8

&:8 + f
@+
:8
� f@�

:8
,

⇣
f
@+
:8

,f@�
:8

⌘
� 0, : � 0, 8 2 # (9.44b)

where the nonnegative variables
⇣
f
?+
:8

,f?�
:8

⌘
are slack variables for real power vio-

lations and
⇣
f
@+
:8

,f@�
:8

⌘
are slack variables for reactive power violations. These slack

variables will be penalized in the objective as we will see below.

With a slight abuse of notation we use (%:,8 9 (\: , |+: |),&:,8 9 (\: , |+: |)) to denote
the line power as functions of voltage magnitudes and angles in contingencies : � 0
defined by:

%:,8 9 (\: , |+: |) =
⇣
6
B

8 9
+6<

8 9

⌘
|+:8 |2 � |+:8 | |+: 9 |

⇣
6
B

8 9
cos(\:8 � \: 9 ) + 1

B

8 9
sin(\:8 � \: 9 )

⌘
(9.45a)

&:,8 9 (\: , |+: |) = �
⇣
1
B

8 9
+ 1<

8 9

⌘
|+:8 |2 + |+:8 | |+: 9 |

⇣
1
B

8 9
cos(\:8 � \: 9 ) � 6B8 9 sin(\:8 � \: 9 )

⌘
(9.45b)

where
⇣
6
B

8 9
,1B
8 9

⌘
and

⇣
6
<

8 9
,1<
8 9

⌘
are series and shunt admittances of line (8, 9). Similarly

for
�
%:, 98 (\: , |+: | , &:, 98 (\: , |+: |)

�
in the opposite direction on line (8, 9). Then we

impose the constraints

(%:,8 9 ,&:,8 9 ) = (%:,8 9 (\: , |+: |),&:,8 9 (\: , |+: |)), : � 0, (8, 9) 2 ⇢ (9.45c)

(%:, 98 ,&:, 98) = (%:, 98 (\: , |+: |),&:, 98 (\: , |+: |)), : � 0, (8, 9) 2 ⇢ (9.45d)
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Line limits are expressed in terms of apparent power and the sending-end voltage
magnitudes, on both ends of the lines (8, 9) 2 ⇢ :q

%
2
:,8 9 +&2

:,8 9  %
max
:,8 9 |+:8 | + f

4

:,8 9 , : � 0, (8, 9) 2 ⇢ (9.46a)q
%

2
:, 98 +&2

:, 98  %
max
:,8 9 |+: 9 | + f

4

:,8 9 , : � 0, (8, 9) 2 ⇢ (9.46b)

f
4

:,8 9 � 0, : � 0, (8, 9) 2 ⇢ (9.46c)

where %max
:,8 9 are given parameters and f4

:,8 9 are slack variables that measure line limit
violations.

When contingency : � 1 occurs the generators will adjust their real and reactive
power to rebalance. This may be necessary even if the contingency is a transmission
outage, i.e, the disconnection of a line or a transformer, instead of a generator outage,
because the redistribution of line flows may result in di�erent amounts of losses that
need to be compensated for by these generators. Moreover the outage may also lead to
deviation of tie-line flows from their scheduled values and hence nonzero area control
error that must be corrected. The rebalancing is carried out at a fast timescale by
frequency control mechanisms (see Chapter 6.3). The e�ect of the frequency control
actions is modeled as follows. The real power at the generators is adjusted proportion-
ally within their generation capacities:

?:8 = [?08 + U8�: ] ?8?
8

, : � 1, 8 2 # (9.47a)

where ?08 are the output levels of generators 8 in the base case : = 0,
⇣
?
8

, ?
8

⌘
are their

lower and upper capacity limits, �: are the total real power contingency response, and
U8 � 0 are called the participation factors of generators 8 with

Õ
8
U8 = 1. (If generator

8 does not participate in contingency response then U8 = 0.) Here, for real scalars
G, 0  1, we define [G]1

0
:= max(0,min(G,1)). The reactive power of generators 8 is

adjusted within their capacity limits in an attempt to restore the voltage magnitudes
|+:8 | to their pre-contingency values, as expressed in:n
@
8

 @:8  @8 , |+:8 | = |+08 |
o
[

n
@:8 = @

8

, |+:8 | � |+08 |
o
[

�
@:8 = @8 , |+:8 |  |+08 |

 
, : � 1, 8 2 #

(9.47b)

Variables.

To simplify notation define the following nodal vector variables for each contingency:

(?: ,@: , |+: |,\: ) :=
⇣
?:8 ,@:8 , |+:8 |,\:8 , 8 2 #

⌘
, f?+

:
:=

⇣
f
?+
:8

, 8 2 #
⌘
, : � 0(9.48a)
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and similarly for
⇣
f
?�
:

,f@+
:

,f@�
:

⌘
. Define the following branch variables for each

contingency:

(%: ,&: ) :=
�
%:,8 9 ,&:,8 9 ,%:, 98 ,&:, 98 , (8, 9) 2 ⇢

�
, f4

:
:=

⇣
f
4

:,8 9 , (8, 9) 2 ⇢
⌘
, : � 0(9.48b)

Let

f: :=
⇣
f
?+
:

,f?�
:

,f@+
:

,f@�
:

,f4
:

⌘
, : � 0 (9.48c)

G: := (?: ,@: , |+: |,\: , %: ,&: , f: ) , : � 0 (9.48d)

H: := (G: ,�: ) , : � 1 (9.48e)

The vector G0 collects base-case decisions and H: collect responses to contingencies
: � 1.

SCOPF.

The SCOPF problem in the GO Challenge 1 takes the form:

min
’
8

2
6

8
(?08) + X20 (f0) + (1� X) 1

| |
’
:�1

2: (f: ) (9.49a)

over G0, (H: , : � 1) (9.49b)

s.t. (9.43)(9.44)(9.45)(9.46)(9.47) (9.49c)

where 26
8
(?08) are the generation costs at buses 8 in the base case, 20 (f0) and 2: (f: ) are

the penalty functions for constraint violations in the base case : = 0 and contingencies
: � 1 respectively, defined as:

2: (f: ) :=
’
82#

⇣
2
?

:8

⇣
f
?+
:8

+f?�
:8

⌘
+ 2@

:8

⇣
f
@+
:8

+f@�
:8

⌘⌘
+

’
(8, 9)2⇢

2
4

:,8 9

⇣
f
4

:,8 9

⌘
, : � 0(9.49d)

and X 2 [0,1] is the weight to trade o� the penalty in the base case against the average
contingency penalty. The functions 2?

:8
, 2@
:8

, 24
:,8 9 , : � 0, are convex piecewise linear,

each with three segments of increasing slopes.

Two-stage formulation.

The problem (9.49) can also be treated as a two-stage optimization where the first-stage
optimization is over the base-case decision G0 and the second-stage optimization is over
the contingency response H: in each contingency : � 1. It can be rewritten as

min
G0

’
8

2
6

8
(?08) + X20 (f0) + (1� X) 1

| |
’
:�1

A: (G0) (9.50a)

s.t. (9.43)(9.44)(9.45)(9.46) with : := 0 (9.50b)

where the recourse functions from the second-stage optimization are: for 9 � 1,

A 9 (G0) := min
H 9

2 9

�
f9

�
(9.51a)

s.t. (9.43)(9.44)(9.45)(9.46)(9.47) with : := 9 (9.51b)
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where the penalty functions 2: (f: ) are defined in (9.49d). The second-stage problem
is used for contingency evaluation. (Two-stage optimization with recourse is studied
in Chapter 13.)

Remark 9.9 (Key structures of SCOPF). 1 The constraints (9.43) and (9.44) are
linear. The constraint (9.45) is smooth but nonconvex. The constraints (9.46)
(9.47) are nonsmooth and computationally di�cult especially for interior-point
methods (e.g., Ipopt [85]) used by all three teams [82, 83, 84]. All three teams
devise methods to e�ectively handle these nonsmooth constraints, as discussed in
Chapters 9.5.2 and 9.5.3.

2 The constraints (9.43) (9.44) (9.45) (9.46) apply to both the base case : = 0 and
contingencies : � 1, but (9.47) where complementarity constraints must be dealt
with applies only to contingencies : � 1 and hence only appears in the second-stage
problem (9.51). As noted above (9.47) models the steady-state e�ect of frequency
control actions after a contengency.

3 All constraints except (9.47) are separable in : . The constraint (9.47) couples
the base case variables G0 and contingency response H: for each : . The SCOPF
problem is therefore highly parallelizable and this is exploited by all three teams.

⇤

Computational challenges

The GO Challenge 1 includes a SCOPF test where a base case decision G0 must
be computed within 10 or 45 minutes depending on the category of competition. It
includes another test that computes contingency responses given the base-case decision
G0 with a time limit corresponding to 2 seconds per contingency. The problem (9.49)
does not include unit commitment decisions or switched devices such as transformer
taps, capacitor banks and switchable transmission lines. They are included in Challenge
2 of the GO Competition that was conducted in 2021 and introduce discrete variables
that add to the computational di�culty.

There are three main computational challenges with (9.49):

1 Nonsmoothness. Interior-point solvers, which all three winning teams use, by
default require the problem to be smooth but constraints (9.46)(9.47) are both
nonsmooth. The line limit (9.46) specifies a second-order cone (studied in Chapter
8.2.1) of the form: vut

=�1’
8=1

G
2
8
 G= + 0=, G 2 R=, 0= 2 R (9.52a)

This constraint is convex but nondi�erentiable at the origin. The real power gen-
eration limit (9.47a) in each contingency is of the form

H = [G]1
0

:= max(0,min(G,1)), G, H,0,1 2 R (9.52b)



9.5 Techniques for scalability: case study 479

and also nondi�erentiable at G = 0 or G = 1. The reactive power generation limit
in each contingency (9.47b) is a logical constraint of the form

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I} , G, H, I,0,1 2 R
(9.52c)

Logical constraints are generally di�cult to compute.
2 Large problem size. For a network with ⌧ generators and " transmission lines

or transformers2 , if we are to evaluate security against the outage of every single
generator or line/transformer, it can increase the number of constraints by a factor
of ⌧ +" under # � 1 security. If the dispatch has to be secure against # � :
security then the number of constraints will be increased by a factor of (⌧ +
")!/(:!(⌧+"�:)!). For example the largest network used in the GO Challenge 1
has 30,000 buses, 3,526 generators, 32,020 transmission lines, 3,373 transformers
[84, Table EC.1], yielding ⌧ +" = 3,526+32,020+3,373 = 38,919. This would
have increased the number of constraints by 4 orders of magnitude under # � 1
security, or almost 9 orders of magnitude under # �2 security ((⌧ +")!/(:!(⌧ +
"� :)!) = 757,324,821). The GO Competition adopts #�1 security and specifies
about 16,000 contingency scenarios which is still an increase of 4 orders of
magnitude. For real-time SCOPF any practical solution must include methods to
e�ciently rank contingencies and solve an approximate problem with only a few
highly ranked contingencies.

3 Nonconvexity. The power flow constraint (9.45) is nonconvex. As we have seen in
Chapter 9.3, OPF is NP-hard which means that it is hard to scale in the worst case.

Methods to deal with nonconvexity through convex relaxations are studied in Chap-
ters 10 and 11. It is however di�cult to scale these methods to large problems. All
three teams use a solver (Ipopt [85]) that applies a local interior-point algorithm to the
nonconvex problem. Though local algorithms are generally not guaranteed to produce
a global optimum, they often perform well in practice, as we have discussed in Chapter
9.4.

We therefore focus in the rest of this section on techniques use by the GO Compe-
tition teams to handle nonsmoothness and large problem size.

9.5.2 Handling nonsmoothness

The types of nonsmoothness in (9.52) are common in OPF problems. A basic approach
is to approximate nondi�erentiable functions by smooth functions and convert logical
constraints into equivalent complementarity constraints or mixed integer constraints.
For small problems the resulting complementarity problems or mixed integer problems
can be solved directly. For large problems the complementarity constraints or mixed

2 The o�cial GO Challenge 1 formulation models transformers with slightly di�erent capacity limits than
(9.46).
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integer constraints are approximated by smooth constraints that can be solved using
standard solvers. We next describe three techniques from [82, 83, 84].

9.5.2.1 Smooth approximation

A common technique to handle the nondi�erentiable second-order cone constraint

(9.52a),
qÕ

=�1
8=1 G

2
8
 G= + 0=, is to consider instead

=�1’
8=1

G
2
8
 (G= + 0=)2, G= + 0= � 0

The first constraint
Õ
=�1
8=1 G

2
8
 (G= +0=)2 is di�erentiable but nonconvex. Even though

they are di�erent representations of the same set, the resulting optimization problem
can have di�erent duality and computational properties; see Chapter 8.3.7. Instead of
including the nonconvex constraint

Õ
=�1
8=1 G

2
8
 (G= + 0=)2, [82] replaces it by a log-

barrier function in the cost function for each contingency:

log

 
(G= + 0=)2 �

=�1’
8=1

G
2
8

!

which is convex.

The constraint (9.52b), H = [G]1
0

:= max(0,min(G,1)), is nondi�erentiable at G = 0
or G = 1. It is approximated by a smooth constraint in [84], as follows. The function
5 (G) := max(0,G), G 2 R, can be over approximated by

5
n (G) := n ln

⇣
1+ 4G/n

⌘
, n > 0 (9.53a)

and the function 6(G) := min(0,G), G 2 R, can be under approximated by

6
n (G) := �n ln

⇣
1+ 4�G/n

⌘
, n > 0 (9.53b)

See Figure 9.4(a). The approximation errors are respectively

5
n (G)� n ln2  5 (G) < 5

n (G), n > 0, G 2 R
6
n (G) + n ln2 � 6(G) > 6

n (G), n > 0, G 2 R

Hence the approximation becomes tight as n ! 0, but a small n can cause numerical
issues since the second derivatives 3

2

3G
2 5

n (0) and 3
2

3G
2 6
n (0) evaluated at G = 0 diverges

as n! 0. Hence a good heuristic must strike a balance between accuracy and numerical
stability. This method leads to a smooth approximation of ⌘(G) := max(0,min(G,1))
given by

⌘
n (G) := 0 + n ln

✓
1 + 4

(1�0)/n

1 + 4
(1�G)/n

◆
(9.53c)

See Exercise 9.13 for approximations of max(0,G), min(G,1) and max(0,min(G,1)).
Then the constraint H = [G]1

0
can be replaced by its smooth approximation H = ⌘n (G).
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Figure 9.4 (a) The nonsmooth functions 5 (G) := max(0,G) and 6(G) := min(0,G) and their
smooth approximations 5 n (G) and 6n (G) respectively (n = 0.05). (a) The nonsmooth functions
⌘(G) := [G]1

0
and and its smooth approximation ⌘n (G) (n = 0.05, 0 = �0.2, 1 = 0.2).

9.5.2.2 Reformulation as mixed integer constraints

Both the nondi�erentiable constraint (9.52b) and the logical constraint (9.52c) can
be reformulated as equivalent mixed integer constraints using the big-" method.
Specifically H = [G]1

0
:= max(0,min(G,1)) if and only if there exist binary variables

I, I 2 {0,1} such that (Exercise 9.14):

0  H  1, H� 0  "I, H� G  " (1� I), 1� H  "I, G� H  " (1� I), G, H 2 R

where " 2 R+ is a su�ciently large constant. Similarly the logical constraint (9.52c)
can also be reformulated as an equivalent mixed integer constraint (Exercise 9.15):
(G, H, I) 2 R3 satisfies

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I}

if and only if there exist binary variables (I, I) such that

0  G  1, I, I 2 {0,1}
G� 0  "I, I� H  "I, H� I  " (1� I)
1� G  "I, H� I  "I, I� H  " (1� I)

After all nondi�erentiable constraints and logical constraints have been replaced
by equivalent mixed integer constraints, the resulting mixed integer problem can be
solved exactly by standard solvers if the problem is small. Otherwise one can relax the
integrality constraints, e.g., relax I, I 2 {0,1} to I, I 2 [0,1], and solve the relaxation
instead.
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9.5.2.3 Reformulation as complementarity constraints

Alternatively the nondi�erentiable constraint (9.52b) can be reformulated as an equiv-
alent complementarity constraint: H = [G]1

0
:= max(0,min(G,1)) if and only if there

exist slack variables d�, d+ 2 R such that (Exercise 9.14)

H + d+� d� = G, 0  d
� ? H� 0 � 0, 0  d

+ ? 1� H � 0, G, H 2 R
(9.54a)

Similarly the logical constraint (9.52c) can also be reformulated as an equivalent
complementarity constraint (Exercise 9.15): (G, H, I) 2 R3 satisfies

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I}

if and only if there exist slack variables d�, d+ 2 R such that

H + d+� d� = I, 0  d
� ? G� 0 � 0, 0  d

+ ? 1� G � 0 (9.54b)

The ability to convert between these nonsmooth constraints allows algorithm designers
to choose di�erent representations and derive di�erent strategies to handle them, as
the GO Competition teams do.

Solving complementarity constraints such as those in (9.54), e.g., given G, finding
(H, d�, d+) that satisfies (9.54a) is called a linear complementarity problem. More
generally, given a matrix " 2 R<⇥= and vector 2 2 R< the linear complementarity
problem LCP(" ,2) is to find vectors (I,G) 2 R<+= such that

I � 0, "G + 2 � 0, I
T ("G + 2) = 0 (9.55a)

The shorthand for (9.55a) is

0  I ? "G + 2 � 0

Note that the set {(I,G) 2 R2 : 0  I ? G � 0} is a nonconvex set and hence LCP can be
di�cult to solve exactly. We often encounter the special case where " is square and
G := I are imposed in (9.55a), i.e., find I 2 R= such that

I � 0, "I+ 2 � 0, I
T ("I+ 2) = 0 (9.55b)

In this case a su�cient condition for the existence and uniqueness of a solution I

is that " satisfies GT
"G � 0 for all G 2 R< whether or not " is symmetric.3 In

particular " being positive definite or symmetric is not necessary (Exercise 9.18).
A nonlinear complementarity problem NCP(⌘) for a function ⌘ : R=! R< is to find
vectors (I,G) 2 R=+< such that

I � 0, ⌘(G) � 0, I
T
⌘(G) = 0 (9.56)

It reduces to LCP(" ,0) when ⌘(G) := "G + 2. Complementarity problems originally
arise as solving KKT conditions of optimization problems; in particular solving the
KKT condition of a quadratic program is a linear complementarity problem (Exercise

3 For a matrix " over the field R, we define " to be positive definite only for symmetric " ; see
Definition A.2 and Remark A.1 in Chapter A.5.
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9.16). To see that, given G, finding (H, d�, d+) that satisfies (9.54a) is a LCP, substitute
H = d� � d+ + G into the complementarity constraints to get:

0  d� ? (d� � d+) + (G� 0) � 0

0  d+ ? (�d� + d+) + (1� G) � 0

or finding a solution (d�, d+) 2 R2 to the following LCP(" ,2):

0 

d
�

d
+

�
?


1 �1
�1 1

�
|      {z      }

"


d
�

d
+

�
+


G� 0
1� G

�
|  {z  }

2

� 0

After all nondi�erentiable constraints and logical constraints have been replaced by
equivalent complementarity constraints, the resulting problem can be solved exactly
by LCP solvers if the problem is small. Otherwise the complementarity constraints can
be approximated by simpler smooth constraints that can be solved for larger problems,
as we discuss next.

Consider the complementarity constraint of the form

G � 0, H � 0, GH = 0, G, H 2 R (9.57)

The bilinear constraint GH = 0 is nonconvex. The function q(G, H) := G + H�
p
G

2 + H2 is
called the Fischer-Burmeister function and well studied for nonlinear complementarity
problems. It is easy to check that (9.57) holds if and only it q(G, H) = 0. A common
way to handle the complementarity constraint (9.57) is to replace it with the Fischer-
Burmeister function q(G, H) as a penalty term in the objective. The function q is convex
and Lipschitz continuous. (It is however not di�erentiable at (0,0) and [82] finds this
approach numerically unstable for the SCOPF problem.)

In many applications some bounds on G, H are known, e.g., the capacity limit of
the largest generator poses a bound on all generators’ output levels a priori. Suppose
G  G  G and H  H  H where (G,G) and (H, H) are known. Then the bilinear function
5 (G, H) := GH, G, H 2 R can be approximated by a McCormick envelop. Generally a
McCormick envelop is a convex relaxation of a nonconvex function 5 (G, H), G, H 2 R.
For the bilinear constraint:

F = GH, G  G  G, H  H  H, F,G, H 2 R

the relaxation is a set of linear inequalities in (F,G, H) 2 R3 (Exercise 9.19):

lower bounds on F: F � HG + GH� GH, F � HG + GH� GH (9.58a)

upper bounds on F: F  HG + GH� GH, F  HG + GH� GH (9.58b)

G  G  G, H  H  H (9.58c)

The quality of the approximation depends on how tight the lower and upper bounds on
G, H are.
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Example 9.3 (McCormick envelops). Consider the QCQP:

min
G2R=

’
8, 9

28 9G8G 9 s.t.
’
8, 9

2
;

8 9
G8G 9  1; , ; = 1, . . . ,!

G  G  G

Derive a convex relaxation based on the McCormick envelops.

Solution. Let F8 9 := G8G 9 . Applying (9.58) leads to the convex relaxation:

min
G2R=

’
8, 9

28 9F8 9 s.t.
’
8, 9

2
;

8 9
F8 9  1; , ; = 1, . . . ,!

F8 9 � G
9
G8 + G

8
G 9 � G

8
G
9
, F8 9 � G 9G8 + G8G 9 � G8G 9 , 8, 9 = 1, . . . ,=

F8 9  G
9
G8 + G8G 9 � G8G

9
, F8 9  G 9G8 + G

8
G 9 � G

8
G 9 , 8, 9 = 1, . . . ,=

G  G  G

⇤

Suppose there are known upper bounds on G, H 2R in the complementarity constraint
(9.57):

G � G � 0, H � H � 0, GH = 0, G, H 2 R (9.59)

(Note that this may not be the case for KKT conditions as one of the variables G, H
will be a dual variable which may not have an upper bound.) In this case, substituting
F = GH into (9.59) leads to the following linear relaxation of the nonconvex constraint
GH = 0:

0  G  G, 0  H  H, F = 0, G, H 2 R
max{0, HG + GH� GH}  0  min{GH, HG}

or equivalently

0  G  G, 0  H  H, 0  min{GH, HG}, G, H 2 R

9.5.3 Scaling computation

To scale the computation of (9.49), or its two-stage formulation (9.50)(9.51), e�cient
software implementation is critical, especially how to e�ectively use multi-core plat-
forms for parallel computation, how to detect and reduce numerical instability, and
how to handle software failures such as solver divergence or convergence to an infea-
sible point even when the problem is provably feasible. For example, the number of
nonlinear subproblems that needs to be solved in [82] can be as high as 100,000, each
with 2,000,000 variables and constraints. Software implementation issues in such a
large-scale computational regime are highly nontrivial.

In the rest of this subsection however we will focus only on algorithmic techniques
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for scalability. In particular we summarize four techniques used in [82, 83, 84] to
illustrate some of the ideas in solving industrial-scale OPF problems.

Approximate or relax nonsmooth functions.

To avoid infeasibility, some hard constraints 6(G) = 0, ⌘(G)  0 such as power bal-
anced have been replaced by soft constraints 6(G) = f1, ⌘(G)  f2 respectively and a
violation cost 2(f1,f2) is added to the cost function to penalize constraint violation.
Nonsmooth cost functions 5 (G), e.g., piecewise linear (convex) constraint violation
costs 2?

:8
(B),2@

:8
(B),24

:,8 9 (B) in (9.49d), are approximated by quadratic functions of the

form 5̂ (G) := 0G2 +1G with parameters (0,1) determined by linear regression. Nondif-
ferentiable or combinatorial constraints, e.g., (9.46)(9.47), are approximated or relaxed
by smooth constraints, as discussed in Chapter 9.5.2. Smooth problems are generally
easier to solve and what most standard solvers can handle.

Approximate optimal recourse function A: (G0).
The approach of [82] uses the two-stage formulation (9.50)(9.51) of the SCOPF prob-
lem. A two-stage problem is computationally di�cult because an explicit form of the
second-stage recourse function A: (G0) is generally not available. Moreover the recourse
function is in general nonsmooth; we will study nonsmooth convex optimization in
Chapter 12 and two-stage stochastic optimization in Chapter 13.4. The key idea of [82]
is to approximate A: (G0) by an explicit polynomial function Â: (G0;c: ) of the form

Â: (G0;c: ) := c: 5̂: (G0) (9.60a)

where 5̂: (G0) is a low-degree polynomial that depends on the device (a generator or
a line) that is disconnected in contingency : under # �1 security and c: is a scaling
factor in the approximation to be determined. This reduces the first-stage to a much
simpler approximate problem of the form

min
G0

5̂0 (G0) + 1

| ̂ |
’
:2 ̂

Â: (G0;c: ) (9.60b)

where the cost functions 5̂0 and Â: are either quadratic or low-degree polynomials and
 ̂ is a reduced set of credible contingencies (see discussions below). Given an optimal
solution G0 of the approximate first-stage problem (9.60), an approximate version of
the second-stage problem (9.51) is solved to determine the scaling factor c: . Since
the second-stage problem is separable in : , given G0, the approximate (9.51) is solved
in parallel across contingencies : , to obtain an (approximate) optimal A: (G0). Using
(9.60a), c: (G0) is then set to be

c: (G0) :=
A: (G0)
5̂: (G0)

(9.61)
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This leads to an algorithm that solves approximate first-stage problem and approxi-
mate second-stage problem iteratively: for C = 0,1, . . . , repeat until a stopping criterion
is satisfied (c: (0) = 0, i.e., start with the base case):

1 Given Â: (G0;c: (C)), solve the approximate first-stage problem (9.60) to obtain an
optimal solution G0 (C +1).

2 Given G0 (C + 1), solve an approximate version of the second-stage problems
(9.51) in parallel to obtain optimal solutions A: (G0 (C +1)). Construct c: (C +1) :=
c: (G0 (C +1)) according to (9.61) and Â: (G0;c: (C +1)) according to (9.60a).

The two subproblems in this algorithm are made much simpler by techniques that
handle nonsmoothness (discussed in Chapter 9.5.2) and techniques that screen contin-
gencies quickly to identify and include only contingencies that are likely to have large
recourse costs A: (G0), which we discuss next.

Fast contingency selection.

The approach of [83] focuses on continuously and iteratively evaluate contingencies
and include only the top three contingencies in the solution of SCOPF (9.49) in each
iteration. Three main contingency selection techniques are used to identify top three
contingencies:

1 Initial ranking using machine learning. Initial contingency ranking uses supervised
learning to predict the importance of a contingency on overall cost based on various
features, such as di�erent expressions of generation levels and line power, generator
ratings, degrees of buses, etc. It finds that the apparent line power

max
nq
%

2
0,8 (:) 9 (:) + &2

0,8 (:) 9 (:) ,
q
%

2
0, 9 (:)8 (:) + &2

0, 9 (:)8 (:)

o
has the best predictive power. This is consistent with the intuition used to approx-
imate the recourse function A: (G0) in [82] (it is used in 5̂: (G0) in (9.60a)).

2 Contingency evaluation. Each contingency : identified by the initial ranking as
credible is then evaluated more carefully by solving the second-stage problem
(9.51), in two steps. First, given a first-stage decision G0, an upper bound on the
second-stage cost A: (G0) is computed by solving a reduced problem with only the
power flow equations and linear constraints associated with complementarity con-
straints predicted by an active set method to handle complementarity constraints.
In particular this reduced problem does not include any operational constraints.
Only if this upper bound exceeds a certain threshold will a full evaluation of the
contingency be carried out by solving the second-stage problem using the active
set method.

3 Dominated contingencies. Inclusion of the constraints due to contingency 9 may
cause the constraints due to other contingencies : to be automatically (possibly
approximately) satisfied. To identify these constraints, let fmax

:
be the largest entry

of the vectorf: defined in (9.48c), i.e.,fmax
:

is the largest slack variable measuring
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the violation of power balance or a line limit in contingency : . We say that
contingency : is dominated by contingency 9 if fmax

9
> f

max
:

. Only contingencies
that are not dominated by another contingency are included in the solution of the
master problem (9.49).

The screening of contingencies and solving of SCOPF (9.49) with top three contingen-
cies in each iteration both require techniques to handle complementarity constraints,
evaluate contingencies quickly, remove dominated contingencies, and e�ective paral-
lelization of computation.

Exploit distributed problem structure by ADMM algorithm.

The approach of [84] uses smooth approximation of constraint (9.47) and develops an
ADMM-based algorithm to exploit the problem’s distributed structure. The base case
: = 0 and the contingencies : � 1 are coupled only through the first-stage decision G0

in the constraint (9.47) that appears in the set of second-stage problems (9.51), one
for each contingency : � 1. By introducing a local copy G0

:
of G0 for each contingency

subproblem these second-stage problems are decoupled and can therefore be computed
in parallel, with a consensus constraint that all local copies G0

:
equal to G0 at optimality.

Hence the SOCP problem (9.49) can be equivalently reformulated into the form

min 50 (G0) +
’
:�1

5:

⇣
G

0
:
, H:

⌘
(9.62a)

over G0,
⇣
G

0
:
, H: , : � 1

⌘
(9.62b)

s.t. G0 2 -0,
⇣
G

0
:
, H:

⌘
2 -: , : � 1 (9.62c)

G
0
:
= G0, : � 1 (9.62d)

where the constraint G0 2 -0 means that G0 satisfies (9.43)–(9.46), and the constraint⇣
G

0
:
, H:

⌘
2 -: means that H: satisfies (9.43)–(9.46) and

⇣
G

0
:
, H:

⌘
satisfies the smooth

approximations of (9.47). These constraints (9.62c) are decoupled across : . The cou-
pling of the  +1 variables G0 and (G0

:
, H: ), : � 1, is only through  linear (consensus)

constraint (9.62d). This is a form that is suitable for distributed solution using the
alternating direction method of multipliers (ADMM) studied in Chapter 8.5.5.

Define the augmented Lagrangian function that relaxes the coupling constraint
(9.62d):

!d

⇣
G0, (G0

:
, H: ), : � 1;_

⌘
:= 50 (G0) +

’
:�1

5:

⇣
G

0
:
, H:

⌘
+ _T

⇣
1 ⌦ G0� G0

⌘
+ d

2

��1 ⌦ G0� G0
��2

2

where 1 is the vector of all 1s of size  and G0 := (G0
1, · · · ,G0

 
) is a column vector.
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The ADMM algorithm is

G0 (C +1) := arg min
G02-0

!d

⇣
G0,

⇣
G

0
:
(C), H: (C)

⌘
, : � 1;_(C)

⌘
(9.63a)

⇣
G

0
:
(C +1), H: (C +1)

⌘
:= arg min

(G0
:
,H:)2-:

!d

⇣
G0 (C +1),

⇣
G

0
:
, H:

⌘
, : � 1;_(C)

⌘
, : � 1

(9.63b)

_(C +1) := _(C) + d

⇣
1 ⌦ G0 (C +1)� G0 (C +1)

⌘
(9.63c)

The expression (9.63b) is a shorthand for one-pass of a Gauss-Seidel method across
the  contingencies: for : = 1, . . . , ,⇣
G

0
:
(C +1), H: (C +1)

⌘
:= arg min

(G0
:
,H:)2-:

!d

⇣
G0 (C +1), (G0

1 (C +1), H1 (C +1)), . . . ,
⇣
G

0
:
, H:

⌘
, . . . ,

⇣
G

0
 
(C), H (C)

⌘
;_(C)

⌘

Given the Lagrange multiplier _: (C) associated with contingency : , the  + 1
subproblems (9.63a)(9.63b) can be computed in parallel. The algorithm of [84] applies
this idea to SCOPF (9.62) with two main refinements. First it relaxes the coupling
constraint (9.62d) with a slack variable I: for each contingency : � 1 which is penalized
in the objective function with a term VkI: k22. As a result the solution returned by
the ADMM algorithm may violate by a large amount the coupling constraint and is
therefore infeasible for the original SCOPF. The second refinement is an outer loop
where the weight V on the penalty is increased if the worst violation max:�1 kI: k across
contingencies is too large and the approximate SCOPF is solved again using ADMM.
The outer loop terminates when max:�1 kI: k is small enough (and the stationarity
condition is su�ciently satisfied). Even though the problem is nonconvex it is proved
in [84] that the two-level ADMM algorithm with both the inner and outer loops
converges under the condition that each inner-loop iteration (9.63a)(9.63b) produces
su�cient descent.

9.6 Bibliographical notes

As for most chapters, this section is now a placeholder with references collected in a
somewhat random fashion during the writing of the text. Major rewrite later.

There has been a great deal of research on OPF since Carpentier’s first formulation
in 1962 [86]. An early solution appears in [87] and extensive surveys can be found in
e.g. [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 39, 101]. It is nonconvex and
has been shown to be NP-hard in general [102, 69, 70].

Many references for 3-phase OPF: e.g. [103, 104, 105]

There are many excellent texts on optimization theory especially for convex prob-
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lems, e.g., [62, 57, 54]. Optimization texts with power system applications include
[106, 107]. In particular Chapter 8.5.3 mostly follows the presentation in [57, Chapter
11]. A popular interior-point solver for OPF problems is [108].

A classic text on computational complexity is [75]. OPF has been shown to be
NP-hard in general [102, 69, 70, 72, 74]. [77] surveys combinatorial OPF and proves
approximation results and conditions for exactness (when there are no discrete vari-
ables). It shows that OPF with discrete injections cannot be e�ciently approximated.
The hardness results complement those in [73, 68, 69, 70]; see [77, Chapter 5] and its
Section 5.6 for comparison.

Chapter 9.4 on global optimality is taken form [80, 79]

[109] shows that, by dualizing clique tree conversion, a class of nonconvex problems,
including OPF problems, the per-iteration cost of an interior-point method is linear
$ (=) in time and in memory, so an n-accurate and n-feasible iterate is obtained after
$ (p= log(1/n)) iterations in $ (=1.5 log(1/n)) time.

9.7 Problems

Chapter 9.1

Exercise 9.1 (OPF: power losses as quadratic form). We revisit Exercise 4.12 to
write power losses as quadratic forms. For each line ( 9 , :) 2 ⇢ , let its admittances be
H
B

9:
= 6B

9:
+ i1

B

9:
and H<

9:
= 6<

9:
+ i1

<

9:
. Suppose HB

9:
= HB

: 9
and 6B

9:
� 0, 6<

9:
� 0 (these

conditions are satisfied if ( 9 , :) models a transmission line).

1 Define the total real power loss as:

⇠ (+) :=
’
9

Re
�
B 9 (+)

�
=

’
9

Re
©≠
´
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9 9
|+ 9 |2™Æ

¨
Show that ⇠ (+) is a quadratic form ⇠ (+) = +H

⇠0+ where the cost matrix ⇠0 :=
1
2

�
.

H +.
�
= Re(. ) is the Hermitian component of the admittance matrix . . Show

that ⇠0 is a positive semidefinite matrix.
2 Suppose H<

9:
= H<

: 9
= 0. Define the total thermal loss as:

⇠ (+) :=
’

( 9,:)2⇢
A
B

9:
|� 9: (+) |2 =

’
( 9,:)2⇢

A
B

9:

���HB
9:
(+ 9 �+: )

���2

where IB
9:
= AB

9:
+ iG

B

9:
:= 1/HB

9:
. Show that⇠ (+) is a quadratic form⇠ (+) =+H

⇠0+

where the cost matrix ⇠0 = Re(. ) when H<
9:
= H<

: 9
= 0.

3 Therefore, when H<
9:

= H<
: 9

= 0, the total real power loss in part 1 reduces to the
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total thermal loss in part 2. As an alternative proof that sheds light on the physics
behind this mathematical property, show that

’
9

B 9 (+) =
’

( 9,:)2⇢
I
B

9:

�����
+ 9 �+:
I
B

9:

�����
2

+
’

( 9,:)2⇢

⇣
H̄
<

9:
|+ 9 |2 + H̄

<

: 9
|+: |2

⌘

where (+ 9 �+: )/IB
9:

is the current through the series impedance of line ( 9 , :).

Exercise 9.2 (OPF: quadratic line limit). Consider the line limit

|( 9: (+) |2  (

2
9:

, |(: 9 (+) |2  (

2
: 9

, ( 9 , :) 2 ⇢

where

( 9: (+) := + 9 �̄ 9: (+) = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄

<

9:
|+ 9 |2, ( 9 , :) 2 ⇢

(: 9 (+) := +: �̄: 9 (+) = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄

<

: 9
|+: |2, ( 9 , :) 2 ⇢

Show that the line limit can be written as an inhomogeneous quadratic form.

Exercise 9.3 (Inner product and trace). Let �,⌫ 2 C=⇥= be square complex matrices.
The inner product of �,⌫ is defined to be � · ⌫ := tr(�H

⌫). Show that:

1 tr(�⌫) = tr(⌫�).
2 � · ⌫ := tr(�H

⌫) = tr(�⌫) if � is Hermitian. The converse does not necessarily
hold.

3 If � and ⌫ are both Hermitian then � · ⌫ = ⌫ · �.

Exercise 9.4 (Skew-symmetric and Hermitian matrices). Show that:

1 If ⇠ 2 R=⇥= is a skew symmetric matrix (i.e., ⇠T = �⇠) then GT
⇠G = 0 for any

G 2 R=.
2 If ⇠ 2 C=⇥= is a Hermitian matrix (i.e., ⇠H = ⇠) then GH

⇠G 2 R for any G 2 C=.
3 If ⇠ 2 C=⇥= is a Hermitian matrix, then tr(⇠-) is a real number for any rank-1

matrix - 2 C=⇥= (psd or nsd).
4 Let ⇠ := ⇠A + i⇠8 where ⇠A ,⇠8 2 R=⇥=. If ⇠ is Hermitian then ⇠

T
A
= ⇠A and

⇠
T
8
= �⇠8 .

Let � 2 C=⇥= and G 2 C=. Define the Hermitian and skewed Hermitian components of
�:

⌫A :=
1
2

⇣
�+ �H

⌘
, ⌫8 :=

1
2i

⇣
�� �H

⌘

Show that



9.7 Problems 491

5. ⌫A and ⌫8 are both Hermitian for arbitrary �, so that GH
⌫AG and GH

⌫8G are both
real numbers.

6. Moreover GH
�G = G

H
⌫AG + iG

H
⌫8G.

Exercise 9.5 (Real QCQP). Show that the complex QCQP (9.10) is equivalent to the
real QCQP (9.11) of twice the dimension. Show that ⇡; are symmetric matrices.

Exercise 9.6 (Homogenization). Let G,0,1 2 C=.

1 Let 4 9 2 {0,1}= be the unit vector with a single 1 at the 9 th position. Show that
the set of inequalities 0 9  G 9  1 9 , 9 = 1, . . . ,=, is equivalent to the following set
of homogeneous quadratic inequalities in (Ĝ, C) with G := ĜC̄: for 9 = 1, . . . ,=,

Re(0 9 ) 

Ĝ

C

�H 
0 Z 9

Z
H
9

0

� 
Ĝ

C

�
 Re(1 9 ), Im(0 9 ) 


Ĝ

C

�H 
0 iZ 9

�iZ
H
9

0

� 
Ĝ

C

�
 Im(1 9 )

(9.64a)

1 

Ĝ

C

�H 
0 0
0 1

� 
Ĝ

C

�
 1 (9.64b)

where Z 9 = 4 9/2.
2 Let 2 9 2 C= for 9 = 1, . . . ,=. Show that the set of inequalities 0 9  2H

9
G  1 9 ,

9 = 1, . . . ,=, is equivalent to (9.64) with Z 9 = 4 9/2 replaced by Z 9 = 2 9/2.

Chapter 9.2.

Exercise 9.7.

Chapter 9.3.

Exercise 9.8 (Angle constraint). Show that (9.23e) is equivalent to the constraint
on apparent power %2

9:
+&2

9:
 ((\) for some real number ((\) that depends on \,

provided |\ 9: |  \ 2 (0,c/2].

Exercise 9.9 (NP-hardness [70]). Let G := (? 9 , 9 2 #⌧; \ 9 , 9 2 #⌧ [
#!; % 9: ,& 9: , ( 9 , :) 2 ⇢) be a solution of (9.23).

1 Consider the line flow %00 = 0%̂(\00) := 0 (6(1� cos\00)� 1 sin\00) on line
(0,0) 2 ⇢ . Show that, if \00 < 0, then %̂(\00) < 0.
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2 Show that &̂(�\) > 0.
3 Show that %̂(�\)&̂(\00) � &̂(�\)%̂(\00) with equality if and only if \00 2 {0,\}.

(Hint: use tan(q/2) = (1� cosq)/sinq, |\00 |  \  c/2 and %̂(�\) < 0.)

Exercise 9.10 (NP-hardness of nonconvex quadratic program [110]). Show that de-
termining the global solution of smooth nonlinear program is NP-hard by reducing
the NP-complete subset sum problem to nonconvex quadratic program. (Hint: Write a
subset sum problem instance (�,f) in terms of determining a binary vector G of size
|�| and reduce it to a smooth nonconvex quadratic program.)

Chapter 9.4

Exercise 9.11 (Feasible region of OPF [111]). By introducing slack variables, the
constraints that define the feasible region of OPF (e.g., (9.16)) is of the form 5 (G) = 0
for some 5 : R= ! R=. Consider the (energy) function ⇢ (G) := 1

2 k 5 (G)k22 and the
problem minG2R= ⇢ (G).

1 What is the gradient flow (continuous time version of gradient descent algorithm)
to minimize ⇢ (G)?

2 Show that if Ḡ is a feasible point (i.e., 5 (Ḡ) = 0), then Ḡ is an stable equilibrium
point of the gradient flow dynamic. The converse is not necessarily true.

3 Show that the converse is true if the Jacobian m 5

mG
(G) is nonsingular on R=.

Exercise 9.12 (OPF global optimality). This exercise fills in some details in the proof
of Theorem 9.7 in Chapter 9.4.4.

1 Show that condition C9.5 implies (9.36).
2 For {⌘G : G 2 -̂ \ -} defined in (9.39), show that ⌘G (C) 2 -̂ for all C 2 [0,1] and
⌘G (1) 2 - .

Chapter 9.5

Exercise 9.13 (Smooth approximation). This problem considers smooth approxima-
tions of max(0,G) and min(0,G).

1 Let 5 (G) := max(0,G) and its over approximation 5 n (G) := n ln
�
1+ 4G/n

�
for G 2 R

and n > 0. For any n > 0 show that 5 n (G) � n ln2  5 (G) < 5
n (G) for all G 2 R,

with equality if and only if G = 0.
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2 What is the corresponding approximation 5̃
n (G) for 5̃ (G) := max(0,G) for any

0 2 R?
3 Let 6(G) := min(0,G) and its under approximation 6n (G) := �n ln

�
1+ 4�G/n

�
for

G 2 R and n > 0. For any n > 0 show that 6n (G) < 6(G)  6n (G) +n ln2 for all G 2 R,
with equality if and only if G = 0.

4 What is the corresponding approximation 6̃
n (G) for 6̃(G) := min(G,1) for any

1 2 R?
5 What is the approximation for ⌘(G) := max(0,min(G,1)) for 0 < 1 if we apply the

approximations for 5̃ and 6̃?

Exercise 9.14 (Complementarity and big-" constraints). Consider the nondi�er-
entiable constraint H = [G]1

0
:= max(0,min(G,1)) where G, H 2 R are variables and

0 < 1 2 R are given constants.

1 Show that it is equivalent to a complementarity constraint: H = [G]1
0

:=
max(0,min(G,1)) if and only if there exist slack variables (d�, d+) 2 R2 such
that

H + d+� d� = G, 0  d
� ? H� 0 � 0, 0  d

+ ? 1� H � 0, G, H 2 R(9.65)

Given G 2 R, show that finding a solution (H, d�, d+) 2 R3 to this complementarity
constraint is a standard linear complementarity problem LCP(" ,@) for a 2⇥ 2
matrix " .

2. Show that it is equivalent to a big-" mixed integer constraint: H = [G]1
0

:=
max(0,min(G,1)) if and only if there exist binary variables I, I such that

0  H  1, I, I 2 {0,1} (9.66a)

H� 0  "I, H� G  " (1� I) (9.66b)

1� H  "I, G� H  " (1� I) (9.66c)

where " 2 R+ is a su�ciently large constant. What value of (I, I) will result in
infeasibility?

3. Show that it is also equivalent to (in the same sense):

G� 0  "I, 0� G  " (1� I) (9.67a)

1� G  "I, G� 1  " (1� I) (9.67b)

together with (the nonlinear equality)

(H� 0) (1� I) + (H� 1) (1� I) + (H� G)II = 0, I, I 2 {0,1}(9.67c)

What value of (I, I) will result in infeasibility?
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Exercise 9.15 (Complementarity and big-" constraints). Consider the logical con-
straint (9.52c) on the variables (G, H, I) 2 R3, reproduced here

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I} , (G, H, I) 2 R3 (9.68)

where 0 < 1 are given scalars. Unlike the complementarity problem in Exercise 9.14,
the equality constraint H = I here involves another variable G.

1 Show that it is equivalent to the following complementarity constraint: (G, H, I) 2R3

satisfies (9.68) if and only if there exist slack variables d�, d+ 2 R such that

H + d+� d� = I, 0  d
� ? G� 0 � 0, 0  d

+ ? 1� G � 0 (9.69)

Given I, show that finding (G, H, d�, d+) that solves (9.69) is an LCP.
2 Show that it is equivalent to the following mixed integer constraint: (G, H, I) 2 R3

satisfies (9.68) if and only if there exist binary variables (I, I) such that

0  G  1, I, I 2 {0,1}
G� 0  "I, I� H  "I, H� I  " (1� I)
1� G  "I, H� I  "I, I� H  " (1� I)

where " is a su�ciently large constant.

Exercise 9.16 (LCP for quadratic program). 1 Consider the quadratic optimization:

min
G2R=

1
2
G

T
&G + 2

T
G s.t. �G  1, G � 0 (9.70a)

Show that solving the associated KKT condition is a LCP(" ,@) with

" :=

&

T
�

T

�� 0

�
, @ :=


2

1

�
(9.70b)

2 Consider the quadratic optimization without the nonnegativity constraint on G:

min
G2R=

1
2
G

T
&G + 2

T
G s.t. �G  1 (9.70c)

If & is positive definite show that solving the associated KKT condition is equiv-
alent to the following LCP:

_ � 0, "_+ @ � 0, _T ("_+ @) = 0

Determine " and @.

Exercise 9.17 (LCP). Suppose �,⌫ 2R=⇥= are square matrices and 0,1 2R=. Consider
the problem of finding I such that

0  �I+ 0 ? ⌫I+ 1 � 0
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Show that this is equivalent to a LCP if � is nonsingular.

Exercise 9.18 (Linear complementarity problem). Let

" :=


1 1
�1 0

�
, @ :=


�1
1

�

Solve the LCP(" ,@): find G := [G1 G2]T such that

G � 0, "G + @ � 0, G
T ("G + @) = 0

Note that there exists a unique solution even though " is neither positive definite nor
symmetric.

Exercise 9.19 (McCormick envelop of F = GH). For the bilinear constraint

F = GH, G  G  G, H  H  H, F,G, H 2 R

derive its McCormick envelops. (Hint: For (9.58a), if we let 0 := G � G and 1 := H� H
or 0 := G� G and 1 := H� H then 01 � 0. Similarly for the lower bounds.)
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Chapter 9 formulates OPF as a nonconvex quadratically constrained quadratic program
(QCQP) and shows that it is NP-hard in general. There are three common approaches
to deal with nonconvexity. First, one can solve a linear approximation of the original
nonconvex problem. For instance DC OPF is a linear program approximation that
is widely used for electricity market operations (see Chapter 6.4). Second, one can
apply local algorithms such as Newton-Raphson or interior-point methods to compute
a local solution. Some of these algorithms are studied in Chapter 8.5, but because the
problem is nonconvex, the optimality conditions of Chapter 8.3 for convex problems
are generally not applicable. Theorem 9.2 of Chapter 9.4 provides a Lyapunov-like
condition that guarantees that if an algorithm does produce a local optimum, it will be
a global optimum. The condition also ensures that convex relaxations of OPF will be
exact and therefore a third approach is to solve a convex relaxation for a global solution,
to which the optimality conditions of Chapter 8.3 do apply. In this and the next chapters
we study a particular type convex relaxation, called semidefinite relaxation, of OPF.

There is a rich theory and extensive empirical experiences in applying semidefinite
relaxation to many engineering problems. Besides being a method for seeking a global
solution, a semidefinite relaxation allows us to check if a feasible solution produced by
a local algorithm is globally optimal. If it is not, the solution of a relaxation provides a
lower bound on the minimum cost and hence a bound on how far any feasible solution
is from optimality. Unlike approximations, if a relaxed problem is infeasible, it is a
certificate that the original OPF is infeasible.

In Chapter 10.1 we define semidefinite relaxation of QCQP in general and explain
how to use the concept of partial matrices and their psd rank-1 completion to reduce
the computational complexity of semidefinite relaxation for large sparse networks. In
Chapter 10.2 we apply these results to write the single-phase OPF in terms of partial
matrices to reveal structures that enable exact relaxations (we will use the QCQP
formulation of OPF studied in Chapter 9.1.3 for the bus injection model). In Chapters
10.3 and 10.4 we study two su�cient conditions for exact relaxations of OPF on single-
phase radial networks. We study semidefinite relaxations in the branch flow model in
Chapter 11. The su�cient conditions in this and the next chapter complement the
exactness condition of Chapter 9.4 (see Lemma 9.4).
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10.1 Semidefinite relaxations of QCQP

OPF is formulated in (9.16) as a standard homogeneous QCQP. The computational
di�culty arises from the nonconvex feasible set of OPF. Informally one can regard a
relaxation of OPF as minimizing the same cost function over a convex superset (though
in a lifted space). Di�erent choices of convex supersets lead to di�erent relaxations,
but they all provide lower bounds to OPF. If an optimal solution of a relaxation happens
to lie in the feasible set of the original OPF problem, then it is optimal for the original
OPF. In this case we say the relaxation is exact. In this section we describe three types
of semidefinite relaxation of OPF and explain equivalence relations among them.

10.1.1 SDP relaxation

Since these methods are not restricted to OPF, we will discuss them using the general
QCQP formulation (9.10), reproduced here:

⇠
opt := min

G2C=
G

H
⇠0G (10.1a)

s.t. G
H
⇠;G  1; , ; = 1, . . . ,! (10.1b)

Using GH
⇠;G = tr

�
⇠;GG

H�
we can rewrite (10.1) as

min
- 2S= ,G2C=

tr (⇠0-)

s.t. tr (⇠;-)  1; , ; = 1, . . . ,!

- = GG
H

Any positive semidefinite (psd) rank-1 matrix - 2 S=⇥=+ has a spectral decomposition
- = GGH for some G 2 C=; see Chapter A.6. The factor G is unique up to a rotation, i.e.,
G satisfies - = GGH if and only if G 4 9 \ does for any \ 2 R. Hence (10.1) is equivalent to
the following problem where the optimization is over the set S= of Hermitian matrices
-:

min
- 2S=

tr (⇠0-) (10.2a)

s.t. tr (⇠;-)  1; , ; = 1, . . . ,! (10.2b)

- ⌫ 0, rank(-) = 1 (10.2c)

Recall that tr(⇠;-) =
Õ
9,: [⇠;] 9:-: 9 =

Õ
9,: [⇠;] 9:-H

9:
where the second equality

follows when - is Hermitian. While the objective function and the constraints in (10.1)
are quadratic in G, they are linear in - in (10.2a)(10.2b). The constraint - ⌫ 0 in (10.2c)
is convex (S=+ is a convex cone; see Chapter 8.2.2). The rank constraint in (10.2c) is
the only nonconvex constraint. These two problems are equivalent in the sense that,
given a feasible (or optimal) solution G to QCQP (10.1), there is an - := GGH that is
feasible (or optimal) to the semidefinite program (10.2). Conversely, given an - that is
feasible (or optimal) to (10.2), a solution G to (10.1) can be recovered through rank-1
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factorization - = GGH. It is in this sense that we also say that the feasible sets of (10.1)
and (10.2) are equivalent. This is referred to as lifting the original QCQP problem from
= dimensional space C= to the higher-dimensional space of =⇥= Hermitian matrices.

Removing the rank constraint (10.2c) results in a semidefinite program (SDP):

min
- 2S=

tr (⇠0-) (10.3a)

s.t. tr (⇠;-)  1; , ; = 1, . . . ,! (10.3b)

- ⌫ 0 (10.3c)

which is a convex problem. (Strong duality and KKT condition of semidefinite pro-
gram is studied in Chapter 8.4.5.) We call (10.3) a semidefinite relaxation or an SDP
relaxation of QCQP (10.1) because the feasible set of the equivalent problem (10.2) is
a subset of the feasible set of SDP (10.3). A strategy for solving QCQP (10.1) is to solve
SDP (10.3) for an optimal matrix -opt and check its rank. If rank

�
-

opt� = 1 then -opt

is feasible and hence optimal for (10.2) as well and an optimal solution Gopt of QCQP
(10.1) can be recovered from -

opt through spectral decomposition -opt = Gopt (Gopt)H.
If rank -opt

> 1 then, in general, no feasible solution of QCQP can be directly obtained
from -

opt but the optimal objective value of SDP provides a lower bound on that of
QCQP.

10.1.2 Partial matrices and rank-1 completion

Even though the relaxation (10.3) is a convex problem computing its solution can still
be challenging if the problem size = is large. If the underlying network is sparse, much
more e�cient relaxations can be used. To develop these ideas precisely, the key is to
study the feasible sets of QCQP and its relaxations.

We start with the concept of partial matrices and their completions. An instance
of QCQP (10.1) is specified by a set of matrices and scalars (⇠0,⇠; ,1; , ; = 1, . . . ,!).
We assume the matrices ⇠; , ; = 0,1, . . . ,!, are Hermitian so that GH

⇠;G are real. They
define an underlying undirected graph � := (# ,⇢) with = nodes and < edges where
distinct nodes 9 and : are adjacent (i.e., ( 9 , :) 2 ⇢) if and only if there exists an
; 2 {0,1, . . . ,!} such that [⇠;] 9: = [⇠;]H

: 9
< 0. Assume without loss of generality that

the graph � is connected (otherwise restrict ourselves to each connected component).
For any G 2 C= note that the quadratic form G

H
⇠;G depends on |G 9 |2 and on GH

9
G: if

and only if ( 9 , :) 2 ⇢ is a link in �, i.e., if and only if there exists an ; such that the
coe�cient of GH

9
G: is nonzero. Indeed

G
H
⇠;G =

’
9,:

[⇠;] 9: GH
9
G: =

’
9

[⇠;] 9 9 |G 9 |2 + 2
’
9<:

( 9,:)2⇢

Re
⇣
[⇠;] 9: GH

9
G:

⌘

where the last equality follows from [⇠;]: 9GH
:
G 9 = [⇠;]H

9:
G

H
:
G 9 =

⇣
[⇠;] 9: GH

9
G:

⌘H
since
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⇠; is Hermitian. Hence GH
9
G: is not constrained by GH

⇠;G  1; if ( 9 , :) 8 ⇢ for any ;,
in which case - 9: of the lifted variable - is not constrained by tr(⇠;-)  1; for any ;.
This can be used to relax the psd and rank-1 constraints on the entire matrix - using
the concept of partial matrices, greatly simplifying computation when the underlying
graph � of the QCQP is sparse.

Given a graph � := (# ,⇢), a partial matrix -� defined on � is a set of 2< + =
complex numbers:

-� :=
�
[-� ] 9 9 , [-� ] 9: , [-� ]: 9 : nodes 9 2 # and links ( 9 , :) 2 ⇢

 
-� can be interpreted as a matrix with entries partially specified by these complex
numbers. The ( 9 , :)th entry of -� that does not correspond to an edge in � is not
specified. If � is a complete graph (in which there is an edge between every pair of
vertices) then -� is a fully specified =⇥= matrix. A completion - of -� is any fully
specified =⇥= matrix that agrees with -� on graph �, i.e.,

[-] 9 9 = [-� ] 9 9 , [-] 9: = [-� ] 9: , [-]: 9 = [-� ]: 9 , 9 2 # , ( 9 , :) 2 ⇢

Given an = ⇥ = matrix - we use -� to denote the submatrix of - on �, i.e., the
partial matrix consisting of the entries of - defined on graph �. If @ is a clique (a
fully connected subgraph) of � then let -� (@) denote the fully-specified principal
submatrix of -� defined on @, i.e., if the clique @ has : nodes then -� (@) is a : ⇥ :
matrix and, for every node 9 and link ( 9 , :) in @,

[-� (@)] 9 9 := [-� ] 9 9 , [-� (@)] 9: := [-� ] 9: , [-� (@)]: 9 := [-� ]: 9

We extend the definitions of Hermitian, psd, rank-1, and the trace operation for
matrices to partial matrices.

Definition 10.1 (Partial matrix -� ). Let -� be a partial matrix on a graph � := (# ,⇢).

1 -� is Hermitian, denoted by -� = -H
�

, if [-� ]: 9 = [-� ]H
9:

for all ( 9 , :) 2 ⇢ .
2 -� is positive semidefinite (psd), denoted by -� ⌫ 0, if -� is Hermitian and the

principal submatrices -� (@) are psd for all cliques @ of �.
3 -� is rank-1, denoted by rank(-� ) = 1, if the principal submatrices -� (@) are

rank-1 for all cliques @ of �.
4 -� is 2⇥2 psd if, for all edges ( 9 , :) 2 �, the 2⇥2 principal submatrices

-� ( 9 , :) :=

[-� ] 9 9 [-� ] 9:
[-� ]: 9 [-� ]::

�

are psd (and necessarily Hermitian).
5 -� is 2⇥ 2 rank-1 if, for all edges ( 9 , :) 2 �, the 2⇥ 2 principal submatrices
-� ( 9 , :) are rank-1.

6 The trace operation on -� is defined as

tr (⇠;-� ) :=
’
92#

[⇠;] 9 9 [-� ] 9 9 +
’
9<:

( 9,:)2⇢

�
[⇠;] 9: [-� ]: 9 + [⇠;]: 9 [-� ] 9:

�
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⇤

The condition -� ( 9 , :) ⌫ 0 is equivalent to: the matrix -� ( 9 , :) is Hermitian, i.e.,
-� ( 9 , :) = -� ( 9 , :)H, and

[-� ] 9 9 � 0, [-� ]:: � 0, [-- ] 9 9 [-- ]:: �
��[-� ] 9: ��2

This is a rotated second-order cone studied in Chapter 8.2.1 (see (8.17)). The condition
rank(-� ( 9 , :)) = 1 is equivalent to:

[-� ] 9 9 [-� ]:: =
��[-� ] 9: ��2 > 0

If both ⇠; and -� are Hermitian then [⇠;]: 9 [-� ] 9: =
�
[⇠;] 9: [-� ]: 9

�H and hence

tr (⇠;-� ) =
’
92#

[⇠;] 9 9 [-� ] 9 9 +2
’
9<:

( 9,:)2⇢

Re
�
[⇠;] 9: [-� ]: 9

�

is a real scalar.

We call � a chordal graph if either � has no cycle or all its minimal cycles (ones
without chords) are of length three. A chordal extension 2(�) of � is a chordal graph
that contains �, i.e., 2(�) has the same vertex set as � but an edge set that is a superset
of �’s edge set. In that case we call the partial matrix -

2 (� ) a chordal extension of
the partial matrix -� . Every graph � has a chordal extension, generally nonunique.
In particular a complete supergraph of � is a trivial chordal extension of �. Chordal
graphs are important for us because of the result [112, Theorem 7] that every psd partial
matrix has a psd completion if and only if the underlying graph is chordal. When a
positive definite completion exists, there is a unique positive definite completion, in the
class of all positive definite completions, whose determinant is maximal. We extend
this result to rank-1 partial matrices after presenting an example.

Example 10.1 (Partial matrices and chordal extensions). Consider the graph � and
the partial matrix -� in Figure 10.1(a). -� is Hermitian if G 9: = GH

: 9
. The only cliques

in � consist of two nodes that are adjacent, and hence -� is psd if it is 2⇥2 psd and
-� is rank-1 if it is 2⇥ 2 rank-1. -� is not chordal as it contains a cycle of length
greater than 3.

Figure 10.1(b) and (c) depict two chordal extensions 2(�) of � and the partial
matrices -

2 (� ) defined on these chordal extensions. The chordal extension in Figure
10.1(b) has 2 maximal cliques, @1 := (1,2,3) and @2 := (2,3,4,5). These cliques share
two nodes, 2 and 3. The (fully specified) submatrices -

2 (� ) (@1) and -
2 (� ) (@2) defined

on the cliques @1 and @2 respectively are outlined in the figure with overlapping entries
shaded in green. The chordal extension in Figure 10.1(c) has 3 maximal cliques whose
(fully specified) submatrices are outlined. The clique @2 := (2,3,5) overlaps with
the other two cliques and the overlapping entries in -

2 (� ) (@2) are shaded in blue.
(The shared nodes between maximal cliques introduce complications in formulating
semidefinite relaxation based on chordal extensions; see Chapter 10.1.6.) ⇤
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Figure 10.1 Example 10.1: The overlapping maximal cliques of chordal extensions -
2 (� ) are

in shades.

Consider the following conditions on a =⇥ = matrix - and partial matrices -
2 (� )

and -� associated with a given graph �:

- ⌫ 0,rank(-) = 1 (10.4a)

-
2 (� ) ⌫ 0,rank(-

2 (� ) ) = 1 (10.4b)

-� ( 9 , :) ⌫ 0,rank(-� ( 9 , :)) = 1, ( 9 , :) 2 ⇢ (10.4c)

We say that a partial matrix -� satisfies the cycle condition if for every cycle 2 in �’
( 9,:)22

\[-� ] 9: = 0 mod 2c (10.5)

where G = q mod 2c means G = q +2:c for some integer : . For instance if \[-� ] 9:
represent the voltage phase di�erences across lines ( 9 , :) then the cycle condition
imposes that they sum to zero (mod 2c) around any cycle 2. The next theorem, proved
in [113, Theorem 3] and [33], implies that -� has a psd rank-1 completion - if and
only if -� has a chordal extension -

2 (� ) that is psd rank-1, if and only if -� is 2⇥2
psd rank-1 on � and satisfies the cycle condition (10.5). 1 All proofs in this section are
deferred to Chapter 10.1.8

Theorem 10.1 (Rank-1 characterization). Fix a connected graph � := (# ,⇢) with = :=
|# | nodes. Consider any chordal extension 2(�) of �. Suppose - 9 9 > 0,

⇥
-
2 (� )

⇤
9 9
> 0

and [-� ] 9 9 > 0, 9 2 # , for the matrix - and submatrices -� and -
2 (� ) below. Then

(1) Given a =⇥= matrix - that satisfies (10.4a), its submatrix -
2 (� ) satisfies (10.4b).

(2) Given a partial matrix -
2 (� ) that satisfies (10.4b), its submatrix -� satisfies

(10.4c) and the cycle condition (10.5).

1 The theorem also holds with psd replaced by negative semidefinite.
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(3) Given a partial matrix -� that satisfies (10.4c) and the cycle condition (10.5),
there is a completion - of -� that satisfies (10.4a). Moreover the completion -
is unique.

Informally Theorem 10.1 says that (10.4a) is equivalent to (10.4b) which is equiva-
lent to (10.4c)(10.5). It implies in particular that, for a chordal graph, - is psd rank-1 if
and only if the principal submatrix - (@) of - is psd rank-1 for every maximal clique @
of the graph. It characterizes a property of the full matrix - (that - is psd and rank-1) in
terms of its submatrices -

2 (� ) and -� . This is important because the submatrices are
typically much smaller than - for large sparse networks and much easier to compute.
We discuss how to construct a chordal extension 2(�) of � and formulate -

2 (� ) in
Chapter 10.1.6. Theorem 10.1 thus allows us to solve smaller problems in terms of
partial matrices as we now explain.

10.1.3 Feasible sets

To develop semidefinite relaxations of QCQP we start by studying their feasible sets.
Fix ⇠; , ; = 0,1, . . . !, and its underlying graph �. Define the feasible set of the QCQP
(10.1) as:

V := {G 2 C= | GH
⇠;G  1; , ; = 1, . . . ,!} (10.6)

Given an G 2 V, it defines a unique (up to a rotation) psd rank-1 matrix - := GGH

and therefore a unique psd rank-1 partial matrix -� that satisfies tr(⇠;-� )  1; . The
converse is not always true: given a partial matrix -� that is psd rank-1 and satisfies
tr(⇠;-� )  1; , it is not always possible to recover an G inV. This is possible if and only
if -� has a psd rank-1 completion - that satisfies tr(⇠;-)  1; . We now characterize
the set of partial matrices from which G 2 V can be recovered.

Define the set of Hermitian matrices:

X := { - 2 S= | - satisfies tr(⇠;-)  1; , ; = 1, . . . ,!, (10.4a) } (10.7a)

i.e., - 2 X satisfies tr(⇠;-)  1; for all ; and (10.4a). Fix a connected graph �. Fix any
chordal extension 2(�) of � and define the set of Hermitian partial matrices -

2 (� ) :

X
2 (� ) := { -

2 (� ) | -2 (� ) satisfies tr
�
⇠;-2 (� )

�
 1; , ; = 1, . . . ,!, (10.4b) }(10.7b)

Finally define the set of Hermitian partial matrices -� :

X� := { -� |-� satisfies tr(⇠;-� )  1; , ; = 1, . . . ,!, (10.4c)(10.5) } (10.7c)

Note that the definition of psd for partial matrices implies that -
2 (� ) and -� are

Hermitian partial matrices (see Definition 10.1).

Theorem 10.1 implies that given a partial matrix -
2 (� ) 2 X2 (� ) or a partial matrix

-� 2X� there is a psd rank-1 completion - 2X. Moreover the completion - is unique.



10.1 Semidefinite relaxations of QCQP 503

Corollary 10.2 (Uniqueness of rank-1 completion). Fix a connected graph �. Given
a partial matrix -

2 (� ) 2 X2 (� ) or -� 2 X� there is a unique psd rank-1 completion
- 2 X.

The corollary implies that, given any Hermitian partial matrix -� 2 X� , the set
of all completions of -� consists of a single psd rank-1 matrix and infinitely many
indefinite or non-rank-1 matrices.

We say two sets � and ⌫ are equivalent, denoted � ⌘ ⌫, if there is a bijection
between them. Even though X,X

2 (� ) ,X� are di�erent kinds of spaces, Theorem 10.1
and Corollary 10.2 imply that they are all equivalent to the feasible set of QCQP (10.1)
once an arbitrary reference angle is fixed, e.g., \G1 := 0.

Theorem 10.3 (Equivalence). V ⌘ X ⌘ X
2 (� ) ⌘ X� .

Since the cost function GH
⇠0G of (10.1) depends on - only through the partial

matrix -� , Theorem 10.3 suggests three problems that are equivalent to QCQP (10.1):
for X̂ 2

�
X,X

2 (� ) ,X�
 
,

min
-

⇠ (-� ) subject to - 2 X̂ (10.8)

Specifically, given an optimal solution -opt in X, it can be decomposed into -opt =
G

opt (Gopt)H where Gopt is unique up to an arbitrary reference angle. Then Gopt is in
V and an optimal solution of QCQP (10.1). Alternatively given an optimal solution
-

opt
�
2 X� or -opt

2 (� ) 2 X2 (� ) , Corollary 10.2 guarantees that it has a unique psd rank-1
completion -opt in X from which an optimal Gopt 2 V can be recovered. This suggests
solving the QCQP (10.1) by computing -opt

�
or -opt

2 (� ) instead of -opt because both of
them are typically much smaller in size than -opt for a large sparse network. Indeed
the number of complex variables in a Hermitian - is =(=+1)/2 while the number of
complex variables in -� is only =+ |⇢ |, which is much smaller if � is large but sparse.
Given a partial matrix -� 2 X� (or -

2 (� ) 2 X2 (� ) ), however, there is a more direct
construction of a feasible solution G 2 V of QCQP than through its completion (see
Chapter 10.1.4).

Remark 10.1 (Graph �̂ underlying QCQP). Note that the feasible setsV,X,X
2 (� ) ,X�

defined in (10.6) (10.7) depend only on the constraint matrices ⇠; , ; = 1, . . . ,!, but not
on the cost matrix⇠0. Equivalence among these sets will therefore hold if we replace �
in Theorem 10.1, Corollary 10.2 and Theorem 10.3 with a subgraph �̂ that is induced
by ⇠; only for ; � 1, i.e., two nodes 9 and : in �̂ are adjacent if and only if [⇠;] 9: < 0
for some ; 2 {1, . . . ,!}.

The matrix� is needed for the proper definition of cost function. For the optimization
problems in (10.8) to be equivalent, we need to compute the partial matrices -� and
-
2 (� ) . The partial matrices -

�̂
will have missing terms [-

�̂
] 9: in the cost function if

( 9 , :) is in � but not in �̂, i.e., if [⇠0] 9: < 0 but [⇠;] 9: = 0 for all ; � 1. Similarly for
-
2 (�̂ ) . ⇤
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10.1.4 Semidefinite relaxations and solution recovery

Hence solving QCQP (10.1) is equivalent to solving (10.8) over any of X,X
2 (� ) ,X�

for an appropriate matrix variable. The di�culty with solving (10.8) is that the feasible
sets X, X

2 (� ) , and X� are still nonconvex due to the rank-1 constraint and the cycle
condition (10.5). Their removal leads to three types of semidefinite relaxations of
QCQP (10.1).

Semidefinite relaxations.

Relax X, X
2 (� ) and X� to the following convex supersets:

X
+ := {- 2 S= | -� satisfies tr(⇠;-)  1; , ; = 1, . . . ,!, - ⌫ 0}

X
+
2 (� ) := {-

2 (� ) | -� satisfies tr
�
⇠;-2 (� )

�
 1; , ; = 1, . . . ,!, -

2 (� ) ⌫ 0}
X
+
�

:= {-� | -� satisfies tr (⇠;-� )  1; , ; = 1, . . . ,!, -� ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢}

These feasible sets are defined for di�erent (partial) matrices and di�er in the definition
of psd. Remark 10.1 applies to these relaxed feasible sets regarding the underlying
graph and the corresponding partial matrices. The following problems are semidefinite
relaxations of QCQP (10.1) with di�erent sizes and tightness:
QCQP-sdp:

⇠
sdp := min

-

⇠ (-� ) subject to - 2 X+ (10.9a)

QCQP-ch:

⇠
ch := min

-
2 (� )

⇠ (-� ) subject to -
2 (� ) 2 X+

2 (� ) (10.9b)

QCQP-socp:

⇠
socp := min

-�

⇠ (-� ) subject to -� 2 X+
�

(10.9c)

We call (10.9a) a SDP relaxation, (10.9b) a chordal relaxation, and (10.9c) a SOCP
relaxation. In Chapter 10.1.6 we describe how to construct the set of constraints
-
2 (� ) ⌫ 0 in X+

2 (� ) and show that chordal relaxation is equivalent to a semidefinite
program (and similarly for SOCP relaxation).

Solution recovery.

When the semidefinite relaxations OPF-sdp, OPF-ch, OPF-socp are exact, i.e., if their
optimal solutions -sdp, -ch

2 (� ) , -
socp
�

happen to lie inX,X
2 (� ) ,X� respectively, then an

optimal solution Gopt 2 V of the original QCQP can be recovered from these solutions.
Indeed the recovery method works not just for an optimal solution, but any feasible
solution that lies in X, X

2 (� ) or X� . Moreover, given an - 2 X or an -
2 (� ) 2 X2 (� ) ,

the construction of G depends on - or -
2 (� ) only through their submatrix -� . We

hence describe a method for recovering an G 2 V from an -� , which may be a partial
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matrix in X� or the submatrix of a (partial) matrix in X or X
2 (� ) . The solution G is

unique if � is connected and, say, \G1 is fixed.

Take an arbitrary spanning tree of � rooted at bus 1 with orientation where lines
pointing away from bus 1. Let P 9 denote the unique path from bus 1 to bus 9 in the
spanning tree. Set |G1 | :=

p
[-� ]11 and \G1 to an arbitrary value. For 9 = 2, . . . ,=,

|G 9 | :=
q
[-� ] 9 9 , \G 9 := \+1 �

’
(8,:)2P 9

\ [-� ]8: (10.10)

Then, on link ( 9 , :), \G 9 � \G: = \ [-� ] 9: and [-� ] 9: = G 9GH
:

since -� is 2⇥ 2 psd
rank-1. It can be checked that G is in the feasible set V of QCQP, i.e., GH

⇠;G  1; , ; =
1, . . . ,! (Exercise 10.1). The cycle condition (10.5) ensures that the angle calculation
(10.10) gives the same result for any spanning tree.

This method for recovering G from -� is generally more e�cient than computing
the psd rank-1 completion - of -� and factorizing - , as suggested in Theorem 10.3,
and is used in the proof of Theorem 10.1 (see Chapter 10.1.8). It is equivalent to the
method (5.12c) of Chapter 5.1.2 for recovering voltage angles in the branch flow model
for radial networks, with V 9: = [-� ] 9: .

10.1.5 Tightness of relaxations

Recall that V ⌘ X ⌘ -
2 (� ) ⌘ -� (Theorem 10.3). Since X ✓ X+, X

2 (� ) ✓ X+
2 (� ) ,

X� ✓ X+
�

, the relaxations OPF-sdp, OPF-ch, OPF-socp all provide lower bounds on
OPF (9.9). OPF-socp is the simplest computationally. OPF-ch usually requires heavier
computation than OPF-socp but much lighter than OPF-sdp for large sparse networks
(even though OPF-ch can be as complex as OPF-sdp in the worse case [114, 115]). The
relative tightness of the relaxations depends on the network topology. For a general
network that may contain cycles, OPF-ch is as tight a relaxation as OPF-sdp and they
are strictly tighter than OPF-socp. For a tree (radial) network the hierarchy collapses
and all three are equally tight. We now make this precise.

Consider the relaxed feasible setsX+,X+
2 (� ) andX+

�
. Consider two sets � and ⌫ and

the corresponding cost functions ⇠� : �! R and ⇠⌫ : ⌫! R. For instance � := C=,
⌫ := S=, ⇠�(G) := GH

⇠G and ⇠⌫ (-) := tr (⇠-) for a given Hermitian matrix ⇠. We
say that � is an e�ective subset of ⌫ with respect to the cost functions ⇠�,⇠⌫, denoted
by � v ⌫, if, given any 0 2 �, there is a 1 2 ⌫ that has the same cost ⇠�(0) = ⇠⌫ (1).
We say � is similar to ⌫ with respect to the cost functions ⇠�,⇠⌫, denoted by � ' ⌫,
if � v ⌫ and ⌫ v �. Note that � ⌘ ⌫ implies � ' ⌫ but the converse may not hold.
Even though e�ective subset and similarity are defined with respect to some cost
functions ⇠�,⇠⌫, we often omit the cost functions when their existence is understood
and unimportant for the discussion, and simply say � is an e�ective subset of ⌫ or �
is similar to ⌫.
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The feasible set of QCQP (10.1) is an e�ective subset of the feasible sets of its
relaxations; moreover these relaxations have similar feasible sets when the network is
radial.

Theorem 10.4 (Tightness of relaxations). 1 V v X+ ' X+
2 (� ) v X+

�
.

2 If � is a tree then V v X+ ' X+
2 (� ) ' X+

�
.

The reasonX+
2 (� ) is similar, but not equivalent, toX+ is that psd completions of a psd

submatrix - 2 X+
2 (� ) are generally nonunique. In contrast, the psd rank-1 completion

of a psd rank-1 submatrix - 2 X
2 (� ) is unique according to Corollary 10.2.

Let ⇠opt,⇠sdp,⇠ch,⇠socp be the optimal values of QCQP (10.1), QCQP-sdp (10.9a),
QCQP-ch (10.9b), QCQP-socp (10.9c) respectively. Theorem 10.3 and Theorem 10.4
directly imply

Corollary 10.5. 1 ⇠
opt � ⇠sdp = ⇠ch � ⇠socp.

2 If � is a tree then ⇠opt � ⇠sdp = ⇠ch = ⇠socp.

Remark 10.2 (Tightness). Theorem 10.4 and Corollary 10.5 imply that for radial
networks one should always solve QCQP-socp, not QCQP-sdp or QCQP-ch, since it is
the tightest and the simplest relaxation of the three. For networks that contain cycles
there is a tradeo� between QCQP-socp and QCQP-ch/QCQP-sdp: the latter is tighter
but requires heavier computation. Between QCQP-ch and QCQP-sdp, QCQP-ch is
preferable as they are equally tight but QCQP-ch is usually much faster to solve for
large sparse networks. ⇤

10.1.6 Chordal relaxation

Theorem 10.1 through Corollary 10.5 apply to any chordal extension 2(�) of �. The
choice of 2(�) does not a�ect the optimal value of the chordal relaxation but determines
its complexity. We now explain how to construct the set of constraints -

2 (� ) ⌫ 0 in
the definition of X+

2 (� ) and show that chordal relaxation (10.9b) is equivalent to a
semidefinite program. The method is applicable to SOCP relaxation (10.9c) as well
(see Example 10.2).

The constraint -
2 (� ) ⌫ 0 consists of multiple constraints that the (fully specified)

principal submatrices -
2 (� ) (@) ⌫ 0, one for each maximal clique @ of 2(�). We will

discuss the tradeo�s in choosing a chordal extension 2(�) of � later. Once a 2(�) is
chosen the construction of -

2 (� ) ⌫ 0 involves two steps:

1 List all the maximal cliques @: of 2(�), : = 1, . . . , .
2 Use as relaxation variables appropriate Hermitian matrices -: corresponding to
@: . Then -

2 (� ) ⌫ 0 is a shorthand for: -: ⌫ 0 for : = 1, . . . , .
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We elaborate on both steps. Computing all maximal cliques of a general graph is NP-
hard. It can however be done e�ciently for a chordal graph because a graph is chordal
if and only if it has a perfect elimination ordering [116] and computing this ordering
takes linear time in the number of nodes and edges [117]. Given a perfect elimination
ordering all maximal cliques @: can be enumerated and -� (@: ) constructed e�ciently
[114]. For most OPF applications the computation depends only on the topology of
the power network, not on operational data, and therefore can be done o�ine.

Suppose the set of maximal cliques {@: , : = 1, . . . , } has been identified in which
clique @: consists of =: nodes. It is tempting to simply use  matrix variables -:
each of size =: ⇥ =: , require -: ⌫ 0 in the chordal relaxation (10.9b), and integrate
the  optimal (fully specified) matrix solutions -opt

:
of (10.9b) into a single optimal

partial matrix -opt
2 (� ) . Unfortunately this approach fails if some of the maximal cliques

@: share nodes. In that case their -: share entries and cannot be integrated as principal
submatrices of an =⇥=matrix, as explained in Example 10.1. Therefore when maximal
cliques of 2(�) share nodes, their corresponding matrices must be decoupled by
introducing auxiliary variables and equality constraints on the auxiliarty variables. We
now sketch this procedure using Example 10.1 (see [114, 115] for more details). It also
illustrates the di�culty in choosing a good chordal extension 2(�).

Suppose we have chosen the chordal extension 2(�) in Figure 10.1(b) with two
cliques @1 := (1,2,3) and @2 := (2,3,4,5) that share nodes 2 and 3. The (fully specified)
matrices -1 and -2 defined on the cliques @1 and @2 respectively are outlined in Figure
10.1(b). They overlap in 4 entries and require 4 decoupling variables D 9: . To decouple
these matrices, replace -1 by the 3⇥3 matrix

-
0
1 :=

266664
G11 G12 G13

G21 D22 D23

G31 D32 D33

377775
where the decoupling variables D 9: are constrained to be:

D 9: = G 9: for 9 , : = 2,3 (10.11a)

Then the psd constraints -
2 (� ) ⌫ 0 in chordal relaxation (10.9b) is not -1 ⌫ 0 and

-2 ⌫ 0, but

-
0
1 ⌫ 0, -2 ⌫ 0 (10.11b)

We can write the chordal relaxation as a SDP in standard form (10.3) by defining
the 7⇥7 block-diagonal matrix

-
0 :=


-
0
1 0

0 -2

�
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Then chordal relaxation (10.9b) is equivalent to:

min
-
0 2S7

tr(⇠ 00- 0) (10.12a)

s.t. tr(⇠ 0
;
-
0)  1; , ; = 1, . . . ,! (10.12b)

tr(⇠ 0
A
-
0) = 0, A = 1,2,3,4 (10.12c)

-
0 ⌫ 0 (10.12d)

for appropriate ⇠ 0
;
, ; = 0, . . . ,!. The constraint - 0 ⌫ 0 in (10.12d) is equivalent to the

psd constraints (10.11b) on -
0
1 and -2. The matrices ⇠ 0

A
in (10.12c) are chosen to

enforce the linear decoupling constraints (10.11a). See Example 10.2 for an explicit
construction of these matrices.

As the example illustrates, the choice of chordal extension 2(�) determines the
number and sizes of matrices -: associated with the maximal cliques as well as the
number of decoupling variables and constraints. In our example, the full SDP computes
a 5⇥5 matrix - for 25 variables (counting G 9: and G: 9 = Ḡ 9: as two variables). Chordal
relaxation defined by (10.11) computes a 3⇥3 matrix - 01 and a 4⇥4 matrix -2 for 25
variables, plus 4 decoupling variables and (linear) constraints. If we have chosen the
chordal extension 2(�) in Figure 10.1(c) with three cliques @1 := (1,2,3), @2 := (3,4,5),
and @3 := (2,3,5), then chordal relaxation will involve three 3⇥ 3 matrices with 27
variables, plus 8 decoupling variables and constraints. (Despite these examples, chordal
relaxation is typically much less computationally intensive than a full SDP for large
sparse network.)

The optimal choice of chordal extension 2(�) that minimizes the complexity of
QCQP-ch is NP-hard to compute. This di�culty is due to two conflicting factors in
choosing a 2(�). On the one hand if 2(�) contains few cliques @ then the submatrices
-
2 (� ) (@) tend to be large and expensive to compute (e.g. if 2(�) is the complete

graph then there is a single clique, but -
2 (� ) = - and QCQP-ch is identical to QCQP-

sdp). On the other hand if 2(�) contains many small cliques @ then there tends to
be more overlap and chordal relaxation tends to require more decoupling variables
and constraints. Hence choosing a good chordal extension 2(�) of � is important but
nontrivial.

Example 10.2 (SOCP relaxation). We apply the same method to construct SOCP
relaxation (10.9c) on the graph in Figure 10.1(a). It has 5 links (1,2), (1,3), (3,4),
(4,5), (2,5). (In this example each link is a maximal clique but this fact is not important
for SOCP relaxation, i.e., for a general network � we can choose an arbitrary spanning
tree )� and construct SOCP relaxation on )� .) Every link ( 9 , :) shares node 9 with a
link (8, 9) and node : with another link (: , ;). We introduce 5 decoupling variables to
decouple the five 2⇥2 variables:

-12 :=

G11 G12

G21 G22

�
, -

0
13 :=


D11 G13

G31 G33

�
, -

0
34 :=


D33 G34

G43 G44

�
, -

0
45 :=


D44 G45

G54 G55

�
, -

0
25 :=


D22 G25

G52 D55

�



10.1 Semidefinite relaxations of QCQP 509

with 5 decoupling constraints:

D11 = G11, D33 = G33, D44 = G44, D22 = G22, D55 = G55 (10.13a)

Then the set of 2⇥2 psd constraints in X+
�

are:

-12 ⌫ 0, -
0
13 ⌫ 0, -

0
34 ⌫ 0, -

0
45 ⌫ 0, -

0
25 ⌫ 0 (10.13b)

We can convert this into a semidefinite program in standard form, i.e., we will construct
the matrices ⇠ 0

;
in (10.12).

Define the 10⇥10 matrix

-
0 := diag

�
-12,- 013,- 034,- 045,- 025

�
Then (10.13b) is equivalent to - 0 ⌫ 0. To convert an original constraint tr(⇠;-� )  1;
into tr(⇠ 0

;
-
0)  1; we have (each 2 9: may be zero or nonzero, but all blank entries are

zero):

tr(⇠;-� )  1; , tr

2666666664

211 212 213

221 222 225

231 233 234

243 244 245

252 254 255

3777777775

2666666664

G11 G12 G13

G21 G22 G25

G31 G33 G34

G43 G44 G45

G52 G54 G55

3777777775
 1;

To construct ⇠ 0
;
, define

⇠12 :=

211 212

221 222

�
, ⇠

0
13 :=


0 213

231 233

�
, ⇠

0
34 :=


0 234

243 244

�
, ⇠

0
45 :=


0 245

254 255

�
, ⇠

0
25 :=


0 225

252 0

�

i.e.,⇠ 0
9:

has the same pattern as - 0
9:

with entries corresponding to decoupling variables
D 9 9 set to zero. Then

⇠
0
;

:= diag
�
⇠12,⇠ 013,⇠ 034,⇠ 045,⇠ 025

�
and

tr(⇠;-� )  1; () tr(⇠ 0
;
-
0)  1;

Finally to enforce the decoupling constraints (10.13a) define (4 9 is the unit vector of
size 10 with 1 in the 9 th place and 0 elsewhere)

⇠
0
11 := 414

T
1 � 434

T
3 , ⇠

0
33 := 444

T
4 � 454

T
5 , ⇠

0
44 := 464

T
6 � 474

T
7

⇠
0
22 := 424

T
2 � 494

T
9 , ⇠

0
55 := 484

T
8 � 4104

T
10

Then (10.13a) is equivalent to

tr(⇠ 0
A
-
0) = 0, A = 1,2,3,4,5

⇤



510 Semidefinite relaxations: BIM

10.1.7 Strong SOCP relaxations: mesh network

1 Strong SOCP relaxations are proposed and their relation with SOCP and SDP
relaxations are studied in [118].

2 SDP, SOCP and strong SOCP relaxations are applied to a two-stage robust AC
OPF problem, and column-and-constraint generation method of [119, 120] are
used to solve these relaxations.

3 Check out Lingling Fan’s recent paper: A sparse Convex AC OPF Solver and
Convex Iteration Implementation Based on 3-Node Cycles Minyue Ma, Lingling
Fan, Zhixin Miao, Bo Zeng, Hossein Ghassempour.

10.1.8 Proofs

Proof of Theorem 10.1: Rank-1 characterization.

We will prove (1) ) (2) ) (3) ) (1). If - is psd rank-1 then all its principal
submatrices are psd and of rank 1 (the submatrix cannot be of rank 0 because, by
assumption, - 9 9 > 0 for all 9 2 #). This implies that its submatrix -

2 (� ) is psd and
rank-1. Hence (1)) (2).

Fix a partial matrix -
2 (� ) that is psd and rank-1 and consider its submatrix -� .

Since each link ( 9 , :) 2 ⇢ is a clique of 2(�) the 2⇥2 principal submatrix -� ( 9 , :) is
psd and rank-1. Therefore to prove that (2)) (3), it su�ces to show that -� satisfies
the cycle condition (10.5). We now prove the following statement by induction on :: for
all cycles 2 := ( 91, . . . , 9: ) of length 3  :  = in 2(�), such that the lines ( 98 , 98+1) 2 2
with 9:+1 := 91, we have

:’
8=1

\ [-� ] 98 98+1
= 0 mod 2c (10.14)

For : = 3, a cycle 2 := ( 91, 92, 93) is a clique of 2(�) and therefore the following
principal submatrix of -

2 (� ) :

-
2 (� ) ( 91, 92, 93) :=

266664
[-
2 (� ) ] 91 91 [-

2 (� ) ] 91 92 [-
2 (� ) ] 91 93

[-
2 (� ) ] 92 91 [-

2 (� ) ] 92 92 [-
2 (� ) ] 92 93

[-
2 (� ) ] 93 91 [-

2 (� ) ] 93 92 [-
2 (� ) ] 93 93

377775
defined on the cycle is psd rank-1. Hence -

2 (� ) ( 91, 92, 93) = GGH for some G :=
(G1,G2,G3) 2 C3. Then

3’
8=1

\ [-� ] 98 98+1
= \

⇣
G1G

H
2

⌘
+ \

⇣
G2G

H
3

⌘
+ \

⇣
G3G

H
1

⌘
= 0 mod 2c

Suppose (10.14) holds for all cycles in 2(�) of length up to : > 3. Consider now a
cycle ( 91, . . . , 9:+1) of length : +1 in 2(�). Since 2(�) is chordal there is a chord, say,
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( 91, 9<) 2 ⇢ for some 1 << < :+1. Since both cycles ( 91, . . . , 9<) and ( 91, 9<, . . . , 9:+1)
satisfy (10.14) we have

<�1’
8=1

\ [-� ] 98 98+1
+ \ [-� ] 9< 91 = 0 mod 2c

\ [-� ] 91 9< +
:+1’
8=<

\ [-� ] 98 98+1
= 0 mod 2c

where 9:+2 := 91. Since -� is Hermitian, \ [-� ] 9< 91 = �\ [-� ] 91 9< and hence adding
the above equations yields

:+1’
8=1

\ [-� ] 98 98+1
= 0 mod 2c

proving (10.14) for : +1. This completes the proof of (2)) (3).

For (3)) (1), fix any partial matrix -� that is 2⇥2 psd rank-1 and satisfies the cycle
condition (10.5). We can construct a psd rank-1 completion - of -� , by constructing
a vector G 2 C= such that - = GGH, using the method (10.10) of Chapter 10.1.4 for
solution discovery, applied to each connected component of � if � is not connected,
with an arbitrary spanning tree for each connected component. This defines G 9 for all
9 2 {1, . . . ,=}. Clearly - = GGH is a psd rank-1 completion of -� . For uniqueness of -
see the proof of Corollary 10.2. This completes the proof. ⇤

Proof of Corollary 10.2: Uniqueness of rank-1 completion.

The proof of Theorem 10.1 shows that given a partial matrix -
2 (� ) 2 X2 (� ) , the

(unique) submatrix -� of -
2 (� ) has a psd rank-1 completion - 2 X. Therefore to

prove the corollary it su�ces to prove that any partial matrix -� 2 X� has a unique
psd rank-1 completion - 2 X. To this end fix an -� 2 X� and suppose there are two
psd rank-1 completions - := GGH and -̂ := ĜĜH in X. Since -� = -̂� we have

��
G 9

�� = q
[-� ] 9 9 =

��
Ĝ 9

�� , 9 2 #

and

\ 9 � \: = \ [-� ] 9: = \̂ 9 � \̂: , ( 9 , :) 2 ⇢

i.e., ⇠T
\ = ⇠T

\̂ where ⇠ is the |# |⇥ |⇢ | incidence matrix of the graph ⌧ := (# ,⇢):

⇠ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8

0 otherwise
, 9 2 # , ; 2 ⇢

This means that ⇠T �
\̂ � \

�
= 0. The cycle condition (10.5) in X� guarantees that there

is a solution for \̂ � \ when the graph � is not a tree. Since the graph � is connected,
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the null space of⇠T is span(1), and therefore, \̂ = \ +W1 for any W 2 R. Hence Ĝ = G4iW .
This implies that

-̂ = ĜĜ
H =

⇣
G4

iW

⌘ ⇣
G4

iW

⌘H
= -

i.e., the psd rank-1 completion is unique. ⇤

Proof of Theorem 10.4: Tightness of relaxations.

First V v X+ v X+
2 (� ) v X+

�
follows from Theorem 10.3 and the definitions of X+,

X
+
2 (� ) , X

+
�

(recall that by assumption the cost function ⇠ depends on + ,- ,-
2 (� ) only

through the submatrix -� ). Since 2(�) is chordal, [112, Theorem 7] implies that every
-
2 (� ) in X+

2 (� ) has a psd completion - in X+, i.e., X+
2 (� ) v X+. Hence X+ ' X+

2 (� ) .

Suppose � is a tree and consider any chordal extension 2(�). We need to show
that X+

�
v X+

2 (� ) , i.e., given any -� 2 X+
�

there is a -
2 (� ) 2 X+

2 (� ) with the same
cost. Since � is itself chordal, [112, Theorem 7] implies that -� has a psd completion
- in X+. The submatrix -

2 (� ) of - defined on 2(�) is the desired partial matrix in
X
+
2 (� ) with the same cost. This proves X+

�
v X+

2 (� ) and hence X+
�
' X+

2 (� ) for radial
networks. ⇤

10.2 Application to OPF

In this section we apply the results of Chapter 10.1 to single-phase OPF problems in the
bus injection model. In Chapter 10.2.1 we write OPF (9.16) as a standard QCQP but
expressed in terms of the partial matrix defined on the network graph⌧. Its semidefinite
relaxations then follow from (10.9). In Chapter 10.2.2 we define exact relaxation of
OPF. Su�cient conditions for exact relaxations of OPF for radial networks will be
studied in Chapters 10.3 and 10.4.

10.2.1 Semidefinite relaxations

Constraints.

Recall the undirected connected graph ⌧ = (# ,⇢) that models a power network with
# + 1 buses and " lines. Given a voltage vector + 2 V define the partial matrix
,⌧ :=,⌧ (+):

[,⌧] 9 9 := |+ 9 |2, 9 2 #; [,⌧] 9: := + 9+
H
:

=: [,⌧]H
: 9

, ( 9 , :) 2 ⇢
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Then the constraints in OPF (9.16) as a QCQP can be written in terms of the partial
matrix,⌧ :=,⌧ (+) as:

?
min
9
 tr

�
� 9,⌧

�
 ?

max
9

, 9 2 # (10.16a)

@
min
9
 tr

�
 9,⌧

�
 @

max
9

, 9 2 # (10.16b)

E
min
9
 tr

�
⇢ 9,⌧

�
 E

max
9

, 9 2 # (10.16c)

tr
�
.̂ 9:,⌧

�
 ✓

max
9:

, ( 9 , :) 2 ⇢ (10.16d)

tr
�
.̂: 9,⌧

�
 ✓

max
: 9

, ( 9 , :) 2 ⇢ (10.16e)

Cost function.

Common cost functions can also be expressed in terms of the partial matrix ,⌧ . For
example if the cost is a weighted sum of real generation power then

⇠ (,⌧) =
’
9:gens

2 9 Re(B 9 ) =
’
9:gens

2 9 tr
�
� 9,⌧

�

In particular the real line loss in the network is:

⇠ (,⌧) =
’
9

Re(B 9 ) =
’
9

tr
�
� 9,⌧

�

We present a less obvious example.

Example 10.3 (Cost function). Consider the problem of minimizing the total deviation
of squared voltage magnitudes from their squared nominal values 0 9 2 R

min
+ 2C#+1

’
9

⇣��
+ 9

��2� 0 9 ⌘2
s.t. + 2 V (10.17)

where the feasible set V is defined by quadratic constraints in terms of the partial
matrix,⌧: + 2 V if and only if

+
H
⇠;+ = tr (⇠;,⌧)  1; , ; = 1, . . . ,!

with some matrices ⇠; and real numbers 1; such that [⇠;] 9: = 0 if ( 9 , :) 8 ⇢ . Even
though the cost function is not a quadratic form in terms of,⌧ , show that the problem
can be equivalently expressed as a QCQP in terms of ,⌧ with additional variables
and constraints.

Solution. The cost function is
Õ
9

⇣��
+ 9

��4 � 20 9
��
+ 9

��2 + 0
2
9

⌘
. We can omit the constants

0
2
9

in the cost and hence (10.17) is equivalent to the following problem:

min
+ 2C#+1

’
9

⇣��
* 9

��2 � 20 9* 9
⌘

s. t. + 2 V, * 9 =
��
+ 9

��2 , 9 2 # (10.18a)

Let + :=
⇣
+ 9 , 9 2 #

⌘
2 C#+1, * :=

⇣
* 9 , 9 2 #

⌘
2 C#+1, 0 :=

⇣
0 9 , 9 2 #

⌘
, and 4 9 2
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{0,1}#+1 with a single 1 at the 9 th entry and 0 elsewhere. In terms of the variable
G := (+ ,*) 2 C2(#+1) , we rewrite (10.18a) as an inhomogeneous QCQP of the form:

min
G2C2(#+1)

G
H
⇠0G +

⇣
2

H
0 G + GH

20

⌘
s. t. + 2 V, G

H
⇠ 9G +

⇣
2

H
9
G + GH

2 9

⌘
= 0, 9 2 #

(10.18b)

Indeed’
9

⇣��
* 9

��2 � 20 9* 9
⌘

= *
�

* �
⇣
0
�

* +*� 0
⌘

��
+ 9

��2 � * 9 = +
H
⇣
4 94

H
9

⌘
+ � 1

2

⇣
4

H
9
* 9 +*H

9
4 9

⌘
, 9 2 #

since 0 9 and * 9 =
��
+ 9

��2 are real numbers. Therefore (10.18a) is an inhomogeneous
QCQP of the form (10.18b) with

⇠0 :=

0 0
0 I#+1

�
, 20 :=


0
�0

�

⇠ 9 :=

4 94

H
9

0
0 0

�
, 2 9 :=


0
� 1

2 4 9

�
, 9 2 #

where I#+1 is the identity matrix of size # + 1. Since the cost function and the new
constraints depends on+ only through |+ 9 |2, in particular, it does not depend on+ 9+H

:
,

9 < : , the problem (10.18b) depends only on,⌧ . Indeed,⌧ appears only in the term

+
H
⇣
4 94

H
9

⌘
+ = tr

⇣⇣
4 94

H
9

⌘
++

H
⌘
= tr

⇣⇣
4 94

H
9

⌘
,⌧

⌘
.

As explained in Chapter 9.1.3, the inhomogeneous QCQP (10.18b) is equivalent to
the following homogeneous QCQP with an auxiliary scalar variable C 2 C:

min
G2C2(#+1) , C 2C

⇥
G

H
C
H⇤ 

⇠0 20

2
H
0 0

� 
G

C

�

s. t. + 2 V⇥
G

H
C
H⇤ 

⇠ 9 2 9

2
H
9

0

� 
G

C

�
= 0, 9 2 #

⇥
G

H
C
H⇤ 

0 0
0 1

� 
G

C

�
= 1

in the sense that, if (Gopt, Copt) 2C2#+3 is optimal for the homogeneous QCQP, then their
product Gopt

C
opt = Gopt

4
i\

opt
is optimal for the inhomogeneous problem (10.18b). ⇤

Henceforth we will abuse notation and use ⇠ to denote the cost function both as a
function ⇠ (+) of the voltage vector + 2 C#+1 and as a function ⇠ (,⌧) of a partial
matrix,⌧ .
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OPF and relaxations.

Recall the OPF problem (9.16) as a QCQP, reproduced here

min
+

⇠ (+) s.t. + 2 V :=
�
+ 2 C#+1 | +H

⇠;+  1; , ; = 1, . . . ,!
 

(10.19)

where the constraint matrices⇠; are given in (10.16). To avoid triviality we will assume
unless otherwise specified that OPF (10.19) is feasible. Define the set of Hermitian
matrices:

W := {, 2 S#+1 | , satisfies (10.16) with,⌧ replaced by, , (10.4a) }

Fix any chordal extension 2(⌧) of ⌧ and define the set of Hermitian partial matrices
,
2 (⌧) :

W
2 (⌧) := {,

2 (⌧) | ,2 (⌧) satisfies (10.16) with,⌧ replaced by,
2 (⌧) , (10.4b) }

Finally define the set of Hermitian partial matrices,⌧:

W⌧ := {,⌧ |,⌧ satisfies (10.16)(10.4c)(10.5) }

Then Theorem 10.3 implies that OPF (10.19) is equivalent to

min
,

⇠ (,⌧) s.t. , 2 Ŵ

where Ŵ is any one of the equivalent feasible sets W,W
2 (⌧) ,W⌧ . Its semidefinite

relaxation relaxes Ŵ to semidefinite cones:

W
+ := {, 2 S#+1 | ,⌧ satisfies (10.16), , ⌫ 0 }

W
+
2 (⌧) := {,

2 (⌧) | ,⌧ satisfies (10.16), ,
2 (⌧) ⌫ 0 }

W
+
⌧

:= {,⌧ |,⌧ satisfies (10.16), ,⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢ }

i.e., the semidefinite relaxations of OPF (10.19) is:

min
,

⇠ (,⌧) s.t. , 2 Ŵ+

where Ŵ+ is any one of the feasible setsW+,W+
2 (⌧) ,W

+
⌧

. Explicitly, these relaxations
are (c.f. (10.9)):
OPF-sdp:

min
, 2S#+1

⇠ (,⌧) s.t. tr (⇠;,)  1; , ; = 1, . . . ,!, , ⌫ 0 (10.20a)

OPF-ch:

min
,
2 (⌧)

⇠ (,⌧) s.t. tr
�
⇠;,2 (⌧)

�
 1; , ; = 1, . . . ,!, ,

2 (⌧) ⌫ 0

(10.20b)

OPF-socp:

min
,⌧

⇠ (,⌧) s.t. tr (⇠;,⌧)  1; , ; = 1, . . . ,!, ,⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢

(10.20c)
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where⇠; are given in (10.16). Since OPF (9.16) as a QCQP does not require assumption
C4.1 that HB

9:
= HB

: 9
, neither does its semidefinite relaxations (10.20). They can therefore

accommodate single-phase transformers that have complex turns ratios.

As discussed in Remark 10.2, if the network graph ⌧ is a tree, then we should solve
OPF-socp to compute the partial matrix ,⌧ because it will be as tight as OPF-sdp
that computes the entire matrix , , but much simpler computationally. Otherwise we
can solve OPF-ch to compute,

2 (⌧) corresponding to a chordal extension 2(⌧) of ⌧
which is usually much simpler than OPF-sdp for large sparse network but as tight.

Example 10.4 (Two-bus network). For the two-bus network in Figure 10.2, suppose
the line is a series admittance H = 6+ i1 and the load (?2,@2) is given. Write OPF and
its relaxation as QCCPs assuming ⇠ is the cost matrix and line limits are neglected.

V2V1

y
( p1 , q1)

( p2 , q2 )

Figure 10.2 Example 10.4.

Solution. The complex form power flow solution is (from Chapter 4.3.1):

B1 = H̄

⇣
|+1 |2�+1+̄2

⌘
, B2 = H̄

⇣
|+2 |2�+2+̄1

⌘
Therefore the admittance matrix and the associated .1,.2 are:

. :=

H �H
�H H

�
, .1 := 414

T
1. =


H �H
0 0

�
, .2 := 424

T
2. =


0 0
�H H

�

The matrices in (10.16) are:

�1 :=
1
2

⇣
.

H
1 +.1

⌘
=


6 �H/2
�H̄/2 0

�
,  1 :=

1
2i

⇣
.

H
1 �.1

⌘
=


�1 H/(2i)
�H̄/(2i) 0

�

�2 :=
1
2

⇣
.

H
2 +.2

⌘
=


0 �H̄/2
�H/2 6

�
,  2 :=

1
2i

⇣
.

H
2 �.2

⌘
=


0 �H̄/(2i)

H/(2i) �1

�

�1 = 414
T
1 and �2 = 424

T
2 . Then OPF is:

min
+ 2C2

+
H
⇠+ s.t. ?

min
1  ?1 = +

H�1+  ?
max
1 , @

min
1  @1 = +

H 1+  @
max
1

E
min
1  |+1 |2 = +

H
�1+  E

max
1 , E

min
2  |+2 |2 = +

H
�2+  E

max
2

+
H�2+ = ?2, +

H 2+ = @2
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Its SDP relaxation is:

min
, 2S2

tr(⇠,) s.t. ?
min
1  tr(�1,)  ?

max
1 , @

min
1  tr( 1,)  @

max
1

E
min
1  tr(�1,)  E

max
1 , E

min
2  tr(�2,)  E

max
2

tr(�2,) = ?2, tr( 2,) = @2, , ⌫ 0

⇤

10.2.2 Exact relaxation: definition

Consider the single-phase OPF (10.19) as a standard QCQP and its semidefinite relax-
ations (10.20).

Definition 10.2 (Strong exactness). We say that

1 OPF-sdp (10.20a) is exact if every optimal solution, sdp of OPF-sdp is psd rank-1;
2 OPF-ch (10.20b) is exact if every optimal solution,ch

2 (⌧) of OPF-ch is psd rank-1,

i.e., the principal submatrices ,ch
2 (⌧) (@) of ,ch

2 (⌧) are psd rank-1 for all maximal
cliques @ of the chordal extension 2(⌧) of graph ⌧;

3 OPF-socp (10.20c) is exact if every optimal solution, socp
⌧

of OPF-socp
• is 2⇥2 psd rank-1, i.e., the 2⇥2 principal submatrices, socp

⌧
( 9 , :) are psd rank-1

for all ( 9 , :) 2 ⇢ ; and
• satisfies the cycle condition (10.5).

Exactness does not guarantee the existence of an optimal solution. If a relaxation is
infeasible then the original OPF is also infeasible. To recover an optimal solution +opt

of OPF (10.19) from an optimal solution, sdp or,ch
2 (⌧) or, socp

⌧
of its relaxations, see

Chapter 10.1.4. The strong exactness notion in Definition 10.2 is convenient because
it ensures that any algorithm that solves an exact relaxation always produces a globally
optimal solution to the OPF problem. For a weaker notion of exactness that requires at
least one (not necessarily all) optimal solution of the relaxation, if exists, be feasible
and therefore optimal for the original nonconvex OPF problem, an algorithm may not
be guaranteed to produce an optimal solution of OPF by solving its relaxation. This
strong notion of exactness is however more stringent than necessary under the su�cient
exactness conditions of Chapters 10.3 and 10.4 for radial networks. See Remark 10.3
after Theorem 10.6 and Remark 10.4 after Theorem 10.9 (and Remarks 11.1 and 11.3
for BFM). These conditions guarantee that an optimal solution to OPF can always be
recovered from any optimal solution of OPF-socp for radial networks, even when the
OPF-socp is not exact under Definition 10.2.

In the rest of this chapter we present su�cient conditions for exact semidefinite
relaxations when the network is radial, i.e., the network graph is a tree. We restrict our
discussion to single-phase networks though exactness conditions exist in the literature
for three-phase radial networks.
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10.3 Exactness condition: linear separability

Theorem 10.4 implies that, for a single-phase radial network whose graph ⌧ is a
tree, if SOCP relaxation is exact then SDP and chordal relaxations are also exact. We
hence focus on the exactness of OPF-socp (10.20c). Since the cycle condition (10.5) is
vacuous for radial networks, OPF-socp (10.20c) is exact if all of its optimal solutions
are 2⇥2 rank-1. To avoid triviality we assume OPF (10.19) is feasible.

We will first present a general result on the exactness of the SOCP relaxation of
general QCQP on a tree graph ⌧ and then apply it to OPF-socp (10.20c) for single-
phase radial networks.

10.3.1 Su�cient condition for QCQP

Fix an undirected graph ⌧ = (# ,⇢) where |# | = = and ⇢ ✓ # ⇥ # . Fix Hermitian
matrices ⇠; 2 S=, ; = 0, . . . ,!, defined on ⌧, i.e., [⇠;] 9: = 0 if ( 9 , :) 8 ⇢ . Consider
QCQP:

⇠
opt := min

G2C=
G
�

⇠0G s.t. G
�

⇠;G  1; , ; = 1, . . . ,! (10.21)

where 1; 2 R, ; = 1, . . . ,!, and its SOCP relaxation where the optimization variable
ranges over Hermitian partial matrices -⌧:

⇠
socp := min

-⌧

tr (⇠0-⌧) s.t. tr (⇠;-⌧)  1; , ; = 1, . . . ,! (10.22a)

-⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢ (10.22b)

The following result can be regarded as an extension of [121] on the SOCP relaxation
of QCQP from the real domain to the complex domain. Consider: 2

. C10.1: For each link ( 9 , :) 2 ⇢ there exists an U 9: such that \ [⇠;] 9: 2 [U8 9 ,U8 9 +c]
for all ; = 0, . . . ,!.

. C10.2: The cost matrix ⇠0 is positive definite.

Condition C10.1 is illustrated in Figure 10.3. Let ⇠opt and ⇠socp denote the optimal
values of QCQP (10.21) and SOCP (10.22) respectively.

Theorem 10.6 (Linear separability). Suppose ⌧ is a tree and C10.1 holds. Then
⇠

opt =⇠socp and an optimal solution Gopt 2 C= of QCQP (10.21) can be recovered from
every optimal solution -socp

⌧
of SOCP (10.22).

Remark 10.3 (Strong exactness). The SOCP relaxation may not be exact in the strong
sense of Definition 10.2, i.e., some optimal solutions of (10.22) may be 2⇥ 2 psd

2 All angles should be interpreted as “mod 2c”, i.e., projected onto (�c, c ].
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but not 2⇥ 2 rank-1, but Theorem 10.6 says that C10.1 guarantees that an optimal
solution of QCQP (10.21) can always be recovered from any optimal solution Gsocp

of its SOCP relaxation (10.22) whether or not Gsocp is 2⇥ 2 rank-1. The proof of the
theorem prescribes a simple procedure to do that; see Chapter 10.3.3. ⇤

If the objective function is strictly convex however then the optimal solution is
unique and SOCP (10.22) is indeed exact in the sense of Definition 10.2.

Corollary 10.7. Suppose ⌧ is a tree and C10.1, C10.2 hold. Then SOCP (10.22) is
exact.

10.3.2 Application to OPF

We now apply Theorem 10.6 to our OPF problem (10.19) where the constraint matrices
⇠; are given in (10.16). Since the formulation does not require assumption HB

9:
= HB

: 9

(assumption C4.1) and allows nonzero shunt admittances (H<
9:

, H<
: 9
), and can therefore

accommodate single-phase transformers that have complex turns ratios.

To simplify illustration we ignore the branch constraints (10.16d)(10.16e), which
reduces (10.19) to:

min
G2C=

+
H
⇠0+ s.t. +

H� 9+  ?max
9

, +
H (�� 9 )+  �?min

9
, 9 2 # (10.23a)

+
H 9+  @max

9
, +

H (� 9 )+  �@min
9

, 9 2 # (10.23b)

+
H
⇢ 9+  Emax

9
, +

H (�⇢ 9 )+  �Emin
9

, 9 2 # (10.23c)

for some Hermitian matrices ⇠0,� 9 , 9 ,⇢ 9 where 9 2 # . Condition C10.1 depends
only on the o�-diagonal entries of ⇠0, � 9 ,  9 (⇢ 9 are diagonal matrices). It implies
a simple pattern on the power injection constraints (10.23a)(10.23b). Write the series
admittances in terms of its real and imaginary parts HB

9:
=: 6B

9:
+ i1

B

9:
with 6

B

9:
>

0,1B
9:

< 0. (Note that C10.1 does not depend on the shunt admittances
⇣
H
<

9:
, H<
: 9

⌘
.)

Then we have

[�: ]8 9 =

8>>>><
>>>>:

1
2.8 9 = � 1

2 (6B8 9 + i1
B

8 9
) if : = 8

1
2.

H
8 9

= � 1
2 (6B8 9 � i1

B

8 9
) if : = 9

0 if : 8 {8, 9}

[ : ]8 9 =

8>>>><
>>>>:

�1
2i
.8 9 = 1

2 (1B8 9 � i6
B

8 9
) if : = 8

1
2i
.

H
8 9

= 1
2 (1B8 9 + i6

B

8 9
) if : = 9

0 if : 8 {8, 9}
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Hence for each line ( 9 , :) 2 ⇢ the relevant angles for C10.1 are those of [⇠0] 9: and

⇥
� 9

⇤
9:

= �1
2

⇣
6
B

9:
+ i1

B

9:

⌘
, [�: ] 9: = �1

2

⇣
6
B

9:
� i1

B

9:

⌘
⇥
 9

⇤
9:

=
1
2

⇣
1
B

9:
� i6

B

9:

⌘
, [ : ] 9: =

1
2

⇣
1
B

9:
+ i6

B

9:

⌘

as well as the angles of �[� 9 ] 9: ,�[�: ] 9: and �[ 9 ] 9: ,�[ : ] 9: . These quantities
are shown in Figure 10.3 with their magnitudes normalized to a common value and
explained in the caption of the figure.

Im
[Φj] jk

[Ψk] jk
[C0] jk

−[Φk] jk

−[Ψj] jk

[Φk] jk

[Ψj] jk

−[Φj] jk

−[Ψk] jk

Re

upper bounds on
pj , qj , pk , qk

lower bounds on
pj , qj , pk , qk

αjk

Figure 10.3 Condition C10.1’ for OPF on a line ( 9 , :) 2 ⇢ . The quantities
( [� 9 ] 9: , [�

:
]
9:

, [ 9 ] 9: , [ 
:
]
9:
) on the left-half plane correspond to finite upper bounds on

(? 9 , ?: ,@ 9 ,@: ) in (10.23a)(10.23b); (�[� 9 ] 9: ,�[�
:
]
9:

,�[ 9 ] 9: ,�[ 
:
]
9:
) on the

right-half plane correspond to finite lower bounds on (? 9 , ?: ,@ 9 ,@: ).

Condition C10.1 applied to OPF (10.23) takes the following form (see Figure 10.3):

C10.1’: For each link ( 9 , :) 2 ⇢ there is a line in the complex plane through the
origin such that [⇠0] 9: as well as those ±[�8] 9: and ±[ 8] 9: corresponding to
finite lower or upper bounds on (?8 ,@8), for 8 = 9 , : , are all on one side of the line,
possibly on the line itself.

Let ⇠opt and ⇠socp denote the optimal values of OPF and OPF-socp respectively.

Corollary 10.8. Suppose ⌧ is a tree and C10.1’ holds.

1 ⇠
opt = ⇠socp. Moreover an optimal solution +opt of OPF (10.23) can be recovered

from every optimal solution -socp
⌧

of OPF-socp.
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2 If, in addition, C10.2 holds then OPF-socp is exact.

It is clear from Figure 10.3 that condition C10.1’ cannot be satisfied if there is a line
where both the real and reactive power injections at both ends are both lower and upper
bounded (8 combinations as shown in the figure). C10.1’ requires that some of them
be unconstrained. When the cost function is convex, this is the same as requiring that
the constraints be inactive at optimality (see Exercise 10.3). The result proved in [122]
also includes constraints on real branch power flows and line losses. Corollary 10.8
includes several su�cient conditions in the literature for exact relaxation as special
cases. Referring to Figure 10.3, the load over-satisfaction condition in [123, 124]
corresponds to the red line in the figure being the Im-axis that excludes all quantities
on the right-half plane. The su�cient condition in [125, Theorem 2] corresponds to
the red line in the figure that allows a finite lower bound on the real power at one end
of the line, i.e., ? 9 or ?: but not both, and no finite lower bounds on reactive powers
@ 9 and @: .

10.3.3 Proofs

We now prove Theorem 10.6 and Corollary 10.7, following [126]. It is equivalent to
the argument of [127] and simpler than the original duality proof in [122].

Proof of Theorem 10.6.

Fix any partial matrix -⌧ that is feasible for SOCP (10.22). We will construct an
G 2 C= that satisfies

G
H
⇠;G  tr ⇠;-⌧ , ; = 0,1, . . . ,!

i.e., G is feasible for QCQP (10.21) and has an equal or lower cost than -⌧ . Since the
minimum cost of QCQP is lower bounded by that of its SOCP relaxation this means
that an optimal solution G 2 C= of QCQP (10.21) can be obtained from every optimal
solution -⌧ of SOCP (10.22), whether or not (10.22) is exact in the sense of Definition
10.2.

Now -⌧ ( 9 , :) ⌫ 0 for every ( 9 , :) 2 ⇢ implies that [-⌧] 9 9 � 0 for all 9 2 # and

[-⌧] 9 9 [-⌧]:: �
��[-⌧] 9: ��2 , ( 9 , :) 2 ⇢

Case 1: -⌧ is 2⇥2 psd rank-1. Suppose [-⌧] 9 9 [-⌧]:: = | [-⌧] 9: |2 for all ( 9 , :) 2 ⇢ .
We will construct an G 2C= that is feasible for QCQP and has an equal cost. To construct
such an G let |G 9 | :=

p
[-⌧] 9 9 , 9 2 # . Recall that ⌧ is a (connected) tree with node 1

as its root. Let \G1 := 0. Traversing the tree starting from the root the angles can be
successively assigned: given \G 9 at one end of a link ( 9 , :), let \G: := \G 9 � \[-⌧] 9:
at the other end. Given any -⌧ which is 2⇥ 2 psd rank-1, angles \G 9 can always be
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consistently assigned if and only if⌧ is a tree. (If⌧ contains cycles then -⌧ must also
satisfy the cycle condition according to Theorem 10.1).

With this G constructed from -⌧ we have, for ; = 0,1, . . . ,!,

G
H
⇠;G =

’
9,:

[⇠;] 9: GH
9
G: =

’
9,:

[⇠;] 9: |G 9 | |G: | 4i(\G:�\G 9) =
’
9,:

[⇠;] 9:
��[-⌧] 9: �� 4�i\ [-⌧ ] 9: = tr (⇠;-⌧)

where the last equality follows from tr(⇠;-⌧) =
Õ
9,: [⇠;] 9: [-⌧]H

9:
and that -⌧ is a

Hermitian partial matrix. Hence G is feasible for QCQP (10.21) and has the same cost
as -⌧ .

Case 2: -⌧ is 2⇥2 psd but not 2⇥2 rank-1. Suppose [-⌧] 9 9 [-⌧]:: > | [-⌧] 9: |2 for
some ( 9 , :). We will

1 Construct an -̂⌧ that is 2⇥2 psd rank-1.
2 Show that C10.1 implies

tr ⇠; -̂⌧  tr ⇠;-⌧ , ; = 0,1, . . . ,! (10.24)

Then an G 2 C= can be constructed from -̂⌧ as in Case 1 and step 2 ensures that for
; = 0,1, . . . ,!

G
H
⇠;G = tr ⇠; -̂⌧  tr ⇠;-⌧

i.e., G is feasible for QCQP (10.21) and has an equal or lower cost than -⌧ .

To construct such an -̂⌧ let [-̂⌧] 9 9 = [-⌧] 9 9 , 9 2 # . For each line ( 9 , :) 2 ⇢ let

[-̂⌧] 9: � [-⌧] 9: =: A 9:4�i( c2 �U9:)

for some A 9: > 0 to be determined and U 9: in condition C10.1. For -̂⌧ to be 2⇥ 2

psd rank-1 we need to choose A 9: > 0 such that [-̂⌧] 9 9 [-̂⌧]:: =
��[-̂⌧] 9: ��2 for all

( 9 , :) 2 ⇢ , i.e.,

[-⌧] 9 9 [-⌧]:: =
���[-⌧] 9: + A 9:4�i( c2 �U9:)

���2
or

A
2
9:
+21A 9: � 2 = 0

where

1 := Re
⇣
[-⌧] 9: 4i( c2 �U9:)

⌘
, 2 := [-⌧] 9 9 [-⌧]:: �

��[-⌧] 9: ��2 > 0

Therefore setting A 9: :=
p
1

2 + 2� 1 > 0 yields an -̂⌧ that is 2⇥2 psd rank-1.

To show that -̂⌧ is feasible for SOCP (10.22) and has an equal or lower cost than
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-⌧ , we have for ; = 0,1, . . . ,!,

tr ⇠; -̂⌧ � tr ⇠;-⌧ = tr
�
⇠;

�
-̂⌧ � -⌧

� �
=

’
( 9,:)2⇢

[⇠;] 9:
�
[-̂⌧] 9: � [-⌧] 9:

�H

= 2
’

9<:,( 9,:)2⇢
Re

⇣
[⇠;] 9: · A 9: 4i( c2 �U9:)

⌘

= 2
’
9<:

( 9,:)2⇢

��[⇠;] 9: �� A 9: cos
⇣
\[⇠;] 9: +

c

2
�U 9:

⌘
 0

where the last inequality follows because assumption C10.1 implies

c

2
 \[⇠;] 9: + c

2 �U 9: 
3c
2

and therefore cos
�
\[⇠;] 9: + c

2 �U 9:
�
 0. This completes the proof. ⇤

Proof of Corollary 10.7.

C10.2 implies that the objective function of SOCP (10.22) is strictly convex and hence
has a unique optimal solution. Suppose -⌧ is an optimal solution of SOCP (10.22)
but [-⌧] 9 9 [-⌧]:: > | [-⌧] 9: |2 for some ( 9 , :), i.e., -⌧ is 2⇥2 psd but not 2⇥2 psd
rank-1. Then the proof for Theorem 10.6 constructs another feasible solution -̂⌧ with
equal cost. This contradicts the uniqueness of the optimal solution of SOCP (10.22),
and hence -⌧ must be 2⇥2 psd rank-1. ⇤

10.4 Exactness condition: small angle di�erences

The su�cient conditions in [125, 128, 129] require that the voltage angle di�erence
across each line be small. We explain the intuition using a result in [128] for an
OPF problem under the following simplifying assumptions. We assume HB

9:
= HB

: 9

(assumption 4.1) and H<
9:

= H<
: 9

:= 0 for all lines ( 9 , :). We use the polar form power
flow equation (4.27) of Chapter 4.3.2, instead of the complex form that we have
been using in the previous sections. We ignore reactive power and assume voltage
magnitudes |+ 9 | are fixed. Let + 9 = |+ 9 | 4i\ 9 . Then the optimization over (B,+) in OPF
reduces to an optimization over (?,\) as well as real line flows % as an auxiliary
variable. Under these assumptions, as long as the voltage angle di�erence is small,
the power flow solutions form a locally convex surface that is the Pareto front of its
relaxation. This implies that the relaxation is exact. The intuition extends to cases where
some of these assumptions are relaxed though the clean geometric insight becomes
more obscure.
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10.4.1 Su�cient condition

Let HB
9:
= HB

: 9
=: 6 9: + i1 9: with 6 9: > 0,1 9: < 0 for all lines ( 9 , :). Consider

min
?,%,\

⇠ (?) (10.25a)

s.t.?min
9
 ? 9  ?max

9
, 9 2 # (10.25b)

\
min
9:
 \ 9:  \max

9:
, ( 9 , :) 2 ⇢ (10.25c)

? 9 =
’
:::⇠ 9

% 9: , 9 2 # (10.25d)

% 9: = |+ 9 |26 9: � |+ 9 | |+: |6 9: cos\ 9: � |+ 9 | |+: |1 9: sin\ 9: , ( 9 , :) 2 ⇢(10.25e)

where \ 9: := \ 9 �\: are the voltage angle di�erences across lines ( 9 , :). The constraint
(10.25c) on \ 9: is equivalent to a limit on the apparent line power .

We comment on the constraint (10.25c) on angles \ 9: . When the voltage magnitudes
|+8 | are fixed, constraints on real power flows, branch currents, line losses, as well as
stability constraints can all be represented in terms of \ 9: . Indeed a line flow constraint
of the form |% 9: |  %max

9:
becomes a constraint on \ 9: using the expression for % 9:

in (10.25e) (or see Exercise 9.8). A current constraint of the form |� 9: |  �max
9:

is

also a constraint on \ 9: since |� 9: |2 = |H 9: | ( |+ 9 |2 + |+: |2 � 2|+ 9+: | cos\ 9: ). The line
loss over ( 9 , :) 2 ⇢ is equal to % 9: + %: 9 which is again a function of \ 9: . Stability
typically requires |\ 9: | to stay within a small threshold. Therefore given constraints on
branch power or current flows, losses, and stability, appropriate bounds \min

9:
,\max
9:

can
be determined to enforce these constraints, assuming |+ 9 | are fixed.

We can eliminate the branch flows % 9: and angles \ 9: from (10.25). Since |+ 9 |, 9 2
# , are fixed we assume without loss of generality that |+ 9 | = 1 pu. Define the injection
region

P\:=

8>><
>>:
? 2 R=

������? 9 =
’
:::⇠ 9

�
6 9: �6 9: cos\ 9: � 1 9: sin\ 9:

�
, 9 2 # , \min

9:
 \ 9:  \max

9:
, ( 9 , :) 2 ⇢

9>>=
>>;

Let P? := {? 2 R= | ?min
9
 ? 9  ?max

9
, 9 2 #}. Then (10.25) is:

OPF:

min
?

⇠ (?) subject to ? 2 P\ \P? (10.26)

This problem is hard because the set P\ is nonconvex. To avoid triviality we assume
OPF (10.26) is feasible. For a set � let conv � denote the convex hull of �. Consider
the following problem that relaxes the nonconvex feasible set P\ \P? of (10.26) to a
convex superset:
OPF-socp:

min
?

⇠ (?) s.t. ? 2 conv(P\ ) \ P? (10.27)
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We will show below that (10.27) is indeed an SOCP. It is said to be exact if every
optimal solution of (10.27) lies in P\ \P? and is therefore also optimal for (10.26).

We say that a point G 2 � ✓ R= is a Pareto optimal point in � if there does not exist
another G 0 2 � such that G 0  G with at least one strictly smaller component G 0

9
< G 9 .

The Pareto front of �, denoted by O(�), is the set of all Pareto optimal points in �.
The significance of O(�) is that, for any increasing function, its minimizer, if exists,
is necessarily in O(�) whether � is convex or not. If � is convex then Gopt is a Pareto
optimal point inO(�) if and only if there is a nonzero vector 2 := (21, . . . ,2=) � 0 such
that Gopt is a minimizer of 2T

G over � [57, pp.179–180].

Assume

. C10.3: For all ( 9 , :) 2 ⇢ , tan�1 1 9:
6 9:

< \
min
9:
 \max

9:
< tan�1 �1 9:

6 9:

.
. C10.4: ⇠ (?) is strictly increasing in each ? 9 .

The following result, proved in [125, 128, 129] says that (10.27) is exact provided \ 9:
are suitably bounded.

Theorem 10.9. Suppose ⌧ is a tree and C10.3–C10.4 hold.

1 P\ \P? = O(conv(P\ ) \ P?).
2 The problem (10.27) is equivalent to (i.e., can be reformulated as) an SOCP.

Moreover it is exact.

Remark 10.4 (Strong exactness). Condition C10.4 is needed to ensure that every opti-
mal solution of OPF-socp (10.27) is optimal for OPF (10.26). If⇠ (?) is nondecreasing
but not strictly increasing in all ? 9 , then P\ \P? ✓ O(conv(P\ ) \ P?) and OPF-socp
may not be exact according to our definition. Even in that case it is possible to recover
an optimal solution of OPF from any optimal solution of OPF-socp (see Exercise
10.9). ⇤

10.4.2 Proof: 2-bus network

We now illustrate the geometric insight by proving the theorem for the case of a single
line (see [128] for proof for a tree network).

Proof of Theorem 10.9: 2-bus network.

Consider two buses 9 and : connected by a line with admittance HB
9:
= HB

: 9
= 6 9: + i1 9:

with 6 9: > 0,1 9: < 0. Recall that we assume voltage magnitudes |+ 9 | = 1 pu are fixed
for buses 9 = 1,2, zero charging admittances, and we ignore reactive powers. Since
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? 9 = % 9: and ?: = %: 9 we will work with % := (% 9: ,%: 9 ). Then (the power flow
equation (4.27a) in polar form)

% 9: := % 9: (\ 9: ) := 6 9: �6 9: cos\ 9: � 1 9: sin\ 9:

%: 9 := %: 9 (\ 9: ) := 6 9: �6 9: cos\ 9: + 1 9: sin\ 9:

where \ 9: := \ 9 � \: , or in vector form

%�6 9:1 = �

cos\ 9:
sin\ 9:

�
(10.28)

where 1 := [1 1]T and � is an invertible matrix (� is not necessarily negative definite
because it is not symmetric, but ��T is positive definite since � is nonsingular):

� :=

�6 9: �1 9:
�6 9: 1 9:

�

The proof will proceed in four steps:

1 We show that % traces out an ellipse in R2 as \ 9: ranges over [�c,c]. Since the
feasible set is a subset of ellipse, it is nonconvex.

2 We show that condition C10.3 restricts the feasible set to the lower half of the
ellipse.

3 We show that condition C10.4 implies that the Pareto front of the feasible set of
the relaxed problem (10.27) coincides with the feasible set. This implies that the
relaxation is exact.

4 Finally we reformulate the relaxation (10.27) as an SOCP.

Step 1: % that satisfies (10.28) is an ellipse. In general the set of points G 2 R: that
satisfy

(G� 2)T
" (G� 2) =

���"1/2 (G� 2)
���2

2
= 1

is an ellipse if 2 2R= and" � 0 is a real (symmetric) positive definite matrix. The center
of the ellipsoid is 2 and the : principal axes are the : eigenvectors of " (see Exercise
10.4). To see that % describes an ellipse, write E := [cos\ 9: sin\ 9: ]T = ��1 �

%�6 9:1
�
.

Hence kEk22 = 1, yielding

(%�6 9:1)T
⇣
��

T
⌘�1

(%�6 9:1) = 1 (10.29)

As noted above, ��T is positive definite, implying that % is an ellipse centered at
6 9:1. From (10.28), the ellipse % passes through the origin when \ 9: = 0, as shown in
Figures 10.4. Since the feasible set is a subset of the ellipse % (without the interior),
it is nonconvex.

Step 2: condition C10.3 restricts the feasible set to the lower half of the ellipse. Let
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Pkj

Pjk

−√2̄bjk

√2̄gjk

�m
jk

in

�m
kj

in

pareto 
front

Figure 10.4 The feasible set of OPF (10.26) for the two-bus network is a subset of an ellipse
without the interior, hence nonconvex. OPF-socp (10.27) includes the interior of the ellipse and
is hence convex. If the cost function ⇠ is strictly increasing in (%

9:
,%
: 9
) then the Pareto front

of the SOCP feasible set will lie on the lower part of the ellipse, O(P\ ) = P\ , and hence
OPF-socp is exact. The points % := (%

9:
(\
9:
),%

: 9
(\
: 9
)) = 0 when \

9:
= 0, %

9:
= cmin

9:
when

\
9:

= \min
9:

, and %
: 9

= cmin
: 9

when \
9:

= \min
: 9

.

c
min
9:

denote the minimum % 9: (\ 9: ) and cmin
: 9

the minimum %: 9 (\ 9: ) on the ellipse as
shown in the figure. They are attained when \ 9: takes the values

\
min
9:

:= tan�1 1 9:

6 9:

and \
min
: 9

:= tan�1 �1 9:
6 9:

respectively (Exercise 10.7). The condition \min
9:
 \ 9:  \min

: 9
restricts %(\ 9: ) to the

darkened segment of the ellipse in Figures 10.4. Recall the sets

P\ := { ? | ? = %, % satisfies (10.28) for \min
9:
 \ 9:  \max

9:
}, P? := {? | ?min  ?  ?max}

and the feasible set P\ \P? of OPF (10.26). Condition C10.3 ensures \min
9:
 \ 9:  \min

: 9

and hence restricts both P\ and the feasible set P\ \P? to the lower half of the ellipse.

The implication is that, under condition C10.4 that the cost function ⇠ is strictly
increasing in the injections (? 9 , ?: ) = (% 9: ,%: 9 ), the nonconvex feasible sets P\ and
P\ \P? coincide with the Parento fronts of their respectively convex hulls, i.e.,

P\ = O(conv P\ ), P\ \P? = O(conv(P\ \P?)) (10.30)

Step 3: condition C10.4 implies that P\ \P? = O(conv(P\ ) \P?). Unfortunately the
convex hull conv(P\ \P?) in (10.30) of the intersection of two sets generally does not
have a simple algebraic representation. The feasible set conv(P\ )\P? of the relaxation
OPF-socp (10.27) is the intersection of two convex hulls and is more amenable to
computation. It is however a superset of conv(P\ \ P?). To illustrate their relation
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denote the points %(\ 9: ) :=
�
% 9: (\ 9: ),%: 9 (\ 9: )

�
attained at \min

9:
and \max

9:
by⇣

c
min
9:

,cmin
: 9

⌘
:= %(\min

9:
),

⇣
c

max
9:

,cmax
: 9

⌘
:= %(\max

9:
) (10.31)

The set P\ is the ellipse segment between these two points
⇣
c

min
9:

,cmin
: 9

⌘
and⇣

c
max
9:

,cmax
: 9

⌘
. As shown in Figure 10.5, the relation between these two convex sets

is:

conv (P\ )\P? ◆ conv
�
P\ \P?

�
Even though these two sets are generally di�erent, it is clear from the figure that, if

Pkj

Pjk

(�mjkax,�mkjax)

(�mjkin,�mkjin)

(a) conv(P\ )

(pjmin,pkmin)

(�mjkin,�mkjin)

(�mjkax,�mkjax)

(b) conv(P\ \P?)

pareto 
optimal

(pjmin,pkmin)

(�m
jk

in,�m
kj

in)

(�m
jk

ax,�m
kj

ax)

(c) conv(P\ ) \P?

Figure 10.5 (a) The set conv(P\ ) is the intersection of the ellipse, including its interior, and a
half-space. (b)(c) conv(P\ \P?) ✓ conv(P\ )\P? . If the cost ⇠ (?) is strictly increasing in ? 9
but independent of ?

:
then the vertical darkened segment in (c) is part of the Pareto front of

the relaxation but only the point on the ellipse is feasible, i.e., in P\ \P? , and hence optimal.

the cost function ⇠ (?) is strictly increasing in each ? 9 (condition C10.4), then they
share the same Pareto front, i.e.,

O(conv(P\ )\P?) = O(conv(P\ \P?)) = P\ \P?
where the last equality follows from (10.30). This proves the first claim of Theorem
10.9.

Step 4: (10.27) is an SOCP and it is exact. We now reformulate the feasible set
conv(P\ ) \P? of OPF-socp as the intersection of a second-order cone with several
a�ne sets. First, from (10.29), the solid ellipse including the interior is the set of %
satisfying

1 �
�
%�6 9:1

�T (��T)�1 �
%�6 9:1

�
This is a second-order cone C2 � (%�6 9:1)T (��T)�1 (%�6 9:1) intersecting with the
a�ne set C = 1. Second the set conv(P\ ) is the intersection of this second-order cone
with the following half space (see Figure 10.5(a)):

%: 9  cmin
: 9

+
c

max
: 9
� cmin

: 9

c
max
9:
� cmin

9:

⇣
% 9: � cmin

9:

⌘
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where (cmin
9:

,cmin
: 9

) and (cmax
9:

,cmax
: 9

) are defined in (10.31). Finally intersecting this set
with the a�ne set P? produces the feasible set conv(P\ )\P? of OPF-socp. Hence the
problem (10.27) is indeed an SOCP for the two-bus case.

In summary, the SOCP relaxation of OPF (10.26) enlarges the feasible set P\ \P?
to the convex superset conv(P\ )\P? . Under condition C10.4, every minimizer lies in
its Pareto front and hence in the original nonconvex feasible set P\ \P? , as proved in
Step 3.

We have hence proved Theorem 10.9 for the two-bus case. ⇤

We illustrate the purpose of condition C10.3. If there are no constraints on the
injections ?, then SOCP relaxation (10.27) is exact under condition C10.4 due to
P\ = O(conv P\ ) in (10.30). As illustrated in Figure 10.6, upper bounds ?max on
power injections ? do not a�ect exactness (as long as the problem remains feasible)
whereas lower bounds ?min do. Specifically the lower half of the ellipse corresponds

(pjmin,pkmin)

(a) Exact relaxation

(pjmin,pkmin)

(b) Inexact relaxation

Figure 10.6 Lower bounds ?min on injections a�ect exactness of relaxation.

to small |\ 9: | and the upper half of the ellipse corresponds to large |\ 9: | (Exercise
10.7). If the feasible set contains the lower half of the ellipse, as the shaded region in
Figure 10.6(a) illustrates, then the Pareto front remains on the ellipse itself, P\ \P? =
O(conv(P\ ) \ P?), and the relaxation is exact. On the other hand the upper half of the
ellipse corresponds to large |\ 9: |. The feasible set of OPF may include only the upper
half of the ellipse if the lower bounds ?min are large (see Figure 10.6(b)), in which case
the Pareto front does not lie on the ellipse and the relaxation is not exact. The purpose
of condition C10.3 is to restrict the angle \ 9: in order to eliminate the upper half of
the ellipse from P\ .

We close this subsection with a remark on the importance of tree topology.

Remark 10.5 (Tree topology). The tree topology allows the extension of the argument
for a single line to a radial network with multiple lines, in two ways. First let F 9:

\
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denotes the set of branch power flows on each line ( 9 , :) 2 ⇢ :

F
9:

\
:= { (% 9: ,%: 9 ) | (% 9: ,%: 9 ) satisfies (10.28) for \min

9:
 \ 9:  \max

9:
}

If the network is a tree, the set F\ of branch power flows on all lines is simply the
product set, F\ =

Œ
( 9,:)2⇢

F
9:

\
, because given any (\ 9: , ( 9 , :) 2 ⇢) there is always a

(unique up to a reference angle) (\ 9 , 9 2 #) that satisfies \ 9: = \ 9 � \: . If the network
has cycles then this is not possible for some vectors (\ 9: , ( 9 , :) 2 ⇢) and F\ is no
longer a product set of F 9:

\
.

Second the power injections ? are related to the branch flows % by a linear trans-
formation P\ = �F\ for some (# +1) ⇥2" dimensional matrix �. Matrix � has full
row rank and there is a bijection between %\ and �\ (after fixing the reference angle)
using the fact that the graph is a tree. We can therefore freely work with either ? 2 P\
or the corresponding % 2 F\ in the proof for a tree network (see [128]).

When the network is not radial or |+ 9 | are not constants, then the feasible set can
be much more complicated than ellipsoids and the simple geometric insight becomes
obscure [27, 28, 29, 129]. ⇤

10.5 Other convex relaxations

10.6 Bibliographical notes

Solving OPF through semidefinite relaxation in the bus injection model is first proposed
in [130] as a second-order cone program (SOCP) for radial (tree) networks and in [131]
as a semidefinite program (SDP) for general networks. The exactness of semidefinite
relaxations is first studied in [69]. By defining a new set of variables E 9 := |+ 9 |2,
' 9: := |+ 9 | |+: | cos(\ 9 � \: ), and � 9: := |+ 9 | |+: | sin(\ 9 � \: ) where \ 9 := \+ 9 , [130]
rewrites the bus injection model (4.27) in the polar form as a set of linear equations in
these new variables and the following quadratic equations:

E 9E: = '2
9:
+ �2

9:

Relaxing these equalities to E 9E: � '2
9:
+ �2

9:
enlarges the solution set to a second-order

cone that is equivalent to W+
⌧

in this chapter. Partial matrices and their completions
are studied in [112, 114, 115]. Exploiting graph sparsity to simplify the SDP relaxation
of OPF through chordal extension is first proposed in [132, 133, 134] and analyzed
in [113, 135, 33]. Theorem 10.1 is from [33] and Corollary 10.2 is from [113]). The
su�cient condition on angle di�erences for exact SOCP relaxation in Chapter 10.4
is from [125, 128] and our proof mostly follows that in [128]. The result in Chapter
10.4 assumes the voltage magnitudes are fixed and ignores reactive powers. These
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assumptions are relaxed in [129] although, without these assumptions, the feasible set
may no longer be a convex surface that is the Pareto front of its relaxation.

The semidefinite relaxation of three-phase OPF in Chapter ?? follows the idea in
[105, 136].

Simulations [78] show that the SDP relaxation of OPF is often exact and adding
valid inequalities and bound tightening can further reduce the optimality gap to within
1%, though [118] also reports instances where the optimality gap of SDP relaxation is
large.

10.7 Problems

Chapter 10.1

Exercise 10.1 (Solution recovery). Given a partial matrix -� inX� defined in (10.7c)
and a vector G 2 C= recovered from -� using (10.10), show that G satisfies [-� ] 9: =
G 9 G: and GH

⇠;G  1; , ; = 1, . . . ,!.

Chapter 10.2

Exercise 10.2 (Loss minimization). In this problem we formulate and solve a simple
nonconvex loss minimization problem. A generator supplies a load through a transmis-
sion line modeled as a series admittance H := 6 + i1 = 1/(A + iG) with 6 > 0 and 1 < 0.
The voltage at the generator (reference) bus is fixed at +0 := 1\0� p.u. The required
load power is B = ? + i@ = |B |4iq with ? > 0 specified, i.e., �B is the power injection at
the load bus. Let the load voltage be + := E4i\ .

1 Show that the active line loss A |� |2 = 6
��1� E4i\

��2.
2 Fix E and ?. Formulate OPF as minimization over (\,q) of the active line loss.
3 Reformulate OPF as an unconstrained minimization minq 5 (q) over q only.
4 Show that the unique minimizer of 5 (q) over (�c/2,c/2) is qmin := tan�1 (�1(1�
E

2)/?), even though the original OPF problem in part 2 is nonconvex.
5 Suppose E is also an optimization variable and assume ? < 6. Show that

qmin = tan�1 (�1/6) = tan�1 (G/A), Emin =
p

1� ?/6

is an isolated local minimizer3 of 5 (q,E) over q 2 (�c/2,c/2) and E > 0, by
showing r2

5 (qmin,Emin) is positive definite.
6 Is (qmin,Emin) a global minimizer over q 2 (�c/2,c/2) and E > 0? (Hint: What is
5 (qmin,Emin) and the load voltage Emin4

i\min? Interpret.)

3 There is a neighborhood of (qmin, Emin) that contains no other minimizer.



532 Semidefinite relaxations: BIM

Chapter 10.3

Exercise 10.3 (Linear separability). The linear separability condition C10.1’ requires
that some of power injections be unconstrained even though in practice they are always
bounded. The next exercise shows that, for a convex problem, C10.1’ is equivalent to
requiring that the finite bounds on these power injections be inactive at optimality (as
opposed to removing these finite bounds but optimal solutions of the unconstrained
problem turn out to satisfy these bounds).

Consider the two problems:

Ĝ 2 argmin
G2-

5 (G) (10.32a)

G
⇤ 2 argmin

G2-
5 (G) s. t. 6(G)  0 (10.32b)

where - ✓ R= is convex and 6 : R= ! R< is a convex function. We assume the
minimizers Ĝ and G⇤ exist.

1 Suppose 5 is strictly convex. Show that 6(Ĝ) < 0 if and only if 6(G⇤) < 0 in which
case 5 (Ĝ) = 5 (G⇤).

2 Show that if 5 is nonconvex, then it is possible that both 6(G⇤) < 0 and 6(Ĝ) > 0,
in which case 5 (Ĝ) < 5 (G⇤).

Chapter 10.4

The next few problems use a two-bus example to illustrate the geometry of solutions
to the polar form power flow equations, convex relaxation and its exactness [125, 128].

Exercise 10.4 (Ellipsoid). An ellipsoid in R: (without the interior) in standard form
are the points G 2 R: that satisfy

G
T⇤G = 1 (10.33a)

for a real positive definite diagonal matrix ⇤ � 0. The center of the ellipsoid is the
origin 0 and the : principal axes are the coordinate axes. This is illustrated in Figure
10.7(a) for : = 2. In general the set of points G 2 R: that satisfy

(G� 2)T
" (G� 2) =

���"1/2 (G� 2)
���2

2
= 1 (10.33b)

is an ellipse if 2 2 R= and " � 0 is a real (symmetric) positive definite matrix. The
center of the ellipsoid is 2 and the : principal axes are the : eigenvectors of " . In
this exercise, we show that a general ellipsoid (10.33b) can be obtained through simple
transformations of the standard form ellipsoid (10.33a).

Given a standard form ellipsoid G 2 R: that satisfies (10.33a).
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x2

x1
√λ̄1
1

√λ̄2
1

λ1x12+ λ2x22= 1

(a) Ellipsoid in R2

x2

x1
ø
θ

x = ( ρ , ø )

y = ( ρ , ø+θ )

(b) Rotation in R2

Figure 10.7 Exercises 10.4 and 10.5.

1 Translation: Let H := G + G0 2 R: . Show that H is a standard form ellipsoid with its
center translated to G0. Illustrate H for : = 2.

2 Scaling: Let H := 0G where 0 2 R is nonzero. Show that H is a standard form
ellipsoid with its size scaled by 0 in all the : dimensions. Illustrate H for : = 2.

3 Scaling and rotation: Let H := �G. Show that H is an ellipsoid as long as � is real
and invertible, i.e., H satisfies (10.33b) with a real (symmetric) positive definite
matrix " .

4 Inverse scaling and rotation: Show that a general ellipsoid H that satisfies (10.33b)
with the origin 2 = 0 as its center is a standard form ellipsoid G scaled and rotated
by a matrix*, i.e., H =*G. Derive*.

Exercise 10.5 (Rotation in R2). Show that H = '(\)G is a rotation of G by an angle \
in R2 where

'(\) :=

cos\ �sin\
sin\ cos\

�

as illustrated in Figure 10.7(b).

1 Show that '�1 (\) = '(�\) = 'T (\).
2 Show that '(\) is normal and find its spectral decomposition for \ < 0.
3 Suppose G is a standard form ellipse in R2 that satisfies (10.33a). Show that
H := '(\)G is an ellipse, i.e., H satisfies (10.33b) with a real (symmetric) positive
definite matrix " .

Exercise 10.6 (Geometric insight [125, 128]). Fix a line ( 9 , :) so we can omit the
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subscript in 6 9: ,1 9: . Show that (10.28) can be rewritten as

% =

% 9:

%: 9

�
=
p

2


cos45� sin45�

�sin45� cos45�

�
· %̂ + 6


1
1

�
(10.34a)

where %̂ 2 R2 satisfies

1 =
����

cos\ 9:
sin\ 9:

�����
2

= %̂T

"
1
1

2 0
0 1

6
2

#
%̂ (10.34b)

This says that %̂ defined by (10.34) is a standard form ellipse centered at the origin
with its major axis of length 21 on the G-axis and its minor axis of length 26 on the
H-axis. % is the ellipse obtained from %̂ by scaling it by

p
2, rotating it by �45�, and

shifting its center to (6,6).

Exercise 10.7 (Geometric insight [125, 128]). Show that the two-bus network given
by (10.28), reproduced here with subscript 9 : dropped:

?1 = ?1 (\) := 6 � 6 cos\ � 1 sin\ (10.35a)

?2 = ?2 (\) := 6 � 6 cos\ + 1 sin\ (10.35b)

We have shown that (?1, ?2) forms an ellipse. Draw the ellipse and indicate on the
ellipse values for \ where ?1 and ?2 attain minimum or maximum values. Conclude
that the “lower half” of the ellipse corresponds to small |\ | and the “upper half”
corresponds to large |\ |.

Exercise 10.8 (Geometric insight [125, 128]). Consider the 2-bus network in Exercise
10.7. Let G := (?1, ?2,\). Let 2(?1, ?2) be a cost function that is strictly increasing in
(?1, ?2), e.g., 2(?1, ?2) := ?1 + ?2.

1 Consider the OPF problem:

min
G

2(?1, ?2) s.t. G 2 -1 (10.36)

where the only constraint is the power flow equation:

-1 := {G := (?1, ?2,\) : G satisfies (10.35)}

The feasible set is nonconvex because it is an ellipse without its interior. Consider
the convex relaxation:

min
G

2(?1, ?2) s.t. G 2 conv(-1) (10.37)

Explain why the relaxation is exact, i.e., an optimal G⇤ for (10.37) is also optimal
for (10.36).
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2 Consider the constraints on injections (?1, ?2) and constraints on \:

-2 := {G := (?1, ?2,\) 2 R3 : \min  \  \max}
-3 := {G := (?1, ?2,\) 2 R3 : ?min

9
 ? 9  ?max

9
, 9 = 1,2}

Consider the OPF:

min
G

2(?1, ?2) s.t. G 2 -1\ -2\ -3 (10.38)

and its convex relaxation:

min
G

2(?1, ?2) s.t. G 2 conv(-1\ -2) \ -3 (10.39)

Indicate the feasible sets of (10.38) and (10.39) projected onto (?1, ?2) plane,
and explain why lower bounds (?min

1 , ?min
2 ) on the injections (?1, ?2) a�ect the

exactness of SOCP relaxation, but not the upper bounds (?max
1 , ?max

2 ).
3 Explain why limiting |\ | to [\min,\max] can ensure exact relaxation as long as

(recall that 6 > 0,1 < 0)

tan�1
✓
1

6

◆
 \

min
< \

max  tan�1
✓�1
6

◆

Exercise 10.9 (Condition C10.4 and Pareto front). In general, a point G⇤ is Pareto
optimal over a convex set � ✓ R: if and only if it G⇤ = argminG2� 2T

G for some nonzero
2 � 0.

1 Show that, for the two-bus network in Exercise 10.7, O(conv(P\ ) \ P?) ◆
O(conv(P\ \P?)) if condition C10.4 does not hold.

2 Show that if condition C10.4 holds, then we can define a Pareto optimal G⇤ as
G
⇤ = argminG2� 2T

G for some 2 > 0 and O(conv(P\ )\P?) = O(conv(P\ \P?)).

Exercise 10.10 (Convex hull and Pareto front). Let ⌫,⇠ ✓ R: be arbitrary sets, ⇡ :=
{G 2 R: |"G  2} be an a�ne set, and " a matrix and 1 a vector of appropriate
dimensions.

1 conv("⌫) =" conv(⌫) and conv(⌫⇥⇠) = conv(⌫)⇥conv(⇠) where for any sets
�1, �2 ✓ R: , (G1,G2) 2 �1⇥ �2 if and only if G1 2 �1 and G2 2 �2.

2 Suppose ⌫ and ⇠ are convex and a point is Pareto optimal over a set if and only
if it minimizes 2T

G over the set for some nonzero 2 � 0. Then O("⌫) = "O(⌫)
and O(⌫⇥⇠) = O(⌫)⇥O(⇠).

3 If ⌫ = O(conv ⌫) then ⌫\⇡ ✓ O(conv(⌫)\⇡).
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Chapter ??.

Exercise 10.11 (Lemma 18.1 [136]).



11 Semidefinite relaxations: BFM

In Chapter 10 we study the semidefinite relaxation of OPF in the bus injection model.
In this chapter we continue our study in the branch flow model for radial networks. In
Chapter 11.1 we formulate SOCP relaxation and prove its equivalence to the SOCP
relaxation in BIM. In Chapters 11.2 and 11.3 we prove su�cient conditions for exact
relaxation for radial networks.

11.1 SOCP relaxation

We first focus on the DistFlow model studied in Chapter 5.1.3 where IB
9:

= IB
: 9

and
I
<

9:
= I<

: 9
= 0 for each line ( 9 , :) 2 ⇢ . We formulate SOCP relaxation of OPF under these

two assumptions in Chapter 11.1.1 and prove its equivalence to the SOCP relaxation in
the bus injection model in Chapter 11.1.2. Then we extend SOCP relaxation to general
radial networks without these assumptions in Chapter 11.1.3.

11.1.1 DistFlow model

The DistFlow model of Chapter 5.1.3 assumes the series impedances IB
9:
= IB

: 9
of each

line ( 9 , :) are equal in each direction (assumption C5.1) and shunt admittances are zero
I
<

9:
= I<

: 9
= 0. It is a reasonable model for single-phase radial networks, but requires

approximations to incorporate transformer models (see discussions in Chapter 5.1.1).
These two assumptions allow us to assume the network graph ⌧ = (# ,⇢) is directed
and includes branch variables in only one direction (see Chapter 5.1.3 for details). We
denote a line in ⇢ from bus 9 to bus : either by ( 9 , :) 2 ⇢ or 9! : . It is characterized
by its series impedance I 9: := IB

9:
. Without loss of generality we take bus 0 as the root

of the tree.

Consider a single-phase radial network ⌧ = (# ,⇢) with # + 1 buses and " = #
lines modeled by DistFlow equation (5.9) with up orientation (all lines point towards
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bus 0), reproduced here:

( 9: =
’
8:8! 9

�
(8 9 � I8 9✓8 9

�
+ B 9 , 9 2 # (11.1a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |I 9: |2✓ 9: , 9 ! : 2 ⇢ (11.1b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (11.1c)

where : := : ( 9) in (11.1a) denotes the node adjacent to 9 on the unique path from bus
9 to bus 0, with the udnerstanding that ( 9: := 0 when 9 = 0 and (8 9 = 0, ✓8 9 = 0 when
9 is a leaf node.1 The injection, voltage and line limits are:

B
min
9
 B 9  B

max
9

, E
min
9
 E 9  E

max
9

, ✓ 9:  ✓
max
9:

, 9 2 # , ( 9 , :) 2 ⇢
(11.2)

The model (11.1) includes only voltage and power sources whose controllable variables
are E 9 and B 9 respectively. See Remark 9.5 of Chapter 9.2 on how to incorporate current
sources and impedances. Denote by (B,E) := (B 9 ,E 9 , 9 2 #) 2R3(#+1) the bus injections
and squared voltage magnitudes, and by (✓,() := (✓ 9: ,( 9: , 9 ! : 2 ⇢) 2 R3" the
squared line current magnitudes and line powers. The vector E includes E0 and B

includes B0. Let G := (B,E,✓,() in R3(2#+1) since ⌧ is a tree.

Let ⇠ (G) be a cost function. Let the feasible set be

Xdf := {G := (B,E,✓,() 2 R6#+3 | G satisfies (11.1)(11.2)} (11.3a)

The OPF (9.20) formulated in Chapter 9.2 (but with a di�erent graph orientation) is
OPF:

min
G

⇠ (G) subject to G 2 Xdf (11.3b)

To avoid triviality we will assume unless otherwise specified that OPF (11.3) is feasi-
ble. The constraints (11.1a)(11.1b) are linear in G. The constraint (11.1c) is however
quadratic in G, making the feasible set of OPF (11.3) nonconvex. Relaxing the equality
in (11.1c) into inequality

E 9✓ 9: � |( 9: |2, 9 ! : 2 ⇢ (11.4)

results in a (convex) second-order cone. Define

X
+
df := {G : (B,E,✓,() 2 R6#+3 | G satisfies (11.1a)(11.1b)(11.4)(11.2)} (11.5a)

Then an SOCP relaxation of OPF (11.3) is:
OPF-socp:

min
G

⇠ (G) subject to G 2 X+
df (11.5b)

We say that OPF-socp (11.5) is exact if every optimal solution Gsocp of (11.5) attains
equalities in (11.4) and hence is an optimal solution of OPF (11.3). This is convenient
because it ensures that any algorithm that solves an exact relaxation always produces

1 A node 9 2 # is a leaf node if there is no 8 such that 8! 9 2 ⇢ .



11.1 SOCP relaxation 539

a globally optimal solution to the OPF problem. This notion of strong exactness is
however unnecessary under the su�cient exactness conditions of Chapters 11.2 and
11.3 for radial networks; see Remark 11.1 after Theorem 11.3 and Remark 11.3 after
Theorem 11.5. These conditions guarantee that an optimal solution to OPF can be
recovered from any optimal solution Gsocp of OPF-socp whether or not Gsocp attains
equalities in (11.4).

The next result from [34] shows that, when the SOCP relaxation (in fact, any convex
relaxation) of (11.3) is exact in the strong sense defined above, then the optimal solution
is unique.

Theorem 11.1 (Unique optimal of SOCP relaxation). Suppose the network graph⌧ is
a tree and the cost ⇠ is a convex function. If OPF-socp (11.5) is exact then its optimal
solution is unique.

Proof Suppose Ĝ and G̃ are distinct optimal solutions of the relaxation OPF-socp
(11.5). Since the feasible set of OPF-socp is convex the point G := (Ĝ + G̃)/2 is also
feasible for OPF-socp. Since the cost function⇠ is convex and both Ĝ and G̃ are optimal
for (11.5), G is also optimal for (11.5). The exactness of OPF-socp then implies that G
attains equality in (11.4). This contradicts Theorem 5.1 that shows that if Ĝ and G̃ are
feasible, then no convex combination of Ĝ and G̃ can be feasible. ⇤

11.1.2 Equivalence

The single-phase OPF (11.3) is equivalent to the single-phase OPF problem (9.9) or
(9.16) in the bus injection model because their feasible sets Xdf and V respectively
are equivalent by Theorem 5.2. In this section we show that their SOCP relaxations
are equivalent as well by establishing a bijection between the feasible sets of these
relaxations.

The equivalence of the SOCP relaxations in these two models rests on the equiv-
alence of their feasible sets. Recall that any sets � and ⌫ are equivalent, denoted by
� ⌘ ⌫, if there is a bijection between them. When there is a one-one correspondence
6 : �! ⌫ between their feasible sets, a feasible point G is optimal for one problem if
and only if 6(G) is optimal for the other problem. We now make this precise.

Recall from Chapter 10.2.1 that the SOCP relaxation (10.20c) of OPF in BIM is
the minimization of ⇠ (,⌧) over Hermitian partial matrices ,⌧ 2 C2"+#+1 subject
to operational and 2⇥ 2 psd constraints. The operational constraints are the injection
limits, voltage limits, and line limits. In terms of the partial matrix ,⌧ , they are
respectively: (substituting |+ 9 |2 = [,⌧] 9 9 and+ 9+H

:
= [,⌧] 9: into (9.8) (9.4b)(9.4c)):
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B
min
9


’
:: 9⇠:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
 B

max
9

, 9 2 # (11.6a)

E
min
9
 [,⌧] 9 9  E

max
9

, 9 2 # (11.6b)���HB
9:

���2 �
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
 ✓

max
9:

, 9 ! : 2 ⇢ (11.6c)

The 2⇥2 psd constraint,⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢ , is equivalent to

[,⌧] 9: = [,⌧]H
: 9

, [,⌧] 9 9 > 0, [,⌧]:: > 0, [,⌧] 9 9 [,⌧]:: �
��[,⌧] 9: ��2 , ( 9 , :) 2 ⇢

(11.6d)

Then the feasible set of the SOCP relaxation (10.20c) of OPF in BIM is

W
+
⌧

:= {,⌧ 2 C2"+#+1 | ,⌧ satisfies (11.6) } (11.7a)

and the SOCP relaxation is

min
,⌧

⇠ (,⌧) s.t. ,⌧ 2W+
⌧

(11.7b)

The feasible set of OPF-socp (11.5) in BFM is equivalent to that of (11.7) in BIM.

Theorem 11.2 (Equivalence of SOCPs). X+
df ⌘W+

⌧
.

The theorem implies that there is a bijection 6 :W+
⌧
! X+

df. If the cost function
in the SOCP relaxation (11.5) in BFM and that in (11.7) in BIM are equivalent, i.e.,
⇠ (,⌧) = ⇠ (6(,⌧)), then these SOCP relaxations are equivalent problems in the
sense that,opt

⌧
is optimal for (11.7) if and only if Gopt := 6(,opt

⌧
) is optimal for (11.5).

The proof of Theorem 11.2 below constructs a linear mapping 6 : W+
⌧
! X+

df,
motivated by the factorization, =++H of the psd rank-1 completion, of the partial
matrix ,⌧ when ,⌧ is psd rank-1. Define the linear mapping 6 :W+

⌧
! X+

df with
G := (B,E,✓,() = 6(,⌧) where

B 9 :=
’
:: 9⇠:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
,

=
’
8:8! 9

H̄
B

8 9

�
[,⌧] 9 9 � [,⌧] 98

�
+

’
:: 9!:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
, 9 2 #

(11.8a)

E 9 := [,⌧] 9 9 , 9 2 #
(11.8b)

✓ 9: := |HB
9:
|2

�
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
, 9 ! : 2 ⇢

(11.8c)

( 9: := H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
, 9 ! : 2 ⇢

(11.8d)
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and the mapping 6�1 : X+
df!W+

⌧
with,⌧ = 6�1 (G) where

[,⌧] 9 9 := E 9 , 9 2 # (11.9a)

[,⌧] 9: := E 9 � ĪB
9:
( 9: = [,⌧]H

: 9
, 9 ! : 2 ⇢ (11.9b)

Note that in (11.8a) the first summation over lines 8 ! 9 is [,⌧] 9 9 � [,⌧] 98 , not�
[,⌧]88 � [,⌧]8 9

�
. The proof below establishes that 6 and 6�1 are indeed inverses

of each other. By restricting these mappings 6 and 6�1 to subsets W⌧ ✓ W+
⌧

and
Xdf ✓ X+

df, the theorem immediately implies the equivalence of Xdf ⌘W⌧ and hence
the equivalence of single-phase OPF (11.3) in BFM and the OPF (9.9) or (9.16) in
BIM (sinceW⌧ ⌘ V).

Since we assume I<
9:

= I<
: 9

= H<
9:

= H<
: 9

= 0, we often omit the superscript B in IB
9:

and HB
: 9

.

Proof of Theorem 11.2.

We will prove that 6 and 6�1 are indeed inverses of each other in three steps: (1) 6
maps every point ,⌧ 2W+

⌧
to a point in X+

df; (2) 6�1 maps every point G 2 X+
df to a

point in W+
⌧

; and (3) 6(6�1 (G)) = G and 6�1 (6(,⌧)) =,⌧ . This defines a bijection
betweenW+

⌧
and X+

df and establishesW+
⌧
⌘ X+

df.

Step 1: G := 6(,⌧) 2 X+
df. Given a ,⌧ 2W+

⌧
, we have to prove G := 6(,⌧) satisfies

(11.1a) (11.1b) (11.4) (11.2). Clearly (11.2) follows from (11.8) and (11.6). To prove
(11.1a), we have for 9 2 #’
8:8! 9

�
(8 9 � I8 9✓8 9

�
+ B 9

=
’
8:8! 9

�
H̄8 9

�
[,⌧]88 � [,⌧]8 9

�
� H̄8 9

�
[,⌧]88 + [,⌧] 9 9 � [,⌧]8 9 � [,⌧] 98

� �
+ B 9

=
’
8:8! 9

�
�H̄8 9

�
[,⌧] 9 9 � [,⌧] 98

� �
+

’
8:8! 9

H̄ 98

�
[,⌧] 9 9 � [,⌧] 98

�
+

’
:: 9!:

H̄ 9:

�
[,⌧] 9 9 � [,⌧] 9:

�

=
’
:: 9!:

( 9:

where the last equality uses H8 9 = H 98 by assumption C5.1. To prove (11.1b), we have
for 9 ! : 2 ⇢

2Re
�
Ī 9:( 9:

�
� |I 9: |2✓ 9: = 2Re

�
[,⌧] 9 9 � [,⌧] 9:

�
�

�
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
=

�
[,⌧] 9 9 � [,⌧]::

�
� [,⌧]H

9:
+ [,⌧]: 9

= E 9 � E:
where the last equality follows because the partial matrix,⌧ is Hermitian. Finally to
prove (11.4), for each 9 !2 ⇢ , we have from (11.6d) [,⌧] 9 9 [,⌧]:: � | [,⌧] 9: |2.
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Hence

E 9✓ 9: =
��
H 9:

��2 [,⌧] 9 9
�
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
�

��
H 9:

��2 ⇣
[,⌧]2

9 9
+
��[,⌧] 9: ��2� [,⌧] 9 9 [,⌧] 9: � [,⌧] 9 9 [,⌧]H

9:

⌘
(11.10)

=
��
( 9:

��2
as desired. Hence 6 maps every,⌧ 2W+

⌧
to an G 2 X+

df.

Step 2: ,⌧ := 6�1 (G) 2W+
⌧

. Given an G 2 X+
df, we have to prove that ,⌧ := 6�1 (G)

satisfies (11.6). Clearly (11.9a) and the voltage limit in (11.2) implies (11.6b).

To prove (11.6a), we have for each 9 2 #+
’

::( 9,:)2⇢
H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
=

’
8:8! 9

H̄
B

98

�
[,⌧] 9 9 � [,⌧] 98

�
+

’
:: 9!:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�

=
’
8:8! 9

H̄
B

8 9

✓
E 9 �

⇣
E8 � ĪB8 9(8 9

⌘H
◆
+

’
:: 9!:

H̄
B

9:

⇣
E 9 �

⇣
E 9 � ĪB

9:
( 9:

⌘⌘

=
’
:: 9!:

( 9: �
’
8:8! 9

H̄
B

8 9

⇣
E8 � E 9 � IB8 9(H

8 9

⌘

=
’
:: 9!:

( 9: �
’
8:8! 9

H̄
B

8 9

✓
2Re( ĪB

8 9
(8 9 )�

���IB
8 9

���2 ✓8 9 � IB8 9(H
8 9

◆

where the second equality follows from (11.9) and H 98 = H8 9 by assumption C5.1, and
the last equality follows from (11.1b). But⇣

2Re( ĪB
8 9
(8 9 )� IB8 9(H

8 9

⌘
=

⇣
Ī
B

8 9
(8 9 + IB8 9(H

8 9

⌘
� IB

8 9
(

H
8 9

= Ī
B

8 9
(8 9

and hence’
::( 9,:)2⇢

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
=

’
:: 9!:

( 9: �
’
8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
= B 9

where the last equality follows from (11.1a). This and the injection limits in (11.2)
imply (11.6a). To prove (11.6c), we have for each ( 9 , :) 2 ⇢ , from (11.9),

��
H 9:

��2 �
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
=

��
H 9:

��2 ✓
E 9 + E: �

⇣
E 9 � ĪB

9:
( 9:

⌘
�

⇣
E 9 � ĪB

9:
( 9:

⌘H
◆

=
��
H 9:

��2 ⇣
�E 9 + E: + ĪB

9:
( 9: + IB

9:
(

H
9:

⌘
= ✓ 9:

where last equality follows from (11.1b). This and the line limit in (11.2) imply (11.6c).
Finally to prove (11.6d), note that [,⌧] 9: = [,⌧]H

: 9
, [,⌧] 9 9 > 0, and [,⌧]:: > 0
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follow directly from (11.9). Furthermore

[,⌧] 9 9 [,⌧]:: �
��[,⌧] 9: ��2 = E 9E: �

���E 9 � ĪB
9:
( 9:

���2

= E 9E: �
✓
E

2
9
+
���IB
9:

���2 ��( 9: ��2�2E 9 Re
⇣
Ī
B

9:
( 9:

⌘◆

= E 9
⇣
E: � E 9 +2Re

⇣
Ī
B

9:
( 9:

⌘⌘
�

���IB
9:

���2 ��( 9: ��2
=

���IB
9:

���2 ⇣
E 9✓ 9: �

��
( 9:

��2⌘ � 0

where last equality follows from (11.1b) and the last inequality follows from (11.4).
Therefore,⌧ ( 9 , :) ⌫ 0 for all ( 9 , :) 2 ⇢ , as desired. This shows that 6�1 maps every
G 2 X+

df to a,⌧ 2W+
⌧

.

Step 3: 6(6�1 (G)) = G and 6
�1 (6(,⌧)) = ,⌧ . The proof uses

(11.8)(11.9)(11.1a)(11.1b). It follows a similar argument used in Steps 1 and
2, and is omitted. This completes the proof that 6 and 6�1 are indeed inverses of each
other and establishesW+

⌧
⌘ X+

df.

This completes the proof of Theorem 11.2. ⇤

11.1.3 General radial network

The OPF (11.3) and its SOCP relaxation (11.5) are based on the DistFlow model that
assumes HB

9:
= HB

: 9
(assumption C5.1) and H<

9:
= H<

: 9
= 0. OPF is also formulated in

(9.22) of Chapter 9.2 without these assumptions, based on the branch flow model (5.1)
that includes branch variables ✓ :=

�
✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢

�
, ( :=

�
( 9: ,(: 9 , ( 9 , :) 2 ⇢

�
in

both directions, reproduced here:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (11.11a)

��
U 9:

��2
E 9 � E: = 2Re

⇣
U 9: Ī

B
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( 9:

⌘
�

���IB
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��2
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U: 9 Ī
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: 9
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⌘
�

���IB
: 9

���2 ✓: 9 , ( 9 , :) 2 ⇢ (11.11c)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (11.11d)��

( 9:

��2 = E 9 ✓ 9: ,
��
(: 9

��2 = E: ✓: 9 , ( 9 , :) 2 ⇢ (11.11e)

where

U 9: := 1+ IB
9:
H
<

9:
, U: 9 := 1+ IB

: 9
H
<

: 9

The feasible set is

Xtree := {G : (B,E,✓,() 2 R9#+3 | G satisfies (11.11), (11.2)} (11.12a)
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and the OPF problem is:
OPF:

min
G

⇠ (G) subject to G 2 Xtree (11.12b)

Its SOCP relaxation replaces the quadratic equality constraint (11.11e) by second-order
cones:

E 9✓ 9: � |( 9: |2, E:✓: 9 � |(: 9 |2, 9 ! : 2 ⇢ (11.13)

Then the feasible set is

X
+
df := {G : (B,E,✓,() 2 R6#+3 | G satisfies (11.11a)� (11.11d), (11.13), (11.2)}

(11.14a)

and
OPF-socp:

min
G

⇠ (G) subject to G 2 X+
df (11.14b)

We say that OPF-socp (11.14) is exact if every optimal solution G
socp of (11.14)

attains equalities in (11.13) and hence is an optimal solution of OPF (11.12). We study
exactness condition for (11.14) in Theorem 11.4 of Chapter 11.2.

11.2 Exactness condition: inactive injection lower bounds

11.2.1 DistFlow model

Consider first OPF (11.3) and its SOCP relaxation (11.5) in the DistFlow model.
Assume

C11.1: The cost function ⇠ (G) = ⇠ (?,@,E,✓) is independent of branch flows ( =
(%,&) and nondecreasing in (?,@,✓). Moreover it is strictly increasing in every
component of (✓ 9: , ( 9 , :) 2 ⇢) or in every component of (? 9 , 9 2 #) or in every
component of (@ 9 , 9 2 #).
C11.2: For 9 2 # , Bmin

9
= �1� i1.

Popular cost functions in the literature include active power loss over the network or
active power generations, both of which satisfy C11.1.

Theorem 11.3 (Inactive injection lower bounds). Suppose the network graph ⌧ is
a tree and C11.1, C11.2 hold. Then the SOCP relaxation (11.5) is exact, i.e., every
optimal solution Gsocp of (11.5) is optimal for OPF (11.3).

Remark 11.1 (Strong exactness and global optimality). 1 If the cost function ⇠ (G)
in C11.1 is only nondecreasing, rather than strictly increasing, in ✓, then C11.1,
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C11.2 still guarantee that all optimal solutions of OPF (11.3) are optimal solutions
of its relaxation OPF-socp (11.5), but OPF-socp may have an optimal solution
G

socp that maintains a strict inequality in (11.4) and hence is infeasible for OPF.
Even though OPF-socp is not exact in the strong sense of Definition 10.2, an
optimal solution of OPF (11.3) can still be constructed from such a solution Gsocp;
see explanation immediately after the proof of Theorem 11.3 below.

2 Theorem 9.7 of Chapter 9.4.4 shows that C11.2 and a strengthened version of
C11.1 (and other mild conditions) also guarantee that every local optimum of OPF
(11.3) is a global optimum. ⇤

Remark 11.2 (Convexity). For exact relaxation, we do not require the cost function
⇠ (G) to be convex in G; ⇠ (G) needs to be convex for (11.5) to be a convex problem.

We can allow more general constraints on power injections B 9 than B 9  Bmax
9

assumed
in Theorem 11.3. The injection B 9 can be in an arbitrary set ⌫ 9 that satisfies C11.2. In
particular ⌫ 9 need not be convex nor even connected for OPF-socp to be exact. It (only)
needs to be convex to be e�ciently computable. Such a general constraint on B is useful
in many applications. For instance it allows constraints of the form |B 9 |2  0, |\B 9 |  q 9
that is useful for inverter control or @ 9 2 {0,0} for capacitor configuration. ⇤

Proof of Theorem 11.3.

Fix any optimal solution G := (B,E,✓,() 2 R3(2#+1) of OPF-socp (11.5). Since ⌧ is a
tree, the cycle condition is vacuous and we only need to show that G attains equality in
(11.4). For the sake of contradiction assume this is violated on line 9 !k, i.e.,

E 9✓ 9: > |( 9: |2 (11.15)

We will construct an G̃ that is feasible for OPF-socp and attains a strictly lower cost,
contradicting the optimality of G.

For an n > 0 to be determined below, consider the following G̃ obtained by modifying
only the current ✓ 9: and power flow ( 9: on line 9 ! : and the injections B 9 , B: at two
ends of line 9 ! ::

✓̃ 9: := ✓ 9: � n (11.16a)

(̃ 9: := ( 9: � I 9:n/2 (11.16b)

B̃ 9 := B 9 � I 9:n/2 (11.16c)

B̃: := B: � I: 9n/2 (11.16d)

and Ẽ := E, ✓̃8; := ✓8; and (̃8; := (8; for (8, ;) < ( 9 , :), B̃8 := B8 for 8 < 9 , : . In particular,
no other variables than (B 9 , B: ,✓ 9: ,( 9: ) associated with the single line 9 ! : are
modified.2 By assumption C11.1 the cost function ⇠ (G) is strictly increasing in every

2 In the proof of Theorem 9.7 of Chapter 9.4.4 on global optimality of OPF, the adjustment (9.39) to G is
the same as that in (11.16) but on all lines 8! ; 2 ⇢ and all buses 8 2 # , not just on 9! :, with
individual n8 = n8; = C�8; .
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component of (✓ 9: , ( 9 , :) 2 ⇢) or in every component of (? 9 , 9 2 #) or in every
component of (@ 9 , 9 2 #). Hence G̃ has a strictly lower cost than G. It su�ces to show
that there exists an n > 0 such that G̃ is feasible for OPF-socp (11.5), i.e., G̃ satisfies
(11.1a)(11.1b)(11.4)(11.2). Moreover we can choose n > 0 so that G̃ attains equalities
in (11.4) and is therefore feasible for OPF.

Assumption C11.2 ensures that G̃ satisfies (11.2) since I 9: > 0 and n > 0. Further
G̃ satisfies (11.1a) at buses 8 < 9 , : , and satisfies (11.1b)(11.4) over lines (8, ;) < ( 9 , :).
We now show that G̃ also satisfies (11.1a)(11.1b)(11.4) at buses 9 , : and over the line
( 9 , :).

For (11.1a) at bus 9 , we have from (11.16b)(11.16c)

(̃ 9: = ( 9: � I 9:
n

2
=

’
8:8! 9

�
(8 9 � I8 9✓8 9

�
+ B 9 � I 9:

n

2
=

’
8:8! 9

�
(̃8 9 � I8 9 ✓̃8 9

�
+ B̃ 9

as desired (recall that no variables except those associated with line ( 9 , :) are mod-
ified). For (11.1a) at bus : , on line : ! ; from : towards bus 0, we have from
(11.16a)(11.16b)(11.16d)

(̃:; = (:; =
�
( 9: � I 9:✓ 9:

�
+

’
8< 9:8!:

((8: � I8:✓8: ) + B:

=
⇣
(̃ 9: � I 9: ✓̃ 9: � I 9:

n

2

⌘
+

’
8< 9:8!:

�
(̃8: � I8: ✓̃8:

�
+ B: =

’
8:8!:

�
(̃8: � I8: ✓̃8:

�
+ B̃:

as desired. This shows that G̃ satisfies (11.1a) at both buses 9 , : . For (11.1b) over line
( 9 , :), we have from (11.16a)(11.16b)

Ẽ 9 � Ẽ: = E 9 � E: = 2Re
⇣
I

H
9:
( 9:

⌘
� |I 9: |2✓ 9: = 2Re

⇣
I

H
9:
(̃ 9:

⌘
� |I 9: |2✓̃ 9:

as desired. For (11.4) over line ( 9 , :), we have from (11.16a)(11.16b)

Ẽ 9 ✓̃ 9: �
��
(̃ 9:

��2 = �
��
I 9:

��2
4

n
2 �

⇣
E 9 �Re

⇣
I

H
9:
( 9:

⌘⌘
n +

⇣
E 9✓ 9: �

��
( 9:

��2⌘

Hence (11.15) implies that we can always choose an n > 0 such that Ẽ 9 ✓̃ 9: =
��
(̃ 9:

��2.

This completes the proof of Theorem 11.3. ⇤

Note that the construction of G̃ ensures that equalities are attained in (11.4) and
therefore G̃ is feasible for OPF (11.3), not just for its SOCP relaxation. If the cost
function ⇠ (G) in C11.1 is only nondecreasing, rather than strictly increasing, in ✓ (or
in ? or @), then it is possible that ⇠ (G̃) = ⇠ (G) and OPF-socp (11.5) has an optimal
solution G that maintains a strict inequality in (11.4). Even in this case, the proof shows
how to construct from such an G an optimal solution G̃ for OPF (11.3) under C11.1 and
C11.2.
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11.2.2 General radial network

Theorem 11.3 can be extended to general radial networks where IB
9:

and IB
: 9

may not be
equal and I<

9:
, I<
: 9

may not be zero. The OPF and its SOCP relaxation for this general
model are given in (11.12) and (11.14) respectively. Assume

C11.3: For all ( 9 , :) 2 ⇢ , both Re(U 9: ) and Re(U: 9 ) are positive; furthermore
I
B

9:
= IB

: 9
.

For C11.3, Re(U 9: ) = 1 +Re(IB
9:
H
<

9:
) � 1� |H<

9:
/IB
9:
|. Since H<

9:
is typically much

smaller in magnitude than HB
9:

, Re(U 9: ) is usually strictly positive. The next theorem
is proved in Exercise 11.1.

Theorem 11.4 (Inactive injection lower bounds). Suppose the network graph ⌧ is a
tree and C11.1, C11.2, C11.3 hold. Then the SOCP relaxation (11.14) is exact, i.e.,
every optimal solution Gsocp of (11.14) is optimal for OPF (11.12).

11.3 Exactness condition: inactive voltage upper bounds

In this section we present a su�cient condition for exact SOCP relaxation of single-
phase OPF on a radial network, when the operational constraint (11.2) is replaced by
the following set of constraints:

E
min
9
 E 9  E

max
9

, 9 2 # (11.17a)

B 9 2 ⌫ 9 ✓ {B 9 2 C | B 9  Bmax
9

}, 9 2 # (11.17b)

for some given finite Bmax
9

, 9 2 # . In particular we ignore line limits, but allow the
injections (B 9 , 9 2 #) at non-root buses to be in an arbitrary set ⌫ 9 that is bounded
above (see Remark 11.2). We also assume E0 is given and satisfies (11.17a) and B0 is
unconstrained.

Then OPF and its feasible set are:

OPF: min
G

⇠ (G) s.t. G 2 Xdf (11.18a)

where Xdf := {G : (B,E,✓,() 2 R6#+3 | G satisfies (11.1)(11.17)} (11.18b)

Their SOCP relaxations are:

OPF-socp: min
G

⇠ (G) s.t. G 2 X+
df (11.19a)

where X
+
df := {G : (B,E,✓,() 2 R6#+3 | G satisfies (11.1a)(11.1b)(11.4)(11.17)}

(11.19b)

OPF-socp (11.19) is exact if every optimal solution Gsocp of (11.19) attains equality in
(11.4) and is hence optimal for OPF (11.18).
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11.3.1 Su�cient condition

We now state the su�cient condition for exact SOCP relaxation for radial networks and
show that exactness implies uniqueness of the optimal solution. The main su�cient
condition is that the voltage upper bounds are inactive at optimality. 3 Before presenting
it we first explain a simple intuition using a two-bus network that motivates this
condition.

Example 11.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with
impedance I := A + iG with A ,G > 0. Without loss of generality, let the direction of the
line be from bus 1 to bus 0. Let ✓ be the sending-end squared current magnitude from
buses 1 to 0 (recall that (01 := 0 in (11.1a)). Suppose also without loss of generality
that E0 = 1 pu. The model in (11.1) reduces to (Exercise 11.2):

?0� A✓ = �?1, @0� G✓ = �@1, ?
2
0 + @2

0 = ✓ (11.20a)

E1� E0 = 2 (A ?1 + G@1) � (A2 + G2)✓ (11.20b)

Suppose B1 is given (e.g., a constant power load). Then the variables are G :=
(?0,@0,E1,✓) and the feasible set consists of solutions of (11.20), subject to opera-
tional constraints on G. The case without any constraint is instructive and shown in

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 11.1 Feasible set of OPF for a two-bus network without any constraint. It consists of the
(two) points of intersection of the line with the convex surface (without the interior), and hence
is nonconvex. SOCP relaxation includes the interior of the convex surface and enlarges the
feasible set to the line segment joining these two points. If the cost function ⇠ is increasing in ✓
or (?0,@0) then the optimal point over the SOCP feasible set (line segment) is the lower
feasible point 2, and hence the relaxation is exact.

Figure 11.1 (see explanation in the caption). The point 2 in the figure corresponds to a
power flow solution with a large E1 (normal operation) whereas the other intersection
corresponds to a 3 solution with a small E1 (fault condition). (See Example 5.3 of
Chapter 5.1.5 for detailed calculations.) As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (?0,@0,✓) do
not remove the high-voltage solution 2. Only when the system is stressed to a point

3 Exercise 10.3 shows that, since SOCP is a convex problem, condition C11.5 that requires an upper bound
of E9 be less than Emax

9
is equivalent to requiring E9  Emax

9
but the bound is inactive at optimality.
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where the high-voltage solution becomes infeasible will relaxation lose exactness. This
agrees with conventional wisdom that power systems under normal operations are well
behaved.

Consider now the voltage constraint Emin
1  E1  Emax

1 . We have from (11.20b) and
E0 = 1

E1 = (1+2A ?1 +2G@1)� |I |2✓

translating the constraint on E1 into a box constraint on ✓:

1
|I |2

�
2A ?1 +2G@1 +1� Emax

1

�
 ✓  1

|I |2
⇣
2A ?1 +2G@1 +1� Emin

1

⌘

Figure 11.1 shows that the lower bound Emin
1 (corresponding to an upper bound on

✓) does not a�ect the exactness of SOCP relaxation. The e�ect of upper bound Emax
1

(corresponding to a lower bound on ✓) is illustrated in Figure 11.2. As explained in
the caption of the figure SOCP relaxation is exact if the upper bound Emax

1 does not
exclude the high-voltage solution 2 and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Figure 11.2 Impact of voltage upper bound Emax
1 on exactness. (a) When Emax

1 (corresponding
to a lower bound on ✓) is not binding, the power flow solution 2 is in the feasible set of SOCP
and hence the relaxation is exact. (b) When Emax

1 excludes 2 from the feasible set of SOCP, the
optimal solution is infeasible for OPF and the relaxation is not exact.

See Example 5.3 and Exercise 11.3 for details of feasibility and exactness of OPF-
socp. ⇤

To state the exactness condition for a general radial network, recall the linear
approximation of BFM studied in Chapter 5.4.3.2, obtained by setting ✓ 9: = 0 in
(11.1). Given E0 and the injections B̂ := ( ?̂, @̂) := (? 9 ,@ 9 , 9 2 #) at non-root buses, the

line flow vector (lin (B) :=
⇣
(

lin
9:

, ( 9 , :) 2 ⇢
⌘

and the voltage vector Êlin (B) := (Elin
9

, 9 2 #)
at non-root buses in the linearized model are explicitly given by (from Theorem 5.3):

(
lin (B) = ⇠̂

�1
B̂, Ê

lin (B) = E0 1 + 2 ('?̂ + -@̂) (11.21)

for some given invertible matrices ⇠̂, ' and - . The key property we will use is, from
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Corollary 5.5:

( 9:  (
lin
9:
(B) and E 9  E

lin
9
(B), 9 2 # (11.22)

Define the 2⇥2 matrix function

� 9: (( 9: ,E 9 ) := I2�
2
E 9

I 9:

�
( 9:

�T (11.23)

where I2 is the identity matrix of size 2, I 9: := (A 9: ,G 9: ) is the column vector of line
impedance and ( 9: := (% 9: ,& 9: ) is the column vector of branch power flows, so that
I 9:

�
( 9:

�T is a 2⇥ 2 matrix with rank less or equal to 1. As we will see below, the
matrices � 9: (( 9: ,E 9 ) describe how changes in branch power flows propagate towards
the root node 0. Evaluate the Jacobian matrix � 9: (( 9: ,E 9 ) at the boundary values:

�
9:

:= � 9:
⇣ h
(

lin
9:
(Bmax)

i+
, Emin

9

⌘
= I2�

2

E
min
9

I 9:

⇣ h
(

lin
9:
(Bmax)

i+⌘T
(11.24)

Here
�
[0]+

�T is the row vector [[01]+ [02]+] with [0 9 ]+ := max{0 9 ,0}.

For a radial network, for 9 < 0, every line 9 ! : identifies a unique node : and
therefore, to simplify notation, we refer to a line interchangeably by ( 9 , :) or 9 and use
� 9 , �

9
, I 9 etc. in place of � 9: , �

9:
, I 9: etc. respectively. Assume

C11.4: The cost function is ⇠ (G) :=
Õ
#

9=0⇠ 9
�
? 9

�
with ⇠0 (?0) strictly increasing

in ?0. There is no constraint on B0.
C11.5: The set ⌫ 9 of injections satisfies Êlin

9
(B)  Emax

9
, 9 2 # , where Êlin

9
(B) is

given by (11.21).
C11.6: For each leaf node 9 2 # let the unique path from 9 to 0 have : lines
and be denoted by P 9 := ((8: , 8:�1), . . . , (81, 80)) with 8: = 9 and 80 = 0. Then
�
8C

· · · �
8
C
0 I8C0+1 > 0 for all 1  C  C 0 < : , where �

9
are defined in (11.24).

Theorem 11.5. Suppose the network graph ⌧ is a tree and C11.4–C11.6 hold. Then
OPF-socp (11.19) is exact.

The proof of Theorem 11.5 is long and relegated to Appendix 11.3.2. It can be shown
that Theorem 11.5 have the following simple and practical interpretation: OPF-socp is
exact provided at least one of the following is satisfied:

• There are no reverse power flows in the network.
• The A/G ratios on all lines are equal.
• If the A/G ratios increase in the downstream direction from the substation (node 0)

to the leaves then there are no reverse real power flows.
• If the A/G ratios decrease in the downstream direction then there are no reverse

reactive power flows.
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These properties are derived in [137, 138, 139] and are special cases of Theorem 11.5.

We now comment on the conditions C11.4–C11.6. C11.5 is a�ne in the injections
B := (?,@). It enforces the upper bounds on voltage magnitudes because of (11.22).
C11.6 is a technical assumption and has a simple interpretation: the branch power flow
( 9: on all branches should move in the same direction. Specifically, given a marginal
change in the complex power on line 9! : , the 2⇥2 matrix �

9:
is (a lower bound on)

the Jacobian and describes the e�ect of this marginal change on the complex power on
the line immediately upstream from line 9! : . The product of �

8
in C11.6 propagates

this e�ect upstream towards the root. C11.6 requires that a small change, positive or
negative, in the power flow on a line a�ects all upstream branch powers in the same
direction. This seems to hold with a significant margin in practice.

Remark 11.3 (Strong exactness). Condition C11.4 requires that the cost functions ⇠ 9
depend only on the injections ? 9 . For instance, if ⇠ 9

�
? 9

�
= ? 9 , then the cost is total

active power loss over the network. It also requires that ⇠0 be strictly increasing but
makes no assumption on ⇠ 9 , 9 > 0, e.g., the total cost ⇠ (G) can be ⇠0 (?0). Common
cost functions such as line loss or generation cost usually satisfy C11.4. If ⇠0 is only
nondecreasing, rather than strictly increasing, in ?0 then C11.4–C11.6 still guarantee
that all optimal solutions of OPF (11.18) are (e�ectively) optimal for OPF-socp (11.19),
but OPF-socp may not be exact in our definition, i.e., it may also have an optimal
solution that maintains a strict inequality in (11.4). In this case the proof of Theorem
11.5 can still construct from it another optimal solution that attains equalities in (11.4)
and is hence optimal for OPF. ⇤

11.3.2 Appendix: Proof of Theorem 11.5

Given an optimal solution G := (B,E,✓,() that maintains a strict inequality in (11.4),
E 9✓ 9: > |( 9: |2, for some line 9 ! : 2 ⇢ , the proof of Theorem 11.3 in Section 11.2
constructs another feasible solution Ĝ from G that incurs a strictly smaller cost, contra-
dicting the optimality of G. The modification is over a single line over which Gmaintains
a strict inequality. The proof of Theorem 11.5 is also by contradiction but, unlike that
of Theorem 11.3, the construction of Ĝ from G involves modifications on multiple lines,
propagating from the line that is closest to bus 0 where strictly inequality holds all the
way to bus 0. The proof relies crucially on the recursive structure of the branch flow
model (11.1).

Proof of Theorem 11.5 To simplify notation we only prove the theorem for the case
of a linear network representing a primary feeder without laterals. The proof for a
general tree network follows the same idea but with more cumbersome notations; see
[34] for details. We adopt the graph orientation where every line points towards the
root node 0. The notation for the linear network is explained in Figure 11.3 (we refer
to a line 9 ! : by 9 and index the associated variables I 9: ,( 9: ,✓ 9: with 9). With this
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v0

s0 s1 sm sn

v1 vm−1 vn
z1
S1 ,ℓ1

zn
Sn ,ℓn

vm
zm
Sm ,ℓm

= > ≥

Figure 11.3 Linear network and notations. Line < in the proof is the line closest to bus 0 where
the inequality in (11.26) is strict, i.e., (11.26) holds with equality at lines 9 = 1, . . . ,<�1, strict
inequality at line <, and inequality at lines 9 = < +1, . . . ,# .

notation the branch flow model (11.1) is the following recursion:

( 9�1 = ( 9 � I 9✓ 9 + B 9�1, 9 = 1, . . . ,# (11.25a)

E 9�1 = E 9 �2Re
⇣
I

H
9
( 9

⌘
+ |I 9 |2✓ 9 , 9 = 1, . . . ,# (11.25b)

E 9✓ 9 = |( 9 |2, 9 = 1, . . . ,# (11.25c)

(= = B=, (0 := 0 (11.25d)

where E0 is given. The SOCP relaxation of (11.25c) is:

E 9✓ 9 � |( 9 |2, 9 = 1, . . . ,# (11.26)

OPF on the linear network in Figure 11.3 then becomes (B0 is unconstrained by
assumption C11.4):
OPF:

min
G

⇠ (G) :=
#’
9=0

⇠ 9

�
? 9

�
(11.27a)

s.t. (11.17)(11.25) (11.27b)

and its SOCP relaxation becomes:
OPF-socp:

min
G

⇠ (G) :=
#’
9=0

⇠ 9

�
? 9

�

s.t. (11.17), (11.25a)(11.25b)(11.25d), (11.26) (11.28a)

For the linear network assumption C11.6 reduces:

C11.6’: �
9
· · · �

:
I:+1 > 0 for 1  9  : < # where �

9
are defined in (11.24).

Our goal is to prove OPF-socp (11.28) is exact, i.e., every optimal solution of (11.28)
attains equality in (11.26) and hence is also optimal for OPF (11.27). Suppose on the
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contrary that there is an optimal solution G := ((,✓,E, B) of OPF-socp (11.28) that
violates (11.25c). We will construct another feasible point Ĝ := ((̂, ✓̂, Ê, B̂) of OPF-socp
(11.28) that has a strictly lower cost than G, contradicting the optimality of G.

Let < := min { 9 2 # | E 9✓ 9 > |( 9 |2} be the closest line from bus 0 where (11.25c) is
violated; see Figure 11.3. Pick any n< 2 (0,✓<� |(< |2/E<] and construct Ĝ as follows:

1 B̂ 9 := B 9 for 9 < 0.
2 For (̂, ✓̂, B̂0:
• For 9 = # , . . . ,< +1: (̂ 9 := ( 9 and ✓̂ 9 := ✓ 9 .
• For 9 = <: (̂< := (< and ✓̂< := ✓<� n<.
• For 9 = <�1, . . . ,1:

(̂ 9 := (̂ 9+1� I 9+1✓̂ 9+1 + B̂ 9

✓̂ 9 :=
|(̂ 9 |2
E 9

• B̂0 := �(̂1 + I1✓̂1.
3 Ê0 := E0. For 9 = 1, . . . ,# ,

Ê 9 := Ê 9�1 +2Re
⇣
I

H
9
(̂ 9

⌘
� |I 9 |2✓̂ 9

Notice that the denomintor in ✓̂ 9 is defined to be E 9 , not Ê 9 . This decouples the recursive
construction of ((̂ 9 , ✓̂ 9 ) and Ê 9 so that the former propagates from bus # towards bus
1 while the latter propagates in the opposite direction, as in backward forward sweep
studied in Chapter 5.3.

By construction Ĝ satisfies (11.25a), (11.25b), (11.25d), and (11.17b). We only have
to prove that Ĝ satisfies (11.17a) and (11.26). Hence the proof of Theorem 11.5 is
complete after Lemma 11.6 is established, which asserts that Ĝ is feasible and has a
strictly lower cost under assumptions C11.4, C11.5, C11.6’.

Lemma 11.6. Under the conditions of Theorem 11.5 Ĝ satisfies

1 ⇠ (Ĝ) < ⇠ (G).
2 Ê 9 ✓̂ 9 �

��
(̂ 9

��2, 9 2 # .
3 E 9

min  Ê 9  E
max
9

, 9 2 # .

To simplify notation redefine (0 := �B0 and (̂0 := �B̂0. Then for 9 2 # define
�( 9 := (̂ 9 � ( 9 and �E 9 := Ê 9 � E 9 . The key result that leads to Lemma 11.6 is:

�( 9 � 0 and �E 9 � 0, 9 2 #

The first inequality is stated more precisely in Lemma 11.7 and proved after the proof
of Lemma 11.6.
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Lemma 11.7. Suppose < > 1 and C11.6’ holds. Then �( 9 � 0 for 9 2 # with (̂ 9 > ( 9
for 9 = 0, . . . ,<�1. In particular B̂0 < B0.

We now prove the second inequality together with Lemma 11.6 assuming Lemma
11.7 holds.

Proof of Lemma 11.6 1) If < = 1 then, by construction, B̂0 = B0 � I1n1 < B0 since
I1 > 0. If < > 1 then B̂0 < B0 by Lemma 11.7. Since B̂ = B and B̂0 < B0 we have

⇠ (Ĝ)�⇠ (G) =
#’
9=0

�
⇠ 9

�
?̂ 9

�
�⇠ 9

�
? 9

� �
= ⇠0 ( ?̂0)�⇠0 (?0) < 0

as desired, since ⇠0 is strictly increasing.

2) To avoid circular argument we will first prove using Lemma 11.7

Ê 9 � E 9 , 9 2 # (11.29)

We will then use this and Lemma 11.7 to prove Ê 9 ✓̂ 9 � |(̂ 9 |2 for all 9 2 # . We then use
assumption C11.5 to prove Emin

9
 Ê 9  Emax

9
, 9 2 # . This shows that Ĝ satisfies (11.26)

and (11.17a) (in addition to (11.25a)(11.25b)(11.25d) and (11.17b)).

To prove (11.29), note that both Ê and E satisfy (11.25b) and hence we have, for
9 = 1, . . . ,# ,

�E 9�1 = �E 9 �2Re
⇣
I

H
9
�( 9

⌘
+ |I 9 |2�✓ 9 (11.30)

where �✓ 9 := ✓̂ 9 � ✓ 9 . From (11.25a) we have

I 9�✓ 9 = �( 9 ��( 9�1 +�B 9�1

where �B0 := B̂0 � B0 < 0 and �B 9�1 = 0 for 9 > 1. Multiplying both sides by IH
9

and
noticing that both sides must be real, we conclude

|I 9 |2�✓ 9 = Re
⇣
I

H
9
�( 9 � IH

9
�( 9�1 + IH

9
�B 9�1

⌘
Substituting into (11.30) we have for 9 = 1, . . . ,#

�E 9 ��E 9�1=Re IH
9
�( 9 + Re IH

9
�( 9�1 � Re IH

9
�B 9�1

But Lemma 11.7 implies that Re IH
9
�( 9 = A 9 �% 9 + G 9 �& 9 � 0. Similarly every term

on the right-hand side is nonnegative and hence

�E 9 � �E 9�1 for 9 = 1, . . . ,#

implying that �E 9 � �E0 = 0, proving (11.29).

We now use (11.29) to prove the second assertion of the lemma. By construction,
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for 9 = < +1, . . . ,# ,

✓̂ 9 = ✓ 9 �
|( 9 |2
E 9

�
|(̂ 9 |2
Ê 9

as desired, since (̂ 9 = ( 9 and Ê 9 � E 9 . Similarly (11.26) holds for Ĝ for 9 = < because
of the choice of n<. For 9 = 1, . . . ,<�1, Ê 9 � E 9 again implies

✓̂ 9 =
|(̂ 9 |2
E 9

�
|(̂ 9 |2
Ê 9

3) The relation (11.29) means

Ê 9 � E 9 � E
min
9

, 9 2 #

Assumption C11.5 and (11.22) imply that

Ê 9  Elin
9
(B)  E

max
9

, 9 2 #

This proves Ĝ satisfies (11.17a) and completes the proof of Lemma 11.6. ⇤

The remainder of this subsection is devoted to proving the key result Lemma 11.7.

Proof of Lemma 11.7 By construction �( 9 = 0 for 9 =<, . . . ,=. To prove �( 9 > 0 for
9 = 0, . . . ,<�1, the key idea is to derive a recursion on �( 9 in terms of the Jacobian
matrix � 9 (( 9 ,E 9 ). The intuition is that, when the branch current ✓< is reduced by n<
to ✓̂<, loss on line < is reduced and all upstream branch powers ( 9 will be increased
to (̂ 9 as a consequence.

This is proved in three steps, of which we now give an informal overview. First
we derive a recursion (11.32) on �( 9 . This motivates a collection of linear dynamical
systems F in (11.34) that contains the process (�( 9 , 9 = 0, . . . ,< � 1) as a specific
trajectory. Second we construct another collection of linear dynamical systems F in
(11.35) such that assumption C11.6’ implies F > 0. Finally we prove an expression for
the process F�F that shows F � F (in Lemmas 11.8, 11.9, 11.10). This then implies
�( = F � F > 0 as desired. We now make these steps precise.

Since both G and Ĝ satisfy (11.25a) and B̂ 9 = B 9 for all 9 2 # we have (with the
redefined �(0 := �( B̂0� B0))

�( 9�1 = �( 9 � I 9�✓ 9 , 9 = 1,2, . . . ,# (11.31)

where �✓ 9 := ✓̂ 9 �✓ 9 . For 9 = 1, . . . ,<�1 both G and Ĝ satisfy (11.25c). For these 9 , fix
any E 9 � Emin

9
and consider ✓ 9 := ✓ 9 (( 9 ) as functions of the real pair ( 9 := (% 9 ,& 9 ):

✓ 9 (( 9 ) :=
%

2
9
+&2

9

E 9

, 9 = 1, . . . ,<�1
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whose Jacobian are the row vectors:
m✓ 9

m( 9

(( 9 ) =
2
E 9

[% 9 & 9 ] =
2
E 9

(
T
9

The mean value theorem implies for 9 = 1, . . . ,<�1

�✓ 9 = ✓ 9 ((̂ 9 )� ✓ 9 (( 9 ) =
m✓ 9

m( 9

((̃ 9 )�( 9

where (̃ 9 := U 9( 9 + (1�U 9 )(̂ 9 for some U 9 2 [0,1]. Substituting it into (11.31) we
obtain the recursion, for 9 = 1, . . . ,<�1,

�( 9�1 = �̃ 9 �( 9 (11.32a)

�(<�1 = n< I< > 0 (11.32b)

where the 2⇥2 matrix �̃ 9 is the matrix function � 9 (( 9 ,E 9 ) defined in (11.23) evaluated
at ((̃ 9 ,E 9 ):

�̃ 9 := � 9 ((̃ 9 ,E 9 ) := I2�
2
E 9

I 9 (̃
T
9

(11.33)

which depends on (( 9 , (̂ 9 ) through (̃ 9 .

Note that �̃ 9 and�( 9 are not independent since both are defined in terms of (( 9 , (̂ 9 ),
and therefore strictly speaking (11.32) does not specify a linear system. Given an
optimal solution G of the relaxation OPF-socp (11.28) and our modified solution Ĝ,
however, the sequence of matrices �̃ 9 , 9 = 1, . . . ,< � 1, are fixed. We can therefore
consider the following collection of discrete-time linear time-varying systems (one for
each g), whose state at time C (going backward in time) is F(C;g), when it starts at time
g � C in the initial state Ig+1: for each g with 0 < g < <,

F(C �1;g)=�̃C F(C;g), C = g,g�1, . . . ,1 (11.34a)

F(g;g)=Ig+1 (11.34b)

Clearly�( 9 = n<F( 9 ;<�1). Hence, to prove�( 9 > 0, it su�ces to proveF( 9 ;<�1) >
0 for all 9 with 0  9  <�1.

To this end we compare the system F(C;g) with the following collection of linear
time-variant systems: for each g with 0 < g < <,

F(C �1;g)=�
C
F(C;g), C = g,g�1, . . . ,1 (11.35a)

F(g;g)=Ig+1 (11.35b)

where �
C

is defined in (11.24) and reproduced here:

�
C

:= �C
⇣ ⇥
(

lin
C
(Bmax)

⇤+
, E

C

⌘
= I2�

2

E
min
C

IC

⇣ ⇥
(

lin
C
(Bmax)

⇤+⌘T
(11.36)

Note that �
C

are independent of the OPF-socp solution G and our modified solution Ĝ.
Then assumption C11.6’ is equivalent to

F(C;g) > 0 for all 0  C  g < < (11.37)
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We now prove, in Lemmas 11.8, 11.9, 11.10, thatF(C;g) � F(C;g) and hence C11.6’
implies �( 9 = n<F( 9 ;<�1) � n<F( 9 ;<�1) > 0, establishing Lemma 11.7.

Lemma 11.8. For each C = <�1, . . . ,1

�̃C � �
C
= 2 IC XT

C

for some 2-dimensional vector XC � 0.

Proof of Lemma 11.8 Fix any C = < � 1, . . . ,1. We have (C  (lin
C
(B) from (11.22).

Even though we have not yet proved (̂C is feasible for OPF-socp we know (̂C satisfies
(11.25a) by construction of Ĝ. The same argument as in Corollary 5.5 then shows
(̂C  (lin

C
(B). Hence (̃C := UC(C + (1�UC )(̂C , UC 2 [0,1], satisfies (̃C  (lin

C
(B). Hence

(̃C  (
lin
C
(B)  (

lin
C
(Bmax) 

⇥
(

lin
C
(Bmax)

⇤+
(11.38)

Using the definitions of �̃C in (11.33) and �
C
in (11.36) we have �̃C � �

C
= 2 ICXT

C
where

X
T
C

:=

" ⇥
%

lin
C
(Bmax)

⇤+
E

min
C

� %̃C
EC

⇥
&

lin
C
(Bmax)

⇤+
E

min
C

� &̃C
EC

#

Then (11.38) and EC � Emin
C

impy that XC � 0. ⇤

For each g with 0 < g < < define the scalars 0(C;g) in terms of the solution F(C;g)
of (11.35) and XC in Lemma 11.8:

0(C;g) := 2XT
C
F(C;g) > 0 (11.39)

Lemma 11.9. Fix any g with 0 < g < <. For each C = g,g�1, . . . ,0 we have

F(C;g)�F(C;g) =
g’

C
0=C+1

0(C 0;g)F(C; C 0 �1)

Proof of Lemma 11.9 Fix a g with 0 < g < <. We now prove the lemma by induction
on C = g,g�1, . . . ,0. The assertion holds for C = g since F(g;g)�F(g;g) = 0. Suppose
it holds for C. Then for C �1 we have from (11.34) and (11.35)

F(C �1;g)�F(C �1;g) = �̃C F(C;g)� �
C
F(C;g)

=
�
�̃C � �

C

�
F(C;g) + �̃C

�
F(C;g)�F(C;g)

�
= 0(C;g) IC +

g’
C
0=C+1

0(C 0;g) �̃C F(C; C 0 �1)

= 0(C;g) IC +
g’

C
0=C+1

0(C 0;g)F(C �1; C 0 �1)

=
g’
C
0=C

0(C 0;g)F(C �1; C 0 �1)
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where the first term on the right-hand side of the third equality follows from Lemma
11.8 and the definition of 0(C;g) in (11.39), and the second term from the induction
hypothesis. The last two equalities follow from (11.34). ⇤

Lemma 11.10. Suppose C11.6’ holds. Then for each g with 0 < g < < and each
C = g,g�1, . . . ,0,

F(C;g) � F(C;g) > 0 (11.40)

Proof of Lemma 11.10 We prove the lemma by induction on (C,g).

1 Base case: For each g with 0 < g < <, (11.40) holds for C = g, i.e., for C such that
g� C = 0.

2 Induction hypothesis: For each g with 0 < g < <, suppose (11.40) holds for C  g
such that 0  g� C  : �1.

3 Induction: We will prove that, for each g with 0 < g < <, (11.40) holds for C  g
such that 0  g� C  : . For C = g� : we have from Lemma 11.9

F(C;g)�F(C;g) =
g’

C
0=C+1

0(C 0;g)F(C; C 0 �1)

But each F(C; C 0 � 1) in the summands satisfies F(C; C 0 � 1) � F(C; C 0 � 1) by the
induction hypothesis. Hence, since 0(C 0;g) > 0,

F(C;g)�F(C;g) �
g’

C
0=C+1

0(C 0;g)F(C; C 0 �1) > 0

where the last inequality follows from (11.37) and (11.39).

This completes our induction proof. ⇤

Lemma 11.10 implies, for 9 = 0, . . . ,<�1,�( 9 = n<F( 9 ;<�1) > 0. This completes
the proof of Lemma 11.7. ⇤

This completes the proof of Theorem 11.5 for the linear network. For a general
tree network the proof is almost identical, except with more cumbersome notations, by
focusing on a path from the root to a first line < over which E 9✓ 9 > |( 9 |2; see [34]. ⇤

11.4 Bibliographical notes

SOCP relaxation of Chapter 11.1 for radial networks in the DistFlow model of [24, 25] is
first proposed in [140, 31]. Theorem 11.2 is proved in [33] and the proof presented here
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follows that in [39, Theorem 11]. Theorem 11.3 is from [31, Part I] which generalizes
an earlier result in [140] to allow convex objective functions, shunt elements, and
line limits. Theorems 11.5 and 11.1 are from [34]. The semidefinite relaxation of
three-phase OPF in Chapter ?? follows the idea in [105, 136].

11.5 Problems

Chapter 11.2.

Exercise 11.1 (Exactness: general tree). Let G := (B,E,✓,() 2 R9#+3 be any optimal
solution of OPF-socp (11.14).

1 Show that E 9✓ 9: > |( 9: |2 if and only if E:✓: 9 > |(: 9 |2.
2 Prove Theorem 11.4.

(Hint: Modify proof of Theorem 11.3.)

Chapter 11.3.

Exercise 11.2 (Geometric insight). For the 2-bus network in Example 11.1 of Chapter
11.3, derive the model (11.20) from the DistFlow equation (11.1) in the up orientation.

Exercise 11.3 (Feasible set and relaxation). This problem illustrates SOCP relaxation
of OPF and its exactness. Consider the 2-bus network in Example 11.1 of Chapter 11.3.
Suppose @1 = 0 and E0 = A = G = 1 pu, and suppose the injection ?1 is controllable. Let
F := (?0,@0, ?1,E1,✓). Consider the OPF problem:

min
F

⇠ (F) s.t. ?0� ✓ = �?1, @0� ✓ = 0, E1�1 = 2?1�2✓, ?
2
0 + @2

0 = ✓

0.9 pu  E1  1.1 pu, ?
min
1  ?1  ?

max
1

where the cost function ⇠ (F) is strictly increasing in ✓. Its SOCP relaxation replaces
the quadratic equality constraint with the convex constraint ?2

0 + @2
0  ✓.

1 Determine the largest range '1 := [?min
1 , ?max

1 ] over which the SOCP relaxation
is exact.

2 Determine the largest range '2 := [?min
1 , ?max

1 ] over which the SOCP relaxation
is inexact. Note that in this regime, bus 1 is generating power and causing a large
amount of reverse power flow.

3 What happens if the range [?min
1 , ?max

1 ] for injection ?1 overlaps with neither '1

nor '2?



560 Semidefinite relaxations: BFM

Draw a diagram to illustrate your answers. (Hint: The power flow solution as a function
of ?1 is computed in Example 5.3 of Chapter 5.1.5.)



12 Nonsmooth convex optimization

Consider an optimization problem

min
G2R=

5 (G) s.t. G 2 -

where 5 is a convex function and - ✓ R= is a convex set. We will develop a basic
theory to answer the following questions:

Q1 How to characterize optimal solutions?
Q2 When will optimal solutions exist?

We study these two questions in Chapter 8.3 when the cost and constraint functions are
continuously di�erentiable. In many applications, however, these functions are convex
but not di�erentiable everywhere and may take infinite values. We will show in this
chapter that the optimality results summarized in Table 8.1 hold in a nonsmooth setting.
We will develop set theoretic tools that handles nonsmooth but convex functions. This
basic machinery enables a more fundamental, and simpler, approach and reveals that
smoothness is unimportant for the theory of convex optimization (though smoothness
can be important for computation).

Optimality conditions and algorithms for convex optimizations are often based on
the linear approximations of the cost and constraint functions, e.g., the KKT condition
(8.38) or the Newton-Raphson algorithm (8.81)(8.82). In particular the stationarity
condition in (8.38) says

�r 5 (G⇤) = r6(G⇤)_⇤ + r⌘(G⇤)`⇤, (12.1)

i.e., a feasible point G⇤ is a minimizer if the negative gradient�r 5 (G⇤) points away from
a linear approximation of the feasible set at G⇤ defined by the gradients r6(G⇤),r⌘(G⇤)
of the constraint functions at G⇤. In the nonsmooth setting a linear approximation of
the feasible set is called a tangent cone and a feasible point G⇤ is a minimizer if there is
a negative cost subgradient that points away from the tangent cone of the feasible set
at G⇤, i.e., the subgradient is contained in the normal cone #- (G⇤) of the feasible set at
G
⇤. To describe optimality conditions precisely we need the following generalizations:

• Generalize linear approximation of feasible set to a tangent cone )- (G⇤), or equiva-
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lently, a normal cone #- (G⇤) corresponding to the right-hand side of (12.1). This
is studied in Chapter 12.1.

• Generalize smooth functions to extended real-valued convex functions. We can then
treat a constrained minimization of a real-valued function as an unconstrained
minimization of an extended real-valued function. This is studied in Chapter 12.2.

• Generalize gradients r 5 (G),r6(G),r⌘(G) to subgradients m 5 (G),m6(G),m⌘(G). A
convex function is always continuous and subdi�erentiable in the relative interior
of its e�ective domain. This is studied in Chapter 12.3.

In the remainder of this chapter we use these convex analysis tools to generalize the
optimality conditions of Chapter 8.3 to a nonsmooth setting by replacing gradients
with subdi�erentials. Specifically we answer Q1 in Chapters 12.4 (the Saddle Point
Theorem) and 12.5 (the KKT Theorem), and Q2 in Chapters 12.6 (primal optimality)
and 12.7 (strong duality and dual optimality). Finally in Chapter 12.8 we apply the
general theory developed in Chapters 12.4–12.7 to special classes convex optimization
problems widely used in applications.

The topic of nonsmooth convex optimization is extensive. We only summarize
key concepts and techniques, mostly from [54, 141], and use them to answer these
questions. We include some (but not all) of the proofs to illustrate common tech-
niques useful for nonsmooth convex optimization. Nonsmooth problems arise in many
contexts. For example the dual function of a constrained convex optimization may
take infinite values and may not be di�erentiable (but always concave) even if the
cost and constraint functions are real-valued and continuously di�erentiable. This
is because the primal minimizer of the Lagrangian may not be unique. In Chap-
ter 13 we study stochastic optimization where some parameters of an optimization
problem may be uncertain or random. These problems are generally intractable, but
some have convex reformulation. Many of these reformulated problems however may
not be di�erentiable. For example the two-stage optimization with recourse studied
in Chapter 13.4 takes the following form: infG 5 1 (G) +&(G) s.t. ⌘

1 (G)  0 where
&(G) := ⇢l

�
inf

H (l)
�
5

2 (G, H(l)) : ⌘2 (G, H(l))  0
 �

and ⇢l denotes expectation
with respect to a random variable l. The function &(G) is generally nondi�eren-
tiable even if ( 5 1,⌘1) and ( 5 2,⌘2) are continuously di�erentiable; moreover&(G) may
be ±1 even if ( 5 1,⌘1) and ( 5 2,⌘2) are real-valued. When these functions are convex,
however, so is &(G). (Like a dual function, &(G) is defined by a minimization.)

12.1 Normal cones of feasible sets

In this section we develop concepts that linearly approximate a set - as the smallest
convex cone (tangent cone) that contains - and, equivalently, the convex set (normal
cone) that is “most opposite” to this linear approximation. The normal cone is central
in optimality conditions of convex optimization as we will see. In Chapter 12.1.1 we
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define polar cone that formalizes the notion of the “most opposite” directions to a set
- . We use it in Chapter 12.1.2 to define the tangent cone and normal cone of - . In
Chapter 12.1.3 we study how normal cones are transformed as - undergoes a�ne
transformation. This is used to derive the normal cones of second-order constraints in
Chapter 12.1.4.

12.1.1 Polar cone

Recall the definition of relative interior, convex sets, closed convex cones, and second-
order cones studied in Chapters 8.1.1, 8.1.2 and 8.2.1.

Definition 12.1 (Polar cone and dual cone). Let - ✓ R= be a nonempty set.

1 The polar cone of - is -� := {H 2 R= : HT
G  0 8G 2 -}.

2 The dual cone of - is -⇤ := �-� = {H 2 R= : HT
G � 0 8G 2 -}.

3 A cone  is called self-dual if  ⇤ =  . ⇤

It is clear that -� and -⇤ are indeed cones for arbitrary - , i.e., if H is in -� or -⇤,
so is WG for any W > 0. Informally, the polar cone of - is the set of points that is “most
opposite to the entire set -” or “most away from the entire set -”. The dual cone of
- is the set that is “most aligned with the entire set -” or “closest to the entire set
-”. The dual cone is used to define the dual problem of a conic program where the
nonlinear constraint is specified abstractly by G 2  for a general closed convex cone
 ; see Chapter 12.8.4. These cones are illustrated in Figure 12.1. The examples in the
figure show that -⇤ can be a subset or a superset of - or equal to - . Some properties

X °

X °

X X X

X ° X °

X

(a) Polar cones -� of -

X*

X*X
X

X*=X
X

X*

(b) Dual cones -⇤ = �-� of -

Figure 12.1 Polar cones and dual cones of - ✓ R=. For the leftmost set - which is nonconvex,
both its polar cone and dual cone contain only the origin. The other three sets - are closed
convex cones and therefore (-�)� = - . Note that (-�)� < �-� = -⇤ unless - is self-dual.
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of polar cones are given in the following result (see e.g. [54, Proposition 2.2.1, p.100]).

Proposition 12.1. Let - ✓ R= be a nonempty set.

1 Its polar cone -� is a closed convex cone.
2 -

� = (cl(-))� = (conv(-))� = (cone(-))�.
3 If - ✓ . then .� ✓ -�.
4 If - is a cone then (-�)� = cl(conv(-)). If - is a closed convex cone then

(-�)� = - .

⇤

Figure 12.1 shows the polar cones of sets - that contain the origin. For a set -
whose closure cl(-) does not contain the origin, its polar cone -� is the same as the
polar cone of cone(-) according to Proposition 12.1, as illustrated in Figure 12.2.

X °

cone (X)

X

Figure 12.2 Polar cone -� = cone� (-) according to Proposition 12.1.

Example 12.1. Fix an Ḡ 2 -�. By definition ḠT
G  0 for all G 2 - . Can there be an

G 2 -� such that ḠT
G  0?

Solution. Yes if -� * - . Consider - := {G 2 R2 : G1 > 0,G2 = 0}. Then -� = {G 2 R2 :
G1  0}. An example is Ḡ := (0,�1) 2 -� and G := (0,1) 2 -�. ⇤

12.1.2 Normal cone and tangent cone

Let Ḡ 2 - ✓ R=. The cone of feasible directions of - at Ḡ (or the radial cone) is, from
Definition 8.5,

cone(- � Ḡ) :=
�Õ

<

8=1U8 (G8 � Ḡ) : G8 2 - ,U8 � 0, integers < > 0
 

It is the set of directions G� Ḡ and their convex combinations along which an infinites-
imal step from Ḡ will stay in - . It is closed if and only if - is closed. The closure of
cone(-� Ḡ) can be interpreted as a “linear approximation” of the set - at the point Ḡ 2 -
in that it is the smallest convex cone that contains all the feasible directions G� Ḡ at Ḡ.
For a smooth function 5 , the first-order Taylor expansion 5̂ (G) := 5 (Ḡ) + m 5

mG
(Ḡ) (G� Ḡ)

approximates 5 locally at Ḡ by a supporting hyperplane. For a “smooth” set - , the
closed convex cone cl(cone(- � Ḡ)), called a tangent cone, approximates the set -
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locally at Ḡ by a halfspace associated with the supporting hyperplane at Ḡ (see Figure
12.4 below).

The notion of normal cone and tangent cone is fundamental to nonsmooth opti-
mization. It su�ces for our purposes to adopt the following definition.

Definition 12.2. Let - ✓ R= be a nonempty set and Ḡ 2 - .

1 The tangent cone of - at Ḡ is the closure of the feasible direction cone of - at Ḡ:

)- (Ḡ) := cl (cone(- � Ḡ))

2 The normal cone of - at Ḡ is the polar cone of the feasible direction cone of - at
Ḡ:

#- (Ḡ) := (cone(- � Ḡ))� = (- � Ḡ)� = {H 2 R= : HT (G� Ḡ)  0 8G 2 -}

⇤

Proposition 12.1 implies that the normal cone and the tangent cone are the polar
cones of each other. The second equality in Definition 12.2 of normal cone also follows
from Proposition 12.1. An equivalent definition for tangent cone of - at Ḡ is

)- (Ḡ) := {0}[
⇢
H < 0 : 9G: 2 - s.t. G: < Ḡ,G: ! Ḡ,

G: � Ḡ
kG: � Ḡk

! H

kHk

�

This definition is often used from which )- (Ḡ) = cl (cone(- � Ḡ)) can be derived.

Proposition 12.2. Let - ✓ R= be a nonempty set and Ḡ 2 - .

1 The polar cone, dual cone, tangent cone, and normal cone are closed convex cones,
even if - is neither closed nor convex.

2 ()- (Ḡ))� = #- (Ḡ) and )- (Ḡ) = (#- (Ḡ))�.
3 If Ḡ 2 int(-) then #- (Ḡ) = {0} and )- (Ḡ) = R=. ⇤

Proposition 12.2 is proved in Exercise 12.2. While a polar cone -� and a dual
cone -⇤ = �-� are sets with respect to the entire set - , a normal cone #- (Ḡ) and a
tangent cone )- (Ḡ) are set-valued functions whose values generally depend on their
argument Ḡ 2 - . If 0 2 - then -� = #- (0). Note that )- (Ḡ) is generally di�erent from
the dual cone (- � Ḡ)⇤ = {H 2 R= : HT (G� Ḡ) � 0, 8G 2 -} (Exercise 12.2). If Ḡ 2 ri( ),
instead of G 2 int(-) as in Proposition 12.2, then # (Ḡ) may not be {0}. For example,
 := {(G1,0) 2 R2 : G1 � 0} and Ḡ := (1,0) 2 ri( ) at which # (Ḡ) = {(0,G2) : G2 2 R}.
The normal cones and tangent cones of three closed cones  at di�erent boundary
points Ḡ are illustrated in Figure 12.3.

Remark 12.1 (Linear approximation and optimality). 1 A tangent cone )- (Ḡ) =
cl(cone(- � Ḡ)) locally approximates the set - at Ḡ 2 - by the smallest closed
convex cone containing all the feasible directions G� Ḡ. Its polar cone, the normal
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K °

x̄

NK(x̄)

TK(x̄)=half-space

K

(a) Pointed cone

K °

K

NK(0)=K °

TK(0)=K

(b) Pointed cone: Ḡ := 0

NK(x̄) K

TK(x̄)=R2K °

x̄

(c) Non-pointed nonconvex cone

NK(x̄)=K °
K °

TK(x̄)=K
K

x̄

(d) Non-pointed convex cone

Figure 12.3 Normal and tangent cones of closed cones  ✓ R2 at a boundary point Ḡ (see
Exercise 12.2 for derivation).

cone #- (Ḡ) = ()- (Ḡ))�, specifies the directions G � Ḡ that are “most opposite to”
or “most away from” the linear approximation )- (Ḡ).

2 If - is “smooth” at Ḡ then )- (Ḡ) is a halfspace associated with the supporting
hyperplane at Ḡ and #- (Ḡ) is a singleton; see Figure 12.4.

3 For convex constrained optimization, the first order optimality condition says that
G
⇤ is a minimizer if and only if the direction of cost reduction aligns with #- (G⇤),

i.e., �r 5 (G⇤) 2 #- (G⇤). In a smooth setting, this takes the form �r 5 (G⇤) =
r6(G⇤)_⇤ +r⌘(G⇤)`⇤, with the right-hand side being the singleton #- (G⇤). We
generalize this to the nonsmooth setting in Theorem 12.21 of Chapter 12.5. ⇤

TX(x̄)

NX(x̄)

TX(x̄)

X
Xx̄

NX(x̄)

x̄

Figure 12.4 The tangent cones )- (Ḡ) = cl (cone(- � Ḡ)) and the normal cones
#- (Ḡ) = cone� (- � Ḡ) of - at Ḡ. At Ḡ where the boundary of - is “smooth”, the left panel
illustrates the importance of “cl” in the definition of )- (Ḡ) and why #- (Ḡ) is a singleton.



12.1 Normal cones of feasible sets 567

Hyperplane, polyhedron, convex cone and convex set.

Recall from Chapter 8.1.2 that a hyperplane (or an intersection of hyperplanes) is a set
�1 := {G 2 R= : �G = 1} specified by a finite number of a�ne equalities with � 2 R<⇥=
and 1 2 R<. A polyhedral set, or a polyhedron, is a set�2 := {G 2 R= : �G  1} specified
by a finite number of a�ne inequalities. A hyperplane �1 is not a cone unless 1 = 0.
Its normal cone #�1 (Ḡ) is independent of Ḡ, unlike the normal cone of a polyhedron
�2 or a general convex cone. To avoid triviality we often assume implicitly these sets
are nonempty.

The normal cones of hyperplanes, polyhedrons, general convex cones or convex sets
specified by convex functions are particularly useful, so we derive them here. They give
rise to optimal Lagrange multipliers in constrained convex optimization problems, as
well as complementary slackness for inequality constraints at optimality. For specific
convex programs in Chapter 12.8, substituting the expressions of the normal cones
in Theorems 12.3 and 12.4 into the optimality condition in Theorem 12.21 leads to
the KKT conditions for these convex programs. Recall that, for a matrix � 2 R<⇥=,
cone(�) := {�_ : _ 2 R=+} ✓ R< is the set of nonnegative linear combinations of the
columns of �.

Theorem 12.3 (Normal cones). Given � 2 R<⇥=, let �1 := {G 2 R= : �G = 1} be a
hyperplane and �2 := {G 2 R= : �G  1} be a polyhedron. Let  + := {G 2 R= : G � 0}
be the nonnegative quadrant, and  ✓ R= a convex cone. Then

1 #�1 (Ḡ) = range(�T) = {�T
_ 2 R= : _ 2 R<} for any Ḡ 2 �1.

2 #�2 (Ḡ) = cone
⇣
�

T
� ( Ḡ)

⌘
= {�T

_ 2 R= : _ 2 R<+ , _T (�Ḡ�1)} for any Ḡ 2 �2 where

� (Ḡ) := {8 : �Ḡ = 1} is the set of active constraints. In particular #�2 (Ḡ) = {0} if
�Ḡ < 1.

3 # + (Ḡ) = {H 2 R= : H  0, HT
Ḡ = 0} for any Ḡ 2  +. In particular # + (Ḡ) = {0} if

Ḡ > 0 and # + (0) =  � := {H 2 R= : H  0}.
4 # (Ḡ) = {H 2  � : HT

Ḡ = 0} for any Ḡ 2  , where  � := {H 2 R= : HT
G  0 8G 2  }

is the polar cone of  . If 0 2  then # (0) =  �.

Proof 1 By definition

#�1 (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G s.t. �G = 1}

Since G, Ḡ 2 �1, �(G� Ḡ) = 0. Hence we can replace G� Ḡ for all G 2 �1 by all G in
null(�) to get

#�1 (Ḡ) = {H 2 R= : HT
G  0 8G s.t. �G = 0}

Since if G 2 null(�) then �G 2 null(�), we must have HT
G = 0 for all G 2 null(�).1

Hence H 2 range(�T), i.e., #�1 (Ḡ) = {�T
_ 2 R= : _ 2 R<}.

1 More explicitly, for any G 2 �1 so that �(G� Ḡ) = 0, the vector G0 := 2Ḡ� G is also in �1 since
�G
0 = 1; moreover �(G0 � Ḡ) = �( Ḡ� G) .
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3 We prove parts 3 and 4 first. For  + := {G 2 R= : G � 0} we have

# + (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G � 0}

If Ḡ > 0 (i.e., Ḡ is an interior point), then G := Ḡ + C4 9 for C 2 R with small enough
|C | (where 4 9 is the unit vector with 1 in the 9 th entry and 0 elsewhere) ensures
H

T (G � Ḡ) = CH 9  0. As C can be negative or positive, we must have H 9 = 0.
Hence # + (Ḡ) = {0} if Ḡ > 0. If Ḡ is a boundary point of  + with Ḡ 9 = 0 for
9 2 � ✓ {1, . . . ,=} and Ḡ 9 > 0 for 9 8 �, then the same reason implies H 2 # + (Ḡ) will
have H 9 = 0 for 9 8 �. For 9 2 �, using G := C4 9 for any C > 0 gives HT (G� Ḡ) = CH 9  0,
i.e., H 9  0. Putting all this together we have # + (Ḡ) := {H 2 R= : H  0, HT

Ḡ = 0}.
4 For a general convex cone  ✓ R= (which includes  + as a special case if  is

closed), we have

# (Ḡ) := {H 2 R= : HT (G� Ḡ)  0 8G 2  }

Since  is a cone and Ḡ 2  , G := WḠ 2  for any W > 0. Hence any H 2 # (Ḡ)
must satisfy HT (G � Ḡ) = (W � 1)HT

Ḡ  0. Since W can be chosen to be greater or
smaller than 1 (as long as Ḡ < 0) we must have HT

Ḡ = 0 (even if Ḡ = 0). Then
H satisfies HT

G  0 8G 2  , i.e., H is in the polar cone  � of  . This shows that
# (Ḡ) ✓ {H 2  � : HT

Ḡ = 0}. For the converse let H 2  � with HT
Ḡ = 0. Then clearly

H
T (G� Ḡ)  0 for all G 2  , i.e., H 2 # (Ḡ).

2 By definition

#�2 (Ḡ) := {H 2 R= : HT (G� Ḡ)  0 8G s.t. �G  1}

where �Ḡ  1. Let

. (Ḡ) := {�T
_ 2 R= : _ 2 R<+ , _T (�Ḡ� 1) = 0} (12.2)

We will prove #�2 (Ḡ) = . (Ḡ). Suppose H := �T
_ 2 . (Ḡ). Then, for any G with

�G  1,

H
T (G� Ḡ) = _

T
�(G� Ḡ) = _

T (�G� 1)  0

where the last inequality follows because _ � 0 and �G  1. Therefore H 2 #�2 (Ḡ).
Conversely suppose H 2 #�2 (Ḡ). Let � := � (Ḡ) := {8 : 0T

8
Ḡ = 18} where 0T

8
2 R=

are the rows of � and 0T
8
Ḡ < 18 for 8 8 �. If � = ;, i.e., Ḡ 2 int (�2), then the usual

argument shows that #�2 (Ḡ) = {0}. Specifically there exists C with |C | > 0 such
that G := Ḡ + C48 2 �2 and hence HT (G � Ḡ) = CH8  0 implies H8 = 0 since C can be
positive or negative, i.e., #�2 (Ḡ) = {0}. On the other hand, Ḡ 2 int(�2) implies
that _ = 0 in the definition of . (Ḡ) and . (Ḡ) = {0}. Hence #�2 (Ḡ) = . (Ḡ).

We now prove H 2 . (Ḡ) when � < ;, by contradiction. Suppose H 8 . (Ḡ). We
will construct a point G := Ḡ +�G such that �G  1 but HT (G � Ḡ) = HT�G > 0,
contradicting that H 2 #�2 (Ḡ) and proving H 2 . (Ḡ). We first claim that there exist
a nonzero 2 2 R= such that

2
T
08  0 < 2

T
H, 88 2 � (12.3)
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Indeed, since . (Ḡ) is a closed convex set, the Separating Hyperplane Theorem
8.10 says that there exists a nonzero 2 2 R= such that (from (8.22b)):

2
T
�

T
_ < 2

T
H, 8_ � 0 s.t. _T (�Ḡ� 1) = 0 (12.4)

Note that the unit vector 48 2 {0,1}< satisfies 4T
8
(�Ḡ�1) = 0 for 8 2 �. Substituting

into (12.4) we have

C82
T
08 = 2

T
�

T (C848) < 2
T
H, 8C8 � 0, 8 2 �

where 0T
8

are the 8th row of �. Since this holds for all C8 � 0, (12.3) follows. (Also
see Remark 12.2 for a more direct derivation of (12.3).)

Consider then G(C) := Ḡ + C2. We have

�G(C) = �Ḡ + C (�2) =

�� Ḡ + C (�� 2)
��� Ḡ + C (��� 2)

�

where for any matrix (or vector) " , "� and "�� denotes the submatrices of "
consisting of its rows 8 2 � and 8 8 � respectively. For 8 2 �, (12.3) implies that
�� Ḡ + C (�� 2)  �� Ḡ  1� . For 8 8 �, since ��� Ḡ < 1�� , there exists small enough
C > 0 such that ��� Ḡ+ C (��� 2)  1�� . Hence �G(C)  1. Yet, HT (G(C)� Ḡ) = CHT

2 > 0
from (12.3), contradicting that H 2 #�2 (Ḡ). This completes the proof of part 2.

⇤

For a general cone  , if Ḡ 2 int( ), then # (Ḡ) = {0} for the same reason as in the
proof above for # + (Ḡ). Part 3 is a special case of part 2 with � = �I and 1 = 0. It is
also a special case of part 4 with  =  + and  �+ = {H 2 R= : H  0}.
Remark 12.2 (Farkas Lemma (Theorem 8.12)). Note that . (Ḡ) is a convex cone
because (12.2) is equivalent to

. (Ḡ) := {�T
�
_� 2 R= : _� 2 R |� |

+ }
where � := � (Ḡ) := {8 : 0T

8
Ḡ = 18} is the set of active constraints and �� is the submatrix

of � consisting of rows in �. If H 8 . (Ḡ), then (12.3) follows directly from the Farkas
Lemma (Theorem 8.12). We derive (12.3) from the Separating Hyperplane Theorem
(which underlies the Farkas Lemma) because, while Farkas Lemma applies to a convex
cone, the Separating Hyperplane Theorem applies more broadly to a convex set (see
Remark 12.5). ⇤

Example 12.2 (#�1 (Ḡ) and #�2 (Ḡ)). Let

� :=

1 1 0
0 0 1

�
, 1 :=


1
2

�

Then �G = 1 defines the hyperplane �1 := {G 2 R3 : G1 + G2 = 1, G3 = 2}. Its normal
cone is the span of the columns of �T independent of Ḡ 2 �1:

#�1 (Ḡ) = {H 2 R3 : H = �T
_ for some _ 2 R2} =

8>><
>>:
266664
_1

_1

_2

377775
: _8 2 R

9>>=
>>;
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Consider the polyhedron �2 := {G 2 R3 : G1 +G2  1, G3  2} and Ḡ := (0.5,0.5,0) 2
�2. Then � := � (Ḡ) = {1}. According to Theorem 12.3 its normal cone is in the cone
of the columns of �T with complementary slackness:

#�2 (Ḡ) = {H 2 R3 : H = �T
_ for some _1 � 0,_2 = 0} =

8>><
>>:
266664
_1

_1

0

377775
: _1 � 0

9>>=
>>;

⇤

The proof of part 2 of Theorem 12.3 for polyhedron �2 constructs a feasible point
G(C) := Ḡ+ C2 in order to prove H 2 #�2 (Ḡ)) H 2. (Ḡ). This relies on the fact that, when
⌘(G) := �G�1 is a�ne, (r⌘8 (Ḡ))T (C2) = C (0T

8
2)  0 for all C > 0 and hence ⌘(G(C))  0

(the corresponding feature for the proof of part 4 for a convex cone  is that WḠ 2  for
any W > 0). When ⇠ := {G 2 R= : ⌘(G)  0} is defined by a nonlinear convex function
⌘(G), G(C) := Ḡ + C2 may no longer be adequate because, for 8 2 � (Ḡ), (r⌘8 (Ḡ))T

2 may
be zero and ⌘(G(C))  0 may not hold, as the next example illustrates. It explains why
constraint qualification is needed for nonlinear constraints in convex optimization, but
unnecessary for polyhedral constraints.

Example 12.3 (Inadequacy of Ḡ + C2). Let ⇠ := {G 2 R= : ⌘(G)  0} where ⌘ : R2!
R

2 are given by ⌘8 (G1,G2) := 1
2

�
G

2
1 + 08G2

2

�
� 18 , 8 = 1,2 with 08 > 0,18 > 0 and

11/01 < 12/02; see Figure 12.5. Let Ḡ :=
⇣
0,

p
211/01

⌘
. Then ⌘1 (Ḡ) = 0, ⌘2 (Ḡ) < 0,

x2

x1

√2b2 /a2
——

−√2b2 /a2
——

√2b1
——−√2b1

——

x̄

∆

h1(x̄)

Figure 12.5 Example 12.3.

� := � (Ḡ) = {1}, and r⌘1 (Ḡ) := (Ḡ1,01Ḡ2) = (0,
p

20111). Consider H := (H1, H2). Sup-
pose H 2 #⇠ (Ḡ), but H 8 . (Ḡ) where

. (Ḡ) :=

8>><
>>:

’
82� ( Ḡ)

_8r⌘8 (Ḡ) : _8 �, 8 2 � (Ḡ)
9>>=
>>;

= {H := (0,_) : _ � 0}

To derive a contradiction, the separating hyperplane argument in the proof of Theorem
12.3 for �2 shows that there exists a nonzero 2 2 R= such that (as for (12.3))

2
Tr⌘8 (Ḡ)  0 < 2

T
H, 88 2 �
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Since . (Ḡ) is a closed convex cone, the vector 2 that defines the separating hyperplane
is (from (8.23a)):

2 :=
H� Ĥ
kH� Ĥk2

< 0

where Ĥ is the projection of H onto . (Ḡ) := {Õ
82� _8r⌘8 (Ḡ) : _8 � 0, 8 2 �}:

Ĥ =
’
82�

H
Tr⌘8 (Ḡ)
kr⌘8 (Ḡ)k22

r⌘8 (Ḡ) =:
’
82�
_̂8

r⌘8 (Ḡ)
kr⌘8 (Ḡ)k2

i.e., the coe�cient _̂8 of the unit vector r⌘8 (Ḡ)/kr⌘8 (Ḡ)k2 is the projection of H onto
this unit vector. Therefore 2, being H� Ĥ normalized, is a unit vector that is orthogonal
to . (Ḡ) = {(0,_) : _ � 0}, i.e., 2 = (1,0). Since 2Tr⌘1 (Ḡ) = 0, for any C > 0,

⌘1 (G(C)) = ⌘1 (Ḡ) + C
m⌘1

mG

(Ḡ)2+ C
2

2
2

T m
2
⌘1

mG
2
(G(B))2 =

C
2

2
2

T m
2
⌘1

mG
2
(G(B))2 > 0

for some B 2 [0, C]. Hence G(C) := Ḡ + C2 8 . (Ḡ) for any C > 0; see Figure 12.5.

Exercise 12.3 derives the normal cone #⇠ (Ḡ) for this example. It also shows that
constraint qualification is su�cient but not necessary for the existence of _. ⇤

When ⇠ := {G : ⌘(G)  0} is a non-polyhedral convex set, a constraint qualification
is needed to derive the normal cone #⇠ (Ḡ). We next derive #⇠ (Ḡ) under the linear
independence constraint qualification (LICQ) discussed in Chapter 8.3.4:

columns of r⌘� (Ḡ) 2 R=⇥ |� | are linearly independent (12.5)

where � := � (Ḡ) := {8 : ⌘8 (Ḡ) = 0} is the set of active constraints and ⌘� := (⌘8 : 8 2 �)
consists of constraint functions in �. The proof of Theorem 12.4 has three features
that are useful in other applications: (i) It uses the Farkas Lemma (Theorem 8.12) or
the Separating Hyperplane Theorem 8.10 to derive the inequality (12.6). (ii) It uses
linear program (LP) duality to find a direction �G for a contradiction argument. (iii) It
illustrates the role of LICQ in the LP duality argument.

Theorem 12.4 (Normal cone of ⇠). Let ⇠ := {G 2 R= : ⌘(G)  0} be the convex set
defined by a real-valued twice continuously di�erentiable function ⌘ : R=! R< that
is convex on R=. If Ḡ 2 ⇠ satisfies (12.5) then (denoting � := � (Ḡ) := {8 : ⌘8 (Ḡ) = 0})

1 #⇠ (Ḡ) = cone (r⌘� (Ḡ)) = {r⌘(Ḡ)_ 2 R= : _ 2 R<+ , _T
⌘(Ḡ) = 0} for any Ḡ 2 ⇠.

2 Every H 2 #⇠ (Ḡ) has a unique representation in terms of r⌘� (Ḡ), i.e., for every
H 2 #⇠ (Ḡ), there exists a unique _� 2 R |� |

+ such that H = r⌘� (Ḡ)_� .

Proof By definition

#⇠ (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G s.t. ⌘(G)  0}
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where ⌘(Ḡ)  0. Define the closed convex cone

. (Ḡ) := {r⌘(Ḡ)_ 2 R= : _ 2 R<+ , _T
⌘(Ḡ) = 0} =

(’
82�
_8r⌘8 (Ḡ) : _8 � 0

)

where ⌘8 (Ḡ) = 0 for 8 2 � and ⌘8 (Ḡ) < 0 for 8 8 �. We will show that #⇠ (Ḡ) = . (Ḡ).

Suppose H := r⌘(Ḡ)_ 2 . (Ḡ). Since ⌘ is convex on R= we have

⌘(G)�
⇣
⌘(Ḡ) +rT

⌘(Ḡ) (G� Ḡ)
⌘
� 0 8G s.t. ⌘(G)  0

Multiplying both sides by _ � 0, we get, since _T
⌘(Ḡ) = 0,

(r⌘(Ḡ)_)T (G� Ḡ)  _
T
⌘(G)  0 8G s.t. ⌘(G)  0

where the last inequality follows since ⌘(G)  0 and _ � 0. Hence H 2 #⇠ (Ḡ).

Conversely suppose H 2 #⇠ (Ḡ). As for #�2 (Ḡ), if � = ;, then Ḡ 2 int(⇠) and both
#⇠ (Ḡ) and . (Ḡ) are equal to {0}. Suppose then � < ; and H 8 . (Ḡ). We will show
that there exists an G(C) := Ḡ + C�G such that ⌘(G(C))  0 but HT (G(C)� Ḡ) = CHT�G > 0,
contradicting H 2 #⇠ (Ḡ) and proving that H 2 . (Ḡ), in three steps.

Step 1: There exists 2 with 2T
H > 0. The same argument in Theorem 12.3 that derives

(12.3) for the polyhedron �2 shows that there exists a nonzero 2 2 R= with

2
Tr⌘8 (Ḡ)  0 < 2

T
H, 88 2 � (12.6)

This is a consequence of the Farkas Lemma (Theorem 8.12) since . (Ḡ) is a convex
cone (see Remark 12.2).

Step 2: Bound second-order term. For the polyhedron�2 in Theorem 12.3, the required
�G := 2. For nonlinear ⌘(G), however, G(C) := Ḡ+ C2 is inadequate because of the second-
order term in the Taylor expansion of ⌘(G(C)), as explained in Example 12.3. A more
sophisticated argument is needed that uses linear programming duality in Theorem
8.23 of Chapter 8.4.2.

For each 8 = 1, . . . ,<, we have

⌘8 (G(C)) = ⌘8 (Ḡ + C�G) = ⌘8 (Ḡ) + C
m⌘8

mG

(Ḡ)�G + C
2

2
�GT m

2
⌘8

mG
2
(G(B8))�G (12.7)

for some B8 2 [0, C]. The last term depends on C through G(B8), but can be upper bounded
by:

U8 (Ḡ,�G) := max
B8 2 [0,1]

�GT m
2
⌘8

mG
2
(G(B8))�G

which is finite and independent of C, given (Ḡ,�G), since ⌘8 is twice continuously
di�erentiable and B8 is in a compact set [0,1]. Then (12.7) implies, for 8 = 1, . . . ,<,

⌘8 (G(C))  ⌘8 (Ḡ) + C
✓
m⌘8

mG

(Ḡ)�G + C
2
U8 (Ḡ,�G)

◆
for C 2 [0,1]
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Hence if we can find a direction �G such that

m⌘8

mG

(Ḡ)�G < 0 for 8 2 � (12.8a)

then, since ⌘8 (Ḡ) = 0 for 8 2 � and ⌘8 (Ḡ) < 0 for 8 8 �, there exists a su�ciently small
C > 0 such that ⌘8 (G(C))  0 for all 8 = 1, . . . ,<. If �G also satisfies

H
T (G(C)� Ḡ) = CH

T�G > 0 (12.8b)

then G(C) contradicts H 2 #⇠ (Ḡ) and thus proves H 2 . (Ḡ).

Step 3: There exists�G that satisfies (12.8). To find such a�G, denote by ⌘� := (⌘8 : 8 2 �)
the vector of constraint functions ⌘8 with ⌘8 (Ḡ) = 0. Consider the linear program

I
⇤ (n) := min

(�G,I)2R=+1
I s.t.

m⌘�

mG

(Ḡ)�G  I1, HT�G � n (12.9)

where the parameter n > 0 is to be determined, m⌘�
mG

(Ḡ) and H are fixed, and 1 denotes
the vector of all 1s of size |� |. An optimal solution (�G⇤, I⇤ (n)) with I⇤ (n) < 0 exists
for some n > 0 if and only if G⇤ (C) := Ḡ + C�G⇤ satisfies (12.8). We claim that the linear
program (12.9) is feasible for a su�ciently small n > 0, because

�G := 2, I := max
82�

m⌘8

mG

(Ḡ)2

satisfies the constraints in (12.9), where 2 is the vector in (12.6). Fix an n > 0 such that
(12.9) is feasible.

We now show that the LICQ (12.5) implies that the dual of (12.9) is infeasible. Let
_ 2 R |� |

+ and ` 2 R+ denote the dual variables associated with the constraints in (12.9).
The dual problem of (12.9) is (see Chapter 8.4.2 for details):

3
⇤ (n) := max

(_,`)2R|� |+1
n ` s.t. 1

T
_ = 1, r⌘� (Ḡ)_ = `H, (_,`) � 0 (12.10)

wherer⌘� (Ḡ) =
⇣
m⌘�

mG
(Ḡ)

⌘T
. Suppose (_,`) � 0 is feasible for (12.10). Then_ < 0. Since

r⌘� (Ḡ) has linearly independent columns (constraint qualification), r⌘� (Ḡ)_ < 0 and
hence ` > 0. Therefore we can write

H =
’
82�

_8

`

r⌘8 (Ḡ)

i.e., H 2 . (Ḡ), contradicting the assumption that H 8 . (Ḡ). Hence the dual problem
(12.10) is infeasible.

Since the primal problem is feasible but the dual problem is infeasible, linear
programming duality implies that I⇤ (n) = 3⇤ (n) = �1 (see Theorem 8.23 of Chapter
8.4.2). This means there exists a (finite) �G that is feasible for (12.9) and that satisfies
(12.8). This establishes the existence of an G(C) := Ḡ + C�G such that ⌘(G(C))  0 but
H

T (G(C)� Ḡ) = CHT�G > 0, contradicting H 2 #⇠ (Ḡ) and proving that H 2 . (Ḡ).

Finally, for any H 2 #⇠ (Ḡ), H = r⌘� (Ḡ)_� for some _� 2 R |� |
+ . If there is another
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distinct _̂� with H = r⌘� (Ḡ)_̂� then r⌘� (Ḡ) (_̂� �_� ) = 0, contradicting LICQ (12.5).
Hence H has a unique representation. ⇤

The uniqueness of _� in Theorem 12.4 underlies the property that LICQ (12.5)
implies the uniqueness of dual optimal solution in constrained convex optimization.
Constraint qualification however is su�cient, but not necessary, for the existence of _�
in #⇠ (Ḡ) = {r⌘� (Ḡ)_� 2 R= : _� 2 R |� |

+ }; see Exercise 12.3.

Example 12.4 (Nonlinear equality constraint 6(G) = 0). Let the components 68 , 8 =
1, . . . ,<, of 6 : R= ! R< be twice continuously di�erentiable convex functions. Let
- := {G : 6(G) = 0}. Note that - is not convex unless 6 is a�ne. Suppose Ḡ 2 - satisfies
LICQ (12.5), i.e., the columns of r6(Ḡ) are linearly independent. Show that

#- (Ḡ) = range(r6(Ḡ)) := {r6(Ḡ)_ : _ 2 R<}

Moreover for every H 2 #- (Ḡ) there is a unique _ such that H = r6(Ḡ)_.

Solution. Write 6(G) = 0 as 6(G)  0 and �6(G)  0. Theorem 12.4 then implies that

#- (Ḡ) =
⇢⇥
r6(Ḡ) �r6(Ḡ)

⇤ 
_

`

�
2 R= : _,` 2 R<+

�

=
�
(_� `)r6(Ḡ) : _,` 2 R<+

 
= range(r6(Ḡ))

The unique representation of every H 2 #- (Ḡ) also follows directly from Theorem
12.4. ⇤

Theorems 12.3 and 12.4 derive the normal cones of common convex sets. The next
result says that the normal cone of the intersection of convex sets is the sum of their
individual normal cones. It is useful in deriving the normal cone of multiple constraints
in an optimization problem from the normal cones of individual constraints. It is proved
in Exercise 12.13 using Theorem 12.18 below (whose proof does not rely on Lemma
12.5 so there is no circular argument).

Lemma 12.5 (Normal cone of set intersection). Consider polyhedral sets ⇠8 ✓ R=,
8 = 1, . . . , <̄, and convex sets ⇠8 ✓ R=, 8 = <̄ +1, . . . ,<, and let ⇠ :=

—
<

8=1⇠8 . If
�
\<̄
8=1⇠8

� Ÿ �
\<
8=<̄+1 ri(⇠8))

�
< ;

then

#⇠ (Ḡ) =
’
8

#⇠8
(Ḡ), 8Ḡ 2 ⇠

Summary. Theorems 12.3 and 12.4 and Example 12.4 are summarized in Table 12.1
(see Exercise 12.4 for derivation of the tangent cones). We will use these results together
with Lemma 12.5 to derive KKT conditions in Chapter 12.8 for convex optimization
problems widely used in applications. The intuition is explained in Remark 12.1: G⇤

is a minimizer if the negative cost gradient �r 5 (G⇤) is in the normal cone #- (G⇤)
of the feasible set - at G⇤. If the feasible set - := \8⇠8 is specified by multiple
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Set - ✓ R= Normal cone #- (Ḡ) ✓ R= Tangent cone )- (Ḡ) ✓ R=

{G : �G = 1} range(�T) := {�T
_ : _ 2 R<} null(�) := {H : �H = 0}

{G : convex ⌘(G) = 0} range(r⌘(Ḡ)) := {r⌘(Ḡ)_ : _ 2 R<} null(rT
⌘(Ḡ)) := {H : rT

⌘(Ḡ)H = 0}
{G : �G  1} cone

⇣
�

T
�

⌘
= {�T

_ 2 R= : _ 2 R<+ , _T (�Ḡ� 1)} {H : �� H  0}
{G : convex ⌘(G)  0} cone(r⌘� (Ḡ)) := {r⌘(Ḡ)_ : _ 2 R<+ , _T

⌘(Ḡ) = 0} {H : rT
⌘� (Ḡ)H  0}

cone {G : G � 0} {H  0 : HT
Ḡ = 0} {H : Ḡ8 = 0) H8 � 0}

cone  {H 2  � : HT
Ḡ = 0} cl{Õ

8
U8 (G8 � Ḡ) : G8 2  , U8 � 0}

Table 12.1 The tangent cones and normal cones of common sets. The function ⌘ is assumed to
be twice continuously di�erentiable and convex and constraint qualification is satisfied at Ḡ 2 - .

constraints ⇠8 , the optimality condition takes the form �r 5 (G⇤) 2 Õ
8
#⇠8

(G⇤), e.g.,
�r 5 (G⇤) = r6(G⇤)_⇤+r⌘(G⇤)`⇤ as in (12.1). The condition HT

Ḡ = 0 in Table 12.1 give
rise to complementary slackness in KKT conditions, as we will see in Chapter 12.8.
Theorem 12.4 underlies the need for constraint qualification and the uniqueness of the
dual optimal solution under LICQ.

12.1.3 A�ne transformation

We have derived in the previous subsection the normal cones of common sets. In this
subsection we study how the normal cones are transformed when these sets undergo
a�ne transformations. They will be applied in Chapter 12.1.4 to derive the normal
cones of SOC constraints.

Linear transformation.

Consider the linear mapping � 2 R<⇥=, and the image . ✓ R< and the pre-image
- ✓ R= under �. We will study the relation between the normal cones #- (Ḡ) and
#. (�Ḡ). The main conclusion is that if - is the pre-image of an arbitrary set . then
#- (Ḡ) = �T

#. (�Ḡ). By Proposition 12.1, -� = [cl(cone(-))]� = #- (0) when 0 2 - .
Hence this also implies that -� = �T

.
�.

Specifically given a nonempty set - ✓ R=, its image under � 2 R<⇥= is the set

. := �- := {�G 2 R< : G 2 -}

By definition of . , the mapping � : - ! . is surjective, i.e., every H 2 . satisfies
H = �G for some G 2 - . It is injective if � is of full column rank. In the following -�

and #- (Ḡ) denote the polar cone and the normal cone of - at Ḡ. The next result is used
in Corollary 12.11 to derive the normal cone of a rotated second-order cone from that
of a standard second-order cone.

Theorem 12.6 (Image of linear transformation). Let - ✓ R= be a nonempty set and
. := �- where � 2 R<⇥=. Suppose Ḡ 2 - and H̄ = �Ḡ 2 . . Then
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1 The polar cone .� and the normal cone #. ( H̄) of . at H̄ are the pre-images of the
polar cone and the normal cone of - at Ḡ respectively under �T:

.
� = {H 2 R< : �T

H 2 -�}, #. ( H̄) = {H 2 R< : �T
H 2 #- (Ḡ)}

Hence �T
.
� ✓ -� and �T

#. ( H̄) ✓ #- (Ḡ).
2 If rank(�) = = (full column rank) then �T

.
� = -� and �T

#. ( H̄) = #- (Ḡ).

Proof For the normal cone #. ( H̄) we have, for any H̃ 2 #. ( H̄), H̃T (H � H̄)  0 for
H = �G 2 . for all G 2 - . Then

H̃
T
�(G� Ḡ)  0 8G 2 -

i.e., �T
H̃ 2 #- (Ḡ). This implies that �T

#. ( H̄) ✓ #- (Ḡ). Suppose now rank(�) = =
so that - = �

†
. with �

† = (�T
�)�1

�
T (if < = =, then �

† = �
�1); see Corollary

A.20 of Chapter A.7. If G̃ 2 #- (Ḡ) then G̃T (G � Ḡ) = G̃T
�
†(H � H̄)  0 for all H 2 . ,

i.e., �(�T
�)�T

G̃ 2 #. ( H̄). Therefore �(�T
�)�T

G̃ = H̃ or G̃ = �T
H̃ for some H̃ 2 #. ( H̄)

because �
T
H̃ = �

T
�(�T

�)�T
G̃ = G̃. This shows that �T

#. ( H̄) ◆ #- (Ḡ) and hence
�

T
#. ( H̄) = #- (Ḡ).

For the polar cone .�, substitute Ḡ := 0 into the above argument (whether or not
0 2 -) to conclude that �T

.
� ✓ -�, and �T

.
� = -� if rank(�) = =. ⇤

Theorem 12.6 is illustrated in Figure 12.6 for the case when rank(�) = = so that
-
� = �T

.
�. See Example 12.5 for a case when � is singular and -� ) �T

.
�.

X °

AT

X A
Y

Y °

Figure 12.6 Theorem 12.6 when rank(�) = = : linear transformation . of a convex cone - and
their polar cones .� = #. (0) and -� = #- (0) respectively.

Given a nonempty set . ✓ R<, its pre-image under � 2 R<⇥= is the set

- := {G 2 R= : �G 2 . }

The mapping � : - ! . is not necessarily surjective, i.e., �- ✓ . and �- can be a
strict subset of . . Moreover, if . is the image of a given set - then Theorem 12.6 says
that #- (Ḡ) ✓ �T

#. ( H̄) unless rank(�) = =, but if - is the pre-image of a given set
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. then #- (Ḡ) = �T
#. ( H̄) for arbitrary �, as Theorem 12.7 shows. This is because

the pre-image - always contains null(�) whereas a given - may overlap with null(�)
but not contain it (unless rank(�) = = in which case null(�) = {0}). The next example
illustrates this di�erence; see also (12.12) below.

Example 12.5 (Image vs pre-image). Let � :=

1 1
1 1

�
be a singular matrix. We give

a set - whose image . = �- satisfies �T
#. ( H̄) ( #- (Ḡ) at Ḡ = 0, and another set .

whose pre-image - satisfies �T
#. ( H̄) = #- (Ḡ) at all Ḡ 2 - and H̄ = �Ḡ 2 . .

1 Consider the set - and its image . under �:

- := {G 2 R2 : G � 0}, . := �- = {�G : G � 0} =
⇢
U


1
1

�
: U � 0

�

The polar cone of - is -� = {G 2 R2 : G  0}. From Theorem 12.6 the polar cone
.
� is the pre-image of -� under �T:

.
� = {H 2 R2 : �T

H 2 -�} = {H 2 R2 : H1 + H2  0}

We hence have

�
T
#. (0) = �

T
.
� = {�T

H : H 2 .�} =
⇢
U


1
1

�
: U  0

�
( -

� = #- (0)

as proved in Theorem 12.6. These sets are illustrated in Figure 12.7(a).

Y °

Y

X

X °

Y = AX

x2

x1

y2

y1

ATY °⊊X °

x2+x1= 0

(a) Image of -

X °=ATY °

X :={x:Ax∈Y} Y

AX

Y °

y2

y1

x2

x1

X

(b) Pre-image of .

Figure 12.7 Example 12.5. Since � is singular, (a) �T
.
�
( -
�; (b) �T

.
� = -�; moreover

�
T
#. ( H̄) = #- (Ḡ).

2 Consider the set . and its pre-image - under �:

. := {H 2 R2 : H � 0}, - := {G 2 R2 : �G � 0} = {G : G1 + G2 � 0}
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Note that �- = {�G : G1+G2 � 0} = {U(1,1) : U � 0} (. . We have.� = {H : H  0}
and

-
� := {G : G̃1 + G̃2 � 0) G1G̃1 + G2G̃2  0} = {G : G1 = G2, G  0}

Hence, even though � is singular, �T
.
� = {�T

H : H  0} = {U(1,1) : U  0} = -�;
see Figure 12.7(b).

Moreover all boundary points Ḡ of - , defined by G1 + G2 = 0, are mapped to
H̄ = �Ḡ = 0 which is the unique boundary point of . . For this pair of (Ḡ, H̄),
�

T
#. ( H̄) = �T

.
� = -� = #- (Ḡ) from Theorem 12.3. On the other hand, any non-

boundary point Ḡ with G1 + G2 > 0 is in int(-) and the corresponding H̄ = �Ḡ > 0
is in int(. ), and hence �T

#. ( H̄) = #- (Ḡ) = {0}. Therefore �T
#. ( H̄) = #- (Ḡ) at

any Ḡ 2 - and H̄ = �Ḡ (including Ḡ = 0). ⇤

Part 2 of Example 12.5 shows �T
#. ( H̄) = #- (Ḡ) for a specific �. Exercise 12.6 gives

another example for arbitrary � but for the cone . = {H 2 R< : H  0}, proved using
the Farkas Lemma (Theorem 8.12). The next theorem shows that �T

#. ( H̄) = #- (Ḡ)
holds for an arbitrary set . and arbitrary �. It is proved using the following property
of the pseudo-inverse �† from Theorem A.19 of Appendix A.7.

Consider an arbitrary real matrix � 2 R<⇥= and let its singular value decomposition
be � = +⌃,T = +A⌃A,T

A
where rank(�) = A , + 2 R<⇥< and , 2 R=⇥= are unitary

matrices partitioned so that their first A columns correspond to the A positive singular
values of � (see Appendix A.7 for details)

+ =
⇥
+A +<�A

⇤
, ⌃ =


⌃A 0
0 0

�
, , =

⇥
,A ,=�A

⇤

Its pseudo-inverse is the real matrix �† :=,⌃†+T =,A⌃�1
A
+

T
A

. Given an arbitrary set
- ✓ R=, let . := �- ✓ R< be its image under �. Since the columns of , form an
orthonormal basis of R=, G =,A

�
,

T
A
G

�
+,=�A

�
,

T
=�AG

�
. This implies that every G 2 -

has a unique orthogonal decomposition (using �†
� =,A,T

A
):

G = �
† (�G)|{z}
H (G)

+,=�A
⇣
,

T
=�AG

⌘
|    {z    }
V (G)

= �
†
H(G) +,=�A V(G) (12.11)

for some unique H(G) 2 . and unique ,=�A V(G) in null(�) = range(,=�A ). This is
illustrated in Figures 12.8. The first term �

†
H =,A

�
,

T
A
G

�
2 range(,A ) is the projection

of G onto range(�T) and is orthogonal to the second term (Theorem A.19). As G takes
values in - we write (12.11) as

- = �
†
. +,=�A⌫(-) with ⌫(-) :=

�
,

T
=�AG : G 2 -

 
✓ R=�A (12.12a)

Since ⌫(G) can be a strict subset of R=�A , ,=�A⌫(-) can be a strict subset
of span(,=�A ) = null(�). On the other hand, given an arbitrary set . ✓ R<, let
- := {G : �G 2 . } ✓ R= be its pre-image under �. Then every G 2 - still decom-
poses uniquely into its orthogonal components along range(�T) and null(�), but the
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xA†Ax

range(AT) = range(Wr)

null(A) = range(Wn−r)Wn−rβ(x)

Figure 12.8 Orthogonal decomposition of R= using singular value decomposition of matrix �.

set - in terms of . becomes

- = �
†
. +,=�AR=�A (12.12b)

i.e., the pre-image of each H 2 . consists of �†
H plus the whole subspace null(�) =

range(,=�A ). In contrast the pre-images of H 2 . in (12.12a) consists of �†
H plus

a subset of null(�). This underlies the di�erence between Theorems 12.6 and 12.7.
When � has a full column rank, null(�) = {0} and - = �†

. in both (12.12a) and
(12.12b).

Theorem 12.7 (Pre-image of linear transformation). Let . ✓ R< be a nonempty set
and - := {G 2 R= : �G 2 . } be its pre-image under � 2 R<⇥=. Then #- (Ḡ) = �T

#. ( H̄)
for any Ḡ 2 - and H̄ = �Ḡ 2 . .

Proof Given any H̃ 2 #. ( H̄), H̃T (H� H̄)  0 for all H 2 . . In particular H̃T (H� H̄)  0
for all H = �G 2 �- ✓ . . Therefore H̃T

�(G � Ḡ)  0 for all G 2 - , i.e., �T
H̃ 2 #- (Ḡ).

This shows that �T
#. ( H̄) ✓ #- (Ḡ).

Conversely suppose G̃ 2 #- (Ḡ), i.e. G̃T (G� Ḡ)  0 for all G 2 - . Use (12.12b) to write
G� Ḡ = �†(H� H̄) +,=�A (V� V̄) where H̄ = �Ḡ +,=�A V̄ is fixed. Then

G̃
T
�
†(H� H̄) + G̃T

,=�A (V� V̄)  0, 8H 2 . , 8V 2 R=�A

Since this holds for all H 2 . and all V 2 R=�A , it can be satisfied if and only if (setting
H = H̄ and then V = V̄)

G̃
T
�
†(H� H̄)  0 8H 2 . (12.13a)

G̃
T
,=�A (V� V̄)  0 8V 2 R=�A (12.13b)

The second inequality (12.13b) implies G̃T
,=�A = 0 (take V = V̄± 4 9 ) and hence G̃ 2

range(,A ) according to Theorem A.19. The first inequality (12.13a) implies (�†)T
G̃ 2

#. ( H̄), i.e., there exists H̃ 2 #. ( H̄) such that

(�†)T
G̃ = H̃
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Multiplying both sides by �T and using �†
� =,A,T

A
is symmetric we have

(�†
�)T

G̃ = (�†
�)G̃ = G̃ = �

T
H̃

where the second equality follows because, from Theorem A.19, �†
� =,A,H

A
projects

G̃ onto range(,A ) but G̃ is already in range(,A ). This shows that #- (Ḡ) ✓ �T
#. ( H̄).

This completes the proof of #- (Ḡ) = �T
#. ( H̄). ⇤

The same argument shows -� = �T
.
� (whether or not 0 2 -).

A�ne transformation.

We now generalize Theorem 12.6 and 12.7 to an a�ne transformation 5 (G) = �G + 1
where � 2 R<⇥= and 1 2 R<. Given a nonempty set - ✓ R= let the image of - under
the a�ne transformation be

.1 := �- + 1 ✓ R<

i.e., H 2.1 if and only if H = �G+1 for some G 2 - . The next result shows that the normal
cone of .1 is independent of the translation by 1 (except for the relation H̄ = �Ḡ + 1). It
reduces to Theorem 12.6 when 1 = 0.

Corollary 12.8 (Image of a�ne transformation). Let - ✓ R= be a nonempty set and
.1 := �- + 1 where � 2 R<⇥= and 1 2 R<. Let H̄1 = �Ḡ + 1 2 . .

1 The polar cone (.1 � 1)� of .1 � 1 = �- is the pre-image of -� under �T:

(.1 � 1)� = {H 2 R< : �T
H 2 -�}

Hence �T (.1 � 1)� ✓ -�. If rank(�) = = then �T (.1 � 1)� = -�
2 The normal cone #.1 ( H̄1) is independent of 1 and is the pre-image of #- (Ḡ)

under �T:

#.1
( H̄1) = #�- (�Ḡ) = {H 2 R< : �T

H 2 #- (Ḡ)}

Hence �T
#.1

( H̄1) ✓ #- (Ḡ). If rank(�) = = then �T
#.1

( H̄1) = #- (Ḡ).

Proof Since .̂ :=.1�1 := �- , Theorem 12.6 implies that �T
.̂
� = �T (.1�1)� ✓ -�,

and �T (. � 1)� = -� if rank(�) = =.

For part 2, H̃ 2 #.1 ( H̄1) if and only if H̃T (H� H̄1)  0 for H = �G + 1 for all G 2 - ,
i.e.,

H̃ 2 #.1 ( H̄1) () H̃
T
�(G� Ḡ)  0 8G 2 -

This implies #.1 ( H̄1) is independent of 1, and therefore #.1 ( H̄1) = #. (�Ḡ) at 1 := 0
with . := �- . Theorem 12.6 then implies that �T

#.1
( H̄1) ✓ #- (Ḡ) in general and

�
T
#.1

( H̄1) = #- (Ḡ) when rank(�) = =. ⇤
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Suppose - in Corollary 12.8 is a convex cone. If 0 2 - , then the polar cone .�
1

is
the intersection of the pre-image of -� under �T and a halfspace:

.
�
1

= {H 2 R< : �T
H 2 -�, HT

1  0} (12.14)

To show this, we have .�
1
= {H 2 R< : HT (�G + 1)  0 8G 2 -}. Since 0 2 - , 1 2 . and

H 2 .�
1

implies HT
1  0. Therefore

.
�
1

=
⇢
H 2 R< :

⇣
�

T
H

⌘T
G + HT

1  0 8G 2 -
�
\�� (1)

where�� (1) := {H 2R< : HT
1  0} is a halfspace. We now show that

�
�

T
H

�T
G+HT

1  0

for all G 2 - implies that
�
�

T
H

�T
G  0 for all G 2 - . Suppose for the sake of contradiction

that there exists H̄ 2 .�
1

and Ḡ 2 - such that (�T
H̄)T
Ḡ > 0. Since WḠ 2 - for any W > 0

we have limW!1 (�T
H̄)T (WḠ)!1, contradicting

�
�

T
H̄

�T (WḠ) + H̄T
1  0. Hence, for

any H 2 .�,
�
�

T
H

�T
G  0 for all G 2 - , i.e., �T

H 2 -�, as desired.

Theorem 12.8 is illustrated in the next example.

Example 12.6 (Image of a�ne transformation). Consider the convex cone - and its
a�ne transformation .1:

- := {G 2 R2 : G � 0}, � :=

1 0
0 �1

�
, 1 :=


1
1

�

.1 := �- + 1 = {H 2 R2 : H1 � 1, H2  1}

The polar cone -� = {G 2 R2 : G  0}. Since 0 2 - , (12.14) implies that the polar cone
of .1 is

.
�
1

= {H 2 R2 : �T
H 2 -�, HT

1  0} = {H 2 R2 : H1  0, H2 � 0, H1 + H2  0}

This is illustrated in Figure 12.9. It can be seen that .1 is not a cone (since 1 < 0)

Yb = Ax+b
X

x2

x1

y1+y2= 0 y2

y1

X ° Yb

x̄

X °=AT(Yb −b)°

ȳbYb
°

NX(x̄)=NYb(ȳb)

(a) Image of a�ne transformation

y2

y1

(Yb −b)°

Yb −b

(b) .1 �1

Figure 12.9 Example 12.6: while - is a cone, .
1

is not. -� = �T (.
1
� 1)� and

#- (Ḡ) = �T
#.1

( H̄
1
) because � is nonsingular (Theorem 12.8).

but .�
1

is a closed convex cone. Moreover .1 � 1 shifts the origin to 1 and is a convex
cone with (.1 � 1)� = {H 2 R2 : �T

H 2 -�} = {H 2 R2 : H1  0, H2 � 0}. Since � is
nonsingular, it can be verified that �T (.1 � 1)� = -�.
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At Ḡ = (1,0) and H̄1 = �Ḡ+1 = (2,1), the normal cone of the convex cone - is, from
Theorem 12.3,

#- (Ḡ) = {G 2 -� : GT
Ḡ = 0} = {G 2 R2 : G1 = 0, G2  0}

The normal cone of .1 is its pre-image, from Theorem 12.8,

#.1
( H̄1) = {H : �T

H 2 #- (Ḡ)} = {H : H1 = 0, H2 � 0}

At Ḡ = 0 and H̄1 = �Ḡ + 1 = (1,1), #- (Ḡ) = -� and #.1 ( H̄1) = {H : H1  0, H2 � 0}.
Since � is nonsingular, it can be verified that �T

#.1
( H̄1) = #- (Ḡ) in both cases. ⇤

Given a nonempty set . ✓ R< let its pre-image under an a�ne map be

-1 := {G 2 R= : �G + 1 2 . }

where � 2 R<⇥= and 1 2 R<. We will use this a�ne transformation in Chapter 12.1.4
to study the normal cone of the convex set defined by a second-order cone constraint
where . is a convex cone. Similar to Corollary 12.8, the following relation follows
from Theorem 12.7 and is used to derive the normal cone of a SOC constraint (12.19)
from the normal cone of a standard second-order cone.

Corollary 12.9 (Pre-image of a�ne transformation). Let . ✓ R< be a nonempty
set and -1 := {G 2 R= : �G + 1 2 . } be its pre-image under an a�ne transformation.
Suppose Ḡ 2 -1 and H̄1 = �Ḡ +1 2 . . Then -�

1
= �T (. �1)� and #-1 (Ḡ) = �T

#. ( H̄1).

Theorem 12.9 is verified in the next example (compared with Example 12.6).

Example 12.7 (Pre-image of a�ne transformation). Consider the convex cone . and
its pre-image -1 under an a�ne transformation:

. := {H 2 R2 : H1 � 0, H2  0}
-1 := {G 2 R2 : �G + 1 2 . } = {G 2 R2 : G1 � �1, G2 � 1}

where �,1 are the same as those in Example 12.6; see Figure 12.10. By definition,

Y °
Xb :={Ax+b∈Y}

Xb

x2

x1

y2

y1

Y
Xb
°=AT(Y−b)°

(a) Pre-image of a�ne transformation

y2

y1

Y−b

(Y−b)°

(b) . �1

Figure 12.10 Example 12.7: while . is a cone, -
1

is not. -�
1
= �T (. � 1)� and

#-1
(Ḡ) = �T

#. ( H̄1) (Theorem 12.9).

H 2 (. � 1)� if and only if HT
H̃ = H̃1H1 + H̃2H2  0 for all H̃ 2 . � 1, i.e., for all H̃ with
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H̃1 � �1, H̃2  �1. It can then be checked that (. �1)� is (consider H̃ := (�1,�1) 2. �1,
H̃1!1 and H̃2!�1)

(. � 1)� = {H 2 R2 : H1 + H2 � 0, H1  0, H2 � 0}

which is a closed convex cone even though . � 1 is not a cone (Proposition 12.2).
Theorem 12.9 implies that -�

1
= �T (. � 1)�, which we verify directly as follows. For

H 2 (. � 1)�, G := �T
H = (H1,�H2) and hence

�
T (. � 1)� = {G 2 R2 : G1� G2 � 0, G1  0, G2  0}

On the other hand, G 2 -�
1

if and only if GT
G̃ = G̃1G1 + G̃2G2  0 for all G̃ 2 -1 , i.e., for all

G̃ with G̃1 � �1, G̃2 � 1. It can then be checked that -�
1

is (consider G̃ := (�1,1) 2 -1 ,
G̃1!1 and G̃2!1)

-
�
1
= {G 2 R2 : G1� G2 � 0, G1  0, G2  0}

which equals �T (. � 1)�; see Figure 12.10.

At H̄1 = (1,0) and Ḡ = �
�1 ( H̄1 � 1) = (0,1). Theorem 12.9 implies #-1

(Ḡ) =
�

T
#. ( H̄1), which can be verified as follows. Since . is a convex cone we can ap-

ply Theorem 12.3 to obtain #. ( H̄1) = {H 2 .� : HT
H1 = 0} = {H 2 R2 : H1 = 0, H2 � 0}.

Hence �T
#. ( H̄1) = {G 2 R2 : G1 = 0, G2  0}. Since -1 is not a cone we cannot apply

Theorem 12.3 to obtain #-1 (Ḡ). By definition G 2 #-1 (Ḡ) if and only if GT (G̃� Ḡ)  0
for all G̃ 2 -1 , i.e.,

G̃1G1 + (G̃2�1)G2  0 for all G̃ with G̃1 � �1, G̃2 � 1

Taking G̃ = (�1,1) and G̃ = (1,1) yields G1 = 0. Hence G2  0. This shows that #-1 (Ḡ) =
�

T
#. ( H̄1), verifying Theorem 12.9. ⇤

12.1.4 Second-order cones and SOC constraints

Second-order cones.

The normal cone # (Ḡ, B̄) of the second-order cone  soc defined in (8.16) can be
derived explicitly. It is the polar cone  �soc at the origin, the origin at an interior point,
and, at a boundary point, the line segment in the intersection of the “lower cone”  �soc

and the hyperplane with normal (Ḡ/kḠk2,1).

Theorem 12.10 (Second-order cone). Let  soc := {(G, B) 2 R=+1 : kGk2  B} be the
standard second-order cone. Then

1  soc is a closed convex cone.
2 Its polar cone is  �soc = {(H, C) 2 R=+1 : kHk2  �C}.
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3 Its normal cone # (Ḡ, B̄) at an (Ḡ, B̄) 2  soc is

# (Ḡ, B̄) =

8>><
>>:
 
�
soc if (Ḡ, B̄) = (0,0)

{(0,0) 2 R=+1} if kḠk2 < B̄�
`(Ḡ,�B̄) 2 R=+1 : ` � 0

 
if kḠk2 = B̄ > 0

Proof Part 1 is left as Exercise 8.11. To verify that  �soc = {(H, C) 2 R=+1 : kHk2  �C},
take any (G, B) 2  soc and (H, C) such that kHk2  �C. Then

G
T
H + BC  kGk2 kHk2 + BC  B(�C) + BC = 0 (12.15)

where the first inequality follows from the Cauchy-Schwarz inequality and the second
inequality follows from definition of  soc. Hence (H, C) 2  �soc. This shows that  �soc ◆
{(H, C) 2R=+1 : kHk2  �C}. Conversely let (H, C) 2  �soc, i.e., GT

H+ BC  0 for all kGk2  B.
Clearly (0,0) 2  �soc since  �soc is a closed convex cone, so let B � kGk2 > 0. Then
G

T
H + kGk2C  0 and hence

G
T

kGk2
H + C  0

Since this holds for all G (because there always exists some B > 0 such that (G, B) 2  soc),
we can take G = H to conclude kHk2+ C  0. This proves part 2. Indeed soc is the “upper”
cone in Figure 8.8(b) and  �soc is the “lower” cone.

For part 3, application of Theorem 12.3 to part 2 yields

# ((Ḡ, B̄)) = {(H, C) 2 R=+1 : kHk2  �C, ḠT
H + B̄C = 0} (12.16)

Hence if (Ḡ, B̄) = (0,0) then # ((Ḡ, B̄)) =  �soc. If kḠk2 < B̄ then (Ḡ, B̄) is in the interior of
 soc and hence# (Ḡ, B̄) = {(0,0) 2R=+1}. Consider then kḠk2 = B̄ < 0. The requirement
that ḠT

H + B̄C = 0 means that the two inequalities in (12.15) must hold with equality
which is possible if and only if

H = `Ḡ for any ` 2 R+, kGk2 = B̄, kHk2 = �C

Hence �C = kHk2 = `kḠk2 = `B̄. This proves (H, C) = `(Ḡ,�B̄). This is illustrated in
Figure 12.11. ⇤

We know from Theorem 12.3 that the normal cone # (Ḡ, B̄) of a convex cone  
are vectors in its polar cone  � where complementary slackness holds. Theorem 12.10
describes these vectors in more detail when is explicitly specified as the second-order
cone (note that the vector `(Ḡ,�B̄) 2  �).

Recall the relation  soc = � rsoc between a rotated second-order cone  rsoc defined
in (8.17) and a standard second-order cone  soc, where � is a nonsingular matrix
defined in (8.18), reproduced here:

� =
266664
2I= 0= 0=
0T
=

1 �1
0T
=

1 1

377775
(12.17)
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K °
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t

y

(x̄ , s̄)

NK(x̄ , s̄)

Figure 12.11 Theorem 12.10: The normal cone # ((Ḡ, B̄)) is the line segment on the boundary
of the lower cone  �soc in the direction of Ḡ. (April 19, 2025: Change  !  soc and
 
� !  

�
soc.)

For an G 2 R=, we use G<, <  =, to denote the subvector G< := (G1, . . . ,G<) of the first
< entries of G. Since � is nonsingular, the application of Theorem 12.6 to Theorem
12.10 leads to the following result on rotated second-order cone.

Corollary 12.11 (Rotated second-order cone). Let  rsoc := {G 2 R=+2 : kG=k22 
G=+1G=+2, G=+1 � 0, G=+2 � 0} be a rotated second-order cone. Let  soc := � rsoc where
� is defined in (12.17) and  �soc denote its polar cone.

1  rsoc is a closed convex cone.
2 Its polar cone is

 
�
rsoc = �

T
 
�
soc = {�T

G 2 R=+2 : kG=+1k2  �G=+2}

3 Its normal cone # A (Ḡ) = �T
# (�Ḡ) at an Ḡ 2  rsoc is

# A
(Ḡ) =

8>><
>>:
�

T
 
�
soc if �Ḡ = 0

{(0,0) 2 R=+2} if k [�Ḡ]=+1k2 < [�Ḡ]=+2�
`( [�Ḡ]=+1,�[�Ḡ]=+2) 2 R=+2 : ` � 0

 
if k [�Ḡ]=+1k2 = [�Ḡ]=+2 > 0

SOC constraint.

Consider the convex set⇠ defined by second-order cone constraint in (8.19), reproduced
here:

⇠ := {G 2 R= : (�G + 1,2T
G + 3) 2  soc} = {G 2 R= : k�G + 1k2  2T

G + 3} (12.18)

where � 2 R<⇥=, 1 2 R<, 2 2 R=, 3 2 R, and  soc is the standard second-order cone
defined in (8.16). Then ⇠ is the pre-image of  soc under the a�ne transformation

⇠ =
�
G 2 R= : �̃G + 1̃ 2  soc

 
where �̃ :=


�

2
T

�
, 1̃ :=


1

3

�

The convex set⇠ reduces to the standard second-order cone  soc if � =

I=�1 0

0 0

�
, 2 =

4=, 1 = 0, 3 = 0. It may not be a cone, e.g., ⇠ = {G : k1k2  2T
G + 3)} is a halfspace
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if � = 0. The mapping 5 : ⇠ !  soc defined by 5 (G) = �̃G + 1̃ is generally neither
surjective nor injective. For instance if �̃ is singular then 5 is not injective; if 1 < 0
then 5 (G) = �̃G + 1̃ < 0 for any G and hence 5 is not surjective. Theorem 12.9 allows
us to derive the normal cone of ⇠ from that of the standard second-order cone  soc:
for any Ḡ 2 ⇠ and H̄ = �̃Ḡ + 1̃,

#⇠ (Ḡ) = �̃
T
# ( H̄) (12.19)

where # ( H̄) is given by Theorem 12.10.

Example 12.8. Consider the case where � = 0 2 R<⇥= and ⇠ := {G 2 R= : k1k2 
2

T
G + 3} is a halfspace. We know from Theorem 12.3 that its normal cone is, for any Ḡ

with �2T
Ḡ  3 � k1k2,

#⇠ (Ḡ) =
�
�_2 : _ 2 R such that _ � 0 with _ = 0 if � 2T

Ḡ < 3 � k1k2
 

(12.20)

Theorem 12.9 shows that #⇠ (Ḡ) = �̃T
# ( �̃Ḡ + 1̃) where

�̃ :=


0
2

T

�
, 1̃ :=


1

3

�

and # ( H̄) ✓ R<+1 is given by Theorem 12.10 as, writing H 2 R<+1 as H =: (H<, H<+1)
with H< 2 R<,

# ( �̃Ḡ + 1̃) =

8>><
>>:
 
�
soc if (1,2T

Ḡ + 3) = (0,0)
{(0,0)} if k1k2 < 2T

Ḡ + 3�
`

�
1,�(2T

Ḡ + 3)
�
2 R<+1 : ` � 0

 
if k1k2 = 2T

Ḡ + 3 > 0

and  �soc = {H 2 R<+1 : kH<k2  �H<+1}. (If 1 < 0 then # ( �̃Ḡ + 1̃) <  �soc for any Ḡ.)

We now verify that #⇠ (Ḡ) = �̃T
# ( �̃Ḡ + 1̃). Indeed �̃T

# ( �̃Ḡ + 1̃) is, noting that
H<+1  0,

�̃
T
# ( �̃Ḡ + 1̃) =

8>><
>>:

{H<+12 : H<+1 2 R�} if (1,2T
Ḡ + 3) = (0,0)

{�`k1k22 : ` 2 R+} if k1k2 = 2T
Ḡ + 3 > 0

{0 2 R=+1} if k1k2 < 2T
Ḡ + 3

which is equal to #⇠ (Ḡ) in (12.20), as desired. ⇤

12.2 CPC functions

When we allow extended real-valued and discontinuous functions we can treat con-
strained optimization as unconstrained optimization and develop a unified theory that
covers both. In this section we define an important class of such functions, the set
of closed proper convex (CPC) functions, that we will use extensively in deriving
optimality conditions in later sections.
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12.2.1 Extended real-valued function

A real-valued function 5 :R=!Rmaps a finite vector G 2R= to a finite value 5 (G) 2R.
An extended real-valued function 5 : R=! [�1,1] can take values �1 and 1. For
a function 5 : - ! [�1,1] defined on - ✓ R=, - is called the domain of 5 . The
e�ective domain of 5 is the set dom( 5 ) := {G 2 - : 5 (G) <1}. The epigraph of 5 is the
set epi( 5 ) := {(G, H) 2 - ⇥R : H � 5 (G)} ✓ R=+1. In particular if (G, H) 2 eip( 5 ) then
H 8 {�1,1} by definition. Therefore G 2 dom( 5 ) if and only if there exists H = H(G) 2 R
such that (G, H) 2 epi( 5 ), i.e., dom( 5 ) is the projection of epi( 5 ) onto R=.

For the purpose of minimization, a function 5 : - ! [�1,1] defined on - ✓ R=
can always be extended to R= by defining

5- (G) :=
⇢
5 (G) if G 2 -
1 if G 2 R= \ - (12.21)

The epigraph of 5- is then the set epi( 5- ) := {(G, H) 2 R=⇥R : H � 5- (G)} ✓ R=+1 (we
reiterate that H is finite in epi( 5- ) by definition). Therefore we often treat real-valued
functions 5 on - as extended real-valued functions 5- on R= whose e�ective domain
dom( 5- ) may be a subset of R=.

Consider an extended real-valued function 5 : - ! [�1,1] where its domain
- ✓ R=. We say that 5 is lower semicontinuous (lsc) at G 2 - if

5 (G)  liminf
:

5 (G: ) (12.22)

for every sequence {G: } ✓ - with G: ! G, and that 5 is lower semicontinuous (on -)
if it is lsc at every G 2 - . A function 5 is called upper semicontinuous (usc) if � 5 is
lsc. A function is continuous if and only if it is both lsc and usc.

Definition 12.3 (Closed proper convex (CPC) 5 ). Consider 5 : - ! [�1,1] with
- ✓ R=.

1 The function 5 is closed if epi( 5 ) is a closed set in R=+1.
2 The function 5 is proper if there exists Ḡ 2 - such that 5 (Ḡ) <1 (so that epi( 5 )

is nonempty) and 5 (G) > �1 for all G 2 - . In particular a real-valued function
5 : -! R is proper.

3 Suppose - is convex. Then 5 is convex if epi( 5 ) is a convex subset of R=+1. ⇤

The convexity definition in terms of epi( 5 ) implies that dom( 5 ) is a convex set
in R=. It reduces to the usual definition of convexity for real-valued functions. If a
closed convex function 5 is not proper then 5 cannot take any finite value: 5 (G) = �1
if G 2 dom( 5 ) and 5 (G) =1 otherwise. We therefore consider only proper functions
5 : - ! (�1,1]. A proper and convex function is continuous, except possibly on
its relative boundary. Moreover it is Lipschitz continuous over a compact set with the
norm of a maximum subgradient as its Lipschitz constant; see Lemma 12.15.
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A common mistake in the literature is to claim that if 5 is lsc, then dom( 5 ) is a
closed set or that 5 is a closed function.2 The subtle relation between lsc, closed 5

(closed epi( 5 )) and closed dom( 5 ) is explained in the next remark.

Remark 12.3 (lsc, closed 5 , closed epi(f), closed dom( 5 )). Consider an extended
real-valued function 5 : -! [�1,1] where - ✓ R= is the domain of 5 .

1 lsc and - . Whether 5 is lsc (or continuous) depends on its domain - . Take the
indicator function X⇠ (G) := 0 if G 2 ⇠ ✓ R= and1 if G 8 ⇠. Suppose ⇠ is open in
R
=. If the domain - of the extended real-valued function is taken to be the closure

cl(⇠) of ⇠ (or R=), then X⇠ (G) is not lsc on cl(⇠) (or R=) because (12.22) is not
satisfied at G 2 - on the boundary of ⇠. If - = ⇠, however, X⇠ (G) is lsc on -

because in the test (12.22) for lsc, G must be in the open set - .
2 Continuity and - . Consider the extended real-valued function 5 (G) := 1/G de-

fined on - := [0,1]; in particular 5 (0) :=1. Then 5 is lsc at G = 0 2 - because
liminf: 5 (G: ) (and limsup

:
5 (G: )) can take ±1 value by definition if the se-

quence {G: } ✓ - is unbounded. In contrast, 5 is not continuous at G = 0 because
continuity means that 5 (G: ) converges to a finite value H 2 R for every sequence
{G: } ✓ - with lim: G: = G 2 - (G is also finite).3 If the domain of 5 is taken to be
-
0 := (0,1] instead, 5 is continuous on - 0 because the test sequence {G: } cannot

converge to a boundary point not in - 0.
3 lsc and closedness of 5 : - = R=. If - = R=, then 5 is lsc on R= if and only if

epi( 5 ) is a closed set in R=+1 ( 5 is closed). See [54, Propositions 1.1.2 and 1.1.3,
p.10] (Exercise 12.8).

4 lsc and closedness of 5 : - ( R=. If - ( R=, however, lsc and closedness of 5 are
not equivalent. If the e�ective domain dom( 5 ) := {G 2 - : 5 (G) <1} is closed in
- and 5 is lsc on dom( 5 ), then epi( 5 ) is a closed set in - ⇥R ( 5 is closed).

The converse may not hold. It is possible that 5 is lsc on dom( 5 ) but dom( 5 )
is not closed in - , and yet, 5 is closed. An example is the function 5 (G) := 1/G on
- := [0,1] defined above where 5 is lsc (in fact continuous) on dom( 5 ) = (0,1],
but dom( 5 ) is not closed in - (or in R). To see that 5 is a closed function, consider
any sequence {(G: , H: )} 2 epi( 5 ) ✓ - ⇥R such that (G: , H: )! (Ḡ, H̄) 2 - ⇥R. By
definition H̄ is finite and therefore Ḡ cannot be 0 (i.e., (Ḡ, H̄) < (0,1)). Moreover
(Ḡ, H̄) 2 epi( 5 ) because

5 (Ḡ)  liminf
:

5 (G: )  liminf
:

H: = H̄

where the first inequality follows from lsc of 5 on dom( 5 ), the second inequality
follows because (G: , H: ) 2 epi( 5 ), and the equality follows because H: ! H̄. In
general, the closedness of dom( 5 ) ensures that for any sequence {(G: , H: )} 2

2 Such a claim has been made on the recourse function & (G) in two-stage optimization with recourse
where dom(&) is claimed to be a closed (convex) set in [142, Proposition 2.7, p.35] and [143,
Corollary 37; p.158]. See Lemma 13.29 for a correct statement.

3 In general when we say a sequence {G: } ⇢ R= converges to an G, we mean that the limit point G is in
R
=, i.e., G is finite. If kG: k ! ±1, the sequence is said to be unbounded.
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epi( 5 ) with (G: , H: )! (Ḡ, H̄) 2 - ⇥R, H̄ is finite. Then the inequalities above hold
generally to show the closedness of 5 .

Hence for an extended real-valued function 5 defined on - ✓ R=, 5 can be a closed
function, or equivalently epi( 5 ) can be a closed set in - ⇥R, while dom( 5 ) is not
closed in - (even when 5 is lsc on -). Often it is the closedness of 5 that is needed, not
the closedness of dom( 5 ), e.g., in the Weierstrass Theorem 12.22 and its application
in Theorem 13.30 to derive conditions for primal optimality of two-stage nonlinear
optimization with recourse. ⇤

12.2.2 Indicator function, support function and polyhedral functions

Indicator function and support function.

Given a set - ✓ R= the indicator function of - is the extended real-valued function
X- : R=! (�1,1] defined by:

X- (G) :=
⇢

0 if G 2 -
1 if G 8 -

(12.23a)

It is proper if and only if the set - is nonempty. It is a convex function if and only if -
is a convex set.

The support function of - is f- : R=! (�1,1] defined by:

f- (G) := sup
H2-

H
T
G (12.23b)

It is proper if and only if - is nonempty and sup
H2- H

T
G < 1 for at least one G. The

sets - , cl(-), conv(-), cl(conv(-)), conv(cl(-)) all have the same support function
(Exercise 12.9): for all G 2 R=,

f- (G) = fcl(- ) (G) = fconv(- ) (G) = fcl(conv(- )) (G) = fconv(cl(- )) (G) (12.24)

See Exercise 12.12 for relation between X- and f- (as well as their subdi�erentials).

Theory of convexity, optimality and duality can be developed based either on real-
valued functions or on extended real-valued functions. An advantage of extended
real-valued functions is that they allow us to represent the minimization of a real-
valued function 5 : R=! R over - as an unconstrained optimization of the extended
real-valued function (12.21):

min
G2R=

5- (G) = 5 (G) + X- (G) (12.25)

A unified theory can then be developed for unconstrained optimization as we will see
in the following sections.

Example 12.9. Derive X- (G) and f- (G) for:
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1 - := (0,1) ✓ R.
2 - := (�1,1) ✓ R.
3 - := {G 2 R= : G8 2 (�1,1)}.

Solution. For - := (0,1) and - := (�1,1)

X (0,1) (G) :=
⇢

0 G 2 (0,1)
1 G 8 (0,1) f(0,1) (G) := sup

H2 (0,1)
HG =

⇢
G G � 0
0 G < 0

X (�1,1) (G) :=
⇢

0 G 2 (�1,1)
1 G 8 (�1,1) f(�1,1) (G) := sup

H2 (�1,1)
HG = |G |

For - := {G 2 R= : G8 2 (�1,1)}

X- (G) :=
⇢

0 G8 2 (�1,1) for all 8
1 G8 8 (�1,1) for some 8

f- (G) :=
’
8

sup
H8 2 (�1,1)

H8G8 =
’
8

|G8 | = kGk1

They are illustrated in Figure 12.12. ⇤

0

∞

δX(x)

x
1−1

σX(x)

x

(a) - := (�1,1) ✓ R

δX(x)

x1 x1

x2x2

σX(x)

−1

−1

1

1

1

1
−1

−1

(b) - := {G 2 R2 : G8 2 (�1,1) }

Figure 12.12 Example 12.9.

Polyhedral set and polyhedral function.

Recall that a polyhedral set, or a polyhedron, is a set - := {G 2 R= : �G  1} specified
by a finite number of a�ne inequalities. We often assume, sometimes implicitly, that
- is nonempty to avoid triviality. Such a set is then nonempty closed and convex by
definition. See Appendix A.2 for more discussions on polyhedral sets and extreme
points.

We say that a proper function 5 : R=! (�1,1] is a polyhedral function if if its
epi( 5 ) is a polyhedral set in R=+1. Since a polyhedral set is closed nonempty convex,
a polyhedral function is closed proper convex. It can be represented as the pointwise
maximum of a�ne functions e.g. [54, Proposition 2.3.5, p.109].

Lemma 12.12. Let 5 : R=! (�1,1] be a convex function. Then 5 is a polyhedral
function if and only if dom( 5 ) is a polyhedral set and

5 (G) = max
82{1,...,<}

⇣
0

T
8
G + 18

⌘
, 8G 2 dom( 5 )
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for some 08 2 R=, 18 2 R, and integer < > 0. ⇤

In particular an a�ne function is polyhedral.

12.3 Gradient and subgradient

For smooth convex optimization the first-order stationarity condition takes the form
�r 5 (G⇤) = r6(G⇤)_⇤ +r⌘(G⇤)`⇤ in terms of the gradients r 5 ,r6,r⌘ of the cost and
constraint functions. In this section we generalize gradients of di�erentiable functions
to subgradients of convex but possibly non-di�erentiable functions and develop con-
ditions for subdi�erential calculus. We use these tools in Chapter 12.5 to generalize
the KKT Theorem 8.15 of Chapter 8.3.2 to the convex nonsmooth setting.

12.3.1 Derivative, directional derivative and partial derivative

The notion of derivative, directional derivative and partial derivative defined in Chapter
8.1.3 for real-valued functions extend directly to extended real-valued functions. Con-
sider a proper function 5 : - ! (�1,1] where - ✓ R= is an open set. The function
5 is said to be di�erentiable at G 2 - if there exists a vector < 2 R= such that

lim
⌘2R=
⌘!0

5 (G + ⌘)� 5 (G)�<T
⌘

k⌘k = 0

When this holds, the column vector < is called the gradient or derivative of 5 at
G 2 - and denoted by r 5 (G). If 5 is di�erentiable at every G 2 - then 5 is called
di�erentiable on - .

At each G 2 - and for each E 2 R= the one-sided directional derivative of 5 at G in
the direction E is defined as

35 (G;E) := lim
C 2R
C#0

5 (G + CE)� 5 (G)
C

provided the limit exists, possibly ±1. For G 2 dom( 5 ), 35 (G;E) can take finite values
or ±1, but for G 2 ri(dom( 5 )), 35 (G;E) if exists is always finite for any E 2 R=. It can
be shown that 5 is di�erentiable at G 2 - if (i) directional derivatives 35 (G;E) exist at
G for all directions E 2 R=, and (ii) 35 (G;E) is a linear function of E.

At each G 2 - and for the unit vector 4 9 2 {0,1}=, if the directional derivatives
35 (G;4 9 ) and 35 (G;�4 9 ) exist in both directions and are equal, then they are called the
partial derivative of 5 at G 2 - with respect to G 9 and denoted by m 5

mG 9

(G):

m 5

mG 9

(G) := lim
C 2R
C!0

5 (G + C4 9 )� 5 (G)
C
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In this case 5 is called partially di�erentiable at G 2 - with respect to G 9 . The row
vector of partial derivatives of 5 at G 2 - is

m 5

mG

(G) :=
h
m 5

mG1
(G) · · · m 5

mG=

(G)
i

If 5 is partially di�erentiable at all G 2 - then it is called partially di�erentiable
on - . The partial derivative m 5

mG
(G) describes the behavior of 5 at G only along the

coordinate axes whereas the derivative r 5 (G) describes its behavior in all directions. If
5 is di�erentiable then it is partially di�erentiable, but the converse does not generally
hold. If 5 is not only partially di�erentiable but m 5

mG
(G) is also continuous at G, then

the converse holds at G 2 - . Such an 5 is called continuously di�erentiable at G. If 5
is continuously di�erentiable at all G 2 - then it is continuously di�erentiable on - .

As Example 8.3 in Chapter 8.1.3 shows, a partially di�erentiable function may
not be di�erentiable when the partial derivative m 5

mG
(G) is discontinuous at G. Indeed a

partially di�erentiable function may not even be continuous at all G 2 - . A continuously
di�erentiable function is always continuous. Moreover Lemma 8.1 extends directly to a
proper extended real-valued function 5 : -! (�1,1], i.e., if 5 is di�erentiable then it

is partially di�erentiable and r 5 (G) =
h
m 5

mG
(G)

iT
. Conversely, 5 is di�erentiable if it is

continuously di�erentiable. Hence 5 is di�erentiable at G 2 - if and only if 35 (G;E) =
E

Tr 5 (G) = m 5

mG
(G) E for all E 2 R=. This is generalized in (12.28) below to proper convex

functions that may not be di�erentiable (but are always subdi�erentiable). Moreover
the directional derivative of a proper convex function 5 : - ! (�1,1] always exists
because ( 5 (G + CE)� 5 (G)) /C is increasing in C > 0 and hence the limit always exists,
possibly ±1. The limit 35 (G;E) may be �1 or 1 at the relative boundary of dom( 5 )
but is always a finite value at an G 2 ri(dom( 5 )).

12.3.2 Subgradient

Recall that, for the purpose of minimization, a function 5 : -! (�1,1] with - ✓ R=
can always be represented as an extended real-valued function 5 : R=! (�1,1] by
defining 5 (G) :=1 for G 8 - so that its e�ective domain dom( 5 ) ✓ - .

Subgradient.

Consider a proper convex function 5 :R=! (�1,1]. A vector H 2 R= is a subgradient
of 5 at Ḡ 2 dom( 5 ) if

5 (G) � 5 (Ḡ) + H
T (G� Ḡ), 8G 2 R= (12.26a)

The inequality must hold for all real G, not just for G 2 dom( 5 ), i.e., the a�ne function
on the right-hand side is a lower approximation of 5 over R= and coincides with 5

at G = Ḡ. The set of all subgradients of a convex function 5 at Ḡ is the subdi�erential
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m 5 (Ḡ) of 5 at Ḡ. By convention m 5 (Ḡ) = ; if Ḡ 8 dom( 5 ). An equivalent definition to
(12.26a) is: H 2 R= is a subgradient of 5 at Ḡ 2 dom( 5 ) if

5 (Ḡ)� HT
Ḡ = min

G2R=

⇣
5 (G)� HT

G

⌘
(12.26b)

i.e., Ḡ 2 dom( 5 ) attains the minimum on the right-hand side.

The definition (12.26) of subgradient immediately implies the following first-order
optimality condition for nonsmooth convex optimization. It is used in Chapter 12.5
to derive a general optimality condition which leads to various KKT conditions in
subsequent subsections.

Corollary 12.13 (Optimality condition). Consider the unconstrained convex optimiza-
tion infG2R= 5 (G) where 5 : R=! (�1,1] is a proper convex function. Then G⇤ 2 R=
is optimal if and only if

0 2 m 5 (G⇤)

If 5 is di�erentiable this reduces to r 5 (G⇤) = 0.

Proof It is obvious that 5 (G⇤) = minG2R= 5 (G) if and only if H = 0 in (12.26b), i.e., if
and only if 0 2 m 5 (G⇤). ⇤

Remark 12.4 (Subgradient as certificate of optimality). 1 For unconstrained con-
vex optimization, 0 2 m 5 (G⇤) is necessary and su�cient for G⇤ to be an optimal.
The fact that there may be subgradients H 2 m 5 (G⇤) with HT (G � G⇤) < 0 has no
bearing on the optimality of G⇤. The zero vector 0 2 m 5 (G⇤) is a certificate for the
optimality of G⇤.

2 For constrained convex optimization, G⇤ 2 - is optimal if there exists a subgradient
H
⇤ 2 m 5 (G⇤) such that H

⇤T (G�G⇤) � 0 for all feasible G (i.e., �H 2 #- (G⇤)) because
(12.26a) then implies 5 (G) � 5 (G⇤) for all feasible G. Such a subgradient H⇤ is a
certificate for the optimality of G⇤. A precise statement is Theorem 12.21 below.
Again the fact that there may be subgradients H 2 m 5 (G⇤) with HT (G� G⇤) < 0 has
no bearing on the optimality of G⇤. ⇤

A proper convex function is subdi�erentiable at any interior point Ḡ of its e�ective
domain. The supporting hyperplane of epi( 5 ) at such a point (Ḡ, 5 (Ḡ)) is not vertical
and this is the origin of the Slater condition in convex optimality (e.g. see Theorem
12.27 on strong duality and dual optimality).

Lemma 12.14 (Subdi�erentiability of convex function at G 2 int(dom( 5 ))). A
proper convex function 5 : R= ! (�1,1] always has a subgradient at any interior
G 2 int(dom( 5 )).

Proof The proof uses the Separating Hyperplane Theorem 8.10. Convexity of 5

means its epigraph epi( 5 ) := {(G, H) : H � 5 (G), G 2 R=, H 2 R} is a convex set in R=+1

(Definition 12.3). It is nonempty because 5 is proper. Fix an Ḡ 2 int(dom( 5 )). The
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point (Ḡ, 5 (Ḡ)) is in epi( 5 ) \ int(epi( 5 )). Theorem 8.10 then implies that there exists
nonzero (0,1) 2 R= ⇥R such that

0
T (G� Ḡ) + 1(H� 5 (Ḡ))  0, 8(G, H) 2 epi( 5 ) (12.27a)

This implies 1  0 (substitute (Ḡ, H) 2 epi( 5 ) with H > 5 (Ḡ) into (12.27a)). If 1 = 0
then 0T (G� Ḡ)  0 for all G 2 dom( 5 ). Since Ḡ 2 int(dom( 5 )), we can take G := Ḡ±4 9 to
show that 0 = 0, contradicting (0,1) < 0. Hence 1 < 0, i.e., the supporting hyperplane
of epi( 5 ) at (Ḡ, 5 (Ḡ)) is not vertical if Ḡ 2 int(dom( 5 )) is an interior point. We can
therefore divide by 1 on both sides of (12.27a) to obtain (setting H := 5 (G))

5 (G) � 5 (Ḡ)� 0
T

1

(G� Ḡ) (12.27b)

Since this holds for all G 2 R=, �(0/1) is a subgradient of 5 at Ḡ.4 ⇤

Remark 12.5 (Separating hyperplane argument). The separating hyperplane argument
that derives (12.3) relies on the fact that . (Ḡ) is a cone and hence H 2 . (Ḡ)) CH 2
. (Ḡ) for all C > 0 (see Remark 12.2). The same separating hyperplane argument that
proves Lemma 12.14 relies on the fact that (Ḡ, 5 (Ḡ)) 2 epi( 5 )) (Ḡ, H) 2 epi( 5 ) for all
H � 5 (Ḡ). ⇤

Lemma 12.14 establishes the existence of subgradient at an interior point. The
next result, taken from [54, Propositions 5.4.1 and 5.4.2, pp. 184], presents additional
properties. It generalizes Lemma 8.4 for real-valued convex functions to extended
real-valued convex functions.

Lemma 12.15 (Subgradient and Lipschitz continuity). Let 5 : R= ! (�1,1] be a
proper convex function.

1 For G 2 ri(dom( 5 )), 5 (G) is continuous at G.
2 For G 2 int(dom( 5 )), m 5 (G) is a nonempty convex compact set.
3 If - ✓ int(dom( 5 )) is nonempty and compact, then m- 5 := [G2-m 5 (G) is

nonempty and bounded. Moreover 5 is Lipschitz continuous over - with Lip-
schitz constant ! := sup

b 2m- 5 kbk2.

If 5 is proper convex, even though it is continuous on ri(dom( 5 )), it is not necessarily
lsc over R= because 5 (G) can be1 on the boundary of dom( 5 ). Hence convexity of 5
does not imply closedness. If 5 is a real-valued convex function, then m 5 (G) is always
a nonempty convex compact set. If 5 is extended real-valued convex, then m 5 (G) can
be unbounded or empty on the boundary of or outside dom( 5 ).

By the definition of subgradient we have, for all C 2 R, 5 (G + CE) � 5 (G) � C HT
E for

all subgradients H 2 m 5 (G). Hence

35 (G;E) � HT
E, 8H 2 m 5 (G), G 2 dom( 5 ), E 2 R=

4 The assumption that Ḡ 2 int(dom( 5 )) is needed to show that 1 < 0. If Ḡ 2 ri(dom( 5 )) , then the
contradiction argument breaks down, but subgradient may still exist at such a Ḡ. See Exercise 12.10.
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For any G 2 ri(dom( 5 )) the function 35 (G; ·) is closed and is the support function of
m 5 (G), i.e.,

35 (G;E) = sup
H2m 5 (G)

H
T
E, 8G 2 ri(dom( 5 )), E 2 R= (12.28)

Hence 35 (G;E) > sup
H2m 5 (G) H

T
E can only hold at a boundary point G of dom( 5 ) where

35 (G; ·) is not a closed function. In particular, if 5 : R=! R is a real-valued function
then dom( 5 ) = R= and 35 (G;E) = sup

H2m 5 (G) H
T
E for all G,E 2 R=.5

Conjugate function.

Consider a convex function 5 : R= ! (�1,1]. Fix an Ḡ 2 dom( 5 ). By definition
(12.26), H̄ 2 m 5 (Ḡ) if and only if 5 (G) � 5 (Ḡ) + H̄T (G � Ḡ) for all G 2 R= with equality
at G = Ḡ. Hence

H̄ 2 m 5 (Ḡ) () H̄
T
Ḡ� 5 (Ḡ) = sup

G2R=

⇣
H̄

T
G� 5 (G)

⌘
(12.29a)

This motivates the definition of the conjugate function 5 ⇤ :R=! [�1,1] of 5 defined
by:

5
⇤ (H) := sup

G2R=

⇣
G

T
H � 5 (G)

⌘
, H 2 R=

Conjugate function is defined for any function 5 , not only convex functions. Since 5 ⇤

is the pointwise supremum of a�ne functions of H it is closed and convex for any 5 .
Then (12.29a) says:

H̄ 2 m 5 (Ḡ) () H̄
T
Ḡ = 5 (Ḡ) + 5 ⇤ ( H̄) (12.29b)

i.e., H̄ is a subgradient of 5 at Ḡ if and only if Ḡ attains the maximization in 5 ⇤ ( H̄). When
5 is CPC, 5 ⇤⇤ = 5 and the property becomes symmetric. We summarize important
properties of conjugate functions and subgradients in the following result taken from
[54, Propositions 1.6.1, 5.4.3 and 5.4.4].

Lemma 12.16 (Conjugate function and subgradient). Let 5 : R=! (�1,1].

1 Its conjugate 5 ⇤ is closed and convex.
2 If 5 is convex then the properness of any one of 5 , 5 ⇤, 5 ⇤⇤ implies the properness

of the other two. In particular if 5 is proper convex then 5
⇤ is CPC (closed proper

convex).
3 If 5 is CPC then 5 (G) = 5

⇤⇤ (G) for G 2 R=.
4 Envelop theorem: If 5 is CPC then, for any Ḡ 2 dom( 5 ), H̄ 2 dom( 5 ⇤),

Ḡ
T
H̄ = 5 (Ḡ) + 5 ⇤ ( H̄) () H̄ 2 m 5 (Ḡ) () Ḡ 2 m 5 ⇤ ( H̄)

5 Dual di�erentiability and optimality: If 5 is CPC then

5 The right-hand side of (12.28) is attained (i.e., 9H̄ with H̄T
E = sup

H2m 5 (G) H
T
E) if G 2 int(dom( 5 )) ,

not just G 2 ri(dom( 5 )) , according to Lemma 12.15.
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1 5
⇤ (H) is di�erentiable at H̄ 2 int(dom( 5 ⇤)) if and only if 5

⇤ ( H̄) :=
sup

G2R=
�
G

T
H̄� 5 (G)

�
is attained at a unique Ḡ 2 R=.

2 The set argminG2R= 5 (G) of unconstrained minima of 5 is equal to m 5 ⇤ (0).
3 Hence G⇤ is an unconstrained minimizer if and only if G⇤ 2 m 5 ⇤ (0) if and only

if 0 2 m 5 (G⇤).

Lemma 12.16.4 is a form of envelop theorem for CPC functions: it says that, if
5
⇤ ( H̄) = sup

G
(GT

H̄� 5 (G)) = ḠT
H̄� 5 (Ḡ), then Ḡ is a subgradient of 5 ⇤ at H̄. An implica-

tion of Lemma 12.16.5 is that the dual function of a convex program is di�erentiable
if the minimum of the Lagrangian over the primal variable is uniquely attained.

Example 12.10 (Di�erentiable functions). Consider the real-valued convex and di�er-
entiable function 5 :R=! (�1,1). The subdi�erential of 5 at Ḡ is m 5 (Ḡ) = {r 5 (Ḡ)}.
Then (12.29b) reduces to

rT
5 (Ḡ)Ḡ = 5 (Ḡ) + 5 ⇤ (r 5 (Ḡ)) = 5 (Ḡ) + sup

G2R=

⇣
rT
5 (Ḡ)G� 5 (G)

⌘

which says that the supremum on the right-hand side is attained at Ḡ when 5 is convex,
or re-arranging,

5 (G) � 5 (Ḡ) +rT
5 (Ḡ) (G� Ḡ), G 2 R=

which is a property of convexity (or definition of subgradient).

Suppose further that, for all H̄ 2 R=, the supremum in 5 ⇤ ( H̄) := sup
G2R= ( H̄T

G� 5 (G))
is attained at a unique Ḡ so that 5 ⇤ is di�erentiable on R=. Then the envelop theorem
in Lemma 12.16 reduces to H̄ = r 5 (Ḡ) if and only if Ḡ = r 5 ⇤ ( H̄). This says that the
derivative of the conjugate function at H̄,

5
⇤ ( H̄) := sup

G2R=

⇣
G

T
H̄� 5 (G)

⌘
= Ḡ

T
H̄� 5 (Ḡ)

is the unique maximizer Ḡ. Moreover the unconstrained supremum of the concave
function H̄T

G� 5 (G) of G is attained at Ḡ that satisfies r 5 (Ḡ) = H̄. ⇤

Indicator X- and support functions f- .

It is shown in Exercise 12.12 that for any nonempty set - ✓ R=, the conjugate of the
indicator function X- is the support function f- . Since X- is proper, Lemma 12.16
implies that f- is CPC (closed proper convex) as long as - is nonempty. This however
does not in itself imply that X- is itself CPC nor X- = f⇤

-
. Indeed X- is CPC if and only

if - is a closed nonempty convex set, in which case the conjugate f⇤
-

of the support
function is indeed X- . The results in Exercise 12.12 are summarized in Table 12.2.

For a closed nonempty convex set - we can interpret mf- (G) = {H 2 R= : GT
H =

f- (G)} as a form of envelop theorem for the function f- (G) := sup
H2- H

T
G. We can

also interpret it as a supporting hyperplane. Indeed fix any Ḡ 2 - . Then b := f- (Ḡ) is a
constant and hence mf- (Ḡ) = {H 2 R= : ḠT

H = b} is a hyperplane in R=. Since ḠT
H  b
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function 5 conjugate 5 ⇤ subdi�erential m 5 (G) condition

X- (G) f- (G) #- (G) if - is nonempty convex
X- (G) X-

� (H) #- (G) if - is a nonempty convex cone
f- (G) X- (G) {H 2 R= : GT

H = f- (G)} if - is closed nonempty convex

Table 12.2 Indicator function X- (G) := 0 if G 2 - and1 otherwise, support function
f- (G) := sup

H2- H
T
G, their conjugates and subdi�erentials (#- (G) is normal cone of - at G).

for all H 2 - , the hyperplane mf- (Ḡ) contains - in its “lower” halfspace. If there is
a finite H̄ 2 - that attains the supremum in f- (Ḡ) := sup

H2- Ḡ
T
H, then mf- (Ḡ) is a

supporting hyperplane of - at H̄. See Figure 12.13.

δσX(x̄)

x̄

x̄

ȳ

Figure 12.13 For a nonempty closed convex - , mf- (Ḡ) is a supporting hyperplane of - at H̄.

12.3.3 Subdi�erential calculus

The subdi�erential of functions is fundamental. In particularly the result on the sum
of functions in Theorem 12.18 is used to derive an exact optimality condition for
nonsmooth convex optimization in Chapter 12.5 that underlies the KKT condition.
The proof of Theorem 12.18 makes use of the following result on the existence of a
dual optimal solution that attains strong duality (even if the primal optimal value is not
attained).

Consider the convex optimization

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, �G = 1 (12.30a)

where the nonempty convex set - 0 ✓ R= is the intersection of a polyhedral set % and a
convex set ⇠:

-
0 := % \ ⇠

� 2 R<⇥=, 1 2 R<, and 5 : R=! (�1,1] is an extended real-valued proper convex
function. Let the Lagrangian function be

! (G,_) := 5 (G) + _T (�G� 1), G 2 R=, _ 2 R<
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the dual function be 3 (_) := infG2- 0 ! (G,_) and the dual problem be

3
⇤ := sup

_2R<
3 (_) (12.30b)

The problem (12.30) is a special case of (12.41) studied in detail in Chapter 12.7.1
when there is no explicit inequality constraint ⌘(G)  0. The following result is a special
case of Theorem 12.27 there (whose proof does not require Theorem 12.18 so there
is no circular argument). It is presented here because it is needed to prove Theorem
12.18 on subdi�erential calculus.

Theorem 12.17 (Slater Theorem). Consider the optimization problem (12.30) with a
mixture of polyhedral constraints. Suppose the following conditions hold:

• Finite primal value: 5 ⇤ > �1.
• Convexity: 5 is proper convex; % is a nonempty polyhedral set and ⇠ is a nonempty

convex set.
• Slater condition: There exists Ḡ 2 ri(dom( 5 ))\%\ ri(⇠) such that �Ḡ = 1.

Then

1 5
⇤ = 3⇤.

2 The set of dual optimal solutions _⇤ with 3 (_⇤) = 3⇤ is nonempty and convex.

Theorem 12.18 is taken from [54, Propositions 5.4.5–5.4.6, p.192]. Its proof makes
use of Theorem 12.17 and leads to the requirement of constraint qualifications. They
take the form that the intersection of the e�ective domains of various polyhedral
functions is nonempty (if some of the functions are not polyhedral, their e�ective
domains are replaced by their relative interiors).

Theorem 12.18 ([54]). 1 Sum of functions. Let 58 : R= ! (�1,1], 8 = 1, . . . ,<,
be convex functions. Suppose � (G) :=

Õ
8
58 (G) is proper. If, for some <̄ with

1  <̄  <, the functions 58 , 8 = 1, . . . , <̄, are polyhedral and�
\<̄
8=1 dom( 58)

� Ÿ �
\<
8=<̄+1 ri(dom( 58))

�
< ;

then � is convex and

m� (G) =
’
8

m 58 (G), 8G 2
<Ÿ
8=1

dom( 58)

When 58 are di�erentiable this reduces to r� (G) = Õ
8
r 58 (G).

2 Chain rule. Let 5 : R<! (�1,1] be a convex function and � 2 R<⇥=. Suppose
� (G) := 5 (�G) is proper. If
• either 5 is polyhedral, or
• there exists an G̃ 2 R= such that �G̃ 2 ri(dom( 5 ))
then � is convex and m� (G) = �T

m 5 (�G) for all G 2 R=. When 5 is di�erentiable
this reduces to r� (G) = �Tr 5 (�G).
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Proof Sum of functions. Fix an Ḡ 2 —
<

8=1 dom( 58). Then Ḡ 2 dom(�). By Lemma
12.15, m 58 (Ḡ) and m� (Ḡ) are nonempty convex and compact. The proof of m� (Ḡ) ◆Õ
8
m 58 (Ḡ) needs no assumption; its converse does. For any H̄8 2 m 58 (Ḡ) we have

58 (G) � 58 (Ḡ) + H̄T
8
(G� Ḡ), G 2 R=, 8 = 1, . . . ,<

Hence

� (G) :=
’
8

58 (G) � � (Ḡ) +
 ’
8

H̄8

!T

(G� Ḡ), G 2 R=

i.e.,
Õ
8
H̄8 2 m� (Ḡ).

For the converse, suppose H̄ 2 m� (Ḡ). Then

min
G2R=

� (G)� H̄T
G � � (Ḡ)� H̄T

Ḡ 2 R (12.31)

i.e., the finite minimum on the left-hand side is attained at Ḡ. To apply Theorem 12.17,
we write � (G) =Õ

8
5 (G8) with the constraints G8 = G 2 R=. Then (Ḡ,G8 = Ḡ, 8 = 1, . . . ,<)

is a minimizer of the following convex optimization:

5
⇤ = min

G,G8 2R=

’
8

58 (G8)� H̄T
G s.t. G8 2 dom( 58), G8 = G, 8 = 1, . . . ,< (12.32a)

Its dual objective function is

3 (_) := min
G2R= , G8 2dom( 58)

’
8

58 (G8) � H̄T
G �

’
8

_
T
8
(G8 � G) (12.32b)

where _ := (_1, . . . ,_<) 2 R<=. The application of Theorem 12.17 to (12.32) implies
that strong duality holds and that any optimal dual variable _̄8 yields a subgradient in
m 58 (Ḡ) at Ḡ.

Specifically - 0 in (12.30) corresponds to the convex constraint

-
0 := %\⇠ :=

�
\<̄
8=1 dom( 58)

� Ÿ �
\<
8=<̄+1 dom( 58)

�
Clearly a (finite) primal optimal is attained at G8 = G = Ḡ due to (12.31). The condition
in the theorem guarantees a point G8 := G̃ 2 %\ ri(⇠) such that G8 = G := G̃. Theorem
12.17, then implies that strong duality holds for (12.32) and there is a dual optimal
solution _̄ := (_̄1, . . . , _̄<) 2 R<=. Therefore, from (12.32), we have

3 (_̄) := min
G2R= , G8 2dom( 58)

’
8

⇣
58 (G8)� _̄T

8
G8

⌘
�

 
H̄�

’
8

_̄8

!T

G

For the dual problem max_ 3 (_), we must have H̄ =
Õ
8
_̄8 since the minimization in

3 (_) over G is unconstrained. Strong duality then implies

3 (_̄) = 5
⇤ =

’
8

⇣
58 (Ḡ) � _̄T

8
Ḡ

⌘

where the last equality follows because H̄ =
Õ
8
_̄8 and (Ḡ,G8 = Ḡ, 8 = 1, . . . ,<) is a
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minimizer of (12.32a). Since we can extend the minimization in 3 (_) over G8 to R=,
this implies (substituting again H̄ =

Õ
8
_̄8)

3 (_̄) = min
G8 2R=

’
8

⇣
58 (G8)� _̄T

8
G8

⌘
=

’
8

min
G8 2R=

⇣
58 (G8)� _̄T

8
G8

⌘
=

’
8

⇣
58 (Ḡ) � _̄T

8
Ḡ

⌘

The last equality means that, for every 8, 58 (Ḡ) � _̄T
8
Ḡ = minG8 2R=

�
58 (G8)� _̄T

8
G8

�
, i.e.,

_̄8 2 m 58 (Ḡ) according to (12.26b). This complete the proof of part 1.

Chain rule. The proof follows a similar argument as that for part 1. Clearly � is convex
since 5 is. Fix an Ḡ 2R=. If �Ḡ 8 dom( 5 ) then Ḡ 8 dom(�) and hence m� (Ḡ) = m 5 (�Ḡ) =
; by definition. Suppose then �Ḡ 2 dom( 5 ). The proof of m� (G) ◆ �T

m 5 (�G) needs
no assumptions; its converse does.

Let b̄ 2 m 5 (�Ḡ) ✓ R< be any subgradient of 5 at �Ḡ. Then

� (G)�� (Ḡ) = 5 (�G)� 5 (�Ḡ) � b̄T (�G� �Ḡ) =
⇣
b̄

T
�

⌘
(G� Ḡ), G 2 R= (12.33)

i.e., H̄ := �T
b̄ 2 R= is in m� (Ḡ). This shows �T

m5 (�Ḡ) ✓ m� (Ḡ).

For the converse (under the assumption in the theorem), suppose H̄ 2 m� (Ḡ). We
will show that there exists an _̄ 2 R< such that _̄ 2 m 5 (�Ḡ) and H̄ = �T

_̄. From the
definition (12.26b) of subgradient we have

� (Ḡ)� H̄T
Ḡ = min

G2R=
� (G)� H̄T

G 2 R

i.e., the finite minimum of the right-hand side is attained at Ḡ. Hence (Ḡ, �Ḡ) is a
minimizer of the following constrained convex optimization:

min
(G,I)2R=+<

5 (I)� H̄T
G s.t. I 2 - 0 := dom( 5 ), I = �G (12.34)

If 5 is polyhedral, then - 0 := dom( 5 ) =: % is a polyhedral set. Otherwise - 0 =: ⇠ is
a convex set since 5 is a convex function. In the former case the assumption that �
is proper means that there exists G̃ 2 R= such that Ĩ := �G̃ 2 - 0. In the latter case the
assumption in the theorem means that there exists G̃ 2 R= such that Ĩ := �G̃ 2 ri(- 0). In
both cases Theorem 12.17 implies that strong duality holds and there exists an optimal
dual variable _̄ 2 R< that attains the dual optimal value:

min
G2R= , I2dom( 5 )

⇣
5 (I)� _̄T

I� ( H̄� �T
_̄)T

G

⌘
= 5 (�Ḡ)� H̄T

Ḡ

where the left-hand side is the dual function of (12.34) evaluated at the dual optimal
point _̄ and the right-hand side is the primal optimal value attained at (Ḡ, �Ḡ). Since
the minimization over G is unconstrained we must have H̄ = �T

_̄. Clearly we can extend
the minimization over I to R< and hence we have

min
I2R<

5 (I)� _̄T
I = 5 (�Ḡ)� H̄T

Ḡ = 5 (�Ḡ)� _̄T (�Ḡ)

i.e., _̄ 2 m 5 (�Ḡ) by definition (12.26b). This completes the proof that m� (G) =
�

T
m 5 (�G). ⇤
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Example 12.11 (#�\ (G) = #� (G) +# (G)). Consider the linear program:

5
⇤ := min

G2R=
2

T
G s.t. G 2 �\ 

where � := {G : �G = 1} is a polyhedron and  := {G : G � 0} is a convex cone. If 5 ⇤

(or the dual objective value) is finite, then the e�ective domain dom(2T
G) = � \ is

nonempty. Theorem 12.18 then implies that

m (X� (G⇤) + X (G⇤)) = mX� (G⇤) + mX (G⇤)

i.e.,

#�\ (G) = #� (G) +# (G)

This is illustrated in Figure 12.14. ⇤

x̄

NH(x̄)

H

x2

x1

x̄

NH⋂K(x̄)

H⋂K

x2

x1

x̄ H

x2

x1

NK(x̄)= {0}

(a) At a relative interior point Ḡ of � \ .

NH⋂K(x̄)

H⋂K

x2

x1

x̄

NH(x̄)

H

x2

x1

x̄ H

x2

x1

NK(x̄)
x̄

(b) At a relative boundary point Ḡ of � \ 

Figure 12.14 Example 12.11: Normal cones in Theorem 12.3 satisfy
#�\ (Ḡ) = #� (Ḡ) +# (Ḡ) at all points Ḡ 2 �\ .

Theorem 12.19. 1 Finite max. Let � (G) :=max { 51 (G), . . . , 5< (G)} where 58 :R=!
R are real-valued (and hence proper) convex functions. For any G 2 R= let

� (G) := {8 : 58 (G) = � (G)}

Then

3� (G;E) = max
82� (G)

358 (G;E), 8G,E 2 R=

m� (G) = conv (m 58 (G) : 8 2 � (G)) , 8G 2 R=

2 Arbitrary max. Let � (G) := maxH2. 5 (G, H) where 5 : R= ⇥. ! R is a real-
valued function and . ✓ '<. Suppose for each H 2 . , 5 (·, H) is convex and
hence continuous on R=. Fix an Ḡ and suppose there exists a neighborhood
* (Ḡ) of Ḡ such that for each G 2 * (Ḡ), 5 (G, ·) is upper semicontinuous on . .
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Let . (G) := {H : 5 (G, H) = � (G)}. Then

3� (Ḡ;E) = sup
H2. ( Ḡ)

3G 5 (Ḡ, H;E), 8E 2 R=

m� (Ḡ) = cl (conv (mG 5 (Ḡ, H) : H 2 . (Ḡ)))

where 3G 5 (G, H;E) and mG 5 (G, H) are respectively the directional derivative and
subdi�erential of 5 with respect to G.

Remark 12.6. Theorem 12.19 is used in Exercise 13.12 to derive the subdi�erentials
of dual functions defined through minimization over primal variables.

1 Theorem 12.19.1 generalizes Theorem 8.21 from the case where 5 is real-valued
and jointly continuous in (G, H) and . is compact to the case where 5 may not
be continuous in G and . may not be compact. It is proved in e.g. [54, Example
5.4.5, p.199]. Since 58 are real-valued convex and hence proper and continuous on
dom( 58) = R=, � is also a real-valued convex continuous function. Since m 58 (G) is
nonempty convex compact by Lemma 12.15, so is m� (G).

2 Theorem 12.19.2 is taken from [141, Proposition 4.5.2, p.76].

⇤

Remark 12.7. Consider a real-valued function 5 : R= ⇥. ! R and

� (G) := sup
H2.

5 (G, H), ⌧ (G) := inf
H2.

5 (G, H)

where . is an arbitrary subset of R<.

1 Taking supremum. If 5 is convex in G for every H 2 . then � (G) is convex in G
as Theorem 8.21 shows. Moreover if 5 (·, H) is closed for each H 2 . then � (·) is
closed as well ([54, Proposition 1.1.6, p.13]). This is the situation e.g. when 5 is
the Lagrangian function of a constrained optimization.

2 Taking infimum. If 5 (G, H) is jointly convex in (G, H) instead (this is not the case
with Lagrangian functions) then ⌧ (G) is convex ([54, Proposition 3.3.1, p.122]).
Moreover the epigraph epi(⌧ (G)) := {(G, I) : I � ⌧ (G),G 2 R=} is essentially the
projection of epi( 5 ) := {(G, H, I) : I � 5 (G, H),G 2 R=, H 2 . } on the space of (G, I),
except possibly for some boundary points G when the infimum over H 2 . is not
attained in which case (G,⌧ (G)) are missing. Precisely

%(epi( 5 )) ✓ epi(⌧) ✓ cl%(epi( 5 ))

where the projection % is defined by %(() := {(G, I) : (G, H, I) 2 (} for any subset
( ✓ R= ⇥. ⇥R. ⇤

We next use the tools developed in Chapters 12.3.1, 12.3.2 and 12.3.3 to derive op-
timality conditions for general convex optimization, following the structure of Chapter
8.3.



12.4 Characterization: saddle point = p-d optimality + strong duality 603

12.4 Characterization: saddle point = p-d optimality + strong duality

In this section we present a primal-dual characterization of an optimal solution when
some or all of the constraints are specified explicitly and can be dualized. In smooth
optimization the Saddle Point Theorem 8.14 states that a saddle point attains primal-
dual optimality and strong duality. We show that this characterization extends directly
to the nonsmooth setting, without the need for the machinery in Chapters 12.3.1, 12.3.2
and 12.3.3 for nonsmooth analysis.

Consider the optimization problem where the feasible set is partially specified by
constraint functions:

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, 6(G) = 0, ⌘(G)  0 (12.35)

where - 0 ✓ R= is a nonempty set and 5 : R= ! (�1,1], 6 : R= ! (�1,1]< and
⌘ : R= ! (�1,1]; are extended real-valued functions. As for the smooth case in
Chapter 8.3.1, we do not assume - 0 to be a convex set or 5 ,6,⌘ be convex functions.
Therefore (12.35) is generally a nonconvex problem.

Let the Lagrangian function be

! (G,_,`) := 5 (G) + _T
6(G) + `

T
⌘(G), G 2 R=, _ 2 R<, ` 2 R; (12.36a)

the dual function be

3 (_,`) := inf
G2- 0

! (G,_,`) (12.36b)

and the dual problem be

3
⇤ := sup

_,`�0
3 (_,`) (12.36c)

Let - := {G 2 R= : G 2 - 0,6(G) = 0, ⌘(G)  0} denote the primal feasible set and
. := {(_,`) 2 R<+; : ` � 0} the dual feasible set. The primal problem (12.35) is the
same as (8.25) in Chapter 8.3.1 except the cost and constraint functions are allowed to
be nonsmooth and extended real-valued (see Remark 8.4 for the case where - 0 ✓ R=
in (8.25)). The Saddle Point Theorem 8.14 applies directly in the nonsmooth setting
here. For simplicity, we require a saddle point to attain a finite value of the Lagrangian
! by definition.

Definition 12.4 (Saddle point for extended real-value functions). A point (G⇤,_⇤,`⇤) 2
-
0 ⇥. is called a saddle point of the Lagrangian ! if it satisfies

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤) 2 R (12.37)

In particular this common value ! (G⇤,_⇤,`⇤) is finite.

With this finiteness requirement, Definition 12.4 is equivalent to Definition 8.8
for real-valued functions 5 ,6,⌘, and Theorem 8.14 on primal-duality optimality and
strong duality extends directly to the nonsmooth setting.
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Theorem 12.20 (Saddle-point Theorem 8.14). Consider the primal problem (12.35)
and its dual (12.36). A point (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point that satisfies (12.37)
if and only if

1 It is optimal-dual optimal, i.e., G⇤ is optimal for (12.35) and (_⇤,`⇤) is optimal for
(12.36).

2 The duality gap is zero at (G⇤,_⇤,`⇤), i.e.,

3 (_⇤,`⇤) = 3
⇤ = 5

⇤ = 5 (G⇤) (12.38)

In particular a saddle point (G⇤,_⇤,`⇤), if it exists, attains both the primal and dual
objective values ( 5 ⇤,3⇤).

Proof The proof of Theorem 8.14 does not use any smoothness properties of the
cost and constraint functions 5 ,6,⌘, except that they are real-valued. In particular,
when (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point, the proof there uses Remark 8.3 to deduce
that G⇤ 2 - is primal feasible. This conclusion still holds here due to the finiteness
requirement in Definition 12.4. Since the weak duality lemma 8.13 applies to extended
real-valued functions, it can be checked that the argument in the proof of Theorem
8.14 goes through in the nonsmooth setting. ⇤

12.5 Characterization: generalized KKT condition

Consider the convex optimization

min
G2R=

5 (G) s.t. G 2 %\⇠ (12.39)

where % ✓ R= is a nonempty polyhedral set, ⇠ ✓ R= is a nonempty convex set, and
5 : R=! (�1,1] is a proper convex extended real-valued function. In particular 5
may not be di�erentiable, though subgradients always exist since 5 is convex. We now
derive an exact characterization of primal optimal solutions when they exist. When
the feasible set %\⇠ is specified explicitly by equality and inequality constraints, the
characterization reduces to the KKT condition for nonsmooth convex problems. This
is studied in Chapter 12.8.

Corollary 12.13 in Chapter 12.3.2 says that a vector G⇤ is an unconstrained minimizer
of an extended real-valued convex function 5 if and only if 0 2 m 5 (G⇤). For constrained
minimization (12.39) this condition is generalized to the existence of a subgradient
H
⇤ 2 m 5 (G⇤) such that �H⇤ is in the normal cone #- (G⇤) of the feasible set %\⇠ at
G
⇤. Constrained optimization also requires a constraint qualification which is a kind of

feasibility condition, e.g., dom( 5 ) \%\ ri(⇠) is nonempty if 5 is polyhedral. If 5 is
not polyhedral then dom( 5 ) is replaced by ri(dom( 5 )).
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Theorem 12.21 (Generalized KKT condition). Consider the convex optimization
(12.39) with a nonempty polyhedral set %, a nonempty convex set ⇠, and a proper
convex function 5 . Suppose one of the following constraint qualifications holds, de-
pending on whether 5 is polyhedral:

1 ri(dom( 5 ))\%\ ri(⇠) < ;;
2 5 is polyhedral and dom( 5 )\%\ ri(⇠) < ;;

Then G⇤ 2 %\⇠ is optimal for (12.39) if and only if

0 2 m 5 (G⇤) + #% (G⇤) + #⇠ (G⇤) (12.40a)

i.e., there exists a subgradient H⇤ 2 m 5 (G⇤) such that �H⇤ 2 #% (G⇤) +#⇠ (G⇤), or equiv-
alently

H
⇤T (G� G⇤) � 0, 8G 2 %\⇠ (12.40b)

Proof The proof is from [54, Proposition 5.4.7, p.195]. The problem (12.39) is
equivalent to the unconstrained minimization:

min
G2R=

5 (G) + X% (G) + X⇠ (G)

where the indicator function X- 0 (G) = 0 if G 2 - 0 and 1 if G 8 - 0. Corollary
12.13 in Chapter 12.3.2 says that G⇤ 2 % \ ⇠ is optimal if and only if 0 2
m ( 5 (G⇤) + X% (G⇤) + X⇠ (G⇤)). The stated constraint qualifications allow us to apply
the result on the sum of functions in Theorem 12.18 to conclude that G⇤ 2 %\⇠ is
optimal if and only if

0 2 m 5 (G⇤) + mX% (G⇤) + mX⇠ (G⇤) = m 5 (G⇤) + #% (G⇤) + #⇠ (G⇤)

where the second equality follows from Table 12.2. ⇤

Theorem 12.21 characterizes an optimal solution G⇤ but does not guarantee its exis-
tence. See Examples 8.9 and 8.10 in Chapter 8 for cases where primal optimal solutions
do not exist even though the constraint qualifications in Theorem 12.21 are satisfied.
In both examples the feasible set is not compact, but the primal optimal objective
values are finite, strong duality holds, and dual optimal solutions exist. As discussed in
Remark 12.4 we only need one subgradient H⇤ 2 m 5 (G⇤) to certify the optimality of G⇤

and does not require HT (G � G⇤) � 0 to hold for all H 2 m 5 (G⇤). The theorem is proved
by reducing the constrained minimization (12.39) to an unconstrained minimization
using the indicator function X- . It illustrates the simplicity of argument based on the
set theoretic concepts of nonsmooth optimization introduced in Chapter 12.1 and the
concept of subdi�erentials introduced in Chapters 12.3.2 and 12.3.3.
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Remark 12.8 (Real-valued 5 ). 1 When 5 : R= ! R is real-valued then
ri(dom( 5 )) = dom( 5 ) = R= and the constraint qualifications in Theorem 12.21
reduce to

%\ ri(⇠) < ;

whether or not 5 is polyhedral.
2 If the cost function 5 is di�erentiable then H⇤ and m 5 (G⇤) in the optimality condition

in (12.40) can be replaced by r 5 (G⇤).

Similarly for other duality and optimality conditions. ⇤

When the feasible set - := % \⇠ is a general convex set - , Theorem 12.21 on
the characterization of (primal) optimal solutions and Theorem 12.26 on its existence
are almost all that we can say without more knowledge about - . When - is at least
partially specified by a�ne equalities and convex inequalities, we characterize saddle
points and strong duality in Theorem 12.20 of Chapter 12.4 and the existence of dual
optimal solutions in the Slater Theorem 12.27 of Chapter 12.7.1. When the feasible set
- is fully specified, all constraints can be dualized. When the normal cones #% (G⇤)
and #⇠ (G⇤) can be explicitly derived, such as those in Theorems 12.3, 12.4, 12.10 and
Corollary 12.11, the exact optimality condition (12.40) reduces to KKT conditions;
see Chapter 12.8.

12.6 Existence: primal optimal solutions

Theorem 12.21 of Chapter 12.5 provides an exact characterization of primal optimal
solutions and the Saddle Point Theorem 12.20 of Chapter 12.4 characterizes saddle
points as primal-dual optimal solutions that close the duality gap. They do not ensure
that primal or dual optimal solutions exist. For smooth optimization Theorem 8.16
states that the primal optimal value is attained if the cost function is continuous and the
feasible set is compact. It is a consequence of the Weierstrass theorem. In this section
we extend this result to a nonsmooth setting where the continuity of the cost function
is replaced by the closedness of 5 (recall that a function 5 : R=! [�1,1] is closed
if and only if 5 is lsc on R=; see Remark 12.3).

A function 5 : R=! (�1,1] is called radially unbounded if lim: 5 (G: ) =1 for
every sequence {G: } with kG: k !1. All nonempty level sets of a radially unbounded
function are bounded. The next result from [54, Proposition 3.2.1, p.119] provides
su�cient conditions for the existence of optimal solutions G⇤ 2 R= for unconstrained
optimization.

Theorem 12.22 (Weierstrass Theorem). Consider

min
G2R=

5 (G)
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where 5 :R=! (�1,1] is closed and proper. If any of the following conditions holds:

1 dom( 5 ) is bounded; or
2 There exists W 2 R such that the level set +W := {G : 5 (G)  W} is nonempty and

bounded; or
3 5 is radially unbounded;

then the set -⇤ ✓ R= of unconstrained minima of 5 is nonempty and compact. ⇤

A constrained optimization of 5 over a nonempty closed subset - ✓ R= can be
turned into an unconstrained optimization of the extended real-valued function 5- (G) :
R
=! [�1,1] defined in (12.25). An optimality condition then follows immediately

from Theorem 12.22 and the fact that 5- is closed if dom( 5 ) is closed and 5 is lower
semicontinuous on dom( 5 ) (Exercise 12.15). It is a generalization of Theorem 8.16 to
the nonsmooth setting.

Corollary 12.23 (Su�cient optimality condition). Consider

min
G2R=

5 (G) s.t. G 2 -

where - ✓ R=, 5 : - ! (�1,1] and - \ dom( 5 ) < ;. If - is closed, 5 is lower
semicontinuous at every G 2 - , and one of the following holds:

1 - is bounded; or
2 There exists W 2 R such that the level set +W := {G : 5 (G)  W} is nonempty and

bounded; or
3 5 is radially unbounded;

then the set -⇤ ✓ - of minima of 5 over - is nonempty and compact. ⇤

CPC function 5 .

Theorem 12.22 and Corollary 12.23 guarantee that the minimum of 5 is attained (at a
finite point in R=) when there is a nonempty level set that is bounded. When level sets
are not bounded, the set -⇤ of constrained minima can be exactly characterized if 5 is
not only closed and proper but also convex and - is closed and convex. The key idea
is that G cannot wander to infinity within a level set+W while staying within its feasible
set - . We next make this intuition precise.

Definition 12.5 (Recession cone). Let - ✓ R= be a nonempty convex set.

1 A vector 3 2 R= is a direction of recession of - if G +U3 2 - for all G 2 - and all
U � 0.

2 The recession cone of - , denoted by rc(-), is the set of all directions of recession
of - . ⇤
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Lemma 12.24. [54, Proposition 1.4.1; p.43] Let - ✓ R= be a nonempty closed convex
set. Then

1 rc(-) is closed and convex.
2 3 2 rc(-) as long as there exists one G 2 - such that G +U3 2 - for all U � 0.
3 rc(-) contains a nonzero direction if and only if - is unbounded. ⇤

The next result allows us to define the direction of recession for a closed proper
convex (CPC) function 5 in terms of its level set.

Lemma 12.25. [54, Proposition 1.4.5; p.51] Consider a closed proper convex function
5 : R=! (�1,1] and its level sets

+W := { G : 5 (G)  W }, W 2 R

Then:

1 All nonempty level sets +W have the same recession cone rc(+W) = {3 : (3,0) 2
rc(epi( 5 ))}.

2 If one nonempty level set +W is compact, then all level sets are compact. ⇤

In view of the lemma we can define, for a CPC function 5 : R= ! (�1,1],
the recession cone of 5 as rc( 5 ) := rc(+W) for any nonempty level set +W . A vector
3 2 rc( 5 ) is called a direction of recession of 5 . A vector 3 is called a common direction
of recession of 5 and - if 3 2 rc( 5 ) \ rc(-). The next result from [54, Proposition
3.2.2; p.120] characterizes exactly the set -⇤ of minima of a constrained optimization.

Theorem 12.26. [54, Proposition 3.2.2; p.120] Consider

min
G2R=

5 (G) s.t. G 2 -

where - ✓ R= is nonempty closed and convex, 5 : R= ! (�1,1] is closed proper
convex, and - \ dom( 5 ) < ;. The set -⇤ ✓ - of minima of 5 over - is nonempty,
convex and compact if and only if - and 5 have no common nonzero direction of
recession. ⇤

Theorem 12.26 is used in Exercise 13.12 to derive the subdi�erentials of dual
functions defined through minimization over primal variables. If - and 5 in the theorem
do have a common nonzero direction of recession, then either the optimal solution set
is empty (infeasible problem) or else it is nonempty and unbounded (optimal value may
be finite or infinite and may or may not be attained). This is because for any common
nonzero direction 3 of recession in rc(-)\ rc( 5 ), there is a feasible point G 2 - such
that G +U3 remains in - and in the level set +W as U!1. Moreover this holds for
all nonempty level sets +W by Lemma 12.25. Therefore either limW!�1+W < ; (limit
exists because +W are nested) or +W = ; for small enough W. In the former case there
is a 3 2 rc(-) \ rc

�
limW!�1+W

�
and the primal solution is not attained, e.g., - = R,
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5 (G) = G and 3 = �1. Otherwise there is a smallest W0 for which+W0 < ; and the primal
optimal solution set is nonempty and unbounded since the intersection of rc(-) and
rc(+W0 ) is nonempty (Exercise 12.16), e.g., - = R, 5 (G) = max{0,G} and 3 = �1.

Example 12.12 (Linear program). Consider the linear program (8.56a) reproduced
here:

5
⇤ := min

G2R=
2

T
G s.t. �G � 1

where 2 2 R=, � 2 R<⇥= and 1 2 R<. If the feasible set - is bounded or if there is a
W 2 R such that the level set+W is nonempty and bounded, then Corollary 12.23 implies
that the set -⇤ ✓ - of optimal solutions is nonempty and compact. Consider then the
case where - is unbounded and every nonempty level set +W := {G 2 R= : 2T

G  W}
is unbounded. This means that both rc(-) and rc( 5 ) contain nonzero directions of
recession (Lemma 12.24). Suppose 5 ⇤ is finite.

Suppose 3 2 rc(-) and 3 < 0. Then there are two mutually exclusive cases:

1 3 8 rc( 5 ) and 2T
3 > 0: In this case Theorem 12.26 implies the existence of an

optimal solution G⇤; moreover the set -⇤ of optimal solutions is compact.
2 3 2 rc( 5 ) and 2T

3 = 0: In this case Lemma 8.22 shows that an optimal solution G⇤

exists but -⇤ may not be compact.

To show that these are the only two possible cases when 5
⇤ is finite, suppose 3 2

rc(-) \ rc( 5 ) and 3 < 0, i.e., for all G 2 - \+W and all U � 0, G +U3 2 - \+W . This
means �(G +U3) � 1 and 2T

G +U2T
3  W for all W � 0. This is possible if only if

�3 � 0, 2
T
3  0

If 2T
3 < 0, then letting U!1 the cost 2T (G +U3) ! �1, contradicting 5

⇤
> �1.

Therefore if 3 2 rc(-) (i.e., �3 � 0), then either 3 2 rc( 5 ) and 2T
3 = 0, or 3 8 rc( 5 )

and 2T
3 > 0. ⇤

12.7 Existence: dual optimal solutions and strong duality

In Chapter 12.6 we study the existence of primal optimal solutions (Corollary 12.23
and Theorem 12.26). In this section we study dual optimality. In smooth optimization
the Slater Theorem 8.17 states that a dual optimal solution exists and strong duality
holds if the optimal primal value is finite (even if it is not attained) and the Slater
condition is satisfied. We extend this assertion to the nonsmooth setting in Chapter
12.7.1 and provide a detailed proof in 12.7.2 and 12.7.3 (which also proves Theorem
8.17). These results are mostly adapted from [54, Chapters 4 and 5].
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12.7.1 Slater Theorem

Consider the convex optimization (12.35) where the feasible set is specialized to be the
intersection of a polyhedral set and a convex set and the equality constraint 6(G) = 0 is
polyhedral:

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, �G = 1, ⌘(G)  0 (12.41a)

Here the nonempty convex set - 0 ✓ R= is the intersection of a polyhedral set % and a
convex set ⇠:

-
0 := % \ ⇠

� 2 R<⇥=, 1 2 R<, and 5 : R=! (�1,1] and ⌘ : R=! (�1,1]; are extended real-
valued proper convex functions. 6 Suppose, for some ; with 0  ;̄  ;, ⌘8 , 8 = 1, . . . , ;̄, are
polyhedral functions. In contrast to (12.35) the polyhedral equality constraint �G = 1
ensures that the feasible set of (12.41a) is convex.

Let the Lagrangian function be

! (G,_,`) := 5 (G) + _T (�G� 1) + `
T
⌘(G), G 2 R=, _ 2 R<, ` 2 R;

the dual function be

3 (_,`) := inf
G2- 0

! (G,_,`), _ 2 R<, ` 2 R;

and the dual problem be

3
⇤ := sup

_,`�0
3 (_,`) (12.41b)

The following result from [54, Proposition 5.3.6, p.175] extends the Slater Theorem
8.17 to the nonsmooth setting.

Theorem 12.27 (Slater Theorem). Consider the optimization problem (12.41) with a
mixture of polyhedral and nonpolyhedral constraints. Suppose the following conditions
hold:

• Finite primal value: 5 ⇤ > �1.
• Convexity: 5 ,⌘ are proper convex functions; % is a nonempty polyhedral set and ⇠

is a nonempty convex set.
• Slater condition: There exists Ḡ 2 ri(dom( 5 ))\%\ri(⇠) such that �Ḡ = 1, ⌘8 (Ḡ)  0,

8 = 1, . . . , ;̄, and ⌘8 (Ḡ) < 0 for 8 = ;̄ +1, . . . , ;.

Then

1 5
⇤ = 3⇤.

2 The set of dual optimal solutions (_⇤,`⇤) with 3 (_⇤,`⇤) = 3⇤ is nonempty, convex
and closed.

6



12.7 Existence: dual optimal solutions and strong duality 611

Remark 12.9 (Real-valued functions). When 5 and ⌘ are real-valued the constraint
qualification for strong duality in Theorem 12.27 can be slightly weakened to [54,
Proposition 5.3.6, p.175]:

1 There exists G̃ 2 %\ ri(⇠) such that �G̃ = 1 and ⌘8 (G̃)  0, 8 = 1, . . . , ;̄; and
2 There exists Ḡ 2 %\⇠ such that �Ḡ = 1, ⌘8 (Ḡ)  0, 8 = 1, . . . , ;̄, and ⌘8 (Ḡ) < 0 for
8 = ;̄ +1, . . . , ;.

⇤

Instead of the problem (12.41) where the constraints are explicitly decomposed
into polyhedral constraints G 2 % and �G = 1 and (possibly nonpolyhedral) convex
constraints G 2⇠ and ⌘(G)  0, we will prove Theorem 12.27 in the following equivalent
but simpler form:

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, ⌘(G)  0 (12.42a)

where - 0 ✓R= is a nonempty convex set, and 5 :R=! (�1,1] and ⌘ :R=! (�1,1];
are proper convex extended real-valued functions. Let the Lagrangian function be

! (G,`) := 5 (G) + `
T
⌘(G), G 2 R=, ` 2 R;

the dual function be

3 (`) := inf
G2- 0

! (G,`), ` 2 R;

and the dual problem be

3
⇤ := sup

`�0
3 (`) (12.42b)

This problem is equivalent to (12.41) since - 0 can take the form -
0 = % \⇠ for a

convex set ⇠ and �G = 1 is equivalent to �G  0, �G � 0. For simplicity, however, we
will prove the following version where the Slater condition is less refined than that
in Theorem 12.27. Define the set of all dual optimal solutions `⇤ that attain strong
duality.

&
⇤ :=

⇢
`
⇤ � 0 : 3 (`⇤) = inf

G2- 0
5 (G) + `⇤T⌘(G) = 5

⇤
�
✓ R; (12.43)

Due to weak duality,&⇤ can be equivalently defined to be&⇤ := {`⇤ � 0 : 3 (`⇤) � 5 ⇤}.

Theorem 12.28 (Slater Theorem). Consider the convex optimization problem and its
dual (12.42). Suppose the following conditions hold:

• Finite primal value: 5 ⇤ > �1.
• Convexity: 5 ,⌘ are proper convex functions; - 0 is a nonempty convex set.
• Slater condition: one of the following constraint qualifications holds:



612 Nonsmooth convex optimization

CQ1: There exists Ḡ 2 dom( 5 )\ - 0 such that ⌘(Ḡ) < 0;7 or
CQ2: The functions ⌘8 , 8 = 1, . . . , ;, are polyhedral, i.e., ⌘(G) = �G + 1 for some � 2
R
;⇥= and 1 2 R; , and there exists Ḡ 2 ri(dom( 5 ))\ ri(- 0) such that �Ḡ + 1  0.

Then

1 5
⇤ = 3⇤.

2 If CQ1 holds then &⇤ in (12.43) is nonempty, convex and compact.
3 If CQ2 holds then &⇤ is nonempty, convex and closed.

Due to weak duality 3⇤  5 ⇤, finite 5 ⇤ means that the dual problem is either finite
feasible or infeasible. The constraint qualification CQ1 or CQ2 in the theorem ensures
strong duality and the existence of dual optimal solutions. The proof of Theorem
12.28 illustrates the typical argument in this type of results. In particular it shows
how constraint qualifications ensures that a nonvertical separating hyperplane exists
between two disjoint convex sets. The normal vector of the hyperplane defines a dual
optimal solution. The closedness of the dual optimal set &⇤ is due to the property that
the dual function 3 (`) is concave, closed (i.e., epi(3) is a closed set in R;+1) and upper
semicontinuous (see Lemma 12.29). If a strictly feasible Ḡ exists (CQ1), then &⇤ is
compact, not just closed (this corresponds to 0 2 int

�
⇡
"

�
in Lemma 12.30, not just

0 2 ri
�
⇡
"

�
).

We next develop over Chapters 12.7.2 and 12.7.3 the proof of Theorem 12.28,
adapted from [54, Chapters 4 and 5].

12.7.2 MC/MC problems

The proof of strong duality relies on the following geometric idea. Let " ✓ R;+1 be a
nonempty set and let (D,F) with D 2 R; and F 2 R denote a variable in R;+1. Define
the primal problem:

Primal (minimum common) : F
⇤ := inf

(0,F)2"
F (12.44a)

where F⇤ :=1 if (0,F) 8 " for any F 2 R. As we will see below duality expresses
the situation where there exists a nonvertical hyperplane that contains the set " in
its “upper” closed halfspace; see Figure 12.15. The normal to the hyperplane defines
a dual optimal solution. To describe this, recall that a hyperplane in the (D,F)-space
specified by a normal (`,1) 2 R;+1 and an F-intercept b 2 R is given by

{(D,F) 2 R;+1 : `T
D +F = b}

7 CQ1 is customarily called the Slater condition.
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u∈Rl

(a) Nonconvex "

M

M̄

(µ*, β*)

d *=w*

w∈R
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Figure 12.15 The primal and dual problems (12.44) defined by the nonempty set " . Their
optimal values are (F⇤,3⇤) respectively. The normal (`⇤, V⇤ := 1) of the nonvertical
hyperplane attains the dual optimal solution `⇤, i.e., 3 (`⇤) = 3⇤. (a) Nonzero duality gap
3
⇤
< F
⇤ when " is not convex. (b) Zero duality gap 3⇤ = F⇤ when " is convex even though "

is nonconvex. In both cases, 0 2 ri(⇡
"
) which ensures that V⇤ > 0 (nonvertical hyperplane).

We desire `T
D+F � b for all (D,F) 2 " , corresponding to containing" in the “upper”

halfspace. Hence define

3 (`) := inf
(D,F)2"

`
T
D + F

and the dual problem:

Dual (maximum crossing) : 3
⇤ := sup

`2R;
3 (`) (12.44b)

Given `, 3 (`) is the smallest F-intercept of the hyperplane with normal (`,1) that
touches (supports) the set " . The dual problem is to find a normal (`⇤,1) such that
this smallest F-intercept 3 (`⇤) is the maximum over ` 2 R; . If the normal to the
hyperplane is (`,0), i.e., V⇤ = 0 in Figure 12.15, then the hyperplane is vertical and
there is no finite maximum crossing 3⇤.

It is straightforward to show weak duality: 3⇤  F⇤ (Exercise 12.17). The following
useful property of the dual function 3 (`) is derived in the proof of Lemma 12.30.

Lemma 12.29 (Dual function). Consider the function 3 (`) := inf (D,F)2" `
T
D +F

where " ✓ R;+1 is nonempty. Then 3 (`) is a concave, closed (i.e., epi(3) is a closed
set in R;+1) and upper semicontinuous function.

It is easier to work with the positive extension " of " defined by:

" := " + {(0,F) : F � 0} = {(D,F) 2 R;+1 : F � F̄ for some (D, F̄) 2 "}
(12.45)

because " ignores nonconvexity in the “upper” part of " which does not a�ect the
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minimization in (12.44a). We can define (12.44) equivalently by replacing " with ":

Primal (minimum common) : F
⇤ := inf

(0,F)2"
F (12.46a)

Dual (maximum crossing) : 3
⇤ := sup

`2R;
3 (`) (12.46b)

where 3 (`) := inf (D,F)2" `
T
D +F.

The starting point for our proof is the following condition from [54, Propositions
4.4.1 and 4.4.2, p.150] for 3⇤ = F⇤ and the existence of a dual optimal solution `⇤. Let
the set of all dual optimal solutions `⇤ that attain strong duality be

&
⇤ =

(
`
⇤ 2 R; : 3 (`⇤) := inf

(D,F)2"
`
⇤T
D +F = F⇤

)
(12.47)

Every dual optimal `⇤ 2 &⇤ defines a supporting hyperplane � := {(D,F) 2 R;+1 :
`
⇤T
D +F = F⇤} at (0,F⇤) 2 cl("), with cl(") in the “upper” halfspace of �. See

Figure 12.16.

(µ1* , 1)(µ2* , 1)

M

H

M̄

w∈R

u∈Rl

d *=w*

Figure 12.16 Every dual optimal `⇤ 2 &⇤ defines a hyperplane � that passes through (0,F⇤)
and separates it from cl("). The shaded region labeled � in the figure shows all the
hyperplanes defined by &⇤.

Define ⇡
"

to be the projection of " onto the D-space:

⇡
"

:= {D 2 R; : (D,F) 2 " for some F 2 R} (12.48)

We may write ⇡ for ⇡
"

if " is understood from the context. Then the relative interior
of " and that of ⇡

"
are related as:

ri(") = {(D,F) 2 R;+1 : D 2 ri(⇡
"
), F > F̄ for some (D, F̄) 2 "}

Lemma 12.30 (MC/MC strong duality). Suppose

• Finite primal value: F⇤ > �1.
• Convexity: " is convex.
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• Constraint qualification: 0 2 ri
�
⇡
"

�
.

Then

1 3
⇤ = F⇤ in (12.46).

2 the set &⇤ in (12.47) of dual optimal solutions is nonempty, convex and closed. In
particular dual optimality is attained, i.e., 3⇤ = 3 (`⇤), `⇤ 2 &⇤.

3 If 0 2 int
�
⇡
"

�
then &⇤ is nonempty, convex and compact. ⇤

Note that the lemma only requires " to be convex, even if " is not. It guarantees
that the dual optimal value 3⇤ is attained at some `⇤ 2 R; , but does not guarantee
that the primal optimal value F⇤ is attained even though F⇤ is finite, i.e., (0,F⇤) may
be in cl(") but not in " . The lemma is proved by constructing a nonvertical proper
separating hyperplane defined by its normal (`⇤,1) that establishes the existence of an
optimal dual vector `⇤ (the hyperplane is called proper if it does not fully contain the
convex set "). The requirement 0 2 ri(⇡

"
) ensures that the hyperplane is nonvertical

so that the maximum crossing point is finite. The proof below that &⇤ is closed also
proves Lemma 12.29 on dual function 3 (`). If 0 2 int

�
⇡
"

�
(not just 0 2 ri

�
⇡
"

�
) then

&
⇤ is compact (not just closed).

Proof We first prove parts 1 and 2 of the lemma, in five steps.

Step 1: (0,F⇤) 8 ri("). We claim that F⇤ is finite, i.e., �1 < F
⇤
< 1, and

(0,F⇤) 8 ri("). The first inequality follows from the first assumption of the lemma.
The constraint qualification says that there exists F̄ such that (0, F̄) 2 " , and
hence F⇤ := inf (0,F)2" F  F̄ < 1. This confirms that F⇤ is finite. We claim that

(0,F⇤) 8 ri(") because otherwise, (12.48) implies that F⇤ > F̄ for some (0, F̄) 2 " ,
a contradiction.

Step 2: � separating (0,F⇤) from and not containing " . The Separating Hyperplane
Theorem 8.10 then implies that there exists a hyperplane that passes through (0,F⇤)
and separates (0,F⇤) from " (Theorem 8.10 extends easily to the case where int(-)
is replaced by ri(-)). Specifically there exists (`, V) 2 R;+1 such that

VF
⇤  `

T
D + VF, 8(D,F) 2 "

Moreover, (0,F⇤) 8 ri(") implies that the separating hyperplane � := {(D,F) 2 R;+1 :
`

T
D + VF = VF⇤} does not fully contain the convex set " (see [54, Proposition 1.5.5,

p.74]). This means that

VF
⇤  inf

(D,F)2"
`

T
D + VF < sup

(D,F)2"
`

T
D + VF (12.49)

Step 3: V > 0. We claim that V > 0. Clearly V cannot be negative because otherwise,
since there exists (0, F̄) 2 " (constraint qualification in the lemma), the definition
(12.45) of " implies that (0, F̄+F0) 2 " as F0 !1. Hence inf (D,F)2"

�
`

T
D + VF

�
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V(F̄ +F0) ! �1, contradicting (12.49). Suppose for the sake of contradiction that
V = 0. Then (12.49) implies

0  inf
(D,F)2"

`
T
D = inf

D2⇡
"

`
T
D

Since 0 2 ⇡
"

from the constraint qualification, this infimum is attained at the origin
D = 0 over the convex set ⇡

"
(⇡

"
is convex since it is a projection of the convex

set "). But 0 2 ri(⇡
"
), which is possible only if `T

D is constant (and equal to 0)
over ⇡

"
, for otherwise the minimum will be attained at a relative boundary point of

the convex set ⇡
"

. This contradicts the strict inequality in (12.49) with V = 0, i.e., it
contradicts the fact that the separating hyperplane � does not fully contain the convex
set " . Hence V > 0.

Step 4: strong duality and dual optimality. Since V > 0, we can renormalize to define
the hyperplane by `⇤ := `/V and V⇤ = 1. Substitute V⇤ = 1 into (12.49) to get

F
⇤  inf

(D,F)2"
`
⇤T
D +F =: 3 (`⇤)  3

⇤

where the last inequality follows from the definition (12.46b) of 3⇤. Weak duality
F
⇤ � 3⇤ then implies that F⇤ = 3⇤. This also shows 3 (`⇤) = 3⇤, i.e., the dual optimal

is attained at `⇤.

Step 5: 3 (`) is concave, closed and upper semicontinuous, and &⇤ is closed. For each
(D,F), define the a�ne function 6D,F (`) := �(`T

D +F). Then

�3 (`) = sup
(D,F)2"

6D,F (`)

Hence �3 is convex, i.e., epi(�3) is a convex set inR;+1. Since epi(6D,F ) is a closed set
for each (D,F), epi(�3) = \(D,F)2" epi(6D,F ) is closed in R;+1. On R; , �3 is closed if
and only if �3 is lower semicontinuous; see Remark 12.3. Hence 3 is concave, closed
and upper semicontinuous.

Finally &⇤ is a convex set because 3 is a concave function and " is a convex set.
Since 3 is upper semicontinuous on R; , &⇤ is a closed set because, if {`: } ✓ &⇤ with
`: ! `

⇤ 2 R; , then 3 (`⇤) � lim: 3 (`: ) = 3⇤, i.e., `⇤ 2 &⇤. This completes the proof
of parts 1 and 2 of the lemma.

For part 3, we only have to show that&⇤ is bounded when 0 2 int(⇡
"
). Suppose&⇤

is unbounded, i.e., there exists a sequence {`: } ✓&⇤ such that k`: k1 :=
Õ
8
| [`: ]8 | � :

for each integer : > 0. Consider the finite set * := {D 2 R; : D8 = ±1}, i.e., * consists
of 2; vectors D whose entries D8 are 1 or �1. Since 0 2 int(⇡

"
), we can find a small

enough A > 0 and, for each integer : > 0, vectors D: 2 * (with [D: ]8 = sign( [`: ]8))
and scalars F: 2 R such that (AD: ,F: ) 2 " and `T

:
(AD: ) = �A k`: k1. Since `: 2 &⇤

we have

F
⇤ = 3 (`: )  `

T
:
(AD: ) +F: = �A k`: k1 +F: , : = 1,2, . . . ,

Since {D: }: take values in the finite set *, there must exist an infinite subsequence
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{(AD:8 ,F:8 )}8 such that (AD:8 ,F:8 ) = (AD̂, F̂) for all 8. We therefore have

F
⇤  �A k`:8 k1 + F̂ with k`:8 k1 � :8 , 8 = 1,2, . . . ,

Taking 8!1 gives F⇤ = �1, contradicting the assumption that F⇤ > �1. This shows
that &⇤ is bounded and hence compact. ⇤

Lemma 12.30 applies to an arbitrary nonempty set " ✓ R; . The formulation of
the primal and dual problems (12.46) is very general. In the following we will use
the lemma to prove Theorem 12.28 under CQ1, by specifying " in terms of the cost
and constraint functions 5 ,⌘. The theorem under CQ2 may not satisfy the condition
0 2 ri(⇡

"
) in the lemma, but we will modify the proof of Lemma 12.30 to prove CQ2

directly.

12.7.3 Slater Theorem 12.28: proof

We now prove Theorem 12.28. Let - 0 ✓ R= be a nonempty convex set and 5 : R=!
(�1,1] and ⌘ : R= ! (�1,1]; be proper convex extended real-valued functions.
Consider the convex optimization problem (12.42), reproduced here:

Primal: 5
⇤ := inf

G2R=
5 (G) s.t. G 2 - 0, ⌘(G)  0 (12.50a)

Dual: 3
⇤ := sup

`�0
3 (`) (12.50b)

where 3 (`) := infG2- 0 ! (G,`) for ` 2 R;+ and ! (G,`) := 5 (G) + `T
⌘(G), G 2 R=, ` 2 R; ,

is the Lagrangian. We can treat the dual function 3 : R; ! [�1,1] as an extended
real-valued function defined as

3 (`) :=
⇢

infG2- 0 5 (G) + `T
⌘(G), ` � 0

�1, otherwise
(12.50c)

The feasible set is - := {G 2 - 0 : ⌘(G)  0} ✓ R=.

To apply Lemma 12.30 let " := {(⌘(G), 5 (G)) 2 R;+1 : G 2 dom( 5 ) \ - 0}. Let its
positive extension be

" := {(D,F) 2 R;+1 : D � ⌘(G), F � 5 (G) for some G 2 dom( 5 )\ - 0} (12.51a)

and the projection onto the D-space be

⇡
"

= {D 2 R; : D � ⌘(G) for some G 2 dom( 5 )\ - 0} (12.51b)

Note that since G that underlies ⇡
"

lies in dom( 5 ), there always exists F > 5 (G) so
that D 2 ri(⇡

"
) if and only if (D,F) 2 ri(") for some F > 5 (G). The extended set

" defined by -
0 di�ers slightly from " in Figure 12.15 in that D 2 R; extends to

the “right” indefinitely; see Figure 12.17. In the result below constraint qualifications
imply that the primal problem (12.50a) is feasible so that " is nonempty. Indeed if Ḡ
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Figure 12.17 The (D,F) space: " := (⌘(- 0), 5 (- 0)) := {(⌘(G), 5 (G) : G 2 dom( 5 )\ - 0} and its
positive extension " .

is a feasible point for (12.50a) then (0, 5 (Ḡ)) 2 " . Moreover " is convex since - 0 is
a convex set and 5 ,⌘ are convex functions.

The primal and dual problems (12.46) in terms of " are then

Primal: 5
⇤ := inf

(0,F)2"
F (12.52a)

Dual: 3
⇤ := sup

`2R;
3 (`) (12.52b)

where the dual function 3 (`) := inf (D,F)2" `
T
D+F. The dual problem (12.52b) with

the dual function 3 (`) in terms of " is equivalent to the dual problem (12.50) with
the dual function 3 (`) := infG2- 0 `T

⌘(G) + 5 (G), in the sense that `⇤ is optimal for
one dual problem if and only if it is optimal for the other dual problem with the same
optimal value, as long as the problem is feasible (Exercise 12.18). This implies that&⇤

in (12.43) is the same as &⇤ in (12.47). Both are the set of all dual optimal solutions
`
⇤ � 0 that attain strong duality.

We first use Lemma 12.30 to prove Theorem 12.28 under CQ1, by verifying the three
conditions in the lemma. Under CQ2 for an polyhedral function ⌘, the requirement
0 2 ri(⇡

"
) in Lemma 12.30 may not hold and we will modify the proof of the lemma

to prove CQ2 directly.

Proof of CQ1: 9Ḡ 2 dom( 5 )\ - 0 such that ⌘(Ḡ) < 0. We verify the three conditions
in Lemma 12.30, in particular 0 2 int(⇡

"
):

1 5
⇤
> �1: This holds by assumption. Indeed CQ1 implies that 5 ⇤ is finite (�1 <

5
⇤
<1).

2 Convex ": Let (D1,F1), (D2,F2) 2 " . Then there exist G1,G2 2 dom( 5 )\- 0 such
that

D8 � ⌘(G8), F8 � 5 (G8) 8 = 1,2
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The convexity of ⌘ implies that for any U 2 [0,1]

UD1 + (1�U)D2 � U⌘(G1) + (1�U)⌘(G2) � ⌘(UG1 + (1�U)G2)

Similarly the convexity of 5 implies UF1 + (1�U)F2 � 5 (UG1 + (1�U)G2). This
means U(D1,F1) + (1�U) (D2,F2) is in " , proving the convexity of " .

3 0 2 int(⇡
"
): CQ1 gives Ḡ 2 dom( 5 ) \ - 0 with ⌘(Ḡ) < 0. Therefore 0 2 ⇡

"
,

where ⇡
"

is defined in (12.51b). Moreover there is an n > 0 such that D 2 ⇡
"

for any D with kDk  n and a F > 5 (Ḡ) such that (D,F) 2 ri("). This implies that
0 2 int

�
⇡
"

�
.

Lemma 12.30 then implies that

3
⇤ = 5

⇤, 9`⇤ 2 R< s.t. 3⇤ = 3 (`⇤) = inf
(D,F)2"

`
⇤T
D +F (12.53)

Moreover the set &⇤ of dual optimal solutions is convex and compact. This completes
the proof of Theorem 12.28 under CQ1. ⇤

Proof of CQ2: 9Ḡ 2 ri(dom( 5 ))\ ri(- 0) such that ⌘(Ḡ) := �Ḡ + 1  0. In this case,
the condition 0 2 ri

�
⇡
"

�
:= ri ({D : D � �G + 1 for some G 2 dom( 5 )\ - 0}) in Lemma

12.30 may not hold, but we will modify the 5 steps in the proof of Lemma 12.30 to
establish (12.53) and properties of &⇤ directly (the key di�erence being Step 2).

Step 1: 5 ⇤ > �1. This holds by assumption. Indeed CQ2 implies that 5 ⇤ is finite
(�1 < 5

⇤
<1).

Step 2: Separating hyperplane. Substitute ⌘(G) = �G�1 into the definition (12.51a) of
":

" := {(D,F) 2 R;+1 : D � �G� 1, F � 5 (G) for some G 2 dom( 5 )\ - 0}

The key to the proof is a clever decomposition of" as a Minkowski sum of a convex set
⇠ ✓ R;+1 defined by the convex function 5 and a polyhedral set % ✓ R;+1 defined by the
a�ne functions ⌘, as follows. With the view of a slack variable E := D� (�G� 1) � 0,
we can write " = ⇠ +% where

⇠ := {(�G� 1,F) : F � 5 (G) for some G 2 dom( 5 )\ - 0}, % := {(E,0) : E � 0}

" =⇠+% because (D,F) 2 " if and only if D = �G�1+E for some E � 0 andF � 5 (G).

Guided by the sets ⇠ and % (see Step 4 below), we define the convex set ⇠̃ ✓ R;+1

and the polyhedral set %̃ ✓ R;+1 (since 5 ⇤ is finite):

⇠̃ := {(�G� 1,F) : F > 5 (G) for some G 2 dom( 5 )\ - 0}, %̃ := {(E, 5 ⇤) : E  0}

(When -
0 is open, ⇠̃ = ri(⇠). More generally, when restricted to G 2 ri(- 0), ⇠̂ :=

{(�G�1,F) :F > 5 (G) for some G 2 ri(- 0)} is ri(⇠).) We claim that ⇠̃\ %̃ = ; because
otherwise if (Ẽ, 5 ⇤) 2 ⇠̃ \ %̃ then there exists an G̃ 2 - 0 such that

Ẽ = �G̃� 1  0, 5
⇤
> 5 (G̃)
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contradicting that 5 is uniformly lower bounded by 5
⇤ on its feasible set.

The separating hyperplane Theorem 8.11 then implies that there exists a hyperplane
that separates ⇠̃ and %̃, i.e., 9(`, V) 2 R;+1 such that

sup
(E , 5 ⇤)2%̃

`
T
E + V 5 ⇤  inf

(D,F)2⇠̃
`

T
D + VF

Moreover the separating hyperplane does not fully contain the convex set ⇠̃ (follows
from [54, Proposition 1.5.7, p.77] since ri(⇠̃)\ %̃ = ;). This means that

sup
(E , 5 ⇤)2%̃

`
T
E + V 5 ⇤  inf

(D,F)2⇠̃
`

T
D + VF < sup

(D,F)2⇠̃
`

T
D + VF (12.54)

This corresponds to (12.49) in the proof of Lemma 12.30. The remaining Steps 3 and
4 follow the same idea there, working with ⇠̃, %̃ and the decomposition of " = ⇠ +%
here instead of " directly in Lemma 12.30.

Step 3: V > 0. We claim that V > 0. Clearly V cannot be negative because otherwise,
since (0, 5 (Ḡ)) 2 " (where Ḡ is the point in CQ2), the definition (12.51a) of " implies
that (0, 5 (Ḡ) +F0) 2 " as F0 ! 1. Hence inf (D,F)2"

�
`

T
D + VF

�
 V( 5 (Ḡ) +F0)!

�1, contradicting (12.54). Suppose for the sake of contradiction that V = 0. Then
(12.54) implies

sup
(E , 5 ⇤)2%̃

`
T
E  inf

(D,F)2⇠̃
`

T
D  `

T
Ē

where Ē := �Ḡ � 1 with Ḡ being the point in CQ2. Here the last inequality follows
because the point (Ē, 5 (Ḡ)) is in ⇠̃. But Ē  0 and hence (Ē, 5 ⇤) 2 %̃. Therefore

`
T
Ē  sup

(E , 5 ⇤)2%̃
`

T
E  inf

(D,F)2⇠̃
`

T
D  `

T
Ē

i.e., all inequalities above must hold with equality. Therefore Ē := �Ḡ � 1 attains the
minimization of `T

D over the projection ⇡̃ := {D = �G � 1 : (D,F) 2 ⇠̃} of ⇠̃ onto the
D-space. Since CQ2 says that Ḡ 2 ri(dom( 5 ))\ ri(- 0), Ē := �Ḡ� 1 is in ri(⇡̃). This is
possible only if `T

D is constant (and equal to `T
Ē) over ⇡̃, for otherwise the infimum

will be attained at a relative boundary point of the convex set ⇡̃. This contradicts the
strict inequality in (12.54), i.e., it contradicts the fact that the separating hyperplane
does not fully contain the convex set ⇠̃.

Step 4: strong duality and dual optimality. Since V > 0, we can renormalize to define
the hyperplane by `⇤ := `/V and V⇤ = 1. Substitute V⇤ = 1 into (12.54) to get

sup
E0

`
⇤T
E + 5 ⇤  inf

(D,F)2⇠̃
`
⇤T
D +F

5
⇤  inf

(D,F)2⇠̃
inf
E0

`
⇤T (D� E) + F

= inf
(D,F)2⇠

inf
(E ,0)2%

`
⇤T (D + E) + F

= inf
(D,F)"

`
⇤T
D +F =: 3 (`⇤)  3

⇤
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where the first equality uses the fact that the infimum of `⇤TD +F over ⇠̃ or ⇠ is the
same. Weak duality 5

⇤ � 3⇤ then implies that 5 ⇤ = 3⇤. This also shows 3 (`⇤) = 3⇤,
i.e., the dual optimal is attained at `⇤. This establishes (12.53), i.e., the set &⇤ of dual
optimal solutions is nonempty.

Step 5: &⇤ is convex and closed. This step is the same as Step 5 in the proof of
Lemma 12.30. As shown there, the dual function 3 (`) is concave, closed and upper
semicontinuous. Therefore the set &⇤ of dual optimal solutions is a convex set (" is
convex as shown above for the case CQ1). Since 3 is upper semicontinuous onR=,&⇤ is
a closed set because, if {`: } ✓ &⇤ with `: ! `

⇤ 2 R=, then 3 (`⇤) � lim: 3 (`: ) = 3⇤,
i.e., `⇤ 2 &⇤. ⇤

12.8 Special convex programs

In this section we apply the general theory developed in Chapters 12.4–12.7 to special
classes convex optimization problems widely used in applications. In particular we
apply the Slater Theorem 12.27 and the generalized KKT Theorem 12.21 to derive
conditions for strong duality, dual optimality and the KKT conditions for some of the
problem classes in Figure 8.14 of Chapter 8.4.1 (specifically linear program, second-
order cone program, conic program, and convex program specified by a general convex
inequality). It extends some of the results of Chapter 8.4 for di�erentiable problems to
a nonsmooth setting.

12.8.1 Summary: general method

Consider the convex problem:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2 - ✓ R= (12.55)

where 5 : R= ! R is a convex function, � 2 R<⇥=, 1 2 R< and - is a nonempty
closed convex set that may be specified explicitly as ⌘(G)  0 for a convex function
⌘ : R=! R; . The problems studied in this section is summarized in Figure 8.14 and
the conclusions are summarize in Table 8.3 of Chapter 8.4.1. A general method to
derive these conclusions is also described in Chapter 8.4.1 for smooth problems. Here
we summarize how to adapt that method to the nonsmooth setting using concepts
of subgradients, normal cones and dual cones. The key di�erence is the approach to
derive the KKT condition without di�erentiability and for abstract specifications of
the feasible set - .

1 Dual problem. Given the primal problem (12.55), if - is explicitly specified, e.g.,
by a convex inequality ⌘(G)  0, then the Lagrangian function ! and the dual
problem are defined by (8.55a) (8.55b) in Chapter 8.4.1. Otherwise if - ✓ R= is
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specified by ⌫G + 3 2  for a closed convex cone  ✓ R; then the Lagrangian can
be defined in terms of its dual cone  ⇤:

! (G,_,`) := 5 (G)�_T (�G� 1) + `(⌫G + 3), G 2 R=, _ 2 R<, ` 2  ⇤ ✓ R;

The dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

(_,`)2R<+;
3 (_,`) s.t. ` 2  ⇤

This is derived in Chapter 12.8.4.
2 Strong duality and dual optimality. This does not require di�erentiability and

the results hold almost verbatim in the nonsmooth setting using Theorem 12.27
(except substituting subgradients for gradients).

3 KKT condition and primal optimality. Suppose - ✓ R= is specified by ⌫G + 3 2  
for a closed convex cone  ✓ R; . Without di�erentiability the KKT condition
cannot be derived simply from rG! (G⇤,_⇤,`⇤) = 0 as done in (8.55c) of Chapter
8.4.1. Instead we convert (12.55) into an unconstraint problem

5
⇤ := min

G2R=
5 (G) + X� (G) + X (⌫G + 3)

where � := {G 2 R= : �G = 1}. Recall that (i) 5 is a convex function. Suppose
(ii) the Slater condition is satisfied, i.e., there exists Ḡ 2 ri(dom( 5 )) \ ri( ) with
�Ḡ = 1 (dom( 5 ) = R= if we assume 5 is real-valued). Then the generalized KKT
Theorem 12.21 implies that G⇤ is optimal if and only if there exists a subgradient
b
⇤ 2 m 5 (G⇤), _⇤ 2 R< and `⇤ 2 R; such that (from Corollary 12.9):

b
⇤ 2 �#� (G⇤)�⌫T

# (⌫G⇤ + 3)

Using Theorem 12.3 on normal cones the KKT condition is equivalent to

b
⇤ = �

T
_
⇤ +⌫T

`
⇤, `

⇤T (⌫G⇤ + 3) = 0, `
⇤ 2  ⇤

Indeed the conditions `
⇤ 2  ⇤ and `

⇤T (⌫G⇤ + 3) = 0 define a vector `⇤ in
�# (⌫G⇤ + 3) according to Theorem 12.3 for a general convex cone  . When
 is specified explicitly, e.g.,  is the second-order cone, these conditions define
the vector `⇤ more specifically based on the primal optimal G⇤.

In the rest of this section we apply this general method to common convex programs.
The results are summarized in Table 8.3.

12.8.2 Linear program (LP)

Consider the linear program:

5
⇤ := min

G2R=
2

T
G s.t. �G = 1, G � 0 (12.56a)

where � 2 R<⇥=, 1 2 R< and 2 2 R=. Let � := {G 2 R= : �G = 1} and  := {G 2
R
= : G � 0}. Theorem 8.23 and Example 8.13 in Chapter 8.4.2 show that if either the
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optimal primal or the optimal dual value is finite then both primal and dual optimality
is attained, strong duality holds, and a primal and dual feasible solution is optimal if
and only if it satisfies complementary slackness. In this subsection we derive the same
result using Theorem 12.21 to illustrate the simplicity of the set-theoretic approach in
the nonsmooth setting.

For strong duality and the existence of primal and dual optimal solutions, the dual
problem of (12.56a) is derived in Example 8.13 to be:

3
⇤ := max

_,`�0
1

T
` s.t. �

T
_+ ` = 2 (12.56b)

where _ 2 R<, ` 2 R=. Let - := {G 2 R= : �G = 1,G � 0} and . := {(_,`) 2 R<+= :
�

T
_ + ` = 2, ` � 0} be the feasible sets. If either 5 ⇤ or 3⇤ is finite then the Slater

condition of Theorem 12.27 (or Slater Theorem 8.17) is satisfied. The exact same
proof for part 1 of Theorem 8.23 shows that there exists a primal-dual optimal solution
(G⇤,_⇤,`⇤) 2 - ⇥. that closes the duality gap, i.e.,

2
T
G
⇤ = 5

⇤ = 3
⇤ = 1

T
_
⇤

For KKT characterization, rewrite (12.56a) as an unconstrained optimization of an
extended real-valued function:

min
G2R=

2
T
G + X� (G) + X (G) (12.56c)

Since the objective function 5 (G) := 2T
G is real-valued and polyhedral, dom( 5 ) = R=.

Application of Theorem 12.21 then says that G⇤ 2 R= is optimal if and only if

�2 2 m (X� (G⇤) + X (G⇤)) = mX� (G⇤) + mX (G⇤)

where the equality follows from Theorem 12.18, provided (12.56) is feasible (�\ <
;). Since mX- (G) = #- (G) from Table 12.2, G⇤ is optimal if and only if

�2 2 #� (G⇤) +# (G⇤)

From Theorem 12.3 in Chapter 12.1.3,

#� (G⇤) = {�T
_ 2 R= : _ 2 R<}

# (G⇤) = {H 2 R= : H  0, HT
G
⇤ = 0}

Substituting these normal cones into the condition 2 2 �#� (G⇤) � # (G⇤) leads to
KKT condition for linear program: a feasible G⇤ is optimal if and only if there exists a
(_⇤,`⇤) 2 R<+= such that

�
T
_
⇤ + `⇤ = 2, `

⇤T
G
⇤ = 0, `

⇤ � 0 (12.57)

Such a point (G⇤,_⇤,`⇤) is a saddle point and a KKT point and is hence primal-dual
optimal with 2T

G
⇤ = 1T

`
⇤. Since the constraint qualification in Theorem 12.21 reduces

to feasibility for a linear program, the KKT characterization (12.57) requires only
feasibility of the linear program (12.56). Strong duality and the existence of primal
and dual optimal solutions requires, in addition, 5 ⇤ > �1 (or �1 < 3

⇤
<1).
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12.8.3 Second-order cone program (SOCP)

Second-order cone.

Recall the second-order cone program (SOCP):

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  soc (12.58a)

where 5 : R= ! R is a real-valued convex function (not necessarily di�erentiable),
� 2 R<⇥=, 1 2 R<, and  soc ✓ R= is the standard second-order cone defined in (8.16),
reproduced here (G: := (G1, · · · ,G: ) denotes the vector consisting of the first : entries
of G),

 soc := {G 2 R= : kG=�1k2  G=} (12.58b)

and studied in Theorem 12.10. The Lagrangian ! : R=+<+1! R of (12.58a)(12.58b)
is

! (G,_,`) := 5 (G) � _T (�G� 1) + `
⇣
kG=�1k2� G=

⌘
, G 2 R=, _ 2 R<,` 2 R

the dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

_,`�0
3 (_,`) (12.58c)

We now show that Theorem 8.26 on strong duality, dual optimality and the KKT
condition for SOCP in Chapter 8.4.4 for smooth convex optimization holds almost
verbatim in the nonsmoonth setting, except that Theorem 8.26 only covers the case
where [G⇤]=�1 < 0 so that the constraint function ⌘(G) := kG=�1k2�G= is di�erentiable
whereas the derivation below covers the case where [G⇤]=�1 = 0 as well.

Indeed, strong duality and dual optimality follow from the Slater Theorem 12.27.
To derive the KKT condition, we rewrite the primal problem of SOCP (12.58) as an
unconstrained optimization of an extended real-valued function. It illustrates both how
nonsmooth analysis handles points of nondi�erentiability and the simplicity of the
set-theoretic approach here. Specifically rewrite (12.58a)(12.58b) as:

min
G2R=

5 (G) + X� (G) + X (G)

where � := {G 2 R= : �G = 1} where  :=  soc is the second-order cone. Since 5

is real-valued, ri(dom( 5 )) = R= and hence the constraint qualifications in Theorem
12.21 reduces to the Slater condition�\ri( ) < ; (Remark 12.8). Under this condition
Theorem 12.21 says that G⇤ 2 �\ is optimal if and only if there exists a b⇤ 2 m 5 (G⇤)
such that

�b⇤ 2 m (X� (G⇤) + X (G⇤)) = mX� (G⇤) + mX (G⇤) = #� (G⇤) +# (G⇤) (12.59)

(The first equality follows from Theorem 12.18 under the Slater condition�\ri( ) < ;
and the second equality follows from mX- (G) = #- (G) in Table 12.2.) Theorems 12.3
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and 12.10 in Chapter 12.1 then give

#� (G⇤) = {�T
_ 2 R= : _ 2 R<}

# (G⇤) =

8>><
>>:
{b 2 R= : kb=�1k2  �b=} if G⇤ = 0
{0 2 R=} if k [G⇤]=�1k2 < G⇤=�
`( [G⇤]=�1,�G⇤

=
) 2 R= : ` � 0

 
if k [G⇤]=�1k2 = G⇤= > 0

(12.60a)

Substituting these normal cones into (12.59) leads to the following KKT condition.
Suppose the SOCP (12.58) satisfies the Slater condition � \ ri( ) < ;. We separate
three cases according to # in (12.60a): A feasible G⇤ 2 � \ is optimal if and only
if there exist b⇤ 2 m 5 (G⇤), _⇤ 2 R< and

1 Case G⇤
=
> k [G⇤]=�1k2 � 0: such that

b
⇤ = �

T
_
⇤ (12.61a)

which is the same as the KKT condition in Theorem 8.26. This includes the case
not covered in Theorem 8.26 in which [G⇤]=�1 = 0 where the constraint function
⌘(G) := kG=�1k2� G= is nondi�erentiable.

2 Case G⇤
=
= k [G⇤]=�1k2 > 0: there exists `⇤ 2 R+ such that

b
⇤ = �

T
_
⇤ + `⇤


�[G⇤]=�1

G
⇤
=

�
(12.61b)

which is the same as the KKT condition in Theorem 8.26. Note that
`
⇤ (�[G⇤]=�1,G⇤

=
) is a vector in  soc as in the next case.

3 Case G⇤
=
= k [G⇤]=�1k2 = 0: there exists [̃ 2  �soc := {[ 2 R= : k[=�1k2  �[=} such

that �b⇤ = �T (�_⇤) + [̃. This is equivalent to: G⇤ = 0 is optimal if and only if there
exist b⇤ 2 m 5 (0), _⇤ 2 R< and [⇤ 2  soc such that

b
⇤ = �

T
_
⇤ +[⇤ (12.61c)

Note that 1 = �G⇤ = 0. As in case 1, the constraint function ⌘(G) := kG=�1k2 � G=
is nondi�erentiable at G⇤ = 0, the case not covered in Theorem 8.26.

Here we assume the Slater condition and the conclusion is slightly stronger than that
in Theorem 8.26 (see Remark 8.11).

Remark 12.10 ([⇤ 2  soc for SOCP). Note that all the KKT conditions in (12.61)
are of the form b

⇤ = �T
_ + [⇤ for some [⇤ 2  soc. This is due to (12.59) that requires

b
⇤ 2 �#� (G⇤) � # (G⇤) and Theorem 12.3 that says that # (G⇤) ✓  �soc, the polar

cone of  soc. Hence [⇤ is in the dual cone  ⇤soc = � �soc =  soc since the second-order
cone is self-dual. Indeed the conditions in (12.61) specialize the description [⇤ 2  ⇤
and [⇤TG⇤ = 0 in Theorem 12.3 for a general convex cone  to the case of second-order
cone based on G⇤. ⇤
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SOC constraint.

Recall the second-order cone program (SOCP):

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, k⌫G + 3k2  V

T
G + X (12.62)

where 5 : R= ! R is a real-valued convex function (not necessarily di�erentiable),
� 2 R<⇥= and 1 2 R<, ⌫ 2 R(;�1)⇥=, 3 2 R;�1, V 2 R= and X 2 R. The constraint
k⌫G+3k2  VT

G+X is the second-order cone constraint studied in Chapter 8.2.1. It is a
convex constraint but does not necessarily defines a cone. We now show that Theorem
8.27 in Chapter 8.4.4 on strong duality, dual optimality and the KKT condition holds
almost verbatim in the nonsmoonth setting, except that Theorem 8.27 only covers the
case where ⌫G⇤ + 3 < 0 so that the constraint function ⌘(G) := k⌫G + 3k2� (VT

G + X) is
di�erentiable whereas the derivation below allows k⌫G⇤ + 3k2 = 0.

As for the SOCP (12.58), strong duality and dual optimality follow from the Slater
Theorem 12.27. To derive the KKT condition in Theorem 8.27, we will use Theorem
12.21 to handle points of nondi�erentiability. First we reduce the SOC constraint in
(12.62) to the conic constraint in (12.58) with an auxiliary variables I and an additional
linear equality constraint:

I
;�1 = ⌫G + 3, I; = V

T
G + X, kI;�1k2  I;

Then we rewrite SOCP (12.62) as an unconstrained optimization: let

⌫̃ :=

⌫

V
T

�
, 3̃ :=


3

X

�

and

�̃1 := {(G, I) 2 R=+; : �G = 1} =: �1⇥R; , �1 := {G 2 R= : �G = 1}
 ̃ := {(G, I) 2 R=+; : kI;�1k2  I;} =: R= ⇥ ,  := {I 2 R; : kI;�1k2  I;}
�2 := {(G, I) 2 R=+; : I = ⌫̃G + 3̃}

with normal cones #
�̃1
(G, I) = #�1 (G) ⇥ {0 2 R;} and #

 ̃
(G, I) = {0 2 R=}⇥# (I).

Rewrite SOCP (12.62) as:

min
(G,I)2R=+;

5 (G) + X
�̃1
(G, I) + X

 ̃
(G, I) + X�2 (G, I)

The constraint qualification in Theorem 12.21 reduces to the Slater condition �̃1 \
ri( ̃)\�2 < ; (Remark 12.8). Under this condition Theorem 12.21 says that (G⇤, I⇤) 2
�̃1\  ̃ \�2 is optimal if and only if there exists a b⇤ 2 m 5 (G⇤) such that

�

b
⇤

0

�
2 #

�̃1
(G⇤, I⇤) +#

 ̃
(G⇤, I⇤) +#�2 (G⇤, I⇤) =


#�1 (G⇤)

0

�
+


0

# (I⇤)

�
+#�2 (G⇤, I⇤)

(12.63)
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Theorems 12.3 and 12.10 in Chapter 12.1 give

#�1 (G⇤) = {�T
_ 2 R= : _ 2 R<}

# (I⇤) =

8>><
>>:

{[ 2 R; : k[;�1k2  �[;} if I⇤ = 0
{0 2 R;} if k [I⇤];�1k2 < I⇤

;�
`( [I⇤];�1,�I⇤

;
) 2 R; : ` � 0

 
if k [I⇤];�1k2 = I⇤

;
> 0

Now #�2 (G⇤, I⇤) =
�
(b,[) 2 R=+; : b = ⌫̃T

W, [ = �W, W 2 R;
 

and hence

#�2 (G⇤, I⇤) =
�
(⌫̃T

W,�W) 2 R=+; : W 2 R;
 

Substituting these normal cones into (12.63) leads to the following KKT condition.
Suppose the SOCP (12.62) satisfies the Slater condition that there exists Ḡ such that
�Ḡ = 1 and k⌫Ḡ + 3k2 < VT

Ḡ + X. We separate three cases according to # : A feasible
G
⇤ is optimal if and only if there exists b⇤ 2 m 5 (G⇤), _⇤ 2 R<, and

1 Case VT
G
⇤ + X > k⌫G⇤ + 3k2 � 0: such that (W⇤ = 0 in this case)

b
⇤ = �

T
_
⇤ (12.64a)

which is the same as the KKT condition in Theorem 8.27. This includes the case
not covered in Theorem 8.27 in which ⌫G⇤ + 3 = 0 where the constraint function
⌘(G) := k⌫G + 3k2� (VT

G
⇤ + X) is nondi�erentiable.

2 Case VT
G
⇤ + X = k⌫G⇤ + 3k2 > 0: there exist W⇤ 2 R; and `⇤ 2 R+ such that �b⇤ =

�
T
_
⇤ + ⌫̃T

W
⇤ and W⇤ = `⇤ ( [I⇤]:�1,�I⇤

:
) where I⇤ = ⌫̃G⇤ + 3̃. Eliminating W⇤ and I⇤

yields: A feasible G⇤ is optimal if and only if there exists b⇤ 2 m 5 (G⇤), _⇤ 2 R< and
`
⇤ 2 R+ such that

b
⇤ = �

T
_
⇤ + `⇤

⇣
�⌫T (⌫G⇤ + 3) + V(VT

G
⇤ + X)

⌘
(12.64b)

This is the same as the KKT condition in Theorem 8.27.
3 Case VT

G
⇤+X = k⌫G⇤+3k2 = 0: there exist W⇤ 2R; and [̃ 2  � := {[̃ 2R; : k[̃;�1k2 

�[̃;} such that �b⇤ = �T (�_⇤) + ⌫̃T
W
⇤ and W⇤ = [̃. Eliminating W⇤ yields: G⇤ with

0 = k⌫G⇤ + 3k2 = VT
G
⇤ + X is optimal if and only there exist b⇤ 2 m 5 (G⇤), _⇤ 2 R<

and [⇤ 2  such that

b
⇤ = �

T
_
⇤ + ⌫̃T

[
⇤ (12.64c)

As in case 1, the constraint function ⌘(G) := k⌫G + 3k2 � (VT
G
⇤ + X) is nondi�er-

entiable at G⇤ where 0 = k⌫G⇤ + 3k2, the case not covered in Theorem 8.27.

12.8.4 Conic program and convex inequality

In this subsection we derive conditions for strong duality and dual optimality and the
KKT condition for conic programs and for convex programs specified by a general
convex inequality.
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Conic feasible set.

A generalization of SOCP (12.58) is the following convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  (12.65)

where 5 : R=! R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, and  ✓ R=
is a closed convex cone. Even though  ✓ R= in (12.65) is not explicitly specified by
convex inequalities, but because  is a convex cone, we can formulate the Lagrangian
dual problem using the dual cone of  . Recall the polar cone  � and the dual cone  ⇤

of  in Definition 12.1:

 
� := {b 2 R= : bT

G  0 8G 2  } (12.66a)

 
⇤ := � � := {b 2 R= : bT

G � 0 8G 2  } (12.66b)

Let the dual variables be _ 2 R< and ` 2  ⇤. Define the Lagrangian function:

! (G,_,`) := 5 (G) � _T (�G� 1) � `T
G, G 2 R=, _ 2 R<, ` 2  ⇤ ✓ R=

The dual function is

3 (_,`) := min
G2R=

! (G,_,`) = _
T
1 + 30 (_,`), _ 2 R<, ` 2  ⇤ ✓ '= (12.67a)

where

30 (_,`) := min
G2R=

⇣
5 (G)� (�T

_+ `)T
G

⌘
(12.67b)

The dual problem is:

3
⇤ := max

_2R<,`2 ⇤
_

T
1 + 30 (_,`) (12.67c)

For a linear program where 5 (G) = 2T
G, 30 (_,`) = 0 if 2 = �T

_+ ` and �1 otherwise
in which case the dual problem becomes:

3
⇤ := max

_2R<,`2 ⇤
_

T
1 s.t. 2 = �T

_+ `

For strong duality and dual optimality, we can extend the Slater Theorem 12.27 to the
more general formulation of dual problem (12.67).

For KKT characterization, we again let � := {G 2 R= : �G = 1} and rewrite the
primal problem (12.65) as an unconstrained convex optimization:

min
G2R=

5 (G) + X� (G) + X (G)

The constraint qualification in Theorem 12.21 reduces to the Slater condition � \
ri( ) < ;. Under this condition Theorem 12.21 says that G⇤ 2 R= is optimal if and only
if there exists b⇤ 2 m 5 (G⇤) such that

�b⇤ 2 m (X� (G⇤) + X (G⇤)) = #� (G⇤) +# (G⇤) (12.68a)
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where we have used Theorem 12.18 and Table 12.2. From Theorem 12.3 in Chapter
12.1.2,

#� (G⇤) = {�T
_ 2 R= : _ 2 R<} (12.68b)

# (G⇤) = { ˜̀ 2  � ✓ R= : ˜̀T
G
⇤ = 0} (12.68c)

where  � is the polar cone of  in (12.66a). Substituting these normal cones into
(12.68a) leads to the KKT condition for conic program (12.65) in terms of the dual
cone  ⇤ of  in (12.66b).8

Theorem 12.31 (Strong duality and KKT for conic program). Consider the conic
program (12.65) and its dual (12.67). Suppose there exists Ḡ 2 ri( ) such that �Ḡ = 1.
Then

1 Strong duality and dual optimality. If 5 ⇤ is finite then there exists a dual optimal
solution (_⇤,`⇤) 2 R<⇥ ⇤ that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2 KKT characterization. A feasible G⇤ is optimal if and only if there exist a subgra-
dient b⇤ 2 m 5 (G⇤), a dual feasible (_⇤,`⇤) 2 R<⇥ ⇤ such that

b
⇤ = �

T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0

In this case (G⇤,_⇤,`⇤) is a saddle point that closes the duality gap and is primal-
dual optimal. ⇤

Conic constraint.

A generalization of SOCP (12.62) is the following convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌫G + 3 2  (12.69a)

where 5 :R=!R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, ⌫ 2 R;⇥=, 3 2 R;
and  ✓ R; is a closed convex cone. The feasible set may not be a cone but (12.69) is
still called a conic program because an a�ne transformation of G is in a closed convex
cone. The dual problem can be shown to be (Exercise 12.20):

3
⇤ := max

(_,`)2R<+;
3 (_,`) :=

⇣
1

T
_� 3T

`

⌘
+ 30 (_,`) s.t. ` 2  ⇤ ✓ R; (12.69b)

where 30 (_,`) :=minG2R= 5 (G)� (�T
_+⌫T

`)T
G. It reduces to (12.67b)(12.67c) when

⌫ = I= the identity matrix of size = and 3 = 0. When 5 (G) = 2T
G, 30 (_,`) = 0 if

2 = �T
_+⌫T

` and �1 otherwise in which case the dual problem becomes:

3
⇤ := max

_2R<, `2 ⇤
1

T
_� 3T

` s.t. 2 = �T
_+⌫T

`

Theorem 12.31 on strong duality, dual optimality and the KKT characterization extends
to problem (12.69) (Exercise 12.20). The KKT condition in the next theorem reduces
to that in Theorem 12.31 when ⌫ = I; and 3 = 0.

8 The definition of the dual problem (12.67) does not require  to be a convex cone, but the normal cone
expression (12.68c) holds only if  is a convex cone.
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Theorem 12.32 (Strong duality and KKT for conic program). Consider the conic
program and its dual (12.69). Suppose the Slater condition is satisfies, i.e., there exists
Ḡ such that �Ḡ = 1 and ⌫Ḡ + 3 2 ri( ). Then

1 Strong duality and dual optimality. If 5 ⇤ is finite then there exists a dual optimal
solution (_⇤,`⇤) 2 R<⇥ ⇤ that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2 KKT characterization. A feasible G⇤ is optimal if and only if there exist a subgra-
dient b⇤ 2 m 5 (G⇤), a dual feasible (_⇤,`⇤) 2 R<⇥ ⇤ such that

b
⇤ = �

T
_
⇤ +⌫T

`
⇤, `

⇤T (⌫G⇤ + 3) = 0

In this case (G⇤,_⇤,`⇤) is a saddle point that closes the duality gap and is primal-
dual optimal. ⇤

Convex inequality constraint.

A generalization of the conic programs (12.65) and (12.69) is the general convex
program whose feasible set is convex but not necessarily of the form ⌫G + 3 2  :

min
G2R=

5 (G) s.t. �G = 1, ⌘(G)  0

where 5 :R=!R is a convex function, � 2 R<⇥=, 1 2 R< and ⌘ :R=!R; is a convex
function. If 5 and ⌘ are continuously di�erentiable then the KKT condition is given
by the KKT Theorem 8.15. Otherwise the KKT condition can be derived using the
nonsmooth method of this chapter (cf. Exercise 12.21).

12.9 Bibliographical notes

12.10 Problems

Chapter 12.1.

Exercise 12.1 (Feasible direction cones). Let � := {G 2 R= : �G = 1} where � 2 R<⇥=
and⇠ ✓ R= be a convex cone. Show that the feasible direction cone ⇡- (Ḡ) := cone(-�
Ḡ) at an Ḡ 2 - are respectively:

1 ⇡� (Ḡ) = {H 2 R= : �H = 0}.
2 ⇡⇠ (Ḡ) = {H = G�WḠ : G 2 ⇠, W � 0}.

Exercise 12.2 (Normal cone and tangent cone). Let - ✓ R= be a nonempty set and
Ḡ 2 - .
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1 Prove Proposition 12.2.
2 Show that )- (Ḡ) is generally di�erent from the dual cone (- � Ḡ)⇤ = {H 2 R= :
H

T (G� Ḡ) � 0, 8G 2 -}.
3 Derive the normal cone # (Ḡ) and the tangent cone ) (Ḡ) in Figure 12.3. In

particular
• For Figure 12.3(a), show that # (Ḡ) is of the form # (Ḡ) = {H = _0 : _ � 0}

for some vector 0 2 R2 and ) (Ḡ) = {G 2 R2 : GT
0  0} is a half-space.

• For Figure 12.3(d), show that # (Ḡ) is of the form # (Ḡ) = {H = _0 : _ 2 R}
and ) (Ḡ) =  .

(Hint: Use Theorem 12.3 for # (Ḡ) and then Propositions 12.2 and 12.1 for
) (Ḡ).) ⇤

Exercise 12.3 (Normal cone #⇠ (G)). Let ⇠ := {G 2 R= : ⌘(G)  0} where ⌘ : R2! R2

are given by ⌘8 (G1,G2) := 1
2

�
G

2
1 + 08G2

2

�
� 18 , 8 = 1,2 with 08 > 0,18 > 0 and 11/01 <

12/02; see Figure 12.5. Let Ḡ :=
⇣
0,

p
211/01

⌘
. This exercise derives the normal cone

#⇠ (Ḡ) without the LICQ assumption in Theorem 12.4.

1 Show directly that the normal cone #⇠ (Ḡ) = {(0, H2) 2 R2 : H2 � 0}.
2 Show that #⇠ (Ḡ) = {r⌘(Ḡ)_ 2 R2 : _ 2 R2

+, _T
⌘(Ḡ) = 0} = {_1r⌘1 (Ḡ) 2 R2 : _1 �

0} as Theorem 12.4 indicates.

Exercise 12.4 (Tangent cones). Derive the tangent cones in Table 12.1 of Chapter
12.1.2. Assume ⌘ is twice continuously di�erentiable and satisfies LICQ (12.5) at
Ḡ 2 - . (Hint: Proposition 12.2 and Theorem 12.3.)

Exercise 12.5 (Image of linear transformation of convex cone). Given a nonempty set
- ✓ R= let . := �- for some matrix � 2 R<⇥=. From Theorem 12.6, the normal cone
of . at a H̄ = �Ḡ 2 . with Ḡ 2 - is the pre-image of #- (Ḡ): #. ( H̄) = {H 2 R< : �T

H 2
#- (Ḡ)}. Show that when - is a convex cone then

#. ( H̄) = {H 2 R< : �T
H 2 -�, HT

H̄ = 0}

Exercise 12.6 (Pre-image of linear transformation of convex cone). Let. := {H 2 R< :
H  0} and - := {G 2 R= : �G 2 . } be its pre-image under � 2 R<⇥=. Use the Farkas
Lemma (Theorem 8.12) to show directly that -� = �T

.
�.
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Exercise 12.7 (Pre-image of linear transformation of convex cone). Consider the
convex cone . and its pre-image - under a singular matrix �:

. := {H 2 R2 : H1 � H2 � 0}, � :=

1 1
1 1

�
, - := {G 2 R2 : �G 2 . }

1 Derive -�, .� and compare �T
.
� and -�.

2 Derive #. ( H̄) and #- (Ḡ) where H̄ = �Ḡ 2 . for Ḡ = (0,0), (1,�1), (1,1).

Chapter 12.2.

Exercise 12.8 (Closedness and lsc of 5 ; [54].). 1 For a function 5 :R=! [�1,1],
show that it is closed if and only if it is lsc on R= if and only if its level set
+W := {G | 5 (G)  W} is closed for every W 2 R.

2 For 5 : -! [�1,1] where - ✓ R=, show that it is closed if its e�ective domain
dom( 5 ) is closed and 5 is lsc on dom( 5 ).

3 Consider a real-valued function 5 : - ! R= where - ✓ R= is nonempty. Extend
5 to the extended real-valued function 5- (G) : R=! [�1,1] defined by

5- (G) :=
⇢
5 (G) if G 2 -
1 if G 8 -

Show that 5- is closed (on R=) if the e�ective domain dom( 5 ) is closed and 5 is
lower semicontinuous on dom( 5 ).

Exercise 12.9 (Support function f- (G)). Prove (12.24).

Chapter 12.3.

The proof of the existence of subgradient for a proper convex function at Ḡ, using
(12.27), requires Ḡ 2 int(dom( 5 )). The next exercise shows that, even though the
contradiction argument there may break down if Ḡ 2 ri(dom( 5 )), a subgradient may
still exist at such a Ḡ.

Exercise 12.10 (Existence of subgradient.). Consider the proper extended real-valued
function 5 : R2! (�1,1] defined by

5 (G1,G2) =
⇢
G

2
1 if G2 = 0
1 if G2 < 0

The e�ective domain dom( 5 ) = {G 2 R2 : G2 = 0} = ri(dom( 5 )), epi( 5 ) is in a vertical
plane, and hence int(dom( 5 )) = ;. Show that subgradient exists at every point Ḡ 2
dom( 5 ), even though m 5

mG2
(G) is not well defined.
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Exercise 12.11 (Jensen’s inequality). Suppose - is a random variable taking value
in R= with finite expectation ⇢- . Show that if 5 : R= ! R is convex on R= then
⇢ ( 5 (-)) � 5 (⇢-). (Hint: Use subgradient of 5 .)

Exercise 12.12 (X- , f- and their subdi�erentials). Fix any nonempty subset - ✓ R=.
Consider the extended real-valued indicator function and support function defined
respectively by:

X- (G) :=
⇢

0 if G 2 -
1 if G 8 -

, f- (G) := sup
H2-

H
)

G

Let 5 ⇤ and m 5 denote respectively the conjugate and subdi�erential of 5 . Show that:

1 X
⇤
-
(H) = f- (H).

2 If - is a cone then X⇤
-
(H) = X-� (H), i.e., the support function of a cone is an

indicator function of its polar cone.
3 Suppose - is a convex set. Then mX- (G) = #- (G).
4 Suppose - is a nonempty closed convex set.

1 f
⇤
-
(G) = X- (G).

2 mf- (G) = {H 2 R= : H) G = f- (G)}. (Hint: Apply Lemma 12.16 to earlier
results.)

Exercise 12.13 (Normal cone of set intersection.). 1 Prove Lemma 12.5. (Hint: Use
Theorem 12.18 whose proof does not rely on Lemma 12.5 so there is no circular
argument.)

2 As an application of Lemma 12.5 consider ⇠ := {G 2 R= : �G = 1,G 2  } where
� 2 R<⇥= and  ✓ R= is a convex cone. Suppose there is Ḡ 2 ri( ) with �Ḡ = 1.
Show that #⇠ (Ḡ) = {�T

_ + H : _ 2 R<, H 2  �, HT
Ḡ = 0} for any Ḡ 2 ⇠, where  �

denotes the polar cone of  .

Chapter 12.4.

Chapter 12.5.

Exercise 12.14 (Generalized KKT). Consider the second-order cone program:

5
⇤ := min

G2R=
5 (G) s.t. G 2  := {G 2 R= : kG=�1k2  G=}

where 5 : R=! R is a real-valued convex function (not necessarily di�erentiable) and
 is the standard second-order cone. Suppose ri(dom( 5 )) \ int( ) < ;. Show that
G
⇤ := 0 is optimal if and only if there exists H⇤ 2 m 5 (0) such that kH⇤=�1k2  H⇤=.
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Chapter 12.6.

Exercise 12.15 (Primal optimality.). Prove Corollary 12.23. (Hint: Use Remark 12.3
and the Weierstrass Theorem 12.22.)

Exercise 12.16 (Primal optimal solutions.). Consider - and 5 in Theorem 12.26
where - ✓ R= is closed and convex, 5 : R=! (�1,1] is closed proper convex, and
- \dom( 5 ) < ;. Suppose - and 5 have a common nonzero direction of recession. Let
the level sets be +W := {G 2 R= : 5 (G)  W} and - 0(W) := - \+W .

1 Show that - 0(W) is unbounded for any W 2 R=.
2 If +W = ; for small enough W, show that there is a smallest W0 for which +W0 < ;.

Moreover the primal solution set is unbounded.

Chapter 12.7.

Exercise 12.17 (Weak duality). Let " ✓ R;+1 be a nonempty set, not necessarily
convex, and define the following pair of problems:

F
⇤ := inf

(0,F)2"
F, 3

⇤ := sup
`2R;

3 (`)

where 3 (`) := inf (D,F)2" `
)
D +F and F⇤ := 1 if (0,F) 8 " for any F. Show that

3
⇤  F⇤.

Exercise 12.18 (Equivalent dual problem). Show that the problems in (12.52) are
equivalent to those in (12.50), assuming there is a feasible point Ḡ 2 dom( 5 )\- 0 \ {G :
⌘(G)  0}.

Exercise 12.19 (Dual function and level set). Consider Theorem 12.28 under CQ1
(there exists Ḡ 2 dom( 5 )\ - 0 such that ⌘(Ḡ) < 0). Recall the dual function defined in
(12.50c):

3 (`) :=
⇢

infG2- 5 (G) + `T
⌘(G), ` � 0

�1, otherwise

and define the level set of the dual function 3:

& := &0 := {` 2 R; : ` � 0, 5 (G) + `T
⌘(G) � 0,8G 2 -}

(Since 5 ⇤ � 0, &⇤ :=& 5
⇤ ✓ &0 =:&.) Show that

1 �3 (`) is a closed proper convex (CPC) function over R; .
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2 & is nonempty, convex and compact.

Chapter 12.8.

Exercise 12.20 (Conic program: KKT). Consider the conic program (12.69).

1 Derive its dual problem (12.69b).
2 Prove Theorem 12.32.

Exercise 12.21 (Convex inequality constraints: KKT). Consider the convex optimiza-
tion

min
G2R=

5 (G) s.t. �G = 1, ⌘(G)  0 (12.70)

where 5 : R=! R is a convex function, � 2 R<⇥=, 1 2 R< and ⌘ : R=! R; are convex
functions. Suppose the Slater condition is satisfied, i.e., there exists Ḡ with �Ḡ = 1 and
⌘(Ḡ) < 0, and that the primal optimal value is finite.

1 Suppose ⌘ is twice continuously di�erentiable (but 5 may not) and a feasible
G
⇤ satisfies the LIQC (12.5). Show that G⇤ is optimal if and only if there exist a

subgradient b⇤ 2 m 5 (G⇤), a _⇤ 2 R<, and a unique `⇤ 2 R;+ such that

b
⇤ + �T

_
⇤ +r⌘(G⇤)`⇤ = 0, `

⇤T
⌘(G⇤) = 0

2 Suppose neither 5 nor ⌘ are continuously di�erentiable. Show that a feasible G⇤ is
optimal if and only if there exist subgradients b⇤ 2 m 5 (G⇤) and \⇤

8
2 m⌘8 (G⇤), and

a dual optimal solution (_⇤,`⇤) 2 R<+; such that `⇤ � 0 and

b
⇤ + �T

_
⇤ +⇥⇤T`⇤ = 0, `

⇤T
⌘(G⇤) = 0

where the rows of the matrix ⇥⇤ are \⇤
8

(provided an appropriate constraint quali-
fication is satisfied).
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This chapter presents basic methods for stochastic optimization and their application
to optimal power flow problems. Optimal power flow problems we have studied in
previous chapters take the form

min
G2R=

5 (G) s.t. ⌘(G, Z)  0 (13.1)

where G is a decision variable and 5 :R=!R is a cost function, and ⌘(G, Z) :R=⇥R:!
R
< is a constraint function, as a function of both the decision variable G and a parameter
Z 2 R: . For instance the problem computes an optimal generation schedule G⇤ to meet a
demand Z subject to power flow equations and operational constraints. Or it computes
an optimal setpoint G⇤ for smart inverters to help stabilize voltages in a distribution
system in response to photovoltaic generation Z . In general the parameter Z is uncertain.
So far we have implicitly assumed that the decision G⇤ is made either based on a forecast
Ẑ of the random parameter Z or after Z has been realized, and therefore the problem
is deterministic. In this chapter we study the case where at least some of the decisions
must be made before the random Z is realized and simply substituting the forecast Ẑ
for Z is inadequate. We study four approaches to making decisions under uncertain Z .

In the first approach an uncertainty set / is assumed known in which the uncertain
parameter Z takes value. An optimal G⇤ is chosen with respect to a worst-case Z 2 / ,
i.e., the constraint ⌘(G⇤, Z)  0 must be satisfied for all Z 2 / . This leads to robust
optimization (Chapter 13.1) where the single constraint in (13.1) is replaced by a pos-
sibly infinite set of constraints (⌘(G⇤, Z)  0,8Z 2 /). Robust optimization can be too
conservative as it demands constraint satisfaction in the worst-case realization of the
uncertain parameter Z 2 / . This motivates the second approach where the uncertain
parameter Z := Z (l) 2 / is a random vector on a given probability space with a known
probability measure P. An optimal G⇤ is chosen so that the constraint ⌘(G⇤, Z)  0
is satisfied with high probability, not necessarily for all Z 2 / (or with probability
1 under P). This leads to chance constrained optimization (Chapter 13.2) where the
constraint ⌘(G⇤, Z)  0 in (13.1) is replaced by P (⌘(G⇤, Z)  0) � 1� n with a given
tolerance n for constraint violation. Chance constrained optimization can be intractable
for common P; moreover Pmay not be known in many applications even when random
samples of Z under P are available, e.g., measurements of Z from a real power system.
This motivates the third approach, called scenario optimization (Chapter 13.3), where



13.1 Robust optimization 637

the single constraint ⌘(G⇤, Z)  0 in (13.1) is replaced by # randomized constraints�
⌘(G⇤, Z 8)  0, 8 = 1, . . . ,#

�
defined by # independent random samples of Z1, . . . , Z#

under P. Unlike the other three approaches where the optimization problem is deter-
ministic, a scenario program is a randomized problem. If # is su�ciently large then
the resulting randomized optimal solution G⇤ will likely satisfy the chance constraint,
in expectation or probability. Finally we study two-stage stochastic optimization with
recourse where some decisions must be made before the random Z is realized and other
decisions can be made afterwards in response to the observed realization of Z .

In this chapter we introduce the basic theory for each of these four approaches and
apply it to power system problems. Most stochastic optimization problems are non-
convex and computationally hard. Our emphasis is on conditions under which these
problems have equivalent finite convex reformulations. Even though these reformu-
lated problems often introduce extended real-valued and nondi�erentiable functions,
especially in two-stage optimization problems, optimality conditions can be derived
using nonsmooth techniques studied in Chapter 12. Moreover computation algorithms
studied in Chapter 8 can be adapted to solve these convex but nonsmooth problems
with gradients replaced by subgradients.

13.1 Robust optimization

13.1.1 General formulation

A robust optimization problem is of the form:

min
G2R=

5 (G) s.t. ⌘8 (G, Z8)  0, 8Z8 2 /8 (G), 8 = 1, . . . ,< (13.2)

where 5 : R=! R is a cost function. For 8 = 1, . . . ,<, Z8 2 R:8 are given parameters,
and ⌘8 : R= ⇥R:8 ! R are constraint functions. Here Z8 are uncertain parameters that
take values in uncertainty sets /8 (G) ✓ R:8 . It is convenient in applications to allow the
uncertainty sets /8 (G) to depend on G (see Example 13.1) and hence we can regard each
/8 : R=! 2R

:
8 as a set-valued map on R=. The problem seeks an optimal solution G⇤

that minimizes the cost function 5 (G) and remains feasible for all possible realizations
of the uncertain parameters Z8 2 /8 (G⇤), 88. It is called a robust program. If some of
the /8 (G) are continuous sets, then (13.2) is called a semi-infinite problem because
it contains a finite number of variables but an infinite number of constraints. As a
consequence the robust counterpart of a nominal problem (when /8 (G) are singletons)
is generally computationally intractable even if the nominal problem is simple such as a
linear program. In Chapters 13.1.2, 13.1.3 and 13.1.4 we present three classes of robust
programs that are tractable. Specifically we will derive finite convex reformulation for
these problems to which techniques in Chapters 12 and 8 can be applied.
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Remark 13.1. The formulation (13.2) makes two assumptions without loss of gener-
ality:

1 Certain and linear cost function. It assumes that the cost function 5 is certain.
Otherwise, we can introduce an additional variable C and an additional constraint to
obtain the following equivalent problem that has uncertainty only in the constraints:

min
G2R= , C 2R

C s.t. 5 (G, Z0)� C  0, ⌘8 (G, Z8)  0, 8Z8 2 /8 (G), 8 = 0, . . . ,<

where Z0 2 /0 (G) is the uncertain parameter of the cost function 5 . This also shows
that we can assume without loss of generality that the cost is linear.

2 Direct product of uncertainties. It assumes that the uncertainty set is a direct
product / (G) := /1 (G) ⇥ · · ·⇥ /< (G) of individual uncertainty sets /8 (G). If the
uncertainty set / (G) ✓ R

Õ
<

8=1 :8 is not a direct product, the robust optimization
problem

min
G2R=

5 (G) s.t. sup
Z 2/ (G)

⌘8 (G, Z8)  0, 8 = 1, . . . ,<

can be specified with an equivalent uncertainty set /̂ (G) := /1 (G) ⇥ · · ·⇥ /< (G)
that is a direct product:

min
G2R=

5 (G) s.t. sup
Z8 2/8 (G)

⌘8 (G, Z8)  0, 8 = 1, . . . ,<

where /8 (G) := {Z8 : Z := (Z1, . . . , Z<) 2 / (G)} is the projection of / (G) onto the
8th coordinate. This is because ⌘8 depends on Z8 , not on Z 9 , 9 < 8, and therefore
given G, sup

Z 2/ (G) ⌘8 (G, Z8) = sup
Z8 2/8 (G) ⌘8 (G, Z8).

3 Equality constraints without recourse. The nominal problem for many applications
contain equality constraints, resulting in a robust counterpart involving uncertain
equality constraints of the form:

min
G,H

5 (G) s.t. 68 (G, H8 , Z8) = 0, ⌘8 (G, H8 , Z8)  0, 8Z8 2 /8 (G), 8 = 1, . . . ,<

(13.3)

An equality constraint such as H8 = Z8 where Z8 2 {0,1} is generally infeasible for
robust optimization if H8 is also an optimization variable that must be chosen and
fixed before the uncertain Z8 is realized. There are three common approaches to
avoid infeasibility by eliminating equality constraints. The first is to allow slack
by replacing equality constraints by inequality constraints on the size of the slack;
see (13.133) in Chapter 13.5.2 on robust economic dispatch for an example. The
second is to replace the inequality constraints on the slack by penalty terms in
the cost function that allow but penalize violation of the equality constraints. The
third is to eliminate the equality constraints by substituting dependent variables
into the cost function and inequality constraints, as we now explain. We assume
the equality constraint 68 (G, H8 , Z8) = 0 means that given (the control) G, (the system
state) H8 will be determined by G and the realization of the uncertain parameter
Z8 . Given an G let .8 (G) := {H8 : 68 (G, H8 , Z8) = 0, Z8 2 /8 (G)} denote the set of H8
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implicitly defined by 68 as Z8 varies over /8 (G). Then the constraints in (13.3) are
interpreted as

⌘8 (G, H8 , Z8)  0, 8(H8 , Z8) 2 .8 (G)⇥ /8 (G), 8 = 1, . . . ,<

which is of the form in (13.2), i.e., (the system state) H8 becomes an uncertain
parameter determined by the equality constraint 68 and Z8 . Note that H8 depends
only on Z8 , but not Z 9 , 9 < 8, so that the uncertainty set .8 (G) is separable in 8.
Hence the equality constrained problem (13.3) should be interpreted as

min
G

5 (G) s.t. sup
Z8 2/8 (G)

sup
H8 2.8 (G)

⌘8 (G, H8 , Z8)  0, 8 = 1, . . . ,<

See Example 13.1 and Exercise 13.3.
This is di�erent from stochastic optimization with recourse studied in Chapter

13.4 where a first-stage decision is made before the uncertain parameter Z is real-
ized and a second-stage decision is made after Z is realized. With recourse, it is
possible to satisfy uncertain equality constraints and, indeed, the feasibility con-
dition plays an important role in optimality conditions for two-stage optimization
studied in Chapter 13.4.

4 Closed and convex / . We will assume without loss of generality that the uncertainty
set / is closed and convex (Exercise 13.2).

⇤

Example 13.1 (Robust optimization: voltage control). Consider a solar panel with
uncertain real power generation ZC at time C that takes value in a set /C ✓ R+. Suppose
its reactive power @C is controllable within the range @C 2 [@min,@max] for all C. The
solar panel is connected to a battery through a line with a given series admittance
H := 6 + i1 2 C. The DC discharging power 3C of the battery is controllable within the
range 3C 2 [3min,3max] as long as its state of charge 1C satisfies the energy capacity
1C 2 [0,⌫]. Let E1C := |E1C |4i\1C and E2C := |E2C |4iq2C denote the voltage phasors at
the solar panel and the battery respectively at time C. Our goal is to schedule the
reactive power @ := (@1, . . . ,@) ) 2 R) and discharging power 3 := (31, . . . ,3) ) 2 R) to
minimize a certain cost 5 subject to the constraint that the voltages EC := (E1C ,E2C ) 2 C2

satisfy voltage limits |E8C | 2 [Emin,Emax] for 8 = 1,2, for all realizations of the solar
generation ZC 2 /C , for C = 1, . . . ,) .

This can be formulated as a robust optimal power flow (OPF) problem.1 Let G :=
(@,3) 2 R2) where @,3 are defined above. Let 5 (G) denote the cost function. Let
1 := (11, . . . ,1) ) 2 R) and E := (E1, . . . ,E) ). Suppose the uncertain solar generation
Z := (Z1, . . . , Z) ) 2 RT takes value in / ✓ RT, independent of G. As explained in Remark
13.1 we can assume without loss of generality that / = /1 ⇥ · · ·⇥ /) with /C := (ZC :
I 2 /). The robust scheduling problem is

min
G

5 (G) s.t. 6(G,E,1Z) = 0, ⌘(G,E,1, Z)  0, 8ZC 2 /1⇥ · · ·⇥ /) (13.4a)

1 We formulate the OPF problem in the complex domain for notational simplicity; it is straightforward to
convert it into OPF in the real domain.
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where the equality constraint 6(G,E,1, Z) = 0 is power flow equations and battery state
transition: for C = 1, . . . ,) ,

ZC + i@C = H
H
⇣
|E1C |2� E1CE

H
2C

⌘
, 3C + i0 = H

H
⇣
|E2C |2� E2CE

H
1C

⌘
(13.4b)

1C+1 = 1C � 3C (13.4c)

and the inequality constraint ⌘(G,E,1, Z)  0 is voltage and battery limits: for C =
1, . . . ,) ,

E
min  |E8C |  Emax, 8 = 1,2, 0  1C  ⌫ (13.4d)

The equality constraint (13.4c) has no uncertainty. The uncertain equality constraint
(13.4b) should be interpreted. Both can be eliminated, as follows. In reality we set the
values of the reactive power @C and discharging power 3C , which then, together with
the uncertain solar generation ZC , determine the voltages EC := (E1C ,E2C ) according to
the power flow equation (13.4b). Let +C (G) := {EC 2 C2 : EC satisfies (13.4b), ZC 2 /C }
denote the set of power flow solutions as Z8 varies in /C . We can eliminate the uncertain
equality constraint (13.4b) using the new uncertainty set+C (G), and eliminate the (fixed)
equality constraint on the battery’s state of charge 1C by expanding on the battery state
(given initial state 10):

1C = 10 �
’
B<C

3B , C = 1, . . . ,)

to obtain the reformulation:

min
G

5 (G) s.t. E
min  |E8C |  Emax, 8 = 1,2, 8EC 2 +C (G), C = 1, . . . ,)

0  10�
’
B<C

3B  ⌫, C = 1, . . . ,)

which is in the form (13.2). Note that the uncertainty sets /C , which are independent of
G, have been incorporated into the new uncertainty sets +C (G) which depend on G. ⇤

The tractability of the robust optimization problem (13.2) depends on the structure
of the nominal problem and that of the uncertainty set / (G) := /1 (G) ⇥ · · ·⇥ /< (G) ✓
R
:1 ⇥ · · ·⇥R:< for each G. If we let the robust feasible set be:

- := - (/) := { G : ⌘8 (G, Z8)  0, 8Z8 2 /8 (G), 8 = 1, . . . ,< }

then the tractability of the robust problem often boils down to whether there is a
finite convex representation of - (/). Since the direct product of /8 (G) preserves
convexity we can assume without loss of generality that < = 1 in (13.2) and consider
the tractability of

min
G2R=

5 (G) s.t. ⌘(G, Z)  0, 8Z 2 / (G) (13.5)

where 5 :R=!R and ⌘ :R=⇥R:!R are convex functions and / (G) ✓ R: is a convex
set for every G 2 R=.
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The derivation of a tractable reformulation of (13.5) often uses the following con-
cept.

Definition 13.1. A set -+ ✓ R=⇥R< is said to represent a set - ✓ R= if the projection
of -+ onto the space of G-variable is exactly - , i.e., - = {G : (G, H) 2 -+, H 2 R<}.

This simple technique can sometimes be used to greatly reduce the number of
constraints. For instance the ;1-norm ball

- :=

(
G 2 R= : kGk1 :=

’
8

|G8 |  1

)

is defined by 2= linear inequalities, but can be represented by a much simpler set -+

defined by 2=+1 linear inequalities in 2= variables (Exercise 13.1):

-
+ :=

(
(G, H) 2 R2= : �H8  G8  H8 , 8 = 1, . . . ,=,

’
8

H8  1

)

Note that H in -+ satisfies H8 � 0 for all 8. Indeed H8 plays the role of |G8 |.

More importantly we will use this concept to derive a finite convex representation
-
+, which does not depend on the uncertainty set / , of the possibly semi-infinite

feasible set - (/). Then (13.5) can be reformulated as

min
G,H

5 (G) s.t. (G, H) 2 -+ ✓ R=+< (13.6)

which is tractable when 5 is a convex cost function and -+ is a convex feasible set.
We first summarize the general strategy.

Derivation strategy.

The key observation is that (13.5) is equivalent to

min
G2R=

5 (G) s.t. sup
Z 2/ (G)

⌘(G, Z)  0 (13.7)

This is called a bi-level problem and generally intractable. It often has a tractable
reformulation when, for each fixed G 2 R=, the subproblem

⌘̄(G) := sup
Z 2/ (G)

⌘(G, Z) (13.8)

is a convex problem and the constraint ⌘̄(G)  0 has a finite convex representation. By
assumption 5 : R=! R and ⌘ : R=⇥R: ! R are convex functions and / (G) ✓ R: is a
convex set for every G 2 R=.

There are three general strategies to eliminate the uncertain parameter Z from (13.7)
and derive a tractable reformulation:
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1 Solve ⌘̂(G) in closed form. When the subproblem (13.8) for each G 2 R= can be
solved to obtain ⌘̄(G) in closed form then the semi-infinite problem (13.7) is
equivalent to the finite problem

min
G2R=

5 (G) s.t. ⌘̄(G)  0

If / (G) = / independent of G then, since ⌘(G, Z) is convex in G for each Z , ⌘̄(G) is
convex in G. In this case the robust program has a tractable convex representation
studied in Chapters 8 and 12. This strategy is used to prove Theorem 13.1 (for
linear and SOC uncertainty).

2 Replace ⌘̂(G)  0 by strong duality and KKT condition. Suppose the subproblem
(13.8) is convex for each G 2 R= but cannot be explicitly solved. Then

1 Using strong duality we replace ⌘̄(G)  0 in (13.7) by 3 (H;G)  0 where, for
each G, 3 (·;G) is the Lagrangian dual function of (13.8) and H is a dual optimal
solution.

2 The dual optimality of H is enforced by dual feasibility and stationarity
rZ ! (Z , H;G) = 0 of the KKT condition for (13.8). These conditions do not
contain Z , but only (G, H), because (i) ⌘(G, Z) is a�ne in Z and hence the
stationarity condition rZ ! (Z , H;G) = 0 is independent of Z ; and (ii) strong
duality and stationarity imply complementary slackness and hence the com-
plementary slackness condition can be omitted. Feasibility is reformulated as:
G is feasible for (13.7) if and only if there exists H such that (G, H) satisfies

3 (H,G)  0, KKT(G, H)  0 (13.9)

where KKT(G, H)  0 is dual feasibility and stationarity. If 3 (G, H) and the
KKT function KKT(G, H) are convex then the semi-infinite problem (13.7) is
equivalent to the convex problem minG,H 5 (G) s.t. (13.9) which is of the form
(13.6).

This strategy needs the Slater Theorem 8.17 to ensure strong duality and dual
optimality. It is used to prove Theorems 13.1 (for conic uncertainty) and 13.2
below.

3 Replace ⌘̂(G)  0 by linear matrix inequalities. Sometimes the semi-infinite con-
straint in (13.7) takes the form ⌘0 (G) + ⌘(G, Z) 2  for all Z 2 / (G) where, for
each Z , ⌘0 (·) and ⌘(·, Z) are a�ne functions of G, for each G, ⌘(G, ·) is an a�ne
function of the uncertain parameter Z , and  is a closed convex cone such as the
second-order cone  soc ✓ R= or the semidefinite cone  sdp ✓ S=. This is the case
in Theorems 13.3 and 13.4 where / (G) is a set of matrices with bounded spectrum
norms. For both theorems the constraint can be reformulated as a finite set of linear
matrix inequalities using the (-lemma and the resulting problem is a semidefinite
program.

As we will see below tractability often requires the uncertainty set / (G) = / to be
independent of G. For instance a robust linear program with the uncertainty set / :=
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{Z 2 R! : kZ k1  1} remains a linear program, but may become intractable if / (G) :=
{Z 2 R! : kZ k1  ⌘(G)}; see Exercise 13.4.

In the rest of this section we use the general strategy above to derive the convex
reformulations of three classes of (⌘,/) for which (13.5) is tractable, corresponding
to robust counterparts of uncertain linear program, second-order cone program, and
semidefinite program.

13.1.2 Robust linear program

Consider (13.5) where 5 is linear and ⌘ is a�ne in G and Z separately, giving rise to
the following robust counterpart of an uncertain linear program:

min
G2R=

2
T
G s.t. 0T

G  1, 8[0T
1] 2

(⇥
0

T
0 10

⇤
+

:’
;=1

Z;

⇥
0

T
;
1;

⇤
: Z 2 / ✓ R:

)
(13.10)

where 0 2 R= and 1 2 R are uncertain parameters. The row vector
⇥
0

T
0 10

⇤
are nominal

parameters and
⇥
0

T
;
1;

⇤
are basic perturbations modulated by the uncertain Z in the

uncertainty set / . It does not lose generality to assume that the uncertain vector [0T
1]

takes this form because taking : = = + 1 will allow each entry of 0 and 1 to vary
independently. We assume without loss of generality that / is such that the feasible set
is nonempty, closed and convex. The uncertainty set / is independent of G; otherwise
(13.10) may not be tractable; see Exercise 13.4.

Write (13.10) as a bi-level problem:

min
G2R=

2
T
G s.t. max

Z 2/

:’
;=1

Z; (0T
;
G� 1;)  �(0T

0G� 10) (13.11)

The corresponding constraint function ⌘(G, Z) is a�ne in G for each Z and a�ne in Z for
each G. Our goal is to derive a finite convex representation of the semi-infinite feasible
set in (13.10), and thus convert the semi-infinite linear program into an explicit convex
program. This amounts to replacing the subproblem

⌘̄(G) := max
Z 2/

:’
;=1

Z; (0T
;
G� 1;)  �(0T

0G� 10) (13.12)

in (13.11) by a finite set of convex constraints involving G and possibly the dual variable
H of the subproblem but not the uncertain parameter Z . The next theorem presents three
uncertainty sets / that lead to tractable reformulations of the problem (13.11).

Theorem 13.1 (Tractable robust LP). Consider the robust linear program (13.11).

1 Linear uncertainty. Suppose / := { Z 2R: : kZ k1  1 }. Then (13.11) is equivalent
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to the LP:

min
(G,H)2R=+:

2
T
G s.t.

’
;

H;  �(0T
0G� 10), �H;  0

T
;
G� 1;  H; , ; = 1, . . . , :

2 SOC uncertainty. Suppose / := { Z 2 R: : kZ k2  A }. Then (13.11) is equivalent
to the SOCP:

min
G2R=

2
T
G s.t. A

s’
;

⇣
0

T
;
G� 1;

⌘2
 �(0T

0G� 10)

3 Conic uncertainty. Suppose

/ := { Z 2 R: : 9D 2 R? s.t. %Z +&D + 3 2  }

where is a closed convex pointed cone inR< with a nonempty interior, % 2 R<⇥:
and & 2 R<⇥? are given matrices, and 3 2 R< is a given vector. Suppose / is
nonempty and
• Either  is a polyhedral cone or

9( Z̄ , D̄) 2 R:+? s.t. %Z̄ +&D̄ + 3 2 ri( )

• For each G 2 R=, the subproblem maxZ 2/
Õ
;
Z;

�
0

T
;
G� 1;

�
in (13.11) is finite.

Then - is represented by the set -+ of (G, H) 2 R=+< defined by the following
system of conic inequalities:

0
T
0G + 3

T
H  10 (13.13a)

H 2  ⇤, &
T
H = 0, 0

T
;
G +

⇣
%

T
H

⌘
;

= 1; , ; = 1, . . . , : (13.13b)

where  ⇤ := {H 2 R< : HT
I � 0 8I 2  } is the dual cone of  . The robust linear

program (13.11) is equivalent to the conic program

min
(G,H)2R=+<

2
T
G s.t. (13.13)

The form / for the conic uncertainty is common in applications and says that even
though the full uncertain parameter is (Z ,D) (whose a�ne transformation is in  ), only
the subvector Z a�ects the optimization (13.11). As we will see in the proof, (13.13b)
is the feasibility condition for the dual of the subproblem maxZ 2/

Õ
;
Z;

�
0

T
;
G� 1;

�
in

(13.11).

Proof For parts 1 and 2, see Exercise 13.4. For part 3 fix any G 2 R=. Let B 2 R: be
defined by B; := B; (G) := 0T

;
G� 1; . Then the subproblem (13.12) is the following conic

program (12.69) studied in Chapter 12.8.4:

?
⇤ (G) := max

(Z ,D)2R:+?
B

T (G)Z s.t.
⇥
% &

⇤ 
Z

D

�
+ 3 2  (13.14a)

i.e., G is feasible for (13.11) if ?⇤ (G)  10 � 0T
0G. We will show that this holds if and

only if there exists (G, H) 2 R=+< that satisfies (13.13).
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The Lagrangian of (13.14a) is

! (Z ,D, H) := BT
Z + HT

✓ ⇥
% &

⇤ 
Z

D

�
+ 3

◆
, (Z ,D) 2 R:+? , H 2  ⇤

where  ⇤ is the dual cone of  (see Chapter 12.8.4 for details). Since

! (Z ,D, H) := HT
3 +

⇣
B

T + HT
%

⌘
Z + HT

&D

the dual function is

3 (H) := max
(Z ,D)2R:+?

! (Z ,D, H) =
⇢
3

T
H if %T

H = �B, &T
H = 0

1 otherwise

and the dual problem is:

3
⇤ (G) := min

H2 ⇤
3

T
H s.t. %

T
H = �B(G), &T

H = 0 (13.14b)

where the constraints above correspond to the stationarity condition r(Z ,D) ! = 0. For
every G 2 R=, since the Slater condition is satisfied and the optimal value ?⇤ (G) of
(13.14a) is finite, Theorem 12.32 implies that strong duality holds and there exists
H(G) 2  ⇤ that attains dual optimality, i.e., ?⇤ (G) = 3⇤ (G) = 3T

H(G), whether or not
primal optimality is attained.

Fix an G 2 R=. Since strong duality holds, ?⇤ (G)  10 � 0T
0G will be equivalent to

(13.13a) if and only if H = H(G) in (13.13a) is dual optimal. We now show that a H
is dual optimal if and only if (G, H) satisfies (13.13b). Since the Slater condition is
satisfied, Theorem 12.32 implies that a feasible (Z ,D) is optimal for (13.14a) if and
only if there exists H 2  ⇤ ✓ R< such that (noting that our primal problem (13.14a) is
maximization corresponding to minimizing �BT

Z)
�B
0

�
=


%

T

&
T

�
H, H

T
✓ ⇥
% &

⇤ 
Z

D

�
+ 3

◆
= 0 (13.15)

The first condition in (13.15) is stationarity rZ ,D! (Z ,D, H) = 0 and the second com-
plementary slackness. Moreover such an H is optimal for (13.14b). It hence su�ces to
show that (13.15) is equivalent to (13.13b). The complementary slackness condition
in (13.15) involves the primal variables (Z ,D), but we claim that it is implied by the
stationarity condition in (13.15) and strong duality (HT

3 = BT
Z) and therefore can be

omitted:

H
T
✓ ⇥
% &

⇤ 
Z

D

�
+ 3

◆
= H

T
%Z + HT

&D + HT
3 = �BT

Z + 0 + H
T
3 = 0

Next recall that B; := B; (G) := 0T
0G � 1; and hence B + %T

H = 0 is equivalent to 0T
;
G +

(%T
H); = 1; , ; = 1, . . . , : . We have thus shown that H is dual optimal if and only if (G, H)

satisfies (13.13). This completes the proof. ⇤

Remark 13.2 (Derivation strategy). The proof of Theorem 13.1 illustrates the strategy
outlined in Chapter 13.1.1. For parts 1 and 2, the subproblem (13.8) is solved explicitly.
The equivalent feasibility condition ⌘̄(G)  0 takes the convex form given in the
theorem. For part 3 the subproblem (13.8) is convex but cannot be solved explicitly. ⇤
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Example 13.2 (Conic uncertainty set). The conic uncertainty set in part 3 of Theorem
13.1

/ := { Z 2 R: : 9D 2 R? s.t. %Z +&D + 3 2  }

is very general and includes the linear uncertainty in part 1 and conic uncertainty
in part 2 as special cases. Specifically part 3 reduces to part 1 when  := R<+ is the
nonnegative quadrant,& = 0, 3 = 1 of size 2: and % is 2: ⇥ : with %;; = �1, %(:+;); = 1
and %8; = 0 if 8 < ;, : + ;, such that (%Z + 3); = 1� Z; and (%Z + 3):+; = Z; + 1. The
uncertainty set of part 2 can be expressed as the intersection of that of part 3 and an
a�ne set (see Exercise 13.5).

A particularly simple case is / := {Z 2 R: : Z 2  } in which case the robust linear
program (13.11) is equivalent to the following conic program:

min
(G,H)2R=+<

2
T
G s.t. 0

T
0G  10, 0T

;
G + H; = 1; , H 2  ⇤, ; = 1, . . . , :

where the first inequality corresponds to the nominal system and the other inequalities
correspond to uncertain perturbations. ⇤

13.1.3 Robust second-order cone program

We study the robust counterpart of an uncertain second-order cone program studied in
Chapters 8.4.4 and 12.8.3. It takes the form

min
G2R=

2
T
G s.t. k�(Z)G + 1(Z)k2  UT (Z)G + V(Z), 8Z 2 / ✓ R: (13.16a)

where (�(Z),1(Z)) and (U(Z), V(Z)) are a�ne functions of Z :

�(Z) := �0 +
:’
;=1

Z;�; 2 R<⇥=, 1(Z) := 10 +
:’
;=1

Z;1; 2 R< (13.16b)

U(Z) = U0 +
:’
;=1

Z;U; 2 R=, V(Z) := V0 +
:’
;=1

Z;V; 2 R (13.16c)

Hence G is feasible if the a�ne transformation of G defined by (�(Z),1(Z),U(Z), V(Z))
is in the second-order cone in R<+1 for all Z in an uncertainty set / . The form of uncer-
tainty in (13.16b)(13.16c) does not lose generality because with : =<= and appropriate
choices of (�; ,1; ,U; , V;) we can perturb each entry of (�; (Z),1; (Z),U; (Z), V; (Z)) in-
dependently around its nominal value.

If / = conv(Z1, . . . , Z ?) ✓ R: then these constraints are equivalent to a set of ?
second-order cone constraints

k�(Z 8) G + 1(Z 8)k2  UT (Z 8) G + V(Z 8), 8 = 1, . . . , ?

Otherwise, (13.16) is generally a semi-infinite set of constraints. Writing (13.16) as a
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bi-level problem:

min
G2R=

2
T
G s.t. max

Z 2/
⌘(G, Z)  0

It can be easily shown that, for any fixed G 2 R=, the constraint ⌘(G, Z)  0 can be
written as a SOC constraint, and hence convex, in Z (Exercise 13.7):��

�̂(G) Z + 1̂(G)
��

2  Û
T (G) Z + V̂(G), 8Z 2 / (13.17)

for some �̂(G) 2 R<⇥: , 1̂(G) 2 R<, Û(G) 2 R: , V̂(G) 2 R. In particular V̂(G) := UT
0G + V0

which will be used in Theorem 13.2. This means that the maximization of the convex
⌘(G, ·) over / , and hence robust SOCP (13.16), is generally computationally hard
except for special / , e.g., / = conv(Z1, . . . , Z ?). We now present two other classes of
/ with decoupled uncertainties for which (13.16) is a tractable problem.

Suppose the dependence on the uncertain parameter Z := (Z l, Z r) 2 / l⇥/ r in (13.16)
is decoupled in that the left-hand side depends only on Z

l and the right-hand side
depends only on Z r. Specifically consider the robust SOCP:

min
G2R=

2
T
G s.t.

��
�(Z l)G + 1(Z l)

��
2  U

T (Z r)G + V(Z r), 8Z l 2 / l, Z r 2 / r (13.18)

where �(Z l) 2 R<⇥=, 1(Z l) 2 R<, U(Z r) 2 R= and V(Z r) 2 R. An G 2 R= is feasible for
(13.18) if and only if there exists a variable g such that

max
Z

l2/ l
k�(Z l)G + 1(Z l)k2  g  min

Z
r2/ r

U
T (Z r)G + V(Z r) (13.19)

Fix any G 2 R=. The semi-infinite constraint on G is tractable if both subproblems in
(13.19):

max
Z

l2/ l
k�(Z l)G + 1(Z l)k2  g (13.20a)

min
Z

r2/ r
U

T (Z r)G + V(Z r) � g (13.20b)

have finite convex representations. We discuss two classes of (/ l,/ r) for which this
is the case. In both cases, to maintain convexity of both subproblems, their objec-
tive functions are a�ne in Z

l and Z r respectively. The feasible set / l for the max-
imization is a�ne in Z

l and the feasible set / r for the minimization is defined by
conic constraints. Even though the form (13.16b)(13.16c) of the uncertain parameters
(�(Z l),1(Z l),U(Z r), V(Z r)) is general, it is sometimes convenient to allow them to take
other forms.

Interval + conic uncertainty.

Consider the robust SOCP (13.18). Suppose that:

1 Left-side uncertainty: �(Z l) = �0 +�� 2 R<⇥= and 1(Z l) = 10 +�1 2 R< with the
uncertainty set

/
l :=

�
Z

l := [�� �1] : |��8 9 |  X8 9 , |�18 |  X8 , 88, 9
 

(13.21a)
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i.e., each parameter [�(Z l)]8 9 , [1(Z l)]8 is perturbed independently of other pa-
rameters around its nominal value.2 The first subproblem (13.20a) then becomes:

max
[�� �1]2/ l

k (�0G + 10) + (��G +�1)k2  g

2 Right-side uncertainty: U(Z r) := U0+
Õ
:r
;=1 Z;U; 2 R= and V(Z r) := V0+

Õ
:r
;=1 Z;V; 2

R with the uncertain parameter Z r in the conic uncertainty set in Theorem 13.1:

/
r :=

�
Z

r 2 R:r : 9D s.t. %Z r +&D + 3 2  
 

(13.21b)

where  ✓ R? is a closed convex pointed cone for some %,&,3,D of appropriate
dimensions. Suppose / r satisfies the Slater condition, i.e., / r is nonempty and
either  is polyhedral or there is ( Z̄ r, D̄) such that %Z̄ r+&D̄+3 2 ri( ). The second
subproblem (13.20b) then becomes:

min
Z

r2/ r, C 2R

(
C : (UT

0G + V0) +
:r’
;=1

(UT
;
G + V;)Z;  C

)
� g

Fix an G 2 R=. The first subproblem is of the form

max
�F : |�F8 |n8

kF +�Fk22 =
’
8

max
�F8 : |�F8 |n8

(F8 +�F8)2  g2

which can be solved in closed form. Since / l is a simple box constraint, the maximum
value of each term is ( |F8 | +n8)2 and is attained at�F8 =±n8 . Hence the first subproblem
(13.20a) is equivalent to: 9I 2 R< such that

I8 =

�����
’
9

[�0]8 9G 9 + [10]8

����� +
’
9

|X8 9G 9 | + X8 , 8 = 1, . . . ,<, kIk2  g

which is a linear constraint and a convex quadratic constraint in I 2 R<. This leads to
the constraint (13.23a) in Theorem 13.2 below. Rewrite the minimization in the second
subproblem for the right-side uncertainty as:

min
Z

r,C ,D
C s.t. Û

T (G)Z r + V̂(G)� C  0, %Z r +&D + 3 2  ✓ R? (13.22)

where Û; (G) := UT
;
G + V; and V̂(G) := UT

0G + V0. This is a convex problem similar to the
problem (13.14a) in the proof of Theorem 13.1, with an additional a�ne constraint.
The condition (13.20b) can therefore be characterized in the same way as in Theorem
13.1, leading to the constraint (13.23b) in the next theorem. The theorem shows that
the robust SOCP (13.18) where (/ l,/ r) are given by (13.21) is a conic program and
hence tractable. It can be proved using Theorem 12.32, similarly for Theorem 13.1
(Exercise 13.8).

Theorem 13.2 (Tractable SOCP). Consider the robust SOCP (13.18) where (/ l,/ r)
are given by (13.21) where / r satisfies the Slater condition. Suppose the minimum

2 If uncertainty is expressed in the form of (13.16b)(13.16c), this corresponds to
��Õ
;
Z; [�; ]8 9

��  X8 9 ,
|Õ
;
Z; [1; ]8 |  X8 .
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value in (13.20b) is finite. Then G 2 R= is feasible for (13.18) if and only if there exist
(H, I) 2 R?+< such that (G, H, I) satisfies

I8 =

�����
’
9

[�0]8 9G 9 + [10]8

����� +
’
9

X8 9 |G 9 | + X8 , 8 = 1, . . . ,< (13.23a)

kIk2  V̂(G)� HT
3, H 2  ⇤, %

T
H = Û(G), &

T
H = 0 (13.23b)

where  ⇤ ✓ R? is the dual cone of  , Û; (G) := UT
;
G + V; and V̂(G) := UT

0G + V0. Hence
(13.18) is equivalent to the conic program:

min
(G, H, I)2R=+?+<

2
T
G s.t. (13.23)

Bounded ✓2 norm + conic uncertainty.

Consider the robust SOCP (13.18). Suppose that:

1 Left-side uncertainty: �(Z l)G + 1(Z l) takes the form

�(Z l)G + 1(Z l) = (�0G + 10) + !
T (G)Z l

A (G) (13.24)

where �(Z l) 2 R<⇥=, 1(Z l) 2 R<, ! (G) 2 R:1⇥<, Z l 2 R:1⇥:2 , A (G) 2 R:2 . The
first term �0G + 10 is the nominal value and the second term !

T (G)Z l
A (G) is the

perturbation due to the uncertain matrix Z l. We impose the restriction that at most
one of ! (G) and A (G) depends on G and the other is a constant (see (13.27) below).
Moreover the dependence of ! (G) or A (G) is a�ne in G so that the constraints
in (13.28b) and (13.28c) below are linear matrix inequalities in G. The uncertain
parameter Z l is a matrix of bounded induced norm (maximum singular value) in
the uncertainty set

/
l :=

⇢
Z

l 2 R:1⇥:2 :
��
Z

l
��

2 := max
D:kD k21

��
Z

l
D

��
2  1

�
(13.25)

The first subproblem (13.20a) then becomes:

max
Z

l2/ l
k (�0G + 10) + !T (G)Z l

A (G)k2  g (13.26)

2 Right-side uncertainty: / r is given by (13.21b) and satisfies the Slater condition.

Since / r is the same as that in Theorem 13.2, the second subproblem (13.20b) can be
characterized in the same way, leading to the constraint (13.28a) in Theorem 13.3. We
will show that the first subproblem (13.26) is equivalent to an explicit system of linear
matrix inequalities (LMIs) (13.28b)(13.28c) in Theorem 13.3. They imply that robust
SOCP (13.18) with bounded-norm and conic uncertainty is equivalen to a semidefinite
program. We separate explicitly (13.24) into two cases:

�(Z l)G + 1(Z l) = (�0G + 10) + !
T (G)Z l

A (13.27a)
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where ! (G) a matrix a�ne in G and A < 0 is a constant vector and

�(Z l)G + 1(Z l) = (�0G + 10) + !
T
Z

l
A (G) (13.27b)

where ! < 0 is a constant matrix and A (G) is a vector a�ne in G.

Theorem 13.3. Consider the robust SOCP (13.18) where / l is given by (13.25)(13.27)
and / r is given by (13.21b). Suppose the minimum value in (13.26) is finite and / r

satisfies the Slater condition. An G 2 R= is feasible for (13.18) if and only if there exist
H 2 R? and (g,_) 2 R2 such that (G, H,g,_) satisfies

H 2  ⇤, g  V̂(G)� HT
3, %

T
H = Û(G), &

T
H = 0 (13.28a)

with Û; (G) :=UT
;
G+V; and V̂(G) :=UT

0G+V0, and the following linear matrix inequalities:

• when �(Z l)G + 1(Z l) is given by (13.27a):

_ � 0,

266664
g�_kA k22 (�0G + 10)T 0
�0G + 10 gI< !

T (G)
0 ! (G) _I:1

377775
⌫ 0 (13.28b)

• when �(Z l)G + 1(Z l) is given by (13.27b):

_ � 0,

266664
g (�0G + 10)T

A
T (G)

�0G + 10 gI<�_!T
! 0

A (G) 0 _I:2

377775
⌫ 0 (13.28c)

Hence (13.18) is equivalent to the semidefinite program:

min
(G, H, g,_)2R=+?+2

2
T
G s.t. (13.28)

⇤

The subproblem (13.26) is the constraint (�(Z l)G + 1(Z l),g) 2  soc for all Z 2 / l.
The proof that this is equivalent to (13.28b)(13.28c) then uses the following three
ideas:

1 Second-order cone in terms of  sdp. A vector (H, C) 2  soc ✓ R;+1, i.e., kHk2  C, if
and only if 

C H
T

H CI✓

�
⌫ 0 (13.29)

where I✓ is the identity matrix of size ✓. This follows from the following property
of the Schur complement of the “arrow matrix” in (13.29): a matrix is (necessarily
symmetric and) positive definite if both a principal submatrix and the Schur
complement of the principal submatrix are positive definite (see Theorem A.4 in
Chapter A.3.1).
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2 ;2-norm matrix minimization. It can be proved using singular-value decomposition
that (Exercise 13.9)

�dk01k2k02k2 = min
- :k- k2d

0
T
1-02 (13.30)

3 (-lemma. Let �, ⌫ be symmetric matrices of the same size and ḠT
�Ḡ > 0 for some

Ḡ. Then the implication GT
�G � 0) G

T
⌫G � 0 holds if and only if 9_ � 0 such that

⌫ ⌫ _�. Note that neither ⌫ nor � needs to be positive semidefinite, but ⌫�_�
is. This lemma is proved in Chapter 13.1.5. (The result originates from stability
analysis of nonlinear systems and hence ( in (-lemma.)

Proof of Theorem 13.3 Fix an G 2 R=. It is feasible for (13.18) if and only if there
exists a variable g 2 R such that both subproblems in (13.20) have finite convex
representations. Since / r is the same as that in Theorem 13.2 the second subproblem
(13.20b) is equivalent to (13.28a). We now show that the first subproblem (13.20a), or
(13.26), is equivalent to (13.28b)(13.28c), using the three ideas above.

Consider the case (13.27a) and let 6(G) := �0G + 10 2 R<. First, apply (13.29) to
write (13.26) as"

g

�
6(G) + !T (G)Z l

A

�T

6(G) + !T (G)Z l
A gI<

#
⌫ 0, Z

l 2 / l

Therefore

(I1)2
g + 2IT

2

⇣
6(G) + !T (G)Z l

A

⌘
I1 + (IT

2 I2)g � 0, 8 I1 2 R, I2 2 R<, Z l 2 / l

Or, for all I1 2 R and I2 2 R<,

(I1)2
g +2IT

26(G)I1 + (IT
2 I2)g + min

Z
l:kZ l k21

(2! (G)I2)T
Z

l (I1A) � 0 (13.31)

Second, use (13.30) twice to eliminate Z l:

min
Z

l:kZ l k21
(2! (G)I2)T

Z
l (I1A) = �2k! (G)I2k2kI1A k2 = min

- :k- k2kI1A k2
(2! (G)I2)T

- (1)

where the second equality uses (13.30) with - 2 R:1⇥1. Substituting into (13.31) we
have, for all I1 2 R, I2 2 R< and - 2 R:1 , if I21kA k22� -T

- � 0 then

(I1)2
g + 2IT

26(G)I1 + (IT
2 I2)g + 2-T

! (G)I2 � 0

This is equivalent to: for (I1, I2,-) 2 R1+<+:1

266664
I1

I2

-

377775

T266664
kA k22 0 0

0 0 0
0 0 �I:1

377775
266664
I1

I2

-

377775
� 0 )

266664
I1

I2

-

377775

T266664
g 6

T (G) 0
6(G) gI< !

T (G)
0 ! (G) 0

377775
266664
I1

I2

-

377775
� 0

Third, there clearly exists I1 > 0 such that I21kA k22 > 0 since A < 0. Hence we can apply
the (-lemma to the two (1+< + :1) ⇥ (1+< + :1) matrices above to conclude that
(13.20a) is equivalent to (13.28b).
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The case of (13.27b) is similar. Applying (13.29) to write (13.26) as for all Z l 2 / l,"
g

�
6(G) + !T

Z
l
A (G)

�T

6(G) + !T
Z

l
A (G) gI<

#
⌫ 0

Therefore, for all I1 2 R and I2 2 R<,

(I1)2
g +2IT

26(G)I1 + (IT
2 I2)g + min

Z
l:kZ l k21

(2!I2)T
Z

l (I1A (G)) � 0 (13.32)

Use (13.30) twice to eliminate Z l ((13.27a) and (13.27b) di�er mainly in the second
equality below):

min
Z

l:kZ l k21
(2!I2)T

Z
l (I1A (G)) = �2k!I2k2kI1A (G)k2 = min

- :k- k2k!I2 k2
(2I1A (G))T

- (1)

where - 2 R:2⇥1. Substituting into (13.32) we have, for all I1 2 R, I2 2 R< and - 2 R:2 ,
if IT

2 (!T
!)I2� -T

- � 0 then

(I1)2
g +2IT

26(G)I1 + (IT
2 I2)g +2-T

A (G)I1 � 0

This is equivalent to: for (I1, I2,-) 2 R1+<+:2

266664
I1

I2

-

377775

T266664
0 0 0
0 !

T
! 0

0 0 �I:2

377775
266664
I1

I2

-

377775
� 0 )

266664
I1

I2

-

377775

T266664
g 6

T (G) A
T (G)

6(G) gI< 0
A (G) 0 0

377775
266664
I1

I2

-

377775
� 0

Hence we can apply the (-lemma to the two (1+< + :2)⇥ (1+< + :2) matrices above
to conclude that (13.20a) is equivalent to (13.28c). ⇤

13.1.4 Robust semidefinite program

We study the robust counterpart of an uncertain semidefinite program (SDP) studied
in Chapter 8.4.5. Consider a standard SDP

min
G2R=

5 (G) s.t. ⌘0 (G) 2  psd (13.33a)

where 5 : R= ! R is a real-valued convex function,  psd ✓ S< is the closed convex
pointed cone of positive semidefinite matrices in the vector space S< ⇢ R<⇥< of
symmetric matrices, and the matrix-valued function ⌘0 : R=! S< is given by:

⌘0 (G) := ⌫0 +
=’
8=1

G8�
8

0 2 S< (13.33b)

where �80,⌫0 2 S< are given symmetric matrices for 8 = 0,1, . . . ,=. This is the nominal
problem where the parameters (�80,⌫0, 8 � 0) that define ⌘0 are certain and given.

The robust counterpart of (13.33) is

min
G2R=

5 (G) s.t. ⌘0 (G) + ⌘(G, Z) 2  psd, 8Z 2 / (13.34a)
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where ⌘0 (G) is given by (13.33b), ⌘(G, Z) is a symmetric matrix in S< as a function of
G indexed by Z , and Z is the uncertain parameter that takes value in an uncertainty set
/ . We assume that the matrix-valued function ⌘(G, Z) is an a�ne function of G for each
fixed Z 2 / so that the constraints in (13.34a) are linear matrix inequalities (LMIs) in
G. For example ⌘(G, Z) may take the form:

⌘(G, Z) :=
:’
;=1

Z;

 
⌫; +

=’
8=1

G8�
8

;

!
2 S<, 8Z 2 / ✓ R:

for a given set of symmetric matrices (�8
;
,⌫; , 8 = 1, . . . ,=, ; = 1, . . . , :) in S<. For a

general uncertainty set / , it is a semi-infinite set of LMIs and hence the robust SDP
(13.34a) is generally computationally intractable. There are two exceptions. The first
is when / := conv(Z1, . . . , Z ?) is the convex hull of ? given vectors Z1, . . . , Z ? 2 R: . In
this case the semi-infinite set of LMIs reduces to a set of ? LMIs and the robust SDP
(13.34a) reduces to the following convex problem

min
G2R=

5 (G) s.t. ⌘0 (G) + ⌘(G, Z 8) 2  psd, 8 = 1, . . . , ?

for any a�ne functions ⌘
Z
8 (G) of G, indexed by Z1, . . . , Z ? 2 / .

The second exception is when the a�ne function ⌘(G, Z) is given by

⌘(G, Z) := !T (G)Z'(G) +'T (G)ZT
! (G) 2 S< (13.34b)

where Z is a :1⇥ :2 matrix with bounded spectral norm in the uncertainty set

/ :=
⇢
Z 2 R:1⇥:2 : kZ k2 := max

D:kD k2=1
kZDk2  d

�
(13.34c)

and both ! (G) 2 R:1⇥< and '(G) 2 R:2⇥< are a�ne functions of G with at least one of
them being independent of G so that (13.34b) is an LMI (cf. the left-side uncertainty
set in (13.25)(13.27) for robust SOCP). The semi-infinite contraint in (13.34a) is then:

⌘0 (G) + !T (G)Z' +'T
Z

T
! (G) 2  psd, 8Z 2 /

Example 13.3 (SDP relaxation of OPF). For notational simplicity we will formulate
our problem in the complex domain, i.e., S< is the set of Hermitian matrices and  psd

is the closed convex pointed cone of semidefinite matrices in the vector space S< over
the field R (not C). It can be converted to the real domain (see Remark 9.2).

The semidefinite relaxation (10.20a) in Chapter 10.1 of optimal power flow (OPF)
(9.16) is given by (omitting line flow constraints for simplicity):

min
, 2 psd

tr (⇠0,) s.t. tr
�
� 9,

�
 ?max

9
, �tr

�
� 9,

�
 �?min

9
, 9 2 # (13.35a)

tr
�
 9,

�
 @max

9
, �tr

�
 9,

�
 �@min

9
, 9 2 # (13.35b)

tr
�
� 9,

�
 Emax

9
, �tr

�
� 9,

�
 �Emin

9
, 9 2 # (13.35c)

where  psd ⇢ S#+1,

� 9 :=
1
2

⇣
.

H
0 4 94

T
9
+ 4 94T

9
.0

⌘
,  9 :=

1
2i

⇣
.

H
0 4 94

T
9
� 4 94T

9
.0

⌘
, � 9 := 4 94T

9
(13.35d)
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and 4 9 2 {0,1}#+1 is the unit vector with a single 1 in its 9 th entry. Here .0 2
C
(#+1)⇥(#+1) is a given nominal admittance matrix. This problem is of the form

(8.73), reproduced here:

min
/ 2 psd

tr
⇣
⌫

H
0 /

⌘
s.t. tr

⇣
�
8H
0 /

⌘
 28 , 8 = 1, . . . ,= := 6(# +1)

for some ⌫0, �80 2 S#+1, 8 � 1. The dual problem of (13.35) is therefore of the form
(from (8.74b)):

� min
G2R=

2
T
G s.t. G � 0, ⌘0 (G) 2  psd (13.36a)

where ⌘0 (G) 2 C(#+1)⇥(#+1) for each G 2 R6(#+1) , defined as:

⌘0 (G) := ⇠0 +
#+1’
8=1

�
(G28�1� G28)�8 +

�
G2(#+1)+28�1� G2(#+1)+28

�
 8

�
(13.36b)

+
#+1’
8=1

�
G4(#+1)+28�1� G4(#+1)+28

�
�8 (13.36c)

which takes the form of the nominal SDP problem (13.33).

Suppose the admittance matrix. in (13.35d) is uncertain with. =.0+�. where�.
is the uncertain parameter that takes value in an uncertainty set / ✓ C(#+1)⇥(#+1) . Let
��8 :=

�
�.H

484
T
8
+ 484T

8
�.

�
/2 and � 8 :=

�
�.H

484
T
8
� 484T

8
�.

�
/2i. Then the robust

counterpart of (13.36) is

� min
G2R=

2
T
G s.t. G � 0, ⌘0 (G) + ⌘(G,�. ) 2  psd (13.37a)

where ⌘(G,�. ) := !H (G)�. +�.H
! (G) is a linear function in G and

! (G) :=
#+1’
8=1

✓
1
2
(G28�1� G28) +

1
2i

�
G2(#+1)+28�1� G2(#+1)+28

� ◆
484

T
8

(13.37b)

If the perturbation �. has bounded spectral norm then this is the uncertainty model in
(13.34) with '(G) := I#+1. ⇤

The next result says that the robust semidefinite program (13.34) whose uncertain
parameter Z has a bounded spectral norm is computationally tractable.

Theorem 13.4. Consider the robust SDP (13.34).

1 If ⌘(G, Z) := !T (G)Z' +'T
Z

T
! (G) with ' < 0, then G is feasible for (13.34) if and

only if there exists _ such that (G,_) 2 R=+1 satisfies

_ � 0,

⌘0 (G)�_'T

' d!
T (G)

d! (G) _I:1

�
⌫ 0 (13.38a)
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2 If ⌘(G, Z) := !T
Z'(G) +'T (G)ZT

! with ! < 0, then G is feasible for (13.34) if and
only if there exists _ such that (G,_) 2 R=+1 satisfies

_ � 0,

⌘0 (G)�_!T

! d'
T (G)

d'(G) _I:2

�
⌫ 0 (13.38b)

Hence the robust SDP (13.34) is equivalent to the semidefinite program:

min
(G,_)2R=+1

5 (G) s.t. (13.38)

Proof Suppose ⌘(G, Z) := !T (G)Z' + 'T
Z

T
! (G) with nonzero '. Fix an G 2 R=. It is

feasible for (13.34) if and only

H
T
⇣
⌘0 (G) + !T (G)Z' +'T

Z
T
! (G)

⌘
H � 0, 8H 2 R<, 8

⇣
Z 2 R:1⇥:2 : kZ k2  d

⌘
Hence

H
T
⌘0 (G)H + 2 min

Z :kZ k2d
(! (G)H)T

Z ('H) � 0, 8H 2 R< (13.39)

As in the proof of Theorem 13.3, apply (13.30) twice to eliminate Z from (13.39):

min
Z :kZ k2d

(! (G)H)T
Z ('H) = �dk! (G)Hk2k'Hk2 = min

- 2R:1 :k- k2k'H k2
(d! (G)H)T

- (1)

(13.40)

Substituting into (13.39) we have

H
T ('T

')H� -T
- � 0 =) H

T
⌘0 (G)H +2HT (d! (G))T

- � 0, 8(H,-) 2 R<+:1

This is equivalent to
'

T
' 0

0 �I:1

�
⌫ 0 =)


⌘0 (G) d!

T (G)
d! (G) 0

�

Clearly there exists H such that HT
'

T
'H > 0 since ' is nonzero. Hence we can apply

the (-lemma to conclude (13.38a).

The case of ⌘(G, Z) := !T
Z'(G) + 'T (G)ZT

! with nonzero ! is similar. The main
di�erence is that (13.40) becomes

min
Z :kZ k2d

(!H)T
Z ('(G)H) = �dk!Hk2k'(G)Hk2 = min

- 2R:2 :k- k2k!H k2
(1)-T (d'(G)H)

Hence

H
T (!T

!)H� -T
- � 0 =) H

T
⌘0 (G)H + 2-T (d'(G))H � 0, 8(H,-) 2 R<+:2

This is equivalent to
!

T
! 0

0 �I:2

�
⌫ 0 =)


⌘0 (G) d'

T (G)
d'(G) 0

�

Then (-lemma implies (13.38b). ⇤
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13.1.5 Appendix: proof of (-lemma

Lemma 13.5 ((-lemma). Let �, ⌫ be =⇥= symmetric matrices and ḠT
�Ḡ > 0 for some

Ḡ 2 R=. Then the following are equivalent:

(i) GT
�G � 0) G

T
⌫G � 0.

(ii) 9_ � 0 such that ⌫ ⌫ _�.

Proof Suppose (ii) holds. Then GT
⌫G� GT

_�G = GT (⌫�_�)G � 0, implying (i).

To prove (i)) (ii), consider the following subsets of R2:

( :=
⇢
G

T
�G

G
T
⌫G

�
2 R2 : G 2 R=

�
, ) :=

⇢
D

E

�
2 R2 : D � 0, E < 0

�

Suppose (i) holds. We will establish (ii) in 4 steps:

1 Show that (\) = ;.
2 Show that ( is a cone.
3 Show that ( is convex.
4 Use the Separating Hyperplane Theorem 8.11 of Chapter 8.2.4 to prove (ii).

The Slater condition ḠT
�Ḡ > 0 in the lemma serves the same purpose as in the Slater the-

orem of ensuring that the separating hyperplane is not vertical. The result is illustrated
in Figure 13.1. Let D(G) := GT

�G and E(G) := GT
⌫G for G 2 R=. Then (D(G),E(G)) 2 (

S

T

(−λ , µ)

Figure 13.1 (-lemma: (, ) and their separation.

by definition for all G 2 R=.

1 (\) = ;. Since (i) says D(G) � 0) E(G) � 0, (D(G),E(G)) 8 ) . On the other hand
let (0,1) 2 ) , i.e., 0 � 0 and 1 < 0. If (0,1) 2 (, then 0 = D(G) and 1 = E(G) for
some G, and hence 0 � 0 and 1 < 0 contradicts (i). This shows that (\) = ;.

2 ( is a cone. Suppose (D(G),E(G)) = (GT
�G,GT

⌫G) 2 (. For any _2
> 0 we have

_
2

D(G)
E(G)

�
=


(_G)T

�(_G)
(_G)T

⌫(_G)

�
=


D(_G)
E(_G)

�
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i.e., _2 (D(G),E(G)) 2 ( and hence ( is a cone.
3 ( is convex. Let H1 := (D(G1),E(G1)) and H2 := (D(G2),E(G2)) be in (. Fix any
U 2 (0,1). We separate two cases.
• Case 1: H1, H2 are linearly dependent. Suppose H1 = 2H2 for some 2 < 0. Then

UH1 + (1�U)H2 = (2U+ (1�U))H2 =
✓
2U+ (1�U)

2

◆
H1

i.e., UH1 + (1�U)H2 is on the ray of H1 and H2 (which are on the same ray). It
therefore must be in (, because if 2U+ (1�U) > 0 then (2U+ (1�U))H2 2 (
since ( is a cone. If 2U + (1�U) < 0 then both 2 and 2U + (1�U) must be
negative and hence ((2U+ (1�U))/2)H1 2 ( since ( is a cone.

• Case 2: H1, H2 are linearly independent. We have to show that there exist Ḡ 2 R=
such that

D(Ḡ)
E(Ḡ)

�
= UH1 + (1�U)H2 = U


G

T
1 �G1

G
T
1⌫G1

�
+ (1�U)


G

T
2 �G2

G
T
2⌫G2

�

which implies thatUH1+ (1�U)H2 2 (. Since ( is a cone it su�ces to construct
Ḡ such that, for some _ > 0,

D(Ḡ)
E(Ḡ)

�
= _(UH1 + (1�U)H2) (13.41)

We will seek Ḡ of the form Ḡ = UG1 + VG2, i.e., we will derive V 2 R such that
(13.41) is satisfied for some _ > 0, given U,G1,G2. By definition
D(Ḡ)
E(Ḡ)

�
=


(UG1 + VG2)T

�(UG1 + VG2)
(UG1 + VG2)T

⌫(UG1 + VG2)

�
=


U

2
D(G1) + V2

D(G2) +2UVGT
1 �G2

U
2
E(G1) + V2

E(G2) +2UVGT
1⌫G2

�

= U
2
H1 + V2

H2 +2UV

G

T
1 �G2

G
T
1⌫G2

�

where the second equality uses the fact that �T = � and ⌫T = ⌫. Since H1, H2

form a basis of R2 we can express
G

T
1 �G2

G
T
1⌫G2

�
=: 0H1 + 1H2

for some 0,1 2 R. Therefore
D(Ḡ)
E(Ḡ)

�
= (U2 +2UV0)H1 + (V2 +2UV1)H2 = (U+20V)

✓
UH1 +

V
2 +2U1V
U+20V

H2

◆

Substituting into (13.41) with _ := U+20V, we therefore seek V 2 R such that

U+20V > 0, V
2 +2U1V = (1�U) (U+20V) (13.42)

The quadratic equation in (13.42) is

V
2 +2(U1� (1�U)0)V�U(1�U) = 0
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with roots

V = �(U1� (1�U)0) ±
p
(U1� (1�U)0)2 +U(1�U)

one of which is positive and the other negative since U 2 (0,1). Choose the
root V such that 0V � 0. Then U+20V > 0 and (13.42) is satisfied.

This completes the proof that ( is convex.
4 Since ( and ) are convex and disjoint the Separating Hyperplane Theorem 8.11

of Chapter 8.2.4 implies there exists a nonzero (�_,`) 2 R2 such that

�_D + `E � �_0 + `1, 8(D,E) 2 (, (0,1) 2 )

Since 0 2 ( we have �_0 + `1  0 for all (0,1) 2 ) . Taking (0,1)! 0 we have
�_D + `E � 0 for all (D,E) 2 (. Hence substituting (D,E) = (GT

�G,GT
⌫G) we have

�_GT
�G + `GT

⌫G � 0 � �_0 + `1, 8G 2 R=, (0,1) 2 ) (13.43)

Taking 0 = 1 and 1 ! 0 yields _ � 0. Taking 0 = 0 yields ` � 0 since 1 < 0.
If ` = 0 then _ > 0 since (�_,`) < 0. By assumption ḠT

�Ḡ > 0, implying that
�_ḠT

�Ḡ < 0, contradicting (13.43). Hence ` > 0 and we can normalize (�_,`) to
become (�_,1) to obtain from (13.43)

G
T (⌫�_�)G � 0, 8G 2 R=

i.e., ⌫�_� ⌫ 0 for some _ � 0.

⇤

13.2 Chance constrained optimization

Consider the optimization problem:

min
G2- ✓R=

2(G) (13.44a)

s.t. P (⌘8 (G, Z)  0, 8 = 1, . . . ,<) � ? (13.44b)

where 2 : R= ! R is a cost function, ⌘8 : R= ⇥R: ! R, 8 = 1, . . . ,<, are constraint
functions, Z 2 R: is a random vector and P is a probability measure defined on some
probability space3 , ? 2 [0,1], and - ✓ R= is nonempty. The constraint (13.44b) is
called a chance constraint or a probabilistic constraint. The problem (13.44) is

3 Formally a probability space is a triple (⌦, F,P) where the sample space ⌦ is an arbitrary nonempty
set. The f-algebra F ✓ 2⌦ is a collection of subsets � ✓ ⌦ called events that satisfies: (i) ⌦ 2 F; (ii) if
� 2 F then ⌦ \ � 2 F; and (iii) if �8 2 F for 8 = 1,2, . . . , then [8�8 2 F. The probability measure
P : F! [0,1] is a function such that (i) P(⌦) = 1; and (ii) if �8 2 F for 8 = 1,2, . . . are pairwise
disjoint, then P ([8�8) =

Õ
8
P(�8) . A random variable or random vector / defined on the probability

space (⌦, F,P) is a function / :⌦! R< such that P ( {l 2 ⌦ : / (l)  I }) is called the probability
of the event {/  I } and sometimes denoted by P(/  I) . The probability distribution function or
distribution function �/ : R<! [0,1] of the random variable / is the function defined by the
probability measure P, �/ (I) = P ( {l 2 ⌦ : / (l)  I }) .
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a deterministic optimization problem called a chance constrained program. It is
generally intractable because the chance constraint (13.44b) is often nonconvex.

Compared with the robust program (13.2), the chance constrained program (13.44)
allows the dependence on the uncertain parameter Z of di�erent constraints ⌘8 (G, Z)  0
to be coupled across 8 and is more general than ⌘8 (G, Z8)  0. More importantly (13.44)
is less conservative in the sense that the constraints ⌘8 (G, Z)  0 for all 8 need not hold
for almost all uncertain parameter values Z , but only with a probability greater than or
equal to ?.

In this section we introduce two techniques to deal with the chance constrained
program (13.44). When the constraint functions ⌘8 and the probability measure P have
certain concavity properties then the chance constraint (13.44b) is convex and (13.44)
is tractable. This is studied in Chapter 13.2.1. When these concavity conditions may not
hold, we derive bounds on the tail probability of a random variable, called concentration
inequalities, and show how these ideas can provide inner approximations of the feasible
set defined by the chance constraint (13.44b). These inner approximations may be
tractable or easier to solve. This is studied in Chapter 13.2.2. In Chapter 13.3 we
approximate the chance constraint by a finite set of random constraints.

13.2.1 Tractable instances: convexity, strong duality and optimality

In this subsection we studied conditions under which the chance constrained program
is tractable. Unless otherwise specified (see Remark 13.3), we assume that the chance
constraint is separable in the decision variable G and the random vector Z , i.e., we
consider the following special case of (13.44) where the constraint function takes the
form Z  ⌘(G):

min
G2-

2(G) s.t. P (Z  ⌘(G)) � ?

where ⌘ : R= ! R<, Z 2 R< and - ✓ R= is a nonempty convex set. In this case the
chance constraint can be expressed in terms of the (probability) distribution function
�Z : R<! [0,1] of Z and the chance constrained program becomes:

min
G2-

2(G) s.t. �Z (⌘(G)) � ? (13.45)

The function �Z (I) is also called a cumulative distribution function. A (probability)
density function, if exists, is denoted by 5Z (I). A distribution function �Z is nonde-
creasing, i.e., �Z (I1)  �Z (I2) if I1  I2, and upper semicontinuous, i.e., if I: ! I

then

�Z (I) � limsup
:

�Z (I: ) (13.46)

In this book we will ignore measurability issues, i.e., we will assume all random variables or processes
encountered are well defined, they generate appropriate f-algebra on which appropriate probability
measures are defined, and all functions encountered are measurable. When we say two sets are the
same, we mean they di�er only by a measure-zero set.
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We next study two equivalent formulations of (13.45) for convexity analysis that
mainly di�er in their specification of the feasible set. The first formulation hides both
the constraint function ⌘ and the distribution function �Z in the feasible set -? for G:

min
G2-

2(G) s.t. G 2 -? :=
�
G 2 R= : �Z (⌘(G)) � ?

 
(13.47a)

where - ✓ R= is a nonempty convex set. The second formulation allows the structure
of ⌘ to play a more explicit role in the optimality condition and uses the ?-level set /?
of the distribution function �Z (I), defined by:

/? :=
�
I 2 R< : �Z (I) � ?

 
(13.47b)

The chance constrained problem (13.45) is then a minimization over both G and I:

min
(G,I)2-⇥/?

2(G) s.t. ⌘(G) � I (13.47c)

with the explicit constraint ⌘(G) � I that can be used for optimality analysis. The main
issue for the first formulation is the convexity of -? and that for the second formulation
is conditions for strong duality and saddle point optimality We study them in turn.

Convexity of -?.

Suppose components ⌘8 , 88, of ⌘ : R=! R< and the distribution function �Z : R<!
[0,1] are real-valued and concave functions. Then the feasible set -? in (13.47a) is
convex (Exercise 13.10). Important distribution functions however may not be concave,
as the next example shows.

Example 13.4 (Gaussian distribution). The multivariate Gaussian random vector / 2
R
< has a density function

5Z (I) :=
1p

(2c)< det(⌃)
exp

✓
�1

2
(I� `)T⌃�1 (I� `)

◆

with a mean ` 2 R< and a positive definite covariance matrix ⌃ 2 R<⇥<. Then

ln 5Z (I) = �1
2
(I� `)T⌃�1 (I� `)� 1

2
ln ((2c)< det(⌃))

and hence 5Z is log-concave. It can be shown that its distribution function �Z (I) is
also log-concave (see (13.48) below). ⇤

Example 13.4 motivates a more general notion of concavity under which the feasible
set -? remains convex.

Definition 13.2 (U-concavity). Let ⌦ ✓ R< be a convex set. A nonnegative function
5 :⌦! R+ is called U-concave with U 2 [�1,1] if for all G, H 2 ⌦ such that 5 (G) > 0
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and 5 (H) > 0 and all _ 2 [0,1], we have

5 (_G + (1�_)H) �

8>>>><
>>>>:

(_ 5 U (G) + (1�_) 5 U (H))1/U if U 8 {0,�1,1}
5
_ (G) 5 1�_ (H) if U = 0

min{ 5 (G), 5 (H)} if U = �1
max{ 5 (G), 5 (H)} if U =1

The class of U-concave functions includes several commonly used function classes
as special cases. A function 5 : R= ! R is called concave if for all G, H 2 R= and
all _ 2 [0,1] we have 5 (_G + (1� _)H) � _ 5 (G) + (1� _) 5 (H); this corresponds to
1-concavity. More generally, for U 8 {0,�1,1}, 5 is U-concave if and only if 5 U

is concave. The function 5 is called log-concave if log 5 is concave with respect to
any base; this corresponds to 0-concavity. The function 5 is called quasi-concave if
5 (_G + (1�_)H) � min{ 5 (G), 5 (H)}; this corresponds to �1-concavity. The function
5 is1-concave if and only if it is a constant function.

One can also define U-concavity for a probability measure P which is a stronger
property in the sense that an U-concave probability measure implies an U-concave
distribution function �Z , but the converse may not hold. Unless otherwise specified we
assume the chance constraint is separable in G and Z in which case theU-concavity of �Z
is su�cient for our purposes (cf. Remark 13.3). TheU-concavity of a probability density
function 5Z (I) induces a probability measure, and hence its distribution function
�Z (I), that is V-concave for some V. Specifically it can be shown (see [142, Corollary
4.16, p.106]) that if the probability density function 5Z (I) defined on ⌦ ✓ R<, withØ
⌦ 5Z (I)3I = 1, is U-concave with U 2 [�1/<,1] and if 5Z (I) > 0 in the interior of
⌦, then the probability measured P defined by

P (�) :=
π
�

5Z (I)3I, � ✓ ⌦ (13.48a)

is V-concave with

V :=

8>><
>>:

U

1+<U if U 2 (�1/<,1)
�1 if U = �1/<
1/< if U =1

(13.48b)

This implies that, since the Gaussian density function 5Z of Example 13.4 is log-
concave (U = 0), so is its distribution function �Z .

The following properties of U-concavity are important in determining the convexity
of the feasible set -? in (13.47a) (Exercise 13.11).

Lemma 13.6 (U-concavity). Let ⌦ ✓ R< be a convex set and consider nonnegative
function 5 :⌦! R+.
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1 For U 2 [�1,1], (0,1) 2 R2
+ with 0 > 0, 1 > 0, and _ 2 [0,1], define

<U (0,1,_) :=

8>>>><
>>>>:

(_0U + (1�_)1U)1/U if U 8 {0,�1,1}
0
_
1

1�_ if U = 0
min{0,1} if U = �1
max{0,1} if U =1

Therefore 5 being U-concave is equivalent to 5 (_G + (1 � _)H) �
<U ( 5 (G), 5 (H),_). Then for each (0,1,_), the mapping U! <U (0,1,_) is non-
decreasing and continuous.

2 If 5 is U-concave then it is V-concave for all V  U; in particular concavity implies
log-concavity which implies quasi-concavity.

3 If 5 is U-concave for some U > �1 then 5 is continuous on ri(⌦).
4 Let ⌘8 : R=! R, 8 = 1, . . . ,<. If all ⌘8 are concave and 5 : R<! R is nonnegative,

nondecreasing (i.e., G  H 2 R< ) 5 (G)  5 (H)), and U-concave for some U 2
[�1,1], then 5 � ⌘ : R=! R+ is U-concave.

5 Let 5 :R=1+=2!R+. Suppose there exists an U 2 [�1,1] such that, for all H 2. ✓
R
=2 , 5 (G, H) is U-concave in G on a convex set - ✓ R=1 . Then 6(G) := infH2. 5 (G, H)

is U-concave on - .

Consider a concave function 5 : R<! R (and is therefore proper as an extended
real-valued function). We say H 2 R< is a subgradient of 5 at Ḡ 2 R< if �H is a
subgradient of the convex function � 5 , i.e., if

5 (G)  5 (Ḡ) + HT (G� Ḡ), G 2 R<

The set of all subgradients of the concave function 5 at Ḡ is the subdi�erential m 5 (Ḡ) of
5 at Ḡ. Then G⇤ 2 R< is an optimal solution of sup

G2R< 5 (G) if and only if 0 2 m 5 (G⇤).
Moreover Lemma 12.15 applies directly to the real-valued concave function 5 . In
particular 5 (G) is continuous on ri(dom( 5 )) = R<. For each G 2 R<, m 5 (G) ✓ R< is
a nonempty convex compact set. If - ⇢ R< is nonempty and compact, then m- 5 :=
[G2-m 5 (G) is nonempty and bounded; moreover 5 is Lipschitz continuous over -
with Lipschitz constant ! := sup

b 2m- 5 kbk2, i.e., k 5 (G) � 5 (H)k2  !kG � Hk2 for all
G, H 2 R<. More generally if 5 is U-concave with U > �1 then it is continuous on the
relative interior of its domain according to Lemma 13.6. A quasi-concave function
(U = �1) need not be continuous.

In general the feasible set -? in (13.47a) is not convex or even connected. The
following result provides a su�cient condition for the feasible set to be convex and
closed.

Theorem 13.7 (Convexity of -?). Suppose all components ⌘8 of ⌘ : R= ! R< are
concave and the distribution function �Z : R< ! [0,1] is U-concave for some U 2
[�1,1], then the feasible set -? :=

�
G 2 R= : �Z (⌘(G)) � ?

 
in (13.47a) is convex

and closed.

Proof Lemma 13.6 implies that the function � : R= ! [0,1] defined by � (G) :=
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�Z (⌘(G)) is a nonnegative U-concave function. To show that the set -? for a fixed
? 2 [0,1] is convex consider G1,G2 2 -? with � (G1) � ? and � (G2) � ? and G :=
_G1 + (1�_)G2 for any _ 2 [0,1]. We have

� (G) � <U (� (G1),� (G2),_)

If U = �1, i.e., � (G) is quasi-concave, then � (G) � min{� (G1),� (G2)} � ?, i.e.,
G 2 -? . Since the mapping U! <U (0,1,_) for each (0,1,_) is nondeacreasing in U
by Lemma 13.6, if � (G) is U-concave for any U 2 [�1,1], it is quasi-concave and
hence G 2 -? . This proves that -? is convex.

To show that -? is closed, consider any sequence G: 2 -? with G: ! G. We have

� (G) := �Z (⌘(G)) = �Z

✓
lim
:

⌘(G: )
◆
� limsup

:

�Z (⌘(G: )) � ?

where the second equality follows from the continuity of ⌘ since ⌘ is concave on R<

(Lemma 13.6), the first inequality follows from the uppersemicontinuity of distribution
functions from (13.46), and the last inequality follows from G: 2 -? . ⇤

Remark 13.3 (Inseparable chance constraint). Theorem 13.7 generalizes to the case
where the chance constraint in (13.45) is not separable in the decision variable G and
the random vector Z and takes the form � (G) := P (⌘8 (G, Z) � 0, 8 = 1, . . . ,<) � ?. It
can be shown ([142, Theorem 4.39, p.115]) that if ⌘8 (G, Z), 8 = 1, . . . ,<, are jointly
quasi-concave in (G, Z) 2 R=+: and if Z has a probability measure that is U-concave,
then � (G) is U-concave on {G 2 R= : 9Z 2 R: s.t. ⌘8 (G, Z) � 0, 88}. This implies that
the feasible set - := {G 2 R= : � (G) � ?} is convex and closed, because for all G, H 2 -
and _ 2 [0,1],

� (_G + (1�_)H) � <U (� (G),� (H),_) � min{� (G),� (H)} � ?

where the first inequality follows from the U-concavity of �, the second inequality
follows from the monotonicity of the mapping U!<U (0,1,_), and the last inequality
follows from G, H 2 - . Compared with Theorem 13.7, the functions ⌘8 (G, Z) are required
only to be quasi-concave (U = �1) which is weaker than concavity, but the probability
measure of Z is required to be U-concave which is stronger than requiring only its
distribution function �Z to be U-concave. ⇤

Duality and optimality.

Fix ? 2 (0,1). We now study the second formulation in (13.47b)(13.47c) where ⌘
plays a more explicit role in the optimality condition. Recall the ?-level set /? of the
distribution function �Z (I):

/? :=
�
I 2 R< : �Z (I) � ?

 
and the chance constrained formulation:

2
⇤ := min

(G,I)2-⇥/?
2(G) s.t. ⌘(G) � I (13.49a)
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where 2 : R=! R and ⌘ : R=! R< are real-valued, and - ✓ R= is nonempty convex.
The Lagrangian is

! (G, I,`) = 2(G) + `
T (I� ⌘(G))

the dual function is

3 (`) := inf
(G,I)2-⇥/?

! (G, I,`) = inf
G2-

⇣
2(G)� `T

⌘(G)
⌘

|                    {z                    }
3- (`)

+ inf
I2/?

`
T
I

|    {z    }
3/ (`)

, ` 2 R<

and the dual problem is

3
⇤ := sup

`�0
3 (`) := sup

`�0
(3- (`) + 3/ (`)) (13.49b)

where

3- (`) := inf
G2-

⇣
2(G)� `T

⌘(G)
⌘
, 3/ (`) := inf

I2/?
`

T
I (13.49c)

Since we only partially dualize the primal problem (13.49a) we cannot characterize a
primal-dual optimal point (G⇤, I⇤,`⇤) by the KKT condition, but we can characterize it
as a saddle point. Recall that (G⇤, I⇤,`⇤) 2 - ⇥ /? ⇥R<+ is a saddle point if and only if

sup
`�0

! (G⇤, I⇤,`) = ! (G⇤, I⇤,`⇤) = inf
(G,I)2-⇥/?

! (G, I,`⇤) (13.50)

By the definition of !,3- ,3/ , the minimization in (13.50) is equivalent to

3- (`⇤) = 2(G⇤)� `⇤T⌘(G⇤), 3/ (`⇤) = `
⇤T
I
⇤

It is shown in Theorem 13.8 that the maximization in (13.50) is equivalent to comple-
mentary slackness, given ⌘(G⇤) � I⇤ (or see Exercise 8.15).

Even though 2 and ⌘ are real-valued the dual function 3 (`) can be extended real-
valued. Moreover 3 (`) may not be di�erentiable even if 2 and ⌘ are because the
minimizer (G, I) of the Lagrangian function may not be unique. It is however always
concave hence always subdi�erentiable for any 2 and ⌘. This is a nonsmooth convex
optimization problem studied in Chapter 12. In particular the problem (13.49) takes the
same form as the nonsmooth convex problem (12.42). We next use the Slater Theorem
12.28 to provide su�cient conditions for strong duality and dual optimality and the
Saddle-point Theorem 12.20 to characterize a primal-dual optimal point. We make the
following assumptions:

C13.1 Convexity:
– 2 is convex; ⌘ is concave (i.e., each component ⌘8 is concave);
– - is nonempty convex;
– The distribution function �Z (I) is U-concave for an U 2 [�1,1].

C13.2 Slater condition: one of the following holds:
– CQ1: There exists (Ḡ, Ī) 2 - ⇥ /? such that ⌘(Ḡ) > Ī; or
– CQ2: ⌘ is a�ne and there exists (Ḡ, Ī) 2 ri(- ⇥ /?) such that ⌘(Ḡ) � Ī.



13.2 Chance constrained optimization 665

The U-concavity of �Z implies that �Z is quasi-concave (Lemma 13.6) and hence /?
is a nonempty convex set (since ? 2 (0,1)).

Theorem 13.8 (Strong duality and optimality). Suppose the chance constrained pro-
gram and its dual (13.49) satisfy conditions C13.1 and C13.2. Then

1 Strong duality and dual optimality. If 2⇤ > �1 then there exists a dual optimal
solution `⇤ � 0 that closes the duality gap, i.e., 2⇤ = 3⇤ = 3 (`⇤). The set of dual
optimal solutions `⇤ is convex and closed; it is also compact under CQ1.

2 Saddle point characterization. A point (G⇤, I⇤,`⇤) 2 - ⇥ /? ⇥R<+ is primalp-dual
optimal and closes the duality gap, i.e., 2(G⇤) = 2⇤ = 3⇤ = 3 (`⇤) if and only if

3- (`⇤) = 2(G⇤)� `⇤T⌘(G⇤), 3/ (`⇤) = `
⇤T
I
⇤, `

⇤T (I⇤ � ⌘(G⇤)) = 0
(13.51)

Such a point is a saddle point.

Proof Since 2 is real-valued, dom(2) = R=. The Slater Theorem 12.28 in Chapter
12.7 then implies that strong duality holds and there is a dual optimal `⇤ that attains
dual optimality. Moreover the set of dual optimal solutions is convex and closed, and
also bounded (and hence compact) under CQ1.

To characterize a primal-dual optimal we apply the Saddle-point Theorem 12.20
which states that (G⇤, I⇤,`⇤) 2 -⇥/?⇥R<+ is primal-dual optimal and closes the duality
gap if and only if it is a saddle point, i.e., if and only if it satisfies (13.50). As discussed
above, the second equality in (13.50) is equivalent to the first two conditions in (13.51).
We next show that the first equality in (13.50) is equivalent to the complementary
slackness condition in (13.51).

First we claim that, if (G⇤, I⇤,`⇤) 2 - ⇥/? ⇥R<+ is a primal-dual optimal or a saddle
point, then ⌘(G⇤) � I⇤. If (G⇤, I⇤,`⇤) is primal-dual optimal then (G⇤, I⇤) is primal
feasible and hence ⌘(G⇤) � I⇤. If (G⇤, I⇤,`⇤) is a saddle point then, if ⌘8 (G⇤) < I⇤

8
for any

8, then sup
`�0 ! (G⇤, I⇤,`) = 1 contradicting that sup

`�0 ! (G⇤, I⇤,`) = ! (G⇤, I⇤,`⇤).
Then the first equality in (13.50) yields

! (G⇤, I⇤`⇤) = sup
`�0

! (G⇤, I⇤,`) = sup
`�0

⇣
2(G⇤) + `

T (I⇤ � ⌘(G⇤))
⌘
 2(G⇤)

with equality if and only if sup
`�0 `

T (I⇤ � ⌘(G⇤)) = 0. Since `⇤ � 0 attains the max-
imum of ! (G⇤, I⇤,`), the complementary slackness condition in (13.51) is estab-
lished. ⇤

Remark 13.4 (Primal optimality and dual di�erentiability). 1 Denote the sets of
minimizers in (13.49c) by

- (`) := {G 2 - : 3- (`) = 2(G)� `T
⌘(G)}, / (`) := {I 2 /? : 3/ (`) = `T

I}

Theorem 13.8 holds even if - (`) and / (`) are empty, i.e., primal optimality may
not be attained. If - and /? are nonempty, convex and compact, then the sets
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- (`) and / (`) of primal optimal solutions are nonempty, convex and compact
and hence the dual function 3 (`) is a real-valued concave function. Moreover the
subdi�erentials of 3- ,3/ are

m3- (`) = conv(�⌘(G) : G 2 - (`)), m3/ (`) = / (`)

and hence m3 (`) = conv(�⌘(G) : G 2 - (`)) + / (`). These results are derived in
Exercise 13.12 using Theorem 12.19 and Theorem 12.26.

2 See Exercise 13.13 for an alternative proof of the saddle-point characterization
(13.51). It applies Theorem 12.21 to the dual (13.49b) and illustrates basic tech-
niques in nonsmooth analysis that are used to reduce optimality conditions to a
saddle-point characterization. ⇤

13.2.2 Concentration inequalities and safe approximation

In Chapter 13.2.1 we study conditions, e.g.,U-concavity of the distribution function �/ ,
under which the chance constrained program (13.45) is convex. In this subsection we
introduce the idea of solving a safe approximation of (13.45) that is more conservative
but easier to solve. We illustrate this idea with the chance constrained linear program
(cf. the robust linear program (13.11)):

min
G2R=

2
T
G s.t. P

 
:’
;=1

⇣
0

T
;
G� 1;

⌘
Z;  �(0T

0G� 10)
!
� 1� n (13.52a)

where the uncertain parameter is the random vector Z := (Z; , ; = 1, . . . , :). We will
show that, if the moment generating functions of Z; are upper bounded by those of
Gaussian random variables, then the following second-order cone program is a safe
approximation of (13.52a):

min
G2R=

2
T
G s.t. A k �̂G� 1̂k2  �(0̂T

0G� 1̂0) (13.52b)

where �̂, 1̂, 0̂0, 1̂0 depend on (0; ,1; , ; � 0) and A depends on n . The second-order
cone program (13.52b) is generally much simpler to solve than the chance constrained
problem (13.52a). It is a safe approximation in the sense that an G that is feasible, or
optimal, for (13.52b) will always satisfy the chance constraint in (13.52a).

The derivation of a safe approximation generally boils down to deriving an explicit
convex feasible set of the approximation that is a subset (inner approximation) of the
feasible set of the chance constrained problem. It relies on two techniques. First we
upper bound the violation probability of the chance constraint in terms of distribution
properties of the uncertain parameter Z; such as its variance or its moment generating
function kZ; (e.g. Cherno� bound). Then we upper bound these distribution properties
by known properties (e.g., the moment generating function of the Gaussian distribu-
tion). In the rest of this subsection we derive some basic bounds on the tail probability
of a random variable, study properties of sub-Gaussian random variables, and then use
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these techniques to derive the safe approximation (13.52b) of the chance constrained
linear program (13.52a). These bounds are the most basic inequalities in probability
and widely applicable, e.g., used in Chapter 13.3.5 to derive sample complexity of
scenario programs.

In this subsection we follow the usual notation in the probability literature where
capital letters typically denote random variables, e.g., . , and small letters their values,
e.g., H.

Markov’s inequality.

Let . be any nonnegative random variable with finite mean ⇢. <1. Let X(G) denote
the indicator function where X(G) = 1 if G is true and 0 otherwise (di�erent definition
from X(G) in Chapter 12). Observe that, for all C > 0,./C � X(. � C). Taking expectation
on both sides we obtain the Markov’s inequality: for all C > 0,

P (. � C)  ⇢.

C

(13.53a)

Let ' ✓ R be any interval and let q : '! R+ be a nonnegative nondecreasing function
on '. Since X(. � C) = X(q(. ) � q(C)), (13.53a) implies, for any C with q(C) > 0,

P (. � C) = P(q(. ) � q(C))  ⇢ (q(. ))
q(C) (13.53b)

Chebyshev’s inequality.

Let. := |- �⇢- | be nonnegative where - is an arbitrary random variable with a finite
variance var(-) < 1. Let ' := (0,1) and q(C) = C2. Then the Markov’s inequality
(13.53b) implies the Chebyshev’s inequality: for any C > 0,

P ( |- �⇢- | � C)  var(-)
C
2

(13.54a)

For the sample mean =
�1 Õ

8
-8 of a sequence of independent random variables

-1, . . . ,-=, since var(Õ
8
-8) =

Õ
8
var(-8), (13.54a) implies

P

 �����
1
=

’
8

(-8 �⇢-8)
����� � C

!


Õ
8
var(-8)
=

2
C
2

=
E=

=C
2

(13.54b)

where E= := =�1 Õ
8
var(-8) is the average variance. In particular if -8 are iid (indepen-

dent and identically distributed) then f2
=
= var(-1) and the tail probability decreases

in = at the rate of =�1.
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Cherno� bound.

For a random variable. with a finite expectation ⇢. <1, ⇢ (4_. ) is called a moment-
generating function of . , as a function of _ 2 R. Let

k. (_) := ln⇢ (4_. ), _ 2 R (13.55a)

be the log moment-generating function of . . Here ln := log
4

denotes the natural log
and we sometimes use log if the base is clear from the context. The function k. (_) is
convex in _ (Exercise 13.14). Recall the conjugate function defined (in Chapter 12.3.2)
as

k
⇤
.
(C) := sup

_2R
(C_�k. (_)) , C 2 R (13.55b)

Jensen’s inequality says that, if 5 is a convex function, then ⇢ ( 5 (G)) � 5 (⇢-) (see
Exercise 12.11). Hence the log moment-generating function k. (_) satisfies

k. (0) = 0, k. (_) � _⇢. (13.56)

We now bound the tail probability P(. � C), in two equivalent forms (C � ⇢. and
C 2 R). For _ � 0, the function q(C) := 4_C is a nonnegative nondecreasing function of
C over R and hence the Markov’s inequality (13.53b) implies P(. � C)  ⇢ (4_. )/4_C
for all _ � 0. Therefore, for C � ⇢. ,

lnP(. � C)  �sup
_�0

(C_�k. (_)) = �sup
_2R

(C_�k. (_)) = �k⇤
.
(C) (13.57a)

where the first equality follows because, for _  0 and C � ⇢. , C_�k. (_)  _(C�⇢. ) 
0 = �k. (0) by (13.56). Hence the Cherno� bound on the tail probability is:

P(. � C)  4
�k⇤

.
(C) , C � ⇢. (13.57b)

where the conjugate function k⇤
.
(C) is defined in (13.55). Note that (13.57) holds for

C � ⇢. . For C  ⇢. , (13.56) implies that k. (_) � C_ � _(⇢. � C) � 0 if (and only
if) _ � 0 and hence �sup

_�0 (C_�k. (_)) � 0 in (13.57a) is a trivial upper bound.
Therefore the Cherno� bound that holds for all C 2 R takes the following forms:

lnP(. � C)  inf
_�0

ln
⇣
4
�_C
⇢4

_.

⌘
(13.58a)

P(. � C)  exp
✓
�sup
_�0

(C_�k. (_))
◆

, C 2 R (13.58b)

where the infimum and supremum are taken over _ � 0 as opposed to _ 2 R in (13.55b).

If . := =�1 Õ
8
-8 is the sample mean of = independent random variables -8 with

⇢-8 <1, 8 = 1, . . . ,=, then

k. (_) =
’
8

k-8
(_/=) (13.59a)

k
⇤
.
(C) = sup

_2R

’
8

�
C_�k-8 (_)

�


’
8

k
⇤
-8
(C) (13.59b)
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with equality if -8 are iid. The sample mean of = independent random variables -8
satisfies the Chernoof bound:

P

 
1
=

’
8

-8 � C
!
 4

�k⇤
.
(C) = 4

�=�= (C) , C � 1
=

’
8

⇢-8 (13.60a)

where �= (C) is called a rate function defined as:

�= (C) := sup
_2R

 
C_� 1

=

’
8

k-8
(_)

!
, C � 1

=

’
8

⇢-8 (13.60b)

The rate function �= (C)  (1/=)Õ
8
k
⇤
-8

(C) with equality if -8 are iid. For arbitrary C 2 R,
the rate function is (from (13.58)):

�= (C) := sup
_�0

 
C_� 1

=

’
8

k-8
(_)

!
, C 2 R (13.60c)

Therefore the tail probability decays exponentially in = when -8 are independent and
�= (C) is independent of =. Indeed if -8 are iid then �= (C) = � (C) = sup

_2R
�
C_�k-1 (_)

�
and

P

 
1
=

’
8

-8 � C
!
 4

�=k⇤
-1

(C) , C � ⇢-1

The Cherno� bound is extremely useful. We will use it to derive a safe approximation
of chance constrained linear program below and sample complexity results in Chapter
13.3.5.

Sub-Gaussian random variable.

Gaussian random variable is useful for bounding other random variables because its
log moment-generating function q. (_) is particularly simple (quadratic). Therefore
the supremum in the Cherno� bounds (13.57) (13.58) (13.60) can be computed in
closed form.

Example 13.5 (Gaussian random variable). Consider the Gaussian random variable.
with mean ` := ⇢. and standard deviation f :=

p
var(. ). Its log moment-generating

function is

kG (_) := ln⇢ (4_. ) = ln
✓π 1

�1

1p
2cf

4
_H

4
�(H�`)2/2f2

3H

◆
= `_+ 1

2
f

2
_

2

(13.61a)

Its conjugate function is

k
⇤
G (C) := sup

_2R

✓
C_� `_� 1

2
f

2
_

2
◆
=

(C � `)2

2f2
(13.61b)
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where the maximizer _⇤ = (C � `)/f2. For C := `+ Af with A � 0, the Cherno� bound
is (from (13.57b))

P(. > `+ Af)  4
�A2/2, A � 0 (13.61c)

i.e., the tail probability that the Gaussian random variable . is A standard deviations
above its mean decays exponentially in A2.

Consider a weighted sum . :=
Õ
8
08-8 of independent Gaussian random vari-

ables -1, . . . ,-= with parameter (`8 ,f2
8
). Then . is Gaussian with parameter�Õ

8
08`8 ,

Õ
8
0

2
8
f

2
8

�
. Hence (13.61) implies

k. (_) = ln⇢4_. = _

’
8

08`8 +
_

2

2

’
8

0
2
8
f

2
8
, _ 2 R

k
⇤
.
(C) = sup

_2R
(C_�q. (_)) =

(C �Õ
8
08`8)2

2
Õ
8
0

2
8
f

2
8

, C 2 R

and the Cherno� bound

P
©≠
´
’
8

08 (-8 � `8) > A
s’

8

0
2
8
f

2
8

™Æ
¨
 4

�A2/2, A � 0 (13.62)

A special case is the sample mean. := =�1 Õ
8
-8 of = independent Gaussian random

variables -8 , 8 = 1, . . . ,=, with finite parameters (`8 ,f2
8
). The tail probability satisfies

the Cherno� bound (from (13.62)):

P

 
1
=

’
8

(-8 � `8) > C
!
 4

�=C2/2E= , C � 0

where E= := (1/=)Õ
8
f

2
8

is the average variance. Compared with (13.54), the Cherno�

bound (24�=C2/2E= ) generally decays more rapidly than Chevyshev’s bound (E=/=C2).
If -8 are iid with parameter (`,f2), this reduces to

P

 
1
=

’
8

-8 � ` > C

!
 4

�=C2/2f2
, C � 0

⇤

A random variable . is called sub-Gaussian with parameter (`,f2) if

k. (_) := ln⇢ (4_. )  `_ + f
2

2
_

2 =: kG (_), _ 2 R (13.63a)

i.e., if the log moment-generating function is upper bounded by that of a Gaussian
random variable with mean ` and variance f

2. This is equivalent to ⇢ (4_. ) 
exp

⇣
`_+ f

2

2 _
2
⌘

for all _ 2 R. If. has zero mean ⇢. = 0 then. is called sub-Gaussian

with variance factor f2 if

k. (_) := ln⇢ (4_. )  f
2

2
_

2 =: kG (_), _ 2 R (13.63b)
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where kG (_) denotes the log moment-generating function of a zero-mean Gaussian
random variable. Since k⇤

.
(C) � k⇤G (C) for C 2 R where k⇤G (C) is defined in (13.61b),

(13.57) implies

P(. � C)  4
�k⇤

.
(C)  4

�(C�`)2/2f2
, C � ⇢. (13.64)

Hence the tail probability P(. � C) for C � ⇢. of a sub-Gaussian random variable .
decays more rapidly than that of the bounding Gaussian random variable.

Given a sequence -1, . . . ,-= of sub-Gaussian random variables, we can bound the
tail probability of its weighted sum

Õ
8
08-8 and its maximum max8 -8 .

1 Let . :=
Õ
8
08-8 , 08 2 R. Suppose -1, . . . ,-= are independent sub-Gaussian ran-

dom variables with parameter (`8 ,f2
8
), i.e.,

q-8
(_)  qG (_) = `8_+

f
2
8

2
_

2, _ 2 R

Then its weighted sum . is sub-Gaussian whose parameter (`,f2) :=�Õ
8
08`8 ,

Õ
8
0

2
8
f

2
8

�
is the weighted sum of individual parameters:

k. (_) = ln⇢

 ÷
8

4
08_-8

!
=

’
8

ln⇢408_-8 =
’
8

k-8
(08_)  `_+ f

2

2
_

2

where the second equality follows since -8 are independent. Hence (13.64) implies
that . satisfies the Cherno� bound:

P

 ’
8

08-8 � C
!
 exp

 
� (C �

Õ
8
08`8)2

2
Õ
8
0

2
8
f

2
8

!
, C � ⇢. (13.65)

Comparing with (13.62) we see that the tail probability of a sub-Gaussian weighted
sum is bounded by the Cherno� bound for the bounding Gaussian weighted sum.
The corresponding bound for C 2 R (as opposed to C � ⇢. ) will be established in
the derivation of a safe approximation of the chance constrained linear program
(Theorem 13.9). Therefore as far as Chernoof bound is concern, a sub-Gaussian
random variable behaves like its bounding Gaussian random variable.

2 Let. :=max8 -8 . Suppose. � 0 and -1, . . . ,-= are sub-Gaussian random variables
with a common variance factor f2, i.e., for all 8, k-8 (_)  f2

_
2/2, _ 2 R. Note

that -8 are not necessarily independent. It can be shown that (Exercise 13.16)

⇢

✓
max
8=1,...,=

-8

◆
 f

p
2ln= (13.66)

The Markov’s inequality (13.53a) then implies a concentration inequality for the
maximum of finitely many sub-Gaussian random variables:

P

✓
max
8=1,...,=

-8 � C
◆
 f

p
2ln=
C

, C > 0

provided . := max8 -8 � 0.
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Safe approximation.

A chance constrained problem is often intractable. We now use the Cherno� bound to
derive a tractable safe approximation of a chance constrained linear program when the
uncertain parameters are independent sub-Gaussian random variables.

Consider the chance constrained linear program (cf. the robust linear program
(13.11)):

min
G2R=

2
T
G s.t. P

 
:’
;=1

⇣
0

T
;
G� 1;

⌘
Z;  �(0T

0G� 10)
!
� 1� n (13.67a)

where n 2 (0,1), the probability measure P is on the random vector Z := (Z; , ; = 1, . . . , :)
and 2, (0; ,1;) 2 R= ⇥R, ; = 0, . . . , : , are given. We say that an optimization problem
is a safe approximation of the chance constrained program (13.67b) if the feasible set
of the optimization problem is contained in the feasible set of (13.67b). This implies
that any optimal solution of the safe approximation will satisfy the chance constraint
in (13.67b).

Let � := [01 · · · 0: ]T 2 R:⇥= and 1 := (11, . . . ,1: ) 2 R: . Then (13.67a) becomes:

min
G2R=

2
T
G s.t. P

⇣
Z

T (�G� 1)  �(0T
0G� 10)

⌘
� 1� n (13.67b)

Theorem 13.9 (Safe approximation: LP). Suppose the random variables Z; , ; = 1, . . . , : ,
in the chance constrained program (13.67b) are independent and sub-Gaussian with
parameters (`; ,f2

;
), f; > 0, i.e.,

kZ;
(_) := ln⇢Z;

⇣
4
_Z;

⌘
 `;_+

f
2
;

2
_

2, _ 2 R (13.68)

Then the following second-order cone program is a safe approximation of (13.67b):

min
G2R=

2
T
G s.t. A k

p
⌃(�G� 1)k2  �(0̂T

0G� 1̂0) (13.69)

where A :=
p

2ln(1/n), 0̂0 := 00 + �T
` 2 R=, 1̂0 := 10 + 1T

` 2 R, ` := (`1, . . . ,`: ) and
⌃ := diag

�
f

2
1 , . . . ,f2

:

�
.

Proof Fix an G 2 R=. Let 2; (G) := 0T
;
G�1; , ; = 0, . . . , : , and let. (G) :=

Õ
:

;=1 2; (G)Z; be
the weighted sum of the independent sub-Gaussian random variables Z; . The violation
probability is then P (. (G) > �20 (G)). The derivation of the Cherno� bound (13.65)
shows that . (G) is sub-Gaussian with parameter

⇣
`(G),f2 (G)

⌘
:=

 ’
;

2; (G)`; ,
’
;

2
2
;
(G)f2

;

!

that is the weighted sum of the individual parameters, i.e.,

k
. (G) (_)  `(G)_+ f

2 (G)
2

_
2 (13.70)
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Even though we do not know whether �20 (G) � ⇢. (G), we will show directly that the
Cherno� bound (13.65) still bounds the violation probability. Substituting (13.70) into
(13.58a) we have

lnP (. (G) > �20 (G))  inf
_�0

k
. (G) (_) + 20 (G)_  inf

_�0
(20 (G) + `(G))_+

f
2 (G)
2

_
2

If 20 (G) + `(G) � 0 then the minimum on the right-hand side is 0 (a trivial bound
on the tail probability), attained at the minimizer _(G) := 0. If 20 (G) + `(G) < 0 and
f

2 (G) > 0, then the minimum is �(20 (G) + `(G))2/(2f2 (G)), attained at the minimizer
_(G) :=�(20 (G) +`(G))/f2 (G). Finally if 20 (G) +`(G) < 0 butf2 (G) = 0, then 2; (G) = 0
for all ; (since f; > 0). Hence . (G) = 0 and 20 (G) + `(G) = 20 (G) < 0, and therefore
the violation probability P (. (G) > �20 (G)) = P (20 (G) > 0) = 0. This means that if
[(G) < 0 and W(G) = 0, then G is feasible for (13.67b). In all cases we therefore have

lnP (. (G) > �20 (G))  �
(20 (G) + `(G))2

2f2 (G) (13.71)

but the bound is useful only when 20 (G) + `(G) < 0.

Since n 2 (0,1), lnn < 0. A su�cient condition for the chance constraint in (13.67b)
to hold is therefore 20 (G) + `(G) < 0 and (13.71) holds, i.e.,

� (20 (G) + `(G))2

2f2 (G)  lnn

(If f2 (G) = 0, then G is feasible as discussed above and this inequality holds trivially.)
Hence G is feasible for (13.67b) if

p
2ln(1/n)f(G)  �(20 (G) + `(G)), or

p
2ln(1/n)

s’
;

f
2
;
2

2
;
(G)  �

 
20 (G) +

’
;

`;2; (G)
!

Substituting 2; (G) := 0T
;
G � 1; , ; = 0, . . . , : , yields the constraint in the second-order

cone program (13.69). ⇤

We compare three formulations of an uncertain linear program in the next example.

Example 13.6 (LPs with bounded uncertainty). Consider the uncertain linear program

min
G2R=

2
T
G s.t. (00 + 01Z1 + 02Z2)T

G  0 (13.72)

where 2,0; 2 R= and Z := (Z1, Z2) is an uncertain parameter taking value in /1 := {Z 2
R

2 : |Z; |  1, ; = 1,2}. We consider three formulations of the uncertain linear program.

1 The robust counterpart of (13.72) is:

min
G2R=

2
T
G s.t. 0

T
0G + max

Z 2/1
(01Z1 + 02Z2)T

G  0 (13.73)
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Theorem 13.1 says that the robust counterpart is equivalent to the linear program:
minG2R= 2T

G s.t. G 2 -1 where

-1 :=
�
G 2 R= : 0T

0G + �̂G  0
 

with �̂ :=

26666664

(+01 + 02)T

(+01� 02)T

(�01 + 02)T

(�01� 02)T

37777775
2 The chance constrained formulation of (13.72) is:

min
G2R=

2
T
G s.t. P ((00 + 01Z1 + 02Z2)T

G  0) � 1� n (13.74)

where n 2 (0,1) and P defines a probability distribution on /1. Denote the chance
constrained feasible set by -2.

3 Suppose Z; are independent zero-mean random variables. Since each Z; takes value
in a bounded interval [�1,1], Hoe�ding’s Lemma 13.10 below implies that Z; are
(independent) sub-Gaussian with variance factor (1� 0)2/4 := 1, i.e., they satisfy
(13.68) with `; := 0 and f2

;
:= 1, so that 0̂0 = 00 and ⌃ is the identity matrix in

(13.69). Theorem 13.9 then implies that a safe approximation of (13.74) is the
following second-order cone program:

min
G2R=

2
T
G s.t. 0

T
0G + A k�Gk2  0 (13.75)

where A :=
p

2ln(1/n) and � := [01 02]T. The feasible set -3 is the pre-image of
the standard second order cone  soc under an a�ne transformation:

-3 :=
⇢
G 2 R= :


�

�(1/A)0T
0

�
G 2  soc

�

and is itself a convex cone.

Both -1 and -3 are convex and contained in the feasible set -2 of (13.74) which
may be nonconvex. It does not however necessarily hold that -1 ✓ -3, i.e., the robust
formulation may not be more conservative than the safe approximation. To see this,
Theorem 13.1 says that the second-order cone program (13.75) is equivalent to a robust
linear program with the SOC uncertainty set /2 := {Z 2 R2 : kZ k2 

p
2ln(1/n)}:

min
G2R=

2
T
G s.t. 0

T
0G +max

Z 2/2
(01Z1 + 02Z2)T

G  0

Compared with (13.73), neither /1 nor /2 may contain the other, depending on the
value of n , and hence neither -1 nor -3 may contain the other. This is illustrated in
Figure 13.2 for = = 2 and 4�1

< n < 4
�1/2. ⇤

Hoe�ding’s lemma for bounded . .

We have seen above sub-Gaussian random variables have convenient Cherno� bounds.
Hoe�ding’s lemma shows that a zero-mean random variable with bounded support
[0,1] is always sub-Gaussian with variance factor (1 � 0)2/4. It is used in Example
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x2

x1

Z2

Z∞

−1

−1

1

1

Figure 13.2 Example 13.6: neither /1 nor /2 may contain the other, depending on n .

13.6 and will be used to prove Theorem 13.12 that bounds the tail probability of a
martingale with bounded increments. The proof of the Hoe�ding’s lemma relies on a
useful technique called change of measure, which we now explain.

Given a probability measure represented by the distribution function �/ , let a func-
tion ! (G) and another probability measure on the same probability space, represented
by the distribution function �/ , satisfy

3�/ (G) = ! (G)3�. (G) (13.76a)

which means that
Ø
�

3�/ (G) =
Ø
�

! (G)3�/ (G) for any (measurable) set �. If they have
probability density functions 5/ and 5. respectively then (13.76) means

5/ (G) = ! (G) 5. (G)

The function ! (G) is called the likelihood ratio of the distribution functions �/ and
�. . A consequence of (13.76a) is that for any (measurable) function 6, the expectation
⇢/ (6(/)) under distribution �/ can be computed under �. instead according to

⇢/ (6(/)) :=
π
6(I)3�/ (I) =

π
6(H)! (H)3�. (H) =: ⇢. (6(. )! (. )) (13.76b)

This is used e.g. in importance sampling to speed up simulations where a rare event
under distribution �/ can be much more e�ciently sampled under a modified dis-
tribution �. , i.e., instead of generating # samples {I8} under �/ (a rare event) to
estimate ⇢/ (6(/)) by (1/#)Õ

8
6(I8) we generate = samples {H8} under �. (not a

rare event) to estimate ⇢. (6(. )! (. )) by (1/=)Õ
8
6(H8)! (H8) (Exercise 13.17). The

required number = of samples can be much smaller than # for the same variance. Due
to (13.76b) we refer to (13.76) as a change of measure from �/ to �. through the
likelihood ratio ! (G). For the change of measure to be well defined, the probability
measures and the likelihood ratio must satisfy two conditions:

• It is necessary that any event that is impossible under the probability measure
(represented by) �. is also impossible under �/ , i.e., for any �,π

�

3�. (H) = 0 )
π
�

3�/ (H) = 0 (13.77a)
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In this case the probability measure �/ is said to be absolutely continuous with
respect to �. . The Radon Nikodym theorem says that absolutely continuity is
also su�cient, i.e., if �/ is absolutely continuous with respective to �. then
there exists a likelihood ratio ! (G) such that they satisfy (13.76). The likelihood
ratio is also called the Radon Nikodym derivative of probability measure �/ with
respect to �. and denoted by 3�/ (G)

3�. (G) = ! (G). This condition implies that, e.g.,

we can change a Gaussian distribution �/ := # (`,f2) to a standard Gaussian
�. := # (0,1), but not to an exponential distribution �. (H) = 1� 4�_H which is
nonzero only for H > 0. (An exponential distribution is absolutely continuous with
respect to an Gaussian distribution, but not vice versa.)

• The likelihood ratio ! (G) must satisfy ! (G) � 0 (almost surely with respect to �. )
and be normalized: π

! (G)3�. (G) = ⇢. (! (. )) = 1 (13.77b)

Lemma 13.10 (Hoe�ding’s lemma). Let . be a zero-mean random variable taking
values in a bounded interval [0,1]. Then

k. (_) := ln⇢ (4_. )  (1� 0)2

8
_

2, _ 2 R

i.e., . is sub-Gaussian with variance factor (1� 0)2/4.

Proof First observe that any random variable / with bounded support on [0,1],
whether or not ⇢/ = 0, satisfies var(/)  (1� 0)2/4 because����/ � 0 + 12

����  1� 0
2

and hence var(/) = var(/ � (0 + 1)/2)  (1� 0)2/4 because for any random variable
- , |- |  2 implies that ⇢ (- �⇢-)2  22.

Second, since . takes value in a bounded set, the bounded convergence theorem

implies that 3

3_
⇢ (6(. )) = ⇢

⇣
3

3_
6(. )

⌘
for any (measurable) function 6 on R. Hence

k
00
.
(_) = ⇢.

✓
.

2 · 4
_.

⇢. 4
_.

◆
�

✓
⇢.

✓
. · 4

_.

⇢. 4
_.

◆◆2

, _ 2 R (13.78)

where we have written ⇢. to emphasize that the expectation is taken with respect to
the probability distribution �. of the random variable . . Consider a random variable
/ that takes value in the same bounded interval [0,1] whose distribution function �/
is obtained from �. according to the following change of measure:

3�/ (G) =
4
_G

⇢. (4_. )
3�. (G) =: ! (G)3�. (G)

In particular �/ is absolutely continuous with respect to �. . The likelihood ratio
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! (G) := 4_G/⇢. (4_. ) � 0 for all G and satisfies ⇢. (! (. )) = 1. Hence (13.77) is
satisfied. Therefore (13.76b) implies

⇢.

✓
6(. ) · 4

_.

⇢. (4_. )

◆
= ⇢. (6(. )! (. )) = ⇢/ (6(/))

for any function 6. Substituting into (13.78) we have

k
00
.
(_) = ⇢/

⇣
/

2
⌘
� (⇢/ /)2 = var(/)  (1� 0)2

4
, _ 2 R (13.79)

where the inequality follows since / takes value in the bounded interval [0,1].

Finally notice that ⇢. = 0 implies that k. (0) = 0 and k 0
.
(0) = 0. Hence Taylor

expansion implies that, for some ` 2 [0,_],

k. (_) = k. (0) +k 0. (0)_+
1
2
k
00
.
(`)_2  (1� 0)2

8
_

2, _ 2 R

where the inequality follows from (13.79). ⇤

Azuma-Hoe�ding inequality.

The Azuma-Hoe�ding inequality is useful in bounding the sum of bounded random
variables

Õ
8
-8 . We will first derive a bound for when -8 are independent zero-mean

random variables and then extend it to the case where -8 need not be independent but
forms a martingale with bounded increment |-8 � -8�1 |.

Let .= := (1/=)Õ
8
(-8 � ⇢-8) be the sample mean of independent and centered

random variables -8 �⇢-8 with ⇢-8 <1. The conjugate of its log-moment generating
function is, from (13.59b),

k
⇤
.
(C) = sup

_2R

’
8

(C_�k8 (_)) (13.80)

where k8 are the log moment-generating functions of the centered random variables
-8 � ⇢-8 . The application of Hoe�ding’s Lemma 13.10 leads to a concentration in-
equality for the sample mean .=.

Theorem 13.11 (Azuma-Hoe�ding inequality). Let -1, . . . ,-=, be independent with
-8 2 [08 ,18], then

P

 
1
=

=’
8=1

(-8 �⇢-8) � C
!
 exp

✓
� 2=2

C
2Õ

=

8=1 (18 � 08)2

◆
, C � 0

Proof Let .= := (1/=)Õ=

8=1 (-8 � ⇢-8) be the sample mean of the independent and
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centered random variables -8 �⇢-8 . Cherno� bound gives, for C � 0,

P (.= � C)  4
�k⇤

.=

(C) = exp

 
inf
_2R

’
8

(k8 (_)� C_)
!

 exp

 
inf
_2R

 
_

2
’
8

(18 � 08)2

8
�=C_

!!
= exp

✓
� 2=2

C
2Õ

8
(18 � 08)2

◆

where the first equality follows from (13.80) and the second inequality follows from
Hoe�ding’s Lemma 13.10 since -8 �⇢-8 2 [08 �⇢-8 ,18 �⇢-8]. ⇤

The bound in Theorem 13.11 can be generalized to the case where -8 are not
necessarily independent, but form a martingale. A discrete-time stochastic process
-0,-1, . . . , is a martingale if

• ⇢ |-= | <1.
• ⇢ (-= |-0, . . . ,-=�1) = -=�1.

This implies that the total change -= � -0 by any time = has zero mean:

⇢ (-= � -0) = ⇢ (⇢ (-= � -0) |-0, . . . ,-=�1) = ⇢ (-=�1� -0) = · · · = 0

The application of Hoe�ding’s Lemma 13.10 leads to a concentration inequality for a
martingale with bounded increments.

Theorem 13.12 (Azuma-Hoe�ding inequality). Let -0,-1, . . . , be a martingale with
bounded increments |-= � -=�1 |  f=. Then for any = � 1,

P (-= � -0 � C)  exp

 
� C

2

2
Õ
=

8=1f
2
8

!
, C � 0

Proof Without loss of generality we can assume -0 = 0; otherwise we can consider
the martingale .0,.1, . . . , with .0 := 0 and .= := -= � -0. Cherno� bound gives

P (-= � C)  min
_2R

⇢

exp(_-=)
exp(_C) = min

_2R
4
�_C
⇢ exp

 
_

=’
8=1

(-8 � -8�1)
!

= min
_2R

4
�_C
⇢

 
exp

 
_

=�1’
8=1

(-8 � -8�1)
!
⇢ (exp(_(-= � -=�1)) |-0, . . . ,-=�1)

!

(13.81)

where the second equality uses ⇢ (6(-). ) = ⇢ (6(-)⇢ (. |-)). Since -0,-1, . . . , is
a martingale with bounded increment, ⇢ (-= |-0, . . . ,-=�1) = -=�1. Hence, given
-0, . . . ,-=�1, -=� -=�1 is a zero-mean random variable that takes value in [�f=,f=].
Hoe�ndg’s Lemma 13.10 implies that

⇢ (exp(_(-= � -=�1)) |-0, . . . ,-=�1)  exp
✓
f

2
=

2
_

2
◆
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Substitute into (13.81) to get

P (-= � C)  min
_2R

4
�_C
⇢

 
exp

 
_

=�1’
8=1

(-8 � -8�1)
!!

exp
✓
f

2
=

2
_

2
◆

Repeating this calculation for -=�1� -=�2, . . . , -1� -0, we arrive at

P (-= � C)  min
_2R

4
�_C exp

 
_

2

2

=’
8=1

f
2
8

!
=: min

_2R
exp

✓
B

2
=

2
_

2� C_
◆

where B2
=

:=
Õ
=

8=1f
2
8
. The minimizer is _= := C/B2

=
and P (-= � C)  exp

⇣
� C

2

2B2
=

⌘
. ⇤

The two-sided tail probabilities in Theorems 13.11 and 13.12 are bounded by twice
the bounds in these theorems:

P

 
1
=

=’
8=1

|-8 �⇢-8 | � C
!
 2exp

✓
� 2=2

C
2Õ

=

8=1 (18 � 08)2

◆

P ( |-= � -0 | � C)  2exp

 
� C

2

2
Õ
=

8=1f
2
8

!

Summary.

The inequalities introduced in this subsection are some of the most basic inequalities
in probability and are summarized in Table 13.1.

13.3 Convex scenario optimization

Consider the robust program (13.5) studied in Chapter 13.1 with a linear cost: 4

RCP : 2
⇤
RCP := min

G2- ✓R=
2

T
G s.t. ⌘(G, Z)  0, Z 2 / ✓ R: (13.82)

where 2 2 R=, Z 2 R: is an uncertain parameter taking value in the uncertainty set / , ⌘ :
R
=⇥R:!R< is a convex (and hence continuous) function in G for every Z 2 / , and -

is a nonempty closed convex set.5 Even though (13.82) is convex, it is semi-infinite and
hence generally intractable. Moreover requiring constraint satisfaction for all possible
uncertain parameters in / can be too conservative. The chance constrained formulation
studied in Chapter 13.2 is less conservative as it requires constraint satisfaction only

4 The linear cost function does not lose generality; see Remark 13.1.
5 We can also assume without loss of generality that ⌘ : R= ⇥R: ! R is a scalar-valued function because

otherwise, ⌘ (G, Z )  0 can be replaced by the single constraint max8 ⌘8 (G, Z )  0. Note however that if
⌘ is scalar-valued then G is infeasible if ⌘ (G, Z ) > 0, but if ⌘ is vector-valued then G is infeasible if
⌘8 (G, Z ) > 0 for at least one 8, not ⌘ (G, Z ) > 0.
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Inequality Assumptions

Markov’s P (. � C)  ⇢ (q (. ))
q (C) q(. ) � 0, q(C) > 0, ⇢. <1

Chebyshev’s P ( |- �⇢- | � C)  var(-)/C2 var(-) <1, C > 0

P

⇣��� 1
=

Õ
8
(-8 �⇢-8)

��� � C⌘  (1/=)Õ
8
var(-8)

=C
2 var(-8) <1, independent -8 , C > 0

Cherno� P(. � C)  4�k⇤. (C)
⇢. <1, C � ⇢.

P(. � C)  exp
�
�sup

_�0 (C_�k. (_))
�

⇢. <1, C 2 R
P

⇣
1
=

Õ
8
-8 � C

⌘
 4�=k

⇤
-1

(C)
iid -8 , ⇢-8 <1, C � ⇢ (-1)

sub-Gaussian P(. � C)  4�(C�`)2/2f2
sub-Gaussian . , ⇢. <1, C � ⇢.

P (Õ
8
08-8 � C)  exp

✓
� (C�Õ

8
08`8)2

2
Õ
8
0

2
8
f

2
8

◆
indep. sub-Gaussian -8 , ⇢-8 <1, C � ⇢.

P

⇣
max=

8=1 -8 � C
⌘
 f
p

2ln=/C sub-Gaussian -8 , C > 0

Hoe�ding’s lemma k. (_)  (1/8) (1� 0)2_2
⇢. = 0, . 2 [0,1] a.s.

Azuma-Hoe�ding P

⇣
1
=

Õ
=

8=1 -8 � C
⌘
 exp

⇣
� 2=2

C
2Õ

=

8=1 (18�08)2

⌘
independent zero-mean -8 2 [08 ,18], C � 0

P(-= � -0 � C)  exp
⇣
�C2/2Õ

=

8=1f
2
8

⌘
martingale -8 , |-8 � -8�1 |  f8 , C � 0

Table 13.1 Summary of concentration inequalities. k. (_) := ln⇢4_. and
k
⇤
.
(C) := sup

_2R (C_�q. (_)). . is sub-Gaussian if k. (_)  `_+ (f2/2)_2.

with high probability rather than with probability 1. Consider the chance constrained
program with a linear cost:

CCP(n) : 2
⇤
CCP (n) := min

G2- ✓R=
2

T
G s.t. P (⌘(G, Z)  0) � 1� n (13.83)

where - ,2,⌘ are the same as those in (13.82), Z 2 / ✓ R: is a random vector and P is a
probability measure defined on some probability space, and n 2 (0,1). Solving problem
(13.83) however can be challenging as it requires the knowledge of the probability
measure P which may not be available. Moreover it requires an e�cient method to
evaluate the probability in order to assess the feasibility of G.

This motivates the scenario approach to uncertain optimization where # indepen-
dent samples Z1, . . . , Z# of the uncertain parameter Z are drawn according to the
probability measure P, leading to the following problem, called a convex scenario
program:

CSP(#) : 2
⇤
CSP (#) := min

G2- ✓R=
2

T
G s.t. ⌘(G, Z 8)  0, 8 = 1, . . . ,# (13.84)

Since Z 8 are random samples, the scenario program (13.84) is a randomized problem
in the sense that its solution is a random variable whose value depends on the values
of Z 8 . It does not require the knowledge of P, but only a way to obtain independent
samples according to P. For instance, the uncertain parameter Z may represent power
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demand and its realizations Z 8 may be measured from a real power system without
knowing the underlying distribution.

Unlike RCP (13.82) and CCP(n) (13.83) which are often intractable, the scenario
program (13.84) is a finite convex program for each realization of the random samples
(Z1, . . . , Z# ) and therefore can be e�ciently solved if # is not too large. There is
therefore a tradeo� between small computational burden (when # is small) and high
likelihood of constraint satisfaction (when # is large). In this section we will study
three issues:

1 Violation probability (Chapter 13.3.1). Given a fixed vector G 2 - ✓ R= the vi-
olation probability + (G) is the probability of ⌘8 (G, Z) > 0 for at least one 8, a
deterministic value. A solution G⇤

#
of the convex scenario program CSP(#) is

random, depending on the random samples (Z1, . . . , Z# ). The violation probabil-
ity + (G⇤

#
) of the random solution G⇤

#
is therefore not a deterministic value, but a

random variable itself. We will bound the expected value and the tail probability
of + (G⇤

#
).

2 Sample complexity (Chapter 13.3.5). The more sampled constraints are included in
CSP(#), the more likely its optimal solution G⇤

#
will satisfy the chance constraint

of CCP(n). We will use the bounds on the expected value and the probability of
+ (G⇤

#
) to derive a threshold # (n , V) to guarantee that the (random) solution G⇤

#

will be feasible for CCP(n) with probability at least 1� V.
3 Optimality guarantee (Chapter 13.3.6). We will show that the same threshold
# (n , V) that guarantees, with probability at least 1� V, the feasibility of G⇤

#
for

CCP(n) also guarantees that the optimal value 2T
G
⇤
#

is close to the optimal values
of RCP and CCP(n).

13.3.1 Violation probability + (G⇤
#
)

Let -Z := {G 2 - ✓ R= : ⌘(G, Z)  0}. We will refer to a constraint by ⌘(G, Z)  0
or -Z or Z interchangeably. The assumption that - is a closed convex set and each
component ⌘ 9 of ⌘ is convex (and hence continuous) in G for any Z 2 / implies that -Z
is a closed convex set for every Z 2 / . We may interpret -Z either as a deterministic
set determined by a realization of Z in / , or a random set whose value depends on
the random variable Z ; the meaning should be clear from the context. For each G 2 - ,
define the violation probability of G as

+ (G) := P
��
Z 2 / : G 8 -Z

 �
(13.85a)

For a fixed G 2 - , + (G) is a deterministic value in [0,1]. As we will see the feasibility
and sample complexity results are independent of the fine structure of the constraint
function ⌘ or the probability measure P, except through the random constraint set
-Z . The CCP(n) (13.83) with the deterministic constraint P

�
G 2 -Z

�
� 1� n can be
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equivalently stated as:

CCP(n) : 2
⇤
ccp (n) := min

G2- ✓R=
2

T
G s.t. + (G)  n

For each integer # � =, we interpret (Z1, . . . , Z# ) 2 Z# either as deterministic
vectors realized by independent samples of Z 2 / ✓ R: under the probability measure
P, or as iid random vectors with the product measure P# , depending on the context.
The randomized problem CSP(#) (13.84) can be equivalently stated as:

CSP(#) : 2
⇤
CSP (#) := min

G2- ✓R=
2

T
G s.t. G 2 -

Z
1 \ · · ·\ -

Z
#

An optimal solution G⇤
#

of CSP(#), if exists, is feasible for the chance constrained
program (13.83) when + (G⇤

#
)  n . Note however that G⇤

#
is a random variable under

probability measure P# , depending on (Z1, . . . , Z# ), i.e., +
�
G
⇤
#

�
is the conditional

violation probability:

+

�
G
⇤
#

�
:= P

⇣�
Z 2 / : G⇤

#
8 -Z

 ���⇣Z1, . . . , Z#
⌘ ⌘

(13.85b)

Hence the violation probability + (G⇤
#
) itself is a random variable under P# . It may

be greater or smaller than n , i.e., G⇤
#

may or may not be feasible for CCP(n) (13.83).

We emphasize that + (G⇤
#
) is not the unconditional probability P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
.

While the former is a random variable with probability measure P# , the latter is a
deterministic value. Their relation is

P
#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
=

π
/
#

+

�
G
⇤
#

�
P
#

⇣
3Z

1, . . . ,3Z#
⌘
= ⇢

#
�
+

�
G
⇤
#

� �
(13.86)

i.e., the expected value of the violation probability + (G⇤
#
) turns out to be the uncondi-

tional probability P#+1
⇣
G
⇤
#
8 -

Z
#+1

⌘
.

Main result.

Intuitively a larger # will produce an optimal solution G⇤
#

that is more likely to satisfy
the chance constraint + (G⇤

#
)  n . A reasonable approach is then to choose # large

enough to ensure that the expected value ⇢#
�
+ (G⇤

#
)
�
 V under P# for a su�ciently

small V. Another approach is to ensure that the probability P#
�
+ (G⇤

#
) > n

�
 V. In

this subsection we show in Theorems 13.14 and 13.15 that

⇢
#

�
+ (G⇤

#
)
�
 =

# +1
, P

# (+ (G⇤
#
) > n) 

=�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

and that both bounds are tight for a class of problems called fully supported problems
defined in Definition 13.3. The bound on ⇢#

�
+ (G⇤

#
)
�

decreases at a rate ⇠ 1/# . The
bound on P# (+ (G⇤

#
) > n) is a Binomial tail. Hence it is in (0,1) as long as # � =

(equal to 1 if # = =� 1) and decreases more rapidly as # increases. These bounds
mean that if we solve CSP(#) (13.84) with a su�ciently large # , then we will obtain
a random optimal solution G⇤

#
whose conditional violation probability + (G⇤

#
) is small
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either in expectation or probability. They translate into sample complexity studied in
Chapter 13.3.5.

We make the following assumption

C13.3: Consider CSP(#) (13.84).
• - is a closed convex set and, for each Z 2 / , the components ⌘ 9 of the constraint

function ⌘(G, Z) are continuous and convex in G, so that -Z is a closed convex
set.

• For each integer # � = and each realization of (Z1, . . . , Z# ), the feasible set
of CSP(#) (13.84) (is nonempty and) has a nonempty interior. Moreover
CSP(#) has a unique optimal solution denoted by G⇤

#
.

See Remark 13.6 when G⇤
#

may be non-unique.

Definition 13.3 (Uniformly supported problem). Fix any # � = and consider CSP(#)
(13.84).

1 Consider a realization of (Z1, . . . , Z# ) 2 /# . A constraint Z 8 is called a support
constraint for CSP(#) (with respect to the realization) if its removal changes the
optimal solution, i.e., G⇤

# \8 < G
⇤
#

where G⇤
# \8 is the optimal solution of the scenario

program CSP(# � 1) with the constraint -
Z
8 removed. A constraint that is not a

support constraint is called a non-support constraint for CSP(#).
2 CSP(#) is called uniformly supported with B support constraints if every realiza-

tion of (Z1, . . . , Z# ) 2 /# contains exactly B � 0 support constraints for CSP(#)
with probability 1. It is called fully supported if it is uniformly supported with
B = = support constraints. It is said to have no support constraint if it is uniformly
supported with B = 0 support constraint.

A support constraint must be an active constraint at the optimal point G⇤
#

but the
converse may not hold, e.g., if Z 8 = Z 9 (redundant constraints) then neither can be a
support constraint. For a uniformly supported problem with B � 1 support constraints,
the probability of Z 8 = Z 9 must be zero. Since optimal solutions are unique (assumption
C13.3), G⇤

# \8 < G
⇤
#

is equivalent to 2T
G
⇤
# \8 < 2

T
G
⇤
#

because otherwise, if 2T
G
⇤
# \8 = 2

T
G
⇤
#

then both G⇤
# \8 and G⇤

#
are optimal solutions of CSP(#), contradicting the uniqueness

of optimal solutions. If CSP(#) is uniformly supported with B = 0 support constraint, it
means that, with probability 1, no realization of (Z1, . . . , Z# ) has a single constraint that
is a support constraint (e.g. all constraints are inactive at G⇤

#
or all active constraints are

redundant). For a general problem that is not uniformly supported, di�erent realizations
of (Z1, . . . , Z# ) may have di�erent number of support constraints. Given a realization
(Z1, . . . , Z# ), by “the set of support constraints for CSP(#)” we mean the unique set
of all support constraints for CSP(#).

An important observation is the following result of [144]. Its proof makes use of
the linearity of the cost function 2T

G and convexity of -Z .
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Lemma 13.13. [144] For each # � =, consider CSP(#) (13.84) with a linear cost
function and closed convex sets -Z for all Z 2 / . Then the number of support constraints
is at most = for any realization of (Z1, . . . , Z# ) 2 /# as long as (13.84) is feasible.

If (13.84) is infeasible the number of support constraints is upper bounded by =+1
[145].

Example 13.7 (Uniformly supported problems [146]). We consider three problems, a
uniformly supported problem, a fully supported problem and a general problem; see
Figure 13.3. We will derive their support constraints in Example 13.8.

1 Uniformly supported problem. Given # iid random squared radius Z 8 each taking
value in / := R+ according to an exponential distribution, we solve the scenario
program CSP(#):

min
G2R=

’
8

G8 s.t. kGk22  Z
8 , 8 = 1, . . . ,#

For almost all (Z 8 , 8 = 1, . . .#) 2 R#+ , there is exactly B = 1 support constraint and a

unique optimal solution G⇤
#

:=
⇣
�
p
Z

max/=, . . . ,�
p
Z

max/=
⌘

where Zmax :=max8 Z 8 .

x2

x1

ζ max

xN*

(a) Uniformly supported

x3*

(b) Fully supported

(x1* , x2* )

x3*

(c) General problem

Figure 13.3 Example 13.7.

2 Fully supported problem. We are given # � 3 points in R2 specified by their
coordinates Z 8 := (08 ,18) 2 / := R2, 8 = 1, . . . ,# , where (08 ,18) are iid samples
under the Gaussian distribution over R2. To construct a strip of smallest vertical
width that contains all the # points, we solve the CSP(#):

min
(G1,G2,G3)2R3

G3 s.t.
��
1
8 � (08G1 + G2)

��  G3, 8 = 1, . . . ,#

See Figure 13.3. This problem is fully supported as CSP(#) has exactly = = 3
support constraints for almost every realization of (08 ,18 , 8 = 1, . . . ,#) 2 R2⇥# .

3 General problem. Instead of the strip of smallest vertical width, suppose we wish
to construct a circle of smallest radius that contains all the # points. Then we solve



13.3 Convex scenario optimization 685

the CSP(#):

min
(G1,G2,G3)2R3

G3 s.t.
p
(08 � G1)2 + (18 � G2)2  G3, 8 = 1, . . . ,#

with SOC constraints. This problem has 3 support constraints if the optimal circle
is defined by three points on the circle or 2 support constraints if it is defined by
two points on a diameter. ⇤

The main characterization of the conditional violation probability + (G⇤
#
) is given

in the next two theorems.

Theorem 13.14 (Expectation of + (G⇤
#
) [144, 147]). Fix any # � = and suppose

assumption C13.3 holds. Then

⇢
#

�
+

�
G
⇤
#

� �
= P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
 =

# +1
(13.87)

If CSP(# +1) is uniformly supported with 0  B  = support constraints then

⇢
#

�
+

�
G
⇤
#

� �
= P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
=

B

# +1

In particular if CSP(# +1) has no support constraint then ⇢#
�
+

�
G
⇤
#

� �
= 0.

Theorem 13.15 (Tail probability of + (G⇤
#
) [146]). Fix any # � = and suppose as-

sumption C13.3 holds. Then

P
#

�
+

�
G
⇤
#

�
> n

�


=�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 (13.88)

If CSP(#) is uniformly supported with 1  B  = support constraints then

P
#

�
+

�
G
⇤
#

�
> n

�
=

B�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

In particular if CSP(#) has no support constraint then P#
�
+

�
G
⇤
#

�
= 0

�
= 1.

Remark 13.5 (Improved bounds). 1 If an a.s. upper bound Bmax  = on the number
of support constraints for CSP(# +1) is known, then the bound in (13.87) can be
improved to (see (13.94)):

⇢
#

�
+

�
G
⇤
#

� �
 B

max

# +1

2 If an a.s. upper bound Cmax  = on the number of “generalized support constraints”
(see Definition 13.5) for CSP(#) is known, then the bound in (13.88) can be
improved to (see (13.109)):

P
#

�
+

�
G
⇤
#

�
> n

�


C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

These improved bounds can be useful for power system applications because large
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OPF problems often have a large = but very small Bmax and Cmax, e.g., only a few lines
are congested at only a few times a year in a multi-stage OPF problem. ⇤

Remark 13.6 (Generality of bounds). 1 It is remarkable that the bounds in Theo-
rems 13.14 and 13.15 depend only on (=,#) and n , and not on the probability
measure P, the cost function, or the structure of the constraint sets -Z . The cost
function and the structure of the constraints only a�ect whether the problem is
uniformly supported and hence the tightness of the bound. (The linearity of the
cost function 2T

G and convexity of -Z are used in the proof of Lemma 13.13 [144].
The linear cost does not lose generality as we can always replace a nonlinear cost
minG 5 (G) by the linear cost minG,C C with the additional constraint 5 (G)  C.)

2 The assumption in C13.3 on the existence and uniqueness of the optimal so-
lution G⇤

#
is not important. It is shown in [144, 146] that if optimal solutions

are nonunique, a tie-breaking rule can be used to produce a unique solution,
e.g., choose the optimal solution with minimum Euclidean norm, and Theo-
rems 13.14 and 13.15 hold unchanged. If optimal solutions may not exist then
the expectation in Theorem 13.14 should be replaced by conditional expecta-
tion, conditioned on the subset of /# on which an optimal solution G⇤

#
exists,

and the probability P# (+ (G⇤
#
) > n) in Theorem 13.15 should be replaced by

P
#

�
G
⇤
#

exists and + (G⇤
#
) > n

�
. (See also [145] for discussions on infeasible prob-

lems.) ⇤

We prove Theorems 13.14 and 13.15 in the next two subsection.

13.3.2 Proof: bound on ⇢# (+ (G⇤
#
))

Partitioning of /# .

The violation probability+ (G⇤
#
) is related to support constraints through the following

useful characterization.

Lemma 13.16 (+ (G⇤
#
)). Consider CSP(#) and CSP(# +1).

1 G
⇤
#
8 -

Z
#+1 , -

Z
#+1 is support constraint for CSP(# +1).

2 +

�
G
⇤
#

�
:= P

⇣
G
⇤
#
8 -

Z
#+1

�� �
Z

1, . . . , Z#
� ⌘

satisfies:

+

�
G
⇤
#

�
= P

⇣
-
Z
#+1 is support constraint for CSP(# +1)

���⇣Z1, . . . , Z#
⌘ ⌘

Proof Suppose G⇤
#
8 -

Z
#+1 . Then -

Z
#+1 must be a support constraint of CSP(# +

1) with # + 1 constraints because otherwise, G⇤
#

= G⇤
#+1 where G⇤

#
is the optimal

solution of CSP(#) after the constraint -
Z
#+1 is removed. This contradicts G⇤

#
8 -

Z
#+1 .

Conversely, suppose -
Z
#+1 is a support constraint for CSP(# +1). If G⇤

#
2 -

Z
#+1 then

G
⇤
#

is feasible, and hence optimal, for CSP(# + 1). Hence G⇤
#
= G⇤

#+1 since optimal
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solutions are unique (assumption C13.3). This contradicts -
Z
#+1 being a support

constraint for CSP(# +1), and hence G⇤
#
8 -

Z
#+1 .

Part 2 then follows from (13.85b). ⇤

A key to the proof of both Theorems 13.14 and 13.15 is the partitioning of /#

according to support constraints. Fix any # � = and consider CSP(#). The independent
samples (Z1, . . . , Z# ) take values in /# . To simplify notation we will use Z̃ 2 / to
denote a single vector and Z := (Z1, . . . , Z# ) 2 /# to denote a collection of vectors.

For B = 1, . . . ,=, let �B ✓ {1, . . . ,#} be an index set with |�B | = B indices and let

/
# (�B) :=

�
Z 2 /# :

�
-
Z
8 , 8 2 �B

�
are all the support constraints in Z

 
(13.89a)

/
# (B) :=

ÿ
�
B

/
# (�B) (13.89b)

i.e., /# (B) is the set of vectors Z 2 /# that contain exactly 1  B  = support constraints
(Lemma 13.13 implies B  =), and /

# (�B) is the subset of /# (B) whose support
constraints are indexed by �B . For B = 0, we define �0 := ; and

/
# (0) := /

# (�0) :=
�
Z 2 /# : CSP(#) has no supp. const.

 
(13.89c)

Clearly /# (�B) and /# (�B) are disjoint if �B and �B are distinct index sets each with

B indices and there are
✓
#

B

◆
distinct index sets. Moreover /# (�B) partition /# , first

according to /# (B) with B = 0, . . . ,= support constraints and then according to di�erent
index sets �B in /# (B) (see Figure 13.4(a)):

/
# =

=ÿ
B=0

/
# (B) =

=ÿ
B=0

ÿ
�
B

/
# (�B) (13.90)

This partitioning is useful in proving the bound on ⇢# (+ (G⇤
#
)) in Theorem 13.14.

The problem CSP(#) is uniformly supported with 0  B  = support constraints if and

ZN(0/ )

s

s=n

s=0

ZN(I1s) ZN(I2s)

(a) Theorem 13.14

ZN(0/ )

t

t= n

t= 0

ZN(J1t) ZN(J2t)

(b) Theorem 13.15

Figure 13.4 Partitioning of /# according to (a) support constraints in �B and (b) generalized
support constraints in �C for CSP(#) that is not uniformly supported (see Chapter 13.3.4).
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only if /# = /# (B) and /# (B0) = ; for all B0 < B.6 These concepts are illustrated in
the next example.

Example 13.8 (Uniformly supported problems [146]). We partition the uncertainty
sets /# for the three problems in Example 13.7.

1 The support constraint is (defined by) Zmax :=max8 Z 8 . The index sets �1 for support
constraints take the form �

1 := {8} if Z 8 = Zmax, 8 = 1, . . . ,# , and

/
# ({8}) =

�
Z := (Z1, . . . , Z# ) 2 R#+ : Z 8 is the support constraint

 
Recall that the unique solution G⇤

#
depends on Zmax. For the same G⇤

#
, any one of

Z
1, . . . , Z# can be the support constraint and therefore P(/# ({8})) = 1/# since Z 8

are iid. If more than one Z 8 attains the maximum in Zmax, then none of Z1, . . . , Z#

is a support constraint, but this is a zero-probability event under the exponential
distribution (otherwise both /# (1) and /# (0) have nonzero probabilities and the
problem is not uniformly supported). Therefore, for B < 1, �B = ; and /# (B) = ;
with probability 1, and

/
# = /

# (1) =
#ÿ
8=1

/
# ({8}) (with probability 1)

2 The second problem in Example 13.7 is fully supported, i.e., it has B =
3 support constraints for almost every Z :=

�
Z

1, . . . , Z#
�

and hence /
# =

/
# (3). Suppose �3 := {1,2,3} are 3 support constraints, i.e., the three points

(01,11), (02,12), (03,13) define the optimal strip ( ✓ R2 with minimum vertical
width containing all the # points Z :=

�
Z

1, . . . , Z#
�
. Then

/
# ({1,2,3}) =

n⇣
Z

1, Z2, Z3, Z4, . . . , Z#
⌘
2 /# : Z 8 2 (, 8 = 4, . . . ,#

o

and P(/# ({1,2,3})) is the probability that Z 8 2 (, 8 � 4. Even though some of Z 8 ,
8 � 4, may lie on the boundary of ( in which case Z1, Z2, Z3 may not be support con-
straints, these are zero-probability events under the Gaussian distribution, condi-
tioned on �3. Therefore for B < 3, /# (B) = ; for almost every Z 2 /# . For the same
G
⇤
#

, the three support constraints (points on the boundary) that define the (same)

optimal strip ( can be any three of Z1, . . . , Z# . Hence P(/# ({1,2,3})) =
✓
#

3

◆�1

.

3 For the third problem, the optimal circle⇠ ⇢ R2 with minimum radius that contains
all# points is defined either by three points on the circle or two points on a diameter.
If the distribution is not Gaussian, but nonzero only at grid points (8, 9) 2 R2 for a
finite number of integers 8, 9 , then CSP(#) can have 0, 1, 2, or 3 support constraints
and /# =

Õ3
B=0 /

# (B). For the same G⇤
#

that defines a ⇠, any one of Z1, . . . , Z#

can be the support constraint conditioned on /# (1), any two of them can be the

6 This should be interpreted as P(/# (B0)) = 0 even when /# (B0) < ; for B0 = B. We often simplify
exposition by omitting the qualification of “almost surely (a.s.)."
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support constraints conditioned on /# (2), and any three of them can be the support

constraints conditioned on /# (3). Hence P(/# (�B) |/# (B)) is
✓
#

B

◆�1

. ⇤

The next result formalizes the intuition in Example 13.8 that the conditional prob-
ability P#

�
/
# (�B)

��
/
# (B)

�
is the same for all index sets �B , provided /

# (B) < ;.
This reflects the fact that the order of the constraints in CSP(#) defined by
Z :=

�
Z

1, . . . , Z#
�
2 /# (B) does not matter. Furthermore the probability does not de-

pend on the details of the distribution function or the constraint functions, but only #

and B because there are
✓
#

B

◆
index sets on /# (B).s

Lemma 13.17 (Partitions /# (�B) of /# (B)). Fix any # � = and suppose assumption
C13.3 holds. For any 0  B  =, if /# (B) < ; then

P
#

⇣
/
# (�B)

��
/
# (B)

⌘
=

✓
#

B

◆�1

, 8�B with |�B | = B (13.91)

where /# (�B) and /# (B) are defined in (13.89).

Proof The problem may not be uniformly supported, but we will condition on /# (B),
i.e., consider only Z := (Z1, . . . , Z# ) 2 /# that contains B support constraints. The
lemma holds for B = 0 by definition in (13.89c). Fix an arbitrary 1  B  = with
/
# (B) < ;. To avoid triviality we assume # > B.

Consider the set [B] := {1,2, . . . , B} and

/
# ( [B]) :=

�
Z 2 /# (B) :

�
-
Z
8 , 8 2 [B]

�
are the B support constraints in Z

 
For any �B ✓ {1, . . . ,#} with B indices and

/
# (�B) :=

�
Z 2 /# (B) :

�
-
Z
8 , 8 2 �B

�
are the B support constraints in Z

 
we will establish a one-one correspondence between /# (�B) and /# ( [B]). Since Z 8

are iid this implies that

P
#

⇣
/
# (�B)

��
/
# (B)

⌘
= P#

⇣
/
# ( [B])

��
/
# (B)

⌘
, 8�B with |�B | = B

The lemma then follows since there are
✓
#

B

◆
index sets �

B with B support con-

straints. Order the indices in �
B as 81 < 82 < · · · < 8B . Let U := (1,2, . . . ,#) and let

% 2 {0,1}#⇥# be any permutation matrix such that [%U]8: = : , i.e., % maps 1, . . . , B
to 81, . . . , 8B respectively and the complement of [B] to the complement of �B . We also
write this mapping defined by % as c(1) = 81, . . . ,c(B) = 8B , . . . ,c(#) and the inverse
mapping defined by %�1 as c�1 (1), . . . ,c�1 (#). Then given any Z := (Z1, . . . , Z# ) 2
/
# ( [B]),

⇣
Z
c
�1 (1) , . . . , Z c

�1 (# )
⌘
2 /# (�B); given any Z := (Z1, . . . , Z# ) 2 /# (�B),�

Z
c (1) , . . . , Z c (# ) � 2 /# ( [B]). Therefore the permutation matrix % defines a bijec-

tion between /# (�B) and /# ( [B]) and completes the proof of the lemma. ⇤



690 Stochastic OPF

We start by proving Theorems 13.14 and 13.15 for the simple case where CSP(#)
is uniformly supported with B = 0 support constraints, i.e., it has no support constraint
for all Z 2 /# . In this case the violation probability is 0 with probability 1.

Lemma 13.18 (No support constraint). Suppose CSP(#) has no support constraint
for any realization of Z 2 /# .

1 CSP(:) has no support constraint for : � # � = (with probability 1).
2 +

�
G
⇤
#

�
= 0 with probability 1. Hence ⇢#

�
+

�
G
⇤
#

� �
= 0 and P#

�
+

�
G
⇤
#

�
> n

�
= 0

for any n > 0.

Proof Consider CSP(# +1) and suppose for the sake of contradiction that there are�
Z

1, . . . , Z#+1� with nonzero probability that have B support constraints, i.e., /#+1 (B) <
; for some 1  B  = < # +1 (this is weaker than CSP(# +1) being uniformly supported
with B support constraints). Then every realization (Z1, . . . , Z#+1) 2 /#+1 (B) ✓ /#+1

has exactly B support constraints and # +1� B non-support constraints. Hence CSP(#)
with one of the non-support constraints removed will still have the same B constraints
as support constraints. Since the samples Z 8 are iid, this contradicts that CSP(#) has
no support constraint. Hence CSP(# +1) has no support constraint and part 1 is proved
by induction.

Part 2 then follows from Lemma 13.16. ⇤

Proof of Theorem 13.14.

We next bound the expectation ⇢#
�
+ (G⇤

#
)
�

of the violation probability when CSP(#)
may not be uniformly supported or is uniformly supported with B � 1 support con-
straints.

Proof of Theorem 13.14 We have from (13.90)

/
#+1 =

=ÿ
B
0=0

/
#+1 (B0) =

=ÿ
B
0=0

/
#+1 (B0)

ÿ
�
B
0
/
#+1 (�B0)

where �B
0 ✓ {1, . . . ,# +1} specifies |�B0 | = B0 support constraints for CSP(# +1). Hence,

conditioning on Z 2 /#+1 having B0 support constraints, we have

⇢
#

�
+ (G⇤

#
)
�
= P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘

= P#+1
⇣
-
Z
#+1 is support constraint for CSP(# +1)

⌘

=
=’
B
0=0

P
#+1

⇣
/
#+1 (B0)

⌘ ’
�
B
0:#+12� B0

P
#+1

⇣
/
#+1 (�B0)

��
/
#+1 (B0)

⌘
(13.92)

where the first equality follows from (13.86), the second equality follows from Lemma
13.16, and the last equality follows because /#+1 (�B0) are disjoint across �B

0
.
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Suppose CSP(# +1) is uniformly bounded with B support constraints. The case of
B = 0 (i.e., CSP(# + 1) has no support constraint) is proved in Lemma 13.18. Hence
fix any 1  B  =. Then /

#+1 = /#+1 (B) = –
�
B /

#+1 (�B) and /
#+1 (B0) = ; (with

probability 1) for B0 < B. Applying Lemma 13.17 to (13.92) we have

⇢
#

�
+ (G⇤

#
)
�
=

’
�
B:#+12� B

P
#+1

⇣
/
#+1 (�B)

��
/
#+1 (B)

⌘

=
✓
#

B�1

◆
·
✓
# +1
B

◆�1

=
B

# +1
(13.93)

where the second equality follows because, of all the
✓
# +1
B

◆
index sets �B ,

✓
#

B�1

◆
of

them contain # +1.

For the general case where CSP(# + 1) may not be uniformly supported for any
integer B, application of Lemma 13.17 and (13.93) to (13.92) gives

⇢
#

�
+ (G⇤

#
)
�
=

=’
B=1

P
#+1

⇣
/
#+1 (B)

⌘ ’
�
B:#+12� B

P
#+1

⇣
/
#+1 (�B)

��
/
#+1 (B)

⌘

=
=’
B=1

B

# +1
P
#+1

⇣
/
#+1 (B)

⌘

=
1

# +1
⇢
#+1 (number of support constraints for CSP(# +1))

 B
max

# +1
(13.94)

where Bmax is an upper bound on the number of support constraints for CSP(# + 1).
Theorem 13.14 follows since Bmax  = by Lemma 13.13. ⇤

13.3.3 Proof: bound on P# (+ (G⇤
#
) > n) for uniformly supported problem

We first prove Theorem 13.15 when CSP(#) is uniformly supported and then extends
the argument to the general case.

Uniformly supported case.

Suppose CSP(#) is uniformly supported with B support constraints. Theorem 13.15
follows from Lemma 13.18 if B = 0. Hence suppose 1  B  = and assume # > B to
avoid triviality. From (13.90) we have

/
# = /

# (B) =
ÿ
�
B

/
# (�B)

where /# (�B) contains vectors Z 2 /# such that (Z 8 , 8 2 �B) are B support constraints
for CSP(#). Since the sets �B partition /# (B) we can intersect the event

�
+ (G⇤

#
) > n

�



692 Stochastic OPF

with the events /# (�B) to get:

P
#

�
+ (G⇤

#
) > n

�
=

’
�
B

P
#

⇣
Z :+ (G⇤

#
) > n , Z 2 /# (�B)

⌘
(13.95)

We will derive each summand P#
�
Z :+ (G⇤

#
) > n , Z 2 /# (�B)

�
.

Fix any �
B ✓ {1, . . . ,#} with B indices. Each (realization of) Z := (Z1, . . . , Z# )

defines a CSP(#) that has exactly B support constraints (they may not be in �B unless
Z 2 /# (�B)). Let Z (�B) := (Z 8 , 8 2 �B) denote the subset of constraints in Z indexed by
�
B . We will use the B constraints in Z (�B) to also define a scenario program CSP(B)

and denote its (unique) optimal solution by G⇤
B
.

Even though CSP(#) is uniformly supported with B support constraints, a generic
CSP(B) defined by arbitrary B iid samples may not be uniformly supported. Let / B (B)
denote the set of Z̃ := ( Z̃1, . . . , Z̃ B) 2 / B that are support constraints for CSP(B), equipped
with the conditional distribution P(·|/ B (B)). To emphasize, we will write the CSP(B)
defined by a Z̃ 2 / B (B) as CSP( B̃). Denote by G̃⇤

B
the unique optimal solution of CSP( B̃).

The violation probability of G̃⇤
B

is the conditional probability (from (13.85b))

+

�
G̃
⇤
B

�
:= P

⇣
Z̃
B+1 2 / : G̃⇤

B
8 -

Z̃
B+1

��� Z̃ := ( Z̃1, . . . , Z̃ B) 2 / B (B)
⌘

(13.96a)

conditioned on a Z̃ 2 / B (B). This is a random variable with the product measure
P
B (·|/ B (B)). Let

�
B (E |/ B (B)) := PB

�
+

�
G̃
⇤
B

�
 E |/ B (B)

�
, E 2 [0,1] (13.96b)

denote the distribution function of + (G̃⇤
B
) condition on / B (B) (not a Z̃ 2 / B (B)).7

Remark 13.7. We emphasize the di�erence between the two independent random
solutions G̃⇤

B
and G⇤

B
. CSP( B̃) is defined by B support constraints Z̃ 2 / B (B) for CSP( B̃)

and G̃⇤
B

is its unique optimal solution. Given any Z 2 /# and an index set � with B
indices, let Z (�) := (Z 8 , 8 2 �) denote the subset of constraints indexed by �. As we will
see in Lemma 13.19, we are not interested in generic CSP(B) defined by arbitrary B
iid samples, but the CSP(B) defined by Z (�) obtained from # samples Z and a given
index set �. To emphasize this dependence, we will write CSP(Z (�)) and G⇤

�
instead of

CSP(B) and G⇤
B
. Lemma 13.19 shows that Z 2 /# (�B), i.e., the support constraints in Z

are indexed by �B , if and only if the optimal solution G⇤
�
B

of CSP(Z (�B)) also satisfies
constraints (Z 8 , 8 8 �B). These subtle details become important when we generalize the
proof for the uniformly supported case to the general case in Chapter 13.3.4. ⇤

We will prove Theorem 13.15 in three steps:

1 Show that G⇤
#
= G⇤

�
B

where �B is the set of support constraints in Z 2 / . Relate the
violation probability of G⇤

�
B

to that of G̃⇤
B

and hence to �B (Lemma 13.19).
2 Derive the distribution function �B (E |/ B (B)) = EB for E 2 [0,1] (Lemma 13.20).

7 The distribution � B is only for G̃⇤
B

where B is the number of support constraints for CSP(# ) . In
particular, violation probability of G⇤

#
is not given by �# .
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3 Apply Lemmas 13.19 and 13.20 to (13.95) to derive P#
�
+ (G⇤

#
) > n

�
.

Step 1 makes crucial use of the fact that CSP(#) is uniformly supported and needs
modification in the general case. Steps 2 and 3 extend to the general case directly.

Let

.
# (�B) :=

�
Z 2 /# : G⇤

�
B of CSP(Z (�B)) 2 -

Z
8 , 8 8 �B

 
(13.97)

Informally, P
�
.
# (�B)

�
is the violation probability of G⇤

�
B

where �B is any index set
with B indices, not necessarily a set of support constraints for CSP(#). We will
relate it to the violation probability of G̃⇤

B
and hence to �

B . Recall that /# (�B) :=�
Z 2 /# : (Z 8 , 8 2 �B) is the set of support constraints for CSP(#)

 
.

Lemma 13.19. Fix any # � = and suppose assumption C13.3 holds. If CSP(#) is
uniformly supported with B support constraints then for any �B ✓ {1, . . . ,#}

1 G
⇤
B
= G⇤

B+1 = · · · = G⇤
#

for all Z 2 /# where G⇤
:

is the optimal solution of the resulting
CSP(:) after # � : non-support constraints are removed.

2 /
# (�B) = .# (�B) with probability 1 under P# .

3 We have

P
#

⇣
/
# (�B)

⌘
= P#

⇣
.
# (�B)

⌘
=

π 1

0
(1� E)#�B3�B (E |/ B (B)) (13.98)

Proof Suppose Z 2 /# (�B). Then �
B are support constraints and its complement

�
B2 := {8 8 �B} are not support constraints for CSP(#). If we remove a constraint from
�
B2 , since it is not a support constraint, G⇤

#
remains the optimal solution for CSP(#�1)

with the remaining # �1 constraints. If # �1 = B then G⇤
B
= G⇤

#
since optimal solutions

are unique (assumption C13.3), and hence G⇤
B
2 -

Z
8 , 8 8 �B . If # � 1 > B then the B

constraints in �B remain support constraints for CSP(# � 1). Moreover the # � B� 1
constraints in its complement �B2 are not support constraints for CSP(# �1), i.e., no
Z
8 , 8 2 �B2 can become a support constraint for CSP(# �1) when CSP(#) is uniformly

supported (Exercise 13.19). 8 Repeating this process and we conclude that G⇤
#

remains
the optimal solution for each CSP(:) after # � : non-support constraints are removed
from �

B2 . Since the optimal solutions are unique for each Z 2 /# by assumption C13.3,
G
⇤
B
= G⇤

B+1 = · · · = G⇤
#

. In particular G⇤
B
2 -

Z
8 , 8 8 �B . Hence Z 2 .# (�B).

Conversely suppose Z 2 .# (�B). Since �B2 specifies the B constraints for CSP(B),
G
⇤
B
2 -

Z
8 , 8 2 �B . Moreover G⇤

B
2 -

Z
8 , 8 8 �B , since Z 2 .# (�B). Therefore G⇤

B
is feasible,

and hence optimal, for CSP(:) after # � : constraints are removed from �
B2 , : =

B, . . . ,# . By uniqueness of optimal solutions, we have G⇤
B
= G⇤

B+1 = · · · = G⇤
#

. If any
constraint in �

B2 is a support constraint for CSP(#), then removing it will change
the optimal solution, i.e., G⇤

#�1 < G
⇤
#

, a contradiction. Hence none of the constraints
in �B2 can be support constraints for CSP(#). Therefore all constraints in �B2 must

8 If CSP(# ) is not uniformly supported then this is not necessarily the case because of latent support
constraints; see Definition 13.4.
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be support constraints for CSP(#) since Z 2 /# (B). This proves Z 2 /# (�B), and
/
# (�B) = .# (�B) a.s.

The argument above shows that Z 2 /# (�B) implies that G⇤
�
B
= G⇤

B
= G⇤

B+1 = · · · = G⇤
#

where G⇤
:

is the optimal solution of the resulting CSP(:) after # � : non-support
constraints are removed. (Recall that G⇤

�
B

denotes the optimal solution of CSP(Z (�B))
defined by constraints in �B and G⇤

�
B
= G⇤

B
because Z 2 /# (�B)). Since this holds for all

�
B and /# = [� B/# (�B) for uniformly supported CSP(#), G⇤

�
B
= G⇤

B
= G⇤

B+1 = · · · = G⇤
#

holds for all Z 2 /# .

Finally, /# (�B) = .# (B) implies that any Z 2 /# (�B) = .# (B) has its support
constraints indexed by �B and G⇤

�
B
= G⇤

B
satisfies constraints (Z 8 , 8 8 �B). Moreover the

event (Z 8 , 8 2 �B) that defines G⇤
�
B

and the event (-
Z
8 , 8 8 �B) in the definition of .# (�B)

in (13.97) are independent because P
�
.
# (�B) |/# (B)

�
= P

�
.
# (�B)

�
when / = /# (B),

implying that

P
#

⇣
.
# (�B)

⌘
= P#

⇣
G̃
⇤
B
2 -

Z̃
8 , 8 = B+1, . . . ,#

���/ B (B)⌘ (13.99)

Here G⇤
�
B
= G̃⇤

B
in probability since both are the unique optimal solutions of CSP(B)

defined by two independent sets of B support constraints for CSP(B). 9

Conditioned on a Z̃ 2 / B (B), the probability that G̃⇤
B

does not violate the constraints
( Z̃ 8 , 8 = B+1, . . . ,#) is

�
1�+

�
G̃
⇤
B

� �
#�B since Z̃ 8 are iid, i.e.,

P
#�B

⇣
G̃
⇤
B
2 -

Z̃
8 , 8 = B+1, . . . ,#

��� Z̃ 2 / B (B)⌘ =
�
1�+

�
G̃
⇤
B

� �
#�B

where +
�
G̃
⇤
B

�
is defined in (13.96). This is itself a random variable with probability

measure PB since G̃⇤
B

depends on Z̃ 2 / B (B). The probability that G̃⇤
B

does not violate
these constraints, conditioned on / B (B) as opposed to a Z̃ 2 / B (B), is

P
#

⇣
G̃
⇤
B
2 -

Z̃
8 , 8 = B+1, . . . ,#

���/ B (B)⌘ =
π
/
B

�
1�+

�
G̃
⇤
B

� �
#�B
P
B

⇣
3Z̃

1, . . . ,3Z̃ B
��
/
B (B)

⌘

=
π 1

0
(1� E)#�B3�B (E |/ B (B)) (13.100)

where the second equality follows from (13.96). Combining this with (13.99) and
/
# (�B) = .# (B) proves part 3 of the lemma. ⇤

Consider the scenario program CSP( B̃) defined by B iid samples Z̃ := ( Z̃1, . . . , Z̃ B)
that are support constraints of CSP( B̃). The distribution function �B of the violation
probability + (G̃⇤

B
) is defined in (13.96).

Lemma 13.20. �
B (E |/ B (B)) = EB over E 2 [0,1].

9 If CSP(# ) is not uniformly supported then (Z 8 , 8 2 � B) and (-
Z
8 , 8 8 � B) are dependent and (13.99)

becomes an inequality in (13.107).



13.3 Convex scenario optimization 695

Proof We have from Lemma 13.19

P
#

⇣
/
# (�B)

⌘
=

π 1

0
(1� E)#�B3�B (E |/ B (B))

Substituting P#
�
/
# (�B) |/# (B)

�
=

✓
#

B

◆�1

from Lemma 13.17 we have

✓
#

B

◆ π 1

0
(1� E)#�B3�B (E |/ B (B)) = 1

This is an integral equation in �B . We show that �B (E |/ B (B)) = EB is the unique solution
by substituting it into the left-hand side and integrating by part:✓
#

B

◆ π 1

0
(1� E)#�B3 (EB) =

✓
#

B

◆ ✓
(1� E)#�BEB

��1
0 + (# � B)

π 1

0
(1� E)#�B�1

E
B

3E

◆

=
✓
#

B

◆
# � B
B+1

π 1

0
(1� E)#�B�1

3 (EB+1)

=
✓
#

B

◆ (# � B) · · ·1
(B+1) · · ·#

π 1

0
3 (E# ) = 1

which is equal to the right-hand side. ⇤

We now use Lemmas 13.19 and 13.20 to bound the tail probability of + (G⇤
#
) when

CSP(#) is uniformly supported with B support constraints.

Proof of Theorem 13.15: uniformly supported case Suppose CSP(#) is uniformly
supported with 1  B  = support constraints. (The case of B = 0 follows from Lemma
13.18). Assume # > B to avoid triviality.

The summands on the right-hand side of (13.95) are:

P
#

⇣
+ (G⇤

#
) > n , /# (�B)

⌘
= P#

⇣
+ (G⇤

�
B ) > n , .# (�B)

⌘

= P#
⇣
+ (G̃⇤

B
) > n , G̃⇤

B
2 -

Z̃
8 , 8 = B+1, . . . ,#

���/ B (B)⌘

=
π
{+ ( G̃⇤

B
)>n }

�
1�+

�
G̃
⇤
B

� �
#�B
P
B

⇣
3Z̃

1, . . . ,3Z̃ B
��
/
B (B)

⌘

=
π 1

n

(1� E)#�B3�B (E)

where the first equality follows because G⇤
#
= G⇤

B
= G⇤

�
B

and /
# (�B) = .# (�B) from

Lemma 13.19, the second equality follows from (13.99), and the last equality follows
(13.96). Substituting this and Lemma 13.20 into (13.95) and integrating by part, we
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have (since there are
✓
#

B

◆
index sets �B):

P
#

�
+ (G⇤

#
) > n

�
=

✓
#

B

◆ π 1

n

(1� E)#�B3 (EB)

= �
✓
#

B

◆
(1� n)#�Bn B +

✓
#

B+1

◆ π 1

n

(1� E)#�B�1
3 (EB+1)

...

= �
#�1’
8=B

✓
#

8

◆
(1� n)#�8n 8 +

✓
#

#

◆ π 1

n

3 (E# )

= �
#�1’
8=B

✓
#

8

◆
(1� n)#�8n 8 +

⇣
1� n#

⌘

=
B�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 (13.101)

This completes the proof of Theorem 13.15 when CSP(#) is uniformly supported with
1  B  = support constraints. ⇤

13.3.4 Proof: bound on P# (+ (G⇤
#
) > n) for general problem

To prove the general case where the problem is not uniformly supported we need to
study the partition /# more carefully. As pointed out in the proof of Lemma 13.19
(footnotes 8 and 9) there are two di�culties. The first is that, given a Z 2 /# (�B) with B
support constraints, when we remove a non-support constraint from the complement �B2

of �B , a remaining constraint Z 8 2 �B2 may become a support constraint for CSP(# �1)
if CSP(#) is not uniformly supported, i.e., CSP(# �1) may have more than B support
constraints. Then G⇤

B
violates the constraint -

Z
8 and therefore the given Z 8 .# (�B),

violating /# (�B) =.# (�B) in Lemma 13.19. This di�culty is overcome by considering
generalized support constraints defined in Definition 13.5. The second di�culty is that,
if CSP(#) is not uniformly supported, then the events (Z 8 , 8 2 �B) and (-

Z
8 , 8 8 �B) in

the definition of .# (�B) in (13.97) may no longer be independent. This means that
(13.99), which expresses the violation probability of G⇤

�
B

in terms of that of G̃⇤
B
, may

no longer hold. Instead the conditional version of (13.99) becomes an inequality in
(13.107), leading to an upper bound in Theorem 13.15.

Generalized support constraint.

A constraint that is not a support constraint for CSP(#) but becomes a support con-
straint for some CSP(# � :) when some of the : constraints are removed is called a
latent support constraint for CSP(#). Recall that, given any Z 2 /# and any index
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set � ✓ {1, . . . ,#}, Z (�) := (Z 8 , 8 2 �) denotes the subset of constraints indexed by
�, CSP(Z (�)) the scenario program defined by these constraints, and G⇤

�
C

its unique
optimal solution.

Definition 13.4 (Latent support constraint). Fix a Z 2 /# and let �B = �B (Z) denote its
(unique) set of B support constraints. A set !✓ ✓ {8, 8 8 �B} with ✓ indices is called a set of
latent support constraints with respect to Z if Z (�B[!✓) is the set of support constraints
for CSP(�B [ !✓). Each Z 8 (or -

Z
8 ), 8 2 !✓ , is called a latent support constraint for

CSP(#).

A set !✓ with ✓ indices is a maximal set of latent support constraints with respect to
Z if !✓ is a set of latent support constraints with the largest number of indices. Instead of
partitioning /# according to �B of support constraints in the uniformly supported case,
we will partition /# according to �B [ !✓ where, for each Z 2 /# , �B is the (unique)
set of support constraints and !✓ is a maximal set of latent support constraints. A Z

however can have multiple maximal sets !✓ of latent support constraints. Even though
they all have the same number ✓ of indices, the sets /# (�B [ !✓), which is the set of
all Z whose support constraints are in �B and latent support constraints in !✓ , do not
form a partition of /# because maximal sets !✓ are non-unique. For instance, consider
Z 2 /5 defined by Z1 = 0, Z2 = Z3 = 1, and Z4 = Z5 = 2, where �1 := {1} is (the index of)
the single support constraint. Suppose !8 9 := {8, 9} for 8 = 2,3 and 9 = 4,5 are maximal
sets of latent support constraint with 2 indices. Then Z is in all four sets /5 (�1[ !8 9 )
for 8 = 2,3 and 9 = 4,5 (see Exercise 13.20 for more details). This can be resolved by
choosing a unique representative among all maximal sets of latent support constraints
for each Z , e.g., according to the lexicographical order of these maximal sets. For the
example above this representative is !24.

Definition 13.5 (Generalized support constraint). Fix a Z 2 /# and let �B = �B (Z)
denote its (unique) set of B support constraints.

1 A set !✓ ✓ {8 : 8 8 �B} with ✓ indices is called the (unique) maximum set of latent
support constraints with respect to Z if !✓ is a set of latent support constraints with
the largest number of indices and it is the smallest of such sets in the lexicographical
order. In this case ✓ is called the maximum number of latent support constraints
with respect to Z .

2 Let �C ✓ {1, . . . ,#} be an index set with B  C  = indices. We call Z (�C ) or simply
�
C the set of generalized support constraints for CSP(#) with respect to Z if

(a) �C = �B[!C�B where !C�B := !C�B (Z) is the unique maximum set of C� B latent
support constraints with respect to Z .

(b) Z (�C ) is the set of support constraints for CSP(Z (�C )).
3 We say Z 2 /# has C generalized support constraints if there exists an index set
�
C with C indices such that Z (�C ) is the set of generalized support constraints for

CSP(#).

If CSP(#) is uniformly supported with 1  C  = support constraints, then there
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is no latent support constraints, i.e., !0 = ; for all Z 2 /# = /# (C) (Exercise 13.19).
For a general problem CSP(#) that may not be uniformly supported, any Z 2 /# (=)
has no latent support constraint by Lemma 13.13. Exercise 13.19 proves some other
properties of generalized support constraints.

Every Z 2 /# has a unique set �B of support constraints and a unique maximum set
!
✓ of latent support constraints for CSP(#), and hence belongs to exactly one /# (�C )

with �C := �B [ !✓ . This means that the sets /# (�C ) form a partition of /# , the same
way the set /# (�B) partition /# for the proof of Theorem 13.14 (see Figure 13.4).
For C = 0,1, . . . ,=, let �C ✓ {1, . . . ,#} be an index set with C indices. We partition /#

according to the number and identity of generalized support constraints:

/
# (�C ) :=

�
Z 2 /# : Z (�C ) are all the gen. supp. const. for CSP(#)

 
(13.102a)

/
# (C) :=

ÿ
�
C

/
# (�C ) (13.102b)

where the union ranges over all index sets �C of C generalized support constraints, with
�

0 := ; by definition. Then

/
# =

=ÿ
C=0

/
# (C) =

=ÿ
C=0

ÿ
�
C

/
# (�C ) (13.102c)

See Figure 13.4(b).

Therefore, as in (13.95) for the uniformly supported case, we can intersect the event�
+ (G⇤

#
) > n

�
with the disjoint sets /# (�C ):

P
#

�
+ (G⇤

#
) > n

�
=

=’
C=0

P
# (/# (C))

’
�
C

P
#

⇣
+ (G⇤

#
) > n , /# (�C )

��
/
# (C)

⌘
(13.103)

These concepts are illustrated in Example 13.9 and Exercise 13.20.

Example 13.9 (Generalized support constraints and P(+ (G⇤
#
) > n)). We are given two

points 0,1 2 R2 on a plane. The random variable Z is equal to 0 or 1 with nonzero
probabilities ?0 or ?1 := 1� ?0 respectively. Given # iid samples (Z1, . . . , Z# ), # � 4,
CSP(#) determines the smallest circle, specified by G := (G1,G2,G3) 2R3, going through
all # points (Z1, . . . , Z# ).

1 Partition /# according to (13.102).
2 Derive P(+ (G⇤

#
) > n) assuming 0 < n  min{?0, ?1}. What if n > max{?0, ?1}?

Solution. The optimal circle is either ⇠0 centered at 0 with zero radius (when Z 8 = 0
for all 8), or ⇠1 centered at 1 with zero radius (when Z 9 = 1 for all 9), or ⇠01 with 0
and 1 on its diameter (when Z 8 takes both values 0 and 1). Since # � 4, /# (B) < ; for
only B = 0 or 1. In particular the maximum number Bmax = 1 of support constraints is
less than = = 3. The partitioning of /# in (13.102) is summarized in Table 13.2. The
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B event �
C

�
B

!
C�B

P
# (event) G

⇤
#

0 Z
8 = 0 for all 8 {8min} ; {8} ?

#

0
⇠0

Z
9 = 1 for all 9 { 9min} ; { 9} ?

#

1
⇠
1

Z
8 = 0 for : � 2 8s, Z 9 = 1 for # � : 9s {8min, 9min} ; {8, 9} ?

:

0
?
#�:
1

⇠
01

1 Z
8 = 0, Z 9 = 1 for all 9 < 8 {8, 9min} {8} { 9} ?0?

#�1
1

⇠
01

Z
9 = 1, Z 8 = 0 for all 8 < 9 { 9 , 8min} { 9} {8} ?

#�1
0

?
1

⇠
01

Table 13.2 Example 13.9. The !C�B column includes all maximal sets of latent support
constraints.

sets /# (1) and /# (2) consist of all Z 2 /# with 1 and 2 respectively generalized
support constraints. We have

P
#

⇣
/
# (1)

⌘
= ?

#

0
+ ?#

1

P
#

⇣
/
# (2)

⌘
=

#�2’
:=2

✓
#

:

◆
?
:

0
?
#�:
1

+#?0?#�1
1

+#?#�1
0

?1

and hence

P

⇣
/
#

⌘
= P#

⇣
/
# (1)

⌘
+P#

⇣
/
# (2)

⌘
= (?0 + ?1)# = 1

as expected. Clearly P(�1
��
/
# (1) ) = 1/# and P(�2

��
/
# (2) ) = 2/(# (# �1)).

For part 2, the violation probability is (from (13.103))

P(+ (G⇤
#
) > n) =

2’
C=1

’
�
C

P
#

⇣
Z :+ (G⇤

#
) > n , Z 2 /# (�C )

⌘
(13.104)

Recall + (G⇤
#
) := P

⇣
G
⇤
#
8 -

Z
#+1

��
Z 2 /#

⌘
. Given a Z 2 /# (1) with one generalized

support constraint, either (Z 8 = 088) or (Z 9 = 18 9). The former event happens with
probability ?#

0
, has the optimal solution G⇤

#
= ⇠0, and G⇤

#
satisfies constraint -

Z
#+1

if Z#+1 = 0 and violates it if Z#+1 = 1; similarly for the latter event. Therefore, since
n  min{?0, ?1},

%
#

�
Z :+ (G⇤

#
) > n , Z 8 = 088

�
= P#

�
Z
8 = 088

�
P

⇣
Z
#+1 = 1

⌘
= ?

#

0
?1

%
#

�
Z :+ (G⇤

#
) > n , Z 9 = 18 9

�
= P#

�
Z
9 = 18 9

�
P

⇣
Z
#+1 = 1

⌘
= ?

#

1
?0

and %#
�
Z :+ (G⇤

#
) > n , Z 2 /# (�2)

�
= 0 since G⇤

#
=⇠01 . Substituting into (13.104) we

have P(+ (G⇤
#
) > n) = ?#

0
?1 + ?#

1
?0. The upper bound on the number of generalized

support constraints for this example is Cmax = 2 < =. Hence, in view of Remark 13.5,
the bound in Theorem 13.15 is

C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 = (1� n)# +#n (1� n)#�1 ?

� ?
#

0
?1 + ?#

1
?0
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since 1� n � {?0, ?1} and #n � ?0?1 (under appropriate conditions?! Something
wrong?) If n > max{?0, ?1} then P(+ (G⇤

#
) > n) = 0. ⇤

The proof for the general case parallels that for the uniformly supported case,
with /

# (�C ) and /
# (C) here playing the roles of /# (�B) and /

# (B) there. The
main di�erence is Lemma 13.21 that extends Lemma 13.19 to the general case. Fix
any �C ✓ {1, . . . ,#} with C elements. Each (realization of) Z := (Z1, . . . , Z# ) 2 /# (C)
defines a CSP(#) and has exactly C generalized support constraints (they may not be
in �C unless Z 2 /# (�C )). Moreover we will use the C constraints Z (�C ) := (Z 8 , 8 2 �C )
to also define CSP(Z (�C )), and denote its (random) optimal solution by G⇤

�
C
.

Consider again the scenario program CSP(C̃) defined by separate C iid samples Z̃ :=
( Z̃1, . . . , Z̃ C ) 2 / C (C) that are support constraints for CSP(C̃). The violation probability
+

�
G̃
⇤
C

�
of its unique optimal solution G̃⇤

C
is defined in (13.96), reproduced here:

+

�
G̃
⇤
C

�
:= P

⇣
Z̃
C+1 2 / : G̃⇤

C
8 -

Z̃
C+1

��� Z̃ := ( Z̃1, . . . , Z̃ C ) 2 / C (C)
⌘

(13.105a)

conditioned on a Z̃ 2 / C (C) with distribution function

�
C (E |/ C (C)) := PC

�
+

�
G̃
⇤
C

�
 E |/ C (C)

�
, E 2 [0,1] (13.105b)

condition on / C (C) (as opposed to a Z̃ 2 / C (C)). The proof of Lemma 13.20 in terms of
a certain scenario program CSP(#) with C support constraints applies here and shows
that �C (E) = EC over [0,1].

We next extend Lemma 13.19 to the general case where CSP(#) may not be
uniformly supported. Let .# (�C ) and /# (�C ) be the conditional version of these sets
in the uniformly supported case (cf. (13.97)):

.
# (�C ) := {Z 2 /# (C) : G⇤

�
C of CSP(Z (�C )) 2 -

Z
8 , 8 8 �C }

/
# (�C ) := {Z 2 /# (C) : Z (�C ) is the set of gen. supp. const. for CSP(#)}

In contrast to the uniformly supported case, these two sets are equal in probability, not
with probability 1, when conditioned on /# (C) because maximal sets of latent support
constraints are not unique.

Lemma 13.21. Fix any # � = and suppose assumption C13.3 holds. Then for any
�
C ✓ {1, . . . ,#} with 1  C  =

1 G
⇤
C
= G⇤

C+1 = · · · = G⇤
#

for all Z 2 /# (C) where G⇤
:

is the optimal solution of the
resulting CSP(:) after # � : non-support constraints are removed.

2 P#
�
/
# (�C )

��
/
# (C)

�
= P#

�
.
# (�C )

��
/
# (C)

�
.

3 We have

P
#

⇣
/
# (�C )

��
/
# (C)

⌘
= P#

⇣
.
# (�C )

��
/
# (C)

⌘


π 1

0
(1� E)#�B3�C (E |/ C (C)) (13.106)
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Proof Suppose Z 2 /# (�C ). Then �C is the unique set of generalized support con-
straints for CSP(#) with a unique decomposition �C = �B [ !C�B of support constraints
and latent support constraints. The set �C2 := {8 8 �C } may contain other latent support
constraints for CSP(#) but no support constraints. If we remove a constraint from
�
C2 , the resulting optimal solution G⇤

#�1 = G
⇤
#

. If # �1 = C then G⇤
�
C
= G⇤

#�1 = G
⇤
#

since
optimal solutions are unique and hence G⇤

�
C

satisfies -
Z
8 , 8 8 �C . If # � 1 > C then �C

remains the set of generalized support constraints for CSP(# � 1), i.e., �C remains
the set of support constraints for CSP(Z (�C )), and no constraint Z 8 , 8 8 �B , becomes a
support constraint for CSP(#�1); see Exercise 13.19. Moreover Exercise 13.19 shows
that G⇤

�
C
= G⇤

C
= G⇤

C+1 = · · · = G⇤
#

.10 In particular G⇤
�
C
2 -

Z
8 , 8 2 �C2 . Therefore Z 2.# (�C )

and hence P# (/# (�C ) |/# (C))  P# (.# (�C ) |/# (C)).

Conversely suppose Z 2 .# (�C ). We will show that, in probability, �C is the set of
generalized support constraint for CSP(#) (with respect to Z), by showing (i) �C ◆ �B
where �B := �B (Z) is the unique set of support constraints; and (ii) �C is the set of
support constraints for CSP(Z (�C )) in probability. Clearly G⇤

�
C
2 -

Z
8 , 8 2 �C , since G⇤

�
C

is optimal for CSP(Z (�C )). Moreover G⇤
�
C
2 -

Z
8 , 8 8 �C since Z 2 .# (�C ). Therefore G⇤

�
C

is feasible, and hence optimal, for the resulting scenario programs CSP(# � :) after
: constraints in �C2 are removed, : = 1, . . . ,# � C. By uniqueness of optimal solutions,
we must have G⇤

�
C
= G⇤

C
= G⇤

C+1 = · · · = G⇤
#

. This implies that none of the constraints in
�
C2 can be support constraints for CSP(# � :), and in particular �C ◆ �B .

If �C is a set of support constraints for CSP(�C ) with respect to Z but �C \ �B is not the
(unique) maximum set !C�B of latent support constraints, then we can exchange �C \ �B
for !C�B (relabeling constraints) so that �C becomes the set of generalized support
constraints for CSP(#). This amounts to replacing Z by a di�erent Z 0 that has the same
probability for which Z 0(�C ) is the set of generalized support constraints for CSP(#).
Suppose for the sake of contradiction that �C is not a set of support constraints for
CSP(�C ). Write �C =: �1[ �2 where �1 is the set of support constraints and �2 the set of
non-support constraints for CSP(�C ). Removing constraints in �2 yields the scenario
program CSP(Z (�1)) whose optimal solution satisfies G⇤

�1
= G⇤

�
C
. Since Z 2 /# (C),

there is a set � 02 of |�2 | constraints in �C2 such that if we add them back to �1, then
�1 [ � 02 is a set of C support constraints for CSP(Z (�1 [ � 02)). Since � 02 are support
constraints, removing them from CSP(Z (�1[ � 02)) results in CSP(Z (�1)) with optimal
solutions G⇤

�1
< G⇤

�
C
. This is a contradiction since optimal solutions are unique. Hence

�
C is equal, in probability, to the set of generalized support constraints for CSP(#).

This shows P# (/# (�C ) |/# (C)) � P# (.# (�C ) |/# (C)), and completes the proof of
P
#

�
/
# (�C )

��
/
# (C)

�
= P#

�
.
# (�C )

��
/
# (C)

�
.

The argument above shows that Z 2 /# (�C ) implies G⇤
�
C
= G⇤

C
= G⇤

C+1 = · · · = G⇤
#

for
any /# (�C ). Hence G⇤

�
C
= G⇤

C
= G⇤

C+1 = · · · = G⇤
#

for any Z 2 /# (C).

10 Recall that G⇤
C

is the optimal solution of the resulting CSP(C) after # � C non-support constraints are
removed, and G⇤

�
C

is the optimal solution of CSP(Z (� C )) defined by constraints in � C . They are equal

for Z 2 /. (� C ) .



702 Stochastic OPF

Finally for part 3, we first claim that

P
#

⇣
.
# (�C )

��
/
# (C)

⌘
= P#

⇣
G
⇤
�
C 2 -Z 8 , 8 8 �C

��
/
# (C)

⌘

 P#
⇣
G̃
⇤
C
2 -

Z̃
8 , 8 = C +1, . . . ,#

��
/
C (C)

⌘
(13.107)

in contrast to (13.99) for the uniformly supported case. The inequality follows for
two reasons. First, given any Z 2 .# (�C ), the proof above shows that Z (�C ) is a set
of support constraints for CSP(Z (�C )) (even though the set �C \ �B of maximal latent
support constraints in �C may not be the maximum set in the lexicographical order).
Hence the two independent scenario programs CSP(Z (�C )) and CSP(C̃) are both defined
by C support constraints. If we treat their optimal solutions G⇤

�
C

and G̃⇤
C

respectively as
maps from /

C (C)! R=, then these two maps are identical since optimal solutions are
unique. Second, the inequality in (13.107) is equivalent to:

P
#
�
G
⇤ (Z (�C )) 2 -

Z
8 , 8 8 �C , Z 2 .# (C)

�
P#

�
/
# (C)

� 
P
#

⇣
G̃
⇤ ( Z̃) 2 -

Z̃
8 , 8 = C +1, . . . ,# , Z̃ 2 / C (C)

⌘
PC(/ C (C))

where we have written G⇤ (Z (�C )) := G⇤
�
C
and G̃⇤ ( Z̃) := G̃⇤

C
to emphasize their dependence

on C support constraints Z (�C ) and Z̃ . This means on the numerators that

P
#

⇣
Z 2 .# (C) : G⇤ (Z (�C )) 2 -

Z
8 , 8 8 �C , Z (�C ) supp. const.

⌘

 P#
⇣
Z 2 /# : G⇤ (Z (�C )) 2 -

Z
8 , 8 8 �C , Z (�C ) supp. const.

⌘

= P#
⇣
Z̃ 2 / C (C) : G̃⇤ ( Z̃) 2 -

Z̃
8 , 8 = C +1, . . . ,#

⌘

where the inequality follows since.# (C) ( /# if CSP(#) is not uniformly supported.
Using (13.102b) the denominators satisfy, letting [C] := {Z1, . . . , Z C },

P
#

⇣
/
# (C)

⌘
= P#

⇣
/
# ( [C])

⌘
+

’
�
C<[C ]
P
C

⇣
/
# (�C )

⌘
� PC

�
/
C (C)

�

This proves (13.107).

The rest of the proof of part 3 follows the same argument as that of Lemma 13.19.
Conditioned on a Z̃ 2 / C (C), we have

P
#�C

⇣
G̃
⇤
C
2 -

Z̃
8 , 8 = C +1, . . . ,#

��� Z̃ 2 / C (C)⌘ =
�
1�+

�
G̃
⇤
C

� �
#�C

where +
�
G̃
⇤
C

�
is defined in (13.105). Hence, conditioned on /

C (C) as opposed to a
Z̃ 2 / C (C), we have

P
#

⇣
G̃
⇤
C
2 -

Z̃
8 , 8 = C +1, . . . ,#

���/ C (C)⌘ =
π
/
C

�
1�+

�
G̃
⇤
C

� �
#�C
P
C

⇣
3Z̃

1, . . . ,3Z̃ C
��
/
C (C)

⌘

=
π 1

0
(1� E)#�C3�C (E |/ C (C)) (13.108)

where the second equality follows from (13.105). Substituting this into (13.107) and
using part 2 of the lemma proves (13.106). ⇤
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We now use Lemmas 13.20 and 13.21 to bound P#
�
+ (G⇤

#
) > n

�
for the general

case when CSP(#) may not be uniformly supported.

Proof of Theorem 13.15: general case We will intersect the event
�
+ (G⇤

#
) > n

�
with

the disjoint sets /# (�C ) and the summands in (13.103) are

P
#

⇣
+ (G⇤

#
) > n , /# (�C )

��
/
# (C)

⌘
= P#

⇣
+ (G⇤

�
C ) > n , .# (�C )

��
/
# (C)

⌘

 P#
⇣
+ (G̃⇤

C
) > n , G̃⇤

C
2 -

Z̃
8 , 8 = C +1, . . . ,#

���/ C (C)⌘

=
π
{+ ( G̃⇤

C
)>n }

�
1�+

�
G̃
⇤
C

� �
#�C
P
C

⇣
3Z̃

1, . . . ,3Z̃ C
��
/
C (C)

⌘

=
π 1

n

(1� E)#�C3�C (E |/ C (C))

where the first equality follows because, conditioned on /# (C), G⇤
#
= G⇤

�
C
and /# (� C ) =

.
# (� C ) in conditional probability from Lemma 13.21, the inequality follows from

(13.107), and the last equality follows from (13.105).

Substituting this into (13.103) we have

P
#

�
+ (G⇤

#
) > n

�
=

=’
C=0

P
# (/# (C))

’
�
C

P
#

⇣
+ (G⇤

#
) > n , /# (�C )

��
/
# (C)

⌘


=’
C=0

P
# (/# (C))

✓
#

C

◆ π 1

n

(1� E)#�C3 (EC )

where we have used �C (E) = EC from Lemmas 13.20 and the fact that there are
✓
#

C

◆

many �C . It is shown in (13.101) that
✓
#

C

◆ π 1

n

(1� E)#�C3 (EC ) =
C�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 

C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

where 1  Cmax  = is an upper bound on the number of generalized support constraints
for almost all Z 2 /# . We therefore have

P
#

�
+ (G⇤

#
) > n

�


C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 (13.109)

since
Õ
=

C=0P
# (/# (C)) = 1. This implies the bound in Theorem 13.15 for the general

case. ⇤

13.3.5 Sample complexity

Theorems 13.14 and 13.15 translate into sample complexity results for CSP(#), mak-
ing use of the Markov’s inequality and the Cherno� bound. They provide thresholds
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for # that guarantee su�ciently small violation probability + (G⇤
#
), in expectation or

probability (they are proved in Exercise 13.21).

Corollary 13.22 (Sample complexity). Fix any # � = and suppose assumption C13.3
holds. For any n 2 (0,1) and any V 2 (0,1):

1 ⇢
#

�
+ (G⇤

#
)
�
 V if # � (=/V)�1.

2 P#
�
+ (G⇤

#
) > n

�
 V if # � # (n , V) where

1 # (n , V) := (=/n V)�1;
2 or

# (n , V) := min

(
# :

=�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8  V

)
(13.110)

3 or

# (n , V) := min
⇢
# : (# � (=�1)) ln

# � (=�1)
# (1� n) + (=�1) ln

=�1
#n

� ln
1
V

�

Example 13.10. Numerical example to compare the thresholds for # in Corollary
13.22. ⇤

13.3.6 Optimality guarantee

In Chapter 13.3.5 we use the violation probability bound of Theorem 13.15 to derive
the sample complexity of CSP(#) (13.84). If # � # (n , V) in (13.110) then its optimal
solution G⇤

#
is feasible for CCP(n) (13.83) with probability at least 1� V, according

to Corollary 13.22. In this subsection we show that the same # (n , V) in (13.110) also
guarantees that the optimal value 2⇤CSP (#) of CSP(#) is close to the optimal value
2
⇤
RCP of the robust program RCP (13.82) and the optimal value 2⇤CCP (n) of the chance

constrained program CCP(n) (13.83) with high probability.

The feasibility of G⇤
#

for CCP(n) with high probability connects 2⇤CSP (#) to 2⇤CCP (n),
provided # � # (n , V). Unless the violation probability + (G⇤

#
) = 0, G⇤

#
is however

infeasible for RCP. The key to connecting 2⇤CSP (#) to 2⇤RCP is that if G is feasible for
CSP(n) then it is feasible for a perturbed robust program defined as follows: for E 2 R<,

RCP(E) : 2
⇤
RCP (E) := min

G2- ✓R=
2

T
G s.t. ⌘̄(G) := sup

Z 2/
⌘(G, Z)  E (13.111)

where 2 2 R=, Z 2 R: is an uncertain parameter taking value in the uncertainty set
/ ✓ R: , E 2 R< is a perturbation vector, ⌘ : R= ⇥R: ! R< is a convex (and hence
continuous) function in G for every Z 2 / , and - is a nonempty closed convex set. Since
⌘(G, Z) is convex in G for every Z 2 / , ⌘̄(G) is a convex function. The unperturbed robust
program RCP (13.82) is (13.111) with E = 0. While CCP(n) relaxes RCP by requiring
constraint satisfaction only probabilitistically, RCP(E) relaxes RCP by allowing a
certain amount E of violation. To relate the feasibility of CCP(n) and RCP(E) we need
the following definition.
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Definition 13.6. 1 The probability of worst-case constraints is the function ? :
- ⇥R<+ ! [0,1] defined as:

?(G,1) := P
��
Z 2 / : 98 := 8(Z) s.t. ⌘̄8 (G)� ⌘8 (G, Z) < 18

 �
where ⌘̄(G) := sup

Z
0 2/ ⌘(G, Z 0).

2 A perturbation bound with respect to ? is the function Ē : [0,1]! R<+ defined as:

Ē(n) := sup
⇢
1 2 R<+ : inf

G2-
?(G,1)  n

�

where the supremum here is taken componentwise of vectors 1.

The motivation for Definition 13.6 is that Ē(n) connects RCP(Ē(n)) to CCP(n), as
follows. For each G 2 - , Z violates the constraint ⌘(G, Z)  0 if and only if ⌘̄8 (G) �
⌘8 (G, Z) < ⌘̄8 (G) for at least one 8 and therefore ?(G, ⌘̄(G)) is the violation probability
+ (G) defined in (13.85a). This means that the chance constraint + (G)  n in CCP(n)
is equivalent to ?(G, ⌘̄(G))  n . Hence + (G)  n implies ⌘̄(G)  Ē(n), componentwise
by definition of Ē(n). This is summarized in the following lemma. It implies that Ē(n)
defines the tightest perturbation vector E 2 R<+ such that the feasible set of CCP(n)
is an inner approximation of the feasible set of RCP(E). We emphasize that, like the
violation probability + (G), ?(G,1) and hence the perturbation bound Ē(n), depend on
the constraint function ⌘, the uncertainty set / and the probability measure P.

Lemma 13.23. [148] If G is feasible for the chance constrained program CCP(n)
(13.83), then it is feasible for the perturbed robust program RCP(Ē(n)) (13.111).

The scenario program CSP(#) (13.84) is a relaxation of the robust program RCP
(13.82) and is an approximation of the chance constrained program CCP(n) (13.83).
Let G⇤

#
be the random optimal solution of CSP(#) ensured by C13.3. If # � # (n , V)

defined in (13.110) then we have

2
⇤
RCP (Ē(n))  2

⇤
CCP (n) / 2

T
G
⇤
#

= 2
⇤
CSP (#)  2

⇤
RCP (13.112)

where the first inequality follows from Lemma 13.23, / means “smaller or equal to
with probability at least 1� V” and it follows from Corollary 13.22 since # � # (n , V),
and the last inequality follows since CSP(#) is a relaxation of RCP. In particular the
optimal values of the chance constrained and convex scenario programs lie between
those of the robust program and its perturbed counterpart with high probability.

To quantify how close 2⇤CSP (#) is to 2⇤RCP and to 2⇤CCP (n), we will relate the optimal
values 2⇤RCP (E) and 2

⇤
RCP (0) by establishing, using the envelop theorem, su�cient

conditions under which 2⇤RCP (E) is Lipschitz continuous. Let the Lagrangian and the
dual function of the perturbed robust program (13.111) be: for E 2 R<,

! (G,`;E) := 2
T
G + `T ( ⌘̄(G)� E), G 2 - ✓ R=, ` 2 R< (13.113a)

3 (`;E) := inf
G2- ✓R=

! (G,`;E), ` 2 R<+ (13.113b)
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For each perturbation vector E, let (G(E),`(E)) denote a primal-dual optimal solution
of (13.111). We make the following assumptions on the perturbed robust program
(13.111):

C13.4 For all n 2 [0,1] the perturbation bound Ē(n) in Definition 13.6 takes value
in a compact and convex set + ✓ R<+ .
C13.5 For each E 2 + ✓ R<+ :

1 There exists a unique primal-dual optimal solution (G(E),`(E)) and it is
continuous at E.

2 Strong duality holds at (G(E),`(E)).
C13.6 [Slater condition]: There exists Ḡ 2 - such that ⌘(Ḡ) < Emin where Emin

8
:=

min{E8 : E 2 +} is the minimum element of + .

Define

!RCP :=
2

T
Ḡ�minG2- 2T

G

min8
�
E

min
8
� ⌘̄8 (Ḡ)

� � 0 (13.114)

where Emin
8

:=min{E8 : E 2+} and ⌘̄(G) := sup
Z 2/ ⌘(G, Z). The numerator in !RCP is the

cost of the Slater point Ḡ from a lower bound of the optimal cost and the denominator
is the smallest gap of Ḡ from the feasibility boundary.

Lemma 13.24. Consider the perturbed robust program (13.111) and suppose assump-
tions C13.3–C13.6 hold. Then 2⇤RCP (E) is a Lipschitz continuous function on + ✓ R<+ ,
i.e., for all E1,E2 2 + , ��

2
⇤
RCP (E1)� 2⇤RCP (E2)

��  !RCP kE1� E2k

where k · k can either be the Euclidean norm or the ✓1 norm and !RCP is defined in
(13.114).

Proof For any E 2 + , assumption C13.5 and the Saddle Point Theorem 8.19 implies
that the primal-dual optimal solution (G(E),`(E)) is a saddle point of (13.113a):

! (G(E),`;E)  ! (G(E),`(E);E)  ! (G,`(E);E) , G 2 - , ` 2 R<+
Clearly rE! (G,`;E) = �` is a continuous function on - ⇥R<+ ⇥+ . This, together with
assumption C13.5(a), allows us to apply the Saddle-point Envelop Theorem 8.19 which
states that 2⇤RCP (E) is continuously di�erentiable and 11

rE2⇤RCP (E) = rE! (G(E),`(E);E) = �`(E)

Fix any E1,E2 in+ . The mean value theorem gives 2⇤RCP (E1)�2⇤RCP (E2) = `T (D) (E1�E2)
for some D between E1 and E2 (D 2+ because+ is convex). Hence, by Cauchy-Schwarz
inequality, ��

2
⇤
RCP (E1)� 2⇤RCP (E2)

��  k`(D)kkE1� E2k (13.115)

11 To be precise, assumption C13.5 should be defined for all E 2 + � for some open set containing the
compact set + so that rE2⇤RCP (E) is well defined on the boundary of + .
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where the norm k · k can either be the Euclidean norm or the ✓1 norm. We now bound
k`(E)k over E 2+ . Fix any E 2+ . Since `(E) attains the optimal value of the perturbed
robust program (13.111), strong duality implies:

2
⇤
CRP (E) = 3 (`(E);E)  2

T
Ḡ + `T (E)

�
⌘̄(Ḡ)� E

�
 2

T
Ḡ +max

8

(⌘8 (Ḡ)� E8)
’
8

`8 (E)

where the first inequality follows from (13.113b) and the last inequality follows since
`(E) � 0. Hence, noting that ⌘̄(Ḡ)� E < 0 by the Slater condition C13.6,

’
8

`8 (E) 
2

T
Ḡ� 2⇤RCP (E)

min8
�
E8 � ⌘̄8 (Ḡ)

�  2
T
Ḡ�minG2- 2T

G

min8
�
E8 � ⌘̄8 (Ḡ)

�
Since `(E) � 0 we have

k`(E)k2  k`(E)k1 
2

T
Ḡ�minG2- 2T

G

min8
�
E8 � ⌘̄8 (Ḡ)

�
Maximizing both sides over the compact set + yields sup

E2+ k`(E)k  !RCP. Substi-
tuting into (13.115) proves the lemma. ⇤

The next result from [148] uses (13.112) and Lemma 13.24 to quantify how close
2
⇤
CSP (#) is to 2⇤RCP and to 2⇤CCP (n).

Theorem 13.25 (Optimality guarantees [148]). Consider the robust program RCP
(13.82), the chance constrained program CCP(n) (13.83), and the convex scenario
program CSP(#) (13.84). Suppose assumptions C13.3–C13.6 hold. Given any n 2
[0,1], any V 2 [0,1] and any # � # (n , V) in (13.110), we have

P
#

�
2
⇤
RCP� 2⇤CSP (#) 2 [0,⇠ (n)]

�
� 1� V (13.116a)

P
#

�
2
⇤
CSP (#)� 2⇤CCP (n) 2 [0,⇠ (n)]

�
� 1� V (13.116b)

where

⇠ (n) := min
⇢
!RCPkĒ(n)k2, max

G2-
2

T
G�min

G2-
2

T
G

�

!RCP is defined in (13.114) and the perturbation bound Ē : [0,1]! R<+ in Definition
13.6.

Proof The inequalities in (13.112) imply that 2⇤RCP � 2⇤CSP (#) 2 [0,⇠1] with prob-
ability 1 and 2

⇤
CSP (#) � 2⇤CCP (n) 2 [0,⇠1] with probability at least 1 � V where

⇠1 := maxG2- 2T
G�minG2- 2T

G. We are hence left with showing that, with probability
at least 1� V, 2⇤RCP� 2⇤CSP (#)  !RCPkĒ(n)k2 and 2⇤CSP (#)� 2⇤CCP (n)  !RCPkĒ(n)k2.

From (13.112) we have, with probability at least 1� V,

2
⇤
CSP (#) � 2

⇤
RCP (Ē(n)) � 2

⇤
RCP (0)� !RCP kĒ(n)k2

where the last inequality follows from Lemma 13.24. Hence 2
⇤
RCP � 2⇤CSP (#) 
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!RCPkĒ(n)k2 with probability at least 1� V. Furthermore (13.112) implies that, with
probability at least 1� V,

2
⇤
CSP (#)� 2⇤CCP (n)  2

⇤
RCP� 2⇤RCP (Ē(n))  !RCPkĒ(n)k2

where the last inequality follows from Lemma 13.24. ⇤

13.4 Two-stage optimization with recourse

Consider the situation where decisions are made in two stages under uncertainty
indexed byl in a sample space⌦. The first-stage decision G needs to be made beforel
is realized and the second-stage decision H(l) is made after l is realized as a function
of l. The first-stage decision G is made taking into account of the e�ect of uncertainty,
e.g., by minimizing not just a first-stage cost in G, but also the expected second-stage
cost incurred by H(l) given a first-stage decision G. This can be formulated as a
two-stage stochastic program with recourse. In this section we study the structure of
feasible regions associated with such a problem, the optimal value of the second-stage
decision, and the optimality condition and strong duality of the overall problem. As
we will see two-stage optimization generally involves extended real-valued functions
that will require the use of nonsmooth techniques studied Chapter 12.

13.4.1 Stochastic linear program with fixed recourse

Consider the following two-stage stochastic program with recourse where the second-
stage problem is a linear program:

min
G2R=1

5 (G) + ⇢Z

✓
min

H (l)2R=2
@

T (l)H(l)
◆

(13.117a)

s.t. �G = 1, G 2  (13.117b)

) (l)G +,H(l) = ⌘(l), H(l) � 0, 8l 2 ⌦ (13.117c)

where

• For the first-stage problem, the real-valued cost function 5 : R=1 ! R is convex
(and hence continuous over R=1 ), � 2 R<1⇥=1 , 1 2 R<1 ,  ✓ R=1 is a closed
convex cone. For instance  := R=1

+ , the nonnegative quadrant (closed in R=1 ). It
is important that the first-stage quantities ( 5 , �,1, ) are certain.

• For each sample l 2 ⌦ the second-stage problem is a linear program in H(l),
with the cost vector @(l) 2 R=2 , and the constraint parameters ) (l) 2 R<2⇥=1 ,
, 2 R<2⇥=2 , and ⌘(l) 2 R<2 . The second-stage decision H(l) is called a recourse
action (or corrective action). These quantities, except, , are random, dependent
on l. The second-stage problem is generally semi-infinite and intractable when
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⌦ is an infinite set. The constraint H(l) � 0 does not lose generality because if
H(l) is allowed to take value in R=2 , it can be replaced by I1 (l) � I2 (l) where
I1 (l) � 0 and I2 (l) � 0 are two nonnegative variables.

• The matrix , is called a recourse matrix. It is assumed to be deterministic, i.e.,
independent of l, in (13.117c). Problems with deterministic , are said to have
fixed recourse. In general , (l) can also depend on l. Stochastic programs
with random recourse are much more complicated (see Lemma 13.26 and the
discussion that follows). We will only deal with problems with fixed recourse.

• The random variable Z := Z (l) is a function of l and is the column vector

Z := Z (l) := (@(l), ⌘(l),)T
8
(l), 8 = 1, . . . ,<2)

where )8 (l) is the 8th row of ) (l). The size of Z is : := =2 +<2 +<2=1. Denote
the set of possible values of Z by / := {Z (l) 2 R: : l 2 ⌦}. The expectation ⇢Z
in (13.117a) is taken with respect to Z .

To understand the structure of the stochastic program (13.117), re-write it in terms
of the solution of the second-stage problem. Given a first-stage decision G and a
realization of the random vector Z 2 / define the extended real-valued functions
&̃ : R=1 ⇥R: ! [�1,1] and & : R=1 ! [�1,1] as:

&̃(G, Z) := min
H (l)�0

@
T (l)H(l) s.t. ,H(l) = ⌘(l)�) (l)G (13.118a)

&(G) := ⇢Z &̃(G, Z) (13.118b)

In particular, &̃(G, Z) is defined to be 1 if the second-stage problem (13.118a) is
infeasible for the given G, and �1 if it is feasible and unbounded below. The case
of &̃(G, Z) =1 can be a reasonable model of a practical situation (e.g. a generation
schedule in the first stage leads to insu�cient supply when outages occur in the
second stage), but &̃(G, Z) = �1 means that the objective can be infinitely improved
in the second stage and usually indicates an improper model. We thus usually assume
&̃(G, Z) > �1 on the domain of interest. The optimal value &̃(G, Z) of the second-stage
problem (13.118a) is called the second-stage value function and &(G) the second-
stage expected value function or the recourse function. Both are extended real-valued
functions studied in Chapter 12.2.1.

The stochastic program (13.117) is then equivalent to the following problem:

5
⇤ := min

G2R=1
5 (G) +&(G) s.t. �G = 1, G 2  (13.118c)

where the cost function is extended real-valued even though 5 is real-valued. Com-
paring the conic program (12.65) studied in Chapter 12.8.4 with (13.118), it is clear
that the di�culty of stochastic program (13.118) lies in the structural and computa-
tional properties of &(G). Even though the second-stage problem (13.118a) is a linear
program in H(l), the recourse function &(G) is generally not a linear function of G
and therefore (13.118) is generally not a linear program. We will show below that, for
the problem (13.117) with fixed recourse, if Z has finite second moment, then &(G) is
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a convex function and (13.118) is indeed a conic program studied in Chapter 12.8.4.
Conditions for strong duality and KKT optimality of (13.118) can therefore be derived
from Theorem 12.31 (although the computation of &(G) and its subdi�erential is gen-
erally di�cult). The fact that the second-stage problem (13.118a) is a linear program
is important in deriving these results. We therefore sometimes refer to (13.117) as a
stochastic linear program.

Tractability.

We start with the feasibility of (13.118) and some basic properties of the recourse
function &(G). We then present the optimality condition and strong duality for the
problem when it is convex.

Let ⇠1 := {G 2 R=1 : �G = 1, G 2  }. The first-stage decision G is feasible if G 2 ⇠1

and if G has a feasible second-stage completion so that (13.118c) is well defined. There
are two interpretations of feasible second-stage completion, expressed by the following
two definitions:

⇠2 := dom(&) := {G 2 R=1 :&(G) <1} (13.119a)

⇠
0
2 :=

Ÿ
a.e.Z 2/

{G 2 R=1 : &̃(G, Z) <1} (13.119b)

The set ⇠2 consists of G for which the expected &̃(G, Z) is finite. The set ⇠ 02 consists of
G for which the second-stage problem is always feasible for almost every (a.e.) Z 2 / ,
i.e., for a.e. l 2 ⌦, there exists an H(l) � 0 that satisfies,H(l) = ⌘(l)�) (l)G. If Z
can take only finitely many values, then ⇠2 = ⇠ 02, as the next example shows.

Example 13.11 (Generator scheduling). Consider the scheduling of two independent
generators with the same capacity 0. A slow but cheap generator must be scheduled
in advance of a random demand Z (l) > 0 at a generation level G 2 [0,0] and unit cost
21. A fast but expensive generator can be scheduled after the random demand Z (l) is
realized at a generation level H(l) := H(Z (l)) 2 [0,0] and unit cost 22 > 21. Our goal
is to choose (G, H(F)) to meet demand Z (l) at the minimum total expected cost:

5
⇤ := min

G2R
21G +&(G) s.t. 0  G  0 (13.120a)

where &(G) := ⇢Z &̃(G, Z) and

&̃(G, Z) := min
0H (l)0

22H(l) s.t. G + H(l) = Z (l) (13.120b)

Given the first-stage decision G and the realized demand Z (l), the second-stage decision
is H(l) := H(Z (l)) = Z (l) � G if this generation level lies in [0,0]; otherwise, the
second-stage problem is infeasible and &̃(G, Z) = 1. This means that the first-stage
decision G must satisfy Z (l)� 0  G  Z (l) in order that &̃(G, Z) = 22H(l) <1.

Suppose Z (l) = 0 + n with probability ? and Z (l) = 0 � n with probability 1� ?.
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Then

H(0 + n) =
⇢
0 + n � G if G � n
infeasible if G < n

, &̃ =
⇢
22 (0 + n � G) if G � n
1 if G < n

H(0� n) =
⇢
0� n � G if G  0� n
infeasible if G > 0� n , &̃ =

⇢
22 (0� n � G) if G  0� n
1 if G > 0� n

Therefore when Z (l) = 0+ n , which happens with probability ?, &̃(G, Z) =1 if G < n .
When Z (l) = 0 � n , which happens with probability 1� ?, &̃(G, Z) =1 if G > 0 � n .
Hence

⇠
0
2 :=

Ÿ
Z

{G : &̃(G, Z) <1} = {G : G � n}
Ÿ

{G : G  0� n}

Moreover if G < n or G > 0� n then &(G) = ⇢Z &̃(G, Z) =1, i.e.,

⇠2 := dom(&) := {G : n  G  0� n}

Hence ⇠ 02 = ⇠2.

We also have ⇠2 ✓ ⇠1 := {G : 0  G  0}. On ⇠2,

&(G) = ?22 (0 + n � G) + (1� ?)22 (0� n � G) = 22 (0 + n (2?�1)) � 22G

Then (13.120) is:

5
⇤ := min

G2R
(21� 22)G + 22 (0 + n (2?�1)) s.t. n  G  0� n

Since 22 > 21, the optimal G⇤ = 0�n and 5 ⇤ = 21 (0�n) +222n ?, i.e., the cheap generator
should always produces at the lower level 0�n of the random demand and the expensive
generator will pick up the slack (2n with probability ?). ⇤

If Z is a continuous random variable, however,⇠2 and⇠ 02 may be di�erent, e.g., when
the problem has random rather than fixed recourse or when ⇢Z Z2 =1 (see Exercise
13.22). The following result provides a su�cient condition for the equivalence of these
two interpretations (⇠2 = ⇠ 02) for the case of fixed recourse.12

Lemma 13.26. [143, Theorems 4 and 5, p.111] Consider the stochastic program
(13.117) or its equivalent (13.118) with fixed recourse, i.e., , is independent of l.
Suppose Z has finite second moment. Then

1 ⇠2 = ⇠ 02 = dom(&).
2 ⇠2 is closed and convex.
3 ⇠2 is polyhedral, i.e., defined by a finite set of linear inequalities, provided
• ) (l) = ) is fixed; or
• ) (l) and ⌘(l) are independent and the support of the distribution of ) (l) is

polyhedral.

12 In general we assume all functions have the necessary properties that allow us to mostly ignore issues
with measurability and well-posedness of & (G) for general distributions. See e.g. [142, Chapter 2.1.3],
[143] for discussions on these issues.
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We now give an intuition on why a finite second moment is su�cient for ⇠2 = ⇠ 02.
The argument also shows the importance of the second-stage problem (13.118a) being a
linear program. Suppose the optimal value &̃(G, Z) is finite. Suppose also for simplicity
that  = R=1 . Then an optimal H⇤ (l) of the linear program exists that is an extreme
point (vertex) of the feasible set. Such a point is called an optimal basic feasible
solution. Rewrite the constraint in (13.118a) as an inequality constraint

,̃H(l) :=
266664
,

�,
I=2

377775
H(l) �

266664
⌘(l)�) (l)G
�(⌘(l)�) (l)G)

0

377775
=: 3 (l)

where I=2 is the identity matrix of size =2. Then an optimal basic feasible solution
H
⇤ (l) takes the form given in (8.60):

H
⇤ (l) = ,̃

�1
�
⇤ 3� ⇤ (l)

where,�
⇤ is a =2⇥=2 nonsingular submatrix of ,̃�

⇤ and 3� ⇤ (l) is the corresponding
=-subvector of 3 (l) that depend on H⇤ (l). The second-stage value function is

&̃(G, Z) = @T (l) H⇤ (l) = @
T (l) ,̃�1

�
⇤ 3� ⇤ (l)

Hence &̃(G, Z) is a quadratic function in Z and the finite second moment of Z implies
that &(G) := ⇢Z &̃(G, Z) is bounded. If, on the other hand, , (l) and hence ,̃ (l)
depend on l, then &(G) depends on higher moments of Z . The assumption of fixed
recourse and finite second moments is only su�cient; see [149] for more general
su�cient conditions, including for the case where, (l) is not fixed.

In view of Lemma 13.26 we will consider stochastic program (13.117) with fixed
recourse and assume Z has finite second moment. Then we will not need to di�erentiate
between ⇠2 := dom(&) and its alternative ⇠ 02. A stochastic program is said to have a
relatively complete recourse if ⇠1 ✓ dom(&), i.e., an G that satisfies the first-stage
constraint always has a feasible second-stage completion for a.e. Z 2 / . It is said to
have a complete recourse if {,H : H � 0} = R<2 regardless of the first-stage decision
G, i.e., the positive cone spanned by the columns of , equals R<2 . This means that
there is a second-stage completion for any G (not necessarily in ⇠1) and a.e. Z . A
stochastic program that has a complete recourse has a relatively complete recourse,
but the converse may not hold.

The following result implies that the deterministic equivalent (13.118) is a convex
and di�erentiable problem.

Lemma 13.27 (Recourse function&(G)). [143, Theorems 6, p.112] Consider problem
(13.118) with fixed recourse, i.e.,, is independent of l. Suppose Z has finite second
moment. Then

1 The recourse function &(G) is convex and Lipschitz on dom(&) := {G 2 R=1 :
&(G) <1}.
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2 If the distribution function of Z is absolutely continuous, then&(G) is di�erentiable
in the relative interior ri(dom(&)) of dom(&).

3 Suppose Z takes finitely many values a.s. Then
• dom(&) is closed, convex, and polyhedral.
• &(G) is piecewise linear and convex on dom(&).

Note that &(G) is convex even for problems with random recourse and without the
finite moment assumption; see Lemma 13.29 below (proved in Exercises 13.25).

Example 13.12 (m&(G) and ⇢Z mG&̃(G, Z)). Consider the second-stage linear program
(13.118a) with fixed recourse, specified by: H(l) 2 R2, , = [1 1], ) 2 R1⇥= is fixed,
⌘(l) 2 R is a uniform random variable over [1,2],

@1 (l) =
⇢

1 with probability 1�U
�1 with probability U

, @2 (l) = 0 with probability 1

and ⌘ and @ are independent random variables. The random vector Z := Z (l) :=
(@(l),⌘(l)) 2 R3. For each l 2 ⌦,

&̃(G, Z) := min
H�0

@1H1 s.t. H1 + H2 = ⌘�)G (13.121)

1 Solve the linear program (13.121) explicitly to obtain the extended real-valued
function &(G) := ⇢Z &̃(G, Z).

2 Show that the e�ective domain dom(&) = {G 2 R=1 : )G  1} and m&(Ḡ) = U)T +
#dom(&) (Ḡ) for Ḡ 2 dom(&) where #- (Ḡ) denotes the normal cone of - at Ḡ 2 - .

3 For each Z , derive the extended real-valued function &̃(G, Z) and mG&̃(Ḡ, Z) for
Ḡ 2 dom(&(·, Z)). (The e�ective domain of &̃(·, Z) depends on Z and is generally
di�erent from dom(&).)

4 Show that m&(Ḡ) = ⇢Z
�
mG&̃(Ḡ, Z)

�
+#dom(&) (Ḡ) for Ḡ 2 dom(&).

Solution. The distribution function for ⌘ is �⌘ ([) = P⌘ (⌘  [) =min{max{[�1,0},1}.
From the figure there are two cases:

1 )G > 1: When 1 < )G  2, &̃(G, Z) =1, i.e., (13.121) is infeasible, with probability
)G � 1. When )G > 2 then &̃(G, Z) =1 with probability 1. Therefore &(G) =1
when )G > 1.

2 )G  1: In this case &̃(G, Z) < 1 for all Z . The optimal solution H⇤ and optimal
value of (13.121) are

H
⇤ =

⇢
(0,⌘�)G) if @1 = 1
(⌘�)G,0) if @1 = �1

&̃(G, Z) = @1H
⇤
1 =

⇢
0 if @1 = 1
)G� ⌘ if @1 = �1

Hence, in this case, &(G) = ⇢
⌘ |@1=�1 ()G� ⌘|@1 = �1)P@1 (@1 = �1) =

U ()G�⇢⌘ (⌘)) where the last equality follows from the independence of ⌘ and @.
Here ⇢⌘ (⌘) = 1.5.
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Therefore dom(&) = {G 2 R=1 : )G  1} and the extended real-valued function & :
R
=1 ! (�1,1] is:

&(G) = U ()G�⇢⌘ (⌘)) + Xdom(&) (G)

where the indicator function is X- (G) = 0 if G 2 - and 1 if G 8 - . From Table 12.2,
the subdi�erential of an indicator function is its normal cone, i.e., mX- (Ḡ) = #- (Ḡ) for
any Ḡ 2 - . Hence, for all Ḡ 2 dom(&),

m&(Ḡ) = U)
T +#dom(&) (Ḡ) (13.122)

In particular if Ḡ 2 ri(dom(&)) then #dom(&) (Ḡ) = {0} and m&(Ḡ) = {r&(Ḡ)} =
�
U)

T .

We now derive, for each fixed Z = (@,⌘), the e�ective domain dom(&̃(·, Z)) ✓ R=1

and the proper extended real-valued function &̃(·, Z) on R=1 . As discussed above,
&̃(G, Z) =1 if )G > 2 or if )G 2 (1,2] but ⌘ < )G. Otherwise &̃(G, Z) is real-valued.
Specifically, let ⇠ (⌘) := {G 2 R=1 : )G  ⌘}; note that ⇠ (⌘) is a random set depending
on ⌘ 2 [1,2]. Then, given a Z = (@,⌘), for G 2 R=1 ,

&̃(G,@1,⌘) =
⇢
X
⇠ (⌘) (G) if @1 = 1
X
⇠ (⌘) (G) +)G� ⌘ if @1 = �1

Hence, for each Z ,

mG&̃(Ḡ,@1,⌘) =
⇢
#
⇠ (⌘) (Ḡ) if @1 = 1

#
⇠ (⌘) (Ḡ) +)T if @1 = �1

, Ḡ 2 ⇠ (⌘)

We now evaluate ⇢Z mG&̃(Ḡ, Z) for Ḡ in the deterministic set dom(&). Note that
dom(&) ⇢ ⇠ (⌘) with probability 1; in particular dom(&) = ⇠ (⌘) only when ⌘ = 1
which happens with probability 0. Since @ and ⌘ are independent we have

⇢Z mG&̃(Ḡ, Z) = (1�U)⇢⌘
�
#
⇠ (⌘) (Ḡ)

�
+U

⇣
⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
+)T

⌘
= U)

T + ⇢⌘
�
#
⇠ (⌘) (Ḡ)

�

We claim that ⇢⌘
�
#
⇠ (⌘) (Ḡ)

�
= 0. Note that ⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
=

Ø 2
1+#⇠ (⌘) (Ḡ)3⌘. Since

Ḡ 2 dom(&) ⇢ ⇠ (⌘) with probability 1, Ḡ is in the interior of ⇠ (⌘) with probability
for ⌘ 2 (1,2]. Therefore ⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
= 0 and ⇢Z mG&̃(Ḡ, Z) = U)T for Ḡ 2 dom(&),

giving

m&(Ḡ) = ⇢Z mG&̃(Ḡ, Z) + #dom(&) (Ḡ), Ḡ 2 dom(&)

from (13.122).

Finally for the polyhedral set dom(&) = {G 2 R=1 : )G  1}, Theorem 12.3 says that
#dom(&) (Ḡ) = {_)T 2 R=1 : _ 2 R+ s.t. _()Ḡ � 1) = 0}. Substituting into (13.122) we
have

m&(Ḡ) = ⇢Z mG&̃(Ḡ, Z) +#dom(&) (Ḡ) =
⇢ �

U)
T if )

T
Ḡ < 1�

(U+_))T : _ � 0
 

if )
T
Ḡ = 1

⇤
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KKT condition and duality.

When the problem (13.118) with fixed recourse has finite second moment, Lemma
13.27 implies that the extended real-valued recourse function &(G) is convex and
hence always subdi�erentiable in ri(dom(&)), whether or not the distribution of Z is
absolutely continuous. This makes (13.118) a conic program (12.65) studied in Chapter
12.8.4. Recall the dual cone  ⇤ of  in Definition 12.1:

 
⇤ := {b 2 R=1 : bT

G � 0 8G 2  } (13.123a)

Let the dual variables be _ 2 R<1 and ` 2  ⇤ ✓ R=1 . Define the Lagrangian function
of (13.118):

! (G,_,`) := 5 (G) +&(G)�_T (�G� 1)� `T
G, G 2 R=1 , _ 2 R<1 , ` 2  ⇤

The dual function is

3 (_,`) := min
G2R=1

! (G,_,`) = _
T
1 + 30 (_,`), _ 2 R<1 , ` 2  ⇤ (13.123b)

where

30 (_,`) := min
G2R=1

⇣
5 (G) +&(G)� (�T

_+ `)T
G

⌘
(13.123c)

The dual problem is:

3
⇤ := max

_2R<1 ,`2 ⇤
_

T
1 + 30 (_,`) (13.123d)

We make the following assumptions:

C13.7: Finite second moment and well posed&(G). ⇢Z Z2
<1 and&(G) 2 (�1,1].

C13.8:
– 5 : R=1 ! R in (13.118) is convex over R=1 and  is a closed convex cone.
– Slater condition. There exists Ḡ 2 ri(dom(&))\ ri( ) such that �Ḡ = 1.

Assumption C13.7 and Lemma 13.27 imply that &(G) is convex on dom(&) (hence
subdi�erentiable). Assumptions C13.7 and C13.8 imply that & is proper. The proper-
ness and the convexity of & on dom(&), and the existence of Ḡ 2 ri(dom(&)) imply
that m ( 5 +&) (G) = m 5 (G) + m&(G) for all G 2 dom(&), according to Theorem 12.18.
These properties, together with the Slater condition C13.8, allow us to apply Theorem
12.31 on conic program (or more precisely for an extended real-valued cost function,
the Slater Theorem 12.27 and the generalized KKT Theorem 12.21) to the stochastic
program (13.118), with the following implication.

Theorem 13.28 (Strong duality and KKT for stochastic LP). Consider problem
(13.118) with fixed recourse, i.e.,, is independent of l, and its dual (12.67). Suppose
assumptions C13.7 and C13.8 hold. Then
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1 Strong duality and dual optimality. If the optimal value 5
⇤ of (13.118) is finite

then there exists a dual optimal solution (_⇤,`⇤) 2 R<1 ⇥ ⇤ that closes the duality
gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2 KKT characterization. A feasible G⇤ 2  with �G⇤ = 1 is optimal if and only if there
exist subgradients b⇤ 2 m 5 (G⇤) andk⇤ 2 m&(G⇤), a dual feasible (_⇤,`⇤) 2R<1⇥ ⇤
such that

b
⇤ +k⇤ = �

T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0

In this case (G⇤,_⇤,`⇤) is a saddle point that closes the duality gap and is primal-
dual optimal. ⇤

Example 13.13 (Linear program). Consider problem (13.118) with fixed recourse and
its dual (12.67). Suppose 5 (G) := 2T

G and  := R=1
+ the nonnegative quadrant. Then

 
⇤ =  = R=1

+ , 30 (_,`) = 0 if 2 = �T
_ + ` and �1 otherwise in which case the dual

problem becomes:

3
⇤ := max

_2R<1 ,`2R=1
+

_
T
1 s.t. 2 = �T

_+ `

Suppose & is di�erentiable. Then the KKT condition becomes: G⇤ 2 dom(&) with
�G
⇤ = 1 and G⇤ � 0 is optimal if and only if there exists (_⇤,`⇤) 2 R<1 ⇥R=1

+ such that

r&(G⇤) = �2+ �T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0

⇤

Problems with relative complete recourse.

When problem (13.118) has a relative complete recourse we can rewrite the KKT con-
dition in Theorem 13.28 in terms of ⇢Z mG&(G⇤, Z) instead of m&(G⇤). Then mG&(G⇤, Z)
can be evaluated using envelop theorems studied in Chapter 8.3.6 (see Exercise 13.24).
Write the stochastic program (13.118) as an unconstrained optimization:

min
G2R=1

5 (G) +&(G) + X⇠1 (G)

where ⇠1 := {G 2 R=1 : �G = 1,G 2  },  ✓ R=1 is a closed convex cone, and X⇠1 (G)
is the indicator function of ⇠1. The generalized KKT Theorem 12.21 implies that a
feasible G⇤ 2 ⇠1 is optimal if and only if

0 2 m 5 (G⇤) + m&(G⇤) + #⇠1 (G⇤) (13.124)

The property m&(Ḡ) = ⇢Z mG&̃(Ḡ, Z) +#dom(&) (Ḡ) in Example 13.12 holds more gen-
erally. Usually m&(Ḡ) = mG⇢Z&(Ḡ, Z) is not the same as ⇢Z mG&(Ḡ, Z), i.e., one cannot
generally interchange the order of expectation and subderivative. It is shown in [143,
Theorem 11, p.117] [150, Proposition 2.11] however that if Ḡ 2 ⇠1\dom(&), i.e., if Ḡ
is feasible for (13.118), then

m&(Ḡ) = ⇢Z mG&(Ḡ, Z) + #dom(&) (Ḡ)
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If the stochastic program has a relatively complete recourse, then ⇠1 ✓ dom(&) and
hence #dom(&) (Ḡ) ✓ #⇠1 (Ḡ) for all feasible Ḡ 2 ⇠1. This and the fact that #⇠1 (Ḡ) and
#dom(&) (Ḡ) are convex cones imply that #⇠1 (Ḡ) +#dom(&) (Ḡ) = #⇠1 (Ḡ). Substituting
all this into (13.124) we have: G⇤ 2 ⇠1 is optimal if and only if

0 2 m 5 (G⇤) + ⇢Z mG&(G⇤, Z) + #⇠1 (G⇤) (13.125a)

Theorem 12.5 implies that #⇠1 (Ḡ) = {�T
_+` 2 R=1 : _ 2 R<1 , ` 2  �,`T

Ḡ = 0} for Ḡ 2
⇠1 where  � ✓ R=1 is the polar cone of  (Exercise 12.13). Therefore, while (13.124)
yields the KKT condition in Theorem 13.28, for problems with a relatively complete
recourse, (13.125a) yields the equivalent KKT condition in terms of ⇢Z mG&(G⇤, Z):
G
⇤ 2 ⇠1 is optimal if and only if there exists subgradients b⇤ 2 m 5 (G⇤) and k

⇤ 2
⇢Z mG&(G⇤, Z), a dual feasible (_⇤,`⇤) 2 R<1 ⇥ ⇤ such that

b
⇤ +k⇤ = �

T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0 (13.125b)

It is not common in applicaitons, however, that an analytical expression for &(G) or
&̃(G, Z) is available. When Z is a continuous random variable, &(G) and its derivative
generally need to be computed by numerical integration of &(G, Z) and its derivative.
This limits the practical solution of stochastic linear programs to problems where the
dimensionality of Z is small. One approach is to approximate a continuous Z by a
discrete random variable.

Multi-stage extension.

The multi-stage extension of the stochastic program with fixed recourse (13.118) is:

5
⇤ := min

G02R=0
5 (G0) +&1 (G0) s.t. ,0G0 = ⌘0, G0 2  

where the initial decision G0 is independent ofl and the value function&1 (G0) is given
by: for C = 1, . . . ,g,

&C (GC�1 (l)) := ⇢
ZC (l)&̃C (GC�1 (l), ZC (l))

&̃C (GC�1 (l), ZC (l)) := min
GC (l)�0

⇣
@

T
C
(l)GC (l) +&C+1 (GC (l))

⌘

s.t. ,CGC (l) = ⌘C (l)�)C (l) GC�1 (l)

where &g+1 (G) := 0 at the last stage C = g. Hence the initial decision G0 is made before
the realization of l. For each C = 1, . . . ,g, the stage-C decision GC (l) depends on stage-
(C � 1) decision GC�1 (l), the realized stage-C cost @C (l) and constraint parameters
(,C ,⌘C (l),)C (l)), as well as the stage-(C + 1) value function &C+1 (G). The basic
theory on the e�ective domains dom(&C ), the value functions &C (G), and optimality
conditions can be extended from two-stage to multi-stage problems. Like dynamic
programming, a multi-stage stochastic program with recourse can su�er from the
curse of dimensionality as the number of stages grows; see [143, Chapter 10] for
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computational methods for multi-stage stochastic programs that possess simplifying
structures.

13.4.2 Stochastic nonlinear program with general recourse

Consider the stochastic nonlinear program:

inf
G2R=1

5
1 (G) +&(G) s.t. �

1
G = 11, ⌘1 (G)  0 (13.126)

where the extended real-valued function & : R=1 ! [�1,1] is &(G) := ⇢l &̃(G,l),
l takes value in a sample space ⌦, and

&̃(G,l) := inf
H (l)2R=2

5
2 (G, H(l),l) (13.127a)

s.t. �
2 (l)G +, (l)H(l) = 12 (l),⌘2 (G, H(l),l)  0 (13.127b)

For first-stage functions, 5 1 : R=1 ! R, �1 2 R<1⇥=1 , 11 2 R<1 , ⌘1 : R=1 ! R;1 . For
second-stage functions, 5 2 : R=1 ⇥R=2 ⇥⌦! R, �2 (l) 2 R<2⇥=1 , , (l) 2 R<2⇥=2

and 12 (l) 2 R<2 for each l 2 ⌦, and ⌘2 : R=1 ⇥R=2 ⇥⌦! R;2 . Compared with the
stochastic linear program (13.118) the main di�erence is that the recourse problem
(13.127) is generally not a linear program and that the recourse is generally not
fixed, i.e., the second-stage functions ( 5 2, �2,, ,12,⌘2) generally depend on l. We
ignore measurability issues, i.e., we assume all functions and sets we encounter are
measurable. Furthermore we make the following assumptions:

C13.9: Convexity.
15 1 and ⌘1 are convex on R=1 .
2For a.e. l 2 ⌦, 5 2 (·, ·,l) and ⌘2 (·, ·,l) are convex on R=1 ⇥R=2 .

We next study properties of the recourse function &(G) and then optimality condi-
tions. Under assumption C13.9, both &̃(G,l) and &(G) are closed convex functions in
G (Exercises 13.25), even though their e�ective domains dom(&(·,l)) and dom(&)
may not be closed sets (see Remark 12.3).

Lemma 13.29. Consider the stochastic nonlinear program with recourse
(13.126)(13.127) and suppose C13.9 holds.

1 &̃(G,l) and &(G) are convex on R=1 for a.e. l 2 ⌦.
2 If for every G1 2 R=1 the feasible region of the recourse problem (13.127) is

bounded, then
1 &̃(G,l) and &(G) are lower semicontinuous on R=1 for a.e. l 2 ⌦.
2 &̃(G,l) and &(G) are closed functions on R=1 for a.e. l 2 ⌦.

3 The e�ective domain dom(&) := {G 2 R=1 :&(G) <1} is a convex set.



13.4 Two-stage optimization with recourse 719

Let⇠1 :=
�
G 2 R=1 : �1

G = 11, ⌘1 (G)  0
 
. The Weierstrass Theorem 12.22 in Chap-

ter 12.6 implies the existence of primal optimal solution (Exercise 13.26) under the
additional assumption:

C13.10: Well posed &(G). &(G) 2 (�1,1].

Note that it is not necessary for the feasible set ⇠1\dom(&) of (13.126) to be closed.

Theorem 13.30 (Primal optimality). Consider the stochastic nonlinear program with
recourse (13.126) and suppose assumptions C13.9 and C13.10 hold. Suppose further
that, for every G1 2R=1 , the feasible region of the recourse problem (13.127) is bounded.
If ⇠1 is bounded and ⇠1\dom(&) < ;, then (13.126) has a finite optimal value and it
is attained at some G⇤ 2 R=1 .

The stochastic program with general recourse (13.126) can be written equivalently
as:

5
⇤ := inf

G2R=1
5

1 (G) +&(G) s.t. �
1
G = 11, ⌘1 (G)  0 (13.128a)

where &(G) := ⇢l&̃(G,l) as defined in (13.127). Lemma 13.29 implies that dom(&)
is a convex set (not necessarily closed) and &(G) is a convex function on R=1 under
Assumption C13.9, and hence (13.128a) is a convex problem. The Lagrangian is

! (G,_,`) := 5
1 (G) +&(G) + _T (�1

G� 11) + `T
⌘

1 (G) (13.128b)

The dual function is

3 (_,`) := inf
G2R=1

! (G,_,`), _ 2 R<1 , ` 2 R;1 (13.128c)

and the dual problem is

3
⇤ := sup

_,`�0
3 (_,`) (13.128d)

For strong duality and dual optimality we need the following additional assumption.

C13.11: Slater condition. There exists Ḡ 2 ri(dom( 5 1)) \ ri(dom(&)) such that
�Ḡ = 1, and ⌘1 (Ḡ) < 0.

Assumptions C13.10 and C13.11 imply that & is proper. The properness and the
convexity of & on dom(&) (from Lemma 13.29), and the existence of Ḡ 2 ri(dom(&))
imply that m ( 5 1 +&) (G) = m 5 1 (G) + m&(G) for all G 2 dom(&), according to Theorem
12.18. These properties, together with the Slater condition C13.11, allow us to apply
the Slater Theorem 12.27 and the generalized KKT Theorem 12.21 to (13.128), with
the following implication (cf. Exercise 12.21).

Theorem 13.31 (Strong duality and KKT for stochastic NLP). Consider the stochastic
program with general recourse and its dual (13.128). Suppose assumptions C13.9,
C13.10 and C13.11 hold. Then
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1 Strong duality and dual optimality. If the optimal value 5
⇤ of (13.128a) is finite

then there exists a dual optimal solution (_⇤,`⇤) 2 R<1 ⇥R;1+ that closes the duality
gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2 KKT characterization. A feasible G⇤ 2 ⇠1 is optimal if and only if there exists a
dual feasible (_⇤,`⇤) 2 R<1 ⇥R;1+ such that

0 2 m 5 1 (G⇤) + m&(G⇤) + �1T
_
⇤ +

’
8

`
⇤
8
m⌘

1
8
(G⇤) `

⇤T
⌘

1 (G⇤) = 0

i.e., there exist subgradients b⇤ 2 m 5 (G⇤) and k⇤ 2 m&(G⇤), \⇤
8
2 m⌘1

8
(G⇤), and a

dual feasible (_⇤,`⇤) 2 R<̄1 ⇥R<1�<̄1
+ such that

0 = b
⇤ + k⇤ + �1T

_
⇤ + ⇥⇤T`⇤, `

⇤T
⌘

1 (G⇤) = 0

where the rows of the matrix ⇥⇤ are \8 . In this case (G⇤,_⇤,`⇤) is a saddle point
that closes the duality gap and is primal-dual optimal. ⇤

As for stochastic linear programs, under appropriate conditions, we can express
m&(G) in terms of the expectation over l of m&(G,l), as

m&(G) = ⇢lmG&(G,l) + #dom(&) (G)

13.5 Example application: stochastic economic dispatch

In rest of this chapter we present power system examples to illustrate stochastic opti-
mization ideas studied in Chapters 13.1–13.4.

We have studied in Chapter 6.4 the problem of optimally scheduling generations and
demands and pricing electricity when there is no uncertainty. In this section we discuss
how the nominal economic dispatch problem of Chapter 6.4 can be modified when
uncertainty arises. Our main purpose is to illustrate various concepts of stochastic OPF
in a concrete application.

Consider a power network modeled by the DC power flow model of Chapter 4.6.2.
The network is represented by a connected graph ⌧ = (# ,⇢) of # + 1 nodes and
" := |⇢ | lines where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . Let ⇠ denote
the (# + 1) ⇥" incidence matrix (defined in (4.11)). Each line ; := ( 9 , :) 2 ⇢ is
parametrized by its susceptance 1; > 0. Let ⌫ := diag(1; , ; 2 ⇢) � 0 be the diagonal
matrix of line susceptances. Suppose at each bus 9 :

• There is possibly an uncontrollable generation 6 9 � 0 (e.g. photovoltaic) and an
uncontrollable load 3 9 � 0. The net demand to the grid is 6 9 � 3 9 .

• There is a single dispatchable unit ? 9 taking value within its capacity limits
[?min
9

, ?max
9

]. It can be a generator (?min
9
� 0), a controllable load (?max

9
 0),

or a prosumer ?min
9
 0  ?max

9
. Let 5 9 (?8) denote the cost function of unit 9 , i.e.,
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5 9 (? 9 ) models the generation cost at a generator bus with ? 9 � 0 and � 5 9 (? 9 )
models the utility of consuming �? 9 � 0 at a load bus.

Any of (6 9 ,3 9 ) and ?min
9

= ?max
9

can be set to zero if they are not present at node 8.

The Laplacian matrix ! associated with ⌧ is defined to be

! := ⇠⌫⇠
T

(See Chapter 4.6.1 for properties of !.) A net injection (vector) (? + 6 � 3) induces
power flows % on lines given by

% = (
T
? := ⌫⇠

T
!
†(? +6� 3) (13.129)

where ( := !†⇠⌫ is called a shift factor. The expression (13.129) for % is valid if
and only if 1

T (? +6� 3) = 0, i.e., if and only if supply and demand are balanced. The
power flow % 9: on each line 9 ! : 2 ⇢ is directional (i.e, % 9: < 0 means power flows
from buses : to 9). There are line capacities %min

9:
< 0 < %

max
9:

in each direction and the

line flows % = (T
? induced by ? must lie within these limits.

13.5.1 Nominal ED

We have studied the following nominal economic dispatch in Chapter 6.4 that min-
imizes aggregate production cost subject to capacity limits, power balance, and line
limits, when (6,3) are known:

min
?

min??max

’
92#

5 9 (? 9 ) (13.130a)

s.t. 1
T (? +6� 3) = 0 [W] (13.130b)

%
min  (

T (? +6� 3)  %
max [^�, ^+] (13.130c)

with associated Lagrange multipliers (W, ^�, ^+) with (^�, ^+) � 0. The locational
marginal price (LMP) or nodal price is the following vector:

_ := _(W, ^) =: W1+ (^ := W1+
⇣
!
†
⇠⌫

⌘
^ 2 R#+1 (13.131)

where ^ := ^� � ^+. The Slater Theorem 8.17 of Chapter 8.3.4 implies that if the cost
functions 5 9 are convex and the economic dispatch (6.22) has a finite optimal value,
then there exist optimal Lagrange multipliers (W⇤, ^�⇤, ^+⇤) and hence an LMP _

⇤

such that a dispatch ?
⇤ is optimal for (13.131) if and only if ?⇤ is primal feasible,

(^�⇤, ^+⇤) � 0, and (?⇤,W⇤, ^�⇤, ^+⇤) satisfies stationarity:

5
0
9
(?⇤
9
)

8>>><
>>>:

= _
⇤
9

if ?
min
9

< ?
⇤
9
< ?

max
8

> _
⇤
9

only if ?
⇤
9
= ?min

9

< _
⇤
9

only if ?
⇤
9
= ?max

9

(13.132a)
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and complementary slackness:

(^�⇤)T
⇣
%

min� (T (?⇤ +6� 3)
⌘
= 0,

�
^
+⇤�T

⇣
(

T (?⇤ +6� 3)�%max
⌘
= 0 (13.132b)

13.5.2 Robust ED

Suppose the uncontrollable generations and demands (6 9 ,3 9 ) are uncertain. For sim-
plicity we take 5 9 (? 9 ) := 2 9 ? 9 so that the economic dispatch is a linear program. To
formulate robust economic dispatch we first relax the power balance equality constraint
(13.130b) into an inequality constraint:

5min := min
?

min??max
2

T
? (13.133a)

s.t. 1
min  1

T (? +6� 3)  1max [W�,W+] (13.133b)

%
min  (

T (? +6� 3)  %max [^�, ^+] (13.133c)

with associated Lagrange multipliers (W�,W+, ^�, ^+) with (W�,W+) � 0 and (^�, ^+) �
0. We assume 1min

< 0 < 1
max and %min

< 0 < %
max. The rationale is that the dispatch

decisions and LMP (?⇤,_⇤) are made in advance, e.g., 5 or 15 minutes before delivery,
before (6,3) are realized. At delivery time when (6,3) are realized, as long as the power
imbalance 1

T (? + 6� 3) over the entire network is small enough in magnitude, it can
be met by some reserve generation and demand response in some manner. (In Chapter
6.4.4, we will optimize the scheduling of reservers using two-stage optimization with
recourse.) Let W := W� � W+ and recall ^ := ^� � ^+. Then, as for the nominal ED
(13.130), a primal feasible ?⇤ and a dual feasible (W�⇤,W+⇤, ^�⇤, ^+⇤) are optimal if
and only if they satisfy (13.132) with LMP _⇤ := W⇤1+ (^⇤, as in (13.131) but with
W
⇤ := W�⇤ �W+⇤.

Suppose the uncertain generations and loads (68 ,38) take values in ⌧8 ⇥ ⇡8 :=
[0,6max

8
]⇥ [0,3max

8
] and let⌧⇥⇡ := (Œ

8
⌧8)⇥ (

Œ
8
⇡8). The robust counterpart of the

relaxed economic dispatch (13.133) chooses an optimal dispatch ?⇤ so that power can
be balanced in the worst-case realization of (6,3):

5
⇤
rED := min

?
min??max

2
T
? (13.134a)

s.t. 1
min  1

T (? +6� 3)  1
max, 8(6,3) 2 ⌧ ⇥⇡ (13.134b)

%
min  (

T (? +6� 3)  %
max, 8(6,3) 2 ⌧ ⇥⇡ (13.134c)

We now show that this semi-infinite problem is equivalent to a finite linear program.
The subproblems (13.8) corresponding to the power balance constraint (13.134b) are:

min
(6,3)2⌧⇥⇡

1
T (6� 3) = �1

T
3

max, max
(6,3)2⌧⇥⇡

1
T (6� 3) = 1

T
6

max
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Therefore the semi-infinite constraint (13.134b) has the finite reformulation:

1
min +1

T
3

max  1
T
?  1

max�1
T
6

max

which is feasible only if 1
T (3max +6max)  1max � 1min. This constraint says that the

dispatch must be able to meet the largest possible demand but also allow the largest
possible generation, which can be too conservative.

Denote by B 9; the ( 9 , ;) entry of ( := !†⇠⌫ and let B; := (B 9; , 9 2 #) denote the ;th
column of (. Then we have for the ;th constraint in (13.134c):

min
(6,3)2⌧⇥⇡

B
T
;
(6� 3) = �

�
C
�
;

�T
1, max

(6,3)2⌧⇥⇡
B

T
;
(6� 3) =

�
C
+
;

�T
1

where C�
;

:= C�
;
(B;) and C+

;
:= C+

;
(B;) are row vectors in R#+1

+ that depend on B;:

C
�
; 9

:=

(
|B 9; |3max

9
if B 9; � 0

|B 9; |6max
9

if B 9;  0
, C

+
;8

:=

(
|B 9; |6max

9
if B 9; � 0

|B 9; |3max
9

if B 9;  0

Recall that B 9; is the marginal increase in line flow �%; for additional unit of injection
�? 9 at bus 9 . Therefore, for upper line limit C+

;
, when node B 9; � 0, the worst-case

uncertainty on line ; (in terms of pushing the line flow towards %max
;

) is 6max
9

; otherwise
the worst-case uncertainty is 3max

9
. The worst-case realization of (6,3) can be di�erent

for di�erent constraints ; and the robust formulation requires that the line flow %; on
any line ; due to any realization (6: ,3: ) must stay within its line limit (%min

;
,%max
;

).
Let )� and )+ be matrices whose ;th rows are the row vectors C�

;
and C+

;
respectively.

Then the semi-infinite constraint (13.134c) has the finite reformulation:

%
min +)�1  (

T
?  %

max�)+
1

Therefore the semi-infinite robust program (13.134) can be reformulated as a linear
program:

5
⇤
rED := min

?
min??max

2
T
? (13.135a)

s.t. 1
min + 3maxT

1  1
T
?  1

max�6maxT
1 [W�,W+] (13.135b)

%
min +)�1  (

T
?  %

max�)+
1 [^�, ^+] (13.135c)

with associated Lagrange multipliers (W�,W+, ^�, ^+) with (W�,W+) � 0 and (^�, ^+) �
0. As for the relaxed economic dispatch (13.133), a primal feasible ?⇤ and a dual
feasible (W�⇤,W+⇤, ^�⇤, ^+⇤) are optimal if and only if the stationarity and complemen-
tary slackness conditions (13.132) hold with LMPs defined as _⇤ := W⇤1+ (^⇤ where
W
⇤ := W�⇤ �W+⇤ and ^⇤ := ^�⇤ � ^+⇤.

The lower and upper limits on power imbalance and line flows are however tighter
in the robust program (13.135) than those in (13.133). The tightening accommodates
the worst-case uncertainty and can be too conservative.
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13.5.3 Chance constrained ED

The constraints (13.133b)(13.133c) are

1
T (6� 3) � 1

min�1
T
?, (

T (6� 3) � %
min� (T

?

1
T (6� 3)  1

max�1
T
?, (

T (6� 3)  %
max� (T

?

Define the random (column) vector taking value in R"+1:

Z :=
⇣
1

T (6� 3), (T (6� 3)
⌘
=

⇥
1 (

⇤T (6� 3) (13.136a)

Let �Z (I) denote the distribution function of Z and assume it is continuous. Let
⌘1 : R#+1! R"+1 and ⌘2 : R#+1! R"+1 be the a�ne functions:

⌘1 (?) :=
⇣
1

min�1
T
?, %min� (T

?

⌘
(13.136b)

⌘2 (?) :=
⇣
1

max�1
T
?, %max� (T

?

⌘
(13.136c)

Then the chance constrained formulation (13.49) of the relaxed economic dispatch
(13.133) is:

5
⇤
ccED := min

?
min??max

’
92#

5 9 (? 9 ) s.t. �Z (⌘2 (?))��Z (⌘1 (?)) � 1� n (13.136d)

corresponding to the chance constraint P (⌘1 (?)  Z  ⌘2 (?)) � 1 � n . Even if
�Z (⌘ 9 (?)) are concave functions in ? (which will be the case if �Z (I) is concave in I
since �Z is nondecreasing and nonnegative), their di�erence �Z (⌘2 (?)) ��Z (⌘1 (?))
may not be concave in ?, and hence the chance constrained economic dispatch (13.136)
is generally a nonconvex problem.

13.5.4 Scenario-based ED

Suppose
�
Z

1, . . . , Z 
�

with  � # + 1 are iid samples according to the distribution
function �I . Then the scenario program corresponding to (13.136) is:

5
⇤
sED := min

?
min??max

’
92#

5 9 (? 9 ) s.t. ⌘1 (?)  Z :  ⌘2 (?), : = 1, . . . , (13.137)

Suppose the cost is linear, i.e., 5 9 (G 9 ) = 2 9G 9 and that the minimum cost 5 ⇤sED in
(13.137) is finite for every realization Z :=

�
Z

1, . . . , Z 
�
. Then (13.137) is a linear

program for every Z since ⌘8 (?) are a�ne functions and Theorem 8.23 on linear
program optimality implies that both primal and dual optimal values are attained.
Let ?⇤

 
denote an optimal solution of the randomized problem (13.137). It violates

the chance constraint in (13.136d) with a (random) probability + (?⇤
 
) with mean

⇢
#

�
+ (?⇤

 
)
�
 (# +1)/( +1) according to Theorem 13.14. Moreover Theorem 13.15



13.5 Example application: stochastic economic dispatch 725

implies that the tail probability of + (?⇤
 
) is bounded by a Binomial tail:

P
 

�
+

�
?
⇤
 

�
> n

�


#’
8=0

✓
 

8

◆
n
8 (1� n) �8

For any V > 0 we can choose the number  of samples greater than the threshold
 (n , V) given in (13.110) to guarantee that the P 

�
+

�
?
⇤
 

�
> n

�
 V. Moreover such a

 will ensure that, with probability at least 1� V, the optimal value 5 ⇤sED of the scenario
program is close to the optimal values 5 ⇤rED and 5

⇤
ccED according to Theorem 13.25.

Let

(̃ :=
⇥
1 (

⇤
, %̃

min :=

1

min

%
min

�
, %̃

max :=

1

max

%
max

�

For each realization of the  samples (Z1, . . . , Z ), the scenario program (13.137) is a
convex program and a special case of robust ED (13.134) with a finite set of uncertain
values for (6,3):

5
⇤
sED := min

?
min??max

’
92#

5 9 (? 9 ) (13.138a)

s.t. %̃
min�min

:

Z
:  (̃

T
?  %̃

max�max
:

Z
: (13.138b)

Therefore for the (randomized) program (13.138), LMP _⇤
 

can be defined in the same
way as that for (13.133), but with possibly a tighter constraint. A primal feasible ?⇤

 

and a dual feasible (W�⇤
 

,W+⇤
 

, ^�⇤
 

, ^+⇤
 
) are optimal if and only if the stationarity and

complementary slackness conditions (13.132) hold.

13.5.5 Special case: no congestion

We illustrate the impact of uncertainty on the prices, optimal dispatch and cost using
the following special case:

1 Omit line limits, i.e., the line capacities are large enough not to pose any constraint.
This problem is traditionally called the economic dispatch.

2 All units are generators with cost functions 5 9 (? 9 ) := ?2
9
/(2[ 9 ) over [0,1] where

[ 9 > 0. We assume no production limits, i.e., the generators’ capacities are large
so that their generation levels will be constrained by their quadratically increasing
costs rather than capacity limits.

Let Z := 1
T (6� 3) denote the total uncontrollable excess generation and we assume it

takes value in a compact set / . Then the nominal economic dispatch (13.133) given a
realization Z0 2 / , its robust counterpart (13.135), and the scenario-based ED (13.137)
are all convex quadratic programs of the form (we assume 1 > 0):

5
⇤ (1) := min

?�0

’
9

5 9 (? 9 ) s.t. 1  1
T
?  1 [W�,W+] (13.139a)
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with respectively

5
⇤
min : 0 < 1 := 1

min� Z0, 1 := 1
max� Z0 (13.139b)

5
⇤
rED : 0 < 1 := 1

min�min
Z 2/

Z , 1 := 1
max�max

Z 2/
Z (13.139c)

5
⇤
sED : 0 < 1 := 1

min�min
:

Z
: , 1 := 1

max�max
:

Z
: (13.139d)

where the scenario-based ED is a randomized program defined by  independent
random samples of the total uncontrollable excess generation Z1, . . . , Z .

We now analyze the LMP W⇤ := W�⇤ � W+⇤ and optimal dispatch programs in ?⇤ for
(13.139) and compare their optimal values 5 ⇤min, 5 ⇤rED, 5 ⇤sED ( ). Since the marginal costs
5
0
9
(? 9 ) = ? 9/[ 9 > 0 for ? 9 > 0 for all 9 , W⇤ = 5

0
9
(?⇤
9
) > 0 at optimality and the lower

bound of the power balance constraint is tight. Given any W > 0, ? 9 (W) := 5 0�1
9

(W) = [ 9W
is the amount that is incentive compatible for unit 9 to produce. At optimality, power
balance becomes 1 = W⇤

Õ
#

9=0 [ 9 , and hence

W
⇤ =

1Õ
8
[8

, ?
⇤
9
= ? 9 (W⇤) =

[ 9Õ
8
[8

1, 5
⇤ (1) =

1
2

2
Õ
8
[8

(13.140)

Hence the optimal cost 5 ⇤ depends only on the lower limit 1. We can interpret [ 9 as
a participation factor: generator 9 produces a share of the minimum excess demand 1
proportional to its [ 9 . Define the deterministic quantity Z/ and the random variable
Z as:

Z/ := min
I2/

Z , Z := min
:

Z
:

i.e., Z/ represents the worst-case demand (�Z/ > 0 is the largest in /) and Z rep-
resents the worst-case demand among the  random samples. Applying (13.140) to
(13.139), the di�erences in LMPs, optimal dispatches and optimal costs under robust
and scenario-based ED, in comparison with the nominal ED (13.133) if the realization
of (6,3) were known in advance, are respectively

W
⇤
rED�W⇤min =

Z
0� Z/Õ
8
[8

� 0, W
⇤
sED�W⇤min =

Z
0� Z Õ
8
[8

?
⇤
rED, 9 � ?⇤min, 9 =

[ 9 (Z0� Z/ )Õ
8
[8

� 0, ?
⇤
sED, 9 � ?⇤min, 9 =

[ 9 (Z0� Z )Õ
8
[8

and the di�erences in the optimal costs are:

5
⇤
rED� 5 ⇤min =

1
2
Õ
9
[ 9

⇣
Z

0� Z/
⌘ ⇣

21min� Z0� Z/
⌘
� 0

5
⇤
sED� 5 ⇤min =

1
2
Õ
9
[ 9

⇣
Z

0� Z 
⌘ ⇣

21min� Z0� Z 
⌘

Since the worst-case demand is always higher, i.e., Z0 � Z/ a.s., robust ED always
produces a larger LMP, dispatches more power and incurs a higher optimal cost than
the nominal ED (13.133). This may not be the case with scenario-based ED since it
is a randomized program. If Z0

< Z (i.e., actual excess generation is less than the
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scenario minimum), then 5 ⇤sED < 5
⇤
min though the scenario-based dispatch will not meet

the actual supply and will rely on reserves. On the other hand

5
⇤
rED � max

�
5
⇤
min, 5 ⇤sED

 
a.s.

Suppose Z0 is also drawn from the same distribution as the  random samples in
scenario-based ED. Then the expected optimality gaps are, from (13.139) and (13.140),

5
⇤
rED�⇢ 5 ⇤min =

1
2
Õ
9
[ 9

⇣
21min (⇢Z � Z/ ) �

⇣
⇢ (Z2)� Z2

/

⌘⌘
� 0

⇢ 5
⇤
sED�⇢ 5 ⇤min =

1
2
Õ
9
[ 9

⇣
21min (⇢Z � Z ) �

⇣
⇢ (Z2)�⇢ (Z2

 
)
⌘⌘
� 0

where ⇢- denotes the expectation of the random variable - .

Finally consider the security constrained economic dispatch (6.40) and assume
5: 9 (? 9 ) := ?2

9
/(2[ 9 ) for all scenarios : . Assume Z := 1

T (6� 3) can take only finitely
many values Z1, . . . , Z . (Note that : here indexes the  di�erent deterministic values
Z can take, not random samples in scenario-based ED.) Then we have the deterministic
two-stage program with recourse (reserves (Amin,Amax) play no role because we have
assumed generators have no capacity limits):

5
⇤
scED := min

?,Amin,Amax

(A: ,:�1)

’
:

F:

’
9

5: 9 (? 9 + A: 9 ) :=
’
:

F:

’
9

1
2[ 9

�
? 9 + A: 9

�2

s.t. 1
T (? + A: ) = �Z: [W: ]

⌘:

⇣
A

min,Amax
⌘

:=
’
9

⌘: 9

⇣
A

min
9

,Amax
9

⌘
� 0 [`: ]

where we recall that Z: := 1
T (6: � 3: ) is the total uncontrollable excess generation.

The optimal scenario-dependent LMP W⇤
:
/F: , generations, and cost are respectively

W
⇤
:

F:

=
�Z:Õ
8
[8

, ?
⇤
9
+ A⇤

: 9
= �

[ 9 Z:Õ
8
[8

, 5
⇤
scED =

1
2
Õ
8
[8

’
:

F: Z
2
:

If one knew scenario : will be materialized, we assume here that one solves the
economic dispatch (13.133) with 1min = 1max := 0 to produce the LMP and optimal
dispatch and, incurs an optimal cost, from (13.140),

W
⇤
min =

�Z:Õ
8
[8

, ?
⇤
min, 9 = �

[ 9 Z:Õ
8
[8

, 5
⇤
min = 5

⇤ (�Z: ) =
Z

2
:

2
Õ
9
[ 9

Hence, without the reliability requirement (6.39c) (nor startup or ramping constraints),
reserves play no role and the two-stage optimization with recourse will be the same
as a single-stage decision after observing the realization of (6,3) because the actual
generations ?⇤

9
+ A⇤

: 9
= �[ 9 Z:/

Õ
8
[8 in the security constrained ED can always exactly

meet the realized excess load �Z: > 0. Hence the expected optimality gap of security
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constrained ED under these (unrealistic) assumptions is:

5
⇤
scED�⇢ 5 ⇤min =

1
2
Õ
8
[8

 ’
:

F: Z
2
:
�⇢ (Z2

:
)
!
= 0

13.6 Example application: security constrained unit commitment

We have formulated in Chapter 6.4.5 security constrained unit commitment as a two-
stage stochastic linear program with fixed recourse (studied in Chapter 13.4.1) where
the second-stage cost is the expected cost. The first-stage variable D := (D 9 (C) 8 98C)
are binary commitment decisions for all units 9 in all periods C. The second-stage
variable G(C) := (?(C),Amin (C),Amax (C),A: (C), : � 1) in period C are dispatch and reserve
amounts for all units in C. Let G := (G(C)8C). The uncertainty l takes a finite number
values indexed by : = 1, . . . , . It takes the form (assuming the dispatch costs and the
reserve requirement functions ⌘C : are linear functions; see (6.47)):

min
D

5 (D) + ⇢l&̃⇤ (D,l) s.t. �D  1 (13.141a)

where, given the first-stage decision D and uncertainty l, the second-stage problem is
the linear program:

&̃
⇤ (D,l) := min

G

@
T (l)G s.t. ) (l)D +,G(l)  ⌘(l) (13.141b)

In this section we present an alternative formulation from [119] that combines the idea
of two-stage optimization with recourse with robust optimization where the second-
stage cost is not the expected cost, but the worst-case cost.

13.6.1 Two-stage adaptive robust formulation

Suppose the uncertain parameter is the uncontrollable net demand Z (C) := 3 (C) �6(C)
in period C that takes continuous values in the uncertainty set:

/
C :=

(
Z (C) 2 R#+1 :

’
9

|Z 9 (C)� Z̄ 9 (C) |
Ẑ 9 (C)

 �C , |Z 9 (C)� Z̄ 9 (C) |  Ẑ 9 (C)8 9
)

where Z̄ 9 (C) and Ẑ 9 (C) are the forecast net demand and the maximum forecast error
respectively for C = 1, . . . ,) . Let Z := (Z (C)8C) 2 / := /1 ⇥ · · ·⇥ /) . The first-stage
variable D := (D 9 (C) 8 98C) 2 {0,1}(#+1)) are binary commitment decisions for all units
9 in all periods C. The second-stage variable G(C, Z) := (?(C),Amin (C),Amax (C),A (C, Z)) in
period C are dispatch and reserve amounts for all units in C in response to Z (C) 2 / C . Let
G(Z) := (G(C, Z) 8C) 2 R4(#+1)) be the second-stage responses to Z for all periods. The
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two-stage robust adaptive formulation of security constrained unit commitment takes
the form (cf. (13.141)):

min
D2{0,1}(#+1))

5 (D) + max
Z 2/

&̃
⇤ (D, Z) s.t. �D  1 (13.142)

where, given a commitment decision D 2 {0,1}(#+1)) and a net demand Z 2 / , the
second-stage problem is:

&̃
⇤ (D, Z) := min

G2R4(#+1))
@

T (Z)G s.t. ) (Z)D +,G(Z)  ⌘(Z) (13.143)

i.e., the optimal commitment decision D⇤ is chosen to minimize the worst-case optimal
dispatch cost where the worst case is over all possible uncontrollable net demands
Z 2 / .

Suppose for each (D, Z) the linear program (13.143) is feasible so that strong duality
holds and &̃⇤ is finite (Theorem 8.23). The dual problem is

&̃
⇤ (D, Z) = max

`�0
() (Z)D� ⌘(Z))T

` s.t. ,
T
` + @(Z) = 0

Therefore the problem maxZ 2/ &̃⇤ (D, Z) in (13.142) becomes:

max
Z 2/

&̃
⇤ (D, Z) = max

Z 2/ ,`�0
() (Z)D� ⌘(Z))T

` s.t. ,
T
` + @(Z) = 0 (13.144)

This problem is generally intractable if () (Z),⌘(Z),@(Z)) depend on Z (even with fixed
recourse ,). For the security constrained unit commitment problem (6.47), suppose
the matrix) (Z) and the cost vector @(Z) in (13.144) are independent of Z , i.e.,) (Z) =)
and @(Z) = @. This will be the case if the cost functions 5C (?(C) + A (C, Z), Z) and the
reserve requirement functions ⌘C (Amin (C),Amax (C), Z) of the security constrained real-
time dispatch problem 5

⇤ in (6.47) are of the form:

5C (H, Z) := @
T
C
H, ⌘C (A , Ā , Z) := ⌘

T
C
A + ⌘̄T

C
Ā

i.e., the coe�cients @C ,⌘
C
, ⌘̄C are independent of the uncertain parameter Z . The un-

certain parameter Z enters only into (6.47g)(6.47h) in a way that the cost coe�cient
⌘(Z) = Z in (13.144). Therefore the problem (13.144) becomes:

&
⇤ (D) := max

Z 2/
&̃
⇤ (D, Z) = max

Z 2/ ,`�0
()D� Z)T

` s.t. ,
T
` + @ = 0 (13.145)

In particular the feasible set is a fixed polyhedron independent of Z . The only nonlinear-
ity is the bilinear term Z

T
` in the objective function. Bilinear programs are generally

NP-hard.

13.6.2 Solution

In the following we present the solution method from [119] for the two-stage op-
timization (13.142)(13.145). It is a two-level algorithm where the outer level uses
Benders decomposition for solving (13.142) for the commitment decision D using cuts
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generated from the inner level. The inner level solves the bilinear program (13.145)
approximately.

Outer algorithm: Benders decomposition

Step 0 Choose any feasible first-stage solution D0 to (13.142). Solve &⇤ (D0) in (13.145)
to get an initial solution (Z1,`1). Set ⇠ lb := �1, ⇠ub :=1 and : := 1.

Step 1 Solved the mixed integer program

min
D,U

5 (D) +U s.t. �G  1, U � ()D� Z;)T
`; , ;  : (13.146)

This step solves (13.142) with&⇤ in (13.145) approximated by U. Let the optimum
be (D: ,U: ) and the minimum value ⇠ lb := 5 (D: ) +U: .

Step 2 Solve a linearized version of the inner problem &
⇤ (D: ) in (13.145) and denote its

optimal solution by (Z:+1,`:+1). Let the maximum value be⇠ub := 5 (D: ) +&⇤ (D: )
(see below).

Step 3 If ⇠ub�⇠ lb
< n , stop and return D: ; otherwise, set : := : +1 and goto Step 1.

Inner algorithm: bilinear program &
⇤ (D)

Step 0 Choose an initial Z1 2 / . Set $lb := �1, $ub :=1 and 9 := 1.
Step 1 Solved the (dual) linear program &̃

⇤ (D: , Z 9 ) :=max`�0 ()D: �Z 9 )T
` s.t.,T

`+@ =
0 in (13.145). Let the optimum be ` 9 and the linearization of the bilinear term
Z

T
` around (Z 9 ,` 9 ) be

! 9 (Z ,`) := Z
T
9
` 9 + (`� ` 9 )T

Z 9 + (Z � Z 9 )T
` 9

Let $lb := ()D: � Z 9 )T
` 9 .

Step 2 If$ub�$lb
< X, stop and return (Z 9 ,` 9 ); otherwise, set 9 := 9 +1 and goto Step 3.

Step 3 Solve the linearized version of &⇤ (D: ) in (13.145):

$
ub := max

Z 2/ ,`�0,V
D

T
:
)`� V s.t. ,

T
`+ @ = 0, V � ! 9 (Z ,`)

Let the optimum be (Z 9+1,` 9+1). Goto Step 1.

Note that the Benders cut added to the Outer algorithm in Step 1 are valid, i.e.,
&
⇤ (D) � ()D� Z 9 )T

` 9 for all D because from (13.145)

&
⇤ (D) := max

Z 2/
&̃
⇤ (D, Z) � &̃

⇤ (D, Z 9 ) � ()D� Z 9 )T
` 9 , 8D

where the last inequality follows because ` 9 in Step 1 of the Inner algorithm is feasible
for the dual linear program, i.e.,,T

` 9 + @ = 0.
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13.7 Bibliographical notes

13.8 Problems

Chapter 13.1

Exercise 13.1 (Representation). 1 Explain why -1 := {G 2 R= : kGk1  1} is speci-
fied by =2 inequalities. Show that it is the same as -2 := {G 2R= :

Õ
=

8=1 H8  1, �H8 
G8  H1, 8 = 1, . . . ,=}, a set specified by 2= variables and 2=+1 inequalities.

2 Explain why -1 := {G 2 R= : kGk1  1} is specified by 2= inequalities. Show that
it is the same as -2 := {G 2 R= : H8  1, �H8  G8  H1, 8 = 1, . . . ,=}, a set specified
by 2= variables and 3= inequalities.

Exercise 13.2 (Closed and convex /). Consider the robust optimization (13.2) repro-
duced here:

min
G2R=

5 (G) s.t. ⌘(G, Z)  0, 8Z 2 / (13.147)

where 5 : R= ! R is a cost function and / 2 R! is an uncertainty set. Suppose, for
every G 2 R=, ⌘(G, ·) is convex and continuous on / . Show that we can assume without
loss of generality that / is closed and convex. (Hint: Show that if G is a feasible solution
for (13.147) then it remains feasible when / is extended to its closure cl(/) or convex
hull conv(/).)

The next problem shows how to formulate the robust counterpart of a nominal
problem that involves equality constraints.

Exercise 13.3 (Robust SOCP relaxation of OPF). Consider the second-order cone
relaxation of optimal power flow (OPF) in (11.5). Recall the (# +1)⇥# incidence
matrix ⇠ of a radial network and let ⇠+ := max{⇠,0}, ⇠� := min{⇠,0}. Let H1 :=
(?,@) 2 R2(#+1) denote injections that are assumed controllable and H2 := (E,✓,%,&) 2
R

4#+1 the resulting states. Let A := diag(A 9: , ( 9 , :) 2 ⇢) and G := diag(G 9: , ( 9 , :) 2 ⇢)
denote the given diagonal matrices of line resistances and inductances.

1 Show that the SOCP relaxation of OPF in (11.5) takes the form:

min
H1,H2

2
T
1H1 + 2T

2H2 (13.148a)

s.t. �0H1 +⌫0H2 = 0, ⌫ 9: H2 2  soc, ( 9 , :) 2 ⇢ (13.148b)

H
min
1  H1  Hmax

1 , E
min  E  Emax, ✓  ✓max (13.148c)

for some (4# +1) ⇥ (4# +1) matrix ⌫ 9: for every line ( 9 , :) 2 ⇢ , where  soc :=
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{(D, C) 2 R4 : kDk2  C} is the standard second-order cone, and

�0 :=
266664
I#+1 0#+1

0#+1 I#+1

0# 0#

377775
, ⌫0 :=

266664
0#+1 ⇠

�
A �⇠ 0(#+1)⇥#

0#+1 ⇠
�
G 0(#+1)⇥# �⇠

⇠
T

A
2 + G2 �2A �2G

377775
(13.148d)

with I< being the identity matrix of size <, and 0<, 0<⇥= being respectively the
<⇥< and <⇥= zero matrices.

2 Suppose the line resistances A +�A and inductances G+�G have uncertain perturba-
tions of �A := diag(�A 9: , ( 9 , :) 2 ⇢) and �G := diag(�G 9: , ( 9 , :) 2 ⇢) respectively.
Let the uncertain parameter Z := (�A , �G) that takes value in some uncertainty set
/Z . Show that the robust counterpart of (13.148) is:

min
H1, C

C s.t. 2
T
1H1 + 2T

2H2  C, ⌫ 9: H2 2  soc, ( 9 , :) 2 ⇢ , 8H2 2 / (H1)

H
min
1  H1  Hmax

1 , Emin  E  Emax, ✓  ✓max, 8H2 2 / (H1)

where (derive �⌫(Z))

/ (H1) := {H2 2 R4#+1 : �0H1 + (⌫0 +�⌫(Z))H2 = 0, 8Z 2 /Z }

i.e., the uncertainty set /Z has been embedded in the new uncertainty set / (H1).
Is the robust counterpart tractable?

Exercise 13.4 (Robust LP: / (G)). 1 Prove part 1 of Theorem 13.1. Show that if
/ (G) := { Z 2R: : kZ k1  ⌘(G) } depends on G then the semi-infinite linear program
(13.10) is equivalent to:

min
(G,H)2R=+:

2
T
G s.t. ⌘(G)

!’
;=1

H;  �(0T
0G� 10), �H;  0T

;
G� 1;  H; , ; = 1, . . . , :

which may not be convex.
2 Prove part 2 of Theorem 13.1. Show that if / (G) := { Z 2 R: : kZ k2  A (G) }

depends on G then the semi-infinite linear program (13.10) is equivalent to:

min
G2R=

2
T
G s.t. 0

T
0G + A (G)

s’
;

⇣
0

T
;
G� 1;

⌘2
 10

which may not be convex.

Exercise 13.5. Recall the second order cone  soc := {(Z ,D) 2 R:+1 : kZ k2  D} and the
a�ne set � := {(Z ,D) 2 R:+1 : D = A} for a given A > 0. Derive a tractable reformulation
of the robust linear program (13.10) with the uncertainty set / :=  soc\�, by adapting
the proof of part 3 of Theorem 13.1. Compare your result with part 2 of Theorem 13.1.
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Exercise 13.6 (Robust LP). Show that the robust LP:

min
G2R=

2
T
G s.t. (08 +D8)T

G  18 , 8kD8 k2  d, 8 = 1, . . . ,<

where 08 ,D8 2 R= and 18 2 R is equivalent to the deterministic second-order cone
program:

min
G2R=

2
T
G s.t. 0

T
8
G + dkGk2  18 , 8 = 1, . . . ,<

Exercise 13.7 (Robust SOCP). Derive �̂(G) 2 R<⇥: , 1̂(G) 2 R<, Û(G) 2 R: , V̂(G) 2 R
such that G 2 R= is feasible for the robust SOCP (13.16) if and only if��

�̂(G)Z + 1̂(G)
��

2  Û
T (G)Z + V̂(G), 8Z 2 /

Exercise 13.8 (Robust SOCP). [151, Proposition 6.2.1] Prove Theorem 13.2, assuming
the problem (13.22) is feasible and bounded.

Exercise 13.9. Prove (13.30): for any 01 2 R< and 02 2 R= we have

�d k01k2 k02k2 = min
- 2R<⇥=:k- k2d

0
T
1-02

where the spectral norm k- k2 := supkE k21 k-Ek2 = fmax (-) is the largest singular
value of - .

Chapter 13.2.

Exercise 13.10 (Concavity). Let ⌘ :R=!R< and 5 :R<!R be real-valued functions
(so their e�ective domains are R= and R< respectively). Show that If 5 is concave
nondecreasing and ⌘ is concave then 5 (⌘(G)) is concave in G.

Exercise 13.11 (U-concavity). Prove Lemma 13.6.

Exercise 13.12 (Chance-constrained program). Consider the dual problem (13.49b):

3
⇤ := sup

`�0
3 (`) := sup

`�0
3- (`) + 3/ (`) (13.149a)

where - ✓ R=, /? ✓ R< and

3- (`) := inf
G2-

⇣
2(G)� `T

⌘(G)
⌘
, 3/ (`) := inf

I2/?
`

T
I (13.149b)
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Suppose - and /? are nonempty, convex and compact and denote the sets of minimizers
in (13.149b) by

- (`) := {G 2 - : 3- (`) = 2(G)� `T
⌘(G)}, / (`) := {I 2 /? : 3/ (`) = `T

I}

1 Show that - (`) and / (`) are nonempty, convex and compact. Hence 3 (`) is a
real-valued concave function.

2 Show that m3- (`) = conv (�⌘(G) : G 2 - (`)) for ` 2 R<+ .
3 Show that m3/ (`) = / (`) for ` 2 R<+ .
4 Show that m3 (`) = conv (�⌘(G) : G 2 - (`)) + / (`) for ` 2 R<+ .

(Hint: For part 1 use Corollary 12.23 or Theorem 12.26 of Chapter 12.6. For parts 2
and 3 use Theorem 12.19 of Chapter 12.3.3. For part 4 use Theorem 12.18 of Chapter
12.3.3.)

Exercise 13.13 (Chance-constrained program). Consider the dual problem and con-
dition in Exercise 13.12. Suppose, in addition, that conditions C13.1 and C13.2 of
Theorem 13.8 are satisfied, so that the set of dual optimal solutions `⇤ is nonempty,
convex and closed.

1 Show that `⇤ � 0 is optimal for (13.149) if and only if there exists (G⇤, I⇤) such
that

G
⇤ 2 - (`⇤), I

⇤ 2 / (`⇤), I
⇤ � ⌘(G⇤) 2 #R<+ (`⇤) (13.150)

where #. (H) denotes the normal cone of . at H 2 . .
2 Conclude that (13.150) is equivalent to (the saddle point characterization (13.51)

in Theorem 13.8)

G
⇤ 2 - (`⇤), I

⇤ 2 / (`⇤), ⌘(G⇤) � I
⇤, (`⇤)T (⌘(G⇤)� I⇤) = 0

(Hint: For part 1 apply Theorem 12.21 to (13.149). Part 2 follows from Theorem 12.3.)

Exercise 13.14 (Log moment-generating function log⇢ (4_. )). Show that k. (_) :=
ln⇢ (4_. ) is convex in _ 2 R. (Hint: Use Hölder’s inequality: ⇢ |-. | 
(⇢ ( |- |?))1/? (⇢ ( |. |@)1/@ for any random variables - ,. and any ?,@ 2 [1,1] with
1/? +1/@ = 1.)

Exercise 13.15 (Cherno� bound: Binomial distribution). Consider the Binomial ran-

dom variable . 2 {0, . . . ,=} with parameter (=, ?), i.e., P(. = :) =
✓
=

:

◆
?
: (1� ?)=�:

for : 2 {0, . . . ,=}. Show that
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1 The moment-generating function of . is ⇢4_. =
�
?4
_ +1� ?

�
=.

2 For any 0 2 (0,1)

P(. � =0)  exp
✓
�=

✓
0 log

0

?

+ (1� 0) log
1� 0
1� ?

◆◆

This bound is used to bound the Binomial tail in Theorem 13.15.

Exercise 13.16 (Concentration inequality: ⇢ (max8 -8)). Derive the concentration in-
equality (13.66) for the maximum of a finite number of sub-Gaussian random variables.
(Hint: Apply Jensen’s inequality to 4_⇢ (max8 -8) .)

Exercise 13.17 (Importance sampling). We wish to estimate the tail probabil-
ity P/ (/ � C) where / is a standard Gaussian random variable with distribution
�/ := # (0,1).

1 Given # iid samples (I1, . . . , I# ) under distribution �/ := # (0,1), what is a simple
way to estimate P/ (/ � C)?

2 Suppose C > 0 is large so that P/ (/ � C) is small and it will take many samples to
have a reliable estimate. Suppose we obtain = iid samples (H8 , 8 = 1, . . . ,=) from the
distribution �. := # (C,1) under which P. (. � C) = 1/2. Explain how to estimate
P/ (/ � C).

Chapter 13.3.

Exercise 13.18 (Violation probability). Consider the following scenario program
CSP(#) with N iid constraints:

min
G2R
�G s.t. G  Z 8 , 8 = 1, . . . ,#

where each Z 8 takes value in [0,1] with uniform distribution. Is the problem uniformly
supported? Derive the distribution of the violation probability + (G⇤

#
).

Exercise 13.19 (Latent and generalized support constraints). 1 Show that if
CSP(#) with # � = has at most Bmax support constraints then CSP(:) has at most
B

max support constraints for all : � # .
2 Suppose CSP(#) with # � = is uniformly supported with 1  B  = support

constraints. Suppose # � B + 2 if B < = (not fully supported case). Fix any Z 2
/
# = /# (B) with �B as its (unique) set of support constraints.
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(a) Let �B2 := {8 : 8 8 �B} be the set of non-support constraints in Z . Consider
CSP(# �1) obtained from CSP(#) by removing a constraint from �

B2 . Show
that �B remains support constraints for CSP(# � 1) and �

B2 \ { 9} remains
non-support constraints for CSP(# �1).

(b) Let CSP(# � :) be the resulting scenario program by removing : constraints
from �

B2 , 1  :  # � B. Show that G⇤
B
= G⇤

B+1 = · · · = G⇤
#

.
(c) Show that Z has no latent support constraint.

3 Suppose CSP(#) is not uniformly supported and let �C be a set of generalized
support constraints for CSP(#). Fix a Z 2 /# (�C ).
(a) Let �C2 := {8 : 8 8 �C } be constraints in Z that are not generalized support

constraints (for any 0  C  =). Consider CSP(# �1) obtained from CSP(#)
by removing a constraint from �

C2 . Show that �C remains the unique set of
generalized support constraints for CSP(#�1) and ⌫\{ 9} contains no support
constraint for CSP(# �1).

(b) Let CSP(# � :) be the resulting scenario program by removing : constraints
from �

C2 , 1  :  # � C. Show that G⇤
C
= G⇤

C+1 = · · · = G⇤
#

.

Exercise 13.20 (Latent support constraints). 1 We are given three points 0,1,2 2R2

on a plane. Each of the # � 4 iid random variables (Z1, . . . , Z# ) is equal to
0,1,2 with nonzero probabilities ?0, ?1 , ?2 respectively with ?0 + ?1 + ?2 := 1.
Given Z := (Z1, . . . , Z# ) 2 /# , CSP(#) determines the smallest circle, specified
by G := (G1,G2,G3) 2 R3, going through all # points (Z1, . . . , Z# ).
(a) Derive the sets /# (�C ) where �C contain a single support constraint Z1 and

maximum sets of latent constraints.
(b) Give a Z 2 /# ({1}) with respect to which !1 and !2 being sets of latent

support constraints imply that their union !1 [ !2 is a set of latent support
constraints.

2 Give an example where !1 and !2 are sets of latent support constraints wrt a
certain Z 2 /# (�B), but not their union !1[ !2. (Hint: Modify part 1 by adding a
forth point 3 2 R2 to 0,1,2.)

Exercise 13.21 (Sample complexity). Prove Corollary 13.22.

Chapter 13.4.

Exercise 13.22 (Stochastic LP: ⇠2 and ⇠ 02). In general, ⇠2 < ⇠ 02 in (13.119).

1 For stochastic linear program with fixed recourse, provide an example where
⇠2 ( ⇠

0
2. (Hint: ⇢Z Z2 =1; see Lemma 13.26.)
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2 For stochastic linear program with random recourse, provide an example where
⇠
0
2 ( ⇠2.

Exercise 13.23 (Stochastic LP:⇠2 and⇠ 02). Give an example random variable that has
finite first moment but infinite second moment.

Exercise 13.24 (mG&̃(G, Z)). Fix any Z and recall from (13.118a) (omitting l or Z in
notation)

&̃(G, Z) := min
H�0

@
T
H s.t. ,H = ⌘�) G

Suppose, for each G 2 R=1 ,

1 There exists a unique primal-dual optimal solution (H(G),_(G),`(G)) for &̃(G, Z);
moreover it is continuous at G.

2 Strong duality holds at (H(G),_(G),`(G)).

Show that &̃(G, Z) is continuously di�erentiable and rG&̃(G, Z) = )T
_(G). (Hint: Use

envelop theorem (Chapter 8.3.6). See [142, Proposition 2.2, p.28] on subdi�erentia-
bility of &̃(Ḡ, Z) when (H(G),_(G),`(G)) is not unique and continuous in G.)

Exercise 13.25. [143, Theorem 34 and 35; p.157][Stochastic nonlinear program] Prove
Lemma 13.29.

Exercise 13.26. [143, Theorem 39; p.158][Stochastic nonlinear program] Prove The-
orem 13.30.

Chapter 13.5

Exercise 13.27. Derive (13.140) when all generators have a common and finite capacity
0 < ?

max
<1.





Part III

Unbalanced three-phase
networks





14 Component models, I: devices

Single-phase models are a good approximation of the reality for many transmission
network applications where lines are symmetric and loads are balanced. In that case,
a similarity transformation produces three networks in a sequence coordinate, called
zero, positive, and negative-sequence networks, that are decoupled. Each network can
be analyzed using a single-phase model studied in previous chapters. These sequence
networks are coupled when lines are not transposed or equally spaced, e.g., as in
distribution systems, or when loads are unbalanced or nonlinear, e.g., AC furnaces,
high-speed trains, power electronics, or single or two-phase laterals in distribution
networks. In that case single-phase analysis can produce incorrect power flow solutions.
In this and next chapters we extend single-phase models to unbalanced three-phase
models.

We first provide in Chapter 14.1 an overview of models for three-phase devices,
lines and transformers, and how to use these component models to compose an overall
network model. We summarize in Chapter 14.2 mathematical properties that underly
the behavior of three-phase systems. Finally we derive in Chapter 14.3 the models
of three-phase voltage sources, current sources, power sources, and impedances in
. and � configurations. In Chapter 15 we derive models for three-phase lines and
transformers. We will use these component models in Chapters 16 and 17 to construct
network models and study unbalanced three-phase analysis.

14.1 Overview

Figure 14.1 shows a simple example of a three-phase system with three components,
two devices connected by a line. For example the single-terminal device on the left
can model a three-phase generator and the other single-terminal device can be a three-
phase load. Each terminal has three wires (or ports or conductors) indexed by its
phases 0,1,2, and possibly a neutral wire indexed by =. Internally, it can be in . or �
configuration, and the . configuration may have a neutral wire that may be grounded.
A three-phase line has two terminals, each terminal with three or four wires, and
it connects two single-terminal devices, one at each end of the line. The line may
model a transmission or distribution line or a transformer. The distribution line can be
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three-phase 
source

three-phase 
load

a’
b’
c’

n’

a
b
c

n

Figure 14.1 A simple model of a three-phase system consisting of a source connected through a
line to a load.

underground or overhead with a neutral wire that may be grounded in regular spacing
along the line.

The basic idea in modeling a three-phase component is to explicitly separate its
model into an internal model that specifies the characteristics of the constituent single-
phase components in terms of internal variables, and a conversion rule that maps its
internal variables to its terminal variables. The internal model depends only on the
type of components (non-ideal voltage sources, ZIP loads, or di�erent single-phase
transformer models) regardless of their configurations. The conversion rule depends
only on their configurations regardless of the type of components. They determines
an external model which is a relation between the terminal variables, obtained by
eliminating the internal variables from the set of equations describing the internal
model and the conversion rule. We next describe this procedure in detail.

14.1.1 Internal and terminal variables

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n’

n

a

b

c

In'= I n
V n'

(a) . configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) � configuration

Figure 14.2 Internal and external variables associated with a single-terminal device in . and �
configurations.

The internal variables of a generic single-terminal device are shown in Figure 14.2
and defined as follows:
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• +. :=
�
+
0=,+1=,+2=

�
2 C3, �. :=

�
�
0=, �1=, �2=

�
2 C3, B. :=

�
B
0=, B1=, B2=

�
2 C3,

(+=, �=, B=) 2 C3: line-to-neutral voltages, currents, and power across the single-
phase devices in. configuration, as well as the voltage, current, and power across
the neutral impedance I=, respectively. By definition B

0= := +0= (�0=)H is the
power across the phase-0 device, etc. The neutral voltage +=, with respect to a
common reference point, is generally nonzero. A . -configured device may or
may not have a neutral line which may or may not be grounded and the grounding
impedance I= may or may not be zero. When present, the current on the neutral
line is denoted by �= in the direction coming out of the device. The Kirchho�
current law dictates that �= =

Õ
q
�
q=. The internal power across the neutral

impedance is B= :=
�
+
= �+=0

�
�

=

where �
=

denotes the complex conjugate of �=.

The term +
=
�

.

, in contrast, is the vector power delivered across the neutral and
the common reference point (e.g., the ground).

• +� :=
�
+
01 ,+12 ,+20

�
2 C3, �� :=

�
�
01 , �12 , �20

�
2 C3, B� :=

�
B
01 , B12 , B20

�
2 C3 :

line-to-line voltages, currents, and power across the single-phase devices respec-
tively in � configuration. By definition B01 :=+01

�
�
01

�H
is the power across the

phase-0 device, etc.

Note that the direction of the internal power B0= or B01 across a single-phase device is
defined in the direction of the current across the device. The neutral line, when present,
is often assumed grounded, i.e., +=

0
= 0, and the voltage reference point is the ground.

In this case B= =+=�=H.

The terminal variables of the single-terminal device in Figure 14.2 are defined as
follows:

• + :=
�
+
0,+1 ,+2

�
2 C3, � :=

�
�
0, �1 , �2

�
2 C3, B :=

�
B
0, B1 , B2

�
2 C3,

�
+
=
0
, �=

0
, B=

0 � 2
C

3: terminal voltages, currents, and power respectively. The terminal voltage+ is
defined with respect to an arbitrary but common reference point, e.g., the ground.
The terminal current � is defined in the direction coming out of the device, i.e., � is
defined to be the current injection from the device to the rest of the network when
it is connected to a bus bar, regardless of whether it generates or consumes power.
By definition B0 := +0 (�0)H is the power across the terminal 0 and the common
reference point. When there is a neutral wire its terminal voltage (with respect
to the common reference point), current and power are denoted by

�
+
=
0
, �=

0
, B=

0 �
with �=

0
= �= and B=

0
:=+=

0
�
=
0H =+=

0
�
=H.

The internal and external variables of a three-phase device are summarized in Table
14.1.
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Voltage Current Power Neutral line

Internal variable +
. /�

�
. /�

B
. /� (+=, �=, B=)

External variable + � B

⇣
+
=
0
, �=

0
, B=

0 ⌘

Table 14.1 Internal and external variables of single-terminal three-phase devices. The notation
G
. /� is a shorthand for the pair (G. ,G�).

14.1.2 Three-phase device models

An internal model of a three-phase device is a relation between the internal variables�
+
. , �. , B.

�
or between

�
+
�, ��, B�

�
. It describes the behavior of the single-phase

devices, and does not depend on their. or � configuration nor the absence or presence
of a neutral line. For example the internal model of an ideal voltage source specified
by its internal voltage ⇢. /� 2 C3 is

+
. /� = ⇢

. /�, B
. /� = diag

✓
⇢
. /�

⇣
�
. /�

⌘H
◆

where the notation G. /� is a shorthand for the pair (G. ,G�). The internal model of an
impedance specified by a complex matrix I. /� 2 C3⇥3 is

+
. /� = I

. /�
�
. /�, B

. /� = diag
✓
+
. /�

⇣
�
. /�

⌘H
◆

Denote the internal model of a general three-phase device by

5
int

⇣
+
. /� , �. /�

⌘
= 0, B

. /� = diag
⇣
+
. /�

�
. /�H

⌘
(14.1)

The external model of a device is the relation between its terminal variables (+ , �, B)
and possibly

�
+
=
0
, �=

0
, B=

0 �
. It describes the externally observable behavior of the device

and depends on both the internal model of the single-phase devices and their config-
uration. How the . or � configuration determines its external model is described by
conversion rules that map internal variables to terminal variables. While the internal
model depends only on the type of single-phase devices, the conversion rules depend
only on the configuration, but not on the device type. This will be explained in detailed
in Chapter 14.3. Denote the external model by

5
ext (+ , �) = 0, B = diag

⇣
+�

H
⌘

(14.2)

The importance of the external model is that devices interact over a network only
through their terminal variables. The external model of each three-phase device im-
poses local constraints on its own terminal variables while network equations, to be
studied in Chapters 16 and 17, impose global constraints on the terminal variables
across devices.

Though not explicit, the functions in (14.1) and (14.2) may be augmented with the
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internal and terminal variables (+=, �=, B=) and
�
+
=
0
, �=

0
, B=

0 �
respectively associated

with the neutral in a . configuration. The functions 5 int and 5
ext are linear for voltage

sources, current sources and impedances, but quadratic for power sources; see Chapter
14.3.

A three-phase device can therefore be modeled in two equivalent ways:

1 An internal model (14.1) that describes the relation between its internal variables�
+
. /�, �. /�, B. /�

�
and the conversion rules, (14.8) (14.9) (14.10) below, that map

internal variables to external variables.
2 An external model (14.2) that describes the relation between its terminal variables.

The external model is obtained by applying the conversion rules to the internal
model (14.1) to eliminate the internal variables.

The first model is useful when the application under study needs to determine or
optimize some of the internal variables such as the power B. /�

9
generated or consumed

by each of the single-phase devices connected at a bus 9 . Otherwise the external model
(14.2) can be used if the application involves only the terminal variables.

Remark 14.1. One should be careful with the direction in which currents and powers
are defined when relating internal and external powers (see Chapter14.3). For instance
+
0= is the voltage drop between terminal 0 and the neutral = and �0= is the current from

0 to =. The power B0= is therefore the power delivered to the device in the direction
of the current �0=. If the device models a generator then the power it generates is
�B0= =+0= (��0=)H.

14.1.3 Three-phase line and transformer models

Let the terminals of a three-phase line or transformer be indexed by 9 and : . Let

+ 9 :=
⇣
+
0

9
,+1
9
,+2
9

⌘
2 C3 and +: :=

�
+
0

:
,+1
:

,+2
:

�
2 C3 denote the voltages at terminals

9 and : respectively with respect to an arbitrary but common reference point. Let

� 9: :=
⇣
�
0

9:
, �1
9:

, �2
9:

⌘
2 C3 denote the sending-end current from terminal 9 to terminal

: along the line or transformer, and �: 9 denote the sending-end current in the opposite
direction. The external behavior of a three-phase line or transformer is described by a
linear relation between

�
+ 9 ,+: , � 9: , �: 9

�
2 C12 of the form

6

�
+ 9 ,+: , � 9: , �: 9

�
= 0 (14.3a)

where 6 is defined by 3⇥3 matrix parameters of the line ( 9 , :).

Let ( 9: :=
⇣
(
0

9:
,(1
9:

,(2
9:

⌘
2 C3 denote the sending-end power from terminal 9 to

terminal : along the line or transformer, and (: 9 denote the sending-end power in the
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opposite direction. For each phase q = 0,1,2, (q
9:

:=+ q
9

⇣
�
q

9:

⌘H
. In vector form this is

( 9: := diag
⇣
+ 9 �

H
9:

⌘
, (: 9 := diag

⇣
+: �

H
: 9

⌘
(14.3b)

When there is a neutral wire between terminals 9 and : , their voltages are +=
9

and

+
=

:
. The current in the neutral wire is denoted by

⇣
�
=

96
, �=
:6

⌘
if the neutral is grounded

or
⇣
�
=

9:
, �=
: 9

⌘
otherwise. The function 6 (14.3a) includes neutral voltages and currents

and is defined by 4⇥4 matrix parameters of the line. The power flow equation (14.3b)
is modified accordingly.

The equations (14.3) describe the end-to-end behavior of a three-phase line or
transformer. We reiterate that they depend on the three-phase devices connected to its
terminals only through their external variables.

14.1.4 Three-phase network models

A network of three-phase devices connected by three-phase lines and transformers
can be composed from the component models (14.2) and (14.3) for these components
through the flow balance equations that relate nodal current and power (B 9 , � 9 ) to line
currents and power

�
� 9: ,( 9:

�
connected to the same bus bar 9 :

� 9 =
’
:: 9⇠:

� 9: , 8 9 (14.4a)

B 9 =
’
:: 9⇠:

( 9: , 8 9 (14.4b)

Depending on the application, what information is available and what quantities are
controllable, we can model the network in two ways:

1 �+ model: We can model the network using the relation 5
ext (+ , �) = 0 in (14.2)

and (14.3a) (14.4a) between bus voltage and current vectors (+ , �). This model is
linear. Once nodal voltages + 9 2 C3 and currents � 9 2 C3 are determined, nodal

powers B 9 := diag
⇣
+ 9 �

H
9

⌘
can be calculated.

2 B+ model: We can model the network using the device model (14.2) and the power
flow equations (14.3b) (14.4b) between bus voltages and power injections (+ , B).
This model is generally nonlinear.

The linear �+ model can always be used if the system contains no power sources.
Otherwise either the �+ model or the B+ model can be used to describe the network
but, since the device model (14.2) is nonlinear, the overall model will always be
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nonlinear. Network models are studied in Chapter 16 for bus injection models and
Chapter 17 for branch flow models.

In summary a complete network model consists of

1 (14.3) (14.4) + (14.1) and (14.8) (14.9) (14.10): involves the internal variables of
three-phase devices.

2 (14.3) (14.4) + (14.2): does not involve internal variables of the three-phase
devices.

14.1.5 Balanced operation

If the following conditions are satisfied throughout the network:

1 all lines have symmetric geometry;
2 zero total current: 80 (C) + 81 (C) + 82 (C) = 0 at all times C;
3 zero total charge: @0 (C) + @1 (C) + @2 (C) = 0 at all times C;

then the system is balanced and its phases are decoupled. This means that (14.2)
reduces to

5
ext,q (+ q , � q) = 0, B

q = +
q

�
qH, q = 0,1,2

and similarly for equations (14.3)(14.4). For example the line current �0
9:

in phase 0

depends only on voltages
⇣
+
0

9
,+0
:

⌘
in phase 0, but not on voltages in other phases.

This allows per-phase analysis, as we have done in earlier chapters. These decoupling
conditions can be satisfied if the terminal voltages of all three-phase sources are
balanced (i.e., they have equal magnitudes and are separated by 120� in phase), all three-
phase loads consist of identical impedances, and all three-phase lines has symmetric
geometry (e.g. through transposition). In that case the magnetic coupling across phases
can be modeled by self-impedance alone, i.e., a three-phase line behaves as if its
mutual inductances and capacitances across phases are zero and self inductances and
capacitances are equal in each phase, as shown in Chapter 2.1.4. A general formulation
of per-phase analysis of a balanced network and its formal justification is provided in
Chapter 16.3. The underlying mathematical property is explained in Corollary 1.3 and
Theorem 14.2.

Otherwise, self-impedance alone is not su�cient to model the coupling across
phases of a line and per-phase analysis becomes inaccurate. A unbalanced three-phase
model is necessary for power flow analysis. The overview of such a model is illustrated
in Figure 14.3.

Before deriving in detail the internal and external models of these components we
first describe some mathematical tools that are important for our derivation.
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Figure 14.3 Overall network model of the system in Figure 14.1.

14.2 Mathematical properties of three-phase network

In this section we collect several mathematical properties that are used in the rest of
this chapter, often without explicit references. These properties underlie much of the
behavior of three-phase systems. Specifically we use the spectral properties of the
conversion matrices � and �T defined in Chapter 1.2.2 to derive in Chapter 14.2.1 their
pseudo inverses. The eigenvectors of � are orthogonal and can serve as a basis of C3.
In Chapter 14.2.2 we use this basis to transform voltages and currents to a sequence
coordinate in which an unbalanced network may become decoupled.

14.2.1 Pseudo-inverses of �,�T.

The main characters of three-phase networks arise from the spectral properties of the
conversion matrices � and �T, defined in (1.12) of Chapter 1.2.2 and reproduced here:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
(14.5)

We have seen in Chapter 1.2.4 that these conversion matrices play an important role
in relating the internal and external behaviors of a balanced three-phase system. In
such a system, positive-sequence voltages and currents are in span(U+) and U+ is an
eigenvector of � and �T. This means that the transformation of balanced voltages and
currents under �,�T reduces to a scaling of these variables by their eigenvalues 1�U
and 1�U2 respectively (Corollary 1.3). The voltage and current at every point in a
network can be written as linear combinations of transformed source voltages and
source currents, transformed by

�
�,�)

�
and line admittance matrices. Therefore if

the source voltages and source currents are balanced positive-sequence sets and lines
are identical and phase-decoupled, then the transformed voltages and currents remain
in span(U+) and hence are balanced positive-sequence sets. This is the key property
that enables balanced sources to induce balanced voltages and currents throughout
a balanced network, allowing per-phase analysis of three-phase systems. A formal
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statement and proof of this property for general three-phase networks is provided in
Chapter 16.3.

For unbalanced systems where voltages and currents are not necessarily in span(U+),
Corollary 1.3 is not applicable and we need the concept of pseudo inverses of �,�T in
order to convert between terminal variables and line-to-line variables internal to a �
configuration. Even though � and �T are not invertible, their pseudo inverses �† and
�T† respectively always exist. The pseudo inverse "† of a matrix " 2 C=⇥= maps the
null space of "H to zero. The orthogonal complement of the null space of "H is the
range space of " . "† restricted to the range space acts like an inverse of " in that it
maps each vector E in the range space of " to the unique vector D := "†

E in the range
space of "H. The vector D is the one in C= with the minimum norm such that "D = E.
See Appendix A.7 for more properties of pseudo-inverse. The facts relevant to us is
summarized in the following lemma (from Theorem A.13, Theorem A.19 and Remark
A.2.)

Lemma 14.1. Let " 2 C=⇥= be a normal matrix, i.e., ""H = "H
" .

1 Unitary diagonalization. There exists a unitary matrix * 2 C=⇥= and a diagonal
matrix ⇤ 2 C=⇥= with

" =*⇤*H =
=’
8=1

_8D8D
H
8

where
1 ⇤ =diag(_1, . . . ,_=) consists of the eigenvalues of �;
2 the columns of* are the associated eigenvectors of �.

2 Pseudo inverse. The pseudo-inverse of " is given by "† =*⇤†
*

H where ⇤† :=
diag

�
_
�1
1 , . . . ,_�1

=

�
with _�1

9
:= 0 if _ 9 = 0.

3 Consider "G = 1. A solution G exists if and only if 1 is orthogonal to null
�
"

H�
in

which case

G = "†
1 + F, F 2 null (")

Moreover "†
1 is the unique solution to "G = H with the minimum Euclidean

norm kGk2 = k"†
1k2 + kFk2, F 2 null(").

Theorem 1.2 shows that � and �T are normal matrices and their spectral decompo-
sitions are

� = �⇤�, �T = �⇤� (14.6a)

where ⇤ is a diagonal matrix and � is a unitary matrix defined in (1.18), reproduced
here:

⇤ :=
266664
0

1�U
1�U2

377775
, � :=

1p
3

⇥
1 U+ U�

⇤
:=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
(14.6b)
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with U := 4�i2c/3 and U+ and U� being the standard positive and negative sequence
vectors respectively:

U+ :=
266664

1
U

U
2

377775
, U� :=

266664
1
U

2

U

377775
Here � is the complex conjugate of � componentwise. Since � is symmetric (Theorem
1.2), Lemma 14.1 implies that the pseudo inverses of �,�T are

�† = �⇤†
�, �T† = �⇤†

� (14.6c)

where ⇤† := diag
�
0, (1�U)�1, (1�U2)�1� . This yields the following simple expres-

sions for these pseudo inverses. The proof of the theorem is left as Exercise 14.1.

Theorem 14.2 (Pseudo inverses of �,�T). 1 The null spaces of � and �T are both
span(1,1,1).

2 Their pseudo-inverses are

�† =
1
3
�T, �T† =

1
3
�

3 Consider �G = 1 where 1,G 2 C3. Solutions G exist if and only if 1
T
1 = 0, in which

case the solutions G are given by

G =
1
3
�T
1 + W1, W 2 C

4 Consider �T
G = 1 where 1,G 2 C3. Solutions G exist if and only if 1

T
1 = 0, in which

case the solutions G are given by

G =
1
3
�1 + W1, W 2 C

5 ��† = �†� = 1
3 ��

T = 1
3 �

T� = I � 1
3 11

T where I is the identity matrix of size 3.

Recall that ��T = �T� are complex symmetric Laplacian matrices of the graphs in
Figure 1.9. This theorem underlies much of the materials in this chapter.

14.2.2 Similarity transformation and symmetrical components

Fortescue transformation.

Since � and �T are normal matrices, they have orthonormal eigenvectors (1,U+,U�)
which are the columns of � defined in (14.6b). We can therefore use � to define a
similarity transformation (see Appendix A.4 for discussions on similarity transforma-
tion). This idea is due to Fortescue [152] and � is sometimes called a (normalized)
Fortescue matrix. It simplifies the analysis of an unbalanced three-phase system when
the network has a certain symmetry, as explained in Chapter 16.4.



14.2 Mathematical properties of three-phase network 751

Consider a vector G that may represent a voltage or current. Recall that � is unitary
and complex symmetric (Theorem 1.2) and therefore its inverse is:

�
�1 = �

H = � =
1p
3

⇥
1 U+ U�

⇤
=

1p
3

266664
1

T

U
T
�
U

T
+

377775
(14.7)

(Note that U+ = U�, U� = U+; more properties of U are studied in Exercise 1.6). The
matrix � defines the transformation:

G = �G̃, G̃ := �
�1
G = �G

The vector G̃ is called the sequence variable of G. Its components

G̃0 :=
1p
3

1
H
G, G̃+ :=

1p
3
U

H
+ G, G̃� :=

1p
3
U

H
�G

are called the zero-sequence, positive-sequence, and negative-sequence components of
G. They are also called symmetrical components of G. We will sometimes refer to G as
a phase variable to di�erentiate it from the sequence variable G̃. The relation G = �G̃
expresses the phase variable in terms of its sequence components:

G =
1p
3
(G̃01 + G̃+U+ + G̃�U�) =

1
3

⇣⇣
1

H
G

⌘
1 +

⇣
U

H
+ G

⌘
U+ +

⇣
U

H
�G

⌘
U�

⌘

Sequence voltage, current, power.

Applying this similarity transformation to phase voltage + and current �, we obtain
their sequence variables:

+̃ = �+ , �̃ = ��,

The vector of power in the phase coordinate is B := diag
�
+�

H�
and that in the sequence

coordinate is B̃ := diag
�
+̃ �̃

H�
. They are related through the outer product of voltage and

current in their respective coordinates according to:

B̃ := diag
⇣
+̃ �̃

H
⌘

= diag
⇣
�+�

H
�

H⌘
= diag

⇣
�+�

H
�

⌘

B := diag
⇣
+�

H
⌘

= diag
⇣
�+̃ �̃

H
�

H
⌘

= diag
⇣
�+̃ �̃

H
�

⌘

The total powers 1
T
B̃ = 1

T
B however are equal in both coordinates:

1
T
B̃ = �̃

H
+̃ =

⇣
�

H
�

H⌘ ⇣
�+

⌘
= �

H
+ = 1

T
B

since �
H
� = �� = I. This is sometimes referred to as power invariance property of the

similarity transformation �. In Chapter 16.4 we will apply sequence variables to the
external models of Chapter 14.3 to define sequence networks.

In Definition 1.1, we call G a balanced vector if its zero-sequence component G̃0 = 0
and exactly one of G̃+ and G̃� is nonzero. In particular a balanced positive-sequence
vector is in span(U+). To simplify exposition in this chapter it is convenient to generalize
the definition of balanced vector to include a zero-sequence component.
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Definition 14.1 (Generalized balanced vector). A vector Ĝ := (Ĝ1, Ĝ2, Ĝ3) 2 C3 is called
a generalized balanced vector if Ĝ = G + W1, for some W 2 C, such that G is balanced
according to Definition 1.1.

Hence a generalized balanced vector Ĝ may contain a nontrivial zero-sequence
component G̃0 and exactly one of G̃+ and G̃�. We will often refer to a generalized balanced
vector Ĝ simply as balanced if there is no risk of confusion or if the di�erentiation is not
important, even if W < 0. The key property Corollary 1.3 for balanced networks holds
for generalized balanced vectors, i.e., � (G +W1) = (1�U)G and �T (G +W1) = (1�U2)G
if G is a balanced positive-sequence vector.

Park transformation.

Besides Foretescue transformation �, several other similarity transformations have
been proposed that have di�erent advantages and disadvantages for steady-state fault
analysis; see [153] that explains their relation. Park’s transformation [154] is applicable
not only to steady-state voltage and current phasors, but also to instantaneous voltages,
currents, and flux linkages. It is originally proposed for analyzing synchronous ma-
chines and is defined by the following real orthonormal matrix (which is the normalized
version of Park’s original matrix; we follow [1]):

% :=

r
2
3

2666664

1p
2

cos\ sin\
1p
2

cos(\ �120�) sin(\ �120�)
1p
2

cos(\ +120�) sin(\ +120�)

3777775
It can be verified that % is orthonormal so that %�1 = %T. The matrix can be used to
transform instantaneous phase voltages, currents and flux linkages. For example, for
instantaneous voltages we have

E =
266664
E
0

E
1

E
2

377775
=

r
2
3

2666664

1p
2

cos\ sin\
1p
2

cos(\ �120�) sin(\ �120�)
1p
2

cos(\ +120�) sin(\ +120�)

3777775

266664
E

0

E
3

E
@

377775
= %Ẽ

Ẽ =
266664
E

0

E
3

E
@

377775
=

r
2
3

2666664

1p
2

1p
2

1p
2

cos\ cos(\ �120�) cos(\ +120�)
sin\ sin(\ �120�) sin(\ +120�)

3777775

266664
E
0

E
1

E
2

377775
= %

T
E

The transformed coordinate is called the 03@, or zero-direct-quadrature, or rotor co-
ordinate. The 012 variables are stator-based quantities and the 03@ variables are
rotor-based quantities. Similarly we can transform 012 currents and flux linkages into
the 03@ coordinate with 8̃ = %T

8 and _̃ = %T
_. The model of a synchronous machine

becomes simpler in the rotor coordinate. For example the inductance matrix ! in the
012 coordinate that relates currents and flux linkages, _ = !8, becomes diagonal in the
rotor coordinate, i.e., _̃ = !̃8̃ for a diagonal !̃.
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14.3 Three-phase device models

In this section we develop the external models (14.2)(14.3) of three-phase devices in
terms of their internal specifications. The models of three-phase devices developed in
Chapter 1.2 and the phase-decoupled line model of Chapter 2 are special cases of the
models in this section.

We start by describing in Chapter 14.3.1 the conversion rules (14.8) and
(14.9)(14.10) that maps internal variables

�
+
. /�, �. /�, B. /�

�
to external variables

(+ , �, B) for devices in . and � configurations respectively. These conversion rules
depend only on the configuration and are applicable to any types of devices. In Chap-
ters 14.3.3 and 14.3.4 we present the internal models of four types of devices in . and
� configuration respectively and apply the conversion rules to these internal models
to derive their external models. In Chapter 14.3.5 we explain how to derive the .
equivalent of an ideal �-configured voltage or current source in an unbalanced setting.

14.3.1 Conversion rules

Conversion in . configuration.

Consider a generic three-phase device in . configuration with internal and terminal
variables defined as in Figure 14.2(a). Its terminal voltage, current, and power (+ , �, B)
are related to its internal variables (+. , �. , B. ) by:

+ = +
. + +=1, � = ��. , �1

T
� = �

=, B = �
⇣
B
. ++=�.

⌘
(14.8)

where �
.

denotes the componentwise complex conjugate of the vector �. 2 C3. The
negative sign on the current and power conversions is due to the definition of

�
�
. , B.

�
as internal current and power delivered to the single-phase devices whereas (�, B) is
defined as the terminal current and power injections out of the three-phase device; see
Remark 14.1. The property �1

T
� = �= follows from the KCL at the neutral.

Here B. := diag
�
+
.
�
.H�

is the internal power delivered across the single-phase
devices, or equivalently, �B. is the power generated internally by these devices. The

term +
=
�

.

is the vector power delivered across the neutral and the common reference
point (e.g., the ground). The terminal power B := diag

�
+�

H�
is power delivered from the

device across the phase lines and the common reference point. Hence �B. = B++=�.

says that the power generated by the device is equal to that delivered to the neutral
impedance and the rest of the network. This follows from the conversion between
voltages and currents:

B := diag
⇣
+�

H
⌘

= diag
✓
+
.

⇣
��.

⌘H
◆
+ += diag

✓
1

⇣
��.

⌘H
◆

= �
⇣
B
. + +=�.

⌘

The conversion rule (14.8) holds whether or not there is a neutral line and whether
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or not the neutral is grounded with zero or nonzero neutral impedance I=. If there is
not a neutral line then �= := 0 and we have 1

T
� = 1

T
�
. = 0. If the neutral is grounded,

then �= is the current from the neutral to the ground and += = I=�= = �I=1T
� whether

or not I= = 0. If the neutral is ungrounded but connected to the neutral of a 4-wire line,
then �= is the current on the neutral line leaving the neutral of the device. Its value will
depend on network interaction; see Example 16.5 and Exercise 16.7.

Remark 14.2 (Neutral voltage+=). In general the neutral voltage += with respect to a
common reference point is nonzero whether or not there is a neutral line and whether
or not the neutral is grounded. If the neutral is grounded with zero neutral impedance
and voltages are defined with respect to the ground, then+= = 0, and hence+ =+. and
B = �B. . It is important to explicitly include += in a network model because not every
device in a network may be grounded or grounded with zero neutral impedance. ⇤

Remark 14.3 (Total power). The total terminal power is

1
T
B = �1

T
B
. � +=

⇣
1
)

�

.

⌘

The first term 1
T
B
. on the right-hand side is the total power delivered across the

single-phase devices. The expression says that the total terminal power injection is
equal to the total power �1

T
B
. generated internally net of power consumed by the

neutral impedance.

If the neutral is ungrounded then 1
)

�
. = 0 by KCL and 1

T
B =�1

T
B
. . If the neutral is

grounded (i.e.,+=
0
= 0) through an impedance then+=

⇣
1
)

�

.

⌘
is the power delivered to

the neutral impedance. In general the internal power delivered to the neutral impedance
is B= :=

�
+
= �+=0

�
�

=

⇤

Conversion in � configuration.

Consider a generic three-phase device in � configuration with internal and terminal
variables defined as in Figure 14.2(b). We now apply Theorem 14.2 to convert between
internal and external variables in � configuration.

Voltage and current conversion. The relation between terminal voltage and current
(+ , �) and internal voltage and current

�
+
�, ��

�
is:

266664
+
01

+
12

+
20

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
,

266664
�
0

�
1

�
2

377775
= �

266664
1 0 �1
�1 1 0
0 �1 1

377775|              {z              }
�T

266664
�
01

�
12

�
20

377775

or in vector form

+
� = �+ , � = ��T

�
� (14.9a)

where �,�T are given in (14.5). Given appropriate vectors +� and �, solutions + and
�
� to (14.9a) is provided by Theorem 14.2.
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1 Given +�, there is a solution + to (14.9a) if and only if +� is orthogonal to 1, i.e.,

+
01 ++12 ++20 = 0

which expresses Kirchho�’s voltage law. In that case, there is a subspace of
solutions + given by

+ = �†+� + W 1 =
1
3
�T
+
� + W 1, W 2 C (14.9b)

This amounts to an arbitrary reference voltage for+ . The quantity W := 1
31
)

+ is the
(scaled) zero-sequence voltage of+ . In most applications we are given a reference
voltage (e.g.,+0 := U+ at the reference bus 0) which will fix the constant W for every
�-configured device (di�erent devices may have di�erent zero-sequence voltages
W).

2 Given �, there is a solution �� to (14.9a) if and only if � is orthogonal to 1, i.e.,

�
0 + �1 + �2 = 0

which expresses Kirchho�’s current law. In that case, there is a subspace of ��

that satisfy (14.9a), given by

�
� = ��T†

� + V1 = �1
3
�� + V1, V 2 C (14.9c)

where V specifies the amount of loop flow in �� and does not a�ect the terminal
current � since �T

�
� = 0. The quantity V := 1

31
)

�
� is the (scaled) zero-sequence

current of ��.

We make two remarks regarding the solutions (+ , ��). First the minimum-norm solution

+ :=
1
3
�T
+
� =

1
3

266664
+
01 �+20

+
12 �+01

+
20 �+12

377775
sets W = 0 such that 1

T
+ = 3W = 0. Note that this solution does not set one of (+0,+1 ,+2)

to zero. A consequence of the arbitrary reference voltage is that, given the internal
voltage and current

�
+
�, ��

�
with 1

T
+
� = 0 of a �-configured device, its terminal

power vector B depends on the arbitrary constant W (similar to the e�ect of the neutral
voltage += on B for a . -configured device); see Remark 14.4. To fix + to be the
minimum-norm solution (14.9b) with W = 0, it is important to include explicitly the
condition 1

T
+ = 0 together with +� = �+ , i.e., the minimum-norm solution with W = 0

is the unique solution to the system of equations:

+
� = �+ , 1

T
+ = 0, (given +� that satisfies 1

T
+
� = 0)

Second the minimum-norm solution sets V = 0 and is

�
� = �1

3
�� = �1

3

266664
�
0 � �1
�
1 � �2
�
2 � �0

377775
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It contains zero loop flow, i.e., 1
T
�
� = 3V = 0. Analogous to the case above, a con-

sequence of an arbitrary V is that, given the terminal voltage and current (+ , �) of a
�-configured device, its internal power vector B� depends on the zero-sequence current
V; see Remark 14.4. To fix � to be the minimum-norm solution (14.9c) with V = 0, it is
important to include explicitly the condition 1

T
�
� = 0 together with � = ��T

�
�, i.e., the

minimum-norm solution with V = 0 is the unique solution to the system of equations:

� = ��T
�
�, 1

T
�
� = 0 (given � that satisfies 1

T
� = 0)

Power conversion. The terminal power injection from the device is B := diag
�
+�

H�
and

the internal power delivered across the single-phase devices in the direction 01, 12,
20 is B� := diag

�
+
�
�
�H�

. Unlike a . -configured power source for which the terminal
power B is related directly to the internal power B. (see (14.8)), for a �-configured
power source, the relation between B and B

� is indirect through
�
+
�, ��

�
, through

(+ , �), or through
�
+ , ��

�
. We now derive these relations using the voltage and current

conversion (14.9).

Specifically, given internal voltage and current
�
+
�, ��

�
with 1

T
+
� = 0, the internal

power is B� := diag
�
+
�
�
�H�

. To express the terminal power B in terms of
�
+
�, ��

�
, we

use (14.9a) (14.9b) to write the terminal voltage and current as

+ = �†+� + W1, W 2 C, � = ��T
�
�

where di�erent W correspond to di�erent reference voltages. Therefore

+�
H =

⇣
�†+� +W1

⌘ ⇣
��T

�
�
⌘H

= ��†
⇣
+
�
�
�H

⌘
� + W

⇣
1 �

H
⌘

Hence the terminal power B can be expressed in terms of the internal voltage and
current

�
+
�, ��

�
as

B := diag
⇣
+�

H
⌘

= �diag
⇣
�†

⇣
+
�
�
�H

⌘
�
⌘
+ W�, 1

T
+
� = 0 (14.10a)

where � is the componentwise complex conjugate of the terminal current � = ��T
�
�

and W 2 C is determined by a reference voltage.

Example 14.1. Given internal voltage and current
�
+
�, ��

�
with 1

T
+
� = 0, evaluate

the terminal power B := diag
�
+�

H�
directly using the solution (14.9b) with W := 0.

Solution. We have

� = ��T
�
� = �

266664
1 0 �1
�1 1 0
0 �1 1

377775
266664
�
01

�
12

�
20

377775
= �

266664
�
01 � �20
�
12 � �01
�
20 � �12

377775
Combine with (14.9b) with W = 0 to evaluate diag

�
+�

H�
:

B := �1
3

2666664

�
+
01 �+20

� �
�
01 � �20

�H�
+
12 �+01

� �
�
12 � �01

�H�
+
20 �+12

� �
�
20 � �01

�H

3777775
= �1

3

©≠≠
´

266664
B
01 + B20
B
12 + B01
B
20 + B12

377775
+

266664
+
20 0 +

01

+
12

+
01 0

0 +
20

+
12

377775

2666664
�

01

�

12

�

20

3777775
™ÆÆ
¨
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This is (14.10a) with W = 0. ⇤

We next relate B and B� in terms of terminal voltage and current (+ , �). Given (+ , �)
with 1

T
� = 0, B := diag

�
+�

H�
. To express B� in terms of (+ , �), use (14.9a) (14.9c) to

write the internal voltage and current as

+
� = �+ , �

� = ��T†
� + V1, V 2 C

where di�erent V correspond to di�erent loop flows in the � configuration. Therefore

+
�
�
�H = ��

⇣
+�

H
⌘
�† + V

⇣
+
�

1
T
⌘

Hence the internal power B� := diag
�
+
�
�
�H�

can be expressed in terms of the terminal
voltage and current (+ , �) as

B
� := diag

⇣
+
�
�
�H

⌘
= �diag

⇣
�

⇣
+�

H
⌘
�†

⌘
+ V+

�, 1
T
� = 0 (14.10b)

where +� = �+ and V 2 C is determined by the amount of loop flow in ��.

Even though (14.10a) and (14.10b) contain the zero-sequence voltage and current
(W, V), the total powers 1

T
B and 1

T
B
� do not.

Remark 14.4 (Total powers). 1 Given an internal voltage and current
�
+
�, ��

�
, the

terminal power vector B in (14.10a) does not depend on the zero-sequence current
V := 1

31
T
�
� but does depend on the zero-sequence voltage W := 1

31
T
+ . Since � =

��T
�
� and hence 1

T
� = 0, the total terminal power however is independent of W:

1
T
B = �1

Tdiag
⇣
�†

⇣
+
�
�
�H

⌘
�
⌘

This is the same as the e�ect of neutral voltage += on terminal power B and its
aggregate 1

T
B in . configuration when the neutral is ungrounded so that 1

T
�
. = 0

by KCL.
2 Analogously, from (14.10b), the internal power vector B� depends on zero-

sequence current V. Since +� = �+ and hence 1
T
+
� = 0, the total internal power

however is independent of the loop flow:

1
T
B
� = �1

Tdiag
⇣
�

⇣
+�

H
⌘
�†

⌘

It can be shown that 1
Tdiag

�
�

�
+�

H�
�†

�
= 1

Tdiag
�
+�

H�
(Exercise 14.6). Therefore

the total internal and terminal powers are equal, i.e., 1
T
B
� = 1

T
B. ⇤

Finally we can relate B and B� through the terminal voltage and internal current�
+ , ��

�
. Indeed both B and B� can be expressed in terms of

�
+ , ��

�
using (14.9a):

B := diag
⇣
+�

H
⌘

= �diag
⇣
+�

�H�
⌘
, B

� := diag
⇣
+
�
�
�H

⌘
= diag

⇣
�+��H

⌘
(14.10c)
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An important advantage of (14.10c) is that
�
+ , ��

�
contains implicitly both the zero-

sequence voltage W := 1
31

T
+ and the zero-sequence current V := 1

31
T
�
�. This is often a

more computationally convenient model than (14.10a) and (14.10b).

In summary:

• Given internal voltage and current (+�, ��) with 1
T
+
� = 0, the terminal power B as

a function of (+�, ��) is given by (14.10a).
• Given terminal voltage and current (+ , �) with 1

T
� = 0, the internal power B� as a

function of (+ , �) is given by (14.10b).
• Given terminal voltage and internal current

�
+ , ��

�
, the terminal power B and the

internal power B� are given by (14.10c).

These expressions are used to derive the external model a constant-power source in �
configuration; see Chapter 14.3.4.

Finally, note that unlike the relation � = ��T
�
� which expresses KCL, it is not true

that B = ��T
B
�. The relation between terminal power and internal power is given only

indirectly by (14.10).

14.3.2 Case study: Riverside CA utility

In this subsection we present voltage and current measurements from a distribution
transformer in a Southern California municipal utility grid. The case study makes
concrete some of the concepts introduced in the previous sections. It also illustrates
how unbalanced three-phase models can be used to analyze physical systems that are not
necessarily three-phased, in this case a split-phase system modeled as a �-configured
three-phase load with one terminal grounded.

Figure 14.4 shows a typical pad-mounted split-phase distribution transformer. The
transformer in the Southern California grid supplies 8 houses in a residential area in �
configuration. It is rated at 75 kVA, with 12 kV grounded-. on the high-voltage side
and single split-phase 240V/120V with grounded neutral on the low-voltage side as
shown in the figure. We measure the voltage and current phasors+ := (+0,+1 ,+2) and
� := (�0, �1 , �2) respectively at the low-voltage terminals of the transformer. Terminal
1 is grounded and used as the common reference point, i.e., +1 := 0. Note that the
terminal current is defined here to be into the load which is in the opposite direction
to what we usually use elsewhere in this chapter, corresponding to the direction in
Figure 14.4. We assume that the line loss between the transformer and the load (8
houses) is negligible, and hence + and � are also the terminal voltage and terminal
current respectively of the load in� configuration. We reiterate that even though we use
unbalanced three-phase concepts to model the load, they are on a single (split-)phase
on the low-voltage side of the transformer.
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(b) Equivalent circuit

Figure 14.4 Typical distribution transformer and the equivalent circuit of the Southern
California system supplying 8 houses arranged in � configuration.

We illustrate in Figures 14.5 and 14.6 the behavior of the circuit using the noisy
time series of (+ , �) measured from the field on March 28 Thur, 2024.

1 Voltage behavior. The solid lines in Figures 14.5(a) and 14.5(b) show the magni-
tude and phase respectively of the terminal voltage + . We see from Figure 14.5(a)
that the magnitudes |+0 | and |+2 | are roughly 120 V but their phase angles in
Figure 14.5(b) are roughly 180� apart most of the time due to the split phase.
Notice that the green solid line |+1 | is zero in Figures 14.5(a) and there is no green
solid line for voltage angle on line 1. Instead the red solid line \+0 = 0� in Figure
14.5(b). This is because voltage measurement E0 (C) in the time domain is actually
the voltage drop between terminal 0 and terminal 1, which is grounded, and hence
E
1 (C) := 0. This means that, in the phasor domain \+0 is arbitrary and it is set to

be 0� in our calculation, i.e., \+0 = 0 is the reference for all voltage, current and
power angles. Relative to the potential on the 1 terminal, E2 (C) is approximately a
half cycle o� from E

0 (C) and \+2 ⇡ �180� most of the time due to the split phase.
(See also discussion below on voltage imbalance.)

2 Current behavior. The dash lines in Figures 14.5(a) and 14.5(b) show the mag-
nitude and phase respectively of the terminal current �. There are three curves in
each of the figures for phases 0,1,2. As discussed above the angles \� q are relative
to the reference \+0 := 0. The magnitudes of �0 and �2 are similar but their phases
are approximately 180� apart most of the time due to the split phase. Both the
magnitudes |�0 |, |�2 | and their phases \�0, \�2 show prominently the e�ect of
solar generation between roughly 8am to 5pm. In particular from Figure 14.5(b)
during 9am–5pm the power factor angles \+ q � \� q ⇡ �180� for both phases 0
and 2, resulting in negative real powers Re(Bq) = |+ q | |� q | cos180� during this
period, i.e., real powers flow from the loads towards the transformer on phases
0 and 2. The magnitude of �1 is much smaller in Figure 14.5(a) and its angle in
Figure 14.5(b) fluctuates between 0� and ±180�, indicating that a relatively small
amount of line 1 current flows back and forth between the transformer and the
loads. This means that the current �0 on line 0 mostly returns as �2 on line 2, and
hence their angles are approximately 180� apart as noted above.

3 Power behavior. We can construct the behavior of the terminal power B from that



760 Component models, I: devices

(a) |+ q | and |� q |

(b) \+ 0 := 0, \+ 2 and \� q

(c) Terminal power Re(Bq)

(d) Terminal Im(Bq)

(e) Total powers 1
T
B = 1

T
B
�

Figure 14.5 Voltage, current and power behavior. (a)(b)(c)(d) Solid lines: voltages, dashed
lines: currents. Red: phase 0, green: phase 1, blue: phase 2. (e) Brown: real (kW), grey:
imaginary (kVar).

of + and � and confirm that in the measurement. As noted above, between 9am–
5pm, the real powers Re(Bq) on phases 0 and 2 are negative, shown as red and
blue curves respectively in Figure 14.5(c), whereas they are positive and flow from
the transformer to the loads outside this period. From Figure 14.5(d), the reactive
powers Im(Bq) are small most of the time. The green curve representing power on
line 1 is zero because +1 := 0 by definition.

The internal (load) power B�, from (14.10b), is B� = 1
3diag

�
�

�
+�

H�
�T� +

V(�+) which cannot be computed from (+ , �) because of the unknown loop flow
parameter V 2 C. Even though B and B� are generally di�erent vectors, the total
powers 1

T
B and 1

T
B
� are equal as explained in Remark 14.4. They are illustrated
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in 14.5(e) which are the sums of the curves in Figure 14.5(c) for the real part and
those in Figure 14.5(d) for the imaginary part.

(a) Sequence voltage magntidues |+̃0 | (red) and |+̃1 | (green)

(b) Neutral current |� = | = |� 0 + �1 + � 2 |

(c) Voltage and current waveforms around midnight 12am (in phase)

(d) Voltage and current waveforms around noon 12pm (out of phase)

Figure 14.6 Sequence voltages, neutral current, voltage and current waveforms. (a) Brown: real,
grey: imaginary. (c)(d) Solid lines: voltages, dashed lines: currents. Red: phase 0, green: phase
1, blue: phase 2.

4 Voltage imbalance. If we view our system as an unbalanced three phase system
with grounded terminal 1 then the zero-sequence voltage W := 1

3 (+0 ++1 ++2) can
be treated as a measure of voltage imbalance. A more natural perspective is to view
the split-phase system as a two-phase system with terminal phase voltages (+0,+2)
and terminal phase currents (�0, �2), return current �1 and a neutral current �=. We
can decompose these voltages along an orthonormal basis for two-phase systems



762 Component models, I: devices

to obtain the sequence voltages +̃ :

+̃ :=

+̃0

+̃1

�
:=

1p
2


1 1
1 �1

� 
+
0

+
2

�

Note that +̃0 can be viewed as a measure of voltage imbalance and is equal to 3p
2
W

since +1 := 0. The magnitudes |+̃0 | and |+̃1 | are shown in Figures 14.6(a). Their
normalized values averaged over the measurement period C = 1, . . . ,) are:

|+̃0 | :=
1
)

)’
C=1

|+̃0 (C) |
k+̃ (C)k2

= 0.0010, |+̃1 | :=
1
)

)’
C=1

|+̃1 (C) |
k+̃ (C)k2

= 0.9999

5 Neutral current. From KCL we have �0+ �1 + �2 = �= where �= is the neutral current
from terminal 1 to the ground. Its magnitude |�= | is shown in Figure 14.6(b). It
is small most of the time compared with |�1 | on line 1. Its magnitude relative to
those of the phase currents averaged over the measurement period is

average relative neutral current :=
1
)

)’
C=1

|�0 (C) + �1 (C) + �2 (C) |
( |�0 (C) | + |�1 (C) | + |�2 (C) |)/3 = 0.1752

6 Voltage and current waveforms. Figure 14.6(c) shows the voltage (solid lines) and
current (dashed lines) waveforms around midnight where the currents and voltages
are roughly in phase, indicating that real power flows from the transformer to the
loads. Figure 14.6(d) shows the voltage and current waveforms around noon where
the currents and voltages are roughly out of phase, indicating that real power flows
from the loads to the transformer.

14.3.3 Devices in . configuration

In this subsection we first present parameters of a voltage source, current source, power
source, and impedance in . configuration. For each device we then specify its internal
model. Finally we apply the conversion rule (14.8) to the internal model of each device
to derive its external model.

Device specification.

The devices we study are shown in Figure 14.7.

1 Voltage source
�
⇢
. , I. , I=

�
. A voltage source is a single-terminal three or four-

wire device. When the configuration is. , as shown in Figure 14.7(a), it is specified
by three parameters. Its internal voltage is fixed at ⇢. := (⇢0=,⇢1=,⇢2=) and its
series impedance matrix is I. := diag

�
I
0=, I1=, I2=

�
. If there is a neutral wire then

its impedance is a scalar I= which may or may not be zero whether or not the neutral
is grounded. An ideal voltage source is one with I. = 0 and I= = 0. A voltage source
can serve as a Thévenin equivalent circuit of a synchronous generator for which
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(a) Voltage source
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I c
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(b) Current source
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V c
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(c) Power source

V aI a

V n

I n
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I b

I c

V b

V c

n’ I n’
V n’

zbn

zan

zcn

(d) Impedance

Figure 14.7 Three-phase devices in . configuration. (a) A voltage source. (b) A current source.
(c) A power source. (d) An impedance. Note that the direction of �. and f. is
terminal-to-neutral.

the internal voltage ⇢. is typically balanced. It can also model the primary or
secondary side of a transformer, or a grid-forming inverter.

2 Current source
�
�
. , H. , I=

�
. A current source is a single-terminal three or four-wire

device. When the configuration is . , as shown in Figure 14.7(b), it is specified by
three parameters. Its internal current is fixed at �. := (�0=, �1=, �2=) and its shunt
admittance matrix is H. := diag

�
H
0=, H1=, H2=

�
. If there is a neutral wire then its

impedance is a scalar I= which may or may not be zero whether or not the neutral
is grounded. An ideal current source is one with H. = 0 and I= = 0. A current
source can serve as a Norton equivalent circuit of a synchronous generator. It can
also model a load such as an electric vehicle charger, or a grid-following inverter.

3 Power source
�
f
. , I=

�
. A single-terminal three or four-wire power source in .

configuration is shown in Figure 14.7(c) and specified by two parameters. It
consumes a constant power f. :=

�
f
0=,f1=,f2=

�
or injects a constant power

�f. . If there is a neutral wire then its impedance is a scalar I= which may or
may not be zero whether or not the neutral is grounded. An ideal power source is
one with I= = 0. A power source can model a load, a generator, or the primary or
secondary side of a transformer.
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4 Impedance
�
I
. , I=

�
. A single-terminal three or four-wire impedance in . con-

figuration as shown in Figure 14.7(d) is specified by an impedance matrix
I
. := diag

�
I
0=, I1=, I2=

�
. If there is a neutral wire then its impedance is a scalar

I
= which may or may not be zero whether or not the neutral is grounded. An

impedance can model a load.

Note that the direction of �. and f. is defined to be terminal-to-neutral, opposite to
that of the terminal current �.

The list above only specifies the internal parameters of a. -configured device. When
it is connected to a network, its neutral voltage += will need to be either specified or
computed in order to translate between its internal voltage +. and external voltage
+ = +. ++=1 (from (14.8)) and determine voltages, currents, and powers at other
parts of the network. We will discuss in Chapter 16.2, for each device in a typical
three-phase analysis problem, what quantities are parameters that should be specified
and what are variables to be computed through network equations. An assumption that
is often made, sometimes implicitly, is:

C14.1: All neutrals are grounded either through an impedance I= or directly (I= = 0)
and all voltages are defined with respect to the ground.

This assumption is often satisfied in practice. Under this assumption, +=
0
= 0 (see

Figure 14.7). Moreover the internal neutral voltage += is not independently specified
but is determined by the current through the neutral impedance I=:

+
= = I

=

⇣
1

T
�
.

⌘
= �I=

⇣
1

T
�

⌘
(14.11)

If the neutral is directly grounded, i.e., I= = 0, then += = 0. Without C14.1 or for an
ungrounded voltage source, knowing the internal voltage and current

�
+
. , �.

�
alone

may not be su�cient to determine the external voltage + . We will be explicit when we
assume C14.1.

Voltage source (⇢. , I. , I=).
Internal model. Referring to Figure 14.7(a) the internal model of a voltage source is

+
. = ⇢

. + I. �. , +
= �+=0 = I

=

⇣
1

T
�
.

⌘
, �

= = 1
T
�
. (14.12a)

This yields an internal power B. := diag
�
+
.
�
.H�

across the non-ideal voltage source
and an internal power B= :=

�
+
= �+=0

�
�
=H across the impedance I= on the neutral line,
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given by:

B
. = diag

⇣
⇢
.

�
.H

⌘
+ diag

⇣
I
.

�
.

�
.H

⌘
=

266664
⇢
0=
�
0=H

⇢
1=
�
1=H

⇢
2=
�
2=H

377775|       {z       }
B
.

ideal

+
2666664

I
0= |�0= |2

I
1=

��
�
1=

��2
I
2= |�2= |2

3777775|        {z        }
Bimp

(14.12b)

B
= = I

=

��1T
�
.

��2 (14.12c)

External model. To derive an external model, apply the conversion rule (14.8), repro-
duced here:

+ = +
. + +=1, � = ��. , �1

T
� = �

=, B = �
⇣
B
. ++=�.

⌘

to the internal model (14.12) to eliminate the internal variables (here, �
.

is the complex
conjugate of vector �. componentwise). This yields a relation between its terminal
variables (+ , �, B):

+ = ⇢
. + +=1 � I. �, 1

T
� = ��=, B = diag

⇣
⇢
.

�
H
⌘
+ +=� � diag

⇣
I
.

� �
H
⌘

(14.13a)

The model (14.13a) holds whether there is a neutral line or whether the neutral line
is grounded or ungrounded but connected to another device over a four-wire line. As
discussed before, �= = 0 if the neutral is ungrounded.

Suppose assumption C14.1 holds so that+=
0
= 0 and+= = �I=

⇣
1

T
�

⌘
. Then (14.13a)

yields the external model:

+ = ⇢
. � /. � (14.13b)

where

/
. := I

. + I
=

11
T =

266664
I
0= + I= I

=
I
=

I
=

I
1= + I= I

=

I
=

I
=

I
2= + I=

377775
This has the same form as that of a single-phase voltage source discussed in Chapter ??.
The neutral impedance I= couples the phases. Substituting (14.13b) into B = diag

�
+�

H�
expresses the terminal power B as a quadratic function of + :

B = diag
✓
+

⇣
⇢
. �+

⌘H ⇣
(/. )�1

⌘H
◆

(14.13c)

assuming /. is invertible. The inverse of /. is calculated in Exercise 14.7.

The linear �-+ relation and the nonlinear+-B or �-B relation in (14.2) takes the form
of (14.13) for a voltage source.

If I= = 0 then /. = I. . From (14.13b) the phases are decoupled, i.e., +0 = ⇢0= �
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I
0=
�
0, whether or not the current � and the voltage+ are balanced. For an ideal voltage

source where both I= = 0 and I. = 0, the internal and external models (14.12) (14.13)
here reduce to, under assumption C14.1,

+ = + = ⇢
. , B = B

. = diag(⇢. �H)

Example 14.2. Unlike for an ideal voltage source, B. in (14.12b) includes both the
power B.ideal := diag

�
⇢
.
�
.H�

across the ideal voltage source and the power Bimp :=
diag

�
I
.
�
.
�
.H�

delivered to the series impedance I. . Hence the net power injection is

B = �
⇣
B
.

ideal + Bimp + +=�.
⌘

Summing across phases 0,1,2 shows that the total power generated is equal to the total
power injection and total power consumed by the internal impedances of the voltage
source:

�1
T
B
.

ideal = 1
T
B + 1

T
Bimp + B

=

where B= given by (14.12c) is the power delivered to the impedance I= on the neutral
wire.

Current source (�. , H. , I=).
Internal model. Referring to Figure 14.7(b) the internal model of a current source is
given by

�
. = �

. + H
.

+
. , +

= �+=0 = I
=

⇣
1

T
�
.

⌘
, �

= = 1
T
�
. (14.14a)

This yields an internal power B. := diag
�
+
.
�
.H�

across the non-ideal current source
and an internal power B= := +=�=H across the impedance I= on the neutral line, given
by (Exercise 14.8):

B
. = diag

⇣
+
.

�
.H

⌘
+ diag

⇣
+
.

+
.H
H
.H

⌘
=

266664
+
0=
�
0=H

+
1=
�
1=H

+
2=
�
2=H

377775|       {z       }
B
.

ideal

+
2666664

H
0=H |+0= |2

H
1=H

��
+
1=

��2
H
2=H |+2= |2

3777775|           {z           }
Badm

(14.14b)

B
= := +

=

�
=H = I

=

����1T
�
. + diag

⇣
H
.

⌘T
+
.

����
2

(14.14c)

External model. The derivation here is analogous to that for a voltage source above.
Applying the conversion rule (14.8) to the internal model (14.14a) yields an external
model of a current source that relates its terminal variables:

� = ��. � H. (+ �+=1) , 1
T
� = ��=, B = �diag

⇣
+�

.H
⌘
� diag

⇣
+ (+ �+=1)H

H
.H

⌘
(14.15a)
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As discussed earlier, �= = 0 if the neutral is ungrounded.

Suppose assumption C14.1 holds so that += = �I=
⇣
1

T
�

⌘
. Then (14.15a) yields

(Exercise 14.9):

+ = �
⇣
I
.

�
. + /

.

�

⌘
, � = ��

⇣
�
. + H. +

⌘
(14.15b)

where, assuming /. is invertible,

I
. :=

⇣
H
.

⌘�1
, /

. := I
. + I

=

11
T, � := I� I

=

1+ I=
⇣
1

T
H
. 1

⌘ H. 11
T

and I denotes the identity matrix of size 3. The e�ective impedance matrix /. is the
same matrix in (14.13b) for a voltage source. Substituting (14.15b) into B = diag

�
+�

H�
expresses the terminal power B as a quadratic function of + :

B = �diag
⇣
+

⇣
�
.H + +H

H
.H

⌘
�

H
⌘

(14.15c)

The linear �-+ relation and the nonlinear +-B or �-B relation in (14.2) takes the form of
(14.15) for a current source.

Analogous to a voltage source, the phases are decoupled if I= = 0. An ideal current
source with H. = 0 and I= = 0 has � = ��. = ��. and B = �diag

�
+ �

.H�
.

Power source
�
f
. , I=

�
.

Internal model: By definition the power delivered to a constant-power source and
the power delivered to the impedance I= on the neutral line are respectively (Figure
14.7(c))

B
. := diag

⇣
+
.

�
.H

⌘
= f

. , B
= :=

⇣
+
= �+=0

⌘
�
=H = I

=

��1T
�
.

��2 (14.16)

External model: Apply the conversion rule to the internal model (14.16) yields an
external model that relates the terminal variables:

f
. = diag

⇣
�
.H

⌘
+
. = �diag

⇣
�

H
⌘
(+ �+=1) , B = �f. + +=�, 1

T
� = ��=

(14.17a)

Suppose assumption C14.1 holds so that +=
0
= 0 and += = �I=

⇣
1

T
�

⌘
. We can then

rewrite the vector +=�
.

as

+
=

� = �I=
⇣
1

T
�

⌘
� = �I=

⇣
� �

T
⌘
1

This yields a quadratic relation between + and � (Exercise 14.10):

+ = �
⇣
diag �

⌘�1
f
. � I=

⇣
11

T
⌘
� (14.17b)
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and between B and �:

B = �
⇣
f
. + I

=

⇣
� �

T
⌘
1

⌘
(14.17c)

It is generally not possible to solve (14.17b) for � in closed form and hence there is
generally not an explicit +-B model for a power source. From (14.17c) the total power
�1

T
f
. generated by the constant-power source is equal to the total power injection

and the power delivered to the impedance on the neutral line:

�1
T
f
. = 1

T
B + I

=

⇣
1

T
�
.

⌘
|     {z     }
�+ =

⇣
1

T
�

.

⌘
|  {z  }
�� =H

= 1
T
B + B

=

Clearly B = �f. if I= = 0.

Impedance
�
I
. , I=

�
.

Internal model: Referring to Figure 14.7(d) the internal model of an impedance is

+
. = I

.

�
. , B

. := +
.

�
.H, B

= :=
⇣
+
= �+=0

⌘
�
=H = I

=

��1T
�
.

��2 (14.18)

External model: Application of the conversion rule (14.8) to the internal model (14.18)
yields an external model that relates the terminal variables:

+ = �I. � + +=1, �1
T
� = �

= (14.19a)

If assumption C14.1 holds so that+=
0
= 0 and+= = �I=

⇣
1

T
�

⌘
, then the external model

reduces to:

+ = �/. � (14.19b)

where /. := I. + I= 11
T is the same e�ective impedance /. in (14.13b) for a voltage

source. Substituting (14.19b) into B = diag
�
+�

H�
expresses B as a quadratic function of

+ :

B = �diag
✓
++

H
⇣
(/. )�1

⌘H
◆

(14.19c)

assuming /. is invertible. If I= = 0 then /. = I. is diagonal.

Balanced impedance. When I
= < 0 but I. is balanced, i.e., I0= = I1= = I2=, then

/
. = I0=I + I= 11

T and its o�-diagonal entries will couple voltages and currents in
di�erent phases. One can perform a similarity transformation using the unitary matrix
� to what is called the sequence coordinate as explained in Chapter 14.2.2. In the
sequence coordinate, the transformed impedance /̃. , called the sequence impedance,
is diagonal:

/̃
. =

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
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This leads to decoupled voltages and currents in the sequence coordinate called sym-
metrical components. The decoupled relation between the sequence voltages, currents
and impedances can be interpreted as defining separate sequence networks that can be
analyzed independently. This is explained in Chapter 16.4.1.

Remark 14.5 (Phase decoupling). The matrix /. := I. + I=11
T in (14.13) (14.15)

(14.19) is called the phase impedance matrix or the impedance matrix.

1 If I= = 0 in these four devices, i.e., the neutrals are directly grounded, then the
phases are decoupled. This is because, for a power source, B = �f. , and for the
other devices, the impedance matrix /. = I. becomes diagonal and hence+ = I. �.

2 If I= < 0 but the currents are balanced, i.e., �0 + �1 + �2 = 0 then �
= = 0 and

+
=6 = 0. In this case the phases are also decoupled. If the voltage + is balanced

and I0= = I0= = I2= then �= will indeed be zero and the phases will be decoupled
(Exercise 14.11).

3 In unbalanced operation, however, the neutral current �= may be nonzero and
/
. generally has nonzero o�-diagonal entries that couple voltages and currents

in di�erent phases. As mentioned above, if I0= = I0= = I2= then the sequence
impedance /̃. is diagonal and hence decoupled in the sequence domain (Chapter
16.4).

⇤

14.3.4 Devices in � configuration

In this subsection we first present parameters of the same single-phase devices studied
in Chapter 14.3.3, but arranged in � rather than . configuration. For each device we
then specify its internal model. Finally we apply the conversion rule (14.9) (14.10) to
the internal model of each device to derive its external models.

Internal specification.

The three-phase devices we study are shown in Figure 14.8.

1 Voltage source
�
⇢
�, I�

�
. A three-wire voltage source in� configuration as shown in

Figure 14.8(a) is specified by its internal line-to-line voltage ⇢� := (⇢01 ,⇢12 ,⇢20)
and series impedance matrix I� := diag

�
I
01 , I12 , I20

�
. We assume that I01 + I12 +

I
20 < 0. An ideal voltage source is one with I� = 0.

2 Current source
�
�
�, H�

�
. A three-wire current source in� configuration as shown in

Figure 14.8(b) is specified by its internal line-to-line current �� := (�01 , �12 , �20)
and shunt admittance matrix H� := diag

�
H
01 , H12 , H20

�
. An ideal current source is

one with H� = 0.
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V aI a

I b

I c

V b

V c

E ab

E ca

E bc

zab

zbc
zca

(a) Voltage source

V aI a

I b

I c

V b

V c

J ab

J bc

J ca

yab

ybc

yca

(b) Current source

V aI a

I b

I c

V b

V c

σabσca

σbc

(c) Power source

V aI a

I b

I c

V b

V c

zab

zbc

zca

(d) Impedance

Figure 14.8 Three-phase devices in � configuration. (a) A voltage source. (b) A current source.
(c) A power load. (d) An impedance. Note the direction of �� and f�.

3 Power sourcef�. A three-wire power source in� configuration as shown in Figure
14.8(c) consumes a constant power f� :=

�
f
01 ,f12 ,f20

�
or injects a constant

power �f�.
4 Impedance I�. A three-wire impedance in � configuration as shown in Figure

14.8(d) is specified by an impedance matrix I� := diag
�
I
01 , I12 , I20

�
. We assume

that I01 + I12 + I20 < 0.

Voltage source
�
⇢
�, I�

�
.

Internal model. Referring to Figure 14.8(a) the internal model of a voltage source in �
configuration is

+
� = ⇢

� + I
�
�
�, B

� := diag
⇣
+
�
�
��

⌘
= diag

⇣
⇢
�
�
�H

⌘
+ diag

⇣
I
�
�
�
�
�H

⌘
(14.20)

External model. The terminal voltage and current (+ , �) are related to the internal
voltage and current

�
+
�, ��

�
according to the conversion rule (14.9a) for �-configured

devices, reproduced here

+
� = �+ , � = ��T

�
�
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We will derive two equivalent relations between the terminal (+ , �). Given + , the first
relation uniquely determines � in terms of + . Given �, the second relation however
determines + in terms of � only up to an arbitrary zero-sequence voltage W. The
asymmetry between these two cases is because + contains more information (W :=
1
31

T
+) than � and uniquely determines the internal voltage +� and hence �� (from

(14.20)) and �. In contrast � contains no information about the zero-sequence current
V := 1

31
T
�
� and hence does not uniquely determine the internal current ��.

For the first relation that maps + to �, define H� :=
�
I
���1

and write from (14.20)

�
� = H

�
⇣
+
��⇢�

⌘

Multiplying both sides by ��T and substituting the conversion rule we have

� =
⇣
�T
H
�
⌘
⇢
� � .�+ (14.21a)

where .� is a complex symmetric Laplacian matrix of the graph in Figure 1.9:1

.
� := �T

H
� � =

266664
H
01 + H20 �H01 �H20
�H01 H

12 + H01 �H12
�H20 �H12 H

20 + H12

377775
Note that the terminal current � given by (14.21a) satisfies 1

T
� = 0.

For the second relation that maps � to + , substitute the conversion rule into the
internal model (14.20) to eliminate the internal variable

�
+
�, ��

�
:

�+ = ⇢
� + I

�
⇣
��T†

� + V1

⌘

where we have used �� = ��T†
� + V1 from (14.9c) and this is valid if and only if we

require

1
T
� = 0

Here V 2 C is not arbitrary but depends on ⇢� and �.2 Multiplying both sides by 1
T

gives

0 = 1
T�+ = 1

T
⇢
� � 1

T
I
�|{z}

Ĩ
�T

�T†
� + V

⇣
1

T
I
�
1

⌘
|   {z   }

Z

Define the column vector Ĩ� := I�1 =
�
I
01 , I12 , I20

�
and the scalar Z := 1

T
I
�
1 = I01 +

1 Note however that H� is a complex matrix and therefore . � is complex symmetric, not Hermitian.
Therefore span(1) is a subset of the null space of . �. For a su�cient condition for the null space of . �

to be span(1) , see Exercise 4.2.
2 To gain intuition, imagine the voltage source is connected to a constant-voltage device that fixes the

terminal voltage + of the voltage source, and hence its internal voltage + � = �+ . Therefore, on each
phase line, say, line 01, we have + 01 �⇢01 = I01 � 01 . Hence �� is uniquely determined which fixes
both � and V := 1

3 1
T
�
�.
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I
12 + I20. Then

V =
1
Z

⇣
Ĩ
�T�T†

� � 1
T
⇢
�
⌘

Note that 1
T
⇢
� is the zero-sequence internal voltage and Ĩ� is the vector of internal

impedances. Both are zero, and hence V = 0, if the internal voltage ⇢� and impedances
Ĩ
� are balanced. Therefore

�+ = ⇢
� � I� �T†

� + 1
Z

I
�
1

⇣
Ĩ
�T�T†

� � 1
T
⇢
�
⌘

=
✓
I� 1

Z

Ĩ
�

1
T
◆
⇢
� � I�

✓
I� 1

Z

1 Ĩ
�T

◆
�T†

�

or

+ = �̂⇢� � /�� + W1, 1
T
� = 0 (14.21b)

where (using Theorem 14.2)

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

and W is fixed by a given reference voltage. This is similar to (14.13b) for the . -
configured voltage source.

The two external models (14.21a) and (14.21b) are equivalent in the following sense.

Theorem 14.3. Given the conversion rules +� = �+ and � = ��T
�
� between the

terminal and internal voltages and currents, the following are equivalent:

1 Internal model: +� = ⇢
� + I��� and 1

T �
⇢
� + I���

�
= 0.

2 External model: � =
�
�T
H
��
⇢
��.�+ where .� := �T

H
��.

3 External model: + = �̂⇢�� /�� +W1, 1
T
� = 0 for some W 2 C where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

⇤

The proof of the theorem is similar to that of Theorem 14.4 and left as Exercise
14.14.

Hence given + , � is uniquely determined by (14.21a) and given �, + is determined
by (14.21b) up to a reference voltage specified by W. These equations allow us to relate
terminal power injection B to + or to � as:

B = diag
⇣
+�

H
⌘

= diag
✓
+

⇣
�T
H
�
⇢
� � .�+

⌘H
◆

(14.21c)

B = diag
⇣
+�

H
⌘

= diag
⇣⇣
�̂⇢� � /��

⌘
�

H
⌘
+ W� (14.21d)
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For an ideal voltage source where I� = 0 we have �̂ := 1
3�

T and /� = 0. The external
model is, provided 1

T
⇢
� = 0,

+ =
1
3
�T
⇢
� + W1, 1

T
� = 0, B =

1
3

diag
⇣
�T
⇢
�
�

H
⌘
+ W�

where W is fixed by a reference voltage.

Current source
�
�
�, H�

�
.

Internal model. Referring to Figure 14.8(b) the internal model of a current source in �
configuration is

�
� = �

� + H
�
+
�, B

� := diag
⇣
+
�
�
��

⌘
= diag

⇣
+
�
�
�H

⌘
+ diag

⇣
+
�
+
�H
H
�H

⌘
(14.22)

External model. Multiplying both sides of �� = �� + H�+� by ��T and substituting the
general conversion rule

+
� = �+ , � = ��T

�
�

for �-configured devices, we have

� = �
⇣
�T
�
� + .�+

⌘
(14.23a)

where .� := �T
H
� � is the matrix in (14.21a). The power injection is

B = diag
⇣
+�

H
⌘

= �diag
⇣
+�

�H� + ++H
.
�H

⌘
(14.23b)

For an ideal current source where H� = 0 we have � = ��T
�
� and B = �diag(+��H�).

Remark 14.6 (Voltage and current sources). A �-configured current source specifies
its internal current �� which then uniquely determines its terminal current � through
the conversion rule (14.9a), as well as its zero-sequence current V := 1

31
T
�
�, whereas a

voltage source specifies its internal voltage ⇢� which does not uniquely determine its
terminal voltage+ . This is why the external voltage source model (14.21b) determines
+ only up to an arbitrary zero-sequence voltage W and requires 1

T
� = 0 while both

(14.21a) and (14.23a) are valid without any extra condition as their derivation does not
involve pseudo-inverse of conversion matrices.

Power source f�.

Internal model. Referring to Figure 14.8(c) the internal model of a constant-power
source is

B
� := diag

⇣
+
�
�
�H

⌘
= f

� (14.24)

This specifies the powers (f01 ,f12 ,f20) delivered to these single-phase devices.
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External model. Applying the power conversion rule (14.10b) to the internal model
B
� = f� yields an external model of a constant-power source that relates its terminal

voltage and current (+ , �):

f
� = �1

3
diag

⇣
�

⇣
+�

H
⌘
�T

⌘
+ V�+ , 1

T
� = 0 (14.25a)

where the first equality follows because
�
�T†�H = 1

3�
H = 1

3�
T from Theorem 14.2. Here

V represents the amount of loop flow in the internal current ��. All three quantities
(+ , �, V) are variables to be determined by the interaction with other devices through the
network; see Chapter 16.1. Here (+ , �) are terminal variables but, unlike the external
models of other devices, V is a quantity internal to the � configuration.

An alternative model of a constant-power source is (14.10c) that relates its terminal
voltage + with its internal current ��:

f
� := diag

⇣
+
�
�
�H

⌘
= diag

⇣
�+��H

⌘
(14.25b)

An advantage of this model is that it contains implicitly both the zero-sequence terminal
voltage W := 1

31
T
+ and zero-sequence internal current V := 1

31
T
�
�.

We now study the connection between the two equivalent models (14.25a) and
(14.25b) of a constant-power source that relate (+ , �) and

�
+ , ��

�
respectively. Expand

the first equation in (14.25a) to get

f
� = �1

3

2666664

�
�
0 � �1

�H �
+
0 �+1

�
�
�
1 � �2

�H �
+
1 �+2

�
(�2 � �0)H (+2 �+0)

3777775
+ V

266664
+
0 �+1

+
1 �+2

+
2 �+0

377775
=

✓
diag

✓⇣
��T†

�

⌘
�

◆
+ VI

◆
|                           {z                           }

diag(��H)

(�+)

which is equivalent to (14.25b). Given a terminal voltage + , the currents � and �� can
be uniquely determined in these models (14.25a) and (14.25b) respectively. Given a
current � or �� in (14.25a) and (14.25b) respectively, however, + cannot be uniquely
determined.

Specifically, given a terminal voltage + , the model (14.25b) provides three lin-
ear equations in three unknowns ��, which determines �� uniquely. Both the ter-
minal current � and V are then determined uniquely. Conversely, given �

� (and
hence V), (14.25b) provides three linear equations in three unknowns + but only�
+
0 �+1 ,+1 �+2 ,+2 �+0

�
, i.e., +� = �+ , can be uniquely determined. The terminal

voltage+ (or equivalently, its zero-sequence voltage W) needs to be determined through
network equations or from a reference voltage.

Similarly for the model (14.25b), given a terminal voltage + , (14.25a) provides
four linear equations in four unknowns � := (�0, �1 , �2) and V which determine (�, V)
uniquely (Exercise 14.15). Intuitively, the given terminal voltage + fixes the internal
voltage +� which then fixes the internal current �� since diag

�
+
�
�
�H�

= f�. This
then produces a unique terminal current � and the zero-sequence current V := 1

31
T
�
�.
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On the other hand, consider the situation where the terminal current � with 1
T
� = 0

is given, instead of �� as for the model (14.25b) above. In this case (14.25a) also
does not uniquely determine the terminal voltage + because (14.25a) provides three
quadratic equations in four unknowns (+ , V), quadratic due to the term V�+ . Moreover
since � contains less information than ��, there is ambiguity in V in addition to W; see
Exercise 14.16. As for the model (14.25b) the terminal voltage + (hence W) and V will
be determined through network equations or from a reference voltage.

For a balanced system however the loop flow V and the internal voltages +� are
uniquely determined by f� and a terminal current �, as the next example illustrates.

Example 14.3 (Balanced systems). Consider a constant-power source with a given
f
� whose external behavior is described by (14.25a). Given a terminal current � = 8U+

which is a positive-sequence balanced vector with 1
T
� = 0:

1 Show that the given f� and � must satisfy

f
� 2 span

✓
�1�U

3
81 + VU+

◆

for some V 2 C. Note that the internal power f� is di�erent in each phase (with
di�erent phase angles separated by 120�) if and only if the loop flow V < 0.

2 Show that the loop flow V and the internal voltage +� are uniquely determined
by f� and �, and that the terminal voltage + is unique only up to an arbitrary
reference voltage.

Assume that the internal voltage +� is also a positive-sequence balanced vector.

Solution. By Corollary 1.3 we have for any balanced vector G 2 C3 in positive sequence

�G = (1�U)G, �T
G = (1�U2)G

Hence the internal current is

�
� = ��T†

� + V1 = �1
3
�� + V1 = �1�U

3
8U+ + V1

where the second equality follows from Theorem 14.2. By assumption+� is a positive-
sequence balanced vector, i.e.,+� = EU+ where E 2 C is a scalar to be determined. Then

f
� = diag

⇣
+
�
�
�H

⌘
= E diag

 
U+

✓
� (1�U)8

3
U+ + V1

◆H
!

= E
✓
� (1�U)8

3
diag

⇣
U+U

H
+
⌘
+ V diag

⇣
U+1

T
⌘◆

= E
✓
� (1�U)8

3
1 + VU+

◆

i.e., f� lies in span
⇣
� (1�U)8

3 1 + VU+
⌘

for some V. To determine E, multiplying both
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sides by 1
T to get

E =
�1

T
f
�

(1�U)8
Then +� = EU+. The terminal voltage + is given by

+ = �†+� + W1 =
E

3
�T
U+ + W1 =

�1
T
f
� (1+U)
38

U+ + W1, W 2 C

which is unique up to an arbitrary reference voltage specified by W 2 C.

Note that neither +� nor + depends on V, even though from the expression above
for f� in part 1, the internal powers f� :=

�
f
01 ,f12 ,f20

�
depend on the loop flow

specified by V. Moreover the expression uniquely determines V:

f
01 = E

✓
� (1�U)8

3
+ V

◆
, f

12 = E

✓
� (1�U)8

3
+ UV

◆
=) V =

f
12 �f01

f
01 +f12 +f20 8

⇤

Whereas (14.25a) relates the internal power f� to the external voltage and current
(+ , �), we can also use the conversion rule (14.10a) to relate the external power B to
the internal voltage and current

�
+
�, ��

�
. Specifically, the internal voltage and current

(+�, ��) and the terminal power B of a constant-power source must satisfy:

B = �1
3

diag
⇣
�T

⇣
+
�
�
�H

⌘
�
⌘
� W�T

�

�
, f

� = diag
⇣
+
�
�
�H

⌘
, 1

T
+
� = 0

(14.25c)

where W is fixed by a reference voltage. An equivalent model in terms of
�
+ , ��

�
is

(using (14.10c))

B = �diag
⇣
+�

�H�
⌘
, f

� = diag
⇣
�+��H

⌘
(14.25d)

The choice of di�erent models in (14.25) for three-phase analysis depends on the
specification of the problem. See Example 16.11 in Chapter 16.2.1.

Remark 14.7 (Total power). Since f� is the power delivered to the single-phase
devices while B is the power injected from the three-phase power source to the network
it is connected to, (14.25) implies that (the negative of) its total internal power is equal
to its total terminal power, i.e., 1

T
B = �1

T
f
� (Exercise 14.17). In particular the total

terminal power 1
T
B is independent of the loop-flow V and zero-sequence voltage W

even when B does.

Impedance I�.

Internal model. Referring to Figure 14.8(d) the internal model of an impedance I� in
� configuration is

+
� = I

�
�
�, B

� = diag
⇣
+
�
�
�H

⌘
:= diag

⇣
I
�
�
�
�
�H

⌘
(14.26)
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External model. The external model can be derived in a similar way to that for a
voltage source, by applying the conversion rule +� = �+ , � = ��T

�
� to the internal

model (14.26). We will derive first a relation that maps a terminal voltage + (which
also determines its zero-sequence component W) uniquely to a terminal current � and
then a converse relation that maps � to + up to an arbitrary W.

Define the admittance matrix H� :=
�
I
���1

. Substituting into (14.26), multiplying
both sides by ��T and applying the conversion rule, we get

� = �.�+ (14.27a)

where .� := �T
H
�� is the same complex symmetric Laplacian matrix in (14.21a) for

a voltage source. Note that the terminal current � given by (14.27a) satisfies 1
T
� = 0.

For the converse relation, given any terminal current � that satisfies 1
T
� = 0, substi-

tute the conversion rule into the internal model (14.26) to eliminate
�
+
�, ��

�
:

�+ = I
�
⇣
��T†

� + V1

⌘

where V 2 C is not arbitrary but depends on �. Multiplying both sides by 1
T gives

0 = 1
T�+ = � 1

T
I
�|{z}

Ĩ
�T

�T†
� + V

⇣
1

T
I
�
1

⌘
|   {z   }

Z

where Ĩ� := I�1 and Z := I01 + I12 + I20. Hence

V =
1
Z

⇣
Ĩ
�T�T†

⌘
�

Therefore

�+ = �I�
✓
I� 1

Z

1 Ĩ
�T

◆
�T†

�

or

+ = �/�� + W1, 1
T
� = 0 (14.27b)

where W is a variable to be determined together with + and (using Theorem 14.2)

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

is the same matrix in (14.21b).

Remark 14.8. Note that (14.27b) is a system of at most 4 linearly independent equa-
tions in 7 variables (+ , �,W). We can also eliminate the variable W := 1

31
T
+ and write

(14.27b) equivalently in terms of only (+ , �):✓
I� 1

3
11

T
◆
+ = �/��, 1

T
� = 0

Since the matrices on both sides of the first equation are singular, this is a system of
at most 3 linearly independent equations in 6 variables. It is often more convenient to
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use (14.27b) in analysis as it expresses + explicitly in terms of � despite the additional
variable W; see Example 16.8. ⇤

As for a voltage source, the two external models (14.27a) and (14.27b) of an
impedance are equivalent in the following sense. The theorem also implies that /� and
.
� are pseudo-inverses of each other.

Theorem 14.4. Given the conversion rules +� = �+ and � = ��T
�
� between the

terminal and internal voltages and currents, the following are equivalent:

1 Internal model: +� = I
�
�
� and hence 1

T
I
�
�
� = 0.

2 External model: � = �.�+ where .� := �T
H
��.

3 External model: + = �/�� +W1, 1
T
� = 0 for some W 2 C where

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

Proof The derivation above of the two external models (14.27a) and (14.27b) shows
that 1) 2 and 3. For the converse we will show that 2) 1 and 3) 1.

Suppose � = �.�+ = �
�
�T
H
��

�
+ . Substitute the conversion rules to get

�T
⇣
H
�
+
�� ��

⌘
= 0

i.e., H�+�� �� is in the null space of �T, or H�+�� �� = V1 for some V 2 C. Therefore

+
� = I

�
�
� + V I�1

It is important to note that this expression is not of the form +
� = I0��� + V01 for some

diagonal matrix I0� 2 C3 and scalar V0 2 C. Since 1
T
+
� = 0 because of the conversion

rule, multiplying both sides by 1
T yields

V = �1
Z

Ĩ
�T
�
�

where Ĩ� := I�1 and Z := I01 + I12 + I20. Hence

+
� = I

�
�
�� 1

Z

Ĩ
�T
�
�
I
�
1 = I

�
✓
I� 1

Z

11
T
I
�
◆

|              {z              }
I
0�

�
�

For I0� to be a valid three-phase impedance, it must be a diagonal matrix. This is the

case if and only if I�1

⇣
1

T
I
�
�
�
⌘
= 0 in which case +� = I���, as desired.

Suppose + = �/�� +W1, 1
T
� = 0 for some W 2 C. Then †

+
� = �+ = �1

3
��†I�

✓
I� 1

Z

1 Ĩ
�T

◆
� �
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Since 1
T
� = 0, there exists �� such that � = ��T

�
�. Hence

+
� = ��†I�

✓
I� 1

Z

1 Ĩ
�T

◆
��T

�
� = I

�
✓
I� 1

Z

11
T
I
�
◆

|              {z              }
I
0�

�
�

where we have used ��† = I� 1
311

T from Theorem 14.2. As before, I0� must be a
diagonal matrix to be a valid three-phase impedance. This is the case if and only if

I
�
1

⇣
1

T
I
�
�
�
⌘
= 0 in which case +� = I���, as desired. ⇤

Hence given a + , � is uniquely determined by (14.27a) and given an � with 1
T
� = 0,

+ is determined by (14.27b) up to a reference voltage specified by W. These equations
allow us to relate terminal power injection B to + or to � as:

B = diag
⇣
+�

H
⌘

= �diag
⇣
++

H
.
�H

⌘
(14.27c)

B = diag
⇣
+�

H
⌘

= �diag
⇣
/
�
� �

H
⌘
+ W� (14.27d)

Balanced impedance. When the impedance is balanced, i.e., I01 = I12 = I20 then
(Exercise 14.18)

/
� =

I
01

3

✓
I� 1

3
11

T
◆

i.e., /� is not diagonal and the o�-diagonal entries will couple voltages and currents
in di�erent phases. As we will see in Chapter 16.4.1, in this case, one can perform
a similarity transformation using the unitary matrix � to what is called the sequence
coordinate as explained in Chapter 14.2.2. In the sequence coordinate, the transformed
impedance /̃�, called the sequence impedance, is diagonal:

/̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
This leads to decoupled voltages and currents in the sequence coordinate called sym-
metrical components. The zero-sequence component (first row and column of /̃�)
is zero, reflecting the fact that �0 + �1 + �2 = 0 in a � configuration since there is
no neutral line. The decoupled relation between the sequence voltages, currents and
impedances can be interpreted as defining separate sequence networks that can be
analyzed independently.

Remark 14.9 (Phase decoupling). Determine conditions under which phases become
decoupled ( Exercise 14.19). ⇤
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14.3.5 �-. transformation

Ideal voltage source
�
⇢
�,W

�
.

The terminal voltage of an ideal �-configured voltage source
�
⇢
�,W

�
with zero internal

impedance I� = 0 is, from (14.21b):

+ =
1
3
�T
⇢
� + W1, 1

T
� = 0

where W is fixed by a given reference voltage. The terminal voltage of an ideal . -
configured voltage source

�
⇢
. ,+=

�
with zero internal impedance I. = 0 is, from

(14.13a):

+ = ⇢
. + += 1, 1

T
� = ��=

Hence the . equivalent of an ideal voltage source
�
⇢
�,W

�
, not necessarily balanced, is

given by

⇢
. :=

1
3
�T
⇢
�, +

= := W, no neutral line so that �= := 0

Note that this does not satisfy assumption C14.1 since the neutral is not grounded
unless W = 0. If ⇢� is balanced then �T

⇢
� = (1�U2)⇢� =

p
34�ic/6

⇢
� (by Corollary

1.3) and ⇢. reduces to the expression (1.32a) derived in Chapter 1.2.4 for balanced
systems:

⇢
. =

1p
34ic/6

⇢
�, +

= := W, no neutral line so that �= := 0

For a non-ideal�-configured voltage source
�
⇢
�, I�,W

�
, its terminal voltage is, from

(14.21b):

+ = �̂T
⇢
� � /�� + W1

where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

It generally does not have a . equivalent. Indeed, since the . equivalent needs to be
ungrounded so that 1

T
� = 0, its external model is + = ⇢

. � I. � ++=1 from (14.13a).
In general the e�ective impedance /� is not diagonal and hence may not be interpreted
as an internal series impedance matrix I

. of an . -configured source, even if the

impedance is balanced I� := I01I (in which case /� = I
01

3

⇣
I� 1

311
T
⌘
).

Remark 14.10 (. -equivalent with equal line-to-line voltage). Given a general �-
configured device with internal voltage +�, its equivalent line-to-neutral voltage is
defined in [43, p.204] to be

+
. :=

1
3

266664
2 1 0
0 2 1
1 0 2

377775
+
� (14.28)
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This definition is the same as the . -equivalent of an ideal voltage source +� derived
above with a particular choice of the neutral voltage:

+
. :=

1
3
�T
+
�, +

= := W = 0

in the sense that they have the same line-to-line voltages.

To see this, recall that the line-to-line voltage +̃. (not the terminal voltage) of a
. -configured device with internal voltage +. is +̃. = �+. . If it is equivalent to the
given +� then +� = +̃. = �+. . Theorem 14.2 then implies

+
. =

1
3
�T
+
� +W1 for any W 2 C

Here W being arbitrary means that the �-configured device has an arbitrary zero-
sequence terminal voltage and its . -equivalent has an arbitrary neutral voltage. Take
W := 0. Since 1

T
+
� = 1

T �
�+.

�
= 0 we can add 1

31
T
+
� to .. to get

+
. =

1
3

⇣
�T +11

T
⌘
+
� =

1
3

©≠≠
´

266664
1 0 �1
�1 1 0
0 �1 1

377775
+

266664
1 1 1
1 1 1
1 1 1

377775
™ÆÆ
¨
+
� =

1
3

266664
2 1 0
0 2 1
1 0 2

377775
+
�

The model (14.28) is applicable only if the zero-sequence voltage W := 1
31

T
+ of the

given �-configured device is zero. Otherwise its . -equivalent must have a nonzero
neutral voltage + 9 = W. ⇤

Ideal current source ��.

An ideal �-configured current source �� has an external model of � = ��T
�
�. Note that

1
T
� = 0. The external model of a . -configured current source is � = ��. , 1

T
� = ��=.

Hence the . equivalent is

�
. = �T

�
�, no neutral line so that �= := 0

If �� is balanced then Corollary 1.3 implies

�
. = (1�U2)�� =

p
3

4
ic/6 �

�

the same expression (1.32a) for balanced systems.

14.3.6 Comparison with single-phase devices

Assume C14.1 holds, i.e., neutrals are grounded and voltages are defined with respect
to the ground. We compare the external models of three-phase devices to those of their
single-phase counterparts. As we will see they are structurally the same, except for the
�-configured power source.
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Voltage source.

E

z I

V

(a) Single-phase

V aI a

V n

I n

Zn

I b

I c

V b

V c

zan

zbn

zcn

Ecn Ebn

Ean

(b) . configuration
(grounded)

V aI a

I b

I c

V b

V c

E ab

E ca

E bc

zab

zbc
zca

(c) � configuration

Figure 14.9 Comparison of single-phase and three-phase voltage sources.

Figure 14.9 shows a single-phase voltage source specified by an internal voltage ⇢
and a series impedance I and the three-phase voltage sources in. and � configurations
studied in this section. Their external models are, from (14.13b) and (14.21b):

single-phase: + = ⇢ � I�
. -configuration: + = ⇢

. � /. �, /
. := I

. + I=11
T

�-configuration: + = �̂⇢� � /�� + W1, 1
T
� = 0

Current source.

J

I

Vy

(a) Single-phase

V aI a

V n

I n

zn

I b

I c

V b

V c

yan

ybn
ycn

J an

J cn

J bn

(b) . configuration
(grounded)

V aI a

I b

I c

V b

V c

J ab

J bc

J ca

yab

ybc

yca

(c) � configuration

Figure 14.10 Comparison of single-phase and three-phase current sources.

Figure 14.10 shows a single-phase current source specified by an internal current �
and a shunt admittance H and the three-phase current sources in. and � configurations
studied in this section. Their external models are, from (14.15b) and (14.23a):

single-phase: � = � (� + H+)

. -configuration: � = ��
⇣
�
. + H.+

⌘
, � := I� I

=

1+ I=
⇣
1

T
H
. 1

⌘ H. 11
T

�-configuration: � = �
⇣
�T
�
� + .�+

⌘
, .

� := �T
H
� �
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Power source.












































































































(a) Single-phase












































































































(b) . configuration

V aI a

I b

I c

V b

V c

σabσca

σbc

(c) � configuration

Figure 14.11 Comparison of single-phase and three-phase power sources.

Figure 14.11 shows a single-phase power source specified by an internal power f
and the three-phase power sources in . and � configurations studied in this section.
Their external models are, from (14.17c) and (14.25d):

single-phase: B = �f

. -configuration: B = �
⇣
f
. + I=

⇣
� �

T
⌘
1

⌘

�-configuration: B = �diag
⇣
+�

�H�
⌘
, f

� = diag
⇣
�+��H

⌘

Impedance.












































































































(a) Single-phase












































































































(b) . configuration

V aI a

I b

I c

V b

V c

zab

zbc

zca

(c) � configuration

Figure 14.12 Comparison of single-phase and three-phase impedances.

Figure 14.12 shows a single-phase impedance specified by I and the three-phase
power sources in . and � configurations studied in this section. Their external models
are, from (14.19b) and (14.27a):

single-phase: + = �I�
. -configuration: + = �/. �, /

. := I
. + I

=

11
T

�-configuration: � = �.�+ , .
� := �T

H
��
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14.3.7 Summary

The external models of three-phase devices are summarized in Table 14.2 and will be
used to compose network models in Chapters 16 and 17.

Device . configuration � configuration
Specification Internal External Specification Internal External

Voltage source
⇣
⇢
. , I. , I=

⌘
(14.12) (14.13)

⇣
⇢
�, I�

⌘
(14.20) (14.21)

Current source
⇣
�
. , H. , I=

⌘
(14.14) (14.15)

⇣
�
�, H�

⌘
(14.22) (14.23)

Power source
⇣
f
. , I=

⌘
(14.16) (14.17) f

� (14.24) (14.25)

Impedance
⇣
I
. , I=

⌘
(14.18) (14.19) I

� (14.26) (14.27)

Line (3-wire model) (15.8)

Table 14.2 Specification, internal and external models of three-phase devices.

When the devices are ideal these models reduce to a simpler form summarized in
Tables 14.3 and 14.4. The internal models of ideal devices are:

1 Ideal voltage source ⇢. /�:

+
. /� = ⇢

. /�, B
. /� = diag

✓
⇢
. /�

⇣
�
. /�

⌘H
◆

(14.29a)

2 Ideal current source �. /�:

�
. /� = �

. /�, B
. /� = diag

✓
+
. /�

⇣
�
. /�

⌘H
◆

(14.29b)

3 Ideal power source f. /�:

B
. /� = f

. /�, f
. /� = diag

✓
+
. /�

⇣
�
. /�

⌘H
◆

(14.29c)

4 Impedance I. /�:

+
. /� = I

. /�
�
. /�, B

. /� = diag
✓
+
. /�

⇣
�
. /�

⌘H
◆

(14.29d)

In each case the internal specification of the three-phase device fixes one of the terminal
variables (+ , �, B) and the relation between the remaining variables characterizes its
external behavior. In the rest of this book we often assume sources are ideal and
characterized by Tables 14.3 and 14.4 (see Chapter 15.1.4 for a justification).

Consider a network of three-phase voltage sources, current sources, power sources,
and impedances connected by three-phase lines and transformers. A power flow prob-
lem typically specifies a set of these devices and the objective is to determine other
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Device Assumption . configuration

Voltage source I
= = 0, I. = 0 + = ⇢. +W1 B = diag

⇣
⇢
.
�
H
⌘
+W�

Current source I
= = 0, H. = 0 � = ��. B = �diag

⇣
+�
.H

⌘
Power source I

= = 0 diag
⇣
�
H
⌘
(+ �W1) = �f B = �f. +W�

Impedance I
= = 0 + = �I. � +W1 B = �diag

⇣
+ (+ �W1)H

H
.H

⌘

Table 14.3 External models of ideal single-terminal devices in . configuration. The quantity
W :=+= is the neutral voltage. If all neutrals are directly grounded and voltages are defined with
respect to the ground, then W :=+= = 0 for all . -configured devices.

Device Assumption � configuration

Voltage source I
� = 0, 1

T
⇢
� = 0 + = �†⇢� +W1, 1

T
� = 0 B = diag

⇣
�†⇢��H

⌘
+W�

Current source H
� = 0 � = ��T

�
�

B = �diag
⇣
+�

�H�
⌘

Power source f
� = diag

⇣
�+��H

⌘
1

T
� = 0 f

� = �diag
⇣
�T†

⇣
+�

H
⌘
�T

⌘
+ V�+

B = diag
⇣
+�
�H�

⌘
1

T
+
� = 0 B = �diag

⇣
�†

⇣
+
�
�
�H

⌘
�
⌘
�W�T

�

�

Impedance � = �.�+ B = �diag
⇣
++

H
.
�H

⌘
+ = �/�� +W1, 1

T
� = 0 B = �diag

⇣
/
�
� �

H
⌘
+W�

Table 14.4 External models of ideal single-terminal devices in � configuration. The quantity
W := 1

3 1T
+ is the zero-sequence voltage of + and V := 1

3 1T
�
� is the zero-sequence current of

�
�.

voltages, currents, and powers on the network. The specification of these devices
include not only internal voltages, currents, or powers, but also some of the zero-
sequence quantities (W, V). We will clarify in Chapter 16.2 the parameters that should
be specified versus variables to be computed of the external models in Tables 14.3 and
14.4.

14.4 Voltage regulators

14.5 Bibliographical notes

The concept of symmetrical component is described in another seminal paper [152]
by C. L. Fortescue to simplify the analysis of unbalanced operation of a multiphase
system. The use of symmetrical components for fault current analysis is explained in
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e.g. [155] which also proposes a di�erent transformation called (U, V,0) components.
The paper [153] explains that Fortescue’s transformation matrix as a particular choice
of orthogonal basis for three-dimensional vectors over the complex field (the similarity
transformation matrix � in Chapter 14.2.2 is the normalized version of Fortescue’s
original matrix so that the basis are orthonormal). It shows that other well-known
transformations such as those of Clarke, Concordia, Kimbark, and Park can be obtained
from Forescue’s matrix through elementary row and column transformations and have
di�erent advantages and disadvantages mostly for fault analysis. Park transformation
[154] is applicable not only to steady state voltage and current phasors, but also to
instantaneous voltages, currents, and flux linkages in modeling synchronous machines.

As we will see in Chapter 16 a three-phase network has a single-phase equivalent
circuit where the network equations have the form as a single-phase network. The
main di�erence with a single-phase network is the models of three-phase devices in
the equivalent circuit, such as models for constant-power devices [5, Chapter 11],
loads and voltage regulars [43], as we have studied in Chapter 14.3, as well as three-
phase lines and transformers, to be studied in Chapter 15. See also [156, Chapter
3] for comprehensive models of three-phase components including distribution lines,
transformers and switches.

14.6 Problems

Chapter 14.2.

Exercise 14.1 (Proof of Theorem 14.2). Let

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
Prove Theorem 14.2:

1 The null spaces of � and �T are both span(1,1,1).
2 Their pseudo-inverses are

�† =
1
3
�T, �T† =

1
3
�

3 Consider �G = 1. If 1
T
1 = 0 then the solutions G are given by G = �†1 + V1 for all

V 2 C3.
4 Consider �T

G = 1. If 1
T
1 = 0 then the solutions G are given by G = �T†

1 + V1 for
all V 2 C3.

5 ��† = �†� = 1
3 ��

T = 1
3 �

T� = I � 1
3 11

T where I is the identity matrix of
appropriate size.
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Exercise 14.2. Use �† = 1
3 �

T (Theorem 14.2) to verify the four defining properties of
pseudo-inverse of �:

1 (��†)� = �.
2 �†(��†) = �†.
3 ��† is Hermitian.
4 �†� is Hermitian.

Exercise 14.3. Suppose � = ��T
�
�. Show that +�H �

�†�
�
= +�H.

Chapter 14.3.1.

Exercise 14.4 (Terminal power B). Consider the three-phase voltage source serving a
three-phase impedance load shown in Figure 14.13. Both the source and the load are

Figure 14.13 Terminal power B and internal power B. .

grounded. Suppose the terminal voltage + is defined with respect to the ground. The
terminal current �0 flows from terminal 0 of the source to the load and returns from
the ground, and B0 := +0 �0H is the power delivered across terminal 0 and the ground.
Relate the terminal power 1

T
B := +0 �0H ++1 �1H ++2 �2H and the internal power 1

T
B
.

for both the voltage source and the impedance.

Exercise 14.5 (Terminal power B). Repeat Exercise 14.4 but for the case where the
neutrals are not grounded, as shown in Figure 14.14. All voltages are defined with
respect to an arbitrary but common reference point, e.g., the ground.

Exercise 14.6 (Total powers). Show that 1
Tdiag

�
�

�
+�

H�
�†

�
= 1

Tdiag
�
+�

H�
and hence

the total internal and terminal powers are equal, i.e., 1
T
B
� = 1

T
B.
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Figure 14.14 Terminal power B and internal power B. .

Chapter 14.3.3.

Exercise 14.7 (. -configured voltage source). Compute the inverse of /. := I. + I= 11
T

in (14.13c) using the matrix inversion formula.

Exercise 14.8 (. -configured current source). Consider the current source in Figure
14.7(b). Derive (14.14) for internal power B. and B=.

Exercise 14.9 (. -configured current source). Consider the current source in Figure
14.7(b). Suppose assumption C14.1 holds. Derive (14.15b):

+ = �
⇣
I
.

�
. + /

.

�

⌘
, � = ��

⇣
�
. + H. +

⌘
where

I
. :=

⇣
H
.

⌘�1
, /

. := I
. + I

=

11
T, � := I� I

=

1+ I=
⇣
1

T
H
. 1

⌘ H. 11
T

assuming /. is invertible.

Exercise 14.10 (. -configured power device). Suppose all voltages are defined with

respect to the ground, so that += = �I=
⇣
1

T
�

⌘
. Derive (14.17b).

Exercise 14.11 (. -configured impedance). Consider a three-phase load in . configu-
ration specified by a series impedance matrix /. :

+ :=
266664
+06

+16

+26

377775
=

266664
I0 + I= I= I=

I= I1 + I= I=

I= I= I2 + I=

377775
266664
�0

�1

�2

377775
Show that if + is balanced and I0 = I1 = I2 then the neutral current �= = 0 and the
phases are decoupled.
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Chapter 14.3.4.

Exercise 14.12 (Voltage source in � configuration). Consider the voltage source in
Figure 14.8(a). Let +� = �+ .

1 Show that 1
T
� = 0 implies 1

T �
⇢
�� I��T†

�

�
= 0.

2 Show that the converse is not true.

Exercise 14.13 (Voltage source in � configuration). Suppose � is a complex sym-
metric matrix � with zero row sums. Show that its pseudo-inverse �† is also complex
symmetric with zero row sums. (Hint: Use Takagi factorization for complex symmetric
matrices in Theorem A.17 of Appendix A.6.)

Exercise 14.14 (Voltage source in � configuration). Prove Theorem 14.3: Given the
conversion rules +� = �+ and � = ��T

�
� between the terminal and internal voltages

and currents, the following are equivalent:

1 Internal model: +� = ⇢
� + I��� and hence 1

T �
⇢
� + I���

�
= 0.

2 External model: � =
�
�T
H
��
⇢
��.�+ where .� := �T

H
��.

3 External model: + = �̂⇢�� /�� +W1, 1
T
� = 0 for some W 2 C where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

(Hint: See the proof of Theorem 14.4.)

Exercise 14.15 (Voltage source in � configuration). Consider (14.25a), reproduced
here:

f
� = �1

3
diag

⇣
�

⇣
+�

H
⌘
�T

⌘
+ V�+ , 1

T
� = 0

Given any terminal voltage + , show that � and V are uniquely determined in terms of
+ and f�.

Exercise 14.16 (Voltage source in � configuration). Consider the model of a constant-
power source (14.25a), reproduced here:

f
� = �1

3
diag

⇣
�

⇣
+�

H
⌘
�T

⌘
+ V�+ , 1

T
� = 0, V 2 C

Given a terminal current � with 1
T
� = 0, show that the zero-sequence current V := 1

31
T
�
�

can take two values.
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Exercise 14.17 (Total power in �). Consider a power source with internal power
f
� := (f01 ,f12 ,f20) in � configuration. Show that (the negative of) its total internal

power is equal to its total terminal power, i.e., 1
T
B = �1

T
f
�.

Exercise 14.18 (Balanced impedance I�). Consider a �-configured impedance I�

whose external equivalent is (from (14.27b)):

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
|             {z             }

Î
�

�

If the impedance is balanced, i.e., I01 = I12 = I20, show that

/
� =

I
01

3

✓
I� 1

3
11

T
◆

Exercise 14.19 (Devices in � configuration). Show that the phases are decoupled,
i.e., phase 0 variables (B0,+0, �0) do not depend on variables in phases 1 and 2, if the
terminal currents are balanced �0+ �1+ �2 = 0 and the terminal voltages+0++1++2 = 0
for the four types of devices in � configuration discussed in Chapter 14.3.4.

Chapter 14.3.5.

Exercise 14.20 (�-. transformation). Show that the external behavior of a symmetric
non-ideal voltage source

�
⇢
�, I01I

�
with identical series impedance I� := I01I and

zero-sequence voltage W = 0 is equivalent to a non-ideal . -configured voltage source�
⇢
. , I. , I=

�
whose neutral is grounded through an impedance I= with:

⇢
. :=

1
3
�T
⇢
�, I

. :=
I
01

3
I, I

= := � I
01

9

under assumption C14.1.

Exercise 14.21 (�-. transformation). Consider a symmetric non-ideal current source�
�
�, H01I

�
with identical shunt admittance H� := H01I. Show that it cannot be equivalent

to a non-ideal . -configured current source
�
�
. , H. , I=

�
under assumption C14.1.



15 Component models, II: line and
transformers

In this chapter we continue the modeling of three-phase components. In Chapter 15.1
we model a three-phase transmission or distribution line. In Chapter 15.2 we extend
the simplified model of transformers of Chapter 3.1.4 from single-phase to three-phase
setting. In Chapter 15.3 we extend the transformer model based on unitary voltage
network of Chapter 3.1.5 from single-phase to three-phase setting. In Chapter 15.4
we explain how to identify model parameters from measurements. We will use these
component models in Chapters 16 and 17 to construct network models and study
unbalanced three-phase analysis.

15.1 Three-phase transmission or distribution line models

As explained Chapter 2.1 the electromagnetic interactions among the electric charges in
wires of di�erent phases couple the voltages on and currents in these wires. The relation
between the voltages and currents in these phases can be modeled by a linear mapping
that depends on the line characteristics (resistances, inductances, capacitances).

15.1.1 Review: single-phase model

The linear mapping becomes decoupled when the phases are balanced, leading to a per-
phase model of a transmission or distribution line as a two-terminal device specified
by a ⇧-equivalent circuit (HB

9:
, H<

9:
, H<
: 9
), as explained in Chapter 2.2.2. The terminal

(or bus) voltages (+ 9 ,+: ) and sending-end line currents (� 9: , �: 9 ) on this two-terminal
device describes the end-to-end behavior of the line. They are linearly related according
to Kirchho�’s and Ohm’s laws:

� 9: = H
B

9:

�
+ 9 �+:

�
+ H

<

9:
+ 9 , �: 9 = H

B

: 9

�
+: �+ 9

�
+ H

<

: 9
+: (15.1a)

For a transmission or distribution line, HB
9:
= HB

: 9
. The terms H<

9:
+ 9 and H<

: 9
+: assume

that the shunt admittances connect the buses 9 and : both to the common reference
point for terminal voltages, e.g., the ground. The sending-end line power

�
( 9: ,(: 9

�
is
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related to (+ 9 ,+: ) by

( 9: =
⇣
H
B

9:

⌘H
+ 9

�
+ 9 �+:

�H +
⇣
H
<

9:

⌘H
+ 9+

H
9

(15.1b)

(: 9 =
⇣
H
B

: 9

⌘H
+:

�
+: �+ 9

�H +
⇣
H
<

: 9

⌘H
+:+

H
:

(15.1c)

When (HB
9:

= HB
: 9

and) the shunt admittances are zero, i.e., H<
9:

= H<
: 9

= 0, then
� 9: = ��: 9 and this relation reduces to

+ 9 � +: = IB
9:
� 9: (15.1d)

where IB
9:

:=
⇣
H
B

9:

⌘�1
is the series impedance of the line. We now extend these relations

to an unbalanced three-phase transmission or distribution line.

15.1.2 Four-wire three-phase model

A three-phase line has three wires one for each phase 0,1,2. It may also have a neutral
wire which may be grounded at one or both ends if the device connected to that end of
the line is in. configuration. Consider then a four-wire three-phase line where the total
current 80 (C) + 81 (C) + 82 (C) and the total charge @0 (C) + @1 (C) + @2 (C) may be nonzero
and they flow through the neutral wire (if present) and the earth return. The e�ect of
neutral or earth return on the impedance of a transmission line depends on details such
as how many neutral wires are present, whether they are grounded along the lines at
regular spacing, etc.

To build intuition we first omit line charging. In this case the three-phase voltages and
currents are related by a series impedance matrix, similar to (15.1d) for a single-phase
system. We then incorporate the e�ect of line charging by including shunt admittances
to obtain a model that generalizes (15.1a) to a three-phase system.

Without shunt admittances.

Consider a four-wire three-phase line with a neutral wire. The voltage between one
end of a wire to the other end depends linearly on the current in each of the four

wires. Let +̂ 9 :=
⇣
+
0

9
,+1
9
,+2
9
,+=
9

⌘
and +̂: :=

�
+
0

:
,+1
:

,+2
:
,+=
:

�
be the terminal (or nodal

or bus) voltages at terminals 9 and : respectively of the phase and neutral wire
( 9 , :), with respect to an arbitrary but common reference point, e.g., the ground. Let

�̂ 9: :=
⇣
�
0

9:
, �1
9:

, �2
9:

, �=
9:

⌘
denote the currents in these lines. Then the four-wire three-

phase line can be modeled by a series impedance matrix1
Î
B

9:
that linearly relates these

1 It is sometimes called a series phase impedance matrix to di�erentiate it from a series sequence
impedance matrix for sequence variables; see Chapter 16.4.
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voltages and currents:

266666664

+
0

9

+
1

9

+
2

9

+
=

9

377777775
�

26666664

+
0

:

+
1

:

+
2

:

+
=

:

37777775
=

266666664

Î
00

9:
Î
01

9:
Î
02

9:
Î
0=

9:

Î
10

9:
Î
11

9:
Î
12

9:
Î
1=

9:

Î
20

9:
Î
21

9:
Î
22

9:
Î
2=

9:

Î
=0

9:
Î
=1

9:
Î
=2

9:
Î
==

9:

377777775|                         {z                         }
Î
B

9:

266666664

�
0

9:

�
1

9:

�
2

9:

�
=

9:

377777775
(15.2a)

or in vector form

+̂ 9 � +̂: = ÎB
9:
�̂ 9: (15.2b)

For example, the series impedance matrix Î
B

9:
can model an overhead three-phase

line with an overhead neutral wire and earth return. Here Îqq
9:

are called the self-

impedances of phase q wires, including the e�ect of earth return, and Îqq
0

9:
the mutual

impedances between phase q and phase q0 wires, including the e�ect of earth return.
Their values depend on the wire materials, their lengths, distances between them, the
operating frequency, and the resistivity of the earth. To relate these impedances to
the physical system, suppose a voltage is applied between the phase 0 terminals and
therefore completing the phase 0 circuit, while circuits of phases 1,2,= are open. Then
the current �0

9:
in the phase 0 wire is nonzero while all other currents � q

9:
= 0, q < 0,

so that

266666664

+
0

9

+
1

9

+
2

9

+
=

9

377777775
�

26666664

+
0

:

+
1

:

+
2

:

+
=

:

37777775
=

266666664

Î
00

9:
Î
01

9:
Î
02

9:
Î
0=

9:

Î
10

9:
Î
11

9:
Î
12

9:
Î
1=

9:

Î
20

9:
Î
21

9:
Î
22

9:
Î
2=

9:

Î
=0

9:
Î
=1

9:
Î
=2

9:
Î
==

9:

377777775

266666664

�
0

9:

0
0
0

377777775
Hence the self-impedance

Î
00

9:
=
+
0

9
�+0

:

�
0

9:

is the ratio of the voltage applied between the phase 0 terminals to the current in the
phase 0 wire when all other circuits are open. The current �0

9:
induces voltages in other

phases and the mutual impedance

Î
10

9:
=
+
1

9
�+1

:

�
0

9:

is the ratio of the voltage induced across the phase 1 terminals to the phase 0 current
when only the phase 0 circuit is complete.

With shunt admittances.

To incorporate the e�ect of line charging, let the series admittance matrix be

Ĥ
B

9:
:=

⇣
Î
B

9:

⌘�1
, assuming Î

B

9:
is invertible. Let

⇣
Ĥ
<

9:
, Ĥ<
: 9

⌘
denote the shunt admit-
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tance matrices. The terminal voltages
�
+ 9 ,+:

�
2 C8 and the sending-end currents�

� 9: , �: 9
�
2 C8 respectively are related according to

� 9: = Ĥ
B

9:

�
+ 9 �+:

�
+ Ĥ

<

9:
+ 9 , �: 9 = Ĥ

B

9:

�
+: �+ 9

�
+ Ĥ

<

: 9
+: (15.3)

This model is illustrated in Figure 15.1. It has exactly the same form as (15.1a), except

I njk I nkj

I ajk

I bjk

I cjk

I akj

I bkj

I ckj

Vj
a

Vj
b

Vj
n

Vj
c

Vk
a

Vk
b

Vk
c

Vk
n

ŷsjk

ŷmjk ŷmkj

Figure 15.1 A four-wire line characterized by 4⇥4 series and shunt admittance matrices⇣
Ĥ
B

9:
, Ĥ<
9:

, Ĥ<
: 9

⌘
.

that the variables and admittances are vectors and matrices respectively. It generalizes
(15.1a) from a single-phase model to a three-phase model. The terms H<

9:
+ 9 and H<

: 9
+:

in (15.3) assume that the shunt admittances connect the buses 9 and : both to the
common reference point for terminal voltages, e.g., the ground.

15.1.3 Three-wire three-phase model

An equivalent three-wire model can be derived from the four-wire models (15.2)
and (15.3). To this end denote the phase voltages by + 9 := (+0

9
,+1
9
,+1
9
) and +: :=

(+0
:

,+1
:

,+1
:
) and phase currents by � 9: := (�0

9:
, �1
9:

, �2
9:
).

Without shunt admittances.

Ignore first shunt admittances. Decompose the impedance matrix ÎB
9:

in (15.2a) into

Î
B

9:
=

"
Î
qq

9:
Î
q=

9:

Î
=q

9:
Î
==

9:

#
:=

266666664

Î
00

9:
Î
01

9:
Î
02

9:
Î
0=

9:

Î
10

9:
Î
11

9:
Î
12

9:
Î
1=

9:

Î
20

9:
Î
21

9:
Î
22

9:
Î
2=

9:

Î
=0

9:
Î
=1

9:
Î
=2

9:
Î
==

9:

377777775
(15.4a)

where Îqq
9:
2 C3⇥3, Î==

9:
2 C, and Îq=

9:
, Î=q
9:

are of matching dimensions. Then (15.2a)
can be rewritten as "

+ 9

+
=

9

#
�


+:

+
=

:

�
=

"
Î
qq

9:
Î
q=

9:

Î
=q

9:
Î
==

9:

# "
� 9:

�
=

9:

#
(15.4b)
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The Schur complement of Î==
9:

of ÎB
9:

is

I
schur
9:

:= Î
qq

9:
� 1
Î
==

9:

Î
q=

9:
Î
=q

9:
=

2666664

Î
00

9:
Î
01

9:
Î
02

9:

Î
10

9:
Î
11

9:
Î
12

9:

Î
20

9:
Î
21

9:
Î
22

9:

3777775
� 1
Î
==

9:

2666664

Î
0=

9:

Î
1=

9:

Î
2=

9:

3777775
h
Î
=0

9:
Î
=1

9:
Î
=2

9:

i

(15.5a)

Then we can perform Kron reduction on (15.4) to obtain an equivalent three-wire
model that relates + 9 �+: and �=

9:
to � 9: and +=

9
�+=

:
:

+ 9 �+: = I
schur
9:

� 9: +
Î
q=

9:

Î
==

9:

⇣
+
=

9
�+=

:

⌘
(15.5b)

�
=

9:
= �

Î
=q

9:

Î
==

9:

� 9: +
1
Î
==

9:

⇣
+
=

9
�+=

:

⌘
(15.5c)

i.e., a complete three-wire model expresses the phase voltages + 9 �+: and the neutral
current �=

9:
in terms of the phase currents � 9: and neutral voltage di�erence +=

9
�+=

:
.

It is equivalent to the four-wire model (15.2) for the case where shunt admittances are
assumed zero. Therefore in using three-wire models we generally have to keep track of
neutral voltages for . -configured devices because +=

9
�+=

:
a�ects the phase voltages

and currents (+ 9 �+: , � 9: ) through (15.5b).

We refer to the complete model (15.5) as a three-wire model because when the
neutral wire is absent or open circuited, e.g., when connecting devices in � configura-
tion, or when the neutral is grounded at both the sending and the receiving ends of the
line, the phase voltages and currents (+ 9: , � 9: ) are related simply by a 3⇥3 impedance
matrix:

1 Neutral wire absent: �=
9:
= 0. Then (15.5) reduces to

+ 9 �+: = Îqq
9:
� 9: , +

=

9
�+=

:
= Î

=q

9:
� 9: (15.6a)

where Îqq
9:
2 C3⇥3 is defined in (15.4a). The neutral voltages +=

9
,+=
:

are generally
nonzero since they are not grounded (assuming voltages are defined with respect
to the ground) and their di�erence depends on the phase currents according to
(15.6a).

2 Neutral wire grounded: +=
9
=+=

:
.2 Then (15.5) reduces to

+ 9 �+: = Ischur
9:

� 9: , �
=

9:
= �

Î
=q

9:

Î
==

9:

� 9: (15.6b)

Even though +=
9
=+=

:
across the neutral wire, the current �=

9:
in the neutral wire is

generally nonzero and given by (15.6b).

2 The neutral =0 of a . -configured four-wire device may be through a neutral impedance I=
9

to the
external terminal = of the device which is then connected to the neutral of the line. The neutral
impedance I=

9
of the device may or may not be zero but + =

9
= + =

:
.
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Hence when �=
9:
= 0 or +=

9
=+=

:
, we can use a simplified three-wire model and charac-

terize a three-phase line by a 3⇥3 series impedance matrix IB
9:

that relates the phase
voltages and currents:

+ 9 � +: = I
B

9:
� 9: (15.7)

where IB
9:

:= Îqq
9:

if �=
9:
= 0 and IB

9:
:= Ischur

9:
if+=

9
=+=

:
. This is a direct generalization of

(15.1d) from a single-phase model to a three-phase model. Even though the three-wire
model (15.7) involves no neutral voltage or current, the 3⇥ 3 impedance matrix IB

9:

includes the e�ect of neutral lines and earth return (see (15.6)).

Example 15.1. For the case where the neutrals of the sending and receiving ends are
grounded through nonzero impedances, derive the three-wire model from the four-wire
model (15.2). ⇤

With shunt admittances.

To incorporate the e�ect of line charging, let the series admittance matrix be

H
B

9:
:=

⇣
I
B

9:

⌘�1
, assuming I

B

9:
is invertible. Let

⇣
H
<

9:
, H<
: 9

⌘
denote the shunt admit-

tance matrices. The terminal voltages
�
+ 9 ,+:

�
2 C6 and the sending-end currents�

� 9: , �: 9
�
2 C6 respectively are related according to

� 9: = H
B

9:

�
+ 9 �+:

�
+ H

<

9:
+ 9 , �: 9 = H

B

9:

�
+: �+ 9

�
+ H

<

: 9
+: (15.8a)

This model is the three-wire version of (15.3). It is illustrated in Figure 15.2 which is
a three-wire version of Figure 15.1. The terms H<

9:
+ 9 and H<

: 9
+: in (15.8a) assume that

I cjk I ckj

I ajk I akj

I bjk I bkj
Vj

a

Vj
b

Vj
c

Vk
a

Vk
b

Vk
c

ŷsjk

ŷmjk ŷmkj

Figure 15.2 A three-wire line characterized by 3⇥3 series and shunt admittance matrices⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
.

the shunt admittances connect the buses 9 and : both to the common reference point
for terminal voltages, e.g., the ground.

Example 15.2. Derive the three-wire model (15.8a) directly from the four-wire model
(15.3) with nonzero shunt admittances. ⇤

To describe the relation between the sending-end line power and the voltages
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�
+ 9 ,+:

�
, define the matrices ( 9: ,(: 9 2 C3⇥3 by

( 9: :=+ 9
�
� 9:

�H = + 9

�
+ 9 �+:

�H
⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
(15.8b)

(: 9 :=+:
�
�: 9

�H = +:

�
+: �+ 9

�H
⇣
H
B

9:

⌘H
+ +:+H

:

⇣
H
<

: 9

⌘H
(15.8c)

The three-phase sending-end line power from terminals 9 to : along the line is the vector
diag

�
( 9:

�
of diagonal entries and that in the opposite direction is the vector diag

�
(: 9

�
.

The o�-diagonal entries of these matrices represent electromagnetic coupling between
phases. This generalizes (15.1b)(15.1c) from a single-phase model to a three-phase
model.

Example 15.3 (External vs internal variables). Figure 15.3 shows a three-phase voltage
source connected to a three-phase impedance load through the line in Figure 15.2.
As the figure highlights, the voltages (+ 9 ,+: ) and currents (� 9: , �: 9 ) in (15.8a) are

I c
jk I c

kj

I a
jk I a

kj

I b
jk I b

kj

Vj
a

Vj
b

Vj
c

Vk
a

Vk
b

Vk
c

ŷsjk

ŷmjk ŷmkj

zk
ab

zk
bc

zk
ca

E cn E bn
E an

zj
a

zj
b

zj
c

zj
n

ideal
voltage source

series 
impedance impedance zk

∆

voltage source
(EY, zj

Y, zj
n )

Figure 15.3 A voltage source connected to an impedance load through the line in Figure 15.2.

terminal voltages and currents regardless of whether the three-phase devices connected
to terminals 9 and : are in . or � configuration. The relation between the terminal
variables and internal variables are derived in Chapters 14.3.3 and 14.3.4.

The terminal variable
�
+ 9 , � 9 , B 9

�
at each bus 9 satisfies both the external device

model and the line model (15.8):

0 = 5
ext
9

�
+ 9 , � 9

�
, B 9 = diag

⇣
+ 9 �

H
9

⌘
� 9 = � 9:

�
+ 9 ,+:

�
, B 9 = diag

�
( 9:

�
+ 9 ,+:

� �
In particular the nodal balance equation (15.8) relate

�
+ 9 , � 9 , B 9

�
to the terminal voltage

+: at bus : . ⇤

Remark 15.1 (Three-wire model). We will mostly use three-wire line models (15.8)
for simplicity, but all analysis extends to four-wire models (including a neutral line)
or five-wire models (including a neutral line and the ground return) almost without
change with proper definitions that include neutral and ground variables; see Example
16.5 in Chapter 16.2 and Exercise 16.7. ⇤

In most practical situations the series impedance matrix I
B

9:
is symmetric, i.e.,
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⇣
I
B

9:

⌘
qq
0

=
⇣
I
B

9:

⌘
q
0
q

, q,q0 = 0,1,2, meaning that the coupling between phases q and

q
0 does not depend on direction. It is also common in practice that the shunt admittance

matrices H<
9:

and H<
: 9

are symmetric. Formally, we assume throughout this chapter:

C15.1: IB
9:

is symmetric and invertible. Moreover IB
9:
= IB

: 9
.

C15.2: H<
9:

and H<
: 9

are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. By Theorem 4.2,
I
B

9:
is invertible and Re(HB

9:
) � 0 if Re(IB

9:
) � 0. Assumption C15.1 implies that HB

9:

is symmetric and HB
9:
= HB

: 9
(Exercise 15.1).

Symmetric line.

When the line geometry is symmetric (e.g. through transposition) then the series
impedance matrix IB

9:
has the following important property:

I
00

9:
= I

11

9:
= I

22

9:
=: I 9: and I

01

9:
= I

10

9:
= I

12

9:
= I

21

9:
= I

20

9:
= I

02

9:
=: n 9:

so that

I
B

9:
=

266664
I 9: n 9: n 9:

n 9: I 9: n 9:

n 9: n 9: I 9:

377775
=

�
I 9: � n 9:

�
I + n 9:11

T (15.9a)

Typically |I 9: | > |n 9: |. Then the line admittance HB
9:

:=
⇣
I
B

9:

⌘�1
has the same structure

H
B

9:
=

2666664

H
1
9:

H
2
9:

H
2
9:

H
2
9:

H
1
9:

H
2
9:

H
2
9:

H
2
9:

H
1
9:

3777775
=

�
H 9: � X 9:

�
I + X 9:11

T (15.9b)

where

H 9: :=
I 9: + n 9:�

I 9: � n 9:
� �
I 9: +2n 9:

� , X 9: := �
n 9:�

I 9: � n 9:
� �
I 9: +2n 9:

� (15.9c)

and (15.9c) follows from:

I = H
B

9:
I
B

9:
=

⇣ �
H 9: � X 9:

�
I+ X11

T
⌘ ⇣ �

I 9: � n 9:
�
I+ n 9:11

T
⌘

=
�
H 9: � X 9:

� �
I 9: � n 9:

�
I +

�
n 9: H 9: + I 9:X 9: + n 9:X 9:

�
11

T

Typically |H 9: | > |X 9: |. If the sources and loads are balanced so that currents sum to zero
8
0 (C) + 81 (C) + 82 (C) = 0 and charges sum to zero @0 (C) +@1 (C) +@2 (C) = 0 across phases

then n 9: = 0 (see Chapter 2.1.4), i.e., IB
9:

is diagonal and the voltages and currents of
di�erent phases are decoupled. Otherwise IB

9:
is not diagonal and therefore the voltages

and currents of di�erent phases are coupled even if the line is symmetric, i.e., even
if the series impedance IB

9:
satisfies (15.9). As we will see in Chapter 16.4.4, in this

case, when shunt admittances are assumed zero, a similarity transformation using the
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unitary matrix � yields a diagonal impedance matrix ĨB
9:

in the sequence coordinate.
This leads to decoupled relation between the sequence voltages and currents across the
three-phase line that can be interpreted as defining separate sequence networks.

Example 15.4 (Special lines). The line in (15.8a) is an abstraction that can model a
transmission or distribution line, a transformer, or parts of series impedances or shunt
admittances of generators or loads. We discuss some degenerate forms of (15.8a) that
will be used for this purpose, e.g., for modeling non-ideal voltage and current sources
in Chapter 15.1.4. The series impedance I.

9:
in Figure 15.4(a) can be treated as a line
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b

Vj
c

Vk
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Vk
b

Vk
c

I ckjI cjk

I ajk I akj

I bjk I bkj

zajk
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zcjk

(a) Series impedance
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I ckjI cjk
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yajk

ybjk

ycjk

(b) Shunt admittance in .
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I bjk I bkj
yajk

b

ybjk
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ycjk
a

(c) Shunt admittance in �

Figure 15.4 Special three-wire lines characterized by (15.10).

⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with a diagonal series impedance, i.e., H<

9:
= H<

: 9
= 0, and

H
B

9:
:= diag�1

⇣
I
0

9:
, I1
9:

, I2
9:

⌘
, � 9: := H

B

9:

�
+ 9 �+:

�
, �: 9 := �� 9: (15.10a)

The . -configured shunt admittance H.
9:

in Figure 15.4(b) can be treated as a line⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with a shunt admittance in . configuration, i.e., IB

9:
= 0, H<

: 9
= 0, and

H
<

9:
:= diag

⇣
H
0

9:
, H1
9:

, H2
9:

⌘
, + 9 = +: , � 9: + �: 9 = H

<

9:
+ 9 (15.10b)

The �-configured shunt admittance H�
9:

in Figure 15.4(c) can be treated as a line⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with a shunt admittance in � configuration, i.e., IB

9:
= 0, H<

: 9
= 0, and

H
<

9:
:= diag

⇣
H
01

9:
, H12
9:

, H20
9:

⌘
, + 9 = +: , �

� = H
<

9:
�+ 9

where �� :=
�
�
01 , �12 , �20

�
are the line-to-line current internal to the � configuration.

Therefore for any currents � 9: and �: 9 with 1
T
� 9: = 1

T
�: 9 = 0, the degenerate line in

Figure 15.4(c) is characterized by

H
<

9:
:= diag

⇣
H
01

9:
, H12
9:

, H20
9:

⌘
, + 9 = +: , �T† �

� 9: + �: 9
�
+ V1 = H

<

9:
�+ 9

(15.10c)

where V 2 C depends on the amount of loop flow in the internal current ��.

⇤
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We next use these special lines to simplify models for non-ideal voltage and current
sources in . and � configurations.

15.1.4 Ideal voltage and current sources

A voltage or current source in . configuration may or may not have a neutral line
which may or may not be grounded. Figure 15.5 shows the case where the neutral is
grounded through an impedance I=. In this case the voltage source

�
⇢
. , I. , I=

�
can be

treated as an ideal voltage source
�
⇢
. , I=

�
connected to a (degenerate) three-phase line

with a series impedance I. characterized by (15.10a). Similarly a grounded current

V aI a

I b

I c

V b

V c

za

zb

zc

Ecn Ebn

Ean

series
impedance zY

ideal voltage source E Y

zn

(a) Voltage source

V aI a

I b

I c

V b

V c

ya

yb

yc

shunt
admittance yY

ideal current source J Y

zn

J an

J bnJ cn

(b) Current source

Figure 15.5 Three-wire sources in . configuration. (a) A voltage source. (b) A current source.

source
�
�
. , HH , I=

�
in . configuration, as shown in Figure 15.5(b), can be treated as an

ideal current source
�
�
. , I=

�
connected to a three-phase line with a shunt admittance

H
. characterized by (15.10b). In both cases the ideal source has no series impedance

or shunt admittance. In general the neutral voltage += is nonzero whether or not there
is a neutral line and whether or not the neutral is grounded.

A voltage source
�
⇢
�, I�

�
in � configuration, as shown in Figure 15.6(a), can be

treated as an ideal voltage source ⇢� in � configuration connected to a three-phase

line with a series impedance /� := 1
9 �

T
I
�
⇣
I� 1

Z
1 Ĩ
�T

⌘
� in (14.21b). A current source�

�
�, H�

�
in � configuration, as shown in Figure 15.6(b), can be treated as an ideal

current source �� in � configuration connected to a three-phase line with a shunt
admittance H� in � configuration characterized by (15.10c).

Example 15.5 (Ideal sources). Figure 15.7 shows a three-phase voltage source in .
configuration connected to a three-phase current source in � configuration through
the line in Figure 15.2. The shunt admittance H�

:
:= diag

�
H
01

:
, H12
:

, H20
:

�
of the current

source can be absorbed into the shunt admittance matrix H<
: 9

of the line so that the

system is equivalent to an ideal current source ��
:

connected to terminal : of a line
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ideal voltage source E∆ series
impedance Z∆
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Figure 15.6 Three-wire sources in � configuration. (a) A voltage source. (b) A current source.
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Figure 15.7 A voltage source connected to a current source through the line in Figure 15.2.

with an equivalent shunt admittance matrix H̃<
: 9

given by:

H̃
<

: 9
:=

2666664

H
00

: 9
H
01

: 9
H
02

: 9

H
10

: 9
H
11

: 9
H
12

: 9

H
20

: 9
H
21

: 9
H
22

: 9

3777775|                 {z                 }
H: 9

+
266664

0 H
01

:
H
20

:

H
01

:
0 H

12

:

H
20

:
H
12

:
0

377775|                 {z                 }
from H

�
:

Note that in this equivalent model the two shunt admittance matrices H<
9:

and H̃
<

: 9

are generally unequal even if H<
9:
= H<

: 9
originally. Note also that the series impedance

matrix I.
9

of the voltage source cannot be directly absorbed into the line parameters. ⇤

15.2 Three-phase transformer models: simplified circuit

In this section we show that, as for a three-phase line, the external model of a three-phase
transformer takes the form of an admittance matrix. . The general method is similar to
that for other three-phase devices: (i) define internal and terminal variables; (ii) derive
conversion rules that relate internal and terminal variables; (ii) define internal models
that relate these internal variables; and finally (iv) eliminate the internal variables to
arrive at the external model. We start by reviewing the single-phase transformer. The



802 Component models, II: line and transformers

notation and the derivation generalize naturally when these transformers are configured
into a three-phase transformer.

15.2.1 Review: single-phase transformer

Consider the simplified mode of a single-phase transformer in Figure 3.5 of Chapter
3.1.4, reproduced in Figure 15.8, consisting of an ideal transformer with a voltage
gain =, a leakage admittance HB and a shunt admittance H< on the primary side. Let
the turns ratio be 0 := =�1 (even though 0 is used to denote both a phase and a turns
ratio its meaning should be clear from the context). The currents entering/leaving and

ym

yl

V̂j V̂k

I j
nVj

n Vk
n

Ik
n

I j
Vj Vk

IkÎj Îk

1  :   n

ideal transformer

Figure 15.8 Single-phase transformer: simplified model. The internal variables (+̂ 9 , �̂ 9 ),
(+̂
:
, �̂
:
) and terminal variables (+ 9 ,+=

9
, � 9 ), (+: ,+=

:
, �
:
).

the voltages across the ideal transformer are denoted by variables with a hat:
�
+̂ 9 , �̂ 9

�
,�

+̂: , �̂:
�
. They are called internal variables. The dot notation on the ideal transformer

indicates that the internal currents are defined to be positive when �̂ 9 flows into and �̂:
flows out of the dotted terminals, as indicated in Figure 15.8.

The terminal voltages
⇣
+ 9 ,+=

9
,+: ,+=

:

⌘
are defined with respect to an arbitrary but

common reference point, e.g., the ground. We emphasize that, while the internal
voltages (+̂ 9 ,+̂: ) are defined to be the voltage drops across the ideal transformer

windings, the terminal voltages
⇣
+ 9 ,+=

9
,+: ,+=

:

⌘
are defined with respect to a common

reference point; in particular the primary and secondary windings are not assumed to
be grounded. The terminal currents

�
� 9 , �:

�
are defined to be the sending-end currents

from buses 9 and : respectively to the other side, as shown in Figure 15.8. The terminal
and internal variables are related by the conversion rule:

� 9 = H
;

⇣
+ 9 �+=9 � +̂ 9

⌘
, � 9 = H

<

+̂ 9 + �̂ 9 , �
=

9
= �� 9 (15.11a)

+̂: = +: � +=: , �̂: = ��: , �
=

:
= ��: (15.11b)
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where the neutral currents (�=
9
, �=
:
) are injections from the neutral terminals into the

ideal transformer and follow from �
=

9
= �(H<+̂ 9 + �̂ 9 ) = �� 9 and �=

:
= �̂: = ��: respec-

tively. The internal model of the single-phase (ideal) transformer is defined by its
transformer gains (=,0):

+̂: = =+̂ 9 , �̂: =
1
=

�̂ 9 =: 0�̂ 9 (15.11c)

Eliminating the internal variables from (15.11) yields an external model that relates
the terminal variables:

� 9 = H
;

⇣⇣
+ 9 �+=9

⌘
� 0

�
+: �+=:

� ⌘
, �: = �0�̂ 9 = 0H

<

⇣
+ 9 �+=9

⌘
� 0

✓
1+ H

<

H
;

◆
� 9

or in terms of an admittance matrix . :
� 9

�:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

.

 
+ 9

+:

�
�

"
+
=

9

+
=

:

#!
(15.12a)

We can add neutral currents from (15.11) to (15.12a):"
�
=

9

�
=

:

#
= �


� 9

�:

�
= �.

 
+ 9

+:

�
�

"
+
=

9

+
=

:

#!

to obtain a two-wire model of a single-phase transformer:

26666664

� 9

�:

�
=

9

�
=

:

37777775
=


. �.
�. .

�
|       {z       }

.
2wire

26666664

+ 9

+:

+
=

9

+
=

:

37777775
(15.12b)

Both . and the 4 ⇥ 4 admittance matrix .2wire are complex symmetric. While .
generally has nonzero row and column sums, .2wire has zero row and column sums.
The admittance matrix .2wire is represented by a four-node network in Figure 15.9(a).
Since .2wire has zero row and column sums, there are no shunt admittances in the

a2 (yl+ ym)yl

ayl

−ayl −ayl

ayl

jn kn

kj

(a) General circuit model.

a(a−1)yl+a2ym(1−a)yl

ayl kj

(b) ⇧ circuit model.

Figure 15.9 (a) Circuit model of admittance matrix .2wire and (b) when neutrals are grounded
with zero grounding impedances, +=

9
=+=

:
= 0.
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four-node network in Figure 15.9(a).

It is often assume implicitly (e.g., in Chapter 3 and Chapter 4.1.3) that neutrals are
grounded with zero grounding impedance and voltages are defined with respect to the
ground (assumption C14.1). In this case, +=

9
=+=

:
= 0 and the model (15.12a) reduces

to a ⇧ circuit model: 
� 9

�:

�
= .


+ 9

+:

�

The four-node network in Figure 15.9(b) then reduces to a ⇧ circuit in which parallel
branches to the ground are combined into shunt admittances, i.e., it can be characterized
by series and shunt admittances given by

H̃
B

9:
:= 0H

; , H̃
<

9:
:= (1� 0)H; , H̃

<

: 9
:= 0(0�1)H; + 02

H
< (15.12c)

like a transmission or distribution line.

We now explain how these relations (15.11)(15.12) extend naturally to three-phase
transformers in an unbalanced setting.

15.2.2 General derivation method

The external model of a three-phase transformer depends on the models of its con-
stituent single-phase transformers and their configuration on each side of the three-
phase transformer. In particular each of the primary and secondary sides can be in .
or � configuration, giving four configurations for a standard three-phase transformer.
The external model can be derived in four simple steps, similar to the derivation for a
single-phase transformer or other three-phase devices:

1. Conversion rule: For the primary side, define the internal variables (+̂ 9 , �̂ 9 ) and
external variables (+ 9 ,+=

9
, � 9 ) (defined precisely below) and relate them.

2. Conversion rule: For the secondary side, define the internal variables (+̂: , �̂: ) and
external variables (+: ,+=

:
, �: ) and relate them.

3. Internal model: Couple these relations through the transformer gains (15.11c) on
(+̂ 9 , �̂ 9 ), (+̂: , �̂: ) for each of the single-phase transformers.

4. External model: Derive the external model, a relation between external variables
(+ 9 , � 9 ) and (+: , �: ), by eliminating the internal variables.

This method is modular and applicable in a general setting where the single-phase
transformers may have di�erent admittances or turns ratios, the neutrals of . configu-
rations may or may not be connected to the other side, may or may not be grounded,
with zero or nonzero grounding impedances. The method can also be generalized to
non-standard transformers such as open transformers.

We now describe these steps in more detail.
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1. Primary side.

Consider the primary circuit of a three-phase transformer in . or � configuration in
Figure 15.10. The internal voltages and currents associated with the ideal transformer
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Îj
ca

ymb

ymc

yla

ylb

ylc

ymb

Figure 15.10 Primary side of a three-phase transformer in . (left) or � (right) configuration.

are denoted by

+̂
.

9
:=

2666664

+̂
0=

9

+̂
1=

9

+̂
2=

9

3777775
, �̂

.

9
:=

2666664

�̂
0=

9

�̂
1=

9

�̂
2=

9

3777775
, +̂

�
9

:=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9

:=

2666664

�̂
01

9

�̂
12

9

�̂
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9

3777775
The terminal voltages and currents are denoted by

+ 9 :=

2666664

+
0

9

+
1

9

+
2

9

3777775
, � 9 :=

2666664

�
0

9

�
1

9

�̂
2

9

3777775
regardless of the configuration. For . configuration the (terminal) neutral voltage and

current are denoted by
⇣
+
=

9
, �=
9

⌘
in the direction shown in Figure 15.10. As for the

single-phase model, these voltages are defined with respect to a common reference
point (e.g., the ground); in particular the neutrals are not assumed to be grounded.

Note that the internal voltages and currents
⇣
+̂
. /�
9

, �̂. /�
9

⌘
are defined across the ideal

transformers. In general,+ 9 < +̂.
9
++=

9
1 and +̂�

9
<�+ 9 . Moreover, � 9 < �̂.

9
and � 9 <�T

�̂
�
9
,

unless H< = 0.

The leakage admittances of the transformer are denoted by the diagonal ma-
trix H

; := diag
�
H
;0, H;1 , H;2

�
and the shunt admittances are denoted by H

< :=
diag

�
H
<0, H<1 , H<2

�
. From (15.11a) for each single-phase transformer the terminal
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variables are related to the internal variables according to the conversion rule:

. configuration: � 9 = H
;

⇣
+ 9 � +=9 1 � +̂.

9

⌘
, � 9 = H

<

+̂
.

9
+ �̂.

9
, �

=

9
= �1

T
� 9

(15.13a)

� configuration: �̂
�
9
= H

;�+ 9 � (H; + H<)+̂�
9
, � 9 = �T

⇣
�̂
�
9
+ H<+̂�

9

⌘
(15.13b)

For . configuration the neutral current �
=

9
in (15.13a) follows from �

=

9
=

�1
T
⇣
H
<
+̂
.

9
+ �̂.

9

⌘
= �1

T
� 9 . For � configuration �̂

�
9

in (15.13b) follows from �̂
01

9
+

H
<0
+̂
01

9
= H;0

⇣
+
0

9
�+1

9
� +̂01

9

⌘
. Clearly 1

T
� 9 = 0 for� configuration. Moreover (15.13)

implies that the internal and terminal voltages are related according to

. configuration: + 9 = +̂
.

9
+ +=

9
1 + I; � 9 (15.13c)

� configuration: +̂
�
9

= �+ 9 + H;I<�+ 9 � (I; + I<) �̂�
9

(15.13d)

where I; := (H;)�1 and I< := (H<)�1.

2. Secondary side.

Consider the secondary side of a three-phase transformer in . or � configuration in
Figure 15.11. The internal voltages and currents associated with the transformer are
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–Îk
an

–Îk
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Figure 15.11 Secondary side of a three-phase transformer in . (left) or � (right) configuration.
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The terminal voltages and currents are denoted by

+: :=
266664
+
0

:

+
1

:

+
2

:

377775
, �: :=

266664
�
0

:

�
1

:

�̂
2

:

377775
regardless of the configuration. For . configuration the neutral voltage and current are
denoted by

�
+
=

:
, �=
:

�
in the direction shown in Figure 15.11.

From (15.11b) for each single-phase transformer the terminal variables are related
to the internal variables according to the conversion rule:

. configuration: +: = +̂
.

:
+ +=

:
1, �: = �̂

.

:
, �

=

:
= �1

T
�̂
.

:
= �1

T
�:

(15.14a)

� configuration: +̂
�
:

= �+: , �: = �T
�̂
�
:

(15.14b)

For � configuration, 1
T
�: = 0.

3. Internal model.

The voltage and current gains across the ideal transformer define an internal model
which couples the internal variables in the primary and secondary circuits and connects
the relations (15.13) and (15.14). These gains are determined by the turns ratios of
the constituent single-phase ideal transformers according to (15.11c), but tailored for
di�erent configurations. Denote the voltage gain of the ideal three-phase transformer by
a real diagonal matrix = := diag

�
=
0,=1 ,=2

�
2R3⇥3 and its turns ratio by 0 := =�1 2R3⇥3.

Then

.. configuration: +̂
.

:
= =+̂

.

9
, ��̂.

:
= 0 �̂

.

9
(15.15a)

�� configuration: +̂
�
:

= =+̂
�
9
, ��̂�

:
= 0 �̂

�
9

(15.15b)

�. configuration: +̂
.

:
= =+̂

�
9
, ��̂.

:
= 0 �̂

�
9

(15.15c)

.� configuration: +̂
�
:

= =+̂
.

9
, ��̂�

:
= 0 �̂

.

9
(15.15d)

These are internal models of a three-phase (ideal) transformer. The negative signs on
�̂
.

:
and �̂�

:
are due to the convention that the transformer current gain is defined for

secondary current leaving the dotted terminal of the secondary winding (see Figure
15.11).

4. External model.

The external model of a three-phase transformer relates the terminal variables
(+ 9 ,+=

9
, � 9 ) and (+: ,+=

:
, �: ) on both sides of the transformer in terms of the leak-

age admittance HB , the shunt admittance H<, and the turns ratio 0. It can be derived by

eliminating the internal variables
⇣
+̂
. /�
9

, �̂. /�
9

⌘
and

⇣
+̂
. /�
:

, �̂. /�
:

⌘
from the conversion

rules (15.13) (15.14) and the internal model (15.15).
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The external models, derived in detail below, turn out to have a striking modular
structure. To describe the general form let + :=

�
+ 9 ,+:

�
2 C6 and � :=

�
� 9 , �:

�
2 C6.

Define a 6⇥6 admittance matrix ... and a column vector W 2 C6:

... :=

H
; �0H;

�0H; 0
2 (H; + H<)

�
, W :=

"
+
=

9
1

+
=

:
1

#
(15.16a)

where 1 := (1,1,1). Let ⇡ denote a 6⇥6 block diagonal matrix whose value depends on
configuration. As we will explain below... is the admittance matrix of a transformer in
.. configuration. It is the same as that in (15.12a) for a single-phase transformer, except
that 0, H are now 3⇥3 diagonal matrices rather than scalars. The vector W is the neutral
voltages of a transformer in .. configuration. For �� configuration, ⇡W = 0 2 C6 in
(15.16b), reflecting that a � configuration contains no neutral voltage; similarly for �.
and .� configurations. The external models of three-phase transformers in .. , ��,
�. and .� configurations take the form

� = ⇡
T
...⇡ (+ �W) (15.16b)

where ⇡ is a 6⇥6 block diagonal matrix that depends on configuration:

.. configuration: ⇡ :=

I 0
0 I

�
(15.16c)

�� configuration: ⇡ :=

� 0
0 �

�
(15.16d)

�. configuration: ⇡ :=

� 0
0 I

�
(15.16e)

.� configuration: ⇡ :=

I 0
0 �

�
(15.16f)

Hence the external models of ��, �. , .� configurations can be obtained by pre-
multiplying the admittance matrix ... of the .. configuration by �T and post-
multiplying it by � for a (primary or secondary) circuit that is in � configuration
and setting its neutral voltage to zero. This has a simple interpretation. Take �� con-
figuration as an example:⇡ (+�W) =⇡+ = (�+ 9 ,�+: ) can be interpreted as the internal
line-to-line voltages of a certain three-phase device in � configuration, ...⇡+ can
be interpreted as the corresponding internal currents, and hence ⇡T (...⇡+) converts
this internal current to terminal currents that are externally observable.

Remark 15.2. 1 Neither the voltage gains = :=
�
=
0,=1 ,=2

�
nor the admittances

H
; :=

�
H
;0, H;1 , H;2

�
, H< :=

�
H
<0, H<1 , H<2

�
may be equal across phases 0,1,2.

Unless otherwise specified we assume = and 0 are real matrices. This is the
case if they represent voltage gains and turns ratios of constituent single-phase
transformers (they can be complex if phase-shifting transformers are involved or
if the three-phase transformer is the .. equivalent model of a �. -configured
transformer in a balanced setting; see Example 15.7).

2 The derivation method is modular. If a di�erent single-phase transformer model
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is used, e.g., with complex transformer gains, then the relations (15.13) or (15.14)
need to be modified but the structure of the derivation remains unchanged.

3 The model (15.16) is a three-wire model that does not include neutral currents.
See (15.19c) for a four-wire model that does.

4 The method is also applicable to non-standard transformers such as open trans-
formers. Indeed the external model of an open �� transformer is also given by
(15.16b) (15.16d) but with the diagonal matrices H; , H< in... in (15.16a) replaced
by diag

�
H
;0, H;1 ,0

�
and diag

�
H
<0, H<1 ,0

�
with H;2 = H<2 = 0 on the third leg that

has no transformer.

⇤

We will illustrate this general method by deriving the external models (15.16) of
three-phase transformers in .. , ��, �. and .� configurations and then show how
to adapt the method to non-standard transformers such as open transformers. We start
by explaining when a three-phase transformer can be represented by a three-phase ⇧
circuit.

15.2.3 Three-phase ⇧ circuit, block symmetry, symmetry

Refer to the ⇧ circuit model in Figure 15.9(b) for a single-phase transformer where

the neutral voltages +=
9
= +=

:
= 0. The series and shunt admittances

⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
of

the ⇧ circuit are given by (15.12c). They define a 2⇥ 2 admittance matrix . 9: that
relates

�
+ 9 ,+:

�
to

�
� 9: , �: 9

�
that is complex symmetric. This is because the application

of Kirchho�’s laws to this circuit yields

� 9: = H̃
B

9:

�
+ 9 �+:

�
+ H̃<

9:
+ 9 , �: 9 = H̃

B

9:

�
+: �+ 9

�
+ H̃<

9:
+: (15.17)

Therefore a single-phase transformer always has a ⇧ circuit representation and, in this
sense, behaves like a single-phase transmission line.

This is not the case for three-phase transformers. Consider a three-phase transformer
and denote by. 9: the 6⇥6 admittance matrix that maps its voltage vectors

�
+ 9 ,+:

�
2C6

to its current vectors
�
� 9: , �: 9

�
2 C6, i.e.,

� 9:

�: 9

�
=


. 9:,11 . 9:,12

. 9:,21 . 9:,22

�
|              {z              }

.9:


+ 9

+:

�

If . 9: can be represented by a three-phase ⇧ circuit model, i.e., if it behaves like a
three-phase transmission line as shown in Figure 15.2, then (15.17) must also hold but⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
are now 3⇥3 matrices, not scalars. This means that the two o�-diagonal
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submtrices of . 9: 2 C6 must be equal . 9:,12 = . 9:,21 and . 9: must be of the form

. 9: =

"
H̃
B

9:
+ H̃<

9:
�H̃B

9:

�H̃B
9:

H̃
B

9:
+ H̃<

: 9

#

We call such a matrix block symmetric (see Definition 16.1). In contrast, if . 9: is
symmetric then .T

9:,12 = . 9:,21. As we will see a three-phase transformer may not be
block symmetric and hence may not have a three-phase ⇧ circuit representation. For
balanced systems, this manifests itself as the per-phase model of a�. or.�-configured
transformer having no single-phase⇧ circuit representation because of the its complex
voltage gain  (=), as discussed in Chapter 4.1.3. This phenomenon is generalized in
the rest of this section for unbalanced systems.

Whether or not . 9: is block symmetric we can always interpret . 9: as the 6⇥ 6
admittance matrix of a single-phase network consisting of 6 buses, indexed by 8q,
8 = 9 , : and q 2 {0,1,2}, as studied in Chapter 4.2. This is referred to as its single-
phase equivalent circuit and studied in Chapter 16.1.2.

A matrix can be symmetric but not block symmetric, and vice versa. Symmetry of
a matrix is determined only by its o�-diagonal entries but its diagonal entries can be
arbitrary. Block symmetry is determined only by its o�-diagonal blocks but its diagonal
blocks can be arbitrary. A symmetric. 9: is block symmetric if.T

9:,12 =. 9:,12. A block
symmetric. 9: is symmetric if all submatrices. 9:,12,. 9:,11,. 9:,22 are symmetric. These
are reasonable assumptions for modeling a three-phase transmission or distribution
line, i.e., . 9: for a transmission or distribution line can be assumed to be both block
symmetric and symmetric and therefore has both a three-phase⇧ circuit representation
and a single-phase equivalent circuit. This is not necessarily the case for three-phase
transformers.

We will generalize the concepts of block symmetry and single-phase equivalent
circuit in Chapter 16.1.2 to a network setting.

15.2.4 .. configuration

Referring to Figure 15.12 and combining the variables defined in Chapter 15.2.2
for each configuration, the internal voltages and currents associated with the ideal
transformer are:
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:
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:
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Figure 15.12 .. -configured transformer.

The terminal voltages and currents are:

+ 9 :=

2666664

+
0

9

+
1

9

+̂
2

9

3777775
, � 9 :=

2666664

�
0

9

�
1

9

�̂
2

9

3777775
, +: :=

266664
+
0

:

+
1

:

+̂
2

:

377775
, �: :=

266664
�
0

:

�
1

:

�̂
2

:

377775
as well as the the neutral voltages and currents

⇣
+
=

9
, �=
9

⌘
and

�
+
=

:
, �=
:

�
as shown in the

figure. The relation between the internal and terminal variables is given by (15.13a)
and (15.14a) for . configurations on the primary and secondary sides respectively:

� 9 = H
;

⇣
+ 9 � +=9 1 � +̂.

9

⌘
, � 9 = H

<

+̂
.

9
+ �̂.

9
, �

=

9
= �1

T
� 9 (15.18a)

+: = +̂
.

:
+ +=

:
1, �: = �̂

.

:
, �

=

:
= �1

T
�: (15.18b)

The transformer gains that relate the internal variables are:

+̂
.

:
= =+̂

.

9
, �̂

.

:
= �0 �̂.

9
(15.18c)

Here H
; := diag

�
H
;0, H;1 , H;2

�
is the leakage admittance matrix, H

< :=
diag

�
H
<0, H<1 , H<2

�
is the shunt admittance matrix, = := diag

�
=
0,=1 ,=2

�
is the voltage

gain matrix and 0 := =�1 is the turns ratio matrix.

We can derive an external model that relates the terminal variables by eliminating
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the internal variables from (15.18). Specifically we have from (15.18a)(15.18b)

+̂
.

9
= (+ 9 �+=9 1) �

⇣
H
;

⌘�1
� 9 , +̂

.

:
= +: �+=: 1

�̂
.

9
= � 9 � H< (+ 9 �+=9 1) + H<

⇣
H
;

⌘�1
� 9 , �̂

.

:
= �:

Substituting it into (15.18c) yields the external model of a three-phase transformer in
.. configuration:

� 9

�:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!
(15.19a)

�
=

9
= �1

T
� 9 , �

=

:
= �1

T
�: (15.19b)

where we have used H;0 = 0H; and 0(H; + H<)0 = 02 (H; + H<) since they are all diagonal
matrices. The expression (15.19a) is the same as the external model (15.12a) for a
single-phase transformer, except that, instead of scalars, the variables

�
+ 9 , � 9 ,+: , �:

�
are vectors in C3 and the parameters 0, H; , H< are 3⇥ 3 matrices. It is the expression
(15.16).

We can also express the neutral currents
⇣
�
=

9
, �=
:

⌘
in terms of the terminal voltages

instead of the terminal currents using (15.19a)(15.19b):"
�
=

9

�
=

:

#
= �


1

T 0
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T

�
...

|           {z           }
.
=

..

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!

A four-wire model includes the neutral currents. To derive the four-wire model we
rewrite this and (15.19a) as
� 9

�:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }
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T
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;
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1 1

T
0
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#

where I2 is the identity matrix of size 2, 1
T
H
;
1 =

Õ
q
H
;q , 1

T
0H
;
1 =

Õ
q
0
q
H
;q , and

1
T
0

2 (H; + H<)1 =
Õ
q
(0q)2 (H;q + H<q). Hence the four-wire model of a three-phase

transformer in .. configuration is:

26666664
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�
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�
=
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(15.19c)
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This model extends (15.12b) with neutral currents to three-phase transformers. The
matrix ... in (15.19a) is both symmetric and block symmetric (see Chapter 15.2.3)
because 0, H; and H< are diagonal. This, together with (�⌦ ⌫)T = �T ⌦ ⌫T, imply that
the four-wire admittance matrix .4wire

..
is also symmetric. While the admittance matrix

... generally has nonzero row and column sums, .4wire
..

has zero row and column
sums.

If both neutrals are grounded with zero impedances and voltages are defined with
respect to the ground, then +=

9
=+=

:
= 0 and (15.19a) reduces to


� 9

�:

�
= ...


+ 9

+:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

� 
+ 9

+:

�

which can be represented as a three-phase ⇧ circuit. This means that the external
behavior of a.. transformer, when its neutral voltages are zero, has the same structure
as that of a three-phase transmission line and can be specified by 3⇥3 series and shunt

admittance matrices
⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
where

H̃
B

9:
:= 0H

; , H̃
<

9:
:= (I� 0) H; , H̃

<

: 9
:= 0(0� I)H; + 02

H
< (15.19d)

This extends the single-phase ⇧ circuit model (15.12c) to the three-phase setting.

15.2.5 �� configuration

Referring to Figure 15.13, and combining the variables defined in Chapter 15.2.2
for each configuration, the internal voltages and currents associated with the ideal
transformer are:
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The terminal voltages and currents are denoted by (+ 9 , � 9 ), (+: , �: ), as for a .. -
configured transformer. The relation between the internal and terminal variables is
given by (15.13b) and (15.14b) for � configurations:

�̂
�
9
= H

;�+ 9 � (H; + H<)+̂�
9
, � 9 = �T

⇣
�̂
�
9
+ H<+̂�

9

⌘
(15.20a)

+̂
�
:

= �+: , �: = �T
�̂
�
:

(15.20b)

The transformer gains that relate the internal variables are:

+̂
�
:

= =+̂
�
9
, �̂

�
:

= �0 �̂�
9

(15.20c)

To derive an external model, eliminate the internal variables from (15.20). We obtain
from (15.20b)(15.20c):

+̂
�
9

= =
�1
+̂
�
:

= 0�+: , �T
0�̂
�
9
= ��:
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Figure 15.13 ��-configured transformer.

Substitute into the first expression in (15.20a) to eliminate (+̂�
9
, �̂�
9
):

�: = �
⇣
�T
0H
;�

⌘
+ 9 +

⇣
�T
0

2 (H; + H<)�
⌘
+:

Substitute again +̂�
9

into the first expression in (15.20a) to obtain �̂�
9
= H;�+ 9 � 0(H; +

H
<)�+: . Substitute this and +̂�

9
into the second expression in (15.20a) to eliminate

(+̂�
9
, �̂�
9
):

� 9 =
⇣
�T
H
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+ 9 �

⇣
�T
0H
;�

⌘
+:

The external model of a three-phase transformer in �� configuration is hence
� 9

�:

�
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H
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��T
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0
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.��


+ 9

+:

�
(15.21a)

or in terms of the admittance matrix ... in (15.19a) for a .. -configured transformer:
� 9

�:

�
=


�T 0
0 �T

� 
H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


� 0
0 �

� 
+ 9

+:

�
(15.21b)

This is the expression (15.16). Unlike... the admittance matrix.�� is not invertible (it
has zero row and column sums). Since .�� is block symmetric (as well as symmetric)
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it can be represented as a three-phase ⇧ circuit. This means that its external behavior
has the same structure as that of a three-phase transmission line and can be specified

by 3⇥3 series and shunt admittance matrices
⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
where

H̃
B

9:
:= �T

0H
; �, H̃

<

9:
:= �T (I� 0) H; �, H̃

<

: 9
:= �T

⇣
0(0� I)H; + 02

H
<

⌘
�

(15.21c)

This is the⇧ circuit model (15.19d) for.. -configured transformer, multiplied on both
sides by �T and �.

The submatrices in (15.21b) are (cf. .� in (14.21a)):

�T
H
; � =

266664
H
;0 + H;2 �H;0 �H;2
�H;0 H

;1 + H;0 �H;1
�H;2 �H;1 H

;2 + H;1

377775
, �T

0H
; � =

266664
Ĥ
;0 + Ĥ;2 �Ĥ;0 �Ĥ;2
�Ĥ;0 Ĥ

;1 + Ĥ;0 �Ĥ;1
�Ĥ;2 �Ĥ;1 Ĥ

;2 + Ĥ;1

377775
where Ĥ;q := 0qH;q for q 2 {0,1,2}. In the special case where the single-phase trans-
formers are identical, i.e., H; = H;0I and 0 := 00I, these matrices are particularly simple:

⇣
H
;0

⌘
�T� = H

;0

266664
2 �1 �1
�1 2 �1
�1 �1 2

377775
,

⇣
0
0

H
;0

⌘
�T� = 0

0

H
;0

266664
2 �1 �1
�1 2 �1
�1 �1 2

377775
(15.22)

These expressions are often used in simplified models of three-phase transformers.

15.2.6 �. configuration

This is a popular configuration for stepdown transformers in distribution systems.
Referring to Figure 15.14, the internal voltages and currents associated with the ideal
transformer are:

+̂
�
9

:=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9

:=

2666664

�̂
01

9

�̂
12

9

�̂
20

9

3777775
, +̂

.

:
:=

266664
+̂
0=

:

+̂
1=

:

+̂
2=

:

377775
, �̂

.

:
:=

266664
�̂
0=

:

�̂
1=

:

�̂
2=

:

377775
The terminal voltages and currents are denoted by (+ 9 , � 9 ), (+: , �: ), as before. The
relation between the internal and terminal variables is given by (15.13b) for � config-
uration on the primary side and (15.14a) for . configuration on the secondary side:

�̂
�
9
= H

;�+ 9 � (H; + H<)+̂�
9
, � 9 = �T

⇣
�̂
�
9
+ H<+̂�

9

⌘
(15.23a)

+: = +̂
.

:
+ +=

:
1, �: = �̂

.

:
, �

=

:
= �1

T
�: (15.23b)

The transformer gains that relate the internal variables are:

+̂
.

:
= =+̂

�
9
, �̂

.

:
= �0 �̂�

9
(15.23c)



816 Component models, II: line and transformers
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Îj
ca

ymb

ymc

yla

ylb

ylc

V̂k
an

V̂k
bn

V̂k
cn

Vk
a

Vk
b

Vk
c

–Îk
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Figure 15.14 �. -configured transformer.

Eliminating the internal variables from (15.23), the external model of a three-phase
transformer in �. configuration is (Exercise 15.2):

� 9

�:

�
=


�T
H
; � ��T

0H
;

�0H; � 0
2 (H; + H<)

�
|                        {z                        }

.�.


+ 9

+:

�
�


��T

0H
;

0
2 (H; + H<)

�
+
=

:
1 (15.24a)

or in terms of the admittance matrix ... in (15.19a):
� 9

�:

�
=


�T 0
0 I

� 
H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


� 0
0 I

�  
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!
(15.24b)

It is the expression (15.16). The matrix.�. in (15.24a) is not invertible. It is symmetric
but not block symmetric. Therefore it cannot be represented as a three-phase ⇧ circuit
even if the neutral voltage +=

:
= 0.

Even though there is no neutral line on the primary side, the primary current � 9 is
a�ected by the neutral voltage +=

:
on the secondary side, unless 0 = 00I and H = H0I,

i.e., the single-phase transformers are identical, in which case �T
1 = 0 and � 9 becomes

independent of +=
:

.
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15.2.7 .� configuration

Figure 15.15 shows a .�-configured three-phase transformer. Its external model is
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Figure 15.15 .�-configured transformer.

(Exercise 15.3):
� 9

�:

�
=


H
; �0H;�

��T
0H
; �T

0
2 (H; + H<)�

�
|                               {z                               }

..�


+ 9

+:

�
�


H
;

��T
0H
;

�
+
=

9
1 (15.25a)

or in terms of the admittance matrix ... in (15.19a):
� 9

�:

�
=


I 0
0 �T

� 
H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


I 0
0 �

�  
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!
(15.25b)

It is the expression (15.16). The matrix ..� is singular, symmetric but not block
symmetric. In particular it cannot be represented as a three-phase ⇧ circuit even if the
neutral voltage +=

9
= 0.
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15.2.8 Open transformer

Open transformers where at least one leg of a three-phase transformer is open (not
connected) are widely used in distribution systems to connect single-phase loads, e.g.,
a household. The analysis of a closed transformer can be adapted to that of an open
transformer. Indeed their external models are identical, except that the admittance
matrices are H̃; = diag

�
H
;0, H;1 ,0

�
and H̃< = diag

�
H
<0, H<1 ,0

�
for an open transformer

without the third leg (compare (15.21) with (15.26) for an open �� transformer). We
now derive the external model of an open �� transformer. Other configurations, such
as open .. , open �. , or open .�, can be analyzed in a similar manner. The analysis
proceeds in the same manner as for its closed version, once the voltage gain expression
has been modified to represent the open transformer leg where the internal voltages
+̂
20

9
and +̂20

:
are no longer related by a voltage gain.

Figure 15.16 shows an open��-configured transformer where only two single-phase
transformers are used. The leakage admittances of these transformers are

�
H
0, H1

�
and
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–Îk
bc

Ik
a

Ik
b

Ik
c

yma V̂j
ab

V̂j
bc

I j
a

Vj
a

Îj
ab

I j
b

Vj
b

Îj
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Figure 15.16 Open ��-configured transformer.

their voltage gains are
�
=
0,=1

�
. The internal voltages and currents associated with the

ideal transformer are:

+̂
�
9

:=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9

:=

2666664

�̂
01

9

�̂
12

9

�̂
20

9

3777775
, +̂

�
:

:=
266664
+̂
01

:

+̂
12

:

+̂
20

:

377775
, �̂

�
:

:=
266664
�̂
01

:

�̂
12

:

�̂
20

:

377775
The terminal voltages and currents are denoted by (+ 9 , � 9 ) 2 C6, (+: , �: ) 2 C6, as
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before. We will show that its external model is
� 9

�:

�
=


�T
H̃
; � ��T

0H̃
; �

��T
0H̃
; � �T

0
2 ( H̃; + H̃<)�

�
|                                 {z                                 }

.open��


+ 9

+:

�
(15.26a)

or 
� 9

�:

�
=


�T 0
0 �T

� 
H̃
; �0H̃;

�0H̃; 0
2 ( H̃; + H̃<)

� 
� 0
0 �

� 
+ 9

+:

�
(15.26b)

where

H̃
; :=

266664
H
;0 0 0
0 H

;1 0
0 0 0

377775
, H̃

< :=
266664
H
<0 0 0
0 H

<1 0
0 0 0

377775
(15.26c)

where 0 := diag
�
0
0,01 ,02

�
. The constant 02 is introduced for notational convenience

and can take any arbitrary nonzero finite value, e.g. 02 = 1, as its value does not a�ect
the external model. Hence the admittance matrix .open�� in (15.26a)(15.26b) are the
same as.�� in (15.21a)(15.21b) for a closed �� transformer, except that H;2 = H<2 = 0
on the third leg that has no transformer. It is also the same as the expression (15.16)
with (H; , H<) in ... replaced by ( H̃; , H̃<). The matrix .open�� is block symmetric (as
well as symmetric) and therefore has a three-phase ⇧ circuit representation with series
and shunt admittance matrices:

H̃
B

9:
:= �T

0H̃
;�, H̃

<

9:
:= �T (I� 0) H̃;�, H̃

<

: 9
:= �T

⇣
0(0� I) H̃; + 02

H̃
<)

⌘
�

(15.26d)

which is the same as (15.21c) with (H; , H<) replaced by ( H̃; , H̃<).

For notational convenience, we introduce an artificial voltage gain =2 which can take
any nonzero finite values, e.g., =2 := 1. As before let = := diag

�
=
0,=1 ,=2

�
and 0 := =�1.

As defined above, the leakage and magnetizing admittances are H̃; := diag
�
H
;0, H;1 ,0

�
and H̃< := diag

�
H
<0, H<1 ,0

�
respectively. The fact that the third leg of the transformer

is open requires two adjustments to the derivation of a closed �� transformer. These
adjustments modify the internal model (the current and voltage gain on the missing
leg) and the derivation then follows the same procedure, as we now explain.

1 The relation between the internal and terminal variables are still given by
(15.20a)(15.20b) with the following modifications: replace (H; , H<) by ( H̃; , H̃<)
and enforce the current on the missing leg on the secondary side to be zero (see
Figure 15.16):

H̃
;2 := 0, H̃

<2 := 0, �̂
20

:
:= 0 (15.27a)

This implies that �̂20
9

= 0 and �2
9
= ��̂12

9
on the primary side from the last row of

(15.20a).
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2 For the internal model (15.20c), the current gain �̂�
:
= �0 �̂�

9
remains unchanged

(given (15.27a)), but the voltage gain needs modification because the internal
voltages +̂20

:
:= +2

:
�+0

:
and +̂20

9
:= +2

9
�+0

9
are no longer related by the voltage

gain =, unlike in a closed transformer.
In order to follow the same derivation we will replace the voltage gain expression

+̂
�
9
= 0+̂�

:
in (15.20c), as follows. In the analysis of a closed �� transformer, the

voltage gain is used to relate +̂�
9

to +: through

+̂
�
9

= 0+̂
�
:

= 0�+:

For an open �� transformer, the last row of this relation is rewritten as:

+̂
20

9
= 0

2

+̂
20

:
+

⇣
+̂
20

9
� 02+̂20

:

⌘

leading to the voltage relation +̂
�
9
= 0+̂

�
:
+ ⇢3

⇣
+̂
�
9
� 0+̂�

:

⌘
where ⇢3 :=

diag(0,0,1). The right-hand side can then be written in terms of the terminal
voltage + 9 because +̂20

9
:=+2

9
�+0

9
:

+̂
�
9

= ⇢3�+ 9 + (I�⇢3) 0+̂�: (15.27b)

which can then be related to +: using +̂�
:
= �+: .

In summary, these two modifications (15.27) means that, for open �� transformer, the
conversion rules are (15.20a)(15.20b) with (H; , H<) replaced by ( H̃; , H̃<):

�̂
�
9
= H̃

;�+ 9 � ( H̃; + H̃<)+̂�
9
, � 9 = �T

⇣
�̂
�
9
+ H̃<+̂�

9

⌘
(15.28a)

+̂
�
:

= �+: , �: = �T
�̂
�
:

(15.28b)

and the internal model (15.20c) is replaced by:

+̂
�
9

= ⇢3�+ 9 + (I�⇢3) 0+̂�: , �̂
�
:

= �0 �̂�
9

(15.28c)

We then follow the same derivation for the external model. For example we obtain
from (15.28b)(15.28c):

+̂
�
9

= ⇢3�+ 9 + (I�⇢3) 0�+: , �T
0�̂
�
9
= ��:

Substitute into the first expression in (15.28a) to eliminate (+̂�
9
, �̂�
9
):

�: = �
⇣
�T
0H̃
;�

⌘
+ 9 +

⇣
�T
0

2 ( H̃; + H̃<)�
⌘
+:

where we have used ( H̃; + H̃<)⇢3 = 0. Similarly we have

� 9 =
⇣
�T
H̃
;�

⌘
+ 9 �

⇣
�T
0H̃
;�

⌘
+:
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verifying the external model (15.26). With H;2 = H<2 = 0 the matrices are explicitly:

�T
H̃
; � =

266664
H
;0 �H;0 0
�H;0 H

;1 + H;0 �H;1
0 �H;1 H

;1

377775
, �T

0H̃
; � =

266664
Ĥ
;0 �Ĥ;0 0
�Ĥ;0 Ĥ

;1 + Ĥ;0 �Ĥ;1
0 �Ĥ;1 Ĥ

;1

377775
where Ĥ;q := 0qH;q for q 2 {0,1}.

Example 15.6 (Bernie Leseiutre, Allerton Conference, September 2023). Bernie Le-
seiutre told me about an interesting circulating loop flow phenomenon in an open
�� transformer, shown in Figure He said that even if the � load is purely inductive,

Figure 15.17 Unitary voltage network in each phase q of a three-phase transformer.

there is real power % flowing between the two single-phase transformers, even if the
transformers are (assumed) ideal. They have verified this experimentally. The terminal
currents/powers are purely reactive, so real current/power only are in internal vars.
This show be derivable from the results here. ⇤

15.2.9 Single-phase equivalent in balanced setting

A three-phase transformer is equivalent to a .. -configured transformer if they have
the same external model, i.e., their admittance matrices are equal. In general a three-
phase transformer not in .. configuration does not have a .. equivalent, except in a
balanced setting. In a balanced setting, not only does a three-phase transformer have a
.. equivalent, there is also a single-phase transformer that can be naturally interpreted
as the single-phase equivalent of the .. equivalent. For simplicity we assume H< = 0.

Consider a ��-configured transformer whose external model is determined by the
admittance matrix .�� in (15.21b), reproduced here:

.�� :=

�T 0
0 �T

� 
H
; �0H;

�0H; 0
2
H
;

� 
� 0
0 �

�

Recall from (15.19) that the admittance matrix .̃.. of a .. -configured transformer
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with turns ratio 0̃ and leakage admittance H̃; is given by

.̃.. :=

H̃
; �0̃ H̃;

�0̃ H̃; 0̃
2
H̃
;

�

The ��-configured transformer has a .. equivalent if .�� = .̃.. for some .̃.. . Since
the submatrices of .̃.. are diagonal while those of .�� are not, there is generally no
.. equivalent, even if the constituent single-phase transformers are identical, i.e., if
H
; = H;0I and 0 = 00I (see (15.22)).

The ��-configured transformer does have a .. equivalent, however, if the system
is balanced, i.e., the single-phase transformers are identical and voltages and currents
are positive-sequence sets. This property is used in Chapter 3.4 for per-phase analysis
and can be justified using the external models derived here.

Suppose

H
; := H

;0

I, 0 := 0
0

I, + 9 := E 9U+, +: := E:U+

where we recall that U+ := (1,U,U2) is the unit positive-sequence vector and U :=
4
�i2c/3. In this case Corollary 1.3 implies

�+ 9 = (1�U)+ 9 , �T
+ 9 = (1�U2)+ 9

The external model (15.21a) of the ��-configured transformer then reduces to (with
H
< = 0):

� 9 =
⇣
�T
H
;�

⌘
+ 9 �

⇣
�T
0H
;�

⌘
+: = (1�U) (1�U2)H;0

�
+ 9 � 00+:

�
�: = �

⇣
�T
0H
;�

⌘
+ 9 +

⇣
�T
0

2
H
;�

⌘
+: = (1�U) (1�U2)H;0

⇣
�00+ 9 + (00)2

+:

⌘

Since (1�U) (1�U2) = 3 we have
� 9

�:

�
=


H̃ �0H̃
�0H̃ 0

2
H̃

�
|          {z          }

.̃..


+ 9

+:

�

where H̃; = 3H;0I and 0 = 00I. Hence when the system is balanced a ��-configured
transformer has a.. equivalent with the same turns ratio 0 but a leakage admittance H̃;

three times the original admittance H; . Since the admittance matrix of the.. equivalent
is

.̃.. :=
✓
3H;0


1 �00
�00 (00)2

� ◆
⌦ I

we can interpret

.̃1q := 3H;0


1 �00
�00 (00)2

�

as the admittance matrix of the single-phase equivalent of the �� transformer in
balanced setting.
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In a balanced system a �. -configured transformer also has a .. equivalent when
+
=

:
= 0 and hence a single-phase equivalent, but the .. equivalent requires complex,

rather than real, turns ratios. This is explained in the next example.

Example 15.7 (Single-phase equivalent of �. configuration with +=
:
= 0). Consider a

�. -configured transformer. Suppose, not only is the system balanced, i.e.,

H
; := H

;0

I, 0 := 0
0

I, + 9 := E 9U+, +: := E:U+

but the neutral on the secondary side is also grounded with zero grounding impedance,
i.e., +=

:
= 0. Show that its .. equivalent and single-phase equivalent are respectively

.̃.. := .̃1q ⌦ I, .̃1q := H̃
;0


1 �0̃0
�0̃0H |0̃0 |2

�

where

H̃
;0 := 3H;0, 0̃

0 :=
0
0

1�U =
0
0

p
34ic/6

Solution. The external model of a �. -configured transformer is given by (15.24a).
Applying Corollary 1.3 (�+ 9 = (1�U)+ 9 , �T

+ 9 = (1�U2)+ 9 ), (1�U) (1�U2) = 3 and
�T

1 = 0, we have3

� 9 =
⇣
�T
H
; �

⌘
+ 9 �

⇣
�T
0H
;

⌘ �
+: �+=: 1

�
= 3H;0

✓
+ 9 �

0
0

1�U+:
◆

�: =
⇣
�0H; �

⌘
+ 9 +

⇣
0

2
H
;

⌘ �
+: �+=: 1

�
= 3H;0

 
� 0

0

1�U2
+ 9 +

✓
0
0

p
3

◆2 �
+: �+=: 1

�!

Since 00 2 R we have ✓
0
0

1�U2

◆H
=

0
0

1�U =
0
0

p
34ic/6

Define the matrices

H̃
; := 3H;0I, 0̃ :=

0
0

1�U I, |0̃ |2 :=
(00)2

3
I (15.29a)

The external model of the �. -configured transformer is then
� 9

�:

�
=


H̃
; �0̃ H̃;

�0̃H
H̃
; |0̃ |2 H̃;

� 
+ 9

+:

�
�


0

|0̃ |2 H̃;+=
:

1

�
(15.29b)

To derive its .. equivalent, consider a .. -configured transformer with a complex
voltage gain (matrix) =̂ := diag

�
=̂
0, =̂1 , =̂2

�
2 C3⇥3 and its turns ratio (matrix) 0̂ := =̂�1.

Instead of (15.18c) for real transformer gains, the transformer gains when =̂ and 0̂ are
complex are given by

+̂
.

:
= =̂ +̂

.

9
, �̂

.

:
= 0̂

H
�̂
.

9
(15.30a)

3 To illustrate the e�ect of + =
:

on .. equivalent we do not substitute + =
:

= 0 until the last step.
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Let Ĥ 2 C3⇥3 denote its leakage admittance matrix. Then its external model can be
shown to be (Exercise 15.5):

� 9

�:

�
=


Ĥ
; �0̂ Ĥ;

�0̂H
Ĥ
; |0̂ |2 Ĥ;

�
|               {z               }

.̃..

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!
(15.30b)

�
=

9
= �1

T
� 9 , �

=

:
= �1

T
�: (15.30c)

where |0̂ |2 is the matrix |0̂ |2 := diag
�
1/|=̂0 |2,1/|=̂1 |2,1/|=̂2 |2

�
. Note that the matrix

.̃.. is not complex symmetric and therefore does not have a three-phase ⇧ circuit
representation when 0̂ is complex.

Comparing (15.29b) and (15.30b) we see that, if +=
:
= 0, then the �. -configured

transformer has a .. equivalent whose neutrals are grounded with zero grounding
impedances on both sides and whose admittance matrix Ĥ = H̃ and complex turns ratio
matrix 0̂ = 0̃ are given by (15.29a). This completes the proof. ⇤

15.3 Three-phase transformer models: unitary voltage network

In this section we extend the single-phase model in Chapter 3.1.5 with unitary voltage
network to three-phase transformers. Multiple copies of the single-phase circuit in
Figure 3.8(b) can be connected in � or . configuration on each side of the unitary
voltage network, per phase, to create three-phase transformers. The derivation of their
external models follows a similar method as that in Chapter 15.2.2: (i) define internal
variables for the unitary voltage network in each phase; (ii) derive the internal model
that relate these internal variables; (iii) the transformer gains across the two ideal
transformers define the conversion between the internal and terminal variables; and
finally (iv) eliminate the internal variables to arrive at the external models.

15.3.1 Internal model: UVN per phase

The internal variables on the unitary voltage network in each phase q 2 {0,1,2} are
defined in Figure 15.18. Note that the voltages (+̂ q0 ,+̂ q

9
,+̂ q
:
) are defined to be the

voltage drops, whether the unitary voltage network is grounded or not. These variables
satisfy (3.10) for each phase q:

�̂
q

9
= H

q

9
(+̂ q
9
� +̂ q0 ), �̂

q

:
= H

q

:
(+̂ q
:
� +̂ q0 ), �̂

q

0 + �̂ q
9
+ �̂ q

:
= H

q

0 +̂
q

0 , q 2 {0,1,2}
(15.31)
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V̂0
øV̂j

ø V̂k
ø

Îk
øÎj

ø Î0
ø:= 0

y0
ø

yj
ø yk

ø

Figure 15.18 Unitary voltage network in each phase q of a three-phase transformer.

Define the internal variables and admittance matrices:

�̂8 :=
266664
�̂
0

8

�̂
1

8

�̂
2

8

377775
, +̂8 :=

266664
+̂
0

8

+̂
1

8

+̂
2

8

377775
, H8 := diag

⇣
H
0

8
, H1
8
, H2
8

⌘
, 8 = 0, 9 , :

Then (15.31) is in vector form:

�̂ 9 = H 9 (+̂ 9 � +̂0), �̂: = H: (+̂: � +̂0), �̂0 + �̂ 9 + �̂: = H0+̂0

or in terms of a 9⇥9 admittance matrix:

266664
�̂0

�̂ 9

�̂:

377775
=

266664

Õ
8
H8 �H 9 �H:

�H 9 H 9 0
�H: 0 H:

377775
266664
+̂0

+̂ 9

+̂:

377775
(15.32)

where
Õ
8
H8 = H0+ H 9 + H: is a diagonal matrix of all admittances. Since �̂0 = 0 2 C3 we

can eliminate +̂0 and derive the 6⇥6 Kron-reduced admittance matrix .uvn that maps
+̂ := (+̂ 9 ,+̂: ) 2 C6 to �̂ := ( �̂ 9 , �̂: ) 2 C6 (Exercise 15.6):

�̂ = .uvn+̂ where .uvn := ©≠
´
I2 ⌦

 ’
8

H8

!�1™Æ
¨

H 9 (H0 + H: ) �H 9 H:
�H 9 H: H: (H0 + H 9 )

�

(15.33)

and I2 is the identity matrix of size 2. This defines the internal model that relates �̂ and
+̂ . Note that the phases of these internal variables are decoupled in (15.33) since the
admittance matrices H8 2 C3⇥3 are diagonal. The phases will be coupled in the terminal
variables (+ 9 ,+: ) and (� 9 , �: ) through . or � configuration, as we now explain.

15.3.2 Conversion rules

Let the terminal currents of the three-phase transformer be �8 := (�0
8

, �1
8

, �2
8
), its terminal

voltages be +8 := (+0
8

,+1
8

,+2
8
), and the terminal neutral voltage of . configuration be

+
=

8
, 8 = 9 , : . The primary side is illustrated in Figure 15.19. These voltages are defined

respect to an arbitrary and common reference point, e.g., the ground. Let " 9 :=

diag
⇣
1/#0

9
,1/#1

9
,1/#2

9

⌘
and ": := diag

�
1/#0

:
,1/#1

:
,1/#2

:

�
be the transformer gain

matrices of the ideal transformers on each side of the unitary voltage network.



826 Component models, II: line and transformers

To derive the conversion between internal and terminal variables, consider first the
primary side where three single-phase ideal transformers are connected to the left end
of the unitary voltage network in Figure 15.18. Figure 15.19(a) shows the primary side
in . configuration. The conversion rule between the internal variables (+̂ 9 , �̂ 9 ) and the
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n
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Îk
c

yk
a

yk
b

yk
c

yj
a

yj
b

yj
c

y0
a

y0
b

y0
c

Nj
a : 1

Nj
b : 1

Nj
c : 1

V̂k
a

V̂k
b

V̂k
c

Îj
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Figure 15.19 Primary side of a three-phase transformer with unitary voltage networks.

terminal variables (+ 9 , � 9 ,+=
9
) is:

. configuration: +̂ 9 = " 9

⇣
+ 9 �+=9 1

⌘
, �̂ 9 = "

�1
9
� 9 (15.34a)

where 1 := (1,1,1). Figure 15.19(b) shows the primary side in � configuration. Let
�̂
�
9

:= ( �̂01
9

, �̂12
9

, �̂20
9
) denote the internal currents entering the primary side of the

ideal transformer as indicated in Figure 15.19(b). From (14.9a) the internal variables
(+̂ 9 , �̂ 9 , �̂�

9
) are related to the terminal variables (+ 9 , � 9 ) according to the conversion

rule:

� configuration: +̂ 9 = " 9�+ 9 , �̂ 9 = "
�1
9
�̂
�
9
, � 9 = �T

�̂
�
9

(15.34b)

where �,�T are conversion matrices. Similarly on the secondary side we have the
conversion rule (see Figure 15.20):

. configuration: +̂: = ":

�
+: �+=: 1

�
, �̂: = "

�1
:
�: (15.34c)

� configuration: +̂: = ":�+: , �̂: = "
�1
:
�̂
�
:
, �: = �T

�̂
�
:

(15.34d)

15.3.3 External model

We can derive an external model by eliminating the internal variables (+̂ , �̂, �̂�) from
the internal model (15.33) and the conversion rules (15.34). Specifically substitute
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Figure 15.20 Three-phase transformer models with unitary voltage networks.

(15.34) into (15.33) to get

.. :

"
�1
9
� 9

"
�1
:
�:

�
= .uvn

"
" 9 (+ 9 �+=

9
1)

": (+: �+=
:

1)

#
, �� :


"
�1
9
�̂
�
9

"
�1
:
�̂
�
:

�
= .uvn


" 9�+ 9
":�+:

�

(15.35a)

�. :

"
�1
9
�̂
�
9

"
�1
:
�:

�
= .uvn


" 9�+ 9

": (+: �+=
:

1)

�
, .� :


"
�1
9
� 9

"
�1
:
�̂
�
:

�
= .uvn

"
" 9 (+ 9 �+=

9
1)

":�+:

#

(15.35b)

Let+ := (+ 9 ,+: ) 2 C6 and � := (� 9 , �: ) 2 C6 denote the vectors of terminal voltages and
currents respectively. Let " := diag(" 9 ,": ) 2 R6⇥6 be the transformer gain matrices.
Then the external model of a three-phase transformer is (Exercise 15.7)

� = ⇡
T (".uvn")⇡ (+ �W) (15.36a)

where .uvn is defined in (15.33), ⇡ 2 C6⇥6 and W 2 C6 are defined in (15.16).
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We often do not know the numbers # q
9
, # q

:
of turns of the primary and secondary

windings respectively and hence cannot determine the matrices " 9 ,": , but we can

always determine the turns ratio matrix 0 :="�1
9
": = diag

⇣
#
0

9
/#0

:
,#1

9
/#1

:
,#2

9
/#2

:

⌘
from the specified rated voltages. The 3⇥3 admittance matrices H0, H1, H2 are assembled
from their per-phase admittances and recall from (3.9) (see Figure 3.8):

H0 := #
2
9
H
< := #

2
9
diag

⇣
H
<0, H<1 , H<2

⌘

H 9 := #
2
9
H
? := #

2
9
diag

⇣
H
?0, H?1 , H?2

⌘
, H

?q :=
1
I
?q

, q 2 {0,1,2}

H: := #
2
:
H
B := #

2
9
diag

⇣
H
B0, HB1 , HB2

⌘
, H

Bq :=
1
I
Bq

, q 2 {0,1,2}

Then the matrix ".uvn" in (15.36a) can also be written in terms of the 3⇥ 3 turns
ratio and admittance matrices 0, H? , HB , H< (Exercise 15.8):

... := ".uvn" = H
?

H
B

⇣
0

2
H
< + 02

H
? + HB

⌘�1

I+ 02

H
< (HB)�1 �0
�0 0

2 �
I+ H< (H?)�1�

�

(15.36b)

Hence the external model of a standard three-phase transformer is

� = ⇡
T
...⇡ (+ �W) (15.36c)

where ... is defined in (15.36b), ⇡ 2 C6⇥6 and W 2 C6 are defined in (15.16), repro-

duced here: W :=
⇣
+
=

9
1,+=

:
1

⌘
are neutral voltages for . configuration and ⇡ is a 6⇥6

block diagonal matrix that depends on configuration:

.. configuration: ⇡ :=

I 0
0 I

�

�� configuration: ⇡ :=

� 0
0 �

�

�. configuration: ⇡ :=

� 0
0 I

�

.� configuration: ⇡ :=

I 0
0 �

�

For�� configuration, ⇡W = 0 2 C6 in (15.36), reflecting that a� configuration contains
no neutral voltage; similarly for other configurations.

Remark 15.3. 1 As explained in Chapter 3.1.5, the transformer model with unitary
voltage networks is equivalent to the ) equivalent circuit. This holds in both
single-phase and three-phase settings.

2 This model is generally di�erent from the simplified model of Chapter 15.2 which
is the three-phase extension of the model in Chapter 3.1.4. From (15.36) and
(15.16), these models however have the same structure. They di�er only in the
admittance matrix ... for the .. configuration and the di�erence is due to
di�erent models for single-phase nonideal transformers.



15.4 Parameter identification: examples 829

3 When the shunt admittances are assumed zero in both models, i.e., Hq0 = H<q = 0
for q 2 {0,1,2}, these two models are equivalent, as in the single-phase case. To
see this, recall that per-phase q 2 {0,1,2}, the leakage impedances in the simplified
model are I;q = I?q + (0q)2

I
Bq and hence the leakage admittances per phase are

H
;q =

⇣
I
;0

⌘�1
=

⇣
1/H?q + (0q)2

H
Bq

⌘�1
=

H
?q
H
Bq

(0q)2
H
?q + HBq , q 2 {0,1,2}

Since all matrices are diagonal we have H; = H?HB
�
0

2
H
? + HB

��1
. Substituting this

and H
< = 0 into (15.36b), ... for the transformer model based on the unitary

voltage network reduces to

... = H
;


I �0
�0 0

2

�

which is the same as ... in (15.16a) for the simplified model. (See Exercise 15.9
for another proof).

4 The model (15.36) generalizes the single-phase model (3.11) in three ways. First
the 6⇥ 6 admittance matrix ".uvn" in (15.36) has the same structure as the
2 ⇥ 2 matrix in (3.11). Second the neutrals of the three-phase transformer in
. configuration may not be grounded, i.e., +=

9
,+=
:

may be nonzero whereas + in
(3.11) is assumed to be the voltage drop across the windings. Finally the admittance
matrix of a three-phase transformer in .. configuration is ... := ".unv" , and
a � configuration in either the primary or the secondary circuit is represented by
conversion matrices �T and �.

15.3.4 Split-phase transformer

15.4 Parameter identification: examples

15.4.1 Simplified circuit

Example 15.8 (Parameter identification). Consider a three-phase transformer in �.
configuration. Its simplified circuit model is shown in Figure 15.21. Suppose the
single-phase transformers are identical, i.e. their turns ratios 0 := 00I and leakage
admittances H; := H;0I are the same across phases. Suppose the shunt admittances are
zero. We discuss parameter identification in two steps.

1 Suppose the following measurements are given:
• Terminal currents � 9 = 8 9 2 C3 and �: = 8: 2 C3.
• Terminal voltages+ 9 = E 9 2 C3 (with respect to ground) on the primary (�) side.
• Line-to-line voltages �+: = D: 2 C3 on the secondary (. ) side.
• The neutral is grounded with zero grounding impedance so that +=

:
:= 0.
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Figure 15.21 �. -configured transformer with zero shunt admittances.

Assume the measurements are error free and let G := (8 9 , 8: ,E 9 ,D: ) be the mea-
surement vector. Calculate:
• The turns ratio 00 and the leakage admittance H;0.
• The terminal voltage +: with respect to the ground.
• The internal voltage and current (+̂.

:
, �̂.
:
) on the secondary side.

• The internal voltage and current (+̂�
9
, �̂�
9
) on the primary side and hence the loop

flow V 9 within the � configuration.
2 Repeat part 1 when) measurements (G1, . . . ,G) ) are given and measurement errors

may be nonzero.

Solution. Under the assumption of zero measurement error, the measurement G :=
(8 9 , 8: ,E 9 ,D: ) 2 C12, the parameter \ := (00, H;0) 2 C2, and the variable +: 2 C satisfy
(15.24a) with H; := H;0I,0 := 00I:

8 9

8:

�
= H

;0


�T� �00�T

�00 � (00)2
I

� 
E 9

+:

�
(15.37)

We can obtain �T
+: from the line-to-line voltage measurement �+: = D: by shifting
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the values of D: :

�T
+: =

266664
+
0 �+2

+
1 �+0

+
2 �+1

377775
= �

266664
0 0 1
1 0 0
0 1 0

377775|       {z       }
permutation %

266664
+
0 �+1

+
1 �+2

+
2 �+0

377775
= �%�+: = �%D:

Hence the first row of (15.37) becomes

8 9 = H
;0

⇣
�T�E 9 + 00%D:

⌘
(15.38a)

where % is the permutation matrix

% :=
266664
0 0 1
1 0 0
0 1 0

377775
(15.38b)

This is a set of 3 quadratic equations in a positive real variable 00 2 R+ and a complex
variables H;0 2 C. Under appropriate conditions a solution of (15.38) exists and can be
computed numerically. Let \ := (00, H;0) denote such a solution. All other variables can
then be derived in terms of the parameter \ and the measurement G := (8 9 , 8: ,E 9 ,D: ),
as follows.

The terminal voltage +: can be calculated from the second row of (15.37):

+: =
1

(00)2
H
;0

8: +
1
0
0
�E 9 (15.39a)

On the secondary side the internal voltage and current (+̂.
:

, �̂.
:
) are given by the

conversion rule in (15.23b) for . configuration on the secondary side:

+̂
.

:
= +: �+=: 1 = +: , �̂

.

:
= 8: (15.39b)

On the primary side the internal voltage +̂�
9

across the ideal transformers is given by
(15.13d) with I< := 0 (no shunt admittance):

+̂
�
9

= �E 9 �
1
H
;0

�̂
�
9

Instead of expressing �̂�
9

in terms of the measurement 8 9 using H< = 0 and the conversion

rule 8 9 = �T
�̂
�
9
, we will use the transformer current gain in (15.23c) for�. configuration

to express �̂�
9

in terms of the measurement 8: , yielding

+̂
�
9

= �E 9 +
1

0
0
H
;0

8: , �̂
�
9
= � 1

0
0
�̂
.

:
= � 1

0
0
8: , V 9 :=

1
3

1
T
�̂
�
9
= � 1

300
1

T
8:

(15.39c)

Even though we cannot determine the loop flow V 9 from the terminal current 8 9 , we
can from the measurement 8: on the secondary side.

When the measurement error is zero, the measurement vector G := (8 9 , 8: ,E 9 ,D: )
and the parameter vector \ := (00, H;0) satisfy (15.38). This can be represented as
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5 (G;\) = 0 for some function 5 . Given ) measurements G := (G1, . . . ,G) ), there may
not be any choice of \ such that 5 (GC ;\) = 0 for all C = 1, . . . ,) when measurement
errors are nonzero. A popular estimate of \ is one that minimizes error subject to
certain constraints:

\̂ := argmin
\

’
C

k 5 (GC ;\)k s.t. 6(GC ;\)  0, C = 1, . . . ,)

for some appropriate norm k · k. Here 6(GC ;\)  0 expresses some known relations that
must hold, e.g., 00 � 0 is real. Let \̂ denote an estimate of the parameter. Then other
variables

ĤC := (+: (C),+̂�9 (C), �̂�9 (C),+̂.: (C), �̂.: (C)), C = 1, . . . ,)

can be derived from (15.39) in terms of \̂ and the measurements GC .

It is possible that the estimate ĤC derived in this way may violate some known
constraints, e.g., Emin

:
 k+: (C)k2  Emax

:
for some C given voltage limits. An alternative

identification method is to estimate the parameter \ and the variables H := (H1, . . . , H) )
jointly from the measurements G := (G1, . . . ,G) ), i.e., solve

(\̂, Ĥ) := arg min
(\ ,H)

’
C

k 5 (GC , HC ;\)k s.t. 6(GC , HC ;\)  0, C = 1, . . . ,)

where 5 represents (15.38)(15.39) and 6(GC , HC ;\)  0 express some known constraints
on (\̂, Ĥ). ⇤

From Figure 15.21 the terminal powers B 9 and B: are powers injected into the
transformer at terminals 9 and : respectively. Hence 1

T (B 9 + B: ) is the total power loss
in the three-phase transformer due to the leakage impedance 1/H; , as the next example
shows.

Example 15.9 (Total power loss). For the three-phase transformer in Example 15.8
show that the total power loss 1

T (B 9 + B: ) in the transformer is equal to (assuming zero
measurement error):

1
T (B 9 + B: ) =

1
H
;0

k=08: k22

where =0 := 1/00 is the voltage gain. Even though the transformer gain =0 relates the
internal currents ( �̂�

9
, �̂.
:
), not terminal currents (� 9 , �: ), we can interpret =08: as the

“e�ective” terminal current on the primary side.

Solution. The terminal powers are, from (15.39),

B 9 := diag
⇣
+ 9 �

H
9

⌘
= �=0 diag

⇣
E 9 8

H
:
�
⌘

B: := diag
⇣
+: �

H
:

⌘
= =

0 diag
⇣
�E 9 8H:

⌘
+ (=0)2

H
;0

diag
⇣
8: 8

H
:

⌘

where =0 := 1/00, the second equality follows from H
< = 0 and hence 8 9 = �T

�̂
�
9
=
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�=0 �T
8: , and the last equality follows from (15.39a). Hence

B 9 + B: = =
0

⇣
diag

⇣
�E 9 8H:

⌘
� diag

⇣
E 9 8

H
:
�
⌘⌘

+ (=0)2

H
;0

diag
⇣
8: 8

H
:

⌘

Now

diag
⇣
�E 9 8H:

⌘
�diag

⇣
E 9 8

H
:
�
⌘
=

2666664

(E0
9
� E1

9
)8̄0
:

(E1
9
� E2

9
)8̄1
:

(E2
9
� E0

9
)8̄2
:

3777775
�

2666664

E
0

9
(8̄0
:
� 8̄2
:
)

E
1

9
(8̄1
:
� 8̄0
:
)

E
2

9
(8̄2
:
� 8̄1
:
)

3777775
=

2666664

E
0

9
8̄
2

:

E
1

9
8̄
0

:

E
2

9
8̄
1

:

3777775
�

2666664

E
1

9
8̄
0

:

E
2

9
8̄
1

:

E
0

9
8̄
2

:

3777775
diag

⇣
8: 8

H
:

⌘
=

266664
|80
:
|2

|81
:
|2

|82
:
|2

377775
where % is the permutation matrix in (15.38b). The total power loss in the three-phase
transformer is then

1
T (B 9 + B: ) = =

0

⇣
(%8: )H

E 9 � 8H: (%T
E 9 )

⌘
+ (=0)2

H
;0

k8: k22 =
1
H
;0

k=08: k22

where the last equality follows from (%8: )H
E 9 = 8H

:
(%T

E 9 ). ⇤

15.4.2 Unitary voltage network

15.5 Bibliographical notes

The modeling of transmission lines with earth return is presented in the seminal paper
[157] by J. R. Carson. Circuit models of three-phase line models studied in Chapter 15.1
are developed in e.g. [158, 159, 43]. See e.g. [156, Chapter 3] for comprehensive models
of three-phase components including distribution lines, transformers and switches.
For the simplified model of Chapter 15.2 see [160, 161, 162, 163] for early work and
[43, Ch 8][5, Ch 7.4][164] for recent summary. The idea of decomposing a nonideal
transformer into two ideal transformers connected by a unitary voltage network as in
Chapter 15.3 is first mentioned, but not explored, in [160]. It is developed in detail in
[165] where the unitary network is a ⇧ circuit with a leakage (series) admittance and
two shunt admittances. The unitary voltage network in [166] uses a ) circuit model, as
Chapter 15.3 does. The unitary voltage network that models leakage fluxes and core
losses can be quite general e.g. [167, 168].
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15.6 Problems

Chapter 15.1.

Exercise 15.1 (Symmetric H 9: ). Let I 9: be a phase impedance matrix of a three-phase
line ( 9 , :). Assume I 9: is symmetric invertible and I 9: = I: 9 (A0). Show that its
inverse H 9: := I�1

9:
is symmetric. Moreover H 9: = H: 9 .

Chapter 15.2.

Exercise 15.2 (�. -configured transformer). Derive the external model (15.24) of the
�. -configured three-phase transformer in Figure 15.14.

Exercise 15.3 (.�-configured transformer). Derive the external model (15.25) of the
.�-configured three-phase transformer in Figure 15.15.

Exercise 15.4 (Open transformers).

Exercise 15.5 (Complex voltage gain). Consider a .. -configured transformer with
a complex voltage gain (matrix) = := diag

�
=
0,=1 ,=2

�
2 C3⇥3. Let its turns ratio be

0 := =�1 2 C3⇥3. Let H; 2 C3⇥3 denote its series admittance and assume its shunt
admittance H< = 0. Show that its external model is


� 9

�:

�
=


H
; �0H;

�0H
H
; |0 |2H;

�
|               {z               }

...

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!

�
=

9
= �1

T
� 9 , �

=

:
= �1

T
�:

where |0 |2 is the matrix |0 |2 := diag
�
1/|=0 |2,1/|=1 |2,1/|=2 |2

�
.

Exercise 15.6 (Unitary voltage network: 3q transformers). Derive (15.33), reproduced
here:

�̂ = .uvn+̂

where

.uvn := ©≠
´
I2 ⌦

 ’
8

H8

!�1™Æ
¨

H 9 (H0 + H: ) �H 9 H:
�H 9 H: H: (H0 + H 9 )

�
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I2 is the identity matrix of size 2, and
Õ
8
H8 = H0 + H 9 + H: is a diagonal matrix of all

admittances.

Exercise 15.7 (Unitary voltage network: 3q transformers). Show that, for the trans-
former model in Chapter 15.3 with unitary voltage network, the admittance matrices
of standard three-phase transformers are given by

� = ⇡
T (".uvn")⇡ (+ �W)

where .uvn is defined in (15.33), and ⇡ 2 C6⇥6 and W 2 C6 are defined in (15.16).

Exercise 15.8 (Unitary voltage network: turns ratio 0). Prove (15.36b): the matrix
".uvn" in (15.36) can be written in terms of the 3⇥ 3 turns ratio and admittance
matrices 0, H? , HB , H<:

... := ".uvn" = H
?

H
B

⇣
0

2
H
< + 02

H
? + HB

⌘�1

I+ 02

H
< (HB)�1 �0
�0 0

2 �
I+ H< (H?)�1�

�

Exercise 15.9 (3q transformer: H< = H0 = 0). Suppose shunt admittances H0 = H< =
diag(0,0,0). Then the admittance matrices .uvn defined in (15.33) and ... defined in
(15.16a) become

.uvn :=
⇣
I2 ⌦

⇣
H 9 + H: )�1

⌘⌘ 
H 9 H: �H 9 H:
�H 9 H: H 9 H:

�
, ... :=


H
; �0H;

�0H; 0
2
H
;

�

Show that ".uvn" = ... .

Exercise 15.10 (Split-phase transformer). Consider a split-phase �� transformer in

Figure ??. Suppose
Õ
q2{0,1,2 }

⇣
�
q

:
+ � q

0

:

⌘
= 0. Derive (??).



16 Bus injection models

In this chapter we use the component models in Chapters 14 and 15 to construct
network models and study unbalanced three-phase analysis. In Chapter 16.1 we extend
the relation between terminal voltage, current and power (+ , �, B) in the single-phase
bus injection model of Chapter 4.3 to the unbalanced three-phase setting. In Chapter
16.2 we formulate a general three-phase analysis problem. In Chapter 16.3 we study
the analysis problem when the network is balanced. We prove formally that a general
balanced network is equivalent to per-phase networks and its analysis can be solved
by per-phase analysis. In Chapter 16.4 we explain that, when an unbalanced system
has a certain symmetry, we can transform it to a sequence coordinate in which the
system becomes decoupled even if the phases are coupled in the original coordinate.
Single-phase analysis can then be applied to individual sequence networks.

16.1 Network models

In this section we develop a model for a network of three-phase devices connected by
three-phase lines and transformers studied in Chapters 14 and 15. We start in Chapter
16.1.1 with a line model that models a three-phase transmission or distribution line or
a three-phase transformer. The line model linearly relates the sending-end line currents�
� 9: , �: 9

�
2 C6 and the nodal voltages

�
+ 9 ,+:

�
2 C6 by an admittance matrix. 9: which

may or may not have a three-phase ⇧ circuit representation. The line model induces
a network model through nodal current balance equations. This is derived in Chapter
16.1.2 and it linearly relates the nodal (terminal) current injections � 9 and voltages + 9
through a network admittance matrix. . The admittance matrix. also implies a single-
phase equivalent circuit of the three-phase network. We then use. to derive in Chapter
16.1.4 nonlinear power flow equations that relate nodal (terminal) power injections B 9
and voltages + 9 . Finally we explain in Chapter 16.1.5 that the overall model consists
of the network equations of Chapters 16.1.2 and 16.1.4 and the three-phase device
models of Chapter 14.3. A device model can either be specified as an internal model
with conversion rules or an external model relating the terminal variables (+ 9 , � 9 , B 9 ).
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16.1.1 Line model

Consider a network with # + 1 three-phase devices connected by three-phase lines
represented as an undirected graph ⌧ := (# ,⇢) where every bus 9 2 # and every
line ( 9 , :) 2 ⇢ has 3 phases. A bus is where the terminals of three-phase devices are
connected. A line may model a transmission or distribution line, a transformer, or
a combination. We will hence refer to 9 2 # interchangeably as a bus, a node, or a
terminal, and ( 9 , :) 2 ⇢ interchangeably as a line, a branch, a link, or an edge. The
formulation can be generalized to the case where a bus or a line has a single, two, or
three phases.

For simplicity of exposition we assume, by default, we can use three-wire models
for these lines and their characterization includes the e�ects of neutral and earth return
on the phase variables. This assumption is reasonable if, e.g., neutral wires are absent,
the line connects devices in � configuration, or the neutrals are directly grounded with
equal spacing along a line and at both ends of the line so that all neutrals have +=

9
= 0.

Otherwise, the line model in this section needs to be augmented with neutral lines with
variables in C4 instead of C3 and line admittance matrices in C4⇥4 instead of C3⇥3;
see Example 16.5 and Exercise 16.7. As we will see, even though lines are assumed to
be three-wired, . -configured devices such as voltage, current and power sources and
impedances do have neutral lines in our models and their neutral voltages W 9 := +=

9

may be nonzero.

For each line ( 9 , :) 2 ⇢ let
�
+ 9 ,+:

�
2 C6 denote the terminal voltages at each end of

the line and
�
� 9: , �: 9

�
2 C6 denote the sending-end line currents in both directions. In

general each line ( 9 , :) 2 ⇢ is characterized by four 3⇥3 series and shunt admittance

matrices,
⇣
H
B

9:
, H<
9:

⌘
from 9 to : and

⇣
H
B

: 9
, H<
: 9

⌘
from : to 9 . See Figure 16.1. They











































































































Figure 16.1 A model of three-phase system. Correction: Remove 012 and 001020.

define the relation between
�
+ 9 ,+:

�
and

�
� 9: , �: 9

�
:

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

: 9
(+: �+ 9 ) + H

<

: 9
+: (16.1a)
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or in matrix form: 
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�
(16.1b)

We emphasize that HB
9:

and HB
: 9

may be di�erent matrices and therefore this general
model. 9: may not have a three-phase ⇧ circuit representation. When HB

9:
= HB

: 9
, it can

model:

• A transmission or distribution line where, from (15.8a), HB
9:

= HB
: 9

is its series

admittance and
⇣
H
<

9:
, H<
: 9

⌘
are its shunt admittances.

• A transformer in .. configuration where neutral voltages are zero (+=
9
= +=

:
= 0),

from (15.19d),

H
B

9:
= H

B

: 9
:= 0Ĥ

; , H
<

9:
:= (I� 0) Ĥ; , H

<

: 9
:= 0(0� I) Ĥ; + 02

Ĥ
< (16.2a)

with 0 := diag(00,01 ,02) being the turns ratios of the transformer, Ĥ; :=
diag(H;0, H;1 , H;2) and Ĥ

< := diag(H<0, H<1 , H<2) its leakage and shunt admit-
tances respectively.

• A transformer in �� configuration where, from (15.21c),

H
B

9:
= H

B

: 9
:= �T

0Ĥ
;�, H

<

9:
:= �T (I� 0) Ĥ;�, H

<

: 9
:= �T

⇣
0(0� I) Ĥ; + 02

Ĥ
<

⌘
�

(16.2b)

Or a transformer in open �� configuration where, from (15.26d),

H
B

9:
= H

B

: 9
:= �T

0H̃
;�, H

<

9:
:= �T (I� 0) H̃;�, H

<

: 9
:= �T

⇣
0(0� I) H̃; + 02

H̃
<)

⌘
�

(16.2c)

which is the same as (16.2b) with Ĥ; and Ĥ< replaced by the leakage and shunt
admittances H̃; := diag(H;0, H;1 ,0) and H̃< := diag(H<0, H<1 ,0) respectively of the
open transformer.

When HB
9:
< HB

: 9
is allowed, this model can also model transformers in other configu-

rations:

• A transformer in �. configuration with zero neutral voltage (+=
:
= 0) where, from

(15.24a),

H
B

9:
:= �T

0Ĥ
; , H

B

: 9
:= 0Ĥ

; �, H
<

9:
:= �T

Ĥ
; (�� 0), H

<

: 9
:= 0Ĥ

; (0��) + 02
Ĥ
<

(16.3a)

• A transformer in .� configuration with zero neutral voltage (+=
9
= 0) where, from

(15.25a),

H
B

9:
:= 0Ĥ

; �, H
B

: 9
:= �T

0Ĥ
; , H

<

9:
:= Ĥ

; (I� 0�), H
<

: 9
:= �T

⇣
0Ĥ
; (0�� I) + 02

Ĥ
<�

⌘
(16.3b)
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Remark 16.1 (Transformer models). 1 We emphasize that the models (16.2) (16.3)
assume that, for three-phase transformers with. configuration either in the primary
or secondary side, their neutrals are directly grounded so the neutral voltages+=

9
= 0

or +=
:
= 0.

2 While the shunt admittances H<
9:

and H
<

: 9
are typically equal for a transmis-

sion or distribution line, they are typically di�erent for a transformer. More-
over the shunt admittances (H<

9:
, H<
: 9
) of the line model of a transformer are

generally nonzero even if the shunt admittances Ĥ< := diag(H<0, H<1 , H<2) (or
H̃
< := diag(H<0, H<1 ,0) for open �� transformer) of the constituent single-phase

transformers are assumed zero.
3 The series and shunt admittance matrices

⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
in (16.2) are all

complex symmetric. None of them are symmetric for series and shunt admittances
in (16.3). Moreover the admittance matrices corresponding to � configuration in
the primary or secondary side are singular, i.e., unlike for single-phase transform-
ers, none of the admittances HB

9:
, H<
9:

, HB
: 9

, H<
: 9

may have an inverse.

For simplicity we often restrict ourselves to the special case where HB
9:
= HB

: 9
. In this

case we characterize a line ( 9 , :) by three 3⇥3 series and shunt admittance matrices⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. With HB

9:
= HB

: 9
, (16.1) reduces to

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

9:
(+: �+ 9 ) + H

<

: 9
+: (16.4a)

or in terms . 9: : 
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�
(16.4b)

which is now block symmetric (see Definition 16.1). We say . 9: has a three-phase ⇧
circuit representation in the sense that its external behavior is the same as the external
behavior (15.8a) of a three-phase transmission line; see Figure 15.2.

From (16.3) this more restrictive . 9: cannot be used to model transformers in �.
and .� configurations. It is however still widely used. We therefore often adopt this
model and will explicitly state it as assumption C16.1 below when we use it.

16.1.2 �+ relation

Associated with each bus 9 are three nodal variables
�
+ 9 , � 9 , B 9

�
2 C9 representing the

nodal voltage, current injection, and power injection respectively at the terminal of the
device connected to bus 9 . To simplify notation we assume, without loss of generality,
that at most one single-terminal device (source or load) is connected to a bus but one
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or more lines can be connected to a bus.1 The bus current and power injection (� 9 , B 9 )
at bus 9 therefore refers unambiguously to the injection from the unique device at bus
9 . As explained in Chapters 14.3.3 and 14.3.4, the external behavior of a three-phase
device is described by the relation between (+ 9 , � 9 ) or that between (+ 9 , B 9 ). We can
assume without loss of generality that these three-phase devices are ideal (see Chapter
15.1.4) and their behavior is summarized in Tables 14.3 and 14.4.

Let (+ , �, B) :=
⇣
+ 9 , � 9 , B 9 , 9 2 #

⌘
2 C3(#+1) be nodal variables over the entire net-

work. As for a single-phase network, a three-phase network model is a relation between
the terminal voltage and current (+ , �) or a relation between the terminal voltage and
power (+ , B), independent of the internal . or � configurations of the three-phase de-
vices that are connected by the lines. In this subsection we derive the linear �+ relation
defined by an admittance matrix . and show that . defines a single-phase equivalent
circuit of the three-phase network. In the next subsection we derive the B+ relation
in the form of nonlinear power flow equations. In both cases the extension of the line
model (16.1) to a network is the nodal current or power balance equations:

� 9 =
’
:: 9⇠:

� 9: , B 9 =
’
:: 9⇠:

diag
�
( 9:

�
, 9 2 #

where ( 9: :=+ 9 �H
9:

are matrices defined in (15.8b).

Network admittance matrix . .

Substitute the line currents (16.1) into the current balance equation to get

� 9 =
’
:: 9⇠:

� 9: =
’
:: 9⇠:

H
B

9:
(+ 9 �+: ) + ©≠

´
’
:: 9⇠:

H
<

9:

™Æ
¨
+ 9

Therefore

� 9 =
©≠
´
©≠
´
’
:: 9⇠:

H
B

9:

™Æ
¨
+ H

<

9 9

™Æ
¨
+ 9 �

’
:: 9⇠:

H
B

9:
+: , 9 2 # (16.5a)

where

H
<

9 9
:=

’
:: 9⇠:

H
<

9:
(16.5b)

Note that � 9 is the net current injection.2 In vector form, this relates the bus current
vector � := (�0, . . . , �# ) to the bus voltage vector + := (+0, . . . ,+# ):

� = .+ (16.6a)
1 If  three-phase devices with terminal current injections � 91, . . . , � 9 are connected to bus 9 then the

net bus injection is � 9 :=
Õ
:
� 9: . Unless otherwise specified we assume  = 1.

2 If there is a nodal shunt admittance load Hsh
9

, e.g., a capacitor bank, in addition to a device whose

terminal injection is �̃ 9 , then the net injection from bus 9 to the rest of the network is � 9 = �̃ 9 � Hsh
9
+9 .

This assumes that Hsh
9

connects bus 9 to the ground and the terminal voltage +9 is defined with respect
to the ground.
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through a 3(# +1) ⇥3(# +1) admittance matrix . where its 3⇥3 submatrices . 9: 2
C

3⇥3 are given by

. 9: :=

8>>><
>>>:

�HB
9:

, 9 ⇠ : ( 9 < :)Õ
;: 9⇠; H

B

9;
+ H

<

9 9
, 9 = :

0 otherwise

(16.6b)

The submatrices. 9: and.: 9 may be di�erent if ( 9 , :) models a three-phase transformer
in �. or .� configuration.

Definition 16.1 (Block symmetry and block row sum). Given a matrix � 2 C3=⇥3=,
partition it into = ⇥ = blocks of 3⇥ 3 submatrices. Denote by � 9: 2 C3⇥3 its 9 :th
submatrix.

1 � is called block symmetric if � 9: = �: 9 for all 9 , : = 1, . . . ,=.
2 � is said to have zero block row sums if

Õ
:
� 9: = 0 for all 9 = 1, . . . ,=.

As discussed in Chapter 15.2.3 a matrix can be symmetric but not block symmetric,
and vice versa. Symmetry of a matrix is determined only by its o�-diagonal entries
but its diagonal entries can be arbitrary. Block symmetry is determined only by its o�-
diagonal blocks but its diagonal blocks can be arbitrary. A symmetric matrix � is block
symmetric if, in addition, all its o�-diagonal blocks are themselves symmetric, i.e.,
�

T
9:

= � 9: , for all 9 < : . A block symmetric � is symmetric if, in addition, all blocks
� 9: , including the diagonal blocks, are symmetric (Exercise 16.1). We will remark on
zero block row sums below after introducing single-phase equivalent circuit.

In general an admittance matrix . defined by (16.6) may neither be block sym-
metric nor symmetric. If the series admittances HB

9:
= HB

: 9
for all lines ( 9 , :) 2 ⇢ then

the admittance matrix . is block symmetric and hence has a three-phase ⇧ circuit
representation. As in Chapter 4 we label the following assumption and will explicitly
state it when it is required:

C16.1: The series admittance matrices HB
9:
= HB

: 9
for every line ( 9 , :) 2 ⇢ , so that

the admittance matrix . is block symmetric.

If every ( 9 , :) 2 ⇢ models a transmission or distribution line or a transformer described
by (16.2), then . is block symmetric with a three-phase ⇧ circuit representation. If
some ( 9 , :) 2 ⇢ model transformers described by (16.3), however, then . is not.

The expression (4.12) for . for a single-phase network generalizes directly to the
three-phase setting. Let ⇠ 2 {�I,0, I} |# |⇥ |⇢ | be the bus-by-line incidence matrix de-
fined by:

⇠ 9; =

8>><
>>:
I if ; = 9 ! : for some bus :
�I if ; = 8! 9 for some bus 8
0 otherwise
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where I is the identity matrix of size 3. Let . B := diag
⇣
H
B

;
, ; 2 ⇢

⌘
be the 3|⇢ | ⇥ 3|⇢ |

block diagonal matrix with the series admittance matrices HB
;
2 C3⇥3 as its diagonal

submatrices. Let .< := diag
⇣
H
<

9 9
, 9 2 #

⌘
be the |# |⇥ |# | block diagonal matrix with

the total shunt admittances H<
9 9
2 C3⇥3 in (16.5b) as its diagonal submatrices. Then the

admittance matrix in (16.6b) is, when HB
9:
= HB

: 9
,

. = ⇠. B⇠T + .
<

Example 16.1. The admittance matrix . for a 3-terminal network with zero shunt
admittances is shown in Figure 16.2. ⇤
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$
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&
&
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&
&
&
&
&
&
&
&
&
&
&
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(b) Admittance matrix . .

Figure 16.2 The admittance matrix . for a 3-terminal network with no shunt admittances.

Single-phase equivalent circuit.

The 3(# +1)⇥3(# +1) admittance matrix. in (16.6) defines a single-phase equivalent
circuit of the three-phase network. Recall that a three-phase network can be represented
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by a graph ⌧ := (# ,⇢) where # is a set of # +1 three-phase buses and ⇢ is a set of

three-phase lines. The admittance matrix. induces a network graph⌧3q := (#3q
,⇢3q)

where #
3q

has 3(# + 1) buses. Each bus in #
3q

is indexed by 9q with 9 2 # ,q 2
{0,1,2} in the original network⌧. Each line in ⇢3q is indexed by ( 9q, :q0). There is a
line between bus 9q and another distinct bus :q0 in⌧3q if and only if. qq

0

9:
is nonzero.

We call this graph⌧3q the single-phase equivalent (circuit) of the three-phase network
⌧. All the single-phase modeling and analysis developed in earlier chapters can be
directly applied to this single-phase equivalent.

When shunt admittances are assumed zero, H<
9:

= H<
: 9

= 0 for all ( 9 , :) 2 ⇢ , the
3(# + 1) ⇥ 3(# + 1) admittance matrix . has zero block row sums (Definition 16.1),
because

. 9 9 =
’

::( 9,:)2⇢
H
B

9:
=

’
:

�. 9: , 9 2 #

so that
Õ
:
. 9: = 0 for all 9 . Suppose . has zero block row sums. Then . also has zero

block column sums if and only if . is block symmetric. The matrix has zero row sums
if

Õ
:,q0. 9 q,:q0 = 0 for all 9q. This is equivalent to’
:,q0

. 9 q,:q0 =
’

q
0 2{0,1,2 }

H
qq
0

9 9
�

’
::( 9,:)2⇢
q
0 2{0,1,2 }

H
qq
0

9:
= 0, 9q 2 # ⇥ {0,1,2}

i.e., zero row sums requires only that the 3⇥ 3 matrix
Õ
:
. 9: has zero row sums,

whereas zero block row sums requires that
Õ
:
. 9: is a zero matrix. Hence if a matrix

has zero block row sums, then all its row sums are zero, but the converse does not
necessarily hold.

In general . is not symmetric (nor block symmetric), i.e., it may not satisfy C4.1 as
the admittance matrix of a single-phase network. It is symmetric, and block symmetric,
under the following condition:

C16.2: In addition to C16.1, all series and shunt admittance matrices HB
9:

, H<
9:

, H<
: 9

are complex symmetric, so that the admittance matrix . is both symmetric and
block symmetric.

Suppose all transmission and distribution line models satisfy C16.2 (in particular, it
satisfies assumptions C15.1 and C15.2). If every ( 9 , :) 2 ⇢ models a transmission
or distribution line or a transformer described by (16.2), then . is not only block
symmetric, but also symmetric (hence satisfying C4.1). Therefore . has a three-phase
⇧ circuit representation and the admittance matrix of its single-phase equivalent is
complex symmetric. If some ( 9 , :) 2 ⇢ models transformers described by (16.3),
however, then . is neither symmetric nor block symmetric.
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Radial network.

Even when the multiphase network ⌧ is radial (i.e., with tree topology), its single-
phase equivalent ⌧3q is a meshed network (i.e., has cycles), but in that case,
⌧

3q has a radial macro-structure in which each line is represented as a clique
(complete subgraph). Specifically ⌧

3q has a maximal clique consisting of the setn
9q, :q0 2 #3q

: q,q0 2 {0,1,2}
o

of buses if and only if ( 9 , :) is a line in ⌧; see

Figure 16.3. The corresponding principal submatrix .
⌧

3q ( 9 , :) 2 C6⇥6 of . is:

ja jb jc 

kb kc ka 

Figure 16.3 A clique of ⌧3q corresponding to line ( 9 , :) in ⌧.

.
⌧

3q ( 9 , :) =

. 9 9 . 9:

.: 9 .::

�

We will explain in Chapter ?? that ⌧3q is a chordal graph which can be exploited to
simplify the semidefinite relaxation of optimal power problems.

16.1.3 Invertibility of . , .22 and ./.22

In this subsection we study the invertibility and properties of . , .22 and its Schur
complement ./.22. These results extend those in Chapter 4.2.3 from single-phase to
three-phase networks.

Invertibility of . .

Recall that a real matrix⌧ is positive semidefinite (or positive definite), denoted⌧ ⌫ 0
(or ⌧ � 0), if ⌧ is symmetric and ET

⌧E � 0 (or ET
⌧E > 0) for all real vectors E (see

Remark A.1 in Appendix A.5). Under assumption C16.2 (HB
9:

= HB
: 9

, H<
9:

and H<
: 9

are

complex symmetric) the admittance matrix . 2 C3(#+1)⇥3(#+1) is both symmetric and
block symmetric. Write admittances in terms of their real and imaginary parts, HB

9:
=
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6
B

9:
+ i1

B

9:
, H<

9:
= 6<

9:
+ i1

<

9:
, and H<

: 9
= 6<

: 9
+ i1

<

: 9
. Consider the following conditions

on the conductances 6B
9:

,6<
9:

,6<
: 9
2 R3⇥3:

C16.3: For all lines ( 9 , :) 2 ⇢ , 6B
9:
⌫ 0, 6<

9:
⌫ 0, 6<

: 9
⌫ 0.

C16.4a: For all buses 9 2 # , 6<
9 9

:=
Õ
:::⇠ 9 6

<

9:
� 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 6<
9:
� 0

C16.4b: For all lines ( 9 , :) 2 ⇢ , 6B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 6<
9
0
:
0 � 0.

C16.4c: For all lines ( 9 , :) 2 ⇢ , 6B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that the intersection of the null spaces of 6<
9
0
:
0 and 6<

:
0
9
0 is {0}.

Condition C16.4b is a special case of C16.4c which does not require positive definite-
ness of 6<

9:
. The next result extends Theorems 4.2, 4.3, and 4.9 in Chapter 4.2.3 from

single-phase to three-phase networks.

Theorem 16.1. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. If the conductance matrices 6B
9:

,6<
9:

,6<
: 9
2 R3⇥3 satisfy

conditions C16.3 and one of C16.4a, C16.4b, C16.4c, then

1 The admittance matrix .�1 2 C3(#+1)⇥3(#+1) exists and is symmetric. Moreover
both Re(. ) � 0 and Re(.�1) � 0.

In addition if . =:

.11 .12

.
T
12 .22

�
with invertible .22, then

2. The Schur complement./.22 :=.11�.12.
�1
22 .

T
12 of.22 is symmetric and invertible.

Moreover both Re(./.22) � 0 and Re
�
(./.22)�1� � 0.

Proof Let ⌧ := Re(. ) 2 R3(#+1)⇥3(#+1) . We will show that ⌧ � 0. The claims then
follow from Theorems 4.2 and 4.9.

Fix any real vector d 2 R3(#+1) and decompose it into d =: (d 9 , 9 2 #) with d 9 2 R3.
We have using (16.6b) and (16.5b)

d
T
⌧d =

’
9

’
:::⇠ 9

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d:

⌘
+

’
92#

d
T
9
6
<

9 9
d 9 (16.7a)

=
’

( 9,:)2⇢

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d: � dT

:
6
B

: 9
d 9 + dT

:
6
B

: 9
d:

⌘
+

’
9

’
:::⇠ 9

d
T
9
6
<

9:
d 9

(16.7b)

=
’

( 9,:)2⇢
(d 9 � d: )T

6
B

9:
(d 9 � d: ) +

’
( 9,:)2⇢

⇣
d

T
9
6
<

9:
d 9 + dT

:
6
<

: 9
d:

⌘
(16.7c)

where the last equality follows because 6B
9:

= 6B
: 9

for all ( 9 , :) 2 ⇢ by C16.2. Since

6
B

9:
,6<
9:

,6<
: 9
2 R3⇥3 are positive semidefinite for all lines ( 9 , :) 2 ⇢ by C16.3, every
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summand is nonnegative and hence dT
⌧d = 0 if and only if every summand is zero.

We examine each of the three cases:

• C16.4a holds: Then for all buses 9 2 # , dT
9
6
<

9 9
d 9 > 0 unless d 9 = 0. Therefore for

the second summation in (16.7a) to be zero we must have d 9 = 0 for all 9 2 # .
This implies that ⌧ � 0.

• C16.4b holds: For the first summation in (16.7c) to be zero we must have d 9 = d:
for all ( 9 , :) 2 ⇢ . Since the network is connected, this implies that d 9 = d1 for all
9 2 # . The second summation in (16.7b) then becomes, if d1 < 0,

’
9

’
:::⇠ 9

d
T
9
6
<

9:
d 9 = d

T
1
©≠
´
’
9

’
:::⇠ 9

6
<

9:

™Æ
¨
d1 � d

T
16
<

9
0
:
0 d1 > 0

Therefore dT
⌧d > 0 unless d = 0, i.e., ⌧ � 0.

• C16.4c holds: As for the case of C16.4b, we must have d 9 = d1 for all 9 2 # . Then
the second summation in (16.7c) becomes, if d1 < 0,’

( 9,:)2⇢

⇣
d

T
9
6
<

9:
d 9 + dT

:
6
<

: 9
d:

⌘
� d

T
1

⇣
6
<

9
0
:
0 + 6<

:
0
9
0

⌘
d1 > 0

where the last inequality follows because 6<
9
0
:
0 and 6<

:
0
9
0 are positive semidefinite

and their null spaces intersect only at the origin. Therefore dT
⌧d > 0 unless d = 0,

i.e., ⌧ � 0.

Hence in all three cases ⌧ is positive definite. Since . is complex symmetric and .22

is nonsingular by assumption, Theorems 4.2 and 4.9 complete the proof. ⇤

Consider the following conditions on the conductances 1B
9:

,1<
9:

,1<
: 9
2 R3⇥3:

C16.5: For all lines ( 9 , :) 2 ⇢ , 1B
9:
� 0, 1<

9:
� 0, 1<

: 9
� 0.

C16.6a: For all buses 9 2 # , 1<
9 9

:=
Õ
:::⇠ 9 1

<

9:
� 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 1<
9:
� 0

C16.6b: For all lines ( 9 , :) 2 ⇢ , 1B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 1<
9
0
:
0 � 0.

C16.6c: For all lines ( 9 , :) 2 ⇢ , 1B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that the intersection of the null spaces of 1<
9
0
:
0 and 1<

:
0
9
0 is {0}.

Condition C16.6b is a special case of C16.6c which does not require negative definite-
ness of 1<

9:
. The next result extends Theorems 4.2, 4.4, and 4.9 in Chapter 4.2.3 from

single-phase to three-phase networks. Its proof is left as Exercise 16.2.

Theorem 16.2. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. If the susceptance matrices 1B
9:

,1<
9:

,1<
: 9
2 R3⇥3 satisfy

conditions C16.5 and one of C16.6a, C16.6b, C16.6c, then
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1 The admittance matrix .�1 2 C3(#+1)⇥3(#+1) exists and is symmetric. Moreover
Im(. ) � 0 and Im(.�1) � 0.

In addition if . =:

.11 .12

.
T
12 .22

�
with invertible .22, then

2. The Schur complement./.22 :=.11�.12.
�1
22 .

T
12 of.22 is symmetric and invertible.

Moreover Im(./.22) � 0 but Im
�
(./.22)�1� � 0.

⇤

The conditions in Theorem 16.1 not only ensure Re(. ) � 0 and those in Theorem
16.2 not only ensure Im(. ) � 0. Each set of conditions also ensures UH

.U < 0 for any
nonzero U 2 C3(#+1) (Exercise 16.3). Since a necessary condition for . to be singular
is the existence of a nonzero U with UH

.U = 0, these conditions imply the invertibility
of . , as expected, and extend the su�cient conditions in Theorems 4.3 and 4.4 to
three-phase networks.

Remark 16.2. The admittance matrix of a three-phase transformer involving � con-
figuration is singular (see (15.16) or (15.36)). This causes the admittance matrix . of
a network that contains such transformers to be singular. A proposal in the literature is
to add a small shunt admittance (diagonal entries) to the admittance matrix of such a
transformer to make it nonsingular. ⇤

Invertibility of .22 when H<
9:
= H<

: 9
= 0.

Let � ( # and .� be the 3|�| ⇥ 3|�| principal submatrix of . consisting of row and
column blocks. 9: with 9 , : 2 �. Suppose the shunt admittances are zero, H<

9:
= H<

: 9
= 0

so that the admittance matrix. has zero block row sums and is not invertible. The next
result provides a set of simple su�cient conditions for a principal submatrix .� to be
invertible when � is a strict subset of # . Its proof is similar to those of Theorems 4.5
and 4.6 and left as Exercise 16.4.

Theorem 16.3. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. Suppose H<
9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . Consider

the principal submatrix .� 2 C3 |� |⇥3 |� | for a strict subset � ( # .

1. If 6B
9:
� 0 for all lines ( 9 , :) 2 ⇢ then .�1

�
exists and is symmetric. Moreover both

Re(.�) � 0 and Re(.�1
�
) � 0.

2. If 1B
9:
� 0 for all lines ( 9 , :) 2 ⇢ then .�1

�
exists and is symmetric. Moreover

Im(.�) � 0 but Im(.�1
�
) � 0.

Even when not all 6B
9:

are positive definite and not all 1B
9:

are negative definite the
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admittance matrix. can still be invertible because they cannot be zero simultaneously.
The next result extends Theorem 4.8 from single-phase to three-phase setting.

Theorem 16.4. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. Suppose H
<

9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . If

6
B

9:
⌫ 0 and 1B

9:
� 0 for all lines ( 9 , :) 2 ⇢ then the principal submatrix.� 2 C3 |� |⇥3 |� |

for a strict subset � ( # satisfies:

1 Re(.�) ⌫ 0, Im(.�) � 0.
2 Moreover Re(.�)� Im(.�) � 0.
3 .

�1
�

exists and is symmetric.

Proof The proof of Theorem 4.8 for single-phase network shows that⌧� is diagonally
dominant since 6B

9:
2 R are nonnegative and hence its eigenvalues are nonnegative by

the the Ger�gorin disc theorem. In the three-phase case, we cannot use this argument
since not every element of the 3 ⇥ 3 conductance matrix 6

B

9:
is nonnegative. We

will use the argument in the proof of Theorem 16.1 (see (16.7)): for any real vector
d =: (d 9 , 9 2 �) with d 9 2 R3 we have, using ⌧� := Re(.�),

d
T
⌧�d =

’
9

’
:::⇠ 9

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d:

⌘

=
’

( 9,:)2⇢

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d: � dT

:
6
B

: 9
d 9 + dT

:
6
B

: 9
d:

⌘

=
’

( 9,:)2⇢
(d 9 � d: )T

6
B

9:
(d 9 � d: )

where the last equality has used 6B
9:
= 6B

: 9
for all ( 9 , :) 2 ⇢ from C16.2. Since 6B

9:
⌫ 0,

d
T
⌧�d � 0 for any d, i.e., ⌧� ⌫ 0. Similar, using ⌫� := Im(.�), we have

d
T
⌫�d =

’
9

’
:::⇠ 9

⇣
d

T
9
1
B

9:
d 9 � dT

9
1
B

9:
d:

⌘
=

’
( 9,:)2⇢

(d 9 � d: )T
1
B

9:
(d 9 � d: )

Therefore dT
⌫�d  0 since 1B

9:
� 0, i.e., ⌫� � 0. This implies that ⌧��⌫� ⌫ 0.

We now show that, indeed, ⌧� � ⌫� � 0 because the network is connected and
� ⇢ # is a strict subset. The argument is the same as that for Theorem 4.8 for single-
phase networks. For a 3=⇥ 3= matrix " , let " [ 9 , :] denote the 3⇥ 3 submatrix of
" consisting of the 9 th row block and the :th row column. Since ⌧�� ⌫� is real
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symmetric, consider, for any nonzero real vector d 2 R3 |� | ,

d
T (⌧��⌫�)d =

’
92�

’
:2�

d
T
9
(⌧�[ 9 , :] �⌫�[ 9 , :])d:

=
’
92�

’
:2�:

( 9,:)2⇢

d
T
9
(�6B

9:
+ 1B

9:
)d: +

’
92�

d
T
9

©≠≠≠
´

’
:2�:

( 9,:)2⇢

(6B
9:
� 1B

9:
) +

’
:8�:

( 9,:)2⇢

(6B
9:
� 1B

9:
)
™ÆÆÆ
¨
d 9

=
’
9,:2�:
( 9,:)2⇢

�
d 9 � d:

�T (6B
9:
� 1B

9:
)
�
d 9 � d:

�
+

’
92�

d 9⌧ 9 d
T

where the third equality has used 6
B

9:
= 6B

: 9
for all ( 9 , :) 2 ⇢ from C16.2. Here

⌧ 9 :=
Õ
:8�:( 9,:)2⇢ (6B9: � 1B9: ) for 9 2 � and the summation is not vacuous because

the network is connected and � ( # . For every line ( 9 , :) 2 ⇢ , HB
9:
< 0 and hence

6
B

9:
� 1B

9:
� 0 since 6B

9:
⌫ 0 and 1B

9:
⌫ 0. This implies ⌧ 9 � 0 as well for all 9 2 �.

Therefore for dT (⌧��⌫�)d > 0 for any real vector d < 0, i.e., ⌧��⌫� � 0.

Finally⌧��⌫� � 0 implies that.� is nonsingular (it is clear that.�1
�

is symmetric
if it exists). The argument is exactly the same as that for Theorem 4.8 for single-phase
networks. ⇤

Application: admittance matrix . identification.

Uniform lines.

Suppose all lines are of the same type specified by an impedance matrix H�1 per unit
length. These lines di�er only in their lengths. We will call H the unit admittance.3 We
show that this property is preserved under Schur complement. It means that the e�ective
line admittances of the Kron-reduced admittance matrix ./.� are also specified by
the unit admittance H. This assumption makes the iterative construction of the Schur
complement particularly simple.

Consider any 3(# + 1) ⇥ 3(# + 1) complex symmetric matrix . on a graph ⌧ :=
(# ,⇢) where its 3⇥3 (8, 9)th blocks . [8, 9] are given by:

. [8, 9] =

8>><
>>:
�`8 9 H (8, 9) 2 ⇢�Õ

::(8,:)2⇢ `8:
�
H 8 = 9

0 otherwise
(16.8)

where H 2C3⇥3 is complex symmetric. Suppose Re(H) � 0 and `8 9 > 0 for all (8, 9) 2 ⇢0.
Then Theorem 4.2 implies that H�1 exists, is symmetric, and Re(H�1) � 0. Kron
reduction preserves this structure.

Theorem 16.5. Suppose Re(H) � 0 and `8 9 > 0 for all (8, 9) 2 ⇢0 in the complex

3
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symmetric matrix . defined in (16.8). Let . =:

.11 .12

.
T
12 .22

�
with a 3=⇥3= nonsingular

submatrix .22, 1  =  # .

1. The 3⇥ 3 (8, 9)th blocks (./.22) [8, 9] of the Schur complement ./.22 of .22 of .
are given by

(./. ) [8, 9] =

8>><
>>:
� ˜̀8 9 H 8{ 9

(Õ
::8{: ˜̀8: ) H 8 = 9

0 otherwise
(16.9)

for some ˜̀8 9 = ˜̀ 98 > 0. Here 8 { 9 if and only if there is a path in the underlying
graph ⌧ connecting nodes 8 and 9 .

2. If the network is connected and the admittance matrix . satisfies C16.2, then
(./.22)�1 exists and is symmetric, and both Re(./.22) � 0 and Re(./.22)�1 � 0.

Proof The Schur complement./.22 is the admittance matrix describing the e�ective
connectivity between nodes 1, . . . ,# � = + 1 obtained by eliminating interior nodes
# � =+ 2, . . . ,# + 1 by Kron reduction. We follow the approach of [169] to prove the
theorem by induction on the interior nodes to be Kron reduced one by one. Define

�
0 := . , �

1 := �
0/�0 [=,=], · · · �

= := �
=�1/�=�1 [# �=+2,# �=+2] = ./.22

i.e., �;+1 is the admittance matrix for the graph after the last node in �; has been Kron
reduced, and hence ./.22 = �=. Define the set of lines in the graph underlying �

0,
�

1, . . . , �= by

⇢
0 := ⇢ , ⇢

; :=
�
(8, 9) : �; [8, 9] < 0

 
, ; = 1, . . . , :

Hence these sets are well-defined given the matrices �0, �1, . . . , �=. For 0 < ; < =, let
the induction hypothesis be

�
; [8, 9] =

8>>><
>>>:

�`;
8 9
H (8, 9) 2 ⇢ ;⇣Õ

::(8,:)2⇢; `
;

8:

⌘
H 8 = 9

0 otherwise

(16.10)

for some `;
8 9
= `;

98
> 0. Clearly �0 satisfies (16.10). Suppose �; satisfies (16.10). We

now prove that �;+1 := �;/�; [# � ; +1,# � ; +1] satisfies (16.10).

The 3⇥3 (8, 9)th block �;+1 [8, 9] is given by

�
;+1 [8, 9] = �

; [8, 9] � �; [8,# � ; +1]
⇣
�
; [# � ; +1,# � ; +1]

⌘�1
�
; [ 9 ,# � ; +1]

(16.11)

We consider 6 cases by substituting the induction hypothesis (16.10) into (16.11):

1. If (8, 9) 2 ⇢ ; but either (8,# � ; + 1) 8 ⇢ ; or ( 9 ,# � ; + 1) 8 ⇢ ; then, substituting
the induction hypothesis (16.10) into (16.11), we have �;+1 [8, 9] = �`;+1

8 9
H where

`
;+1
8 9

:= `;
8 9
> 0.
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2. If (8, 9) 8 ⇢ ; but both (8,# � ; +1) 2 ⇢ ; and ( 9 ,# � ; +1) 2 ⇢ ; then

�
;+1 [8, 9] = �`;

8 (#�;+1) H
©≠
´

’
::(:,#�;+1)2⇢;

`
;

: (#�;+1) H
™Æ
¨
�1

`
;

9 (#�;+1) H = �`;+1
8 9
H

where

`
;+1
8 9

:= `
;

8 (#�;+1) `
;

9 (#�;+1)
©≠
´

’
::(:,#�;+1)2⇢;

`
;

: (#�;+1)
™Æ
¨
�1

> 0

3. If (8, 9) 2 ⇢ ; , (8,# � ; +1) 2 ⇢ ; and ( 9 ,# � ; +1) 2 ⇢ ; then

�
;+1 [8, 9] := �`;

8 9
H � `;

8 (#�;+1) H
©≠
´

’
::(:,#�;+1)2⇢;

`
;

: (#�;+1) H
™Æ
¨
�1

`
;

9 (#�;+1) H

= �`;+1
8 9
H

where

`
;+1
8 9

:= `
;

8 9
+ `;

8 (#�;+1) `
;

9 (#�;+1)
©≠
´

’
::(:,#�;+1)2⇢;

`
;

: (#�;+1)
™Æ
¨
�1

> 0

4. If 8 = 9 but (8,# � ; + 1) 8 ⇢ ; then �;+1 [8, 8] =
⇣Õ

::(8,:)2⇢;+1 `
;+1
8:

⌘
H where `;+1

8:
:=

`
;

8:
> 0.

5. If 8 = 9 and (8,# � ; +1) 2 ⇢ ; then

�
;+1 [8, 8] := ©≠

´
’

::(8,:)2⇢;
`
;

8:

™Æ
¨
H � `;

8 (#�;+1) H
©≠
´

’
::(:,#�;+1)2⇢;

`
;

: (#�;+1) H
™Æ
¨
�1

`
;

8 (#�;+1) H

= ©≠
´

’
::(8,:)2⇢;+1

`
;+1
8:

™Æ
¨
H

where `;+1
8:

:= `;
8:

> 0 for (8, :) 2 ⇢ ; and : = 1, . . . ,# � ; +1, and

`
;+1
8 (#�;+1) := `

;

8 (#�;+1)

 
1 �

`
;

8 (#�;+1)Õ
::(:,#�;+1)2⇢; `

;

: (#�;+1)

!
> 0

6. Otherwise, 8 < 9 and (8, 9) 8 ⇢ ; and �;+1 [8, 9] = 0.

This completes the induction and the proof of part 1. Part 2 follows from Re(H) � 0
and Theorem 16.1. ⇤
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16.1.4 B+ relation

Power flow equations.

The power flow equations that relate bus injections B :=
⇣
B 9 , 9 2 #

⌘
and voltages

+ :=
⇣
+ 9 , 9 2 #

⌘
can be obtained by applying the derivation for single-phase systems

to the single-phase equivalent network ⌧3q . In particular the bus injection model in
complex form is defined by the following power flow equation that expresses power
balance at each bus 9q in terms of the elements . 9 q,:q0 of the 3(# + 1) ⇥ 3(# + 1)
admittance matrix . defined in (16.6):

B
q

9
=

’
:2#

q
0 2{0,1,2 }

.
H
9 q,:q0+

q

9

⇣
+
q
0

:

⌘H
, 9 2 # , q 2 {0,1,2} (16.12a)

This directly generalizes (4.26b) from the single-phase setting to the three-phase
setting. To generalize (4.26a) to the three-phase setting note that

B 9 =
’
:: 9⇠:

diag
⇣
+ 9 �

H
9:

⌘
, 9 2 #

where B 9 ,+ 9 , � 9: 2 C3 are power injections, voltages, and line currents in all phases.
We then have from (15.8)

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (16.12b)

Power flow analysis and optimization for unbalanced three-phase networks can be
conducted using both forms of the bus injection model (16.12). In particular (16.12b)
will be used in Chapter ?? to prove the equivalence of the branch flow model and the
bus injection model (Theorem 17.1). The model (16.12) does not require condition
C16.1 nor C16.2.

16.1.5 Overall model

Most power flow analysis or optimization applications involve three-phase devices,
either in . or � configuration, connected by three-phase lines. The lines may not be
phase-decoupled and the sources and loads may not be balanced. In this subsection
we compose an overall model consisting of the device modes of Chapter 14.3 and the
network equations of this section. We use this overall model to formulate a general
three-phase analysis problem in the next section.

The overall model consists of:

1 A network model that relates terminal voltage, current, and power (+ , �, B). Any
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equivalent model can be used, whichever is convenient for the problem under
study, including:
• The (linear) current balance equation (16.5)(16.6).
• The (quadratic) power flow equation that defines the BIM model (16.12).

2 A device model for each three-phase device 9 . For ideal devices, this can either
be:
• Its internal model (14.29) and the conversion rules (14.8) and (14.9)(14.10); or
• Its external model summarized in Tables 14.3 and 14.4 when only terminal

quantities are needed.
For non-ideal devices, this can either be:
• Its internal model summarized in Table 14.2 and the conversion rules (14.8) and

(14.9)(14.10); or
• Its external model summarized in Table 14.2 when only terminal quantities are

needed.

If only voltage sources, current sources and impedances are involved then the overall
model is linear, consisting of the nodal current balance equation (16.5)(16.6) and linear
device models. If power sources are also involved then, even though (16.5)(16.6) can
still be used as the network model, the overall model will be nonlinear because of
nonlinear power source models.

16.2 Three-phase analysis

A device model relates its internal and terminal variables. A network equation relates
the terminal variables of these devices. A typical three-phase analysis problem is:
given a collection of voltage sources, current sources, power sources and impedances
connected by three-phase lines, compute a certain set of external and internal variables.
We first illustrate this in Chapter 16.2.1 using examples. We then formulate in Chapter
16.2.2 a general three-phase analysis problem and outline in Chapter 16.2.3 a solution
strategy based on intuitions from these examples.

16.2.1 Examples

Three-phase analysis or optimization problems in practice are large-scale and can only
be solved numerically. The goal of analyzing small examples is to gain intuition on
how to specify these problems using the models developed in this chapter and illustrate
their structure.

Consider a network of three-phase sources and impedances connected by three-
phase lines. Assume without loss of generality that there is exactly one device at each
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bus 9 . The quantities of interest include the internal variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V 9
⌘

and the terminal variables
�
+ 9 , � 9 , B 9 ,W 9

�
at each bus 9 . The first set of examples is

driven by voltage and current sources and the second set by power sources as well. In
these examples we specify the parameters of a set of (ideal) devices and our objective
is to compute the remaining internal and terminal voltages, currents, and powers.

The general analysis problem we formulate in Chapter 16.2.3 will specify W 9 for all
voltage sources. The first example shows how W 9 arises in a circuit.

Example 16.2 (Reference voltage and W 9 ). We start with a single-phase circuit shown
in Figure 16.4(a) where the source can be a voltage, current, or power source, the

(a) Single-phase network (b) Three-phase network

Figure 16.4 Reference voltage and constant W 9

load is an impedance I: , and the line is a series impedance I 9: . The terminal voltages�
+ 9 ,+: ,+6

�
are defined with respect to an arbitrary but fixed reference point. The

defining equations are

+ 9 � +: = I 9: � 9: , +: �+6 = I: � 9:

Suppose the source is a current source with a given � 9 from 6 to terminal 9 . Then the
solution is:

� 9: = � 9 , + 9 =
�
I 9: + I:

�
� 9 + +6 +: = I:� 9 + +6

The terminal voltages depend on the choice of the reference point through the ground
voltage+6. For this example, W 9 = W: =+6. In particular, if W 9 at the source is specified
then W: at the load is fixed and the voltages (+ 9 ,+: ) are uniquely determined. If we
choose the reference point to be the ground then W 9 = W: =+6 = 0.

Consider now a three-phase system shown in Figure 16.4(b) where a device may
or may not have a neutral line and the neutrals may or may not be grounded, directly
or through an impedance. The voltage conversion rule between internal and terminal
voltages for . and � configured devices is (14.8)(14.9), reproduced here:

+ 9 = +
.

9
+ W 91, +

�
9

= �+ 9 or equivalently + 9 = �†+�
9
+ W 91

For . -configured devices, W 9 = +=
9
, i.e., their neutral voltages with respect to the

reference point. In general we need two of
⇣
+ 9 ,+.

9
,W 9

⌘
to determine the third. For �-

configured devices, W 9 can be determined by specifying one of
⇣
+
0

9
,+1
9
,+2
9

⌘
for each
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device 9 . Knowing the vector + 9 is su�cient to determine both the internal voltage
+
�
9

and W 9 . Knowing +�
9

however is not su�cient to determine + 9 without W 9 . This is
studied in detail in the next few examples. ⇤

Voltage and current sources.

For a network driven by constant voltage and current sources without power sources,
both the device models and the network equation � = .+ are linear. We will therefore
focus on linear analysis to compute terminal and internal voltages and currents. Given

(+ 9 , � 9 ) and
⇣
+
. /�
9

, �. /�
9

⌘
, external and internal powers can be computed. As we will

see, the key step in our analysis is to solve for the internal currents �. /�
:

of all
impedances : , together with other quantities such as the terminal voltages + 9 of
current sources 9 , using the network equation, internal models of impedances and the
voltage and current conversion rules. All other variables can then be derived. This
solution strategy is extended in Chapter 16.2.3 to general three-phase networks.

Example 16.3 (Generator/load in . configuration). Consider the system in Figure
16.5 where an (ideal) voltage source is connected through a three-phase line to an
impedance, both in . configuration. We assume the neutrals are not grounded and
there is not a neutral line. Suppose the following are specified:

• Voltage source
⇣
⇢
.

9
,W 9 :=+=

9

⌘
.

• Impedance
�
I
.

:
,W: :=+=

:

�
.

• Line parameters
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. In particular assumption C16.1 is satisfied.

Derive the terminal and internal voltages and currents
�
+: , �: ,+.

:
, �.
:

�
of the impedance.

Figure 16.5 Example 16.3: A . -configured generator connected through a three-phase line to a
. -configured impedance load.

Solution. The terminal voltages (+ 9 ,+: ) and current injections (� 9 , �: ) are related
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according to (16.5):

� 9 = H
B

9:

�
+ 9 �+:

�
+ H

<

9:
+ 9 (16.13a)

�: = H
B

9:

�
+: �+ 9

�
+ H

<

: 9
+: (16.13b)

From Table 14.3, the external models for the ideal voltage source and impedance in .
configuration are

+ 9 = ⇢
.

9
+W 9 , +: = �I.

:
�: +W:1 (16.13c)

This is a system of 12 linear equations in 12 unknowns
�
+ 9 , � 9

�
and (+: , �: ).

Substituting+ 9 from (16.13c) and the current conversion rule �.
:
=��: into (16.13b)

we have

��.
:

= �HB
9:

⇣
⇢
.

9
+W 9

⌘
+

⇣
H
B

9:
+ H<

: 9

⌘
+: (16.14a)

Substituting +: from (16.13c) we have✓⇣
H
B

9:
+ H<

: 9

⌘�1
+ I.

:

◆
�
.

:
=

⇣
H
B

9:
+ H<

: 9

⌘�1
H
B

9:
+ 9 � W:1 (16.14b)

Hence

�
.

:
= ��: =

⇣
Î 9: + I.:

⌘�1
Î 9: H

B

9:
+ 9 � W:

⇣
Î 9: + I.:

⌘�1
1

=
⇣
I
.

:
+ I

B

9:
+ I

B

9:
H
<

: 9
I
.

:

⌘�1
+ 9 � W:

⇣
Î 9: + I.:

⌘�1
1

where IB
9:

:=
⇣
H
B

9:

⌘�1
, Î 9: :=

⇣
H
B

9:
+ H<

: 9

⌘�1
and + 9 = ⇢.

9
+W 9 . From (16.13c)

+
.

:
= I

.

:
�
.

:
= I

.

:

⇣
I
.

:
+ I

B

9:
+ I

B

9:
H
<

: 9
I
.

:

⌘�1
+ 9 � W: I.:

⇣
Î 9: + I.:

⌘�1
1

+: = +
.

:
+W:1 = I

.

:

⇣
I
.

:
+ I

B

9:
+ I

B

9:
H
<

: 9
I
.

:

⌘�1
+ 9 + W:

✓
I�

⇣
Î 9: + I.:

⌘�1
◆

1

⇤

In Example 16.3 the neutral voltages W 9 ,W: are given explicitly. Often some of them
are not explicitly given but additional information is available to indirectly specify
them, i.e., to either compute their values, provide additional equations, or eliminate
them in terms of other variables. For instance, if a neutral at bus 9 is grounded with zero
grounding impedance and voltages are defined with respect to the ground then W 9 = 0.
The next two examples study this in more detail. In Example 16.4, W: of the impedance
I
.

:
is not explicitly given, but the additional information shows that its terminal voltage

and current satisfy+: = �/.
:
�: ; see (16.15). This means that the external model of the

impedance is equivalent to that of an impedance with an e�ective internal impedance
/
.

:
with a known neutral voltage W: = 0. (See also Exercise 16.7 for another four-wire

example).
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Example 16.4 (Indirect specification of W: = +=
:

). Repeat Example 16.3 with the
modification that the impedance is specified only by I.

:
(i.e., W: is not specified), and

that the neutral of the impedance is connected through a given impedance I=
:

to the
ground and not to the voltage source.

Solution. The equations (16.13) in Example 16.3 is now a system of 4 vector linear
equations in 4 vector unknowns

�
+ 9 ,+: , � 9 , �:

�
and a scalar unknown, the unspecified

neutral voltage W: := +=
:

of the impedance, one more unknown than in Example 16.3.
Since the neutral of the impedance is connected only to the ground (and not to the
voltage source) through the impedance I=

:
, KCL and Ohm’s law provide the additional

equation

W: := +
=

:
= �I=

:

⇣
1

T
�:

⌘

Substituting into W: in (16.13c) we have +: = �I.
:
�: � I=

:
11

T
�: . Hence the external

device model (16.13c) in Example 16.3 can be replaced by

+ 9 = ⇢
.

9
+W 91, +: = �

⇣
I
.

:
�: + I=:11

T
⌘

|             {z             }
/
.

:

�: (16.15)

It says that the external behavior of the impedance I.
:

when its neutral is grounded
through I

=

:
is equivalent to an impedance with an e�ective admittance /.

:
that is

grounded directly so that W: := +=
:
= 0. The same computation leads to the same

solution for (+: , �: ) with the following replacement:

I
.

:
! /

.

:
, W: ! 0

⇤

The next example illustrates the case where the neutrals are not grounded but
connected directly to each end of a four-wire line (also see Exercise 16.7). In this
case, neither W 9 nor W: needs to be explicitly specified and can be determined from
the network equation � = .+ . This is an example where W 9 of a voltage source cannot
be specified arbitrarily but is constrained by the network equation, in contrast to the
three-wire models of Examples 16.3 and 16.4. This is because, when the neutral of the
voltage source 9 is not grounded nor connected to bus : , the current � 9 is determined
only by (+ 9 ,+: ) through (16.13a) and W 9 can be arbitrary. With the neutral wire,
the additional constraint �=

0
9
= 1

T
� 9 determines W 9 uniquely. Similarly for W: for the

impedance.

Example 16.5 (Four-wire model). Repeat Example 16.3 with the modification that
the neutrals of both devices are ungrounded and are connected to the neutral wires at
each end of a 4-wire line; see Figure 16.6. Suppose the following are specified:

• Voltage source ⇢.
9
.
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• Impedance I.
:
.

• Line parameters
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. In particular assumption C16.1 is satisfied.

Note that neither W 9 nor W: is explicitly specified.

Figure 16.6 Example 16.5: A . -configured generator connected through a four-wire line to a
. -configured impedance load.

Solution. To indicate the direction of internal currents on the neutral lines, we will use
= to denote the internal neutral of a device and =0 to denote the external terminal of
the neutral line. In this example, =0 = = in the sense that +=

0
=

9
=+=

0
=

:
= 0. See Exercise

16.7 for the case where the neutrals of the voltage source and the load are connected

through internal impedances
⇣
I
=

9
, I=
:

⌘
to each end of the four-wire line, so

⇣
+
=
0
=

9
,+=

0
=

:

⌘
may not be zero.

Define the terminal voltages (with respect to a common reference point) and currents
in C4:

+̂ 9 :=

266666664

+
0

9

+
1

9

+
2

9

+
=
0
9

377777775
, +̂: :=

26666664

+
0

:

+
1

:

+
2

:

+
=
0
:

37777775
, �̂ 9 :=

266666664

�
0

9

�
1

9

�
2

9

�
=

9

377777775
, �̂: :=

26666664

�
0

:

�
1

:

�
2

:

�
=

:

37777775
As noted above, I=

:
= 0 implies that W 9 :=+=

9
=+=

0
9

and W: :=+=
:
=+=

0
:

are variables to

be determined. These terminal variables are related by �̂ = .̂+̂ as in (16.13a) (16.13b),
except that the admittance matrices are replaced by their four-wire counterparts:

�̂ 9 = Ĥ
B

9:

�
+̂ 9 � +̂:

�
+ Ĥ

<

9:
+̂ 9 , �̂: = Ĥ

B

9:

�
+̂: � +̂ 9

�
+ Ĥ

<

: 9
+̂: (16.16a)

The external model of a four-wire voltage source in. configuration is, since the neutrals
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are ungrounded and connected to each other,

+̂ 9 =

266666664

⇢
0=

9
++=

9

⇢
1=

9
++=

9

⇢
2=

9
++=

9

+
=

9

377777775
=


⇢
.

9

0

�
|{z}
⇢̂
.

9

+ W 9 1̂ =: ⇢̂
.

9
+ W 9 1̂, �

=

9
= 1

T
� 9 (16.16b)

where 1̂ is the vector of all 1s of size 4 and � 9 := (�0
9
, �1
9
, �2
9
). Similarly the internal

model of a four-wire impedance in. configuration is, since the neutrals are ungrounded
and connected to each other,

+̂: =

26666664

I
0=

:
�
0=

:

I
1=

:
�
1=

:

I
2=

:
�
2=

:

0

37777775
+ W: 1̂ = �


I: 0
0 0

�
�̂: + W: 1̂, �

=

:
= 1

T
�: (16.16c)

This is a set of 18 linear equations in 18 unknowns
�
+̂ 9 , �̂ 9 ,W 9

�
and

�
+̂: , �̂: ,W:

�
. It

replaces (16.13) when neutrals are ungrounded and unconnected to each other and
W 9 ,W: must be given explicitly. It can be solved as in Example 16.3.

Exercise 16.6 expresses (W 9 ,W: ) in terms of the phase voltages and currents�
+ 9 ,+: , � 9 , �:

�
. ⇤

The next example considers the setup of Example 16.3 in � configuration when
the load is supplied by a voltage source. Exercise 16.8 considers the � configuration

when the load is supplied by a current source. A voltage source
⇣
⇢
�
9
,W 9 , V 9

⌘
is fully

specified. A current source only needs to specify its internal current ��
9

if shunt
admittances of the line are nonzero. Otherwise its zero-sequence voltage W 9 also needs
to be specified (see Exercise 16.8 and Remark 16.8). Neither the zero-sequence voltage
nor the zero-sequence current (W: , V: ) of the load need to be specified. They will be
derived from network equations. A more detailed comparison between Example 16.3
(voltage source) and Exercise 16.8 (current source) is given in Tables 16.1 and 16.2 and
in Remark 16.3. We will also explain in Remark 16.6 in Chapter 16.2.2 the asymmetry
in the specification of voltage and current sources in � configuration.

Example 16.6 (Generator/load in � configuration). Repeat Example 16.3 when the
devices are in � configuration as shown in Figure 16.7, Suppose the following are
specified:

• Voltage source
⇣
⇢
�
9
,W 9 , V 9

⌘
.

• Impedance I�
:
. (Note that the internal current V: need not be specified and can be

derived.)

• Line admittances
✓⇣
I
B

9:

⌘�1
, H<
9:
= H<

: 9
:= 0

◆
. We have assumed assumption C16.1

and that shunt admittances are zero.
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Figure 16.7 Example 16.6: Three-phase generator in � configuration connected through a
three-phase line to an impedance load in � configuration.

1 Compute all the other quantities in Table 16.1. In particular show that the internal
voltage and current

�
+
�
:

, ��
:

�
of the impedance depends only on ⇢�

9
, but not on�

W 9 , V 9
�
.

2 Show that ��
9
� ��

:
= X1 for some X 2 C when 11

T
/
�1
Th⇢

�
9

is in span(1) where

/Th := �IB
9:
�T + I�

:
.

3 Show that W: = W 9 when the three-phase line is symmetric of the form in (15.9)
with I1

9:
+2I2

9:
< 0.

4 In deriving the impedance model (14.27b), we have shown that its internal variable
V: and terminal current �: must satisfy V: = 1

Z:

�
Ĩ
�T
:
�T†�

�: , where Ĩ�
:

:= I�
:
1 and

Z: := 1
T
I
�
:
1. Verify this expressions using the answer to part 1.

Solution. We will derive the quantities in the following order: ⇢�
9
) �

�
:
,+�
:
) V: , �: , � 9 .

Then ⇢�
9
,W 9 )+ 9 ,+: ,W: ) �

�
9
.

The current balance equation (16.5) with H<
9:
= H<

: 9
= 0 is:

+: = + 9 � IB
9:
� 9

Multiplying both sides by � and substituting the conversion rule +�
:
= �+: , ⇢�

9
= �+ 9 ,

and � 9 = ��: , we have

+
�
:

= �+: = ⇢
�
9
+ �IB

9:
�: (16.17)

Substitute the internal model +�
:
= I�

:
�
�
:

of impedance and the conversion rule �: =
��T

�
�
:

to get ⇣
�IB

9:
�T + I�

:

⌘
�
�
:

= ⇢
�
9

(16.18)

Hence

�
�
:

= /
�1
Th⇢

�
9
, +

�
:

= I
�
:
/
�1
Th⇢

�
9

where /Th := �IB
9:
�T + I�

:
is the Thévenin equivalent of the three-phase line and the

three-phase impedance. The expression for+�
:

is the three-phase version of the voltage
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divider rule. Note that the internal variables
�
+
�
:

, ��
:
, V 9

�
of the impedance does not

depend on W 9 .

We now calculate the other variables
⇣
+ 9 , � 9 , ��

9

⌘
and (+: , �: ,W: , V: ). The zero-

sequence current and the terminal current of the impedance are

�: = ��T
�
�
:

= ��T
/
�1
Th⇢

�
9
, V: :=

1
3

1
T
�
�
:

=
1
3

1
T
/
�1
Th⇢

�
9

Using the external model of an ideal voltage source from Table 14.4 we have

+ 9 =
1
3
�T
⇢
�
9
+ W 91, � 9 = ��: = �T

/
�1
Th⇢

�
9

(16.19)

Hence

+: = + 9 � IB
9:
� 9 =

✓
1
3
�T � IB

9:
�T
/
�1
Th

◆
⇢
�
9
+ W 91

W: =
1
3

1
T
+: = W 9 �

1
3

⇣
1

T
I
B

9:
�T

⌘
/
�1
Th⇢

�
9

Since ��T
�
�
9
= � 9 = �T

/
�1
Th⇢

�
9

from (16.19) we have �T
⇣
�
�
9
+ /�1

Th⇢
�
9

⌘
= 0. Therefore

(since the null space of �T is span(1))

�
�
9
= �/�1

Th⇢
�
9
+ V0

9
1

where V0
9
2 C is related to the given V 9 := 1

31
T
�
�
9

by V0
9
= V 9 + 1

31
T
/
�1
Th⇢

�
9
. Hence4

�
�
9

= �/�1
Th⇢

�
9
+

✓
1
3

1
T
/
�1
Th⇢

�
9
+ V 9

◆
1

From the derivation above, W: = W 9 if 1
T
I
B

9:
�T
/
�1
Th⇢

�
9
= 0. When the line is sym-

metric of the form in (15.9) we have

1
T
I
B

9:
= 1

T

2666664

I
1
9:

I
2
9:

I
2
9:

I
2
9:

I
1
9:

I
2
9:

I
2
9:

I
2
9:

I
1
9:

3777775
=

⇣
I

1
9:
+2I2

9:

⌘
1

T

Hence (since I1
9:
+2I2

9:
< 0)

1
T
I
B

9:
�T =

⇣
I

1
9:
+2I2

9:

⌘ ⇣
1

T�T
⌘

= 0

Finally we verify that the expressions V: = 1
31

T
/
�1
Th⇢

�
9

and �: = ��T
/
�1
Th⇢

�
9

satisfy

4 Alternative derivation is: ��T
�
�
9
= �T

/
�1
Th ⇢

�
9

implies

�
�
9

= � 1
3
��T

/
�1
Th ⇢

�
9
+ V 91 = �/�1

Th ⇢
�
9
+ 1

3
11

T
/
�1
Th ⇢

�
9
+ V 91

where the last equality follows from 1
3��

T = I� 1
3 11

T by Theorem 14.2.
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V: = 1
Z:

�
Ĩ
�T
:
�T†�

�: where Ĩ�
:

:= I�
:
1 and Z: := 1

T
I
�
:
1. We have

⇣
Ĩ
�T
:
�T†

⌘
�: = �Ĩ�T

:

⇣
�T†�T

⌘
/
�1
Th⇢

�
9
= �Ĩ�T

:

✓
I� 1

3
11

T
◆
/
�1
Th⇢

�
9
= �Ĩ�T

:
/
�1
Th⇢

�
9
+ Z:

3
1

T
/
�1
Th⇢

�
9

where the second equality follows from Theorem 14.2. But

Ĩ
�T
:
/
�1
Th⇢

�
9
= 1

T
I
�
:
/
�1
Th⇢

�
9
= 1

T
+
�
:

= 0

where the last equality follows from (16.17). Hence
�
Ĩ
�T
:
�T†�

�: = Z: V: as desired. ⇤

Voltage source 9

+
�
9

given ⇢�
9

+
�
:

I
�
:
�
�
:
= I�

:
/
�1
Th⇢

�
9

�
�
9
�

⇣
��†

⌘
/
�1
Th⇢

�
9
+ V 91 �

�
:

/
�1
Th⇢

�
9

V 9 given V
:

1
3 1

T
�
�
:
= 1

3 1
T
/
�1
Th⇢

�
9

+ 9 �†⇢�
9
+W 9 +

:

⇣
1
3�

T� IB
9:
�T
/
�1
Th

⌘
⇢
�
9
+W 91

� 9 ��
:
= �T

/
�1
Th⇢

�
9

�
:
��T

�
�
:
= ��T

/
�1
Th⇢

�
9

W 9 given W
:

W 9 � 1
3

⇣
1

T
I
B

9:
�T

⌘
/
�1
Th⇢

�
9

Table 16.1 Example 16.6: parameters and variables for a voltage source 9 where
/Th := �IB

9:
�T + I�

:
.

Current source 9

+
�
9

+
�
:
�

⇣
�IB
9:
�T

⌘
�
�
9

+
�
:

I
�
:
�
�
:

= I
�
:
�(I�

:
)��
9

�
�
9

given ��
9

�
�
:

�(I�
:
)��
9

V 9

1
3 1

T
�
�
9

V
:

✓
Ĩ
�
:

Z:

� 1

3

◆T
�
�
9

+ 9 +
:
+ IB

9:
� 9 =+: � IB

9:
�T
�
�
9

+
:

1
3�

T
+
�
:
+W

:
1

� 9 ��T
�
�
9

�
:

�T
�
�
9

W 9 given W
:

W 9 + 1
3 1

T
I
B

9:
�T
�
�
9

Table 16.2 Exercise 16.8: parameters and variables for a current source 9 where Ĩ�
:

:= I�
:

1,

Z
:

:= 1T
I
�
:

1, and �(I�
:
) :=

⇣
1
Z:

1Ĩ�T
:
� I

⌘
.

Remark 16.3 (Comprison: voltage vs current sources). In both Example 16.6 and
Exercise 16.8, the key to the derivation is to first calculate the internal current ��

:
of the

impedance by relating it to the given source parameter ⇢�
9

or ��
9
. Given ��

:
, all other
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variables can be derived. This insight will be used in Chapter 16.2.3 for analyzing a
general three-phase problem.

Compare the results in Table 16.1 from Example 16.6 for the voltage source with
the results in Table 16.2 from Exercise 16.8 for the current source.

1 The internal variables
�
+
�
:

, ��
:
, V:

�
of the impedance do not depend on

�
W 9 , V 9

�
,

but only on ⇢�
9

for the voltage source and ��
9

for the current source.

2 For the current source, ��
:
= �(I�

:
)��
9

depends only on the impedance I�
:

but not
on the line series admittance HB

9:
. This is because of the assumption I<

9:
= I<

: 9
= 0.

For the voltage source, ��
:
= /�1

Th⇢
�
9

depends on both IB
9:

and I�
:

through their

Thévenin equivalent. Their values are equal if ⇢�
9
= /Th �

�
I
�
:

�
�
�
9
.

3 For both the voltage and current source, W: = W 9 if IB
9:

is symmetric.
4 For the current source, the loop flows V 9 and V: are related as follows (see Exercise

16.8):
• V: = �V 9 if and only if I01

:
�
01

9
+ I12

:
�
12

9
+ I20

:
�
20

9
= 0.

• V: = 0 if and only if I01
:
�
01

9
+ I12

:
�
12

9
+ I20

:
�
20

9
= Z: V 9 .

• V: = 0 if the impedance I
�
:
= Z:

3 I is balanced, regardless of whether ��
9

is
balanced or whether V 9 is zero. The converse does not necessarily hold.

⇤

Example 16.7 (Balanced system). Assume the system in Example 16.6 is a balanced
system, i.e., given

• The voltage source parameters
⇣
⇢
�
9
,W 9 , V 9

⌘
with ⇢�

9
:= _ 9U+ where _ 9 2 C, U+ :=

(1,U,U2), and U := 4�i2c/3,
• The impedance I�

:
:= Z 0

:
I where Z 0

:
2 C.

• Line admittances
✓⇣
I
B

9:

⌘�1
, H<
9:
= H<

: 9
:= 0

◆
with IB

9:
= Z 9: I, i.e., the phases are de-

coupled.

1 Show that /Th = Z 0
:
I+ Z 9:��T and /�1

Th = 0
⇣
I� 0Z 9:

30Z 9:�1 11
T
⌘

where 0 := 1/(Z 0
:
+

3Z 9: ).
2 Show that all variables

�
+ 9 ,+: , � 9 , �:

�
,
�
+
�
:

, ��
:

�
are balanced positive-sequence

sets.

Solution. By definition

/Th := I
�
:
+�IB

9:
�T = Z

0
:
I + Z 9:��T

Substituting ��T = 3I� 11
T from Theorem 14.2 we have /Th = (1/0)

⇣
I� 0Z 9:11

T
⌘
.
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Apply the matrix inversion formula (A.6) in Appendix A.3: given a scalar 2 2C, vectors
1,3 2 C=, and the identity matrix I= of size =,⇣

I= + 123T
⌘�1

= I= � 1
⇣
2
�1 + 3T

1

⌘�1
3

T

we therefore have (with 2 := �0Z 9: , 1 = 3 = 1)

/
�1
Th = 0

✓
I �

0Z 9:

30Z 9: �1
11

T
◆

(16.20)

To show that all voltages and currents are balanced positive-sequence sets, i.e., in
span(U+), the key property that we will use is Corollary 1.3 which states that: For any
balanced positive-sequence vector G + 01 2 C3 with 0 2 C, we have

� (G + 01) = (1�U)G, �T (G + 01) = (1�U2)G

We have from Table 16.1 (substituting ⇢�
9
= _ 9 I and I�

:
= Z 0

:
I)

�
�
:

= /
�1
Th⇢

�
9
= 0_ 9

✓
I �

0Z 9:

30Z 9: �1
11

T
◆
U+ =

_ 9

Z
0
:
+3Z 9:

U+

+
�
:

= I
�
:
�
�
:

=
Z
0
:

Z
0
:
+3Z 9:

_ 9 U+, V: :=
1
3

1
T
�
�
:

= 0

where we have used 1
T
U+ = 0. The expression for +�

:
is the voltage divider rule.

We now calculate the other variables
⇣
+ 9 , � 9 , ��

9

⌘
and (+: , �: ,W: ). The terminal

current of the impedance are

�: = ��T
�
�
:

= �
_ 9

Z
0
:
+3Z 9:

�T
U+ = �

(1�U2)_ 9
Z
0
:
+3Z 9:

U+

Using the external model of an ideal voltage source from Table 14.4 we have

+ 9 =
1
3
�T
⇢
�
9
+ W 91 =

1
3
(1�U2)_ 9 U+ + W 91

� 9 = ��: =
(1�U2)_ 9
Z
0
:
+3Z 9:

U+

Hence

+: = + 9 � IB
9:
� 9 =

(1�U2)Z 0
:

3
⇣
Z
0
:
+3Z 9:

⌘ _ 9 U+ + W 91, W: =
1
3

1
T
+: = W 9

Finally

�
�
9
= �1

3
�� 9 + V 91 = �

(1�U) (1�U2)_ 9
3
⇣
Z
0
:
+3Z 9:

⌘ U+ + V 91

⇤
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With power sources.

The solution strategy is the same as that for problems without power sources with
the addition of quadratic device models of power sources. Specifically we first relate
internal voltages and currents to power sources (f�

9
,W 9 ) to obtain a system of quadratic

equations that can be solved numerically. Then all other voltages and currents can
be obtained analytically in terms of a solution of the quadratic equations. Finally

we can calculate internal and external power using B
. /�
9

:= diag
⇣
+
. /�
9

�
. /�H
9

⌘
and

B 9 := diag
⇣
+ 9 �

H
9

⌘
respectively. This solution strategy is extended in Chapter 16.2.3 to

general three-phase networks.

Example 16.8 (Power source). Consider the system in Figure 16.7 where, instead of
a voltage source, the generator is a three-phase power source. Suppose the following
are specified:

• Power source
⇣
f
�
9
,W 9

⌘
.

• Impedance I�
:
. (Note that V: needs not be specified for an impedance and can be

derived.)

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with nonzero H<

9:
and H<

: 9
. In particular assumption

C16.1 is satisfied.

Find all remaining internal and external variables
�
+
�
8

, ��
8

, B�
8
, V 9

�
and (+8 , �8 , B8 ,W: ),

8 = 9 , : .

Solution. The current balance equation � =.+ , the internal models of the power source
and impedance, and the conversion rules are:

� 9

�:

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

# 
+ 9

+:

�
(16.21a)

f
�
9

= diag
⇣
+
�
9
�
�H
9

⌘
, +

�
:

= I
�
:
�
�
:

(16.21b)

�+8 = +
�
8

, �8 = ��T
�
�
8

, 8 = 9 , : (16.21c)

Assuming the admittance matrix . is invertible (e.g., it satisfies the condition in
Theorem 4.3), denote its inverse by

.
�1 :=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#�1

=

I 9 9 I 9:

I: 9 I::

�

We can then relate the internal variables
�
+
�
8

, ��
8

�
, 8 = 9 , : , by eliminating the external

variables to get
+
�
9

+
�
:

�
= �diag (�,�)


I 9 9 I 9:

I: 9 I::

�
diag

⇣
�T,�T

⌘ 
�
�
9

�
�
:

�
(16.22)

f
�
9

= diag
⇣
+
�
9
�
�H
9

⌘
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Eliminating +�
:

using +�
:
= I�

:
�
�
:

and re-arranging, we get


/ 9 9 / 9: I

/: 9 /:: + I�
:

0

� 2666664

�
�
9

�
�
:

+
�
9

3777775
=


0
0

�
(16.23a)

diag
⇣
+
�
9
�
�H
9

⌘
= f

�
9

(16.23b)

where / 9 9 := �I 9 9�T and so on. This is a system of 9 quadratic equations in 9 variables⇣
+
�
9
, ��
9
, ��
:

⌘
. It can be solved numerically. All other variables can then be derived

analytically in terms of a solution
⇣
+
�
9
, ��
9
, ��
:

⌘
.

We can further reduce (16.23) by eliminating +�
9

and ��
:

to get a quadratic equation

in ��
9
:

diag
✓✓
�/ 9 9 + / 9:

⇣
/:: + I�:

⌘�1
/: 9

◆
�
�
9
�
�H
9

◆
= f

�
9
, 9 2 # (16.24)

In summary we can first solve (16.24) numerically to obtain ��
9

and then derive all other

variables, or first solve (16.23) numerically to obtain
⇣
+
�
9
, ��
9
, ��
:

⌘
and then all other

variables. They are equivalent to solving the original system (16.21) numerically. The
decentralized structure of (16.24) is quite striking: the system of power flow equations
for the entire network reduces to this quadratic equation separately for each bus 9 that
can be solved in parallel.

We now derive all other variables from �
�
9
, by tracing back the derivation of (16.24).

From (16.23a) we have

�
�
:

= �
⇣
/:: + I�:

⌘�1
/: 9 �

�
9
, +

�
9

= �/ 9 9 ��9 � / 9: ��: =
✓
�/ 9 9 + / 9:

⇣
/:: + I�:

⌘�1
/: 9

◆
�
�
9

From (16.21b) we have

+
�
:

= I
�
:
�
�
:

= �I�
:

⇣
/:: + I�:

⌘�1
/: 9 �

�
9
,

The internal zero-sequence currents are given by

V 9 =
1
3

1
T
�
�
9
, V: =

1
3

1
T
�
�
:

This completes the derivation of internal voltages and currents.

The terminal currents can be obtained from the conversion rule (16.21c):

� 9 = ��T
�
�
9
, �: = ��T

�
�
:

= �T
⇣
/:: + I�:

⌘�1
/: 9 �

�
9

Note that 1
T
+
�
9
= 1

T
+
�
:
= 0 from (16.22). Hence the conversion rule (16.21c) yields

(recall that W 9 is specified)

+ 9 =
1
3
+
�
9
+W 91 (16.25a)
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Given the terminal voltage + 9 of the power source, (+: ,W: ) of the impedance can then
be determined through the network equation (16.21a):

+: =
⇣
H
B

9:
+ H<

: 9

⌘�1 ⇣
H
B

9:
+ 9 + �:

⌘
, W: =

1
3

1
T
+: (16.25b)

Notice that the zero-sequence voltage W 9 of the power source uniquely determines W:
of the impedance. ⇤

The derivation in Example 16.8 relies on the assumption that the admittance matrix
. in (16.21a) is invertible. If the shunt admittances H<

9:
= H<

: 9
= 0 then . has zero

block row sums (Definition 16.1), i.e.,
Õ
:
. 9: = 0 for all 9 . This implies that . has

zero row sums, i.e.,
Õ
:,q0. 9 q,:q0 = 0 for all 9q, and is therefore singular. In that case,

additional information needs to be specified to obtain a unique solution, as the next
example illustrates.

Example 16.9 (Power source). Repeat Example 16.8 but with zero shunt admittances
and given zero-sequence currents, i.e., suppose the following are specified:

• Power source
⇣
f
�
9
,W 9

⌘
.

• Impedance I�
:
.

• Line admittances
⇣
H
B

9:
, H<
9:
= H<

: 9
= 0

⌘
with nonsingular HB

9:
. In particular assump-

tion C16.1 is satisfied.
• V 9 + V: := 1

31
T
⇣
�
�
9
+ ��

:

⌘
= V0.

Solution. When H<
9:
= H<

: 9
= 0 the network equation (16.21a) reduces to

� 9 = ��: = H
B

9:

�
+ 9 �+:

�
(16.26)

Hence �T
⇣
�
�
9
+ ��

:

⌘
= 0 from (16.21c), implying that

�
�
9
+ ��

:
=

�
V 9 + V:

�
1 = V

0
1 (16.27)

with V0 a given quantity. We will express +�
9

in terms of ��
9

in order to write f9 =

diag
⇣
+
�
9
�
�H
9

⌘
as a quadratic equation in ��

9
.

Multiplying both sides of (16.26) by IB
9:

:=
⇣
H
B

9:

⌘�1
and using the conversion rule

again (16.21b)(16.21c), we have

+
�
9

=
⇣
�IB

9:
�T + I�

:

⌘
�
�
:

= /
�
9:

⇣
���

9
+ V01

⌘
= �/�

9:
�
�
9
+ V0Ĩ�

:
(16.28)

where the second equality follows from (16.27), /�
9:

:= �IB
9:
�T + I�

:
, and Ĩ�

:
:= I�

:
1.

Hence we have

f
�
9
= diag

⇣
+
�
9
�
�H
9

⌘
= diag

⇣
�/�

9:
�
�
9
�
�H
9

+ V0Ĩ�
:
�
�H
9

⌘
(16.29)
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This is a system of three quadratic equations in three variables ��
9
2 C3. Assume a

solution exists and can be obtained by solving (16.29) numerically.

Given a solution ��
9

of (16.29), all other variables can be derived analytically in terms

of ��
9

by tracing back the derivation of (16.29), similar to the derivation in Example

16.8. Specifically we have � 9 = ��T
�
�
9

and V 9 := 1
31

T
�
�
9
. We obtain +�

9
from (16.28),

from which we have + 9 = 1
3�

T
+
�
9
+W 91. This computes all voltages and currents of the

power source 9 .

The network equation (16.26) then yields +: = + 9 � IB
9:
� 9 and hence also W: :=

1
31

T
+: . We also have �: = �� 9 = �T

�
�
9
, V: = V0 � V 9 , and hence ��

:
= � 1

3��: + V:1 and

+
�
:
= I�

:
�
�
:
. This computes all voltages and currents of the impedance : . ⇤

The next example shows that if the power source and the impedance are balanced
and the line is decoupled and balanced, then all voltages, currents, and powers will be
generalized balanced vectors. This will be proved for general networks in Chapter 16.3.
Furthermore the given power f�

9
cannot be arbitrary but must be consistent with other

parameters of the network such as line and device impedances, e.g., from (16.33), 1 9/2
must be real. This generalizes the single-phase case where a power source B supplies
an impedance load I with a current 8. Then B = I |8 |2 implying that B/I is a read number.
This is because \I = \B fixes the phase di�erence between the voltage E and current 8
across the impedance.

Example 16.10 (Balanced power source). Repeat Example 16.8 when the system is
balanced, i.e.,

• Power source
⇣
f
�
9
,W 9

⌘
with f�

9
= 0 9U+ + 1 91 for given

�
0 9 ,1 9

�
, i.e., a balanced

power source must be a generalized balanced vector. Moreover its voltage and

current
⇣
+
�
9
, ��
9

⌘
are generalized balanced vectors.

• Impedance I�
:

:= Z�
:
I.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
:=

⇣
[
B

9:
I,[<

9:
I,[<

: 9
I

⌘
with nonzero [B

9:
, [<
9:

and [<
: 9

.

Find all remaining internal and external variables
�
+
�
8

, ��
8

, B�
8
, V�
8

�
and (+8 , �8 , B8 ,W8),

8 = 9 , : . Show that the problem can be solved analytically when a reference angle is
given, say, \+0

9
:= \0

9
.

Solution. Let (recall that 1
T
+
�
9
= 0)

+
�
9

=: E
�
9
U+, �

�
9

=: 8
�
9
U+ + V 91 (16.30)

giving (noting diag
�
U+UH

+
�
= 1)

f
�
9

= diag
✓
E
�
9
U+

⇣
8
�
9
U+ + V 91

⌘H
◆

=
⇣
E
�
9
V
9

⌘
U+ +

⇣
E
�
9
8

�
9

⌘
1
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where
⇣
E
�
9
, 8�
9
, V 9 2 C3

⌘
are to be determined. Recall that G denotes the complex con-

jugate of any G 2 C. Therefore, since f�
9
= 0 9U+ + 1 91,

E
�
9
V
9
= 0 9 , E

�
9
8

�
9
= 1 9 (16.31)

which are two quadratic equations in unknowns
⇣
E
�
9
, 8�
9
, V 9

⌘
2 C3. Note that the internal

power f�
9

is di�erent in each phase (with di�erent phase angles separated by 120�) if
and only if V 9 < 0.

We will solve this problem by substituting the given balanced system parameters
into the solution of Example 16.8.

Specifically the admittance matrix is

. :=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#
=

"
[
B

9:
+[<

9:
�[B

9:

�[B
9:

[
B

9:
+ H<

: 9

#

|                        {z                        }
.

1q

⌦I

Assuming the 2 ⇥ 2 admittance matrix .
1q is invertible with inverse

�
.

1q ��1 =:
Z 9 9 Z 9:

Z: 9 Z::

�
we have

.
�1 =

⇣
.

1q
⌘�1
⌦ I =:


Z 9 9 Z 9:

Z: 9 Z::

�
⌦ I

where the first equality follows from (�⌦ ⌫)�1 = ��1 ⌦ ⌫�1 in Lemma 16.6. Then
(16.22) becomes

+
�
9

+
�
:

�
= �diag (�,�)

✓ 
Z 9 9 Z 9:

Z: 9 Z::

�
⌦ I

◆
diag

⇣
�T,�T

⌘ 
�
�
9

�
�
:

�

=

Z 9 9 Z 9:

Z: 9 Z::

�
⌦

⇣
��T

⌘ 
�
�
9

�
�
:

�

where ��T = 3I�11
T from Theorem 14.2. Then (16.23) becomes (16.31) together with


Z 9 9

�
��T�

Z 9:

�
��T�

I

Z: 9

�
��T�

Z::

�
��T� + Z�

:
I 0

� 2666664

8
�
9
U+ + V 91
�
�
:

E
�
9
U+

3777775
=


0
0

�

where we have used the specification (16.30). This is a system of 8 (redundant) quadratic

equations that can be solved numerically for the 6 unknowns
⇣
E
�
9
, 8�
9
, V 9

⌘
2 C3 and

�
�
:
2 C3. It implies that ��

:
is a generalized balanced vector of the form �

�
:
= 8�

:
U+ + V:1

for some
�
8
�
:
, V:

�
.

To evaluate (16.24) we have

�
�
9
�
�H
9

=
⇣
8
�
9
U+ + V 91

⌘ ⇣
8
�
9
U+ + V 91

⌘H
=

���8�
9

���2 U+UH
+ + 8�

9
V
9
U+1

T + 8�
9
V 9 1U

H
+ +

��
V 9

��2 11
T
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and therefore ⇣
��T

⌘
�
�
9
�
�H
9

= 3
✓���8�
9

���2 U+UH
+ + 8�

9
V
9
U+1

T
◆

(16.32a)

where we have used ��T
U+ = 3U+ from Corollary 1.3 and �T

1 = 0. Furthermore

⇣
/:: + I�:

⌘�1
=

⇣
Z::

⇣
��T

⌘
+ Z�

:
I

⌘�1
=

⇣⇣
3Z:: + Z�:

⌘
I � Z::11

T
⌘�1

=
1

3Z:: + Z�
:

 
I� Z::

Z
�
:

11
T

!

where the last equality follows from the matrix inversion formula (see Appendix A.3.2)

(I= +⌫⇡)�1 = �= � ⌫ (I: +⇡⌫)�1
⇡

when ⌫,⇡T 2 C=⇥: and I=, I: denote identity matrices of sizes =, : respectively. Hence

/ 9:

⇣
/:: + I�:

⌘�1
/: 9 =

Z 9: Z: 9

3Z:: + Z�
:

⇣
��T

⌘  
I� Z::

Z
�
:

11
T

! ⇣
��T

⌘
=

3Z 9: Z: 9
3Z:: + Z�

:

��T

(16.32b)

Together with / 9 9 = Z 9 9��T, (16.32) implies that (16.24) is

f9 = 0 9U+ + 1 91 =

 
�Z 9 9 +

3Z 9: Z: 9
3Z:: + Z�

:

!
diag

⇣
��H

�
�
9
�
�H
9

⌘

= 3

 
�Z 9 9 +

3Z 9: Z: 9
3Z:: + Z�

:

!

|                     {z                     }
2

✓
8
�
9
V
9
U+ +

���8�
9

���2 1

◆

where we have used diag
�
U+UH

+
�
= 1. Hence

2 8
�
9
V
9
= 0 9 , 2

���8�
9

���2 = 1 9 (16.33)

which is a system of 2 quadratic equations. This yields the magnitude of 8�
9
:

���8�
9

���2 =
1 9

2

which in particular means that the specification cannot be arbitrary, e.g., 1 9/2 must be
real.

When the reference angle \+0
9

:= \0
9

is given, let q 9 := \8�
9
. Given 8�

9
:=

q
1 9

2
4

iq 9 , all

the other variables
⇣
E
�
9
, 8�
9
, V 9

⌘
2 C3 and ��

:
2 C3 can be obtained as in Example 16.8,

as a function of q 9 which can then be determined from the given reference angle:

\+0
9
= \


1
3
�T
E
�
9
U+ +W 91

�
0

= \
0

9

This also shows that all variables are (generalized) balanced positive-sequence sets. ⇤
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Remark 16.4 (Nonuniqueness of specification). Device specification is not unique
and depends on the application under study. For Example 16.8, since both internal
voltages +�

9
and +�

:
are obtained in terms of ��

9
in (16.25), we can either specify W 9

for the power source and derive W: of the impedance through the network equation, as
done in Example 16.8, or alternatively, we can specify W: and determine W 9 from the
network equation instead. While Example 16.8 contains no power sources, the next
example illustrates multiple ways to specify and solve the case when both the generator
and the load are power sources.

Also see Remark 16.6 for discussions on the asymmetry in device specifications. ⇤

The next example uses the internal model or an external model of power sources,
depending on how the power sources are specified. Specifically the solution boils down
to a system of quadratic equations that can be solved numerically. All other variables
can then be derived analytically in terms of a solution of the quadratic equations. For
each of the two power sources, if its zero-sequence voltage W8 is specified, we will use
the internal model for the power source to obtain the system of quadratic equations
in the internal currents ��

8
. Then the internal voltage +�

8
can be derived and, with the

given W8 , the terminal voltages +8 . If its zero-sequence current V8 is specified, on the
other hand, we will use an external model to obtain the quadratic equations in the
terminal current �8 from which, with the given V8 , the internal current ��

8
can then be

derived. The network equation is used to express+�
8

in terms of ��
8

in the first case and
express +8 in terms of �8 in the second case in the derivation of the system of quadratic
equations.

Example 16.11 (Power sources). Consider the system in Figure 16.7 where both the

generator and load are power sources. Suppose the line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
are

specified with nonzero H<
9:

, H<
: 9

and assumption C16.1, as in Example 16.8.

1 Suppose the power sources are specified as
⇣
f
�
9
,W 9

⌘
and

�
f
�
:

,W:
�
. Determine all

variables
�
+
�
8

, ��
8

, V8
�

and (+8 , �8 , B8), 8 = 9 , : .

2 Suppose the power sources are specified as
⇣
f
�
9
, V 9

⌘
and

�
f
�
:

, V:
�
. Determine all

variables
�
+
�
8

, ��
8

�
and (+8 , �8 , B8 ,W8), 8 = 9 , : .

3 Suppose the power sources are specified as
⇣
f
�
9
,W 9

⌘
and

�
f
�
:

, V:
�
. Determine all

variables
�
+
�
8

, ��
8

�
and (+8 , �8 , B8), 8 = 9 , : , and V 9 ,W: .

Solution.

1 The internal model of the power sources, the conversion rules, and the current
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balance equation are

f
�
8

:= diag
⇣
+
�
8
�
�H
8

⌘
, +

�
8

= �+8 , �8 = ��T
�
�
8

, 8 = 9 , :

(16.34a)
� 9

�:

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

# 
+ 9

+:

�
(16.34b)

Assume the admittance matrix. in (16.34b) is invertible and let.�1 =:

I 9 9 I 9:

I: 9 I::

�
.

Then substituting the conversion rules into the network equation (16.34b) yields
+
�
9

+
�
:

�
= �diag (�,�)


I 9 9 I 9:

I: 9 I::

�
diag

⇣
�T,�T

⌘
|                                         {z                                         }

/ :=
266664
/ 9 9 / 9:

/: 9 /::

377775


�
�
9

�
�
:

�
(16.35)

Substituting +�
9

and +�
:

into the internal power source models in (16.34a) yelds

f
�
9

:= �diag
⇣⇣
/ 9 9 �

�
9
+ / 9: ��:

⌘
�
�H
9

⌘
, f

�
:

:= �diag
⇣⇣
/: 9 �

�
9
+ /:: ��:

⌘
�
�H
:

⌘
(16.36)

This is a system of 6 quadratic equations that can be solved numerically for⇣
�
�
9
, ��
:

⌘
2 C6.

All other variables can then be derived in terms of a solution
⇣
�
�
9
, ��
:

⌘
. Specifi-

cally, the internal voltages can be obtained from the internal power source model
(16.34a) (or equivalently from (16.35)),+�

8
=

�
diag

�
�
�H
8

� ��1
f
�
8

, 8 = 1,2. Using W8 ,
the terminal voltages are determined by the conversion rule, +8 = 1

3 �
T
+
�
8
+ W81,

8 = 1,2. In terms of ��
8

we have V8 := 1
31

T
�
�
8

and �8 = ��T
�
�
8

, 8 = 9 , : . The terminal
power is B8 := diag

�
+8 �

H
8

�
, 8 = 9 , : .

2 When
�
W 9 ,W:

�
are given as in part 1, we set up equation (16.36) to solve numerically

for
⇣
�
�
9
, ��
:

⌘
, so that +�

8
and then +8 can be derived for 8 = 9 , : . When

�
V 9 , V:

�
are

given instead, we will solve numerically for (+ 9 ,+: ) by using the external model
(14.25a) of a power source, reproduced here:

f
�
8

= �1
3

diag
⇣
�

⇣
+8 �

H
8

⌘
�T

⌘
+ V

8
�+8 , 1

T
�8 = 0, 8 = 9 , :

and the network equation (16.34b). Note that all these equations relate terminal
voltages and currents.

Specifically, instead of (16.35)), obtain from the network equation (16.34b)
+ 9

+:

�
=


I 9 9 I 9:

I: 9 I::

� 
� 9

�:

�
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Substituting into the external models of the power sources we have

f
�
9

= �1
3

diag
⇣
�

�
I 9 9 � 9 + I 9: �:

�
�

H
9
�T

⌘
+ V

9
�

�
I 9 9 � 9 + I 9: �:

�
, 1

T
� 9 = 0

f
�
:

= �1
3

diag
⇣
�

�
I: 9 � 9 + I:: �:

�
�

H
:
�T

⌘
+ V

:
�

�
I: 9 � 9 + I:: �:

�
, 1

T
�: = 0

This is a system of 8 (redundant) quadratic equations that can be solved numerically
for

�
� 9 , �:

�
2 C6. Given a solution

�
� 9 , �:

�
, the internal currents can be determined

from the conversion rule and the given
�
V 9 , V:

�
as ��

8
= � 1

3��8 + V81, 8 = 9 , : . The
remaining variables can then be derived as in part 1.

3 This combines the solution approaches of parts 1 and 2. Specifically we use the
internal model for power source 9 , the external model for ::

f
�
9

:= diag
⇣
+
�
9
�
�H
9

⌘
, +

�
9

= �+ 9 , � 9 = ��T
�
�
9

(16.37a)

f
�
:

= �1
3

diag
⇣
�

⇣
+: �

H
:

⌘
�T

⌘
+ V

:
�+: , 1

T
�: = 0 (16.37b)

From the network equation (16.34b) we have
+
�
9

+:

�
= diag (�, I)


I 9 9 I 9:

I: 9 I::

�
diag

⇣
��T, I

⌘ 
�
�
9

�:

�
=


��I 9 9�T �I 9:
�I: 9�T

I::

� 
�
�
9

�:

�

Substituting +�
9

and +: into the internal power source models in (16.37) yelds

f
�
9

:= diag
⇣⇣
��I 9 9�T

�
�
9
+�I 9: �:

⌘
�
�H
9

⌘

f
�
:

= �1
3

diag
⇣
�

⇣
�I: 9�T

�
�
9
+ I:: �:

⌘
�

H
:
�T

⌘
+ V

:
�

⇣
�I: 9�T

�
�
9
+ I:: �:

⌘
, 1

T
�: = 0

This is a system of 7 (redundant) quadratic equations that can be solved numerically

for
⇣
�
�
9
, �:

⌘
2 C6. All other variables can then be derived analytically in terms of

a solution
⇣
�
�
9
, �:

⌘
as done in parts 1 and 2.

⇤

16.2.2 General analysis problem

We now formulate a general three-phase analysis problem. Consider a three-phase
network ⌧ := (# ,⇢) where each line ( 9 , :) 2 ⇢ is characterized by 3⇥ 3 series and

shunt admittance matrices
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. At each bus 9 2 # we assume, without loss of

generality, there is a single three-wire device in either. or � configuration. Associated

with each device 9 are its internal variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V 9
⌘
2 C10 (or in C9 for

. -configured devices 9 without V 9 ) and terminal variables
�
+ 9 , � 9 , B 9 ,W 9

�
2 C10. Some

of these variables will be specified in our formulation. The others are to be computed
from network equations, device models and the conversion rules.
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We start by describing which of these variables are specified for each type of devices
using the internal and external device models in Tables 14.3 and 14.4. It is important
to keep in mind that device specification is not unique and our formulation here may
need to be modified depending on the details of an application, especially for problems
involving power sources as discussed in Remark 16.4 and illustrated in Example
16.11. The principle of analysis described here, however, is widely applicable and can
be applied to other formulations. For instance, we formulate our analysis problem in
a three-wire model. If the neutrals of two . -configured devices are not grounded and
are connected to each other through a four-wire line, then a four-wire model needs
to be used; see Example 16.5 and Exercise 16.7. In that case the neutral voltages of
these devices may not be arbitrarily specified but must be determined through network
equations and device models, even for a voltage source, unlike the formulation here.

Partition # into 8 disjoint subsets:

• #. /�
E

: buses with ideal voltage sources in. or � configurations. Let #E := #.
E
[#�

E
.

• #. /�
2

: buses with ideal current sources in. or � configurations. Let #2 := #.
2
[#�

2
.

• #. /�
8

: buses with impedances in . or � configurations. Let #8 := #.
8
[#�

8
.

• #. /�
?

: buses with ideal power sources in . or � configurations. Let #? := #.
?
[#�

?
.

with # = #E [#2 [#8 [#? . These devices are specified as follows.

1 Voltage source
⇣
⇢
.

9
,W 9

⌘
or

⇣
⇢
�
9
,W 9 , V 9

⌘
: It is specified by its internal voltage

⇢
. /�
9

and a parameter W 9 where W 9 :=+=
9

is the neutral voltage for . configuration

and W 9 := 1
31

T
+ 9 is the zero-sequence terminal voltage for � configuration. For

� configuration, ⇢�
9

should satisfy 1
T
⇢
�
9
= 0. The zero-sequence internal current

V 9 := 1
31

T
�
�
9

also needs to be specified in order to determine ��
9

from the terminal
current � 9 .

2 Current source
⇣
�
.

9
,W 9

⌘
or ��

9
: It is specified by its internal current �. /�

9
. For

a . -configured current source, its neutral voltage W 9 is also specified. For a �-
configured current source, the zero-sequence voltage W8 generally need not be
specified and can be derived in terms of other quantities, but there are exceptions;
see Remark 16.8.

3 Power source
�
f
. ,W 9

�
or

�
f
�,W 9

�
: It is specified by its internal power and zero-

sequence voltage
�
f
. /�,W 9

�
. See Example 16.11 for other power source specifi-

cations and their solution methods.
4 Impedance

�
I
. ,W 9

�
or I�: A . -configured impedance 9 is specified by its internal

impedance I.
9

and the neutral voltage W 9 . A �-configured impedance 9 is specified

by I�
9
. Its zero-sequence voltage and current

�
W 9 , V 9

�
can generally be derived from

network equations as we will see in Chapter 16.2.3.

A three-phase analysis problem is: given devices specified as above connected by
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lines with given admittance matrices
⇣
H
B

9:
, H<
9:

⌘
,
⇣
H
B

: 9
, H<
: 9

⌘
, determine some or all of

the internal variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V 9
⌘

and terminal variables
�
+ 9 , � 9 , B 9 ,W 9

�
at

every bus 9 . This is summarized in Table 16.3. Note that the analysis problem does not

Buses 9 Specification Unknowns

#
.

E
+
.

9
:= ⇢.

9
, W 9

⇣
�
.

9
, B.
9

⌘
,
�
+ 9 , � 9 , B 9

�
#
�
E

+
�
9

:= ⇢�
9
, W 9 , V 9 ,

⇣
�
�
9
, B�
9

⌘
,
�
+ 9 , � 9 , B 9

�
#
.

2
�
.

9
:= �.

9
,W 9

⇣
+
.

9
, B�
9

⌘
,
�
+ 9 , � 9 , B 9

�
#
�
2

�
�
9

:= ��
9

⇣
+
�
9

, B�
9
, V 9

⌘
,
�
+ 9 , � 9 , B 9 ,W 9

�
#
.

8
I
.

9
, W 9

⇣
+
.

9
, �.
9

, B.
9

⌘
,
�
+ 9 , � 9 , B 9

�
#
�
8

I
�
9

⇣
+
�
9

, ��
9
, B�
9
, V 9

⌘
,
�
+ 9 , � 9 , B 9 ,W 9

�

#
.

?
f
.

9
, W 9

⇣
+
.

9
, �.
9

⌘
,
�
+ 9 , � 9 , B 9

�
#
�
?

f
�
9
, W 9

⇣
+
�
9

, ��
9
, V 9

⌘
,
�
+ 9 , � 9 , B 9

�

Table 16.3 Three-phase analysis problem: given the specification in blue, compute the
remaining unknowns in black.

assume C16.1 and therefore each line ( 9 , :) may model a transmission or distribution
line, or a three-phase transformer where its series admittance matrices HB

9:
and HB

: 9

may be di�erent.

We make a few remarks on the voltage W 9 . See Remark 16.3 on how the loop flow
V: of an impedance : may depend on V 9 of a current source 9 .

Remark 16.5 (Voltage W 9 ). 1 . configuration. The voltage parameter W 9 needs to be
specified for every. -configured device in our formulation here. It may be specified
explicitly, or more likely, indirectly. By that, we mean information additional to
generic device models is available to either compute their values, provide additional
equations, or eliminate them in terms of other variables. For instance if the neutral
of a . -configured device is grounded and all voltages are defined with respect to

the ground, then W 9 =+=
9
=�I=

9

⇣
1

T
� 9

⌘
, which allows the elimination of W 9 from the

model. If the neutral is grounded directly (i.e., I=
9
= 0), then W 9 = 0. If the neutral

is not grounded but the internal voltage +.
9

is known to satisfy 1
T
+
.

9
= 0, then

W 9 = 1
31

T
+ 9 . This is studied in detail in Examples 16.3 and 16.4 for a three-wire

line model as we have been assuming in almost all of our analysis.
For a . -configured current source, W 9 is usually not needed to determine its

terminal voltage+ 9 , but needed to compute its internal voltage+.
9
=+ 9 �W 91 from

the terminal voltage + 9 .
As noted above, Example 16.5 and Exercise 16.7 consider a four-wire line

model where the neutrals of the voltage source and the impedance are connected
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to each other. Here the (internal) neutral voltages
�
W 9 ,W:

�
of neither device can

be arbitrarily specified but must be determined through the network equation and
device models.

2 � configuration. For a �-configured voltage source, the zero-sequence voltage
W 9 := 1

31
T
+ 9 needs to be specified, e.g., by specifying one of its terminal voltages,

say, +0
9
. For a �-configured current source or impedance, W 9 can be determined

once its terminal voltage + 9 is determined from network equations. For a �-
configured power source, typically either W 9 or V 9 can be specified; see Example
16.11.

3 Neutral voltage W 9 and zero-sequence voltage. For any . -configured device, we
have

+ 9 = +
.

9
+ +=

9
1

The parameter W 9 := +=
9

may or may not equal the zero-sequence voltage 1
31

T
+ 9 .

They are equal if and only if the internal voltages have no zero-sequence component
since 1

31
T
+ 9 = 1

31
T
+
.

9
++=

9
.

⇤

Remark 16.6 (Asymmetry in � specification). As summarized in Table 16.3, in our
formulation, for � configuration, a voltage source needs to specify both

�
W 9 , V 9

�
, but a

power source only needs to specify its W 9 , and a current source or impedance needs to
specify none. This asymmetry is because internal currents ��

9
contain more information

(they fix V 9 ) than internal voltages +�
9

(they do not fix W 9 ). Device specification and

network equation determine
⇣
⇢
�
9
, � 9

⌘
for voltage sources, which contains neither V 9 nor

W 9 . These quantities therefore need to be specified. Device specification and network

equation, on the other hand, determine
⇣
�
�
9
,+ 9

⌘
for current sources, which contains

both V 9 and W 9 . For impedances, as we will see in Chapter 16.2.3, the network equation
will determine their internal currents ��

9
which contain V 9 . When the terminal voltages

of all sources, including power sources, are specified or obtained, the terminal voltages
+ 9 of impedances can be determined by the network equation. Therefore both

�
W 9 , V 9

�
are determined by the network equation in that case. ⇤

16.2.3 Solution strategy

The solution strategy for the problem formulated in Chapter 16.2.2 consists of three
steps:

1 Write down a network equation that relates the terminal variables (+ , �, B), either
the current balance equation (16.5)(16.6) � = .+ or the power flow equation
(16.12). As discussed in Remark 16.7 we can always use the linear equation
� = .+ .
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2 Write down the device models of the given collection of sources and impedances,
either their internal models and conversion rules, or their external models.

3 Numerically solve this system of equations for desired variables.

Step 1 specifies, for the entire network, an equation that relates all the terminal vari-
ables. For examples, see (16.38) and (16.43) for analysis problems without and with
power sources respectively. Step 2 specifies, for each device, equations relating its
terminal variables to its internal variables or specified parameters. For examples, see
(16.39d)(16.39d) and (16.44a) respectively.

Remark 16.7 (Nonlinearity). Using the nonlinear power flow equations B 9 =

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
◆

as the network equation in Step 1 is equivalent to us-

ing the linear current balance equation � = .+ . This is because dividing both sides of
the power flow equations by+ 9 and taking complex conjugate yields � =.+ . Therefore
if no power sources are involved, then the device models of voltage sources, current
sources and impedances are linear and therefore the overall model will be linear.

If power sources are involved, then even if we use � = .+ as the network equation,
the device models of power sources will be quadratic and therefore the overall network
will be nonlinear. In this case the power source device model is the only place where
nonlinearity appears. ⇤

In the rest of this subsection we first describe in detail Steps 1 and 2 in the general
solution strategy outline above to obtain a system of equations that can be solved
numerically. In light of Remark 16.7 we will use the current balance equation � = +.
as our network equation. Then, motivated by the examples in Chapter 16.2.1, we show
how to reduce the entire system of equations obtained from Steps 1 and 2 into a smaller
system with possibly much fewer variables, which must be solved numerically. All
other variables can then be derived analytically in terms of the solution of the reduced
system. (For problems without power sources, this reduces equations (16.38)(16.39)
to (16.42).) This simpler solution strategy not only reduces the size of the system
that needs numerical solution, but more importantly, it often reveals more clearly the
essential structure of the problem. For instance, for problems with power sources, the
reduced system is equation (16.47) which consists of a linear equation and a quadratic
equation due to power sources.

We first derive the solution for the case without power sources. We then show
how to extend the solution to incorporate power sources simply by adding their device
models to the systems of equations. We will focus on determining terminal and internal
voltages and currents. Once they are determined, internal and external powers can be

calculated using B. /�
9

:= diag
⇣
+
. /�
9

�
. /�H
9

⌘
and B 9 := diag

⇣
+ 9 �

H
9

⌘
respectively.
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Without power sources.

Recall that #E := #.
E
[+�

E
, #2 := #.

2
[+�

2
, and #8 := #.

8
[+�

8
are the set of buses with,

respectively, voltage sources, current sources, and impedances. With a slight abuse of
notation define the following (column) vectors of terminal voltages and currents:

(+E , �E ) :=
�
+ 9 , � 9 , 9 2 #E

�
, (+2 , �2) :=

�
+ 9 , � 9 , 9 2 #2

�
, (+8 , �8) :=

�
+ 9 , � 9 , 9 2 #8

�
Some of them will be specified and the remaining voltages and currents will be
determined from the network equation and device models. Step 1 of the solution
strategy is to write the network equation � = .+ :

266664
�E

�2

�8

377775
=

266664
.EE .E2 .E8

.2E .22 .28

.8E .82 .88

377775|                {z                }
.

266664
+E

+2

+8

377775
(16.38)

where the admittance matrix . is defined in (16.6).

Step 2 is to describe the device models. The specifications for voltage sources,
current sources and impedances are, from Table 16.3:⇣

⇢
. /�
E

,W. /�
E

, V�
E

⌘
:=

⇣
⇢
. /�
9

, W 9 , 9 2 #. /�E
; V 9 , 9 2 #�E

⌘
⇣
�
. /�
2

,W.
2

⌘
:=

⇣
�
. /�
9

, 9 2 #. /�
2

; W 9 , 9 2 #.2
⌘

⇣
/
. /�
8

,W.
8

⌘
:=

⇣
diag

⇣
I
�
9
, 9 2 #. /�

8

⌘
; W 9 , 9 2 #.8

⌘
To unify notation we define the following matrices

�. †
E

:= I.
E
⌦ I, ��†

E
:= I�

E
⌦�†, �†

E
:= diag

⇣
�. †
E

,��†
E

⌘

�.
2

:= I.
2
⌦ I, ��

2
:= I�

2
⌦�, �2 := diag

⇣
�.
2

,��
2

⌘

�.
8

:= I.
8
⌦ I, ��

8
:= I�

8
⌦�, �8 := diag

⇣
�.
8

,��
8

⌘

where I.
E
, I.
2

, I.
8

are the identity matrices of sizes |#.
E
|, |#.

2
|, |#.

8
| respectively and

I
�
E
, I�
2
, I�
8

denote the identity matrices of sizes |#�
E
|, |#�

2
|, |#�

8
| respectively. Define

vectors of specifications

⇢E :=

⇢
.

E

⇢
�
E

�
, �2 :=


�
.

2

�
�
2

�
, /8 := diag

⇣
/
.

8
,/�
8

⌘
(16.39a)

WE :=

W
.

E

W
�
E

�
, W2 :=


W
.

2

0

�
, W8 :=


W
.

8

0

�
(16.39b)

so that WE 2 C |#E | , W2 2 C |#2 | and W8 2 C |#8 | . Then the terminal voltage and current
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+E and �2 in (16.38) are given by

+E :=

⇢
.

E
+W.

E
⌦ 1

��†
E
⇢
�
E
+W�

E
⌦ 1

�
= �†

E
⇢E + WE ⌦ 1 (16.39c)

�2 := �

�
.

2

��T
2
�
�
2

�
= ��T

2
�2 (16.39d)

Define the following notations for internal variables of impedances:

�
.

8
:=

⇣
�
.

9
, 9 2 #.

8

⌘
, �

�
8

:=
⇣
�
�
9
, 9 2 #�

8

⌘
, �

int
8

:=

�
.

8

�
�
8

�

+
.

8
:=

⇣
+
.

9
, 9 2 #.

8

⌘
, +

�
8

:=
⇣
+
�
9
, 9 2 #�

8

⌘
, +

int
8

:=

+
.

8

+
�
8

�

The internal model of the impedances in . and � configurations is then

+
int
8

= /8 �
int
8

(16.39e)

where /8 is defined in (16.39a). The conversion rule for the current and voltage (�8 ,+8)
is:

�8 =

��.
8

���T
8
�
�
8

�
= ��T

8
�
int
8

, �8+8 =

+
.

8
+W.

8
⌦ 1

+
�
8

�
= +

int
8

+W8 ⌦ 1 (16.39f)

The analysis problem is: Solve the network equation (16.38) and the device models
(16.39) for the unknown external and internal variables. This can be done by numer-
ically solving the system of equations (16.38)(16.39). Note that the analysis problem
defined by (16.38)(16.39) does not assume C16.1 and therefore each line ( 9 , :) may
model a transmission or distribution line, or a three-phase transformer where its series
admittance matrices HB

9:
and HB

: 9
may be di�erent.

The intuition from Example 16.3, Example 16.6 and Exercise 16.8 suggests that,
instead of numerically solving (16.38)(16.39), it is possible to reduce it to a smaller
system of equations with possibly much fewer variables. Once the reduced system
is solved numerically, all other variables can be derived analytically in terms of a
solution of the reduced system. The key observation from the examples is to first solve
for the internal currents � int

8
of all impedances, not their internal voltages+ int

8
nor other

terminal variables (+8 , �8), using the network equation, the internal device models and
the conversion rules. We now explain how to obtain the reduced system of equations in
the internal currents � int

8
of all impedances and the terminal voltages +2 of all current

sources.

Substituting �8 in (16.39f) into (16.38) we have
�2

��T
8
�
int
8

�
=


.2E

.8E

�
+E +


.22 .28

.82 .88

� 
+2

+8

�
(16.40)
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To express +8 in this equation in terms of � int
8

, suppose the inverse


/22 /28

/82 /88

�
:=


.22 .28

.82 .88

��1

(16.41)

exists and multiplying both sides of (16.40) by this inverse and then by diag(I2 ,�8) we
have

diag(I2 ⌦ I,�8)

/22 /28

/82 /88

� 
�2

��T
8
�
int
8

�
= diag(I2 ⌦ I,�8)


/22 /28

/82 /88

� 
.2E

.8E

�
|                                     {z                                     }

266664
�2E

�8E

377775

+E +

+2

�8+8

�

where I2 is the identity matrix of size |#2 |. Substituting �8+8 = + int
8

+ W8 ⌦ 1 = /8 � int
8

+
W8 ⌦ 1 from (16.39e) and (16.39f) and re-arranging, we have thus reduced the original
system (16.38)(16.39) into the following reduced system in

�
+2 , � int

8

�
:

I2 ⌦ I /28�T
8

0 �8/88�T
8
+ /8

� 
+2

�
int
8

�
=


/22

�8/82

�
�2 �


�2E

�8E

�
+E �


0

W8 ⌦ 1

�
(16.42)

Here +E , �2 , /8 and W8 are given by (16.39), the submatrices /22 ,/28 ,/82 ,/88 are from
the inverse in (16.41), and

�2E

�8E

�
:= diag(I2 ⌦ I,�8)


/22 /28

/82 /88

� 
.2E

.8E

�

All quantities on the right-hand side of (16.42) are known. This is a system of 3( |#2 | +
|+8 |) linear equations in 3( |#2 | + |+8 |) unknowns

�
+2 , � int

8

�
. Assuming the matrix on

the left-hand side is invertible, the methods described in Chapter 4.2.5 can be used to
compute numerically a solution

�
+2 , � int

8

�
of (16.42).

We now explain how to derive all the remaining variables.

1 For impedances, with � int
8

, the internal voltage+ int
8

= /8 � int
8

and the terminal current
�8 = ��T

8
�
int
8

from the internal model (16.39e) and the conversion rule (16.39f).
With both � int

8
and +2 , we can obtain +8 from (16.40). The zero-sequence voltages

and currents
⇣
W 9 = 1

31
T
+ 9 , V 9 := 1

31
T
�
�
9

⌘
of all �-configured impedances 9 2 #�

8

can then be derived from
�
+8 , � int

8

�
. This completes the derivation of all voltages

and currents of impedances.
2 For voltage sources, with (+E ,+2 ,+8), the terminal current �E can be derived

from (16.38). For . -configured voltage sources 9 2 #.
E

, the internal currents are
�
.

9
= �� 9 . For �-configured voltage sources 9 2 #�

E
, V 9 are given and hence the

internal currents are ��
9
=� 1

3�� 9 +V 91. This completes the derivation of all voltages
and currents of power sources.

3 For . -configured current sources 9 2 #.
2

, W 9 are given and hence the internal
voltages are +.

9
= + 9 � W 91. For �-configured current sources 9 2 #�

2
, V 9 can be
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calculated from �
�
9

and
⇣
+
�
9
,W 9

⌘
can be calculated from + 9 . This completes the

derivation of the voltages and currents of all current sources.

With all voltages and currents determined, the internal and external powers are then

B
. /�
9

:= diag
⇣
+
. /�
9

�
. /�H
9

⌘
and B 9 = diag

⇣
+ 9 �

H
9

⌘
, 9 2 # , respectively. This completes

the derivation of the variables of all devices in the network.

Remark 16.8. The derivation of the reduced system (16.42) depends critically on the
assumption that the admittance matrix in (16.40) and the e�ective impedance matrix
�8/88�T

8
+/8 in (16.42) are invertible. When that is not the case, additional information

will be needed to uniquely determine all the quantities.

1 If there are voltage sources then the matrix in (16.40) is a strict submatrix of an
admittance matrix and therefore will be invertible if the conditions in Theorem
4.5 are satisfied, including the condition HB

9:
= HB

: 9
.

In Example 16.3 where a voltage source 9 supplies an impedance : both in .
configuration over a three-phase line, the equation (16.40) is (16.14a) for which
the inverse exists. In Example 16.6 where the devices are in � configuration, the
equation (16.40) takes the form

��T
�
�
:

= �HB
9:
+ 9 + HB

9:
+:

so the inverse
⇣
H
B

9:

⌘�1
also exists.

2 When only current sources are present, the matrix in (16.40) is the network
admittance matrix and is invertible if the conditions in Theorem 4.3 are satisfied,
including the condition H

B

9:
= HB

: 9
. In particular if the shunt admittances of all

three-phase lines are assumed zero, then the admittance matrix is not invertible
because it will have zero row sums. In that case, additional information needs to
be specified to provide an additional equation to (16.40) for solving

�
+2 , � int

8

�
and

+8 .
In Exercise 16.8 where the voltage source is replaced by a current source 9

and shunt admittances
⇣
H
<

9:
, H<
: 9

⌘
are assumed zero, the equation (16.40) takes the

form 
� 9

��T
�
�
:

�
=

"
H
B

9:
�HB

9:

�HB
: 9

H
B

: 9

# 
+ 9

+:

�

for which the inverse does not exist. As a result the zero-sequence voltage W 9 of
the current source is also specified to provide the additional equation for solving�
+ 9 , � int

8

�
. If the shunt admittances

⇣
H
<

9:
, H<
: 9

⌘
are nonzero as in Exercise 16.9, W 9 of

the current source need not be specified and can be derived because the equation
above will be invertible.

3 The reduced system (16.42) generalizes (16.14b) in Example 16.3 and (16.18) in
Example 16.6 to general networks and with current sources.
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⇤

With power sources.

Analysis problems with power sources can be solved following the same procedure, but
with the addition of device models of power sources. Specifically the current balance
equation (16.38) is extended to

26666664

�E

�2

�8

�?

37777775
=

26666664

.EE .E2 .E8 .E ?

.2E .22 .28 +2?

.8E .82 .88 .8 ?

.?E .?2 .?8 .??

37777775|                          {z                          }
.

26666664

+E

+2

+8

+?

37777775
(16.43)

where
�
+? , �?

�
:=

�
+ 9 , � 9 , 9 2 #?

�
, with #? := #.

?
[#�

?
, are the terminal voltages and

currents of power sources.

The device model (16.39) also needs to be extended to include power sources. For

a . -configured power source,
⇣
B
.

9
:= f.

9
,W 9 :=+=

9

⌘
are specified. For a �-configured

power source, we assume that
⇣
B
�
9

:= f�
9
,W 9 := 1

31
T
+ 9

⌘
are specified. Let f? :=


f
.

?

f
�
?

�
.

Then the internal models of the power sources in . and � configurations are

f
.

?
=

⇣
diag

⇣
+
.

9
�
.H
9

⌘
, 9 2 #.

?

⌘
, f

�
?

:=
⇣
diag

⇣
+
�
9
�
�H
9

⌘
, 9 2 #�

?

⌘
To simplify notation define the internal currents and voltages for all power sources:

�
.

?
:=

⇣
�
.

9
, 9 2 #.

?

⌘
, �

�
?

:=
⇣
�
�
9
, 9 2 #�

?

⌘
, �

int
?

:=

�
.

?

�
�
?

�

+
.

?
:=

⇣
+
.

9
, 9 2 #.

?

⌘
, +

�
?

:=
⇣
+
�
9
, 9 2 #�

?

⌘
, +

int
?

:=

+
.

?

+
�
?

�

Then the internal models of the power sources can be written as

f? = diag
⇣
+

int
?
�
intH
?

⌘
(16.44a)

This is a quadratic equation in the unknowns internal voltage and current
⇣
+

int
?

, � int
?

⌘
.5

Define

��
?

:= I�
?
⌦�, �? := diag

⇣
I
.

?
,��
?

⌘
, W? :=


W
.

?

0

�

5 We can also use the equivalent model f? = diag
⇣ �
�?+? � W?

�
�

intH
?

⌘
of power sources in terms of the

terminal voltage +? , the internal current � int
?

, and the neutral voltage W.
?

. The network equation
however will only allow us to solve for � 9+9 = + �

9
for �-configured power sources 9. Specifically + int

?

in (16.47a) will be replaced by �?+? and (16.47b) by f? = diag
⇣ �
�?+? � W?

�
�

intH
?

⌘
. Therefore it is

simpler to solve for the internal voltage + int
?

and then use W 9 to obtain the terminal voltages +9 of
�-configured power sources 9.
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where I�
?

denotes the identity matrix of size |#�
?
|, I.

?
the identity matrices of size

3|#.
?
|, and W.

?
:=

⇣
W 9 :=+=

9
, 9 2 #.

?

⌘
are neutral voltages of all . -configured power

sources 9 . The current and voltage conversion rule is (similar to (16.39f))

�? = ��? � int
?

, �?+? = +
int
?

+W? ⌦ 1 (16.44b)

The analysis problem can be stated as: Solve the network equation (16.43) and the
device models (16.39) (16.44) for the unknown external and internal variables. This
system of equations (16.43)(16.39)(16.44) can be solved numerically.

We will follow the same procedure to reduce (16.43)(16.39)(16.44) into a smaller

system of (nonlinear) equations that involves only
⇣
+2 , � int

8
, � int
?

,+ int
?

⌘
. All other variables

can then be derived from a solution
⇣
+2 , � int

8
, � int
?

,+ int
?

⌘
.

Substituting �8 , �? in (16.39f) and (16.44b) respectively into (16.43) we have

diag
⇣
I2 ,��T

8
,��T

?

⌘ 266664
�2

�
int
8

�
int
?

377775
=

266664
.2E

.8E

.?E

377775
+E +

266664
.22 .28 .2?

.82 .88 .8 ?

.?2 .?8 .??

377775
266664
+2

+8

+?

377775
(16.45)

Suppose the inverse

266664
/22 /28 /2?

/82 /88 /8 ?

/?2 /?8 /??

377775
:=

266664
.22 .28 .2?

.82 .88 .8 ?

.?2 .?8 .??

377775

�1

(16.46)

exists and multiplying both sides by this inverse and then by diag(I2 ,�8 ,�?) we have

diag(I2 ,�8 ,�?)
266664
/22 /28 /2?

/82 /88 /8 ?

/?2 /?8 /??

377775
diag

⇣
I2 ,��T

8
,��T

?

⌘ 266664
�2

�
int
8

�
int
?

377775
=

266664
⌫2E

⌫8E

⌫?E

377775
+E +

266664
+2

�8+8
�?+?

377775
where

266664
⌫2E

⌫8E

⌫?E

377775
:= diag(I2 ,�8 ,�?)

266664
/22 /28 /2?

/82 /88 /8 ?

/?2 /?8 /??

377775
266664
.2E

.8E

.?E

377775
Substituting �8+8 = + int

8
+ W8 ⌦ 1 = /8 � int

8
+ W8 ⌦ 1 from (16.39e) and (16.39f), �?+? =

+
int
?

+W? ⌦ 1 from (16.44b), and re-arranging, we have

266664
I2 /28�T

8
/2?�T

?
0

0 �8/88�T
8
+ /8 �8/8 ?�T

?
0

0 �?/?8�T
8

�?/??�T
?
I?

377775

26666664

+2

�
int
8

�
int
?

+
int
?

37777775
=

266664
/22

�8/82
�?/?2

377775
�2 �

266664
⌫2E

⌫8E

⌫?E

377775
+E �

266664
0
W8

W?

377775
⌦ 1

(16.47a)

diag
⇣
+

int
?
�
intH
?

⌘
= f? (16.47b)
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The reduced system of (16.43)(16.39)(16.44) is (16.47) which must be solved numeri-

cally. The analysis problem therefore becomes: Solve (16.47) for
⇣
+2 , � int

8
, � int
?

,+ int
?

⌘
and

derive all other variables analytically (Exercise 16.13). As before, the analysis problem
does not assume C16.1 and therefore each line ( 9 , :) may model a transmission or
distribution line, or a three-phase transformer where its series admittance matrices HB

9:

and HB
: 9

may be di�erent.

We make three remarks. First, compared with the reduced system (16.42) without

power sources, the reduced system (16.47) involves two more variables
⇣
+

int
?

,+ int
?

⌘
with

two additional sets of equations. While (16.42) is linear, (16.47) is quadratic because
of the device model (16.47b) of power sources. Even if the inverse in (16.46) exists
and the matrix on the left-hand side of (16.47a) is invertible, (16.47) may or may not
have a solution which may or may not be unique because of the nonlinearity. Second,
these inverses may not exist in which case more information is needed to determine a
solution. For example, when there are no voltage sources as in Example 16.9 and the
shunt admittances H<

9:
= H<

: 9
= 0, the admittance matrix in (16.45) has zero row sums

and is singular. In that case additional information (V 9 + V: ) is given, compared with
the case in Example 16.8; see also Remark 16.8. Finally, the linearity of (16.47a) is
the consequence of using the linear current balance equation � = .+ in (16.43), and
this is always possible as discussed in Remark 16.7.

16.3 Balanced network

In this section we show that, if the voltage sources, current sources, and impedances
are generalized balanced vectors and the lines are decoupled, then the analysis problem
in Chapter 16.2 can be solved by analyzing certain simpler per-phase networks. The
intuition is that the balanced voltage and current sources render all voltages and currents
in the network to be balanced due to Corollary 1.3. To simplify exposition we only
consider the case without power sources so that our problem remains linear.

With today’s abundant computing power the smaller problem size may not be an im-
portant advantage of per-phase analysis. Rather, per-phase analysis clarifies the simple
structure underlying a balanced network and enhances our conceptual understanding
of three-phase networks in general, balanced or unbalanced.

We start in Chapter 16.3.1 by summarizing properties of Kronecker product which
underlies the equivalence of three-phase analysis and per-phase analysis for a balanced
network.
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16.3.1 Kronecker product

The simple structure that underlies balanced networks depends critically on properties
of the Kronecker product. For instance the admittance matrix . of a balanced three-
phase network can be written as the Kronecker product of a per-phase admittance matrix
and the identity matrix I of size 3. This is explained in Chapter 16.3. In particular we
will use the following properties in the proof of Theorem ?? there.

Lemma 16.6 (Kronecker product). Let �,⌫,⇠,⇡ be complex matrices of appropriate
dimensions.

1 (�+⌫) ⌦⇠ = (�⌦⇠) + (⌫⌦⇠); ⇠ ⌦ (�+⌫) = (⇠ ⌦ �) + (⇠ ⌦ ⌫).
2 (�⌦ ⌫) (⇠ ⌦⇡) = (�⇠) ⌦ (⌫⇡).
3 (�⌦ ⌫)T = �

T ⌦ ⌫T; (�⌦ ⌫)H = �
H ⌦ ⌫H.

4 (�⌦ ⌫)�1 = �
�1 ⌦ ⌫�1; (�⌦ ⌫)† = �

† ⌦ ⌫† where �† denotes the pseudo-
inverse of �.

5 rank (�⌦ ⌫) = rank � · rank ⌫.
6 If � 2 C<⇥= is invertible and - ,. 2 C?⇥@ then

�⌦ - = �⌦. , () - = .

The proof of the lemma is left as Exercise ??

16.3.2 Three-phase analysis

We first explain how the device models and the admittance matrix simplify in a balanced
system. We then use that to simplify the three-phase analysis problem in Chapter 16.2.
Finally we show that the problem is equivalent to solving per-phase systems.

Balanced devices.

When the devices are balanced positive-sequence sets with parameters _ 9 ,` 9 , Z 9 2 C:

⇢
. /�
9

:= _ 9U+, 9 2 #E , �
. /�
9

:= ` 9U+, 9 2 #2 , I
. /�
9

:= Z 9 I, 9 2 #8
their internal models in Table 16.3 reduce to those specified in Table 16.4. In vector
form the voltage sources are

⇢
.

E
= _

.

E
⌦U+, ⇢

�
E

= _
�
E
⌦U+, ⇢E :=


⇢
.

E

⇢
�
E

�
= _E ⌦U+

where _.
E

:=
�
_ 9 , 9 2 #.E

�
, _�
E

:=
�
_ 9 , 9 2 #�E

�
and _E :=

�
_ 9 , 9 2 #E

�
. Defining similar

quantities for current sources and impedances, the specification (16.39a)(16.39b) in
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vector form reduces to

⇢E :=

_
.

E

_
�
E

�
⌦U+ = _E ⌦U+, WE :=


W
.

E

W
�
E

�
(16.48a)

�2 :=

`
.

2

`
�
2

�
⌦U+ = `2 ⌦U+, W

0
2

:=

W
.

2

0

�
(16.48b)

/8 := diag
⇣
Z
.

8
, Z�
8

⌘
⌦ I = Z8 ⌦ I, W

0
8

:=

W
.

8

0

�
(16.48c)

where Z.
8

:= diag
�
Z 9 , 9 2 #.

8

�
, Z�
8

:= diag
�
Z 9 , 9 2 #�

8

�
, Z8 := diag

�
Z
.

8
, Z�
8

�
are diagonal

matrices of sizes
��
+
.

8

��, ��+�
8

��, |+8 | respectively.

The external models in Table 16.4 are obtained by substituting these specifications
into the external models in Table 16.3 and applying Corollary 1.3 and Theorem 14.2,
specifically

�U+ = (1�U)U+, �T
U+ =

⇣
1�U2

⌘
U+, �† =

1
3
�T, �T† =

1
3
�

The derivation of the impedance model in Table 16.4 in � configuration is left as
Exercise 16.14. These models are special cases of the three-phase devices in Chapters

Buses 9 Specification External model Vars Internal vars

#
.

E
⇢
.

9
= _ 9U+, W 9 + 9 = _ 9U+ +W 91 � 9 �

.

9
= �� 9

#
�
E

⇢
�
9
= _ 9U+, W 9 , V 9 + 9 = 1

3 (1�U2)_ 9U+ +W 91 � 9 �
�
9
= ��T†

� 9 + V 91
#
.

2
�
.

9
= ` 9U+,W 9 � 9 = �` 9U+ + 9 +

.

9
= + 9 �W 91

#
�
2

�
�
9
= ` 9U+ � 9 = �(1�U2)` 9U+ + 9 +

�
9

= �+ 9 , W 9 := 1
3 1

T
+ 9

V 9 := 1
3 1

T
�
�
9

#
.

8
I
.

9
= Z 9 I, W 9 � 9 = �[ 9

�
+ 9 �W 91

� �
+ 9 , � 9

�
+
.

9
= + 9 �W 91, �.

9
= �� 9

#
�
8

I
�
9
= Z 9 I, V 9 � 9 = �3[ 9

�
+ 9 � W 91

� �
+ 9 , � 9

�
+
�
9

= �+ 9 , W 9 := 1
3 1

T
+ 9

�
�
9
= ��T†

� 9 + V 91

Table 16.4 Internal and external models of balanced positive-sequence sources and
impedances with [ 9 := Z�1

9
. The impedance model for #�

8
in the table is equivalent to

� 9 = �3[ 9
⇣
+ 9 �

⇣
1
3 1T

+ 9

⌘
1
⌘

which is the model � 9 = �.�
9
+ 9 in Table 16.3.

14.3.3 and 14.3.4. To simplify the notation for the external models of voltage and
current sources, define

Û 9 :=

8>>>><
>>>>:

1 if 9 2 #.
E
[#.

2
[#.

8

(1�U2)/3 if 9 2 #�
E

(voltage sources)
(1�U2) if 9 2 #�

2
(current sources)

3 if 9 2 #�
8

(admittance)
Then when the voltage and current sources are balanced, their external models
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(16.39c)(16.39d) reduce to:

+E =
�
Û 9_ 9U+ +W 91, 9 2 #E

�
=: _̂E ⌦U+ + WE ⌦ 1 (16.48d)

�2 =
�
�Û 9` 9U+, 9 2 #2

�
=: � ˆ̀2 ⌦U+ (16.48e)

where _̂E ,WE 2 C |#E | and ˆ̀2 2 C |#2 | .

Remark 16.9 (�-. transformation). The specification (16.48d)(16.48e) corresponds
to the first step of per-phase analysis in Chapter 1.2.5 that converts all � configured
devices to their . equivalents that have the same external behavior. It generalizes the
standard practice of assuming W 9 = 0 to the case where W 9 may be nonzero, because
some . -configured devices on the network are not grounded, some are grounded
through nonzero earthing impedances, and some �-configured devices have nonzero
zero-sequence voltages. ⇤

The internal models of impedances (16.39e) and the conversion rules (16.39f)
become

+
int
8

= /8 �
int
8

= (Z8 ⌦ I) � int
8

(16.48f)

�8 =


��.
8

�
�
I
�
8
⌦��T

8

�
�
�
8

�
= ��T

8
�
int
8

(16.48g)

�8+8 =

+
.

8
+W.

8
⌦ 1

+
�
8

�
= +

int
8

+W0
8
⌦ 1 (16.48h)

where /8 , Z8 ,W0
8

are defined in (16.48c), and I.
8

, I�
8

are the identity matrices of sizes��
+
.

8

�� , ��+�
8

�� respectively.

Balanced admittance matrix . .

We assume all lines are balanced, i.e.,

H
B

9:
= [

B

9:
I, H

<

9:
= [

<

9:
I, H

<

: 9
= [

<

: 9
I (16.49a)

for some constants [
B

9:
,[<
9:

,[<
: 9
2 C. The terminal voltages and currents + :=

(+0, . . . ,+# ) and � := (�0, . . . , �# ) are described by (16.5) which, with balanced lines,
reduces to

� 9 =
’
:: 9⇠:

⇣
H
B

9:
+ H

<

9:

⌘
+ 9 �

’
:: 9⇠:

H
B

9:
+: =

’
:: 9⇠:

[ 9:+ 9 �
’
:: 9⇠:

[
B

9:
+: , 9 2 # (16.49b)

where [ 9: := [B
9:
+ [<

9:
and + 9 , � 9 2 C3. This in vector form is � = .+ . The balanced

lines in (16.49a) allow us to write the admittance matrix. using the Kronecker product.
This is the key mathematical structure, in addition to the conversion matrices �,�T

as described in Corollary 1.3, that underlies the balanced property of all voltages and
currents in the network.
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Specifically, define the (# +1)⇥ (# +1) per-phase admittance matrix .1q by

.
1q
9:

:=

8>>><
>>>:

�[B
9:

, ( 9 , :) 2 ⇢ , ( 9 < :)Õ
:: 9⇠:

⇣
[
B

9:
+ [<

9:

⌘
, 9 = :

0 otherwise

(16.50a)

As we will see, this is the bus admittance matrix studied in Chapter 4.2 for the per-
phase circuit of a balanced three-phase network where each line is characterized by

four complex scalars
⇣
[
B

9:
,[<
9:

⌘
,
⇣
[
B

: 9
,[<
: 9

⌘
. In particular. does not assume C16.1 and

hence .1q may not satisfy C4.1. Therefore each line ( 9 , :) may model a transmission
or distribution line, or a three-phase transformer where its series admittance matrices
H
B

9:
and HB

: 9
may be di�erent.

Substituting (16.49a) into the admittance matrix . in (16.6) for the three-phase
network, we can write . in terms of the per-phase admittance matrix .1q using the
Kronecker product:

. = .
1q ⌦ I (16.50b)

The relation � = .+ for the three-phase network becomes

� =
⇣
.

1q ⌦ I
⌘
+ (16.50c)

Three-phase analysis.

We are interested in determining the (column) vectors of terminal and internal variables

+�E := (+2 ,+8) :=
�
+ 9 , 9 2 #2 [#8

�
, ��2 := (�E , �8) :=

�
� 9 , 9 2 #2 [#8

�
(16.51a)

+
int
�E :=

⇣
+

int
2

,+ int
8

⌘
:=

⇣
+
. /�
9

, 9 2 #2 [#8
⌘
, �

int
�2 :=

⇣
�
int
E

, � int
8

⌘
:=

⇣
�
. /�
9

, 9 2 #2 [#8
⌘

(16.51b)

W
�
�E :=

⇣
W
�
2
,W�
8

⌘
:=

⇣
W 9 , 9 2 #�2 [#�8

⌘
, V

�
�E :=

⇣
V
�
9
, V�
9

⌘
:=

⇣
V 9 , 9 2 #�2 [#�8

⌘
(16.51c)

Let G :=
�
+�E , ��2 ,+ int

�E , �
int
�2 ,W

�
�E , V

�
�E

�
. When the network is balanced the three-phase

analysis problem in Chapter 16.2 reduces to: solve for G given the device specification
(16.48) and the network equation (16.50).
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16.3.3 Balanced voltages and currents

In this subsection we prove a structural result that says that, when the internal voltages
and currents of non-power sources are balanced, so are all other voltages and currents
in the network.

Partition the per-phase admittance matrix .1q defined in (16.50) into submatrices
(�11, �21, �22):

.
1q =:

2666664

.
1q
EE

.
1q
E2

.
1q
E8

.
1q
2E

.
1q
22

.
1q
28

.
1q
8E

.
1q
82

.
1q
88

3777775
=:


�11 �

T
21

�21 �22

�
(16.52)

The matrix �22 is complex symmetric and therefore a legitimate admittance matrix.
We will make two assumptions on the per-phase admittance matrix .1q .

C16.7: The submatrix �22 is invertible.

Assuming C16.7 (see Chapter 4.2.3 for su�cient conditions for the invertibility of
principal submatrices of an admittance matrix), denote the inverse of the submatrix
�22 by "

/
1q
22

/
1q
28

/
1q
82

/
1q
88

#
:=

"
.

1q
22

.
1q
28

.
1q
82

.
1q
88

#�1

= �
�1
22 (16.53a)

Then the inverse in (16.41) exists and is:

/22 /28

/82 /88

�
:=


.22 .28

.82 .88

��1

= �
�1
22 ⌦ I (16.53b)

where we have used (�⌦ ⌫)�1 = ��1 ⌦ ⌫�1 (Lemma 16.6). The second assumption is:

C16.8: The impedances Z 9 2 C are nonzero for all 9 2 #8 , the submatrix /
1q
88

in
(16.53a) and the matrix

⇠̂8 =
✓⇣
/

1q
88

⌘�1
⌦ I

◆
+ �T

8

⇣
Z
�1
8
⌦ I

⌘
�8 (16.54)

are invertible.

Theorem 16.7 (Balanced voltages and currents). Suppose C16.7 and C16.8 hold.

1 Any solution G of (16.48)(16.50) consists of generalized balanced vectors in pos-
itive sequence, i.e., any voltage or current G 9 in (16.51) at bus 9 is of the form
G 9 = 0 9U+ + 1 91 for some 0 9 ,1 9 2 C.

2 Moreover all G 9 are balanced vectors, i.e., 1 9 = 0, if WE = 0 for all voltage sources
and the neutral voltages W.

8
= 0 for all . configured impedances.
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In the rest of this subsection we prove the theorem following the solution strategy in
Chapter 16.2.3 to show that any solution

�
+2 , � int

8

�
of the reduced system (16.42) consists

of generalized balanced vectors. All other variables can then be derived analytically in
terms of the solution

�
+2 , � int

8

�
and shown to be generalized balanced vectors (Exercise

16.15).

The variable
�
+2 , � int

8

�
satisfies (16.42), reproduced here:

I2 ⌦ I /28�T
8

0 �8/88�T
8
+ /8

� 
+2

�
int
8

�
=


/22

�8/82

�
�2 �


�2E

�8E

�
+E �


0

W
0
8
⌦ 1

�
(16.55)

where 
�2E

�8E

�
:= diag(I2 ⌦ I,�8)


/22 /28

/82 /88

� 
.2E

.8E

�

We now prove Theorem 16.7 in the following three lemmas. The first lemma simplifies
(16.55) using balanced devices (16.48) and balanced lines (16.50).

Lemma 16.8. Suppose C16.7 holds. Balanced devices and lines (16.48)(16.50) re-
duces (16.55) to

266664
I2 ⌦ I

⇣
/

1q
28
⌦ I

⌘
�T
8

0 �8
⇣
/

1q
88
⌦ I

⌘
�T
8
+ (Z8 ⌦ I)

377775|                                        {z                                        }
"


+2

�
int
8

�
= 0

0 ⌦U+ + 1
0 ⌦ 1 (16.56a)

where

0
0 := �

2666664

/
1q
22

ˆ̀2 + ⌫2E _̂E
/

1q,.
82

ˆ̀2 + ⌫.
8E
_̂E

(1�U)
⇣
/

1q,�
82

ˆ̀2 + ⌫�
8E
_̂E

⌘
3777775

, 1
0 := �

266664
⌫2E WE

⌫
.

8E
W
.

E
+ W.

8

0

377775
(16.56b)

for some matrices ⌫2E ,⌫.
8E

,⌫�
8E

.

The second lemma shows that the inverse "�1 of the matrix in (16.53a) has a
structure that preserve the balanced nature of voltages and currents.

Lemma 16.9. Suppose C16.7 and C16.8 hold.

1 The matrix " in (16.56) is invertible.
2 Each 3⇥3 block

⇥
"
�1

⇤
9:

of "�1 corresponding to phases 012 is of the form
⇥
"
�1⇤

9:
:= E 9: I + F 9:, 9: (16.57)

where E 9: ,F 9: 2 C are scalars and, 9: 2 C3⇥3 is one of I, �, �T, ��T and �T�.

The structure (16.57) of "�1 in Lemma 16.9 is what allows
�
+2 ,+ int

8

�
to remain

generalized balanced vectors. It requires that ⇠̂8 in C16.8 be invertible. The following
lemma is the crucial fact in determining the inverse of ⇠̂8 that appears in "�1. The
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lemma can be verified directly using
�
�T�

� �
�T�

�
= 3�T� (Theorem 14.2). It says that

taking the inverse of the sum of a Kronecker product with I and a Kronecker product
with �T� preserves the Kronecker structure.

Lemma 16.10. For any matrix � and ⌫ of appropriate sizes, if � and � + 3⌫ are
invertible then⇣

�⌦ I + ⌫⌦�T�
⌘�1

=
⇣
�
�1 ⌦ I �

⇣
(�+3⌫)�1

⌫�
�1

⌘
⌦�T�

⌘

We now prove Lemmas 16.8 and 16.9.

Proof of Lemma 16.8 From (16.53) and (16.48c), the matrix on the left-hand side of
(16.55) reduces to

266664
I2 ⌦ I

⇣
/

1q
28
⌦ I

⌘
�T
8

0 �8
⇣
/

1q
88
⌦ I

⌘
�T
8
+ (Z8 ⌦ I)

377775
(16.58)

On the right-hand side partition /1q
82

in (16.53) into submatrices corresponding to
impedances in . and � configurations:

/
1q
82

=:

"
/

1q,..
82

/
1q,.�
82

/
1q,�.
82

/
1q,��
82

#
=:

"
/

1q,.
82

/
1q,�
82

#

where /
1q,.
82

denotes the first |#.
8
| rows of /1q

82
corresponding to . configured

impedances and /
1q,�
82

denotes the remaining |#�
8
| rows of /1q

82
corresponding to

� configured impedances. We then have, using �8 = diag
�
I
.

8
⌦ I, I�

8
⌦�

�
,

�8/82 = �8
⇣
/

1q
82
⌦ I

⌘
=

"
/

1q,.
82
⌦ I

/
1q,�
82
⌦�

#

The important structure is that the conversion matrix � appears on the right as “⌦�”
which allows the current �2 transformed by �8/82 to remain in span(U+) on the right-
hand side (using (16.48e)):


/22

�8/82

�
�2 = �

"
/

1q
22
⌦ I

�8
⇣
/

1q
82
⌦ I

⌘
#

ˆ̀2 ⌦U+ = �
2666664

/
1q
22

ˆ̀2
/

1q,.
82

ˆ̀2
(1�U)/1q,�

82
ˆ̀2

3777775
⌦U+ (16.59a)

where we have used (� ⌦ ⌫) (⇠ ⌦ ⇡) = (�⇠) ⌦ (⌫⇡) (Lemma 16.6) and �U+ =
(1�U)U+ (Corollary 1.3).

The second term

�2E

�8E

�
+E on the right-hand side of (16.55) can be simplified in a

similar manner but with more steps. We have from (16.53)

�2E

�8E

�
=

"
/

1q
22
⌦ I /

1q
28
⌦ I

�8
⇣
/

1q
82
⌦ I

⌘
�8

⇣
/

1q
88
⌦ I

⌘
# "
.

1q
2E
⌦ I

.
1q
8E
⌦ I

#
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Similarly partition /1q
88

into its first |#.
8
| and the remaining |#�

8
| rows:

/
1q
88

=:

"
/

1q,.
88

/
1q,�
88

#

Then, using (16.48d) and �8 = diag
�
I
.

8
⌦ I, I�

8
⌦�

�
, we have


�2E

�8E

�
+E =

2666664
/

1q
22
⌦ I /

1q
28
⌦ I

/
1q,.
82
⌦ I /

1q,.
88
⌦ I

/
1q,�
82
⌦� /

1q,�
88
⌦�

3777775

"
.

1q
2E
⌦ I

.
1q
8E
⌦ I

# �
_̂E ⌦U+ +WE ⌦ 1

�

=:

266664
⌫2E _̂E

⌫
.

8E
_̂E

(1�U)⌫�
8E
_̂E

377775|             {z             }
0
0

⌦U+ +
266664
⌫2E WE

⌫
.

8E
W
.

E

0

377775|    {z    }
1
0

⌦1 (16.59b)

where

⌫2E := /
1q
22
.

1q
2E

+ /1q
28
.

1q
8E

, ⌫
.

8E
:= /

1q,.
82

.
1q
2E

+ /1q,.
88

.
1q
8E

, ⌫
�
2E

:= /
1q,�
82

.
1q
2E

+ /1q,�
88

.
1q
8E

The factor 1�U in (16.59b) is due to �U+ = (1�U)U+ and the 0 entry is due to �1 = 0
and originates from the fact that the internal voltages in a � configuration sum to zero,
i.e., 1

T
+
� = 0.

Substituting (16.58)(16.59) into (16.55) then yields (16.56) (recall from (16.48c)
that W0

8
:=

�
W
.

8
,0

�
). ⇤

Proof of Lemma 16.9 The matrix in (16.56):

" :=
266664
I2 ⌦ I

⇣
/

1q
28
⌦ I

⌘
�T
8

0 �8
⇣
/

1q
88
⌦ I

⌘
�T
8
+ (Z8 ⌦ I)

377775
is invertible if its submatrix

"22 := (Z8 ⌦ I) + �8
⇣
/

1q
88
⌦ I

⌘
�T
8

(16.60a)

is invertible in which case its inverse is

"
�1 :=

"
I2 ⌦ I �

⇣
/

1q
28
⌦ I

⌘
�T
8
"
�1
22

0 "
�1
22

#
(16.60b)

(see Appendix A.3 for discussions on Schur complement for the inverse of general
block matrices). To study the invertibility of "22 we use the matrix inversion formula
(A.6):

(�+⌫⇠⇡)�1 = �
�1 � �

�1
⇣
⌫⇠̃
�1
⇡

⌘
�
�1

where ⇠̃ := ⇠�1 +⇡��1
⌫ in Appendix A.3.2. The matrix �+ ⌫⇠⇡ is invertible if �,

⇠ and ⇠̃ := ⇠�1 +⇡��1
⌫ are invertible. Therefore "22 in (16.60a) is invertible if (i)
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the impedances Z 9 2 C are nonzero for all 9 2 #8; (ii) /1q
88

is invertible; and (iii) the
matrix ⇠̂8 in (16.54) is invertible, as claimed in Lemma 16.9.

We now prove (16.57). To apply Lemma 16.10 to determine the inverse of ⇠̂8 , use
�8 = diag

�
I
.

8
⌦ I, I�

8
⌦�

�
to get

�T
8

⇣
Z
�1
8
⌦ I

⌘
�8 = diag

⇣
I
.

8
⌦ I, I�

8
⌦�T

⌘
diag

✓⇣
Z
.

8

⌘�1
⌦ I,

⇣
Z
�
8

⌘�1
⌦ I

◆
diag

⇣
I
.

8
⌦ I, I�

8
⌦�

⌘

= diag
⇣
[
.

8
⌦ I,[�

8
⌦�T�

⌘

where [. /�
8

:=
⇣
Z
. /�
8

⌘�1
. Partition

⇣
/

1q
88

⌘�1
into submatrices:

⇣
/

1q
88

⌘�1
=:


�
..

�
.�

�
�.

�
��

�

Then

⇠̂8 :=
✓⇣
/

1q
88

⌘�1
⌦ I

◆
+ �T

8

⇣
Z
�1
8
⌦ I

⌘
�8 =


�̃
..

�
.�

�
�.

�
��

�
⌦ I + diag

⇣
0,[�

8

⌘
⌦�T�

where �̃.. := �.. +[.
8

. We can then apply Lemma 16.10 to get

⇠̂
�1
8

= �̃⌦ I � ⌫̃⌦�T� (16.61)

where

�̃ :=

�
.. +[.

8
�
.�

�
�.

�
��

��1

, ⌫̃ :=

�
.. +[.

8
�
.�

�
�.

�
�� +3[�

8

��1

diag
⇣
0,[�

8

⌘
�̃

Applying the matrix inversion formula with ⇠̂�1
8

given by (16.61) we obtain the
inverse of "22 in (16.60a) as

"
�1
22 = ([8 ⌦ I) � ([8 ⌦ I)�8

⇣
�̃⌦ I � ⌫̃⌦�T�

⌘
�T
8
([8 ⌦ I)

= ([8 ⌦ I) �
✓ 
�̂
.. ⌦ I �̂

.� ⌦�T

�̂
�. ⌦� �̂

�� ⌦��T

�
�


⌫̂
.. ⌦�T� 3⌫̂.� ⌦�T

3⌫̂�. ⌦� 3⌫̂�� ⌦��T

� ◆

(16.62)

where

[ �̂/⌫̂].. := [
.

8
[ �̃/⌫̃].. [.

8
, [ �̂/⌫̂].� := [

.

8
[ �̃/⌫̃].�[�

8

[ �̂/⌫̂]�. := [
�
8
[ �̃/⌫̃]�. [.

8
, [ �̂/⌫̂]�� := [

�
8
[ �̃/⌫̃]��[�

8

and [. /�
8

:=
⇣
Z
. /�
8

⌘�1
, [8 := diag

�
[
.

8
,[�
8

�
. Therefore each 3⇥3 block of "�1

22 is of the

desired form of E 9: I+F 9:, 9: where E 9: ,F 9: 2 C are scalars and , 9: 2 C3⇥3 is one
of I, �, �T, ��T and �T�.

Finally substituting (16.61) into (16.60b) we see that each 3 ⇥ 3 block of the
3 (|#2 | + |#8 |)⇥3 ( |#2 | + |#8 |) matrix "�1 will also be of the desired form of F 9:, 9:
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if this property holds for its o�-diagonal submatrix
⇣
/

1q
28
⌦ I

⌘
�T
8
"
�1
22 . We now show

that this is indeed the case. Partition /1q
28

into submatrices corresponding to impedances
in . and � configurations:

/
1q
28

=:

"
/

1q,..
28

/
1q,.�
28

/
1q,�.
28

/
1q,��
28

#

Using /1q
28

and �8 = diag
�
I
.

8
⌦ I, I�

8
⌦�

�
we have

⇣
/

1q
28
⌦ I

⌘
�T
8
"
�1
22 =

"
/

1q,..
28

⌦ I /
1q,.�
28

⌦�T

/
1q,�.
28

⌦ I /
1q,��
28

⌦�T

#
"
�1
22

Substituting "�1
22 in (16.62) and using

�T��T =
⇣
3I�11

T
⌘
�T = 3�T

we see that each 3⇥3 block of
⇣
/

1q
28
⌦ I

⌘
�T
8
"
�1
22 is of the desired form of E 9: I+F 9:, 9:

where E 9: ,F 9: 2 C are scalars and, 9: 2 C3⇥3 is one of I, �, �T, ��T and �T�.

This completes the proof of (16.57). ⇤

Lemmas 16.8 and 16.9 imply Theorem 16.7.

Proof of Theorem 16.7 Multiplying both sides of (16.56) by "�1 in (16.57) we see
that the 9 th 3⇥3 block of

�
+2 , � int

8

�
is of the form’

:

⇥
"
�1⇤

9:

�
0
0
:
U+ + 10:1

�
=

’
:

0
0
:

�
E 9: I+F 9:, 9:

�
U+ +

’
:

1
0
:

�
E 9: I+F 9:, 9:

�
1

Since

, 9:U+ =

8>>>><
>>>>:

U+ if , 9: = I
(1�U)U+ if , 9: = �
(1�U2)U+ if , 9: = �T

3U+ if , 9: = ��T or �T�

and , 9:1 = 1 if , 9: = I and 0 otherwise,
�
+2 , � int

8

�
consists of generalized balanced

vectors of the form 0 9U+ + 1 91. When WE = 0 for all voltage sources and W.
8
= 0 for all

. configured impedances, then 10 = 0 in (16.56) and hence 1 = 0. This completes the
proof of Theorem 16.7. ⇤

16.3.4 Phase decoupling and per-phase analysis

In this subsection we show that phases in a balanced network are decoupled so that the
three-phase analysis problem can be solved by solving two per-phase networks.

Substitute the per-phase admittance matrix (16.52), and the external models of
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voltage and current sources (16.48d)(16.48e) into the current balance equation � =.+
(16.50c) to get

266664
�E

� ˆ̀2 ⌦U+
�8

377775
=

©≠≠
´

2666664
.

1q
EE

.
1q
E2

.
1q
E8

.
1q
2E

.
1q
22

.
1q
28

.
1q
8E

.
1q
82

.
1q
88

3777775
⌦ I

™ÆÆ
¨

266664
_̂E ⌦U+ + WE ⌦ 1

+2

+8

377775
(16.63)

Instead of following the solution strategy of Chapter 16.2.3 to compute the internal
impedance current � int

8
from the reduced system (16.42) we will compute the termi-

nal voltage +8 , as well as +2 , using (16.63). We can then compute (�E , �8) and all
other variables such as internal voltages and currents and zero-sequence voltages and
currents.

We know from Theorem 16.7 that all voltages and currents consist of generalized
balanced vectors of the form 0 9U+ + 1 91. We now describe separately external models
for devices in � and . configurations.

� configuration.

Consider a � configured device 9 2 #�
E
[#�

2
[#�

8
. Let

+ 9 =: E 9U+ +W 91, 9 2 #�
2
[#�

8
(16.64a)

� 9 =: 8 9U+, 9 2 #�
E
[#�

8
(16.64b)

for some (E 9 ,W 9 ) and 8 9 to be determined. Here W 9 = 1
31

T
+ 9 is the zero-sequence

voltage of + 9 . As expected, 1
T
� 9 = 0 since � 9 = ��T

�
�
9
. For an impedance 9 2 #�

8
, we

can express its terminal current � 9 in terms of its terminal voltage + 9 using its external
model (from Table 16.4)

� 9 = �3[ 9
�
+ 9 �W 91

�
= �3[ 9E 9 U+, 9 2 #�

8
(16.64c)

Hence the variables (E 9 , 8 9 ) for an impedance 9 2 #�
8

satisfies 8 9 =�3[ 9E 9 , the negative
sign due to the definition of � 9 being injection from the device to the rest of the network.

. configuration.

Consider a. configured device 9 2 #.
E
[#.

2
[#.

8
. Let its internal voltage and internal

current be generalized balanced vectors:

+
.

9
=: Eint

9
U+ + Wint

9
1, 9 22 #.

2
[#.

8

�
.

9
=: �

⇣
8
int
9
U+ + Vint

9
1

⌘
, 9 2 #.

E
[#.

8

for some (Eint
9

,Wint
9
) and

⇣
8
int
9

, Vint
9

⌘
to be determined. Here Wint

9
:= 1

31
T
+
.

9
is the zero-

sequence voltage of the internal voltage+.
9

, not the neutral voltage W 9 :=+=
9
, and Vint

9
:=
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1
31

T
�
.

9
is the zero-sequence current of the internal current �.

9
. Since + 9 = +.

9
++=

9
1

and � 9 = ��.
9
, the terminal voltage and current are:

+ 9 =: Eint
9
U+ +

⇣
W

int
9
+W 9

⌘
1, 9 2 #.

2
[#.

8
(16.65a)

� 9 =: 8int
9
U+ + Vint

9
1, 9 2 #.

E
[#.

8
(16.65b)

Recall that the neutral voltages W 9 := +=
9

are given for all . configured devices. The
zero-sequence voltage of the terminal voltage + 9 is the sum of the zero-sequence
voltage Wint

9
of the internal voltage +.

9
and the neutral voltage W 9 . Hence the terminal

voltage + 9 is balanced if and only if the neutral voltage W 9 is o�set by Wint
9

so that

W
int
9
+ W 9 = 0 (see below for a su�cient condition). Moreover 1

T
� 9 = �1

T
�
.

9
= ��=

9
is

the negative of the neutral current. Hence Vint
9
= 1

31
T
� 9 = 0 if device 9 has no neutral

line. For an impedance 9 2 #.
8

, we can express its terminal current � 9 in terms of its
terminal voltage + 9 using the external model (from Table 16.4 and (16.65a))

� 9 = �[ 9
�
+ 9 �W 91

�
= �[ 9

⇣
E

int
9
U+ +Wint

9
1

⌘
, 9 2 #.

8
(16.65c)

Hence 8int
9
= �[ 9Eint

9
and Vint

9
= �[ 9Wint

9
.

Before substituting (16.64)(16.65) into the network equation (16.63) we unify no-
tations by defining

Ê 9 :=

(
E

int
9

,
E 9 ,

Ŵ 9 :=

(
W

int
9
+W 9 ,

W 9 ,
9 2 #.

2
[#.

8

9 2 #�
2
[#�

8

(16.66a)

8̂ 9 :=

(
8
int
9

,
8 9 ,

V̂ 9 :=

(
V

int
9

,
0,

9 2 #.
E
[#.

8

9 2 #�
E
[#�

8

(16.66b)

Even though W 9 = +=
9

are given for 9 2 #.
2
[ #.

8
, Wint

9
(as well as W 9 := 1

31
T
+ 9 for

9 2 #�
2
[#�

8
) are unknown, and hence Ŵ 9 is unknown for 9 2 #2 [#8 . Therefore all

the quantities in (16.66a) (16.66b) are to be determined. Collect currents and voltages
associated with voltage and current sources respectively into

8̂E :=
�
8̂ 9 , 9 2 #E

�
, V̂E :=

�
V̂ 9 , 9 2 #E

�
, Ê2 :=

�
Ê 9 , 9 2 #2

�
, Ŵ2 :=

�
Ŵ 9 , 9 2 #2

�
(16.66c)

Collect currents and voltages associated with impedances into

8̂8 :=
�
8̂ 9 , 9 2 #8

�
, V̂8 :=

�
V̂ 9 , 9 2 #8

�
, Ê8 :=

�
Ê 9 , 9 2 #8

�
, Ŵ8 :=

�
Ŵ 9 , 9 2 #8

�
(16.66d)

Using the same notation for Û 9 as in (16.48d)(16.48e), we can apply (16.66) to the
external impedance models (16.65c) and (16.64c) to relate Ê8 and 8̂8:

8̂8 ⌦U+ + V̂8 ⌦ 1 = � ([̂8 ⌦ I) (Ê8 ⌦U+ + (Ŵ8 �W8) ⌦ 1) (16.67a)
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where the diagonal matrix [̂8 2 C |#8 |⇥ |#8 | and the vector W8 2 C |#8 | are defined as

[̂8 := diag
�
Û 9[ 9 , 9 2 #8

�
, W8 :=


W
.

8

W
�
8

�
:=

266664

⇣
W 9 :=+=

9
, 9 2 #.

8

⌘
⇣
W 9 := 1

31
T
+ 9 , 9 2 #�

8

⌘377775
(16.67b)

Hence Ŵ8�W8 =

W

int
8

0

�
with Wint

8
:=

⇣
W

int
9

, 9 2 #.
8

⌘
. Note the di�erence between W8 defined

here and the specification W0
8

:=

W
.

8

0

�
defined in (16.48c). Recall that W.

8
is given, but

W
int
8

and hence Ŵ8 are to be determined.

Substituting (16.66) into (16.63) we have

266664
8̂E

� ˆ̀2
8̂8

377775
⌦U+ +

266664
V̂E

0
V̂8

377775
⌦ 1 =

©≠≠
´

2666664
.

1q
EE

.
1q
E2

.
1q
E8

.
1q
2E

.
1q
22

.
1q
28

.
1q
8E

.
1q
82

.
1q
88

3777775
⌦ I

™ÆÆ
¨
©≠≠
´

266664
_̂E

Ê2

Ê8

377775
⌦U+ +

266664
WE

Ŵ2

Ŵ8

377775
⌦ 1

™ÆÆ
¨

(16.68)

where the voltage sources _̂E , current sources � ˆ̀2 , as well as
�
WE ,W0

2
,W0
8

�
are given,

and
�
Ê�E , Ŵ�E , 8̂�2 , V̂�2

�
are variables to be determined. Since U+ and 1 are orthogonal

this induces two sets of equations that can be interpreted as two per-phase networks.

Positive-sequence per-phase network.

Equating the U+ coordinates on both sides of (16.68) the per-phase variables must
satisfy

266664
8̂E

� ˆ̀2
8̂8

377775
=

2666664
.

1q
EE

.
1q
E2

.
1q
E8

.
1q
2E

.
1q
22

.
1q
28

.
1q
8E

.
1q
82

.
1q
88

3777775

266664
_̂E

Ê2

Ê8

377775
(16.69a)

This defines the following per-phase network:

• The admittance matrix is .1q .
• The voltage sources have given voltages _̂E .
• The current sources have given currents � ˆ̀2 .
• The impedances are [̂8 so that (from (16.67a))

8̂8 = �[̂8 Ê8 (16.69b)

This is a system of 4 sets of equations in 4 sets of variables
�
Ê2 , Ê8 , 8̂E , 8̂8

�
. Substituting

(16.69b) into (16.69a) we obtain"
.

1q
22

.
1q
28

.
1q
82

.
1q
88

+ [̂8

# 
Ê2

Ê8

�
= �

 
ˆ̀2
0

�
+

"
.

1q
2E

.
1q
8E

#
_̂E

!
(16.70)

If the matrix on the left-hand side is invertible then (Ê2 , Ê8) can be uniquely determined.
The other variables

�
8̂E , 8̂8

�
can then be derived in terms of a solution (Ê2 , Ê8).
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Zero-sequence per-phase network.

Equating the 1 coordinates in (16.68) the per-phase variables must satisfy

266664
V̂E

0
V̂8

377775
=

2666664
.

1q
EE

.
1q
E2

.
1q
E8

.
1q
2E

.
1q
22

.
1q
28

.
1q
8E

.
1q
82

.
1q
88

3777775

266664
WE

Ŵ2

Ŵ8

377775
(16.71a)

This defines the following per-phase network:

• The network is described by the admittance matrix is .1q .
• The voltage sources have given voltages WE .
• The current sources inject 0 currents, i.e., no device is connected at buses 9 of

the zero-sequence per-phase network where three-phase current sources are con-
nected in the original network.

• The impedances are [̂8 so that (from (16.67a))

V̂8 = �[̂8 (Ŵ8 �W8) = �diag
⇣
[̂
.

8
,0

⌘  �
Ŵ
.

8
�W.

8

�
0

�
(16.71b)

where [̂.
8

:= diag
�
[ 9 , 9 2 #.

8

�
, Ŵ.
8

:=
�
Ŵ 9 , 9 2 #.

8

�
and W.

8
:=

⇣
+
=

9
, 9 2 #.

8

⌘
. Note

that W.
8

is given and Ŵ.
8

is unknown.

This is a system of 4 sets of equations in 4 sets of variables
�
Ŵ2 , Ŵ8 , V̂E , V̂8

�
. Substituting

(16.71b) into (16.71a) we obtain"
.

1q
22

.
1q
28

.
1q
82

.
1q
88

+diag
�
[̂
.

8
,0

�
# 
Ŵ2

Ŵ8

�
= �

"
.

1q
2E

.
1q
8E

#
WE +


0
[̂8W

0
8

�
(16.72)

where we recall [̂8 in (16.67) and the given neutral voltages W0
8

:=

W
.

8

0

�
. If the matrix

on the left-hand side is invertible then (Ŵ2 , Ŵ8) can be uniquely determined. The other
variables

�
V̂E , V̂8

�
can then be derived in terms of a solution (Ŵ2 , Ŵ8).

Assume the matrix in (16.72) is invertible. If WE = 0 and W.
8
= 0 as in Theorem

16.7.2, then Ŵ2 = 0 and Ŵ8 = 0 and all voltages consist of balanced vectors. In this case
we do not have to compute the zero-sequence network but simply set Ŵ�E := 0 and
V̂�2 := 0. Recall from (16.66a)(16.66b) that this means Wint

9
++=

9
= 0 and Vint

9
= 0 for .

configured devices and W 9 = 0 for � configured devices.

Note that, even though V̂�2 is determined from (16.72) (16.71), its components
V̂ 9 = 0 for 9 2 #�

E
[#�

8
from (16.66b). This is consistent because, for 9 2 #�

E
[#�

8
,

multiplying both sides of (16.49b) by 1
T gives, using W 9 := 1

31
T
+ 9 ,’

:: 9⇠:

⇣
H
B

9:
+ H

<

9:

⌘
W 9 �

’
:: 9⇠:

H
B

9:
W: = 0

which is (16.71) for rows corresponding to 9 2 #�
E
[#�

8
.
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Per-phase analysis.

Per-phase analysis for solving (16.63) is as follows:

1 Solve the positive-sequence per-phase network (16.70) for (Ê2 , Ê8) and then derive�
8̂E , 8̂8

�
.

2 If WE = 0 and W.
8
= 0, set Ŵ�E := 0, V̂�2 := 0, and goto the next step. Otherwise,

solve the zero-sequence per-phase network (16.72) for (Ŵ2 , Ŵ8) and then derive�
V̂E , V̂8

�
.

3 Substitute into (16.64)(16.65) to obtain (+�E , ��2).

Example 16.12 (W. = 0). Explain per-phase analysis in the special case where all
neutrals are grounded with zero neutral impedances and voltages are defined with
respect to the ground, i.e., W 9 = 0 for 9 2 #.

E
[#.

2
[#.

8
. ⇤

16.4 Symmetric network

We have formulated a general three-phase analysis problem in Chapter 16.2.2 and
described a solution strategy in Chapter 16.2.3. When the network is balanced, the
phases are decoupled and the network decomposes into two independent per-phase
networks and the problem can be solved using per-phase analysis as explained in
Chapter 16.3.

When the network is not balanced, e.g., the sources are unbalanced or the transmis-
sion lines are not phase-decoupled, then we can apply the similarity transformation �
defined in Chapter 14.2.2 to transform terminal phase voltage and current (+ , �) into
sequence voltage and current (+̃ , �̃). Even though the phases are coupled, we show in
Chapters 16.4.1–16.4.4 that if three-phase lines are symmetric and loads are identical,
then their external models are decoupled in the sequence coordinate. They define se-
quence networks that can be analyzed separately, similar to the per-phase networks of
a balanced network studied in Chapter 16.3. The results from analyzing the sequence
networks can then be transformed back to the original phase coordinate. We describe
in Chapter 16.4.5 how to compose the sequence networks from the sequence models
of individual devices and how to solve the three-phase analysis problem using these
decoupled sequence networks when the original network is symmetric.

Symmetric components and sequence networks are most useful for fault analysis in a
system that is more or less balanced, e.g., a three-phase network that remains balanced
until the fault location. Without any symmetry, symmetrical components may not o�er
much advantage because they do not lead to decoupled sequence networks. Even though
we do not study fault analysis in this book, the discussion in this section illustrates the
application of various three-phase models developed in this chapter.
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16.4.1 Sequence impedances

. configuration
�
I
. , I=

�
.

Consider the four-wire three-phase impedance
�
I
. , I=

�
in . configuration shown in

Figure 14.7 of Chapter 14.3.3. Under assumption C14.1 (all neutrals are grounded and
all voltages are defined with respect to the ground), recall the external model (14.19b)
relating the terminal voltage and current (+ , �):

+ = �/. � with /
. := I

. + I
=

11
T =

266664
I
0= + I= I

=
I
=

I
=

I
0= + I= I

=

I
=

I
=

I
2= + I=

377775
Substitute + = �+̃ and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = ��/. �| {z }
/̃
.

�̃ = �/̃. �̃

where � from (14.6b) and its inverse ��1 = � from (14.7) are

� =
1p
3

⇥
1 U+ U�

⇤
=

1p
3

266664
1

T

U
T
+
U

T
�

377775
:=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
(16.73a)

� =
1p
3

⇥
1 U� U+

⇤
=

1p
3

266664
1

T

U
T
�
U

T
+

377775
:=

1p
3

266664
1 1 1
1 U

2
U

1 U U
2

377775
(16.73b)

We call /̃. a sequence impedance matrix to di�erentiate it from the (phase) impedance
matrix /. . Substituting /. = I. + I=11

T, � and �, we have (Exercise 16.18)

/̃
. =

1
3

266664
1
)

I U
T
+I U

T
�I

U
T
�I 1

)

I U
T
+I

U
T
+I U

T
�I 1

)

I

377775
+

266664
3I= 0 0
0 0 0
0 0 0

377775
where I :=

�
I
0=, I1=, I2=

�
is the column vector of phase impedances. Hence the neutral

impedance I= appears only in the zero-sequence impedance.

If the impedance is balanced I0= = I1= = I2=, then 1
)

I = 3I0= and UT
+I = U

T
�I = 0

and

/̃
. =

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
(16.74a)

Hence the sequence impedance matrix /̃. is diagonal even though the phase impedance
/
. is not. This implies that the external model +̃ = �/̃. �̃ relating the sequence voltage
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and current in the sequence coordinate is decoupled:

266664
+̃0

+̃+
+̃�

377775
= �

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃0

�̃+
�̃�

377775
(16.74b)

i.e., the external model consists of three separate impedances:

zero-seq impedance: +̃0 = � (I0= +3I=) �̃0
positive-seq impedance: +̃+ = �I0= �̃+
negative-seq impedance: +̃� = �I0= �̃�

The interpretation is as follows. When the similarity transformation defined by the
unitary matrix � transforms a power network from the 012 phase coordinate to 0+�
sequence coordinate (see Chapter 14.2.2), a balanced impedance with I0= = I1= = I2=

becomes decoupled in the sequence coordinate. If all devices are decoupled in the
sequence coordinate, the entire sequence networks are decoupled and the sequence
impedances are impedances on these decoupled sequence networks. Each sequence
network can be analyzed separately like a single-phase network. We will explain in
Chapter 16.4.5 on how to compose the sequence networks from sequence models of
individual devices.

Note that if the impedance is not balanced then the relation +̃ = /̃. �̃ is generally
coupled and power flow analysis using the sequence variables may not o�er any
advantage over using the phase variables.

� configuration I�.

Consider the three-wire three-phase impedance I� in � configuration shown in Figure
14.8 of Chapter 14.3.4. Recall the external model (14.27b) relating the terminal voltage
and current (+ , �):

+ = �/�� + W1, 1
T
� = 0 (16.75)

where the zero-sequence voltage W := 1
31

T
+ is also a variable to be determined in an

analysis problem and

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
|             {z             }

Î
�

�

Substitute + = �+̃ and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = �
⇣
�/

�
�

⌘
|    {z    }

/̃
�

�̃ + W �1, 1
T
��̃ = 0 (16.76)
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where � and its inverse � is given in (16.73). It can be shown (Exercise 16.19) that

/̃
� :=

1
9
(�⇤)H

Î
� (�⇤) with ⇤ :=

266664
0

1�U
1�U2

377775
Moreover W �1 = +̃0 41 and 1

T
��̃ =

p
3�̃0 = 0.

If the impedance is balanced, i.e., I01 = I12 = I20 then (Exercise 16.19)

/
� =

I
01

3

✓
I� 1

3
11

T
◆

, /̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
(16.77a)

and the external model (16.76) of a�-configured impedance in the sequence coordinate
becomes decoupled:

266664
0
+̃+
+̃�

377775
= � I

01

3

266664
0 0 0
0 1 0
0 0 1

377775
266664
�̃0

�̃+
�̃�

377775
, �̃0 =

1p
3
(�0 + �1 + �2) = 0 (16.77b)

For a �-configured load, �̃0 = 0 because there is no neutral wire and therefore KCL
dictates that the line currents sum to zero. The model (16.77) defines three separate
impedances in the sequence coordinate:

zero-seq impedance: null ( �̃0 = 0, /̃0 = 1, open circuit)

positive-seq impedance: +̃+ = � I
01

3
�̃+

negative-seq impedance: +̃� = � I
01

3
�̃�

The interpretation is that a balanced �-configured impedance with I01 = I12 = I20

connected to a bus in a power network is transformed into an impedance of I01/3 at
that bus (as we have seen in Chapter 1.2.4) in the positive and the negative-sequence
networks and no impedance at that bus in the zero-sequence network (i.e., in the circuit
model for the zero-sequence network, the connection between this bus and the ground
is open; see (??) and discussions therein). This does not mean that the voltage + 9,0 = 0
at bus 9 in the zero-sequence network where the impedance is connected. Rather, it
means that there is zero injection at bus 9 ( �̃ 9,0 = 0) and +̃ 9,0 will be determined by the
network equation; see Chapter 16.4.5.

Remark 16.10 (Terminal variables). It is important to remember that the external
models derived in this section relate the sequence variables (+̃ , �̃) of the terminal
voltage and current (+ , �), not the internal voltage and current

�
+
. /�, �. /�

�
. See

Example 16.13 on how to use sequence networks to calculate internal currents and
powers. ⇤
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16.4.2 Sequence voltage sources

. configuration
�
⇢
. , I. , I=

�
.

Consider the four-wire three-phase voltage source
�
⇢
. , I. , I=

�
in . configuration

shown in Figure 14.7 of Chapter 14.3.3. Under assumption C14.1 (all neutrals are
grounded and all voltages are defined with respect to the ground), recall the external
model (14.13b) relating the terminal voltage and current (+ , �):

+ = ⇢
. � /. � with /

. := I
. + I

=

11
T

where /. is the same matrix as that for . -configured impedance. Substitute + = �+̃
and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = �⇢
.|{z}

⇢̃
.

� �/. �| {z }
/̃
.

�̃ =: ⇢̃
. � /̃. �̃

The sequence impedance matrix /̃
. := �/. � is the same matrix as that for . -

configured impedance and the sequence internal voltage is:

⇢̃
. := �⇢

. =
1p
3

266664
1

H
⇢
.

U
H
+⇢

.

U
H
�⇢

.

377775
When the impedance I. is balanced, i.e., I0= = I1= = I2=, even if the internal voltage

⇢
. is unbalanced, its external model in the sequence coordinate becomes decoupled

(using (16.74b)):

266664
+̃0

+̃+
+̃�

377775
=

266664
⇢̃
.

0
⇢̃
.

+
⇢̃
.

�

377775
�

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃0

�̃+
�̃�

377775
(16.78a)

This defines three separate non-ideal voltage sources:

zero-seq voltage source: +̃0 = ⇢̃
.

0 � (I0= +3I=) �̃0
positive-seq voltage source: +̃+ = ⇢̃

.

+ � I0= �̃+
negative-seq voltage source: +̃� = ⇢̃

.

� � I0= �̃�
As for a balanced impedance, the voltage source becomes decoupled in the sequence
coordinate even if they remain unbalanced.

Furthermore, if ⇢. = ⇢0=U+ is a balanced positive-sequence set then only the
positive-sequence voltage is nonzero:

�⇢
. = ⇢̃

. =
1p
3

266664
1

T

U
T
�
U

T
+

377775
(⇢0=U+) =

⇢
0=

p
3

266664
1

H
U+

U
H
+U+
U

H
�U+

377775
=

266664
0p

3⇢0=

0

377775
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The external model of a balanced . -configured voltage source in the sequence coordi-
nate becomes (from (16.78a)):

266664
+̃0

+̃+
+̃�

377775
=

266664
0p

3⇢0=

0

377775
�

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃0

�̃+
�̃�

377775
(16.78b)

This defines a voltage source
⇣p

3⇢0=, I0=
⌘

on the positive-sequence network and
impedances on the other sequence networks:

zero-seq impedance: +̃0 = � (I0= +3I=) �̃0
positive-seq voltage source: +̃+ =

p
3⇢0= � I0= �̃+

negative-seq impedance: +̃� = �I0= �̃�
They are illustrated in Figure 16.8. 6

Scanned with CamScanner

Figure 16.8 The sequence networks of a balanced voltage source
⇣
⇢
. , I. , I=

⌘
in .

configuration.

� configuration
�
⇢
�, I�

�
.

Consider the three-phase voltage source
�
⇢
�, I�

�
in � configuration shown in Figure

14.8 of Chapter 14.3.4. One of its external models is (14.21b), reproduced here 7

+ = �̂⇢� � /�� + W1, 1
T
� = 0

where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

where Ĩ� := I�1 is a column vector and Z := 1
T
Ĩ
� is a scalar. This is similar to the

model (16.75) of �-configured impedance with the extra term �̂⇢�. Substitute+ = �+̃

6 The sequence networks of synchronous generators are generally more complicated and their sequence
impedances (mostly reactances) are generally unequal unlike the model in (16.78b); see e.g. [160,
Section 2.3].

7
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and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = ��̂⇢�|{z}
⇢̃
�

� �/��| {z }
/̃
�

�̃ + W�1 =: ⇢̃
� � /̃� �̃ + +̃041, 1

T
��̃ = 0

where 1
T
��̃ =

p
3�̃0 = 0. This is similar to (16.76) with the extra term (Exercise 16.20)

⇢̃
� := ��̂⇢� = ⇤†

�

✓
I� 1

Z

Ĩ
�

1
T
◆
⇢
� with ⇤† :=

266664
0

(1�U)�1

(1�U2)�1

377775
If the impedance is balanced, i.e., I01 = I12 = I20 then Ĩ� := I011, Z := 3I01 , and

(Exercise 16.20 and from (16.77a))

⇢̃
� =

266664
0

(1�U)�1
⇢̃
�
+

(1�U2)�1
⇢̃
�
�

377775
, /

� =
I
01

3

✓
I� 1

3
11

T
◆

, /̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
where the sequence voltages are ⇢̃�+ := 1

3U
H
+⇢

� and ⇢̃�� := 1
3U

H
�⇢

�. The zero-sequence
voltage ⇢̃�0 = 0 because there is no neutral line in � configuration. Hence the external
model in the sequence coordinate is

266664
0
+̃+
+̃�

377775
=

266664
0

(1�U)�1
⇢̃
�
+

(1�U2)�1
⇢̃
�
�

377775
� I

01

3

266664
0
�̃+
�̃�

377775
, �̃0 =

1p
3

⇣
�
0 + �1 + �2

⌘
= 0 (16.79a)

Hence the voltage sources in the sequence coordinate are unbalanced but decoupled:

zero-seq voltage source: null ( �̃0 = 0, /̃0 = 1, open circuit)

positive-seq voltage source: +̃+ =
⇢
�
+

1�U �
I
01

3
�̃+

negative-seq voltage source: +̃� =
⇢
�
�

1�U2
� I

01

3
�̃�

As for a �-configured impedance, a symmetric voltage source in a power network is
transformed into voltage sources in the positive and negative-sequence networks. The
equivalent series impedance of the sequence voltage sources is I01/3 as we have seen
in Chapter 1.2.4. There is no device (open circuit) in the zero-sequence network, which
means that, when the voltage source is connected to bus 9 , there is zero injection at bus
9 in the zero-sequence network ( �̃ 9,0 = 0) and +̃ 9,0 will be determined by the network
equation; see Chapter 16.4.5.

Furthermore, if ⇢� := ⇢01U+ is a balanced positive-sequence set then

⇢̃
�
+ =

p
3⇢01 , ⇢̃

�
� = 0

and

266664
0
+̃+
+̃�

377775
=

266664
0

4
�ic/6

⇢
01

0

377775
� I

01

3

266664
0
�̃+
�̃�

377775
(16.79b)
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since
p

3/(1� U) = 4�ic/6. This defines a voltage source
�
4
�ic/6

⇢
01 , I01/3

�
in the

positive-sequence network and an impedance I01/3 in the negative-sequence network:

zero-seq voltage source: null ( �̃0 = 0, /̃0 = 1, open circuit)

positive-seq voltage source: +̃+ = 4
�ic/6

⇢
01 � I

01

3
�̃+

negative-seq voltage source: +̃� = � I
01

3
�̃�

There is no device (open circuit) in the zero-sequence network.

16.4.3 Sequence current sources

. configuration
�
�
. , H. , I=

�
.

An external model of a . -configured current source
�
�
. , H. , I=

�
is (from (14.15a)):

� = ��. � H. (+ �+=1)

Substitute + = �+̃ and � = ��̃ to obtain the external model in the sequence coordinate:

�̃ = � ��.|{z}
�̃
.

� �H. �|{z}
.̃
.

+̃ + +=�H. 1

where �̃. := ��. and

.̃
. := �H

.

� =
1
3

⇣
H
0=

11
H + H

1=

U�U
H
� + H

2=

U+U
H
+
⌘

(16.80)

If the phase admittance H. := H0=I is balanced then the sequence admittance is also
balanced:

.̃
. := �H

.

� = H
0=

I, �H
.

1 = H
0=

�1 = H
0=

266664

p
3

0
0

377775
The current source becomes decoupled in the sequence coordinate even though it is
unbalanced:

266664
�̃0

�̃+
�̃�

377775
= �

266664
�̃
.

0
�̃
.

+
�̃
.

�

377775
� H0=

©≠≠
´

266664
+̃0

+̃+
+̃�

377775
�

266664

p
3+=

0
0

377775
™ÆÆ
¨

In particular the neutral voltage += appears only in the zero-sequence network. If,
furthermore, the current source �. := �0=U+ is in a balanced positive sequence then

�̃
. = ��

. =
�
0=

p
3

266664
1

H

U
H
+
U

H
�

377775
U+ =

266664
0p

3�0=

0

377775
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The current source in the sequence coordinate becomes a current source
⇣p

3�0=, H0=
⌘

in the positive-sequence network and the impedance (H0=)�1 in each of the other two
sequence networks:

zero-seq impedance: �̃0 = �H0=
⇣
+̃0�
p

3+=
⌘

positive-seq current source: �̃+ = �
p

3�0= � H0=+̃+
negative-seq impedance: �̃� = �H0=+̃�

The interpretation of the zero-sequence impedance is that the voltage drop across the
impedance (H0=)�1 is +̃0 �

p
3+= with one end of the impedance at a potential

p
3+=

with respect to the common voltage reference point.

When assumption C14.1 holds (the neutral is grounded and voltages are defined

with respect to the ground) so that += = �I=
⇣
1

T
�

⌘
, we have

+
= = �I=

⇣
1

T
��̃

⌘
= � I

=

p
3

⇣
1

T ⇥
1 U+ U�

⇤
�̃

⌘
= �
p

3I= �̃0

i.e., the neutral voltage depends only on the zero-sequence current �̃0 (of the terminal
current �). Substitute this into expressions above, the sequence voltage and current�
+̃ , �̃

�
satisfies, when H. := H0=I,

266664
(1+3 H0= I=) �̃0

�̃+
�̃�

377775
= �

266664
�̃
.

0
�̃
.

+
�̃
.

�

377775
� H0=

266664
+̃0

+̃+
+̃�

377775
(16.81a)

and the current source becomes decoupled in the sequence coordinate even if they
remain unbalanced:

zero-seq current source: �̃0 = �
�̃
.

0

1+3 H0= I=
� H

0=

1+3 H0= I=
+̃0

positive-seq current source: �̃+ = ��̃.+ � H0=+̃+
negative-seq current source: �̃� = ��̃.� � H0=+̃�

If, furthermore, the current source �. := �0=U+ they become:

zero-seq admittance: �̃0 = � H
0=

1+3 H0= I=
+̃0 (16.81b)

positive-seq current source: �̃+ = �
p

3�0= � H0=+̃+ (16.81c)

negative-seq admittance: �̃� = �H0=+̃� (16.81d)

Instead of sequence current sources in (16.81), equivalent voltage sources in the
sequence domain can also be derived starting from the external model of a current
source (from (14.15b)): + = �

�
I
.
�
. + /

.
�

�
where I. :=

�
H
.
��1 and /

. := I. +
I
=

11
T; see Exercise 16.22.
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� configuration
�
�
�, H�

�
.

The external model of a �-configured current source is (from (14.23a)):

� = �
⇣
�T
�
� + .�+

⌘

where .� := �T
H
� � is the matrix in (14.21a). Substitute + = �+̃ and � = ��̃ to obtain

the external model in the sequence coordinate:

�̃ = �
©≠≠
´
��T

�
�| {z }

�̃
�

+ �.��|{z}
.̃
�

+̃

™ÆÆ
¨

=: �
⇣
�̃
� + .̃�+̃

⌘

where

�̃
� := ��T

�
� = 3⇤†

��
�

.̃
� := �

⇣
�T
H
� �

⌘
� = �

⇣
3�⇤†

�

⌘
H
�
⇣
�⇤�

⌘
� = 3⇤†

⇣
�H

�
�

⌘
⇤

where we have used � = �⇤� and �T = 3�† = 3�⇤†
� from (14.6).

If the phase admittance H. := H01I is balanced, then the e�ective phase admittance
.
� is not diagonal but its sequence admittance .̃� is unbalanced but diagonal:

.
� := H

01�T� = 3H01
✓
I� 1

3
11

T
◆

.̃
� := �.

�
� = 3H01

⇣
I � 414

T
1

⌘

where we have used �T� = 3
⇣
I� 1

311
T
⌘

from Theorem 14.2 and �1 =
p

341. Hence the
current source is unbalanced but decoupled in the sequence coordinate:

266664
�̃0

�̃+
�̃�

377775
= �

266664
�̃
�
0
�̃
�
+
�̃
�
�

377775
� 3H01

266664
0 0 0
0 1 0
0 0 1

377775
266664
+̃0

+̃+
+̃�

377775
= �

266664
�̃
�
0
�̃
�
+
�̃
�
�

377775
� 3H01

266664
0
+̃+
+̃�

377775
(16.82a)

The zero-sequence network has an ideal current source �̃�0 and the other two sequence
networks each has a non-ideal current source:

zero-seq current source: �̃0 = ��̃�0
positive-seq current source: �̃+ = ��̃�+ � 3H01+̃+

negative-seq current source: �̃� = ��̃�� � 3H01+̃�

If, furthermore, the current source �� := �01U+ is a balanced positive sequence then

�̃
� := 3�01⇤†

�U+ = 3�01
2666664

0
(1�U)�1 �

1�U2��1

3777775

266664
0p
3

0

377775
=

266664
0

34�ic/6
�
01

0

377775
where we have used �U+ =

p
342 and

p
3/(1 � U) = 4

�ic/6. A balanced
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positive-sequence current source is therefore transformed into a current source�
34�ic/6

�
01 ,3H01

�
in the positive-sequence network and an admittance 3H01 in the

negative-sequence network:

zero-seq current source: null ( �̃0 = 0) (16.82b)

positive-seq current source: �̃+ = �34�ic/6
�
01 � 3H01+̃+ (16.82c)

negative-seq admittance: �̃� = �3H01+̃� (16.82d)

There is no device in the zero-sequence network because� configuration has no neutral
line.

16.4.4 Sequence line model

Consider a three-phase line connecting bus 9 and bus : that is modeled by only a series
phase impedance matrix IB

9:
. We omit shunt admittances for simplicity.8 The terminal

voltages and the line current is related by Ohm’s law:

+ 9 � +: = I
B

9:
� 9:

Convert to the sequence coordinate by substituting+ 9 = �+̃ 9 ,+: = �+̃: and � 9: = ��̃ 9:
to get

+̃ 9 � +̃: =
⇣
�I

B

9:
�

⌘
|    {z    }

Ĩ
B

9:

�̃ 9: =: Ĩ
B

9:
�̃ 9: (16.83a)

where ĨB
9:

:= �IB
9:
� is called the sequence impedance matrix of line ( 9 , :). This does

not assume C16.1, i.e., IB
9:

and IB
: 9

may be di�erent.

If the phase impedance matrix IB
9:

is symmetric of the form in (15.9) then (omitting
the subscript 9 : for simplicity)

Ĩ
B

9:
=

1
3

266664
1 1 1
1 U

2
U

1 U U
2

377775
266664
I

1
I

2
I

2

I
2

I
1

I
2

I
2

I
2

I
1

377775
266664
1 1 1
1 U U

2

1 U
2

U

377775
=

266664
I

1 +2I2 0 0
0 I

1� I2 0
0 0 I

1� I2

377775
(16.83b)

8 Shunt admittances can be included using (15.8a): � 9: = HB
9:
(+9 �+: ) + H<

9:
+9 in which case the

sequence admittance matrices
⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
are given by:

�̃ 9: =
⇣
�H

B

9:
�

⌘
|      {z      }

H̃
B

9:

�
+̃9 � +̃:

�
+

⇣
�H

<

9:
�

⌘
|      {z      }

H̃
<

9:

+̃9
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i.e., the sequence impedance matrix of line ( 9 , :) is diagonal. This defines three separate
sequence networks:

zero-seq impedance: +̃ 9,0� +̃:,0 =
⇣
I

1 +2I2
⌘
�̃ 9:,0

positive-seq impedance: +̃ 9,+� +̃:,+ =
⇣
I

1� I2
⌘
�̃ 9:,+

negative-seq impedance: +̃ 9,� � +̃:,� =
⇣
I

1� I2
⌘
�̃ 9:,�

The phase impedance matrix IB
9:

in (15.9) is complex symmetric but not Hermitian.
In general a complex symmetric matrix may not be diagonalizable (see Exercise 16.23
for an example). The matrix IB

9:
however is normal and hence unitarily diagonalizable

through the unitary matrix � (Exercise 16.24).

16.4.5 Three-phase analysis

We now explain how to compose sequence networks from individual device models
in the sequence coordinate derived in Chapters 16.4.1–16.4.4. We will show that if a
network is unbalanced but symmetric, its sequence networks are decoupled and can be
analyzed separately.

Definition 16.2 (Symmetric network). A network ⌧ :=
⇣
# ,⇢

⌘
that connects a set of

three-phase devices by three-phase lines is called symmetric if the following assump-
tions hold:

C16.9: All impedances are symmetric I. /�
9

= I0=/01
9

I.

C16.10: All voltage sources have symmetric series impedances I. /�
9

= I0=/01
9

I.

C16.11: All current sources have symmetric shunt admittances H. /�
9

= H0=/01
9

I.
C16.12: All three-phase lines ( 9 , :) have series impedances IB

9:
= IB

: 9
that satisfy

(15.9) and zero shunt admittances. In particular we assume for simplicity that
assumption C16.1 holds.

Suppose we are given a symmetric network with a single three-phase device at each
bus. As before, partition the set # of buses into 6 disjoint subsets:

• #. /�
E

: buses with non-ideal voltage sources in . or � configurations:
�
⇢
. , I. , I=

�
,�

⇢
�, I�

�
.

• #. /�
2

: buses with non-ideal current sources in . or � configurations:
�
�
. , H. , I=

�
,�

�
�, H�

�
.

• #. /�
8

: buses with impedances in . or � configurations:
�
I
. , I=

�
, I�.

Suppose assumption C14.1 holds (i.e., all neutrals are grounded and voltages are
defined with respect to the ground). C14.1 and the assumption of a single three-phase
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device at each bus are made without loss of generality only to simplify presentation
(see Example 16.13 for a network where there are two devices connected to a single
bus). We will follow the solution strategy of Chapter 16.3.4 that solves

266664
�E

�2

�8

377775
=

266664
.EE .E2 .E8

.2E .22 .28

.8E .82 .88

377775|                {z                }
.

266664
+E

+2

+8

377775
(16.84)

for the terminal voltage +�E := (+2 ,+8) and current ��2 := (�E , �8). All other variables
such as internal voltages and currents

�
+
. /�, �. /�

�
can then be derived in terms of the

terminal voltages and currents (+ , �).

We now show that (16.84) decomposes into three separate sequence networks so
that it can be solved by analyzing three simpler networks. Furthermore, if not only is
the network symmetric but all voltage and current sources are also balanced positive-
sequence sets, then it is su�cient to analyze only the positive-sequence network. This
is because in that case there are only impedances and admittances, but no voltage or
current sources, in the zero-sequence and the negative-sequence networks.

Let I#+1 be the identity matrix of size # + 1 so that I#+1 ⌦ � is a matrix of size
3(# + 1) ⇥ 3(# + 1). Convert both sides of (16.84) into the sequence coordinate by
substituting

� =: (I#+1 ⌦ �) �̃, + =: (I#+1 ⌦ �) +̃

to obtain

266664
�̃E

�̃2

�̃8

377775
=

266664
.̃EE .̃E2 .̃E8

.̃2E .̃22 .̃28

.̃8E .̃82 .̃88

377775|                {z                }
.̃

266664
+̃E

+̃2

+̃8

377775
where .̃ :=

⇣
I#+1 ⌦ �

⌘
. (I#+1 ⌦ �)

(16.85a)

and we have used (I#+1 ⌦ �)�1 = I#+1 ⌦ � from Lemma 16.6. The three rows (3 9 +
1,3 9 + 2,3 9 + 3) of (16.85a) corresponding to the sequence current �̃ 9 2 C3 of device
9 = 0, . . . ,# , are:

�̃ 9 =
’
9: 9⇠:
:2#E

H̃ 9:

�
+̃ 9 � +̃:

�
+

’
9: 9⇠:
:2#2

H̃ 9:

�
+̃ 9 � +̃:

�
+

’
9: 9⇠:
:2#8

H̃ 9:

�
+̃ 9 � +̃:

�
, 9 2 #

(16.85b)

where H̃ 9: :=
�
Ĩ 9:

��1 :=
⇣
�I

B

9:
�

⌘�1
are the series admittance matrices of lines ( 9 , :) in

the sequence coordinate from (16.83). The network equation (16.85) relates terminal
variables. To show that the three-phase network decomposes into decoupled sequence
networks we have to show both of the following:
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1 The three rows of (16.85b) are decoupled, i.e., the zero-sequence current �̃ 9,0
depends only on voltages +̃:,0 of its adjacent buses : < 9 in the zero-sequence net-
work but not on voltages +̃:,B in the other sequence networks B 2 {+,�}. Similarly
for the positive and negative-sequence currents

�
�̃ 9,+, �̃ 9,�

�
.

2 At each bus 9 , the terminal voltage and current
�
+̃ 9 , �̃ 9

�
are decoupled, i.e., the

zero-sequence voltage +̃ 9,0 does not depend on the positive or negative-sequence
currents

�
�̃ 9,+, �̃ 9,�

�
at bus 9 . Similarly for +̃ 9,+ and +̃ 9,�.

The first claim follows from C16.12 in Definition 16.2 which implies that H̃ 9: is
diagonal (from (16.83)). This means that the three rows of (16.85b) are decoupled at
all buses 9 2 # . We hence only need to prove the second claim that locally at each bus
9 the sequence voltage +̃ 9,B , B 2 {0,+,�}, does not couple the sequence currents �̃ 9,B0 ,
B
0 < B. This can be shown using the models derived in Chapters 16.4.1–16.4.3.

Specifically the external models of the three-phase devices are as follows.

1 Voltage source 9 2 #E from (16.78a) and (16.79a):

266664
+̃ 9,0

+̃ 9,+
+̃ 9,�

377775
=

2666664

⇢̃
.

9,0

⇢̃
.

9,+
⇢̃
.

9,�

3777775
�

2666664

I
0=

9
+3I=

9

I
0=

9

I
0=

9

3777775

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #.

E
(16.86a)

266664
0
+̃ 9,+
+̃ 9,�

377775
=

266664
0

1
1�U

1
1�U2

377775

2666664

⇢̃
�
9,0

⇢̃
�
9,+

⇢̃
�
9,�

3777775
�
I
01

9

3

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #�

E
(16.86b)

2 Current sources 9 2 #2 from (16.81a) and (16.82a):

266664
�̃ 9,0

�̃0,+
�̃ 9,�

377775
= � 1

1+3 H0= I=

2666664

�̃
.

9,0

�̃
.

0,+
�̃
.

0,�

3777775
� H

0=

1+3 H0= I=

266664
+̃ 9,0

+̃ 9,+
+̃0,�

377775
, 9 2 #.

2
(16.86c)

266664
�̃ 9,0

�̃0,+
�̃ 9,�

377775
= �

2666664

�̃
�
9,0

�̃
�
9,+
�̃
�
9,�

3777775
� 3H01

266664
0
+̃ 9,+
+̃ 9,�

377775
, 9 2 #�

2
(16.86d)

3 Impedances 9 2 #8 from (16.74b) and (16.77b):

266664
+̃ 9,0

+̃ 9,+
+̃ 9,�

377775
= �

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #.

8
(16.86e)

266664
0
+̃ 9,+
+̃ 9,�

377775
= � I

01

3

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #�

8
(16.86f)

Therefore the terminal voltage and current
�
+̃ 9 , �̃ 9

�
at each bus 9 are decoupled, even if

they are unbalanced. The network equation (16.85) and the device models (16.86) thus
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decompose into separate 0/+/� sequence networks that can be analyzed separately,
similar to per-phase analysis for balanced networks.

We illustrate the analysis of sequence networks with an example.

Example 16.13 (Sequence network analysis). Consider the network shown in Figure
16.9 where a voltage source and a current source supply power through two lines to two
loads in parallel. Suppose the network is symmetric (Definition 16.2) and C14.1 holds

Figure 16.9 Example 16.13: Three-phase unbalanced sources supplies power two balance loads
in parallel through symmetric lines.

(i.e., all neutrals are grounded and voltages are defined with respect to the ground).
Given the . -configured voltage source

�
⇢
. , I. , I=

�
, the �-configured current source�

�
�, H�

�
, the balanced impedances

�
I
. , I=

�
, I�, and the symmetric lines with series

impedance matrices (I12, I23), calculate:

1 the terminal load voltages +2 :=
�
+
0

2 ,+12 ,+22
�
;

2 the internal current �.2 :=
�
�
0=

2 , �1=2 , �2=2

�
and the total complex power 1

T
B
.

2 deliv-
ered to the . -configured load;

3 the internal current ��2 :=
�
�
01

2 , �122 , �202

�
and the total complex power 1

T
B
�
2 delivered

to the �-configured load;

Solution. The network equation (16.85) and the device models (16.86) decompose into
separate 0/+/� sequence networks as shown in Figure 16.10. We will first determine the
terminal sequence voltage +̃2 and then the terminal sequence currents �̃12 and �̃22 coming
out of the. -configured and �-configured impedances respectively. The terminal phase
variables are then +2 = �+̃2, �12 = ��̃12 , and �22 = ��̃22 . Given these terminal variables
we can determine internal currents

�
�
.

2 , ��2
�

and powers
�
B
.

2 , B�2
�

using the conversion
rules.

To determine +̃2, apply KCL at bus 2 of the zero-sequence networks to get

⇢̃
.

1,0� +̃2,0�
I
0=

1 +3I=1
�
+

�
I
B

12 +2I<12

� =
+̃2,0

I
0=

2 +3I=2
+ �̃

�
3,0 (16.87a)
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Figure 16.10 Example 16.13: Circuit models of sequence networks.

To analyze the positive and negative-sequence networks let the Thévenin equivalent
load admittance be

.̃2 = H
0=

2 + 3H012

where H
0=

2 :=
�
I
0=

2

��1 and H
01

2 :=
�
I
01

2

��1
. KCL at bus 2 of the positive-sequence

network gives

⇢̃
.

1,+� +̃2,+

I
0=

1 +
�
I
B

12� I<12

� = .̃2+̃2,+ + 3H013 +̃3,+ + �̃
�
3,+

Hence we have, after eliminating +̃3,+

⇢̃
.

1,+� +̃2,+

I
0=

1 + IB12� I<12

=
⇣
.̃2 +3d̃3H

01

3

⌘
+̃2,+ +

⇣
1 � 3d̃3H

01

3

�
I
B

23� I<23

� ⌘
�̃
�
3,+ (16.87b)
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Similarly, from the negative-sequence network, we get

⇢̃
.

1,� � +̃2,�

I
0=

1 + IB12� I<12

=
⇣
.̃2 +3d̃3H

01

3

⌘
+̃2,� �

⇣
1 � 3d̃3H

01

3

�
I
B

23� I<23

� ⌘
�̃
�
3,� (16.87c)

The terminal sequence voltage +̃2 :=
�
+̃2,0,+̃2,+,+̃2,�

�
can be obtained from (16.87).

From the 0/+/� sequence networks, the terminal sequence load currents are

�̃
1
2,0 = � +̃2,0

I
0=

2 +3I=2
, �̃

1
2,+ = �+̃2,+

I
0=

2

, �̃
1
2,� = �+̃2,�

I
0=

2

�̃
2
2,0 = 0, �̃

2
2,+ = �3+̃2,+

I
01

2

, �̃
2
2,� = �3+̃2,�

I
01

2

From the terminal sequence variables
�
+̃2, �̃12 , �̃22

�
we can obtain the terminal phase

variables

+2 = �+̃2, �
1
2 = ��̃

1
2 , �

2
2 = ��̃

2
2

To obtain the internal currents �.2 and ��2 , apply the conversion rules to get

�
.

2 = ��12 , �
�
2 = ��T†

�
2
2 + V21 = �1

3
��22 + V21

for an arbitrary V 2 C, where ��2 exists because �̃22,0 = 0 means 1
T
�
2
2 = 0.

Finally to calculate the internal powers B.2 and B�2 we first obtain the internal voltages:

+
.

2 = +2 � +=2 1 = +2 + I
=

2

⇣
11

T
⌘
�
1
2 , +

�
2 = �+2

where the second equality follows from +
=

2 = �I=2
⇣
1

T
�
1
2

⌘
under C14.1. Hence

B
.

2 := diag
⇣
+
.

2 �
.H
2

⌘
= �diag

⇣
+2�

1H
2 + I

=

2

⇣
11

T
⌘
�
1
2 �

1H
2

⌘

B
�
2 := diag

⇣
+
�
2 �

�H
2

⌘
= �diag

⇣
�+2�

2H
2 �

†
⌘
+ V2�+2

The total internal powers are 1
T
B
.

2 and 1
T
B
�
2 which is independent of V2. ⇤

16.5 Bibliographical notes

Three-phase load flow solvers have been developed since at least the 1960s, e.g., see
[170] for solution in the sequence coordinate and [41, 160] in the phase coordinate.
A three-phase network is equivalent to a single-phase circuit where each node in the
equivalent circuit is indexed by a (bus, phase) pair [160]. The main di�erence with a
single-phase network is the models of three-phase devices in the equivalent circuit, such
as models for generators and loads studied in Chapter 14, and lines and transformers
studied in Chapter 15. Single-phase power flow algorithms such as Newton Raphson
[171] or Fast Decoupled methods [172] can be directly applied to the equivalent circuit.
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See also [5, Chapter 11] for recent algorithms for solving three-phase power flows.
A su�cient condition is derived in [173] to ensure a fixed-point iteration of an AC
power flow equation converges to a unique power flow solution. Su�cient conditions
are also proved in [16] for the invertibility of three-phase admittance matrix which
then ensures the validity of /-bus method for computing power flow solutions. Finally
recent studies on three-phase AC optimal power flow problems and their semidefinite
relaxations include e.g. [103, 104, 174].

16.6 Problems

Chapter 16.1.

Exercise 16.1 (Symmetry and block symmetry). Consider a 3=⇥ 3= matrix � parti-
tioned as in Definition 16.1.

1 Suppose � is symmetric. Show that it is block symmetric if all its o�-diagonal
blocks are symmetric, i.e., �T

9:
= � 9: , for all 9 < : .

2 Suppose � is block symmetric. Show that it is symmetric if all blocks � 9: ,
including the diagonal blocks, are symmetric.

Exercise 16.2 (Invertibility of . ). Prove Theorem 16.2.

Exercise 16.3 (Invertibility of . ). This exercise shows that the set of conditions in
Theorem 16.1 and that in Theorem 16.2 each ensures UH

.U < 0 for any nonzero
U 2 C3(#+1) . Suppose C16.2 is satisfied, i.e., HB

9:
= HB

: 9
, H<

9:
and H

<

: 9
are complex

symmetric, so that the admittance matrix . is both symmetric and block symmetric.
Consider UH

.U for any U 2 C3(#+1) , and write HB
9:

, H<
9 9

:=
Õ
:: 9⇠: H

<

9:
and U 9 in terms

of their real and imaginary parts:

H
B

9:
=: 6B

9:
+ i1

B

9:
2 C3⇥3, H

<

9 9
=: 6

<

9 9
+ i1

<

9 9
2 C3⇥3, U 9 =: d 9 + in 9 2 C3

1 Show that the real and imaginary parts of UH
.U are:

Re
⇣
U

H
.U

⌘
=

’
( 9,:)2⇢

✓ 
d 9

n 9

�
�


d:

n:

� ◆T "
6
B

9:
0

0 6
B

9:

# ✓ 
d 9

n 9

�
�


d:

n:

� ◆
+

’
92#

h
d

T
9

n
T
9

i "
6
<

9 9
0

0 6
<

9 9

# 
d 9

n 9

�

Im
⇣
U

H
.U

⌘
=

’
( 9,:)2⇢

✓ 
d 9

n 9

�
�


d:

n:

� ◆T "
1
B

9:
0

0 1
B

9:

# ✓ 
d 9

n 9

�
�


d:

n:

� ◆
+

’
92#

h
d

T
9

n
T
9

i "
1
<

9 9
0

0 1
<

9 9

# 
d 9

n 9

�

2 Show that the conditions in Theorem 16.1 ensure UH
.U < 0 for any nonzero

U 2 C3(#+1) .
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3 Show that the conditions in Theorem 16.2 ensure UH
.U < 0 for any nonzero

U 2 C3(#+1) .

Exercise 16.4 (Invertibility of .22). Prove Theorem 16.3.

Exercise 16.5 (Power flow equation). Express the three-phase power injection B 9 2 C3

in terms of the voltage vector + 2 C3(#+1) :

B 9 =
’
:: 9⇠:

diag
⇣⇣
4

T
9
⌦ I

⌘
++

H
⇣
(4 9 � 4: ) ⌦ HBH

9:

⌘
+

⇣
4

T
9
⌦ I

⌘
++

H
⇣
4 9 ⌦ H<H

9:

⌘⌘

Chapter 16.2.

Exercise 16.6 (Four-wire model in . -configured). For Example 16.3 express the
neutral voltages (W 9 ,W: ) in terms of the phase voltages and currents

�
+ 9 ,+: , � 9 , �:

�
.

Exercise 16.7 (Four-wire model in . -configured). Repeat Example 16.5 but for the
case where the neutrals = of the voltage source and the impedance are connected

through impedances
⇣
I
=
0
=

9
, I=

0
=

:

⌘
to their respective external neutral terminals =0 which

are then connected to the four-wire line. See Figure 16.6.

Figure 16.11 Exercise 16.7: A . -configured generator connected through a four-wire line to a
. -configured impedance load.

Note that+=
9

is the voltage (with respect to a common reference point) at the neutral

internal of the device, and +=
0
9

is the voltage at the terminal of the neutral line of the

device, and that
⇣
+
=
0
9

,+=
0
:

⌘
do not need to be given or grounded.

Exercise 16.8 (Current Source in � configuration). Consider Example 16.6 but with
an ideal current source instead of the ideal voltage source. Specifically suppose the
following are specified:

• Current source
⇣
�
�
9
,W 9

⌘
.
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• Impedance I�
:
. (Note that V: need not be specified but can be derived.)

• Line admittances
✓⇣
I
B

9:

⌘�1
, H<
9:
= H<

: 9
:= 0

◆
. We have assumed for simplicity that

shunt admittances are zero.

1 Compute all the other quantities in Table 16.2.
2 Show that if IB

9:
is symmetric of the form in (15.9) with I

1
9:
+ 2I2

9:
< 0, then

W: = W 9 .
3 Show the following relation between the loop flows V 9 and V: :
• V: = �V 9 if and only if I01

:
�
01

9
+ I12

:
�
12

9
+ I20

:
�
20

9
= 0.

• V: = 0 if and only if I01
:
�
01

9
+ I12

:
�
12

9
+ I20

:
�
20

9
= Z: V 9 where Z: := 1

T
Z:1.

• V: = 0 if the impedance I
�
:
= Z:

3 I is balanced, regardless of whether ��
9

is
balanced or whether V 9 is zero. The converse does not necessarily hold.

Note that if the shunt admittances
⇣
H
<

9:
, H<
: 9

⌘
are nonzero, then W 9 need not be specified

and can be derived; see Remark 16.8.

Exercise 16.9 (. and � devices). Consider a . -configured current source connected
to a �-configured impedance as shown in Figure 16.12. Suppose the following are

Figure 16.12 Three-phase . -configured current source connected through a three-phase line to
a �-configured impedance load.

specified:

• Current source �.
9
.

• Impedance I�
:
.

• Line admittances
✓⇣
I
B

9:

⌘�1
, H<
9:

, H<
: 9

◆
with at least one of

⇣
H
<

9:
, H<
: 9

⌘
being nonzero.

Follow the solution strategy outlined in Chapter 16.2.3 to solve the network. State any
invertibility assumptions in your derivation. An alternative approach is that used in
Exercise 16.8.
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Exercise 16.10 (Balanced power source). Solve Example 16.9 when the system is
balanced, i.e.,

• Power source
⇣
f
�
9
,W 9

⌘
with f�

9
= 0 9U+ + 1 91 for given

�
0 9 ,1 9

�
. i.e., a balanced

power source must be a generalized balanced vector. Moreover its voltage and

current
⇣
+
�
9
, ��
9

⌘
are generalized balanced vectors.

• Impedance I�
:

:= Z�
:
I.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
:=

⇣
[
B

9:
I,0,0

⌘
.

• V 9 + V: := 1
31

T
⇣
�
�
9
+ ��

:

⌘
= V0.

Use the external model (14.27b) of impedance.

Exercise 16.11 (Power sources). Repeat Example 16.11 when the shunt admittances

are zero, i.e., the three-phase line is specified as
⇣
H
B

9:
, H<
9:
= H<

: 9
= 0

⌘
with nonsingular

H
B

9:
, as in Example 16.9. Since the admittance matrix is no longer invertible, suppose

V 9 + V: := 1
31

T
⇣
�
�
9
+ ��

:

⌘
= V0 is also given.

Exercise 16.12 (Balanced power sources). Consider the system in Figure 16.7 where
both the generator and load are power sources and the lines have zero shunt admittances,
as in Example 16.9. Suppose the system is balanced and the following are specified:

• Power source
⇣
f
�
9
,W 9

⌘
with f�

9
= 0 9U+ + 1 91 for given

�
0 9 ,1 9

�
, with its voltage and

current
⇣
+
�
9
, ��
9

⌘
being generalized balanced vectors.

• Power source f�
:
= 0:U+ + 1:1 for given (0: ,1: ), with its voltage and current⇣

+
�
9
, ��
9

⌘
being generalized balanced vectors. Note that W: is not specified.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
:=

⇣
[
B

9:
I,0,0

⌘
.

• Suppose a reference voltage \+0
9

:= \0
9

is given.

Show how to derive all variables
�
+
�
8

, ��
8

, V8
�

and
�
+8 , �8 ,W 9

�
, 8 = 9 , : , analytically. In

particular show that W 9 = W: .

Exercise 16.13 (Power sources). Given a solution
⇣
+2 , � int

8
, � int
?

,+ int
?

⌘
to the reduced

system (16.47), derive all the unknown internal variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V 9
⌘

and

external variables
�
+ 9 , � 9 , B 9 ,W 9

�
over the network.
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Chapter 16.3

Exercise 16.14 (Balanced network). The two equivalent external models of an
impedance I�

9
in Tables 14.3 and 14.4 are

+ 9 = �/�� 9 +W 91, 1
T
� 9 = 0

� 9 = �.�+ 9
where the e�ective impedance and admittance matrices are /�

9
:= 1

9 �
T
I
�
9
� and and

.
�
9

:= �T
H
�
9
�. For balanced networks where the impedance I�

9
= n�1

9
I, show that these

models reduce to:

+ 9 = � 1
3n 9

� 9 + W 91, 1
T
� 9 = 0

� 9 = �3n 9
�
+ 9 � W 91

�

Exercise 16.15 (Balanced voltages & currents). Consider the reduced system (16.42)
of (16.48)(16.50). We have shown that any solution

�
+2 , � int

8

�
of (16.42) consists of

generalized balanced vectors. Derive all other variables analytically in terms of the
solution

�
+2 , � int

8

�
and show that they are generalized balanced positive-sequence sets.

Exercise 16.16 (Balanced network). Suppose (�⇥I)+ = 1⌦U++2⌦1 where � 2C=⇥=,
1,2 2 C=, I is the identity matrix of size 3 and 1 is the vector of all 1s of size 3. Let
W 9 := 1

31
T
+ 9 be the zero-sequence component of + 9 2 C3. Show that �W = 2.

Chapter 16.4.

Exercise 16.17. Prove that if a vector + of three-phase voltages is a balanced negative
sequence then the negative-sequence voltage +̃� =

p
3+0 and the zero-sequence and

the positive-sequence voltages are both zero, +̃0 = +̃+ = 0.

Exercise 16.18 (Sequence impedance /̃. ). Consider the phase impedance matrix
/
. := I. + I=11

T of a . -configured impedance I. . Show that its sequence impedance
matrix is

/̃
. =

1
3

266664
1
)

I U
T
+I U

T
�I

U
T
�I 1

)

I U
T
+I

U
T
+I U

T
�I 1

)

I

377775
+

266664
3I= 0 0
0 0 0
0 0 0

377775
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If I0= = I1= = I2= then

/̃
. =

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775

Exercise 16.19 (Sequence impedance /̃�). Consider a �-configured impedance I�

whose external model is (from (16.75)):

+ = �/�� + W1, 1
T
� = 0 (16.88)

where the zero-sequence voltage W := 1
31

T
+ is also a variable to be determined and

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
|             {z             }

Î
�

�

Show that its sequence impedance matrix is

/̃
� :=

1
9
(�⇤)H

Î
� (�⇤)

where � is given in (??) and

⇤ :=
266664
0

1�U
1�U2

377775
If I01 = I12 = I20 then

/̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
and the external model of the �-configured impedance in the sequence coordinate is:

266664
0
+̃+
+̃�

377775
= � I

01

3

266664
0 0 0
0 1 0
0 0 1

377775
266664
�̃0

�̃+
�̃�

377775
, �̃0 = 0

Exercise 16.20 (Sequence network: �-configured voltage source). One of the external
models of a �-configured voltage source is (from (14.21b)):

+ = �̂⇢� � /�� + W1, 1
T
� = 0

where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

where Ĩ� := diag
�
I
��

1 and Z := 1
T
Ĩ
�.
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1 Show that

Exercise 16.21 (Sequence network: �-configured voltage source). Repeat Exercise
16.20 starting with the alternative external models of a �-configured voltage source is
(from (14.21a)).

Exercise 16.22 (Sequence network: . -configured current source). Suppose assump-
tion C16.1 holds (all neutrals are grounded and voltages are defined with respect to

the ground) so that += = �I=
⇣
1

T
�

⌘
. Derive the sequence networks for a . -configured

current source (as those in Chapter 16.4.3) starting from the external model in the
phase domain (from (14.15b)):

+ = �
⇣
I
.

�
. + /

.

�

⌘

where I. :=
�
H
.
��1 and /. := I. + I

=
11

T.

Exercise 16.23. Consider the complex symmetric matrix

" :=

1 8

8 �1

�

Show that " is not diagonalizable by computing its Jordan form and that:

1 Its eigenvalue _ = 0 has algebraic multiplicity of 2 and geometric multiplicity of
1.

2 Its eigenvector is E1 = (�8,1) and generalized eigenvector is E2 = (�28,1).

Exercise 16.24. Consider the complex symmetric phase impedance matrix

I :=
266664
B < <

< B <

< < B

377775
where B,< 2 C.

1 Check directly that IIH = IH
I. Hence, even though I is symmetric but not Hermi-

tian, it is normal.
2 Since I is normal, it is unitarily similar to a diagonal matrix Ĩ, i.e., there exists a

unitary matrix � such that Ĩ = �H
I�. Find � and Ĩ.
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Exercise 16.25 (Unbalanced currents). Consider a balanced load in (a). configuration,
or (b) � configuration, with one of the loads open-circuited, as shown in Figure
16.13. Find the sequence currents �̃ := ( �̃1, �̃2, �̃3) and the neutral current �= (for .
configuration) when the terminal phase currents are

� =
266664

80

80 4
i2c/3

�2

377775
Why is only the negative-sequence component nonzero even though the loads are
unbalanced because of the open circuit?

Scanned with CamScanner

Figure 16.13 Sequence components of unbalanced phase currents.

Exercise 16.26. Repeat Example 16.13 without using symmetrical components and
sequence networks.

Exercise 16.27. Repeat Example 16.13 but with the . and �-impedances in series
(instead of in parallel) connected by a line with the same series-phase impedance
matrix Iline, as shown in Figure 16.14.

Sc
an

ne
d 

w
ith

 C
am

Sc
an

ne
r

Figure 16.14 Exercise 16.27: A three-phase unbalanced voltage source supplies power two
balance loads in series through symmetric lines.
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Exercise 16.28. Repeat Exercise 16.27 without using symmetrical components and
sequence networks.



17 Branch flow models: radial
networks

In this chapter we extend the single-phase branch flow models of Chapter 5 to unbal-
anced three-phase networks. We will build on materials in Chapter 16 on unbalanced
bus injection models.

17.1 Three-phase BFM for radial networks

17.1.1 Line model

We use the three-phase line model of Chapter 16.1.1 where each line ( 9 , :) 2 ⇢
characterized by four 3⇥3 series and shunt admittance matrices,

⇣
H
B

9:
, H<
9:

⌘
from 9 to

: and
⇣
H
B

: 9
, H<
: 9

⌘
from : to 9 , that define the relation between

�
+ 9 ,+:

�
and

�
� 9: , �: 9

�
:


� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�

We emphasize that HB
9:

and HB
: 9

may be di�erent (i.e., . 9: may not be block symmet-
ric) and H<

9:
and H<

: 9
may be di�erent. Moreover, when ( 9 , :) models a three-phase

transformer, any of these 3⇥ 3 admittance matrices may be singular and the shunt
admittances (H<

9:
, H<
: 9
) of the line model are generally nonzero even when the shunt

admittances of the constituent single-phase transformers are assumed zero; see Remark
16.1 and (16.2)(16.3) for line parameters when ( 9 , :) models a three-phase transformer.

Therefore we assume
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
are given for each line ( 9 , :) 2 ⇢ , but

series impedance matrices IB
9:

:=
⇣
H
B

9:

⌘�1
and IB

: 9
:=

⇣
H
B

: 9

⌘�1
may not exist. Generally

we will write power flow equations in terms of the series admittance matrices instead
of the series impedance matrices (unless the series admittance matrices are assumed
nonsingular).
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17.1.2 With shunt admittances

To extend the branch flow model (5.1) for single-phase networks to unbalanced three-
phase networks define the following variables:

B 9 2 C3, E 9 2 S3
+, 9 2 #

✓ 9: ,✓: 9 2 S3
+, ( 9: ,(: 9 2 C3⇥3, ( 9 , :) 2 ⇢

where S=+ ✓ C=⇥= is the set of of =⇥ = complex (Hermitian and) positive semidefinte
matrices. It will become clear later that E 9 ,✓ 9: ,( 9: are rank-1 matrices. The diagonal
entries of E 9 are the squared magnitudes of the nodal voltages (+0

9
,+1
9
,+2
9
), the diagonal

entries of ✓ 9: are the squared magnitudes of the sending-end line currents (�0
9:

, �1
9:

, �2
9:
),

the diagonal entries of ( 9: are the sending-end line power flows ((0
9:

,(1
9:

,(2
9:
),

and similarly in the opposite direction. Let B := (B 9 , 9 2 #),E := (E 9 , 9 2 #), ✓ :=
(✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢), ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢), and let G := (B,E,✓,() 2 C12(#+1)+36" .
Define for each ( 9 , :) 2 ⇢ the total admittance matrix

H̃ 9: := H
B

9:
+ H<

9:
, H̃: 9 := H

B

: 9
+ H<

: 9

Hence H̃ 9: = HB
9:

and H̃: 9 = HB
: 9

if and only if H<
9:

= H<
: 9

= 0 2 C3⇥3. The extension of
(5.1) to an unbalanced three-phase network is the following model:

B 9 =
’
:: 9⇠:

diag(( 9: ), 9 2 #

(17.1a)

H̃ 9:E 9 H̃
H
9:
� HB

9:
E:

⇣
H
B

9:

⌘H
= 2Re

�
H̃ 9:( 9:

�
� ✓ 9: , ( 9 , :) 2 ⇢

(17.1b)

H̃: 9E: H̃
H
: 9
� HB

: 9
E 9

⇣
H
B

: 9

⌘H
= 2Re

�
H̃: 9(: 9

�
� ✓: 9 , ( 9 , :) 2 ⇢

(17.1c)"
E 9 ( 9:

(
H
9:

✓ 9:

#
� 0,

"
E: (: 9

(
H
: 9

✓: 9

#
� 0, ( 9 , :) 2 ⇢

(17.1d)

rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1, rank

"
E: (: 9

(
H
: 9

✓: 9

#
= 1, ( 9 , :) 2 ⇢

(17.1e)

H
B

: 9

⇣
E 9 H̃

H
9:
� ( 9:

⌘
=

⇣
E: H̃

H
: 9
� (: 9

⌘H ⇣
H
B

9:

⌘H
, ( 9 , :) 2 ⇢

(17.1f)

col
⇣
E 9 H̃

H
9:
� ( 9:

⌘H
✓ range

⇣
H
B

9:

⌘
, col

⇣
E: H̃

H
: 9
� (: 9

⌘H
✓ range

⇣
H
B

: 9

⌘
, ( 9 , :) 2 ⇢

(17.1g)
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where +0 2 C3 is given and E0 := +0+
H
0 and col � denotes the columns of �. These

equations extend (5.1) from single-phase to three-phase networks and express the same
four properties that a power flow solution G := (B,E,✓,() satisfies:

1 Power balance: Unlike the power balance equation (5.1a), (17.1a) constrains only
the diagonal terms of 3⇥3 matrices ( 9: . Their o�-diagonal terms are determined
jointly with the other equations.

2 Ohm’s law: (17.1b)(17.1c) originate from the Ohm’s law � 9: = HB
9:
(+ 9 �+: ) +

H
<

9:
+ 9 , but unlike (5.1b)(5.1c), (17.1b)(17.1c) use only admittance matrices

(HB
9:

, H<
9:
) and (HB

: 9
, H<
: 9
), but not impedance matrices because these admittances

may be singular (e.g., when they model transformers in � configuration).
3 Apparent power: The explicit definition (5.1d) of apparent power for single-phase

networks becomes the implicit psd rank-1 conditions (17.1d)(17.1e). They ensure
the existence of (+ 9 , � 9: ) so that

E 9 = + 9+
H
9
, ✓ 9: = � 9: �

H
9:

, ( 9: = + 9 �
H
9:

(17.2a)

or equivalently "
E 9 ( 9:

(
H
9:

✓ 9:

#
=


+ 9

� 9:

�
·
h
+

H
9

�
H
9:

i
, 9 ! : 2 ⇢ (17.2b)

as well as the quantities in the opposite direction. The vectors
�
+ 9 , � 9:

�
are unique

up to a reference angle i 9: 2 (�c,c], one for each ( 9 , :) 2 ⇢ . When the network
graph is a tree and the linear cycle condition (17.1f) is satisfied, i 9: as well as i: 9
in the opposite direction are the same for all lines ( 9 , :) 2 ⇢ . Moreover a given +0

at the reference bus 0 will fix the angles of all variables in G, as discussed in the
proof of Theorem 17.1 and in Chapter 17.2.3. 1 See also Example 17.1 in Chapter
17.3.

4 Cycle condition: The linear cycle condition (5.1e) becomes (17.1f)(17.1g). The

condition (17.1g) is linear and equivalent to:
⇣
E 9 H̃

H
9:
� ( 9:

⌘H
= HB

9:
F for some

matrix F 2 C3⇥3. It is necessary because any of admittance matrices (HB
9:

, H<
9:
)

and (HB
: 9

, H<
: 9
) may be singular, the main challenge in extending (5.1) to three-

phase networks. If (HB
9:

, HB
: 9
) are nonsingular then multiplying both sides of (17.1f)

by IB
: 9

:=
⇣
H
B

9:

⌘�1
and taking Hermitian transpose we obtain

⇣
E 9 H̃

H
9:
� ( 9:

⌘H
= H

B

9:

⇣
E: H̃

H
: 9
� (: 9

⌘
I
BH
9:

which implies (17.1g); similarly in the opposite direction : to 9 . Therefore if
(HB
9:

, HB
: 9
) are nonsingular then the condition (17.1g) is vacuous. We will discuss

1 A fixed +0 is needed in the equivalence Theorem 17.1. A given +0 also enables Algorithm 5 in Chapter
17.2.3 that explicitly constructs voltage and current phasors (+ , � ) from a power flow solution
G := (B, E ,✓,() of (17.1), and enables a backward forward sweep method in Chapter 17.4.2. Note
however that fixing +0 may not guarantee the uniqueness of power flow solutions G since (17.1) is
nonlinear.
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in Chapter 17.2.3 the role of tree topology, cycle conditions, and angle recovery
after we have extended (17.1) to general networks that may contain cycles.

Like the single-phase model (5.1) for radial networks, (17.1) does not require
H
B

9:
= HB

: 9
(assumption assumption C17.1 below) and allows nonzero shunt admit-

tances (H<
9:

, H<
: 9
). It is therefore suitable for modeling three-phase transformers in

standard configurations in addition to distribution and short transmission lines (line
parameters when ( 9 , :) models a three-phase transformer are given in (16.2)(16.3)). If

the admittances
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
are nonzero scalars then (17.1) reduces to

(5.1) for single-phase networks.

17.1.3 Without shunt admittances

Suppose the following condition holds:

C17.1: For every line ( 9 , :) 2 ⇢ , the series admittance matrices satisfy HB
9:
= HB

: 9
.

This means that the 3(# +1) ⇥3(# +1) admittance matrix . is block symmetric and
has a three-phase ⇧ circuit representation. We also assume that the shunt admittances
H
<

9:
= H<

: 9
= 0 as well in which case the admittance matrix . has zero block row sums.

In this case ( 9 , :) can model a distribution or short transmission line, but is not suitable
for modeling a transformer since their shunt admittances are generally nonzero; see

Remark 16.1. Hence in this case we assume series impedance matrices IB
9:

:=
⇣
H
B

9:

⌘�1

exist for all ( 9 , :) 2 ⇢ . This allows us to adopt a directed graph for network model
since in this case

( 9: + (: 9 = I
B

9:
✓ 9: , ✓ 9: = ✓: 9 (17.3)

and use line variables (✓ 9: ,( 9: ) (only) on each directed line 9 ! : .

Substituting (17.3) into (17.1) leads to the following model proposed in [104]
that generalizes DistFlow equations from the single-phase to the three-phase setting
(Exercise 17.2):’

:: 9!:
diag(( 9: ) =

’
8:8! 9

diag
⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 # (17.4a)

E 9 � E: =
⇣
I
B

9:
(

H
9:
+ ( 9: IBH

9:

⌘
� IB

9:
✓ 9: I

BH
9:

, 9 ! : 2 ⇢ (17.4b)"
E 9 ( 9:

(
H
9:

✓ 9:

#
� 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1, 9 ! : 2 ⇢ (17.4c)

where +0 2 C3 is given. In particular the cycle condition (17.1f) becomes vacuous
when assumption C17.1 holds and shunt admittances are zero.
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Angle recovery.

We now explain how to recover the phase angles for voltage and current phasors (+ , �)
for a radial network with zero shunt admittance matrices H<

9:
= H<

: 9
= 0 and under

assumption C5.1, i.e., given a power solution G = (B,E,✓,() that satisfies (17.4) we will
construct the phasors (+ , �).

The BFM (17.4) does not contain the vectors+ 9 or � 9: , but the psd rank-1 constraints
(17.4c) ensure that there exist + 9 and � 9: such that

E 9 = + 9+
H
9
, ✓ 9: = � 9: �

H
9:

, ( 9: = + 9 �
H
9:

(17.5a)

or equivalently "
E 9 ( 9:

(
H
9:

✓ 9:

#
=


+ 9

� 9:

�
·
h
+

H
9

�
H
9:

i
, 9 ! : 2 ⇢ (17.5b)

Given matrices
�
E 9 ,✓ 9: ,( 9:

�
, the vectors

�
+ 9 , � 9:

�
are determined uniquely up to a

reference angle. If a reference angle is given, e.g., \+00 = 0�, the power flow equation
(17.4) will fix the angles of all variables. See Example 17.1 in Chapter 17.3.

If +0 is given, not just + q0 , q 2 {0,1,2}, then given a power solution G := (B,E,✓,()
that satisfies (17.4), an G̃ := (B,+ , �,✓,() 2 X̃ can be explicitly constructed using the
iterative Algorithm 5 from [104] that makes use of the tree topology. The basic idea
in Step 5 of the algorithm is to compute the phasors +8 and �8 9 recursively, starting
from bus 0 when +0 is given: since (8 9 = +8 �H

8 9
, taking the Hermitian transpose and

multiplying both sides by +8 , we have

+8 �
H
8 9

= (8 9 ) �8 9

⇣
+

H
8
+8

⌘
= (

H
8 9
+8 ) �8 9 =

1
tr(E8)

(
H
8 9
+8 (17.6)

Tree topology and cycle condition.

An G satisfying (17.4) is a legitimate power flow solution, i.e., from which a unique
(up to an arbitrary reference angle) phasor (+ , �) can be constructed as described
above, only if the network is radial. To see this, substituting � 9: = H 9:

�
+ 9 �+:

�
into

( 9: =+ 9 �H
9:

we get

+ 9+
H
:

= E 9 � ( 9: IH
9:

, 9 ! : 2 ⇢

Taking the diagonal vectors on both sides, we conclude that given a solution G of (17.4),

voltage phasors + 9 exist if and only if there exist \ 9 :=
⇣
\
0

9
,\1
9
,\2
9

⌘
, for all 9 2 # , such
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Algorithm 4: Recover G̃ = (B,+ , �,✓,() from G = (B,E,✓,().
Down orientation where all lines point away from root bus 0.

Input: G = (B,E,✓,() 2 X; +0 2 C3.
Output: G̃ = ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃

1: B̃  B; ✓̃  ✓; (̃  (;
2: #visit  {0};
3: while #visit < # do

4: find 8! 9 such that 8 2 #visit and 9 8 #visit;
5: compute

�̃8 9  
1

tr (E8)
(

H
8 9
+̃8

+̃ 9  +̃8 � I8 9 �̃8 9
#visit  #visit[ { 9}

6: end while

that

266666664

|+0
9
+
0

:
| 4i

⇣
\
0

9
�\0
:

⌘

|+1
9
+
1

:
| 4i

⇣
\
1

9
�\1
:

⌘

|+2
9
+
2

:
| 4i

⇣
\
2

9
�\2
:

⌘

377777775
=

26666664

|*0
9:
| 4iV

0

9:

|*1
9:
| 4iV

1

9:

|*2
9:
| 4iV

2

9:

37777775
, 9 ! : 2 ⇢

where the vectors V 9: := V 9: (G) 2 R3 of angles depend on G and are defined by

V 9: (G) := \diag
⇣
E 9 � ( 9: IH

9:

⌘
. In particular there must exist \ :=

⇣
\ 9 2 R3, 9 2 #

⌘
2

R
3(#+1) such that

V(G) =
⇣
⇠

T ⌦ I
⌘
\ (17.7a)

where V(G) :=
�
V 9: (G), 9 ! : 2 ⇢

�
2 C3" and ⇠ is the (# + 1) ⇥" bus-by-line in-

cidence matrix whose rank is # . See Chapter A.11 for more properties of ⇠. The
condition (17.17) is the cycle condition that generalizes (??) from single-phase to
three-phase networks. We now show that the cycle condition is vacuous for radial
networks, i.e., any G satisfying (17.4) also satisfies (17.17) when the network is radial.

Partition⇠ into its first row 2
T
0 and an # ⇥" matrix ⇠̂ of the remaining rows so that

⇠
T =:

⇥
20 ⇠̂

T⇤
Similarly partition \ =:

�
\0, \̂

�
2 R3(#+1) . Suppose⌧ is a (connected) tree with " = # .

Then ⇠̂T is # ⇥# and of full rank. Therefore 20 = ⇠̂T
[ for some [ 2 C# . It is proved

in Exercise 17.1 that
⇣
⇠̂

T
[

⌘
⌦ I =

⇣
⇠̂

T ⌦ I
⌘
([ ⌦ I). Hence (17.17) becomes

V(G) =
⇣
2

T
0 ⌦ I

⌘
\0 +

⇣
⇠̂

T ⌦ I
⌘
\̂ =

⇣
⇠̂

T ⌦ I
⌘ �
\̂ + ([ ⌦ \0)

�
(17.7b)
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where we have used ([ ⌦ I) \0 = [ ⌦ \0. Since ⇠̂T and hence
⇣
⇠̂

T ⌦ I
⌘

are invertible,

for any G satisfying (17.4), there always exists an \ =
�
\0, \̂

�
2 R3(#+1) that satisfies

(17.21a). Indeed the solution \ of (17.21a) is not unique. Given any \0 2 C3, there is

always a (unique) \̂ :=
✓⇣
⇠̂

T
⌘�1
⌦ I

◆
V(G)�[ ⌦ \0 that satisfies (17.21a).2

If ⌧ contains cycles, on the other hand, then " > # and the 3" ⇥3(# +1) matrix�
⇠

T ⌦ I
�
in (17.17) has a column rank of 3# < 3" since rank (�⌦ ⌫) = rank � · rank ⌫

from Lemma 16.6. This means that the column space of
�
⇠

T ⌦ I
�

does not span R3"

and hence there may be V(G) for which no \ exists that satisfies (17.17), regardless
of whether \0 is given. A power flow model for a meshed network consists of (17.4)
augmented with the cycle condition (17.17).

17.2 Equivalence, cycle condition and angle recovery

The branch flow models for an unbalanced three-phase radial networks are (17.1)
with shunt admittances and without assumption C17.1 and the generalized DistFlow
equations (17.4) when shunt admittances are zero and assumption C17.1 holds. We will
show that they are equivalent to the bus injection model (16.12b) studied in Chapter
16.1.4, reproduced here:

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (17.8)

To this end we first extend the branch flow models (17.1) and (17.4) to general networks
possibly with cycles. We then use these generalized branch flow models as a bridge to
relate BFM (17.1) and (17.4) for radial networks to BIM (17.8) for general networks.

17.2.1 Extension to general networks

To extend the branch flow model (5.20) for a general network possibly with cycles from
the single-phase setting to the unbalanced three-phase setting, define the following
variables:

B 9 2 C3, + 9 2 C3, 9 2 #
� 9: , �: 9 2 C3, ✓ 9: ,✓: 9 2 S3

+, ( 9: ,(: 9 2 C3⇥3, ( 9 , :) 2 ⇢

where S=+ ✓ C=⇥= is the set of of = ⇥ = complex (Hermitian and) positive
semidefinte matrices. Let B := (B 9 , 9 2 #), + := (+ 9 , 9 2 #), � := (� 9: , �: 9 , ( 9 , :) 2 ⇢),
✓ := (✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢) and ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢). Let G̃ := (B,+ , �,✓,() 2
2 Here the vector \0 can be arbitrary to satisfy (17.21a) whereas a single angle e.g. \00 fixes all other

angles in (17.2). This is because (17.2) uses the matrix E9 whereas (17.21) uses only the diagonal
entries of E9 .
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C
6(#+1)+42" . The branch flow model for a general three-phase network is the fol-

lowing power flow equations in G̃:

B 9 =
’
:: 9⇠:

diag
�
( 9:

�
, 9 2 # (17.9a)

� 9: = H̃ 9:+ 9 � HB
9:
+: , �: 9 = H̃: 9+: � HB

: 9
+ 9 , ( 9 , :) 2 ⇢ (17.9b)

✓ 9: = � 9: �
H
9:

, ✓: 9 = �: 9 �
H
: 9

, ( 9 , :) 2 ⇢ (17.9c)

( 9: = + 9 �
H
9:

, (: 9 = +: �
H
: 9

, ( 9 , :) 2 ⇢ (17.9d)

where H̃ 9: := HB
9:
+ H<

9:
and H̃: 9 = HB

: 9
+ H<

: 9
. The equation (17.9a) imposes power

balance at each bus, (17.9b) describes the Kirchho�’s and Ohm’s laws, (17.9c) defines
the squared current magnitude matrices, and (17.9d) defines branch power in terms
of the associated voltage and current. A key to generalizing single-phase BFM to
the 3-phase setting is the generalization in (17.9c)(17.9d) of the quadratic relation
between between

�
( 9: ,✓ 9:

�
and

�
+ 9 , � 9:

�
using outer products. This relation is explicit

in BFM (17.9) for general networks that include voltage and current angles, but is
implicit in BFMs for radial networks that do not include voltage and current angles
(see (17.1d)(17.1e) and (17.4c)). For convenience we assume here the vector+0, not just
+
q

0 , q 2 {0,1,2}, is given (see angle recovery in Chapter 17.1.3 and a backward forward
sweep method in Chapter 17.4.2). Since this model does not require assumption C17.1
and allows nonzero shunt admittance matrices (H<

9:
, H<
: 9
), it is suitable for modeling

three-phase transformers in .. , ��, �. and .� configurations.

When assumption C17.1 holds and shunt admittance matrices H<
9:
= H<

: 9
= 0 2 C3⇥3,

we may assume series impedance matrices IB
9:

:=
⇣
H
B

9:

⌘�1
exist for all ( 9 , :) 2 ⇢ .

This allows us to adopt a directed graph and obtain the following simpler BFM by
substituting (17.3) into (17.9):

B 9 +
’
8:8! 9

diag
�
(8 9 � I8 9✓8 9

�
=

’
:: 9!:

diag(( 9: ), 9 2 # (17.10a)

+ 9 �+: = I 9: � 9: , 9 ! : 2 ⇢ (17.10b)

✓ 9: = � 9: �
H
9:

, 9 ! : 2 ⇢ (17.10c)

( 9: = + 9 �
H
9:

, 9 ! : 2 ⇢ (17.10d)

with a given +0 2 C3. In this case the line variables are directed with B := (B 9 , 9 2 #),
+ := (+ 9 , 9 2 #), � := (� 9: , 9 !2 ⇢), ✓ := (✓ 9: , 9 ! : 2 ⇢) ( := (( 9: , 9 ! : 2 ⇢), and
G̃ := (B,+ , �,✓,() 2 C6(#+1)+21" .

17.2.2 Equivalence of BFM and BIM

We now show that BFMs (17.1) and (17.4) for radial networks and (17.9) and (17.10)
for general networks are all equivalent to the BIM (17.8), in the following sense. Define
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the solution sets:

V := V(+0) :=
n
(B,+) 2 C6(#+1) | (B,+) satisfies (17.8) with a given +0

o

X̃ := X̃(+0) :=
n
G̃ := (B,+ , �,✓,() 2 C6(#+1)+42" | G̃ satisfies (17.9) with a given +0

o

Xtree := Xtree (+0) :=
n
G := (B,E,✓,() 2 C12(#+1)+36" |G satisfies (17.1) with given +0 and E0 =+0+

H
0

o
where # +1 is the number of nodes and" := |⇢ | is the number of lines in⌧. We say that
two sets � and ⌫ are equivalent, denoted by � ⌘ ⌫, if there is a bijection between them.
When assumption C17.1 holds and shunt admittance matrices H<

9:
= H<

: 9
= 0 2 C3⇥3,

the branch flow model (17.1) reduces to (17.4) for radial networks and (17.9) reduces
to (17.10) for general networks. It therefore su�ces to prove the equivalence of V, X̃
and Xtree.

The following theorem generalizes Theorem 5.2 of Chapter 5.2 from single-phase
to unbalanced three-phase networks.

Theorem 17.1. Suppose the network ⌧ is connected and +0 at the reference bus 0 is
given.

1 Then V ⌘ X̃.
2 If ⌧ is a tree then X̃ ⌘ Xtree.

Proof Part 1: V ⌘ X̃. Fix any (B,+) 2 V. We will construct an G̃ := (B,+ , �,✓,() 2 X̃,
i.e. G̃ satisfies (17.9). Define (�,✓,() in terms of+ by (17.9b)(17.9c)(17.9d). Therefore,
to show that G̃ 2 X̃, it su�ces to show that G̃ also satisfies (17.9a). Since (B,+) satisfies
(17.8) we have

B 9 =
’
:: 9⇠:

diag
⇣
+ 9 ( H̃ 9:+ 9 � HB

9:
+: )H

⌘
=

’
:: 9⇠:

diag
�
( 9:

�

where the second equality follows from (17.9b)(17.9d). Therefore G̃ also satisfies (17.9)
and hence is in X̃. Conversely, if G̃ := (B,+ , �,✓,() satisfies (17.9) then substituting
(17.9b)(17.9d) into (17.9a) yields (17.8). Hence (B,+) 2 V.

Part 2: X̃ ⌘ Xtree. We explicitly construct a bijection between these two sets. Fix any
G̃ := (B,+ , �,✓,() with the given +0 that satisfies (17.9). The mapping G̃ 7! G is defined
by G := (B,E,✓,() where E := (E 9 , 9 2 #) with

E 9 :=+ 9+H
9

(17.11)

We first show that G satisfies (17.1). Then we show that the mapping G̃ 7! G defined
by (17.11) is injective (when the network is connected and +0 is given) and surjective
(when the network is a tree and the linear cycle condition (17.1f)(17.1g) is satisfied).
It is therefore a bijection between X̃ and Xtree.

First G clearly satisfies (17.1a). To prove (17.1b), we have from (17.9b) and (17.9c)

✓ 9: = H̃ 9:E 9 H̃
H
9:

+ HB
9:
E: H

BH
9:
� 2Re

⇣
H̃ 9:+ 9+

H
:
H
BH
9:

⌘
(17.12)
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We have from (17.9b) and (17.9d) ( 9: = E 9 H̃H
9:
� + 9+H

:
H
BH
9:

and hence

H̃ 9:+ 9+
H
:
H
BH
9:

= H̃ 9:E 9 H̃
H
9:
� H̃ 9:( 9:

Substituting into (17.12) yields

✓ 9: = H̃ 9:E 9 H̃
H
9:

+ HB
9:
E: H

BH
9:
� 2Re

⇣
H̃ 9:E 9 H̃

H
9:
� H̃ 9:( 9:

⌘
= �H̃ 9:E 9 H̃H

9:
+ HB

9:
E: H

BH
9:

+ 2Re
�
H̃ 9:( 9:

�
which is (17.1b). Similarly (17.1c) follows from (17.9b)(17.9c)(17.9d). To prove the
cycle condition (17.1f)(17.1g), use again ( 9: = E 9 H̃H

9:
� + 9+H

:
H
BH
9:

and (: 9 = E: H̃H
: 9
�

+:+
H
9
H
BH
: 9

to obtain

⇣
E 9 H̃

H
9:
� ( 9:

⌘H
= H

B

9:
+:+

H
9
,

⇣
E: H̃

H
: 9
� (: 9

⌘H
= H

B

: 9
+ 9+

H
:

H
B

: 9

⇣
E 9 H̃

H
9:
� ( 9:

⌘
= H

B

: 9
+ 9+

H
:
H
BH
9:

, H
B

9:

⇣
E: H̃

H
: 9
� (: 9

⌘
= H

B

9:
+:+

H
9
H
BH
: 9

which implies the cycle conditions (17.1g) and (17.1f) respectively. Finally (17.11)
and (17.9c)(17.9d) implies"

E 9 ( 9:

(
H
9:

✓ 9:

#
=


+ 9

� 9:

� h
+

H
9

�
H
9:

i
,

"
E: (: 9

(
H
: 9

✓: 9

#
=


+:

�: 9

� h
+

H
:

�
H
: 9

i

which implies the psd and rank-1 conditions (17.1d)(17.1e). This completes the proof
that G satisfies (17.1).

When the network is a (connected) tree and +0 is fixed (not just \+00 say), Lemma
17.2 shows that the mapping G̃ 7! G is injective. Lemma 17.3 shows that the mapping
is surjective, i.e., given G := (B,E,✓,() that satisfies (17.1) (in particular the cycle
condition), there is a G̃ that satisfies (17.9). Hence it is bijective.

⇤

17.2.3 Tree topology, cycle condition, angle recovery

Consider the mapping G̃ := (B,+ , �,✓,() 7! G := (B,E,✓,() from X̃ to Xtree defined
through (17.11). Suppose +0 is given. In this subsection we show that the mapping
is injective when the network graph ⌧ is connected, it is surjective when ⌧ is a
(connected) tree and G 2 Xtree satisfies the linear cycle condition (17.1f)(17.1g), and
the linear cycle condition becomes vacuous when assumption C17.1 holds and shunt
admittances are zero, i.e., any G satisfying (17.4) also satisfies (17.17) for a radial
network.

Connected graph ⌧ and uniqueness of (+ , �).
Lemma 17.2 (Injectivity). Suppose the network graph ⌧ is a (connected) tree and
+0 is given. Given G := (B,E,✓,() 2 Xtree, if there exists (+ (G), � (G)) such that G̃ :=
(B,+ (G), � (G),✓,() 2 X̃, then (+ (G), � (G)) is unique.
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Proof For the sake of contradiction, suppose both G̃ := ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃ and Ĝ =
( B̂,+̂ , �̂, ✓̂, (̂) 2 X̃, with +̃0 = +̂0, are mapped to G = (B,E,✓,() 2Xtree through (17.11). By
definition of G̃ 7! G we have B̃ = B = B̂, ✓̃ = ✓ = ✓̂, (̃ = ( = (̂. Moreover +̃ 9+̃H

9
= E 9 = +̂ 9+̂H

9

for all 9 2 # . We have to show that +̃ = +̂ and �̃ = �̂. Since the psd rank-1 decomposition
(17.2) is unique up to an arbitrary phase,

�
+̃ 9 , �̃ 9:

�
and (+̂ 9 , �̂ 9: ) can di�er only by an

arbitrary phase shift i 9: for each ( 9 , :), and
�
+̃: , �̃: 9

�
and (+̂: , �̂: 9 ) can di�er only by

an arbitrary phase shift i: 9 for each ( 9 , :). We argue that i 9: and i: 9 must be the
same for all lines ( 9 , :) 2 ⇢ as long as the network is connected. Moreover +̂0 = +̃0

implies that i 9: = i: 9 = 0 for all ( 9 , :) 2 ⇢ .

It is convenient to assume (only) in this proof, without loss of generality, a graph
orientation and, since the graph is a tree, assume that all lines point towards bus 0.
Start from a leaf node 8 and consider a line 8! 9 2 ⇢ . Let

+̂8 = +̃8 4
ii8 9 , �̂8 9 = �̃8 9 4

ii8 9 (17.13)

Similarly, for all lines 9 ! : connected to 9 < 0, we have +̂ 9 = +̃ 9 4
ii 9: . Substituting

+̂8 ,+̂ 9 , �̂8 9 into (17.9b) for 9 < 0 yields

�̃8 9 = H̃8 9+̃8 � HB8 9+̃ 9 4i(i 9:�i8 9 )

which, together with (17.9b), implies i 9: = i8 9 for all directed lines 9! : (we assume
without loss of generality that all angles are projected to (�c,c]). When 9 = 0 (i.e.,
there is no line 9 ! :), we have �̃80 = H̃80+̃8 � HB

80+̃04
�ii80 since +̂0 = +̃0 by assumption,

and hence (17.9b) implies that i80 = 0. Propagating towards bus 0 in a reverse breadth-
first search order, we conclude that i 9: = i80 = 0 on all directed lines 9! : 2 ⇢ since
the network is connected. This implies in particular that +̂ 9 = +̃ 9 for all 9 2 # . For each
directed line 9 ! : 2 ⇢ , since

�
+̃: , �̃: 9

�
and (+̂: , �̂: 9 ) in the opposite direction can

di�er only by a phase shift i: 9 for each ( 9 , :), +̂: = +̃: for all : implies that i: 9 = 0
for all 9 ! : 2 ⇢ . Hence G̃ = Ĝ and the mapping G̃ 7! G is injective. ⇤

Tree graph ⌧, cycle condition and existence of (+ , �).
We now explain that a phasor (+ (G), � (G)) and hence G̃ := (B,+ (G), � (G),✓,() 2 X̃ can
be recovered from an G := (B,E,✓,() 2 Xtree if and only if the network is radial, as well
as the role the linear cycle condition (17.1f)(17.1g) plays in the recovery.

We recall the following simple property of psd rank-1 matrices. Given a psd rank-1
matrix � 2 C=⇥=, there exists a vector G 2 C=, unique up to an arbitrary angle, such
that GGH = �, i.e., �8 9 = |G8 | |G 9 |4i(\8�\ 9 ) . Therefore G can be determined explicitly
from the given � as follows. Let G =: |G8 |4i\8 . Then |G8 | =

p
�88 . To determine \8 ,

define a graph ⌧ := (# ,⇢) induced by � with = nodes and < directed lines (with
arbitrary graph orientation) where there is a line 8! 9 if and only if �8 9 < 0. Let ⇠
denote the =⇥< incidence matrix of ⌧. Let V 9: (�) := \� 9: for 9 ! : 2 ⇢ and let
V(�) := (V 9: (�), 9 ! : 2 ⇢). Then

V(�) = ⇠
T
\ and G8 :=

p
�88 4

i\8 (17.14)
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i.e., if V(�) = ⇠T
\ for some \ (i.e., V(�) is the row space of the incidence matrix ⇠),

then G given by (17.14) is the rank-1 decomposition of the psd rank-1 matrix � = GGH,
unique up to a reference angle.

Fix a power flow solution G 2 Xtree. First note that if an G̃ 2 X̃ exists with E 9 =+ 9+H
9
,

then (17.9b) and (17.9d) implies ( 9: = E 9 H̃H
9:
� + 9+H

:
H
BH
9:

and hence

+ 9+
H
:

=
⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
+ b 9: 2 C3⇥3, ( 9 , :) 2 ⇢ (17.15a)

where
⇣
H
BH
9:

⌘†
denotes the pseudo-inverse of HBH

9:
and bH

9:
2 C3⇥3 is the component of

+:+
H
9

in null(HB
9:
) so that b 9: HBH

9:
= 0 2 C3⇥3 (see Theorem A.19 on psudo-inverse in

Appendix A.7).3 Similarly in the opposite direction we have

+:+
H
9

=
⇣
E: H̃

H
: 9
� (: 9

⌘ ⇣
H
BH
: 9

⌘†
+ b: 9 2 C3⇥3, ( 9 , :) 2 ⇢ (17.15c)

for some b: 9 2 C3⇥3, dependent on +:+H
9
, such that col(bH

: 9
) ✓ null(HB

: 9
).

Motivated by (17.15) when G̃ 2 X̃ exists with E 9 =+ 9+H
9
, define the 3(# +1)⇥3(# +

1) matrix 1(G) by

[1(G)] 9 9 = E 9 , 9 2 # (17.16a)

[1(G)] 9: =
⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
, ( 9 , :) 2 ⇢ (17.16b)

[1(G)]: 9 =
⇣
E: H̃

H
: 9
� (: 9

⌘ ⇣
H
BH
: 9

⌘†
, ( 9 , :) 2 ⇢ (17.16c)

[1(G)] 9: = 0 2 C3⇥3, [1(G)]: 9 = 0 2 C3⇥3, ( 9 , :) 8 ⇢ (17.16d)

Then, since G̃ 2 X̃ with E 9 =+ 9+H
9
, (17.15) implies that

1(G) = ++
H (17.16e)

Conversely (17.14) says that, if 1(G) is psd rank-1, then its rank-1 decomposition+ can
be uniquely recovered from 1(G), given+0. Specifically let V 9: (G) := diag

�
\ [1(G)] 9:

�
for ( 9 , :) 2 ⇢ and V(G) := (V 9: (G), ( 9 , :) 2 ⇢). Note that 1(G) being psd implies that

3 Let HB
9:

=:

*A

*3�A

� 
⌃A 0
0 0

� 
,

H
A

,
H

3�A

�
. Then Theorem A.19 implies

⇣
H
B

9:

⌘†
H
B

9:

⇣
+:+

H
9

⌘
= +:+

H
9
�,3�A,

H
3�A

⇣
+:+

H
9

⌘
|                    {z                    }

b
H
9:

(17.15b)

and hence col
⇣
b

H
9:

⌘
✓ range(,3�A ) = null(HB

9:
) . Indeed bH

9:
is exactly the component of +:+ H

9
that is

in null(HB
9:
) . Recall that the pseudo-inverse

⇣
H
B

9:

⌘†
is a bijection from range(HB

9:
) to range(HBH

9:
) and⇣

H
B

9:

⌘†
H
B

9:

⇣
+:+

H
9

⌘
projects +:+ H

9
, which may contain components in null(HB

9:
) , onto the orthogonal

subspace range(HBH
9:
) of null(HB

9:
) . Therefore (17.15b) says that the e�ect of

⇣
H
B

9:

⌘†
H
B

9:
is to remove

the component b�
9:

of +:+ H
9

in null(HB
9:
) . Of course if HB

9:
is nonsingular then b 9: = 0.
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[1(G)]: 9 =
�
[1(G)] 9:

�H in (17.16), and hence V: 9 (G) := diag
�
\ [1(G)]: 9

�
satisfies

V: 9 (G) = �V: 9 (G). Suppose there exists \ 9 := (\0
9
,\1
9
,\2
9
) for 9 2 # and \ := (\ 9 , 9 2

#) 2 (�c,c]3(#+1) that satisfy

V(G) =
⇣
⇠

T ⌦ I
⌘
\ (17.17)

where ⇠ is the (# + 1) ⇥" incidence matrix whose rank is " = # (⇠ ⌦ I is the
3(# + 1) ⇥ 3" incidence matrix of the single-phase equivalent circuit). Then, given
+0, the unique rank-1 decomposition + of 1(G) is given by, from (17.14),

+
q

9
:=

q
E
qq

9
4

i\
q

9
(G) , q 2 {0,1,2}, 9 2 # (17.18a)

where \ (G) is a solution of (17.17). This is abbreviated as

+ 9 (G) := diag
�p
E 9

�
� 4i\ 9 (G) , 9 2 # (17.18b)

where � denotes componentwise product. Define (� 9: (G), �: 9 (G)) in terms of G and
+0:

�
q

9:
(G) :=

q
✓
qq

9:
4

i

⇣
\
q
0
9

(G)�\(q
0
q

9:

⌘
, q 2 {0,1,2}, ( 9 , :) 2 ⇢ (17.19a)

�
q

: 9
(G) :=

q
✓
qq

: 9
4

i

⇣
\
q
0

:
(G)�\(q

0
q

: 9

⌘
, q 2 {0,1,2}, ( 9 , :) 2 ⇢ (17.19b)

The q0 in (17.19) can be any phase in {0,1,2} because (q
0
q

9:
=+ q

0

9
�̄
q

9:
.

We now show that, given G 2Xtree, for the existence of G̃ 2 X̃, it is not only necessary
but also su�cient that G 2 Xtree satisfies (17.17). The is the nonlinear cycle condition
that generalizes (5.21e) from single-phase to three-phase networks. The \ (G) guaran-
teed by (17.17) can be used to define voltage and current angles and hence the phasors
(+ (G), � (G)) according to (17.18)(17.19). Moreover (17.17) reduces to the linear cycle
condition (17.1f)(17.1g) when the network graph is a tree. We will see later that it
becomes vacuous when assumption C17.1 holds and shunt admittances are zero.

Lemma 17.3 (Surjectivity and tree graph ⌧). Consider a general network graph ⌧
possibly with cycles and suppose +0 is given.

1 Suppose an arbitrary G := (B,E,✓,() satisfies (17.1a)–(17.1e) (without the lin-
ear cycle condition (17.1f)(17.1g)) and the nonlinear cycle condition (17.17).
Let \ (G) denote a solution of (17.17) and construct (+ (G), � (G)) according to
(17.18)(17.19). Then G̃ := (B,+ (G), � (G),✓,() 2 X̃.

2 Suppose ⌧ is a (connected) tree. If G 2 Xtree (in particular G satisfies the linear
cycle condition (17.1f)(17.1g)), then G satisfies (17.17) and hence G̃ 2 X̃.

Proof Part 1. Fix an arbitrary G that satisfies (17.1a)–(17.1e) and the nonlinear cycle
condition (17.17). Construct (+ (G), � (G)) from G and +0 according to (17.18)(17.19).
The psd rank-1 conditions (17.1d)(17.1e) means that the matrices in (17.1d)(17.1e)
has a unique rank-1 decomposition (17.2), given +0. Moreover the decomposition
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(+ (G), � (G)) is determined according to (17.14). In particular E 9 and (✓ 9: ,✓: 9 ) are psd
rank-1 matrices and therefore

E 9 = + 9 (G)+H
9
(G), 9 2 # , ✓ 9: = � 9: (G)�H

9:
(G), ✓: 9 = �: 9 (G)�H

: 9
(G) ( 9 , :) 2 ⇢

where + (G) and (� 9: (G), �: 9 (G)) are given by (17.18)(17.19) respectively. Moreover
(17.2) means that ( 9: = + 9 (G)�H

9:
(G) and (: 9 = +: (G)�H

: 9
(G), specifically (

q1q2
9:

=q
E
q1q1
9

✓
q2q2
9:

exp
⇣
i\(q1q2

9:

⌘
.

Therefore to show that G̃ := (B,+ (G), � (G),✓,() 2 X̃, it su�ces to show that G̃ satisfies
(17.9b). Define �̂ 9: := H̃ 9:+ 9 (G) � HB

9:
+: (G) and �̂: 9 in the opposite direction in terms

of + (G). Let �̂ := ( �̂ 9: , �̂: 9 , ( 9 , :) 2 ⇢). We will show that

✓ 9: = �̂ 9: �̂
H
9:

, ( 9: = + 9 (G) �̂H
9:

, ( 9 , :) 2 ⇢

and similarly in the opposite direction. Since the rank-1 decomposition (17.2) is unique
given +0, this implies � 9: (G) = �̂ 9: and �: 9 (G) = �̂: 9 , proving (17.9b).

To show ( 9: =+ 9 (G) �̂H
9:

we have

+ 9 (G) �̂H
9:

= E 9 H̃
H
9:
�+ 9+H

:
H
BH
9:

(17.20)

Recall from (17.16) that + satisfies + (G)+H (G) = 1(G) and hence, in view of the
discussion following (17.15a), we have

+ 9+
H
:
H
BH
9:

= E 9 H̃
H
9:
� ( 9: + [ 9:

where [ 9: 2 C3⇥3 has the property [ 9: HB
9:

= 0 2 C3⇥3 (see Theorem A.19 on psudo-

inverse in Appendix A.7). Substituting into (17.20) yields ( 9: =+ 9 (G) �̂H
9:
�[ 9: .

Given the psd rank-1 matrix ✓ 9: , we will show that �̂ 9: := H̃ 9:+ 9 (G) � HB
9:
+: (G)

satisfies ✓ 9: = �̂ 9: (G) �̂H
9:
(G) using (17.1b).

Since the rank-1 decomposition of ✓ 9: is unique given +0, � 9: (G) must be equal to
�̂ 9: (G), proving (17.9b). We have

�̂ 9: �̂
H
9:

=
⇣
H̃ 9:+ 9 (G)� HB

9:
+: (G)

⌘ ⇣
H̃ 9:+ 9 (G)� HB

9:
+: (G)

⌘H

= H̃ 9:E 9 H̃
H
9:
+ HB

9:
E: H

BH
9:
�2Re

⇣
H̃ 9:+ 9 (G)+H

:
(G)HBH

9:

⌘

Note that H̃ 9:E 9 H̃H
9:

is a real matrix (since it equals its real part), and hence

�̂ 9: �̂
H
9:

= �H̃ 9:E 9 H̃H
9:
+ HB

9:
E: H

BH
9:
+2Re

⇣
H̃ 9:E 9 H̃

H
9:
� H̃ 9:+ 9 (G)+H

:
(G)HBH

9:

⌘

= �H̃ 9:E 9 H̃H
9:
+ HB

9:
E: H

BH
9:
+2Re

✓
H̃ 9:+ 9 (G)

⇣
H̃ 9:+ 9 (G)� HB

9:
+: (G)

⌘H
◆

= �H̃ 9:E 9 H̃H
9:
+ HB

9:
E: H

BH
9:
+2Re

⇣
H̃ 9:+ 9 (G) �̂H

9:

⌘
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We have���� 9: (G)� H̃ 9:+ 9 (G) + HB
9:
+: (G)

���2

2
= ✓ 9: + H̃ 9:E 9 H̃H

9:
+ HB

9:
E: H

BH
9:
�2Re

�
H̃ 9:( 9:

�
+2Re

⇣
H
B

9:
+: (G)�H

9:
(G)

⌘

�2Re
⇣
H̃ 9:+ 9 (G)+H

:
(G)HBH

9:

⌘

= 2HB
9:
E: H

BH
9:
+2Re

⇣
H
B

9:
+: (G)�H

9:
(G)

⌘
�2Re

⇣
H̃ 9:+ 9 (G)+H

:
(G)HBH

9:

⌘
where the second equality follows from (17.1b).

Since G satisfies the psd rank-1 conditions (17.1d)(17.1e), there exists (+ 9 , � 9: ) that
satisfies (17.2) and that is unique up to an arbitrary reference angle for each ( 9 , :) 2 ⇢ .

Clearly G̃ satisfies (17.9a). The construction (??) and the psd rank-1 condition
(17.1d)(17.1e) imply that G̃ also satisfies (17.9c)(17.9d). Finally to prove (17.9b),
recall the derivation above of (17.1b) from (17.9b)(17.9c)(17.9d) using (17.12). The
argument in the reverse direction implies that, since G satisfies (17.1b), the (� 9: , �: 9 )
obtained from the psd rank-1 decomposition

rank-1 decompositions ✓ 9: = � 9: �H
9:

and ✓: 9 = �: 9 �H
: 9

are unique given +0.

G̃ must satisfies (17.9b) when (� 9: , �: 9 ) are given by (17.9b), since the rank-1
decompositions ✓ 9: = � 9: �H

9:
and ✓: 9 = �: 9 �H

: 9
are unique given +0.

To show that the mapping G̃ 7! G is surjective, we show that for any G := (B,E,✓,()
that satisfies (17.1) there is a G̃ that satisfies (17.9). Fix such an G := (B,E,✓,() 2 Xtree.
, when ⌧ is a tree, if (E 9 ,✓ 9: ,( 9: ) satisfy psd and rank-1 conditions (17.1d)(17.1e),
then there exist (+ 9 , � 9: , �: 9 ) that satisfy the rank-1 decomposition (??). Moreover they
are unique since +0 is fixed. Let G̃ := (B,+ , �,✓,() where (+ , �) are obtained from G

uniquely through the rank-1 decomposition. We now show that G̃ satisfies (17.9) and
hence the mapping G̃ 7! G through (17.11) is surjective.

⇤

We now show that the cycle condition is vacuous for radial networks, i.e., any G
satisfying (17.4) also satisfies (17.17) when the network is radial.

Partition⇠ into its first row 2
T
0 and an # ⇥" matrix ⇠̂ of the remaining rows so that

⇠
T =:

⇥
20 ⇠̂

T⇤
Similarly partition \ =:

�
\0, \̂

�
2 R3(#+1) . Suppose⌧ is a (connected) tree with " = # .

Then ⇠̂T is # ⇥# and of full rank. Therefore 20 = ⇠̂T
[ for some [ 2 C# . It is proved
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in Exercise 17.1 that
⇣
⇠̂

T
[

⌘
⌦ I =

⇣
⇠̂

T ⌦ I
⌘
([ ⌦ I). Hence (17.17) becomes

V(G) =
⇣
2

T
0 ⌦ I

⌘
\0 +

⇣
⇠̂

T ⌦ I
⌘
\̂ =

⇣
⇠̂

T ⌦ I
⌘ �
\̂ + ([ ⌦ \0)

�
(17.21a)

where we have used ([ ⌦ I) \0 = [ ⌦ \0. Since ⇠̂T and hence
⇣
⇠̂

T ⌦ I
⌘

are invertible,

for any G satisfying (17.4), there always exists an \ =
�
\0, \̂

�
2 R3(#+1) that satisfies

(17.21a). Indeed the solution \ of (17.21a) is not unique. Given any \0 2 C3, there is

always a (unique) \̂ :=
✓⇣
⇠̂

T
⌘�1
⌦ I

◆
V(G)�[ ⌦ \0 that satisfies (17.21a).4

1in Since G satisfies the cycle condition (17.1f) (17.1g)

H
B

: 9

⇣
E 9 H̃

H
9:
� ( 9:

⌘
=

⇣
E: H̃

H
: 9
� (: 9

⌘H ⇣
H
B

9:

⌘H
, ( 9 , :) 2 ⇢

GGG

If ⌧ contains cycles, on the other hand, then " > # and the 3" ⇥3(# +1) matrix�
⇠

T ⌦ I
�
in (17.17) has a column rank of 3# < 3" since rank (�⌦ ⌫) = rank � · rank ⌫

from Lemma 16.6. This means that the column space of
�
⇠

T ⌦ I
�

does not span R3"

and hence there may be V(G) for which no \ exists that satisfies (17.17), regardless
of whether \0 is given. A power flow model for a meshed network consists of (17.4)
augmented with the cycle condition (17.17).

Angle recovery.

As explained in the proof of Theorem 17.1, given +0, a unique (+ , �) can be obtained
from a power flow solution G of (17.1) using the psd rank-1 decomposition (17.2).
The existence of such a (+ , �) guaranteed by Lemma ??. We next describe an explicit
construction of (+ , �) from G.

Fix a power flow solution G of (17.1). We will focus on line variables
�
� 9: ,✓ 9: ,( 9:

�
in the direction 9 to :; line variables in the opposite direction have the same properties.
Given matrices

�
E 9 ,✓ 9: ,( 9:

�
from the power flow solution G, the vectors

�
+ 9 , � 9:

�
from

the psd rank-1 decomposition (17.2) is unique up to a reference angle i 9: , one for each
( 9 , :) 2 ⇢ . When the network graph is a tree, i 9: are the same for all lines ( 9 , :) 2 ⇢ .
In this case a given reference angle, e.g., \+00 = 0�, will fix the angles of all variables
in G. See Example 17.1 in Chapter 17.3.

If+0 is given, not just (say)+00 , then we can explicitly construct an G̃ := (B,+ , �,✓,() 2
X̃

the power solution G := (B,E,✓,() of (17.1)

that satisfies (17.4), an

4 Here the vector \0 can be arbitrary to satisfy (17.21a) whereas a single angle e.g. \00 fixes all other
angles in (17.2). This is because (17.2) uses the matrix E9 whereas (17.21) uses only the diagonal
entries of E9 .
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can be explicitly constructed using the iterative Algorithm 5 from [104] that makes
use of the tree topology. The basic idea in Step 5 of the algorithm is to compute the
phasors +8 and �8 9 recursively, starting from bus 0 when +0 is given: since (8 9 =+8 �H

8 9
,

taking the Hermitian transpose and multiplying both sides by +8 , we have

+8 �
H
8 9

= (8 9 ) �8 9

⇣
+

H
8
+8

⌘
= (

H
8 9
+8 ) �8 9 =

1
tr(E8)

(
H
8 9
+8 (17.22)

Algorithm 5: Recover G̃ = (B,+ , �,✓,() from G = (B,E,✓,().
Down orientation where all lines point away from root bus 0.

Input: G = (B,E,✓,() 2 X; +0 2 C3.
Output: G̃ = ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃

1: B̃  B; ✓̃  ✓; (̃  (;
2: #visit  {0};
3: while #visit < # do

4: find 8! 9 such that 8 2 #visit and 9 8 #visit;
5: compute

�̃8 9  
1

tr (E8)
(

H
8 9
+̃8

+̃ 9  +̃8 � I8 9 �̃8 9
#visit  #visit[ { 9}

6: end while

17.3 Overall model and examples

17.3.1 Overall model

Suppose assumption C17.1 holds. The overall model of a network of three-phase
devices connected by three-phase lines, its specification and analysis are similar to
that in the bus injection model discuss in Chapter 16.2. The only di�erence is that
the power flow equations are those for BFM rather than BIM. Specifically the overall
model consists of:

1 A network model that relates terminal voltage, current, and power (+ , �, B). Any
equivalent model can be used, whichever is convenient for the problem under
study, including:
• the BFM (17.4) for radial networks; or
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• the BFM (17.10) for general networks.
2 A device model for each three-phase device 9 . For ideal devices, this can either

be:
• Its internal model (14.29) and the conversion rules (14.8) and (14.9)(14.10); or
• Its external model summarized in Tables 14.3 and 14.4 when only terminal

quantities are needed.
For non-ideal devices, this can either be:
• Its internal model summarized in Table 14.2 and the conversion rules (14.8) and

(14.9)(14.10); or
• Its external model summarized in Table 14.2 when only terminal quantities are

needed.

Unlike the models of Chapter 16.1.5 where, if only voltage sources, current sources and
impedances are involved, then the overall model is linear, consisting of the nodal current
balance equation (16.5)(16.6) and linear device models. Here the BFM equations (17.4)
and (17.10) are quadratic, leading to a nonlinear overall model even if power sources
are absent.

A typical three-phase analysis problem can be specified and analyzed the same way
as described in Chapter 16.2 for BIM. A solution typically takes the following steps:

1 Write down the models of the given collection of three-phase devices, either their
internal models and conversion rules or their external models (if internal variables
are not required).

2 Write down a network equation that relates the terminal variables, either the current
balance equation or a power flow equation.

3 Steps 1 and 2 specify a system of nonlinear equations that relate relevant exter-
nal and internal variables as well as given parameters. It generally needs to be
solved numerically. We will describe in Chapter 17.4 such an algorithm for radial
networks, the three-phase backward-forward sweep (BFS).

4 Usually we first compute the terminal variables
�
+ 9 , � 9 , B 9

�
using network equa-

tions, together with some of
�
W 9 , V 9

�
, and then determine the internal variables⇣

+
. /�
9

, �. /�
9

, B. /�
9

⌘
using the conversion rules.

17.3.2 Examples

We now illustrate with examples three-phase BFMs and the analysis procedure. Sup-
pose assumption C17.1 holds.

Example 17.1 (Power source in . configuration). Consider the system in Figure 17.1
where a constant-power source f.

9
2 C3 is connected through a three-phase line to

an impedance load I.
:
, both in . configuration. For simplicity we assume that both
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neutrals are directly grounded and all voltages are defined with respect to the ground,
so that the neutral voltages W 9 :=+=

9
= W: :=+=

:
= 0. Suppose the following are given:

• The constant-power source f.
9

:=
⇣
f
0=

9
,f1=

9
,f2=

9

⌘
with \+00 := 0�.

• The impedance load I.
:

:= diag
�
I
0=

:
, I1=
:

, I2=
:

�
.

• The series impedance matrix I 9: 2 C3⇥3 of the line. Its shunt admittance matrices
are assumed zero.

Derive the
�
B
.

:
,E: ,✓ 9: ,( 9:

�
in terms of the given parameters.

Figure 17.1 Example 17.1.

Solution. The system is specified by:

1 Netowrk model: The power flow equation (17.4) that relates terminal variables,
specialized to the two-bus system in Figure 17.1, is:

diag(( 9: ) = B 9 , diag
�
( 9: � I 9:✓ 9:

�
= �B: (17.23a)

E 9 � E: =
⇣
I 9: (

H
9:
+ ( 9: IH

9:

⌘
� I 9: ✓ 9: IH

9:
(17.23b)"

E 9 ( 9:

(
H
9:

✓ 9:

#
� 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1 (17.23c)

2 Device model: The internal model of . -configured impedance is (since +: =+.
:
=

I
.

:
�
.

:
and �.

:
= � 9: ):

E: = I
.

:
✓ 9: I

.H
:

, B
.

:
= diag

⇣
I
.

:
✓ 9:

⌘
(17.24a)

and the conversion rule (14.8) between internal and terminal variables is:

B 9 = �
⇣
f
.

9
++=

9
� 9:

⌘
= �f.

9
, B: = �

⇣
B
.

:
++=

:
(�� 9: )

⌘
= �B.

:

(17.24b)

The system of quadratic equations (17.23)(17.24) cannot generally be solved in closed
form, but can be solved numerically for

�
B
.

:
,E: ,✓ 9: ,( 9:

�
(see Chapter 17.4).

To better appreciate the structure of the three-phase model we now reduce
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(17.23)(17.24) to three quadratic equations in three unknowns � 9: 2 C3. Relate ✓ 9:
to f.

9
by eliminating the terminal powers (B 9 , B: ), line power ( 9: and internal power

B
.

:
from (17.23a) (17.24):

�f.
9

= diag
⇣⇣
I
.

:
+ I 9:

⌘
✓ 9:

⌘
(17.25)

This is a system of three complex quadratic equations in three unknown line currents

� 9: :=
⇣
�
0

9:
, �1
9:

, �2
9:

⌘
because (17.23c) means that ✓ 9: has a rank-1 decomposition

✓ 9: = � 9: �H
9:

(from (17.2)). Let /.
:

:= I.
:
+ I 9: . Then (17.25) is explicitly:

�f.
9

= diag
©≠≠
´

266664
/
00

:
/
01

:
/
02

:

/
10

:
/
11

:
/
12

:

/
20

:
/
21

:
/
22

:

377775

2666664

�
0

9:

�
1

9:

�
2

9:

3777775
h
�
0H
9:

�
1H
9:

�
2H
9:

i™ÆÆ
¨

or

�f0=
9

= /
00

:
�
0

9:
�
0H
9:

+ /
01

:
�
1

9:
�
0H
9:

+ /
02

:
�
2

9:
�
0H
9:

�f1=
9

= /
10

:
�
0

9:
�
1H
9:

+ /
11

:
�
1

9:
�
1H
9:

+ /
12

:
�
2

9:
�
1H
9:

�f2=
9

= /
20

:
�
0

9:
�
2H
9:

+ /
21

:
�
1

9:
�
2H
9:

+ /
22

:
�
2

9:
�
2H
9:

There is a power flow solution for (17.23)(17.24) if and only if (17.25) has a solution
for � 9: , up to an angle to be determined (from the given \+00 = 0�).

Once � 9: and hence ✓ 9: are determined from (17.25), all other variables can be
obtained. Specifically since +: = +.

:
++=

:
= +.

:
by assumption, the load voltage and

power are given by (17.24a):

E: = E
.

:
= I

.

:
✓ 9: I

.H
:

=
⇣
I
.

:
� 9:

⌘ ⇣
I
.

:
� 9:

⌘H
, B

.

:
= diag

⇣
I
.

:
✓ 9:

⌘

Since E: has a rank-1 decomposition due to (17.23c),+: :=
�
+
0

:
,+1
:

,+2
:

�
can be obtained

from the first equation as +: = I.
:
� 9: , up to an angle to be determined. Finally we

obtain + 9 from �f.
9
= B 9 = diag

⇣
+ 9 �

H
9:

⌘
due to (17.24b) and then ( 9: = + 9 �H

9:
. The

given \+0
9
= 0� then fixes the angles of

�
+ 9 ,+: , � 9:

�
. ⇤

The next example illustrates two solution approaches for constant-power source in
� configuration. Both relate the terminal variables of each device to its parameters and
then relates these terminal variables by the power flow equation. The first approach
boils down to computing the internal current ��

9
from a system of quadratic equations,

which then yields
�
� 9 , V 9

�
and all other variables. The second approach boils down

to computing the terminal current and its zero-sequence component
�
� 9 , V 9

�
and then

other variables.

As for Example 16.8, only W 9 of the source needs to be given. All other variables
including

�
V 9 ,W: , V:

�
can then be determined. The solution method of these two

examples is similar because the overall models in these examples di�er only in their
power flow equations, BIM (16.12) versus BFM (17.10). The positive definite and
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rank-1 condition in (17.23c) leads to the equivalence of BFM (17.10) to (17.23) and
BIM (16.12) (Theorems ?? and 17.1).

Example 17.2 (Power source in� configuration). Consider a three-phase power source
and an impedance, both in � configuration, connected by a three-phase line (as in
Example 16.8) with the following given parameters:

• The constant-power source
⇣
f
�
9
,W 9

⌘
with \+01

9
:= 0�.

• The impedance load I�
:
. (Note that V: need not be specified for an impedance and

can be derived.)
• The series impedance matrix I 9: of the line. Its shunt admittance matrices are

assumed zero.

Solve for the remaining variables.

Solution 1: compute ��
9
. The system is specified by:

1 Netowrk model: The power flow equation that relates terminal variables remains
(17.23).

2 Device model for power source f�
9
: At bus 9 we use the model (14.25b) and the

conversion rule that relates the terminal variables
�
+ 9 , � 9 , B 9

�
to internal power f�

9

and internal current ��
9
:

B 9 := diag
⇣
+ 9 �

H
9

⌘
(17.26a)

f
�
9

:= diag
⇣
+
�
9
�
�H
9

⌘
= diag

⇣
�+ 9 ��H

9

⌘
, � 9 = ��T

�
�
9

(17.26b)

3 Device model for impedance I�
:
: At bus : the external model in Table 14.4 relates

the terminal variables (+: , �: , B: ) to impedance I�
:

through the admittance matrix
/
�
:

defined in (14.27b):5

B: := diag
⇣
+: �

H
:

⌘
, +: = �/��: + W:1, 1

T
�: = 0 (17.26c)

The device models (17.26) relate terminal variables
�
+ 9 , � 9 , B 9

�
and (+: , �: , B: ) to the

internal parameters
⇣
f
�
9
, I�
:

⌘
of the devices through W: (which is to be determined).

The power flow equation (17.23) relates these terminal variables.

The rank-1 condition (17.23c) (as well as KCL) connects these terminal variables

5 Using the equivalent impedance model in terms of the impedance matrix . �
:

defined in (14.27a) here
does not . in which case (17.26c) is replaced by:

B: := diag
⇣
+: �

H
:

⌘
, �: = �. �+:
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and the variables
�
E 9 ,E: ,✓ 9: ,( 9:

�
of (17.23):

� 9 = � 9: = ��: , ( 9: = + 9 �
H
9:

(17.27a)

✓ 9: = � 9: �
H
9:

, E 9 = + 9+
H
9
, E: = +:+

H
:

(17.27b)

The equations (17.23)(17.26)(17.27) are a system of quadratic equations in vari-

ables
⇣
+ 9 , � 9 , B 9 , ��

9

⌘
, (+: , �: , B: ,W: ), and

�
� 9: ,E 9 ,E: ,✓ 9: ,( 9:

�
. They can be solved

numerically. Once these terminal variables are determined, the internal variables�
V 9 ,+�

:
, ��
:
, B�
:
, V:

�
can be determined. In particular once +: is determined from the

network equations we can obtain +�
:
= �+: and then ��

:
= I�1

9:
+
�
:

and hence V: .

To better appreciate the structure of this model we now reduce (17.23)(17.26)(17.27)
to 3 quadratic equations in 3 variables ��

9:
for each link 9! : 2 ⇢ . Theorem ?? implies

the equivalence of BFMs (17.23) and (17.10). In particular (from (17.10b))

+ 9 �+: = I 9: � 9:

which can also be derived by substituting (17.27) into (17.23b). Substitute +: from
(17.26c) and �: = �� 9: into this equation to eliminate +: :

+ 9 = /̂
�
:
� 9: + W:1, 1

T
� 9: = 0 (17.28)

where /̂�
:

:= /�
:
+ I 9: is the equivalent of the line impedance in series with the load

impedance. Substituting � 9: = � 9 = ��T
�
�
9

into (17.28) and substituting the resulting

+ 9 into (17.26b), we obtain a quadratic equation in ��
9

(using �1 = 0):

f
�
9

:= �diag
⇣⇣
�/̂�

:
�T

⌘
�
�
9
�
�H
9

⌘
, 9 2 # (17.29)

There is a power flow solution to (17.23)(17.26)(17.27) if and only if (17.29) has a
solution for ��

9
. Once ��

9
is determined it yields � 9: = � 9 = ��T

�
�
9

and V 9 := 1
31

T
�
�
9
.

Since (17.29) is the same equation as (16.24) in Example 16.8, we can follow the same
procedure there to derive all variables

�
+ 9 , � 9 , B 9 , V 9

�
and (+: , �: , B: ,W: ). Then we can

obtain internal variables
�
+
�
:

, ��
:
, B�
:
, V:

�
and the BFM variables

�
� 9: ,E 9 ,E: ,✓ 9: ,( 9:

�
from (17.27). In particular, +: yields +�

:
and hence ��

:
and V: . (To get more insight on

its solution, see the solution of the balanced case in Exercise 16.10.)

Solution 2: compute � 9 . Instead of the power source model (17.26b), we can also use
the external model in Table 14.4 to relate the terminal current � 9 direclty to the internal
power f�

9
:

f
�
9

:= diag
⇣
+
�
9
�
�H
9

⌘
= �diag

⇣
�

⇣
+ 9 �

H
9

⌘
�†

⌘
+ V

9
�+ 9 , 1

T
� 9 = 0 (17.30)

where the internal variable V 9 is to be determined. Substituting (17.28) into (17.30)
and noting � 9 = � 9: we have

f
�
9

= �1
3

diag
⇣
�/̂�

:
� 9: �

H
9:
�T

⌘
+ V

9
�/̂�

:
� 9: , 1

T
� 9: = 0 (17.31)

There is a power flow solution to (17.23)(17.26)(17.27) if and only if there is a solution
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� 9: := � 9: (f�
9
) and V 9 := V 9 (f�

9
) to (17.31). Given a solution

�
� 9: , V 9

�
and hence ��

9:
,

all other variables can be derived as in Solution 1. ⇤

Remark 17.1. Even though the analysis in Example 17.2 makes heavy use of BFM
(17.23) with phasor variables such as

�
+ 9 , � 9:

�
instead of variables of BFM (17.10) such

as
�
E 9 ,✓ 9: ,( 9:

�
, the model (17.10) is useful for solving optimal power flow problems

through semidefinite relaxation; see Chapter . ⇤

17.4 Backward forward sweep

In this section we extend the backward forward sweep (BFS) of Chapter 5.3 for the
computation of power flow solutions from single-phase radial networks to three-phase
radial networks. As explained in Chapter 5.3.1 BFS can be interpreted as a Gauss-Siedel
algorithm that computes a fixed point of BFM equations. It has two special structures
that exploit the tree topology of the network. First it partitions the power flow variable
into two vectors G and H and updates them iteratively in an outer loop. Typically G
consists of branch variables, e.g., branch currents or powers, and H consists of nodal
variables, e.g., nodal voltages. Second, for each outer iteration, it computes iteratively
each component of (G, H) in an inner loop that makes use of a spatially recursive
structure enabled by the tree topology. Specifically it computes the components of
G iteratively from leaf nodes towards the root of the tree (backward sweep) and then
computes the components of H iteratively from the root towards the leaf nodes (forward
sweep). The design of BFS involves the choice of power flow equations and variables
(G, H) based on what information is given in a power flow problem. These choices are
not unique and may have di�erent convergence properties. The general algorithmic
structure described in Chapter 5.3.1 applies to three-phase as well as single-phase
radial networks. We have presented two BFS algorithms in Chapters 5.3.2 and 5.3.3
that use di�erent branch flow models. In this section we describe an algorithm that
extends both single-phase algorithms to the three-phase setting. As we will see, the
main addition is the computation of internal variables associated with each three-phase
device.

Recall that we assume C17.1 holds throughout this chapter.

17.4.1 Complex form BFM

Consider a radial network modeled as a directed graph⌧, rooted at bus 0 and with each
line pointing away from the root bus 0. Each line is characterized by 3⇥3 admittance

matrices
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. Suppose there is exactly one three-phase power source at each

bus 9 either in . or � configuration. At every non-root bus 9 2 # , the internal power
f
. /�
9
2 C3 of the power source is given and its terminal voltage and current (+ 9 , � 9 )
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are to be determined.6 At bus 0, +0 2 C3 is given and the current injection �0 and
the internal power injection B. /�0 are to be determined. We assume for simplicity that
C14.1 with I=

9
= 0 holds at every bus 9 2 # that has a . -configured power source so

that +=
9
= 0 (see Remark 17.3 on the case when I=

9
< 0 so that +=

9
= �I=

9

⇣
1

T
� 9

⌘
).

As for the single-phase BFS, let
⇣
�
B

9:
, 9 ! : 2 ⇢

⌘
be the branch current through

the series admittance matrix HB
9:
2 C3⇥3 (see Exercise 17.3 for a BFS algorithm that

computes the sending-end current � 9: instead). The receiving current at bus 9 from its

parent 8 is
⇣
�
B

8 9
� H<

98
+ 9

⌘
2 C3 (see Figure 17.2). The current balance equation is then

I s
jk

k

Vj

Vi

∆ 

∆ 

Y

Y

I s
ij

sj , Ij

Figure 17.2 Notation for BFS on unbalanced three-phase radial networks.

� 9 +
⇣
�
B

8 9
� H<

98
+ 9

⌘
=

’
:: 9!:

⇣
�
B

9:
+ H<

9:
+ 9

⌘

Rewriting this in a form suitable for backward sweep, we obtain the following three-

phase branch flow model in terms of branch variables
⇣
�
B

9:
, 9 ! : 2 ⇢

⌘
and nodal

variables
⇣
+ 9 , � 9 , 9 2 #

⌘
:

�
B

8 9
=

’
:: 9!:

�
B

9:
�

⇣
� 9 � H<9 9+ 9

⌘
, 9 2 # (17.32a)

+ 9 = +8 � IB8 9 �B8 9 , 9 2 # (17.32b)

where H<
9 9

:= H<
98
+Õ

:: 9!: H
<

9:
are the total shunt admittances incident on 9 and IB

8 9
:=⇣

H
B

8 9

⌘�1
are the series impedances. These network equations relate the branch currents

�
B

9:
as well as the terminal voltages and currents

�
+ 9 , � 9

�
at buses across the network.

6
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Each terminal variable
�
+ 9 , � 9

�
is related to the internal power f. /�

9
through a three-

phase device model. We adopt the following device models for reasons discussed in
Remark 17.2 (from (14.17b) and (14.25b) and recall that +=

9
= 0 by assumption):

. configuration: f
.

9
= diag

⇣
+ 9 �

.H
9

⌘
, � 9 = ��.

9
(17.33a)

� configuration: f
�
9
= diag

⇣
�+ 9 ��H

9

⌘
, � 9 = ��T

�
�
9

(17.33b)

Hence, for a non-root bus 9 , the given internal power f. /�
9

determines, through its

internal current �. /�
9

, its terminal voltage and current (+ 9 , � 9 ) according to (17.33).
These terminal variables interact across the network according to the network equations

(17.32). Given + 9 , the forward sweep function 6 9 in (??) to update
⇣
�
. /�
9

, � 9
⌘

is:

. : �
.

9
=

�
diag +̄ 9

��1
f̄
.

9
, � 9 = ��.

9
, 9 2 # (17.34a)

� : �
�
9
=

�
diag

�
�+̄ 9

� ��1
f̄
�
9
, � 9 = ��T

�
�
9
, 9 2 # (17.34b)

where Ē denotes the componentwise complex conjugate of a vector E. Here, we have
used, for vectors E,F 2 C=, diag(EFH) = diag(E)F̄ = diag(F̄)E 2 C= where diag(E) is
the diagonal matrix whose diagonal is the vector E.

To construct the backward forward sweep, identify lines 9! : 2 ⇢ by the non-root

buses : 2 # . Given +0 and f :=
⇣
f
. /�
9

, 9 2 #
⌘
, the BFS will compute the following

branch and nodal variables respectively:

G :=
⇣
�
B

8 9
, 9 2 #

⌘
, H :=

⇣
+ 9 , � 9 , �

. /�
9

, 9 2 #
⌘

All other variables, such as injections �0, B0, B. /�0 2C3, branch flow matrices ( 9: 2C3⇥3,
and

�
W 9 , V 9

�
2 C2 of power sources f�

9
, can be computed once (G, H) are determined.

The update function 5 in the backward sweep to update G is defined by (17.32a) and the
update function 6 in the forward sweep to update H is defined by (17.32b) and (17.34).
The function 5 is jointly linear in (G, H). The function 6 is linear in G but nonlinear in
H because of the power source model (17.34).

The boundary conditions are

+0 2 C3 is given , �
B

9:
:= 0 for all leaf nodes 9 , + 9 (0) := +0, 9 2 #

(17.35a)

In addition, given the initial voltages
�
+ 9 (0), 9 2 #

�
, the terminal and internal currents⇣

� 9 (0), �. /�(0)
9

, 9 2 #
⌘

are determined using (17.34):

. : �
.

9
(0) =

�
diag +̄ 9 (0)

��1
f̄
.

9
, � 9 (0) = ��.

9
(0), 9 2 # (17.35b)

� : �
�
9
(0) =

�
diag

�
�+̄ 9 (0)

� ��1
f̄
�
9
, � 9 (0) = ��T

�
�
9
(0), 9 2 # (17.35c)
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Specifically the BFS algorithm defined by (17.32) (17.34) (17.35) proceeds as
follows.

0. Input: voltage +0 pu and internal power
⇣
f
. /�
9

, 9 2 #
⌘
.

1 Initialization.
• �

B

9:
(C) := 0 for all leaf nodes 9 for all iterations C = 1,2, . . . .

• +0 (C) :=+0 for all C = 0,1, . . . .

• + 9 (0) :=+0 at all buses 9 2 # . Compute
⇣
� 9 (0), �. /�

9
(0)

⌘
using (17.35b)(17.35c).

2 Backward forward sweep. Iterate for C = 1,2, . . . until a stopping criterion (see
below) is satisfied:

1 Backward sweep. Starting from the leaf nodes and iterating towards bus 0,
compute

�
B

8 9
(C) 

’
:: 9!:

�
B

9:
(C) �

⇣
� 9 (C �1)� H<

9 9
+ 9 (C �1)

⌘
, 8! 9 2 ⇢ (17.36a)

where H<
9 9

:= H<
98
+Õ

:: 9⇠: H
<

9:
.

2 Forward sweep. Starting from bus 0 and iterating towards the leaf nodes,
compute for 9 2 #

+ 9 (C)  +8 (C) � IB8 9 �B8 9 (C) (17.36b)

. : �
.

9
(C)  

�
diag +̄ 9 (C)

��1
f̄
.

9
, � 9 (C)  ��.9 (C) (17.36c)

� : �
�
9
(C)  

�
diag

�
�+̄ 9 (C)

� ��1
f̄
�
9
, � 9 (C)  ��T

�
�
9
(C) (17.36d)

where IB
8 9

:=
⇣
H
B

8 9

⌘�1
.

3 Output: branch variable G :=
⇣
�
B

8 9
(C), 9 2 #

⌘
and nodal variable H :=⇣

+ 9 (C), � 9 (C), �. /�(C)
9

, 9 2 #
⌘
.

A stopping criterion can be based on the discrepancy between the given internal

powers f. /�
9

and those implied by the nodal variable
⇣
+ 9 (C), � 9 (C), �. /�(C)

9
, 9 2 #

⌘
in

each iteration C. From the device model (17.34), let

f̂9 (C) :=

8>><
>>:

diag
⇣
+ 9 (C)�.H

9
(C)

⌘
for . configuration

diag
⇣
�+ 9 (C)��H

9
(C)

⌘
for � configuration

Then a stopping criterion can be

kf̂(C)�f. /�k22 :=
’
92#

⇣
f̂9 (C)�f. /�

9

⌘2
< n

for a given tolerance n > 0.

Remark 17.2 (Choice of variables). 1 We have used the current balance equa-
tion (17.32a) to relate terminal voltages and currents (+ 9 , � 9 ) across the net-
work. This leads to a linear update function (17.32a) for G in backward sweep.
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Nonlinearity shows up in the device model (17.34) for the nodal variable

H :=
⇣
+ 9 , � 9 , �

. /�
9

, 9 2 #
⌘

in the forward sweep (together with (17.32b)).
2 A direct extension of the single-phase BFS in [30] to the three-phase setting is the

approach in [45] which substitutes � 9 in (17.32a) by � 9 =
�
diag+̄ 9

��1
B̄ 9 to obtain a

nonlinear update function for G:

�
B

8 9
=

’
:: 9!:

�
B

9:
�

⇣ �
diag +̄ 9

��1
B̄ 9 � H<9 9+ 9

⌘
, 9 2 # (17.37a)

In this case the nodal variable becomes H :=
⇣
+ 9 , B 9 , �

. /�
9

, 9 2 #
⌘

and the update
functions (17.34) become

. : �
.

9
=

�
diag +̄ 9

��1
f̄
.

9
, B 9 = �f.

9
, 9 2 # (17.37b)

� : �
�
9
=

�
diag

�
�+̄ 9

� ��1
f̄
�
9
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘
, 9 2 # (17.37c)

The three-phase BFS of [45] includes only . -configured power sources and there-
fore its update functions simplifies to only (17.37a) (17.32b), with B 9 = �f.

9
that

is fixed and given. The addition of �-configured power sources requires the nodal
variable ��

9
and update function (17.37c).

3 For � configuration, the device model (17.34) relates f� to (+ 9 , � 9 ) through

�
�
9
. Since

⇣
+ 9 , ��

9

⌘
are determined directly from the overall model, the quantities�

W 9 , V 9
�

can be computed and need not be specified. Note however that+0 is given.

⇤

Remark 17.3 (Nonzero I
=

9
). If we had assumed C14.1 with I

=

9
< 0 so that +=

9
=

�I=
9

⇣
1

T
�

⌘
, then the device model (17.34a) for a . -configured power source becomes

nonlinear in � 9 (from (14.17b)):

. : + 9 = �
�
diag

�
�̄ 9

� ��1
f
.

9
� I=

9

⇣
11

T
⌘
� 9 , 9 2 #

Given voltage + 9 this is a system of three quadratic equations in three unknowns
� 9 2 C3:

I
=

9

⇣
1

T
� 9

⌘
�̄ 9 + diag

�
+ 9

�
�̄ 9 + f

.

9
= 0

The linear update functions (17.34a) (17.35b) then become nonlinear. Moreover the
update of � 9 is defined only implicitly by a solution of this system of quadratic equations.

⇤

Remark 17.4 (Specification). Unlike in Examples 17.1 and 17.2, the BFS method
here does not required W 9 be specified, but it requires that +0 be specified. ⇤
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17.4.2 DistFlow model

Consider a three-phase radial network modeled by a directed graph with every link :!
9 2 ⇢ points away from the root bus 0. Assume for simplicity zero shunt admittances,
H
<

9:
= H<

: 9
= 0. The three-phase DistFlow equations for the down orientation are (17.4).

Given +0, hence E0 := +0+
H
0 , and internal power f :=

⇣
f
. /�
9

, 9 2 #
⌘
, we wish to

compute the other variables from (17.4).

The nonlinear equation E 9✓ 9: = |( 9: |2 in (??) for the single-phase model is replaced
by (17.4c)(??) in the three-phase model, reproduced here"

E 9 ( 9:

(
H
9:

✓ 9:

#
� 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1

These equations are an implicit description and do not directly yield an update equa-
tion for a BFS algorithm, as E 9✓ 9: = |( 9: |2 does in the single-phase model. Instead,
they imply that there exist voltage and current phasors (+ , �̃) that satisfy the rank-1
decomposition in (17.2). In order to compute DistFlow variables (E,✓,() we have to
compute iteratively the voltages + 9 and (sending-end) line currents �̃ 9: in the process.
Here we use �̃ 9: to denote a line current to di�erentiate it from the terminal current
� 9 in a device model (see below). Therefore, instead of designing an BFS algorithm
based on (17.4), we will use the following network equations derived from (17.4) to
compute

�
+ , �, �̃

�
:

�̃8 9 = �� 9 +
’
:: 9!:

�̃ 9: (17.38a)

+: = + 9 � I 9: �̃ 9: (17.38b)

All other terminal variables such as E 9 =+ 9+H
9
, ✓ 9: = �̃ 9: �̃H

9:
, and (8 9 =+8 �̃H

8 9
, can then

be derived. Note that we have replaced the power balance equation (17.4a) by the
current balance equation in (17.38a). The network equation (17.38) is the same as
(17.32) with �̃ 9: = �B

9:
when H<

9:
= H<

: 9
= 0. Hence the three-phase DistFlow model can

be solved using the BFS algorithm of Chapter 17.4.1.

17.5 Linear model

17.5.1 Three-phase LinDistFlow

Model.

We generalize the linear DistFlow model from single-phase to unbalanced multiphase
radial networks. The key assumptions in our linear approximation are:
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1 The real and reactive line losses I 9:✓ 9: are much smaller than line flows ( 9: on
each line 9 ! : , so that we can assume ✓ 9: = 0 in (17.4).

2 The voltages are approximately balanced, so that we can assume

+
0

9

+
1

9

=
+
1

9

+
2

9

=
+
2

9

+
0

9

= 4
i2c/3

Recall that we adopt, without loss of generality, the graph orientation in which all
lines point away from bus 0. Then, as for the single-phase model, we set ✓ 9: = 0 in
(17.4a)(17.4b) to obtain’

:: 9!:
diag(( 9: ) = diag

�
(8 9

�
+ B 9 , 9 2 #

E 9 � E: = I 9: (H
9:

+ ( 9: I
H
9:

9 ! : 2 ⇢

where bus 8 := 8( 9) is the unique parent of bus 9 . Given injections B 9 for all non-
slack buses 9 2 # , the first set of equations determines uniquely B0 and the diagonal
entries of ( 9: , but not the o�-diagonal entries of ( 9: . The second assumption of
balanced voltage is needed to determine the o�-diagonal entries of ( 9: . Specifically
the assumption means that the vector + 9 is determined by a scalar (say) +0

9
. Let

U := 4
�i2c/3, U+ :=

266664
1
U

U
2

377775
(17.39a)

Then, assuming positive sequence,

+ 9 =+09

266664
1
U

U
2

377775
= +

0

9
U+ (17.39b)

This makes it possible to determine the o�-diagonal entries of ( 9: from its diagonal
entries, as follows. Let _ 9: denote the vector consisting of the diagonal entries of ( 9: :

_ 9: := diag(( 9: ) :=

2666664

+
0

9
�̄
0

9:

+
1

9
�̄
1

9:

+
2

9
�̄
2

9:

3777775
Using (17.39), the 3⇥3 line flow matrix ( 9: is given by:

( 9: :=+ 9 �H
9:

= +
0

9
U+

h
�̄
0

9:
�̄
1

9:
�̄
2

9:

i

This expression says that the columns of ( 9: are in span(U+). The first column of the
right-hand side is

U++
0

9
�̄
0

9:|{z}
[( 9:]11

= U+
⇥
_ 9:

⇤
1
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The second column is (noting U�1 = U2 = Ū)

U++
0

9
�̄
1

9:
=

1
U

U+
⇣
U+

0

9

⌘
�̄
1

9:
=

1
U

U++
1

9
�̄
1

9:|{z}
[( 9:]22

= Ū U+
⇥
_ 9:

⇤
2

The third column is (noting U�2 = U = Ū2)

U++
0

9
�̄
2

9:
=

1
U

2
U+

⇣
U

2
+
0

9

⌘
�̄
2

9:
=

1
U

2
U+ +

2

9
�̄
2

9:|{z}
[( 9:]33

= Ū
2
U+

⇥
_ 9:

⇤
3

Putting all this together define

W := U+U
H
+ =

266664
1 U

2
U

U 1 U
2

U
2

U 1

377775
and we can determine the line flow matrix ( 9: in terms of its diagonal entries:

( 9: = W diag
�
_ 9:

�
=

⇣
U+U

H
+
⌘
diag

�
_ 9:

�
, 9 ! : 2 ⇢

where diag(G) is a diagonal matrix whose diagonal consists of entries of vector G. Then
the linear model that generalizes the single phase linear DistFlow model to three-phase
radial networks is (graph is oriented so that all lines point away from bus 0):’

:: 9!:
_ 9: = _8 9 + B 9 , 9 2 # (17.40a)

( 9: = W diag
�
_ 9:

�
:= U+U

H
+diag

�
_ 9:

�
, 9 ! : 2 ⇢ (17.40b)

E 9 � E: = I 9: (
H
9:

+ ( 9: I
H
9:

, 9 ! : 2 ⇢ (17.40c)

where 8 := 8( 9) is the unique parent node of 9 , assuming positive sequence.

Solution.

Given
�
E0, B 9 , 9 2 #

�
, (17.40) can be used to determine explicitly

�
B0,E 9 , 9 2 #

�
and�

_ 9: ,( 9: , 9 ! : 2 ⇢
�
, as follows (Exercise 17.5):

B0 = �
’
92#

B 9

_8 9 = �
’
:2T 9

B: , (8 9 = W diag
�
_8 9

�
:= U+U

H
+diag

�
_8 9

�
, 8! 9 2 ⇢

E 9 = E0 �
’

(8,:)2P 9

⇣
I8: (

H
8:

+ ( 9: I
H
8:

⌘
, 9 2 #

where T 9 is the subtree rooted at bus 9 , including 9 , and P: is the set of lines on
the unique path from bus 0 to bus :; see Figure 17.3. In general the 3⇥ 3 solution
matrices E 9 are not of rank 1 even if E0 = |+00 |2U+UH

+ is of rank 1 (and even if all
lines are symmetric whose series impedances I 9: satisfy (15.9a)). This is because
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Figure 17.3 Linear solution of branch flow model for unbalanced three-phase radial networks.

the linear model is an approximation and its solution may not satisfy the Kirchho�’s
laws. If E0 = |+00 |2U+UH

+ then E 9 is Hermitian and hence has a spectral decomposition.
An approximate solution for the voltage phasor + 9 can be taken to be largest spectral
component of E0, i.e., if E 9 =

Õ
8
d8D8D

H
8

where d8 are real eigenvalues and D8 are
eigenvectors of E 9 with |d1 | � |d2 | � |d3 |, then + 9 =

p
d1D1 if d1 > 0 or + 9 = �

p
d1D1

if d1 < 0.

17.5.2 Application example

We describe a voltage regulation algorithm adapted from [175] to illustrate the three-
phase linear model.

17.6 Bibliographical notes

Algorithms for solving power flows in three-phase radial networks are developed in
[41, 42, 43, 45, 47, 50]. For backward forward sweep methods for radial networks,
both single-phase and three-phase networks, see bibliographical notes in Chapter 5.5.

17.7 Problems

Chapter 17.1.

Exercise 17.1. Show that (�1) ⌦ I = (�⌦ I) (1 ⌦ I) where � 2 C=⇥=, 1 2 C=, and I is
the identity matrix of size 3. (Hint: Use Lemma 16.6.)
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Exercise 17.2 (BFM without shunt admittances). Derive the generalized three-phase
DistFlow equations (17.4) by substituting H̃ 9: = H̃: 9 = HB

9:
= HB

: 9
, H<

9:
= H<

: 9
= 0, and

(17.3) into (17.1).

Chapter 17.2.

Chapter 17.3.

Chapter 17.4.

Exercise 17.3 (Backward forward sweep). This exercise solves the same overall model
as the BFS described in Chapter 17.4.1, but here, instead of �B

9:
2 C3 over the series

impedance, we are to derive a BFS algorithm to compute the sending-end current

� 9: 2 C3 for every line 9 ! : , as well as the nodal variable H :=
⇣
+ 9 , � 9 , ��

9
9 2 #

⌘
. It

extends Exercise 5.6 from single-phase radial networks to three-phase radial networks.

Exercise 17.4 (Backward forward sweep). Extend the BFS described in Chapter 5.3.3
from single-phase to three-phase radial networks. This allows the inclusion of PV
buses where real power and voltage magnitudes are given instead of internal powers.

Chapter 17.5.

Exercise 17.5 (Three-phase BFM linear solution). Given
�
E0, B 9 , 9 2 #

�
, show that an

explicit solution
�
B0,E 9 , 9 2 # ,( 9: , 9 ! : 2 ⇢

�
of (17.40) is

B0 = �
’
92#

B 9 , _8 9 = �
’
:2T 9

B: , 8! 9 2 ⇢ (17.41a)

(8 9 = W diag
�
_8 9

�
:= U+U

H
+diag

�
_8 9

�
, 8! 9 2 ⇢ (17.41b)

E 9 = E0 �
’

(8,:)2P 9

⇣
I8: (

H
8:

+ ( 9: I
H
8:

⌘
, 9 2 # (17.41c)

where T 9 is the subtree rooted at bus 9 , including 9 , and P: is the set of lines on the
unique path from bus 0 to bus : .
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In this chapter we study optimal power flow (OPF) problems for unbalanced three-
phase networks. As for single-phase networks studied in Chapter 9, OPF is a constrained
optimization that takes the form

min
D,G

2(D,G) subject to 5 (D,G) = 0, 6(D,G)  0

The cost function 2 may represent generation cost, voltage deviation, power loss, or
user disutility. The variable D collects control decisions such as generator commitment,
generation setpoints, transformer taps, capacitor switch status, electric vehicle charging
levels, thermostatic settings, or inverter reactive power. The variable G collects network
state such as voltage levels, line currents, or power flows. The constraint functions 5 ,6
describe current or power balance, generation or consumption limits, voltage or line
limits, and stability and security constraints, as well as other operational requirements.
OPF is a fundamental problem because it underlies numerous power system operation
and planning applications. While the structure of OPF remains the same as for single-
phase networks, in this chapter, the cost function 2 and constraint functions 5 ,6models
three-phase devices and networks.

In Chapter 18.1 we formulate OPF in both the bus injection model and the branch
flow model. In Chapters 18.2 and 18.3 we derive their semidefinite relaxations. Finally
we illustrate in Chapter 18.4 these results in example applications.

18.1 Three-phase OPF

In Chapter 18.1.1 we describe device models that will be used in both the bus injection
model and the branch flow model. We formulate in Chapter 18.1.2 OPF in the bus
injection model and show in Chapter 18.1.3 that it is equivalent to a nonconvex
quadratically constrained quadratic program (QCQP), generalizing OPF in Chapter
9.1 from a single-phase to three-phase setting. In Chapter 18.1.4 we formulate OPF in
the branch flow model for radial networks.
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18.1.1 Three-phase devices

A key assumption underlying our OPF formulation is that all controllable devices are
the single-phase devices that make up three-phase devices. Therefore internal variables
D 9 are optimization variables (i.e., +. /�

9
for voltage sources, �. /�

9
for current sources,⇣

B
. /�
9

, ��
9

⌘
for power sources). Their values determine the terminal variables (+ 9 , � 9 , B 9 )

through conversion rules. These terminal variables interact over the network through
either the current balance equation � =.+ or the power balance equation, but they are
typically not directly controllable. In this chapter we use the power balance equation
to relate the terminal voltages and power injections (+ , B). A device model therefore
consists of:

• A conversion rule (and external models of impedances) from Chapter 14.3 that
relates an internal variable D 9 device 9 to its terminal voltage and power (+ 9 , B 9 ).

• Operational constraints on the internal variable D 9 . These constraints are local to 9 .

We describe each of them next.

Conversion rules.

1 Voltage source D 9 :=+. /�
9

: For an ideal voltage source its internal voltage +. /�
9
2

C
3 is an optimization variable. It is related to the terminal voltage + 9 through a

linear constraint (from the conversion rules (14.8) and (14.9a)):

. configuration: + 9 = +
.

9
+W.

9
1

(18.1a)

� configuration: �+ 9 = +
�
9

(18.1b)

We assume here that the neutral voltage W.
9

:= +=
9

of a . -configured device is a
given parameter. For example, W.

9
= 0 if the neutral of the . -configured device

directly grounded and all voltages are defined with respect to the ground.
2 Current source D 9 := �. /�

9
: For an ideal current source its internal current �. /�

9
2C3

is an optimization variable. It is related to the terminal variables
�
+ 9 , B 9

�
through

a quadratic constraint (from the conversion rules (14.8) and (14.10c)):

. configuration: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
(18.1c)

� configuration: B 9 = �diag
⇣
+ 9 �

�H
9
�
⌘

(18.1d)

3 Power source D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
: For an ideal power source we assume that the

internal power and current
⇣
B
. /�
9

, �. /�
9

⌘
are optimization variables. We assume
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the neutral voltage W.
9

:=+=
9

of a . -configured power source is a given parameter,
e.g., W.

9
= 0 if the neutral is directly grounded and all voltages are defined with

respect to ground. They are related to the terminal variables
�
+ 9 , B 9

�
according to

the conversion rules (14.8) and (14.10c):

. configuration: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B

.

9
= �B 9 �W.9 �

.

9
(18.1e)

� configuration: B 9 = �diag
⇣
+ 9 �

�H
9
�
⌘
, B

�
9

= diag
⇣
�+ 9 ��H

9

⌘
(18.1f)

For a . -configured power source, if W.
9
= 0, then the optimization variable is B.

9

and the conversion rule reduces to

. configuration: B 9 = �B.
9

It is possible to formulate OPF in which a power source is characterized only by

its internal power D 9 := B. /�
9

instead of D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
, but the formulation is

more complicated; see Exercise 18.5.

4 Impedance
⇣
I
.

9
,W.
9

⌘
or I�

9
: An impedance, if not controllable, does not introduce

any addition optimization variable but imposes an additional constraint on the
terminal variables (+ 9 , B 9 ) (from (14.19a) and Theorem 14.4):

. configuration: B 9 = �diag
✓
+ 9

⇣
+ 9 �W.9 1

⌘H
H
.H
9

◆

(18.1g)

� configuration: B 9 = �diag
⇣
+ 9+

H
9
.
�H
9

⌘
(18.1h)

where H. /�
9

:=
⇣
I
. /�
9

⌘�1
, .�

9
:= �T

H
��. The neutral voltage W.

9
:= +=

9
is usually a

fixed parameter, e.g. W.
9
= 0.

The conversion rule (18.1) takes the form 5
. /�
9

�
D 9 ,+ 9 , B 9

�
= 0 and is local to each bus

9 . Note the structural similarity between . and � configurations when W.
9

:= +=
9
= 0:

(18.1) reduces to

Voltage source: + 9 = +
.

9
, �+ 9 = +

�
9

Current source: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘

Power source: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘

B
.

9
= �B 9 , B

�
9
= diag

⇣
�+ 9 ��H

9

⌘

Impedance: B 9 = �diag
⇣
+ 9+

H
9
H
.H
9

⌘
, B 9 = �diag

⇣
+ 9+

H
9
.
�H
9

⌘

Once an optimal solution
✓
D

opt,+ opt
9

,Bopt
9

9

◆
of an OPF problem is chosen, other internal

variables for each device 9 can be derived (possibly requiring additional information
e.g. V 9 of an ideal voltage source).
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Remark 18.1 (Implicit optimization over (W 9 , V 9 )). The constraint (18.1b) for a �-
configured device does not determined the terminal voltage + 9 uniquely and therefore
an optimal + 9 also determines an optimal zero-sequence voltage W�

9
:= 1

31
T
+ 9 . If W�

9
is

given instead, then (18.1b) should be replaced by + 9 = �†+�
9
+W 91. Similarly for other

devices, e.g., �-configured impedance.

Optimization over ��
9

in current source and power source implicitly chooses an

optimal zero-sequence current V 9 := 1
31

T
V
�
9
. If V 9 is given then it imposes an additional

constraint through the conversion rule ��
9
= � 1

3�� 9 + V 91 (and express � 9 in terms of�
+ 9 , B 9

�
). ⇤

Device constraints.

The operational constraints on the devices are also local to each bus 9 and are inequality
constraints on the internal variables D 9 only, of the form 6

. /�
9

�
D 9

�
 0:

1 Voltage source D 9 :=+. /�
9

:

E
. /�min
9

 diag
⇣
D 9D

H
9

⌘
 E

. /�max
9

(18.2a)

2 Current source D 9 := �. /�
9

:

diag
⇣
D 9D

H
9

⌘
 ✓

. /�max
9

(18.2b)

3 Power source D 9 := (D 91,D 92) :=
⇣
B
. /�
9

, �. /�
9

⌘
:

B
. /�min
9

 D 91  B
. /�max
9

, diag
⇣
D 92 D

H
92

⌘
 ✓

. /�max
9

(18.2c)

18.1.2 Bus injection model

Consider a three-phase network modeled as an undirected graph ⌧ := (# ,⇢) where
there are # + 1 buses 9 2 # and " lines in ⇢ . Each line ( 9 , :) 2 ⇢ is characterized

by 3⇥3 admittance matrices
⇣
H
B

9:
, H<
9:

⌘
2 C6 and

⇣
H
B

: 9
, H<
: 9

⌘
2 C6. We now explain the

variables, power flow equations, cost function, and constraints that define an OPF prob-
lem. As we will see the OPF formulation (18.5) below does not require the assumption
H
B

9:
= HB

: 9
(C16.1 for BIM and C17.1 for BFM). It can therefore accommodate standard

three-phase transformers, e.g., in �. and .� configurations. As for the single-phase
OPF we studied in Chapter 9.1.2 we assume there is exactly one three-phase device at
each bus 9 . We will then interchangeably refer to 9 as a bus or a device. See Chapter
9.1.2 on how to relax this assumption. We now describe the optimization variables,
network equations and operational constraints, as well as a cost function that define a
three-phase OPF.
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Optimization variables.

As mentioned above a key assumption underlying our formulation is that all controllable
devices are the single-phase devices that make up three-phase devices. There are
therefore two types of optimization variables (D,G). The internal variable D := (D 9 , 9 2
#) represents controllable quantities of the three-phase devices discussed in Chapter

18.1.1. The terminal variable G :=
⇣
+ 9 , B 9 , 9 2 #

⌘
represents the terminal voltages and

power injections. The conversion rule relates D to G which interact over the network
through either the current balance equation � = .+ or the power balance equation.
The terminal variables are typically not directly controllable (even though they are
optimization variables).

Network constraints.

The power flow equations relate the terminal variables G := (+ , B), from (16.12):

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (18.3)

which directly extend the single-phase equations (9.3). This constraint is global as it
couples voltages and powers (+ 9 , B 9 ) at all neighboring buses.

The operational constraints on G := (+ , B) are the same as (9.4) for single-phase
OPF, except that the variables and their bounds are 3-dimensional vectors, rather than
scalars, for three-phase networks:

injection limits: B
min
9
 B 9  B

max
9

, 9 2 #
(18.4a)

voltage limits: E
min
9
 diag

⇣
+ 9+

H
9

⌘
 E

max
9

, 9 2 #
(18.4b)

line limits: diag
⇣
� 9: (+) �H

9:
(+)

⌘
 ✓

max
9:

, diag
⇣
�: 9 (+) �H

: 9
(+)

⌘
 ✓

max
: 9

, ( 9 , :) 2 ⇢
(18.4c)

where
�
� 9: (+), �: 9 (+)

�
in (18.4c) are given by (16.1) reproduced here:

� 9: (+) = H
B

9:

�
+ 9 �+:

�
+ H

<

9:
+ 9 , �: 9 (+) = H

B

: 9

�
+: �+ 9

�
+ H

<

: 9
+:

The constraint (18.4a) can be due to limits on the busbar to which the three-phase
device is connected. The constraints (18.4a)(18.4b) are local at each bus 9 but (18.4c)
is global.

Cost function.

As for single-phase OPF, the cost function ⇠ (D,G) may represent generation cost,
real power loss, estimation error, voltage deviations, or user disutility, depending on
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applications. For instance to minimize the cost of real power generations we can use

⇠ (D,G) := ⇠ (D,+ , B) :=
’

gens. 9

2 9 1
TRe

⇣
B
. /�
9

⌘

Other example costs include estimation error in state estimation and user disutility in
demand response.

OPF.

Define the feasible set

V3? := {(D,G) := (D,+ , B) | (D,G) satisfies (18.1)(18.2)(18.3)(18.4)} (18.5a)

Then the simple OPF formulation in the three-phase setting is

min
(D,G)

⇠ (D,G) s.t. (D,G) 2 V3? (18.5b)

The constraint (18.2) describes local operational constraints on the internal variables D
of the three-phase devices, (18.3)(18.4) describe the network equation and operational
constraints on the terminal variable G := (+ , B), and the conversion rule (18.1) relates
D and G and is also a local constraint. Since the constraints (18.3)(18.4c) do not
require assumption C16.1 that HB

9:
= HB

: 9
, the OPF formulation (18.5) can accommodate

three-phase transformers whose admittance matrices . are not block symmetric, e.g.,
transformers in �. and .� configurations.

Remark 18.2 (Uncontrollable parameters). As for single-phase OPF, the formulation
(18.5) allows the case where a quantity is not an optimization variable but a given
parameter. For instance a given uncontrollable constant-power load or a given renew-
able generation at bus 9 can be represented by setting B. /�

9
= B. /�min

9
= B. /�max

9
to the

specified value. ⇤

Structurally the three-phase OPF (18.5) takes the form with G := (+ , B):

min
(D,G)

⇠ (D,G) (18.6a)

s.t. 5
. /�
9

�
D 9 ,+ 9 , B 9

�
= 0, 6

. /�
9

�
D 9

�
 0, 9 2 # (18.6b)

5 (+ , B) = 0, 6(+ , B)  0 (18.6c)

where the local constraint (18.6b) represents operational constraints (18.2) on the
internal variables D 9 of device 9 and the conversion rules (18.1) that relate D 9 to
its terminal variables G 9 , and the global constraint (18.6c) represents the power flow
equation (18.3) and operational constraint (18.4) on the terminal variable G. The local
constraint (18.6b) generalizes (9.6) from single-phase systems to three-phase systems.
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18.1.3 Three-phase OPF as QCQP

The three-phase OPF (18.5) can be written as a QCQP in (+ ,D), following the same
procedure studied in Chapter 9.1.3 for single-phase OPF.

Device constraints as quadratic forms.

We start by writing the local device constraints (18.2), represented by 6. /�
9

�
D 9

�
 0 in

(18.6b), as quadratic forms. Let

4
0 := (1,0,0), 4

1 := (0,1,0), 4
2 := (0,0,1), ⇢

q := 4q4qT 2 C3⇥3, q 2 {0,1,2}
(18.7)

Then the device constraints (18.2) become the quadratic forms local to each bus 9 :

1 Voltage source D 9 :=+. /�
9

:

E
(. /�)qmin
9

 D
H
9
⇢
q

D 9  E
(. /�)qmax
9

(18.8a)

2 Current source D 9 := �. /�
9

:

D
H
9
⇢
q

D 9  ✓
(. /�)qmax
9

(18.8b)

3 Power source D 9 := (D 91,D 92) :=
⇣
B
. /�
9

, �. /�
9

⌘
:

B
. /�min
9

 D 91  B
. /�max
9

, D
H
92⇢

q

D 92  ✓
(. /�)qmax
9

(18.8c)

Network constraints as quadratic forms.

Next we eliminate the power flow equation (18.3), represented by 5 (+ , B) = 0 in
(18.6c), by substituting B 9 (+) as functions of + into the network constraint (18.4) on
the terminal variables represented by 5 (+ , B) = 0 in (18.6c). This reduces (18.6c) to a
single inequality constraint of the form

6(+ , B(+))  0

where components of 6 are quadratic forms in + . The conversion into quadratic forms
follows the same derivation in Chapter 9.1.3, but applied to the single-phase equivalent
circuit.

Let

4 9 2 {0,1}#+1, 4
q

9
2 {0,1}3(#+1) , ⇢

q

9
:= 4

q

9

⇣
4
q

9

⌘H
, q 2 {0,1,2} (18.9)

where 4 9 is of size # +1 and has a single 1 in its 9 th position, 4q
9

is of size 3(# +1)
and has a single 1 in its 9qth position, and ⇢ q

9
is the 3(# + 1) ⇥ 3(# + 1) diagonal

Hermitian matrix with a single 1 in the ( 9q, 9q)th entry and 0 everywhere else.
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1 Injection limits: Let. 2 C3(#+1)⇥3(#+1) denote the single-phase equivalent admit-
tance matrix. Define the matrix . q

9
:= 4q

9
4
qH
9
. where 4q

9
2 {0,1}3(#+1) is the unit

vector with a single 1 at the ( 9 ,q)th entry and 0 elsewhere. Define the Hermitian
and skew Hermitian components of . qH

9
:

�q
9

:=
1
2

⇣
.
qH
9

+. q
9

⌘
and  q

9
:=

1
2i

⇣
.
qH
9
�. q

9

⌘
(18.10a)

Then

?
q

9
:= Re

⇣
B
q

9

⌘
= +

H�q
9
+ and @

q

9
:= Im(Bq

9
) = +

H q
9
+

and the injection limits become

?
qmin
9

 +
H�q

9
+  ?

qmax
9

, @
qmin
9

 +
H q

9
+  @

qmax
9

, 9 2 #
(18.10b)

2 Voltage limits: The terminal voltage limits are

E
qmin
9

 +
H
⇢
q

9
+  E

qmax
9

, 9 2 # (18.10c)

where ⇢ q
9

is defined in (18.9).
3 Line limits: The same derivation as that for single-phase OPF shows that the limit

on the sending-end current � q
9:

in the phase-0 line is (Exercise 18.1)

���� q
9:

���2 := +
H
.̂
q

9:
+  ✓

qmax
9:

, ( 9 , :) 2 ⇢ (18.10d)

where .̂ q
9:

:= .̃H
9:
⇢
q
.̃ 9: is a 3(# +1) ⇥3(# +1) matrix and .̃ 9: is a 3⇥3(# +1)

matrix given by

.̃ 9: :=
⇣
(4 9 � 4: )T ⌦ HB

9:
+ 4

T
9
⌦ H<

9:

⌘

(Here ⇢ q is defined in (18.7) and 4 9 in (18.9).) The matrix .̂ 9: is Hermitian and

hence +H
.̂
q

9:
+ is indeed a real number. Similarly for

���� q
: 9

���2.

Conversion rules as quadratic forms.

Finally we eliminate B 9 from the the conversion rule (18.1) for three-phase devices,
represented by the local equality constraint 5. /�

9

�
D 9 ,+ 9 , B 9

�
= 0 in (18.6b). This reduces

5
. /�
9

�
D 9 ,+ 9 , B 9

�
= 0 to an equality constraint of the form

5
. /�
9

�
D 9 ,+ , B 9 (+)

�
= 0, 9 2 #

where 5
. /�
9

is a quadratic form in (D 9 ,+). It also transforms the original local con-
straints into global constraints since the function B 9 (+) depends on +: at all neighbors
: of 9 ; see (18.11).
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Recall that B 9 (+) :=
⇣
B
0

9
(+), B1

9
(+), B2

9
(+)

⌘
and

B
q

9
(+) = +

H
⇣
.
qH
9

⌘
+ = +

H
⇣
�q
9
+ i q

9

⌘
+ , q 2 {0,1,2}, 9 2 # (18.11)

where . q
9

:= 4q
9
4
qT
9
. and �q

9
and  q

9
are defined in (18.10a). Then + 9 2 C3 can be

written in terms of + 2 C3(#+1) as follows:

+ 9 =
�
4 9 ⌦ I

�H
+ =

⇣
4

H
9
⌦ I

⌘
+ , +

q

9
= 4

qH
9
+ , q 2 {0,1,2} (18.12)

where I is the identity matrix of size 3.

We now use (18.7)(18.9)(18.11)(18.12) to convert the conversion rule 5. /�
9

in (18.1)
into inhomogeneous quadratic forms in (D 9 ,+). They can then be homogenized using
the identity (9.15) in Remark 9.4.

1 Voltage source D 9 :=+. /�
9

: Application of (18.12) to the conversion rules (18.1a)
(18.1b) leads to the following linear constraints in (D 9 ,+):

. configuration:
⇣
4

H
9
⌦ I

⌘
+ = D 9 +W.9 1

(18.13a)

� configuration: �
⇣
4

H
9
⌦ I

⌘
+ = D 9

(18.13b)

where W.
9

:=+=
9

is assumed given (e.g., W.
9
= 0). These constraints remain local as

they depend on + only through + 9 2 C3.
2 Current source D 9 := �. /�

9
: The conversion rules (18.1c)(18.1d) for a current source

are equivalent to the following inhomogeneous quadratic equations in (D 9 ,+)
(Exercise 18.2):

. configuration: B
q

9
(+) = �DH

9

⇣
4

H
9
⌦ ⇢ q

⌘
+

(18.13c)

� configuration: B
q

9
(+) = �DH

9

⇣
4

H
9
⌦ (�⇢ q)

⌘
+

(18.13d)

where B 9 (+) is given in (18.11). These constraints are global as B 9 (+) depend on
+: at neighboring buses : .

3 Power source D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
: For a . -configured power source let D 9 =:

(D 91,D 92) where D 91 := B.
9

and D 92 := �.
9
. Then the conversion rule (18.1e) is

equivalent to the following inhomogeneous quadratic equations in (D 9 ,+) (Exer-
cise 18.3):

. : B
q

9
(+) = �DH

92

⇣
4

H
9
⌦ ⇢ q

⌘
+ , B 9 (+) = �D 91�W.9 D̄ 92, q 2 {0,1,2}

(18.13e)

where B 9 (+) is given in (18.11) and W.
9

:=+=
9

is assumed given (e.g., W.
9
= 0).
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For a �-configured power source let D 9 =: (D 91,D 92) where D 91 := B�
9

and D 92 :=
�
�
9
. Then the conversion rule (18.1f) is equivalent to the following inhomogeneous

quadratic equations in (D 9 ,+) (Exercise 18.3):

� : B
q

9
(+) = �DH

92

⇣
4

H
9
⌦ (�⇢ q)

⌘
+ , D

qi

91 = D
H
92

⇣
4

H
9
⌦

�
⇢
q�

� ⌘
+ , qi 2 {01,12,20}

(18.13f)

where B 9 (+) is given in (18.11).

4 Impedance
⇣
I
.

9
,W.
9

⌘
or I�

9
: The equality constraint (18.1g) or (18.1h) imposed by

an impedance
⇣
I
.

9
,W.
9

⌘
or I�

9
respectively is equivalent to the following inhomo-

geneous quadratic equation in + (Exercise 18.4):

. configuration: B
q

9
(+) = +

H
⇣⇣
4 94

H
9

⌘
⌦

⇣
H
.H
9
⇢
q

⌘⌘
+ � W̄ 9

⇣
4

H
9
⌦

⇣
1

H
H
.H
9
⇢
q

⌘⌘
+

(18.13g)

� configuration: B
q

9
(+) = �+H

⇣⇣
4 94

H
9

⌘
⌦

⇣
.
�H
9
⇢
q

⌘⌘
+ (18.13h)

where W.
9

:=+=
9

is assumed given (e.g., W.
9
= 0), .�

9
:= �T

H
�
9
� and H�

9
:=

⇣
I
�
9

⌘�1
.

Note the structural similarity between . and � configurations when W.
9

:=+=
9
= 0

Three-phase OPF as QCQP.

We have thus eliminated the power flow equation 5 (+ , B) = 0 in (18.6), and expressed
the local device constraints 6. /�

9

�
D 9

�
 0, the network constraints 6(+ , B(+))  0, and

conversion rules 5. /�
9

�
D 9 ,+ 9 , B 9 (+)

�
= 0 as quadratic forms in (D,+). Therefore (18.6)

is equivalent to the inhomogeneous QCQP (assuming⇠ is also expressed as a quadratic
form in (D,+)):

min
(D,+ )

⇠ (D,+ , B(+)) (18.14a)

s.t. (18.8) (18.10) (18.13) (18.14b)

where B(+) is given by (18.11). The inhomogeneous quadratic constraints in (18.14b)
can be homogenized (see (9.15) in Remark 9.4).

18.1.4 Branch flow model: radial networks

Since the branch flow model is most useful for radial networks, we make the same
assumptions as in the single-phase setting studied in Chapter 9.2:

• IB
9:
= IB

: 9
, or equivalently HB

9:
= HB

: 9
, for every line ( 9 , :) (assumption C17.1).
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• H
<

9:
= H<

: 9
= 0 for every line ( 9 , :). This is a reasonable assumption on distribution

lines where H<
9:

and H<
: 9

are typically much smaller in magnitude than the series
admittance HB

9:
.

Consider a three-phase radial network ⌧ = (# ,⇢) with # +1 buses and " = # lines.
The assumptions allow us to adopt a directed graph ⌧ = (# ,⇢) and include branch
variables in only one direction. We denote a line in ⇢ from bus 9 to bus : either
by ( 9 , :) 2 ⇢ or 9 ! : . It is characterized by its series impedance IB

9:
. Without loss

of generality we take bus 0 as the root of the tree. We now describe the three-phase
optimization variables, device models, power flow equations, operational constraints,
and the cost function that define a three-phase OPF problem.

Optimization variables.

As in BIM, we assume that only the single-phase devices that make up three-phase
devices are directly controllable. There are therefore two types of optimization variables
(D,G). The internal variable D := (D 9 , 9 2 #) represents controllable quantities of the
three-phase devices, as in BIM. The variable G represents both the terminal variables
(e.g., a nodal voltage + 9 ) as well as the line variables (e.g., a line power ( 9: ). The
variables G interact over the network through the power balance equation. Both BIM
and BFM use the same device models and their operational constraints. Their di�erence
lies in the power flow equations that, for BFM, include line variables as well.

Device constraints.

The device models are described in Chapter 18.1.1. The internal variables D 9 , 9 2 # ,
their conversion rules (18.1) and operational constraints (18.2) on D 9 are the same as
for the bus injection model.

Network constraints.

Power flow equations relate the following terminal variables and line variables (see
Chapter 17.1.3 for three-phase branch flow model):

B 9 2 C3, E 9 2 S3
+, + 9 2 C3, 9 2 #

✓ 9: 2 S3
+, ( 9: 2 C3⇥3, �̃ 9: 2 C3, 9 ! : 2 ⇢

where S=+ ✓ C=⇥= is the set of of =⇥ = complex (Hermitian and) positive semidefinte
matrices. Let B := (B 9 , 9 2 #),E := (E 9 , 9 2 #), ✓ := (✓ 9: , ( 9 , :) 2 ⇢), ( := (( 9: , ( 9 , :) 2
⇢). Here (B,E,✓,() directly generalize the corresponding variables in the single-phase

model. The voltage phasor + :=
⇣
+ 9 , 9 2 #

⌘
is introduced here in order to express

the conversion rule (18.1) for three-phase devices and the line current phasor �̃ :=�
�̃ 9: , 9 ! : 2 ⇢

�
is introduced for convenience. Let G := (B,E,✓,(,+ , �̃).
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The power flow equations we use are (17.4) in Chapter 17.1, reproduced here:’
:: 9!:

diag(( 9: ) =
’
8:8! 9

diag
⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 #

(18.15a)

E 9 � E: =
⇣
I
B

9:
(

H
9:
+ ( 9: IBH

9:

⌘
� IB

9:
✓ 9: I

BH
9:

, 9 ! : 2 ⇢
(18.15b)"

E 9 ( 9:

(
H
9:

✓ 9:

#
� 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1, 9 ! : 2 ⇢

(18.15c)

E 9 = + 9+
H
9
, ✓ 9: = �̃ 9: �̃

H
9:

, ( 9: = + 9 �̃
H
9:

, 9 ! : 2 ⇢
(18.15d)

where +0 2 C3 is given and bus 8 := 8( 9) is the unique parent of bus 9 in (18.15a).
Given matrices

�
E 9 ,✓ 9: ,( 9:

�
, the vectors

�
+ 9 , �̃ 9:

�
, 9 2 # , 9 ! : 2 ⇢ , are determined

uniquely up to a reference angle. These constraints are global.

The operational constraints on G are similar to those (18.4) in the bus injection
model:

injection limits: B
min
9
 B 9  B

max
9

, 9 2 # (18.16a)

voltage limits: E
min
9
 diag

�
E 9

�
 E

max
9

, 9 2 # (18.16b)

line limits: diag
�
✓ 9:

�
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.16c)

The constraint (18.16a) can be due to limits on the busbar to which the three-phase
device is connected. All constraints in (18.16) are local at each bus 9 or on each line
( 9 , :). While the voltage and line limits (18.4b)(18.4c) in BIM are generally nonconvex,
these limits (18.16b)(18.16c) in BFM are linear in G.

Cost function.

Let ⇠ (D,G) denote the cost function. For instance to minimize the thermal loss in the
network we can use

⇠ (D,G) :=
’

( 9,:)2⇢
diagT �

Re(I 9: )
�

diag
�
✓ 9:

�

OPF.

We assume +0 2 C3 is given and impose E0 =+0+
H
0 . Let the feasible set be

T3? :=
�
(D,G) := (D, B,E,✓,(,+ , �̃) | (D,G) satisfies (18.1)(18.2)(18.15)(18.16),E0 =+0+

H
0

 
(18.17a)
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Then the three-phase OPF problem is:

min
D,G

⇠ (D,G) subject to (D,G) 2 T3? (18.17b)

As for the bus injection model, the local constraint (18.2) describes the operational
constraint on the internal variable D 9 of the three-phase device 9 , the global constraint
(18.15)(18.16) describes the network equation and operational constraint on the termi-
nal variable G := (+ , B). The conversion rule (18.1) is local and relates D 9 and G 9 at each
bus 9 . By Theorems 17.1, the feasible set T3? in (18.17) is equivalent to the feasible
set V3? of the three-phase OPF (18.5) in BIM. Hence these problems are equivalent,
provided their cost functions are the same. OPF (18.17) in the branch flow model can
also be reformulated as QCQP using a similar method described in Chapter 18.1.3 for
the bus injection model (see Chapter 18.3.2).

18.2 Semidefinite relaxation: BIM

Consider the three-phase OPF (18.5) in the bus injection model. In Chapter 18.2.1
we reformulate the constraints in (18.5) as semidefinite and rank constraints and in
Chapter 18.2.2 we derive an SDP relaxation of three-phase OPF. Finally in Chapter
18.2.3 we show that if the three-phase network is radial then the relaxation is equivalent
to a chordal relaxation because the single-phase equivalent of the network is a chordal
graph.

18.2.1 Reformulation

The conversion rule (18.1) and the local operational constraint (18.2) in the device
model are expressed in terms of the internal variable D 9 :=+. /�

9
for a voltage source and

D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
for a power source. The network equation and constraint (18.3)(18.4)

are expressed in terms of the terminal variable G := (+ , B). We will reformulate these
constraints as semidefinite and rank constraints using a di�erent set of variables; see
Table 18.1. We first reformulate the network equation and constraint (18.3)(18.4) and
then reformulate the device model (18.1)(18.2).

Network equations and constraints.

The power flow equations (18.3) are reproduced here:

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (18.18)
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OPF int vars: voltage int vars: power dev model terminal vars net model

(18.5) +
. /�
9
2 C3

⇣
B
. /�
9

, �. /�
9

⌘
2 C6 (18.1)(18.2) (+ , B) 2 C6(#+1) (18.3)(18.4)

(18.23) ,
. /�
9
2 C3⇥3

B
. /�
9
2 C3 (18.22) , 2 C3(#+1)⇥3(#+1) (18.20)(18.21)

-
�
9
2 C3⇥3

B 2 C3(#+1)

✓
�
9
2 C3⇥3

Table 18.1 Internal and terminal variables of voltage and power sources for OPF (18.5) and its
equivalent semidefinite reformulation (18.23).

Consider the 3(# +1) ⇥3(# +1) matrix , = ++H and its 3⇥3 submatrices , 9 9 and
, 9: defined by:

, 9 9 = + 9+
H
9
, 9 2 # , , 9: = + 9+

H
:

, ( 9 , :) 2 ⇢ (18.19)

Then (18.18) is equivalent to the following equation that is linear in, :

B 9 =
’
:: 9⇠:

diag
✓ �
, 9 9 �, 9:

� ⇣
H
B

9:

⌘H
+ , 9 9

⇣
H
<

9:

⌘H
◆

, 9 2 # (18.20a)

The network constraints (18.4) can be expressed also as linear functions of (B,,):

injection limits: B
min
9
 B 9  B

max
9

, 9 2 # (18.20b)

voltage limits: E
min
9
 diag

�
, 9 9

�
 E

max
9

, 9 2 # (18.20c)

line limits: diag
�
✓ 9:

�
, 9 9 ,, 9: ,,::

� �
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.20d)

diag
�
✓: 9

�
, 9 9 ,,: 9 ,,::

� �
 ✓

max
: 9

, ( 9 , :) 2 ⇢ (18.20e)

where, motivated by � 9: (+) =
⇣
H
B

9:
+ H<

9:

⌘
+ 9 � HB

9:
+: and �: 9 (+) =

⇣
H
B

: 9
+ H<

: 9

⌘
+: �

H
B

: 9
+ 9 , we define the 3⇥3 matrices:

✓ 9:

�
, 9 9 ,, 9: ,,::

�
:=

⇣
H
B

9:
+ H<

9:

⌘
, 9 9

⇣
H
B

9:
+ H<

9:

⌘H
�2Re

⇣⇣
H
B

9:
+ H<

9:

⌘
, 9: H

BH
9:

⌘
+ HB

9:
,:: H

BH
9:

✓: 9

�
, 9 9 ,,: 9 ,,::

�
:=

⇣
H
B

: 9
+ H<

: 9

⌘
,::

⇣
H
B

: 9
+ H<

: 9

⌘H
�2Re

⇣⇣
H
B

: 9
+ H<

: 9

⌘
,: 9 H

BH
: 9

⌘
+ HB

: 9
, 9 9 H

BH
: 9

Here the lower and upper bounds in (18.20b) – (18.20e) are 3-dimensional complex or
real vectors. Instead of the quadratic equations (18.19) we use the following equivalent
specification that is easy to convexify:

, ⌫ 0, rank(,) = 1 (18.21)

Therefore the power flow equations and constraints (18.3)(18.4) are equivalent to the
linear constraints (18.20) and the convex and nonconvex constraints in (18.21). These
constraints are global. The semidefinite relaxation of the three-phase OPF (18.5) is
obtained by omitting the nonconvex rank-1 constraint in (18.21).
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Conversion rules and device constraints.

We apply the same method to reformulate the device models (18.1)(18.2). To simplify
notation we assume:

• Only three-phase voltage and power sources are included, in . or � configurations.
• The neutrals of all . -configured devices are directly grounded and all voltages are

defined with respect to the ground, so that all neutral voltages W.
9

:=+=
9
= 0.

The conversion rules (18.1) are:

1 Voltage source +. /�
9
2 C3:

. configuration: + 9 = +
.

9

� configuration: �+ 9 = +
�
9

We reformulate this using a matrix variable D 9 :=,. /�
9
2 C3⇥3, as follows:

. configuration: , 9 9 = ,
.

9
, ,

.

9
⌫ 0, rank

⇣
,
.

9

⌘
= 1 (18.22a)

� configuration: �, 9 9�T = ,
�
9
, ,

�
9
⌫ 0, rank

⇣
,
�
9

⌘
= 1 (18.22b)

Note that, 9 9 is the 3⇥3 principal submatrix of the 3(# +1)⇥3(# +1) matrix,
defined in (18.21) associated with the vector+ of terminal voltages while,. /�

9
is

a 3⇥3 matrix associated with the internal voltage+. /�
9

of device 9 . The conditions

(18.22a)(18.22b) ensure that there exists an internal voltage +. /�
9

, unique up to a

rotation, so that,. /�
9

=+. /�
9

⇣
+
. /�
9

⌘H
.

The device constraints (18.2a) on the internal voltage magnitudes can be ex-
pressed as a linear function of the internal variable D 9 :=,. /�

9
:

E
. /�min
9

 diag
�
D 9

�
:= diag

⇣
,
. /�
9

⌘
 E

. /�max
9

(18.22c)

where the lower and upper bounds
⇣
E
. /�min
9

,E. /�max
9

⌘
2 C6 are given vectors.

2 Power source
⇣
B
. /�
9

, �. /�
9

⌘
2 C6:

. configuration: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B 9 = �B.

9

� configuration: B 9 = �diag
⇣
+ 9 �

�H
9
�
⌘
, B

�
9
= diag

⇣
�+ 9 ��H

9

⌘

We reformulate this using an internal variable D 9 :=
⇣
B
. /�
9

,-�
9
,✓�
9

⌘
where B. /�

9
2C3
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is the vector of terminal power injections and -�
9
,✓�
9

are 3⇥ 3 matrices for a �-
configured power source, as follows:

. configuration: B 9 = �B.
9

(18.22d)

� configuration: B 9 = �diag
⇣
-
�
9
�
⌘
, B

�
9
= diag

⇣
�-�

9

⌘
(18.22e)

0 �
"
, 9 9 -

�
9

-
�H
9

✓
�
9

#
, 1 = rank

"
, 9 9 -

�
9

-
�H
9

✓
�
9

#
(18.22f)

For a �-configured power source, the conditions (18.22e)(18.22f) ensure that
there exist a terminal voltage + 9 and an internal current ��

9
so that , 9 9 = + 9+H

9
,

✓
�
9
= ��

9
�
�H
9

, and -�
9
=+ 9 ��H

9
.

The device constraints (18.2c) on the internal powers and currents can be

expressed as linear functions of the internal variable D 9 :=
⇣
B
. /�
9

,-�
9
,✓�
9

⌘
:

B
. /�min
9

 B
. /�
9
 B

. /�max
9

, diag
⇣
✓
�
9

⌘
 ✓

�max
9

(18.22g)

where the lower and upper bounds are given vectors.

Therefore the conversion rule (18.1) and the device constraint (18.2) are equivalent
to the constraint (18.22) in terms of the new set of internal variables D 9 and terminal
variables (, , B), as summarized in Table 18.1. These constraints are local at each
bus 9 . The rank-1 constraints in (18.22a)(18.22b)(18.22f) are nonconvex and the other
constraints are convex (or linear). These rank-1 constraints will be omitted to derive a
SDP relaxation of the three-phase OPF (18.5).

Equivalent OPF.

In summary, let B 2 C#+1 denote the terminal power injections and, 2 C3(#+1)⇥3(#+1)

denote the terminal variable associated with terminal voltages. Let D := (D 9 , 9 2 #)
denote the internal variables defined by

D 9 :=

(
,
. /�
9

if device 9 is a voltage source⇣
B
. /�
9

,-�
9
,✓�
9

⌘
if device 9 is a power source

Finally we assume the terminal voltage +0 at bus 0 is given and imposes the constraint
,00 =+0+

H
0 . Putting all this together the three-phase OPF (18.5) is equivalent to

min
(D,B,, )

⇠ (D, B,,) s.t. ,00 = +0+
H
0 , (18.20)(18.21)(18.22) (18.23)

where +0 2 C3 is given.
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18.2.2 SDP relaxation

Define the matrix " (�,⌫,⇡) 2 C6⇥3 as a function of 3⇥3 Hermitian matrices �,⇡,
and a 3⇥3 arbitrary matrix ⌫:

" (�,⌫,⇡) :=

� ⌫

⌫
H

⇡

�
(18.24)

Then " (�,⌫,⇡) is Hermitian. For instance the matrix in (18.22f) is "
⇣
, 9 9 ,-�

9
,✓�
9

⌘
.

Let #.
E

and #�
E

denote the set of voltage sources in . and � configuration respec-
tively, and #.

?
and #�

?
the set of power sources in . and � configuration respectively.

Omitting the rank-1 constraints in (18.22a)(18.22b)(18.22f) yields an SDP relaxation
of (18.23):

min
(D,B,, )

⇠ (D, B,,) (18.25a)

s.t. ,00 = +0+
H
0 , (18.20), , ⌫ 0 (18.25b)

, 9 9 = ,
.

9
, ,

.

9
⌫ 0, 9 2 #.

E

(18.25c)

�, 9 9�T = ,
�
9
, ,

�
9
⌫ 0, 9 2 #�

E

(18.25d)

B 9 = �B.
9
, 9 2 #.

?

(18.25e)

B 9 = �diag
⇣
-
�
9
�
⌘
, 9 2 #�

?

(18.25f)

B
�
9
= diag

⇣
�-�

9

⌘
, "

⇣
, 9 9 ,-�9 ,✓�

9

⌘
⌫ 0, 9 2 #�

?

(18.25g)

where +0 2 C3 is given and "
⇣
, 9 9 ,-�

9
,✓�
9

⌘
is defined in (18.24). Let

�
D

opt, Bopt,,opt�
denote an optimal solution of the SDP relaxation (18.25). We say (18.25) is exact if the
psd matrices of every optimal solution

�
D

opt, Bopt,,opt� are of rank 1, i.e., rank
�
,

opt� =
1 and

rank
⇣
,
. opt
9

⌘
= 1, rank

⇣
,
�opt
9

⌘
= 1, rank

⇣
"

⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘⌘
= 1

(18.26)

If rank
�
,

opt� = 1 then all its principal submatrices,opt
9 9

are of rank 1 and therefore,

by (18.25c)(18.25d), ,. opt
9

and ,�opt
9

are of rank 1 as well. The following result
implies that the network matrix ,opt being psd rank-1 is insu�cient to ensure exact
relaxation. It is necessary for exact relaxation that all �-configured power sources must

satisfy rank
⇣
"

⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘⌘
= 1.
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Lemma 18.1 ([136]). Suppose the matrix " (�,⌫,⇡) 2 C6⇥3 defined in (18.24) is
positive semidefinite and rank(�) = 1. Then � is psd rank-1, ⌫ is rank-1, and ⇡ is psd.

Lemma 18.1 says that ⌫ is rank-1 but may not be psd, and ⇡ is psd but may not be
rank-1. Indeed it implies that the matrix " (�,⌫,⇡) ⌫ 0 takes the form

" (�,⌫,⇡) =

G

I

� ⇥
G

H
I

H⇤
+


0 0
0   

H

�
(18.27)

for some vectors G, I and matrix  . The structure (18.27) have three implications
on the exactness of SDP relaxation (18.25). First if there are no �-configured power
sources, then (18.25) is exact if, for every optimal solution

�
D

opt, Bopt,,opt� of (18.25),
the network matrix ,opt is of rank 1. Second if there are �-configured power sources
in #

�
?
, then rank

�
,

opt� = 1 is insu�cient to guarantee exactness because the last
condition in (18.26) may not be satisfied. Third, however, any optimal optimal so-
lution

�
D

opt, Bopt,,opt� with rank
�
,

opt� = 1 is su�cient for recovering an optimal

solution of OPF (18.23), even if ✓�opt
9

in Dopt
9

and hence "
⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘
may

not be of rank 1, provided that the cost ⇠ (D, B,,) does not depend on ✓�
9

(e.g., ⇠

depends only on
⇣
B 9 , B

. /�
9

⌘
) [136, Theorem 1]. This is because Lemma 18.1 guaran-

tees that there exists vectors
⇣
+

opt
9

, ��opt
9

⌘
2 C6 such that, since ,opt is psd rank-1 and

"

⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘
⌫ 0,

,
opt
9 9

= +
opt
9

⇣
+

opt
9

⌘H
, -

�opt
9

= +
opt
9

⇣
�
�opt
9

⌘H
, 9 2 #�

?
(18.28a)

Then consider the point
�
D̃, Bopt,,opt� obtained from

�
D

opt, Bopt,,opt� by replacing ✓�opt
9

in Dopt
9

by

✓̃
�
9

:= �
�opt
9

⇣
�
�opt
9

⌘H
, 9 2 #�

?
(18.28b)

It can then be checked that
�
D̃, Bopt,,opt� is feasible for OPF (18.23). Since the cost ⇠

is independent of ✓̃�
9
,
�
D̃, Bopt,,opt� is also optimal for OPF (18.23).

Remark 18.3 (Strong exactness). As discussed in Remarks 10.3 and 10.4, even when
a relaxation is not exact under our definition, an optimal solution of the original OPF
problem may still be recoverable from an optimal solution of its relaxation under
certain conditions. Theorems 10.6 and 10.9 provide two such conditions for single-
phase radial network. The discussion above shows that rank

�
,

opt� = 1 is su�cient
for recovering an optimal solution of the original three-phase OPF (18.23) from an
optimal solution of its SDP relaxation (18.25), provided that the cost ⇠ is independent
of ✓�

9
for �-configured power sources. ⇤

The method (18.28) to recover an optimal solution
�
D̃, Bopt,,opt� of OPF (18.23)

from an optimal solution of its relaxation may not work well in practice because of
inevitable numerical errors. Even if,opt

9 9
is close to being rank-1, i.e., its second largest
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eigenvalue is several orders of magnitude smaller than its largest eigenvalue, -�
9

can
be far from being rank-1, e.g., it can have multiple large eigenvalues of the same
magnitude (see [136, Remark 1]). In this case ��opt

9
may not be obtained from -

�opt
9

using (18.28a). Two methods are suggested in [136] to address this numerical issue.

The first method substitutes +opt
9

obtained from,
opt
9 9

=+opt
9

⇣
+

opt
9

⌘H
into (18.25g):

B
�opt
9

= diag
✓⇣
�+�opt

9

⌘ ⇣
�
�opt
9

⌘H
◆

=) �
�opt
9

:=
⇣
diag

⇣
�+̄�opt

9

⌘⌘�1
B̄
�opt
9

where Ḡ is the componentwise complex conjugate of a vector G. The second method

adds _
Õ
9
tr

⇣
✓
�
9

⌘
to the cost function of the SDP relaxation (18.25) for a positive but

small weight _ > 0. This produces an optimal solution in which ✓�opt
9

tends to be of
low rank.

18.2.3 Radial network

A special case that is particularly simple is a network where

• all three-phase devices are either voltage or power sources in . configuration;
• all voltages are defined with respect to the ground and the neutral voltages W.

9
:=+=

9

of all these . -configured devices are W.
9

:= 0.

In this case the internal variables can be simply expressed in terms of terminal variables,
+
.

9
= + 9 , �.

9
= �� 9 , and B.

9
= �B 9 , and the operational constraints 6. /�

9

�
D 9

�
 0 on D 9

are included in the network constraints (18.10). Hence the internal variable D can be
eliminated from the QCQP (18.14) which then consists of only network constraints
(18.10) and no device models, as follows:

min
+

⇠ (+ , B(+)) s.t. (18.10) (18.29)

We now study the semidefinite relaxation of (18.29) when the network graph ⌧ is a
tree.

Consider a network graph⌧ := (# ,⇢) with # +1 buses. Suppose each line ( 9 , :) 2 ⇢
is characterized by three 3⇥ 3 admittance matrices

⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
, i.e., we assume

H
B

9:
= HB

: 9
. Recall its single-phase equivalent circuit described in Chapter 16.1.2 by a

graph ⌧3q :=
⇣
#

3q
,⇢3q

⌘
where #

3q
contains 3(# +1) nodes identified by 9q, 9 2 # ,

q 2 {0,1,2}. There is a link ( 9q, :q0) in ⇢3q if and only if the ( 9q, :q0) entry . qq
0

9:
of

the three-phase admittance matrix . is nonzero.

Even when ⌧ is a tree (i.e., the three-phase network is radial), its single-phase
equivalent ⌧3q contains cycles. The key observation is that ⌧3q is a chordal graph.
To see this, note that ⌧3q has a maximal clique with 6 nodes consisting of the set
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n
9q, :q0 2 #3q

: q,q0 2 {0,1,2}
o

of buses if and only if ( 9 , :) is a line in ⌧. See

Figure 18.1 for an example. Two nodes 9q and :q0 in the equivalent circuit ⌧3q are

Figure 18.1 The graph ⌧3q of the single-phase equivalent circuit of a radial network with three
buses 8, 9 , : connected by (three-wire) three-phase lines.

adjacent either because of a physical line between buses 9 and : in the graph ⌧ (in
which case q = q0) or because of electromagnetic interactions across phases q and q0

(in which case q < q0). Indeed ⌧3q consists of a macro tree in which every link in the
macro tree is such a clique and these are the only cliques in ⌧3q . This means that ⌧3q

is a chordal graph.

Theorem 10.4 suggests solving the chordal relaxation of (18.29). It computes a
(# +1)⇥ (# +1) Hermitian partial matrix,

⌧
3q :

,
⌧

3q :=
⇣
[,

⌧
3q ]qq

9 9
, 9q 2 #3q

, [,
⌧

3q ]qq
0

9:
, ( 9q, :q0) 2 ⇢3q

⌘

The set of maximal cliques of ⌧3q correspond to the following 6⇥6 principal subma-
trices of,

⌧
3q :

,
⌧

3q ( 9 , :) =

F 9 9 F 9:

F: 9 F::

�
2 C6⇥6, ( 9 , :) 2 ⇢

where

F 9 9 :=

2666664

[,
⌧

3q ]00
9 9

[,
⌧

3q ]01
9 9

[,
⌧

3q ]02
9 9

[,
⌧

3q ]10
9 9

[,
⌧

3q ]11
9 9

[,
⌧

3q ]12
9 9

[,
⌧

3q ]20
9 9

[,
⌧

3q ]21
9 9

[,
⌧

3q ]22
9 9

3777775
, F 9: :=

2666664

[,
⌧

3q ]00
9:

[,
⌧

3q ]01
9:

[,
⌧

3q ]02
9:

[,
⌧

3q ]10
9:

[,
⌧

3q ]11
9:

[,
⌧

3q ]12
9:

[,
⌧

3q ]20
9:

[,
⌧

3q ]21
9:

[,
⌧

3q ]22
9:

3777775
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The chordal relaxation of (18.29) is then (using (18.10)):

min
,
⌧

3q
tr (⇠0,⌧3q ) (18.30a)

s.t. ?
qmin
9

 tr
⇣
�q
9
,
⌧

3q

⌘
 ?

qmax
9

, 9 2 # , q 2 {0,1,2} (18.30b)

@
qmin
9

 tr
⇣
 q
9
,
⌧

3q

⌘
 @

qmax
9

, 9 2 # , q 2 {0,1,2} (18.30c)

E
qmin
9

 tr
⇣
⇢
q

9
,
⌧

3q

⌘
 E

qmax
9

, 9 2 # , q 2 {0,1,2} (18.30d)

tr
⇣
.̂
q

9:
,
⌧

3q

⌘
 ✓

qmax
9:

, ( 9 , :) 2 ⇢ , q 2 {0,1,2} (18.30e)

tr
⇣
.̂
q

: 9
,
⌧

3q

⌘
 ✓

qmax
: 9

, ( 9 , :) 2 ⇢ , q 2 {0,1,2} (18.30f)

,
⌧

3q ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢ (18.30g)

F00 = +0+
H
0 (+0 is given) (18.30h)

Let ,opt
⌧

3q be an optimal solution of (18.30). If every 6 ⇥ 6 principal submatrix

,
opt
⌧

3q ( 9 , :) of the partial matrix,opt
⌧

3q satisfies

rank
⇣
,

opt
⌧

3q ( 9 , :)
⌘
= 1, ( 9 , :) 2 ⇢

then an optimal solution+opt of (18.29) can be uniquely recovered from,
opt
⌧

3q accord-
ing to Theorem 10.3. This is because a chordal relaxation is exact if and only if the
principal submatrix ,opt

⌧
3q (@) of ,opt

⌧
3q is psd rank-1 for every clique @ of the chordal

graph ⌧3q (Theorem 10.1) and, as noted above, the only maximal cliques of ⌧3q are
those 6-node cliques corresponding to lines ( 9 , :) 2 ⇢ .

The method in Chapter 10.1.4 to recover an optimal+opt from,
opt
⌧

3q applies directly

here. Since rank
⇣
,

opt
⌧

3q ( 9 , :)
⌘
= 1 for all ( 9 , :) 2 ⇢ , they satisfy the cycle condition

(Theorem 10.1). Take any spanning tree of ⌧3q with root at, say, node 00. Let
���+ q
9

��� :=q
[,opt

⌧
3q ]

qq

9 9
for 9 2 # ,q 2 {0,1,2}. Let Pq

9
be the unique path from the root 00 to

the node 9q in the spanning tree. A link ( 9 0q0, 9 00q00) in the path Pq
9

is denoted by

( 9 0q0, 9 00q00) 2 Pq
9
. Then for all nodes 9q in the equivalent single-phase network ⌧3q ,

\+ q
9

:= \+00 �
’

( 90q0, 900q00)2Pq
9

\
h
,

opt
⌧

3q

i
q
0
q
00

9
0
9
00

mod 2c

18.3 Semidefinite relaxation: BFM

As for the bus injection model we reformulate in Chapter 18.3.1 the three-phase OPF
(18.17) in the branch flow model for radial networks, and derive in Chapter 18.3.2 its
semidefinite relaxation.
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18.3.1 Reformulation

Consider the three-phase OPF (18.17) in BFM for radial networks studied in Chapter
18.1.4, reproduced here:

min
(D,G)

⇠ (D,G) s. t. (18.1)(18.2)(18.15)(18.16), E0 =+0+
H
0 (18.31)

where (D,G) := (D, B,E,✓,(,+ , �̃), D denotes the internal variables of three-phase devices
and G denotes the terminal variables that interact through power flow equations. The
devices are modeled by the conversion rules (18.1) on (D 9 ,G 9 ) and the operational
constraints (18.2) on D 9 . The power flow equation is (18.15) and the operational
constraint on G is (18.16).

To simplify notation we consider, as in Chapter 18.2.1, only three-phase voltage
and power sources and assume that all neutral voltages W.

9
:=+=

9
= 0. Then the internal

variables for these devices are D := (D 9 , 9 2 #) where

D 9 :=

(
E
. /�
9

if device 9 is a voltage source⇣
B
. /�
9

,-�
9
,✓�
9

⌘
if device 9 is a power source

(18.32)

The device models (18.1)(18.2) have been reformulated as (18.22) in Chapter 18.2.1,
with the 3 ⇥ 3 matrix variables , 9 9 and ,

. /�
9

in BIM replaced by E 9 and E
. /�
9

respectively in BFM.

Without voltage sources, we no longer need the variable + 9 for the conversion rule
that relates + 9 to the internal voltage +. /�

9
. Hence we will omit (+ 9 , �̃ 9: ) and the

quadratic constraints (18.15d), E 9 =+ 9+H
9
, ✓ 9: = �̃ 9: �̃H

9:
, and ( 9: =+ 9 �̃H

9:
. Let the BFM

variables be G := (B,E,✓,() where E 9 ,✓ 9: ,( 9: is each a 3⇥3 matrix. Finally we assume
the terminal voltage +0 at bus 0 is given and imposes the constraint E0 = +0+

H
0 . Then

the three-phase OPF (18.31) can be reformulated as follows. Let the feasible set be

T3? :=
�
(D,G) := (D, B,E,✓,() | (D,G) satisfies (18.15a)� (18.15c)(18.16)(18.22),E0 =+0+

H
0

 
(18.33a)

where D is defined in (18.32). The three-phase OPF problem (18.31) is equivalent to:

min
D,G

⇠ (D,G) subject to (D,G) 2 T3? (18.33b)

18.3.2 Semidefinite relaxation

OPF (18.33) is nonconvex due to the rank-1 constraint (18.15c) in the power flow
equations and the rank-1 constraints (18.22a)(18.22b)(18.22f) in the device models.
Omitting these rank-1 constraints yields a semidefinite relaxation. Recall the function
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" (�,⌫,⇡) that constructs a 6⇥6 matrix from 3⇥3 matrices �,⌫,⇡, defined in (18.24)
and reproduced here:

" (�,⌫,⇡) :=

� ⌫

⌫
H

⇡

�
(18.34)

where �,⇡ are Hermitian and ⌫ is arbitrary. Then the psd constraints in (18.15c) and
in (18.22f) can be written in terms of " as respectively.

"

�
E 9 ,( 9: ,✓ 9:

�
=

"
E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0, 9 ! : 2 ⇢

"

⇣
E 9 ,-�9: ,✓

�
9:

⌘
=

"
E 9 -

�
9:

-
�H
9:

✓
�
9:

#
⌫ 0, 9 ! : 2 ⇢

The feasible set of the semidefinite relaxation is defined by the following constraints:

network: E0 = +0+
H
0 , (18.15a)(18.15b), (18.16), (18.35a)

0 � "

�
E 9 ,( 9: ,✓ 9:

�
, ( 9 , :) 2 ⇢ (18.35b)

devices: E 9 = E
.

9
, E

.

9
⌫ 0, 9 2 #.

E
(18.35c)

�E 9�T = E
�
9
, E

�
9
⌫ 0, 9 2 #�

E
(18.35d)

B 9 = �B.
9
, 9 2 #.

?
(18.35e)

B 9 = �diag
⇣
-
�
9
�
⌘
, B�

9
= diag

⇣
�-�

9

⌘
, "

⇣
E 9 ,-�9 ,✓�

9

⌘
⌫ 0, 9 2 #�

?

(18.35f)

where +0 2 C3 is given. Define the feasible set as

T
+
3? := {(D,G) := (D, B,E,✓,() | (D,G) satisfies (18.35)} (18.36a)

where D is defined in (18.32). The set T+3? is a convex superset of T3? . The semidefinite
relaxation of the three-phase OPF problem (18.33) is:

min
D,G

⇠ (D,G) subject to (D,G) 2 T+3? (18.36b)

Let
�
D

opt,Gopt� denote an optimal solution of the SDP relaxation (18.36). We say
(18.36) is exact if the psd matrices of every optimal solution

�
D

opt,Gopt� are of rank 1,
i.e.,

rank
⇣
"

⇣
E

opt
9

,-�opt
9

,✓�opt
9

⌘⌘
= 1, rank

⇣
E
. /�opt
9

⌘
= 1, 9 2 # (18.37a)

rank
⇣
"

⇣
E

opt
9

,(opt
9:

,✓opt
9:

⌘⌘
= 1, ( 9 , :) 2 ⇢ (18.37b)

This means that
�
D

opt,Gopt� is feasible and therefore optimal for the original OPF
(18.33).

Suppose the terminal voltage satisfies rank
⇣
E

opt
9

⌘
= 1. Then the internal voltage
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E
. /�opt
9

is also of rank 1 by (18.35c)(18.35d). Unfortunately "
⇣
E

opt
9

,-�opt
9

,✓�opt
9

⌘
and

"

⇣
E

opt
9

,(opt
9:

,✓opt
9:

⌘
may not be of rank 1 because ✓�opt

9
and ✓opt

9:
respectively may not

be rank-1; see Lemma 18.1. As discussed after Lemma 18.1, even though the SDP
relaxation (18.36) may not be exact, it is still possible to recover an optimal solution
of OPF (18.33) from an optimal solution

�
D

opt,Gopt� of its relaxation (18.36) when

rank
⇣
E

opt
9

⌘
= 1 for all 9 2 # , provided that the cost function ⇠ is independent of ✓�

9
.

Equivalence.

When the network graph is a tree, then it can be shown that OPF (18.33) and its
relaxation (18.36) in BFM are equivalent to OPF (18.23) and its relaxation (18.25)
respectively in BIM (see [136, Proposition 1]).

18.4 Example applications

18.5 Bibliographical notes

As for most chapters, this section is now a placeholder with references collected in a
somewhat random fashion during the writing of the text. Major rewrite later.

There has been a great deal of research on OPF since Carpentier’s first formulation
in 1962 [86]. An early solution appears in [87] and extensive surveys can be found in
e.g. [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 39, 101]. It is nonconvex and
has been shown to be NP-hard in general [102, 69, 70].

Many references for 3-phase OPF: e.g. [103, 104, 105]

There are many excellent texts on optimization theory especially for convex prob-
lems, e.g., [62, 57, 54]. Optimization texts with power system applications include
[106, 107]. In particular Chapter 8.5.3 mostly follows the presentation in [57, Chapter
11]. A popular interior-point solver for OPF problems is [108].

A classic text on computational complexity is [75]. OPF has been shown to be
NP-hard in general [102, 69, 70, 72, 74]. [77] surveys combinatorial OPF and proves
approximation results and conditions for exactness (when there are no discrete vari-
ables). It shows that OPF with discrete injections cannot be e�ciently approximated.
The hardness results complement those in [73, 68, 69, 70]; see [77, Chapter 5] and its
Section 5.6 for comparison.

Chapter ?? on global optimality is taken form [80, 79]

[109] shows that, by dualizing clique tree conversion, a class of nonconvex problems,
including OPF problems, the per-iteration cost of an interior-point method is linear
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$ (=) in time and in memory, so an n-accurate and n-feasible iterate is obtained after
$ (p= log(1/n)) iterations in $ (=1.5 log(1/n)) time.

18.6 Problems

Chapter 18.1

Exercise 18.1 (3-phase OPF as QCQP: line limit). Derive the line limit (18.10d) in
three-phase OPF.

Exercise 18.2 (3-phase OPF as QCQP: current source). Derive the conversion rule
(18.13c)(18.13d) for a current source D 9 := �. /�

9
.

Exercise 18.3 (3-phase OPF as QCQP: power source). Derive the conversion rule

(18.13e)(18.13f) for a power source D 9 := (D 91,D 92) :=
⇣
B
. /�
9

, �. /�
9

⌘
.

Exercise 18.4 (3-phase OPF as QCQP: impedance). Derive the conversion rule

(18.13g)(18.13h) for an impedance
⇣
I
.

9
,W.
9

⌘
or I�

9
.

Exercise 18.5 (3-phase OPF as QCQP: power source). For a power source, we use

D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
as the internal variable. This exercise shows that this approach is

simpler for a. -configured power source than if the optimization variable is taken to be
D 9 := B.

9
instead. Consider a . -configured ideal power source where the optimization

variable is the internal power (only) D 9 := B.
9

and its neutral voltage W.
9

:=+=
9

is given.
If W.

9
= 0 then B 9 = �B.

9
. Suppose W.

9
< 0.

1 Show that D 9 is related to the terminal voltage and current
�
+ 9 , B 9

�
as:

B 9 = �diag

 
+
q

9

+
q

9
�W.

9

,q = 0,1,2

!
D 9

2 . configuration: Show that the conversion rule in part 1 is equivalent to the

following set of inhomogeneous equality constraints on
⇣
+ ,D 9 ,F

q

9
,q 2 {0,1,2}

⌘
2

C
12(#+1)+3: for each 9 2 # ,

+
H
⇣
W
.

9
.
qH
9

⌘
+ = D̄

H
9

⇣
4
q

4
qH
9

⌘
+ + F

qH
9

⇣
.
qH
9

⌘
+ , q 2 {0,1,2}

4
iH
:
F
q

9
= +

H
⇣
4
q

9
4
iH
9

⌘
+ , : 2 # , q,i 2 {0,1,2}
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where Fq
9
2 C3(#+1) is an auxiliary variable, one for each q 2 {0,1,2}. For each

9 2 # , this is a set of 9(# +1) +3 quadratic equations in
⇣
+ ,D 9 ,F

q

9
,q 2 {0,1,2}

⌘
.

Chapter 18.2

Exercise 18.6 (SDP relaxation in BIM [136]). 1 Prove Lemma 18.1.
2 Give an example where " (�,⌫,⇡) is not of rank 1.



Appendix Linear algebra preliminaries

In this chapter we review some basic concepts in linear algebra and algebraic graph
theory that we have used in this book. There are many excellent books on these topics
and our goal is not to be comprehensive or systematic in coverage, but to collect
concepts and properties used in this book in one place for the convenience of the
readers who have already had exposures to these topics.

A.1 Vector spaces, basis, rank, nullity

A.1.1 Vector spaces, subspaces, span

This subsection mostly follows [15, Chapter 0]. We restrict ourselves mostly to finite
vector spaces. Underlying a vector space is its field �, which is a set of scalars that
is closed under two binary operations, called “addition” (0 + 1) and “multiplication”
(01). Most often, � =R orC for us, but in general � can be the set of rational numbers,
or a set of integers modulo a specified prime number, etc. The two operations must
be associative and commutative, and each must have an identity element in the set;
inverses must exist in the set for all elements under addition and for all elements except
the additive identity under multiplication; multiplication must distribute over addition.

Definition A.1 (Vector space). A vector space + , or linear space, over a field � is a
set + of objects, called vectors, that is closed under two binary operations:

• vector addition + :+ ⇥+ !+ denoted by G + H;
• scalar multiplication · : � ⇥+ !+ denoted by 0 · G =: 0G;

and satisfies the following properties: for all G, H, I 2 + and 0,1 2 �,

1 Associativity of vector addition: G + (H + I) = (G + H) + I.
2 Commutativity of vector addition: G + H = H + G.
3 Identity element of vector addition: There exists 0 2 + , called the zero vector, such

that G +0 = G.



984 Linear algebra preliminaries

4 Inverse elements of vector addition: There exists�G 2+ , called the additive inverse
of G, such that G + (�G) = 0.

5 Associativity of scalar multiplication: 0(1G) = (01)G.
6 Identity element of scalar multiplication: There exists 1 2 �, called the multiplica-

tive identity in � such that 1G = G.
7 Distributivity of scalar multiplication over vector addition: 0(G + H) = 0G + 1H.
8 Distributivity of scalar multiplication over field addition: (0 + 1)G = 0G + 1G.

A subspace of a vector space + over a field � is a subset of + that is itself a vector
space over � with the same binary operations as in + . ⇤

If � = R then + is called a real vector space. If � = C then + is called a complex
vector space. Given � and an integer = the set + := �= of =-tuples with components
from � forms a vector space over � where the vector addition “+” is defined by
componentwise addition: [G + H]8 = G8 + H8 . The vector space �= is important because
any finite dimensional vector space can be identified with �= for some integer = (see
Example A.1 and the next subsection for a formal definition). Note that R= is a real
vector space (+ = R= over � = R) while C= is both a real vector space (+ = C= over
� = R) and a complex vector space (+ = C= over � = C).

A vector space+ is however not restricted to+ = �=. An important finite dimensional
vector space over � is the set "<,= (�) of < ⇥ = matrices whose entries ["]8 9 2 �
for any finite < and =. We can vectorize � 2 "<,= (�) and treat � as a vector in
+ = �<=, but we will mostly treat � as an array of scalars in + = �<⇥=. Note that
matrix multiplication is not involved in the definition of+ = �<⇥= as a vector space (it
can be treated as a composition of linear transformations when a matrix is viewed as a
linear transformation from �

= to �<; see below). If < = = we abbreviate "<,= (�) to
"< (�). If � = ⇠ we abbreviate "<,= (⇠) to "<,=.

The components G8 of vectors G 2+ may not be from �. Possibly infinite dimensional
examples include: the set of polynomials with real or with complex coe�cients (of
up to a specified degree or of arbitrary degree) is a real or complex vector space
respectively; the set of real-valued or complex-valued functions on subsets of R or C
is a real or complex vector space respectively.

If ( ✓ + is a nonempty subset of the vector space+ over a field � then span(() is the
intersection of all subspaces of + that contain (. It consists of all linear combinations
of finitely many vectors in (:

span(() = {01G1 + · · · + 0:G: : G1, . . . ,G: 2 (, 01, . . . ,0: 2 �, : = 1,2, . . . }

It can be checked that span(() is always a subspace whether or not ( is a subspace. (
is said to span + if span(() = + . Let (1 and (2 be subspaces of a vector space over a
field �. The sum of (1 and (2 is the subspace

(1 + (2 := span{(1[ (2} = {G + H : G 2 (1, H 2 (2}
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If (1 \ (2 = {0} then (1 + (2 is called a direct sum and we write it as (1 � (2. Every
vector I 2 (1 � (2 can be uniquely written as I = G + H with G 2 (1 and H 2 (2.

Example A.1. Consider ( := {1, C, C2, . . . , C=�1}. Even though ( is not a vector space
its span

span(() = {00 + 01C + · · · + 0=�1C
=�1 : 00, . . . ,0=�1 2 �}

is an =-dimensional vector space+ that can be identified with �= where G 2+ is defined
by G8 = 08 , 8 = 0, . . . ,=�1. ⇤

A.1.2 Basis, dimension, rank and nullity

A finite set of vectors G1, . . . ,G: in a vector space+ over a field � is linearly dependent
if and only if there are scalars 01, . . . ,0: 2 �, not all zero, such that 01G1 + · · · +0:G: =
0 2+ . The vectors G1, . . . ,G: are linearly independent if they are not linearly dependent.
A linearly independent set ⌫ := {E1,E2, . . . , } ✓ + of vectors that spans the vector space
+ is called a basis. Any vector G 2+ can be uniquely expressed as a linear combination
of the basis, i.e., G =

Õ
8
08E8 for a unique set of scalars 08 2 �, 8 = 1,2, . . . . If there is a

positive integer = such that ⌫ := {E1, . . . ,E=} is a basis of + , then all bases of + consist
of exactly = vectors and = is the dimension of + , denoted by dim(+). This is because
adding any vector to a basis will render it linearly dependent and removing any vector
from the basis will prevent it from spanning+ . In this case+ is finite dimensional. If no
such integer = exists then + is infinite dimensional. For an infinite dimensional vector
space, there is a one-to-one correspondence between the vectors in any two bases. A
subspace of a (finite) =-dimensional vector space has dimension no more than =; it is
a proper subspace if its dimension is strictly less than =.

The real vector space R= has dimension =. The complex vector space ⇠= has
dimension = over the field � = C but dimension 2= over the field � = R. A basis of
a vector space �= is a set of vectors {E1, · · · ,E=} such that any vector G 2 �= can
be expressed as a linear combination of vectors in the basis, i.e., G = ⌫U for some
U 2 �= where the columns of ⌫ are the vectors {E1, · · · ,E=}. If the basis vectors are
orthogonal, i.e., EH

8
E 9 = 0 for 8 < 9 , then the basis is called an orthogonal basis. If the

basis vectors are both orthogonal and of unit Euclidean norm (kE8 k2 = 1 for all 8), then
the basis is called an orthonormal basis. The basis {41, · · · ,4=} of �= in which the
=-vector 48 has a 1 in its 8th entry and 0s elsewhere is called the standard basis, the
unit basis or the unit vector. It is an orthonormal basis. Two vector spaces * and +
over the same filed � is called isomorphic if there is an invertible function 5 :*!+

such that 5 (0G + 1H) = 0 5 (G) + 1 5 (H) for all G, H 2 * and 0,1 2 �. Then 5 is called
an isomorphism. Any =-dimensional real vector space is isomorphic to R= and any
=-dimensional complex vector space is isomorphic to C=.

Let + be a finite-dimensional vector space and let (1,(2 be two given subspaces of
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+ . Then

dim((1\ (2) + dim((1 + (2) = dim((1) + dim((2)

Hence

dim((1\ (2) � dim((1) + dim((2) � dim(+)

since (1 + (2 := span{(1 [ (2} ✓ + . By induction we have dim((1 \ · · · \ (: ) �
dim((1) + · · · + dim((: ) � (: � 1)dim(+). If X := dim((1) + · · · + dim((: ) � (: �
1)dim(+) � 1 then (1 \ · · · \ (: contains at least X � 1 linearly independent vec-
tors. For example, for the vector space + := R3 and subspaces (1,(2 defined by two
non-parallel planes, their intersection (1\(2 is a line in+ and has a dimension at least
2+ 2� 3 = 1. In fact its dimension is exactly 1 because (1 + (2 = + . If (3 is a plane
that is not parallel to (1 or (2, dim((1\ (2\ (3) � 2+2+2� (2) (3) = 0. It is exactly
0 (their intersection is a point) because (1 + (2 + (3 =+ .

We can view a matrix "<,= (�) as a vector in the vector space �<=, or an array of
scalars � in the vector space �<⇥=. A third perspective is to view a matrix � 2 "<,= (�)
as a linear transformation � : �=! �

< mapping G to �G. Then

• The domain of � is �=.
• The range of � is the subspace range(�) := {�G 2 �< : G 2 �=} ✓ �<. The dimension

of range(�) is called the rank of �, denoted by rank(�).
• The null space of � is the subspace null(�) := {G 2 F= : �G = 0} ✓ �=. The dimension

of null(�) is called the nullity of �, denoted by nullity(�).

The span range(�) is also called the column space of �. Similarly {HT
� : H 2 �<} is

called the row space of �. The rank-nullity theorem states that

rank(�) + nullity(�) = = = rank
⇣
�

H
⌘
+ nullity(�) (A.1)

where the last equality holds if � =C or R and follows since rank(�) = rank
�
�

H�
. Note

that range
�
�

H�
✓ �= whereas range(�) ✓ �<.

Henceforth we use "<,= := "<,= (C) to denote the set of < ⇥ = matrices whose
elements are in C. We abbreviate them to "= := "= (C) if < = = and use " := " (C)
when < and = are arbitrary. Similarly for "<,= (R), "= (R) and " (R) for matrices
whose elements are inR. We often write � 2 C<⇥= (or � 2 R<⇥=) and call � a complex
(or real) matrix to mean a matrix � in " (or " (R)) of size <⇥=.
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A.2 Polyhedral set and extreme point

We follow [54, Chapter 2] and define a polyhedral set - ✓ R= as a nonempty set
specified by a finite number of a�ne inequalities:

- := {G 2 R= : �G  1}

for a given � 2 R<⇥= and 1 2 R<. Hence a polyhedral set is nonempty closed and
convex. An important characterization of a polyhedral set is the following result e.g.
[54, Proposition 2.3.3, p.106].

Theorem A.1 (Minkowski-Weyl representation). A set - ✓R= is polyhedral if and only
if there is a finite set {E1, . . . ,E<} and a finitely generated cone  := cone(01, . . . ,0: )
such that

- = conv(E1, . . . ,E<) + cone(01, . . . ,0: )

i.e.

- =

(
G 2 R= : G =

<’
8=1

U8E8 + H, U8 � 0,
’
8

U8 = 1, H 2  
)

⇤

Given a nonempty convex set - ✓ R= a vector G 2 - is an extreme point if there
does not exist H < G, I < G, and U 2 (0,1) such that G = UI + (1�U)H, i.e., if G is not
a convex combination of other vectors in - that are distinct from G. Several facts are
useful. An interior point cannot be an extreme point and an open set has no extreme
points. A cone may have at most one extreme point, the origin. A polyhedral set has at
most finitely many extreme points, and the minimum of a linear program is attained at
an extreme point of its polyhedral feasible set. A polyhedral set may not possess any
extreme points e.g. - = {(G1,G2) : G1 = G2}. The following result from [54, Propositions
2.1.5, p.98] provides an exact characterization of the existence of extreme points for
polyhedral sets.

Lemma A.2. Let - := {G 2 R= : �G  1} be a polyhedral set for some � 2 R<⇥= and
1 2 R<. Then - has an extreme point if and only if � has = linearly independent rows,
i.e., rank(�) = =. ⇤

A convex set that is compact is the convex hull of its extreme points; see e.g.
[141, Theorem 2.3.4, p.111]. Carathéodory theorem then implies that every vector is a
convex combination of at most =+1 extreme points. These constituent extreme points,
however, may be di�erent for di�erent vectors.

Lemma A.3. Let - ✓ R= be convex and compact. Then

1 - = conv{extreme points of -}.
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2 If G 2 - then G =
Õ
=+1
8=1 U8E8 for some extreme points E8 of - (that may depend on

G), and some U8 2 [0,1] with
Õ
8
U8 = 1. ⇤

A.3 Schur complement and matrix inversion formula

A.3.1 Schur complement

Let " 2 C=⇥= and partition it into blocks:

" =

� ⌫

⇡ ⇠

�

such that ⇠ 2 C:⇥: , : < =, is invertible and the other submatrices are of appropriate
dimensions. The (= � :) ⇥ (= � :) matrix "/⇠ := � � ⌫⇠�1

⇡ is called the Schur
complement of block ⇠ of matrix " . If � is invertible then the : ⇥ : matrix "/� :=
⇠ �⇡��1

⌫ is called the Schur complement of block � of matrix " .

Example A.2 (Gaussian elimination). Schur complement arises from applying Gaus-
sian elimination to a system of linear equations such as:

� ⌫

⇡ ⇠

� 
G

H

�
=


11

12

�
,


�G +⌫H
⇡G +⇠H

�
=


11

12

�

When ⇠ is invertible, Gaussian elimination expresses H in terms of G by multiplying
the second equation by ⌫⇠�1 and subtracting the result from the first equation. This
corresponds to multiplying the equations on the left by a block lower-triangular matrix:


I=�: �⌫⇠�1

0 ⇠
�1

� 
� ⌫

⇡ ⇠

� 
G

H

�
=


��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

� 
G

H

�
=


1̂1

1̂2

�
(A.2a)

where 
1̂1

1̂2

�
:=


11�⌫⇠�1

12

⇠
�1
12

�

If the Schur complement of ⇠ is invertible then the solutions for (G, H) can be read o�
equation (A.2a) as

G =
⇣
��⌫⇠�1

⇡

⌘�1
1̂1 = ("/⇠)�1

1̂1

H = �⇠�1
⇡G + 1̂2 = �⇠�1

⇡ ("/⇠)�1
1̂1 + 1̂2

This means that 
��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

��1

=


("/⇠)�1 0
�⇠�1

⇡ ("/⇠)�1
I:

�
(A.2b)

⇤
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Gaussian elimination can be represented as
I=�: �⌫⇠�1

0 I:

� 
� ⌫

⇡ ⇠

� 
I=�: 0
�⇠�1

⇡ I:

�
=


��⌫⇠�1

⇡ 0
0 ⇠

�
(A.3)

This equation implies (since det("1"2) = det("1) det("2))

det(") = det(⇠) det("/⇠)
rank(") = rank(⇠) + rank("/⇠)

Theorem A.4 (Schur complement). Let " 2 C=⇥= be partitioned as above with non-
singular ⇠. Let "/⇠ := ��⌫⇠�1

⇡ be the Schur complement of ⇠ of matrix " .

1 " is nonsingular if and only if "/⇠ is nonsingular (given ⇠ is nonsingular).
2 det(") = det(⇠) det("/⇠).
3 rank(") = rank(⇠) + rank("/⇠).
4 Suppose " is symmetric. Then

1 " is positive definite if and only if ⇠ and "/⇠ are positive definite.
2 Suppose ⇠ is positive semidefinite (not just nonsingular). " is positive

semidefinite if and only if "/⇠ is positive semidefinite.
5 If " and ⇠ are invertible, then "/⇠ is invertible and

"
�1 =


("/⇠)�1 � ("/⇠)�1

⌫⇠
�1

�⇠�1
⇡ ("/⇠)�1

⇠
�1 +⇠�1

⇡ ("/⇠)�1
⌫⇠
�1

�

6 If " and � are invertible, then "/� := ⇠ �⇡��1
⌫ is invertible and

"
�1 =


�
�1 + ��1

⌫("/�)�1
⇡�
�1 ���1

⌫("/�)�1

�("/�)�1
⇡�
�1 ("/�)�1

�

Proof Assertions 1, 2, 3 follow from (A.3). Example A.2 shows that (from (A.2a)):
I=�: �⌫⇠�1

0 ⇠
�1

� 
� ⌫

⇡ ⇠

�
=


��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

�
(A.4)

" is singular if and only if there exists a nonzero vector (G, H) in null("), i.e.,
��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

� 
G

H

�
= 0 , (��⌫⇠�1

⇡)G = 0, H = �⇠�1
⇡G

Hence " is singular if and only if � � ⌫⇠�1
⇡ is singular. Applying

det("1"2) = det("1)det("2) to (A.4) we have det(") = det(⇠)det(�� ⌫⇠�1
⇡) =

det(⇠)det("/⇠).

For 4, �,⇠ are symmetric and ⇡
T = ⌫. Hence (A.3) becomes �"�

T =
diag("/⇠,⇠) where � is nonsingular with

� :=

I=�: �⌫⇠�1

0 I:

�
, �

�1 =

I=�: ⌫⇠

�1

0 I:

�
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Then

G
T
"G =

⇣
�
�T
G

⌘T
diag("/⇠,⇠)

⇣
�
�T
G

⌘
= H

T
1 ("/⇠)H1 + HT

2⇠H2 (A.5a)

where 
H1

H2

�
:= �

�T
G =


I=�: 0
⇠
�1
⌫

T
I:

� 
G1

G2

�
=


G1

⇠
�1
⌫

T
G1 + G2

�
(A.5b)

If⇠ and"/⇠ are positive definite, then for any G := (G1,G2) < 0, GT
"G = HT

1 ("/⇠)H1+
H

T
2⇠H2 > 0, i.e., " is positive definite. Conversely suppose " is positive definite, so

that HT
1 ("/⇠)H1 + HT

2⇠H2 > 0 for any (H1, H2) < 0. If HT
1 ("/⇠)H1  0 for any H1 < 0,

then choose G1 = H1 and G2 = �⇠�1
⌫

T
G1 so that H1 < 0 but H2 = 0. We have from (A.5)

that GT
"G = HT

1 ("/⇠)H1  0, contradicting that " is positive definite. Similarly if
H

T
2⇠H2  0 for any H2 < 0, then choose G1 = 0 and G2 = H2, yielding GT

"G = HT
2⇠H2  0,

a contradiction. Therefore both "/⇠ and ⇠ are positive definite.

If⇠ is nonsingular and positive semidefinite, then⇠ must be positive definite. Then
(A.5) implies that " is psd (and not pd) if and only if "/⇠ is psd (and not pd, setting
H2 = 0).

To prove 5, we have from (A.2)

� ⌫

⇡ ⇠

��1 
I=�: �⌫⇠�1

0 ⇠
�1

��1

=

��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

��1

=


("/⇠)�1 0
�⇠�1

⇡ ("/⇠)�1
I:

�

Hence 
� ⌫

⇡ ⇠

��1

=


("/⇠)�1 0
�⇠�1

⇡ ("/⇠)�1
I:

� 
I=�: �⌫⇠�1

0 ⇠
�1

�

=


("/⇠)�1 � ("/⇠)�1
⌫⇠
�1

�⇠�1
⇡ ("/⇠)�1

⇠
�1
⇡ ("/⇠)�1

⌫⇠
�1 +⇠�1

�

The last assertion can be proved in the same way by eliminating G instead of H in
Example A.2; see Exercise A.3. ⇤

Let � := {81, . . . , 8: } ✓ {1, . . . ,=}, � := { 91, . . . , 9;} ✓ {1, . . . ,=}, and �� � denote the
submatrix obtained from deleting rows not in � and columns not in �.

• If : = ;, i.e., �� � is square, then the minor "� � of � is the determinant of the
submatrix �� � .

• If � = �, then �� � is called a principal submatrix and "� � a principal minor of �.
• If � = � = {1, . . . , :} with :  =, then �� � is called a leading principal submatrix of

order : and "� � a leading principal minor of order : .

Theorem A.5 (Slyvester’s criterion). Suppose � is Hermitian. Then

1 � is positive definite if and only if all its leading principal minors are positive.
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This involves = determinants: those of the upper left 1⇥1 matrix, upper left 2⇥2
matrix, . . . , det(�).

2 � is positive semidefinite if and only if all its principal minors are nonnegative.

This involves
✓
=

1

◆
+

✓
=

2

◆
+ · · · +

✓
=

=

◆
determinants.

⇤

A.3.2 Matrix inversion lemma

A useful identity is the matrix inversion lemma or Sherman-Morrison-Woodbury
formula. Let � 2 C=⇥=, ⌫ 2 C=⇥: ,⇠ 2 C:⇥: and ⇡ 2 C:⇥=. Suppose �,⇠ and the : ⇥ :
matrix

⇠̂ := ⇠�1 +⇡��1
⌫ (A.6a)

are invertible. Then

(�+⌫⇠⇡)�1 = ��1 � �
�1

⇣
⌫⇠̂
�1
⇡

⌘
�
�1 (A.6b)

An important case is when : ⌧ =. Then the : ⇥ : matrix ⇠ is much smaller than �
and the multiplication of ⇠ by ⌫ and ⇡ on the left and right respectively produces an
=⇥=matrix ⌫⇠⇡ of the right size for addition with �. Similarly reversing the order of
multiplication produces a much smaller : ⇥ : matrix ⇡��1

⌫ for addition with ⇠�1 to
produce the matrix ⇠̂ in (A.6a). We can thus view the role of (⌫,⇡) as transforming
between sizes = and : to simplify the inversion of large matrices. In many applications
⌫⇠⇡ represents a low-rank update of � in a dynamical system or an additive noise to
a transmitted signal � so that �+ ⌫⇠⇡ is the received signal. Suppose ��1 has been
precomputed. Then ⇠̂ is much smaller and easier to invert than �+⌫⇠⇡. The matrix
inversion formula allows us to compute the inverse of the updated or noisy matrix
�+⌫⇠⇡ in terms of ��1 and ⇠̂�1 when they exist.

Many special cases are useful. For instance when � = I= and ⇠ = I: we have:

(I= +⌫⇡)�1 = I= � ⌫ (I: +⇡⌫)�1
⇡

Note that ⌫⇡ is =⇥= while ⇡⌫ is : ⇥ : and hence the inverse on the right-hand side
can be much easier to compute than that on the left-hand side. Using the push-through
identity (see Exercise A.4) this is equivalent to:

(I= +⌫⇡)�1 = I= � (I= +⌫⇡)�1
⌫⇡ = I= � ⌫⇡ (I= +⌫⇡)�1

When : = = and ⌫ = ⇡ = I= we have the inversion formula for sum of two matrices:

(�+⇠)�1 = ��1 � �
�1

⇣
⇠
�1 + ��1

⌘�1
�
�1
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Merging ��1 �
⇠
�1 + ��1��1

�
�1 we have Hua’s identity:

(�+⇠)�1 = ��1 �
⇣
�+ �⇠�1

�

⌘�1

A.4 Change of basis, diagonalizability, Jordan form

Recall that we can interpret any <⇥= complex matrix � as a linear transformation that
maps a vector G 2 C= to a vector H = �G 2 C<, where the basis in the domain C= is the
standard basis consisting of the columns of the =⇥= identity matrix I= and the basis in
the range C< is the standard basis consisting of the columns of I<. Suppose we want
to change the basis of the domain to (the columns of) an =⇥ = nonsingular matrix +
and the basis of the range to (the columns of) an <⇥< nonsingular matrix*. What is
the new matrix �̃ that represents the same linear map with respect to the new bases?

A.4.1 Similarity transformation

Since+ and* are bases of C= and C< respectively we can express any G 2 C= in terms
of + and any vector H 2 C< in terms of* as

G = + G̃ and H = * H̃

Hence a linear transformation � that maps any vector G 2 C= to a vector H = �G 2 C<
with respect to the standard bases implies

* H̃ = H = �G = �+ G̃

Hence

H̃ =*�1
�+|  {z  }
�̃

G̃

This means that any vector G̃ in the domain C= with respect to the new basis + is
mapped to the (same) vector H̃ in the range C< with respect to the new basis * by the
matrix (see Figure A.1)

�̃ := *
�1
�+ or � = *�̃+

�1

For the special case where = = < and the new bases for the domain and the range
are the same,* =+ ,

�̃ =+�1
�+ (A.7)

i.e., the new matrix �̃ represents the linear transformation under the new basis + . The
mapping of � to +�1

�+ is called a similarity transformation of � by the nonsingular
similarity matrix + .
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A

V U −1

Ã

Ã  = U −1AV

Rn Rm

x y

x̃ ỹ

basis
In

basis
V

basis
Im

basis
U

Figure A.1 Change of bases. The new matrix �̃ is similar to � when = = < and* =+ .

A.4.2 Diagonalizabilty and Jordan form

For the case where = =< and* =+ , if the basis+ in (A.7) is such that �̃ =⇤ is diagonal
then the diagonal entries _8 of ⇤ are the eigenvalues of � with the 8th columns E8 of +
as the corresponding eigenvectors, since

�+ = +⇤ or �E8 = _8E8 , 8 = 1, . . . ,=

� is said to be diagonalizable in this case, i.e., by definition, � is diagonalizable if it
is similar to a diagonal matrix ⇤.

Not all =⇥= matrix � over the complex field is diagonalizable through a similarity
transformation. We see above that � is diagonalizable if � has = linearly independent
eigenvectors. Indeed having = linearly independent eigenvectors is also necessary for
�’s diagonalizability.1 When � has fewer than = linearly independent eigenvectors, �
is not similar to a diagonal matrix, but to a Jordan form, i.e., there exists an invertible
matrix + such that

+
�1
�+ = � :=

2666664

�1
. . .

�<

3777775
where �8 , 8 = 1, . . . ,<, are Jordan blocks of �:

�8 :=

2666666664

_8 1

_8

. . .

. . . 1
_8

3777777775
To compute the columns of + , consider Jordan block �8 and suppose without loss of

1 A square matrix � 2 C=⇥= is said to be unitarily diagonalizable if + �1 = + H in (A.7). A matrix � is
unitarily diagonalizable if and only if it is normal (��H = �H

�); see Chapter A.6.
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generality that it corresponds to columns 1,2, . . . , :8 . Equate these :8 columns on both
sides of �+ =+� to get

�

266664
| | |
E1 E2 · · · E:8

| | |

377775
=

266664
| | |
E1 E2 · · · E:8

| | |

377775

2666666664

_8 1

_8

. . .

. . . 1
_8

3777777775
Therefore E1 is the eigenvector corresponding to the eigenvalue _8 and can be computed
from

(��_8 �=)E1 = 0 (A.8a)

The other columns E2, . . . ,E:8 are not eigenvectors. They satisfy �E 9 = E 9�1 +_8E 9 ,
9 = 2, . . . , :8 , and can be computed from

(��_8 �=)E 9 = E 9�1, 9 = 2, . . . , :8 (A.8b)

Multiplying both sides by ��_8 �= yields (��_8 �=)2
E 9 = E 9�2. Repeated multiplica-

tions then imply that the columns E1, . . . ,E:8 satisfy:

(��_8 �=)E1 = 0 (E1is eigenvector)
(��_8 �=)2

E2 = 0 (E 9 are generalized eigenvectors, 9 = 2, . . . , :8)
...

(��_8 �=):8E:8 = 0

The characteristic polynomial ?(G) := det(GI= � �) of � can be expressed in terms of
the eigenvalues _8:

?(G) := det(GI= �+�+�1) = det
⇣
+ (GI= � �)+�1

⌘
= det(GI= � �) =

<÷
8=1

det(GI:8 � �8)

where �8 is the 8th Jordan block of size :8 ⇥ :8 , and I:8 is the identity matrix of the
same size. Since a Jordan block is upper triangular we have

det(GI:8 � �8) = (G�_8):8

and hence

?(G) =
<÷
8=1

(G�_8):8

There can be more than one Jordan block whose diagonal entries are the repeated
eigenvalue _8 . Let @ be the number of distinct eigenvalues _ 9 , 9 = 1, . . . ,@, and let < 9

be the number of Jordan blocks corresponding to the distinct eigenvalue _ 9 , so that
< =

Õ
@

9=1 < 9 . Then the characteristic polynomial can also be expressed in terms of
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distinct eigenvalues as:

?(G) =
<÷
8=1

(G�_8):8 =
@÷
9=1

< 9÷
8=1

(G�_ 9 ):8

For each distinct eigenvalue _ 9 , there are two quantities of interest:

1 geometric multiplicity< 9 of _ 9 : This is the number of Jordan blocks corresponding
to _ 9 . It is the dimension of the null space of ��_ 9 I= since each such block yields
a single eigenvector of �.

2 algebraic multiplicity
Õ< 9

8=1 :8 of _ 9 : This is the sum of the sizes :8 of all these
Jordan blocks. It is the maximum degree of the factor G �_ 9 in the characteristic
polynomial ?(G) of " .

Hence for each distinct eigenvalue _ 9

algebraic multiplicity
< 9’
8=1

:8 � geometric multiplicity < 9

We summarize implications of algebraic and geometric multiplicities on the diagonal-
izability of � in the following theorem.

Theorem A.6. With the notations above,

1 For each distinct eigenvalue _ 9 , algebraic multiplicity = geometric multiplicity =
< 9 if and only if all Jordan blocks corresponding to _ 9 have sizes :8 = 1. In this
case, there are< 9 eigenvectors corresponding to _ 9 , they are linearly independent,
and the null space of ��_ 9 �= has dimension < 9 .

2 � is diagonalizable if and only if algebraic multiplicity = geometric multiplicity
for all eigenvalues, if and only if all Jordan blocks have sizes 1 and hence all super-
diagonal entries are zero, if and only if � has = linearly independent eigenvectors.

3 As a special case, � is diagonalizable if � has = distinct eigenvalues (and
hence all Jordan blocks are of size 1, < 9 = :8 = 1 = algebraic multiplicity =
geometric multiplicity).

A.5 Special matrices

Definition A.2 (Square matrices). 1 A real or complex matrix � 2 F=⇥=, with � =R
or C, is symmetric if �T = �, skew-symmetric if �T = ��, and orthogonal if
�

T = ��1.
2 A complex matrix � 2 C=⇥= is Hermitian if �H = �, skew-Hermitian if �H = ��,

and unitary if �H = ��1.
3 A complex matrix � 2 C=⇥= is normal if ��H = �H

�. If � is real, this reduces to
��

T = �T
�.
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4 Positive semidefiniteness.
• A complex matrix � 2 C=⇥= is positive semidefinite (psd) (or positive definite

(pd)) if GH
�G is real and nonnegative (or real and positive) for all G 2 C=.

• A real symmetric matrix � 2 R=⇥= is positive semidefinite (psd) (or positive
definite (pd)) if GT

�G � 0 (or GT
�G > 0) for all G 2 R=.

• A complex or real matrix � is negative semidefinite (nsd) (or negative definite
(nd)) if �� is psd (or pd). It is indefinite if there are vectors H, I 2 F 2 {C,R}
such that HH

�H < 0 < I
H
�I.

⇤

Remark A.1. 1 A real orthogonal matrix or a unitary matrix has columns (or rows)
that are orthonormal basis of R= or C=. A complex orthogonal matrix however is
generally not unitary and their columns (or rows) are generally not orthonormal.

2 All Hermitian (symmetric), skew-Hermitian (skew-symmetric), or unitary com-
plex matrices are normal, but the converse is not generally true. A real symmetric
matrix is normal, but a complex symmetric matrix may or may not be normal (see
Chapter A.6.4). If � is both triangular and normal, then � is diagonal.

3 A complex Hermitian (skew-Hermitian) matrix behaves like a real symmetric
(skew-symmetric) matrix, e.g., they have real eigenvalues and are normal matrices.
It therefore has a spectral decomposition according to Theorem A.13. A complex
Hermitian matrix has real diagonal entries.

4 A complex symmetric matrix may or may not be normal. It therefore may or may
not have a spectral decomposition. It always has a singular value decomposition
(Theorem A.11) and a Takagi decomposition (Theorem A.17), and these are
generally di�erent decompositions.

5 Our definition of psd (or pd) requires symmetry for real matrices, but does not
require Hermitian for complex matrices. This is because, for a complex matrix
� 2 C=⇥=, � is psd (or pd) if and only if � is Hermitian and its eigenvalues are
nonnegative (or positive), so our Definition A.2 for complex matrices implies
Hermitian. For a real matrix � 2 R=⇥=, on the other hand, � can satisfy GT

�G � 0
for all G 2R= but not be symmetric (as long as its symmetric component (�+�T)/2
is psd or pd). Following [15, Definition 4.1.11, p. 231], we therefore restrict our
definition to real symmetric matrices. Then � is psd (or pd) if and only if all its
eigenvalues are nonnegative (or positive) [15, Theorem 4.1.10, p.231].

⇤

Theorem A.7 (Eigenvalues). 1 A matrix �, real or complex, is invertible if and only
if all its eigenvalues are nonzero.

2 If a matrix � is real symmetric or complex Hermitian, then all its eigenvalues are
real.

3 A matrix �, real or complex, is psd (pd) if and only if �H = � and all its eigenvalues
are real and nonnegative (positive).

⇤
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Definition A.3 (Diagonal dominance). A matrix � 2 C=⇥= is diagonally dominant if

|�88 | �
’
9: 9<8

|�8 9 | for all rows 8

� is strictly diagonally dominant if the inequalities are strict for all rows 8.

The Ger�gorin disc theorem states that all eigenvalues of a matrix � 2 C=⇥= lie in
the union of = discs

[=
8=1

(
I 2 C= : |I� �88 | 

’
9: 9<8

|�8 9 |
)

If � is strictly diagonally dominant then the origin is outside Ger�gorin discs, i.e., all
eigenvalues of � are nonzero. The geometry of the Ger�gorin discs also implies the
following property.

Theorem A.8. 1 A strictly diagonally dominant matrix is invertible (but not neces-
sarily positive definite).

2 Suppose � 2 C=⇥= is Hermitian with (real) nonnegative diagonal entries �88 � 0.
• If � is diagonally dominant then it is positive semidefinite.
• If � is strictly diagonally dominant then it is positive definite and invertible.

Proof Part 1 follows from the Ger�gorin disc theorem. For part 2, for any G 2 C= we
have

G
H
�G =

’
8, 9

�8 9G
H
8
G 9 =

’
8

 
�88 |G8 |2 +

’
9: 9<8

�8 9 G
H
8
G 9

!

Substitute �88 �
Õ
9: 9<8 |�8 9 | (diagonal dominance) to get

G
H
�G �

’
8

’
9: 9<8

⇣
|�8 9 | |G8 |2 + �8 9 G

H
8
G 9

⌘

=
’

(8, 9):8< 9

⇣
|�8 9 | |G8 |2 + |� 98 | |G 9 |2 + �8 9 G

H
8
G 9 + � 98 GH

9
G8

⌘

Since � 98 = �H
8 9

(� is Hermitian) we have

G
H
�G �

’
(8, 9):8< 9

|�8 9 |
⇣
|G8 |2 + |G 9 |2� |GH

8
| |G 9 |� |GH

9
| |G8 |

⌘
=

’
(8, 9):8< 9

|�8 9 |
�
|G8 |� |G 9 |

�2 � 0

If � is strictly diagonally dominant then the inequality is strict and therefore � is
positive definite. ⇤

Unitary matrices have the following properties (e.g. [15, Theorem 2.1.4, p.84]).

Lemma A.9. Consider a complex matrix* 2 "= := "= (C). The following are equiv-
alent:
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• * is unitary.
• *H

* = I.
• The columns of* are orthornormal.
• *H is unitary.
• **H = I.
• The rows of* are orthornormal.
• k*Gk2 = kGk2 for all G 2 C= where k · k2 is the Euclidean norm.

A unitary matrix can be interpreted as a rotation operator, i.e., the product*G rotates
the vector G without expanding its Euclidean norm, k*Gk22 = GH (*H

*)G = GH
G = kGk22.

In fact, the Euclidean norm is the only vector norm that is unitarily invariant, i.e.,
k*Gk = kGk for all G 2 C= and all unitary matrices* with k48 k = 1; see Chapter A.8.1.

Recall that a unitary matrix is normal because**H =*H
* = I, and hence unitarily

diagonalizable (Theorem A.13). If it is also symmetric then the unitary matrix is real
orthogonal according to the following result [15, Corollary 2.5.18, p.139].

Lemma A.10. Suppose* 2 "= := "= (C) is unitary and symmetric. Then

1 If* = diag (01, · · · ,0=) then 0 9 = 4i\ 9 for some \ 9 2 R=.
2 Spectral decomposition. There exist real orthogonal matrix & 2 R=⇥= and real
\1, · · · ,\= in [0,2c) such that

* = & diag
⇣
4

i\1 , · · · ,4i\=

⌘
|                   {z                   }

⇤

&
T =: &⇤&T

where _ 9 := 4i\ 9 are the eigenvalues of* and the columns of& are an orthonormal
set of corresponding (real) eigenvectors of*.

A.6 SVD, spectral decompositions, complex symmetric matrices

In this subsection we review the various matrix decompositions and their relationship,
as shown in Figure A.2.

A.6.1 Singular value decomposition for any matrix

Consider a complex matrix � 2 C<⇥=. Suppose there exists a real value f � 0 and
nonzero vectors E 2 C<, F 2 C= such that

�F = fE (A.9)

In this case, (f,E,F) are called respectively a singular value, associated left singular
vector and right singular vector of �. The next result says that every matrix � has
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All: A∈Cm×n 

Square:

Diagonalizable: A has n L.I. eigenvectors col(V )

J =Λdiagonal

Complex 
Symmetric: A = AT

Normal: AAH= AHA

Spectral thm: A = VΛVH, λi∈C , V −1= VH∈Cn×n

σi(A ) = |λi(A )|

Complex
Hermitian: A = AH

PSD: NSD:

A∈Cn×n

A = V∑WH, V∈Cm×mt, W∈Cn×n, ∑∈Cm×nSVD:

Jordan form J: A = VJV −1, V∈Cn×n

Takagi: A = V∑V T

λi  ≥ 0

Real 
Symmetric: A = AT∈Rn×n

Spectral thm: A = VΛV T,
         λi∈R, V∈Rn×n

λi  ≤ 0

Spectral thm: A = VΛVH,
         λi∈R, V∈Cn×n

PSD: NSD:

λi  ≥ 0 λi  ≤ 0

Figure A.2 Matrix decompositions. Singular value decomposition (Thm A.11),
Diagonalizability (Thm A.6), Spectral theorems (Thms A.13, A.15, A.16), Takagi’s
decomposition (Thm A.17).

< orthonormal left singular vectors E1, . . . ,E< 2 C<, = orthonormal right singular
vectors F1, . . . ,F= 2 C=, and at most @ := min{<,=} strictly positive singular values
f1, . . . ,f@ . Like eigenvalues the singular values f8 are unique. Like eigenvectors, left
and right singular vectors (E8 ,F8) are generally not unique. As we will see below,
they are eigenvectors of ��H and �H

� respectively; but the converse may not hold,
i.e., not every eigenvector of ��H and that of �H

� may satisfy (A.9). For example,
if (E8 ,F8) are singular vectors of unit Euclidean norm, so are (4i\

E8 , 4i\
F8) for any

\ 2 R. Moreover the matrix � can be factorized as follows [15, Theorem 2.6.3, p.150].

Consider an < ⇥ = matrix ⌃ and a diagonal matrix ⌃@ = diag(f1, · · · ,f@) of size
@ := min{<,=}. We will abuse notation and call ⌃ diagonal, even if < < =, if ⌃ is of
the form:

⌃ =

8>>>><
>>>>:

⌃@ if < = =⇥
⌃@ 0

⇤
if = > < = @

⌃@
0

�
if < > = = @

(A.10)

Theorem A.11 (Singular value decomposition). For any matrix � 2 C<⇥=, there exists
unitary matrices + 2 C<⇥< and, 2 C=⇥=, and a real diagonal matrix ⌃ 2 R<⇥= of the
form in (A.10) with

f1 � f2 · · · � f@ � 0
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such that

�, = +⌃ or � = +⌃,H (A.11)

with +�1 =+H and,�1 =,H. Moreover

1 The nonzero singular values of � are the positive square roots of the eigenvalues
of ��H (or equivalently of �H

�):

f8 = +
p
_8 (��H) = +

p
_8 (�H

�), 8 = 1, . . . ,@

2 If A  @ of the @ singular values f8 are positive, then � is of rank A and

� =
A’
8=1

f8 E8F
H
8

3 If + and, are unitary matrices such that � =+⌃,H then
• the columns of+ are an orthonormal set of eigenvectors of ��H because ��H =

+⌃2
+

H, and
• the columns of , are an orthonormal set of eigenvectors of �H

� because
�

H
� =,⌃2

,
H;

but the converse does not necessarily hold.

If � is real then + and, can be taken as real orthogonal matrices. ⇤

The rank of � is the number its positive singular values, which is no less than
(and can be greater than) the number of its nonzero eigenvalues of �. As we will see
below (Theorem A.13) rank(�) is equal to the number of nonzero (generally complex)
eigenvalues if � is normal.

Theorem A.11 does not provide a method to compute the unitary factors (+ ,,) in
the singular value decomposition (A.11). This is because not every pair of orthonormal
sets of eigenvectors of ��H and �H

� respectively may be the unitary factors (+ ,,)
in (A.11) when the eigenvalues associated with ��H or with �H

� are not distinct. We
describe how to compute unitary factors (+ ,,) in (A.11) when � is square (< = =)
(see [15, Theorem 2.6.3, p.150] for details). When � is not normal, ��H and �H

� are
not equal, but they are unitarily similar since they have the same eigenvalues, i.e., there
exists a unitary matrix . such that �H

� = . (��H).H. Moreover . � is normal and
hence it has a spectral decomposition according to Theorem A.13, . � = -⇤-H where
⇤ := diag (_1, · · · ,_=) consists of the eigenvalues of . � and the columns of - are an
arbitrary orthonormal set of corresponding eigenvectors of . �. Let _8 = |_8 |4i\8 ,
⌃@ := diag (|_1 |, · · · , |_= |), ⇡ := diag

�
4

i\1 , · · · ,4i\=
�

so that ⇤ = ⌃@⇡. Then, since
. � = -⌃@⇡-H, we have

� =
⇣
.

H
-

⌘
| {z }
+

⌃@
⇣
⇡-

H
⌘

|  {z  }
,

H

(A.12)
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i.e., + := .H
- and, := -⇡H. We illustrate this in the next example.

Example A.3. Consider � :=

0 1
1 0

�
. Show that

1 Not arbitrary orthonormal sets of eigenvectors of ��H and �H
� can be the unitary

matrices (+ ,,) in the SVD (A.11).
2 Compute (+ ,,) according to the prescription (A.12). (Since � is real symmetric

and hence normal, an alternative way to compute a (possibly di�erent) pair (+ ,,)
is given in Theorem A.16; see Example A.4.)

Solution. The matrices ��H and �H
� are

��
H = �

H
� = �

2 =

1 0
0 1

�
= �

Therefore the eigenvalues of ��H and those of �H
� are 1 and ⌃ = �. Moreover every

vector G is an eigenvector of ��H and of �H
�, but not arbitrary orthonormal sets of

eigenvectors can be (+ ,,) in SVD (A.11). For instance, if & is any unitary matrix
(and hence its columns are an orthonormal set of eigenvectors of ��H and of �H

�),
+ =, =& does not satisfy (A.11):

&⌃&H = &&
H = � < �

It is therefore necessary that + and, are di�erent matrices in (A.11).

To compute (+ ,,) using (A.12), we choose . = � to be the identity matrix that
relates ��H and �H

� through unitary similarity, i.e., �H
� = � = . (��H).H. Next we

compute the spectral decomposition of . �: the eigenvalues of . � = � are _1 := 1,
_2 := �1 with corresponding orthonormal set of eigenvectors (unique up to a rotation)

G1 :=
1p
2


1
1

�
, G2 :=

1p
2


1
�1

�

Hence

. � = � = -⇤-H =
1
2


1 1
1 �1

� 
1 0
0 �1

� 
1 1
1 �1

�
=


0 1
1 0

�

Then ⇡ := diag
�
4

i\1 ,4i\2
�
= diag(1,�1) and hence

⌃@ := diag ( |_1 |, |_2 |) = �, + := .
H
- =

1p
2


1 1
1 �1

�
, , := -⇡

H =
1p
2


1 �1
1 1

�

It can be verified that indeed � =+⌃@,H. ⇤

Suppose <  = but rank(�) =: A < <. For a given + in the theorem, even though
� = +⌃,H, , defined by ,

H := ⌃†+H
� generally does not satisfy the singular

value decomposition (A.11) because in that case +⌃,H = +⌃
�
⌃†+H

�

�
< � because
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+⌃⌃†+H < �<; see Exercise A.7. Here ⌃† is obtained from ⌃ by replacing its positive
singular values f8 by 1/f8 and taking the transpose.

The set of singular values making up ⌃ is unique. The unitary factors (+ ,,) is non-
unique, but given a pair, all possible pairs can be related, according to the following
result from [15, Theorem 2.6.5, p.152].

Theorem A.12 (Uniqueness of (+ ,,)). Let � 2 C<⇥= have a singular value decom-
position � =+⌃,H as in Theorem A.11. Then

1 � = +̂⌃,̂ for some unitary matrices (+̂ ,,̂) if and only if there are unitary block-
diagonal matrices +̃ and ,̃ such that

+̂ = ++̃ , ,̂ = ,,̃

2 If � is square (< = =) and nonsingular then +̃ = ,̃ .

⇤

Properties of singular values.

1 Matrix transpose and conjugate: f8 (�) = f8 (�T) = f8 (�H) = f8 (�).
2 Unitary transformation: for any unitary matrices* and + , f8 (�) = f8 (*�+). In

particular f8 (�) = f8 (*�) = f8 (�+) (setting + = � or* = �).
3 Interlacing properties:
• If ⌫ denote � with one of its rows or columns deleted, then

f8+1 (�)  f8 (⌫)  f8 (�)

• If ⌫ denote � with one of its rows and columns deleted, then

f8+2 (�)  f8 (⌫)  f8 (�)

• If ⌫ denote any (<� :)⇥ (=� ;) submatrix of �, then

f8+:+; (�)  f8 (⌫)  f8 (�)

4 Singular values of �+⌫: for any �,⌫ 2 C<⇥=
• Õ

:

8=1 f8 (�+⌫) 
Õ
:

8=1 (f8 (�) +f8 (⌫)), : = min{<,=}.
• f8+ 9�1 (�+⌫)  f8 (�) +f9 (⌫), 8 + 9 �1  min{<,=}.

5 Singular values of �⌫: for any �,⌫ 2 C<⇥=
• f= (�)f8 (⌫)  f8 (�⌫)  f1 (�)f8 (⌫).
• Œ

:

8=1 f8 (�⌫) 
Œ
:

8=1 f8 (�)f8 (⌫).
6 Singular value and eigenvalues: For any matrix � 2 C=⇥=
• If � is normal, then f8 (�) = |_8 (�) |, 8 = 1, . . . ,=. (Note that _8 (�) 2 C.)

Proof: Spectral theorem gives � =*⇤*H; hence ��H =*⇤⇤*H =* |⇤|2*H.
Hence |_8 (�) |2 are eigenvalues of ��H, implying f8 (�) =

p
_8 (��H) =

|_8 (�) |.
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• Weyl’s theorem: Assume eigenvalues satisfy |_1 (�) | � · · · � |_= (�) |. Then

:÷
8=1

|_8 (�) | 
:÷
8=1

f8 (�), : = 1, . . . ,=

Consider the set of complex square matrices, i.e., < = =. Every square matrix
� 2 C=⇥= is similar to a Jordan form �, i.e., there exists an invertible matrix % 2 C=⇥=
such that

� = %�%�1

� is said to be diagonalizable if its Jordan form � =: ⇤ is diagonal. Therefore � is
diagonalizable if and only if � has = linearly independent eigenvectors; see Theorem
A.6. In that case the columns of % are these eigenvectors, ⇤ has the corresponding
eigenvalues on its diagonal, and �% = %⇤.

A.6.2 Spectral decomposition for normal matrices

Recall that � is normal if ��H = �
H
� and that all unitary, Hermitian, or skew-

Hermitian matrices are normal (the converse is not generally true). For any matrices
�,⌫ 2 C=⇥=, if ⌫� = � then ⌫ is unique and ⌫ = �

�1. This is because � being
nonsingular means that �G = 1 and GT

� = 1T has a unique solution G for any 1 2 C=;
take 1 to be each column of �.

Normal matrices are exactly those that are unitarily diagonalizable to which the
spectral theorem applies [15, Theorem 2.5.3, p.133].

Theorem A.13 (Spectral theorem for normal matrices). A complex square matrix
� 2 C=⇥= is normal if and only if it is unitarily diagonalizable, i.e., there exists a
unitary matrix* 2 C=⇥= and a complex diagonal matrix ⇤ 2 C=⇥= with

� =*⇤*H =
=’
8=1

_8D8D
H
8

(A.13)

where

1 the diagonal entries of ⇤ = diag(_1, . . . ,_=) are eigenvalues of � (generally com-
plex);

2 the columns of* are an arbitrary orthonormal set of corresponding eigenvectors
of �.

Hence if � is normal, then rank � = number of nonzero eigenvalues and the sum in
(A.13) becomes

� =*⇤*H =
rank �’
8=1

_8D8D
H
8
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⇤

Hence while � is diagonalizable if and only if it has = linearly independent eigen-
vectors, � is unitarily diagonalizable (or equivalently normal) if and only if it has an
orthonormal set of = eigenvectors.

The eigenvalues⇤ of � in Theorem A.13 are unique, but the eigenspace of � always
has more than one orthonromal basis. Since two basis * and + can always be related
by a unitary matrix, we have the following uniqueness result from [15, Theorem 2.5.4,
p.134].

Theorem A.14 (Uniqueness of unitary *). Let � 2 C=⇥= be normal with spectral
decomposition � =*⇤*H where * is unitary and ⇤ is diagonal matrix consisting of
the eigenvalues of �. Then

1 � = +⇤+H for a unitary matrix + if and only if there is a block-diagonal unitary
matrix, such that* =+, .

2 In particular, if � has = distinct eigenvalues then , is a diagonal unitary matrix
of the form, = diag

�
4

i\1 , · · · ,4i\=
�
.

3 Two normal matrices � and ⌫ are unitarily similar, i.e., � =,⌫,H for some
unitary matrix, , if and only if they have the same eigenvalues.

⇤

For a normal matrix � the eigenvalues _8 are complex in general. A normal matrix
� is Hermitian if and only if all its eigenvalues are real. If � is Hermitian then the
eigenvalues are real [176, Theorem 4.1.5, p.171].

Theorem A.15 (Spectral theorem for Hermitian matrices). A complex square matrix
� 2 C=⇥= is Hermitian if and only if it is unitarily diagonalizable with real eigenvalues,
i.e., there exist a unitary matrices* 2 C=⇥= and a real diagonal matrix ⇤ 2 R=⇥= with

� =*⇤*H =
=’
8=1

_8D8D
H
8

(A.14)

where

1 ⇤ =diag(_1, . . . ,_=) is real and consists of the eigenvalues of �;
2 the columns of* are an arbitrary orthonormal set of corresponding eigenvectors

of �.

Hence if � is Hermitian, then rank � = number of nonzero eigenvalues and the sum in
(A.14) becomes

� =*⇤*H =
rank �’
8=1

_8D8D
H
8
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Moreover, if � is real and symmetric then* above can be taken as real and orthogonal.
⇤

To explain the last statement let � be a real symmetric matrix. First a Hermitian
matrix � has real eigvenvalues _ because if E are the corresponding eivenvectors, then
�E = _E and hence EH

�E = _kEk2. Taking Hermitian transpose shows EH
�

H
E = EH

�E =
_̄kEk2 where _̄ denotes the complex conjugate of _. Therefore _̄ = _, i.e., _ is real. Next
for eigenvector E, take the Hermitian transpose of �E = _E we have EH

�
H = EH

� = _EH

since _ is real. If � is real symmetric then taking the transpose we have �Ē = _Ē where
Ē is the componentwise complex conjugate of E. Therefore if E is an eigenvector of a
real symmetric matrix � corresponding to _, then so is its complex conjugate Ē as well
as the real vector E + Ē, i.e., the eigenvector of � can be taken to be real.

For general matrices, about the only characterization of its eigenvalues is that they
are roots of the characteristic polynomial (see the discussion leading up to Theorem
A.6). For Hermitian matrices, however, the spectral theorem leads to a variational
characterization of eigenvalues [176, Theorem 4.2.2, p.176]. If � 2 C=⇥= is Hermitian
then

_min 
G

H
�G

G
H
G

 _max, 8G 2 C= (A.15a)

and

_min = min
G<0

G
H
�G

G
H
G

, _max = max
G<0

G
H
�G

G
H
G

(A.15b)

Theorem A.15 implies that � is positive semidefinite if and only if � is Hermitian
and all its eigenvalues are (real and) nonnegative, and that � is positive definite if and
only if � is Hermitian and all its eigenvalues are (real and) positive.

A.6.3 SVD and unitary diagonalization

Consider a normal matrix � 2 C=⇥=. Since ��H = �H
�, they have the same eigenvec-

tors. This does not mean, in general, that , = + in a singular value decomposition
� =+⌃,H. Indeed, if, =+ then it is necessary that � =+⌃+H is positive semidefinite,
but a normal � may not be positive semidefinite. The eigenvalues of a normal matrix
are complex, those of a Hermitian matrix are real, and those of a positive semedefinite
matrix are real and nonnegative. The following relationship between singular value de-
composition of a normal matrix � and its unitary diagonalization is proved in Exercise
A.9.

Theorem A.16 (SVD and unitary diagonalization). Consider a normal matrix � 2
C
=⇥= and let � =*⇤*H be a unitary diagonalization of � described in Theorem A.13

where⇤ := diag(_8) has the eigenvalues _8 2 C of � on its diagonal and the columns of
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* are an arbitrary orthonormal set of corresponding eigenvectors. Write _8 = |_8 | 48 \8
for some \8 2 R; set \8 = 0 if _8 = 0. Let ⇡ := diag (4i\1 , . . . ,4i\< ). Then

1 + :=*,⌃ := |⇤|,, :=*⇡H form a singular value decomposition � =+⌃,H of �.
2 The pseudo-inverse of � is �† :=*⇤†

*
H where the diagonal matrix⇤† is obtained

from ⇤ by replacing nonzero _8 2 C by 1/_8 .
3 � is Hermitian if and only if ⇡ in, is a real matrix, i.e., 4i\8 = 1 or �1.
4 � is positive semidefinite if and only if + =, :=* and ⌃ := ⇤ forms a singular

value decomposition � = +⌃,H =*⇤*H, i.e., SVD and unitary diagonalization
of � coincide.

The theorem also prescribes a way to compute a singular value decomposition
� = +⌃, when � is normal. In this case we can take the columns of + to be an
arbitrary orthonormal set of eigenvectors of � (which will also be eigenvectors of
��
⇤). This may not be the case if � is not normal and the more general method

prescribed by (A.12) is needed to compute SVD (see Example A.3). The theorem is
illustrated in the following example.

Example A.4. Use Theorem A.16 to compute the SVD of the normal matrix � in
Example A.3.

Solution. Clearly � = �H = �T = �̄ and � is real symmetric and hence normal. Its
eigenvalues are _8 = ±1 with corresponding eigenvectors in the columns of * in the
unitary diagonalization:

� =*⇤*H :=
1p
2


1 1
1 �1

� 
1
�1

� 
1 1
1 �1

�
1p
2

Note that � is not positive semidefinite and therefore , < * in the singular value
decomposition of �. According to Theorem A.16, the angle matrix ⇡ = diag(1,�1)
and the unitary factors (+ ,,) in the SVD � =+⌃,H are given by

⌃ := |⇤| = �, + := * =
1p
2


1 1
1 �1

�
, , := *⇡

H =
1p
2


1 �1
1 1

�

which agrees with those computed in Example A.3. (The decomposition in these two
examples agree because the matrix . in Example A.3 has been chosen to be . = � so
that . � = �.) ⇤

A.6.4 Complex symmetric matrices

Consider a complex symmetric matrix � 2 C=⇥= with � = �T. Then �H = �̄ where �̄ is
the matrix obtained from � by taking its complex conjugate componentwise. � is not
Hermitian unless � is a real matrix. The following result, from [15, Corollary 2.6.6,
p.153], is called the Takagi’s factorization for complex symmetric matrices.
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Theorem A.17 (Takagi’s decomposition). A complex matrix � 2 C=⇥= is symmetric
� = �T if and only if there is a unitary matrix* 2 C=⇥= and a real nonnegative diagonal
matrix ⌃ :=diag(f1, . . . ,f=) such that

� =*⌃*T (A.16)

where ⌃ consists of the nonnegative square roots of the eigenvalues of ��̄. ⇤

The columns of the unitary matrix * in (A.16) are generally neither the singular
vectors nor the eigenvectors of �; see the proof below. A Takagi decomposition of a
complex symmetric matrix � is therefore generally di�erent from its singular value
decomposition. A Takagi decomposition of a real symmetric matrix may not have real
factors. In contrast, its spectral decomposition in terms of its eigenvalues, rather than
singular values, can always use real orthogonal factors according to Theorem A.15.

We provide a sketch of the proof from [15, Corollary 2.6.6, p.153].

Proof sketch of Theorem A.17 Let a singular value decomposition of � be � =+⌃,H

according to Theorem A.11. Since � = �T we have � =+⌃,H = ,̄⌃+̄H where (+̄ ,,̄)
are componentwise complex conjugate of (+ ,,). The uniqueness Theorem A.12 then
implies the existence of unitary block-diagonal matrices (+̃ ,,̃) such that

+̄ = ,+̃ , ,̄ = +,̃ (A.17a)

Indeed, according to Autonne’s uniqueness theorem ([15, Theorem 2.6.5, p.152]), +̃
and ,̃ can be taken to have identical blocks except the last block corresponding to the
diagonal zero-block in (A.10). Specifically suppose � has rank A and 3 distinct positive
singular values B1 > B2 > · · · > B3 > 0 with (algebraic) multiplicities =1, · · · ,=3 . Then
A :=

Õ
3

8=1 =8  =. We can separate the diagonal of the =⇥= matrix ⌃ into 3 +1 diagonal
blocks of diagonal submatrices B8 �=8 and 0=�A :

⌃ = diag
�
B1�=1 , · · · , B3 �=3 ,0=�A

�
(A.17b)

where �: denotes the identity matrix of size : and 0: denotes the : ⇥ : zero matrix. (If
� is of full rank A = = then the zero block 0=�A is absent.) Then Autonne’s uniqueness
theorem ([15, Theorem 2.6.5, p.152]) implies that � = +⌃,H = ,̄⌃+̄H if and only if
there are unitary matrices +8 of sizes =8 and +3+1,,3+1 of size =� A such that

+̃ = diag (+1, · · · ,+3 ,+3+1) , ,̃ = diag (+1, · · · ,+3 ,,3+1) (A.17c)

and +̄ =,+̃ , ,̄ = +,̃ . But +̃ = ,H
+̄ =

�
+

H
,̄

�T = ,̃T and hence +8 = +T
8

are sym-
metric matrices for 8 = 1, . . . ,3.

Lemma A.10 then implies that there exist unitary symmetric matrices '8 2 C=8⇥=8
such that +8 = '2

8
for 8 = 1, · · · ,3. Substitute this and (A.17) into � = ,̄⌃+̄H, we have

� = ,̄⌃+T =+,̃⌃+T. But (taking,3+1 := �=�A )

,̃⌃ = diag
⇣
'

2
1, · · · ,'2

3
, �=�A

⌘
·diag

�
B1�=1 , . . . , B3 �=3 ,0=�A

�
=: '⌃'
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where ' := diag ('1, · · · ,'3 , �=�A ). Hence

� = + (,̃⌃)+T = + ('⌃')+T = (+')|{z}
*

⌃ (+')T| {z }
*

T

where the last equality uses the symmetry of '. This completes the proof. ⇤

A complex symmetric matrix � 2 C=⇥= may or may not be normal. Complex
symmetric matrices are useful for power systems because the admittance matrix .
(see Chapter 4.2) are complex symmetric, and generally not Hermitian. See Exercise
16.23 for a complex symmetric matrix that is not diagonalizable (and hence not
normal). See Exercise 16.24 for a complex symmetric matrix that is normal and
hence unitarily diagonalizable, and Exercise 4.3 for characterizations of symmetric
and normal matrices.

A.7 Pseudo-inverse

Consider a matrix � 2 C<⇥=. Let null(�) denote the null space (also called kernel)
of �, i.e., null(�) := {G 2 C= : �G = 0}. Let range(�) denote the range space (also
called column space) of �, i.e., range(�) := {H 2 C< : H = �G for some G 2 C=}. In this
subsection we treat � as a mapping from C= to C< and �H a mapping from C< to C=.
Then null(�) and range(�H) are linear spaces and they are orthogonal complements
of each other because, if G1 2 null(�) and G2 2 range(�H) so that G2 = �H

H for some
H, then

G
H
2 G1 = HH

�G1 = 0

We denote this fact by the notation C= = range(�H) � null(�), as shown in the upper
panel of Figure A.3(a). This implies

dim(range(�H)) + dim(null(�)) = = (A.18)

The rank of a matrix � 2 C<⇥=, denoted rank �, is the largest number of linearly
independent columns of �, or equivalently the largest number of linearly independent
rows of �. By definition rank � = dim(range(�)). A square matrix � 2 C=⇥= is called
nonsingular if rank � = =; it is called singular if rank � < =. Some simple facts are
collected in the following.

Theorem A.18. 1 For any � 2 C<⇥=, rank � = rank �H = rank �T = rank �̄.
2 For any � 2 C<⇥=, rank �  min{<,=}.
3 If � 2 C<⇥< and ⇠ 2 C=⇥= are nonsingular, then for any ⌫ 2 C<⇥=, rank ⌫ = rank
�⌫⇠, i.e., left or/and right multiplication by a nonsingular matrix does not change
rank.
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range
(AH )

range
(A)

null(A) null(AH)

Cn Cm

AH

A
x' =A

H (Ax)
y =Ax

(a) Orthogonal decomposition of C= and C<

A†

A

range
(AH )

x =A
† (Ax)

range
(A)

y =Ax

(b) � and �† are inverses between range(�H) and range(�)

Figure A.3 Orthogonal decomposition of C= and C< and pseudo-inverse �†. For any
G 2 range(�� ), G = �†(�G) which is generally di�erent from G

0 = �H (�G).

4 For any � 2 C<⇥=, rank � + dim(null(�)) = =. This follows from substituting
rank �H = rank � into (A.18).

If we consider the matrix � 2 C<⇥= as a mapping from C= to C< and restrict it
to � : range(�H)! range(�), then � is surjective and injective (see Exercise A.10).
Hence an inverse always exists from range(�) ! range(�H). We will denote this
inverse by �†; see Figure A.3(b). Let � = +⌃,H be its singular value decomposition
and let rank � = A  min{<,=}. We will show that

�
† =,⌃†+H (A.19)

where ⌃† is a real diagonal =⇥< matrix of rank A obtained from the < ⇥ = diagonal
matrix⌃ by replacing the (positive) singular valuesf8 by 1/f8 and taking the transpose.

When A = < = =, ⌃† =diag
⇣

1
f1

, . . . , 1
f=

⌘
= ⌃�1 so that �† = ��1 since

�
†
� =

⇣
,⌃�1

+
H
⌘ ⇣
+⌃,H

⌘
= I=

If G 2 range(�H) then �†(�G) =, (⌃†⌃),H
G = G since �† is the inverse of � between

range(�H) and range(�). In contrast �H (�G) = , (⌃T⌃),H
G = G 0 which is also in

range(�H) but generally di�erent from G; see Figure A.3(b).

For a general G 2 R=, �†
� < I= but the next result shows that �†

� equals I= plus
null(�). Specifically, let � 2 C<⇥= with rank � = A  min{<,=}. Let � =+⌃,H be its
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singular value decomposition. Decompose the various matrices such that

⌃ =

266666664

2666664

f1
. . .

fA

3777775
0

0 0

377777775
=:


⌃A 0
0 0

�
, + =:

⇥
+A +<�A

⇤
, , =:

⇥
,A ,=�A

⇤

where ⌃A is A ⇥ A diagonal matrix, the matrices +A 2 C<⇥A and ,A 2 C=⇥A consist of
the first A columns of + and , respectively, and the matrices +<�A 2 C<⇥(<�A ) and
,=�A 2 C=⇥(=�A ) consist of the remaining columns of + and, respectively. Then

� =
⇥
+A +<�A

⇤ 
⌃A 0
0 0

� 
,

H
A

,
H
=�A

�
= +A⌃A,H

A

�
† =

⇥
,A ,=�A

⇤ 
⌃�1
A

0
0 0

� 
+

H
A

+
H
<�A

�
= ,A⌃�1

A
+

H
A

and �H =,A⌃A+H
A

. Hence the range spaces of �, �†, �H depend only on the nonzero
singular values and the first A columns of+ and, . The remaining columns+<�A ,,=�A
span their null spaces and can be interpreted as a measure of how di�erent the pseudo-
inverse �† is from an inverse, as the following theorem shows. The theorem is illustrated
in Figures A.4.

xA†Ax

(In−A†A)x (Im−AA†)y

range(AH) = range(Wr)

null(A) = range(Wn−r)

yAA†y

range(A) = range(Vr)

null(AH) = range(Vn−r)

AH

ACn Cm

Figure A.4 Orthogonal decomposition of C= and C< using singular value decomposition of �.

Theorem A.19. With the notations above,

1 �
† :=,⌃†+H satisfies (I= denotes the =⇥= identity matrix)

�
†
� = I= � ,=�A,H

=�A = ,A,
H
A

��
† = I< � +<�A+H

<�A = +A+
H
A

2 null(�) = range(,=�A ) and range(�H) = range(,A ).
3 null(�H) = range(+<�A ) = null(�†) and range(�) = range(+A ).
4 �

†
� is the orthogonal projection of G 2 C= onto range(�H). I= � �†

� is the
orthogonal projection of G 2 C= onto null(�).

5 Similarly ��† is the orthogonal projection of H 2 C< on to range(�) and I<� ��†

is the orthogonal projection of H 2 C< onto null(�H).
6 ��

†
� = �, �†

��
† = �†, and �H

��
† = �H.
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Proof We have

�
†
� =

⇥
,A ,=�A

⇤ 
⌃�1
A

0
0 0

� 
+

H
A

+
H
=�A

�
·
⇥
+A +=�A

⇤ 
⌃A 0
0 0

� 
,

H
A

,
H
=�A

�

=
⇥
,A ,=�A

⇤ 
�A 0
0 0

� 
,

H
A

,
H
=�A

�
= ,A,

H
A

Even though ,H =,�1, ,H
A

is not the inverse of ,A (unless A = = < <) since ,A is
not even square. Since

,,
H =

⇥
,A ,=�A

⇤ 
,

H
A

,
H
=�A

�
= ,A,

H
A

+ ,=�A,H
=�A = I=

we have

�
†
� = I= � ,=�A,H

=�A

Similarly ��† = I< � +<�A+H
<�A .

To show that null(�) = range(,=�A ) consider any G 2 C=. Since columns of, are
an orthonormal basis of C= we can write G =

Õ
9
1 9F 9 for some 1 9 2 C where F 9 are

columns of, . Then

�G =+⌃,H
’
9

1 9F 9 = +⌃
’
9

1 9

2666664

F
H
1F 9
...

F
H
=
F 9

3777775
= +⌃

2666664

11
...
1=

3777775
= +

266666664

f111
...

fA1A

0=�A

377777775
where 0=�A is the zero vector of size =� A . Since + is nonsingular and f9 > 0, �G = 0
if and only if 11 = · · · = 1A = 0. Hence null(�) = range(,=�A ) if and only if G 2
range(,=�A ). That range(�H) = range(,A ) follows from �

H = ,⌃T
+

H = ,A⌃A+H
A

.

The proof of null(�†) = range(+<�A ) follows the same argument and is presented
in the matrix notation as follows. Any H 2 C< can be written in terms of the columns
of + , i.e., H =+A1A ++<�A1<�A for some 1A ,1<�A . Then

�
†
H =,A⌃�1

A
+

H
A
(+A1A ++<�A1<�A ) = ,A⌃�1

A
+

H
A
+A1A

since+H
A
+<�A = 0

A⇥(<�A ) . Hence �†
H = 0 if and only if 1A = 0 and H =+<�A1<�A . This

means null(�†) = range(+<�A ). Since �H =,A⌃A+H
A

the same argument shows that
null(�H) = range(+<�A ).

The remaining assertions follow from parts 1, 2, 3. For example

��
†
� = �

⇣
I= � ,=�A,H

=�A
⌘

= � � �,=�A,
H
=�A = �

Similarly �†
��

† = �†, and �H
��

† = �H. ⇤

We remark on some implications of Theorem A.19.
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Remark A.2 (�G = 1). 1 Theorem A.19.1 says that I= = �†
�+,=�A,H

=�A and hence
for any G 2 R=,

G = �
†
�G|{z}

projection onto range(�H)

+ ,=�A
⇣
,

H
=�AG

⌘
|            {z            }

projection onto range(,=�A )

(A.20)

See Figure A.4. Similarly for H = �G 2 R<. Therefore

R
= = �

† (�R=) + range(,=�A ) (A.21a)

R
< = �

⇣
�
†
R
<

⌘
+ range(+<�A ) (A.21b)

2 The theorem implies that �† in (A.19) and � are inverses of each other when
restricted to range(�H) and range(�) (see Exercise A.11). Therefore, even though
(+ ,,) in the singular value decomposition are generally not unique, �† is uniquely
defined. Treated as a mapping from C< to C=, �† is called a pseudo-inverse of �.

3 There is a solution G for �G = 1 if and only if 1 is in range(�) or equivalently 1 is
orthogonal to null (�H), in which case the set of solutions is given by

G = �†
1 + F, F 2 null(�) = range(,=�A )

Moreover �†
1 is the solution to �G = 1 with the smallest Euclidean norm kGk2 =

k�†
1k2 + kFk2.

4 Consider �G = 1 when 1 is not in range(�) and therefore there is no G that
satisfies this equation. The theorem says that Ĝ = �†

1 is a ‘best estimate’ of G
from 1 in that �Ĝ equals the projection of 1 onto range(�) and the estimation
error 1� �Ĝ = (I<� ��†)1 is the projection of 1 onto null(�H). This achieves the
minimum estimation error under the Euclidan norm; see Exercise A.14.

5 Theorem A.19.6 is easy to understand given Theorems A.19.4 and A.19.5. Con-
sider any vector H 2 C<. The operation ��† removes H’s component in the null
space of �H, i.e., ��†

H projects H to range(�). It is then mapped under �† into C=

to �†(��†
H). Since ��†

H is already in range(�) over which �† is an inverse of
�, this operation should be the same as �†, i.e., �†

��
†
H = �†

H for all H. Similarly
the projection operation �†

� to range(�H) followed by the mapping � is the same
operation as the mapping �.

For general matrix � 2 C<⇥=, its pseudo-inverse is given in terms of its singular
value decomposition by (A.19). For special matrices the next result provide some
explicit formulae.

Corollary A.20. Consider a matrix � 2 C<⇥= with rank � = A  min{<,=}. Let
� =+⌃,H be its singular value decomposition and �† =,⌃†+H be its pseudo-inverse.

1 If < = = and � is positive semidefinite then �++=�A+H
=�A is invertible and

�
† =

⇣
�++=�A+H

=�A
⌘�1
�+=�A+H

=�A
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2 If A = <  = then �† = �H �
��

H��1.

3 If A = =  < then �† =
�
�

H
�

��1
�

H.
4 If A = < = = then �† = ��1.

Proof Since � is positive semidefinite its singular value decomposition coincides
with its spectral decomposition according to Theorem A.16.3, so

� =+⌃,H = +⇤+H = +A⇤A+H
A

where + is a unitary matrix whose columns are orthonormal eigenvectors of �, ⇤ :=
diag(_8) is the diagonal matrix of eigenvalues

_1 � · · · � _A > 0 = _A+1 = · · · = _=

and matrices are decomposed as before:

⇤ =:

⇤A 0
0 0

�
, + =:

⇥
+A +=�A

⇤
, G =:


GA

G=�A

�
2 C=

To show that � ++=�A+H
=�A is invertible consider any G 2 C= in the null space of �

expressed in terms of the basis + as G =+0 =:+A0A ++=�A0=�A . We have

(�++=�A+H
=�A ) G =

⇣
+A⇤A+H

A
++=�A+H

=�A
⌘
(+A0A ++=�A0=�A ) = +A⇤A0A + +=�A0=�A

where we have used +H
A
+=�A = 0. Hence

(�++=�A+H
=�A ) G =

⇥
+A +=�A

⇤ 
⇤A0A
0=�A

�
= +


⇤A0A
0=�A

�

Since + and ⇤A are nonsingular, (�++=�A+H
=�A )G = 0 if and only if 0 = 0, proving the

nonsingularity of �++=�A+H
=�A .

To show that �† =
�
�++=�A+H

=�A
��1 �+=�A+H

=�A we will prove that �† ++=�A+H
=�A

is the inverse of �++=�A+H
=�A . We have (using again +A+H

=�A = 0)⇣
�
† ++=�A+H

=�A
⌘ ⇣
�++=�A+H

=�A
⌘
=

⇣
+A⇤�1

A
+

H
A
++=�A+H

=�A
⌘ ⇣
+A⇤A+H

A
++=�A+H

=�A
⌘

=+A+H
A

+ +=�A+H
=�A = ++

H = I=

as desired.

If If A = <  = then +A =+ and

⌃ =:
⇥
⌃A 0

⇤
, , =:

⇥
,A ,=�A

⇤
Then � =+⌃,H =+⌃A,H

A
and hence ��H =

�
+⌃A,H

A

� �
,A⌃A+H�

=+⌃2
A
+

H is invert-

ible since,H
A
,A = �A . Since + is unitary we have

�
��

H��1 =+⌃�2
A
+

H. Hence

�
H
⇣
��

H
⌘�1

=
⇣
,A⌃A+H

⌘ ⇣
+⌃�2

A
+

H
⌘

= ,A⌃�1
A
+

H = ,⌃†+H = �
†

The case of A = =  < is similarly proved in Exercise A.12. If A = < = = then ⌃† = ⌃�1

so that �† = ��1 since �†
� =

�
,⌃�1

+
H� �

+⌃,H�
= I=.
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⇤

Consider a partitioned matrix � = [⌫ ⇠]. In general �† <

⌫
†

⇠
†

�
. 2 Several expres-

sions for �† in terms of ⌫† and ⇠† are derived in [177] under various necessary and
su�cient conditions. The particularly simple case is the following result from [177,
Corollary 1.4].

Lemma A.21. Suppose � = [⌫ ⇠]. Then

�
† =


⌫
†

⇠
†

�

if and only if (I�⌫⌫†)⇠ = ⇠ (i.e., if and only if ⇠ is in null(⌫H)).

A.8 Norms and inequalities

A.8.1 Vector norms

This subsection mostly follows [15, Chapter 5].

Definition A.4 (Normed linear space). Let + be a vector space over the field � with
� = R or C. A function k · k :+! R is a norm, or vector norm, on + if, for all G, H 2 +
and all 2 2 �,

1. Positivity: kGk � 0 and kG | = 0 if and only if G = 0.
2. Homogeneity: k2Gk = |2 | kGk.
3. Triangular inequality: kG + Hk  kGk + kHk.

The real or complex vector space together with a norm (+ , k · k) is called a normed
linear space or normed vector space. ⇤

Examples of vector norms on + = C= include: for any G 2 C=,

• Sum norm (;1 norm): kGk1 :=
Õ
8
|G8 |.

• Euclidean norm (;2 norm): kGk2 :=
pÕ

8
|G8 |2.

• Max norm (;1 norm):kGk1 := max8 |G8 |.
• ;? norm: kGk ? := (Õ

8
|G8 |?)1/? , ? � 1.

2 Let the singular value decompositions of ⌫ and ⇠ be ⌫ = +1⌃1,
H

1 and ⇠ = +2⌃, H
2 . We can write

� =
⇥
+1 +2

⇤ 
⌃1 0
0 ⌃2

� 
,

H
1 0

0 ,
H

2

�

However
�
+ ",

H�† =,"
†
+

H only if + and, are unitary [177, Lemma 1]. The matrix [+1 +2 ]
is not unitary.
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It can be shown that kGk1 = lim?!1 kGk ? for all G 2 C=. We therefore often define
;? norms for ? 2 [1,1]. The Euclidean norm, and positive scalar multiples of the
Euclidean norm, are the only norms on C= that are unitarily invariant: k*Gk2 = kGk2
for any G 2 C= and any unitary matrix * 2 C=⇥= (Exercise A.17). The unit balls
⌫ := {G 2 R2 : kGk  1} for ;1, ;2 and ;1 norms are shown in Figure A.5.

x2

x1

||x ||1= 1

||x ||2= 1

||x ||∞= 1

Figure A.5 The boundaries of unit balls for ;1, ;2 and ;1 norms.

An example of infinite dimensional normed vector spaces is the set ⇠ [0,1] of all
continuous real or complex-valued functions 5 : [0,1]! R or 5 : [0,1]! C on the
real interval [0,1]. The !? norms on ⇠ [0,1] are

• !1 norm: k 5 k1 :=
Ø
1

0

| 5 (C) |3C.

• !2 norm: k 5 k2 :=
qØ

1

0

| 5 (C) |23C.

• !? norm: k 5 k ? :=
⇣Ø

1

0

| 5 (C) |?3C
⌘1/?

, ? � 1.

• !1 norm: k 5 k1 := max {| 5 (G) | : G 2 [0,1]}.

There are two important properties of finite dimensional real or complex vector
spaces + (i.e., � = R or C) that do not necessarily hold for infinite dimensional vector
spaces. First all norms are equivalent in the sense that, given two norms k · kU and
k · kV on a finite dimensional vector space + , there exist 2<,2" such that (e.g., [15,
Corollary 5.4.5, p.327])

2< kGkU  kGkV  2" kGkU, G 2 + (A.22)

This means that if a sequence {G8} ✓ + converges in some norm, it converges in all
norms. For ;? norms the best bounds are [15, Problem 5.4.P3, p.333]: for 1  ?1 <

?2 <1,

kGk ?2  kGk ?1  =

⇣
1
?1
� 1
?2

⌘
kGk ?2

For example kGk2  kGk1 
p
=kGk2, kGk1  kGk1  =kGk1, kGk1  kGk2 

p
=kGk1

(see Figure A.5). In contrast, for an infinite dimensional vector space such as ⇠ [0,1],
a sequence { 5: } of functions in ⇠ [0,1] may converge under the !1 norm, remains
bounded under !2 norm, but diverge under the !1 norm (unbounded k 5: k1).
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Second a sequence {G8} ✓ + converges to a vector in a finite dimensional vector
space + if and only if it is a Cauchy sequence, i.e., for any n > 0 there exists a positive
integer # (n) such that kG8 � G 9 k  n for any 8, 9 � # (n). A normed linear space +
is said to be complete with respect to its norm k · k if every sequence in + that is a
Cauchy sequence with respect to k · k converges to a point in + . Therefore all finite
dimensional real or complex vector spaces are complete with respect to any norm, but
infinite dimensional normed vector spaces, such as ⇠ [0,1] with the !1 norm, may not
be complete.

Definition A.5 (Inner product space). Let+ be a (finite or infinite dimensional) vector
space over the field � with � = R or C. A function h·, ·i :+ ⇥+! F is an inner product
if, for all G, H, I 2 + and all 2 2 �,

1. Positivity: hG,Gi � 0 and hG,Gi = 0 if and only if G = 0.
2. Additivity: hG + H, Ii = hG, Ii + hH, Ii.
3. Homogeneity: h2G, Hi = 2hG, Hi.
4. Hermitian property: hG, Hi = hG, Hi.

where 0 denotes the complex conjugate of 0 2 �. The real or complex vector space
together with an inner product (+ , h·, ·i) is called an inner product space. ⇤

Note that regardless of � =R orC, a norm in Definition A.4 takes value inRwhereas
an inner product in Definition A.5 takes value in �. Implicit in the nonnegativity
property is that, while hG, Hi 2 �, hG,Gi 2 R. The function defined on C= by hG, Hi :=
G

H
H 2 � := C is an inner product called the Euclidean inner product. Let " 2 F=⇥= be

a positive definite matrix and define the function hG, Hi" := HH
"G. Then h·, ·i" is also

an inner product.

If h·, ·i is an inner product on a real or complex vector space + , then the function
k · k : + ! [0,1) defined by kGk := hG,Gi1/2 is a norm on + . Such a norm is said to
be derived from an inner product. The Euclidean norm k · k2 is a norm derived from
the Euclidean inner product. An inner product space is therefore also a normed linear
space with its derived norm. Not all norms are derived from an inner product, e.g.,
k · k1, k · k1 are not derived norms.

Inner products are defined for infinite dimensional vector spaces as well. For example
an inner product on the vector space ⇠ [0,1] of all continuous real or complex-valued
functions on the real interval [0,1] is

h 5 ,6i :=
π

1

0

5 (C)6(C)3C, 5 ,6 2 ⇠ [0,1]

The !2 norm k 5 k2 :=
qØ

1

0

| 5 (C) |23C defined above is derived from the inner product
h 5 , 5 i.
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A.8.2 Cauchy-Schwarz inequality, Hölder’s inequality, dual norm

We now present an extremely useful inequality, the Cauchy-Schwarz inequality, and
two generalizations.

Cauchy-Schwarz and Hölder’s inequalities.

The Cauchy-Schwarz inequality is an important property of all inner products on any
finite or infinite dimensional vector space. The inequality holds regardless of whether
the norm on the vector space is derived from the inner product. Hence hG,Gi, hH, Hi on
the right-hand side of (A.23) may not be the squared norms on + .

Theorem A.22 (Cauchy-Schwarz inequality). Let (+ , h·, ·i) be an inner product space
over a field � with � = R or C. Then

|hG, Hi |2  hG,Gi hH, Hi, G, H 2 + (A.23)

with equality if and only if G = 0H for some 0 2 � (i.e., G and H are linearly dependent).

Proof To prove the Cauchy-Schwarz inequality suppose without loss of generality
H < 0 (the inequality holds if G = H = 0). Let I := hH, HiG� hG, HiH. Then, since h01D1 +
02D2,11E1 + 12E2i = 0111hD1,E1i + 0112hD1,E2i + 0211hD2,E1i + 0212hD2,E2i,

0  hI, Ii = hhH, HiG� hG, HiH, hH, HiG� hG, HiHi

= hH, Hi2hG,Gi � hG, HihH, HihH,Gi = hH, Hi
⇣
hG,GihH, Hi � |hG, Hi |2

⌘
which implies the inequality since hH, Hi > 0. ⇤

Cauchy-Schwarz inequality has numerous applications. One example is the follow-
ing bounds on samples in terms of their sample mean and standard deviation. Let
G1, . . . ,G= be = given real numbers with sample mean ` and sample standard deviation
f defined by:

` :=
1
=

’
8

G8 , f :=

 
1
=

’
8

(G8 � `)2

!1/2

It can then be shown that (Exercise A.18)

` � f
p
=�1  G8  ` + f

p
=�1, 8 = 1, . . . ,=

with equality for some 8 if and only if G? = G@ for all ?,@ < 8.

Hölder’s inequalities.

A generalization of the Cauchy-Schwarz inequality is Hölder’s inequality. Hölder’s
inequality holds for general ! ? spaces (the vector space of measurable functions 5 for
which its !? norm is finite), but we will restrict ourselves to + = R= or C= with ;?
norms.
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Theorem A.23 (Hölder’s inequality). Consider the vector space + = �= with � = R
or C with ;? norms, ? 2 [1,1]. Then for any ?,@ � 1 such that 1

?
+ 1
@
= 1 (with the

interpretation that if ? = 1 then @ =1)
=’
8=1

|G8H8 |  kGk ? kHk@ , G, H 2 + (A.24)

with equality if and only if G? := (G?
8

, 8 = 1, . . . ,=) and H@ := (H@
8
, 8 = 1, . . . ,=) are linearly

dependent, i.e., G? = 0H@ for some scalar 0 2 �.

The theorem can be proved by applying the following property to the convex function
5 (G) = G? for ? > 1: for all U8 � 0,

Õ
=

8=1U8 = 1, for all G8 ,

5

 
=’
8=1

U8G8

!


=’
8=1

U8 5 (G8)

Setting ? = @ = 2 leads to the Cauchy-Schwarz inequality

��
G

H
H

��  =’
8=1

|G8H8 | 
 
=’
8=1

G
2
8

!1/2  
=’
8=1

H
2
8

!1/2

= kGk2 kHk2, G, H 2 +

with equality if and only if the vectors G and H are linearly dependent (G? = 0H@ ,
G = 01/?

H
@/?). Note that this inequality is weaker than Hölder’s inequality, though the

Cauchy-Schwarz inequality holds for general inner products on arbitrary vector spaces
with arbitrary norms.

Dual norm.

Another generalization of the Cauchy-Schwarz inequality holds with dual norm, as
we define now. Consider any norm k · k on the vector space + = �= with � = R or C.
Define its dual norm k · k⇤ by: for any G 2 �=

kGk⇤ := max
H:kH k=1

ReGH
H = max

H:kH k=1

��
G

H
H

�� (A.25)

The maximization is attained since inner product is continuous and the feasible set is
compact. (If we think of GH as an 1⇥ = matrix then kGk⇤ is the matrix norm induced
by the general vector norm k · k on F=; see below.)

A very useful inequality is

ReGH
H 

��
G

H
H

��  kGk kHk⇤ 8G, H 2 F= (A.26)

which follows directly from the definition of the dual norm. It says that the absolute
inner product of any two vectors are upper bounded by the product of the norm of one
of the vectors and its dual norm of the other vector. For the Euclidean norm k · k2 this
is the Cauchy-Schwarz inequality, but (A.26) holds for any norm. Comparing this with
Hölder’s inequality (A.24), the left-hand side of (A.26) is smaller than that of (A.24),��
G

H
H

��  Õ
8
|G8H8 |. The norms on the right-hand side of (A.26) are not restricted to ;?
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norms as those in (A.24) are. Indeed we now use Hölder’s inequality to show that ;?
and ;@ norms are the dual of each other if 1/? +1/@ = 1, and hence kGk kHk⇤ reduces
to the norms in Hölder’s inequality if k · k is an ;? norm.

To simplify exposition we allow ?,@ with 1/? + 1/@ = 1 to take values in [1,1]
with the interpretation that if ? = 1 then @ :=1.

Lemma A.24. Let ?,@ 2 [1,1] and 1/? +1/@ = 1. The ;? norm and the ;@ norm are
dual of each other.

Proof We prove the case of 1 < ? <1; the case of ? = 1 or ? =1 follows a similar
idea. Fix a pair 1 < ?,@ < 1 with 1/? + 1/@ = 1. Hölder’s inequality implies, for all
G 2 �=,

kGk@ � max
H:kH k?=1

’
8

|G8H8 | � max
H:kH k?=1

��
G

H
H

�� = kGk⇤

Therefore kGk@ � kGk⇤, the dual norm of k · k ? . To prove the reverse inequality we
have from (A.26)

kGk⇤ �
�
kHk ?

��1 ��
G

H
H

�� =

 ’
8

|H8 |?
!�1/? �����

’
8

G8H8

����� , 8H 2 F=

Choose

H8 := |G8 |@/?
G8

|G8 |
so that the inequality becomes (using @ = 1+ @

?
)

kGk⇤ �
 ’
8

|G8 |@
!�1/?’

8

|G8 |1+@/? =

 ’
8

|G8 |@
! 1
@

= kGk@

Hence kGk⇤ = kGk@ when k · k = k · k ? . ⇤

In light of Lemma A.24, examples of (A.26) include:��
G

H
H

��  kGk ? kHk@ ⇣
?
�1 + @�1 = 1

⌘
��
G

H
H

��  kGk2 kHk2 (? = @ = 2, Cauchy-Schwarz inequality)

kGk22  kGk1 kGk1 (H := G, ? = 1,@ =1)

A crucial fact for the vector space+ = R= or C= is that the dual of a dual norm is the
original norm, i.e., k · k⇤⇤ = k · k for an arbitrary norm k · k on+ (see [15, Theorem 5.5.9,
p.338]). For the special case of ;? norms, this is implied by Lemma A.24. Moreover
the only ;? norm that is its own dual is the Euclidean norm k · k2 ([15, Theorem 5.4.17,
p.331]). This fact and a remarkable property of dual norm specialized to R= are used
in Chapter A.10 to prove a mean value theorem for vector-valued functions (Lemma
A.34). Specifically, for the vector space+ = R=, it is shown in Chapter A.10 that, given



1020 Linear algebra preliminaries

any G 2 R=, there is a normalized H⇤ (G) 2 R= with kH⇤ (G)k⇤ = 1 such that the norm kGk
is attained by their inner product, kGk = GT

H⇤ (G). Similarly, there exists an H(G) with
kH(G)k = 1 such that kGk⇤ = GT

H(G). This is remarkable because it says that any norm
k · k and its dual norm are always attained by the Euclidean inner product even if k · k
may not be a derived norm, e.g., k · k1, k · k1.

A.8.3 Matrix norms

This subsection mostly follows [15, Chapter 5.6]. The set "<,= :="<,= (C) of all<⇥=
complex matrices is a vector space whether we view an element � 2 "<= as a vector
in + = C<= over field � = C or R or an array of numbers in + = C<⇥= over � = C or R.
A matrix norm on "<= therefore follows the same definition as in Definition A.4.

Definition A.6 (Matrix norm). A function k · k : "<,=!R is a matrix norm, or simply
a norm, if, for all complex matrices �,⌫ 2 "<,=, 2 2 C,

1. Positivity: k�k � 0 and k�k = 0 if and only if � = 0.
2. Homogeneity: k2�k = |2 | k�k.
3. Triangular inequality: k�+⌫k  k�k + k⌫k.

⇤

A key di�erence between the vector spaces C<= and C<⇥= is that matrix multipli-
cation is defined for elements �,⌫ of C<⇥=. We would therefore like to estimate the
‘size’ of a matrix product �⌫ in terms of the ‘sizes’ of � and ⌫. This is done by matrix
norms k · k that also satisfies a fourth property:

4. . Submultiplicativity: k�⌫k  k�k k⌫k when � and ⌫ have compatible sizes (e.g.,
< = =) and the norms are properly defined for �⌫, � and ⌫.

Not all matrix norms are submultiplicative. Some authors include submultiplicativity
in the definition of matrix norm when restricted to square matrices (< = =), e.g., [15,
Chapter 5.6]. In the following we first discuss a special class of matrix norms, called
induced norms, that are not only submultiplicative, but also have a certain minimality
property. Then we discuss vector norms that are ;? norms on the vector space ⇠=

2
.

They may or may not be submultiplicative.

Induced norms.

A widely used matrix norm k · k<,= on "<,= (C) is an induced norm, induced by any
vector norms k · k= and k · k< on ⇠= and ⇠< respectively, defined by: for � 2 "<,=,

k�k<,= := max
G:kG k==1

k�Gk< = max
G:G<0

k�Gk<
kGk=

(A.27)
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It is sometimes called an operator norm. Every induced norm is submultiplicative:
for � 2 C<⇥=, ⌫ 2 C=⇥: with arbitrary norms k · k<, k · k=, k · k: on C<, C=, C:

respectively,

k�⌫k<,: = max
G:G<0
k⌫G k<0

k�⌫Gk<
kGk:

= max
G:G<0
k⌫G k<0

k�⌫Gk<
k⌫Gk=

k⌫Gk=
kGk:

 max
H:H<0

k�Hk<
kHk=

max
G:G<0

k⌫Gk=
kGk:

= k�k<,= k⌫k=,:

It also satisfies the additional properties:

1 k� k<,= = 1 for the identity matrix �.
2 k�Gk<  k�k<,=kGk= for any � 2 C<⇥= and any G 2 C= (follows from submulti-

plicativity).
3 k�k<,= = max{|HH

�G | : kGk = kHk⇤ = 1, G 2 C=, H 2 C<}.

Examples of induced norms on "<,= are norms induced by the ;? norm on both C=

and C<:

k�k ? := max
G:kG k?=1

k�Gk ? = max
G:G<0

k�Gk ?
kGk ?

Theorem A.25. Let � 2 "<,= a <⇥= complex matrix. Then the induced norms k · k1,
k · k2 and k · k1 satisfy:

1 Max column sum (induced by ;1 norm): k�k1 = max 9
Õ
8
|�8 9 |.

2 Max row sum (induced by ;1 norm):k�k1 = max8
Õ
9
|�8 9 |.

3 Spectral norm (induced by ;2 norm): k�k2 = fmax (�) =
q
_max

�
�

H
�

�
where

fmax (�) is the largest singular value of � and _max
�
�

H
�

�
� 0 is the largest

eigenvalue of the positive semidefinite matrix �H
�.

4 If � is square and nonsingular then k��1k2 = 1/fmin (�), the reciprocal of the
smallest singular value of �.

5 k�H
�k2 = k��Hk2 = k�k22.

6 k�k2 = max{|HH
�G | : kGk2 = kHk2 = 1, G 2 C=, H 2 C<}.

A norm k · k is unitarily invariant if k�k = k*�+ k for all � 2 "= and for all unitary
matrices *,+ 2 "=. It is self-adjoint if k�k = k�Hk for all � 2 "=. The following
result shows that the spectral norm is the only induced norm that is unitarily invariant
and self-adjoint [15, Theorems 5.6.34, 5.6.35].

Lemma A.26. Let k · k be a submultiplicative matrix norm on "=. The following are
equivalent:

1 k · k is the spectral norm.
2 k · k is an induced norm that is unitarily invariant, i.e., k�k = k*�+ k for all � 2 "=

and for all unitary matrices*,+ 2 "=.
3 k · k is an induced norm that is self-adjoint, i.e., k�k = k�Hk for all � 2 "=.
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Other matrix norms.

We can also view a complex matrix � 2 "<,= as a vector in C<= and treat the ;? norms
on C<= as matrix norms on "<,=. We sometimes refer these norms as vector norms
on "<,=. Examples include

• ;1 norm: k�ksum :=
Õ
8, 9 |�8 9 |.

• ;2 or Frobenius norm: k�k� :=
⇣Õ

8, 9 |�8 9 |2
⌘1/2

.

• ;1 norm: k�kmax := max8, 9 |�8 9 |.

The Frobenius inner product on complex matrices in "<,= is defined to be

h�,⌫i� := tr ⌫H
� =

<’
8=1

=’
9=1

⌫8 9�8 9

It is simply the Euclidean inner product when we view a matrix � 2 "<,= as a
vector in C<=. The Forbenius norm is then derived from the Frobenius inner product,
k�k� :=

p
h�, �i� .

They satisfy the following properties

Theorem A.27. Let � 2 "= be a =⇥= complex matrix.

1 k · ksum and k · k� are submultiplicative matrix norms, but k · kmax is a matrix norm
that is not submultiplicative.

2 The Frobenius norm is given by

k�k� =
���tr ⇣��H

⌘���1/2 =
s’

8

f
2
8
(�) =

s’
8

_8

�
��

H�

where f8 (�) denote the singular values of � and _8 (��H) denote the eigenvalues
of the positive semidefinite matrix ��H.

3 k�k� = k�Hk� = k*�+ k� for any unitary matrices *,+ 2 "= (unitarily invari-
ant).

Hence while the spectral norm k · k2 is the only unitarily invariant and the only
self-adjoint induced norm (Lemma A.26), the Frobenius norm k · k� is a unitarily
invariant and self-adjoint norm that is not induced by a vector norm on C=.

Since "= is a finite dimensional vector space over field � = C or R, all matrix
norms, whether or not they are submultiplicative, are equivalent in the sense of (A.22)
and therefore have the same convergence sequences. In particular a matrix norm that
is not submultiplicative is equivalent to every submultiplicative matrix norm, and vice
versa. Moreover any vector norm on "= becomes a submultiplicative matrix norm
when scaled up su�ciently [15, Theorems 5.7.8, 5.7.11, pp. 372].
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Lemma A.28. 1 Given any matrix norm # (·) (e.g., a vector norm) on "= and any
submultiplicative matrix norm k · k on "=, there exists finite positive constants
2<,2" such that

2<k�k  # (�)  2" k�k, � 2 "= (A.28)

2 Let # (·) be a vector norm on "= and 2(#) := max
# (�)=1=# (⌫) # (�⌫). Then

W# (·) is a submultiplicative matrix norm on "= if and only if W � 2(#)

Spectral radius, matrix norm and convergence.

Induced norms have a certain minimality property among matrix norms. This can be
useful, e.g., in analyzing iterative algorithms of the form G(C + 1) = �G(C). We now
describe the relationship between the spectral radius d(�) of a matrix �, its matrix
k�k, and convergence properties of �: and

Õ
9: �

9 .

Theorem A.29 (Spectral radius, singular values, norms). Let k · k be a submultiplica-
tive matrix norm on "= and � 2 "=. Let _8 and f8 be the eigenvalues and singular
values of � respectively with

|_1 | � · · · � |_= |, f1 � · · · � f=

Let d(�) := |_1 | denote the spectral radius of �.

1 |_1 |  f1 and |_= | � f= > 0, i.e., |_8 | 2 [f=,f1].
2 For all 8, 1/k��1k  |_8 |  d(�)  k�k if � is nonsingular.
3 Given any n > 0 there is a submultiplicative matrix norm k · k such that d(�) 
k�k  d(�) + n . Moreover

d(�) = inf{k�k : k · k is an induced norm}

In Theorem A.29, 1 is proved in [15, Theorem 5.6.9], 2 follows from 1 by taking k · k
to be the spectral norm, and 3 is proved in [15, Lemma 5.6.10, p.347]. See Exercise
A.22 for details.

As mentioned above "= is a finite dimensional vector space over field � = C or R,
convergence of matrices is defined in the same way as the convergence of elements in
any normed vector space (+ , k · k), i.e., a sequence {G: } ✓ + converges to a limit G 2 +
if kG: � Gk ! 0 as :!1.

Definition A.7 (Matrix convergence). We say a sequence {�: } ✓ "= (or a power
series {Õ

9: �
9 } ✓ "=) converges if there exists a matrix � 2 "= such that �: ! �

(or
Õ
9: �

9 ! �) as : !1 with respect to the underlying matrix norm k · k, i.e., if
lim:!1 k�: � �k = 0 (or lim:!1 k

Õ
9: �

9 � �k = 0).

All matrix norms, whether or not they are submultiplicative, are norms on "= and
therefore equivalent in the sense of (A.22). Hence if �: converges under a norm, it
converges under all norms.
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Theorem A.30 (Sequence convergence). Let k · k be a submultiplicative matrix norm
on "= and � 2 "=. Let d(�) denote the spectral radius of �.

1 If k�k < 1 then lim:!1 �: = 0, i.e.,
��[�: ]8 9 ��! 0 as :!1 for all 8, 9 .

2 d(�) < 1 if and only if lim:!1 �: = 0.
3 Gelfand formula: d(�) = lim:!1 k�: k1/: .

In Theorem A.30, 1 is proved in [15, Lemma 5.6.11] and uses the fact that if
�
: converges then it converges under the vector norm k�kmax := max8, 9 |�8 9 |, and

2 is proved in [15, Lemma 5.6.12] and says that, unlike k�k < 1, d(�) < 1 is both
necessary and su�cient for the convergence of lim:!1 �: . Theorem A.30.3 holds not
only for multiplicative matrix norms, but also for any matrix norm, including vector
norms [15, Corollary 5.6.14, Theorem 5.7.10]. It follows from the fact that, under a
submultiplicative matrix norm, �̃ := (d(�) +n)�1

� has spectral radius strictly less than
1 and converges for any n > 0, implying that k�: k1/:  d(�) + n for su�ciently large
: . On the other hand d(�)  k�: k1/: and hence d(�) = lim:!1 k�: k1/: . Extension
to norms that are no submultiplicative makes use of (A.28).

Remark A.3. We often want to establish k�k < 1 for some matrix norm in order to
prove convergence of sequences or power series of �. We are therefore interested in
a minimal matrix norm k · k, i.e., a submultiplicative norm on "= such that the only
submultiplicative norm # (·) on "= with # (�)  k�k for all � 2 "= is # (·) = k · k. It
can be shown that a submultiplicative matrix norm on "= is minimal if and only if it
is an induced norm [15, Theorem 5.6.32, p.356]. ⇤

The sum (: :=
Õ
:

9=0 0 9 of a finitely many complex numbers 0 9 2 C does not depend
on the order in which 0 9 are summed. An infinite series ( := lim:!1 (: =

Õ1
9=0 0 9

may, e.g., ( := 1�1+1�1+ · · · where the partial sums (: oscillate between 1 and �1.
This motivates a stronger notion of convergence. Specifically an infinite sum

Õ1
9=0 0 9

of complex numbers 0 9 2 C is said to converge absolutely if lim:!1
Õ
:

9=0 |0 9 | = 0 for
some real number 0 2 R.

Definition A.8 (Series convergence). Considered a norm vector space ("=, k · k). We
say a power series {Õ

9: �
9 } ✓ "=

1 converges if there exists a matrix � 2 "= such that
Õ
9: �

9 ! � as :!1, i.e.,
if lim:!1 k

Õ
9: �

9 � �k = 0.
2 converges absolutely if there exists a matrix � 2 "= such that

Õ
9: �

9 ! �) as
:!1with respect to the underlying matrix norm k · k, i.e., if lim:!1 k

Õ
9: �

9 �
�k = 0.

For a complex power series ((I) := lim:!1
Õ
:

9=0 0 9 I
9 , it is known that there is

a radius of convergence ' � 0, possibly 1, such that the power series converges
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absolutely for |I | < ', diverges if |I | > ', and may converge or diverge if |I | = '. For
any complex =⇥= matrix � 2 "= and any submultiplicative matrix norm k · k we have�����

’
:

0:�
:

����� 
’
:

|0: | k�: k 
’
:

|0: | k�k:

where the first inequality is due to the triangular inequality and the second due to
submultiplicativity. This means that a matrix power series

Õ1
:=0 0:�

: converges abso-
lutely if there exists a matrix norm k · k such that k�k < ', the radius of convergence
for

Õ
:
0: I

: , i.e., see Exercise A.24. Such a norm exists if and only if d(�) < '

because, given any n > 0, there exists a (submultiplicative) matrix norm k · k with
d(�)  k�k  d(�) + n [15, Lemma 5.6.10, p.347]. This fact and some corollaries are
summarized in the next result [15, pp.350-351].

Theorem A.31 (Series convergence). Let � 2 "=.

1 Let ' be the radius of convergence of a scalar power series
Õ1
:=0 0: I

: . The matrix
power series

Õ1
:=0 0:�

: converges if d(�) < ', which holds if there exists a
multiplicative matrix norm k · k on "= such that k�k < '.

Let k · k be a submultiplicative matrix norm on "=.

2. If k� � �k < 1 then � is nonsingular and

�
�1 =

1’
:=0

(� � �):

3. If k�k < 1 then � � � is nonsingular and

(� � �)�1 =
1’
:=0

�
:

4. If k� k = 1 (e.g., if k · k is an induced norm) and k�k < 1 then

1
1+ k�k  k (� � �)

�1k  1
1� k�k

The theorem is proved in Exercise ??.

A.9 Di�erentiability, complex di�erentiability, analyticity

Di�erentiability of real-valued functions.

A real-valued function 5 : R! R is said to be di�erentiable at G 2 R if the limit

5
0(G) := lim

⌘2R
⌘!0

5 (G + ⌘)� 5 (G)
⌘

(A.29)



1026 Linear algebra preliminaries

exists. If 5 0(G) exists, it is called the gradient or derivative of 5 at G 2 R. If 5 is
di�erentiable at every G 2 - ✓ R then 5 is called di�erentiable on - . The straight line
{⌘ 2 R : 5 (G) + 5 0(G)⌘} can be interpreted as a linear approximation of 5 at G in the
sense that the error n (⌘) is smaller than linear, i.e.,

lim
⌘!0

n (⌘)
⌘

:= lim
⌘!0

5 (G + ⌘)� ( 5 (G) + 5 0(G)⌘)
⌘

= 0

We use this to generalize di�erentiability to R=: a real-valued function 5 : R=! R is
said to be di�erentiable at G 2 R= if there exists a vector < 2 R= such that

lim
⌘2R=
⌘!0

5 (G + ⌘)� 5 (G)�<T
⌘

k⌘k = 0

When this holds, < is called the gradient or derivative of 5 at G 2 R= and denoted
r 5 (G). If 5 is di�erentiable at every G 2 - ✓ R= then 5 is called di�erentiable on - . If
5 is di�erentiable with respect to G 9 2 R, when all other G: , : < 9 are held fixed, then
it is called partially di�erentiable at G 2 R= with respect to G 9 . The derivative is called
the partial derivative of 5 at G with respect to G 9 and denoted m 5

mG 9

(G):

m 5

mG 9

(G) := lim
C 2R
C!0

5 (G + C4 9 )� 5 (G)
C

where 4 9 2 R= is the unit vector with 1 in the 9 position and 0 elsewhere. The row
vector of partial derivatives of 5 at G 2 R= is

m 5

mG

(G) :=
h
m 5

mG1
(G) · · · m 5

mG=

(G)
i

The partial derivative m 5

mG
(G) describes the behavior of 5 at G only along the coordinate

axes whereas the derivative r 5 (G) describes its behavior in all directions. If 5 is
di�erentiable then it is partially di�erentiable, but the converse does not generally
hold.

Theorem A.32. If 5 :R=!R is di�erentiable at G 2R= then it is partially di�erentiable
at G (i.e., m 5

mG
(G) exists). Moreover its gradient r 5 (G) is given by

r 5 (G) =

m 5

mG

(G)
�T

The following example shows that the converse may not hold.

Example A.5. Consider 5 : R2! R defined by:

5 (G, H) :=
⇢

0 if GH = 0
1 if G < 0 or H < 0

i.e., 5 = 0 on the G and H-axes and 5 = 1 everywhere else. It is partially di�erentiable
overR2. It is discontinuous at every point on the axes and hence cannot be di�erentiable
at those points. ⇤
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The partial derivative m 5

mG
(G) in Example A.5 exists, but not continuous, on the axes.

If 5 : -! R is partially di�erentiable on an open set - ✓ R= and m 5

mG
(G) is continuous

on - (i.e., the partial derivative m 5

mG
(G) exists and is continuous at every G 2 -), then 5

is called continuously di�erentiable on - .

Theorem A.33. If 5 : - ! R is continuously di�erentiable on an open set - ✓ R=,
then it is di�erentiable on - .

Complex di�erentiability of complex-valued functions.

A complex-valued function 5 : C! C is complex di�erentiable at I 2 C if

5
0(I) := lim

⌘2C
⌘!0

5 (I+ ⌘)� 5 (I)
⌘

(A.30)

exists. When 5
0(I) exists we will call it the complex derivative or derivative of 5 at

I 2 C. Note that 5 0(I) is generally a complex number. If 5 is complex di�erentiable at
every I 2 / ✓ C then 5 is called holomorphic on / .

Even though complex di�erentiability in (A.30) looks similar to di�erentiability in
(A.29), (A.30) is a much stronger notion because ⌘must approach 0 from all directions
in the complex plane. To see this we can reformulate a complex-valued function and
complex di�erentiability in R2 where 5 : C! C is written in terms of its real and
imaginary parts, 5 (G, H) =: 5A (G, H) + i 58 (G, H) where G, H 2 R and 5A , 58 2 R. Then
(A.30) implies, taking ⌘ = C (1+ i0) and ⌘ = C (0+ i) respectively,

5
0(G, H) = lim

C 2R
C!0

5 (G + C, H)� 5 (G, H)
C (1+ i0) = lim

C 2R
C!0

✓
5A (G + C, H)� 5A (G, H)

C

+ i
58 (G + C, H)� 58 (G, H)

C

◆

5
0(G, H) = lim

C 2R
C!0

5 (G, H + C)� 5 (G, H)
C (0+ i1) = lim

C 2R
C!0

✓
5A (G, H + C)� 5A (G, H)

iC
+ i

58 (G, H + C)� 58 (G, H)
iC

◆

Hence if 5 =: 5A + i 58 is holomorphic on / then it must satisfy

m 5A

mG

=
m 58

mH

,
m 58

mG

= �m 5A
mH

on / . These equations are called the Cauchy-Riemann equations.

Analyticity.

A real-valued function 5 : -! R on an open set - ✓ R is said to be real analytic on -
if at every point G0 2 - there is an open neighborhood ⌫X (G0) := {G 2 - : |G�G0 | < X}
around G0 such that

5 (G) =
1’
:=0

0: (G� G0): , G 2 ⌫X (G0) (A.31a)
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Equivalently 5 is real analytic on - if it is infinitely di�erentiable so that the Taylor
series around every point G0 2 - converges to 5 (G) for all G 2 ⌫X (G0), i.e.,

5 (G) =
1’
:=0

5
(:) (G0)
:!

(G� G0): , G 2 ⌫X (G0) (A.31b)

with 0: := 5
(:) (G0)/:!. The neighborhood ⌫X (I0) is called the region of convergence

for (A.31). A function 5 defined on a subset of R is said to be real analytic at G 2 R if
there is a neighborhood ⌫X (G) of G on which 5 is real analytic.

A complex-valued function 5 : / ! C on an open set / ✓ C is said to be complex
analytic on / or analytic on / if at every point I0 2 / there is a neighborhood
⌫X (I0) := {I 2 / : |I� I0 | < X} around I0 such that

5 (I) =
1’
:=0

0: (I� I0): , I 2 ⌫X (I0) (A.32a)

Equivalently 5 is analytic on / if it is infinitely complex di�erentiable so that the
Taylor series around every point I0 2 / converges to 5 (I) for all I 2 ⌫X (I0), i.e.,

5 (I) =
1’
:=0

5
(:) (I0)
:!

(I� I0): , I 2 ⌫X (I0) (A.32b)

with 0: := 5
(:) (G0)/:!. A function 5 defined on a subset of C is said to be analytic at

I 2 C if there is a neighborhood ⌫X (I) of I on which 5 is analytic.

An important property of holomorphic function is: 5 : C! ⇠ is holomorphic on
an open set / ✓ C if and only if it is complex analytic on / .

A.10 Mean value theorems

When restricted to the vector space R= endowed with any norm k · k, the definition of
dual norm k · k⇤ in (A.25) reduces to: for any G 2 R=,

kGk⇤ := max
H:kH k=1

G
T
H = max

H:kH k=1

��
G

T
H

�� (A.33)

The maximization is attained since inner product is continuous and the feasible set is
compact. Hence there is a normalized H(G) 2 R= that satisfies

G
T
H(G) = kGk⇤ and kH(G)k = 1 (A.34a)

Recall a crucial fact that, for the vector space + = R= or C=, the dual of a dual norm is
the original norm, i.e., k · k⇤⇤ = k · k for an arbitrary norm k · k on + (see [15, Theorem
5.5.9, p.338]). Therefore, given any G 2 R=, there exists an H⇤ (G) 2 R= such that

G
T
H⇤ (G) = kGk and kH⇤ (G)k⇤ = 1 (A.34b)
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because

kGk = kGk⇤⇤ = max
H:kH k⇤=1

G
T
H = G

T
H⇤ (G)

where H⇤ (G) is a maximizer (which clearly exists).3 Remarkably, for R=, (A.34) says
that both the norm and its dual norm of any vector can be attained by the inner product
of the vector with another vector, for any norm that may not be derived from an inner
product, e.g., k · k1, k · k1.

We now use (A.26) and (A.34b) to prove the mean value theorem for vector-valued
functions.

Lemma A.34 (MVT for vector-valued function). Consider a continuously di�eren-
tiable function 5 : R=! R<. Given any G, H,F in R= we have

F
T ( 5 (H)� 5 (G)) = FT m 5

mG

(I) (H� G) (A.35a)

k 5 (H)� 5 (G)k 
����m 5
mG

(I)
���� kH� Gk (A.35b)

where I := UG+ (1�U)H for some U 2 [0,1], k · k is any norm, and for matrix, it denotes
the induced norm. If we take F = 48 we obtain the usual mean value theorem for a
scalar valued function: 58 (H)� 58 (G) = m 58

mG
(I) (H� G).

Proof of Lemma A.34. Fix any G, H,F in R=. Let I(U) := (1�U)G +UH for U 2 [0,1]
so that I(0) = G and I(1) = H, and I(U) traces the straight path from G to H. Define the
function

6(U) := 6F (U) := FT
5 (I(U))

as a function of U 2 [0,1]. Since 6 is from R to R the standard mean value theorem
implies that

6(1)�6(0) = 60(V)

for some V 2 [0,1] that depends on F. Since 6(0) = FT
5 (G) and 6(1) = FT

5 (H) this
becomes (using chain rule)

F
T ( 5 (H)� 5 (G)) = FT m 5

mG

(I(V)) (H� G)

proving (A.35a).

3 For the ?-norm the dual is the @-norm with ?�1 +@�1 = 1 (see Lemma A.24) and

(H (G))
8

:=
G
?�1
8

kG k?�1
?

sign ( (G8) ?)

so that GT
H (G) = kG k? and kH (G) k@ = 1.
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To prove (A.35b), use (A.34b) to choose F 2 R= such that4

F
T ( 5 (H)� 5 (G)) = k 5 (H)� 5 (G)k and kFk⇤ = 1

Substituting this F into (A.35a) yields

k 5 (H)� 5 (G)k = FT ( 5 (H)� 5 (G)) = F
T m 5

mG

(I(V)) (H� G)

 kFk⇤ ·
����m 5
mG

(I(V)) (G� H)
����


����m 5
mG

(I(V))
���� · kG� Hk

proving (A.35b). In the above, the first inequality follows from (A.26) and the second
inequality follows from the definition of the induced norm of m 5

mG
. This completes the

proof of Lemma A.34. ⇤

A.11 Algebraic graph theory

Consider a graph ⌧ = (# ,⇢) with # := {1, . . . ,=}. ⌧ can either be undirected or
directed with an arbitrary orientation. Two nodes 9 and : are adjacent if ( 9 , :) 2 ⇢ .
A complete graph is one where every pair of nodes is adjacent. A subgraph of ⌧ is a
graph � = (# 0,⇢ 0) with # 0 ✓ # and ⇢ 0 ✓ ⇢ . A clique of ⌧ is a complete subgraph of
⌧. A maximal clique of ⌧ is a clique that is not a subgraph of another clique of ⌧.

By a path connecting nodes 9 and : we mean either a set of distinct nodes
( 9 ,=1, . . . ,=8 , :) such that ( 9 ,=1), (=1,=2), . . . , (=8 , :) are edges in ⇢ or this set of edges,
depending on the context. A cycle (=1, . . . ,=8) is a path such that (=1,=2), . . . , (=8 ,=1)
are edges in ⇢ . By convention we exclude a pair of adjacent nodes ( 9 , :) as a cycle. ⌧
is connected if there is a path between every pair of nodes. ⌧ is :-vertex connected or
:-connected, : = 1, . . . ,=, if it remains connected after removing fewer than : nodes.
⌧ is :-edge-connected, : = 1, . . . ,=, if it remains connected after removing fewer
than : edges. Hence if ⌧ is :-connected (:-edge-connected) then it is 9-connected
( 9-edge-connected), 9  : . A connected component of ⌧ is a subgraph of ⌧ that is
connected.

A cycle in ⌧ that has no chord (an edge connecting two nodes that are non-adjacent
in the cycle) is called a minimal cycle. ⌧ is chordal if all its minimal cycles are of

4 If the norm k · k is Euclidean then the argument below simplifies to: setting F := 5 (H) � 5 (G) in
(A.35a) yields

k 5 (H) � 5 (G) k22 = ( 5 (H) � 5 (G))T m 5

mG

(I (V)) (H� G)

 k 5 (H) � 5 (G) k2 ·
����m 5
mG

(I (V))
����

2
kH� G k2

proving (A.35b). This is done in [178].
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length 3 (recall that an edge ( 9 , :) is not considered a cycle). A chordal extension of ⌧
is a chordal graph on the same set of nodes as ⌧ that contains ⌧ as a subgraph. Every
graph has a chordal extension; e.g. the complete graph on the same set of nodes is a
trivial chordal extension.

Suppose now the graph ⌧ = (# ,⇢) is directed with an arbitrary orientation. Let
= := |# | and < := |⇢ |. Let ⇠ denote the =⇥< incidence matrix defined by:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Let the (=�1)⇥< matrix ⇠̂ denote the reduced incidence matrix of ⌧ obtained from
⇠ by removing its first row. If ⌧ has 2 connected components, then rank(⇠) = =� 2. In
particular if ⌧ is connected then rank(⇠) = =�1. Indeed ⇠ can be written as a block
diagonal matrix with the :th diagonal block ⇠: being the incident matrix of the :th
connected component that has =: nodes. It can be proved that rank(⇠: ) = =: �1.

We take R= as the node space of ⌧ and it has a simple structure. The null space
null

�
⇠

T� consists of all \ 2 R= such that ⇠T
\ = 0. This implies that \8 = \ 9 if (8, 9) 2 ⇢

is a link, i.e., a vector \ is in null
�
⇠

T� if and only if \8 takes the same value at every
node in the same connected component. In particular, if ⌧ is connected, then null

�
⇠

T�
is span(1) and therefore its orthogonal complement range(⇠) has dimension =�1 and
consists of all vectors ? 2 R= such that 1

T
? = 0. See Figure A.6.

We takeR< as the edge space of⌧. Since rank
�
⇠

T� = rank(⇠) = =�1 for a connected
⌧, dim(null(⇠)) = <� =+1; see Figure A.6. A cycle in ⌧ is a set of edges in ⇢ that
forms a cycle subgraph. Given a cycle f in⌧, pick an orientation for f, say, clockwise.
Define the indicator function (vector) I(f) as

I; (f) =
8>>><
>>>:

+1 if edge ; is in f and has the same orientation as f

�1 if edge ; is in f and has the opposite orientation as f

0 otherwise

Partition # into two nonempty disjoint subsets #1 and #2. A cut in ⌧ is a set of edges
in ⇢ each of which has one endpoint in #1 and the other endpoint in #2. Given a cut
^ in ⌧, pick an orientation, say, from #1 to #2. Define the indicator function (vector)
I(^) as

I; (^) =
8>>><
>>>:

+1 if edge ; is in ^ and has the same orientation as ^

�1 if edge ; is in ^ and has the opposite orientation as ^

0 otherwise

Both the vectors I(f) and I(^) are in {0,1,�1}<. Given a partition of # into #1 and
#2, the indicator function I(^) of the cut can be expressed as

I(^) := ±1
2

 ’
82#1

28 �
’
82#2

28

!
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C

C T

RnRm

range(C T) : dim = n−1
{z (cut(T , l )) : l ∈T}

range(C ) : dim = n−1
{p : 1Tp = 0}

null(C ) : dim =m−n+1
{z (cyc(T , l )) : l ∈G \T}

null(C T) : dim = 1
span(1)

Figure A.6 The edge space R< = null(⇠) � range(⇠T) and the vertex space
R
= = null(⇠T) � range(⇠).

where 28 are the 8th rows of ⇠. This means that I(^) is in the range space of ⇠T, and
hence is orthogonal to the kernal of ⇠, i.e., if ⇠Ĩ = 0 then IT (^) Ĩ = 0. Call the null
space of ⇠ the cycle subspace of ⌧ and its orthogonal complement the cut subspace
of ⌧; see Figure A.6.

Fix any spanning tree ) of ⌧. For each edge ; of ⌧ not in ) , there is a unique cycle
consisting of ; and only edges in ) ; denote this cycle by cyc() , ;). For each edge ; of
) , there is a unique cut consisting of ; and only edges not in ) ; denotes this cut by
cut() , ;). Give cyc() , ;) and cut() , ;) the orientations that coincide with the orientation
of ; in ⌧. These definitions are illustrated in Figure A.7. The following properties of

1

2

4

3 5

T

(a) ⌧ and spanning
tree )

l̂ = 4

T

(b) dim(null(⇠)) = 2

l = 3

T

(c) dim(range(⇠T)) =
3

Figure A.7 A connected graph with a spanning tree ) , with cycle subspace null(⇠) and cut
subspace range(⇠T). The cycle subspace has dim 2 with a basis vector for each ;̂ 8 ) , e.g.,
I(cyc() , ;̂)) = (0,�1,1,1,0). The cut subspace has dim 3 with a basis vector for each ; 2 ) ,
e.g., I(cut() , ;)) = (0,0,1,�1,0).

the edge space of ⌧ are illustrated in Figure A.6.
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Theorem A.35 (Edge space R< of ⌧). 1 The cycle subspace null(⇠) is a vector
space of dimension <�=+1; I(f) 2 null(⇠) for any cycle f.

2 Given a spanning tree ) , the set {I(cyc() , ;)) : ; 2 ⌧ \)} forms a basis that spans
null(⇠).

3 The cut subspace range
�
⇠

T� is a vector space of dimension =�1; I(^) 2 range
�
⇠

T�
for any cut ^.

4 Given a spanning tree ) , the set {I(cut() , ;)) : ; 2 )} forms a basis that spans
range

�
⇠

T� .
5 The edge space of ⌧ is the orthogonal direct sum of its cycle subspace and cut

subspace, i.e., R< = null(⇠) � range
�
⇠

T� and IT
f
I^ = 0 for any If 2 null(⇠) and

I^ 2 range
�
⇠

T� .
Theorem A.36. 1 (Poincaré 1901) Any square submatrix of the incidence matrix

⇠ of a graph ⌧ has determinant equal to 0,+1, or �1.
2 Let � ✓ ⇢ with |� | = =�1. Let⇠� be an (=�1)⇥ (=�1) submatrix of⇠, consisting

of the intersection of those =� 1 columns of ⇠ corresponding to the =� 1 edges
in � and any =� 1 rows of ⇠. Then ⇠� is invertible if and only if the subgraph
induced by � is a spanning tree of ⌧.

3 (Inverse of ⇠) ) Let ) be a spanning tree of ⌧. Let ⇠) denote the corresponding
(=�1)⇥ (=�1) submatrix. Then

⇥
⇠
�1
)

⇤
;8
= ±1 if edge ; is in the unique path in )

joining node 8 and the reference node 0 corresponding to the row excluded from
⇠) . Otherwise

⇥
⇠
�1
)

⇤
;8
= 0.

A basis for the cycle subspace null(⇠) and that of the cut subspaces range
�
⇠

T� can
be explicitly determined in terms of the incidence matrix ⇠, as follows. Partition ⇠
such that columns 1, . . . ,# are the edges of a spanning tree) of⌧. Partition⇠ as (node
0 is the reference bus):

⇠ =

⇠̂) ⇠̂�)
30) 3�0)

�
(A.36a)

By Theorem A.36, ⇠̂) is invertible and its = � 1 rows form a basis since ) is a
spanning tree of ⌧. Let /f denote the <⇥ (<�=+1) matrix whose columns are the
basis {I(cyc() , ;)) | ; 2 ⌧\)} of the cycle subspace null(⇠), written as (possibly after
rearranging the columns):

/f =

/)

I<�=+1

�
(A.36b)

The lower submatrix of /f is I<�=+1 because these rows correspond to edges not in
the spanning tree ) and the orientations of the cycles have been chosen so that they
coincide with the orientation of these edges. By the definition of /f we have the
important topological relation ⇠ /f = 0. Using (A.36) we therefore have

/) = �⇠̂�1
)
⇠̂�)

From Theorem A.36.3, each column of /) corresponds to a directed edge 8! 9 not
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in the spanning tree ) , and its nonzero entries correspond to edges on the unique path
between node 8 and node 9 in ) . Hence a basis for the cycle subspace is given by the
columns of

/f =

�⇠̂�1

)
⇠̂�)

I<�=+1

�
(A.37a)

Note that Theorem A.36 implies that ⇠̂�1
)

has integral entries, so / also has integral
entries. Similarly, we can explicitly determine the cut matrix. Let /^ denote the<⇥=�1
matrix whose columns are the basis {I(cut() , ;)) | ; 2 )} of the cut subspace range

�
⇠

T� ,
written as (possibly after rearranging the columns):

/^ =

�=�1

/�)

�

Since every column of /^ belongs to the orthogonal complement of null(⇠), we have
/

T
f
/^ = 0. Hence

/�) = ⇠̂T
�) ⇠̂

�T
)

where ��) := (��1)T = (�T)�1 for any invertible matrix � and the basis for the cut
space is

/^ =

I=�1

⇠̂
T
�) ⇠̂

�T
)

�
(A.37b)

Since /) = �⇠̂�1
)
⇠̂�) in /f and /�) = ⇠̂T

�) ⇠̂
�T
)

in /^ , we have /
T
)
+ /�) =

0(<�=+1)⇥=�1. This implies for ; 2 ) and ;̂ 2 ⌧\) that

; 2 cyc() , ;̂), ;̂ 2 cut() , ;)

Example A.6. For the graph in Figure A.7 we have

/f =

26666666664

0 1
�1 �1
1 0
1 0
0 1

37777777775
and /^ =

26666666664

1 0 0
0 1 0
0 0 1
0 1 �1
�1 1 0

37777777775
One can verify that, indeed, /T

)
+ /�) = 02⇥3

This structure can be used to understand loop flows in the DC power flow model. We
call a line flow vector % a loop flow if it satisfies power balance with zero injections,
i.e., ⇠% = 0. Hence %f is a loop flow if and only if it is in the cycle subspace null(⇠)
of⌧, i.e., %f = /fU for some vector U 2 R<�=+1. Given any balanced injection vector
? with

Õ
9
? 9 = 0, the line flows % that satisfy ? = ⇠% are not unique. If % satisfies

? = ⇠%, so does %+%f for any loop flow %f . See Remark 4.10.

A matrix is called totally unimodular if any square submtrix has determinant equal
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to 0,+1, or �1. Hence Theorem A.36.1 implies that the incidence matrix ⇠ of any
directed graph ⌧ is totally unimodular.

Theorem A.37. Given any (directed) graph ⌧,

1 The incidence matrix ⇠ of any directed graph ⌧ is totally unimodular.
2 If � is a totally unimodular matrix and 1 is an integral vector, then, for any 2, the

solution of the linear program

min
G

2
T
G subject to �G  1

has an optimal solution which is integral, provided a finite solution exists.

The significance of the theorem is that many optimization problem on graphs have
LP formulations where � is the incidence matrix or its variant, e.g. max flow, shortest
path problems.

A.12 Bibliographical notes

There are many excellent texts on linear algebra. Most of the materials in Chapter A.6
can be found in [176, Chapter 7.3] for singular value decomposition and properties
of singular values, in [176, Chapters 2.5, 4.1] for spectral theorems for normal and
Hermitian matrices, and [176, Chapter 4.4.] for complex symmetric matrices. The
basic notions of algebraic graph theory in Chapter A.11 mostly follow [179].

There are many classic texts on nonsmooth convex analysis and optimization (e.g.
Rockafellar, Clarke, ...). The materials in Section ?? mostly follow [54, Chapter 5],
[141]. Books on nonsmooth analysis include [180, 141, 181] with [180] focuses more
on control theory for applications of nonsmooth analysis and [141, 181] more on
nonsmooth convex optimization. The emphasis of [141] is on R= whereas that of [181]
is on infinite dimensional vector spaces.

A.13 Problems

Chapters A.3–A.6.

Exercise A.1 (Matrix sum and product). Let �,⌫ 2 C=⇥=.

1 Show that if �,⌫ are nonsingular then �⌫ is nonsingular but �+⌫ can be singular.
2 Suppose � � 0 and ⌫ � 0. Show that �+⌫ � 0 but �⌫may not be positive definite.

Show that if �⌫ = ⌫� or if � and ⌫ have the same set of eigenvectors then �⌫ � 0.
(Hint: �⌫ = ⌫� if and only if � and ⌫ are simultaneously diagonalizable.)
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3 Give an example of � � 0 and ⌫ � 0 that share the same set of eigenvectors and
hence �⌫ � 0.

4 Given an example where � � 0 and ⌫ � 0 but �⌫ ⌥ 0.

Exercise A.2 (Invertibility of complex symmetric matrix). Let " = � + i⌫ where
�,⌫ 2 R=⇥= and U = d + in where d,n 2 R=. Show that, if " is (complex) symmetric,
then

U
H
"U = (dT

�d + nT
�n) + i(dT

⌫d + nT
⌫n)

Show that, if " is (complex) symmetric, then

1 If � � 0 then "�1 exists and Re("�1) � 0.
2 If ⌫ � 0 then "�1 exists and Im("�1) � 0.

Exercise A.3 (Schur complement). Let " 2 C=⇥= and partition it into blocks:

" =

� ⌫

⇡ ⇠

�

such that � 2 C(=�:)⇥(=�:) , : < =, and the other submatrices are of appropriate dimen-
sions. If " and � are invertible, show that

"
�1 =


�
�1 + ��1

⌫("/�)�1
⇡�
�1 ���1

⌫("/�)�1

�("/�)�1
⇡�
�1 ("/�)�1

�

where "/� := ⇠ �⇡��1
⌫ is the Schur complement of � of matrix " .

Exercise A.4 (Push-through identities). Let � 2 C=⇥=, ⌫ 2 C=⇥: and ⇠ 2 C:⇥=. Then

1 (I= +⌫⇠)�1
⌫ = ⌫(I: +⇠⌫)�1 provided the inverses exist.

2 (�+⌫⇠)�1
⌫ = ⌫(�+⇠⌫)�1 provided = = : , �⌫ = ⌫� and the inverses exist.

Note that when : ⌧ =, I: +⇠⌫ can be much easier to invert than I= +⌫⇠.

Exercise A.5. Find the singular value decomposition, pseudo-inverse �
†, null(�),

range(�), null(�) ) and range(�) ) of the following:

1 � =

0

1

�
.

2 � = [1 2].
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3 � =

1 1
0 0

�
.

4 � =

1 1
1 1

�
.

Discuss the existence and uniqueness of solutions to �G = 1 given 1.

Exercise A.6. Consider � =

1 1
1 �2

�
. Let ⌫ :=


1
1

�
and ⇠ :=


1
�2

�
so that � = [⌫ ⇠].

Show that �† = ��1 <

⌫
†

⇠
†

�
.

Exercise A.7 (Singular value decomposition). On the uniqueness of the unitary matrix
, in Theorem A.11, suppose rank(�) =: A < <  =. For a given + given in Theorem
A.11, show that , defined by ,H := ⌃†+H

� generally does not satisfy the singular
value decomposition (A.11). Here ⌃† is obtained from ⌃ by replacing its positive
singular values f8 by 1/f8 and taking the transpose.

Exercise A.8 (Singular value decomposition). Let G 2 C= be an =⇥1 matrix. Compute
a singular value decomposition of G.

Exercise A.9 (SVD and unitary diagonalization). Prove Theorem A.16.

Chapter A.7.

Exercise A.10 (Pseudo-inverse of �). Consider a matrix � 2 C<⇥= as a mapping
� : C=! C< and its Hermitian transpose �H : C<! C=. Show that the mapping �
restricted from range(�H) to range(�) is surjective and injective. This means that an
inverse, denoted �† : range(�)! range(�H), always exists for any matrix �.

Exercise A.11 (Pseudo-inverse of �). For the mapping � in Exercise A.10, show that
�
† =,⌃†+H, i.e., � and �† are inverse of each other when restricted to range(�H)

and range(�).
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Exercise A.12 (Pseudo-inverse of �). Consider a matrix � 2 C<⇥= with rank � = A 
min{<,=}. Let � = +⌃,H be its singular value decomposition and �† =,⌃†+H be
its pseudo-inverse. Prove (Corollary A.20.3): If A = =  < then �† =

�
�

H
�

��1
�

H.

Exercise A.13 (Pseudo-inverse of �). Consider a matrix � 2 C<⇥= with rank � = A 
min{<,=}. Instead of using the formula �† =,⌃†+H, use the fact that �† and � are
inverse of each other when restricted to range(�H) and range(�) to prove:

1 If A = <  = then �† = �H �
��

H��1.

2 If A = =  < then �† =
�
�

H
�

��1
�

H.

Exercise A.14 (Pseudo-inverse and norm minimization). Consider a matrix � 2 R<⇥=
with rank � = <  =. Show that the pseudo-inverse solution �

†
1 of �G = 1 is the

optimal solution of the quadratic program

min
G2R=

1
2
kGk22 s.t. �G = 1

Optimization problems often have multiple equivalent formulations that involve
di�erent variables and constraints. The next two exercises explore the relationship be-
tween these equivalent constraints and their Lagrange multipliers when the constraints
are a�ne. See also Exercise ?? on equivalent formulations of economic dispatch with
reduced model.

Exercise A.15 (Equivalent constraints). Consider the equations �1G = 11 and �2G = 12

with G 2 R=, �1 2 R<⇥=, �2 2 R:⇥=, 11 2 R<, 12 2 R: , and < may not be equal to : .
Suppose

• Feasibility: 11 2 range(�1) and 12 2 range(�2) so solutions for these equations
always exist.

• Equivalence: G satisfies �1G = 11 if and only if it satisfies �2G = 12.

Remark A.2 implies that the solution set of �1G = 11 is given by

-1 := {G : G = �
†
111 +F1, F1 2 null(�1)}

and the solution set of �2G = 12 is given by

-2 := {G : G = �
†
212 +F2, F2 2 null(�2)}

Show that -1 = -2.
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Exercise A.16 (Equivalent constraints). Consider the setup in Exercise A.15 and the
equivalent problems

min
G

5 (G) subject to �1G = 11 [_1] (A.38)

min
G

5 (G) subject to �2G = 12 [_2] (A.39)

with Lagrange multipliers _1,_2 respectively. Suppose 5 is di�erentiable (not neces-
sarily convex). Let (G⇤,_⇤1) be a primal-dual optimal point with zero duality gap for
(A.38) and (G⇤,_⇤2) be a primal-dual optimal point with zero duality gap for (A.39).
Show that �)1 _

⇤
1 = �

)

2 _
⇤
2.

Chapter A.8.

Exercise A.17 (Euclidean norm). Show that the Euclidean norm k · k2 on C= is the
only unitarily invariant norm with k48 k = 1. Positive scalar multiples of Euclidean
norms are also unitarily invariant with k48 k not necessarily 1.

Exercise A.18 (Cauchy-Schwarz inequality). Let G1, . . . ,G= be = given real numbers
with sample mean ` and sample standard deviation f defined by:

` :=
1
=

’
8

G8 , f :=

 
1
=

’
8

(G8 � `)2

!1/2

It can then be shown that (Exercise A.18)

` � f
p
=�1  G8  ` + f

p
=�1, 8 = 1, . . . ,=

with equality for some 8 if and only if G? = G@ for all ?,@ < 8.

Exercise A.19 (Hölder’s inequality). Prove Theorem A.23 on the vector space+ =⇠=

or R= with ;? norms (Hölder’s inequality): For any ?,@ � 1 such that 1
?
+ 1
@
= 1

=’
8=1

|G8H8 |  kGk ? kHk@ , G, H 2 +

with equality if and only if G? := (G?
8

, 8 = 1, . . . ,=) and H@ := (H@
8
, 8 = 1, . . . ,=) are linearly

dependent, i.e., G? = 0H@ for some scalar 0 2 �.

Exercise A.20 (Induced norms). Let � 2 "<,= be a < ⇥ = complex matrix. Prove
Theorem A.25:

1 Max column sum (induced by ;1 norm): k�k1 = max 9
Õ
8
|�8 9 |.
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2 Max row sum (induced by ;1 norm):k�k1 = max8
Õ
9
|�8 9 |.

3 Spectral norm (induced by ;2 norm): k�k2 = fmax (�) =
q
_max

�
�

H
�

�
where

fmax (�) is the largest singular value of � and _max
�
�

H
�

�
� 0 is the largest

eigenvalue of the positive semidefinite matrix �H
�.

4 If � is square and nonsingular then k��1k2 = 1/fmin (�), the reciprocal of the
smallest singular value of �.

5 k�H
�k2 = k��Hk2 = k�k22.

6 k�k2 = max{|HH
�G | : kGk2 = kHk2 = 1, G 2 C=, H 2 C<}.

Exercise A.21 (Vector norms on matrices). Prove Theorem A.27: Let � 2 "= be a
=⇥= complex matrix.

1 k · ksum and k · k� are submultiplicative matrix norms, but k · kmax is a matrix norm
that is not submultiplicative.

2 The Frobenius norm is given by

k�k� =
���tr ⇣��H

⌘���1/2 =
s’

8

f
2
8
(�) =

s’
8

_8

�
��

H�

where f8 (�) denote the singular values of � and _8 (��H) denote the eigenvalues
of the positive semidefinite matrix ��H.

3 k�k� = k�Hk� = k*�+ k� for any unitary matrices *,+ 2 "= (unitarily invari-
ant).

Exercise A.22 (Spectral radius, singular values, norms). Let � 2 "=. Let k · k be a
submultiplicative matrix norm on "= and � 2 "=. Let _8 and f8 be the eigenvalues
and singular values of � respectively with

|_1 | � · · · � |_= |, f1 � · · · � f=

Let d(�) := |_1 | denote the spectral radius of �. Prove Theorem A.29:

1 |_1 |  f1 and |_= | � f= > 0, i.e., |_8 | 2 [f=,f1].
2 For all 8, 1/k��1k  |_8 |  d(�)  k�k if � is nonsingular.
3 Given any n > 0 there is a submultiplicative matrix norm k · k such that d(�) 
k�k  d(�) + n . Moreover

d(�) = inf{k�k : k · k is an induced norm}

Exercise A.23 (Sequence convergence). Let k · k be a submultiplicative matrix norm
on "= and � 2 "=. Let d(�) denote the spectral radius of �. Prove Theorem A.30:
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1 If k�k < 1 then lim:!1 �: = 0, i.e.,
��[�: ]8 9 ��! 0 as :!1 for all 8, 9 .

2 d(�) < 1 if and only if lim:!1 �: = 0.
3 Gelfand formula: d(�) = lim:!1 k�: k1/: .

Exercise A.24 (Series convergence). Suppose there exists a matrix norm k · k such
that k�k < ' where ' is the radius of convergence for the power series

Õ
:
0: I

: . Show
that the matrix power series

Õ
:
0:�

: converges absolutely, i.e., lim:!1 |0: |k�: k

Chapter ??.
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